plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
MRC-CBU/riksneurotools-master
|
connectivity_stats.m
|
.m
|
riksneurotools-master/Conn/connectivity_stats.m
| 8,352 |
utf_8
|
bf371d76a5ab3661bf8b941d4d843872
|
% Hacky function for thresholding connectivity matrices across groups
% [email protected] Nov 2018
function connectivity_stats(S);
try
CM = S.CM;
catch
error('Need to pass a Nsubject x Nroi x Nroi connectivity matrix in S.CM')
end
try
X = S.X;
catch
error('Need to pass a design matrix in S.X')
end
try
contrasts = S.contrasts;
catch
error('Need to pass a contrast matrix in S.contrasts')
end
try
Grp = S.Grp;
catch
error('Need to pass a Nsubject matrix indicating which group is subject belongs to')
end
try
GrpPlot = S.GrpPlot;
catch
GrpPlot = [];
% GrpPlot = eye(length(unique(Grp)));
end
try
GrpPlotName = S.GrpPlotName;
catch
for g=1:size(GrpPlot,2)
GrpPlotName{g} = sprintf('Grp%d',g);
end
end
try
rnam = S.rnam;
catch
for r=1:size(CM,2)
rnam{r} = sprintf('ROI%d',r);
end
end
try CorType = S.CorType; catch CorType = 'Unknown', end
try FWE = S.FWE; catch FWE = 1, end
try FDR = S.FDR; catch FDR = 0, end
try Unc = S.Unc; catch Unc = 0, end
try Alpha = S.Alpha; catch Alpha = 0.05, end
try isDcor = S.isDcor; catch isDcor = 0, end
try MeanRegress = S.MeanRegress; catch MeanRegress = 0, end
try PlotTmap = S.PlotTmap; catch PlotTmap = 1, end
try PlotPmap = S.PlotPmap; catch PlotPmap = 1, end
%% Mean Regression
if MeanRegress
CMmr = NaN(size(CM));
meanCM = squeeze(mean(mean(CM,3),2));
mX = [meanCM ones(size(meanCM))];
XpX = mX*pinv(mX);
for r = 1:size(CM,2);
y = squeeze(CM(:,r,:));
CMmr(:,r,:) = y - XpX*y;
CMmr(:,r,:) = CMmr(:,r,:) + repmat(mean(CM(:,r,:),1),[size(CM,1) 1 1]); % Adding back mean according to Linda;
end
CM = CMmr;
CorType = ['MeanReg' CorType];
end
% Linda's faster code but need to reshape results back into matrix form
% CM = CM;
% meanCM = squeeze(mean(mean(CM,3),2));
% beta=[meanCM ones(size(meanCM))]\squeeze(CM(:,:));
% CMmr(:,:)=squeeze(CM(:,:))-[meanCM ones(size(meanCM))]*beta;
% CMmr(:,:)=squeeze(CMmr(:,:))+repmat(squeeze(nanmean(CM(:,:),1)),[length(meanCM) 1]);
% Mean unchanged
%figure; imagesc(squeeze(mean(CMmr,1))); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('CMmr(PreW=%d,Mean=%d)',PreWhiten,MeanVox)); %caxis([-1 1]);
%set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
%% Plot averages and T-stats for combinations of Groups
for g = 1:size(GrpPlot,1)
ind = find(ismember(Grp,find(GrpPlot(g,:))));
tmp = CM(ind,:,:);
if ~isDcor
TransData = atanh(tmp); % Fisher transform (leading diagonals of 1 now Inf, but removed below)
else
TransData = log(CM(ind,:,:)+1); % Correct for bounded Dcor 0-1? (0.001 to stop log(0)=-Inf)
end
figure; imagesc(squeeze(mean(tmp,1))); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Mean %s:%s',CorType,GrpPlotName{g})); caxis([0 1]);
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[])
%% plot the T-stats across all subjects (vs 0)
CMTmap = squeeze(mean(TransData,1))./(squeeze(std(TransData,0,1))/sqrt(length(ind))); CMTmap(find(eye(size(CMTmap)))) = NaN;
CMPmap = t2p(CMTmap,size(CM,1)-1,0); CMPmap(find(eye(size(CMPmap)))) = 1;
if PlotTmap
figure; imagesc(CMTmap); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Tmap %s:%s',CorType,GrpPlotName{g}));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
if PlotPmap
figure; imagesc(log10(CMPmap)); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Log10Pmap %s:%s',CorType,GrpPlotName{g}));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
end
%% plot the T-stats comparing groups
contrasts = [contrasts zeros(size(contrasts,1),size(X,2)-size(contrasts,2))];
Nroi = size(CM,2);
Tmap = NaN(size(contrasts,1),Nroi,Nroi);
Pmap = Tmap; Bmap = Tmap;
%Alpha = Alpha / size(contrasts,1)
% Could speed-up by using a multivariate GLM, but not too slow at moment
for c = 1:size(contrasts,1)
for ri = 1:Nroi
for rj = (ri+1):Nroi
y = squeeze(CM(:,ri,rj));
if ~isDcor; y = atanh(y); else y = log(y+1); end
[Tmap(c,ri,rj),F,Pmap(c,ri,rj),df,R2,cR2,B,r,aR2,iR2] = glm(y,X,contrasts(c,:)',-1);
Bmap(c,ri,rj) = contrasts(c,:)*B;
Bmap(c,rj,ri) = Bmap(c,ri,rj);
%Tmap(c,rj,ri) = Tmap(c,ri,rj);
%Pmap(c,rj,ri) = Pmap(c,ri,rj);
end
end
figure; imagesc(squeeze(Bmap(c,:,:))); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Mean %s: %s',CorType,num2str(contrasts(c,:))));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
if PlotTmap
figure; imagesc(squeeze(Tmap(c,:,:))); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Tmap %s: %s',CorType,num2str(contrasts(c,:))));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
uPmap = squeeze(Pmap(c,:,:));
if PlotPmap
figure; imagesc(log10(uPmap)); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Log10Pmap %s: %s',CorType,num2str(contrasts(c,:))));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
if Unc
% ThrPmap = uPmap;
% ThrPmap(find(uPmap>=Alpha)) = 1;
ThrPmap = squeeze(Tmap(c,:,:));
ThrPmap(find(uPmap>=Alpha)) = NaN;
if PlotPmap & ~isempty(find(uPmap<Alpha))
figure; imagesc(ThrPmap); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('Unc %s: %s',CorType,num2str(contrasts(c,:))));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
fprintf('\nContrast %s, Alpha = %8.7f, Unc\n',num2str(contrasts(c,:)),Alpha)
% [ri,rj] = find(squeeze(ThrPmap)<1);
[ri,rj] = find(squeeze(~isnan(ThrPmap)));
for i = 1:length(ri)
fprintf('%s (%d) --------- %s (%d) (T=%3.2f, p=%1.6f)\n',rnam{ri(i)},ri(i),rnam{rj(i)},rj(i),Tmap(c,ri(i),rj(i)),Pmap(c,ri(i),rj(i)))
end
end
if FWE
CorAlpha = Alpha / ((Nroi-1)*Nroi/2);
% ThrPmap = uPmap;
% ThrPmap(find(uPmap>=CorAlpha)) = 1;
ThrPmap = squeeze(Tmap(c,:,:));
ThrPmap(find(uPmap>=CorAlpha)) = NaN;
if PlotPmap & ~isempty(find(uPmap<CorAlpha))
figure; imagesc(ThrPmap); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('FWE %s: %s',CorType,num2str(contrasts(c,:))));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
fprintf('\nContrast %s, Alpha = %8.7f, FWE\n',num2str(contrasts(c,:)),Alpha)
% [ri,rj] = find(squeeze(ThrPmap)<1);
[ri,rj] = find(squeeze(~isnan(ThrPmap)));
for i = 1:length(ri)
fprintf('%s (%d) --------- %s (%d) (T=%3.2f, p=%1.6f)\n',rnam{ri(i)},ri(i),rnam{rj(i)},rj(i),Tmap(c,ri(i),rj(i)),Pmap(c,ri(i),rj(i)))
end
end
if FDR
% ThrPmap = uPmap;
ThrPmap = squeeze(Tmap(c,:,:));
ind = find(triu(ones(size(uPmap)),1));
[AboveThr, crit_p, adj_ci_cvrg, adj_p]=fdr_bh(uPmap(ind),Alpha,'dep','no');
AboveThr = find(AboveThr);
% Holm's method
% [Ranked,Order] = sort(uPmap(ind),'ascend');
% N = length(Ranked);
% AboveThr = [];
% for f = 1:length(Ranked)
% if Ranked(f) >= Alpha/(N+1-f);
% break
% else
% AboveThr(end+1) = Order(f);
% end
% end
ThrPmap(setdiff([1:length(ThrPmap(:))],ind(AboveThr))) = NaN;
if PlotPmap & ~isempty(AboveThr)
figure; imagesc(ThrPmap); colormap(jet); set(gca,'FontSize',12); colorbar; title(sprintf('FDR %s: %s',CorType,num2str(contrasts(c,:))));
set(gca,'dataAspectRatio',[1 1 1],'Xtick',[],'Ytick',[]);
end
fprintf('\nContrast %s, Alpha = %8.7f, FDR\n',num2str(contrasts(c,:)),Alpha)
% [ri,rj] = find(squeeze(ThrPmap)<1);
[ri,rj] = find(squeeze(~isnan(ThrPmap)));
for i = 1:length(ri)
fprintf('%s (%d) --------- %s (%d) (T=%3.2f, p=%1.6f)\n',rnam{ri(i)},ri(i),rnam{rj(i)},rj(i),Tmap(c,ri(i),rj(i)),Pmap(c,ri(i),rj(i)))
end
end
end
return
|
github
|
MRC-CBU/riksneurotools-master
|
check_pooled_error.m
|
.m
|
riksneurotools-master/GLM/check_pooled_error.m
| 22,146 |
utf_8
|
99321534cf307de8082b85273a1efc3d
|
function [Pool,Part,QV] = check_pooled_error(S);
% Pedagogical script to illustrate assumptions about error term(s) in
% repeated-measures multi-factorial ANOVAs performed on many observations
% (eg voxels in fMRI). Requires SPM8+ on path.
%
% Based on Henson & Penny (2003) Tech Report ("H&P03"):
% http://www.mrc-cbu.cam.ac.uk/people/rik.henson/personal/HensonPenny_ANOVA_03.pdf
%
% ...and used for figures in Henson (in press) "ANOVA". Brain Mapping: A
% comprehensive reference.
%
% [email protected], Jan 2011
%
% Estimates p-values for a number of contrasts (ANOVA effects) as a
% function of a (small) number of subjects and a (large) number of voxels
% (experiments), either pooling the error over all conditions (effects),
% or partitioning the error for each effect. Data can be generated
% according to either a single or partitioned error, which is either white
% (IID/spherical) or coloured (non-IID; nonspherical)
%
% Outputs:
% Pool = subjects X effects X voxel matrix of p-values, assuming a
% pooled error
% Part = subjects X effects X voxel matrix of p-values, assuming
% partitioned errors
% AQV = estimated error covariance of pooled model (from highest
% number of subjects provided)
%
% Also produces some figures - explained below!
%
% Written for ease of understanding, in relation to what SPM does, rather
% than speed or elegance!
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Demonstration 1: If the data are generated by a single IID error
% (albeit unlikely), then pooling is more efficient than partitioning error
%
% Run by:
%
% S.ftit = 'Single white error'; % Just title for plot
% [Pool,Part,QV] = check_pooled_error(S);
%
% ie using defaults below, ie a 2x2 ANOVA design with factors A and B
%
% Results:
%
% 1. When there is no true effect (B=0 for main effect of B; red lines),
% approx 5 percent of voxels survive p<.05 in both types of model - ie
% type I error controlled with both pooled and partitioned error
%
% 2. When there is an effect however (eg, big main effect of A, or smaller
% interaction), a greater percentage of voxels survive p<.05 for pooled
% than partitioned error model (ie more power, because greater df's with
% which to estimate error)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Demonstration 2: If the data are generated by partitioned but IID error
% terms, such that fixed correlation between errors induced, then pooling
% is still more efficient, with no bias (unless those error terms are
% non-IID, eg different (nonspherical) errors, as in demos below).
%
% Run by:
%
% S.GenPart = 1;
% S.ftit = 'Partitioned errors';
% [Pool,Part,QV] = check_pooled_error(S);
%
% Results:
%
% 1. Similar to above, noting that when there is no true effect
% (B=0 for main effect of B; red lines), pooled model still unbiased
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Demonstration 3: If there is greater correlation in the error (nonsphericity),
% owing to similar scores across conditions from the same subject (which is
% likely), then pooled error becomes biased, but partitioning error is less
% biased (indeed, UNbiased when only one numerator df per effect, as here)
%
% Run by:
%
% S.GenPart = 0;
% S.V = [1 0 0.5 0; 0 1 0 0; 0.5 0 1 0; 0 0 0 1];
% S.ftit = 'Correlated error';
% % Eg because only true effects of A and AxB, make these correlated
% [Pool,Part,AQV] = check_pooled_error(S);
%
% Results:
%
% 1. Now note that >5% of voxels have p<.05 under pooled error model (thin
% red line) - ie invalid - but still correct 5% for partitioned error model
% (thick red line) - ie still valid.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Demonstration 4: If you try to estimate error covariance for each voxel
% separately (using ReML), that estimate is poor (unless large number of
% subjects), resulting in "poor" p-values.
%
% Run by:
%
% S.GenPart = 0;
% S.PreWhiten = 1; % Separate ReML for each voxel
% S.V = [1 0 0.5 0; 0 1 0 0; 0.5 0 1 0; 0 0 0 1];
% S.ftit = 'Voxel-wise estimation of correlated error';
% [Pool,Part,AQV] = check_pooled_error(S);
%
% Results:
%
% 1. Warnings as ReML unable to estimate error covariance for some random
% data (some voxels), particularly when few subjects
%
% 2. Note that >5% of voxels have p<.05 under pooled error model (thin
% red line) - ie invalid.
%
% 3. Note that power to detect real effects also reduced for pooled versus
% partitioned error (green and blue lines lowered).
%
% This danger is probably why partitioning error is preferred in
% behavioural statistics when typically only one variate (one voxel) - any
% method (eg Greenhouse-Geisser) for correcting for correlated errors,
% based on one sample of data, will entail an inefficient estimate of that
% correlation (with few df's), so a poor correction (eg too conservative
% in case of G-G).
%
% (This is the same general problem that estimating covariance matrices
% efficiently requires large numbers of observations!)
%
% In imaging data however, we have many samples (voxels), so if we assume
% that error correlation across conditions is same across voxels, we can
% pool the samples to get a more precise estimate of that error
% correlation (ie effectively increase number of observations so as to
% increase accuracy of estimate of error covariance).
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Demonstration 5: If you try to estimate the error covariance by pooling
% data across voxels, in a two-step procedure like that used in SPM, then
% you recover greater efficiency of pooled than partitioned model (when
% there is a true effect), together with valid results when there is no
% effect. Note however that this is only true if the underlying error
% correlation IS the same across voxels (see next Demo)
%
% Run by:
%
% S.GenPart = 0;
% S.PreWhiten = 2; % One ReML from data pooled across voxels
% S.V = [1 0 0.5 0; 0 1 0 0; 0.5 0 1 0; 0 0 0 1];
% S.ftit = 'Voxel-wide estimation of correlated error';
% [Pool,Part,AQV] = check_pooled_error(S);
%
% Results:
%
% 1. We recover the situation in Demonstration 1, where pooling error is
% more powerful when effects exist, but still valid when they do not.
%
% 2. [ To visualise nonsphericity: figure,imagesc(AQV),colormap('gray') ]
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Demonstration 6: If you try to estimate the error covariance by pooling
% data across voxels, in a two-step procedure like that used in SPM, BUT
% the true error correlation structure varies across voxels, the type I
% error is again inflated (though not by much, at least when elements of
% error covariance vary randomly between 0 and N^2, where N is maximum
% element of common covariance term above
%
% Run by:
%
% S.GenPart = 0;
% S.PreWhiten = 2; % One ReML from data pooled across voxels
% S,VarVox = 1;
% S.V = [1 0 0.5 0; 0 1 0 0; 0.5 0 1 0; 0 0 0 1];
% S.ftit = 'Voxel-wide estimation of correlated but nonstationary error';
% [Pool,Part,AQV] = check_pooled_error(S);
%
% 1. Thin red line shows increased false positive rate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
try
f = S.f; % Factorial design
flab = S.flab; % Factor labels for plotting
catch
% Unless otherwise specified, assume a 2x2 design with factors A/B:
f = [1 1 0 0; % Main effect of A
1 0 1 0; % Main effect of B
1 0 0 1; % AxB Interaction
1 1 1 1]'; % Constant
flab = {'meA'; 'meB'; 'int'}; % Factor labels for plotting
end
C = detrend(f,0); % Convert to contrasts
try
B = S.B; % True Betas for 4 effects above
catch
% Unless otherwise specified, assume main effect of A, no main effect
% of B, weaker interaction (and zero grand mean)
B = [1 0 0.5 0]';
end
CB = C*B; % Convert to Betas for individual conditions
try
V = S.V; % Covariance of true error
catch
% Unless otherwise specified, assume IID error. Note that construction
% of partitioned error below can also induce nonspherical errors
V = speye(size(C,2));
end
try
subs = S.subs; % Range of subject numbers to explore
catch
subs = [8:2:24];
end
try
Nvox = S.Nvox; % Number of voxels to explore
catch
Nvox = 1000;
end
try
VarVox = S.VarVox; % Whether true correlation constant across voxels
catch
VarVox = 0;
end
% Explained above...
try GenPart = S.GenPart; catch GenPart = 0; end
try PreWhiten = S.PreWhiten; catch PreWhiten = 0; end
% Just figure title for plotting
try ftit = S.ftit; catch ftit = []; end
rand('state',0);
Ngrp = length(subs);
Ncon = size(f,1);
Neff = size(C,2) - 1; % Ignore constant term (grand mean)
Pool = zeros(Ngrp,Neff); % Suprathreshold P-values for Pooled Error
Part = Pool; % Suprathreshold P-values for Partitioned Error
QV=[];
for s = 1:Ngrp;
Nsub = subs(s);
N = Nsub * Ncon;
oS = ones(Nsub,1);
oC = ones(Ncon,1);
zS = zeros(Nsub,1);
zC = zeros(Ncon,1);
iS = eye(Nsub);
iC = eye(Ncon);
Bs = randn(Nsub,1); % Subject effects
if PreWhiten > 0
YY = zeros(N);
Q = varcomps(Ncon,Nsub);
end
% Basic (familiar) design matrix
X = [kron(iC,oS) kron(oC,iS)]; %figure,imagesc(X),colormap('gray');
fprintf('%d',Nsub);
for v = 1:Nvox
% Generic way of generating data (with subject effects)
% y = mvnrnd(repmat(CB',Nsub,1),V) + repmat(mvnrnd(zS',iS),Ncon,1)';
% y = y(:);
if ~GenPart % Generate data assuming single error term
if VarVox
vV = rand(4) * max(V(:)); vV=vV'*vV;
else
vV = V;
end
try
e = mvnrnd(repmat(zC',Nsub,1),vV); % If have Matlab's stats toolbox...
catch
e = spm_normrnd(zC',vV,Nsub)'; % ...else use SPM
end
y = X*[CB; Bs] + e(:);
else % Generate data assuming partitioned errors
% Full design matrix for partitioned model (Fig 9a H&P03)
Xf = [kron(f,oS) kron(f,iS)]; %figure,imagesc(Xf),colormap('gray');
e = mvnrnd(repmat(zC',Nsub,1),V);
y = Xf*[B; e(:)];
end
% Estimate using pooled error, with different types of pre-whitening
if PreWhiten == 0
for e = 1:Neff
Pool(s,e,v) = Fstat(X,y,C(:,e));
end
elseif PreWhiten == 1
QV = rik_reml(y*y',X,Q);
W = PreWfilter(QV);
WX = W*X;
for e = 1:Neff
Pool(s,e,v) = Fstat(WX,y,C(:,e));
end
elseif PreWhiten == 2
Ay{s}(:,v) = y';
YY = YY + y*y';
end
% Estimate using partitioned errors (Section 5.1 of H&P03)
for e = 1:Neff
yc = kron(C(:,e),iS)'*y;
Part(s,e,v) = Fstat(oS,yc,[1]);
%faster...?
%T = mean(y)*sN/std(yc);
%p = (1 - spm_Tcdf(T,N-1))*2;
end
end
fprintf('.')
if PreWhiten == 2 % Estimate nonsphericity pooled across voxels
QV = rik_reml(YY/Nvox,X,Q);
W = PreWfilter(QV);
WX = W*X;
for v = 1:Nvox
y = W * Ay{s}(:,v); % Pre-whiten (same) data
% Estimate using pooled error
for e = 1:Neff
Pool(s,e,v) = Fstat(WX,y,C(:,e));
end
end
end
fprintf('.')
end
fprintf('\n')
cols = {'b-';'r-';'g-'};
figure,hold on
for e=1:Neff
for s=1:Ngrp
pPool(s) = length(find(Pool(s,e,:)<.05))/Nvox;
pPart(s) = length(find(Part(s,e,:)<.05))/Nvox;
end
plot(subs,pPool,cols{e},'LineWidth',1);
plot(subs,pPart,cols{e},'LineWidth',2);
end
ylabel('Prop. Voxels with p<.05');
xlabel('Number of Subjects');
if ~isempty(flab)
llab = {};
for e=1:Neff
llab{end+1} = [flab{e} 'pool'];
llab{end+1} = [flab{e} 'part'];
end
legend(llab,'Location','Best')
end
if ~isempty(ftit)
title(ftit)
end
CovEst = full(V-diag(diag(V))); CovEst = max(CovEst(:)); % Silly filename label!
eval(sprintf('print -f%d -djpeg75 GenPart%d_PreWhiten%d_Cov%3.2f.jpg',gcf,GenPart,PreWhiten,CovEst));
return
%-----------------------------------------------------------------
function [p,r,B] = Fstat(X,y,c);
% F-statistic for GLM X, data y and F-contrast matrix c.
% See Appendix A.1 of:
% http://www.mrc-cbu.cam.ac.uk/people/rik.henson/personal/HensonPenny_ANOVA_03.pdf
%------------------------------------------------------------------
if size(c,1) < size(X,2)
c = [c; zeros(size(X,2)-size(c,1),1)];
end
B = pinv(X)*y;
Y = X*B;
r = y - Y;
c_0 = eye(size(X,2)) - c*pinv(c);
X_0 = X*c_0;
R = eye(size(X,1)) - X*pinv(X);
R_0 = eye(size(X,1)) - X_0*pinv(X_0);
M = R_0 - R;
df = [rank(X)-rank(X_0) size(X,1)-rank(X)];
F = ((B'*X'*M*X*B)/df(1)) / ((y'*R*y)/df(2));
p = 1-spm_Fcdf(F,df);
return
function Q = varcomps(Ncon,Nsub)
% make set of variance components
%------------------------------------------------------------------
Q={}; nv=0; z=zeros(Ncon*Nsub); id=[1:Nsub];
for c1 = 1:Ncon
nv = nv+1;
v = z;
v((c1-1)*Nsub + id, (c1-1)*Nsub + id)=eye(Nsub);
Q{nv} = sparse(v);
end
for c1 = 1:Ncon
for c2 = (c1+1):Ncon
nv = nv+1;
v = z;
v( (c1-1)*Nsub + id, (c2-1)*Nsub + id )=eye(Nsub);
v( (c2-1)*Nsub + id, (c1-1)*Nsub + id )=eye(Nsub);
Q{nv} = sparse(v);
end
end
return
function W = PreWfilter(V);
% make W a whitening filter W*W' = inv(V)
%------------------------------------------------------------------
[u s] = spm_svd(V);
s = spdiags(1./sqrt(diag(s)),0,length(s),length(s));
W = u*s*u';
W = sparse(W.*(abs(W) > 1e-6));
return
function [V,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,D,t)
% estimate covariance components (from spm_reml)
%------------------------------------------------------------------
% ReML estimation of [improper] covariance components from y*y'
% FORMAT [C,h,Ph,F,Fa,Fc] = spm_reml(YY,X,Q,N,D,t);
%
% YY - (m x m) sample covariance matrix Y*Y' {Y = (m x N) data matrix}
% X - (m x p) design matrix
% Q - {1 x q} covariance components
% N - number of samples
% D - Flag for positive-definite scheme
% t - regularisation (default 4)
%
% C - (m x m) estimated errors = h(1)*Q{1} + h(2)*Q{2} + ...
% h - (q x 1) ReML hyperparameters h
% Ph - (q x q) conditional precision of h
%
% F - [-ve] free energy F = log evidence = p(Y|X,Q) = ReML objective
%
% Fa - accuracy
% Fc - complexity (F = Fa - Fc)
%
% Performs a Fisher-Scoring ascent on F to find ReML variance parameter
% estimates.
%
%__________________________________________________________________________
%
% John Ashburner & Karl Friston
% $Id: spm_reml.m 3791 2010-03-19 17:52:12Z karl $
% check defaults
%--------------------------------------------------------------------------
try, N; catch, N = 1; end % assume a single sample if not specified
try, K; catch, K = 32; end % default number of iterations
try, D; catch, D = 0; end % default checking
try, t; catch, t = 4; end % default regularisation
% catch NaNs
%--------------------------------------------------------------------------
W = Q;
q = find(all(isfinite(YY)));
YY = YY(q,q);
for i = 1:length(Q)
Q{i} = Q{i}(q,q);
end
% dimensions
%--------------------------------------------------------------------------
n = length(Q{1});
m = length(Q);
% ortho-normalise X
%--------------------------------------------------------------------------
if isempty(X)
X = sparse(n,0);
else
X = spm_svd(X(q,:),0);
end
% initialise h and specify hyperpriors
%==========================================================================
h = zeros(m,1);
for i = 1:m
h(i,1) = any(diag(Q{i}));
end
hE = sparse(m,1);
hP = speye(m,m)/exp(32);
dF = Inf;
D = 8*(D > 0);
% ReML (EM/VB)
%--------------------------------------------------------------------------
for k = 1:K
% compute current estimate of covariance
%----------------------------------------------------------------------
C = sparse(n,n);
for i = 1:m
C = C + Q{i}*h(i);
end
% positive [semi]-definite check
%----------------------------------------------------------------------
for i = 1:D
if min(real(eig(full(C)))) < 0
% increase regularisation and re-evaluate C
%--------------------------------------------------------------
t = t - 1;
h = h - dh;
dh = spm_dx(dFdhh,dFdh,{t});
h = h + dh;
C = sparse(n,n);
for i = 1:m
C = C + Q{i}*h(i);
end
else
break
end
end
% E-step: conditional covariance cov(B|y) {Cq}
%======================================================================
iC = spm_inv(C);
iCX = iC*X;
if ~isempty(X)
Cq = spm_inv(X'*iCX);
else
Cq = sparse(0);
end
% M-step: ReML estimate of hyperparameters
%======================================================================
% Gradient dF/dh (first derivatives)
%----------------------------------------------------------------------
P = iC - iCX*Cq*iCX';
U = speye(n) - P*YY/N;
for i = 1:m
% dF/dh = -trace(dF/diC*iC*Q{i}*iC)
%------------------------------------------------------------------
PQ{i} = P*Q{i};
dFdh(i,1) = -sum(sum(PQ{i}'.*U))*N/2;
end
% Expected curvature E{dF/dhh} (second derivatives)
%----------------------------------------------------------------------
for i = 1:m
for j = i:m
% dF/dhh = -trace{P*Q{i}*P*Q{j}}
%--------------------------------------------------------------
dFdhh(i,j) = -sum(sum(PQ{i}'.*PQ{j}))*N/2;
dFdhh(j,i) = dFdhh(i,j);
end
end
% add hyperpriors
%----------------------------------------------------------------------
e = h - hE;
dFdh = dFdh - hP*e;
dFdhh = dFdhh - hP;
% Fisher scoring: update dh = -inv(ddF/dhh)*dF/dh
%----------------------------------------------------------------------
dh = spm_dx(dFdhh,dFdh,{t});
h = h + dh;
% predicted change in F - increase regularisation if increasing
%----------------------------------------------------------------------
pF = dFdh'*dh;
if pF > dF
t = t - 1;
else
t = t + 1/4;
end
% revert to SPD checking, if near phase-transition
%----------------------------------------------------------------------
if abs(pF) > 1e6
[V,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,1,t - 2);
return
else
dF = pF;
end
% Convergence (1% change in log-evidence)
%======================================================================
%fprintf('%s %-23d: %10s%e [%+3.2f]\n',' ReML Iteration',k,'...',full(pF),t);
% final estimate of covariance (with missing data points)
%----------------------------------------------------------------------
if dF < 1e-1, break, end
end
% re-build predicted covariance
%==========================================================================
V = 0;
for i = 1:m
V = V + W{i}*h(i);
end
% check V is positive semi-definite (if not already checked)
%==========================================================================
if ~D
if min(eig(V)) < 0
[V,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,1,2);
return
end
end
% log evidence = ln p(y|X,Q) = ReML objective = F = trace(R'*iC*R*YY)/2 ...
%--------------------------------------------------------------------------
Ph = -dFdhh;
if nargout > 3
% tr(hP*inv(Ph)) - nh + tr(pP*inv(Pp)) - np (pP = 0)
%----------------------------------------------------------------------
Ft = trace(hP*inv(Ph)) - length(Ph) - length(Cq);
% complexity - KL(Ph,hP)
%----------------------------------------------------------------------
Fc = Ft/2 + e'*hP*e/2 + spm_logdet(Ph*inv(hP))/2 - N*spm_logdet(Cq)/2;
% Accuracy - ln p(Y|h)
%----------------------------------------------------------------------
Fa = Ft/2 - trace(C*P*YY*P)/2 - N*n*log(2*pi)/2 - N*spm_logdet(C)/2;
% Free-energy
%----------------------------------------------------------------------
F = Fa - Fc;
end
|
github
|
MRC-CBU/riksneurotools-master
|
fMRI_GLM_efficiency.m
|
.m
|
riksneurotools-master/GLM/fMRI_GLM_efficiency.m
| 9,235 |
utf_8
|
46ee5b1e36bfbabd4f5db7b3269b0071
|
function [e,sots,stim,X,df] = fMRI_GLM_efficiency(S);
% Matlab function to calculate efficiency for fMRI GLMs.
% [email protected], 2005
%
% See for example:
%
% Henson, R.N. (2006). Efficient experimental design for fMRI. In K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny (Eds), Statistical Parametric Mapping: The analysis of functional brain images. Elsevier, London, 2006. pp. 193-210.
% http://www.mrc-cbu.cam.ac.uk/personal/rik.henson/personal/Henson_SPM_06_preprint.pdf
%
% http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
%
% ...and used for figures in Henson (in press) "Design Efficiency". Brain Mapping: A
% comprehensive reference.
%
% Needs SPM5+ on path
% Written for ease of exposition, not speed!
%
% Function take one of:
%
% 1. cell array of stimulus onset times (SOTS), and possibly durations, eg from SPM
% 2. vector of stimulus codes (ie order of events) (if onset times not calculated)
% 3. a transition matrix in order to generate 1+2 (if no onsets or stimulus train available)
%
% Inputs (fields of structure S):
%
% S.Ns = Number of scans (REQUIRED)
% S.CM = Cell array of T or F contrast matrices (NOTE THAT THE L1 NORM OF CONTRASTS SHOULD
% MATCH IN ORDER TO COMPARE THEIR EFFICIENCIES, EG CM{1}=[1 -1 1 -1]/2 CAN BE
% COMPARED WITH CM{2}=[1 -1 0 0] BECAUSE NORM(Cm{i},1)==2 IN BOTH CASES
% S.sots = cell array of onset times for each condition in units of scans (OPTIONAL; SEE ABOVE)
% S.durs = cell array of durations for each condition in units of scans (OPTIONAL; SEE ABOVE)
% S.stim = vector of events (OPTIONAL; SEE ABOVE)
% S.TM.prev = Np x Nh transition matrix history of Np possible sequences of the previous Nh events (OPTIONAL; SEE ABOVE)
% S.TM.next = Np x Nj transition matrix of probabilities of each of next Nj event-types for each of Np possible histories (OPTIONAL; SEE ABOVE)
% S.SOAmin = minimal SOA (REQUIRED IF STIMULUS TRAIN OR TRANSITION MATRIX PROVIDED)
% S.Ni = Number of stimuli (events) (REQUIRED IF ONLY TRANSITION MATRIX PROVIDED)
% S.bf = type of HRF basis function (based on spm_get_bf.m) (DEFAULTS TO CANONICAL HRF)
% S.HC = highpass filter cut-off (s) (DEFAULTS TO 120)
% S.TR = inter-scan interval (s) (DEFAULTS TO 2)
% S.t0 = initial transient (s) to ignore (DEFAULTS TO 30)
%
% Outputs:
%
% e = efficiency for each contrast in S.CM
% sots = stimulus onset times (in scans), eg for input into SPM
% stim = vector of stimulus codes (event-types), just for interest!
% X = GLM design matrix
% df = degrees of freedom left given model and filter
%
% Examples:
%
% 0. Simple user-specified blocked design
%
% S=[];
% S.TR = 1;
% S.Ns = 1000;
% S.sots{1} = [0:48:1000]; % Condition 1 onsets
% S.sots{2} = [16:48:1000]; % Condition 2 onsets
% S.durs{1} = 16; S.durs{2} = 16; % Both 16s epochs
% S.CM{1} = [1 -1]; S.CM{2} = [1 -1]; % Contrast conditions, and conditions vs baseline
%
% [e,sots,stim,X,df] = fMRI_GLM_efficiency(S);
%
%
% 1. Code-generated, randomised design with 2 event-types, canonical HRF interest in both differential and common effects
%
% S=[];
% S.Ni = 2000;
% S.TR = 2;
% S.Ns = 1000; % Must be more than S.Ni*S.SOAmin/TR
% S.CM{1} = [1 -1]; % A-B
% S.CM{2} = [1 1]; % A+B
% S.HC = 120;
% S.TM.prev = [1 2]';
% S.TM.next = [0.5 0.5; 0.5 0.5];
% S.bf = 'hrf';
%
% soas = [1:20] % to explore efficiency as function of SOA
%
% S.SOAmin = soas(1);
% [e(1,:),sots,stim,X,df] = fMRI_GLM_efficiency(S); % call once to generate stimulus train
% S.stim = stim % ensure same event-train for all SOA
%
% for s = 2:length(soas)
% S.SOAmin = soas(s);
% e(s,:) = fMRI_GLM_efficiency(S);
% end
% figure,plot(soas,e)
%
%
% 2. Randomised design with FIR and null events (S continued from above)
%
% S.bf = 'Finite Impulse Response'
% S.TM.prev = [1 2]';
% S.TM.next = [1/3 1/3; 1/3 1/3];
% S = rmfield(S,'stim');
% S.SOAmin = 2; e=[];
% [e,sots,stim,X,df] = fMRI_GLM_efficiency(S);
%
%
% 3. Blocked design with canonical HRF
%
% S.bf = 'hrf'
% S = rmfield(S,'stim');
%
% bls = [1:60]; e=[];
% for s = 1:length(bls)
% bl = bls(s);
% try S = rmfield(S,'TM'); end
% for b=1:bl
% S.TM.prev(b,:) = [ones(1,bl-(b-1)) 2*ones(1,b-1)];
% S.TM.prev(b+bl,:) = [2*ones(1,bl-(b-1)) ones(1,b-1)];
% S.TM.next(b,:) = [0 1];
% S.TM.next(b+bl,:) = [1 0];
% end
% e(s,:) = fMRI_GLM_efficiency(S);
% end
% figure,plot(bls,e)
try
Ns = S.Ns;
catch
error('Please provide number of scans (volumes) in S.Ns')
end
df = Ns;
try
CM = S.CM;
catch
error('Must pass a Nc x Nj matrix of contrasts, where Nc = number of contrasts and Nk = number of evemt-types')
end
try
TR = S.TR;
catch
TR = 2; % Assume 2s TR unless specified otherwise
end
try
t0 = S.t0;
catch
t0 = 30; % Ignore initial 30s transient
end
dt = 0.2; % Minimum time for convolution space (seconds)
st = round(TR/dt);
t0 = round(t0/TR);
rand('state',0);
try
sots = S.sots;
stim = []; % Can't be bothered to create stim if sots provided!
catch
try
SOAmin = S.SOAmin;
ds = SOAmin/TR;
stim = S.stim;
sots = gensots(stim,ds);
catch
try
TM.prev = S.TM.prev;
TM.next = S.TM.next;
Ni = S.Ni;
stim = genstim(TM,Ni);
sots = gensots(stim,ds);
catch
error('Either provide onsets in S.sots, stimuli in S.stim and SOA in S.SOAmin, or transition matrix in S.TM and number of stimuli in Ni')
end
end
end
try
durs = S.durs;
for j = 1:length(sots)
if length(durs{j}) == 1
durs{j} = repmat(durs{j},1,length(sots{j}));
elseif length(durs{j}) ~= length(sots{j})
error('Number of durations (%d) does not match number of onsets (%d) for condition %d',length(durs{j}),length(ons{j}),j)
end
end
catch
for j = 1:length(sots)
durs{j} = zeros(1,length(sots{j})); % assume events if durations not specified
end
end
try
bf = S.bf;
catch
bf = 'hrf'; % SPM's canonical HRF
% bf = 'Finite Impulse Response' % FIR
end
if isstr(bf)
xBF.dt = dt;
xBF.name = bf;
xBF.length = 30;
xBF.order = 30/TR;
bf = spm_get_bf(xBF);
bf = bf.bf;
else
% Assume bf is a TxNk matrix of basis functions in units of dt
end
try
HC = S.HC;
catch
HC = 120;
end
if HC > 0
HO = fix(2*(Ns*TR)/HC+1);
K = spm_dctmtx(Ns,HO);
df = df - size(K,2);
K = eye(Ns) - K*K';
else
K = eye(Ns);
end
Nj = length(sots);
Nk = size(bf,2);
Nt = Ns*st;
%% Create neural timeseries
s = [1:st:Nt];
X = zeros(Ns,Nj*Nk);
for j = 1:Nj
u = zeros(Nt,1);
for i = 1:length(sots{j})
o = [sots{j}(i)*st : st : (sots{j}(i)+durs{j}(i))*st];
u(round(o)+1) = 1;
end
for k = 1:Nk
b = conv(u,bf(:,k));
X(:,(j-1)*Nk + k) = b(s);
end
end
%% highpass filter and remove any transients and mean
X = K*X;
X = X(t0:end,:);
X = detrend(X,0);
df = df - size(X,2) - 1;
%cc = corrcoef(X*CM');
%max(abs(cc-eye(size(cc,2))))
%% Calculate efficiency for each contrast (row of CM) and average for all contrasts
Nc = length(CM);
bCM = {};
for c = 1:Nc
bCM{c} = kron(CM{c},eye(Nk)/Nk);
end
iXX = pinv(X'*X);
for c = 1:Nc
e(1,c) = 1/trace(bCM{c}*iXX*bCM{c}');
fprintf('Contrast %d: Efficiency = %f\n',c,e(1,c))
end
fprintf('\n')
return
function sots = gensots(stim,ds);
Ni = length(stim);
Aj = unique(stim(find(stim>0)));
if Aj(1)~=1 | any(diff(Aj)~=1)
error('Stimuli must be numbered ordinally from 1 onwards')
end
Nj = length(Aj);
sots = cell(Nj,1);
for i = 1:Ni
if stim(i) > 0
sots{stim(i)}(end+1) = i*ds;
end
end
return
function stim = genstim(TM,Ni);
Nh = size(TM.prev,2);
Np = size(TM.prev,1);
Nj = size(TM.next,2);
if any(TM.next(:) > 1) | any(TM.next(:) < 0) | any(sum(TM.next,2) > 1)
error('All values in TM.next must be [0,1], and sum along rows must be [0,1]')
end
hist = ones(1,Nh)*NaN;
stim = [];
for i = 1:Ni
h = rfind(hist,TM.prev,Nj);
r = rand;
if r <= sum(TM.next(h,:))
j = 1;
while j < Nj & r > TM.next(h,j)
r = r-TM.next(h,j);
j = j+1;
end
hist = [hist(2:end) j];
stim(end+1) = j;
else
stim(end+1) = 0; % Null event
end
end
return
function r = rfind(row,matrix,Nj);
Nr = size(matrix,1);
Nc = size(matrix,2);
h = find(isfinite(row));
%Nj = Nr^(1/Nc);
if isempty(h)
r = floor(rand*Nj)+1;
else
for r = 1:Nr
if all((row(h) - matrix(r,h)) == 0)
break;
elseif r==Nr
error('Should not get here if TM correct!');
end
end
end
return
|
github
|
MRC-CBU/riksneurotools-master
|
rsfMRI_GLM.m
|
.m
|
riksneurotools-master/GLM/rsfMRI_GLM.m
| 25,725 |
utf_8
|
2654812ab9bb94b923565c58d1b0db46
|
function [Zmat, Bmat, pZmat, pBmat, aY, X0r] = rsfMRI_GLM(S);
% [Zmat, Bmat, pZmat, pBmat, aY, X0r] = rsfMRI_GLM(S);
%
% Function (using SPM8 functions) for estimating linear regressions
% between fMRI timeseries in each pair of Nr ROIs, adjusting for bandpass
% filter, confounding timeseries (eg CSF) and (SVD of) various expansions of
% movement parameters, and properly modelling dfs based on comprehensive
% model of error autocorrelation.
%
% [email protected], Jan 2013
%
% Many thanks to Linda Geerligs for pointing out improvements!
%
% S.Y = [Ns x Nr] data matrix, where Ns = number of scans (ie resting-state fMRI timeseries) and Nr = number of ROIs
% S.M = [Ns x 6] matrix of 6 movement parameters from realignment (x,y,z,pitch,roll,yaw)
% S.C = [Ns x Nc] matrix of confounding timeseries, Nc = number of confounds (eg extracted from WM, CSF or Global masks)
% S.G = [0/1] - whether to include global over ROIs (ie given current data) (default = 0)
% S.TR = time between volumes (TR), in seconds
%
% (S.HPC (default = 100) = highpass cut-off (in seconds)
% (S.LPC (default = 10) = lowpass cut-off (in seconds)
% (S.CY (default = {}) = precomputed covariance over pooled voxels (optional)
% (S.pflag (default=0) is whether to calculate partial regressions too (takes longer))
% (S.svd_thr (default=.99) is threshold for SVD of confounds)
% (S.SpikeMovAbsThr (default='', ie none) = absolute threshold for outliers based on RMS of Difference of Translations
% (S.SpikeMovRelThr (default='', ie none) = relative threshold (in SDs) for outliers based on RMS of Difference of Translations or Rotations
% (S.SpikeDatRelThr (default='', ie none) = relative threshold (in SDs) for mean of Y over voxels (outliers, though arbitrary?)
% (S.SpikeLag (default=1) = how many TRs after a spike are modelled out as separate regressors
% (S.StandardiseY (default = 0) = whether to Z-score each ROI's timeseries to get standardised Betas)
% (S.PreWhiten (default = 1) = whether to estimate autocorrelation of error and prewhiten (slower, but better Z-values (less important for Betas?))
% (S.GlobMove = user-specified calculation of global movement)
%
% Zmat = [Nr x Nr] matrix of Z-statistics for linear regression from seed (row) to target (column) ROI
% Bmat = [Nr x Nr] matrix of betas for linear regression from seed (row) to target (column) ROI
% pZmat = [Nr x Nr] matrix of Z-statistics for partial linear regression from seed (row) to target (column) ROI
% pZmat = [Nr x Nr] matrix of betas for partial linear regression from seed (row) to target (column) ROI
% aY = data adjusted for confounds
% X0r = confounds (filter, confound ROIs, movement expansion)
%
% Note:
% some Inf Z-values can be returned in Zmat (when p-value so low than inv_Ncdf is infinite)
% (these could be replaced by the maximum Z-value in matrix?)
%
% Potential improvements:
% regularised regression (particularly for pZmat), eg L1 with LASSO - or L2 implementable with spm_reml_sc?
try Y = S.Y; catch error('Need Nscans x Nrois data matrix'); end
try C = S.C; catch error('Need Nscans x Nc matrix of Nc confound timeseries (Nc can be zero)'); end
try TR = S.TR; catch error('Need TR (in secondss)'); end
try HPC = S.HPC; catch
HPC = 1/0.01;
warning('Assuming highpass cut-off of %d',HPC);
end
try LPC = S.LPC; catch
LPC = 1/0.2;
warning('Assuming lowpass cut-off of %d',LPC);
end
try CY = S.CY; catch
CY = [];
end
try GlobalFlag = S.G; catch
GlobalFlag = 0;
end
try SpikeMovAbsThr = S.SpikeMovAbsThr; catch
SpikeMovAbsThr = '';
% SpikeMovAbsThr = 0.5; % mm from Power et al
% SpikeMovAbsThr = 0.25; % mm from Satterthwaite et al 2013
end
try SpikeMovRelThr = S.SpikeMovRelThr; catch
% SpikeMovRelThr = '';
SpikeMovRelThr = 5; % 5 SDs of mean?
end
try SpikeDatRelThr = S.SpikeDatRelThr; catch
SpikeDatRelThr = '';
% SpikeDatRelThr = 5; % 5 SDs of mean?
end
try SpikeLag = S.SpikeLag; catch
SpikeLag = 1;
% SpikeLag = 5; % 5 TRs after spike?
end
try StandardiseY = S.StandardiseY; catch
StandardiseY = 0;
end
try PreWhiten = S.PreWhiten; catch
PreWhiten = 1;
end
try VolterraLag = S.VolterraLag; catch
VolterraLag = 5; % artifacts can last up to 5 TRs = 10s, according to Power et al (2013)
end
try pflag = S.pflag; catch pflag = 0; end
try svd_thr = S.svd_thr; catch svd_thr = .99; end
Ns = size(Y,1);
Nr = size(Y,2);
%% If want to try Matlab's LASSO (takes ages though)
% lassoflag = 0;
% if lassoflag
% matlabpool open
% opts = statset('UseParallel','always');
% end
%% Create a DCT bandpass filter (so filtering part of model, countering Hallquist et al 2013 Neuroimage)
K = spm_dctmtx(Ns,Ns);
nHP = fix(2*(Ns*TR)/HPC + 1);
nLP = fix(2*(Ns*TR)/LPC + 1);
K = K(:,[2:nHP nLP:Ns]); % Remove initial constant
Nk = size(K,2);
fprintf('Bandpass filter using %d dfs (%d left)\n',Nk,Ns-Nk)
%% Create comprehensive model of residual autocorrelation (to counter Eklund et al, 2012, Neuroimage)
if PreWhiten
T = (0:(Ns - 1))*TR; % time
d = 2.^(floor(log2(TR/4)):log2(64)); % time constants (seconds)
Q = {}; % dictionary of components
for i = 1:length(d)
for j = 0:1
Q{end + 1} = toeplitz((T.^j).*exp(-T/d(i)));
end
end
end
%% Detect outliers in movement and/or data
%M = detrend(M,0);
%M(:,4:6)= M(:,4:6)*180/pi;
if ~isfield(S,'GlobMove')
try M = S.M; catch error('Need Nscans x 6 movement parameter matrix'); end
if size(M,2) == 6
dM = [zeros(1,6); diff(M,1,1)]; % First-order derivatives
% Combine translations and rotations based on ArtRepair approximation for voxels 65mm from origin?
%cdM = sqrt(sum(dM(:,1:3).^2,2) + 1.28*sum(dM(:,4:6).^2,2));
dM(:,4:6) = dM(:,4:6)*50; % Approximate way of converting rotations to translations, assuming sphere radius 50mm (and rotations in radians) from Linda Geerligs
cdM = sum(abs(dM),2);
else
error('If not user-specified global movement passed, then must pass 3 translations and 3 rotations')
end
else
cdM = S.GlobMove;
try M = S.M; catch M=[]; end
end
if ~isempty(SpikeMovAbsThr) % Absolute movement threshold
% rms = sqrt(mean(dM(:,1:3).^2,2)); % if want translations only
% aspk = find(rms > SpikeMovAbsThr);
aspk = find(cdM > SpikeMovAbsThr);
fprintf('%d spikes in absolute movement differences (based on threshold of %4.2f)\n',length(aspk),SpikeMovAbsThr)
else
aspk = [];
end
if ~isempty(SpikeMovRelThr) % Relative (SD) threshold for translation and rotation
% rms = sqrt(mean(dM(:,1:3).^2,2));
% rspk = find(rms > (mean(rms) + SpikeMovRelThr*std(rms)));
% rms = sqrt(mean(dM(:,4:6).^2,2));
% rspk = [rspk; find(rms > (mean(rms) + SpikeMovRelThr*std(rms)))];
rspk = find(cdM > (mean(cdM) + SpikeMovRelThr*std(cdM)));
fprintf('%d spikes in relative movement differences (based on threshold of %4.2f SDs)\n',length(rspk),SpikeMovRelThr)
else
rspk = [];
end
if ~isempty(SpikeDatRelThr) % Relative (SD) threshold across all ROIs (dangerous? Arbitrary?)
dY = [zeros(1,Nr); diff(Y,1,1)];
rms = sqrt(mean(dY.^2,2));
dspk = find(rms > (mean(rms) + SpikeDatRelThr*std(rms)));
fprintf('%d spikes in mean data across ROIs (based on threshold of %4.2f SDs)\n',length(dspk),SpikeDatRelThr)
else
dspk = [];
end
%% Create delta-function regressors for each spike
spk = unique([aspk; rspk; dspk]); lspk = spk;
for q = 2:SpikeLag
lspk = [lspk; spk + (q-1)];
end
spk = unique(lspk);
if ~isempty(spk)
RSP = zeros(Ns,length(spk));
n = 0;
for p = 1:length(spk)
if spk(p) <= Ns
n=n+1;
RSP(spk(p),n) = 1;
end
end
fprintf('%d unique spikes in total\n',length(spk))
RSP = spm_en(RSP,0);
else
RSP = [];
end
%% Create expansions of movement parameters
% Standard differential + second-order expansion (a la Satterthwaite et al, 2012)
% sM = []; for m=1:6; for n=m:6; sM = [sM M(:,m).*M(:,n)]; end; end % Second-order expansion
% sdM = []; for m=1:6; for n=m:6; sdM = [sdM dM(:,m).*dM(:,n)]; end; end % Second-order expansion of derivatives
% aM = [M dM sM sdM];
% Above commented bits are subspace of more general Volterra expansion
%U=[]; for c=1:6; U(c).u = M(:,c); U(c).name{1}=sprintf('m%d',c); end; [aM,aMname] = spm_Volterra(U,[1 0 0; 1 -1 0; 0 1 -1]',2);
%U=[]; for c=1:6; U(c).u = M(:,c); U(c).name{1}=sprintf('m%d',c); end; [aM,aMname] = spm_Volterra(U,[1 0; 1 -1; 0 1]',2); %Only N and N+1 needed according to Satterthwaite et al 2013
bf = eye(VolterraLag); % artifacts can last up to 5 TRs = 10s, according to Power et al (2013)
% bf = [1 0 0 0 0; 1 1 0 0 0; 1 1 1 0 0; 1 1 1 1 0; 1 1 1 1 1]; % only leads to a few less modes below, and small compared to filter anyway!
bf = [bf; diff(bf)];
U=[]; for c=1:size(M,2); U(c).u = M(:,c); U(c).name{1}='c'; end; aM = spm_Volterra(U,bf',2);
aM = spm_en(aM,0);
%% Add Global? (Note: may be passed by User in S.C anyway)
% (recommended by Rik and Power et al, 2013, though will entail negative
% correlations, which can be problem for some graph-theoretic measures)
if GlobalFlag
C = [C mean(Y,2)];
end
C = spm_en(C,0);
%% Combine all confounds (assumes more data than confounds, ie Ns > Nc) and perform dimension reduction (cf PCA of correlation matrix)
%X0 = [C RSP K(:,2:end) aM]; % exclude constant term from K
XM = spm_en(ones(Ns,1)); % constant term
X1 = [XM K RSP]; % Regressors that don't want to SVD
X0 = [aM C]; % Regressors that will SVD below
%X1 = [XM K C RSP]; % Regressors that don't want to SVD
%X0 = [aM]; % Regressors that will SVD below
X0r = X0;
if ~isempty(X0)
R1 = eye(Ns) - X1*pinv(X1);
X0 = R1*X0; % Project out of SVD-regressors what explained by non-SVD regressors!
X0 = spm_en(X0,0);
% Possible of course that some dimensions tiny part of SVD of X (so excluded) by happen to correlate highly with y...
% ...could explore some L1 (eg LASSO) or L2 regularisation of over-parameterised model instead,
% but LASSO takes ages (still working on possible L2 approach with spm_reml)
if svd_thr < 1
[U,S] = spm_svd(X0,0);
S = diag(S).^2; S = full(cumsum(S)/sum(S));
Np = find(S > svd_thr); Np = Np(1);
X0r = full(U(:,1:Np));
fprintf('%d SVD modes left (from %d original terms) - %4.2f%% variance of correlation explained\n',Np,size(X0,2),100*S(Np))
end
end
X0r = [K RSP X0r XM]; % Reinsert mean
Nc = size(X0r,2);
if Nc >= Ns; error('Not enough dfs (scans) to estimate');
else fprintf('%d confounds for %d scans (%d left)\n',Nc,Ns,Ns-Nc); end
%% Create adjusted data, in case user wants for other metrics, eg, MI, and standardised data, if requested
R = eye(Ns) - X0r*pinv(X0r);
aY = R*Y;
if StandardiseY
Y = zscore(Y);
else
Y = Y/std(Y(:)); % Some normalisation necessary to avoid numerical underflow, eg in cov(Y') below
end
%% Pool data covariance over ROIs (assuming enough of them!), unless specified
if isempty(CY) & PreWhiten
CY = cov(Y'); % Correct to only do this after any standardisation?
end
%%%%%%%%%%%%%%%%%%%%%%%%%% Main Loop
%% Do GLMs for all target ROIs for a given source ROI
Ar = [1:Nr];
Zmat = zeros(Nr); % Matrix of Z statistics for each pairwise regression
Bmat = zeros(Nr);
if pflag
pZmat = zeros(Nr); % Matrix of Z statistics for each pairwise partial regression
pBmat = zeros(Nr); % Matrix of Z statistics for each pairwise partial regression
else
pZmat = [];
pBmat = [];
end
%[V h] = rik_reml(CY,X0r,Q,1,0,4); % if could assume that error did not depend on seed timeseries
%W = spm_inv(spm_sqrtm(V));
lNpc = 0; % Just for printing pflag output below
for n = 1:Nr
Ir = setdiff(Ar,n);
Yr = Y(:,Ir); % Yr contains all other timeseries, so ANCOVA below run on Nr-2 timeseries in one go
Xr = Y(:,n);
% Xr = spm_en(Xr); % Normalise regressors so Betas can be compared directly across (seed) ROIs (not necessary if Standardised Y already)?
X = [Xr X0r];
% if lassoflag == 1 % takes too long (particularly for cross-validation to determine lambda)
% for pn = 1:length(Ir)
% Ir = setdiff(Ar,pn);
%
% Yr = Y(:,Ir); % Yr contains all other timeseries, so ANCOVA below run on Nr-2 timeseries in one go
% Xr = Y(:,pn);
% Xr = spm_en(Xr,0); % Normalise regressors so Betas can be compared directly across (seed) ROIs (not necessary is Standardised Y already)?
%
% fprintf('l');
% [lB,lfit] = lasso(X0r,Yr(:,pn),'CV',10,'Options',opts);
% keepX = find(lB(:,lfit.Index1SE));
% X = [Xr X0r(:,keepX)];
% Nc = length(keepX);
%
% [V h] = rik_reml(CY,X,Q,1,0,4); % rik_reml is just version of spm_reml with fprintf commented out to speed up
% W = spm_inv(spm_sqrtm(V));
%
% %% Estimate T-value for regression of first column (seed timeseries)
% [T(pn),dfall,Ball] = spm_ancova(W*X,speye(Ns,Ns),W*Yr(:,pn),[1 zeros(1,Nc)]');
% df(pn) = dfall(2);
% B(pn) = Ball(1);
% end
% fprintf('\n');
% else
%% Estimate autocorrelation of error (pooling across ROIs) and prewhitening matrix
if PreWhiten
[V h] = rik_reml(CY,X,Q,1,0,4); % rik_reml is just version of spm_reml with fprintf commented out to speed up
W = spm_inv(spm_sqrtm(V));
else
W = speye(Ns);
end
%% Estimate T-value for regression of first column (seed timeseries)
[T,df,B] = spm_ancova(W*X,speye(Ns,Ns),W*Yr,[1 zeros(1,Nc)]');
try
Zmat(n,Ir) = norminv(spm_Tcdf(T,df(2))); % Needs Matlab Stats toolbox, but has larger range of Z (so not so many "Inf"s)
catch
Zmat(n,Ir) = spm_invNcdf(spm_Tcdf(T,df(2)));
end
Bmat(n,Ir) = B(1,:);
%% Estimate T-value for PARTIAL regression of first column (seed timeseries) - takes ages!
if pflag
for pn = 1:length(Ir)
pIr = setdiff(Ar,[n Ir(pn)]);
pY = spm_en(Y(:,pIr),0); % Is necessary for SVD below
% SVD
if svd_thr < 1
[U,S] = spm_svd([pY X0],0);
S = diag(S).^2; S = full(cumsum(S)/sum(S));
Np = find(S > svd_thr); Np = Np(1);
XY0 = full(U(:,1:Np));
Npc = Np;
else
XY0 = [pY X0];
end
XY0 = [XY0 ones(Ns,1)]; % Reinsert mean
Npc = size(XY0,2);
% if lassoflag == 1
% fprintf('l')
% [lB,lfit] = lasso(XY0,Yr(:,pn),'CV',10,'Options',opts);
% keepX = find(lB(:,lfit.Index1SE));
% X = [Xr XY0(:,keepX)];
% Nc = length(keepX);
%
% [V h] = rik_reml(CY,X,Q,1,0,4); % rik_reml is just version of spm_reml with fprintf commented out to speed up
% W = spm_inv(spm_sqrtm(V));
%
% %% Estimate T-value for regression of first column (seed timeseries)
% [T,df,B] = spm_ancova(W*X,speye(Ns,Ns),W*Yr(:,pn),[1 zeros(1,Nc)]');
% else
if Npc >= (Ns-1) % -1 because going to add Xr below
warning('Not enough dfs (scans) to estimate - just adjusting data and ignoring loss of dfs');
R = eye(Ns) - pY*pinv(pY); % Residual-forming matrix
[T,df,B] = spm_ancova(W*X,speye(Ns,Ns),R*W*Yr(:,pn),[1 zeros(1,Npc)]'); % Ok to assume error and hence W unaffected by addition of pY in X?
else
if lNpc ~= Npc % Just to reduce time taken to print to screen
fprintf(' partial for seed region %d and target region %d: %d confounds for %d scans (%d left)\n',n,pn,Npc,Ns,Ns-Npc);
end
lNpc = Npc;
X = [Xr XY0];
%% Commented out below because ok to assume error and hence W unaffected by addition of pY in X?
% [V h] = rik_reml(CY,X,Q,1,0,4); % rik_reml is just version of spm_reml with fprintf commented out to speed up
% W = spm_inv(spm_sqrtm(V));
%% Estimate T-value for regression of first column (seed timeseries)
[T,df,B] = spm_ancova(W*X,speye(Ns,Ns),W*Yr(:,pn),[1 zeros(1,Npc)]');
end
try
pZmat(n,Ir(pn)) = norminv(spm_Tcdf(T,df(2)));
catch
pZmat(n,Ir(pn)) = spm_invNcdf(spm_Tcdf(T,df(2)));
end
pBmat(n,Ir(pn)) = B(1);
end
end
fprintf('.')
end
fprintf('\n')
return
%figure,imagesc(Zmat); colorbar
%figure,imagesc(pZmat); colorbar
function [V,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,D,t,hE,hP)
% ReML estimation of [improper] covariance components from y*y'
% FORMAT [C,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,D,t,hE,hP);
%
% YY - (m x m) sample covariance matrix Y*Y' {Y = (m x N) data matrix}
% X - (m x p) design matrix
% Q - {1 x q} covariance components
%
% N - number of samples (default 1)
% D - Flag for positive-definite scheme (default 0)
% t - regularisation (default 4)
% hE - hyperprior (default 0)
% hP - hyperprecision (default 1e-16)
%
% C - (m x m) estimated errors = h(1)*Q{1} + h(2)*Q{2} + ...
% h - (q x 1) ReML hyperparameters h
% Ph - (q x q) conditional precision of h
%
% F - [-ve] free energy F = log evidence = p(Y|X,Q) = ReML objective
%
% Fa - accuracy
% Fc - complexity (F = Fa - Fc)
%
% Performs a Fisher-Scoring ascent on F to find ReML variance parameter
% estimates.
%
% see also: spm_reml_sc for the equivalent scheme using log-normal
% hyperpriors
%__________________________________________________________________________
%
% SPM ReML routines:
%
% spm_reml: no positivity constraints on covariance parameters
% spm_reml_sc: positivity constraints on covariance parameters
% spm_sp_reml: for sparse patterns (c.f., ARD)
%
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% John Ashburner & Karl Friston
% $Id: spm_reml.m 5223 2013-02-01 11:56:05Z ged $
% Modified by Rik to remove screen output and turn off warnings
% check defaults
%--------------------------------------------------------------------------
try, N; catch, N = 1; end % assume a single sample if not specified
try, K; catch, K = 32; end % default number of iterations
try, D; catch, D = 0; end % default checking
try, t; catch, t = 4; end % default regularisation
try, hE; catch, hE = 0; end % default hyperprior
try, hP; catch, hP = 1e-16; end % default hyperprecision
% catch NaNs
%--------------------------------------------------------------------------
W = Q;
q = find(all(isfinite(YY)));
YY = YY(q,q);
for i = 1:length(Q)
Q{i} = Q{i}(q,q);
end
% dimensions
%--------------------------------------------------------------------------
n = length(Q{1});
m = length(Q);
% ortho-normalise X
%--------------------------------------------------------------------------
if isempty(X)
X = sparse(n,0);
else
X = spm_svd(X(q,:),0);
end
% initialise h and specify hyperpriors
%==========================================================================
h = zeros(m,1);
for i = 1:m
h(i,1) = any(diag(Q{i}));
end
hE = sparse(m,1) + hE;
hP = speye(m,m)*hP;
dF = Inf;
D = 8*(D > 0);
warning off
% ReML (EM/VB)
%--------------------------------------------------------------------------
for k = 1:K
% compute current estimate of covariance
%----------------------------------------------------------------------
C = sparse(n,n);
for i = 1:m
C = C + Q{i}*h(i);
end
% positive [semi]-definite check
%----------------------------------------------------------------------
for i = 1:D
if min(real(eig(full(C)))) < 0
% increase regularisation and re-evaluate C
%--------------------------------------------------------------
t = t - 1;
h = h - dh;
dh = spm_dx(dFdhh,dFdh,{t});
h = h + dh;
C = sparse(n,n);
for i = 1:m
C = C + Q{i}*h(i);
end
else
break
end
end
% E-step: conditional covariance cov(B|y) {Cq}
%======================================================================
iC = spm_inv(C);
iCX = iC*X;
if ~isempty(X)
Cq = spm_inv(X'*iCX);
else
Cq = sparse(0);
end
% M-step: ReML estimate of hyperparameters
%======================================================================
% Gradient dF/dh (first derivatives)
%----------------------------------------------------------------------
P = iC - iCX*Cq*iCX';
U = speye(n) - P*YY/N;
for i = 1:m
% dF/dh = -trace(dF/diC*iC*Q{i}*iC)
%------------------------------------------------------------------
PQ{i} = P*Q{i};
dFdh(i,1) = -spm_trace(PQ{i},U)*N/2;
end
% Expected curvature E{dF/dhh} (second derivatives)
%----------------------------------------------------------------------
for i = 1:m
for j = i:m
% dF/dhh = -trace{P*Q{i}*P*Q{j}}
%--------------------------------------------------------------
dFdhh(i,j) = -spm_trace(PQ{i},PQ{j})*N/2;
dFdhh(j,i) = dFdhh(i,j);
end
end
% add hyperpriors
%----------------------------------------------------------------------
e = h - hE;
dFdh = dFdh - hP*e;
dFdhh = dFdhh - hP;
% Fisher scoring: update dh = -inv(ddF/dhh)*dF/dh
%----------------------------------------------------------------------
dh = spm_dx(dFdhh,dFdh,{t});
h = h + dh;
% predicted change in F - increase regularisation if increasing
%----------------------------------------------------------------------
pF = dFdh'*dh;
if pF > dF
t = t - 1;
else
t = t + 1/4;
end
% revert to SPD checking, if near phase-transition
%----------------------------------------------------------------------
if ~isfinite(pF) || abs(pF) > 1e6
[V,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,1,t - 2);
return
else
dF = pF;
end
% Convergence (1% change in log-evidence)
%======================================================================
% fprintf('%s %-23d: %10s%e [%+3.2f]\n',' ReML Iteration',k,'...',full(pF),t);
% final estimate of covariance (with missing data points)
%----------------------------------------------------------------------
if dF < 1e-1, break, end
end
% re-build predicted covariance
%==========================================================================
V = 0;
for i = 1:m
V = V + W{i}*h(i);
end
% check V is positive semi-definite (if not already checked)
%==========================================================================
if ~D
if min(eig(V)) < 0
[V,h,Ph,F,Fa,Fc] = rik_reml(YY,X,Q,N,1,2,hE(1),hP(1));
return
end
end
% log evidence = ln p(y|X,Q) = ReML objective = F = trace(R'*iC*R*YY)/2 ...
%--------------------------------------------------------------------------
Ph = -dFdhh;
if nargout > 3
% tr(hP*inv(Ph)) - nh + tr(pP*inv(Pp)) - np (pP = 0)
%----------------------------------------------------------------------
Ft = trace(hP*inv(Ph)) - length(Ph) - length(Cq);
% complexity - KL(Ph,hP)
%----------------------------------------------------------------------
Fc = Ft/2 + e'*hP*e/2 + spm_logdet(Ph*inv(hP))/2 - N*spm_logdet(Cq)/2;
% Accuracy - ln p(Y|h)
%----------------------------------------------------------------------
Fa = Ft/2 - trace(C*P*YY*P)/2 - N*n*log(2*pi)/2 - N*spm_logdet(C)/2;
% Free-energy
%----------------------------------------------------------------------
F = Fa - Fc;
end
warning on
function [C] = spm_trace(A,B)
% fast trace for large matrices: C = spm_trace(A,B) = trace(A*B)
% FORMAT [C] = spm_trace(A,B)
%
% C = spm_trace(A,B) = trace(A*B) = sum(sum(A'.*B));
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_trace.m 4805 2012-07-26 13:16:18Z karl $
% fast trace for large matrices: C = spm_trace(A,B) = trace(A*B)
%--------------------------------------------------------------------------
C = sum(sum(A'.*B));
|
github
|
MRC-CBU/riksneurotools-master
|
glm.m
|
.m
|
riksneurotools-master/GLM/glm.m
| 3,169 |
utf_8
|
727c465a37a6081510ffb063ffcde950
|
function [t,F,p,df,R2,cR2,B,r,aR2,iR2] = glm(y,X,c,pflag);
% [t,F,p,df,R2,cR2,B] = glm(y,X,c,pflag);
%
% Generic function for General Linear Model (GLM)
% Note: assumes error is spherical (residuals white)
% Rik Henson, 2004
%
% (Note requires Matlab stats toolbox, or SPM functions to be on path)
%
% Input:
% y = n column vector of observations
% X = n x p (design) matrix
% c = p x e contrast matrix for T- (e=1) or F- (e>1) contrast
% pflag = whether to print fit
%
% Output
% t = T-value
% F = F-value
% p = p-value
% df = degrees of freedom
% R2 = model fit (% variance explained)
% cR2 = contrast fit (% variance explained)
% B = p betas (parameter estimates)
if nargin<4
pflag=0;
end
B = pinv(X)*y;
Y = X*B;
r = y - Y;
if size(c,2) > size(c,1)
warning('Transposing c!')
c = c';
end
l = size(c,1);
if l < size(X,2)
c = [c; zeros(size(X,2)-l,size(c,2))];
warning('Padding c with zeros!')
end
df = length(y) - rank(X);
% T and F's could be combined, but done separately for pedagogical reasons
if size(c,2)==1
s = r'*r / df;
t = c'*B / sqrt(s*c'*pinv(X'*X)*c);
p = t2p(t,df);
F = t.^2;
cR2 = F2R(F,1,df);
R2 = 1 - (r'*r) / (y'*y);
aR2 = 1 - (r'*r/df(end)) / (y'*y/(length(y)-1));
fprintf('T(%d)=%f, p(one-tailed)=%f (R2=%3.2f; overall R2=%3.2f (adjusted R2=%3.2f))\n',df,t,p,cR2,R2,aR2);
else
c_0 = eye(size(X,2)) - c*pinv(c);
X_0 = X*c_0;
R = eye(size(X,1)) - X*pinv(X);
R_0 = eye(size(X,1)) - X_0*pinv(X_0);
M = R_0 - R;
df = [rank(X)-rank(X_0) size(X,1)-rank(X)];
F = ((B'*X'*M*X*B)/df(1)) / ((y'*R*y)/df(2));
p = F2p(F,df(1),df(2));
t = [];
cR2 = F2R(F,df(1),df(2));
R2 = 1 - (r'*r) / (y'*y);
aR2 = 1 - (r'*r/df(end)) / (y'*y/(length(y)-1));
fprintf('F(%d,%d)=%f, p(two-tailed)=%f (R2=%3.2f; overall R2=%3.2f (adjusted R2=%3.2f))\n',df(1),df(2),F,p,cR2,R2,aR2);
end
%Below doesn't work if constant not included
%R2 = 1 - (r'*r) / (y'*y); %R2 = (Y'*Y)/(y'*y) equivalent
%disp(sprintf('Overall R2 = %f',R2))
%aR2 = 1 - (r'*r/df(end)) / (y'*y/(length(y)-1));
%disp(sprintf('Overall Adjusted R2 (assumes a constant in model) = %f',R2))
% Hacky way to calculate unique contribution of contrast
c_0 = eye(size(X,2)) - c*pinv(c);
X_0 = X*c_0;
y_0 = X_0*(pinv(X_0)*y);
r_0 = y - y_0;
iR2 = R2 - (1 - (r_0'*r_0) / (y'*y));
if pflag
figure(pflag), clf
Ne = size(c,2);
for e = 1:Ne
subplot(1,Ne,e), hold on
Xc = X*c(:,e);
Yc = Xc*(c(:,e)'*B);
yc = Yc+r;
plot(Xc,yc,'r.')
plot(Xc,Yc,'b-')
end
end
return
%%%%%%%%%%%%%%%%%%
function p=t2p(t,df);
% one-tailed p-value
try
p=tcdf(t,df);
catch
try
p=spm_Tcdf(t,df);
catch
error('Need Matlab Stats toolbox (tcdf) or SPM on path')
end
end
f=find(p>0.5);
p(f)=1-p(f);
return
%%%%%%%%%%%%%%%%%%%%
function p=F2p(F,df1,df2);
% one-tailed p-value
try
p=1-fcdf(F,df1,df2);
catch
try
p=1-spm_Fcdf(F,df1,df2);
catch
error('Need Matlab Stats toolbox (fcdf) or SPM on path')
end
end
return
%%%%%%%%%%%%%%%%%%%%
function R2=F2R(F,df1,df2);
R2=df1*F/(df2+df1*F);
return
|
github
|
MRC-CBU/riksneurotools-master
|
repanova.m
|
.m
|
riksneurotools-master/GLM/repanova.m
| 4,310 |
utf_8
|
38052a299232e70d7a8721730a835a0e
|
function [efs,F,cdfs,p,eps,dfs,b,y2,sig,mse]=repanova5(d,D,fn,gg,alpha);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Version5 has return of mse added (eg for plotting Loftus error bars)
%
% [efs,F,cdfs,p,eps,dfs,b,y2,sig] = repanova(d,D,fn,gg,alpha);
%
% R.Henson, 17/3/03; [email protected]
%
% General N-way (OxPxQxR...) repeated measures ANOVAs (no nonrepeated factors)
%
% Input:
%
% d = data A matrix with rows = replications (eg subjects) and
% columns = conditions
%
% D = factors A vector with as many entries as factors, each entry being
% the number of levels for that factor
%
% Data matrix d must have as many columns (conditions) as
% the product of the elements of the factor matrix D
%
% First factor rotates slowest; last factor fastest
%
% Eg, in a D=[2 3] design: factor A with 2 levels; factor B with 3:
% data matrix d must be organised:
%
% A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
% rep1
% rep2
% ...
%
% Output:
%
% efs = effect, eg [1 2] = interaction between factor 1 and factor 2
% F = F value
% cdfs = corrected df's (using Greenhouse-Geisser)
% p = p-value
% eps = epsilon
% dfs = original dfs
% b = betas
% y2 = cell array of means for each level in a specific ANOVA effect
% sig = cell array of significant effects (uncorrected and Bonferroni corrected)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin<5
alpha=0.05;
end
if nargin<4
gg=1; % G-G correction
end
if nargin<3 % No naming of factors provided
for f=1:length(D)
fn{f}=sprintf('%d',f);
end
end
Nf = length(D); % Number of factors
Nd = prod(D); % Number of conditions
Ne = 2^Nf - 1; % Number of effects
Nr = size(d,1); % Number of replications (eg subjects)
sig=cell(2,1);
if size(d,2) ~= Nd
error(sprintf('data has %d conditions; design only %d',size(d,2),Nd))
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sc = cell(Nf,2); % create main effect/interaction component contrasts
for f = 1 : Nf
sc{f,1} = ones(D(f),1);
% sc{f,2} = detrend(eye(D(f)),0);
sc{f,2} = orth(diff(eye(D(f)))'); % identical answer to above!
end
sy = cell(Nf,2); % create main effect/interaction components for means
for f = 1 : Nf
sy{f,1} = ones(D(f),1)/D(f);
sy{f,2} = eye(D(f));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for e = 1 : Ne % Go through each effect
cw = num2binvec(e,Nf)+1;
c = sc{1,cw(Nf)}; % create full contrasts
for f = 2 : Nf
c = kron(c,sc{f,cw(Nf-f+1)});
end
y = d * c; % project data to contrast sub-space
cy = sy{1,cw(Nf)}; % calculate component means
for f = 2 : Nf
cy = kron(cy,sy{f,cw(Nf-f+1)});
end
y2{e} = mean(d * cy);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nc = size(y,2);
df1 = rank(c);
df2 = df1*(Nr-1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% long GLM way (no GG):
%
% y = y(:);
% X = kron(eye(nc),ones(Nr,1));
% b{e} = pinv(X)*y;
% Y = X*b{e};
% R = eye(nc*Nr)- X*pinv(X);
% r = y - Y;
%% V = r*r';
% V = y*y';
% eps(e) = trace(R*V)^2 / (df1 * trace((R*V)*(R*V)));
%
%% ss = Y'*y;
%% mse = (y'*y - ss)/df2;
%% mss = ss/df1;
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% computationally simpler way
b{e} = mean(y);
ss = sum(y*b{e}');
mse = (sum(diag(y'*y)) - ss)/df2;
mss = ss/df1;
if gg
V = cov(y); % sample covariance
eps(e) = trace(V)^2 / (df1*trace(V'*V));% Greenhouse-Geisser
else
eps(e) = 1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
efs{e} = Nf+1-find(cw==2); % codes which effect
F(e) = mss/mse;
dfs(e,:) = [df1 df2];
cdfs(e,:) = eps(e)*dfs(e,:);
p(e) = 1-spm_Fcdf(F(e),cdfs(e,:));
if p(e) < alpha; sig{1}=[sig{1} e]; end
if p(e) < alpha/Ne; sig{2}=[sig{2} e]; end
en=fn{efs{e}(1)}; % Naming of factors
for f = 2:length(efs{e})
en = [fn{efs{e}(f)} en];
end
disp(sprintf('Effect %02d: %-18s F(%3.2f,%3.2f)=%4.3f,\tp=%4.3f',...
e,en,cdfs(e,1),cdfs(e,2),F(e),p(e)))
end
disp(sprintf('\n'))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sub-function to code all main effects/interactions
function b = num2binvec(d,p)
if nargin<2
p = 0; % p is left-padding with zeros option
end
d=abs(round(d));
if(d==0)
b = 0;
else
b=[];
while d>0
b=[rem(d,2) b];
d=floor(d/2);
end
end
b=[zeros(1,p-length(b)) b];
|
github
|
sergiosanchoasensio/Traffic-sign-detection-and-recognition-master
|
TrafficSignDetection.m
|
.m
|
Traffic-sign-detection-and-recognition-master/Code/TrafficSignDetection.m
| 16,035 |
utf_8
|
450099e1e5f638e9fb7600a461066695
|
function TrafficSignDetection(directory, pixel_method, th, filename, window_method, decision_method, str, str2)
% TrafficSignDetection
% Perform detection of Traffic signs on images. Detection is performed first at the pixel level
% using a color segmentation. Then, using the color segmentation as a basis, the most likely window
% candidates to contain a traffic sign are selected using basic features (form factor, filling factor).
% Finally, a decision is taken on these windows using geometric heuristics (Hough) or template matching.
%
% Parameter name Value
% -------------- -----
% 'directory' directory where the images to analize (.jpg) reside
% 'pixel_method' Name of the color space: 'opp', 'normrgb', 'lab', 'hsv', etc. (Weeks 2-5)
% 'th' Vector that holds the thresholds for the color space
% 'filename' File where the output will be written
% 'window_method' 'SegmentationCCL' or 'SlidingWindow' (Weeks 3-5)
% 'decision_method' 'GeometricHeuristics' or 'TemplateMatching' (Weeks 4-5)
% 'str' Structuring element for first morphological operation
% 'str2' Structuring element for second morphological operation
global CANONICAL_W; CANONICAL_W = 64;
global CANONICAL_H; CANONICAL_H = 64;
global SW_STRIDEX; SW_STRIDEX = 8;
global SW_STRIDEY; SW_STRIDEY = 8;
global SW_CANONICALW; SW_CANONICALW = 32;
global SW_ASPECTRATIO; SW_ASPECTRATIO = 1;
global SW_MINS; SW_MINS = 1;
global SW_MAXS; SW_MAXS = 2.5;
global SW_STRIDES; SW_STRIDES = 1.2;
% Load models
global circleTemplate;
global givewayTemplate;
%global stopTemplate;
global rectangleTemplate;
global triangleTemplate;
%if strcmp(decision_method, 'TemplateMatching')
load('Templates/TemplateCircles.mat');
circleTemplate = TemplateCircles;
load('Templates/TemplateGiveways.mat');
givewayTemplate = TemplateGiveways;
%stopTemplate = load('Templates/TemplateStops.mat');
load('Templates/TemplateRectangles.mat');
rectangleTemplate = TemplateRectangles;
load('Templates/TemplateTriangles.mat');
triangleTemplate = TemplateTriangles;
%end
windowTP=0; windowFN=0; windowFP=0; windowDCO=0; % (Needed after Week 3)
pixelTP=0; pixelFN=0; pixelFP=0; pixelTN=0;
files = ListFiles(directory);
tic;
for i=1:size(files,1),
%for i=23:23,
% Read file
im = imread(strcat(directory,'/',files(i).name));
% Candidate Generation (pixel) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pixelCandidates = CandidateGenerationPixel_Color(im, pixel_method, th);
% Morphological Operations %%%%%%%%%%%%%%%%%%%%%%%%%%%
% pixelCandidates = imopen(imclose(pixelCandidates,str),str2);
pixelCandidates = imfill(pixelCandidates,'holes');
% subplot(1,2,1);
% imshow(im);
% subplot(1,2,2);
% imshow(pixelCandidates*255);
% Candidate Generation (window)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
windowCandidates = CandidateGenerationWindow(im, pixelCandidates, window_method, decision_method);
% Accumulate pixel performance of the current image %%%%%%%%%%%%%%%%%
disp(i);
pixelAnnotation = imread(strcat(directory, '/mask/mask.', files(i).name(1:size(files(i).name,2)-3), 'png'))>0;
%To delete every pixel which are not in the window
mask = zeros(size(pixelAnnotation));
for k = 1:size(windowCandidates,1)
x1 = round(windowCandidates(k).x);
y1 = round(windowCandidates(k).y);
x2 = floor(windowCandidates(k).x+windowCandidates(k).w);
y2 = floor(windowCandidates(k).y+windowCandidates(k).h);
mask(y1:y2, x1:x2) = 1;
end
pixelAnnotation(~mask) = 0;
[localPixelTP, localPixelFP, localPixelFN, localPixelTN] = PerformanceAccumulationPixel(pixelCandidates, pixelAnnotation);
pixelTP = pixelTP + localPixelTP;
pixelFP = pixelFP + localPixelFP;
pixelFN = pixelFN + localPixelFN;
pixelTN = pixelTN + localPixelTN;
%Accumulate object performance of the current image %%%%%%%%%%%%%%%% (Needed after Week 3)
windowAnnotations = LoadAnnotations(strcat(directory, '/gt/gt.', files(i).name(1:size(files(i).name,2)-3), 'txt'), pixelAnnotation, 1);
[localWindowTP, localWindowFN, localWindowFP, localDCO] = PerformanceAccumulationWindow(windowCandidates, windowAnnotations, 1);
windowTP = windowTP + localWindowTP;
windowFN = windowFN + localWindowFN;
windowFP = windowFP + localWindowFP;
windowDCO = windowDCO + localDCO;
end
time = toc;
time = time/size(files,1);
% Plot performance evaluation
[pixelPrecision, pixelAccuracy, pixelRecall, pixelFMeasure] = PerformanceEvaluationPixel(pixelTP, pixelFP, pixelFN, pixelTN);
[windowPrecision, windowAccuracy, windowRecall, windowFMeasure] = PerformanceEvaluationWindow(windowTP, windowFN, windowFP);
% Save performance to file
f = [pixelPrecision, pixelAccuracy, pixelRecall, pixelFMeasure, pixelTP, pixelFP, pixelFN, time];
fid=fopen(filename,'a');
fprintf(fid,'%2.5f %2.5f %2.5f %2.5f %2.0f %2.0f %2.0f %2.5f \n', f);
%fclose(fid);
f = [windowPrecision, windowAccuracy, windowRecall, windowFMeasure, windowTP, windowFP, windowFN, time];
%fid=fopen(filename,'a');
fprintf(fid,'%2.5f %2.5f %2.5f %2.5f %2.0f %2.0f %2.0f %2.5f \n', f);
fclose(fid);
% [windowPrecision, windowAccuracy]
%profile report
%profile off
% toc
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CandidateGeneration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pixelCandidates] = CandidateGenerationPixel_Color(im, method, ~)
switch method
case 'col_enh'
im= double(im);
xR=im(:,:,1);
xG=im(:,:,2);
xB=im(:,:,3);
fR_1=max(0,min(xR-xG,xR-xB)./(xR+xG+xB));
fR_2=max(0,min(xB-xG,xB-xR)./(xR+xG+xB));
fR_1 = fR_1 > 0.12;
fR_2 = fR_2 > 0.12;
pixelCandidates = fR_1 + fR_2;
case 'ihls'
[In1] = normalize_segmentation(im,'red');
[In2] = normalize_segmentation(im,'blue');
pixelCandidates = logical(In1 + In2);
otherwise
error('Incorrect window method defined');
end
end
function [windowCandidates] = CandidateGenerationWindow(im, pixelCandidates, window_method, decision_method)
switch window_method
case 'SegmentationCCL'
%1. Connected components detection
%1.1 Obtain the connected components and their number of pixels.
[connected_components, num] = bwlabel(pixelCandidates, 8);
%Generate the bounding box
bb = regionprops(connected_components, 'BoundingBox');
%5. For each bounding box...
candidates = [];
numberOfCandidates = 1;
windowCandidates = [];
for indexBoundingBoxes=1:size(bb)
%5.1 Obtain the properties (for each bounding box)
crop = imcrop(pixelCandidates, bb(indexBoundingBoxes).BoundingBox);
%Obtain the BB values.
x = bb(indexBoundingBoxes).BoundingBox(1);
y = bb(indexBoundingBoxes).BoundingBox(2);
temp_w = bb(indexBoundingBoxes).BoundingBox(3);
temp_h = bb(indexBoundingBoxes).BoundingBox(4);
temp_fillingRatio = nnz(crop)/(size(crop,1) * size(crop,2));
%Store the candidates
if temp_fillingRatio >= 0.2901 && temp_fillingRatio <= 0.9866
if temp_w >= 29.75 && temp_w <= 345.76
if temp_h >= 29.46 && temp_h <= 253.39
window = imcrop(pixelCandidates, [double(x) double(y) double(temp_w) double(temp_h)]);
if DecideCandidatesWindow(window, decision_method)
candidates(numberOfCandidates) = indexBoundingBoxes;
numberOfCandidates = numberOfCandidates + 1;
windowCandidates = [windowCandidates; struct('x',double(x),'y',double(y),'w',double(temp_w),'h',double(temp_h))];
end
end
end
end
end
case 'SlidingWindow'
m = 91;
n = 91;
fun = @decideWindow;
C = nlfilter(pixelCandidates, [m n], fun);
windowCandidates = MergeWindows(pixelCandidates, C, decision_method);
otherwise
error('Incorrect window method defined');
end
end
function [windowCandidates] = MergeWindows(pixelCandidates, C, decision_method)
s = regionprops(C,'centroid');
centroids = cat(1, s.Centroid);
windowCandidates = [];
% Size of the sliding window, if dynamic then we should not
% hardcode it
w = 91;
h = 91;
for i = 1:size(centroids,1)
%x = centroids(i,1)-4*45;
%y = centroids(i,2)-4*45;
x = centroids(i,1)-45;
y = centroids(i,2)-45;
window = imcrop(pixelCandidates, [double(x) double(y) double(w) double(h)]);
if DecideCandidatesWindow(window, decision_method)
windowCandidates = [windowCandidates; struct('x',double(x),'y',double(y),'w',double(w),'h',double(h))];
end
end
end
%B4 Task 2
function [IsCandidate] = DecideCandidatesWindow(candidate, decision_method)
% %%This function decides if a window contains a traffic signal or not by
% using different template comparing methods
% candidate: the window, in a struct form, that needs evaluation
% decision_method: the decision method we are going to use
% IsCandidate: 1 if it contains a signal, 0 if not
IsCandidate = 0;
% PLACEHOLDER VALUES
% FOR EACH TEMPLATE, THE ADECUATE THRESHOLD AND THE SIZE OF THE MATRIX
global circleTemplate;
global givewayTemplate;
global stopTemplate;
global rectangleTemplate;
global triangleTemplate;
%thresholds = [30000 30000 30000 30000 30000];
nTemplates = 5;
switch decision_method
case 'grayscale'
templates = cat(3,circleTemplate,givewayTemplate,stopTemplate,rectangleTemplate,triangleTemplate);
% Simple grayscale substraction
% For every template:
i = 1;
while i < nTemplates && (IsCandidate == 0)
% n and m is the size of our template
testing = imresize(candidate,[size(templates(:,:,i),1) size(templates(:,:,i),2)] );
testing = templates(:,:,i) - testing;
IsCandidate = (sum(sum(testing)) < 50); % < thresholds(i));
i = i + 1;
end
case 'chamfer'
% Chamfer distance model of each set
type = cat(3,triangleTemplate,circleTemplate,rectangleTemplate,givewayTemplate);
candidate = imresize(candidate,[size(type,1),size(type,2)]);
i = 1;
%M = inf;
IsCandidate = 0;
while(IsCandidate == 0 && i <= size(type,3))
T = edge(type(:,:,i),'canny');
B = edge(candidate,'canny'); %MASK
D = bwdist(B);
M = sum(sum(T*D));
i = i + 1;
IsCandidate = (M < 15000000);
end
case 'corr'
type = cat(3,triangleTemplate,circleTemplate,rectangleTemplate,givewayTemplate);
candidate = imresize(candidate,[size(type,1),size(type,2)]);
i = 1;
IsCandidate = 0;
while(IsCandidate == 0 & i <= size(type,3))
C=corr2(double(candidate),type(:,:,i));
i = i + 1;
IsCandidate = (C > 0.38);
end
case 'HoughTransform'
IsCandidate = 0;
eIm = edge(candidate, 'canny');
[H,theta,rho] = hough(eIm);
maxLines = 10;
P = houghpeaks(H,maxLines,'threshold',ceil(0.7*max(H(:))));
if(P == 0)
IsCandidate = 0;
disp('P=0')
else
lines = houghlines(eIm,theta,rho,P,'FillGap',5,'MinLength',3);
%Shape detection
if (length(P) == maxLines) %(circen(1) < 100 && circen(2) < 100)
if(size(candidate)>32)
%Hough Circle Transform
[accum, circen] = CircularHough_Grd(255*candidate,[0.45*min(size(candidate,1),size(candidate,2)) 0.5*min(size(candidate,1),size(candidate,2))]);
if(isempty(circen))
IsCandidate = 0;
else
IsCandidate = 1;
end
else
IsCandidate = 1;
end
else
tolerance = 7;
squarecondition = 0;
trianglecondition = 0;
for index = 1:size(lines,2)
%If there are a min. of three peaks with ~0? or ~90?. Obj: square.
if (abs(lines(index).theta) <= tolerance) ...
|| (abs(abs(lines(index).theta) - 90) <= tolerance)
squarecondition = squarecondition + 1;
end
%If there are a min. of two peaks with ~25?. Obj: triangle.
if (abs(abs(lines(index).theta) - 30) <= tolerance)
trianglecondition = trianglecondition + 1;
end
end
if squarecondition > 3
IsCandidate = 1;
else
if trianglecondition >= 2
IsCandidate = 1;
end
end
end
end
otherwise
error('Incorrect decision method defined');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Performance Evaluation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function PerformanceEvaluationROC(scores, labels, thresholdRange)
% PerformanceEvaluationROC
% ROC Curve with precision and accuracy
roc = [];
for t=thresholdRange,
TP=0;
FP=0;
for i=1:size(scores,1),
if scores(i) > t % scored positive
if labels(i)==1 % labeled positive
TP=TP+1;
else % labeled negative
FP=FP+1;
end
else % scored negative
if labels(i)==1 % labeled positive
FN = FN+1;
else % labeled negative
TN = TN+1;
end
end
end
precision = TP / (TP+FP+FN+TN);
accuracy = TP / (TP+FN+FP);
roc = [roc ; precision accuracy];
end
plot(roc);
end
|
github
|
sergiosanchoasensio/Traffic-sign-detection-and-recognition-master
|
colorspace_demo.m
|
.m
|
Traffic-sign-detection-and-recognition-master/Code/colorspace/colorspace_demo.m
| 6,856 |
utf_8
|
f7d66bc3e0e1bf1611fbd525c617323c
|
function colorspace_demo(Cmd)
% Demo for colorspace.m - 3D visualizations of various color spaces
% Pascal Getreuer 2006
if nargin == 0
% Create a figure with a drop-down menu
figure('Color',[1,1,1]);
h = uicontrol('Style','popup','Position',[15,10,90,21],...
'BackgroundColor',[1,1,1],'Value',2,...
'string',{'sRGB','Y''PbPr','HSV','HSL','L*a*b*','L*u*v*','L*ch'});
set(h,'Callback',sprintf('%s(get(%.20g,''Value''))',mfilename,h));
Cmd = 2;
end
% Plot a figure
switch Cmd
case 1
[x,y,z,Tri] = makeshape('Cube');
CData = [x,y,z];
myplot((x-0.5)*0.8,(y-0.5)*0.8,(z)*0.8,Tri,CData);
coloraxis('R''',5,0.5*0.8);
coloraxis('G''',6,0.5*0.8);
coloraxis('B''',3);
case 2
[x,y,z,Tri] = makeshape('Cylinder');
CData = colorspace('rgb<-ypbpr',[z,x/2,y/2]);
myplot(x,y,0.8*z,Tri,CData);
coloraxis('Y''',3);
coloraxis('P_b',5,0.8);
coloraxis('P_r',6,0.8);
case 3
[x,y,z,Tri] = makeshape('Hexacone');
CData = colorspace('rgb<-hsv',[(pi+atan2(-y,-x))*180/pi,sqrt(x.^2+y.^2),z]);
myplot(x,y,z,Tri,CData);
coloraxis('H',1);
coloraxis('S',2);
coloraxis('V',3);
case 4
[x,y,z,Tri] = makeshape('Double Hexacone');
CData = colorspace('rgb<-hsl',[(pi+atan2(-y,-x))*180/pi,sqrt(x.^2+y.^2),z]);
myplot(x,y,2*z,Tri,CData);
coloraxis('H',1);
coloraxis('S',2);
coloraxis('L',4);
case 5
[x,y,z,Tri] = makeshape('Blobs');
CData = colorspace('rgb<-lab',[z*100,x*100,y*100]);
myplot(x,y,2*z,Tri,CData);
coloraxis('L*',4);
coloraxis('a*',5,2);
coloraxis('b*',6,2);
case 6
[x,y,z,Tri] = makeshape('Blobs');
CData = colorspace('rgb<-luv',[z*100,x*125,y*125]);
myplot(x,y,2*z,Tri,CData);
coloraxis('L*',4);
coloraxis('u*',5,2);
coloraxis('v*',6,2);
case 7
[x,y,z,Tri] = makeshape('Blobs');
CData = colorspace('rgb<-lab',[z*100,x*100,y*100]);
myplot(x,y,2*z,Tri,CData);
coloraxis('L*',4);
coloraxis('c',2);
coloraxis('h',1);
end
axis equal;
axis off;
pbaspect([1,1,1]);
view(70,27);
rotate3d on;
return;
function myplot(x,y,z,Tri,CData)
% Plot a triangular mesh with color data
cla;
CData = min(max(CData,0),1);
patch('Faces',Tri,'Vertices',[x,y,z],'FaceVertexCData',CData,...
'FaceColor','interp','EdgeColor','none');
hold on;
return;
function coloraxis(Name,Type,h)
% Draw color axes as 3D objects
FontSize = 14;
switch Type
case 1
set(text(-0.25,-1.3,1.1,Name),'FontWeight','bold',...
'FontSize',FontSize,'Color',[0,0,0]);
t = linspace(0,pi*3/2,60);
x = cos(t)*1.1;
y = sin(t)*1.1;
set(plot3(x,y,zeros(size(x)),'k-'),'LineWidth',2.5,'Color',[1,1,1]*0.8);
x = [x,-0.1,0,-0.1];
y = [y,-1.05,-1.1,-1.15];
set(plot3(x,y,ones(size(x)),'k-'),'LineWidth',2.5);
case 2
set(text(0,-0.6,0.15,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);
set(plot3([-0.05,0,0.05,0,0],[-0.9,-1,-0.9,-1,0],[0,0,0,0,0],'k-'),'LineWidth',2.5);
case 3
set(text(0,0.15,1.3,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);
set(plot3([0,0,0,0,0],[-0.05,0,0.05,0,0],[1.6,1.7,1.6,1.7,0],'k-'),'LineWidth',2.5);
case 4
set(text(0,0.15,2.4,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);
set(plot3([0,0,0,0,0],[-0.05,0,0.05,0,0],[2.4,2.5,2.4,2.5,0],'k-'),'LineWidth',2.5);
case 5
set(text(0.6,0,h+0.15,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);
set(plot3([0.9,1,0.9,1,-1,-0.9,-1,-0.9],[-0.05,0,0.05,0,0,-0.05,0,0.05],...
zeros(1,8)+h,'k-'),'LineWidth',2.5);
case 6
set(text(0,0.6,h+0.15,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);
set(plot3([-0.05,0,0.05,0,0,-0.05,0,0.05],[0.9,1,0.9,1,-1,-0.9,-1,-0.9],...
zeros(1,8)+h,'k-'),'LineWidth',2.5);
end
return;
function [x,y,z,Tri] = makeshape(Shape)
% Make a 3D shape: Shape = 'Cube', 'Cylinder', 'Cone', 'Double Cone', 'Blobs'
% Cube
N = 12; % Vertices per edge
% Cylinder, Cone, Double Cone
Nth = 25; % Vertices over angles, (Nth - 1) should be a multiple of 12
Nr = 4; % Vertices over radius
Nz = 8; % Vertices over z-dimension
switch lower(Shape)
case 'cube'
[u,v] = meshgrid(linspace(0,1,N),linspace(0,1,N));
u = u(:);
v = v(:);
x = [u;u;u;u;zeros(N^2,1);ones(N^2,1)];
y = [v;v;zeros(N^2,1);ones(N^2,1);v;v];
z = [zeros(N^2,1);ones(N^2,1);v;v;u;u];
Tri = trigrid(N,N);
Tri = [Tri;N^2+Tri;2*N^2+Tri;3*N^2+Tri;4*N^2+Tri;5*N^2+Tri];
case 'cylinder'
Nth = ceil(Nth*0.75);
[u,v] = meshgrid(linspace(0,pi*3/2,Nth),linspace(0,1,Nz));
Tri = trigrid(Nth,Nz);
x = cos(u(:));
y = sin(u(:));
z = v(:);
[u,v] = meshgrid(linspace(0,pi*3/2,Nth),linspace(0,1,Nr));
Tri = [Tri;Nth*Nz+trigrid(Nth,Nr);Nth*Nz+Nth*Nr+trigrid(Nth,Nr)];
x = [x;v(:).*cos(u(:));v(:).*cos(u(:))];
y = [y;v(:).*sin(u(:));v(:).*sin(u(:))];
z = [z;zeros(Nth*Nr,1);ones(Nth*Nr,1)];
[u,v] = meshgrid(linspace(0,1,Nr),linspace(0,1,Nz));
Tri = [Tri;Nth*Nz+2*Nth*Nr+trigrid(Nr,Nz);Nth*Nz+2*Nth*Nr+Nr*Nz+trigrid(Nr,Nz)];
x = [x;u(:);zeros(Nr*Nz,1)];
y = [y;zeros(Nr*Nz,1);-u(:)];
z = [z;v(:);v(:)];
case 'cone'
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));
Tri = trigrid(Nth,Nz);
x = v(:).*cos(u(:));
y = v(:).*sin(u(:));
z = v(:);
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nr));
Tri = [Tri;Nth*Nz+trigrid(Nth,Nr);];
x = [x;v(:).*cos(u(:));];
y = [y;v(:).*sin(u(:));];
z = [z;ones(Nth*Nr,1)];
case 'double cone'
Nz = floor(Nz/2)*2+1;
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));
Tri = trigrid(Nth,Nz);
r = 1 - abs(2*v(:) - 1);
x = r.*cos(u(:));
y = r.*sin(u(:));
z = v(:);
case 'hexacone'
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));
Tri = trigrid(Nth,Nz);
r = 0.92./max(max(abs(cos(u)),abs(cos(u - pi/3))),abs(cos(u + pi/3)));
x = v(:).*cos(u(:)).*r(:);
y = v(:).*sin(u(:)).*r(:);
z = v(:);
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nr));
Tri = [Tri;Nth*Nz+trigrid(Nth,Nr);];
v = 0.92*v./max(max(abs(cos(u)),abs(cos(u - pi/3))),abs(cos(u + pi/3)));
x = [x;v(:).*cos(u(:));];
y = [y;v(:).*sin(u(:));];
z = [z;ones(Nth*Nr,1)];
case 'double hexacone'
Nz = floor(Nz/2)*2+1;
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));
Tri = trigrid(Nth,Nz);
r = 1 - abs(2*v - 1);
r = 0.92*r./max(max(abs(cos(u)),abs(cos(u - pi/3))),abs(cos(u + pi/3)));
x = r(:).*cos(u(:));
y = r(:).*sin(u(:));
z = v(:);
case 'blobs'
Nz = 47;
[u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));
Tri = trigrid(Nth,Nz);
r = sin(v(:)*pi*3).^2.*(1 - 0.6*abs(2*v(:) - 1));
x = r.*cos(u(:));
y = r.*sin(u(:));
z = v(:);
end
return;
function Tri = trigrid(Nu,Nv)
% Construct the connectivity data for a grid of triangular patches
i = (1:(Nu-1)*Nv-1).';
i(Nv:Nv:end) = [];
Tri = [i,i+1,i+Nv;i+1,i+Nv+1,i+Nv];
return;
|
github
|
sergiosanchoasensio/Traffic-sign-detection-and-recognition-master
|
colorspace.m
|
.m
|
Traffic-sign-detection-and-recognition-master/Code/colorspace/colorspace.m
| 16,178 |
utf_8
|
2ca0aee9ae4d0f5c12a7028c45ef2b8d
|
function varargout = colorspace(Conversion,varargin)
%COLORSPACE Transform a color image between color representations.
% B = COLORSPACE(S,A) transforms the color representation of image A
% where S is a string specifying the conversion. The input array A
% should be a real full double array of size Mx3 or MxNx3. The output B
% is the same size as A.
%
% S tells the source and destination color spaces, S = 'dest<-src', or
% alternatively, S = 'src->dest'. Supported color spaces are
%
% 'RGB' sRGB IEC 61966-2-1
% 'YCbCr' Luma + Chroma ("digitized" version of Y'PbPr)
% 'JPEG-YCbCr' Luma + Chroma space used in JFIF JPEG
% 'YDbDr' SECAM Y'DbDr Luma + Chroma
% 'YPbPr' Luma (ITU-R BT.601) + Chroma
% 'YUV' NTSC PAL Y'UV Luma + Chroma
% 'YIQ' NTSC Y'IQ Luma + Chroma
% 'HSV' or 'HSB' Hue Saturation Value/Brightness
% 'HSL' or 'HLS' Hue Saturation Luminance
% 'HSI' Hue Saturation Intensity
% 'XYZ' CIE 1931 XYZ
% 'Lab' CIE 1976 L*a*b* (CIELAB)
% 'Luv' CIE L*u*v* (CIELUV)
% 'LCH' CIE L*C*H* (CIELCH)
% 'CAT02 LMS' CIE CAT02 LMS
%
% All conversions assume 2 degree observer and D65 illuminant.
%
% Color space names are case insensitive and spaces are ignored. When
% sRGB is the source or destination, it can be omitted. For example
% 'yuv<-' is short for 'yuv<-rgb'.
%
% For sRGB, the values should be scaled between 0 and 1. Beware that
% transformations generally do not constrain colors to be "in gamut."
% Particularly, transforming from another space to sRGB may obtain
% R'G'B' values outside of the [0,1] range. So the result should be
% clamped to [0,1] before displaying:
% image(min(max(B,0),1)); % Clamp B to [0,1] and display
%
% sRGB (Red Green Blue) is the (ITU-R BT.709 gamma-corrected) standard
% red-green-blue representation of colors used in digital imaging. The
% components should be scaled between 0 and 1. The space can be
% visualized geometrically as a cube.
%
% Y'PbPr, Y'CbCr, Y'DbDr, Y'UV, and Y'IQ are related to sRGB by linear
% transformations. These spaces separate a color into a grayscale
% luminance component Y and two chroma components. The valid ranges of
% the components depends on the space.
%
% HSV (Hue Saturation Value) is related to sRGB by
% H = hexagonal hue angle (0 <= H < 360),
% S = C/V (0 <= S <= 1),
% V = max(R',G',B') (0 <= V <= 1),
% where C = max(R',G',B') - min(R',G',B'). The hue angle H is computed on
% a hexagon. The space is geometrically a hexagonal cone.
%
% HSL (Hue Saturation Lightness) is related to sRGB by
% H = hexagonal hue angle (0 <= H < 360),
% S = C/(1 - |2L-1|) (0 <= S <= 1),
% L = (max(R',G',B') + min(R',G',B'))/2 (0 <= L <= 1),
% where H and C are the same as in HSV. Geometrically, the space is a
% double hexagonal cone.
%
% HSI (Hue Saturation Intensity) is related to sRGB by
% H = polar hue angle (0 <= H < 360),
% S = 1 - min(R',G',B')/I (0 <= S <= 1),
% I = (R'+G'+B')/3 (0 <= I <= 1).
% Unlike HSV and HSL, the hue angle H is computed on a circle rather than
% a hexagon.
%
% CIE XYZ is related to sRGB by inverse gamma correction followed by a
% linear transform. Other CIE color spaces are defined relative to XYZ.
%
% CIE L*a*b*, L*u*v*, and L*C*H* are nonlinear functions of XYZ. The L*
% component is designed to match closely with human perception of
% lightness. The other two components describe the chroma.
%
% CIE CAT02 LMS is the linear transformation of XYZ using the MCAT02
% chromatic adaptation matrix. The space is designed to model the
% response of the three types of cones in the human eye, where L, M, S,
% correspond respectively to red ("long"), green ("medium"), and blue
% ("short").
% Pascal Getreuer 2005-2010
%%% Input parsing %%%
if nargin < 2, error('Not enough input arguments.'); end
[SrcSpace,DestSpace] = parse(Conversion);
if nargin == 2
Image = varargin{1};
elseif nargin >= 3
Image = cat(3,varargin{:});
else
error('Invalid number of input arguments.');
end
FlipDims = (size(Image,3) == 1);
if FlipDims, Image = permute(Image,[1,3,2]); end
if ~isa(Image,'double'), Image = double(Image)/255; end
if size(Image,3) ~= 3, error('Invalid input size.'); end
SrcT = gettransform(SrcSpace);
DestT = gettransform(DestSpace);
if ~ischar(SrcT) && ~ischar(DestT)
% Both source and destination transforms are affine, so they
% can be composed into one affine operation
T = [DestT(:,1:3)*SrcT(:,1:3),DestT(:,1:3)*SrcT(:,4)+DestT(:,4)];
Temp = zeros(size(Image));
Temp(:,:,1) = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);
Temp(:,:,2) = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);
Temp(:,:,3) = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);
Image = Temp;
elseif ~ischar(DestT)
Image = rgb(Image,SrcSpace);
Temp = zeros(size(Image));
Temp(:,:,1) = DestT(1)*Image(:,:,1) + DestT(4)*Image(:,:,2) + DestT(7)*Image(:,:,3) + DestT(10);
Temp(:,:,2) = DestT(2)*Image(:,:,1) + DestT(5)*Image(:,:,2) + DestT(8)*Image(:,:,3) + DestT(11);
Temp(:,:,3) = DestT(3)*Image(:,:,1) + DestT(6)*Image(:,:,2) + DestT(9)*Image(:,:,3) + DestT(12);
Image = Temp;
else
Image = feval(DestT,Image,SrcSpace);
end
%%% Output format %%%
if nargout > 1
varargout = {Image(:,:,1),Image(:,:,2),Image(:,:,3)};
else
if FlipDims, Image = permute(Image,[1,3,2]); end
varargout = {Image};
end
return;
function [SrcSpace,DestSpace] = parse(Str)
% Parse conversion argument
if ischar(Str)
Str = lower(strrep(strrep(Str,'-',''),'=',''));
k = find(Str == '>');
if length(k) == 1 % Interpret the form 'src->dest'
SrcSpace = Str(1:k-1);
DestSpace = Str(k+1:end);
else
k = find(Str == '<');
if length(k) == 1 % Interpret the form 'dest<-src'
DestSpace = Str(1:k-1);
SrcSpace = Str(k+1:end);
else
error(['Invalid conversion, ''',Str,'''.']);
end
end
SrcSpace = alias(SrcSpace);
DestSpace = alias(DestSpace);
else
SrcSpace = 1; % No source pre-transform
DestSpace = Conversion;
if any(size(Conversion) ~= 3), error('Transformation matrix must be 3x3.'); end
end
return;
function Space = alias(Space)
Space = strrep(strrep(Space,'cie',''),' ','');
if isempty(Space)
Space = 'rgb';
end
switch Space
case {'ycbcr','ycc'}
Space = 'ycbcr';
case {'hsv','hsb'}
Space = 'hsv';
case {'hsl','hsi','hls'}
Space = 'hsl';
case {'rgb','yuv','yiq','ydbdr','ycbcr','jpegycbcr','xyz','lab','luv','lch'}
return;
end
return;
function T = gettransform(Space)
% Get a colorspace transform: either a matrix describing an affine transform,
% or a string referring to a conversion subroutine
switch Space
case 'ypbpr'
T = [0.299,0.587,0.114,0;-0.1687367,-0.331264,0.5,0;0.5,-0.418688,-0.081312,0];
case 'yuv'
% sRGB to NTSC/PAL YUV
% Wikipedia: http://en.wikipedia.org/wiki/YUV
T = [0.299,0.587,0.114,0;-0.147,-0.289,0.436,0;0.615,-0.515,-0.100,0];
case 'ydbdr'
% sRGB to SECAM YDbDr
% Wikipedia: http://en.wikipedia.org/wiki/YDbDr
T = [0.299,0.587,0.114,0;-0.450,-0.883,1.333,0;-1.333,1.116,0.217,0];
case 'yiq'
% sRGB in [0,1] to NTSC YIQ in [0,1];[-0.595716,0.595716];[-0.522591,0.522591];
% Wikipedia: http://en.wikipedia.org/wiki/YIQ
T = [0.299,0.587,0.114,0;0.595716,-0.274453,-0.321263,0;0.211456,-0.522591,0.311135,0];
case 'ycbcr'
% sRGB (range [0,1]) to ITU-R BRT.601 (CCIR 601) Y'CbCr
% Wikipedia: http://en.wikipedia.org/wiki/YCbCr
% Poynton, Equation 3, scaling of R'G'B to Y'PbPr conversion
T = [65.481,128.553,24.966,16;-37.797,-74.203,112.0,128;112.0,-93.786,-18.214,128];
case 'jpegycbcr'
% Wikipedia: http://en.wikipedia.org/wiki/YCbCr
T = [0.299,0.587,0.114,0;-0.168736,-0.331264,0.5,0.5;0.5,-0.418688,-0.081312,0.5]*255;
case {'rgb','xyz','hsv','hsl','lab','luv','lch','cat02lms'}
T = Space;
otherwise
error(['Unknown color space, ''',Space,'''.']);
end
return;
function Image = rgb(Image,SrcSpace)
% Convert to sRGB from 'SrcSpace'
switch SrcSpace
case 'rgb'
return;
case 'hsv'
% Convert HSV to sRGB
Image = huetorgb((1 - Image(:,:,2)).*Image(:,:,3),Image(:,:,3),Image(:,:,1));
case 'hsl'
% Convert HSL to sRGB
L = Image(:,:,3);
Delta = Image(:,:,2).*min(L,1-L);
Image = huetorgb(L-Delta,L+Delta,Image(:,:,1));
case {'xyz','lab','luv','lch','cat02lms'}
% Convert to CIE XYZ
Image = xyz(Image,SrcSpace);
% Convert XYZ to RGB
T = [3.2406, -1.5372, -0.4986; -0.9689, 1.8758, 0.0415; 0.0557, -0.2040, 1.057];
R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3); % R
G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3); % G
B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3); % B
% Desaturate and rescale to constrain resulting RGB values to [0,1]
AddWhite = -min(min(min(R,G),B),0);
R = R + AddWhite;
G = G + AddWhite;
B = B + AddWhite;
% Apply gamma correction to convert linear RGB to sRGB
Image(:,:,1) = gammacorrection(R); % R'
Image(:,:,2) = gammacorrection(G); % G'
Image(:,:,3) = gammacorrection(B); % B'
otherwise % Conversion is through an affine transform
T = gettransform(SrcSpace);
temp = inv(T(:,1:3));
T = [temp,-temp*T(:,4)];
R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);
G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);
B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);
Image(:,:,1) = R;
Image(:,:,2) = G;
Image(:,:,3) = B;
end
% Clip to [0,1]
Image = min(max(Image,0),1);
return;
function Image = xyz(Image,SrcSpace)
% Convert to CIE XYZ from 'SrcSpace'
WhitePoint = [0.950456,1,1.088754];
switch SrcSpace
case 'xyz'
return;
case 'luv'
% Convert CIE L*uv to XYZ
WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
L = Image(:,:,1);
Y = (L + 16)/116;
Y = invf(Y)*WhitePoint(2);
U = Image(:,:,2)./(13*L + 1e-6*(L==0)) + WhitePointU;
V = Image(:,:,3)./(13*L + 1e-6*(L==0)) + WhitePointV;
Image(:,:,1) = -(9*Y.*U)./((U-4).*V - U.*V); % X
Image(:,:,2) = Y; % Y
Image(:,:,3) = (9*Y - (15*V.*Y) - (V.*Image(:,:,1)))./(3*V); % Z
case {'lab','lch'}
Image = lab(Image,SrcSpace);
% Convert CIE L*ab to XYZ
fY = (Image(:,:,1) + 16)/116;
fX = fY + Image(:,:,2)/500;
fZ = fY - Image(:,:,3)/200;
Image(:,:,1) = WhitePoint(1)*invf(fX); % X
Image(:,:,2) = WhitePoint(2)*invf(fY); % Y
Image(:,:,3) = WhitePoint(3)*invf(fZ); % Z
case 'cat02lms'
% Convert CAT02 LMS to XYZ
T = inv([0.7328, 0.4296, -0.1624;-0.7036, 1.6975, 0.0061; 0.0030, 0.0136, 0.9834]);
L = Image(:,:,1);
M = Image(:,:,2);
S = Image(:,:,3);
Image(:,:,1) = T(1)*L + T(4)*M + T(7)*S; % X
Image(:,:,2) = T(2)*L + T(5)*M + T(8)*S; % Y
Image(:,:,3) = T(3)*L + T(6)*M + T(9)*S; % Z
otherwise % Convert from some gamma-corrected space
% Convert to sRGB
Image = rgb(Image,SrcSpace);
% Undo gamma correction
R = invgammacorrection(Image(:,:,1));
G = invgammacorrection(Image(:,:,2));
B = invgammacorrection(Image(:,:,3));
% Convert RGB to XYZ
T = inv([3.2406, -1.5372, -0.4986; -0.9689, 1.8758, 0.0415; 0.0557, -0.2040, 1.057]);
Image(:,:,1) = T(1)*R + T(4)*G + T(7)*B; % X
Image(:,:,2) = T(2)*R + T(5)*G + T(8)*B; % Y
Image(:,:,3) = T(3)*R + T(6)*G + T(9)*B; % Z
end
return;
function Image = hsv(Image,SrcSpace)
% Convert to HSV
Image = rgb(Image,SrcSpace);
V = max(Image,[],3);
S = (V - min(Image,[],3))./(V + (V == 0));
Image(:,:,1) = rgbtohue(Image);
Image(:,:,2) = S;
Image(:,:,3) = V;
return;
function Image = hsl(Image,SrcSpace)
% Convert to HSL
switch SrcSpace
case 'hsv'
% Convert HSV to HSL
MaxVal = Image(:,:,3);
MinVal = (1 - Image(:,:,2)).*MaxVal;
L = 0.5*(MaxVal + MinVal);
temp = min(L,1-L);
Image(:,:,2) = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));
Image(:,:,3) = L;
otherwise
Image = rgb(Image,SrcSpace); % Convert to sRGB
% Convert sRGB to HSL
MinVal = min(Image,[],3);
MaxVal = max(Image,[],3);
L = 0.5*(MaxVal + MinVal);
temp = min(L,1-L);
S = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));
Image(:,:,1) = rgbtohue(Image);
Image(:,:,2) = S;
Image(:,:,3) = L;
end
return;
function Image = lab(Image,SrcSpace)
% Convert to CIE L*a*b* (CIELAB)
WhitePoint = [0.950456,1,1.088754];
switch SrcSpace
case 'lab'
return;
case 'lch'
% Convert CIE L*CH to CIE L*ab
C = Image(:,:,2);
Image(:,:,2) = cos(Image(:,:,3)*pi/180).*C; % a*
Image(:,:,3) = sin(Image(:,:,3)*pi/180).*C; % b*
otherwise
Image = xyz(Image,SrcSpace); % Convert to XYZ
% Convert XYZ to CIE L*a*b*
X = Image(:,:,1)/WhitePoint(1);
Y = Image(:,:,2)/WhitePoint(2);
Z = Image(:,:,3)/WhitePoint(3);
fX = f(X);
fY = f(Y);
fZ = f(Z);
Image(:,:,1) = 116*fY - 16; % L*
Image(:,:,2) = 500*(fX - fY); % a*
Image(:,:,3) = 200*(fY - fZ); % b*
end
return;
function Image = luv(Image,SrcSpace)
% Convert to CIE L*u*v* (CIELUV)
WhitePoint = [0.950456,1,1.088754];
WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));
Image = xyz(Image,SrcSpace); % Convert to XYZ
Denom = Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3);
U = (4*Image(:,:,1))./(Denom + (Denom == 0));
V = (9*Image(:,:,2))./(Denom + (Denom == 0));
Y = Image(:,:,2)/WhitePoint(2);
L = 116*f(Y) - 16;
Image(:,:,1) = L; % L*
Image(:,:,2) = 13*L.*(U - WhitePointU); % u*
Image(:,:,3) = 13*L.*(V - WhitePointV); % v*
return;
function Image = lch(Image,SrcSpace)
% Convert to CIE L*ch
Image = lab(Image,SrcSpace); % Convert to CIE L*ab
H = atan2(Image(:,:,3),Image(:,:,2));
H = H*180/pi + 360*(H < 0);
Image(:,:,2) = sqrt(Image(:,:,2).^2 + Image(:,:,3).^2); % C
Image(:,:,3) = H; % H
return;
function Image = cat02lms(Image,SrcSpace)
% Convert to CAT02 LMS
Image = xyz(Image,SrcSpace);
T = [0.7328, 0.4296, -0.1624;-0.7036, 1.6975, 0.0061; 0.0030, 0.0136, 0.9834];
X = Image(:,:,1);
Y = Image(:,:,2);
Z = Image(:,:,3);
Image(:,:,1) = T(1)*X + T(4)*Y + T(7)*Z; % L
Image(:,:,2) = T(2)*X + T(5)*Y + T(8)*Z; % M
Image(:,:,3) = T(3)*X + T(6)*Y + T(9)*Z; % S
return;
function Image = huetorgb(m0,m2,H)
% Convert HSV or HSL hue to RGB
N = size(H);
H = min(max(H(:),0),360)/60;
m0 = m0(:);
m2 = m2(:);
F = H - round(H/2)*2;
M = [m0, m0 + (m2-m0).*abs(F), m2];
Num = length(m0);
j = [2 1 0;1 2 0;0 2 1;0 1 2;1 0 2;2 0 1;2 1 0]*Num;
k = floor(H) + 1;
Image = reshape([M(j(k,1)+(1:Num).'),M(j(k,2)+(1:Num).'),M(j(k,3)+(1:Num).')],[N,3]);
return;
function H = rgbtohue(Image)
% Convert RGB to HSV or HSL hue
[M,i] = sort(Image,3);
i = i(:,:,3);
Delta = M(:,:,3) - M(:,:,1);
Delta = Delta + (Delta == 0);
R = Image(:,:,1);
G = Image(:,:,2);
B = Image(:,:,3);
H = zeros(size(R));
k = (i == 1);
H(k) = (G(k) - B(k))./Delta(k);
k = (i == 2);
H(k) = 2 + (B(k) - R(k))./Delta(k);
k = (i == 3);
H(k) = 4 + (R(k) - G(k))./Delta(k);
H = 60*H + 360*(H < 0);
H(Delta == 0) = nan;
return;
function Rp = gammacorrection(R)
Rp = zeros(size(R));
i = (R <= 0.0031306684425005883);
Rp(i) = 12.92*R(i);
Rp(~i) = real(1.055*R(~i).^0.416666666666666667 - 0.055);
return;
function R = invgammacorrection(Rp)
R = zeros(size(Rp));
i = (Rp <= 0.0404482362771076);
R(i) = Rp(i)/12.92;
R(~i) = real(((Rp(~i) + 0.055)/1.055).^2.4);
return;
function fY = f(Y)
fY = real(Y.^(1/3));
i = (Y < 0.008856);
fY(i) = Y(i)*(841/108) + (4/29);
return;
function Y = invf(fY)
Y = fY.^3;
i = (Y < 0.008856);
Y(i) = (fY(i) - 4/29)*(108/841);
return;
|
github
|
rrahuldev/ExportMDF-master
|
expMDF.m
|
.m
|
ExportMDF-master/expMDF.m
| 9,217 |
utf_8
|
488f876b54f99d8b5630ac6220d7aee9
|
% Write data to MDA dat file
% inputs:
% 1- Data in table format
% 2 - filename to write to *.dat
%
% usage: expMDF(dataTable, fileoutname)
% Author : Rahul Rajampeta
% Date: April 15, 2016
function expMDF(dataTable, fileoutname)
%% create the fid to write
fid = fopen(fileoutname,'W');
%% pass the table data
varNames = getVariableNames(dataTable);
varUnits = getTableUnits(dataTable);
numChannels = length(varNames);
numSamples = height(dataTable);
rateSample = 0; % required for virtual signal only.
%% Define locations for each block
linkID = 0; % DO NOT CHANGE THIS
linkHD = 64; % DO NOT CHANGE THIS
linkCC = 300;
blocksize_cc = 63; % for linear format of data 63 bytes
padd_cc = 2;
linkCN = linkCC + numChannels*(blocksize_cc+padd_cc);
blocksize_cn = 228; % constant
padd_cn = 2;
linkCG = linkCN + numChannels*(blocksize_cn+padd_cn);
linkDG = linkCG + 50; % 26+padding
linkDT = linkDG + 50; %28 + padding
% NOTE: dump empty characters untill linkDT otherwise fseek wont move to
% desired position to write to
fwrite(fid, repmat(char(0),1,linkDT), 'char');
%% write ID block
writeIDBlock(fid, linkID);
%% write HD block
writeHDBlock(fid, linkHD, linkDG);
%% write DG block - assume only one DG
writeDGBlock(fid, linkDG, linkCG, linkDT);
%% write CG block - assume only one CG
writeCGBlock(fid, linkCG, linkCN, numChannels, numSamples);
%% write CC/CN blocks
for vars = 1 : numChannels
writeCCBlock(fid, linkCC, varUnits{vars});
nextCN = linkCN+blocksize_cn+padd_cn;
writeCNBlock(fid, linkCN, linkCC, nextCN, varNames{vars}, vars, rateSample, vars == numChannels);
linkCC = linkCC+blocksize_cc+padd_cc;
linkCN = linkCN+blocksize_cn+padd_cn;
end
%% and write DTblock
writeDTBlock(fid, linkDT, dataTable);
fclose(fid);
end
%% ID block def
% dont change this
function writeIDBlock(fid, offset)
fseek(fid,offset,'bof');
fwrite(fid,'MDF 3.00 TGT 15.0', 'char');
fwrite(fid,0,'uint16');
fwrite(fid,0,'uint16');
fwrite(fid,300,'uint16');
fwrite(fid,0,'uint16');
fwrite(fid,repmat(char(0),1,28),'char');
fwrite(fid,0,'uint16');
fwrite(fid,0,'uint16');
% ftell(fid)
end
%% HD block def
function writeHDBlock(fid, offset, linkDG)
blocksize = 164;
fseek(fid,offset,'bof'); % file pointer always to 64 for HD
fwrite(fid,char('HD'),'char');
fwrite(fid,blocksize,'uint16');
fwrite(fid,linkDG,'uint32'); % pointer to DG block
fwrite(fid,0,'uint32'); % pointer to TX
fwrite(fid,0,'uint32'); %pointer to PR
fwrite(fid,1,'uint16'); % number of DG BLOCKS (assume only one to write to)
fwrite(fid,datestr(now,'dd:mm:yyyy'),'char'); % datestring
fwrite(fid,datestr(now,'HH:MM:SS'),'char'); % timestring
username = getenv('USERNAME');
fwrite(fid,username(1:min(length(username),31)), 'char'); % author
fseek(fid,32-length(username),0); % fill the rest 32bytes with null
fwrite(fid,repmat(char(' '),1,32),'char'); %organisation name
fwrite(fid,repmat(char(' '),1,32),'char'); % project name
fwrite(fid,repmat(char(' '),1,32),'char'); % vehicle/dyno name
end
%% DG block def
function writeDGBlock(fid, offset, linkCG, linkDT)
%assume only one DG block to write
blocksize = 28;
fseek(fid,offset,'bof');
fwrite(fid,char('DG'),'2*char');
fwrite(fid,blocksize,'uint16'); %block size
fwrite(fid,0,'uint32'); %skip next DG
fwrite(fid,linkCG,'uint32'); % CG link
fwrite(fid,0,'uint32'); % skip trigger block TR
fwrite(fid,linkDT,'uint32'); % Data DR link
fwrite(fid,1,'uint16'); % assume only one CG block
fwrite(fid,0,'uint16'); % assume zero recordIDs
fwrite(fid,0,'uint32'); %reserved
if blocksize ~= (ftell(fid)-offset)
disp(['blocksize error DG']);
end
end
%% CG block def
function writeCGBlock(fid, offset, linkCN, numChannels, numSamples)
%assume only one CG block to write
blocksize = 26;
fseek(fid,offset,'bof');
fwrite(fid,char('CG'),'2*char');
fwrite(fid,blocksize,'uint16'); %block size
fwrite(fid,0,'uint32'); %skip next CG
fwrite(fid,linkCN,'uint32'); %link to CN block
fwrite(fid,0,'uint32'); %skip TX block
fwrite(fid,2,'uint16'); %recordID
fwrite(fid,uint16(numChannels),'uint16'); % number of channels
fwrite(fid,uint16(numChannels*4),'uint16'); % record size (number of channels*(single)=32bits=4bytes)
fwrite(fid,uint32(numSamples),'uint32'); %number of samples
if blocksize ~= (ftell(fid)-offset)
disp(['blocksize error CG']);
end
end
%% CN block def
function writeCNBlock(fid, offset, linkCC, nextLinkCN, signalName, numVar, rateSample, lastVar)
if lastVar
nextLinkCN = 0;
end
blocksize = 228;
% calculate start offset with byte offset
% if start bit is more than 16 bytes, use additional byte offset
start_bit_raw = 32*(numVar-1);
if (start_bit_raw <= 2^16-1)
start_offset = start_bit_raw;
add_byte_offset = 0;
else
start_offset = mod(start_bit_raw, 8);
add_byte_offset = floor(start_bit_raw/8);
end
fseek(fid,offset,'bof');
fwrite(fid,'CN','char');
fwrite(fid,blocksize,'uint16'); %block size
fwrite(fid,nextLinkCN,'uint32'); % link to nextCN
fwrite(fid,linkCC,'uint32'); % link to CC block
fwrite(fid,0,'uint32'); % link to CE block
fwrite(fid,0,'uint32'); % link to CD block
fwrite(fid,0,'uint32'); % link to TX block
if strcmp(signalName,'time')
fwrite(fid,1,'uint16'); %channel type
else
fwrite(fid,0,'uint16');
end
fwrite(fid,signalName(1:min(length(signalName),31)), 'char');
fseek(fid,32-length(signalName),0); % fill the rest 32bytes with null
fwrite(fid,'simulink output data','char');
fseek(fid,128-length('simulink output data'),0); % fill the rest 128bytes with null
fwrite(fid,start_offset,'uint16'); %start offset
fwrite(fid,32,'uint16'); %num of bits
fwrite(fid,2,'uint16'); % single format (4bytes)
fwrite(fid,0,'uint16'); % value range valid
fwrite(fid,0,'double'); % min signal value
fwrite(fid,0,'double'); % max signal value
fwrite(fid,rateSample,'double'); % sampling rate
fwrite(fid,0,'uint32'); %skip TX block
fwrite(fid,0,'uint32'); %skip TX block
fwrite(fid,add_byte_offset,'uint16'); % additional byte offset
end
%% CC block def
function writeCCBlock(fid, offset, units)
% units modification - limit to 20 with trailing zeros
units = units(1:min(19,length(units)));
units = [units repmat(char(0),1,20-length(units))];
blocksize = 62;
fseek(fid,offset,'bof');
fwrite(fid,'CC','char');
fwrite(fid,blocksize,'uint16'); %block size
fwrite(fid,0,'uint16'); % value range valid
fwrite(fid,0,'double'); % min signal value
fwrite(fid,0,'double'); % max signal value
fwrite(fid,units,'char'); % units of the signal
fwrite(fid,0,'uint16'); % conversion type - linear
fwrite(fid,2,'uint16'); % number of parameters
fwrite(fid,0,'double'); % P1
fwrite(fid,1,'double'); % P2
end
%% Data block - write row-wise
function writeDTBlock(fid, offset, dataTable)
fseek(fid,offset,'bof');
% for row = 1:height(dataTable)
% fwrite(fid,dataTable{row,:},'single');
% end
dataTableRow = reshape(dataTable{:,:}', 1, []);
fwrite(fid,dataTableRow, 'single');
end
%% Fix variable names
function varnames = getVariableNames(dataTable)
% variable names should conform to
% 1 - no space allowed : replace with __
% 2 - length should be less than 31 chars
% 3 - unique name for each variables
varnames = dataTable.Properties.VariableNames;
% check if space exists in names
varnames = strrep(varnames, ' ','_');
% check more than 31 chars names
flg_longnames = cellfun(@(x) length(x)>31, varnames, 'UniformOutput', false);
flg_longnames = [flg_longnames{:}]'; % convert cell to logical array
% then truncate in between; use rolling 31 chars that produce unique names
if any(flg_longnames)
newvarnames = varnames;
longnames = varnames(flg_longnames);
shift_idx=[0:1:14 -1:-1:-14];
i=1;
while ((length(unique(newvarnames)) ~= length(newvarnames) || i==1) && i<= length(shift_idx))
idx = shift_idx(i);
newlongnames = cellfun(@(x) [x(1:15-idx) '_' x(end-14-idx:end)], longnames, 'UniformOutput', false);
newvarnames(flg_longnames) = newlongnames;
i=i+1;
end
if (length(unique(newvarnames)) ~= length(newvarnames) && i > length(shift_idx))
error('Try to minimize the signal names to less than 31 chars');
else
varnames = newvarnames;
end
end
% convert ls/rs to brackets
varnames = strrep(varnames, '_ls_','[');
varnames = strrep(varnames, '_rs_',']');
end
%% DataTable units
function units = getTableUnits(dataTable)
units = dataTable.Properties.VariableUnits;
% if no units are set to either of the column
if isempty(units)
% set empty units to first column, it forces empty units to all columns
dataTable.Properties.VariableUnits{1} = '';
units = dataTable.Properties.VariableUnits;
end
end
|
github
|
rrahuldev/ExportMDF-master
|
mat2dat.m
|
.m
|
ExportMDF-master/mat2dat.m
| 10,624 |
utf_8
|
7fe982ffaccd4856933b094bdb62e07d
|
function mat2dat(varargin)
% The script is invoked two ways
% 1: with no arguments to the script, in which case, the user selects the
% one or more mat files to convert to dat file format. The output is the
% same name as matfile but appended with "_expMDF.dat"
%
% 2: inline with other scripts or model where the syntax below is followed.
% usage: MAT2DAT(logsout, 'test_data.dat')
% params:
% logsout: Simulink.SimulationData.Dataset type data stored via simulation output
% 'test_data.dat' : filename to convert data to dat
% returns:
% 'test_data.dat': data converted to MDF format
% simulation model call; assume logsout variable in the workspace
% Author: Rahul Rajampeta
% Updated: April 11, 2019
disp(' ');
%% check matlab version : currently supports 8.2 and higher
if verLessThan('matlab', '8.2')
disp(repmat(char('-'), 1, 90));
disp(' Currently, this script supports only version 8.2 (R2013b) and higher ');
disp(repmat(char('-'), 1, 90));
disp(' ');
return;
end
%% check invoke method of the script
switch nargin
case 0
% Select mat file with variables stored as timeseries
% UI for file selection
[FileName,PathName,~] = uigetfile(fullfile(pwd,'*.mat'), 'Select the MAT file(s). Use Ctrl key for selecting multiple files','MultiSelect','on');
% check one or multiple files selected
if isa(FileName, 'char')
% only one file selected
% convert to cell format
FileName = {FileName};
elseif ~isa(FileName, 'cell')
% no file selected - end the function call
return
end
% load each file and create dat file for each
for f = 1: length(FileName)
disp('');disp(['Loading file -- "', FileName{f},'"']);
raw = load(strcat(PathName,FileName{f}));
writeDatFile(raw, FileName{f}, PathName);
end
case 2
% usage: mat2dat(logsout, 'test_data.dat')
% params:
% logsout: Simulink.SimulationData.Dataset type data stored via simulation output
% 'test_data.dat' : filename to convert data to dat
% returns:
% 'test_data.dat': data converted to MDF format
% simulation model call; assume logsout variable in the workspace
dataStream = varargin{1};
filename=varargin{2};
if isa(dataStream, 'Simulink.SimulationData.Dataset')
rawTSData = classSimDataset(dataStream);
writeDatFile(rawTSData, filename, strcat(pwd,'\'));
else
disp('ERROR: Pass Simulation dataset values only')
end
end
end
function writeDatFile(rawStructure, FileName, PathName)
%% pass raw structure to preprocessing
dataStruct = classStruct(rawStructure);
try
dataTable = struct2table(dataStruct);
catch Error
disp(' ')
disp(' *** ERROR IN MAT FILE *** ');
disp(Error.message);
disp(' --> Check MAT file, all signals must have same length');
return
end
%% Writing to a file
if strcmpi(FileName(end-2:end), 'dat')
fileoutname = FileName;
else
fileoutname = strcat(FileName(1:end-4),'_expMDF.dat');
end
disp(' ');disp(['Writing data to dat file -- "' fileoutname '"']) ;
fileoutname = strcat(PathName,fileoutname);
expMDF(dataTable, fileoutname);
disp(' ');
disp(['Formatted data written to ',fileoutname]);
disp(repmat(char('-'), 1, 50));
disp(' ');
end
%% converts timeseries to structure
function dout = classStruct(din)
dout =struct;
names = fieldnames(din);
for n = 1:length(names)
data_inside = eval(strcat('din.',names{n}));
if isa(data_inside, 'timeseries')
if ~isfield(dout,'time')
dout.time = single(data_inside.Time);
end
varout = strcat('dout.',names{n});
eval([ varout '= single(data_inside.Data);']);
elseif isstruct(data_inside)
d = classStruct(data_inside);
name_d = fieldnames(d);
for nd = 1:length(name_d)
varout = strcat('dout.',name_d{nd});
varval = eval(strcat('d.',name_d{nd}));
eval([ varout '= varval;']);
end
elseif isa(data_inside, 'Simulink.SimulationData.Dataset')
dset = classSimDataset(data_inside);
d = classStruct(dset);
name_d = fieldnames(d);
for nd = 1:length(name_d)
varout = strcat('dout.',name_d{nd});
varval = eval(strcat('d.',name_d{nd}));
eval([ varout '= varval;']);
end
elseif isfloat(data_inside)
if ~isfield(dout,'time')
dout.time = single([0:1:length(data_inside)-1]');
end
varout = strcat('dout.',names{n});
eval([ varout '= single(data_inside);']);
end
end
end
%% converts Simulation Dataset to structure-timeseries
function allSignals = classSimDataset(dataStream)
% todo check if data is fixed step or variable step
% todo check isnan or isinf
% for fixed or variable step, timestamp should be the same
% 1: extract all the signals from logsout
allSignals = struct;
for var = 1:numElements(dataStream)
dataSignal = dataStream.getElement(var);
% check if signal value type is timeseries (i.e. signals or mux)
if isobject(dataSignal.Values)
allSignals = UpdateSignalsList(allSignals, dataSignal);
elseif isstruct(dataSignal.Values) % it must be a bus type signal
fnames = fieldnames(dataSignal.Values);
tempSignal = dataSignal;
for i=1:length(fnames)
eval(['tempSignal.Values = dataSignal.Values.' fnames{i} ';']);
tempSignal.Name = [dataSignal.Name '_' tempSignal.Values.Name];
tempSignal.Values.Name = tempSignal.Name;
allSignals = UpdateSignalsList(allSignals, tempSignal);
end
else % unknown type
% todo
end
end
% 2: get the common timestamp for all the signals
commonTime = [];
signalNames = fieldnames(allSignals);
for i=1:length(signalNames)
tempTS = eval(['allSignals.' signalNames{i}]);
if tempTS.TimeInfo.Length > length(commonTime)
commonTime = tempTS.Time;
end
end
% first element the common timestamp is more than 2s, then set warning
if isempty(commonTime(1) > 2)
warning('No Uniform TimeVector Found: Try logging atleast one signal without the enable/tigger/function subsystem');
end
% 3: fix the non-uniform signals
helptext = true;
promptinput = true;
for i=1:length(signalNames)
tempTS = eval(['allSignals.' signalNames{i}]);
if (tempTS.TimeInfo.Length ~= length(commonTime))
% display one time help text
if (helptext)
helptext = false;
fprintf('\n');
disp('---------------------------------------------------------------------------');
fprintf('Some signals are enable/function/trigger subsystem signals and have missing values,\nchoose one of the option below for respective signals - \n');
fprintf('\t "z" - fill with zeros (default)\n')
fprintf('\t "h" - hold last sample value \n')
fprintf('\t "i" - interpolate in between\n')
fprintf('\t "za" - fill with zeros and use this option for rest of the signals\n')
fprintf('\t "ha" - hold last sample values and use this option for rest of the signals\n')
fprintf('\t "ia" - interpolate in between and use this option for rest of the signals\n')
disp('---------------------------------------------------------------------------');
fprintf('\n');
end
% prompt for fill type, default zero
if (promptinput)
commandwindow;
reply = input([tempTS.Name ' - z/h/i/za/ha/ia [z]:'],'s');
% any other input default to zero
if (isempty(reply) ||...
isempty(cell2mat(strfind({'z','h','i','za','ha','ia'}, lower(reply)))))
reply = 'z';
end
% use same option for rest of the signals
if length(reply)>1
promptinput = false;
end
end
% signal processing
[~, idx] = intersect(commonTime, tempTS.Time, 'stable');
newData = zeros(size(commonTime));
if strcmpi(reply(1),'z')
% fill missing values with zeros
newData(idx) = tempTS.Data;
if ~promptinput
fprintf([tempTS.Name ': zero fill\n']);
end
elseif strcmpi(reply(1),'h')
% hold last samples
newData(idx) = tempTS.Data - [0;tempTS.Data(1:end-1)];
newData = cumsum(newData);
if ~promptinput
fprintf([tempTS.Name ': hold last value\n']);
end
elseif strcmpi(reply(1),'i')
% interpolate missing values
if (tempTS.TimeInfo.Length > 2)
newData = interp1(tempTS.Time, tempTS.Data, commonTime, 'linear','extrap');
if ~promptinput
fprintf([tempTS.Name ': interpolate in between\n']);
end
else
fprintf('\n');
fprintf(['"' tempTS.Name '" - signal has less than 3 samples to interpolate, defaulting to zero fill\n']);
newData(idx) = tempTS.Data;
end
end
newTS = timeseries(newData, commonTime, 'name', tempTS.Name);
eval(['allSignals.' tempTS.Name ' = newTS;']);
end
end
end
function allSignals = UpdateSignalsList(allSignals, varSignal)
% check vectors vs signal
if (size(varSignal.Values.Data, 2) == 1) % only signal
% fix time to round off to 5 digits
varSignal.Values.Time = round(varSignal.Values.Time*1e5)/1e5;
eval(['allSignals.' varSignal.Name ' = varSignal.Values;']);
else % vector
tempTS = varSignal.Values;
% fix time to round off to 5 digits
tempTS.Time = round(tempTS.Time*1e5)/1e5;
for i = 1:size(varSignal.Values.Data, 2)
tempTS.Data = varSignal.Values.Data(:,i);
tempTS.Name = [varSignal.Values.Name '_ls_' num2str(i-1) '_rs_'];
eval(['allSignals.' tempTS.Name ' = tempTS;']);
end
end
end
|
github
|
jdonley/CoherenceBasedSourceCounter-master
|
tightPlots.m
|
.m
|
CoherenceBasedSourceCounter-master/tightPlots.m
| 7,369 |
utf_8
|
c971688a6827a46fd28cfc0c4b759ec9
|
% Copyright (c) 2015, Theodoros Michelis
% Copyright (c) 2016, Pekka Kumpulainen
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
function ha = tightPlots(Nh, Nw, w, AR, gap, marg_h, marg_w, units)
% Theodoros Michelis, 15 February 2015
% TUDelft, Aerospace Engineering, Aerodynamics
% [email protected]
%
% -------------------------------------------------------------------------
% D E S C R I P T I O N:
% tightPlots is a function that allows making single plots or subplots with
% controlled size and margins. The desired (page) width, aspect ratio and
% margins must be input, with which the appropriate height is calculated.
%
% This workflow allows for all figures to maintain font formatting when
% they are inserted into a document/publication. Adjust the width to match
% the document page width and fix the font size. Narrow plots can then be
% created by setting wide side margins.
%
% The function additionally creates a bounding box equal to the figure size
% on the screen. As a result, what is seen on the monitor can be printed in
% both raster (.png) and vector (.eps, .pdf) formats with the same result.
%
% tightPlots has been influenced by the "tight_subplot" function of
% Pekka Kumpulainen, hence, parts of the code and parameter names were kept
% the same.
%
% Thanks for using tightPlots!!!
%
% I N P U T:
% ha = tightPlots(Nh, Nw, w, AR, gap, marg_h, marg_w, units)
% Nh: Number of axes in the vertical direction
% Nw: Number of axes in the horizontal direction
% w: Figure width in appropriate units (see units)
% AR: [w h] Axis aspect ratio
% gap: [gap] Gap between axes in appropriate units
% or [gap_h gap_w] for different gaps in height and width
% marg_h: [mh] Bottom and top margins in appropriate units
% or [lower upper] for different lower and upper margins
% marg_w: [mw] Left and right margind in appropriate units
% or [left right] for different left and right margins
% units: Centimeters, inches, points or pixels. The function is not
% intended to work with normalised units.
%
% I M P O R T A N T:
% All dimensions are converted into 'points' within the function. This is
% particularly necessary when the input unit is 'pixels', which cannot be
% defined on paper! It is also necessary for versions of MATLAB 2014b and
% above as the rendering settings have been changed. Thus, when printing in
% raster formats, the resolution is controlled through the dpi setting
% while saving (see examples further down).
%
% S A V I N G F I G U R E:
% In order to save the figure use the print command as shown in the
% examples below. The '-loose' option ensures that the figure bounding box
% is not clipped while exporting to a vector format. For MATLAB versions of
% 2014b and above, do not forget to set the renderer to '-painters' as the
% default has been switched to '-opengl'.
%
% E X A M P L E 1:
% ha = tightPlots(2, 2, 15, [2 1], [0.4 0.4], [0.6 0.7], [0.8 0.3], 'centimeters');
% f = [1 5 10 15]; x = 0:0.05:10;
% for i = 1:length(f)
% y = sin(f(i) * x);
% axes(ha(i)); plot(x, y)
% end
% set(ha(1:4), 'fontname', 'Times', 'fontsize', 10)
% set(ha(1:2), 'xticklabel', '');
% set([ha(2) ha(4)], 'yticklabel', '');
% axes(ha(1)); title('Title 1');
% axes(ha(2)); title('Title 2');
%
% print(gcf, 'Example1.png', '-dpng', '-r200', '-opengl');
% print(gcf, 'Example1.eps', '-depsc2', '-painters', '-loose');
% print(gcf, 'Example1.pdf', '-dpdf', '-painters', '-loose');
%
% E X A M P L E 2:
% ha = tightPlots(1, 2, 15, [1 1], 0.25, 0.25, 0.25, 'centimeters');
% f = [1 5]; x = 0:0.05:10;
% for i = 1:length(f)
% y = sin(f(i) * x);
% axes(ha(i)); plot(x, y)
% end
% set(ha(1:2), 'XtickLabel', '', 'YtickLabel', '')
%
% print(gcf, 'Example2.png', '-dpng', '-r200', '-opengl');
% print(gcf, 'Example2.eps', '-depsc2', '-painters', '-loose');
% print(gcf, 'Example2.pdf', '-dpdf', '-painters', '-loose');
% -------------------------------------------------------------------------
% Default values if no input
if nargin<3; w = 15; end
if nargin<4; AR = [2 1]; end
if nargin<5 || isempty(gap); gap = 0.8; end
if nargin<6 || isempty(marg_h); marg_h = [ 0.8 0.4 ]; end
if nargin<7 || isempty(marg_w); marg_w = [ 0.8 0.4 ]; end
if nargin<8; units = 'centimeters'; end
if numel(gap)==1; gap = [gap gap]; end
if numel(marg_w)==1; marg_w = [marg_w marg_w]; end
if numel(marg_h)==1; marg_h = [marg_h marg_h]; end
% Ensure appropriate unit input
if strcmp(units, 'centimeters') + strcmp(units, 'inch') + ...
strcmp(units, 'points') + strcmp(units, 'pixels') == 0;
error('Units must be centimeters ''inch'' ''points'' or ''pixels''');
end
% Unit conversion to points
if strcmp(units, 'centimeters') == 1;
con = 72/2.54;
elseif strcmp(units, 'inch') == 1
con = 72;
elseif strcmp(units, 'pixels') == 1
con = 0.75;
else
con = 1;
end
units = 'points';
w = w * con;
gap = gap * con;
marg_h = marg_h * con;
marg_w = marg_w * con;
% Calculation of axis width and height
axw = (w-sum(marg_w)-(Nw-1)*gap(2))/Nw;
axh = AR(2)/AR(1)*axw;
% Calculation of figure height
h = Nh*axh + (Nh-1)*gap(1) + sum(marg_h);
% Obtain screen dimensions to place figure in the centre
set(0, 'units', units);
screensize = get(0, 'screensize');
figSize = [ screensize(3)/2 - w/2 screensize(4)/2 - h/2 w h];
% Set the same figure dimensions on screen and paper.
set(gcf, 'Units', units, 'Resize', 'off')
set(gcf, 'Position', figSize)
set(gcf, 'PaperUnits', units, 'PaperSize', [w h])
set(gcf, 'PaperPositionMode', 'manual', 'PaperPosition', [0 0 w h])
% Build axes in figure space
py = h-marg_h(2)-axh;
ha = zeros(Nh*Nw,1);
ii = 0;
for ih = 1:Nh
px = marg_w(1);
for ix = 1:Nw
ii = ii+1;
ha(ii) = axes;
set(gca, 'Units', units, 'Position', [px py axw axh])
set(gca, 'XTickLabel', '', 'YTickLabel', '')
px = px+axw+gap(2);
end
py = py-axh-gap(1);
end
end
|
github
|
jdonley/CoherenceBasedSourceCounter-master
|
ConcatTIMITtalkers.m
|
.m
|
CoherenceBasedSourceCounter-master/ConcatTIMITtalkers.m
| 1,980 |
utf_8
|
ce8fcd183ce3c36ac796127ee7cfc666
|
function ConcatTIMITtalkers( TIMITdir, OutDir )
%CONCATTIMITTALKERS Concatenates all the talkers from the TIMIT corpus into individual speech files
%
% Syntax: CONCATTIMITTALKERS( TIMITDIR, OUTDIR )
%
% Inputs:
% TIMITdir - The directory of the TIMIT corpus
% OutDir - The output directory to save the concatenated speech files
%
% Example:
% ConcatTIMITtalkers('C:\TIMIT_90\', '.\')
%
% See also: getAllFiles, audioread, audiowrite
% Author: Jacob Donley
% University of Wollongong
% Email: [email protected]
% Copyright: Jacob Donley 2017
% Date: 21 April 2017
% Version: 1.0 (21 April 2017)
%
% Original Source URL: https://github.com/JacobD10/SoundZone_Tools
% TIMIT corpus URL: https://catalog.ldc.upenn.edu/ldc93s1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AudioExt = '.wav';
% Get all files in the TIMIT corpus
AllFiles = getAllFiles( TIMITdir );
% Limit the list to only the WAV files and sort them
WAVfiles = sort( AllFiles( contains(lower(AllFiles), AudioExt) ) );
% Reduce to just the unique talker directories
TalkerDirs = unique(cellfun(@fileparts,WAVfiles,'un',0));
% Create the output directories if they don't exist
OutDirs = strrep(TalkerDirs, TIMITdir, [fileparts(OutDir) filesep]);
cellfun(@newDir,cellfun(@fileparts,OutDirs,'un',0),'un',0);
% Partition the speech into the separate talkers
PartDirs = cellfun(@(tds) WAVfiles(contains(WAVfiles,tds)),TalkerDirs,'un',0);
% Concatenate all the speech files
[Y, FS] = cellfun(@ReadCatAudio, PartDirs, 'un', 0);
% Write all of the concatenated speech files to disk
arrayfun(@(i) audiowrite([OutDirs{i} AudioExt], Y{i}, FS{i}), 1:numel(Y));
end
function [y, Fs] = ReadCatAudio( filenames )
[Y, FS] = cellfun(@audioread,filenames,'un',0);
if ~isequal(FS{:}),error('Different sampling frequencies detected.');end
Y_=cellfun(@transpose,Y,'un',0);
y = [Y_{:}]; Fs = FS{1};
end
function newDir(dir)
narginchk(1,1);
if ~exist(dir,'dir'), mkdir(dir); end
end
|
github
|
jdonley/CoherenceBasedSourceCounter-master
|
getAllFiles.m
|
.m
|
CoherenceBasedSourceCounter-master/getAllFiles.m
| 2,166 |
utf_8
|
095e332c0376d673b760c33621f51f0a
|
function fileList = getAllFiles(dirPath)
%GETALLFILES Retrieves a list of all files within a directory
%
% Syntax: fileList = getAllFiles(dirName)
%
% Inputs:
% dirPath - The relative or full path of the directory to recursivley
% search.
%
% Outputs:
% fileList - A cell array list of the full path for each file found.
%
% Example:
% searchPath = [matlabroot filesep 'examples'];
% files = getAllFiles(searchPath);
%
%
% Author: Jacob Donley
% University of Wollongong
% Email: [email protected]
% Date: 1 September 2017
% Version: 1.0 (1 September 2017)
% Version: 0.1 (22 January 2015)
%
% Original Source URL: https://github.com/JacobD10/SoundZone_Tools
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Just incase this function tries to recursively call within a class folder we
% should create a function handle for this function to use
inf = dbstack('-completenames');
funcName = inf.name;
funcPath = inf.file;
classDirs = getClassDirs(funcPath);
thisFuncHandle = str2func([classDirs funcName]);
% Find the files
dirData = dir(dirPath); % Get the data for the current directory
dirIndex = [dirData.isdir]; % Find the index for directories
fileList = {dirData(~dirIndex).name}'; %'# Get a list of the files
if ~isempty(fileList)
fileList = cellfun(@(x) fullfile(dirPath,x),... % Prepend path to files
fileList,'UniformOutput',false);
end
subDirs = {dirData(dirIndex).name}; % Get a list of the subdirectories
validIndex = ~ismember(subDirs,{'.','..'}); % Find index of subdirectories that are not '.' or '..'
for iDir = find(validIndex) % Loop over valid subdirectories
nextDir = fullfile(dirPath,subDirs{iDir}); % Get the subdirectory path
fileList = [fileList; thisFuncHandle(nextDir)]; % Recursively call getAllFiles
end
end
function classDirs = getClassDirs(FullPath)
classDirs = '';
classes = strfind(FullPath,'+');
for c = 1:length(classes)
clas = FullPath(classes(c):end);
stp = strfind(clas,filesep);
classDirs = [classDirs clas(2:stp(1)-1) '.'];
end
end
|
github
|
jdonley/CoherenceBasedSourceCounter-master
|
getReceivedSignals.m
|
.m
|
CoherenceBasedSourceCounter-master/getReceivedSignals.m
| 9,673 |
utf_8
|
43b664b560e6a36f06fe1f1229d536f4
|
function [MicSigs, Fs, SrcLocs, NodeLocs] = ...
getReceivedSignals( ...
Nsrcs, Nnodes, ...
RoomSz, TableSz, SeatSz, TableLoc, ...
InterSrcDist, IntraNodeDist, ...
SynthParams )
%GETRECEIVEDSIGNALS Synthesises received signals at microphones in a meeting scenario
%
% Syntax: [MicSigs, Fs, SrcLocs, NodeLocs] = ...
% getReceivedSignals( ...
% Nsrcs, Nnodes, ...
% RoomSz, TableSz, SeatSz, TableLoc, ...
% InterSrcDist, IntraNodeDist, ...
% SynthParams )
%
% Inputs:
% Nsrcs - Number of speech sources (talkers)
% Nnodes - Number of dual microphone nodes
% RoomSz - Room dimensions [x, y, z] in metres
% TableSz - Size of the meeting table [x, y, z] in metres
% SeatSz - Seating area of the talkers [x, y, z] in metres
% TableLoc - Centre location of the table [x, y, z] in metres
% InterSrcDist - Minimum distance between talkers in metres
% IntraNodeDist - Distance between microphones of a node in metres
% SynthParams - The structure of synthesis parameters:
% |-> .SpeechDir - Directory to read speech samples from.
% | (default: 'Speech_Files\')
% |-> .c - Sound velocity (metres/ssecond).
% | (default: 343)
% |-> .res - Resolution in samples per metre.
% | (default: 100)
% |-> .SNR - Signal to noise ration (for awgn function).
% | (default: 40)
% |-> .ReverbTime - Reverberation time in seconds.
% | (default: 0.2)
% |-> .RIRlength - RIR length in seconds.
% | (default: 1.0)
% |-> .ForceNodeLoc - Forces node location (do not define for
% | randomised location).
% | (default: <randomised location>)
% '-> .Verbose - False suppresses output to command window.
% (true or false, default: true)
%
% Outputs:
% MicSigs - The synthesised micrphone signals
% Fs - Sampling frequency of MicSigs
% SrcLocs - The locations of the talkers
% NodeLocs - The location of the nodes
%
% Example:
% Nsources = 4; % Number of sources
% Nnodes = 1; % Number of nodes
% L = [4 7 3]; % Room dimensions [x y z] (m)
% T = [1 3 0]; % Table Size [x y z] (m)
% S = T + [0.5 0.5 0]*2; % Seating Area [x y z] (m)
% Tloc = L/2; % Table Location [x y z] (m)
% InterSrcDist = 0.5; % Minimum distance between talkers (metres)
% IntraNodeDist = 0.1; % Distance between microhpones (metres)
% [x_2ch, fs] = getReceivedSignals( ...
% Nsources, Nnodes, ...
% L, T, S, Tloc, ...
% InterSrcDist, IntraNodeDist );
%
% Reference:
% This function makes use of the Room Impulse Response Generator by
% Emanuel A.P. Habets: https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
% Note: When SynthParams.Verbose is false the copyright notice is not
% printed to the command window. The copyright notice for the included
% rir_generator C++ code is:
% Room Impulse Response Generator (Version 2.1.20141124) by Emanuel Habets
% Copyright (C) 2003-2014 E.A.P. Habets, The Netherlands.
%
% See also: cbsc, rir_generator, getAllFiles
% Author: Jacob Donley
% University of Wollongong
% Email: [email protected]
% Copyright: Jacob Donley 2017
% Date: 8 September 2017
% Version: 1.1 (8 September 2017)
% Version: 1.0 (1 September 2017)
% Version: 0.1 (21 April 2017)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin < 9
SynthParams = struct;
end
SynthParams = setSPDefaults(SynthParams);
%% First run attempt rir_generator compilation from current directory
compileRIRGenerator;
%%
rng('shuffle');
Nmics = 2;
res = SynthParams.res;
IntraNodeDists = repmat(IntraNodeDist,Nnodes,1);
NodeAngleRand = rand(Nnodes,1)*2*pi;
AvailableNodePos = zeros(RoomSz(1)*res,RoomSz(2)*res);
AvailableSrcPos = zeros(RoomSz(1)*res,RoomSz(2)*res);
xvec = round((TableLoc(1)-RoomSz(1)/2)*res+1:(TableLoc(1)+RoomSz(1)/2)*res);
yvec = round((TableLoc(2)-RoomSz(2)/2)*res+1:(TableLoc(2)+RoomSz(2)/2)*res);
Txvec = round((TableLoc(1)-TableSz(1)/2)*res+1:(TableLoc(1)+TableSz(1)/2)*res);
Tyvec = round((TableLoc(2)-TableSz(2)/2)*res+1:(TableLoc(2)+TableSz(2)/2)*res);
Sxvec = round((TableLoc(1)-SeatSz(1)/2)*res+1:(TableLoc(1)+SeatSz(1)/2)*res);
Syvec = round((TableLoc(2)-SeatSz(2)/2)*res+1:(TableLoc(2)+SeatSz(2)/2)*res);
[xx,yy]=meshgrid(xvec/res,yvec/res);
[Txx,Tyy]=meshgrid(Txvec/res,Tyvec/res);
AvailableNodePos( Txvec, Tyvec) = 1;
AvailableSrcPos ( Sxvec, Syvec) = 1;
AvailableSrcPos ( Txvec, Tyvec) = 0;
ChosenTInd = randi(sum(AvailableNodePos(:)),Nnodes,1);
ChosenTXLoc = Txx(ChosenTInd);
ChosenTYLoc = Tyy(ChosenTInd);
ChosenSXLoc=[];ChosenSYLoc=[];
for s = 1:Nsrcs
% ChosenSInd = randi(sum(AvailableSrcPos(:)), Nsrcs,1);
ChosenSInd = randi(sum(AvailableSrcPos(:)), 1,1);
xx_=xx.'.*AvailableSrcPos;xx_=xx_(xx_~=0);
yy_=yy.'.*AvailableSrcPos;yy_=yy_(yy_~=0);
ChosenSXLoc(s) = xx_(ChosenSInd);
ChosenSYLoc(s) = yy_(ChosenSInd);
msk = (xx.'-ChosenSXLoc(s)).^2 + (yy.'-ChosenSYLoc(s)).^2 > InterSrcDist^2;
AvailableSrcPos = AvailableSrcPos .* msk;
end
% Source Locations
SrcLocs = [ChosenSXLoc.', ChosenSYLoc.', repmat(TableLoc(3),Nsrcs,1)];
% Node Locations
NodeLocs = [ChosenTXLoc, ChosenTYLoc, repmat(TableLoc(3),Nnodes,1)];
if isfield(SynthParams, 'ForceNodeLoc') && ~isempty(SynthParams.ForceNodeLoc)
NodeLocs = SynthParams.ForceNodeLoc;
end
% Channel Locations
[xOffset,yOffset] = pol2cart([NodeAngleRand NodeAngleRand], [-1*IntraNodeDists 1*IntraNodeDists]/2 );
ChannelLocs = NodeLocs(reshape([1:Nnodes; 1:Nnodes],1,[]),:) + ...
[reshape(xOffset.',[],1),reshape(yOffset.',[],1),zeros(Nnodes*2,1)];
%% Prepare source signals
files = getAllFiles( SynthParams.SpeechDir );
files(randperm(numel(files),numel(files)-Nsrcs))=[];
SrcSigs=[];
SrcTimePos=0;
for file = 1:numel(files)
[s, Fs] = audioread( files{file} );
SrcTimePos(file+1) = numel(s)+SrcTimePos(file);
SrcSigs = [SrcSigs, ...
circshift([ s.'; ...
repmat(zeros(1,size(s,1)),numel(files)-1,1);],file-1) ];
end
SrcSigs=SrcSigs.';
%%
slen = size(SrcSigs,1)+(SynthParams.RIRlength * Fs)-1;
MicSigs=zeros(slen,Nmics,Nnodes);
for node=1:Nnodes
for src = 1:Nsrcs
rirARGS = { ...
SynthParams.c, ...
Fs, ...
{ChannelLocs(node*2-1,:), ChannelLocs(node*2,:)}, ...
SrcLocs(src,:), ...
RoomSz, ...
SynthParams.ReverbTime, ...
SynthParams.RIRlength * Fs};
for mic = 1:Nmics
if SynthParams.Verbose
MicSigs(:,mic,node) = MicSigs(:,mic,node) ...
+ fconv( ...
SrcSigs(:,src), ...
rir_generator( ...
rirARGS{1:2}, rirARGS{3}{mic}, rirARGS{4:end}) );
else
evalc( [...
'MicSigs(:,mic,node) = MicSigs(:,mic,node)' ...
'+ fconv(' ...
'SrcSigs(:,src),' ...
'rir_generator(' ...
'rirARGS{1:2}, rirARGS{3}{mic}, rirARGS{4:end}) )' ...
] );
end
end
end
for mic = 1:Nmics
MicSigs(:,mic,node) = awgn( MicSigs(:,mic,node), SynthParams.SNR, 'measured' );
end
end
end
%--------------------------------------------------------------------------
function SP = setSPDefaults(SP) % Set the default Synthesis Parameters (SP)
if ~isfield(SP,'SpeechDir')
SP.SpeechDir = 'Speech_Files\'; % Directory to read speech samples from
end
if ~isfield(SP,'c')
SP.c = 343; % Sound velocity (m/s)
end
if ~isfield(SP,'res')
SP.res = 100; % Samples per metre
end
if ~isfield(SP,'SNR')
SP.SNR = 40; % AWGN at <SNR>dB
end
if ~isfield(SP,'ReverbTime')
SP.ReverbTime = 0.2; % seconds
end
if ~isfield(SP,'RIRlength')
SP.RIRlength = 1.0; % seconds
end
if ~isfield(SP,'Verbose')
SP.Verbose = true; % true or false
end
end
%--------------------------------------------------------------------------
function [y]=fconv(x, h)
%FCONV Fast Parallelised Convolution
% [y] = FCONV(x, h) convolves x and h in the frequency domain
%
% x = input vector
% h = input vector
%
% See also CONV
%
% Source URL: https://github.com/JacobD10/SoundZone_Tools
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x=x(:);
h=h(:);
Ly=size(x,1)+size(h,1)-1; %
Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2 that is > Ly
if isa(x, 'gpuArray')
Ly = gpuArray(Ly);
Ly2 = gpuArray(Ly2);
end
X=fft(x, Ly2); % Fast Fourier transform
H=fft(h, Ly2); % Fast Fourier transform
Y=X.*H; %
y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform
y=y(1:1:Ly,:); % Take just the first N elements
end
%--------------------------------------------------------------------------
function compileRIRGenerator
if exist('rir_generator') ~= 3 ... % If MEX file doesn't exist
&& exist('rir_generator.cpp', 'file') == 2 ... % and if C++ source exists
&& ~isempty(mex.getCompilerConfigurations('C++')) % and if C++ compiler exists
mex -setup C++
mex rir_generator.cpp
end
end
|
github
|
nurahmadi/BAKS-master
|
BAKS.m
|
.m
|
BAKS-master/BAKS.m
| 1,200 |
utf_8
|
46a40d3e76aaf2aa453b81a1e6f43b77
|
% Bayesian Adaptive Kernel Smoother (BAKS)
% BAKS is a method for estimating firing rate from spike train data that uses kernel smoothing technique
% with adaptive bandwidth determined using a Bayesian approach
% ---------------INPUT---------------
% - SpikeTimes : spike event times [nSpikes x 1]
% - Time : time at which the firing rate is estimated [nTime x 1]
% - a : shape parameter (alpha)
% - b : scale paramter (beta)
% ---------------INPUT---------------
% - h : adaptive bandwidth [nTime x 1]
% - FiringRate : estimated firing rate [nTime x 1]
% More information, please refer to "Estimation of neuronal firing rate using Bayesian adaptive kernel smoother (BAKS)"
function [FiringRate h] = BAKS(SpikeTimes,Time,a,b)
N = length(SpikeTimes);
sumnum = 0; sumdenum = 0;
for i=1:N
numerator = (((Time-SpikeTimes(i)).^2)./2 + 1./b).^(-a);
denumerator = (((Time-SpikeTimes(i)).^2)./2 + 1./b).^(-a-0.5);
sumnum = sumnum + numerator;
sumdenum = sumdenum + denumerator;
end
h = (gamma(a)/gamma(a+0.5)).*(sumnum./sumdenum);
FiringRate = zeros(length(Time),1);
for j=1:N
K = (1./(sqrt(2.*pi).*h)).*exp(-((Time-SpikeTimes(j)).^2)./(2.*h.^2));
FiringRate = FiringRate + K;
end
|
github
|
Kinpzz/deeplab-v2-master
|
classification_demo.m
|
.m
|
deeplab-v2-master/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
Kinpzz/deeplab-v2-master
|
MyVOCevalseg.m
|
.m
|
deeplab-v2-master/matlab/my_script/MyVOCevalseg.m
| 4,625 |
utf_8
|
128c24319d520c2576168d1cf17e068f
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id)
% image test set
[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
num_missing_img = 0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
if ~strcmp(clname, 'void')
class_count = class_count + 1;
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
real_class_count = 0;
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
denom = (gtj+resj-gtjresj);
if denom == 0
denom = 1;
end
accuracies(j)=100*gtjresj/denom;
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
if ~strcmp(clname, 'void')
real_class_count = real_class_count + 1;
else
if denom ~= 1
fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
end
end
if ~strcmp(clname, 'void')
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
avacc = sum(accuracies) / real_class_count;
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
Kinpzz/deeplab-v2-master
|
MyVOCevalsegBoundary.m
|
.m
|
deeplab-v2-master/matlab/my_script/MyVOCevalsegBoundary.m
| 4,415 |
utf_8
|
1b648714e61bafba7c08a8ce5824b105
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w)
% get structural element
st_w = 2*w + 1;
se = strel('square', st_w);
% image test set
fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset);
fid = fopen(fn, 'r');
gtids = textscan(fid, '%s');
gtids = gtids{1};
fclose(fid);
%[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
% dilate gt
binary_gt = gtim == 255;
dilate_gt = imdilate(binary_gt, se);
target_gt = dilate_gt & (gtim~=255);
%pixel locations to include in computation
locs = target_gt;
%locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
else
class_count = class_count + 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
accuracies(j)=100*gtjresj/(gtj+resj-gtjresj);
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
accuracies = accuracies(1:end);
avacc = mean(accuracies);
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
OneDirection9/MOT_with_Pose-master
|
crop_img.m
|
.m
|
MOT_with_Pose-master/tools/crop_img.m
| 1,660 |
utf_8
|
5775e63c5f8434d89c164026f1054b5f
|
function [ ] = crop_img( expidx )
%CROP_IMG Summary of this function goes here
% Detailed explanation goes here
p = bbox_exp_params(expidx);
train_annolist_file = p.trainGT;
test_annolist_file = p.testGT;
croped_det_dirs = p.cropedDetections;
matDetectionsDir = p.matDetectionsDir;
vidDir = p.vidDir;
crop(train_annolist_file, matDetectionsDir, vidDir, croped_det_dirs)
crop(test_annolist_file, matDetectionsDir, vidDir, croped_det_dirs)
end
function [] = crop(annolist_file, detections_dir, vidDir, save_dir)
load(annolist_file, 'annolist');
num_videos = size(annolist, 1);
for vidx = 1:num_videos
fprintf('%s. Cropping detections for %d/%d.\n', annolist_file, vidx, num_videos);
vinfo = annolist(vidx, :);
vname = vinfo.name;
video_dir = fullfile(vidDir, vname);
frames = dir([video_dir, '/*.jpg']);
mat_detection = fullfile(detections_dir, vname);
load(mat_detection, 'detections');
save_det_dir = fullfile(save_dir, vname);
if(exist(save_det_dir))
rmdir(save_det_dir, 's');
end
mkdir(save_det_dir);
num_det = size(detections.index, 1);
for didx = 1:num_det
fidx = detections.frameIndex(didx);
fr_name = frames(fidx).name;
fr_file = fullfile(video_dir, fr_name);
fr_img = imread(fr_file);
bbox = detections.unPos(didx, :); % x, y, w, h
fr_img = imcrop(fr_img, bbox);
save_file = fullfile(save_det_dir, [int2str(didx) '.jpg']);
imwrite(fr_img, save_file);
end
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
convert_kpt2challenge.m
|
.m
|
MOT_with_Pose-master/tools/convert_kpt2challenge.m
| 2,904 |
utf_8
|
bab8c2c51e43a092eedd7e3405d50435
|
function [ ] = convert_kpt2challenge( multicut_dir, anno_dir, save_dir, expidx )
%CONVERT_KTP2CHALLENGE Summary of this function goes here
% Detailed explanation goes here
clear;
clc;
if(nargin < 4)
multicut_dir = './data/tmp/';
anno_dir = './data/source_annotations/val/';
save_dir = './data/evaluate_result/';
mkdir_when_missing(save_dir);
expidx = 6;
end
annolists = dir([anno_dir '/*.mat']);
num_videos = size(annolists, 1);
for vidx = 1:num_videos
file_name = annolists(vidx).name;
fprintf('Processing %s (%d/%d).\n', file_name, vidx, num_videos);
anno_file = fullfile(anno_dir, file_name);
pred_name = ['prediction_' num2str(expidx) '_' file_name];
pred_file = fullfile(multicut_dir, pred_name);
assert(exist(pred_file, 'file') == 2, 'Prediction file: %s does not exists.', pred_file);
score_name = ['prediction_score_' num2str(expidx) '_' file_name];
score_file = fullfile(multicut_dir, score_name);
assert(exist(score_file, 'file') == 2, 'Score file: %s does not exists.', score_file);
load(anno_file, 'annolist');
load(pred_file, 'people_out');
load(score_file, 'score_out');
save_file = fullfile(save_dir, file_name);
num_frames = size(annolist, 2);
num_det_people = size(people_out, 1);
assert(num_det_people <= 100, 'Track id of %s larger than 100', pred_file);
pred = struct();
for fidx = 1:num_frames
pred(fidx).image.name = annolist(fidx).image.name;
pred(fidx).imgnum = fidx;
annorect = struct();
pcount = 1;
for pid = 1:num_det_people
kpts = people_out{pid, fidx};
scores = score_out{pid, fidx};
if(isempty(kpts))
continue;
end
is_nan = isnan(kpts);
is_valid = sum(is_nan, 2) == 0;
if(sum(is_valid, 1) == 0)
continue;
end
annorect(pcount).track_id = pid - 1;
num_kpts = size(kpts, 1);
kcount = 1;
points = struct();
for kid = 1:num_kpts
point = kpts(kid, :);
score = scores(kid, 1);
if sum(isnan(point), 2) == size(point, 2)
continue;
end
points(kcount).x = point(1);
points(kcount).y = point(2);
points(kcount).id = kid - 1;
points(kcount).score = score;
kcount = kcount + 1;
end
annorect(pcount).annopoints.point = points;
pcount = pcount + 1;
end
pred(fidx).annorect = annorect;
end
annolist = pred;
save(save_file, 'annolist');
end
end
function [ ] = mkdir_when_missing(dir)
if(exist(dir, 'dir') == 7)
return;
end
mkdir(dir);
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
crop_proposals.m
|
.m
|
MOT_with_Pose-master/tools/crop_proposals.m
| 1,622 |
utf_8
|
9a228af33fcf1c4b6494d399fbf30902
|
function [ ] = crop_proposals( expidx )
%CROP_PROPOSALS Summary of this function goes here
% Detailed explanation goes here
p = bbox_exp_params(expidx);
train_annolist_file = p.trainGT;
test_annolist_file = p.testGT;
croped_pro_dir = p.cropedProposals;
proposals_dir = p.detPreposals;
vidDir = p.vidDir;
dirs = dir(proposals_dir);
num_videos = size(dirs, 1);
for idx = 3:num_videos % skip ./ and ../
vname = dirs(idx).name;
p_dir = fullfile(proposals_dir, vname);
v_dir = fullfile(vidDir, vname);
proposals_per_frame = dir([p_dir, '/*.txt']);
num_frames = size(proposals_per_frame, 1);
for fidx = 1:num_frames
fprintf('Processing videos %d/%d. Frames: %d/%d\n', idx-2, num_videos-2, fidx, num_frames);
f_full_name = proposals_per_frame(fidx).name;
f_full_path = fullfile(p_dir, f_full_name);
[~, f_name, ~] = fileparts(f_full_path);
save_dir = fullfile(croped_pro_dir, vname, f_name);
if(exist(save_dir, 'dir'))
rmdir(save_dir, 's');
end
mkdir(save_dir);
[~, xs, ys, ws, hs, ~] = textread(f_full_path, '%s%f%f%f%f%f');
f_v_file = fullfile(v_dir, [f_name '.jpg']);
crop(xs, ys, ws, hs, save_dir, f_v_file);
end
end
end
function [] = crop(xs, ys, ws, hs, save_dir, f_v_file)
num_box_per_frame = size(xs, 1);
for idx = 1:num_box_per_frame
save_file = fullfile(save_dir, [num2str(idx) '.jpg']);
fr_img = imread(f_v_file);
p_img = imcrop(fr_img, [xs(idx), ys(idx), ws(idx), hs(idx)]);
imwrite(p_img, save_file);
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
regress_box_kpt_split.m
|
.m
|
MOT_with_Pose-master/tools/regress_box_kpt_split.m
| 1,012 |
utf_8
|
f85b0da9518550b6bb4bdaee69dbac7b
|
function [ box_matrix ] = regress_box_kpt_split( people )
%REGRESS_BOX_KPT_SPLIT Summary of this function goes here
% Detailed explanation goes here
if nargin < 1
load('/home/sensetime/warmer/PoseTrack/challenge/data/prediction_6_001735_mpii_relpath_5sec_testsub_1', 'people');
end
box_matrix = [];
if(isempty(people))
return;
end
box_matrix = cellfun(@regress_box_according_kpt, people, 'UniformOutput', false);
end
function [ box ] = regress_box_according_kpt( kpts )
box = [];
if(isempty(kpts))
return;
end
is_nan = isnan(kpts);
is_valid = sum(is_nan, 2) == 0;
valid_kpts = kpts(is_valid, :);
box = calculate_box( valid_kpts );
end
function [ box ] = calculate_box( points )
box = struct();
xs = points(:, 1);
ys = points(:, 2);
% calculate x, y, w, h
minx = min(xs);
miny = min(ys);
maxx = max(xs);
maxy = max(ys);
box.x = minx;
box.y = miny;
box.w = maxx - minx;
box.h = maxy - miny;
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
bbox_tracking.m
|
.m
|
MOT_with_Pose-master/lib/bbox_tracking.m
| 12,792 |
utf_8
|
eafa2b4fa883ac6de5c201e1f98c031e
|
function bbox_tracking( expidx,firstidx,nVideos,bRecompute,bVis )
%PT_TRACK_JOINT Summary of this function goes here
% Detailed explanation goes here
fprintf('bbox_tracking()\n');
if (ischar(expidx))
expidx = str2num(expidx);
end
if (ischar(firstidx))
firstidx = str2num(firstidx);
end
if (nargin < 2)
firstidx = 1;
end
if (nargin < 3)
nVideos = 1;
elseif ischar(nVideos)
nVideos = str2num(nVideos);
end
if (nargin < 4)
bRecompute = false;
end
if (nargin < 5)
bVis = false;
end
fprintf('expidx: %d\n',expidx);
fprintf('firstidx: %d\n',firstidx);
fprintf('nVideos: %d\n',nVideos);
p = bbox_exp_params(expidx);
load(p.testGT,'annolist');
ptMulticutDir = p.ptMulticutDir;
mkdir_if_missing(ptMulticutDir);
fprintf('multicutDir: %s\n',ptMulticutDir);
visDir = fullfile(ptMulticutDir, 'vis');
mkdir_if_missing(visDir);
ptDetectionDir = p.matDetectionsDir;
mkdir_if_missing(ptDetectionDir);
fprintf('detectionDir: %s\n',ptDetectionDir);
num_videos = length(annolist);
lastidx = firstidx + nVideos - 1;
if (lastidx > num_videos)
lastidx = num_videos;
end
if (firstidx > lastidx)
return;
end
% computation parameters
% stride = p.stride;
% half_stride = stride/2;
% locref_scale_mul = p.locref_scale;
% nextreg = isfield(p, 'nextreg') && p.nextreg;
unLab_cls = 'uint64';
max_sizet_val = intmax(unLab_cls);
ptPairwiseDir = p.ptPairwiseDir;
cidx = p.cidx;
% pad_orig = p.([video_set 'Pad']);
fprintf('Loading temporal model from %s\n', ptPairwiseDir);
usedCidx = p.usedCidx;
modelName = [ptPairwiseDir '/temporal_model_with_dist_cidx_' num2str(usedCidx)];
temporal_model = struct;
m = load(modelName,'temporal_model');
temporal_model.diff = struct;
temporal_model.diff.log_reg = m.temporal_model.log_reg;
temporal_model.diff.training_opts = m.temporal_model.training_opts;
stagewise = false;
if isfield(p, 'cidxs_full')
cidxs_full = p.cidxs_full;
else
cidxs_full = p.cidxs;
end
if stagewise
num_stages = length(p.cidxs_stages);
else
num_stages = 1;
end
if isfield(p, 'dets_per_part_per_stage')
dets_per_part = p.dets_per_part_per_stage;
elseif isfield(p, 'dets_per_part')
dets_per_part = p.dets_per_part;
if stagewise
dets_per_part = repmat(dets_per_part, num_stages);
end
end
use_graph_subset = isfield(p, 'graph_subset');
if use_graph_subset
load(p.graph_subset);
end
% pairwise = load_pairwise_data(p);
if isfield(p, 'nms_dist')
nms_dist = p.nms_dist;
else
nms_dist = 1.5;
end
% hist_pairwise = isfield(p, 'histogram_pairwise') && p.histogram_pairwise;
% pwIdxsAllrel1 = build_pairwise_pairs(cidxs_full);
fprintf('recompute %d\n', bRecompute);
idxStart = 1;
for vIdx = firstidx:lastidx
fprintf('vididx: %d\n',vIdx);
ann = annolist(vIdx);
vid_name = ann.name;
vid_dir = fullfile(p.vidDir, vid_name);
num_frames = ann.num_frames;
fn = dir([vid_dir,'/*.jpg']);
frame_pairs = bbox_build_frame_pairs(num_frames, p.maxFrameDist);
corres_dir = fullfile(p.correspondences, vid_name);
flows_dir = fullfile(p.ptFlowDir, vid_name);
reid_file = fullfile(p.reid, vid_name);
detPerFrame = zeros(num_frames,1);
detections = [];
cidxs = cidxs_full;
% fname = [ptMulticutDir '/' vid_name '_cidx_' num2str(cidxs(1)) '_' num2str(cidxs(end))];
detFname = [p.matDetectionsDir '/' vid_name];
predFname = [ptMulticutDir '/prediction_' num2str(expidx) '_' vid_name '.mat'];
[pathstr,~,~] = fileparts(predFname);
mkdir_if_missing(pathstr);
if(exist(predFname, 'file'))
fprintf('Prediction already exist at: %s\n', predFname);
% bbox_vis_people(expidx, vIdx);
% continue;
end
if(exist([detFname,'.mat'], 'file') && ~bRecompute)
load(detFname, 'detections');
else
fprintf('Need detections first.\n');
assert(false);
end
temporalWindows = bbox_generate_frame_windows(num_frames, p.temporalWinSize);
for w = 1:size(temporalWindows, 1)
stIdx = temporalWindows(w, 1);
endIdx = temporalWindows(w, 2);
idxs = ismember(detections.frameIndex, stIdx:endIdx) > 0;
wDetections = MultiScaleDetections.slice(detections, idxs);
wDetections.unLab = zeros(size(wDetections.unProb,1),2,unLab_cls);
wDetections.unLab(:,:) = max_sizet_val;
origin_detections = copy_detections(wDetections);
if(w > 1)
fprintf('Window %d/%d: Previous: %d \t New: %d\n', w, size(temporalWindows, 1), size(prev_dets.unProb,1), size(wDetections.unProb,1));
wDetections = MultiScaleDetections.merge(prev_dets, wDetections);
origin_detections = MultiScaleDetections.merge(pre_origin_detections, origin_detections);
end
pre_origin_detections = origin_detections;
origin_index = pre_origin_detections.index;
wDetections.index = [1:size(wDetections.unProb,1)]';
fprintf('Number of Detections: %d\n', size(wDetections.unProb,1));
pwProbTemporal = [];
fprintf('Computing temporal pairwise probabilities. Part = %d\n',cidx);
pwProb = bbox_compute_temporal_pairwise_probabilities(p, wDetections, temporal_model, cidx, fn, corres_dir, flows_dir, origin_index, reid_file);
pwProbTemporal = [pwProbTemporal;pwProb];
% compute spatial probability.
fprintf('Computing spatial pairwise probabilities. Part = %d\n', cidx);
pwProbSpatial = cell(num_frames,1);
spatial_det_rel = cell(num_frames,1);
for fIdx = 1:endIdx
bbox_idxs = wDetections.frameIndex == fIdx;
fDetections = MultiScaleDetections.slice(wDetections, bbox_idxs);
if (size(fDetections.unProb,1) == 0)
continue;
end
num_dets = size(fDetections.unPos, 1);
spatial_det_rel{fIdx} = bbox_build_frame_pairs(num_dets, num_dets);
spatial_pairs = spatial_det_rel{fIdx};
num_pairs = size(spatial_pairs, 1);
detPairIdx = [fDetections.index(spatial_pairs(:, 1)), fDetections.index(spatial_pairs(:, 2))];
pwProbSpatial{fIdx,1} = ones(num_pairs, 1) * fIdx;
pwProbSpatial{fIdx,1} = cat(2, pwProbSpatial{fIdx, 1}, detPairIdx );
pwProbSpatial{fIdx,1} = cat(2, pwProbSpatial{fIdx, 1}, zeros(num_pairs, 1)); % part class 1
pwProbSpatial{fIdx,1} = cat(2, pwProbSpatial{fIdx, 1}, zeros(num_pairs, 1)); % part class 2
pwProbSpatial{fIdx,1} = cat(2, pwProbSpatial{fIdx, 1}, zeros(num_pairs, 1)); % probility
end
pwProbSpatial = cell2mat(pwProbSpatial);
% prepare problem for solver
numDetections = size(wDetections.unProb, 1);
pwProbSolverTemp = pwProbTemporal(:,3:6);
pwProbSolverTemp(:,1:2) = pwProbSolverTemp(:,1:2) - min(wDetections.index);
% idxs = pwProbSolverTemp(:,3) < 0.6;
pwProbSolverTemp(:,3) = pwProbSolverTemp(:,3);
pwProbSolverSpat = pwProbSpatial(:, 2:6);
pwProbSolverSpat(:,1:2) = pwProbSolverSpat(:,1:2) - min(wDetections.index);
problemFname = [ptMulticutDir '/pt-problem-' vid_name '-' num2str(stIdx) '-' num2str(endIdx) '-exp-' num2str(expidx) '.h5'];
solutionFname = [ptMulticutDir '/pt-solution-' vid_name '-' num2str(stIdx) '-' num2str(endIdx) '-exp-' num2str(expidx) '.h5'];
[pathstr,~,~] = fileparts(problemFname);
mkdir_if_missing(pathstr);
[pathstr,~,~] = fileparts(solutionFname);
mkdir_if_missing(pathstr);
fprintf('save problem\n');
% write problem
dataName = 'detections-info';
write_mode = 'overwrite';
marray_save(problemFname, dataName, numDetections, write_mode);
dataName = 'part-class-probabilities';
write_mode = 'append';
marray_save(problemFname, dataName, cat(2, wDetections.partClass, wDetections.unProb), write_mode);
dataName = 'join-probabilities-temporal';
write_mode = 'append';
marray_save(problemFname, dataName, pwProbSolverTemp, write_mode);
% dataName = 'join-probabilities-spatial';
% write_mode = 'append';
% marray_save(problemFname, dataName, pwProbSolverSpat, write_mode);
dataName = 'coordinates-vertices';
marray_save(problemFname, dataName, cat(2, wDetections.frameIndex, wDetections.unPos), write_mode);
singMultSwitch = 'm';
if (isfield(p,'single_people_solver') && p.single_people_solver)
singMultSwitch = 's';
end
solver = p.ptSolver;
time_limit = p.time_limit;
cmd = [solver ' ' problemFname ' ' solutionFname ' ' singMultSwitch ' ' num2str(time_limit)];
if(size(temporalWindows, 1) > 1 && w > 1)
initSolutionFname = fullfile(ptMulticutDir, ['pt-init-solution-' vid_name '-' num2str(stIdx) '-' num2str(endIdx) '-exp-' num2str(expidx) '.h5']);
dataName = 'detection-parts-and-clusters';
marray_save(initSolutionFname, dataName, wDetections.unLab, 'overwrite');
cmd = [cmd ' ' initSolutionFname];
end
fprintf('calling pt-solver: %s\n', cmd);
[~,hostname] = unix('echo $HOSTNAME');
fprintf('hostname: %s',hostname);
pre_cmd = ['export GRB_LICENSE_FILE=' p.gurobi_license_file];
tic
setenv('LD_LIBRARY_PATH', '');
s = unix([pre_cmd '; ' cmd]);
toc
if (s > 0)
error('solver error');
end
assert(s == 0);
% clean up
unix(['rm ' problemFname]);
% load solution
dataName = 'part-tracks';
unLab = marray_load(solutionFname, dataName);
% TODO: prune Detections.
out_dets = copy_detections(wDetections);
% [unLab, idxs] = pruneDetections(unLab, wDetections, cidxs, 0);
% out_dets = MultiScaleDetections.slice(out_dets, idxs);
out_dets.unLab = unLab;
prev_dets = copy_detections(out_dets);
% people = bbox_compute_final_posetrack_predictions( out_dets );
people = out_dets;
people.origin_index = origin_index;
save(predFname, 'people');
end
% visualise predictions
% bbox_vis_people(expidx, vIdx);
end
fprintf('done\n');
if (isdeployed)
close all;
end
end
function [outClusters] = pruneClusters(clusters, frameIndexes, labels, minLen)
outClusters = [];
for c = 1:length(clusters)
cl = clusters(c);
idxs = labels == cl;
frameLen = length(unique(frameIndexes(idxs)));
if(frameLen > minLen)
outClusters = [outClusters;cl];
end
end
end
function [unLab_new, idxs] = pruneDetections(unLab, detections, cidxs, minLen)
clusters = unique(unLab(:, 2));
clusters = pruneClusters(clusters, detections.frameIndex, unLab(:,2), minLen);
idxs = [];
stIdx = min(detections.frameIndex);
endIdx = max(detections.frameIndex);
for fIdx = stIdx:endIdx
%get the detections in current frame and suppress those with status 0
cfIdxs = find(bitand(detections.frameIndex == fIdx, logical(unLab(:,1))));
for j = 1:length(clusters)
cl = clusters(j);
cDets = unLab(cfIdxs, 2) == cl;
labels = detections.partClass(cfIdxs);
for k = 1:length(cidxs)
cidx = cidxs(k);
bundle = find(cDets & labels == cidx);
if isempty(bundle)
continue;
end
probs = detections.unProb(cfIdxs(bundle));
[~, I] = max(probs);
idxs = [idxs; cfIdxs(bundle(I))];
end
end
end
idxs = sort(idxs);
unLab_new = unLab(idxs, :);
for j = 1:length(clusters)
cl = clusters(j);
I = unLab_new == cl;
unLab_new(I) = j-1;
end
%idxs
end
function dets = copy_detections(dets_src)
dets = struct();
dets.unPos = dets_src.unPos;
% dets.unPos_sm = dets_src.unPos_sm;
dets.unProb = dets_src.unProb;
% dets.locationRefine = dets_src.locationRefine;
% dets.nextReg = dets_src.nextReg;
% dets.unProbNoThresh = dets_src.unProbNoThresh;
if isfield(dets_src, 'unLab')
dets.unLab = dets_src.unLab;
end
if isfield(dets_src, 'scale')
dets.scale = dets_src.scale;
end
if isfield(dets_src, 'frameIndex')
dets.frameIndex = dets_src.frameIndex;
end
if isfield(dets_src, 'index')
dets.index = dets_src.index;
end
if isfield(dets_src, 'partClass')
dets.partClass = dets_src.partClass;
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
convert_txt_with_keypoints.m
|
.m
|
MOT_with_Pose-master/lib/convert_txt_with_keypoints.m
| 2,596 |
utf_8
|
9bbacc470ac470c95a61499b74f670f4
|
function [ ] = convert_txt_with_keypoints(p)
% convert txt files under source_dir to mat and saved in save_dir.
%
if nargin < 1
keypoints_dir = './data/keypoints_txt/';
save_keypoint_dir = './data/keypoints/';
save_map_dir = './data/cross_map/';
testGT = './data/annolist/test/annolist';
score_thresh = 0;
end
load(testGT, 'annolist');
% % empty save_dir
% if exist(save_dir, 'dir')
% fprintf('`%s` already exists, delete.\n', save_dir);
% rmdir(save_dir, 's');
% end
mkdir_if_missing(save_keypoint_dir);
mkdir_if_missing(save_map_dir);
num_videos = size(annolist, 1);
for i = 1:num_videos
vinfo = annolist(i, :);
vname = vinfo.name;
num_frames = vinfo.num_frames;
file_name = [ vname '.txt' ];
full_file = fullfile(keypoints_dir, file_name);
assert(exist(full_file, 'file') ~= 0);
fprintf('Converting detection txt `%s` to mat. %d/%d\n', vname, i, num_videos);
[box_idxs, frame_idxs, xs, ys, scores] = textread(full_file, '%f%f%f%f%f');
% convert `full_file` to mat.
% fields: unPos, unProb, frameIndex, index, scale, partClass.
detections = struct();
[valid_indexs, classes] = generate_valid_index(scores, score_thresh);
num_keypoints = sum(valid_indexs);
detections.unPos = [xs(valid_indexs == 1), ys(valid_indexs == 1)];
scores = min(1 - 1e-15, scores);
scores = max(1e-15, scores);
detections.unProb = scores(valid_indexs == 1);
detections.frameIndex = frame_idxs(valid_indexs == 1);
detections.cand = [1:num_keypoints]';
detections.scale = ones(num_keypoints, 1);
detections.partClass = classes;
% save as the mat.
file_name = deblank(file_name);
splits = regexp(file_name, '\.', 'split'); % 000001.txt_result.txt => [000001, txt_result, txt]
save_name = splits{1};
full_save = fullfile(save_keypoint_dir, save_name);
save(full_save, 'detections');
cross_map = struct();
cross_map = [1:num_keypoints]';
cross_map = [cross_map, box_idxs(valid_indexs == 1)];
full_map_save = fullfile(save_map_dir, save_name);
save(full_map_save, 'cross_map');
end
fprintf('Convert keypoints .txt to .mat, done.\n');
end
function [ valid_idxs, classes ] = generate_valid_index( scores, score_thresh )
num_keypoints = size(scores, 1);
valid_idxs = ones(num_keypoints, 1);
classes = [];
for id = 1:num_keypoints
cid = rem(id - 1, 15) + 1;
if scores(id) < score_thresh
valid_idxs(id) = 0;
continue;
end
classes = [classes; cid];
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
convert_txt2mat.m
|
.m
|
MOT_with_Pose-master/lib/convert_txt2mat.m
| 4,576 |
utf_8
|
23f68edd3b17fc7a6a7a38885d6a1b51
|
function [ ] = convert_txt2mat(p, IOU_thresh)
% convert txt files under source_dir to mat and saved in save_dir.
%
if nargin < 2
IOU_thresh = 0.3;
end
source_dir = p.txtDetectionsDir;
save_dir = p.matDetectionsDir;
testGT = p.testGT;
load(testGT, 'annolist');
% % empty save_dir
% if exist(save_dir, 'dir')
% fprintf('`%s` already exists, delete.\n', save_dir);
% rmdir(save_dir, 's');
% end
mkdir_if_missing(save_dir);
num_videos = size(annolist, 1);
for i = 1:num_videos
vinfo = annolist(i, :);
vname = vinfo.name;
num_frames = vinfo.num_frames;
file_name = [ vname '.txt' ];
full_file = fullfile(source_dir, file_name);
assert(exist(full_file, 'file') ~= 0);
fprintf('Converting detection txt `%s` to mat. %d/%d\n', vname, i, num_videos);
[names, xs, ys, ws, hs, scores] = textread(full_file, '%f%f%f%f%f%f');
if false && ~isempty(vinfo.ignore_regions)
num_det = size(names, 1);
not_ignore = ones(1, num_det); % 1: not ignore.
% read for img size.
img_size = vinfo.img_size;
% calculate pair.
[q1, q2] = meshgrid(1:img_size(1), 1:img_size(2));
idxsAllrel = [ q1(:) q2(:)];
for fidx = 1:num_frames
ignore_regions = vinfo.ignore_regions{fidx};
if isempty(ignore_regions)
continue;
end
% full_name = sprintf('%05d', fidx);
% frame_file = fullfile(vid_dir, [full_name '.jpg']);
% img = imread(frame_file);
% imshow(img);
frame_mask = generateFrameMask(img_size(1:2), ignore_regions, idxsAllrel);
% calculate sub matrix for each detection
det_idxs = find(names == fidx);
det_xs = xs(det_idxs);
det_ys = ys(det_idxs);
det_ws = ws(det_idxs);
det_hs = hs(det_idxs);
minxs = max(1, floor(det_xs));
minys = max(1, floor(det_ys));
maxxs = max(1, floor(det_xs + det_ws));
maxys = max(1, floor(det_ys + det_hs));
num_dets = size(det_idxs, 1);
for id = 1:num_dets
sub_matrix = frame_mask(minys(id):maxys(id), minxs(id):maxxs(id));
num_pixels = sum(sum(sub_matrix));
iou = num_pixels / (det_ws(id) * det_hs(id));
if iou > IOU_thresh
not_ignore(det_idxs(id)) = 0;
end
end
end
names = names(not_ignore == 1);
xs = xs(not_ignore == 1);
ys = ys(not_ignore == 1);
ws = ws(not_ignore == 1);
hs = hs(not_ignore == 1);
scores = scores(not_ignore == 1);
end
% convert `full_file` to mat.
% fields: unPos, unProb, frameIndex, index, scale, partClass.
detections = struct();
detections.unPos = [xs, ys, ws, hs];
scores = min(1 - 1e-15, scores);
scores = max(1e-15, scores);
detections.unProb = scores;
detections.frameIndex = names;
detections.index = [1:size(names,1)]';
detections.cand = [1:size(names,1)]';
detections.scale = ones(size(names,1), 1);
detections.partClass = zeros(size(names,1), 1);
% save as the mat.
file_name = deblank(file_name);
splits = regexp(file_name, '\.', 'split'); % 000001.txt_result.txt => [000001, txt_result, txt]
save_name = splits{1};
full_save = fullfile(save_dir, save_name);
save(full_save, 'detections');
end
fprintf('Convert detection .txt to .mat, done.\n');
end
function [ frame_mask ] = generateFrameMask(img_size, ignore_regions, idxsAllrel)
all_points = [];
num_ignore = size(ignore_regions, 2);
for ig_idx = 1:num_ignore
if isfield(ignore_regions(ig_idx), 'point')
num_points = length(ignore_regions(ig_idx).point);
ir_points = get_points(ignore_regions(ig_idx), num_points);
idx = ~isnan(ir_points(:,1));
ir_points = ir_points(idx,:);
all_points = [all_points; ir_points; NaN, NaN];
end
end
ins = inpolygon(idxsAllrel(:,2), idxsAllrel(:, 1), all_points(:, 1), all_points(:, 2));
frame_mask = reshape_C(ins, [img_size, 1]);
end
function points = get_points(annopoints, num_points)
points = NaN(num_points, 2);
if(isfield(annopoints, 'point'))
ids = [annopoints.point.id]+1;
x = [annopoints.point.x]';
y = [annopoints.point.y]';
points(ids,:) = [x, y];
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
convert_pred2challenge.m
|
.m
|
MOT_with_Pose-master/lib/convert_pred2challenge.m
| 4,559 |
utf_8
|
79f5bce15af086a26b951c295fc35bcc
|
function [ ] = convert_pred2challenge( pred_dir, gt_dir, save_dir, expidx )
%CONVERT_PRED2CHALLENGE Summary of this function goes here
% Detailed explanation goes here
clear;
clc;
if nargin < 1
% pred_dir = '/home/sensetime/warmer/PoseTrack/challenge/data/mot-multicut/';
pred_dir = '/home/sensetime/warmer/PoseTrack/challenge/data/prune_tmp';
gt_dir = '/home/sensetime/warmer/PoseTrack/challenge/data/source_annotations/val/';
save_dir = '/home/sensetime/warmer/PoseTrack/challenge/data/predictions/';
mkdir_if_missing(save_dir);
cross_map_dir = '/home/sensetime/warmer/PoseTrack/challenge/data/cross_map';
keypoints_dir = '/home/sensetime/warmer/PoseTrack/challenge/data/keypoints';
score_thresh = 0.02;
expidx = 2;
end
if isnumeric(expidx)
expidx = num2str(expidx);
end
prefix = ['prediction_' expidx '_'];
anno_GT = dir([gt_dir '/*.mat']);
num_videos = size(anno_GT, 1);
for vidx = 1:num_videos
file_name = anno_GT(vidx).name;
fprintf('Converting prediction for %s to challenge %d/%d.\n', file_name, vidx, num_videos);
gt_file = fullfile(gt_dir, file_name);
pred_file = fullfile(pred_dir, [prefix file_name]);
assert( exist(pred_file, 'file') == 2, 'Prediction for %s does not exists.', file_name );
keypoints_file = fullfile(keypoints_dir, file_name);
assert(exist(keypoints_file, 'file') == 2, 'Keypoints for %s does not exists.', file_name);
cross_map_file = fullfile(cross_map_dir, file_name);
assert(exist(cross_map_file, 'file') == 2, 'Cross map file for %s does not exists.', file_name);
save_file = fullfile(save_dir, file_name);
load(pred_file, 'people');
load(gt_file, 'annolist');
load(keypoints_file, 'detections');
load(cross_map_file, 'cross_map');
num_frames = size(annolist, 2);
valid_idxs = people.unLab(:, 1) == 1;
valid_track_ids = people.unLab(valid_idxs, 2);
uni_track_ids = unique(valid_track_ids);
pred = struct();
for fidx = 1:num_frames
pred(fidx).image.name = annolist(fidx).image.name;
pred(fidx).imgnum = fidx;
annorect = struct();
wpeople = slice(people, fidx);
unlab = wpeople.unLab;
num_clusters = size(unlab, 1);
count = 1;
for cid = 1:num_clusters
if(unlab(cid, 1) == 0)
continue;
end
box_id = wpeople.origin_index(cid);
origin_track_id = unlab(cid, 2);
id = find(uni_track_ids == origin_track_id) - 1; % start from 0
annorect(count).track_id = id;
annorect(count).box_id = box_id;
annorect(count).box_pos = wpeople.unPos(cid, :);
annorect(count).box_score = wpeople.unProb(cid, :);
key_idxs = cross_map(:, 2) == box_id;
key = cross_map(key_idxs, :);
points = generate_points(detections, key, fidx, score_thresh);
if(isempty(points))
continue;
end
annorect(count).annopoints.point = points;
count = count + 1;
end
pred(fidx).annorect = annorect;
end
annolist = pred;
save(save_file, 'annolist');
end
end
function [ wpeople ] = slice( people, fidx )
cur_frame_index = people.frameIndex == fidx;
wpeople.unPos = people.unPos(cur_frame_index, :);
wpeople.unProb = people.unProb(cur_frame_index, :);
wpeople.unLab = people.unLab(cur_frame_index, :);
wpeople.frameIndex = people.frameIndex(cur_frame_index, :);
wpeople.index = people.index(cur_frame_index, :);
wpeople.origin_index = people.origin_index(cur_frame_index, :);
end
function [ points ] = generate_points(detections, key_idxs, fidx, score_thresh)
points = [];
frame_idxs = detections.frameIndex(key_idxs(:, 1), :);
frame_id = unique(frame_idxs);
assert(size(frame_id, 1) == 1, 'keypoints not in the same frame.');
assert(frame_id == fidx, 'frame id not match.');
pos = detections.unPos(key_idxs(:, 1), :);
probs =detections.unProb(key_idxs(:, 1), :);
k_id = 0;
count = 1;
num_kpts = size(pos, 1);
for kid = 1:num_kpts
prob = probs(kid, :);
if(prob < score_thresh)
continue;
end
points(count).x = pos(kid, 1);
points(count).y = pos(kid, 2);
points(count).id = k_id;
points(count).score = prob;
count = count + 1;
k_id = k_id + 1;
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
generate_gttxt.m
|
.m
|
MOT_with_Pose-master/lib/generate_gttxt.m
| 4,386 |
utf_8
|
acf5c5b5550af414f769140ef17ab842
|
function [] = generate_gttxt( annolist_file, save_dir, usage, IOU_thresh )
if nargin < 4
IOU_thresh = 0.3;
end
load(annolist_file);
% if exist(save_dir, 'dir')
% rmdir(save_dir, 's');
% end
mkdir_if_missing(save_dir);
num_videos = size(annolist, 1);
for vidx = 1:num_videos
fprintf('Generating gt.txt. `%s: %s`. Videos: %d/%d\n', usage, annolist(vidx).name, vidx, num_videos);
% video information.
vinfo = annolist(vidx,:);
vname = vinfo.name;
num_frames = vinfo.num_frames;
num_persons = vinfo.num_persons;
fbbox = vinfo.bbox;
% generate img1 , det.
mkdir_if_missing(fullfile(save_dir, vname, 'det'));
mkdir_if_missing(fullfile(save_dir, vname, 'img1'));
% save in the gt/gt.txt
save_result_dir = fullfile(save_dir, vname, 'gt');
mkdir_if_missing(save_result_dir);
save_file = fullfile(save_result_dir, 'gt.txt');
fsave = fopen(save_file, 'w');
% read for img size.
img_size = vinfo.img_size;
% calculate pair.
[q1, q2] = meshgrid(1:img_size(1), 1:img_size(2));
idxsAllrel = [ q1(:) q2(:)];
frame_mask = [];
for fidx = 1:num_frames
if isfield(vinfo, 'ignore_regions') && ~isempty(vinfo.ignore_regions)
ignore_regions = vinfo.ignore_regions{fidx};
if ~isempty(ignore_regions)
frame_mask = generateFrameMask(img_size(1:2), ignore_regions, idxsAllrel);
end
end
for pidx = 1:num_persons
% fprintf('Generating gt.txt. `%s: %s`. person/frame: %d/%d\n', usage, annolist(vidx).name, pidx, fidx);
% skip empty entry
pbox = fbbox{pidx, fidx};
if(isempty(pbox))
continue;
end
if ~isempty(frame_mask)
x = max(1, floor(pbox.x));
y = max(1, floor(pbox.y));
w = floor(pbox.w);
h = floor(pbox.h);
maxy = min(img_size(1), y + h);
maxx = min(img_size(1), x + w);
sub_matrix = frame_mask(y : maxy, x : maxx);
num_pixels = sum(sum(sub_matrix));
iou = num_pixels / (w * h);
if iou > IOU_thresh
continue;
end
end
% frameid, objid, x, y, w, h, flag, X, Y, Z
fprintf(fsave, [num2str(fidx), ',']); % frame id
fprintf(fsave, [num2str(pidx), ',']); % object id
fprintf(fsave, [num2str(pbox.x), ',']); % x
fprintf(fsave, [num2str(pbox.y), ',']); % y
fprintf(fsave, [num2str(pbox.w), ',']); % w
fprintf(fsave, [num2str(pbox.h), ',']); % h
fprintf(fsave, [num2str(1), ',']); % flag: 1(evaluate), 0(not evaluate)
fprintf(fsave, [num2str(1), ',']); % X
fprintf(fsave, [num2str(1), ',']); % Y
fprintf(fsave, [num2str(1), ',']); % Z
fprintf(fsave, '\n');
end
end
fclose(fsave);
end
fprintf('Generate gt.txt done.\n');
end
function [ frame_mask ] = generateFrameMask(img_size, ignore_regions, idxsAllrel)
all_points = [];
num_ignore = size(ignore_regions, 2);
for ig_idx = 1:num_ignore
if isfield(ignore_regions(ig_idx), 'point')
num_points = length(ignore_regions(ig_idx).point);
ir_points = get_points(ignore_regions(ig_idx), num_points);
idx = ~isnan(ir_points(:,1));
ir_points = ir_points(idx,:);
all_points = [all_points; ir_points; NaN, NaN];
end
end
ins = inpolygon(idxsAllrel(:,2), idxsAllrel(:, 1), all_points(:, 1), all_points(:, 2));
frame_mask = reshape_C(ins, [img_size, 1]);
end
function points = get_points(annopoints, num_points)
points = NaN(num_points, 2);
if(isfield(annopoints, 'point'))
ids = [annopoints.point.id]+1;
x = [annopoints.point.x]';
y = [annopoints.point.y]';
points(ids,:) = [x, y];
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
convert_prediction2txt.m
|
.m
|
MOT_with_Pose-master/lib/convert_prediction2txt.m
| 3,445 |
utf_8
|
66c87f27d8cb6106e6d0dedb8e7e0842
|
function [ ] = convert_prediction2txt( expidx, save_dir, annolist_test, prediction_dir, pruneThresh, curSaveDir )
%GENERATE_MOT_DET Summary of this function goes here
% Detailed explanation goes here
if(nargin<5)
pruneThresh = 5;
end
load(annolist_test, 'annolist');
num_videos = size(annolist, 1);
mkdir_if_missing(curSaveDir);
for vidx = 1:num_videos
fprintf('Converting prediction to txt: `%s`. Videos: %d/%d\n', annolist(vidx,:).name, vidx, num_videos);
% video name
vinfo = annolist(vidx, :);
vname = vinfo.name;
num_frames = vinfo.num_frames;
save_file = fullfile(save_dir, [vname '.txt']);
fsave = fopen(save_file, 'w');
prediction_save_file = fullfile(curSaveDir, ['/prediction_' num2str(expidx) '_' vname]);
% prediction result.
pred_file = fullfile(prediction_dir, ['/prediction_' num2str(expidx) '_' vname]);
load(pred_file, 'people');
unLab = people.unLab;
clusters = unique(unLab(:, 2));
num_cluster = size(clusters, 1);
for cidx = 1:num_cluster
% cluster number
cluster = clusters(cidx);
% index for detections belong to cluster
indexs = people.index(unLab(:,2) == cluster);
num_ = size(indexs, 1);
if(num_ <= pruneThresh)
people.unLab(indexs, 1) = 0;
continue;
end
cpeople = MultiScaleDetections.slice(people, indexs);
people = MergeWithinFrame(people, cpeople, num_frames);
frame_indexs = people.frameIndex(indexs);
for i = 1:num_
index = indexs(i);
isValid = people.unLab(index, 1);
if isValid == 0
continue;
end
frame_index = frame_indexs(i);
if vinfo.is_labeled(frame_index) == 0
continue;
end
bbox = people.unPos(index, :);
fidx = people.frameIndex(index, :);
fprintf(fsave, [num2str(fidx), ',']); % frame index
fprintf(fsave, [num2str(cluster), ',']); % object id
fprintf(fsave, [num2str(bbox(1)), ',']); % x
fprintf(fsave, [num2str(bbox(2)), ',']); % y
fprintf(fsave, [num2str(bbox(3)), ',']); % w
fprintf(fsave, [num2str(bbox(4)), ',']); % h
fprintf(fsave, [num2str(-1), ',']); % flag
fprintf(fsave, [num2str(-1), ',']); % X
fprintf(fsave, [num2str(-1), ',']); % Y
fprintf(fsave, [num2str(-1), ',']); % Z
fprintf(fsave, '\n');
end
end
save(prediction_save_file, 'people');
end
end
function [ people ] = MergeWithinFrame(people, cpeople, num_frames)
for fidx = 1:num_frames
idxs = find(cpeople.frameIndex == fidx);
num_dets = size(idxs, 1);
if num_dets > 1
indexs = cpeople.index(idxs);
people.unLab(indexs, 1) = 0;
probs = cpeople.unProb(idxs);
[~, max_idx] = max(probs);
idd = idxs(max_idx);
index = cpeople.index(idd);
people.unLab(index, 1) = 1;
end
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
regress_bbox_gt.m
|
.m
|
MOT_with_Pose-master/lib/regress_bbox_gt.m
| 5,491 |
utf_8
|
2283bb4ba62c750d328979656b4b0868
|
function [ ] = regress_bbox_gt( annolist_file, videos_dir, save_dir, scale, isSave, isShow, useIncludeUnvisiable )
%CALCULATE_BBOX_GT Summary of this function goes here
% Detailed explanation goes here
fprintf('Calculating ground truth for `%s`\n', annolist_file);
load(annolist_file, 'annolist');
[file_path, file_name, ~] = fileparts(annolist_file);
if isSave
if exist(save_dir, 'dir')
rmdir(save_dir, 's');
end
mkdir(save_dir);
end
num_videos = size(annolist, 1);
for vidx = 1:num_videos
fprintf('Regressing bbox: %s(%d/%d).\n', annolist(vidx, :).name, vidx, num_videos);
% video information
vinfo = annolist(vidx, :);
vname = vinfo.name;
num_frames = vinfo.num_frames;
num_persons = vinfo.num_persons;
video_dir = fullfile(videos_dir, vname);
fimages = dir([video_dir,'/*.jpg']);
if isSave
video_save_dir = fullfile(save_dir, vname);
if exist(video_save_dir, 'dir')
rmdir(video_save_dir, 's');
end
mkdir_if_missing(video_save_dir);
end
% add field: bbox.
vinfo.bbox = cell( num_persons, num_frames);
for fidx = 1:num_frames
empty = 0;
for pidx = 1:num_persons
if isempty(vinfo.annopoints{pidx, fidx})
empty = empty + 1;
end
end
if empty == num_persons
continue;
end
% fprintf('Regressing bbox: %s(%d/%d). Frames: %d/%d\n', annolist(vidx, :).name, vidx, num_videos, fidx, num_frames);
image_name = fimages(fidx).name;
fimage = fullfile(video_dir, image_name);
img = imread(fimage);
img_size = size(img);
if ~isfield(annolist(vidx), 'img_size') || isempty(annolist(vidx).img_size)
annolist(vidx).img_size = img_size(1:2);
else
is_matches = annolist(vidx).img_size == img_size(1:2);
assert(sum(is_matches) == 2, 'Size of images in same video is not same.\n');
end
if(isShow)
figure(1), imshow(img);
hold on;
end
[by, bx, ~] = size(img);
for pidx = 1:num_persons
% fprintf('Regressing bbox: %s(%d/%d). Frames: %d/%d Persons: %d/%d\n', annolist(vidx, :).name, vidx, num_videos, fidx, num_frames, pidx, num_persons);
fp_info = vinfo.annopoints{pidx, fidx};
% the pidx-th person in the fidx-th frames.
if(isempty(fp_info))
continue;
end
if(~isfield(fp_info, 'point'))
continue;
end
bbox_gt = calculate_bbox(fp_info, scale, bx, by, useIncludeUnvisiable);
vinfo.bbox{pidx, fidx} = bbox_gt;
if(isempty(bbox_gt))
continue;
end
if(isShow)
rectangle('Position', [bbox_gt.x, bbox_gt.y, bbox_gt.w, bbox_gt.h], 'EdgeColor', 'r', 'LineWidth', 3);
end
end
% save figures.
if(isSave)
save_name = fullfile(video_save_dir, image_name);
% print(gcf, '-r300', '-djpeg', save_name);
frame = getframe;
im = frame2im(frame);
imwrite(im, save_name, 'jpg');
end
if(isShow)
pause(0.001);
end
end
if(isShow)
close all;
end
annolist(vidx).bbox = vinfo.bbox;
end
% save in the mat.
save(annolist_file, 'annolist');
end
function [ bbox ] = calculate_bbox( annopoint, scale, bx, by, useIncludeUnvisiable )
points = annopoint.point;
bbox = struct();
if(useIncludeUnvisiable)
visible_idx = [1:size(points, 2)];
else
visible_idx = find(cellfun(@(x)isequal(x,1), {points.is_visible}));
end
if(isempty(visible_idx))
bbox = [];
return
end
xs = [points(visible_idx).x];
ys = [points(visible_idx).y];
% calculate x, y, w, h
minx = min(xs);
miny = min(ys);
maxx = max(xs);
maxy = max(ys);
w = maxx - minx;
h = maxy - miny;
% calculate coordinate of center.
half_w = w/2;
half_h = h/2;
x_center = minx + half_w;
y_center = miny + half_h;
half_w_s = half_w * scale;
half_h_s = half_h * scale;
top_left_x = x_center - half_w_s;
top_left_y = y_center - half_h_s;
bottom_right_x = x_center + half_w_s;
bottom_right_y = y_center + half_h_s;
[top_left_x, top_left_y] = constraintNotOutBoundary(top_left_x, top_left_y, bx, by);
[bottom_right_x, bottom_right_y] = constraintNotOutBoundary(bottom_right_x, bottom_right_y, bx, by);
bbox.x = top_left_x;
bbox.y = top_left_y;
bbox.w = bottom_right_x - top_left_x;
bbox.h = bottom_right_y - top_left_y;
end
function [x, y] = constraintNotOutBoundary( x, y, bx, by)
if(x < 0)
x = 0;
elseif(x > bx)
x = bx;
end
if(y < 0)
y = 0;
elseif(y > by)
y = by;
end
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
evaluateTracking.m
|
.m
|
MOT_with_Pose-master/devkit/evaluateTracking.m
| 8,672 |
utf_8
|
2fe649d71269eeff6f69054aaee0e771
|
function allMets=evaluateTracking( seqmap, resDir, dataDir, vidDir, isShowFP )
%% evaluate CLEAR MOT and other metrics
% concatenate ALL sequences and evaluate as one!
%
% SETUP:
%
% define directories for tracking results...
% resDir = fullfile('res','data',filesep);
% ... and the actual sequences
% dataDir = fullfile('..','data','2DMOT2015','train',filesep);
%
%
addpath(genpath('.'));
% read sequence map
% seqmapFile=fullfile('seqmaps',seqmap);
seqmapFile = seqmap;
allSeq = parseSequences(seqmapFile);
fprintf('Sequences: \n');
disp(allSeq')
% concat gtInfo
gtInfo=[];
gtInfo.X=[];
allFgt=zeros(1,length(allSeq));
% Find out the length of each sequence
% and concatenate ground truth
gtInfoSingle=[];
seqCnt=0;
for s=allSeq
seqCnt=seqCnt+1;
seqName = char(s);
seqFolder= [dataDir,seqName,filesep];
assert(isdir(seqFolder),'Sequence folder %s missing',seqFolder);
gtFile = fullfile(dataDir,seqName,'gt','gt.txt');
gtI = convertTXTToStruct(gtFile,seqFolder);
[Fgt,Ngt] = size(gtInfo.X);
[FgtI,NgtI] = size(gtI.Xi);
newFgt = Fgt+1:Fgt+FgtI;
newNgt = Ngt+1:Ngt+NgtI;
gtInfo.Xi(newFgt,newNgt) = gtI.Xi;
gtInfo.Yi(newFgt,newNgt) = gtI.Yi;
gtInfo.W(newFgt,newNgt) = gtI.W;
gtInfo.H(newFgt,newNgt) = gtI.H;
gtInfoSingle(seqCnt).wc=0;
% fill in world coordinates if they exist
if isfield(gtI,'Xgp') && isfield(gtI,'Ygp')
gtInfo.Xgp(newFgt,newNgt) = gtI.Xgp;
gtInfo.Ygp(newFgt,newNgt) = gtI.Ygp;
gtInfoSingle(seqCnt).wc=1;
end
% check if bounding boxes available in solution
imCoord=1;
if all(gtI.Xi(find(gtI.Xi(:)))==-1)
imCoord=0;
end
gtInfo.X=gtInfo.Xi;gtInfo.Y=gtInfo.Yi;
if ~imCoord
gtInfo.X=gtInfo.Xgp;gtInfo.Y=gtInfo.Ygp;
end
allFgt(seqCnt) = FgtI;
gtInfoSingle(seqCnt).gtInfo=gtI;
end
gtInfo.frameNums=1:size(gtInfo.Xi,1);
allMets=[];
mcnt=1;
fprintf('Evaluating ... \n');
clear stInfo
stInfo.Xi=[];
evalMethod=1;
% flags for entire benchmark
% if one seq missing, evaluation impossible
eval2D=1;
eval3D=1;
seqCnt=0;
% iterate over each sequence
for s=allSeq
seqCnt=seqCnt+1;
seqName = char(s);
fprintf('\t%d... %s\n',seqCnt, seqName);
% if a result is missing, we cannot evaluate this tracker
resFile = fullfile(resDir,[seqName '.txt']);
if ~exist(resFile,'file')
fprintf('WARNING: result for %s not available!\n',seqName);
eval2D=0;
eval3D=0;
continue;
end
% if MOT16, preprocess (clean)
if ~isempty(strfind(seqName,'MOT16'))
resFile = preprocessResult(resFile, seqName, dataDir);
end
stI = convertTXTToStruct(resFile);
% stI.Xi(find(stI.Xi(:)))=-1;
% check if bounding boxes available in solution
imCoord=1;
if all(stI.Xi(find(stI.Xi(:)))==-1)
imCoord=0;
end
worldCoordST=0; % state
if isfield(stI,'Xgp') && isfield(stI,'Ygp')
worldCoordST=1;
end
[FI,NI] = size(stI.Xi);
% if stateInfo shorter, pad with zeros
% GT and result must be equal length
if FI<allFgt(seqCnt)
missingFrames = FI+1:allFgt(seqCnt);
stI.Xi(missingFrames,:)=0;
stI.Yi(missingFrames,:)=0;
stI.W(missingFrames,:)=0;
stI.H(missingFrames,:)=0;
stI.X(missingFrames,:)=0;
stI.Y(missingFrames,:)=0;
if worldCoordST
stI.Xgp(missingFrames,:)=0; stI.Ygp(missingFrames,:)=0;
end
[FI,NI] = size(stI.Xi);
% if stateInfo longer, crop
elseif FI>allFgt(seqCnt)
stI.Xi=stI.Xi(1:allFgt(seqCnt),:);
stI.Yi=stI.Yi(1:allFgt(seqCnt),:);
stI.W=stI.W(1:allFgt(seqCnt),:);
stI.H=stI.H(1:allFgt(seqCnt),:);
stI.X=stI.X(1:allFgt(seqCnt),:);
stI.Y=stI.Y(1:allFgt(seqCnt),:);
if worldCoordST
stI.Xgp=stI.Xgp(1:allFgt(seqCnt),:); stI.Ygp=stI.Ygp(1:allFgt(seqCnt),:);
end
[FI,NI] = size(stI.Xi);
end
% get result for one sequence only
[mets, mInf, additionalInfo ]=CLEAR_MOT_HUN(gtInfoSingle(seqCnt).gtInfo,stI);
allMets(mcnt).mets2d(seqCnt).name=seqName;
allMets(mcnt).mets2d(seqCnt).m=mets;
allMets(mcnt).mets3d(seqCnt).name=seqName;
allMets(mcnt).mets3d(seqCnt).m=zeros(1,length(mets));
if imCoord
fprintf('*** 2D (Bounding Box overlap) ***\n'); printMetrics(mets); fprintf('\n');
else
fprintf('*** Bounding boxes not available ***\n\n');
eval2D=0;
end
% draw false positives.
if(isShowFP)
drawFP(gtInfoSingle(seqCnt).gtInfo, stI, additionalInfo.allfalsepos, vidDir, seqName);
end
% if world coordinates available, evaluate in 3D
if gtInfoSingle(seqCnt).wc && worldCoordST
evopt.eval3d=1;evopt.td=1;
[mets, mInf]=CLEAR_MOT_HUN(gtInfoSingle(seqCnt).gtInfo,stI,evopt);
allMets(mcnt).mets3d(seqCnt).m=mets;
fprintf('*** 3D (in world coordinates) ***\n'); printMetrics(mets); fprintf('\n');
else
eval3D=0;
end
[F,N] = size(stInfo.Xi);
newF = F+1:F+FI;
newN = N+1:N+NI;
% concat result
stInfo.Xi(newF,newN) = stI.Xi;
stInfo.Yi(newF,newN) = stI.Yi;
stInfo.W(newF,newN) = stI.W;
stInfo.H(newF,newN) = stI.H;
if isfield(stI,'Xgp') && isfield(stI,'Ygp')
stInfo.Xgp(newF,newN) = stI.Xgp;stInfo.Ygp(newF,newN) = stI.Ygp;
end
stInfo.X=stInfo.Xi;stInfo.Y=stInfo.Yi;
if ~imCoord
stInfo.X=stInfo.Xgp;stInfo.Y=stInfo.Ygp;
end
end
stInfo.frameNums=1:size(stInfo.Xi,1);
if eval2D
fprintf('\n');
fprintf(' ********************* Your Benchmark Results (2D) ***********************\n');
[m2d, mInf]=CLEAR_MOT_HUN(gtInfo,stInfo);
allMets.bmark2d=m2d;
evalFile = fullfile(resDir, 'eval2D.txt');
printMetrics(m2d);
dlmwrite(evalFile,m2d);
detailFile = fullfile(resDir, 'detail2D.txt');
fsave = fopen(detailFile, 'w');
dlmwrite(detailFile, m2d);
for midx = 1:14
fprintf(fsave, [num2str(m2d(midx)), '\t']);
end
fprintf(fsave, '\n');
num_videos = size(allMets.mets2d, 2);
fprintf(fsave, 'Name\tRcll\tPrcn\tFAR\tGT\tMT\tPT\tML\tFP\tFN\tIDs\tFM\tMOTA\tMOTP\tMOTAL\n');
for vidx = 1:num_videos
res = allMets.mets2d(vidx);
fprintf(fsave, [res.name, '\t']);
for midx = 1:14
fprintf(fsave, [num2str(res.m(midx)), '\t']);
end
fprintf(fsave, '\n');
end
fclose(fsave);
end
if eval3D
fprintf('\n');
fprintf(' ********************* Your Benchmark Results (3D) ***********************\n');
evopt.eval3d=1;evopt.td=1;
[m3d, mInf]=CLEAR_MOT_HUN(gtInfo,stInfo,evopt);
allMets.bmark3d=m3d;
evalFile = fullfile(resDir, 'eval3D.txt');
printMetrics(m3d);
dlmwrite(evalFile,m3d);
end
if ~eval2D && ~eval3D
fprintf('ERROR: results cannot be evaluated\n');
end
end
function [] = drawFP(gtinfo, stI, allfalsepos, vidDir, seqName)
colors = {'r','g','b','c','m','y'};
lineWidth = 3;
video_dir = fullfile(vidDir, seqName);
fn = dir([video_dir, '/*.jpg']);
num_frames = size(allfalsepos, 1);
for fidx = 1 : num_frames
fr_fn = fullfile(video_dir, fn(fidx).name);
img = imread(fr_fn);
figure(1), imshow(img); hold on;
num_person = size(gtinfo.X,2);
for pidx = 1:num_person
color = colors{mod(pidx, length(colors))+1};
xi = gtinfo.Xi(fidx, pidx);
yi = gtinfo.Yi(fidx, pidx);
w = gtinfo.W(fidx, pidx);
h = gtinfo.H(fidx, pidx);
x = xi - w/2;
y = yi - h;
pos = [x, y, w, h];
rectangle('Position', pos, 'EdgeColor', color, 'LineWidth', lineWidth);
text(pos(1)+5, pos(2)+15, num2str(pidx), 'FontSize', 20);
end
falsepos = find(allfalsepos(fidx, :) ~= 0);
if(isempty(falsepos))
continue;
end
for falidx = falsepos
color = colors{mod(falidx, length(colors))+1};
xi = stI.Xi(fidx, falidx);
yi = stI.Yi(fidx, falidx);
w = stI.W(fidx, falidx);
h = stI.H(fidx, falidx);
x = xi - w/2;
y = yi - h;
pos = [x, y, w, h];
rectangle('Position', pos, 'EdgeColor', color, 'LineWidth', lineWidth);
text(pos(1)+5, pos(2)+15, 'fp', 'FontSize', 20);
end
pause();
end
close all;
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
CLEAR_MOT_HUN.m
|
.m
|
MOT_with_Pose-master/devkit/utils/CLEAR_MOT_HUN.m
| 11,304 |
utf_8
|
d5f4e2fadb052f0e4c42157ed3daccba
|
function [metrics metricsInfo additionalInfo ]=CLEAR_MOT_HUN(gtInfo,stateInfo,options)
% compute CLEAR MOT and other metrics
%
% metrics contains the following
% [1] recall - recall = percentage of detected targets
% [2] precision - precision = percentage of correctly detected targets
% [3] FAR - number of false alarms per frame
% [4] GT - number of ground truth trajectories
% [5-7] MT, PT, ML - number of mostly tracked, partially tracked and mostly lost trajectories
% [8] falsepositives- number of false positives (FP)
% [9] missed - number of missed targets (FN)
% [10] idswitches - number of id switches (IDs)
% [11] FRA - number of fragmentations
% [12] MOTA - Multi-object tracking accuracy in [0,100]
% [13] MOTP - Multi-object tracking precision in [0,100] (3D) / [td,100] (2D)
% [14] MOTAL - Multi-object tracking accuracy in [0,100] with log10(idswitches)
%
%
% (C) Anton Milan, 2012-2014
% default options: 2D
if nargin<3
options.eval3d=0; % only bounding box overlap
options.td=.5; % threshold 50%
end
if ~isfield(options,'td')
if options.eval3d
options.td=1000;
else
options.td=0.5;
end
end
td=options.td;
% if X,Y not existent, assume 2D
if ~isfield(gtInfo,'X'), gtInfo.X=gtInfo.Xi; end
if ~isfield(gtInfo,'Y'), gtInfo.Y=gtInfo.Yi; end
if ~isfield(stateInfo,'X'), stateInfo.X=stateInfo.Xi; end
if ~isfield(stateInfo,'Y'), stateInfo.Y=stateInfo.Yi; end
gtInd=~~gtInfo.X;
stInd=~~stateInfo.X;
[Fgt, Ngt]=size(gtInfo.X);
[F, N]=size(stateInfo.X);
% if stateInfo shorter, pad with zeros
if F<Fgt
missingFrames = F+1:Fgt;
stateInfo.Xi(missingFrames,:)=0;
stateInfo.Yi(missingFrames,:)=0;
stateInfo.W(missingFrames,:)=0;
stateInfo.H(missingFrames,:)=0;
end
metricsInfo.names.long = {'Recall','Precision','False Alarm Rate', ...
'GT Tracks','Mostly Tracked','Partially Tracked','Mostly Lost', ...
'False Positives', 'False Negatives', 'ID Switches', 'Fragmentations', ...
'MOTA','MOTP', 'MOTA Log'};
metricsInfo.names.short = {'Rcll','Prcn','FAR', ...
'GT','MT','PT','ML', ...
'FP', 'FN', 'IDs', 'FM', ...
'MOTA','MOTP', 'MOTAL'};
metricsInfo.widths.long = [6 9 16 9 14 17 11 15 15 11 14 5 5 8];
metricsInfo.widths.short = [5 5 5 3 3 3 3 4 4 3 3 5 5 5];
metricsInfo.format.long = {'.1f','.1f','.2f', ...
'i','i','i','i', ...
'i','i','i','i', ...
'.1f','.1f','.1f'};
metricsInfo.format.short=metricsInfo.format.long;
metrics=zeros(1,14);
metrics(9)=numel(find(gtInd)); % False Negatives (missed)
metrics(7)=Ngt; % Mostly Lost
metrics(4)=Ngt; % GT Trajectories
additionalInfo=[];
% nothing to be done, if state is empty
if ~N, return; end
% global opt
% if options.eval3d && opt.mex
% [MOTA MOTP ma fpa mmea idsw missed falsepositives idswitches at afp MT PT ML rc pc faf FM MOTAL alld]= ...
% CLEAR_MOT_mex(gtInfo.Xgp', gtInfo.Ygp', stateInfo.Xgp', stateInfo.Ygp',options.td);
%
% % cd /home/aanton/diss/utils
% % [MOTA MOTP ma fpa mmea idsw missed falsepositives idswitches at afp MT PT ML rc pc faf FM MOTAL alld]= ...
% % CLEAR_MOT(gtInfo.Xgp, gtInfo.Ygp, stateInfo.Xgp, stateInfo.Ygp,options.td);
% % cd /home/aanton/visinf/projects/ongoing/contracking
% metrics=[rc*100, pc*100, faf, Ngt, MT, PT, ML, falsepositives, missed, idswitches, FM, MOTA*100, MOTP*100, MOTAL*100];
% metrics
% global gsi
% gsi=stateInfo;
% pause
% return;
% end
% mapping
M=zeros(F,Ngt);
mme=zeros(1,F); % ID Switchtes (mismatches)
c=zeros(1,F); % matches found
fp=zeros(1,F); % false positives
m=zeros(1,F); % misses = false negatives
g=zeros(1,F);
d=zeros(F,Ngt); % all distances;
ious=Inf*ones(F,Ngt); % all overlaps
matched=@matched2d;
if options.eval3d, matched=@matched3d; end
alltracked=zeros(F,Ngt);
allfalsepos=zeros(F,N);
allfalseneg=zeros(F,N);
for t=1:F
g(t)=numel(find(gtInd(t,:)));
% mapping for current frame
if t>1
mappings=find(M(t-1,:));
for map=mappings
if gtInd(t,map) && stInd(t,M(t-1,map)) && matched(gtInfo,stateInfo,t,map,M(t-1,map),td)
M(t,map)=M(t-1,map);
end
end
end
GTsNotMapped=find(~M(t,:) & gtInd(t,:));
EsNotMapped=setdiff(find(stInd(t,:)),M(t,:));
% reshape to ensure horizontal vector in empty case
EsNotMapped=reshape(EsNotMapped,1,length(EsNotMapped));
GTsNotMapped=reshape(GTsNotMapped,1,length(GTsNotMapped));
if options.eval3d
alldist=Inf*ones(Ngt,N);
mindist=0;
for o=GTsNotMapped
GT=[gtInfo.Xgp(t,o) gtInfo.Ygp(t,o)];
for e=EsNotMapped
E=[stateInfo.Xgp(t,e) stateInfo.Ygp(t,e)];
alldist(o,e)=norm(GT-E);
end
end
tmpai=alldist;
tmpai(tmpai>td)=Inf;
[Mtch,Cst]=Hungarian(tmpai);
[u,v]=find(Mtch);
for mmm=1:length(u)
M(t,u(mmm))=v(mmm);
end
% while mindist < td && numel(GTsNotMapped)>0 && numel(EsNotMapped)>0
% for o=GTsNotMapped
% GT=[gtInfo.Xgp(t,o) gtInfo.Ygp(t,o)];
% for e=EsNotMapped
% E=[stateInfo.Xgp(t,e) stateInfo.Ygp(t,e)];
% alldist(o,e)=norm(GT-E);
% end
% end
%
% [mindist cind]=min(alldist(:));
%
% if mindist <= td
% [u v]=ind2sub(size(alldist),cind);
% M(t,u)=v;
% alldist(:,v)=Inf;
% GTsNotMapped=find(~M(t,:) & gtInd(t,:));
% EsNotMapped=setdiff(find(stInd(t,:)),M(t,:));
% end
% end
else
allisects=zeros(Ngt,N); maxisect=Inf;
for o=GTsNotMapped
GT=[gtInfo.X(t,o)-gtInfo.W(t,o)/2 ...
gtInfo.Y(t,o)-gtInfo.H(t,o) ...
gtInfo.W(t,o) gtInfo.H(t,o) ];
for e=EsNotMapped
E=[stateInfo.Xi(t,e)-stateInfo.W(t,e)/2 ...
stateInfo.Yi(t,e)-stateInfo.H(t,e) ...
stateInfo.W(t,e) stateInfo.H(t,e) ];
allisects(o,e)=boxiou(GT(1),GT(2),GT(3),GT(4),E(1),E(2),E(3),E(4));
end
end
tmpai=allisects;
tmpai=1-tmpai;
tmpai(tmpai>td)=Inf;
[Mtch,Cst]=Hungarian(tmpai);
[u,v]=find(Mtch);
M=M;
for mmm=1:length(u)
M(t,u(mmm))=v(mmm);
end
% GTsNotMapped=find(~M(t,:) & gtInd(t,:));
% EsNotMapped=setdiff(find(stInd(t,:)),M(t,:));
% while maxisect > td && numel(GTsNotMapped)>0 && numel(EsNotMapped)>0
%
% for o=GTsNotMapped
% GT=[gtInfo.X(t,o)-gtInfo.W(t,o)/2 ...
% gtInfo.Y(t,o)-gtInfo.H(t,o) ...
% gtInfo.W(t,o) gtInfo.H(t,o) ];
% for e=EsNotMapped
% E=[stateInfo.Xi(t,e)-stateInfo.W(t,e)/2 ...
% stateInfo.Yi(t,e)-stateInfo.H(t,e) ...
% stateInfo.W(t,e) stateInfo.H(t,e) ];
% allisects(o,e)=boxiou(GT(1),GT(2),GT(3),GT(4),E(1),E(2),E(3),E(4));
% end
% end
%
% [maxisect, cind]=max(allisects(:));
%
% if maxisect >= td
% [u, v]=ind2sub(size(allisects),cind);
% M(t,u)=v;
% allisects(:,v)=0;
% GTsNotMapped=find(~M(t,:) & gtInd(t,:));
% EsNotMapped=setdiff(find(stInd(t,:)),M(t,:));
% end
%
% end
end
curtracked=find(M(t,:));
alltrackers=find(stInd(t,:));
mappedtrackers=intersect(M(t,find(M(t,:))),alltrackers);
falsepositives=setdiff(alltrackers,mappedtrackers);
alltracked(t,:)=M(t,:);
% allfalsepos(t,1:length(falsepositives))=falsepositives;
allfalsepos(t,falsepositives)=falsepositives;
%% mismatch errors
if t>1
for ct=curtracked
lastnotempty=find(M(1:t-1,ct),1,'last');
if gtInd(t-1,ct) && ~isempty(lastnotempty) && M(t,ct)~=M(lastnotempty,ct)
mme(t)=mme(t)+1;
end
end
end
c(t)=numel(curtracked);
for ct=curtracked
eid=M(t,ct);
if options.eval3d
d(t,ct)=norm([gtInfo.Xgp(t,ct) gtInfo.Ygp(t,ct)] - ...
[stateInfo.Xgp(t,eid) stateInfo.Ygp(t,eid)]);
else
gtLeft=gtInfo.X(t,ct)-gtInfo.W(t,ct)/2;
gtTop=gtInfo.Y(t,ct)-gtInfo.H(t,ct);
gtWidth=gtInfo.W(t,ct); gtHeight=gtInfo.H(t,ct);
stLeft=stateInfo.Xi(t,eid)-stateInfo.W(t,eid)/2;
stTop=stateInfo.Yi(t,eid)-stateInfo.H(t,eid);
stWidth=stateInfo.W(t,eid); stHeight=stateInfo.H(t,eid);
ious(t,ct)=boxiou(gtLeft,gtTop,gtWidth,gtHeight,stLeft,stTop,stWidth,stHeight);
end
end
fp(t)=numel(find(stInd(t,:)))-c(t);
m(t)=g(t)-c(t);
end
missed=sum(m);
falsepositives=sum(fp);
idswitches=sum(mme);
if options.eval3d
MOTP=(1-sum(sum(d))/sum(c)/td) * 100; % avg distance to [0,100]
else
MOTP=sum(ious(ious>=td & ious<Inf))/sum(c) * 100; % avg ol
end
MOTAL=(1-((sum(m)+sum(fp)+log10(sum(mme)+1))/sum(g)))*100;
MOTA=(1-((sum(m)+sum(fp)+(sum(mme)))/sum(g)))*100;
recall=sum(c)/sum(g)*100;
precision=sum(c)/(sum(fp)+sum(c))*100;
FAR=sum(fp)/Fgt;
%% MT PT ML
MTstatsa=zeros(1,Ngt);
for i=1:Ngt
gtframes=find(gtInd(:,i));
gtlength=length(gtframes);
gttotallength=numel(find(gtInd(:,i)));
trlengtha=numel(find(alltracked(gtframes,i)>0));
if gtlength/gttotallength >= 0.8 && trlengtha/gttotallength < 0.2
MTstatsa(i)=3;
elseif t>=find(gtInd(:,i),1,'last') && trlengtha/gttotallength <= 0.8
MTstatsa(i)=2;
elseif trlengtha/gttotallength >= 0.8
MTstatsa(i)=1;
end
end
% MTstatsa
MT=numel(find(MTstatsa==1));PT=numel(find(MTstatsa==2));ML=numel(find(MTstatsa==3));
%% fragments
fr=zeros(1,Ngt);
for i=1:Ngt
b=alltracked(find(alltracked(:,i),1,'first'):find(alltracked(:,i),1,'last'),i);
b(~~b)=1;
fr(i)=numel(find(diff(b)==-1));
end
FRA=sum(fr);
assert(Ngt==MT+PT+ML,'Hmm... Not all tracks classified correctly.');
metrics=[recall, precision, FAR, Ngt, MT, PT, ML, falsepositives, missed, idswitches, FRA, MOTA, MOTP, MOTAL];
additionalInfo.alltracked=alltracked;
additionalInfo.allfalsepos=allfalsepos;
end
function ret=matched2d(gtInfo,stateInfo,t,map,mID,td)
gtLeft=gtInfo.X(t,map)-gtInfo.W(t,map)/2;
gtTop=gtInfo.Y(t,map)-gtInfo.H(t,map);
gtWidth=gtInfo.W(t,map); gtHeight=gtInfo.H(t,map);
stLeft=stateInfo.Xi(t,mID)-stateInfo.W(t,mID)/2;
stTop=stateInfo.Yi(t,mID)-stateInfo.H(t,mID);
stWidth=stateInfo.W(t,mID); stHeight=stateInfo.H(t,mID);
ret = boxiou(gtLeft,gtTop,gtWidth,gtHeight,stLeft,stTop,stWidth,stHeight) >= td;
end
function ret=matched3d(gtInfo,stateInfo,t,map,mID,td)
Xgt=gtInfo.Xgp(t,map); Ygt=gtInfo.Ygp(t,map);
X=stateInfo.Xgp(t,mID); Y=stateInfo.Ygp(t,mID);
ret=norm([Xgt Ygt]-[X Y])<=td;
end
|
github
|
OneDirection9/MOT_with_Pose-master
|
Hungarian.m
|
.m
|
MOT_with_Pose-master/devkit/utils/Hungarian.m
| 9,328 |
utf_8
|
51e60bc9f1f362bfdc0b4f6d67c44e80
|
function [Matching,Cost] = Hungarian(Perf)
%
% [MATCHING,COST] = Hungarian_New(WEIGHTS)
%
% A function for finding a minimum edge weight matching given a MxN Edge
% weight matrix WEIGHTS using the Hungarian Algorithm.
%
% An edge weight of Inf indicates that the pair of vertices given by its
% position have no adjacent edge.
%
% MATCHING return a MxN matrix with ones in the place of the matchings and
% zeros elsewhere.
%
% COST returns the cost of the minimum matching
% Written by: Alex Melin 30 June 2006
% Initialize Variables
Matching = zeros(size(Perf));
% Condense the Performance Matrix by removing any unconnected vertices to
% increase the speed of the algorithm
% Find the number in each column that are connected
num_y = sum(~isinf(Perf),1);
% Find the number in each row that are connected
num_x = sum(~isinf(Perf),2);
% Find the columns(vertices) and rows(vertices) that are isolated
x_con = find(num_x~=0);
y_con = find(num_y~=0);
% Assemble Condensed Performance Matrix
P_size = max(length(x_con),length(y_con));
P_cond = zeros(P_size);
P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con);
if isempty(P_cond)
Cost = 0;
return
end
% Ensure that a perfect matching exists
% Calculate a form of the Edge Matrix
Edge = P_cond;
Edge(P_cond~=Inf) = 0;
% Find the deficiency(CNUM) in the Edge Matrix
cnum = min_line_cover(Edge);
% Project additional vertices and edges so that a perfect matching
% exists
Pmax = max(max(P_cond(P_cond~=Inf)));
P_size = length(P_cond)+cnum;
P_cond = ones(P_size)*Pmax;
P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con);
%*************************************************
% MAIN PROGRAM: CONTROLS WHICH STEP IS EXECUTED
%*************************************************
exit_flag = 1;
stepnum = 1;
while exit_flag
switch stepnum
case 1
[P_cond,stepnum] = step1(P_cond);
case 2
[r_cov,c_cov,M,stepnum] = step2(P_cond);
case 3
[c_cov,stepnum] = step3(M,P_size);
case 4
[M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M);
case 5
[M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov);
case 6
[P_cond,stepnum] = step6(P_cond,r_cov,c_cov);
case 7
exit_flag = 0;
end
end
% Remove all the virtual satellites and targets and uncondense the
% Matching to the size of the original performance matrix.
Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con));
Cost = sum(sum(Perf(Matching==1)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% STEP 1: Find the smallest number of zeros in each row
% and subtract that minimum from its row
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [P_cond,stepnum] = step1(P_cond)
P_size = length(P_cond);
% Loop throught each row
for ii = 1:P_size
rmin = min(P_cond(ii,:));
P_cond(ii,:) = P_cond(ii,:)-rmin;
end
stepnum = 2;
%**************************************************************************
% STEP 2: Find a zero in P_cond. If there are no starred zeros in its
% column or row start the zero. Repeat for each zero
%**************************************************************************
function [r_cov,c_cov,M,stepnum] = step2(P_cond)
% Define variables
P_size = length(P_cond);
r_cov = zeros(P_size,1); % A vector that shows if a row is covered
c_cov = zeros(P_size,1); % A vector that shows if a column is covered
M = zeros(P_size); % A mask that shows if a position is starred or primed
for ii = 1:P_size
for jj = 1:P_size
if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0
M(ii,jj) = 1;
r_cov(ii) = 1;
c_cov(jj) = 1;
end
end
end
% Re-initialize the cover vectors
r_cov = zeros(P_size,1); % A vector that shows if a row is covered
c_cov = zeros(P_size,1); % A vector that shows if a column is covered
stepnum = 3;
%**************************************************************************
% STEP 3: Cover each column with a starred zero. If all the columns are
% covered then the matching is maximum
%**************************************************************************
function [c_cov,stepnum] = step3(M,P_size)
c_cov = sum(M,1);
if sum(c_cov) == P_size
stepnum = 7;
else
stepnum = 4;
end
%**************************************************************************
% STEP 4: Find a noncovered zero and prime it. If there is no starred
% zero in the row containing this primed zero, Go to Step 5.
% Otherwise, cover this row and uncover the column containing
% the starred zero. Continue in this manner until there are no
% uncovered zeros left. Save the smallest uncovered value and
% Go to Step 6.
%**************************************************************************
function [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M)
P_size = length(P_cond);
zflag = 1;
while zflag
% Find the first uncovered zero
row = 0; col = 0; exit_flag = 1;
ii = 1; jj = 1;
while exit_flag
if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0
row = ii;
col = jj;
exit_flag = 0;
end
jj = jj + 1;
if jj > P_size; jj = 1; ii = ii+1; end
if ii > P_size; exit_flag = 0; end
end
% If there are no uncovered zeros go to step 6
if row == 0
stepnum = 6;
zflag = 0;
Z_r = 0;
Z_c = 0;
else
% Prime the uncovered zero
M(row,col) = 2;
% If there is a starred zero in that row
% Cover the row and uncover the column containing the zero
if sum(find(M(row,:)==1)) ~= 0
r_cov(row) = 1;
zcol = find(M(row,:)==1);
c_cov(zcol) = 0;
else
stepnum = 5;
zflag = 0;
Z_r = row;
Z_c = col;
end
end
end
%**************************************************************************
% STEP 5: Construct a series of alternating primed and starred zeros as
% follows. Let Z0 represent the uncovered primed zero found in Step 4.
% Let Z1 denote the starred zero in the column of Z0 (if any).
% Let Z2 denote the primed zero in the row of Z1 (there will always
% be one). Continue until the series terminates at a primed zero
% that has no starred zero in its column. Unstar each starred
% zero of the series, star each primed zero of the series, erase
% all primes and uncover every line in the matrix. Return to Step 3.
%**************************************************************************
function [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov)
zflag = 1;
ii = 1;
while zflag
% Find the index number of the starred zero in the column
rindex = find(M(:,Z_c(ii))==1);
if rindex > 0
% Save the starred zero
ii = ii+1;
% Save the row of the starred zero
Z_r(ii,1) = rindex;
% The column of the starred zero is the same as the column of the
% primed zero
Z_c(ii,1) = Z_c(ii-1);
else
zflag = 0;
end
% Continue if there is a starred zero in the column of the primed zero
if zflag == 1;
% Find the column of the primed zero in the last starred zeros row
cindex = find(M(Z_r(ii),:)==2);
ii = ii+1;
Z_r(ii,1) = Z_r(ii-1);
Z_c(ii,1) = cindex;
end
end
% UNSTAR all the starred zeros in the path and STAR all primed zeros
for ii = 1:length(Z_r)
if M(Z_r(ii),Z_c(ii)) == 1
M(Z_r(ii),Z_c(ii)) = 0;
else
M(Z_r(ii),Z_c(ii)) = 1;
end
end
% Clear the covers
r_cov = r_cov.*0;
c_cov = c_cov.*0;
% Remove all the primes
M(M==2) = 0;
stepnum = 3;
% *************************************************************************
% STEP 6: Add the minimum uncovered value to every element of each covered
% row, and subtract it from every element of each uncovered column.
% Return to Step 4 without altering any stars, primes, or covered lines.
%**************************************************************************
function [P_cond,stepnum] = step6(P_cond,r_cov,c_cov)
a = find(r_cov == 0);
b = find(c_cov == 0);
minval = min(min(P_cond(a,b)));
P_cond(find(r_cov == 1),:) = P_cond(find(r_cov == 1),:) + minval;
P_cond(:,find(c_cov == 0)) = P_cond(:,find(c_cov == 0)) - minval;
stepnum = 4;
function cnum = min_line_cover(Edge)
% Step 2
[r_cov,c_cov,M,stepnum] = step2(Edge);
% Step 3
[c_cov,stepnum] = step3(M,length(Edge));
% Step 4
[M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(Edge,r_cov,c_cov,M);
% Calculate the deficiency
cnum = length(Edge)-sum(r_cov)-sum(c_cov);
|
github
|
OneDirection9/MOT_with_Pose-master
|
IniConfig.m
|
.m
|
MOT_with_Pose-master/devkit/utils/external/iniconfig/IniConfig.m
| 59,579 |
UNKNOWN
|
bc446e2c4372f0e2377ce83ed57afaef
|
classdef IniConfig < handle
%IniConfig - The class for working with configurations of settings and INI-files.
% This class allows you to create configurations of settings, and to manage them.
% The structure of the storage settings is similar to the structure of
% the storage the settings in the INI-file format.
% The class allows you to import settings from the INI-file and to export
% the settings in INI-file.
% Can be used for reading/writing data in the INI-file and managing
% settings of application.
%
%
% Using:
% ini = IniConfig()
%
% Public Properties:
% Enter this command to get the properties:
% >> properties IniConfig
%
% Public Methods:
% Enter this command to get the methods:
% >> methods IniConfig
%
% Enter this command to get more info of method:
% >> help IniConfig/methodname
%
%
% Config Syntax:
%
% ; some comments
%
% [Section1] ; allowed the comment to section
% ; comment on the section
% key1 = value_1 ; allowed a comment to an individual parameter
% key2 = value_2
%
% [Section2]
% key1 = value_1.1, value_1.2 ; array data
% key2 = value_2
% ...
%
% Note:
% * There may be spaces in the names of sections and keys
% * Keys should not be repeated in the section (will read the last)
% * Sections should not be repeated in the config (will read the last)
%
% Supported data types:
% * numeric scalars and vectors
% * strings
%
%
% Example:
% ini = IniConfig();
% ini.ReadFile('example.ini')
% ini.ToString()
%
% Example:
% ini = IniConfig();
% ini.ReadFile('example.ini')
% sections = ini.GetSections()
% [keys, count_keys] = ini.GetKeys(sections{1})
% values = ini.GetValues(sections{1}, keys)
% new_values(:) = {rand()};
% ini.SetValues(sections{1}, keys, new_values, '%.3f')
% ini.WriteFile('example1.ini')
%
% Example:
% ini = IniConfig();
% ini.AddSections({'Some Section 1', 'Some Section 2'})
% ini.AddKeys('Some Section 1', {'some_key1', 'some_key2'}, {'hello!', [10, 20]})
% ini.AddKeys('Some Section 2', 'some_key3', true)
% ini.AddKeys('Some Section 2', 'some_key1')
% ini.WriteFile('example2.ini')
%
% Example:
% ini = IniConfig();
% ini.AddSections('Some Section 1')
% ini.AddKeys('Some Section 1', 'some_key1', 'hello!')
% ini.AddKeys('Some Section 1', {'some_key2', 'some_key3'}, {[10, 20], [false, true]})
% ini.WriteFile('example31.ini')
% ini.RemoveKeys('Some Section 1', {'some_key1', 'some_key3'})
% ini.RenameKeys('Some Section 1', 'some_key2', 'renamed_some_key2')
% ini.RenameSections('Some Section 1', 'Renamed Section 1')
% ini.WriteFile('example32.ini')
%
%
% See also:
% textscan, containers.Map
%
%
% Author: Iroln <[email protected]>
% Version: 1.2
% First release: 25.07.09
% Last revision: 21.03.10
% Copyright: (c) 2009-2010 Evgeny Prilepin aka Iroln
%
% Bug reports, questions, etc. can be sent to the e-mail given above.
%
properties (GetAccess = 'public', SetAccess = 'private')
comment_style = ';' % style of comments
count_sections = 0 % number of sections
count_all_keys = 0 % number of all keys
end
properties (GetAccess = 'private', SetAccess = 'private')
config_data_array = {}
indicies_of_sections
indicies_of_empty_strings
count_strings = 0
count_empty_strings = 0
is_created_configuration = false
end
%======================================================================
methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Public Methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------------
function obj = IniConfig()
%IniConfig - constructor
% To Create new object with empty default configuration.
%
% Using:
% obj = IniConfig()
%
% Input:
% none
%
% Output:
% obj - an instance of class IniConfig
% -------------------------------------------------------------
obj.CreateIni();
end
%------------------------------------------------------------------
function CreateIni(obj)
%CreateIni - create new empty configuration
%
% Using:
% CreateIni()
%
% Input:
% none
%
% Output:
% none
% -------------------------------------------------------------
obj.config_data_array = cell(2,3);
obj.config_data_array(:,:) = {''};
obj.updateCountStrings();
obj.updateSectionsInfo();
obj.updateEmptyStringsInfo();
obj.is_created_configuration = true;
end
%------------------------------------------------------------------
function status = ReadFile(obj, file_name, comment_style)
%ReadFile - to read in the object the config data from a INI file
%
% Using:
% status = ReadFile(file_name, comment_style)
%
% Input:
% file_name - INI file name
% comment_style - style of comments in INI file
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
narginchk(2, 3);
CheckIsString(file_name);
if (nargin == 3)
obj.comment_style = ValidateCommentStyle(comment_style);
end
% Get data from file
[file_data, status] = GetDataFromFile(file_name);
if (status)
obj.count_strings = size(file_data, 1);
obj.config_data_array = ...
ParseConfigData(file_data, obj.comment_style);
obj.updateSectionsInfo();
obj.updateEmptyStringsInfo();
obj.updateCountKeysInfo();
obj.is_created_configuration = true;
end
end
%------------------------------------------------------------------
function status = IsSections(obj, section_names)
%IsSections - determine whether there is a sections
%
% Using:
% status = IsSections(section_names)
%
% Input:
% section_names - name of section(s)
%
% Output:
% status - 1 (true) - yes, 0 (false) - no
% -------------------------------------------------------------
error(nargchk(2, 2, nargin));
section_names = DataToCell(section_names);
section_names = cellfun(@(x) obj.validateSectionName(x), ...
section_names, 'UniformOutput', false);
status = cellfun(@(x) obj.isSection(x), ...
section_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function [section_names, count_sect] = GetSections(obj)
%GetSections - get names of all sections
%
% Using:
% section_names = GetSections()
% [names_sect, count_sect] = GetSections()
%
% Input:
% none
%
% Output:
% section_names - cell array with the names of sections
% count_sect - number of sections in configuration
% -------------------------------------------------------------
narginchk(1, 1);
section_names = obj.config_data_array(obj.indicies_of_sections, 1);
% section_names = strrep(section_names, '[', '');
% section_names = strrep(section_names, ']', '');
count_sect = obj.count_sections;
end
%------------------------------------------------------------------
function status = AddSections(obj, section_names)
%AddSections - add sections to end configuration
%
% Using:
% status = AddSections(section_names)
%
% Input:
% section_names - name of section
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(2, 2, nargin));
section_names = DataToCell(section_names);
section_names = cellfun(@(x) obj.validateSectionName(x), ...
section_names, 'UniformOutput', false);
status = cellfun(@(x) obj.addSection(x), ...
section_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function status = InsertSections(obj, positions, section_names)
%InsertSections - insert sections to given positions
%
% Using:
% status = InsertSections(positions, section_names)
%
% Input
% positions - positions of sections
% section_names - names of sections
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(3, 3, nargin));
positions = DataToCell(positions);
section_names = DataToCell(section_names);
CheckEqualNumberElems(positions, section_names);
section_names = cellfun(@(x) obj.validateSectionName(x), ...
section_names, 'UniformOutput', false);
status = cellfun(@(x, y) obj.insertSection(x, y), ...
positions, section_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function status = RemoveSections(obj, section_names)
%RemoveSections - remove given section
%
% Using:
% status = RemoveSections(section_names)
%
% Input:
% section_names - names of sections
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(2, 2, nargin));
section_names = DataToCell(section_names);
status = cellfun(@(x) obj.removeSection(x), ...
section_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function status = RenameSections(obj, old_section_names, new_section_names)
%RenameSections - rename given sections
%
% Using:
% status = RenameSections(old_section_names, new_section_names)
%
% Input:
% old_section_names - old names of sections
% new_section_names - new names of sections
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(3, 3, nargin));
old_section_names = DataToCell(old_section_names);
new_section_names = DataToCell(new_section_names);
CheckEqualNumberElems(old_section_names, new_section_names);
status = cellfun(@(x, y) obj.renameSection(x, y), ...
old_section_names, new_section_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function status = IsKeys(obj, section_name, key_names)
%IsKeys - determine whether there is a keys in a given section
%
% Using:
% status = IsKeys(section_name, key_names)
%
% Input:
% key_names - name of keys
%
% Output:
% status - 1 (true) - yes, 0 (false) - no
% -------------------------------------------------------------
error(nargchk(3, 3, nargin));
key_names = DataToCell(key_names);
section_name = obj.validateSectionName(section_name);
section_names = PadDataToCell(section_name, numel(key_names));
status = cellfun(@(x, y) obj.isKey(x, y), ...
section_names, key_names, 'UniformOutput', 1);
end
%------------------------------------------------------------------
function [key_names, count_keys] = GetKeys(obj, section_name)
%GetKeys - get names of all keys from given section
%
% Using:
% key_names = GetKeys(section_name)
% [key_names, count_keys] = GetKeys(section_name)
%
% Input:
% section_name - name of section
%
% Output:
% key_names - cell array with the names of keys
% count_keys - number of keys in given section
% -------------------------------------------------------------
error(nargchk(2, 2, nargin));
section_name = obj.validateSectionName(section_name);
[key_names, count_keys] = obj.getKeys(section_name);
end
%------------------------------------------------------------------
function [status, tf_set_values] = ...
AddKeys(obj, section_name, key_names, key_values, value_formats)
%AddKeys - add keys in a end given section
%
% Using:
% status = AddKeys(section_name, key_names)
% status = AddKeys(section_name, key_names, key_values)
% status = AddKeys(section_name, key_names, key_values, value_formats)
% [status, tf_set_values] = AddKeys(...)
%
% Input:
% section_name -- name of section
% key_names -- names of keys
% key_values -- values of keys (optional)
% value_formats --
%
% Output:
% status -- 1 (true): Success, status - 0 (false): Failed
% tf_set_values -- 1 (true): Success, status - 0 (false): Failed
% -------------------------------------------------------------
error(nargchk(3, 5, nargin));
key_names = DataToCell(key_names);
num_of_keys = numel(key_names);
if (nargin < 5)
value_formats = PadDataToCell('', num_of_keys);
end
if (nargin < 4)
key_values = PadDataToCell('', num_of_keys);
end
key_values = DataToCell(key_values);
value_formats = DataToCell(value_formats);
CheckEqualNumberElems(key_names, key_values);
CheckEqualNumberElems(key_values, value_formats);
key_values = ValidateValues(key_values);
section_name = obj.validateSectionName(section_name);
section_names = PadDataToCell(section_name, num_of_keys);
[status, tf_set_values] = cellfun(@(a, b, c, d) obj.addKey(a, b, c, d), ...
section_names, key_names, key_values, value_formats, 'UniformOutput', 1);
end
%------------------------------------------------------------------
function [status, tf_set_values] = InsertKeys(obj, ...
section_name, key_positions, key_names, key_values, value_formats)
%InsertKeys - insert keys into the specified positions in a given section
%
% Using:
% status = InsertKeys(section_name, key_positions, key_names)
% status = InsertKeys(section_name, key_positions, key_names, key_values)
% status = InsertKeys(section_name, key_positions, key_names, key_values, value_formats)
% [status, tf_set_values] = InsertKeys(...)
%
% Input:
% section_name -- name of section
% key_positions -- positions of keys in section
% key_names -- names of keys
% key_values -- values of keys (optional)
% value_formats --
%
% Output:
% status - 1 (true): Success, status - 0 (false): Failed
% tf_set_values - 1 (true): Success, status - 0 (false): Failed
% -------------------------------------------------------------
error(nargchk(4, 6, nargin));
key_positions = DataToCell(key_positions);
key_names = DataToCell(key_names);
num_of_keys = numel(key_names);
CheckEqualNumberElems(key_positions, key_names);
if (nargin < 6)
value_formats = PadDataToCell('', num_of_keys);
end
if (nargin < 5)
key_values = PadDataToCell('', num_of_keys);
end
key_values = DataToCell(key_values);
value_formats = DataToCell(value_formats);
CheckEqualNumberElems(key_names, key_values);
CheckEqualNumberElems(key_values, value_formats);
key_values = ValidateValues(key_values);
section_name = obj.validateSectionName(section_name);
section_names = PadDataToCell(section_name, num_of_keys);
[status, tf_set_values] = ...
cellfun(@(a, b, c, d, e) obj.insertKey(a, b, c, d, e), ...
section_names, key_positions, key_names, ...
key_values, value_formats, 'UniformOutput', true);
end
%------------------------------------------------------------------
function status = RemoveKeys(obj, section_name, key_names)
%RemoveKeys - remove the keys from a given section
%
% Using:
% status = RemoveKeys(section_name, key_names)
%
% Input:
% section_name - name of section
% key_names - names of keys
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(3, 3, nargin));
key_names = DataToCell(key_names);
section_name = obj.validateSectionName(section_name);
section_names = PadDataToCell(section_name, numel(key_names));
status = cellfun(@(a, b) obj.removeKey(a, b), ...
section_names, key_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function status = RenameKeys(obj, section_name, old_key_names, new_key_names)
%RenameKeys - rename the keys in a given section
%
% Using:
% status = RenameKeys(section_name, old_key_names, new_key_names)
%
% Input:
% section_name - name of section
% old_key_names - old names of keys
% new_key_names - new names of keys
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(4, 4, nargin));
old_key_names = DataToCell(old_key_names);
new_key_names = DataToCell(new_key_names);
CheckEqualNumberElems(old_key_names, new_key_names);
section_name = obj.validateSectionName(section_name);
section_names = PadDataToCell(section_name, numel(old_key_names));
status = cellfun(@(a, b, c) obj.renameKey(a, b, c), ...
section_names, old_key_names, ...
new_key_names, 'UniformOutput', true);
end
%------------------------------------------------------------------
function [values, status] = GetValues(obj, section_name, key_names, default_values)
%GetValues - get values of keys from given section
%
% Using:
% values = GetValues(section_name, key_names)
% values = GetValues(section_name, key_names, default_values)
%
% Input:
% section_name -- name of given section
% key_names -- names of given keys
% default_values -- values of keys that are returned by default
%
% Output:
% values -- cell array with the values of keys
% status -- 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
narginchk(2, 4);
% if (nargin < 2)
% % get all values
% sections = obj.GetSections();
%
% values = {};
% status = [];
% for i = 1:numel(sections)
% [vals, tf] = obj.GetValues(sections{i});
% values = cat(1, values, vals);
% status = cat(1, status, tf);
% end
% return;
% end
section_name = obj.validateSectionName(section_name);
if (nargin < 3)
% get all values from given section
key_names = obj.getKeys(section_name);
if isempty(key_names)
values = {};
status = false;
return;
end
end
if iscell(key_names)
is_cell = true;
else
is_cell = false;
end
key_names = DataToCell(key_names);
if (nargin < 4)
default_values = PadDataToCell([], numel(key_names));
end
default_values = DataToCell(default_values);
default_values = ValidateValues(default_values);
CheckEqualNumberElems(key_names, default_values);
section_names = PadDataToCell(section_name, numel(key_names));
[values, status] = cellfun(@(x, y, z) obj.getValue(x, y, z), ...
section_names, key_names, default_values, 'UniformOutput', false);
if (~is_cell)
values = values{1};
end
status = cell2mat(status);
end
%------------------------------------------------------------------
function status = SetValues(obj, section_name, key_names, key_values, value_formats)
%SetValues - set values for given keys from given section
%
% Using:
% status = SetValues(section_name, key_names, key_values)
% status = SetValues(section_name, key_names, key_values, value_formats)
%
% Input:
% section_name -- name of given section (must be string)
% key_names -- names of given keys (must be cell array of strings or string)
% key_values -- values of keys (must be cell array or one value)
% value_formats --
%
% Output:
% status -- 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(4, 5, nargin));
key_names = DataToCell(key_names);
num_of_keys = numel(key_names);
if (nargin < 5)
value_formats = PadDataToCell('', num_of_keys);
end
key_values = DataToCell(key_values);
value_formats = DataToCell(value_formats);
CheckEqualNumberElems(key_names, key_values);
CheckEqualNumberElems(key_values, value_formats);
key_values = ValidateValues(key_values);
section_name = obj.validateSectionName(section_name);
section_names = PadDataToCell(section_name, num_of_keys);
status = cellfun(@(a, b, c, d) obj.setValue(a, b, c, d), ...
section_names, key_names, key_values, value_formats, 'UniformOutput', true);
end
%------------------------------------------------------------------
function varargout = ToString(obj, section_name)
%ToString - export configuration to string or display
%
% Using:
% ToString()
% ToString(section_name)
% str = ToString(...)
%
% Input:
% section_name - name of sections for export (optional)
%
% Output:
% str - string with full or section configuration (optional)
% -------------------------------------------------------------
%FIXME: ��������, ����� ������� ���� ����� �� ���������, �� ������� �������
error(nargchk(1, 2, nargin));
if (nargin < 2)
is_full_export = true;
else
section_name = obj.validateSectionName(section_name);
is_full_export = false;
end
if is_full_export
count_str = obj.count_strings;
indicies = 1:count_str;
else
first_index = getSectionIndex(obj, section_name);
key_indicies = obj.getKeysIndexes(section_name);
if isempty(key_indicies)
last_index = first_index;
else
last_index = key_indicies(end);
end
indicies = first_index:last_index;
end
indicies_of_sect = obj.indicies_of_sections;
config_data = obj.config_data_array;
str = '';
conf_str = sprintf('\n');
for k = indicies
if isempty(config_data{k,1})
if isempty(config_data{k,3})
str = sprintf('\n');
else
comment_str = config_data{k,3};
str = sprintf('%s\n', comment_str);
end
elseif ~isempty(indicies_of_sect(indicies_of_sect == k))
if is_full_export
if isempty(config_data{k,3})
section_str = config_data{k,1};
str = sprintf('%s\n', section_str);
else
section_str = config_data{k,1};
comment_str = config_data{k,3};
str = sprintf('%s %s\n', ...
section_str, comment_str);
end
end
elseif ~isempty(config_data{k,1}) && ...
isempty(indicies_of_sect(indicies_of_sect == k))
if isempty(config_data{k,3})
key_str = config_data{k,1};
val_str = config_data{k,2};
str = sprintf('%s=%s\n', key_str, val_str);
else
key_str = config_data{k,1};
val_str = config_data{k,2};
comment_str = config_data{k,3};
str = sprintf('%s=%s %s\n', ...
key_str, val_str, comment_str);
end
end
conf_str = sprintf('%s%s', conf_str, str);
end
if (nargout == 0)
fprintf(1, '%s\n', conf_str);
elseif (nargout == 1)
varargout{1} = conf_str(2:end);
else
error('Too many output arguments.')
end
end
%------------------------------------------------------------------
function status = WriteFile(obj, file_name)
%WriteFile - write to the configuration INI file on disk
%
% Using:
% status = WriteFile(file_name)
%
% Input:
% file_name - name of output INI file
%
% Output:
% status - 1 (true) - success, 0 (false) - failed
% -------------------------------------------------------------
error(nargchk(2, 2, nargin));
CheckIsString(file_name);
fid = fopen(file_name, 'w');
if (fid ~= -1)
str = obj.ToString();
fprintf(fid, '%s', str);
fclose(fid);
status = true;
else
status = false;
return;
end
end
end % public methods
%----------------------------------------------------------------------
%======================================================================
methods (Access = 'private')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Private Methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------------
function num = nameToNumSection(obj, section_name)
%nameToNumSection - get number of section
section_names = obj.GetSections();
int_ind = find(strcmp(section_names, section_name));
if ~isempty(int_ind)
% If the section is not unique, then choose the latest
num = int_ind(end);
else
num = [];
end
end
%------------------------------------------------------------------
function sect_index = getSectionIndex(obj, section_name)
%getSectionIndex - get index of section in config data
num = obj.nameToNumSection(section_name);
sect_index = obj.indicies_of_sections(num);
end
%------------------------------------------------------------------
function [key_indicies, count_keys] = getKeysIndexes(obj, section_name)
%getKeysIndexes - get keys indices from given section
sect_num = obj.nameToNumSection(section_name);
if isempty(sect_num)
key_indicies = [];
count_keys = 0;
return;
elseif (sect_num == obj.count_sections)
key_indicies = ...
obj.indicies_of_sections(sect_num)+1:obj.count_strings;
else
key_indicies = ...
obj.indicies_of_sections(sect_num)+1:obj.indicies_of_sections(sect_num+1)-1;
end
indicies_of_empty = obj.indicies_of_empty_strings;
empty_indicies = ismember(key_indicies, indicies_of_empty);
% empty_indicies = cellfun('isempty', ...
% obj.config_data_array(key_indicies, 1));
key_indicies(empty_indicies) = [];
key_indicies = key_indicies(:);
count_keys = length(key_indicies);
end
%------------------------------------------------------------------
function ind = getKeyIndex(obj, section_name, key_name)
%getKeyIndex - get key index
key_names = obj.getKeys(section_name);
key_indicies = obj.getKeysIndexes(section_name);
int_ind = strcmp(key_names, key_name);
ind = key_indicies(int_ind);
end
%------------------------------------------------------------------
function updateSectionsInfo(obj)
%updateSectionsInfo - update info about sections
keys_data = obj.config_data_array(:,1);
sect_indicies_cell = regexp(keys_data, '^\[.*\]$');
obj.indicies_of_sections = ...
find(~cellfun('isempty', sect_indicies_cell));
obj.count_sections = length(obj.indicies_of_sections);
end
%------------------------------------------------------------------
function updateCountKeysInfo(obj)
%UpdateCountKeys - update full number of keys
obj.count_all_keys = ...
obj.count_strings - obj.count_sections - obj.count_empty_strings;
end
%------------------------------------------------------------------
function updateEmptyStringsInfo(obj)
%updateEmptyStringsInfo - update info about empty strings
keys_data = obj.config_data_array(:,1);
indicies_of_empty_cell = strcmp('', keys_data);
obj.indicies_of_empty_strings = find(indicies_of_empty_cell);
obj.count_empty_strings = length(obj.indicies_of_empty_strings);
end
%------------------------------------------------------------------
function updateCountStrings(obj)
%updateCountStrings - update full number of sections
obj.count_strings = size(obj.config_data_array, 1);
end
%------------------------------------------------------------------
function status = isUniqueKeyName(obj, section_name, key_name)
%isUniqueKeyName - check whether the name of the key unique
keys = obj.getKeys(section_name);
status = ~any(strcmp(key_name, keys));
end
%------------------------------------------------------------------
function status = isUniqueSectionName(obj, section_name)
%isUniqueKeyName - check whether the name of the section a unique
sections = obj.GetSections();
status = ~any(strcmp(section_name, sections));
end
%------------------------------------------------------------------
function status = isSection(obj, section_name)
%isSection - determine whether there is a section
% section_names = obj.GetSections();
data = obj.config_data_array(:, 1);
int_ind = find(strcmp(data, section_name), 1);
if ~isempty(int_ind)
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function section_name = validateSectionName(obj, section_name)
%validateSectionName - check the name of the section
CheckIsString(section_name);
section_name = section_name(:)';
section_name = strtrim(section_name);
if ~isempty(section_name)
sect_indicies_cell = ...
regexp(section_name, '^\[.*\]$', 'once');
indicies_cell_comment = ...
regexp(section_name, obj.comment_style, 'once');
if ~isempty(indicies_cell_comment)
section_name = [];
return;
end
if isempty(sect_indicies_cell)
section_name = ['[', section_name, ']'];
end
else
section_name = [];
end
end
%------------------------------------------------------------------
function status = addSection(obj, section_name)
%addSection - add section to end configuration
status = obj.insertSection(obj.count_sections+1, section_name);
end
%------------------------------------------------------------------
function status = insertSection(obj, section_pos, section_name)
%insertSection - insert section to given position
CheckIsScalarPositiveInteger(section_pos);
if (section_pos > obj.count_sections+1)
section_pos = obj.count_sections+1;
end
if ~isempty(section_name)
is_unique_sect = obj.isUniqueSectionName(section_name);
if ~is_unique_sect
status = false;
return;
end
if (section_pos <= obj.count_sections && obj.count_sections > 0)
sect_ind = obj.indicies_of_sections(section_pos);
elseif (section_pos == 1 && obj.count_sections == 0)
sect_ind = 1;
obj.config_data_array = {};
elseif (section_pos == obj.count_sections+1)
sect_ind = obj.count_strings+1;
end
new_data = cell(2,3);
new_data(1,:) = {section_name, '', ''};
new_data(2,:) = {''};
obj.config_data_array = ...
InsertCell(obj.config_data_array, sect_ind, new_data);
obj.updateCountStrings();
obj.updateSectionsInfo();
obj.updateEmptyStringsInfo();
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function status = removeSection(obj, section_name)
%removeSection - remove given section
section_name = obj.validateSectionName(section_name);
sect_num = obj.nameToNumSection(section_name);
if ~isempty(sect_num)
if (sect_num < obj.count_sections)
first_ind = obj.indicies_of_sections(sect_num);
last_ind = obj.indicies_of_sections(sect_num+1)-1;
elseif (sect_num == obj.count_sections)
first_ind = obj.indicies_of_sections(sect_num);
last_ind = obj.count_strings;
end
obj.config_data_array(first_ind:last_ind,:) = [];
obj.updateCountStrings();
obj.updateSectionsInfo();
obj.updateEmptyStringsInfo();
obj.updateCountKeysInfo();
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function status = renameSection(obj, old_section_name, new_section_name)
%renameSection - rename given section
old_section_name = obj.validateSectionName(old_section_name);
new_section_name = obj.validateSectionName(new_section_name);
sect_num = obj.nameToNumSection(old_section_name);
if (~isempty(new_section_name) && ~isempty(sect_num))
sect_ind = obj.indicies_of_sections(sect_num);
obj.config_data_array(sect_ind, 1) = {new_section_name};
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function key_name = validateKeyName(obj, key_name)
%validateKeyName - check the name of the key
CheckIsString(key_name);
key_name = key_name(:)';
key_name = strtrim(key_name);
indicies_cell = regexp(key_name, '^\[.*\]$', 'once');
indicies_cell_comment = regexp(key_name, obj.comment_style, 'once');
if (isempty(key_name) || ~isempty(indicies_cell) || ...
~isempty(indicies_cell_comment))
key_name = '';
end
end
%------------------------------------------------------------------
function status = isKey(obj, section_name, key_name)
%isKey - determine whether there is a key in a given section
key_name = obj.validateKeyName(key_name);
if ~isempty(key_name)
status = ~obj.isUniqueKeyName(section_name, key_name);
else
status = false;
end
end
%------------------------------------------------------------------
function [status, write_value] = ...
addKey(obj, section_name, key_name, key_value, value_formats)
%addKey - add key in a end given section
[inds, count_keys] = obj.getKeysIndexes(section_name);
[status, write_value] = obj.insertKey(section_name, ...
count_keys+1, key_name, key_value, value_formats);
end
%------------------------------------------------------------------
function [status, set_status] = ...
insertKey(obj, section_name, key_pos, key_name, key_value, value_formats)
%insertKey - insert key into the specified position in a given section
CheckIsScalarPositiveInteger(key_pos);
set_status = false;
key_name = obj.validateKeyName(key_name);
sect_num = obj.nameToNumSection(section_name);
if (~isempty(sect_num) && ~isempty(key_name))
is_unique_key = obj.isUniqueKeyName(section_name, key_name);
if ~is_unique_key
status = false;
return;
end
[key_indicies, count_keys] = obj.getKeysIndexes(section_name);
if (count_keys > 0)
if (key_pos <= count_keys)
insert_index = key_indicies(key_pos);
elseif (key_pos > count_keys)
insert_index = key_indicies(end) + 1;
end
else
insert_index = obj.indicies_of_sections(sect_num) + 1;
end
new_data = {key_name, '', ''};
obj.config_data_array = InsertCell(obj.config_data_array, ...
insert_index, new_data);
obj.updateCountStrings();
obj.updateSectionsInfo();
obj.updateEmptyStringsInfo();
obj.updateCountKeysInfo();
if ~isempty(key_value)
set_status = obj.setValue(section_name, key_name, ...
key_value, value_formats);
end
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function status = removeKey(obj, section_name, key_name)
%removeKey - remove the key from a given section
key_name = obj.validateKeyName(key_name);
sect_num = obj.nameToNumSection(section_name);
[keys, count_keys] = obj.getKeys(section_name);
if (~isempty(sect_num) && ~isempty(key_name) && count_keys > 0)
is_unique_key = obj.isUniqueKeyName(section_name, key_name);
if is_unique_key
status = false;
return;
end
status = find(strcmp(key_name, keys), 1, 'last');
key_indicies = obj.getKeysIndexes(section_name);
key_index = key_indicies(status);
obj.config_data_array(key_index, :) = [];
obj.updateCountStrings();
obj.updateSectionsInfo();
obj.updateEmptyStringsInfo();
obj.updateCountKeysInfo();
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function status = renameKey(obj, section_name, old_key_name, new_key_name)
%renameKey - rename the key in a given section
old_key_name = obj.validateKeyName(old_key_name);
new_key_name = obj.validateKeyName(new_key_name);
sect_num = obj.nameToNumSection(section_name);
[keys, count_keys] = obj.getKeys(section_name);
if (~isempty(sect_num) && ~isempty(old_key_name) && ...
~isempty(new_key_name) && count_keys > 0)
is_unique_key = obj.isUniqueKeyName(section_name, old_key_name);
if is_unique_key
status = false;
return;
end
status = find(strcmp(old_key_name, keys), 1, 'last');
key_indicies = obj.getKeysIndexes(section_name);
key_index = key_indicies(status);
obj.config_data_array{key_index, 1} = new_key_name;
status = true;
else
status = false;
end
end
%------------------------------------------------------------------
function status = setValue(obj, section_name, key_name, key_value, value_format)
%setValue
key_name = obj.validateKeyName(key_name);
if ~obj.isSection(section_name)
status = false;
return;
end
if ~obj.isKey(section_name, key_name)
status = false;
return;
end
key_index = obj.getKeyIndex(section_name, key_name);
if isempty(value_format)
str_value = num2str(key_value);
else
value_format = ValidateValueFormat(value_format);
str_value = num2str(key_value, value_format);
end
if (isvector(key_value) && isnumeric(key_value))
str_value = CorrectionNumericArrayStrings(str_value);
end
obj.config_data_array(key_index, 2) = {str_value};
status = true;
end
%------------------------------------------------------------------
function [key_value, status] = getValue(obj, ...
section_name, key_name, default_value)
%getValue - get key value
status = false;
if ~obj.isSection(section_name)
key_value = default_value;
return;
end
if ~obj.isKey(section_name, key_name)
key_value = default_value;
return;
end
key_index = obj.getKeyIndex(section_name, key_name);
str_value = obj.config_data_array{key_index, 2};
key_value = ParseValue(str_value);
status = true;
end
%------------------------------------------------------------------
function [key_names, count_keys] = getKeys(obj, section_name)
%getKeys
[key_indicies, count_keys] = obj.getKeysIndexes(section_name);
if ~isempty(key_indicies)
key_names = obj.config_data_array(key_indicies, 1);
else
key_names = {};
end
end
end % private methods
%----------------------------------------------------------------------
end % classdef IniConfig
%--------------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tools Functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%==========================================================================
function [file_data, status] = GetDataFromFile(file_name)
%GetDataFromFile - Get data from file
fid = fopen(file_name, 'r');
if (fid ~= -1)
file_data = textscan(fid, ...
'%s', ...
'delimiter', '\n', ...
'endOfLine', '\r\n');
fclose(fid);
status = true;
file_data = file_data{1};
else
status = false;
file_data = {};
end
end
%--------------------------------------------------------------------------
%==========================================================================
function config_data = ParseConfigData(file_data, comment_style)
%ParseConfigData - parse data from the INI file
% Select the comment in a separate array
pat = sprintf('^[^%s]+', comment_style);
comment_data = regexprep(file_data, pat, '');
% Deleting comments
pat = sprintf('%s.*+$', comment_style);
file_data = regexprep(file_data, pat, '');
% Select the key value in a separate array
values_data = regexprep(file_data, '^.[^=]*.', '');
% Select the names of the sections and keys in a separate array
keys_data = regexprep(file_data, '=.*$', '');
config_data = cell(size(file_data, 1), 3);
config_data(:,1) = keys_data;
config_data(:,2) = values_data;
config_data(:,3) = comment_data;
config_data = strtrim(config_data);
end
%--------------------------------------------------------------------------
%==========================================================================
function value = ParseValue(value)
%ParseValue - classify the data types and convert them
% ����������, �������� �� ������ value �� �������� �������
start_idx = regexp(value, '[^\.\s-+,0-9ij]', 'once');
if ~isempty(start_idx)
return;
end
num = StringToNumeric(value);
if ~isnan(num)
value = num;
end
end
%--------------------------------------------------------------------------
%==========================================================================
function num = StringToNumeric(str)
%StringToNumeric - convert string to numeric data
if isempty(str)
num = NaN;
return;
end
delimiter = ',';
str = regexprep(str, '\s*,*\s*', delimiter);
cells = textscan(str, '%s', 'delimiter', delimiter);
cells = cells{:}';
num_cell = cellfun(@(x) str2double(x), cells, 'UniformOutput', false);
is_nans = cellfun(@(x) isnan(x), num_cell, 'UniformOutput', true);
if any(is_nans)
num = NaN;
else
num = cell2mat(num_cell);
end
end
%--------------------------------------------------------------------------
%==========================================================================
function values = CorrectionNumericArrayStrings(values)
%CorrectionNumericArrayStrings - correction strings of numeric arrays
values = regexprep(values, '\s+', ', ');
end
%--------------------------------------------------------------------------
%==========================================================================
function comment_style = ValidateCommentStyle(comment_style)
%ValidateCommentStyle - validate style of comments
if ~ischar(comment_style)
error('Requires char input for comment style.')
end
end
%--------------------------------------------------------------------------
%==========================================================================
function key_values = ValidateValues(key_values)
%ValidateValues - validate data of key values
is_valid = cellfun(@(x) ...
(isempty(x) | ischar(x) | (isnumeric(x) & isvector(x))), ...
key_values, 'UniformOutput', true);
if ~all(is_valid)
error('Invalid type of one or more <%s>.', inputname(key_values));
end
% transform key_values to vector-rows
key_values = cellfun(@(x) x(:).', key_values, 'UniformOutput', 0);
end
%--------------------------------------------------------------------------
%==========================================================================
function value_format = ValidateValueFormat(value_format)
%ValidateValueFormat -
CheckIsString(value_format);
value_format = strtrim(value_format);
valid_formats = 'd|i|u|f|e|g|E|G';
start_ind = regexp(value_format, ...
['^%\d*\.?\d*(', valid_formats, ')$'], 'once');
if isempty(start_ind)
error('Invalid value format "%s".', value_format)
end
value_format = strrep(value_format, '%', '% ');
end
%--------------------------------------------------------------------------
%==========================================================================
function CheckEqualNumberElems(input1, input2)
%CheckEqualNumberElems - checking equal numbers of elements
if (numel(input1) ~= numel(input2))
error(['Number of elements in the <%s> and ', ...
'<%s> must be equal.'], inputname(1), inputname(2))
end
end
%--------------------------------------------------------------------------
%==========================================================================
function CheckIsString(input_var)
%CheckIsString
if ~(ischar(input_var) && isvector(input_var))
error('<%s> must be a string.', inputname(1))
end
end
%--------------------------------------------------------------------------
%==========================================================================
function CheckIsScalarPositiveInteger(input_var)
%CheckIsScalarPositiveInteger
if ~(isscalar(input_var) && isnumeric(input_var))
error('<%s> must be a scalar.', inputname(1))
end
if (input_var < 1)
error('<%s> must be a positive integer > 0.', inputname(1))
end
end
%--------------------------------------------------------------------------
%==========================================================================
function cell_data = PadDataToCell(data, number_elems)
%PadDataToCell - pad data to cell array
cell_data = {data};
cell_data = cell_data(ones(1, number_elems), :);
end
%--------------------------------------------------------------------------
%==========================================================================
function data_var = DataToCell(data_var)
%DataToCell - convert data to cell array
if ~iscell(data_var)
data_var = {data_var};
else
data_var = data_var(:);
end
end
%--------------------------------------------------------------------------
%==========================================================================
function B = InsertCell(C, i, D)
%InsertCell - insert a new cell or several cells in a two-dimensional
% array of cells on the index
B = [C(1:i-1, :); D; C(i:end, :)];
end
%--------------------------------------------------------------------------
|
github
|
RoboticsLabURJC/2017-tfm-alexandre-rodriguez-master
|
visualization.m
|
.m
|
2017-tfm-alexandre-rodriguez-master/2016-tfg-david-pascual-replicado/Net/visualization.m
| 5,298 |
utf_8
|
c0d9be2c88eb5d80e89618c3cf3e583a
|
#
# Created on Mar 28, 2017
#
# @author: dpascualhe
#
function benchmark(results_path)
# This function reads and plots a variety of measures, which evaluate the neural
# network performance, that have been saved like a structure (a Python
# dictionary) into a .mat file.
more off;
results_path = file_in_loadpath(results_path);
results_dict = load(results_path).metrics;
if results_dict.("training") == "y"
# Loss.
figure('Units','normalized','Position',[0 0 1 1]);
subplot(2,1,1)
train_loss = results_dict.("training loss");
val_loss = results_dict.("validation loss");
new_val_loss = NaN(size(train_loss));
val_index = length(train_loss)/length(val_loss);
for i = [val_index:val_index:length(train_loss); 1:length(val_loss)]
if i(1) != 0
new_val_loss(i(1)) = val_loss(i(2));
endif
endfor
x = 1:length(train_loss);
plot(x, train_loss, x, new_val_loss, "r.")
set(gca,"ytick", 0:0.2:max(train_loss), "ygrid", "on");
title("Loss after each batch during training", "fontweight",...
"bold", "fontsize", 15);
h = legend("Training", "Validation", "location", "northeastoutside");
set (h, "fontsize", 15);
xlabel("Batch number", "fontsize", 15);
ylabel("Categorical crossentropy", "fontsize", 15);
# Accuracy.
subplot(2,1,2)
train_acc = results_dict.("training accuracy");
val_acc = results_dict.("validation accuracy");
new_val_acc = NaN(size(train_acc));
for i = [val_index:val_index:length(train_acc); 1:length(val_acc)]
if i(1) != 0
new_val_acc(i(1)) = val_acc(i(2));
endif
endfor
x = 1:length(train_acc);
plot(x, train_acc, x, new_val_acc, "r.")
set(gca,"ytick", 0:0.2:max(train_acc), "ygrid", "on");
title("Accuracy after each batch during training", "fontweight",...
"bold", "fontsize", 15);
h = legend("Training", "Validation", "location", "northeastoutside");
set (h, "fontsize", 15);
xlabel("Batch number", "fontsize", 15);
ylabel("Accuracy", "fontsize", 15);
printf("=======================VALIDATION RESULTS=======================\n")
printf("\nValidation loss (after each epoch):\n")
for i = 1:length(val_loss)
printf(" Epoch %2i: %1.5f\n", i, val_loss(i))
endfor
printf("\nValidation accuracy (after each epoch):\n")
for i = 1:length(val_acc)
printf(" Epoch %2i: %1.5f\n", i, val_acc(i))
endfor
endif
# Precision.
figure;
subplot(2,1,1)
precision = results_dict.("precision");
bar(precision)
nb_classes = length(precision);
set(gca,"ytick", 0:1/nb_classes:1, "ygrid", "on");
title("Test precision", "fontweight", "bold", "fontsize", 15);
xlabel("Class", "fontsize", 15);
ylabel("Precision", "fontsize", 15);
# Recall.
subplot(2,1,2)
recall = results_dict.("recall");
bar(recall)
set(gca,"ytick", 0:1/nb_classes:1, "ygrid", "on");
title("Test recall", "fontweight", "bold", "fontsize", 15);
xlabel("Class", "fontsize", 15);
ylabel("Recall", "fontsize", 15);
# Confusion matrix.
figure;
conf_mat = results_dict.("confusion matrix");
new_conf_mat = NaN(size(conf_mat)+1);
for i = 1:length(conf_mat)
new_conf_mat(i, length(new_conf_mat)) = sum(conf_mat(i, :));
new_conf_mat(length(new_conf_mat), i) = sum(conf_mat(:, i));
endfor
pred_samples = sum(new_conf_mat(1:length(conf_mat), length(new_conf_mat)));
real_samples = sum(new_conf_mat(length(new_conf_mat), 1:length(conf_mat)));
if pred_samples != real_samples
printf("Number of predicted and real samples is not equal")
endif
new_conf_mat(1:size(conf_mat)(1), 1:size(conf_mat)(2)) = conf_mat;
imagesc(double(new_conf_mat));
colormap(gray);
thresh = max(new_conf_mat(:))/2;
for i = 1:length(new_conf_mat)
for j = 1:length(new_conf_mat)
h = text(i, j, num2str(new_conf_mat(i, j)), "horizontalalignment",...
"center", "verticalalignment", "middle");
if new_conf_mat(i, j) < thresh
set(h, "Color", "white");
endif
endfor
j = 1;
endfor
title(strcat("Confusion matrix -> Samples = ", num2str(real_samples)),...
"fontweight", "bold", "fontsize", 15);
xlabel("Predicted", "fontsize", 15);
ylabel("Real", "fontsize", 15);
set(gca,"XTick", 1:1:(length(conf_mat)+1), "XTickLabel",{"0","1","2","3",...
"4","5","6","7",...
"8", "9", "TOTAL"});
set(gca,"YTick", 1:1:(length(conf_mat)+1), "YTickLabel",{"0","1","2","3",...
"4","5","6","7",...
"8", "9", "TOTAL"});
# We print the results.
printf("\n==========================TEST RESULTS==========================\n")
printf("\nPrecision:\n")
for i = 1:length(precision)
printf(" %2i: %1.5f\n", i, precision(i))
endfor
printf("\nRecall:\n")
for i = 1:length(recall)
printf(" %2i: %1.5f\n", i, recall(i))
endfor
printf("\nConfusion Matrix:\n")
disp(conf_mat)
printf(["\nTest loss:\n " num2str(results_dict.("loss"))])
printf(["\nTest accuracy:\n " num2str(results_dict.("accuracy")) "\n"])
endfunction
|
github
|
RoboticsLabURJC/2017-tfm-alexandre-rodriguez-master
|
comparison.m
|
.m
|
2017-tfm-alexandre-rodriguez-master/2016-tfg-david-pascual-replicado/Net/comparison.m
| 1,598 |
utf_8
|
890b5ddb42c5031d86793ea899acca87
|
#
# Created on May 15, 2017
#
# @author: dpascualhe
#
function comparison(path1, path2)
more off;
metrics_path1 = file_in_loadpath(path1);
metrics_dict1 = load(metrics_path1).metrics;
metrics_path2 = file_in_loadpath(path2);
metrics_dict2 = load(metrics_path2).metrics;
# Loss.
figure('Units','normalized','Position',[0 0 1 1]);
subplot(2,1,1)
val_loss1 = metrics_dict1.("validation loss");
val_loss2 = metrics_dict2.("validation loss");
x1 = 1:0.001:length(val_loss1);
x2 = 1:0.001:length(val_loss2);
val_loss1 = interp1(val_loss1, x1);
val_loss2 = interp1(val_loss2, x2);
plot(x1, val_loss1, '.', x2, val_loss2, '.')
set(gca,"ytick", 0:0.1:1, "ygrid", "on");
title("Validation loss", "fontweight", "bold", "fontsize", 15);
h = legend("Patience=2", "Patience=5", "location", "northeastoutside");
set (h, "fontsize", 15);
xlabel("Epoch number", "fontsize", 15);
ylabel("Categorical crossentropy", "fontsize", 15);
# Accuracy.
subplot(2,1,2)
val_acc1 = metrics_dict1.("validation accuracy");
val_acc2 = metrics_dict2.("validation accuracy");
x1 = 1:0.001:length(val_acc1);
x2 = 1:0.001:length(val_acc2);
val_acc1 = interp1(val_acc1, x1);
val_acc2 = interp1(val_acc2, x2);
plot(x1, val_acc1, ".", x2, val_acc2, ".")
set(gca,"ytick", 0:0.1:1, "ygrid", "on");
title("Validation accuracy", "fontweight", "bold", "fontsize", 15);
h = legend("Patience=2", "Patience=5", "location", "northeastoutside");
set (h, "fontsize", 15);
xlabel("Epoch number", "fontsize", 15);
ylabel("Accuracy", "fontsize", 15);
endfunction
|
github
|
johnybang/AdaptiveFilter-LMS-master
|
AdaptiveFirTest.m
|
.m
|
AdaptiveFilter-LMS-master/Matlab/AdaptiveFirTest.m
| 2,335 |
utf_8
|
699c8f7afeffc369173cd9ce9b5e038e
|
classdef AdaptiveFirTest
properties (Constant)
Iterations = 5000;
Weights = rand(30,1)*2 - 1; % random weights on interval [-1,1]
StepSize = 0.3;
DbEpsilon = 1e-40;
end
methods (Static)
function Run()
% generate uniform random noise on the interval [-1,1]
noise = (2 * rand(AdaptiveFirTest.Iterations,1) - 1);
% filter noise with test filter
desired = filter(AdaptiveFirTest.Weights,1,noise);
% Instantiate and run adaptive filter
af = AdaptiveFir(zeros(size(AdaptiveFirTest.Weights)),...
AdaptiveFirTest.StepSize);
adaptiveOut = zeros(size(noise));
weightError = zeros(size(noise));
for j = 1:AdaptiveFirTest.Iterations
adaptiveOut(j) = af.Run(noise(j),desired(j));
weightError(j) = norm(AdaptiveFirTest.Weights-af.Weights)^2;
end
misalignment = weightError/(norm(AdaptiveFirTest.Weights)^2);
squaredError = (desired - adaptiveOut).^2;
dbEps = AdaptiveFirTest.DbEpsilon;
disp(['Final Misalignment = ', ...
num2str(db(dbEps + misalignment(end),'power')) 'dB'])
disp(['Final Squared Error = ', ...
num2str(db(dbEps + squaredError(end),'power')) 'dB'])
PlotResults(af.Weights,misalignment,squaredError);
end
end
end
% plotting function just for use by this file
function PlotResults(adaptiveWeights,misalignment,squaredError)
figure
subplot(3,1,1)
stem(AdaptiveFirTest.Weights,'xb','MarkerSize',8)
hold on
stem(adaptiveWeights,'or','MarkerSize',8)
ylabel('Weight Value'),xlabel('Weight #')
% legend('desired','adaptive','Location','Best')
title(['Desired and Adaptive Weights after ' ...
num2str(AdaptiveFirTest.Iterations) ' Iterations, StepSize = ' ...
num2str(AdaptiveFirTest.StepSize)])
subplot(3,1,2)
plot(db(misalignment,'power'))
ylabel('dB'),xlabel('Iteration #')
title('E[ || W_{desired} - W ||^2 / || W_{desired} ||^2 ] vs Iteration #')
subplot(3,1,3)
plot(db(squaredError,'power'))
ylabel('dB'),xlabel('Iteration #')
title('E[ ( desired - y )^2 ] vs Iteration #')
end
|
github
|
nipunperera/seizureDetection-master
|
trainingWaveletFeatures.m
|
.m
|
seizureDetection-master/trainingWaveletFeatures.m
| 3,619 |
utf_8
|
bf89240c92578637b08cd4a75b843f07
|
%%---------------------Seizure detection in continuous EEG-----------------
% In this method, seizure events are detected and classified using discrete
% wavelet packet transform.
% Seizure events of the ECG are identified by considering 4 second
% intervals in the EEG signal. Prominent channels and the wavelet packet
% are extracted by significance.m based on a one way ANOVA test
% Prominent channels for the first patient
% Channels 14, 15, 21, 22
% Corresponding wavelet packets 2, 2, 2, 2
clear
%% Indices corresponding to seizure events
seizureInd = [900*2+(749:759) 900*3+(367:373) 900*14+(433:443)...
900*15+(254:266) 900*17+(430:452)];
%% Preparing feature vector and targets
featMatrix1 = generateFeatMat(0);
featMatrix2 = generateFeatMat(10);
featMatrix = cat(3, featMatrix1, featMatrix2);
featMatrix2D = reshape(featMatrix, size(featMatrix, 1), ...
size(featMatrix, 2)*size(featMatrix, 3));
% Preparing the training dataset and target vectors
targetVectorNonSeiz = zeros(1, size(featMatrix2D, 2) - length(seizureInd))';
targetVectorSeiz = ones(1, length(seizureInd))';
featureVectorSeiz = featMatrix2D(:,seizureInd);
featureVectorSeiz = featureVectorSeiz';
featureVectorNonSeiz = featMatrix2D;
featureVectorNonSeiz(:,seizureInd) = [];
featureVectorNonSeiz = featureVectorNonSeiz';
% Create and train SVM model
% Randomly select 1000 samples from non-seizure data
randSampleInd = randi(size(featureVectorNonSeiz, 1), 1, 1000);
finalFeatureVector = [featureVectorSeiz;featureVectorNonSeiz(randSampleInd,:)];
finalTargetVector = [targetVectorSeiz;targetVectorNonSeiz(randSampleInd,:)];
SVMmodel = fitcsvm(finalFeatureVector, finalTargetVector, 'Standardize',...
true,'KernelFunction','RBF','KernelScale','auto');
%% Read EEG Data for patient 01 (In blocks of 10 records)
function featMatrix = generateFeatMat(index)
parfor i = 1:10
fileName = sprintf('chb01/chb01_%d.edf', i+index);
[~,records(:,:,i)] = edfread(fileName);
end
% Channels being used for detection
chansOfInterest = [14 15 21 22];
waveletPkts = [2 2 2 2];
% Each channel is represented by a column for filtering
data = permute(records(chansOfInterest,:,:), [2, 1, 3]);
% Create low pass filter
Fs = 256; % Sampling Frequency
N = 50; % Order
Fc = 25; % Cutoff Frequency
DpassU = 0.01; % Upper Passband Ripple
DpassL = 0.01; % Lower Passband Ripple
DstopU = 0.0001; % Upper Stopband Attenuation
DstopL = 0.0001; % Lower Stopband Attenuation
% Calculate the coefficients using the FIRCLS function.
b = fircls(N, [0 Fc Fs/2]/(Fs/2), [1 0], [1+DpassU DstopU], [1-DpassL ...
-DstopL]);
Hd = dfilt.dffir(b);
LPFiltered = filter(Hd, data);
records = permute(LPFiltered,[2 1 3]);
wdSize = 1024;
level = 5;
wName = 'db4';
% featMatrix = ones(numFeat*size(records, 1), size(records, 2)/wdSize,...
% size(records, 1)); % Matrix to store the features
% % First dimension - WP Coeffs of each window
% % Last dimension - Record Number
% Extraction of features (Wavelet Packet Coefficients)
for i = 1:size(records, 3)
for j = 1:size(records, 2) / wdSize
for k = 1:size(records, 1)
signal = records(k,1 + (wdSize * (j - 1)):wdSize * j, i);
wpt = wpdec(signal,level,wName);
wpCoef = wpcoef(wpt, [level, waveletPkts(k) - 1]);
featMatrix(k, j, i) = log(sqrt(mean(wpCoef.*wpCoef)));
% featMatrix((2*k), j, i) = var(wpCoef);
end
end
end
end
|
github
|
nipunperera/seizureDetection-master
|
featExtractionWaveletOverlapping1.m
|
.m
|
seizureDetection-master/featExtractionWaveletOverlapping1.m
| 4,983 |
utf_8
|
058cc7f916d2cabfc5feea3428b9d150
|
%%---------------------Seizure detection in continuous EEG-----------------
% In this method, seizure events are detected and classified using discrete
% wavelet packet transform.
% Seizure events of the ECG are identified by considering 4 second
% intervals in the EEG signal. Prominent channels and the wavelet packet
% are extracted by significance.m based on a one way ANOVA test
% Prominent channels for the first patient
% Channels 14, 15, 21, 22
% Corresponding wavelet packets 2, 2, 2, 2
% ----------------------------Seizure occurences---------------------------
% File Name: chb01_03.edf (Record 3)
% Seizure Start Time: 2996 seconds - 2993
% Seizure End Time: 3036 seconds - 3033
% File Name: chb01_04.edf (Record 4)
% Seizure Start Time: 1467 seconds - 1464
% Seizure End Time: 1494 seconds - 1491
% File Name: chb01_15.edf (Record 15)
% Seizure Start Time: 1732 seconds - 1729
% Seizure End Time: 1772 seconds - 1769
%
% File Name: chb01_16.edf (Record 16)
% Seizure Start Time: 1015 seconds - 1012
% Seizure End Time: 1066 seconds - 1063
% File Name: chb01_18.edf (Record 18)
% Seizure Start Time: 1720 seconds - 1717
% Seizure End Time: 1810 seconds - 1807
% File Name: chb01_21.edf (Record 21)
% Seizure Start Time: 327 seconds - 324
% Seizure End Time: 420 seconds - 417
% File Name: chb01_26.edf (Record 26)
% Seizure Start Time: 1862 seconds
% Seizure End Time: 1963 seconds
clear
%% Indices corresponding to seizure events
seizureInd = [3597*2+(2993:3033) 3597*3+(1464:1491) 3597*14+(1729:1769)...
3597*15+(1012:1063) 3597*17+(1717:1807)];
seizureInd = [];
%% Preparing feature vector and targets
featMatrix1 = generateFeatMat(19);
%featMatrix2 = generateFeatMat(5);
%featMatrix3 = generateFeatMat(10);
%featMatrix4 = generateFeatMat(15);
featMatrix = featMatrix1;
%featMatrix = cat(3, featMatrix1, featMatrix2, featMatrix3, featMatrix4);
featMatrix2D = reshape(featMatrix, size(featMatrix, 1), ...
size(featMatrix, 2)*size(featMatrix, 3));
% Preparing the training dataset and target vectors
targetVectorNonSeiz = zeros(1, size(featMatrix2D, 2) - length(seizureInd))';
targetVectorSeiz = ones(1, length(seizureInd))';
featureVectorSeiz = featMatrix2D(:,seizureInd);
featureVectorSeiz = featureVectorSeiz';
featureVectorNonSeiz = featMatrix2D;
featureVectorNonSeiz(:,seizureInd) = [];
featureVectorNonSeiz = featureVectorNonSeiz';
% Create and train SVM model
% Randomly select 3000 samples from non-seizure data
randSampleInd = randi(size(featureVectorNonSeiz, 1), 1, 3000);
finalFeatureVector = [featureVectorSeiz;featureVectorNonSeiz(randSampleInd,:)];
finalTargetVector = [targetVectorSeiz;targetVectorNonSeiz(randSampleInd,:)];
SVMmodel = fitcsvm(finalFeatureVector, finalTargetVector, 'Standardize',...
true,'KernelFunction','RBF','KernelScale','auto');
%% Read EEG Data for patient 01 (In blocks of 10 records)
function featMatrix = generateFeatMat(index)
parfor i = 1:1
fileName = sprintf('chb01/chb01_%d.edf', i+index);
[~,records(:,:,i)] = edfread(fileName);
end
% Channels being used for detection
chansOfInterest = [14 15 21 22];
waveletPkts = [2 2 2 2];
% Each channel is represented by a column for filtering
data = permute(records(chansOfInterest,:,:), [2, 1, 3]);
% Create low pass filter
Fs = 256; % Sampling Frequency
N = 50; % Order
Fc = 25; % Cutoff Frequency
DpassU = 0.01; % Upper Passband Ripple
DpassL = 0.01; % Lower Passband Ripple
DstopU = 0.0001; % Upper Stopband Attenuation
DstopL = 0.0001; % Lower Stopband Attenuation
% Calculate the coefficients using the FIRCLS function.
b = fircls(N, [0 Fc Fs/2]/(Fs/2), [1 0], [1+DpassU DstopU], [1-DpassL ...
-DstopL]);
Hd = dfilt.dffir(b);
LPFiltered = filter(Hd, data);
records = permute(LPFiltered,[2 1 3]);
wdSize = 1024;
level = 5;
wName = 'db4';
% featMatrix = ones(numFeat*size(records, 1), size(records, 2)/wdSize,...
% size(records, 1)); % Matrix to store the features
% % First dimension - WP Coeffs of each window
% % Last dimension - Record Number
% Extraction of features (Wavelet Packet Coefficients)
disp('Computing wavelet features...')
for i = 1:size(records, 3)
for j = 4:size(records, 2) / Fs
if mod(j, 100) == 0
fprintf('%d seconds processed....\n', j);
end
for k = 1:size(records, 1)
signal = records(k,1 + (Fs * (j - 4)):Fs * j, i);
wpt = wpdec(signal,level,wName);
wpCoef = wpcoef(wpt, [level, waveletPkts(k) - 1]);
featMatrix(k, j-3, i) = log(sqrt(mean(wpCoef.*wpCoef)));
% featMatrix((2*k), j, i) = var(wpCoef);
end
end
end
end
|
github
|
nipunperera/seizureDetection-master
|
patient02TrainingWavelet.m
|
.m
|
seizureDetection-master/patient02TrainingWavelet.m
| 4,893 |
utf_8
|
e3dd2d35ddb8408ec50bcdd5e3b9bd1a
|
%%---------------------Seizure detection in continuous EEG-----------------
% In this method, seizure events are detected and classified using discrete
% wavelet packet transform.
% Seizure events of the ECG are identified by considering 4 second
% intervals in the EEG signal. Prominent channels and the wavelet packet
% are extracted by significance.m based on a one way ANOVA test
% ----------------------------Seizure occurences---------------------------
% File Name: chb03_01.edf
% File Start Time: 13:23:36
% File End Time: 14:23:36
% Number of Seizures in File: 1
% Seizure Start Time: 362 seconds - 91
% Seizure End Time: 414 seconds - 104
% File Name: chb03_02.edf
% File Start Time: 14:23:39
% File End Time: 15:23:39
% Number of Seizures in File: 1
% Seizure Start Time: 731 seconds - 183
% Seizure End Time: 796 seconds - 199
% File Name: chb03_03.edf
% File Start Time: 15:23:47
% File End Time: 16:23:47
% Number of Seizures in File: 1
% Seizure Start Time: 432 seconds - 108
% Seizure End Time: 501 seconds - 125
% File Name: chb03_04.edf
% File Start Time: 16:23:54
% File End Time: 17:23:54
% Number of Seizures in File: 1
% Seizure Start Time: 2162 seconds - 541
% Seizure End Time: 2214 seconds - 554
% File Name: chb03_05.edf
% File Start Time: 01:51:23
% File End Time: 2:51:23
% Number of Seizures in File: 1
% Seizure Start Time: 1982 seconds - 496
% Seizure End Time: 2029 seconds - 507
% File Name: chb03_06.edf
% File Start Time: 04:51:45
% File End Time: 5:51:45
% Number of Seizures in File: 1
% Seizure Start Time: 1725 seconds - 437
% Seizure End Time: 1778 seconds - 445
% Prominent channels for the first patient
% Channels 2, 19, 20, 21
% Corresponding wavelet packets 2, 2, 2, 2
clear
% Indices corresponding to seizure events
seizureInd = [(91:104) 900*1+(183:199) 900*2+(108:125) 900*3+(541:554)...
900*4+(496:507) 900*5+(437:445)];
%% Preparing feature vector and targets
featMatrix1 = generateFeatMat(0);
featMatrix2 = generateFeatMat(10);
featMatrix = cat(3, featMatrix1, featMatrix2);
featMatrix2D = reshape(featMatrix, size(featMatrix, 1), ...
size(featMatrix, 2)*size(featMatrix, 3));
% Preparing the training dataset and target vectors
targetVectorNonSeiz = zeros(1, size(featMatrix2D, 2) - length(seizureInd))';
targetVectorSeiz = ones(1, length(seizureInd))';
featureVectorSeiz = featMatrix2D(:,seizureInd);
featureVectorSeiz = featureVectorSeiz';
featureVectorNonSeiz = featMatrix2D;
featureVectorNonSeiz(:,seizureInd) = [];
featureVectorNonSeiz = featureVectorNonSeiz';
% Create and train SVM model
% Randomly select 1000 samples from non-seizure data
randSampleInd = randi(size(featureVectorNonSeiz, 1), 1, 1000);
finalFeatureVector = [featureVectorSeiz;featureVectorNonSeiz(randSampleInd,:)];
finalTargetVector = [targetVectorSeiz;targetVectorNonSeiz(randSampleInd,:)];
SVMmodel = fitcsvm(finalFeatureVector, finalTargetVector, 'Standardize',...
true,'KernelFunction','RBF','KernelScale','auto');
%% Read EEG Data for patient 01 (In blocks of 10 records)
function featMatrix = generateFeatMat(index)
parfor i = 1:10
fileName = sprintf('chb03/chb03_%d.edf', i+index);
[~,records(:,:,i)] = edfread(fileName);
end
% Channels being used for detection
chansOfInterest = [2 19 20 21];
waveletPkts = [2 2 2 2];
% Each channel is represented by a column for filtering
data = permute(records(chansOfInterest,:,:), [2, 1, 3]);
% Create low pass filter
Fs = 256; % Sampling Frequency
N = 50; % Order
Fc = 25; % Cutoff Frequency
DpassU = 0.01; % Upper Passband Ripple
DpassL = 0.01; % Lower Passband Ripple
DstopU = 0.0001; % Upper Stopband Attenuation
DstopL = 0.0001; % Lower Stopband Attenuation
% Calculate the coefficients using the FIRCLS function.
b = fircls(N, [0 Fc Fs/2]/(Fs/2), [1 0], [1+DpassU DstopU], [1-DpassL ...
-DstopL]);
Hd = dfilt.dffir(b);
LPFiltered = filter(Hd, data);
records = permute(LPFiltered,[2 1 3]);
wdSize = 1024;
level = 5;
wName = 'db4';
% featMatrix = ones(numFeat*size(records, 1), size(records, 2)/wdSize,...
% size(records, 1)); % Matrix to store the features
% % First dimension - WP Coeffs of each window
% % Last dimension - Record Number
% Extraction of features (Wavelet Packet Coefficients)
for i = 1:size(records, 3)
for j = 1:size(records, 2) / wdSize
for k = 1:size(records, 1)
signal = records(k,1 + (wdSize * (j - 1)):wdSize * j, i);
wpt = wpdec(signal,level,wName);
wpCoef = wpcoef(wpt, [level, waveletPkts(k) - 1]);
featMatrix(k, j, i) = log(sqrt(mean(wpCoef.*wpCoef)));
% featMatrix((2*k), j, i) = var(wpCoef);
end
end
end
end
|
github
|
nipunperera/seizureDetection-master
|
trainingSpectralFeatures.m
|
.m
|
seizureDetection-master/trainingSpectralFeatures.m
| 4,687 |
utf_8
|
eb0c83735c5e22e41a50d46d3fb0228b
|
close all
clear
% ----------------------------Seizure occurences---------------------------
% File Name: chb01_03.edf (Record 3)
% Seizure Start Time: 2996 seconds - 749
% Seizure End Time: 3036 seconds - 759
% File Name: chb01_04.edf (Record 4)
% Seizure Start Time: 1467 seconds - 367
% Seizure End Time: 1494 seconds - 373
% File Name: chb01_15.edf (Record 15)
% Seizure Start Time: 1732 seconds - 433
% Seizure End Time: 1772 seconds - 443
%
% File Name: chb01_16.edf (Record 16)
% Seizure Start Time: 1015 seconds - 254
% Seizure End Time: 1066 seconds - 266
% File Name: chb01_18.edf (Record 18)
% Seizure Start Time: 1720 seconds - 430
% Seizure End Time: 1810 seconds - 452
% File Name: chb01_21.edf (Record 21)
% Seizure Start Time: 327 seconds - 82
% Seizure End Time: 420 seconds - 105
% File Name: chb01_26.edf (Record 26)
% Seizure Start Time: 1862 seconds - 465
% Seizure End Time: 1963 seconds - 491
% Extraction of spatial features
% Prominent channels are selected
% Fp1-F7, Fp1-Fp3, F3-C3, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T8,
% T8-P8, P8-O2, Fz-Cz, Cz-Pz, FT9-FT10, FT10-T8, T8-P8
% 1, 5, 6, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23
% Indices corresponding to seizure events
seizureInd = [900*2+(749:759) 900*3+(367:373) 900*17+(430:452)];
% 900*3+(367:373) 900*15+(254:266) 900*17+(430:452)
% Reading data and generating feature matrices
featureVector1 = generateSpectralFeat(0);
featureVector2 = generateSpectralFeat(10);
featureVector = [featureVector1 featureVector2];
%% Preparing the training dataset and target vectors
targetVectorNonSeiz = zeros(1, size(featureVector, 2) - length(seizureInd))';
targetVectorSeiz = ones(1, length(seizureInd))';
featureVectorSeiz = featureVector(:,seizureInd);
featureVectorSeiz = featureVectorSeiz';
featureVectorNonSeiz = featureVector;
featureVectorNonSeiz(:,seizureInd) = [];
featureVectorNonSeiz = featureVectorNonSeiz';
%% Create and train SVM model
% Randomly select 1000 samples from non-seizure data
randSampleInd = randi(size(featureVectorNonSeiz, 1), 1, 1000);
finalFeatureVector = [featureVectorSeiz;featureVectorNonSeiz(randSampleInd,:)];
finalTargetVector = [targetVectorSeiz;targetVectorNonSeiz(randSampleInd,:)];
SVMmodel = fitcsvm(finalFeatureVector, finalTargetVector, 'Standardize',...
true,'KernelFunction','RBF','KernelScale','auto');
%%
% Testing new data
newX = featureVector(:,1:900)';
[label,score] = predict(SVMmodel,newX);
% %% Visualization of data points
% figure;
% plot(featureVector(seizureInd(1:18), 1),featureVector(seizureInd(1:18), 17),'r.','MarkerSize',10)
% hold on
% plot(featureVector(101:200, 1),featureVector(101:200, 17),'b.','MarkerSize',10)
% xlim([0 10000])
% ylim([0 500])
%
% xlabel('Energy of 0 - 16Hz Band')
% ylabel('Energy of 16 - 25Hz Band')
% legend('Seizure', 'Non-Seizure')
%% Read EEG Data for patient 01 (In blocks of 10 records)
% This functions reads blocks of 10 records and a low pass filtering is
% applied and only channels of interest specified by the user is considered
function featureVector = generateSpectralFeat(index)
parfor i = 1:10
fileName = sprintf('chb01/chb01_%d.edf', i+index);
[~,records(:,:,i)] = edfread(fileName);
end
% Prominent channels for patient 01
promChannels = [1, 5, 6, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23];
% Each channel is represented by a column for filtering
data = permute(records, [2, 1, 3]);
data = data(:,promChannels,:);
% Create low pass filter
Fs = 256; % Sampling Frequency
N = 50; % Order
Fc = 25; % Cutoff Frequency
DpassU = 0.01; % Upper Passband Ripple
DpassL = 0.01; % Lower Passband Ripple
DstopU = 0.0001; % Upper Stopband Attenuation
DstopL = 0.0001; % Lower Stopband Attenuation
% Calculate the coefficients using the FIRCLS function.
b = fircls(N, [0 Fc Fs/2]/(Fs/2), [1 0], [1+DpassU DstopU], [1-DpassL ...
-DstopL]);
Hd = dfilt.dffir(b);
LPFiltered = filter(Hd, data);
featureVector = [];
% Perform Short Time Fourier Transform for time intervals of 4s
for i = 1:size(LPFiltered, 3)
for j = 1:size(LPFiltered, 1)/1024
[pxx, f] = periodogram(LPFiltered(1 + (1024*(j - 1)):1024*j,:,i),...
[], [], 256);
power0_16 = bandpower(pxx(1:65, :), f(1:65), 'psd');
power16_25 = bandpower(pxx(65:101, :), f(65:101), 'psd');
powerVector = [power0_16 power16_25];
featureVector = [featureVector powerVector'];
end
end
end
|
github
|
nipunperera/seizureDetection-master
|
patient02TrainingSpectral.m
|
.m
|
seizureDetection-master/patient02TrainingSpectral.m
| 4,762 |
utf_8
|
568a4f5382b9546887b87c36c8eb0e42
|
close all
clear
% ----------------------------Seizure occurences---------------------------
% File Name: chb03_01.edf
% File Start Time: 13:23:36
% File End Time: 14:23:36
% Number of Seizures in File: 1
% Seizure Start Time: 362 seconds - 91
% Seizure End Time: 414 seconds - 104
% File Name: chb03_02.edf
% File Start Time: 14:23:39
% File End Time: 15:23:39
% Number of Seizures in File: 1
% Seizure Start Time: 731 seconds - 183
% Seizure End Time: 796 seconds - 199
% File Name: chb03_03.edf
% File Start Time: 15:23:47
% File End Time: 16:23:47
% Number of Seizures in File: 1
% Seizure Start Time: 432 seconds - 108
% Seizure End Time: 501 seconds - 125
% File Name: chb03_04.edf
% File Start Time: 16:23:54
% File End Time: 17:23:54
% Number of Seizures in File: 1
% Seizure Start Time: 2162 seconds - 541
% Seizure End Time: 2214 seconds - 554
% File Name: chb03_05.edf
% File Start Time: 01:51:23
% File End Time: 2:51:23
% Number of Seizures in File: 1
% Seizure Start Time: 1982 seconds - 496
% Seizure End Time: 2029 seconds - 507
% File Name: chb03_06.edf
% File Start Time: 04:51:45
% File End Time: 5:51:45
% Number of Seizures in File: 1
% Seizure Start Time: 1725 seconds - 437
% Seizure End Time: 1778 seconds - 445
% Extraction of spatial features
% Prominent channels are selected
% 1, 2, 3, 4, 5, 6, 9, 13, 19, 20, 21, 22, 23
% Indices corresponding to seizure events
seizureInd = [(91:104) 900*1+(183:199) 900*2+(108:125) 900*3+(541:554)...
900*4+(496:507) 900*5+(437:445)];
% Reading data and generating feature matrices
featureVector1 = generateSpectralFeat(0);
featureVector2 = generateSpectralFeat(10);
featureVector = [featureVector1 featureVector2];
%% Preparing the training dataset and target vectors
targetVectorNonSeiz = zeros(1, size(featureVector, 2) - length(seizureInd))';
targetVectorSeiz = ones(1, length(seizureInd))';
featureVectorSeiz = featureVector(:,seizureInd);
featureVectorSeiz = featureVectorSeiz';
featureVectorNonSeiz = featureVector;
featureVectorNonSeiz(:,seizureInd) = [];
featureVectorNonSeiz = featureVectorNonSeiz';
%% Create and train SVM model
% Randomly select 1000 samples from non-seizure data
randSampleInd = randi(size(featureVectorNonSeiz, 1), 1, 1000);
finalFeatureVector = [featureVectorSeiz;featureVectorNonSeiz(randSampleInd,:)];
finalTargetVector = [targetVectorSeiz;targetVectorNonSeiz(randSampleInd,:)];
SVMmodel = fitcsvm(finalFeatureVector, finalTargetVector, 'Standardize',...
true,'KernelFunction','RBF','KernelScale','auto');
%%
% Testing new data
% newX = featureVector(:,1:900)';
% [label,score] = predict(SVMmodel,newX);
% %% Visualization of data points
% figure;
% plot(featureVector(seizureInd(1:18), 1),featureVector(seizureInd(1:18), 17),'r.','MarkerSize',10)
% hold on
% plot(featureVector(101:200, 1),featureVector(101:200, 17),'b.','MarkerSize',10)
% xlim([0 10000])
% ylim([0 500])
%
% xlabel('Energy of 0 - 16Hz Band')
% ylabel('Energy of 16 - 25Hz Band')
% legend('Seizure', 'Non-Seizure')
%% Read EEG Data for patient 01 (In blocks of 10 records)
% This functions reads blocks of 10 records and a low pass filtering is
% applied and only channels of interest specified by the user is considered
function featureVector = generateSpectralFeat(index)
parfor i = 1:10
fileName = sprintf('chb03/chb03_%d.edf', i+index);
[~,records(:,:,i)] = edfread(fileName);
end
% Prominent channels for patient 01
promChannels = [1, 2, 3, 4, 5, 6, 9, 13, 19, 20, 21, 22, 23];
% Each channel is represented by a column for filtering
data = permute(records, [2, 1, 3]);
data = data(:,promChannels,:);
% Create low pass filter
Fs = 256; % Sampling Frequency
N = 50; % Order
Fc = 25; % Cutoff Frequency
DpassU = 0.01; % Upper Passband Ripple
DpassL = 0.01; % Lower Passband Ripple
DstopU = 0.0001; % Upper Stopband Attenuation
DstopL = 0.0001; % Lower Stopband Attenuation
% Calculate the coefficients using the FIRCLS function.
b = fircls(N, [0 Fc Fs/2]/(Fs/2), [1 0], [1+DpassU DstopU], [1-DpassL ...
-DstopL]);
Hd = dfilt.dffir(b);
LPFiltered = filter(Hd, data);
featureVector = [];
% Perform Short Time Fourier Transform for time intervals of 4s
for i = 1:size(LPFiltered, 3)
for j = 1:size(LPFiltered, 1)/1024
[pxx, f] = periodogram(LPFiltered(1 + (1024*(j - 1)):1024*j,:,i),...
[], [], 256);
power0_16 = bandpower(pxx(1:65, :), f(1:65), 'psd');
power16_25 = bandpower(pxx(65:101, :), f(65:101), 'psd');
powerVector = [power0_16 power16_25];
featureVector = [featureVector powerVector'];
end
end
end
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_ORIG_DIRECT.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_ORIG_DIRECT.m
| 164 |
utf_8
|
43ae70342fc7484716698f445981512b
|
% NLOPT_GN_ORIG_DIRECT: Original DIRECT version (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ORIG_DIRECT
val = 6;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_BOBYQA.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_BOBYQA.m
| 189 |
utf_8
|
15ba6db5057c8907343184908e0ecf06
|
% NLOPT_LN_BOBYQA: BOBYQA bound-constrained optimization via quadratic models (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_BOBYQA
val = 34;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_DIRECT.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_DIRECT.m
| 137 |
utf_8
|
915b9f3f3a223d681a10bfaa80318309
|
% NLOPT_GN_DIRECT: DIRECT (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT
val = 0;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_MMA.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_MMA.m
| 155 |
utf_8
|
7e4519526e6353452086a1cf929b12ad
|
% NLOPT_LD_MMA: Method of Moving Asymptotes (MMA) (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_MMA
val = 24;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_DIRECT_L.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L.m
| 143 |
utf_8
|
ae13ecf48a1ee6d222444643f59c2993
|
% NLOPT_GN_DIRECT_L: DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L
val = 1;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_VAR1.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_VAR1.m
| 168 |
utf_8
|
45d4388965becdc240350c73a2779757
|
% NLOPT_LD_VAR1: Limited-memory variable-metric, rank 1 (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_VAR1
val = 13;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_DIRECT_L_NOSCAL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L_NOSCAL.m
| 166 |
utf_8
|
c20477ea33399f3311ea6e533dc347ae
|
% NLOPT_GN_DIRECT_L_NOSCAL: Unscaled DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L_NOSCAL
val = 4;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_COBYLA.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_COBYLA.m
| 189 |
utf_8
|
2c95152f70105c8ca20929fba67d12a2
|
% NLOPT_LN_COBYLA: COBYLA (Constrained Optimization BY Linear Approximations) (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_COBYLA
val = 25;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_AUGLAG_EQ.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_AUGLAG_EQ.m
| 189 |
utf_8
|
5432778c9b81b5fdcfb98ca1bbbd6486
|
% NLOPT_LN_AUGLAG_EQ: Augmented Lagrangian method for equality constraints (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_AUGLAG_EQ
val = 32;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_DIRECT_L_RAND.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L_RAND.m
| 164 |
utf_8
|
2135dc3891b556738f41c2a35009b227
|
% NLOPT_GN_DIRECT_L_RAND: Randomized DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L_RAND
val = 2;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_MLSL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_MLSL.m
| 169 |
utf_8
|
93ab4e64e2760c4ca201fada42cb05c3
|
% NLOPT_GN_MLSL: Multi-level single-linkage (MLSL), random (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_MLSL
val = 20;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GD_MLSL_LDS.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GD_MLSL_LDS.m
| 180 |
utf_8
|
7f41fd0094df543c2e45280f86c0b87b
|
% NLOPT_GD_MLSL_LDS: Multi-level single-linkage (MLSL), quasi-random (global, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_MLSL_LDS
val = 23;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_AUGLAG_EQ.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_AUGLAG_EQ.m
| 186 |
utf_8
|
41b81c30c553388e2ff1b6b1fb681618
|
% NLOPT_LD_AUGLAG_EQ: Augmented Lagrangian method for equality constraints (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_AUGLAG_EQ
val = 33;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_CCSAQ.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_CCSAQ.m
| 214 |
utf_8
|
33892896fe470090edb583b50b9e7d93
|
% NLOPT_LD_CCSAQ: CCSA (Conservative Convex Separable Approximations) with simple quadratic approximations (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_CCSAQ
val = 41;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_AUGLAG.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_AUGLAG.m
| 155 |
utf_8
|
2d7d515e911b5d0277490940a47f333e
|
% NLOPT_LD_AUGLAG: Augmented Lagrangian method (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_AUGLAG
val = 31;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_DIRECT_L_RAND_NOSCAL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_L_RAND_NOSCAL.m
| 187 |
utf_8
|
3287f776b0f2ac5e3495c2a4c95ba4e7
|
% NLOPT_GN_DIRECT_L_RAND_NOSCAL: Unscaled Randomized DIRECT-L (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_L_RAND_NOSCAL
val = 5;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_SBPLX.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_SBPLX.m
| 196 |
utf_8
|
c99ee02eb277898e9c509dd359740680
|
% NLOPT_LN_SBPLX: Sbplx variant of Nelder-Mead (re-implementation of Rowan's Subplex) (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_SBPLX
val = 29;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_ISRES.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_ISRES.m
| 173 |
utf_8
|
2c12964785aed0828a5ac17fc416f5be
|
% NLOPT_GN_ISRES: ISRES evolutionary constrained optimization (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ISRES
val = 35;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_VAR2.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_VAR2.m
| 168 |
utf_8
|
5ba0bd034c240547765a0fd4ce90c825
|
% NLOPT_LD_VAR2: Limited-memory variable-metric, rank 2 (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_VAR2
val = 14;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_AUGLAG_EQ.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_AUGLAG_EQ.m
| 182 |
utf_8
|
2f8b59b483a4f2621264c7de9df58365
|
% NLOPT_AUGLAG_EQ: Augmented Lagrangian method for equality constraints (needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_AUGLAG_EQ
val = 37;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_NELDERMEAD.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_NELDERMEAD.m
| 168 |
utf_8
|
219928fdd3fc8317d321f9f0535d550f
|
% NLOPT_LN_NELDERMEAD: Nelder-Mead simplex algorithm (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_NELDERMEAD
val = 28;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_NEWUOA.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_NEWUOA.m
| 185 |
utf_8
|
b318db6792885a5d23dcfd5b28fdc507
|
% NLOPT_LN_NEWUOA: NEWUOA unconstrained optimization via quadratic models (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_NEWUOA
val = 26;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_CRS2_LM.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_CRS2_LM.m
| 185 |
utf_8
|
9a171159b83c77e07256a24704139d8a
|
% NLOPT_GN_CRS2_LM: Controlled random search (CRS2) with local mutation (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_CRS2_LM
val = 19;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_PRAXIS.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_PRAXIS.m
| 153 |
utf_8
|
c7d354e0602183d0d3a7ff71641ab7b4
|
% NLOPT_LN_PRAXIS: Principal-axis, praxis (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_PRAXIS
val = 12;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_SLSQP.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_SLSQP.m
| 164 |
utf_8
|
e767cc9cde902065e67a31664a571819
|
% NLOPT_LD_SLSQP: Sequential Quadratic Programming (SQP) (local, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_SLSQP
val = 40;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_G_MLSL_LDS.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_G_MLSL_LDS.m
| 187 |
utf_8
|
dfafcdb44b43c59aa5e4d5b73542dc50
|
% NLOPT_G_MLSL_LDS: Multi-level single-linkage (MLSL), quasi-random (global, needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_G_MLSL_LDS
val = 39;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_TNEWTON.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON.m
| 152 |
utf_8
|
5e00532d1e34e85f395f6ace048d7d64
|
% NLOPT_LD_TNEWTON: Truncated Newton (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON
val = 15;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_LBFGS_NOCEDAL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_LBFGS_NOCEDAL.m
| 184 |
utf_8
|
7b1380ab03a2272b6e3f1c0f49e4babf
|
% NLOPT_LD_LBFGS_NOCEDAL: original NON-FREE L-BFGS code by Nocedal et al. (NOT COMPILED)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_LBFGS_NOCEDAL
val = 10;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GD_STOGO.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GD_STOGO.m
| 137 |
utf_8
|
1b374b07cc8dd1fd43998c8f60f49267
|
% NLOPT_GD_STOGO: StoGO (global, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_STOGO
val = 8;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_AUGLAG.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_AUGLAG.m
| 151 |
utf_8
|
a4a6ef23ad60f4ceab26caae4276c02d
|
% NLOPT_AUGLAG: Augmented Lagrangian method (needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_AUGLAG
val = 36;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GD_MLSL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GD_MLSL.m
| 166 |
utf_8
|
3735615f01a5de64ba710bfa7b7eba3a
|
% NLOPT_GD_MLSL: Multi-level single-linkage (MLSL), random (global, derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_MLSL
val = 21;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_DIRECT_NOSCAL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_DIRECT_NOSCAL.m
| 160 |
utf_8
|
9f11af031bd7ca9c9348de64f7169482
|
% NLOPT_GN_DIRECT_NOSCAL: Unscaled DIRECT (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_DIRECT_NOSCAL
val = 3;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_AUGLAG.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_AUGLAG.m
| 158 |
utf_8
|
ec49cb21c2b454870a401a1c5afd1058
|
% NLOPT_LN_AUGLAG: Augmented Lagrangian method (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_AUGLAG
val = 30;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_ESCH.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_ESCH.m
| 130 |
utf_8
|
6cad4da90ce4145ad2b1dafcf286286f
|
% NLOPT_GN_ESCH: ESCH evolutionary strategy
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ESCH
val = 42;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_G_MLSL.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_G_MLSL.m
| 173 |
utf_8
|
fd60012f2c05bdeb027ee6dee44175fb
|
% NLOPT_G_MLSL: Multi-level single-linkage (MLSL), random (global, needs sub-algorithm)
%
% See nlopt_minimize for more information.
function val = NLOPT_G_MLSL
val = 38;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
nlopt_minimize_constrained.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/nlopt_minimize_constrained.m
| 5,174 |
utf_8
|
2093a6be53db585559168905f1fc1e4a
|
% Usage: [xopt, fmin, retcode] = nlopt_minimize_constrained
% (algorithm, f, f_data,
% fc, fc_data, lb, ub,
% xinit, stop)
%
% Minimizes a nonlinear multivariable function f(x, f_data{:}), subject
% to nonlinear constraints described by fc and fc_data (see below), where
% x is a row vector, returning the optimal x found (xopt) along with
% the minimum function value (fmin = f(xopt)) and a return code (retcode).
% A variety of local and global optimization algorithms can be used,
% as specified by the algorithm parameter described below. lb and ub
% are row vectors giving the upper and lower bounds on x, xinit is
% a row vector giving the initial guess for x, and stop is a struct
% containing termination conditions (see below).
%
% This function is a front-end for the external routine
% nlopt_minimize_constrained in the free NLopt nonlinear-optimization
% library, which is a wrapper around a number of free/open-source
% optimization subroutines. More details can be found on the NLopt
% web page (ab-initio.mit.edu/nlopt) and also under
% 'man nlopt_minimize_constrained' on Unix.
%
% f should be a handle (@) to a function of the form:
%
% [val, gradient] = f(x, ...)
%
% where x is a row vector, val is the function value f(x), and gradient
% is a row vector giving the gradient of the function with respect to x.
% The gradient is only used for gradient-based optimization algorithms;
% some of the algorithms (below) are derivative-free and only require
% f to return val (its value). f can take additional arguments (...)
% which are passed via the argument f_data: f_data is a cell array
% of the additional arguments to pass to f. (Recall that cell arrays
% are specified by curly brackets { ... }. For example, pass f_data={}
% for functions that require no additional arguments.)
%
% A few of the algorithms (below) support nonlinear constraints,
% in particular NLOPT_LD_MMA and NLOPT_LN_COBYLA. These (if any)
% are specified by fc and fc_data. fc is a cell array of
% function handles, and fc_data is a cell array of cell arrays of the
% corresponding arguments. Both must have the same length m, the
% number of nonlinear constraints. That is, fc{i} is a handle
% to a function of the form:
%
% [val, gradient] = fc(x, ...)
%
% (where the gradient is only used for gradient-based algorithms),
% and the ... arguments are given by fc_data{i}{:}.
%
% If you have no nonlinear constraints, i.e. fc = fc_data = {}, then
% it is equivalent to calling the the nlopt_minimize() function,
% which omits the fc and fc_data arguments.
%
% stop describes the termination criteria, and is a struct with a
% number of optional fields:
% stop.ftol_rel = fractional tolerance on function value
% stop.ftol_abs = absolute tolerance on function value
% stop.xtol_rel = fractional tolerance on x
% stop.xtol_abs = row vector of absolute tolerances on x components
% stop.fmin_max = stop when f < fmin_max is found
% stop.maxeval = maximum number of function evaluations
% stop.maxtime = maximum run time in seconds
% stop.verbose = > 0 indicates verbose output
% Minimization stops when any one of these conditions is met; any
% condition that is omitted from stop will be ignored. WARNING:
% not all algorithms interpret the stopping criteria in exactly the
% same way, and in any case ftol/xtol specify only a crude estimate
% for the accuracy of the minimum function value/x.
%
% The algorithm should be one of the following constants (name and
% interpretation are the same as for the C function). Names with
% _G*_ are global optimization, and names with _L*_ are local
% optimization. Names with _*N_ are derivative-free, while names
% with _*D_ are gradient-based algorithms. Algorithms:
%
% NLOPT_GD_MLSL_LDS, NLOPT_GD_MLSL, NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
% NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT_L, NLOPT_GN_DIRECT_L_NOSCAL,
% NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_L_RAND_NOSCAL, NLOPT_GN_DIRECT,
% NLOPT_GN_DIRECT_NOSCAL, NLOPT_GN_ISRES, NLOPT_GN_MLSL_LDS, NLOPT_GN_MLSL,
% NLOPT_GN_ORIG_DIRECT_L, NLOPT_GN_ORIG_DIRECT, NLOPT_LD_AUGLAG_EQ,
% NLOPT_LD_AUGLAG, NLOPT_LD_LBFGS, NLOPT_LD_LBFGS_NOCEDAL, NLOPT_LD_MMA,
% NLOPT_LD_TNEWTON, NLOPT_LD_TNEWTON_PRECOND,
% NLOPT_LD_TNEWTON_PRECOND_RESTART, NLOPT_LD_TNEWTON_RESTART,
% NLOPT_LD_VAR1, NLOPT_LD_VAR2, NLOPT_LN_AUGLAG_EQ, NLOPT_LN_AUGLAG,
% NLOPT_LN_BOBYQA, NLOPT_LN_COBYLA, NLOPT_LN_NELDERMEAD,
% NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NEWUOA, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX
%
% For more information on individual algorithms, see their individual
% help pages (e.g. "help NLOPT_LN_SBPLX").
function [xopt, fmin, retcode] = nlopt_minimize_constrained(algorithm, f, f_data, fc, fc_data, lb, ub, xinit, stop)
opt = stop;
if (isfield(stop, 'minf_max'))
opt.stopval = stop.minf_max;
end
opt.algorithm = algorithm;
opt.min_objective = @(x) f(x, f_data{:});
opt.lower_bounds = lb;
opt.upper_bounds = ub;
for i = 1:length(fc)
opt.fc{i} = @(x) fc{i}(x, fc_data{i}{:});
end
[xopt, fmin, retcode] = nlopt_optimize(opt, xinit);
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LN_NEWUOA_BOUND.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LN_NEWUOA_BOUND.m
| 207 |
utf_8
|
67ca43d03f5347c97069a86e3e73a7e4
|
% NLOPT_LN_NEWUOA_BOUND: Bound-constrained optimization via NEWUOA-based quadratic models (local, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_LN_NEWUOA_BOUND
val = 27;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
nlopt_minimize.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/nlopt_minimize.m
| 3,978 |
utf_8
|
f71b68688b460e0440ff89bdf086d2a7
|
% Usage: [xopt, fmin, retcode] = nlopt_minimize(algorithm, f, f_data, lb, ub,
% xinit, stop)
%
% Minimizes a nonlinear multivariable function f(x, f_data{:}), where
% x is a row vector, returning the optimal x found (xopt) along with
% the minimum function value (fmin = f(xopt)) and a return code (retcode).
% A variety of local and global optimization algorithms can be used,
% as specified by the algorithm parameter described below. lb and ub
% are row vectors giving the upper and lower bounds on x, xinit is
% a row vector giving the initial guess for x, and stop is a struct
% containing termination conditions (see below).
%
% This function is a front-end for the external routine nlopt_minimize
% in the free NLopt nonlinear-optimization library, which is a wrapper
% around a number of free/open-source optimization subroutines. More
% details can be found on the NLopt web page (ab-initio.mit.edu/nlopt)
% and also under 'man nlopt_minimize' on Unix.
%
% f should be a handle (@) to a function of the form:
%
% [val, gradient] = f(x, ...)
%
% where x is a row vector, val is the function value f(x), and gradient
% is a row vector giving the gradient of the function with respect to x.
% The gradient is only used for gradient-based optimization algorithms;
% some of the algorithms (below) are derivative-free and only require
% f to return val (its value). f can take additional arguments (...)
% which are passed via the argument f_data: f_data is a cell array
% of the additional arguments to pass to f. (Recall that cell arrays
% are specified by curly brackets { ... }. For example, pass f_data={}
% for functions that require no additional arguments.)
%
% stop describes the termination criteria, and is a struct with a
% number of optional fields:
% stop.ftol_rel = fractional tolerance on function value
% stop.ftol_abs = absolute tolerance on function value
% stop.xtol_rel = fractional tolerance on x
% stop.xtol_abs = row vector of absolute tolerances on x components
% stop.fmin_max = stop when f < fmin_max is found
% stop.maxeval = maximum number of function evaluations
% stop.maxtime = maximum run time in seconds
% stop.verbose = > 0 indicates verbose output
% Minimization stops when any one of these conditions is met; any
% condition that is omitted from stop will be ignored. WARNING:
% not all algorithms interpret the stopping criteria in exactly the
% same way, and in any case ftol/xtol specify only a crude estimate
% for the accuracy of the minimum function value/x.
%
% The algorithm should be one of the following constants (name and
% interpretation are the same as for the C function). Names with
% _G*_ are global optimization, and names with _L*_ are local
% optimization. Names with _*N_ are derivative-free, while names
% with _*D_ are gradient-based algorithms. Algorithms:
%
% NLOPT_GD_MLSL_LDS, NLOPT_GD_MLSL, NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND,
% NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT_L, NLOPT_GN_DIRECT_L_NOSCAL,
% NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_L_RAND_NOSCAL, NLOPT_GN_DIRECT,
% NLOPT_GN_DIRECT_NOSCAL, NLOPT_GN_ISRES, NLOPT_GN_MLSL_LDS, NLOPT_GN_MLSL,
% NLOPT_GN_ORIG_DIRECT_L, NLOPT_GN_ORIG_DIRECT, NLOPT_LD_AUGLAG_EQ,
% NLOPT_LD_AUGLAG, NLOPT_LD_LBFGS, NLOPT_LD_LBFGS_NOCEDAL, NLOPT_LD_MMA,
% NLOPT_LD_TNEWTON, NLOPT_LD_TNEWTON_PRECOND,
% NLOPT_LD_TNEWTON_PRECOND_RESTART, NLOPT_LD_TNEWTON_RESTART,
% NLOPT_LD_VAR1, NLOPT_LD_VAR2, NLOPT_LN_AUGLAG_EQ, NLOPT_LN_AUGLAG,
% NLOPT_LN_BOBYQA, NLOPT_LN_COBYLA, NLOPT_LN_NELDERMEAD,
% NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NEWUOA, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX
%
% For more information on individual algorithms, see their individual
% help pages (e.g. "help NLOPT_LN_SBPLX").
function [xopt, fmin, retcode] = nlopt_minimize(algorithm, f, f_data, lb, ub, xinit, stop)
[xopt, fmin, retcode] = nlopt_minimize_constrained(algorithm, f, f_data, {}, {}, lb, ub, xinit, stop);
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_ORIG_DIRECT_L.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_ORIG_DIRECT_L.m
| 170 |
utf_8
|
d61c095f05bf7fd4fbbf2ddbe22c58a4
|
% NLOPT_GN_ORIG_DIRECT_L: Original DIRECT-L version (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_ORIG_DIRECT_L
val = 7;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_TNEWTON_RESTART.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON_RESTART.m
| 184 |
utf_8
|
a482ddde1f6d6b386a3810fc142829a2
|
% NLOPT_LD_TNEWTON_RESTART: Truncated Newton with restarting (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON_RESTART
val = 16;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_TNEWTON_PRECOND_RESTART.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON_PRECOND_RESTART.m
| 215 |
utf_8
|
1082f147b249cc1f7e564aa3b2462048
|
% NLOPT_LD_TNEWTON_PRECOND_RESTART: Preconditioned truncated Newton with restarting (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON_PRECOND_RESTART
val = 18;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_TNEWTON_PRECOND.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_TNEWTON_PRECOND.m
| 183 |
utf_8
|
167e47e5e372152ffba7552308e1193f
|
% NLOPT_LD_TNEWTON_PRECOND: Preconditioned truncated Newton (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_TNEWTON_PRECOND
val = 17;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GD_STOGO_RAND.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GD_STOGO_RAND.m
| 170 |
utf_8
|
fea04c6327afd49e02ff536330527f60
|
% NLOPT_GD_STOGO_RAND: StoGO with randomized search (global, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_GD_STOGO_RAND
val = 9;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_LD_LBFGS.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_LD_LBFGS.m
| 160 |
utf_8
|
02936ac48fc420cd73b5a6848808dd68
|
% NLOPT_LD_LBFGS: Limited-memory BFGS (L-BFGS) (local, derivative-based)
%
% See nlopt_minimize for more information.
function val = NLOPT_LD_LBFGS
val = 11;
|
github
|
PECAplus/PECAplus_cmd_line-master
|
NLOPT_GN_MLSL_LDS.m
|
.m
|
PECAplus_cmd_line-master/include_dir/nlopt-2.4.2/octave/NLOPT_GN_MLSL_LDS.m
| 183 |
utf_8
|
0fb34e2ebed6204b06925782f5fc2417
|
% NLOPT_GN_MLSL_LDS: Multi-level single-linkage (MLSL), quasi-random (global, no-derivative)
%
% See nlopt_minimize for more information.
function val = NLOPT_GN_MLSL_LDS
val = 22;
|
github
|
chili-epfl/openpose-master
|
classification_demo.m
|
.m
|
openpose-master/3rdparty/caffe/matlab/demo/classification_demo.m
| 5,466 |
utf_8
|
45745fb7cfe37ef723c307dfa06f1b97
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to the Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
% and what versions are installed.
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab code for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to your Matlab search PATH in order to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
Coderx7/Caffe_1.0_Windows-master
|
classification_demo.m
|
.m
|
Caffe_1.0_Windows-master/matlab/demo/classification_demo.m
| 5,466 |
utf_8
|
45745fb7cfe37ef723c307dfa06f1b97
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to the Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
% and what versions are installed.
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab code for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to your Matlab search PATH in order to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
ekalkan/P-PHASE-PICKER-master
|
PphasePicker.m
|
.m
|
P-PHASE-PICKER-master/PphasePicker.m
| 10,196 |
utf_8
|
821c0c9d6e38fdaf48b1805ae6430f61
|
function [loc, snr_db] = PphasePicker(x, dt, type, pflag, Tn, xi, nbins, o)
% AN AUTOMATIC P-PHASE ARRIVAL TIME PICKER
%
% Computes P-phase arrival time in windowed digital single-component
% acceleration or broadband velocity record without requiring threshold
% settings. Returns P-phase arrival time in second, and signal-to-noise
% ratio in decibel. Input waveform must be an evenly spaced vector.
% PLEASE READ IMPORTANT NOTES BELOW
%
% Syntax:
% [loc, snr_db] = PphasePicker(x, dt, type, pflag, Tn, xi, nbins, o)
%
% Input (required):
% x = raw broadband velocity or acceleration data in
% single-column format
% dt = sampling interval in second (e.g., 0.005)
% type = 'sm' or 'SM' for acceleration waveform (default bandwidth
% = 0.1-20 Hz)
% 'wm' or 'WM' for velocity waveform (default bandwidth 7-90
% Hz)
% 'na' or 'NA' no bandpass filtering
%
% pflag = 'Y' or 'y' for plotting waveform with P-wave arrival time
% marked
% 'N' or 'n' for no plot
%
% Input (optional):
% Tn = undamped natural period in second (default is 0.01 for
% records sampled with 100 samples-per-second or larger; for
% records with lower than 100 samples-per-second default
% is 0.1 s)
% xi = damping ratio (default is 0.6)
% nbins = histogram bin size (default is 2/dt for
% strong-motion acceleration and broadband velocity
% waveforms; regional or teleseismic records may need
% different values of bin size for better picking results)
% o = 'to_peak' to take segment of waveform from beginning to
% absolute peak value (recommended for fast processing)
% 'full' to take full waveform
%
% Output:
% loc = P-phase arrival time in second
% snr_db = signal-to-noise ratio in decibel
%
% Update(s):
% 2016/09/09 statelevel command is hard coded
% 2016/09/09 no bandpass filter option is added
% 2017/01/05 input normalized to prevent numerical instability
% as a result of very low amplitude input
% 2017/02/17 included signal-to-noise ratio computation
%
% Example:
% Let x be a single component strong-motion acceleration waveform
% with 200 sample per second (dt = 0.005). The input for
% P-phase picking will be
%
% [loc, snr_db] = PphasePicker(x, 0.005, 'SM', 'Y');
%
% or with optional parameters of plotting waveform (pflag =
% 'Y', Tn = 0.01, damping ratio = 0.7, histogram bin size =
% 400 and by taking segment of waveform from beginning to its
% peak is
%
% [loc, snr_db] = PphasePicker(x, 0.005, 'SM', 'Y', 0.01, 0.7, 400, 'to_peak')
%
% IMPORTANT NOTE- 1: User may need to change default corner frequencies of
% Butterworth bandpass filter as appropriate to noise level of the input
% signal.
%
% IMPORTANT NOTE- 2: If sampling rate of input signal is lower than 100
% samples-per-second, use Tn = 0.1 s instead of 0.01 s to avoid numerical
% errors. If Tn is not specified, default values will be used based on
% the sampling rate.
%
% Comment blocks and equation references in this function correspond to
% the following publication:
%
% Kalkan, E. (2016). "An automatic P-phase arrival time picker", Bull. of
% Seismol. Soc. of Am., 106, No. 3, doi: 10.1785/0120150111
%
% THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
% WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
% NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
% BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
% OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
% TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
% USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
% DAMAGE.
%
% Written by Dr. Erol Kalkan, P.E. ([email protected])
% $Revision: 16.0 $ $Date: 2017/02/17 18:14:00 $
if nargin > 2
validateattributes(x,{'double'},{'real','finite','vector'}, ...
'PphasePicker','X');
validateattributes(dt,{'double'},{'real','finite','scalar'}, ...
'PphasePicker','DT');
validatestring(type,{'sm','wm','na','SM','WM','NA'},'PphasePicker','INPUT');
else
error('Not enough inputs. See help documentation.');
end
if nargin > 3
validatestring(pflag,{'Y','y','N','n'},'PphasePicker','pflag');
else
pflag = 'n';
end
if nargin > 4
validateattributes(Tn,{'double'},{'real','finite','scalar'}, ...
'PphasePicker','TN');
validateattributes(xi,{'double'},{'real','finite','scalar','<',1}, ...
'PphasePicker','XI');
validateattributes(nbins,{'double'},{'real','finite','scalar','>',1}, ...
'PphasePicker','NBINS');
else
if dt <= 0.01;
Tn = 0.01;
nbins = round(2/dt);
else
Tn = 0.1;
nbins = 200;
end
xi = 0.6;
end
if nargin > 7
validatestring(o,{'to_peak','full'},'PphasePicker','O');
else
o = 'to_peak';
end
% User may modify the filter corner frequencies (flp and fhp) for more
% accurate picking
switch type
% Weak-motion low- and high-pass corner frequencies in Hz
case {'wm','WM'}
filtflag = 1;
%flp = 7; fhp = 90;
flp = 0.09; fhp = 5;
%flp = 1; fhp = 2;
% Strong-motion low- and high-pass corner frequencies in Hz
case {'sm','SM'}
filtflag = 1;
flp = 0.1; fhp = 1.5;
% No bandpass filter will be applied
case {'na','NA'}
filtflag = 0;
x_d = detrend(x); % detrend waveform
end
x_org = x;
% Normalize input to prevent numerical instability from very low amplitudes
x = x/max(abs(x));
% Bandpass filter and detrend waveform
if filtflag ~= 0;
x_f = bandpass(x,flp,fhp,dt,4);
x_d = detrend(x_f);
end
switch o
case {'to_peak'}
ind_peak = find(abs(x_d) == max(abs(x_d)));
xnew = x_d(1:ind_peak);
otherwise
xnew = x_d;
end
% Construct a fixed-base viscously damped SDF oscillator
omegan = 2*pi/Tn; % natural frequency in radian/second
C = 2*xi*omegan; % viscous damping term
K = omegan^2; % stiffness term
y(:,1) = [0;0]; % response vector
% Solve second-order ordinary differential equation of motion
A = [0 1; -K -C]; Ae = expm(A*dt); AeB = A\(Ae-eye(2))*[0;1];
for k = 2:length(xnew); y(:,k) = Ae*y(:,k-1) + AeB*xnew(k); end
veloc = (y(2,:))'; % relative velocity of mass
Edi = 2*xi*omegan*veloc.^2; % integrand of viscous damping energy
% Apply histogram method
R = statelevel(Edi,nbins);
locs = find(Edi > R(1));
indx = find(xnew(1:locs(1)-1).*xnew(2:locs(1)) < 0); % get zero crossings
TF = isempty(indx);
% Update first onset
if TF == 0;
loc = indx(end)*dt;
else
R = statelevel(Edi,ceil(nbins/2)); % try nbins/2
locs = find(Edi > R(1));
indx = find(xnew(1:locs(1)-1).*xnew(2:locs(1)) < 0); % get zero crossings
TF = isempty(indx);
if TF == 0; loc = indx(end)*dt; else loc = -1; end
end
% Compute SNR
if ~loc == -1;
snr_db = -1
else
snr_db = SNR(x,x(1:loc/dt));
end
fprintf('P-phase arrival time in second = %5.2f\n',loc);
fprintf('SNR in decibel = %5.2f\n',snr_db);
if pflag == 'Y' || pflag == 'y';
fsz = 16; lw = 1; % font size and line width
figure
set(gcf,'position',[300 283 1000 250]);
set(gca,'TickLength',[.0025 .0025]);
set(gca,'fontname','times','fontsize',fsz);
T = [0:dt:(numel(x)-1)*dt];
plot(T,x_org,'k','LineWidth',lw); grid on;
if loc ~= -1;
line([loc loc],[ylim],'Color','r','LineWidth',lw);
end
xlabel('Time, s','FontSize',[fsz+2],'fontname','times','Color','k');
ylabel('Amplitude','FontSize',[fsz+2],'fontname','times','Color','k');
end
return
function [levels, histogram, bins] = statelevel(y,n)
ymax = max(y);
ymin = min(y)-eps;
% Compute Histogram
idx = ceil(n * (y-ymin)/(ymax-ymin));
idx = idx(idx>=1 & idx<=n);
histogram = zeros(n, 1);
for i=1:numel(idx)
histogram(idx(i)) = histogram(idx(i)) + 1;
end
% Compute Center of Each Bin
ymin = min(y);
Ry = ymax-ymin;
dy = Ry/n;
bins = ymin + ((1:n)-0.5)*dy;
% Compute State Levels
iLowerRegion = find(histogram > 0, 1, 'first');
iUpperRegion = find(histogram > 0, 1, 'last');
iLow = iLowerRegion(1);
iHigh = iUpperRegion(1);
% Define the lower and upper histogram regions halfway
% between the lowest and highest nonzero bins.
lLow = iLow;
lHigh = iLow + floor((iHigh - iLow)/2);
uLow = iLow + floor((iHigh - iLow)/2);
uHigh = iHigh;
% Upper and lower histograms
lHist = histogram(lLow:lHigh, 1);
uHist = histogram(uLow:uHigh, 1);
levels = zeros(1,2);
[~, iMax] = max(lHist(2:end));
[~, iMin] = max(uHist);
levels(1) = ymin + dy * (lLow + iMax(1) - 1.5);
levels(2) = ymin + dy * (uLow + iMin(1) - 1.5);
% Lowest histogram bin numbers for upper and lower histograms
lHist_final = (lLow + iMax(1) - 1);
uHist_final = (uLow + iMin(1) - 1);
return
function [x_f] = bandpass(c, flp, fhi, dt, n)
% Butterworth Acausal Bandpass Filter
%
% Syntax:
% x_f = bandpass(c, flp, fhi, dt, n)
%
% Input:
% x = input time series
% flp = low-pass corner frequency in Hz
% fhi = high-pass corner frequency in Hz
% dt = sampling interval in second
% n = order
%
% Output:
% [x_f] = bandpass filtered signal
fnq = 1/(2*dt); % Nyquist frequency
Wn = [flp/fnq fhi/fnq]; % Butterworth bandpass non-dimensional frequency
[b,a] = butter(n,Wn);
x_f = filtfilt(b,a,c);
return
function [r] = SNR(signal,noise)
% Compute signal-to-noise ratio
aps = mean(signal.^2); % average power of signal
apn = mean(noise.^2); % average power of noise
r = 10*log10(aps/apn); % signal-to-noise ratio in decibel
return
|
github
|
ISET/iset3d-v3-master
|
autoArrangeFigures.m
|
.m
|
iset3d-v3-master/scripts/psf/autoArrangeFigures.m
| 2,693 |
utf_8
|
9ff956614f21a392f0554ec3c62a4984
|
function autoArrangeFigures(NH, NW, monitor_id)
% INPUT :
% NH : number of grid of vertical direction
% NW : number of grid of horizontal direction
% OUTPUT :
%
% get every figures that are opened now and arrange them.
%
% autoArrangeFigures selects automatically Monitor1.
% If you are dual(or more than that) monitor user, I recommend to set wide
% monitor as Monitor1.
%
% if you want arrange automatically, type 'autoArrangeFigures(0,0)' or 'autoArrangeFigures()'.
% But maximum number of figures for automatic mode is 27.
%
% if you want specify grid for figures, give numbers for parameters.
% but if your grid size is smaller than required one for accommodating
% all figures, this function changes to automatic mode and if more
% figures are opend than maximum number, then it gives error.
%
% Notes
% + 2017.1.20 use monitor id(Adam Danz's idea)
%
% leejaejun, Koreatech, Korea Republic, 2014.12.13
% [email protected]
if nargin < 2
NH = 0;
NW = 0;
monitor_id = 1;
end
task_bar_offset = [30 50];
%%
N_FIG = NH * NW;
if N_FIG == 0
autoArrange = 1;
else
autoArrange = 0;
end
figHandle = sortFigureHandles(findobj('Type','figure'));
n_fig = size(figHandle,1);
if n_fig <= 0
warning('figures are not found');
return
end
screen_sz = get(0,'MonitorPositions');
screen_sz = screen_sz(monitor_id, :);
scn_w = screen_sz(3) - task_bar_offset(1);
scn_h = screen_sz(4) - task_bar_offset(2);
scn_w_begin = screen_sz(1) + task_bar_offset(1);
scn_h_begin = screen_sz(2) + task_bar_offset(2);
if autoArrange==0
if n_fig > N_FIG
autoArrange = 1;
warning('too many figures than you told. change to autoArrange');
else
nh = NH;
nw = NW;
end
end
if autoArrange == 1
grid = [2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4;
3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 6 6 6 7 7 7 7 7]';
if n_fig > length(grid)
warning('too many figures(maximum = %d)',length(grid))
return
end
if scn_w > scn_h
nh = grid(n_fig,1);
nw = grid(n_fig,2);
else
nh = grid(n_fig,2);
nw = grid(n_fig,1);
end
end
fig_width = scn_w/nw;
fig_height = scn_h/nh;
fig_cnt = 1;
for i=1:1:nh
for k=1:1:nw
if fig_cnt>n_fig
return
end
fig_pos = [scn_w_begin+fig_width*(k-1) ...
scn_h_begin+scn_h-fig_height*i ...
fig_width ...
fig_height];
set(figHandle(fig_cnt),'OuterPosition',fig_pos);
fig_cnt = fig_cnt + 1;
end
end
end
function figSorted = sortFigureHandles(figs)
[tmp, idx] = sort([figs.Number]);
figSorted = figs(idx);
end
|
github
|
ISET/iset3d-v3-master
|
s_piReadRenderLF.m
|
.m
|
iset3d-v3-master/scripts/pbrtV2/s_piReadRenderLF.m
| 4,285 |
utf_8
|
da68d5c9ccbb68e19f3fa1cc518e6894
|
% s_piReadRenderLF
% *** DEPRECATED ****
%
% ****** No longer working ********
%
% I think this was based on the original Andy Lin microlens code, not the
% newer Michael Mara version. Should be updated.
%
%
% Implements a light field camera system with an array of microlenses over a
% sensor. Converts the OI into a sensor, the sensor into a rendered image, and
% then uses D. Dansereau's toolbox to produce a small video of the images seen
% through the different sub-images.
%
% Time N Rays NMicroLens Nsubpixels
% 64 64 7,7
% 30 s 64 128 7,7
% 150 s 128 128 7,7
% 103 s 16 128 7,7
%
% TL/BW SCIEN, 2017
%% Initialize ISET and Docker
ieInit;
if ~piDockerExists, piDockerConfig; end
%% Specify the pbrt scene file and its dependencies
% We organize the pbrt files with its includes (textures, brdfs, spds, geometry)
% in a single directory.
%{
fname = fullfile(piRootPath,'data','teapot-area','teapot-area-light.pbrt');
if ~exist(fname,'file'), error('File not found'); end
% Read the main scene pbrt file. Return it as a recipe
thisR = piRead(fname);
%}
thisR = piRecipeDefault('scene name','teapot');
%% Modify the recipe, thisR, to adjust the rendering
% Configure the light field camera
thisR.set('camera','light field');
thisR.set('n microlens',[128 128]);
thisR.set('n subpixels',[7, 7]);
thisR.set('microlens',1); % Not sure what on or off means. Investigate.
thisR.set('aperture',50); % LF cameras need a big aperture
thisR.set('rays per pixel',16); % Governs quality of rendering
thisR.set('light field film resolution',true); % Sets film resolution
% Move the camera far enough away to get a decent focus.
thisR.set('object distance',35); % In mm
thisR.set('autofocus',true);
% thisR.get('film resolution')
%% Write out modified PBRT file
[p,n,e] = fileparts(fname);
thisR.set('outputFile',fullfile(piRootPath,'local','teapot',[n,e]));
piWrite(thisR);
%% Render with the Docker container
[oi,results] = piRender(thisR,'mean illuminance',10);
% Show it in ISET
ieAddObject(oi); oiWindow; oiSet(oi,'gamma',0.5);
%% Create a sensor
% Make a sensor so that each pixel is aligned with a single sample
% in the OI. Then produce the sensor data. The sensor has a standard
% Bayer color filter array.
sensor = sensorCreate('light field',oi);
sensor = sensorSet(sensor,'exp time',0.01); % 10 ms.
% Compute the sensor responses and show
sensor = sensorCompute(sensor,oi);
% ieAddObject(sensor); sensorWindow('scale',1);
%% Use the image processor to demosaic (bilinear) the sensor data
ip = ipCreate;
ip = ipCompute(ip,sensor);
ieAddObject(ip); ipWindow;
%% Pack the sensor rgb image into the lightfield structure
% This is the format used by Don Dansereau's light field toolbox
nPinholes = thisR.get('n microlens'); % Or pinholes
lightfield = ip2lightfield(ip,'pinholes',nPinholes,'colorspace','srgb');
%% Show little video if you like
%{
% Click on window and press ESC to end
LFDispVidCirc(lightfield.^(1/2.2));
%}
%% Display the center pixel image
%{
r = ceil(size(lightfield,1)/2);
c = ceil(size(lightfield,2)/2);
img = squeeze(lightfield(r,c,:,:,:).^(1/2.2));
vcNewGraphWin; imagesc(img); truesize; axis off
%}
%% White balance
%{
% We should pull this out into a separate script, experiment,
% and run it on saved values to speed up debugging.
% This should get us how to scale each pixel so white is white
[cMatrix,sensorW,oiW] = piWhiteField(thisR);
% ieAddObject(oiW); oiWindow;
% ieAddObject(sensorW); sensorImageWindow;
% vcNewGraphWin; imagesc(cMatrix); truesize
% This function should be added to ISET, I think, to correct
function sensorW = sensorScale(sensor,varargin);
%
% Syntax (typical?) might be:
% sensor = sensorScale(sensor,'volts',cMatrix);
% This is what it would do
v = sensorGet(sensor,'volts');
lst = (cMatrix > 1/10); % Don't want to scale by more than this
v(lst) = v(lst) ./ cMatrix(lst);
% vcNewGraphWin; imagesc(v); truesize;
% Then replace the volts
sensorW = sensorSet(sensor,'volts',v);
sensorW = sensorSet(sensorW,'name','white field');
end
ieAddObject(sensorW); sensorWindow('scale',1);
% If you want to continue along ...
sensor = sensorW;
%
%}
|
github
|
ISET/iset3d-v3-master
|
piRecipeRectify.m
|
.m
|
iset3d-v3-master/utilities/piRecipeRectify.m
| 6,556 |
utf_8
|
c633e5dc10b6bf17c426d55927a872a9
|
function thisR = piRecipeRectify(thisR,varargin)
% Move the camera and objects so that the origin is 0 and the view
% direction is the z-axis
%
% Description
%
% Inputs
% thisR
%
% Optional key/val pairs
% rotate - Logical to supress rotation. Default is true
%
% Return
% thisR
%
% See piRotate for the rotation matrices for the three axes
% See also
%
% Examples
%{
thisR = piRecipeDefault('scene name','simple scene');
thisR.set('fov',60);
thisR.set('film resolution',[160 160]);
piAssetGeometry(thisR);
piWRS(thisR);
thisR = piRecipeRectify(thisR);
piAssetGeometry(thisR);
piWRS(thisR);
%}
%% Parser
p = inputParser;
p.addRequired('thisR',@(x)(isa(x,'recipe')));
p.addParameter('rotate',true,@islogical);
p.parse(thisR,varargin{:});
%% Check if we need to insert a rectify node
% Identify all the children of root
idChildren = thisR.get('asset','root','children');
if numel(idChildren) == 1
% If there is only one node, and it is called rectify just get it
tmp = split(thisR.get('asset',idChildren,'name'),'_');
if isequal(tmp{end},'rectify')
% No need to insert a rectify node. It is there already.
idRectify = thisR.get('asset','rectify','id');
else
% Insert a rectify node below the root and before all other nodes
rectNode = piAssetCreate('type','branch');
rectNode.name = 'rectify';
thisR.set('asset','root','add',rectNode);
idRectify = thisR.get('asset','rectify','id');
% Place all the previous children under rectify
for ii=1:numel(idChildren)
thisR.set('asset',idChildren(ii),'parent',idRectify);
end
end
else
% There was more than one node.
% Insert a rectify node below the root and before all other nodes
rectNode = piAssetCreate('type','branch');
rectNode.name = 'rectify';
thisR.set('asset','root','add',rectNode);
idRectify = thisR.get('asset','rectify','id');
% Place all the previous children under rectify
for ii=1:numel(idChildren)
thisR.set('asset',idChildren(ii),'parent',idRectify);
end
end
% thisR.show(); thisR.show('objects')
%% Translation
% The camera is handled separately from the objects
from = thisR.get('from');
if ~isequal(from,[0,0,0])
% Move the camera. Maybe there is already a set for this?
thisR.set('from',[0,0,0]);
to = thisR.get('to');
thisR.set('to',to - from);
% I think this may be doing something more complicated than what I
% want.
% piCameraTranslate(thisR,'xshift',-from(1), ...
% 'yshift',-from(2), ...
% 'zshift',-from(3));
% Set the translation of the rectify node
piAssetSet(thisR,idRectify,'translation',-from);
% thisR.get('asset','rectify','translate')
% piAssetGeometry(thisR);
% piWrite(thisR); scene = piRender(thisR,'render type','radiance'); sceneWindow(scene);
end
%% Rotation around the new camera position at 0,0,0
% See if rotation was turned off
if ~p.Results.rotate, return; end
% Test whether we need to rotate the camera
% or the direction is already aligned with z axis.
[xAngle, yAngle] = direction2zaxis(thisR);
if xAngle == 0 && yAngle == 0, return; end
% Rotate to point the lookat direction along the z axis
rMatrix = piRotate([xAngle,yAngle,0]);
to = thisR.get('to');
thisR.set('to',(rMatrix*to(:))); % Set to a row vector
% piWrite(thisR); scene = piRender(thisR,'render type','radiance'); sceneWindow(scene);
% Reset the position of every object, rotating by the same amount
objects = thisR.get('objects');
for ii=1:numel(objects)
curPos = thisR.get('asset',objects(ii),'world position');
newPos = rMatrix*curPos(:);
thisR.set('asset',objects(ii),'world position',newPos);
thisR.set('asset',objects(ii),'world rotate',[xAngle, yAngle, 0]);
end
% thisR.set('asset','rectify', 'world rotate', [-xAngle,-yAngle,0]);
% thisR.get('asset','rectify','rotation')
% piWrite(thisR); [scene,results] = piRender(thisR,'render type','radiance'); sceneWindow(scene);
end
function [xAngle, yAngle] = direction2zaxis(thisR)
%% Angles needed to align lookat with zaxis
%
% 0 = [0 cos(a) -sin(a)]*direction(:)
% 0 = cos(a)*direction(2) - sin(a)*direction(3)
% sin(a)*direction(3) = cos(a)*direction(2)
% sin(a)/cos(a) = (direction(2)/direction(3))
% tan(a) = (direction(2)/direction(3))
% a = atan(direction(2)/direction(3))
%
% Rotate again, this time to be perpendicular to the x-axis (x=0).
%
% 0 = cos(b)*d2(1) + 0*d2(2) + sin(b)*d2(3)
% sin(b)/cos(b) = -d2(1)/d2(3)
% b = atan(-d2(1)/d2(3))
%
xAngle = 0; yAngle = 0; % Assume aligned
% Angle to the z axis
direction = thisR.get('lookat direction'); % Unit vector
zaxis = [0 0 1];
CosTheta = max(min(dot(direction,zaxis),1),-1);
ztheta = real(acosd(CosTheta));
% If the direction is different from down the z-axis, do the rest.
% Otherwise, return. We consider 'different' to be within a tenth of a
% degree, I guess.
%
if ztheta < 0.1, return; end
% Find the rotations in deg around the x and y axes so that the new
% direction vector aligns with the zaxis.
%
% First find a rotation angle around the x-axis into the x-z plane.
% The angle must satisfy y = 0. So, we take out the row of the x-rotation
% matrix
%
% Test with different direction vectors
%
% direction = [1 2 0];
% direction = [-1 0 2];
xAngle = atan2d(direction(2),direction(3)); % Radians
xRotationMatrix = piRotate([rad2deg(xAngle),0,0]);
direction2 = xRotationMatrix*direction(:);
%{
% y entry of this vector should be 0
direction2
%}
% Now solve for y rotation
yAngle = atan2d(-direction2(1),direction2(3));
%{
% Should be aligned with z-axis
cos(yAngle)*direction2(1) + sin(yAngle)*direction2(3)
yRotationMatrix = piRotate([0,rad2deg(yAngle),0]);
direction3 = yRotationMatrix*direction2(:)
%}
end
%{
rMatrix = piRotate([xAngle,yAngle,0]);
% We have the angles. Rotate every object's position and its orientation
for ii=1:numel(objects)
pos = thisR.get('asset',objects(ii),'world coordinate');
pos = rMatrix*pos(:);
thisR.set('asset',objects(ii),'world coordinate',pos);
piAssetRotate('asset',objects(ii),[xAngle,yAngle,0]);
end
end
%}
%{
% NOTES
u = zaxis; v = direction;
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ztheta = real(acosd(CosTheta));
xaxis =
R = [cosd(theta) -sind(theta); sind(theta) cosd(theta)];
vR = v*R;
%}
% Find the 3D rotation matrix that brings direction to the zaxis.
% Call piDCM2angle to get the x,y,z rotations
% Call piAssetRotate with those three rotations
%}
|
github
|
ISET/iset3d-v3-master
|
piWrite.m
|
.m
|
iset3d-v3-master/utilities/piWrite.m
| 23,855 |
utf_8
|
74996513235188090a85988c93a0337a
|
function workingDir = piWrite(thisR,varargin)
% Write a PBRT scene file based on its renderRecipe
%
% Syntax
% workingDir = piWrite(thisR,varargin)
%
% The pbrt scene file and all the relevant resource files (geometry,
% materials, spds, others) are written out in a working directory. These
% are the files that will be mounted by the docker container and used by
% PBRT to create the radiance, depth, mesh metadata outputs.
%
% There are multiple options as to whether or not to overwrite files that
% are already present in the output directory. The logic and conditions
% about these overwrites is quite complex right now, and we need to
% simplify.
%
% In some cases, multiple PBRT scenes use the same resources files. If you
% know the resources files are already there, you can set
% overwriteresources to false. Similarly if you do not want to overwrite
% the pbrt scene file, set overwritepbrtfile to false.
%
% Input
% thisR: a recipe object describing the rendering parameters.
%
% Optional key/value parameters
% There are too many of these options. We hope to simplify
%
% overwrite pbrtfile - If scene PBRT file exists, overwrite (default true)
% overwrite resources - If the resources files exist, overwrite (default true)
% overwrite lensfile - Logical. Default true
% Deprecated overwrite materials - Logical. Default true
% Deprecated overwrite geometry - Logical. Default true
% overwrite json - Logical. Default true
% lightsFlag
% thistrafficflow
%
% verbose -- how chatty we are
%
% Return
% workingDir - path to the output directory mounted by the Docker
% container. This is not necessary, however, because we
% can find it from thisR.get('output dir')
%
% TL Scien Stanford 2017
% JNM -- Add Windows support 01/25/2019
%
% See also
% piRead, piRender
% Examples:
%{
thisR = piRecipeDefault('scene name','MacBethChecker');
% thisR = piRecipeDefault('scene name','SimpleScene');
% thisR = piRecipeDefault('scene name','teapot');
piWrite(thisR);
scene = piRender(thisR,'render type','radiance');
sceneWindow(scene);
%}
%{
thisR = piRecipeDefault('scene name','chessSet');
lensfile = 'fisheye.87deg.6.0mm.json';
thisR.camera = piCameraCreate('omni','lensFile',lensfile);
thisR.set('film resolution',round([300 200]));
thisR.set('pixel samples',32); % Number of rays set the quality.
thisR.set('focus distance',0.45);
thisR.set('film diagonal',10);
thisR.integrator.subtype = 'path';
thisR.sampler.subtype = 'sobol';
thisR.set('aperture diameter',3);
piWrite(thisR);
oi = piRender(thisR,'render type','radiance');
oiWindow(oi);
%}
%{
piWrite(thisR,'overwrite resources',false,'overwrite pbrt file',true);
piWrite(thisR);
%}
%% Parse inputs
varargin = ieParamFormat(varargin);
p = inputParser;
% When varargin contains a number, the ieParamFormat() method fails.
% It takes only a string or cell. We should look into that.
% varargin = ieParamFormat(varargin);
p.addRequired('thisR',@(x)isequal(class(x),'recipe'));
% Copy over the whole directory
p.addParameter('overwriteresources', true,@islogical);
% Overwrite the specific scene file
p.addParameter('overwritepbrtfile',true,@islogical);
% Force overwrite of the lens file
p.addParameter('overwritelensfile',true,@islogical);
% Overwrite materials.pbrt
p.addParameter('overwritematerials',true,@islogical);
% Overwrite geometry.pbrt
p.addParameter('overwritegeometry',true,@islogical);
% Create a new materials.pbrt
% p.addParameter('creatematerials',false,@islogical);
% % control lighting in geomtery.pbrt
% p.addParameter('lightsflag',false,@islogical);
%
% % Read trafficflow variable
% p.addParameter('thistrafficflow',[]);
% Store JSON recipe for the traffic scenes
p.addParameter('overwritejson',true,@islogical);
p.addParameter('verbose', 0, @isnumeric);
p.parse(thisR,varargin{:});
overwriteresources = p.Results.overwriteresources;
overwritepbrtfile = p.Results.overwritepbrtfile;
overwritelensfile = p.Results.overwritelensfile;
overwritematerials = p.Results.overwritematerials;
overwritegeometry = p.Results.overwritegeometry;
% creatematerials = p.Results.creatematerials;
% lightsFlag = p.Results.lightsflag;
% thistrafficflow = p.Results.thistrafficflow;
overwritejson = p.Results.overwritejson;
verbosity = p.Results.verbose;
%% Check the input and output directories
% Input must exist
inputDir = thisR.get('input dir');
if ~exist(inputDir,'dir'), warning('Could not find inputDir: %s\n',inputDir); end
% Make working dir if it does not already exist
workingDir = thisR.get('output dir');
if ~exist(workingDir,'dir'), mkdir(workingDir); end
% Make a geometry directory
geometryDir = thisR.get('geometry dir');
if ~exist(geometryDir, 'dir'), mkdir(geometryDir); end
renderDir = thisR.get('rendered dir');
if ~exist(renderDir,'dir'), mkdir(renderDir); end
%% Selectively copy data from the input to the output directory.
piWriteCopy(thisR,overwriteresources,overwritepbrtfile, verbosity)
%% If the optics type is lens, copy the lens file to a lens sub-directory
if isequal(thisR.get('optics type'),'lens')
% realisticEye has a lens file slot but it is empty. So we check
% whether there is a lens file or not.
if ~isempty(thisR.get('lensfile'))
piWriteLens(thisR,overwritelensfile);
end
end
%% Open up the main PBRT scene file.
outFile = thisR.get('output file');
fileID = fopen(outFile,'w');
%% Write header
piWriteHeader(thisR,fileID)
%% Write Scale and LookAt commands first
piWriteLookAtScale(thisR,fileID);
%% Write transform start and end time
piWriteTransformTimes(thisR, fileID);
%% Write all other blocks that we have field names for
piWriteBlocks(thisR,fileID);
%% Add 'Include' lines for materials, geometry and lights into the scene PBRT file
piIncludeLines(thisR,fileID);
%% Write out the lights
piLightWrite(thisR);
%% Close the main PBRT scene file
fclose(fileID);
%% Write scene_materials.pbrt
% Even when copying, we extract the materials and textures
piWriteMaterials(thisR,overwritematerials);
%% If the exporter is copy, we do not write out the geometry
if isequal(thisR.exporter, 'Copy')
return;
end
%% Overwrite geometry.pbrt
piWriteGeometry(thisR,overwritegeometry);
%% Overwrite xxx.json - For traffic scenes
if overwritejson
[~,scene_fname,~] = fileparts(thisR.outputFile);
jsonFile = fullfile(workingDir,sprintf('%s.json',scene_fname));
jsonwrite(jsonFile,thisR);
end
end % End of piWrite
%% Helper functions
%% Copy the input resources to the output directory
function piWriteCopy(thisR,overwriteresources,overwritepbrtfile, verbosity)
% Copy files from the input to output dir
%
% In some cases we are looping over many renderings. In that case we may
% turn off the repeated copies by setting overwriteresources to false.
inputDir = thisR.get('input dir');
outputDir = thisR.get('output dir');
% We check for the overwrite here and we make sure there is also an input
% directory to copy from.
if overwriteresources && ~isempty(inputDir)
sources = dir(inputDir);
status = true;
for i = 1:length(sources)
if startsWith(sources(i).name(1),'.')
% Skip dot-files
continue;
elseif sources(i).isdir && (strcmpi(sources(i).name,'spds') || strcmpi(sources(i).name,'textures'))
% Copy the spds and textures directory files.
status = status && copyfile(fullfile(sources(i).folder, sources(i).name), fullfile(outputDir,sources(i).name));
else
% Selectively copy the files in the scene root folder
[~, ~, extension] = fileparts(sources(i).name);
% ChessSet needs input geometry because we can not parse it
% yet. --zhenyi
if ~(piContains(extension,'zip') || piContains(extension,'json'))
thisFile = fullfile(sources(i).folder, sources(i).name);
if verbosity > 1
fprintf('Copying %s\n',thisFile)
end
status = status && copyfile(thisFile, fullfile(outputDir,sources(i).name));
end
end
end
if(~status)
error('Failed to copy input directory to docker working directory.');
else
if verbosity > 1
fprintf('Copied resources from:\n');
fprintf('%s \n',inputDir);
fprintf('to \n');
fprintf('%s \n \n',outputDir);
end
end
end
%% Potentially overwrite the scene PBRT file
outFile = thisR.get('output file');
% Check if the outFile exists. If it does, decide what to do.
if(exist(outFile,'file'))
if overwritepbrtfile
% A pbrt scene file exists. We delete here and write later.
fprintf('Overwriting PBRT file %s\n',outFile)
delete(outFile);
else
% Do not overwrite is set, and yet it exists. We don't like this
% condition, so we throw an error.
error('PBRT file %s exists.',outFile);
end
end
end
%% Put the header into the scene PBRT file
function piWriteHeader(thisR,fileID)
% Write the header
%
fprintf(fileID,'# PBRT file created with piWrite on %i/%i/%i %i:%i:%0.2f \n',clock);
fprintf(fileID,'# PBRT version = %i \n',thisR.version);
fprintf(fileID,'\n');
% If a crop window exists, write out a warning
if(isfield(thisR.film,'cropwindow'))
fprintf(fileID,'# Warning: Crop window exists! \n');
end
end
%% Write lens information
function piWriteLens(thisR,overwritelensfile)
% Write out the lens file. Manage cases of overwrite or not
%
% We also manage special human eye model cases Some of these require
% auxiliary files like Index of Refraction files that are specified using
% Include statements in the World block.
%
% See also
% navarroWrite, navarroLensCreate, setNavarroAccommodation
% Make sure the we have the full path to the input lens file
inputLensFile = thisR.get('lens file');
outputDir = thisR.get('output dir');
outputLensFile = thisR.get('lens file output');
outputLensDir = fullfile(outputDir,'lens');
if ~exist(outputLensDir,'dir'), mkdir(outputLensDir); end
if isequal(thisR.get('realistic eye model'),'navarro')
% Write lens file and the ior files into the output directory.
navarroWrite(thisR);
elseif isequal(thisR.get('realistic eye model'),'legrand')
% Write lens file and the ior files into the output directory.
legrandWrite(thisR);
elseif isequal(thisR.get('realistic eye model'),'arizona')
% Write lens file into the output directory.
% Still tracking down why no IOR files are associated with this model.
arizonaWrite(thisR);
else
% If the working copy doesn't exist, copy it.
% If it exists but there is a force overwrite, delete and copy.
%
% We need to check that this will work for the RTF json file as well.
% I think so. (BW).
if ~exist(outputLensFile,'file')
copyfile(inputLensFile,outputLensFile);
elseif overwritelensfile
% It must exist. So if we are supposed overwrite
delete(outputLensFile);
copyfile(inputLensFile,outputLensFile);
end
end
end
%% LookAt and Scale fields
function piWriteLookAtScale(thisR,fileID)
% Optional Scale
% This was here for a long time. But I don't think it matters unless it is
% inside the 'WorldBegin' loop. So I deleted it and started writing the
% Scale inside the WorldBegin' write section
%
%{
theScale = thisR.get('scale');
if(~isempty(theScale))
fprintf(fileID,'Scale %0.2f %0.2f %0.2f \n', [theScale(1) theScale(2) theScale(3)]);
fprintf(fileID,'\n');
end
%}
% Optional Motion Blur
% default StartTime and EndTime is 0 to 1;
if isfield(thisR.camera,'motion')
motionTranslate = thisR.get('camera motion translate');
motionStart = thisR.get('camera motion rotation start');
motionEnd = thisR.get('camera motion rotation end');
fprintf(fileID,'ActiveTransform StartTime \n');
fprintf(fileID,'Translate 0 0 0 \n');
fprintf(fileID,'Rotate %f %f %f %f \n',motionStart(:,1)); % Z
fprintf(fileID,'Rotate %f %f %f %f \n',motionStart(:,2)); % Y
fprintf(fileID,'Rotate %f %f %f %f \n',motionStart(:,3)); % X
fprintf(fileID,'ActiveTransform EndTime \n');
fprintf(fileID,'Translate %0.2f %0.2f %0.2f \n',...
[motionTranslate(1),...
motionTranslate(2),...
motionTranslate(3)]);
fprintf(fileID,'Rotate %f %f %f %f \n',motionEnd(:,1)); % Z
fprintf(fileID,'Rotate %f %f %f %f \n',motionEnd(:,2)); % Y
fprintf(fileID,'Rotate %f %f %f %f \n',motionEnd(:,3)); % X
fprintf(fileID,'ActiveTransform All \n');
end
% Required LookAt
from = thisR.get('from');
to = thisR.get('to');
up = thisR.get('up');
fprintf(fileID,'LookAt %0.6f %0.6f %0.6f %0.6f %0.6f %0.6f %0.6f %0.6f %0.6f \n', ...
[from(:); to(:); up(:)]);
fprintf(fileID,'\n');
end
%% Transform times
function piWriteTransformTimes(thisR, fileID)
% Get transform times
startTime = thisR.get('transform times start');
endTime = thisR.get('transform times end');
if ~isempty(startTime) && ~isempty(endTime)
fprintf(fileID,'TransformTimes %0.6f %0.6f \n', ...
startTime, endTime);
end
end
%%
function piWriteBlocks(thisR,fileID)
% Loop through the thisR fields, writing them out as required
%
% The blocks that are written out include
%
% Camera, lens
%
workingDir = thisR.get('output dir');
% These are the main fields in the recipe. We call them the outer fields.
% Within each outer field, there will be inner fields. The outer fields
% include film, filter, camera and such.
outerFields = fieldnames(thisR);
for ofns = outerFields'
ofn = ofns{1};
% If empty, we skip this field.
if(~isfield(thisR.(ofn),'type') || ...
~isfield(thisR.(ofn),'subtype'))
continue;
end
% Skip, we don't want to write these out here. So if any one of these,
% we skip to the next for-loop step
if(strcmp(ofn,'world') || ...
strcmp(ofn,'lookAt') || ...
strcmp(ofn,'inputFile') || ...
strcmp(ofn,'outputFile')|| ...
strcmp(ofn,'version')) || ...
strcmp(ofn,'materials')|| ...
strcmp(ofn,'recipeVer')|| ...
strcmp(ofn,'exporter') || ...
strcmp(ofn,'metadata') || ...
strcmp(ofn,'renderedFile') || ...
strcmp(ofn,'world')
continue;
end
% Deal with camera and medium
if strcmp(ofn,'camera') && isfield(thisR.(ofn),'medium')
if ~isempty(thisR.(ofn).medium)
currentMedium = [];
for j=1:length(thisR.media.list)
if strcmp(thisR.media.list(j).name,thisR.(ofn).medium)
currentMedium = thisR.media.list;
end
end
fprintf(fileID,'MakeNamedMedium "%s" "string type" "water" "string absFile" "spds/%s_abs.spd" "string vsfFile" "spds/%s_vsf.spd"\n', ...
currentMedium.name,...
currentMedium.name,currentMedium.name);
fprintf(fileID,'MediumInterface "" "%s"\n',currentMedium.name);
end
end
% Write header that identifies which block this is
fprintf(fileID,'# %s \n',ofn);
% Write out the main type and subtypes
fprintf(fileID,'%s "%s" \n',thisR.(ofn).type,...
thisR.(ofn).subtype);
% Find and then loop through inner field names
innerFields = fieldnames(thisR.(ofn));
if(~isempty(innerFields))
for ifns = innerFields'
ifn = ifns{1};
% Skip these since we've written these out earlier.
if(strcmp(ifn,'type') || ...
strcmp(ifn,'subtype') || ...
strcmp(ifn,'subpixels_h') || ...
strcmp(ifn,'subpixels_w') || ...
strcmp(ifn,'motion') || ...
strcmp(ifn,'subpixels_w') || ...
strcmp(ifn,'medium'))
continue;
end
%{
Many fields are written out in here.
Some examples are
type, subtype, lensfile retinaDistance
retinaRadius pupilDiameter retinaSemiDiam ior1 ior2 ior3 ior4
type subtype pixelsamples type subtype xresolution yresolution
type subtype maxdepth
%}
currValue = thisR.(ofn).(ifn).value;
currType = thisR.(ofn).(ifn).type;
if(strcmp(currType,'string') || ischar(currValue))
% We have a string with some value
lineFormat = ' "%s %s" "%s" \n';
% The currValue might be a full path to a file with an
% extension. We find the base file name and copy the file
% to the working directory. Then, we transform the string
% to be printed in the pbrt scene file to be its new
% relative path. There is a minor exception for the lens
% file. Perhaps we should have a better test here, say an
% exist() test. (BW).
[~,name,ext] = fileparts(currValue);
% only if the file is in lens folder
if ~isempty(which(currValue))
if(~isempty(ext))
% This looks like a file with an extension. If it
% is a lens file or an iorX.spd file, indicate that
% it is in the lens/ directory. Otherwise, copy the
% file to the working directory.
fileName = strcat(name,ext);
if strcmp(ifn,'specfile') || strcmp(ifn,'lensfile')
% It is a lens, so just update the name. It
% was already copied
% This should work.
% currValue = strcat('lens',[filesep, strcat(name,ext)]);
if ispc()
currValue = strcat('lens/',strcat(name,ext));
else
currValue = fullfile('lens',strcat(name,ext));
end
elseif piContains(ifn,'ior')
% The the innerfield name contains the ior string,
% then we change it to this
currValue = strcat('lens',[filesep, strcat(name,ext)]);
else
[success,~,id] = copyfile(currValue,workingDir);
if ~success && ~strcmp(id,'MATLAB:COPYFILE:SourceAndDestinationSame')
warning('Problem copying %s\n',currValue);
end
% Update the file for the relative path
currValue = fileName;
end
end
end
elseif(strcmp(currType,'spectrum') && ~ischar(currValue))
% A spectrum of type [wave1 wave2 value1 value2]. TODO:
% There are probably more variations of this...
lineFormat = ' "%s %s" [%f %f %f %f] \n';
elseif(strcmp(currType,'rgb'))
lineFormat = ' "%s %s" [%f %f %f] \n';
elseif(strcmp(currType,'float'))
if(length(currValue) > 1)
lineFormat = ' "%s %s" [%f %f %f %f] \n';
else
lineFormat = ' "%s %s" [%f] \n';
end
elseif(strcmp(currType,'integer'))
lineFormat = ' "%s %s" [%i] \n';
end
fprintf(fileID,lineFormat,...
currType,ifn,currValue);
end
end
% Blank line.
fprintf(fileID,'\n');
end
end
%%
function piIncludeLines(thisR,fileID)
% Insert the 'Include scene_materials.pbrt' and similarly for geometry and
% lights into the main scene file
%
% We must add the materials before the geometry.
% We add the lights at the end.
%
basename = thisR.get('output basename');
% For the Copy case, we just copy the world and Include the lights.
if isequal(thisR.exporter, 'Copy')
for ii = 1:numel(thisR.world)
if ii == numel(thisR.world)
% Lights at the end
fprintf(fileID,'Include "%s_lights.pbrt" \n', basename);
end
fprintf(fileID,'%s \n',thisR.world{ii});
if ii == 1
% Materials at the beginning
fprintf(fileID,'Include "%s_materials.pbrt" \n', basename);
end
end
return;
end
%% Find the World lines with _geometry, _materials, _lights
% We are being aggressive about the Include files. We want to name them
% ourselves. First we see whether we have Includes for these at all
lineMaterials = find(contains(thisR.world, {'_materials.pbrt'}));
lineGeometry = find(contains(thisR.world, {'_geometry.pbrt'}));
lineLights = find(contains(thisR.world, {'_lights.pbrt'}));
% If we have geometry Include, we overwrite it with the name we want.
if ~isempty(lineGeometry)
thisR.world{lineGeometry} = sprintf('Include "%s_geometry.pbrt"\n', basename);
end
% If we have materials Include, we overwrite it.
% end.
if ~isempty(lineMaterials)
thisR.world{lineMaterials} = sprintf('Include "%s_materials.pbrt"\n',basename);
end
% We think nobody except us has these lights files. So this will never get
% executed.
if ~isempty(lineLights)
thisR.world(lineLights) = sprintf('Include "%s_lights.pbrt"\n', basename);
end
%% Write out the World information.
% Insert the Include lines as the last three before WorldEnd.
% Also, as of December 2021, placed the 'Scale' line in here.
% Maybe we should not have an overall Scale in the recipe, however.
%
for ii = 1:length(thisR.world)
currLine = thisR.world{ii}; % ii = 1 is 'WorldBegin'
if piContains(currLine, 'WorldEnd') && isempty(lineLights)
% Insert the lights file.
fprintf(fileID, sprintf('Include "%s_lights.pbrt" \n', basename));
end
fprintf(fileID,'%s \n',currLine);
if piContains(currLine,'WorldBegin')
% Start with the Scale value from the recipe. This scales the whole scene,
% but it might be a bad idea because it does not preserve the geometric
% relationships between the objects. They all get bigger.
theScale = thisR.get('scale');
if(~isempty(theScale))
fprintf(fileID,'Scale %0.2f %0.2f %0.2f \n', [theScale(1) theScale(2) theScale(3)]);
fprintf(fileID,'\n');
end
end
if piContains(currLine,'WorldBegin') && isempty(lineMaterials)
% Insert the materials file
fprintf(fileID,'%s \n',sprintf('Include "%s_materials.pbrt" \n', basename));
end
end
end
%%
function piWriteMaterials(thisR,overwritematerials)
% Write both materials and textures files into the output directory
% We create the materials file. Its name is the same as the output pbrt
% file, but it has an _materials inserted.
if overwritematerials
outputDir = thisR.get('output dir');
basename = thisR.get('output basename');
% [~,n] = fileparts(thisR.inputFile);
fname_materials = sprintf('%s_materials.pbrt',basename);
thisR.set('materials output file',fullfile(outputDir,fname_materials));
piMaterialWrite(thisR);
end
end
%%
function piWriteGeometry(thisR,overwritegeometry)
% Write the geometry file into the output dir
%
if overwritegeometry
piGeometryWrite(thisR);
end
end
|
github
|
ISET/iset3d-v3-master
|
piRecipRectify.m
|
.m
|
iset3d-v3-master/utilities/piRecipRectify.m
| 5,470 |
utf_8
|
31f356831c4e47d979027ec8af3443f8
|
function thisR = piRecipRectify(thisR,origin)
% Move the camera and objects so that the camera is at origin pointed along
% the z-axis
%
% Description
%
% See piRotate for the rotation matrices for the three axes
% See also
%
% Examples
%{
thisR = piRecipeDefault('scene name','simple scene');
piAssetGeometry(thisR,'inplane','xz');
piCameraRotate(thisR,'y rot',10);
thisR.get('lookat direction')
piAssetGeometry(thisR,'inplane','xz');
origin = [0 0 0];
thisR = piRecipRectify(thisR,origin);
thisR.get('lookat direction')
piAssetGeometry(thisR);
piAssetGeometry(thisR,'inplane','xy');
thisR.set('fov',60);
piWrite(thisR); scene = piRender(thisR,'render type','radiance');
sceneWindow(scene);
%}
%% Find the camera position
from = thisR.get('camera position');
%% Move the camera to the specified origin
% Identify all the children of root
idChildren = thisR.get('asset','root','children');
if numel(idChildren) == 1
tmp = split(thisR.get('asset',idChildren,'name'),'_');
if isequal(tmp{end},'rectify')
% No need to insert a rectify node. It is there already.
else
% Create the rectify node below the root and before all other nodes
rectNode = piAssetCreate('type','branch');
rectNode.name = 'rectify';
thisR.set('asset','root','add',rectNode);
end
else
% Create the rectify node below the root and before all other nodes
rectNode = piAssetCreate('type','branch');
rectNode.name = 'rectify';
thisR.set('asset','root','add',rectNode);
end
% Get the rectify node under the root
idRectify = thisR.get('asset','rectify','id');
% Place all the previous children under rectify
for ii=1:numel(idChildren)
thisR.set('asset',idChildren(ii),'parent',idRectify);
end
% thisR.show
%% Translation
% The camera is handled separately from the objects
d = origin - from;
piCameraTranslate(thisR,'xshift',d(1), ...
'yshift',d(2), ...
'zshift',d(3));
% Set the translation of the rectify node
piAssetSet(thisR,idRectify,'translation',d);
% thisR.get('asset','rectify','translate')
% piAssetGeometry(thisR);
% piWrite(thisR); scene = piRender(thisR,'render type','radiance'); sceneWindow(scene);
%% Rotation
% Rotate the camera
[xAngle, yAngle] = direction2zaxis(thisR);
% No rotation needed. Direction is already aligned with z axis.
if xAngle == 0 && yAngle == 0, return; end
% Rotate the to point onto the z axis
rMatrix = piRotate([xAngle,yAngle,0]);
to = thisR.get('to');
thisR.set('to',(rMatrix*to(:))'); % Row vector. Should be forced in set.
% piWrite(thisR); scene = piRender(thisR,'render type','radiance'); sceneWindow(scene);
% Set a rotation in the rectify nodes to change all the objects
r = piRotationMatrix('zrot',0,'yrot',-yAngle,'xrot',-xAngle);
piAssetSet(thisR,idRectify,'rotation',r);
% thisR.get('asset','rectify','rotation')
% piWrite(thisR); [scene,results] = piRender(thisR,'render type','radiance'); sceneWindow(scene);
end
function [xAngle, yAngle] = direction2zaxis(thisR)
%% Angles needed to align lookat with zaxis
%
% 0 = [0 cos(a) -sin(a)]*direction(:)
% 0 = cos(a)*direction(2) - sin(a)*direction(3)
% sin(a)*direction(3) = cos(a)*direction(2)
% sin(a)/cos(a) = (direction(2)/direction(3))
% tan(a) = (direction(2)/direction(3))
% a = atan(direction(2)/direction(3))
%
% Rotate again, this time to be perpendicular to the x-axis (x=0).
%
% 0 = cos(b)*d2(1) + 0*d2(2) + sin(b)*d2(3)
% sin(b)/cos(b) = -d2(1)/d2(3)
% b = atan(-d2(1)/d2(3))
%
xAngle = 0; yAngle = 0; % Assume aligned
% Angle to the z axis
direction = thisR.get('lookat direction'); % Unit vector
zaxis = [0 0 1];
CosTheta = max(min(dot(direction,zaxis),1),-1);
ztheta = real(acosd(CosTheta));
% If the direction is different from down the z-axis, do the rest.
% Otherwise, return. We consider 'different' to be within a tenth of a
% degree, I guess.
%
if ztheta < 0.1, return; end
% Find the rotations in deg around the x and y axes so that the new
% direction vector aligns with the zaxis.
%
% First find a rotation angle around the x-axis into the x-z plane.
% The angle must satisfy y = 0. So, we take out the row of the x-rotation
% matrix
%
% Test with different direction vectors
%
% direction = [1 2 0];
% direction = [-1 0 2];
xAngle = atan2d(direction(2),direction(3)); % Radians
xRotationMatrix = piRotate([rad2deg(xAngle),0,0]);
direction2 = xRotationMatrix*direction(:);
%{
% y entry of this vector should be 0
direction2
%}
% Now solve for y rotation
yAngle = atan2d(-direction2(1),direction2(3));
%{
% Should be aligned with z-axis
cos(yAngle)*direction2(1) + sin(yAngle)*direction2(3)
yRotationMatrix = piRotate([0,rad2deg(yAngle),0]);
direction3 = yRotationMatrix*direction2(:)
%}
end
%{
rMatrix = piRotate([xAngle,yAngle,0]);
% We have the angles. Rotate every object's position and its orientation
for ii=1:numel(objects)
pos = thisR.get('asset',objects(ii),'world coordinate');
pos = rMatrix*pos(:);
thisR.set('asset',objects(ii),'world coordinate',pos);
piAssetRotate('asset',objects(ii),[xAngle,yAngle,0]);
end
end
%}
%{
% NOTES
u = zaxis; v = direction;
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ztheta = real(acosd(CosTheta));
xaxis =
R = [cosd(theta) -sind(theta); sind(theta) cosd(theta)];
vR = v*R;
%}
% Find the 3D rotation matrix that brings direction to the zaxis.
% Call piDCM2angle to get the x,y,z rotations
% Call piAssetRotate with those three rotations
%}
|
github
|
ISET/iset3d-v3-master
|
piWebGet.m
|
.m
|
iset3d-v3-master/utilities/piWebGet.m
| 11,212 |
utf_8
|
881910654e170229a04f37bcc7676b17
|
function localFile = ieWebGet2(varargin)
%% Download a resource from the Stanford web site
%
% Synopsis
% localFile = ieWebGet2(varargin)
%
% Brief description
% Download an ISET zip or mat-file file from the web. The type of file
% and the remote file name define how to get the file.
%
% Inputs
% varargin{1} - If the first argument is ,'list','url', you will be
% 'browse' - sent to the website
% 'list' - be returned a list of resources or . The second argument
% 'url' - shown the type of resource at the url ('pbrt',
% 'hyperspectral', 'multispectral', 'hdr'). The default resource is
% 'pbrt'.
%
% Key/val pairs
% op: The operation to perform {'fetch','read'}
% (default: 'fetch')
% resource type: 'pbrt', 'hyperspectral', 'multispectral', 'hdr'
% (default: 'pbrt')
% resource name : File name of the remote file
% remove temp files: Remove local temp file (zip)
% unzip: : Unzip the file
% verbose : Print a report to the command window
%
% Output
% localFile: Name of the local download file
%
% Description
% We store various data sets (resources) as zip- and mat-files on the
% Stanford resource, cardinal.stanford.edu/~SOMEONE. This routine is a
% gateway that allows us to download the files (using fetch).
%
% The types of resources are listed above. To see the remote web site or
% the names of the resources, use the 'list' or 'browse' operations.
%
% pbrt resources default to being stored under
%
% iset3d/data/v3/web.
%
% other resources ('hdr','hyperspectral','multispectral') default to
% being stored under
%
% isetcam/local/scenes/<resourcetype>/.
% See also:
% webImageBrowser_mlapp
%
% Examples
%{
% Browse the remote site
ieWebGet('browse');
%}
%{
ieWebGet('list')
%}
%{
localFile = ieWebGet('resource name','veach-ajar');
%}
%{
localFile = ieWebGet2('resourcename', 'ChessSet', 'resourcetype', 'pbrt')
data = ieWebGet2('op', 'read', 'resourcetype', 'hyperspectral', 'resourcename', 'FruitMCC')
localFile = ieWebGet2('op', 'fetch', 'resourcetype', 'hdr', 'resourcename', 'BBQsite1')
~ = ieWebGet2('resourcetype', 'pbrt', 'op', 'browse')
%}
%{
% Use it to create a list of resources and then select one:
arrayOfResourceFiles = ieWebGet('op', 'list', 'resourcetype', 'hyperspectral')
data = ieWebGet2('op', 'read', 'resource type', 'hyperspectral', 'resource name', arrayOfResourceFiles{ii});
%}
%% Set up base URL
urlList = ...
{'http://stanford.edu/~wandell/data/pbrt/', ...
'http://stanford.edu/~david81/ISETData/Hyperspectral/', ...
'http://stanford.edu/~david81/ISETData/Multispectral/', ...
'http://stanford.edu/~david81/ISETData/HDR/'};
baseURL = urlList{1};
%% Check for the special input arguments
% ieWebGet2('browse','pbrt'),
% ieWebGet2('browse','hyperspectral')
if ismember(ieParamFormat(varargin{1}),{'browse','list','url'})
if numel(varargin) < 2, src = 'pbrt';
else, src = ieParamFormat(varargin{2});
end
switch src
case 'pbrt'
baseURL = urlList{1};
case 'hyperspectral'
baseURL = urlList{2};
case 'multispectral'
baseURL = urlList{3};
case 'hdr'
baseURL = urlList{4};
otherwise
error('Unknown resource type %s\n',src);
end
if isequal(ieParamFormat(varargin{1}),'browse')
% assume for now that means we are looking on the web
web(baseURL);
localFile = '';
return;
elseif isequal(ieParamFormat(varargin{1}),'list')
% simply read the pre-loaded list of resources
try
localFile = webread(strcat(baseURL, 'resourcelist.json'));
catch
% We should find a better way to do this
warning("Unable to load resource list from remote site. Returning webread data");
localFile = webread(baseURL);
end
% we need to filter here as sometimes we only want .MAT files
localFile = localFile(contains(localFile, ".mat", 'IgnoreCase', true));
return;
elseif isequal(ieParamFormat(varargin{1}),'url')
fprintf('\nResource URLs\n=================\n\n');
for ii=1:numel(urlList)
fprintf('%s\n',urlList{ii});
end
fprintf('\n');
return;
end
end
%% Decode key/val args
varargin = ieParamFormat(varargin);
p = inputParser;
vFunc = @(x)(ismember(x,{'fetch','read','list'}));
p.addParameter('op','fetch',vFunc);
p.addParameter('resourcename', '', @ischar);
vFunc = @(x)(ismember(x,{'pbrt', 'hyperspectral', 'multispectral', 'hdr','pbrt','v3'}));
p.addParameter('resourcetype', 'pbrt',vFunc);
p.addParameter('askfirst', true, @islogical);
p.addParameter('unzip', true, @islogical); % assume the user wants the resource unzipped, if applicable
p.addParameter('localname','',@ischar); % Defaults to remote name
p.addParameter('removetempfiles', true, @islogical);
p.addParameter('verbose',true,@islogical); % Tell the user what happened
p.parse(varargin{:});
resourceName = p.Results.resourcename;
resourceType = p.Results.resourcetype;
localName = p.Results.localname;
unZip = p.Results.unzip;
removeTempFiles = p.Results.removetempfiles;
if isempty(localName)
localName = resourceName;
end
verbose = p.Results.verbose;
op = p.Results.op;
askFirst = p.Results.askfirst;
localFile = ''; % Default local file name
switch resourceType
case {'pbrt', 'v3'}
if exist('piRootPath','file') && isfolder(piRootPath)
downloadRoot = piRootPath;
elseif exist('isetRootPath', 'file') && isfolder(isetRootPath)
downloadRoot = isetRootPath;
else
error("Need to have either iset3D or isetCam Root set");
end
switch op
case 'fetch'
% for now we only support v3 pbrt files
downloadDir = fullfile(downloadRoot,'data','v3','web');
if ~isfolder(downloadDir)
mkdir(downloadDir);
end
remoteFileName = strcat(resourceName, '.zip');
resourceURL = strcat(baseURL, remoteFileName);
localURL = fullfile(downloadDir, remoteFileName);
if askFirst
proceed = confirmDownload(resourceName, resourceURL, localURL);
if proceed == false, return, end
end
try
websave(localURL, resourceURL);
if unZip
unzip(localURL, downloadDir);
if removeTempFiles
delete(localURL);
end
% not sure how we "know" what the unzip path is?
localFile = fullfile(downloadDir, resourceName);
else
localFile = localURL;
end
catch
%not much in the way of error handling yet:)
warning("Unable to retrieve: %s", resourceURL);
localFile = '';
end
otherwise
error('Unknown operation for PBRT %s\n',op);
end
case {'hyperspectral', 'multispectral', 'hdr'}
% We need to adjust the baseurl for these non-pbrt cases
parentURL = 'http://stanford.edu/~david81/ISETData/';
% do we want to switch based on browse op or
% split by type first?
switch resourceType
case 'hyperspectral'
baseURL = strcat(parentURL, "Hyperspectral", '/');
case 'multispectral'
baseURL = strcat(parentURL, "Multispectral", '/');
case 'hdr'
baseURL = strcat(parentURL, "HDR", '/');
end
switch op
case {'read', 'fetch'}
options = weboptions('Timeout', 60);
if ~endsWith(resourceName, "." + lettersPattern)
remoteFileName = strcat(resourceName, '.mat');
else
remoteFileName = resourceName;
end
resourceURL = strcat(baseURL, remoteFileName);
switch op
case {'fetch','read'}
if exist('isetRootPath','file') && isfolder(isetRootPath)
downloadRoot = isetRootPath;
downloadDir = fullfile(downloadRoot, 'local', 'scenes', resourceType);
if ~isfolder(downloadDir)
mkdir(downloadDir)
end
else
error("Need to have root path set for isetcam or isetbio.");
end
localFile = fullfile(downloadDir, remoteFileName);
if askFirst
proceed = confirmDownload(resourceName, resourceURL, localFile);
if proceed == false, return, end
end
try
websave(localFile, resourceURL, options);
catch
warning("Unable to retrieve %s", resourceURL);
end
if isequal(op, 'read')
% in this case we are actually returning a Matlab
% array with scene data!
stashFile = localFile;
localFile = load(stashFile);
if removeTempFiles
delete(stashFile);
end
end
end
otherwise
warning("Not Supported yet");
end
otherwise
error('sceneType %s not supported.',resourceType);
end
%% Tell the user what happened
if verbose
if ischar(localFile)
disp(strcat("Retrieved: ", resourceName, " to: ", localFile));
elseif isstruct(localFile)
disp(strcat("Retrieved: ", resourceName, " and returned as a struct"));
elseif exist('localFile','file') && ~isempty(localFile)
disp(strcat("Retrieved: ", resourceName, " and returned it as an array"));
elseif ~isequal(op,'list')
disp(strcat("Unable to Retrieve: ", resourceName));
end
end
end
%% Query the user to confirm the download
%
function proceed = confirmDownload(resourceName, resourceURL, localURL)
question = sprintf("Okay to download: %s from %s to file %s and if necessary, unzip it?\n This may take some time.", resourceName, resourceURL, localURL);
answer = questdlg(question, "Confirm Web Resource Download", 'Yes');
if isequal(answer, 'Yes')
proceed = true;
else
proceed = false;
end
end
|
github
|
ISET/iset3d-v3-master
|
piDCM2angle.m
|
.m
|
iset3d-v3-master/utilities/geometry/piDCM2angle.m
| 3,290 |
utf_8
|
26048adb702b41e7f73876c60114ed82
|
function [r1,r2,r3] = piDCM2angle( dcm, varargin )
% Simplified version of the Aerospace toolbox angle conversion utility
%
% Syntax:
% [r1,r2,r3] = piDCM2angle( dcm )
%
% Brief description:
% The case that we compute is this one. There are many others and
% various options in the Mathworks dcm2angle.m code
%
% [ cy*cz, cy*sz, -sy]
% [ sy*sx*cz-sz*cx, sy*sx*sz+cz*cx, cy*sx]
% [ sy*cx*cz+sz*sx, sy*cx*sz-cz*sx, cy*cx]
%
% Inputs:
% dcm: A 3D array of matrices
%
% Optional key/value pairs
% N/A
%
% Outputs:
% zAngle, yAngle, xAngle: Vectors of rotation angles for the matrices
%
% See also:
% piRotationDefault, piGeometryRead
% Examples:
%{
% Should be all zeros
dcm(:,:,1) = eye(3);
dcm(:,:,2) = eye(3);
[z,y,x] = piDCM2angle(dcm)
%}
%{
% Consistency with rotationMatrix3d
% Some issues with negative positive rotations and dimensions. Sigh.
% We need to multiply z and y by -1, and it seems x,y,z have different
% definitions. There is a parameter in piDCM2angle that may handle some of
% this.
angleList = [25 20 -40];
tmp = deg2rad(angleList)
rMatrix = rotationMatrix3d(tmp)
[z,x,y] = piDCM2angle(rMatrix);
estimatedA = rad2deg([-1*y, x, -1*z]);
angleList - estimatedA
%}
%% Should validate here
% TL: Validate seems to fail for certain scenes. Commenting out for now
% until we figure out what's going on.
% validatedcm(dcm);
if isempty(varargin)
type = 'ZYX';
else
type = varargin{1};
end
%% This is the transform
switch type
case 'ZYX'
[r1,r2,r3] = threeaxisrot( dcm(1,2,:), dcm(1,1,:), -dcm(1,3,:), ...
dcm(2,3,:), dcm(3,3,:));
case 'ZXY'
[r1,r2,r3] = threeaxisrot( -dcm(2,1,:), dcm(2,2,:), dcm(2,3,:), ...
-dcm(1,3,:), dcm(3,3,:));
case 'XYZ'
[r1,r2,r3] = threeaxisrot( -dcm(3,2,:), dcm(3,3,:), dcm(3,1,:), ...
-dcm(2,1,:), dcm(1,1,:));
case 'XZY'
[r1,r2,r3] = threeaxisrot( dcm(2,3,:), dcm(2,2,:), -dcm(2,1,:), ...
dcm(3,1,:), dcm(1,1,:));
case 'YXZ'
[r1,r2,r3] = threeaxisrot( dcm(3,1,:), dcm(3,3,:), -dcm(3,2,:), ...
dcm(1,2,:), dcm(2,2,:));
case 'YZX'
[r1,r2,r3] = threeaxisrot( -dcm(1,3,:), dcm(1,1,:), dcm(1,2,:), ...
-dcm(3,2,:), dcm(2,2,:));
end
r1 = r1(:);
r2 = r2(:);
r3 = r3(:);
end
function [r1,r2,r3] = threeaxisrot(r11, r12, r21, r31, r32)
% find angles for rotations about X, Y, and Z axes
r1 = atan2( r11, r12 );
r2 = asin( r21 );
r3 = atan2( r31, r32 );
%{
% The original implements this special case of zero rotation on the
% 3rd dimension. Does not seem relevant to us
if strcmpi( lim, 'zeror3')
for i = find(abs( r21 ) >= 1.0)
r1(i) = atan2( r11a(i), r12a(i) );
r2(i) = asin( r21(i) );
r3(i) = 0;
end
end
%}
end
function validatedcm(dcm)
%VALIDATEDCM internal function to check that the input dcm is orthogonal
%and proper.
% The criteria for this check are:
% - the transpose of the matrix multiplied by the matrix equals
% 1 +/- tolerance
% - determinant of matrix == +1
%
tolerance = 1e-6;
for ii=1:size(dcm,3)
x = dcm(:,:,ii)*dcm(:,:,ii)';
d = (x - eye(3));
assert( max(d(:)) < tolerance);
assert(det(x) - 1 < tolerance);
end
end
|
github
|
ISET/iset3d-v3-master
|
piGeometryWrite.m
|
.m
|
iset3d-v3-master/utilities/geometry/piGeometryWrite.m
| 14,203 |
utf_8
|
3b095877b9bd5b703e37fbfc0b1af90c
|
function piGeometryWrite(thisR,varargin)
% Write out a geometry file that matches the format and labeling objects
%
% Synopsis
% piGeometryWrite(thisR,varargin)
%
% Input:
% thisR: a render recipe
% obj: Returned by piGeometryRead, contains information about objects.
%
% Optional key/value pairs
%
% Output:
% None for now.
%
% Description
% We need a better description of objects and groups here. Definitions
% of 'assets'.
%
% Zhenyi, 2018
%
% See also
% piGeometryRead
%
%%
p = inputParser;
% varargin =ieParamFormat(varargin);
p.addRequired('thisR',@(x)isequal(class(x),'recipe'));
% default is flase, will turn on for night scene
% p.addParameter('lightsFlag',false,@islogical);
% p.addParameter('thistrafficflow',[]);
p.parse(thisR,varargin{:});
% These were used but seem to be no longer used
%
% lightsFlag = p.Results.lightsFlag;
% thistrafficflow = p.Results.thistrafficflow;
%% Create the default file name
[Filepath,scene_fname] = fileparts(thisR.outputFile);
fname = fullfile(Filepath,sprintf('%s_geometry.pbrt',scene_fname));[~,n,e]=fileparts(fname);
% Get the assets from the recipe
obj = thisR.assets;
%% Wrote the geometry file.
fname_obj = fullfile(Filepath,sprintf('%s%s',n,e));
% Open and write out the objects
fid_obj = fopen(fname_obj,'w');
fprintf(fid_obj,'# Exported by piGeometryWrite on %i/%i/%i %i:%i:%f \n \n',clock);
% Traverse the tree from root
rootID = 1;
% Write object and light definition in main geoemtry and children geometry
% file
if ~isempty(obj)
recursiveWriteNode(fid_obj, obj, rootID, Filepath, thisR.outputFile);
% Write tree structure in main geometry file
lvl = 0;
recursiveWriteAttributes(fid_obj, obj, rootID, lvl, thisR.outputFile);
else
for ii = numel(thisR.world)
fprintf(fid_obj, thisR.world{ii});
end
end
fclose(fid_obj);
% Not sure we want this most of the time, can un-comment as needed
%fprintf('%s is written out \n', fname_obj);
end
function recursiveWriteNode(fid, obj, nodeID, rootPath, outFilePath)
% Define each object in geometry.pbrt file. This section writes out
% (1) Material for every object
% (2) path to each children geometry files which store the shape and other
% geometry info.
%
% The process will be:
% (1) Get the children of this node
% (2) For each child, check if it is an 'object' or 'light' node. If so,
% write it out.
% (3) If the child is a 'branch' node, put it in a list which will be
% recursively checked in next level.
%% Get children of thisNode
children = obj.getchildren(nodeID);
%% Loop through all children at this level
% If 'object' node, write out. If 'branch' node, put in the list
% Create a list for next level recursion
nodeList = [];
for ii = 1:numel(children)
thisNode = obj.get(children(ii));
% If node, put id in the nodeList
if isequal(thisNode.type, 'branch')
% do not write object instance repeatedly
nodeList = [nodeList children(ii)];
% Define object node
elseif isequal(thisNode.type, 'object')
while numel(thisNode.name) >= 8 &&...
isequal(thisNode.name(5:6), 'ID')
thisNode.name = thisNode.name(8:end);
end
fprintf(fid, 'ObjectBegin "%s"\n', thisNode.name);
% Write out mediumInterface
if ~isempty(thisNode.mediumInterface)
fprintf(fid, strcat("MediumInterface ", '"', thisNode.mediumInterface, '" ','""', '\n'));
end
% Write out material
if ~isempty(thisNode.material)
%{
% From dev branch
if strcmp(thisNode.material,'none')
fprintf(fid, strcat("Material ", '"none"', '\n'));
else
fprintf(fid, strcat("NamedMaterial ", '"',...
thisNode.material.namedmaterial, '"', '\n'));
%}
try
fprintf(fid, strcat("NamedMaterial ", '"',...
thisNode.material.namedmaterial, '"', '\n'));
catch
materialTxt = piMaterialText(thisNode.material);
fprintf(fid, strcat(materialTxt, '\n'));
end
end
%{
% I don't know what's this used for, but commenting here.
if ~isempty(thisNode.output)
% There is an output slot
[~,output] = fileparts(thisNode.output);
fprintf(fid, 'Include "scene/PBRT/pbrt-geometry/%s.pbrt" \n', output);
%}
if ~isempty(thisNode.shape)
shapeText = piShape2Text(thisNode.shape);
if ~isempty(thisNode.shape.filename)
% If the shape has ply info, do this
% Convert shape struct to text
[~, ~, e] = fileparts(thisNode.shape.filename);
if isequal(e, '.ply')
fprintf(fid, '%s \n',shapeText);
else
% In this case it is a .pbrt file, we will write it
% out.
fprintf(fid, 'Include "%s" \n', thisNode.shape.filename);
end
else
% If it does not have plt file, do this
% There is a shape slot we also open the
% geometry file.
name = thisNode.name;
geometryFile = fopen(fullfile(rootPath,'scene','PBRT','pbrt-geometry',sprintf('%s.pbrt',name)),'w');
fprintf(geometryFile,'%s',shapeText);
fclose(geometryFile);
fprintf(fid, 'Include "scene/PBRT/pbrt-geometry/%s.pbrt" \n', name);
end
end
fprintf(fid, 'ObjectEnd\n\n');
elseif isequal(thisNode.type, 'light') || isequal(thisNode.type, 'marker') || isequal(thisNode.type, 'instance')
% That's okay but do nothing.
else
% Something must be wrong if we get here.
warning('Unknown node type: %s', thisNode.type)
end
end
for ii = 1:numel(nodeList)
recursiveWriteNode(fid, obj, nodeList(ii), rootPath, outFilePath);
end
end
function recursiveWriteAttributes(fid, obj, thisNode, lvl, outFilePath)
% Write attribute sections. The logic is:
% 1) Get the children of the current node
% 2) For each child, write out information accordingly
%
%% Get children of this node
children = obj.getchildren(thisNode);
%% Loop through children at this level
% Generate spacing to make the tree structure more beautiful
spacing = "";
for ii = 1:lvl
spacing = strcat(spacing, " ");
end
% indent spacing
indentSpacing = " ";
for ii = 1:numel(children)
thisNode = obj.get(children(ii));
fprintf(fid, strcat(spacing, 'AttributeBegin\n'));
if isequal(thisNode.type, 'branch')
% get stripID for this Node
while numel(thisNode.name) >= 8 &&...
isequal(thisNode.name(5:6), 'ID')
thisNode.name = thisNode.name(8:end);
end
% Write info
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('#ObjectName %s:Vector(%.5f, %.5f, %.5f)',thisNode.name,...
thisNode.size.l,...
thisNode.size.w,...
thisNode.size.h), '\n'));
% If a motion exists in the current object, prepare to write it out by
% having an additional line below.
if ~isempty(thisNode.motion)
fprintf(fid, strcat(spacing, indentSpacing,...
'ActiveTransform StartTime \n'));
end
% Transformation section
if ~isempty(thisNode.rotation)
% Zheng: I think it is always this case, but maybe it is rarely
% the case below. Have no clue.
% If this way, we would write the translation, rotation and
% scale line by line based on the order of thisNode.transorder
piGeometryTransformWrite(fid, thisNode, spacing, indentSpacing);
else
thisNode.concattransform(13:15) = thisNode.translation(:);
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('ConcatTransform [%.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f]', thisNode.concattransform(:)), '\n'));
% Scale
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Scale %.10f %.10f %.10f', thisNode.scale), '\n'));
end
%{
% This is the old transformation section
% Rotation
if ~isempty(thisNode.rotation)
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Translate %.5f %.5f %.5f', thisNode.translation(1),...
thisNode.translation(2),...
thisNode.translation(3)), '\n'));
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %.5f %.5f %.5f %.5f', thisNode.rotation(:, 1)), '\n'));
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %.5f %.5f %.5f %.5f', thisNode.rotation(:, 2)), '\n'));
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %.5f %.5f %.5f %.5f', thisNode.rotation(:, 3)), '\n'));
else
thisNode.concattransform(13:15) = thisNode.translation(:);
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('ConcatTransform [%.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f %.5f]', thisNode.concattransform(:)), '\n'));
end
% Scale
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Scale %.10f %.10f %.10f', thisNode.scale), '\n'));
%}
% Write out motion
if ~isempty(thisNode.motion)
for jj = 1:size(thisNode.translation, 1)
fprintf(fid, strcat(spacing, indentSpacing,...
'ActiveTransform EndTime \n'));
% First write out the same translation and rotation
piGeometryTransformWrite(fid, thisNode, spacing, indentSpacing);
if isfield(thisNode.motion, 'translation')
if isempty(thisNode.motion.translation(jj, :))
fprintf(fid, strcat(spacing, indentSpacing,...
'Translate 0 0 0\n'));
else
pos = thisNode.motion.translation(jj,:);
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Translate %f %f %f', pos(1),...
pos(2),...
pos(3)), '\n'));
end
end
if isfield(thisNode.motion, 'rotation') && ~isempty(thisNode.motion.rotation)
rot = thisNode.motion.rotation;
% Write out rotation
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %f %f %f %f',rot(:,jj*3-2)), '\n')); % Z
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %f %f %f %f',rot(:,jj*3-1)),'\n')); % Y
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %f %f %f %f',rot(:,jj*3)), '\n')); % X
end
end
end
recursiveWriteAttributes(fid, obj, children(ii), lvl + 1, outFilePath);
elseif isequal(thisNode.type, 'object') || isequal(thisNode.type, 'instance')
while numel(thisNode.name) >= 8 &&...
isequal(thisNode.name(5:6), 'ID')
% remove instance suffix
endIndex = strfind(thisNode.name, '_I_');
if ~isempty(endIndex)
endIndex =endIndex-1;
else
endIndex = numel(thisNode.name);
end
thisNode.name = thisNode.name(8:endIndex);
end
fprintf(fid, strcat(spacing, indentSpacing, ...
sprintf('ObjectInstance "%s"', thisNode.name), '\n'));
elseif isequal(thisNode.type, 'light')
% Create a tmp recipe
tmpR = recipe;
tmpR.outputFile = outFilePath;
tmpR.lights = thisNode.lght;
lightText = piLightWrite(tmpR, 'writefile', false);
for jj = 1:numel(lightText)
for kk = 1:numel(lightText{jj}.line)
fprintf(fid,sprintf('%s%s%s\n',spacing, indentSpacing,...
sprintf('%s',lightText{jj}.line{kk})));
end
end
else
% Hopefully we never get here.
warning('Unknown node type %s\n',thisNode.type);
end
fprintf(fid, strcat(spacing, 'AttributeEnd\n'));
end
end
% Geometry file writing helper
function piGeometryTransformWrite(fid, thisNode, spacing, indentSpacing)
pointerT = 1; pointerR = 1; pointerS = 1;
for tt = 1:numel(thisNode.transorder)
switch thisNode.transorder(tt)
case 'T'
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Translate %.5f %.5f %.5f', thisNode.translation{pointerT}(1),...
thisNode.translation{pointerT}(2),...
thisNode.translation{pointerT}(3)), '\n'));
pointerT = pointerT + 1;
case 'R'
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %.5f %.5f %.5f %.5f', thisNode.rotation{pointerR}(:, 1)), '\n'));
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %.5f %.5f %.5f %.5f', thisNode.rotation{pointerR}(:, 2)), '\n'));
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Rotate %.5f %.5f %.5f %.5f', thisNode.rotation{pointerR}(:, 3)), '\n'));
pointerR = pointerR + 1;
case 'S'
fprintf(fid, strcat(spacing, indentSpacing,...
sprintf('Scale %.10f %.10f %.10f', thisNode.scale{pointerS}), '\n'));
pointerS = pointerS + 1;
end
end
end
|
github
|
ISET/iset3d-v3-master
|
piGeometryRead.m
|
.m
|
iset3d-v3-master/utilities/geometry/piGeometryRead.m
| 11,214 |
utf_8
|
4c51e4a64d4970dfbc39bce423936f8c
|
function thisR = piGeometryRead(thisR)
% Read a C4d geometry file and extract object information into a recipe
%
% Syntax:
% renderRecipe = piGeometryRead(renderRecipe)
%
% Input
% renderRecipe: an iset3d recipe object describing the rendering
% parameters. This object includes the inputFile and the
% outputFile, which are used to find the directories containing
% all of the pbrt scene data.
%
% Return
% renderRecipe - Updated by the processing in this function
%
% Zhenyi, 2018
% Henryk Blasinski 2020
%
% Description
% This includes a bunch of sub-functions and a logic that needs further
% description.
%
% See also
% piGeometryWrite
%%
p = inputParser;
p.addRequired('thisR',@(x)isequal(class(x),'recipe'));
%% Check version number
if(thisR.version ~= 3)
error('Only PBRT version 3 Cinema 4D exporter is supported.');
end
%% give a geometry.pbrt
% Best practice is to initalize the ouputFile. Sometimes peopleF
% don't. So we do this as the default behavior.
[inFilepath, scene_fname] = fileparts(thisR.inputFile);
inputFile = fullfile(inFilepath,sprintf('%s_geometry.pbrt',scene_fname));
%% Open the geometry file
% Read all the text in the file. Read this way the text indents are
% ignored.
fileID = fopen(inputFile);
tmp = textscan(fileID,'%s','Delimiter','\n');
txtLines = tmp{1};
fclose(fileID);
%% Check whether the geometry have already been converted from C4D
% If it was converted into ISET3d format, we don't need to do much work.
% It was not converted, so we go to work.
thisR.assets = parseGeometryText(thisR, txtLines,'');
% jsonwrite(AssetInfo,renderRecipe);
% fprintf('piGeometryRead done.\nSaving render recipe as a JSON file %s.\n',AssetInfo);
%{
% The converted flag is true, so AssetInfo is already stored in a
% JSON file with the recipe information. We just copy it isnto the
% recipe.
% Save the JSON file at AssetInfo
% outputFile = renderRecipe.outputFile;
outFilepath = fileparts(thisR.outputFile);
AssetInfo = fullfile(outFilepath,sprintf('%s.json',scene_fname));
renderRecipe_tmp = jsonread(AssetInfo);
% There may be a utility that accomplishes this. We should find
% it and use it here.
fds = fieldnames(renderRecipe_tmp);
thisR = recipe;
% Assign the each field in the struct to a recipe class
for dd = 1:length(fds)
thisR.(fds{dd})= renderRecipe_tmp.(fds{dd});
end
%}
%% Make the node name unique
[thisR.assets, ~] = thisR.assets.uniqueNames;
end
%%
%
function [trees, parsedUntil] = parseGeometryText(thisR, txt, name)
%
% Inputs:
%
% txt - remaining text to parse
% name - current object name
%
% Outputs:
% res - struct of results
% children - Attributes under the current object
% parsedUntil - line number of the parsing end
%
% Description:
%
% The geometry text comes from C4D export. We parse the lines of text in
% 'txt' cell array and recrursively create a tree structure of geometric objects.
%
% Logic explanation:
% parseGeometryText will recursively parse the geometry text line by
% line. If current text is:
% a) 'AttributeBegin': this is the beginning of a section. We will
% keep looking for node/object/light information until we reach the
% 'AttributeEnd'.
% b) Node/object/light information: this could contain rotation,
% position, scaling, shape, material properties, light spectrum
% information. Upon seeing the information, parameters will be
% created to store the value.
% c) 'AttributeEnd': this is the end of a section. Depending on
% parameters in this section, we will create different nodes and make
% them as trees. Noted the 'branch' node will have children for sure,
% so we assumed that before reaching the end of 'branch' seciton, we
% already have some children, so we need to attach them under the
% 'branch'. 'Ojbect' and 'Light', on the other hand will have no child
% as they will be children leaves. So we simply create leave nodes
% for them and return.
% res = [];
% groupobjs = [];
% children = [];
subtrees = {};
i = 1;
while i <= length(txt)
currentLine = txt{i};
% Return if we've reached the end of current attribute
if strcmp(currentLine,'AttributeBegin')
% This is an Attribute inside an Attribute
[subnodes, retLine] = parseGeometryText(thisR, txt(i+1:end), name);
subtrees = cat(1, subtrees, subnodes);
%{
groupobjs = cat(1, groupobjs, subnodes);
% Give an index to the subchildren to make it different from its
% parents and brothers (we are not sure if it works for more than
% two levels). We name the subchildren based on the line number and
% how many subchildren there are already.
if ~isempty(subchildren)
subchildren.name = sprintf('%d_%d_%s', i, numel(children)+1, subchildren.name);
end
children = cat(1, children, subchildren);
%}
% assets = cat(1, assets, subassets);
i = i + retLine;
elseif piContains(currentLine,'#ObjectName')
[name, sz] = piParseObjectName(currentLine);
elseif piContains(currentLine,'ConcatTransform')
[rot, translation, ctform] = piParseConcatTransform(currentLine);
elseif piContains(currentLine,'MediumInterface')
% MediumInterface could be water or other scattering media.
medium = currentLine;
elseif piContains(currentLine,'NamedMaterial')
mat = piParseGeometryMaterial(currentLine);
elseif piContains(currentLine,'Matieral')
% in case there is no NamedMaterial
mat = parseBlockMaterial(currentLine);
elseif piContains(currentLine,'AreaLightSource')
areaLight = currentLine;
elseif piContains(currentLine,'LightSource') ||...
piContains(currentLine, 'Rotate') ||...
piContains(currentLine, 'Scale')
% Usually light source contains only one line. Exception is there
% are rotations or scalings
if ~exist('lght','var')
lght{1} = currentLine;
else
lght{end+1} = currentLine;
end
elseif piContains(currentLine,'Shape')
shape = piParseShape(currentLine);
elseif strcmp(currentLine,'AttributeEnd')
% Assemble all the read attributes into either a groub object, or a
% geometry object. Only group objects can have subnodes (not
% children). This can be confusing but is somewhat similar to
% previous representation.
% More to explain this long if-elseif-else condition:
% First check if this is a light/arealight node. If so, parse the
% parameters.
% If it is not a light node, then we consider if it is a node
% node which records some common translation and rotation.
% Else, it must be an object node which contains material info
% and other things.
if exist('areaLight','var') || exist('lght','var')
% This is a 'light' node
resLight = piAssetCreate('type', 'light');
if exist('lght','var')
% Wrap the light text into attribute section
lghtWrap = [{'AttributeBegin'}, lght(:)', {'AttributeEnd'}];
resLight.lght = piLightGetFromText(lghtWrap, 'print', false);
end
if exist('areaLight','var')
resLight.lght = piLightGetFromText({areaLight}, 'print', false);
if exist('shape', 'var')
resLight.lght{1}.shape = shape;
end
if exist('rot', 'var')
resLight.lght{1}.rotate = rot;
end
if exist('ctform', 'var')
resLight.lght{1}.concattransform = ctform;
end
if exist('translation', 'var')
resLight.lght{1}.translation = translation;
end
end
if exist('name', 'var'), resLight.name = sprintf('%s_L', name); end
subtrees = cat(1, subtrees, tree(resLight));
trees = subtrees;
elseif exist('rot','var') || exist('translation','var')
% This is a 'branch' node
% resCurrent = createGroupObject();
resCurrent = piAssetCreate('type', 'branch');
% If present populate fields.
if exist('name','var'), resCurrent.name = sprintf('%s_B', name); end
if exist('sz','var'), resCurrent.size = sz; end
if exist('rot','var'), resCurrent.rotation = rot; end
if exist('ctform','var'), resCurrent.concattransform = ctform; end
if exist('translation','var'), resCurrent.translation = translation; end
%{
resCurrent.groupobjs = groupobjs;
resCurrent.children = children;
children = [];
res = cat(1,res,resCurrent);
%}
trees = tree(resCurrent);
for ii = 1:numel(subtrees)
trees = trees.graft(1, subtrees(ii));
end
elseif exist('shape','var') || exist('mediumInterface','var') || exist('mat','var')
% resChildren = createGeometryObject();
resObject = piAssetCreate('type', 'object');
if exist('name','var')
% resObject.name = sprintf('%d_%d_%s',i, numel(subtrees)+1, name);
resObject.name = sprintf('%s_O', name);
end
if exist('shape','var'), resObject.shape = shape; end
if exist('mat','var')
resObject.material = mat;
end
if exist('medium','var')
resObject.medium = medium;
end
subtrees = cat(1, subtrees, tree(resObject));
trees = subtrees;
elseif exist('name','var')
% resCurrent = createGroupObject();
resCurrent = piAssetCreate('type', 'branch');
if exist('name','var'), resCurrent.name = sprintf('%s_B', name); end
%{
resCurrent.groupobjs = groupobjs;
resCurrent.children = children;
children = [];
res = cat(1,res,resCurrent);
%}
trees = tree(resCurrent);
for ii = 1:numel(subtrees)
trees = trees.graft(1, subtrees(ii));
end
end
parsedUntil = i;
return;
else
% warning('Current line skipped: %s', currentLine);
end
i = i+1;
end
%{
res = createGroupObject();
res.name = 'root';
res.groupobjs = groupobjs;
res.children = children;
%}
trees = tree('root');
for ii = 1:numel(subtrees)
trees = trees.graft(1, subtrees(ii));
end
parsedUntil = i;
end
|
github
|
ISET/iset3d-v3-master
|
piParseShape.m
|
.m
|
iset3d-v3-master/utilities/parse/piParseShape.m
| 4,291 |
utf_8
|
58163ce1cf2b2cbde45be66a5fe652e4
|
function shape = piParseShape(txt)
% Parse the shape information into struct
% Logic:
% Normally the shape line has this format:
% 'Shape "SHAPE" "integerindices" [] "point P" []
% "float uv" [] "normal N" []'
% We split the string based on the '"' and get each component
%
% Test
%{
thisR = piRecipeDefault('scene name', 'MacBethChecker');
%}
%%
keyWords = strsplit(txt, '"');
shape = shapeCreate;
% keyWords
if find(piContains(keyWords, 'Shape '))
shape.meshshape = keyWords{find(piContains(keyWords, 'Shape ')) + 1};
switch shape.meshshape
case 'disk'
shape.height = piParameterGet(txt, 'float height');
shape.radius = piParameterGet(txt, 'float radius');
shape.phimax = piParameterGet(txt, 'float phimax');
shape.innerradius = piParameterGet(txt, 'float innerradius');
case 'shpere'
shape.radius = piParameterGet(txt, 'float radius');
shape.zmin = piParameterGet(txt, 'float zmin');
shape.zmax = piParameterGet(txt, 'float zmax');
shape.phimax = piParameterGet(txt, 'float phimax');
case 'cone'
shape.height = piParameterGet(txt, 'float height');
shape.radius = piParameterGet(txt, 'float radius');
shape.phimax = piParameterGet(txt, 'float phimax');
case 'cylinder'
shape.radius = piParameterGet(txt, 'float radius');
shape.zmin = piParameterGet(txt, 'float zmin');
shape.zmax = piParameterGet(txt, 'float zmax');
shape.phimax = piParameterGet(txt, 'float phimax');
case 'hyperboloid'
shape.p1 = piParameterGet(txt, 'point p1');
shape.p2 = piParameterGet(txt, 'point p2');
shape.phimax = piParameterGet(txt, 'float phimax');
case 'paraboloid'
shape.radius = piParameterGet(txt, 'float radius');
shape.zmin = piParameterGet(txt, 'float zmin');
shape.zmax = piParameterGet(txt, 'float zmax');
shape.phimax = piParameterGet(txt, 'float phimax');
case 'curve'
% todo
case {'trianglemesh', 'plymesh'}
if find(piContains(keyWords, 'filename'))
shape.filename = piParameterGet(txt, 'string filename');
% shape.filename = keyWords{find(piContains(keyWords, 'filename')) + 2};
end
if find(piContains(keyWords, 'integer indices'))
shape.integerindices = uint64(piParameterGet(txt, 'integer indices'));
% Convert it to integer format
% shape.integerindices = keyWords{find(piContains(keyWords, 'integer indices')) + 1};
end
if find(piContains(keyWords, 'point P'))
shape.pointp = piParameterGet(txt, 'point P');
% shape.pointp = keyWords{find(piContains(keyWords, 'point P')) + 1};
end
if find(piContains(keyWords, 'float uv'))
% If file extension is ply, don't do this.
ext = '';
if ~isempty(shape.filename)
[~, ~, ext] = fileparts(shape.filename);
end
if isequal(ext, '.ply')
else
shape.floatuv = piParameterGet(txt, 'float uv');
% shape.floatuv = keyWords{find(piContains(keyWords, 'float uv')) + 1};
end
end
if find(piContains(keyWords, 'normal N'))
shape.normaln = piParameterGet(txt, 'normal N');
% shape.normaln = keyWords{find(piContains(keyWords, 'normal N')) + 1};
end
% to add
% float/texture alpha
% float/texture shadowalpha
case 'heightfield'
% todo
case 'loopsubdiv'
% todo
case 'nurbs'
% todo
end
end
end
function s = shapeCreate
s.meshshape = '';
s.filename='';
s.integerindices = '';
s.pointp = '';
s.floatuv = '';
s.normaln = '';
s.height = '';
s.radius = '';
s.zmin = '';
s.zmax = '';
s.p1 = '';
s.p2='';
s.phimax = '';
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.