plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
ylucet/CCA-master
plq_coSplit_test.m
.m
CCA-master/tests/plq_coSplit_test.m
6,280
utf_8
1c012fd8273507e6b5c09482c30fec29
function tests = plq_coSplit_test() tests = functiontests(localfunctions); end % Author: Mike Trienis, Bryan Gardiner % For: Dr. Yves Lucet % Whatsit: A test file for plq convex hull function plq_coSplit. % I = Indicator, E = Exponential, C = Conjugate, L = Linear, Q = Quadratic function [b] = testPointIndicator(testCase) b = false; plqf = [5,0,0,10]; result = plq_coSplit(plqf); b = all(plqf == result); assert(all(all(b))); end function [b] = testConcaveQ(testCase) b = false; plqf = [-1,0,0,inf; 2,-1,0,1; inf,0,0,inf]; result = plq_coSplit(plqf); expected = [-1,0,0,inf; 2,0,-1,-1; inf,0,0,inf]; b = all(result == expected); assert(all(all(b))); end %---------------------------% function [b] = testL2Lch_1(testCase) b = false; plqf = [-1,0,0,inf; 1,0,1,-1; 4,0,0,0; inf,0,0,inf]; result = plq_coSplit(plqf); desired = [-1,0,0,inf; 4,0,0.4,-1.6; inf,0,0,inf]; b = all(result == desired | abs(result - desired) < 1E-5); assert(all(all(b))); end function [b] = testL2L2L2Lch_2(testCase) b = false; plqf = [0,0,0,inf; 1,0,-1,1; 2,0,1,-1; 3,0,-1,3; 4,0,1,-3; inf,0,0,inf]; result = plq_coSplit(plqf); desired = [0,0,0,inf; 1,0,-1,1; 3,0,0,0; 4,0,1,-3; inf,0,0,inf]; b = (result == desired | abs(result - desired) < 1E-5); assert(all(all(b))); end function [b] = testQ2L2Qch_3(testCase) b = false; plqf = [-1,1/2,0,1; 1,0,-2,-0.5; inf,1,-2,-1.5]; result = plq_coSplit(plqf); desired = plq_co(plqf); b = (result == desired | abs(result - desired) < 1E-5); assert(all(all(b))); end function [b] = testQ2Qch_6(testCase) b = false; plqf = [0,2,4,0;inf,2,-4,0]; result = plq_coSplit(plqf); result(end,1)=0; desired=[-1,2,4,0;1,0,0,- 2;inf,2,-4,0]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end %---------------------------% function [b] = testL2L2Qch_7(testCase) b = false; plqf = [0,0,1,0;2,0,0,0;inf,1,-4,4]; result = plq_coSplit(plqf); result(end,1)=0; desired = [2.5,0,1,-2.25;inf,1,-4,4]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end function [b] = testQ2Q2Qch_8(testCase) b = false; plqf =[-2,1,8,16;2,-1,0,8;inf,1,-8,16]; result = plq_coSplit(plqf); result(end,1)=0; desired = [-4,1,8,16;4,0,0,0;inf,1,-8, 16]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end %---------------------------% function [b] = testQ2Q2Qch_9(testCase) b = false; plqf =[-2,1,8,16;2,-1,0,8;inf,1,-8,16]; result = plq_coSplit(plqf); result(end,1)=0; desired=[-4,1,8,16;4,0,0,0;inf,1,-8,16]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end function [b] = testQ2L2L2Qch_10(testCase) b = false; plqf =[-3,1,8,16;0,0,1,4;3,0,-1,4;inf,1,-8,16]; result = plq_coSplit(plqf); result(end,1)=0; desired = [-4,1,8,16;4,0,0,0;inf,1,-8,16]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end function [b] = testQ2L2L2Qch_11(testCase) b = false; plqf =[-3,1,8,16;0,0,-1,-2;3,0,1,-2;inf,1,-8,16]; result = plq_coSplit(plqf); result(end,1)=0; desired = [-4.2426407,1,8,16;0,0,-0.4852814,-2;4.2426407,0,0.4852814,-2;inf,1,-8,16]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end %---------------------------% function [b] = testL2Q2Lch_12(testCase) b = false; plqf =[-2,0,-1,10;2,1,0,8;inf,0,1,10]; result = plq_coSplit(plqf); result(end,1)=0; desired=[-0.5,0,-1,7.75;0.5,1,0,8;inf,0,1,7.75]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end function [b] = testL2Q2Lch_13(testCase) b = false; plqf =[-2,0,-1,2;1,-1,0,8;inf,0,1,6]; result = plq_coSplit(plqf); result(end,1)=0; desired=[- 2,0,-1,2;inf,0,1,6]; desired(end,1)=0; b = all(norm(result-desired) < 1E-5); assert(all(all(b))); end %---------------------------% function [b] = testPosInfHull_0(testCase) b = false; plqf = [inf,0,0,inf]; result = plq_coSplit(plqf); desired = [inf,0,0,inf]; b = (result == desired); assert(all(all(b))); end function [b] = testNegInfHull_0(testCase) b = false; plqf = [inf,0,0,-inf]; result = plq_coSplit(plqf); desired = [inf,0,0,-inf]; b = (result == desired); assert(all(all(b))); end function [b] = testNegInfHull_1(testCase) b = false; plqf = [0,-1,-2,1;1,0,0,1;inf,1,1,0]; result = plq_coSplit(plqf); desired = [inf,0,0,-inf]; b = (result == desired); assert(all(all(b))); end function [b] = testNegInfHull_2(testCase) b = false; plqf = [-1,1,4,3;1,0,2.5,2.5;3,1,-2,6;inf,-2,12,-9]; result = plq_coSplit(plqf); desired = [inf,0,0,-inf]; b = (result == desired); assert(all(all(b))); end function [b] = testNegInfHull_3(testCase) b = false; plqf = [0,0,-1,0;1,1,0,0;inf,0,-2,3]; result = plq_coSplit(plqf); desired = [inf,0,0,-inf]; b = (result == desired); assert(all(all(b))); end %---------------------------% function [b] = runTestFile(testCase) b = true; b = checkForFail(testWrapper(testPointIndicator, 'testPointIndicator'), b); b = checkForFail(testWrapper(testConcaveQ, 'testConcaveQ'), b); b = checkForFail(testWrapper(testL2Lch_1, 'testL2Lch_1'), b); b = checkForFail(testWrapper(testL2L2L2Lch_2, 'testL2L2L2Lch_2'), b); b = checkForFail(testWrapper(testQ2L2Qch_3, 'testQ2L2Qch_3'), b); b = checkForFail(testWrapper(testQ2Qch_6, 'testQ2Qch_6'), b); b = checkForFail(testWrapper(testL2L2Qch_7, 'testL2L2Qch_7'), b); b = checkForFail(testWrapper(testQ2Q2Qch_8, 'testQ2Q2Qch_8'), b); b = checkForFail(testWrapper(testQ2Q2Qch_9, 'testQ2Q2Qch_9'), b); b = checkForFail(testWrapper(testQ2L2L2Qch_10, 'testQ2L2L2Qch_10'), b); b = checkForFail(testWrapper(testQ2L2L2Qch_11, 'testQ2L2L2Qch_11'), b); b = checkForFail(testWrapper(testL2Q2Lch_12, 'testL2Q2Lch_12'), b); b = checkForFail(testWrapper(testL2Q2Lch_13, 'testL2Q2Lch_13'), b); b = checkForFail(testWrapper(testPosInfHull_0, 'testPosInfHull_0'), b); b = checkForFail(testWrapper(testNegInfHull_0, 'testNegInfHull_0'), b); b = checkForFail(testWrapper(testNegInfHull_1, 'testNegInfHull_1'), b); b = checkForFail(testWrapper(testNegInfHull_2, 'testNegInfHull_2'), b); b = checkForFail(testWrapper(testNegInfHull_3, 'testNegInfHull_3'), b); assert(all(all(b))); end
github
ylucet/CCA-master
plq_add_Test.m
.m
CCA-master/tests/plq_add_Test.m
2,283
utf_8
72223477778971e187982a08e027ab67
%% Author: Mike Trienis %% For: Dr. Yves Lucet %% Whatsit: A test file for plq_add, adds two piecewise linear quadratic functions. %%mode(-1); %%L: Linear, Q: Quadratic, I: Indicator, PW: Piecewise %%__test_set = 'PLQ: plq_add'; function tests = plq_add_Test tests = functiontests(localfunctions); end function [b] = testQLQNonsmPlusQLQNonsm(testCase) b = 0; plqf = [-1,1,0,0;1,0,0,1;inf,1,0,0]; plqg = [0,1,0,0;2,0,1,0;inf,1,0,-2]; result=plq_add(plqf,plqg); desired = [-1,2,0,0;0,1,0,1;1,0,1,1;2,1,1,0;inf,2,0,-2]; b = all(result==desired); end function [b] = testQQSmoothPlusQQSmooth(testCase) b = 0; plqf = [-1,1,1,1; inf,1,1,1]; plqg = [-2,1,1,0; inf,1,1,0]; result = plq_add(plqf,plqg); desired = [inf,2,2,1]; b = all(result==desired); end %%Note this function tests when there is a common point between the two PLQ functions function [b] = testQLSmoothPlusQLQNonsm(testCase) b = 0; plqf=[1,1,0,0;3, 0, 2, -1;inf,3,-16,26]; plqg=[0,1,0,0;1, 0, 1, 0;inf,3, -4, 2]; result = plq_add(plqf,plqg); desired = [0,2,0,0;1,1,1,0;3,3,-2,1;inf,6,-20,28]; b = all(result==desired); end function [b] = testIPlusQ(testCase) b = 0; plqf=[4,0,0,5]; plqg=[inf,1/2,0,0]; result = plq_add(plqf,plqg); desired = [4,0,0,13]; b = all(result==desired); end function [b] = testIPlusQPW(testCase) b = 0; plqf=[4,0,0,5]; plqg=[0,0,-1,0;inf,0,1,0]; result = plq_add(plqf,plqg); desired = [4,0,0,9]; b = all(result==desired); end function [b] = testIPlusQPW2(testCase) b = 0; plqg=[4,0,0,5]; plqf=[0,0,-1,0;inf,0,1,0]; result = plq_add(plqf,plqg); desired = [4,0,0,9]; b = all(result==desired); end function [b] = testIPlusPL(testCase) b = 0; Ii=[-0.5,0,0,inf;0.5,0,0,0;inf,0,0,inf]; plq=[-1,0,-1,-1;0,0,1,1;1,0,-1,1;inf,0,1,-1]; result = plq_add(Ii,plq); desired = [-0.5,0,0,inf;0,0,1,1;0.5,0,-1,1;inf,0,0,inf]; b = all(result==desired); end function [b] = testIPlusI(testCase) b = 0; f1 = [1,0,0,3]; f2 = [1,0,0,10]; result = plq_add(f1, f2); desired = [1,0,0,13]; b = isequal(desired, result); end function [b] = testIPlusI2(testCase) b = 0; f1 = [1,0,0,3]; f2 = [2,0,0,10]; result = plq_add(f1, f2); desired = [inf,0,0,inf]; b = isequal(desired, result); end
github
ylucet/CCA-master
plq_split_test.m
.m
CCA-master/tests/plq_split_test.m
1,441
utf_8
4e61a0e2842691344452cc25b35fd779
function tests = plq_split_test() tests = functiontests(localfunctions); end %perform all tests by comparing with plq functions function b = prim(p) P=gph_plq(p); q=plq_scalar(p,3);Q=gph_plq(q); QQ=gph_scalar(P,3); b = gph_isEqual(Q,QQ); q=plq_scalar(p,0);Q=gph_plq(q); QQ=gph_scalar(P,0); b = b & gph_isEqual(Q,QQ); end function [b] = testAbs(testCase) p =[0 0 -1 0; inf 0 1 0];%abs function b = prim(p); assert(b) end function [b] = testInd(testCase) p=[-1 0 0 inf;1 0 0 0 ;inf 0 0 inf]; b = prim(p); assert(b) end function [b] = testPL(testCase) % A piecewise linear function: % x<0: y=-x % 0<x<1: y=0 % 1<x: y=x-1 G = [-1, 0, 0, 1, 1, 2; ... -1, -1, 0, 0, 1, 1; ... 1, 0, 0, 0, 0, 1]; p=plq_gph(G); b = prim(p); assert(b) end function [b] = testPLQ1(testCase) b = false; % A PLQ function: % x<-1: y=(x+1)^2 % -1<x<1: y=0 % 1<x: y=(x-1)^2 p=[-1 1 2 1;1 0 0 0;inf 1 -2 1]; b = prim(p); assert(b) end function [b] = testPLQ2(testCase) b = false; % A PLQ function: % x in [-1,1]: 0 % otherwise: x^2 - 1 p=[-1 1 0 -1;1 0 0 0;inf 1 0 -1]; b = prim(p); assert(b) end function [b] = testQuadratic(testCase) p=[inf,1,0,0]; b = prim(p); assert(b) end function [b] = testLinear(testCase) p=[inf,0,1,0]; b = prim(p); assert(b) end function [b] = testIndicatorSingleton(testCase) p=[1,0,0,2]; b = prim(p); assert(b) end
github
ylucet/CCA-master
plq_min_test.m
.m
CCA-master/tests/plq_min_test.m
2,474
utf_8
f304c3a87b23864e5c6b724a481332d4
function tests = plq_min_test() tests = functiontests(localfunctions); end % Author: Mike Trienis % For: Dr. Yves Lucet % Whatsit: A test file for plq_max, adds two piecewise linear quadratic functions. %L: Linear, Q: Quadratic, I: Indicator, PW: Piecewise function [b] = testLLMin(testCase) b = false; plqf = [inf,0,1,0]; plqg = [inf,0,-1,0]; [result,maxf] = plq_min(plqf,plqg); % x=linspace(-5,5,25)'; % ymax = plq_eval(result,x); % plot2d(x,ymax); desired = [0,0,1,0;inf,0,-1,0]; b = isequal(result, desired); b = b & isequal(maxf, [1,-inf,0;2,0,inf]); assert(all(all(b))); end function [b] = testQLMax(testCase) b = false; plqf = [inf,1,0,0]; plqg = [inf,0,0,1]; result = plq_min(plqf,plqg); % x=linspace(-5,5,25)'; % ymax = plq_eval(result,x); % plot2d(x,ymax); desired = [-1,0,0,1;1,1,0,0;inf,0,0,1]; b = isequal(result,desired); assert(all(all(b))); end function [b] = testQLQMax(testCase) b = false; plqf = [-1,1,0,0;1,0,0,1;inf,1,0,0]; plqg = [0,1,0,0;2,0,1,0;inf,1,0,-2]; result = plq_min(plqf,plqg); result_clean = plq_clean(result); % x=linspace(-5,5,100)'; % yf = plq_eval(plqf,x); % yg = plq_eval(plqg,x); % plot2d(x,[yf,yg],rect=[-2,-1,2,5]); desired = [0,1,0,0;2,0,1,0;inf,1,0,-2]; b = isequal(result_clean,desired); assert(all(all(b))); end function [b] = testQQMax(testCase) b = false; plqf1 = [inf,1,0,0]; plqf2 = [inf,1/10,0,1]; result = plq_min(plqf1,plqf2); % x=linspace(-5,5,100)'; % f0=plq_eval(result,x); % f1=plq_eval(plqf1,x); % f2=plq_eval(plqf2,x); % plot2d(x,[f0,f1,f2]); % a=gca(); % Handle on axes entity % a.thickness=3; % poly1= a.children.children(3); %store polyline handle into poly1 % poly1.foreground = 2; % another way to change the style % poly1.thickness = 3; desired = [- 1.0540926,0.1,0,1;1.0540926,1,0,0;inf,0.1,0,1]; b = isequal(result(:,2:end),desired(:,2:end)); assert(all(all(b))); end function [b] = testQQMaxdl(testCase) b = false; plqf1 = [inf,1,0,0]; plqf2 = [inf,1,2,-1]; result = plq_min(plqf1,plqf2); % x=linspace(-5,5,100)'; % f0=plq_eval(result,x); % f1=plq_eval(plqf1,x); % f2=plq_eval(plqf2,x); % plot2d(x,[f0,f1,f2]); % a=gca(); % Handle on axes entity % a.thickness=3; % poly1= a.children.children(3); %store polyline handle into poly1 % poly1.foreground = 2; % another way to change the style % poly1.thickness = 3; desired = [0.5,1,2,-1;inf,1,0,0]; b = isequal(result,desired); assert(all(all(b))); end
github
ylucet/CCA-master
gph_check_test.m
.m
CCA-master/tests/gph_check_test.m
1,873
utf_8
2dda0168ec6cbbf03c72e215ef8774bb
function tests = gph_check_test() tests = functiontests(localfunctions); end function [b] = testBoundedDomain(testCase) f=[-1 -1 1 1;-1 0 0 1;inf 0 0 inf]; b=gph_check(f); assert(b) end function [b] = testXNondecreasing(testCase) f=[-1 -2 1 1;-1 0 0 1;0 0 0 0]; b= ~gph_check(f); assert(b) end function [b] = testSNondecreasing(testCase) f=[-1 0 1 1;-1 0 0 -1;0 0 0 0]; b= ~gph_check(f); assert(b) end function [b] = testN(testCase) f=[1;0;0]; b=~gph_check(f);%n==1 f=[-1 -2 1 1;-1 0 0 1]; b=b & ~gph_check(f);%2xn assert(b) end function [b] = testFullDomain(testCase) p=[inf,1,0,0];f=gph_plq(p); b=gph_check(f); assert(b) end function [b] = testIndicatorSingleton(testCase) p=[1,0,0,2];f=gph_plq(p); b=gph_check(f); assert(b) end function [b] = testCont(testCase) b = false; f = [ -1 -1 0 0 1 1; ... -2 -1 -1 0 2 3; ... inf 1 0 0 1 inf]; b = gph_check(f); assert(b) end function [b] = testDiscont1(testCase) b = false; f = [ -1 -1 0 0 1 1; ... -2 -1 -1 0 2 3; ... inf 1 1 1 2 inf]; b = ~gph_check(f); assert(b) end function [b] = testDiscont2(testCase) b = false; f = [ -1 -1 0 0 1 1; ... -2 -1 -1 0 2 3; ... inf 1 0 1 1 inf]; b = ~gph_check(f); assert(b) end function [b] = testDiscont3(testCase) b = false; f = [ -1 -1 0 0 1 1; ... -2 -1 -1 0 2 3; ... inf 1 1 0 1 inf]; b = ~gph_check(f); assert(b) end function [b] = testDiscontL(testCase) % Test discontinuity in the first region. b = false; f = [-1 0 0 1; ... -1 -1 1 1; ... 2 0 0 1]; b = ~gph_check(f); assert(b) end function [b] = testDiscontR(testCase) % Test discontinuity in the first region. b = false; f = [-1 0 0 1; ... -1 -1 1 1; ... 1 0 0 2]; b = ~gph_check(f); assert(b) end
github
ylucet/CCA-master
gph_pa_test.m
.m
CCA-master/tests/gph_pa_test.m
2,336
utf_8
80b0ff973df76cc4d3246354181f3010
function tests = gph_pa_helper() tests = functiontests(localfunctions); end % I = Indicator, E = Exponential, C = Conjugate, L = Linear, Q = Quadratic function b=helper(f1, f2, lambda) rplq = plq_pa(f1,f2,lambda); G1=gph_plq(f1); G2=gph_plq(f2); G = gph_pa(G1,G2,lambda); rgph = plq_gph(G); b = plq_isEqual(rplq, rgph); end function [b] = testL2Lpa(testCase) f1 = [inf, 0, 1, 0]; f2 = [inf, 0, -1, 5]; b = helper(f1,f2,0.5); assert(all(all(b))); end function [b] = testI2Ipa(testCase) f1 = [6,0,0,4]; f2 = [5,0,0,1]; b = helper(f1,f2,0.5); assert(all(all(b))); end function b = testQ2Q(testCase) p0 = [inf,0.5,0,0]; p1 = [inf,1,-2,1]; b = helper(p0,p1,0.2); assert(all(all(b))); end function [b] = testAbs2zero1a(testCase) f1 = [0,0,0,0]; f2 = [0,0,-1,0;inf,0,1,0]; b = helper(f2,f1,0.5); assert(all(all(b))); end function [b] = testAbs2zero1b(testCase) f1 = [0,0,0,0]; f2 = [0,0,-1,0;inf,0,1,0]; b = helper(f1,f2,0.5); assert(all(all(b))); end function b = testPLQ2PLQ(testCase) x=linspace(-2,2,4)'; function y=f0(x),y=x.^4;end function y=df0(x),y=4*x.^3;end p0 = plq_build(x,@f0,@df0,false,false,'soqs','bounded'); p1 = [inf,1,-2,1]; b = helper(p1,p0,0.5); b = helper(p0,p1,0.5); assert(all(all(b))); end function [b] = testAbs2zero2a(testCase) f0 = [inf,0,0,0]; f1 = [0,0,-1,0;inf,0,1,0]; b = helper(f1,f0,0.5); assert(all(all(b))); end function [b] = testAbs2zero2b(testCase) f0 = [inf,0,0,0]; f1 = [0,0,-1,0;inf,0,1,0]; b = helper(f0,f1,0.5); assert(all(all(b))); end function b = test1(testCase) function y=f0(x), y=x.^4;end function y=df0(x), y=4*x.^3;end domf0=[-inf,inf]; function y=f1(x), y=exp(x);end function y=df1(x), y=exp(x);end domf1=[-inf,inf]; x=linspace(-10,10,5); p0 = plq_build(x,@f0,@df0,false,false,'soqs','bounded'); p1 = plq_build(x,@f1,@df1,false,false,'soqs','bounded'); b = helper(p0,p1,0.5); assert(all(all(b))); end function b= test2(testCase) f1=[-2,0,0,inf;-1,0,0,0;inf,0,0,inf]; f2=[1,0,0,inf;2,0,0,0;inf,0,0,inf]; b = helper(f1,f2,0.5); assert(all(all(b))); end function test_expected(testCase) f1 = [6,0,0,4]; f2 = [5,0,0,1]; G1=gph_plq(f1);G2=gph_plq(f2); G = gph_pa(G1,G2,0.5); expected = [5.5 5.5; -1.5 1.5; 2.625 2.625]; b = isequal(expected, G); assert(all(all(b))); end
github
ylucet/CCA-master
plq_conv_test.m
.m
CCA-master/tests/plq_conv_test.m
4,951
utf_8
70767f3da63fe338cf326098a0f4657f
function tests = plq_conv_test() tests = functiontests(localfunctions); end % Author: Mike Trienis % For: Dr. Yves Lucet % Whatsit: A test file for plq %L: Linear, Q: Quadratic, I: Indicator function b = testInfconvLft(testCase) b = false; plqf = [inf,1/4,0,0]; plqg = [inf,1,0,0]; result = plq_infconv_lft(plqf,plqg); desired = [inf,1/5,0,0]; b = all(result==desired); assert(b); end function b = testDeconvLft(testCase) b = false; plqf = [inf,1/4,0,0]; plqg = [inf,1,0,0]; result = plq_deconv_lft(plqf,plqg); desired = [inf,1/3,0,0]; b = all(result==desired); assert(b); end function b = testInfconvBruteDL1(testCase) b = false; f = [-1,0,0,inf;1,0,-1,0;inf,0,0,inf]; g = [-1,0,0,inf;1,0,1,0;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, lb1] = plq_infconv_brute_d(f(2,:), g(2,:), [-1;-1], [1;1]); [result2, lb2] = plq_infconv_brute_d(g(2,:), f(2,:), [-1;-1], [1;1]); result1 = [lb1,0,0,inf;result1;inf,0,0,inf]; result2 = [lb2,0,0,inf;result2;inf,0,0,inf]; b = isequal(desired, result1, result2); assert(b); end function b = testInfconvBruteDL2(testCase) b = false; f = [-0.5,0,0,inf;1.5,0,-1,0.5;inf,0,0,inf]; g = [-1,0,0,inf;1,0,1,0;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, lb1] = plq_infconv_brute_d(f(2,:), g(2,:), [-0.5;-1], [1.5;1]); [result2, lb2] = plq_infconv_brute_d(g(2,:), f(2,:), [-1;-0.5], [1;1.5]); result1 = [lb1,0,0,inf;result1;inf,0,0,inf]; result2 = [lb2,0,0,inf;result2;inf,0,0,inf]; b = isequal(desired, result1, result2); assert(b); end function b = testInfconvBruteDL3(testCase) b = false; f = [-1,0,0,inf;1,0,-1,0;inf,0,0,inf]; g = [2,0,0,inf;4,0,1,-3;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, lb1] = plq_infconv_brute_d(f(2,:), g(2,:), [-1;2], [1;4]); [result2, lb2] = plq_infconv_brute_d(g(2,:), f(2,:), [2;-1], [4;1]); result1 = [lb1,0,0,inf;result1;inf,0,0,inf]; result2 = [lb2,0,0,inf;result2;inf,0,0,inf]; b = isequal(desired, result1, result2); assert(b); end function b = testInfconvBruteL0(testCase) % nf==1, ng==1, f up, g up. b = false; f = [-1,0,0,inf;1,0,1,0;inf,0,0,inf]; g = [0,0,0,inf;2,0,2,-1/2;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, am1] = plq_infconv_brute(f, g); [result2, am2] = plq_infconv_brute(g, f); b = isequal(desired, result1, result2); %b = b & isEqual(am1, am2), assert(b); end function b = testInfconvBruteL1(testCase) % nf==2, ng==1, f v, g up. b = false; f = [-1,0,0,inf;1,0,-1,0;3,0,1,-2;inf,0,0,inf]; g = [-1,0,0,inf;1,0,1,0;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, am1] = plq_infconv_brute(f, g); [result2, am2] = plq_infconv_brute(g, f); b = isequal(desired, result1, result2); %b = b & isEqual(am1, am2), assert(b); end function b = testInfconvBruteL2(testCase) % nf==2, ng==2, f v, g v. b = false; f = [-1,0,0,inf;1,0,-1,0;3,0,1,-2;inf,0,0,inf]; g = [-3,0,0,inf;-1,0,-1,-1;1,0,1,1;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, am1] = plq_infconv_brute(f, g); [result2, am2] = plq_infconv_brute(g, f); b = isequal(desired, result1, result2); %b = b & isEqual(am1, am2), assert(b); end function b = testInfconvBruteL3(testCase) % nf==3, ng==3, f u, g down, disjoint domains. b = false; f = [-4,0,0,inf;-3,0,-1,-2;-2,0,0,1;-1,0,1,3;inf,0,0,inf]; g = [0,0,0,inf;1,0,-5,8;2,0,-2,5;3,0,-1/2,2;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1,am1] = plq_infconv_brute(f, g); [result2,am2] = plq_infconv_brute(g, f); b = isequal(desired, result1, result2); %b = b & isEqual(am1, am2); assert(b); end function plqf = plq_pl_from(x0, y0, dx, ms) if (size(ms, 1) > size(ms, 2)) ms = ms'; end; plqf = zeros(length(ms) + 2, 4); x = x0; y = y0; plqf(1,:) = [x0, 0, 0, inf]; i = 2; for m = ms plqf(i,:) = [x + dx, 0, m, y - m*x]; x = x + dx; y = plqf(i,3)*x + plqf(i,4); i = i + 1; end; plqf(end,:) = [inf, 0, 0, inf]; end function b = testInfconvBruteL4(testCase) b = false; %f = [0,0,0,inf;2,0,0,1;3,0,0,0;6,0,0,1;inf,0,0,inf]; f = [0.5,0,0,inf;1.5,0,-1,1.5;2.5,0,0,0;5,0,0.4,-1;inf,0,0,inf]; g = [0,0,0,inf;1,0,-1,2;3,0,1,0;inf,0,0,inf]; desired = plq_infconv_lft(f, g); [result1, am1] = plq_infconv_brute(f, g); [result2, am2] = plq_infconv_brute(g, f); b = (desired == result1 | abs(desired - result1) < 1E-6); b = b & (desired == result2 | abs(desired - result2) < 1E-6); assert(all(all(b))); %b = b & isEqual(am1, am2); end function b = testInfconvBruteLCommut1(testCase) b = false; f = plq_pl_from(0, 0, 1, 1:4); g = plq_pl_from(0.1, -2, 0.3, 1:8); desired = plq_infconv_lft(f, g); [result1, am1] = plq_infconv_brute(f, g); [result2, am2] = plq_infconv_brute(g, f); b = (desired == result1 | abs(desired - result1) < 1E-6); b = b & (desired == result2 | abs(desired - result2) < 1E-6); assert(all(all(b))); %b = b & isEqual(am1, am2); end
github
ylucet/CCA-master
gph_plq_test.m
.m
CCA-master/tests/gph_plq_test.m
2,844
utf_8
5730c9c9fb170d8323974d470698c991
function tests = gph_plq_test() tests = functiontests(localfunctions); end % Unit test file for gph_plq function b = testAbs(testCase) %abs function p = [0,0,-1,0;inf,0,1,0]; G = gph_plq(p); E = [-1, 0, 0, 1; -1, -1, 1, 1; 1, 0, 0, 1]; b = all(G==E); assert(all(all(b))) ; end function b = testQuartic(testCase) function y=f(x), y=x.^4;end function dy=df(x), dy=4*x.^3;end x=linspace(-2,2,4)'; p=plq_build(x,@f,@df,true,false,'soqs','bounded'); P=gph_plq(p); pg=plq_gph(P); b=plq_isEqual(p,pg); assert(all(all(b))) end function [b] = testInd(testCase) b = false; % The function I_[-1,1]. plq = [-1,0,0,inf; 1,0,0,0; inf,0,0,inf]; gph = gph_plq(plq); expected = [-1, -1, 1, 1; ... -1, 0, 0, 1; ... inf, 0, 0, inf]; b = all(gph == expected); assert(all(all(b))) end function [b] = testPL(testCase) b = false; plq = [0,0,-1,0; 1,0,0,0; inf,0,1,-1]; gph = gph_plq(plq); expected = [-1, 0, 0, 1, 1, 2; ... -1, -1, 0, 0, 1, 1; ... 1, 0, 0, 0, 0, 1]; b = all(gph == expected); assert(all(all(b))) end function [b] = testPLQ1(testCase) b = false; % A PLQ function: % x<-1: y=(x+1)^2 % -1<x<1: y=0 % 1<x: y=(x-1)^2 plq = [-1,1,2,1; 1,0,0,0; inf,1,-2,1]; gph = gph_plq(plq); expected = [-2, -1, 1, 2; ... -2, 0, 0, 2; ... 1, 0, 0, 1]; b = all(gph == expected); assert(all(all(b))) end function b = testPLQ2(testCase) b = false; % A PLQ function: % x in [-1,1]: 0 % otherwise: x^2 - 1 plq = [-1,1,0,-1; 1,0,0,0; inf,1,0,-1]; gph = gph_plq(plq); expected = [-2, -1, -1, 1, 1, 2; ... -4, -2, 0, 0, 2, 4; ... 3, 0, 0, 0, 0, 3]; b = all(gph == expected); assert(all(all(b))) end function b = testFullDomain(testCase) p = [inf,1,0,0]; gph = gph_plq(p); ge = [-1 1;-2 2;1 1]; b = gph_isEqual(gph,ge); assert(all(all(b))) end function b = testIndicator(testCase) p = [2,0,0,1]; gph = gph_plq(p); ge = [2 2;-1 1;1 1]; b = gph_isEqual(gph,ge); assert(all(all(b))) end function [b] = runTestFile(testCase) b = true; b = checkForFail(testWrapper(testAbs,'testAbs'), b); b = checkForFail(testWrapper(testQuartic,'testQuartic'), b); b = checkForFail(testWrapper(testInd,'testInd'), b); b = checkForFail(testWrapper(testPL,'testPL'), b); b = checkForFail(testWrapper(testPLQ1,'testPLQ1'), b); b = checkForFail(testWrapper(testPLQ2,'testPLQ2'), b); b = checkForFail(testWrapper(testFullDomain,'testFullDomain'), b); b = checkForFail(testWrapper(testIndicator,'testIndicator'), b); assert(all(all(b))) end
github
ylucet/CCA-master
removeTriplicate_test.m
.m
CCA-master/tests/removeTriplicate_test.m
604
utf_8
19efe538d0b1d7571029d87534dd2e8d
function tests = removeTriplicate_test() tests = functiontests(localfunctions); end function [b] = test1(testCase) M=[1 2 2 3 3 3 4 4 4 4]; [N,k]=removeTriplicate(M,1E-6); b=all(N==[1 2 2 3 3 4 4]) & all(k==[1 2 3 4 6 7 10]); assert(b) end function [b] = test2(testCase) M=[1 2 2 3 3 3 4 4 4 4 1 1]; [N,k]=removeTriplicate(M,1E-6); b=all(N==[1 2 2 3 3 4 4 1 1]) & all(k==[1 2 3 4 6 7 10 11 12]); assert(b) end function [b] = runTestFile(testCase) b = true; b = checkForFail(testWrapper(test1,'test1'), b); b = checkForFail(testWrapper(test2,'test2'), b); assert(b) end
github
ylucet/CCA-master
plq_isEqual_test.m
.m
CCA-master/tests/plq_isEqual_test.m
1,280
utf_8
1eaeeac91c15c077770bee61fa7d0714
function tests = plq_isEqual_test() tests = functiontests(localfunctions); end function b = test1(testCase) %domain is split p1=[inf 1 0 0]; p2=[0 1 0 0;inf 1 0 0]; b=plq_isEqual(p1,p2); %small values eps=1e-12; p2=[inf 1+eps eps -eps]; b=b & plq_isEqual(p1,p2); %small values + split partitions p2=[-eps 1 0 eps;eps 1-eps -eps/10 0;inf 1 -eps eps/1000]; b=b & plq_isEqual(p1,p2); p1=[1 0 0 1]; b=plq_isEqual(p1,p1); p2=[1 0 0 1+eps]; b=plq_isEqual(p1,p2); assert(b) ; end function b= test2(testCase) p = [-1 0 0 inf;1 0 0 0 ;inf 0 0 inf]; b = plq_isEqual(p,p); assert(b) ; end function b= test3(testCase) p = [-1 0 0 -inf;1 0 0 0 ;inf 0 0 -inf]; b = plq_isEqual(p,p); assert(b) ; end function b= test4(testCase) p = [1 0 0 -4];q=[inf 0 0 -4]; b = ~plq_isEqual(p,q); assert(b) ; end function b=test5(testCase) x=linspace(-2,2,4)'; function y=f0(x),y=x.^4;end function y=df0(x),y=4*x.^3;end p0 = plq_build(x,@f0,@df0,false,false,'soqs','bounded'); p1 = [inf,1,-2,1]; f1=p0; f2=p1; lambda=0.5; rplq = plq_pa(f1,f2,lambda); G1=gph_plq(f1); G2=gph_plq(f2); G = gph_pa(G1,G2,lambda); rgph = plq_gph(G); rplq=plq_clean(rplq); rgph=plq_clean(rgph); b = plq_isEqual(rplq, rgph); assert(b) ; end
github
ylucet/CCA-master
gph_add_test.m
.m
CCA-master/tests/gph_add_test.m
5,664
utf_8
65879a46c95294e9112bc35b1f1d23ce
function tests = gph_add_test() tests = functiontests(localfunctions); end % Unit test file for gph_add % The codes for the gph model are as follows: % - I represents a point indicator % - L represents a linear plq region (flat line in the gph) % - Q represents a quadratic plq region (non-flat line in the gph) % - B represents bounded on a specific side function b = testI_I_same(testCase) % Add two point indicators with different x values. b = false; gph1 = [2 2; -1 1; 3 3]; % f(2) = 3 gph2 = [2 2; -1 1; 5 5]; % f(2) = 5 X = [1; 2; 3; 5; 8; 10]; expected = [inf; 8; inf; inf; inf; inf]; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual); assert(all(all(b))) end function b = testI_I_diff(testCase) % Add two point indicators with different x values. b = false; gph1 = [2 2; -1 1; 3 3]; % f(2) = 3 gph2 = [5 5; -1 1; 8 8]; % f(5) = 8 X = [1; 2; 3; 5; 8; 10]; expected = X + inf; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual); assert(all(all(b))) end function b = testI_LL(testCase) % Add a point indicator to a linear function, and assert that % the result is another point indicator. b = false; gph1 = [-1 -1; -1 1; 2 2]; gph2 = [-1 0 0 1; -1 -1 1 1; 1 0 0 1]; gph = gph_add(gph1, gph2); b = gph(1,1)==-1 & gph(1,2)==-1 & gph(3,1)==3 & gph(3,2)==3; assert(all(all(b))) end function b = testL_L_sameX(testCase) % Add two single-region linear functions, defined with different X % values. eps = 1e-10; b = false; gph1 = [-5 -4; 0 0; 2 2]; % f(x) = 2 gph2 = [-5 -4; 2 2; -7 -5]; % f(x) = 2*x + 3 X = (-1.5:0.5:1.5)'; expected = 2*X + 5; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(abs(expected - actual) < eps); assert(all(all(b))) end function b = testL_L_diffX(testCase) % Add two single-region linear functions, defined with identical x % values. eps = 1e-10; b = false; gph1 = [-1 1; 0 0; 2 2]; % f(x) = -5*X - 10 gph2 = [0 1; 2 2; 3 5]; % f(x) = 2*X + 3 X = (-1.5:0.5:1.5)'; expected = 2*X + 5; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(abs(expected - actual) < eps); assert(all(all(b))) end function b = testQ_LQ_oneSameX(testCase) % Add a single-region quadratic function to a two-region function, % where an x value in the first lines up with an x value in the second. eps = 1e-10; b = false; gph1 = [0 1; 0 2; 0 1]; % f(x) = x^2 gph2 = gph_plq([0,0,-1,0; inf,1/2,0,0]); X = (-2:0.5:2)'; expected = [6; 3.75; 2; 0.75; 0; 0.375; 1.5; 3.375; 6]; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(abs(expected - actual) < eps); assert(all(all(b))) end function b = testQ_LQ_allDiffX(testCase) % Add a single-region quadratic function to a two-region function, % where NO x value in the first lines up with an x value in the second. eps = 1e-10; b = false; gph1 = [0 1; 0 2; 0 1]; % f(x) = x^2 gph2 = gph_plq([5,0,-1,5; inf,1/2,-5,25/2]); X = (-2:0.5:7)'; expected = [11; 8.75; 7; 5.75; 5; 4.75; 5; 5.75; 7; 8.75; 11; ... 13.75; 17; 20.75; 25; 30.375; 36.5; 43.375; 51]; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(abs(expected - actual) < eps); assert(all(all(b))) end function b = testQ_BL(testCase) % Add a single-region quadratic function to a lower-bounded % single-linear-region function. eps = 1e-10; b = false; gph1 = [1 2; 2 4; 1 4]; % f(x) = x^2 gph2 = gph_plq([0,0,0,inf; inf,0,1,0]); % f(x) = x, x > 0 X = (-1:0.5:2)'; expected = [inf; inf; 0; 0.75; 2; 3.75; 6]; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual | abs(expected - actual) < eps); assert(all(all(b))) end function b = testBLB_BLB(testCase) % Add two bounded linear functions with different, overlapping, % domains. eps = 1e-10; b = false; % f(x) = 2*x, for -1 <= x <= 1. gph1 = [-1 -1 1 1; 1 2 2 3; inf -2 2 inf]; % g(x) = 3, for 0 <= x <= 2. gph2 = [0 0 2 2; -1 0 0 1; inf 3 3 inf]; X = (-1.5:0.5:2.5)'; expected = [inf inf inf 3 4 5 inf inf inf]'; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual | abs(expected - actual) < eps); assert(all(all(b))) end function b = testLL_LL(testCase) % Add two unbounded linear functions with same domain breaks. eps = 1e-10; b = false; gph1 = gph_plq([0,0,0,0; inf,0,2,0]); gph2 = gph_plq([0,0,-1,0; inf,0,1,0]); X = (-1.5:0.5:1.5)'; expected = [1.5 1 0.5 0 1.5 3 4.5]'; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual | abs(expected - actual) < eps); assert(all(all(b))) end function b = testLL_LL_2(testCase) % Add two unbounded linear functions with different domain breaks. eps = 1e-10; b = false; gph1 = gph_plq([0,0,0,0; inf,0,2,0]); gph2 = gph_plq([2,0,-1,2; inf,0,1,-2]); X = (-1.5:0.5:3.5)'; expected = [3.5, 3, 2.5, 2, 2.5, 3, 3.5, 4, 5.5, 7, 8.5]'; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual | abs(expected - actual) < eps); assert(all(all(b))) end function b = testQLQ_BLB(testCase) % Add an unbounded quadratic-linear-quadratic function to a bounded % linear function defined only over two of the first function's regions. eps = 1e-10; b = false; gph1 = gph_plq([-1,1,2,1; 1,0,0,0; inf,1,-2,1]); gph2 = gph_plq([0,0,0,inf; 2,0,1,0; inf,0,0,inf]); X = (-2:0.5:3)'; expected = [inf; inf; inf; inf; 0; 0.5; 1; 1.75; 3; inf; inf]; gph = gph_add(gph1, gph2); actual = gph_eval(gph, X); b = all(expected == actual | abs(expected - actual) < eps); assert(all(all(b))) end
github
ylucet/CCA-master
gph_scalar_test.m
.m
CCA-master/tests/gph_scalar_test.m
1,429
utf_8
86d9179e6949dd73a0b94cf9da0ad91f
function tests = gph_scalar_test() tests = functiontests(localfunctions); end %perform all tests by comparing with plq functions function b = helper(p) P=gph_plq(p); q=plq_scalar(p,3); Q=gph_plq(q); QQ=gph_scalar(P,3); b = gph_isEqual(Q,QQ); q=plq_scalar(p,0); Q=gph_plq(q); QQ=gph_scalar(P,0); end function [b] = testAbs(testCase) p =[0 0 -1 0; inf 0 1 0];%abs function b=helper(p); assert(b) end function [b] = testInd(testCase) p=[-1 0 0 inf;1 0 0 0 ;inf 0 0 inf]; b=helper(p); assert(b) end function [b] = testPL(testCase) % A piecewise linear function: % x<0: y=-x % 0<x<1: y=0 % 1<x: y=x-1 G = [-1, 0, 0, 1, 1, 2; ... -1, -1, 0, 0, 1, 1; ... 1, 0, 0, 0, 0, 1]; p=plq_gph(G); b=helper(p); assert(b) end function [b] = testPLQ1(testCase) b = false; % A PLQ function: % x<-1: y=(x+1)^2 % -1<x<1: y=0 % 1<x: y=(x-1)^2 p=[-1 1 2 1;1 0 0 0;inf 1 -2 1]; b=helper(p); assert(b) end function [b] = testPLQ2(testCase) b = false; % A PLQ function: % x in [-1,1]: 0 % otherwise: x^2 - 1 p=[-1 1 0 -1;1 0 0 0;inf 1 0 -1]; b=helper(p); assert(b) end function [b] = testQuadratic(testCase) p=[inf,1,0,0]; b=helper(p); assert(b) end function [b] = testLinear(testCase) p=[inf,0,1,0]; b=helper(p); assert(b) end function [b] = testIndicatorSingleton(testCase) p=[1,0,0,2]; b=helper(p); assert(b) end
github
ylucet/CCA-master
gph_isEqual_test.m
.m
CCA-master/tests/gph_isEqual_test.m
886
utf_8
34fd01765157409680c99adb0b725d05
function tests = gph_isEqual_test() tests = functiontests(localfunctions); end function b = test1(testCase) %domain is split p1=[inf 1 0 0];g1=gph_plq(p1); p2=[0 1 0 0;inf 1 0 0];g2=gph_plq(p2); b=gph_isEqual(g1,g2); %small values eps=1e-9; p2=[inf 1+eps eps -eps];g2=gph_plq(p2); b=b & gph_isEqual(g1,g2); %small values + split partitions p2=[-eps 1 0 eps;eps 1-eps -eps/10 0;inf 1 -eps eps/1000]; g2=gph_plq(p2); b=b & gph_isEqual(g1,g2); assert(b) end function b = testIndicator(testCase) p = [2,0,0,1]; g = gph_plq(p); ge = [2 2;-1 1;1 1]; b = gph_isEqual(g,ge); assert(b) end function b = testFullDomain(testCase) p = [2,0,0,1]; g = gph_plq(p); ge = [2 2;-1 1;1 1]; b = gph_isEqual(g,ge); assert(b) end function b= test2(testCase) p = [-1 -1 1 1; -1 0 0 1;inf 0 0 inf]; g = gph_plq(p); b = gph_isEqual(g,g); assert(b) end
github
ylucet/CCA-master
plq_conv_buildl.m
.m
CCA-master/macros/plq/plq_conv_buildl.m
3,414
utf_8
089e1a7e917222922d8c21336aad477b
%build a linear function, f1i, is the function index, and x1i is the x-value we wanted to evaluate the function on. %similarly f2i is the function index of the second function, and x2i corresponds to the value we evaluate the function on. %In other words constructs a linear function from (x1i,f[f1i](x(x1i))), to (x(x2i),f[f2i](x(x2i))). %function [plq_fctn] = _plq_conv_build2(x,a,b,c) function [l_fctn]=plq_conv_buildl(x,a,b,c,f1i,x1i,f2i,x2i), %printf(" x(x1i)= %The case used most often is the PLQ convex hull on a bounded interval [x(1),x(5)]. if x(x1i) > -inf & x(x2i) < inf %LOWER BOUNDRY IS FINITE, UPPER BOUNDRY IS FINITE y1 = a(f1i)*x(x1i).^2 + b(f1i)*x(x1i) + c(f1i); y2 = a(f2i)*x(x2i).^2 + b(f2i)*x(x2i) + c(f2i); m = (y2-y1)/(x(x2i)-x(x1i)); %slope i = -x(x1i)*m + y1; l_fctn = [x(x2i),0,m,i]; elseif x(1) == -inf & x(5) == inf %LOWER BOUNDRY IS UNBOUNDED, UPPER BOUNDRY IS UNBOUNDED if a(1) ~= 0 & a(2) ~= 0 cerror('_plq_conv_buildl: CASE D.N.E. (1)'); %D.N.E, as x(2), & x(4) exist elseif a(1) ~= 0 & a(2) == 0 %special x(2)=-1/2*(b(1)-2*a(2)*x(3)-b(2))/a(1); y1 = a(1)*x(2).^2+b(1)*x(2)+c(1); m=2*a(2)*x(3)+b(2); i=-x(2)*m+y1; l_fctn=[x(2),a(1),b(1),c(1);x(5),0,m,i]; elseif a(1) == 0 & a(2) ~= 0 %special x(4) = 1/2*(-b(2)+2*a(1)*x(3)+b(1))/a(2); y2 = a(2)*x(4).^2 + b(2)*x(4) + c(2); m=2*a(1)*x(3) + b(1); i=-x(4)*m + y2; l_fctn=[x(4),0,m,i;x(5),a(2),b(2),c(2)]; elseif a(1) == 0 & a(2) == 0 %D.N.E, as plqco=[inf,0,0,-inf] else cerror('_plq_conv_buildl: Case does not exist'); end; elseif x(1) == -inf & x(5) < inf %LOWER BOUNDRY IS UNBOUNDED, UPPER BOUNDRY IS FINITE if a(1) ~= 0 & a(2) ~= 0 cerror('_plq_conv_buildl: CASE D.N.E (2)'); %D.N.E, as x(2), & x(4) exist elseif a(1) ~= 0 & a(2) == 0 cerror('_plq_conv_buildl: CASE D.N.E (3)'); %D.N.E, as x(2) exists elseif a(1) == 0 & a(2) ~= 0 %special x(4) = 1/2*(-b(2)+2*a(1)*x(3)+b(1))/a(2); y2 = a(2)*x(4).^2 + b(2)*x(4) + c(2); m=2*a(1)*x(3) + b(1); i=-x(4)*m + y2; l_fctn =[x(4),0,m,i;x(5),a(2),b(2),c(2)]; elseif a(1) == 0 & a(2) == 0 l_fctn = [x(5),0,b(1),-x(5)*b(1)+(b(2)*x(5)+c(2))]; %special else cerror('_plq_conv_buildl: Case does not exist'); end; elseif x(1) > -inf & x(5) == inf %LOWER BOUNDRY IS FINITE, UPPER BOUNDRY IS UNBOUNDED if a(1) ~= 0 & a(2) ~= 0 cerror('_plq_conv_buildl: CASE D.N.E. (4)'); %D.N.E, as x(2), & x(4) exist elseif a(1) ~= 0 & a(2) == 0 %special x(2) = (b(2)-b(1))/2*a(1); y2 = a(1)*x(2).^2 + b(1)*x(2) + c(1); m=b(2); i=-x(2)*m + y2; l_fctn =[x(2),a(1),b(1),c(1);x(5),0,m,i]; elseif a(1) == 0 & a(2) ~= 0 cerror('_plq_conv_buildl: CASE D.N.E. (5)'); %D.N.E, as x(4) exists elseif a(1) == 0 & a(2) == 0 %special l_fctn=[inf,0,b(2),-x(1)*b(2)+(b(1)*x(1)+c(1))]; else cerror('_plq_conv_buildl: CASE D.N.E. (6)'); end; else cerror('_plq_conv_buildl: CASE D.N.E. (7)'); end end
github
ylucet/CCA-master
plq_conv_qlq.m
.m
CCA-master/macros/plq/plq_conv_qlq.m
1,138
utf_8
354736313b4d338c3590428c16b49aea
% This function processes a function containing a QLQ segment, where the % linear piece is converging to the convex hull of the quadratics. Given % the index i of the linear piece, it removes it, interpolating the % quadratics to their intersection point. It returns the new function, % and the index of the left quadratic piece. function [plqf, i] = plq_conv_qlq(plqf, i) j = i + 1; i = i - 1; A = plqf(i,2) - plqf(j,2); B = plqf(i,3) - plqf(j,3); C = plqf(i,4) - plqf(j,4); x1 = -plqf(i,4) / plqf(i,3); x5 = -plqf(j,4) / plqf(j,3); % Calculate the intersection point. if A == 0 x = -C/B; else D = B*B - 4*A*C; if D < 0 cerror('_plq_conv_qlq: Unable to intersect parabolas. Impossible case?'); end; pr = (-B + sqrt(D)) / (2*A); nr = (-B - sqrt(D)) / (2*A); if x1 <= pr <= x5 x = pr; elseif x1 <= nr <= x5 x = nr; else cerror('_plq_conv_qlq: Intersection not parabola vertices. Impossible case?'); end; end; plqf(i,1) = x; plqf(i+1,:) = []; end
github
ylucet/CCA-master
pl_gph.m
.m
CCA-master/macros/plq/pl_gph.m
642
utf_8
867a7663eb9624b241e590a508509e02
%convert the subdifferential of a gph function into a piecewise-linear function %error out if the graph of the subdifferential is not a function (it is always %piecewise-linear but may have vertical pieces). function q = pl_gph(G) eps=1e-8; x0 = G(1,1:end-1);x1 = G(1,2:end); if any(find(abs(x1-x0)<eps)) q=[]; cerror('Unable to convert graph of subdifferential to piecewise-linear function: graph is not a function!'); end; x = [G(1,2:end-1)';inf]; a = zeros(size(x)); b = (G(2,2:end)-G(2,1:end-1))./ (G(1,2:end)-G(1,1:end-1));%can't divide by zero here because of test above c = G(2,1:end-1)-b .* x0; q=[x a b' c']; end
github
ylucet/CCA-master
plq_eval.m
.m
CCA-master/macros/plq/plq_eval.m
1,332
utf_8
bc3d1ccabb95e50ed5f888cf94436e04
%%%%%%%%%%%%%%EVALUATES A PLQ FUNCTION ON A GRID%%%%%%%%%%%%%% function [y, k] = plq_eval(plqf,X) %evaluate a plq function on a grid y=plqf(x), %x(k(1,l-1))<=X(k(2,l))<=X(k(3,l))<=x(k(1,l)) i.e. k(:,l)=[i;jl;jr] x=plqf(:,1);a=plqf(:,2);b=plqf(:,3);c=plqf(:,4); n1=length(x);n=length(X); if size(X,1)<size(X,2) X=X'; end; y=[];k=[]; if (n1 == 1 & x(1) < inf) j=find(x==X); y=ones(size(X))*inf;y(j)=c; return; end; if x(n1) ~= inf s=sprintf('Error in plq_eval: right bound of plqf should be infinity instead of false',x(n1));cerror(s);return; end; i=1; jl=1;%left index on X jr=1;%rigth index on X while (jl <= n) while (x(i) < X(jl)), i=i+1; end;%x(n)=$inf so always get out jr = jl + 1; while ((jr <= n) & X(jr) <=x(i)), jr = jr + 1; end; if jr > n jr = n; else jr = jr - 1; end; xx = X(jl:jr); k(:,end+1)=[i;jl;jr]; y = [y; a(i)*xx.^2+b(i)*xx+c(i)]; jl = jr + 1; i = i + 1; end; if k(1,1)==0 & k(2,1)==0 & k(3,1)==0 k(:,1) = []; end % k(:,1)=[];%remove 1st colum which is [0;0;0] if length(y)~=n s=sprintf('Error in plq_eval: length(X)=i ~= length(y)=i',n,length(y));cerror(s);return; end; end
github
ylucet/CCA-master
plq_lft.m
.m
CCA-master/macros/plq/plq_lft.m
2,970
utf_8
80c07702f7d844e6aac7a4feecb75260
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PLQ CONJUGATE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plqfstar = plq_lft(plqf,isConvex) if nargin<=1 isConvex=false; end;%default to non-convex functions if ~isConvex plqf=plq_co(plqf); end; x=plqf(:,1);a=plqf(:,2);b=plqf(:,3);c=plqf(:,4); n = size(x,1); %number of rows i=1;%primal index: x(i); scan plqf j=1; %dual index: s(j); build plqfstar %special case: Indicator of a point or linear function if n == 1 if x(i) == inf & a == 0 %LINE - TO - POINT plqfstar=[b,0,0,-c];return; elseif x(i) < inf %POINT - TO - LINE plqfstar=[inf,0,x,-c];return; end end if c(1) == inf %domain is left-bounded: add a linear part s(1) = 2*a(2)*x(1) + b(2); sa(1) = 0; sb(1) = x(1); sc(1) = -a(2)*x(1).^2-b(2)*x(1)-c(2); j = j + 1;i = i + 1; elseif a(1)==0 %first part is linear: add infinity + linear part s(1) = b(1); sa(1) = 0; sb(1) = 0; sc(1) = inf; s(2) = 2*a(2)*x(1) + b(2); sa(2) = 0; sb(2) = x(1); sc(2)=-b(1)*x(1) - c(1); %since -b(1)*x(1) - c(1)=-a(2)*x(1).^2-b(2)*x(1)-c(2) the formula is the same as for left-bounded above j = j + 2;i = i + 1; end %Now each line in plqf(i:n-1,:) gives a quadratic part + a linear part %and each value of i between istart and n-1 gives 2 values for j jend=2*(n-i)+j-1;%n-i=(n-1)-(i-1)=number of primal values to read; j-1=dual values already added if jend > j %when there is a middle part jq=j:2:jend-1; jl=j+1:2:jend; ai=a(i:n-1);xi=x(i:n-1);bi=b(i:n-1);ci=c(i:n-1);t=4*ai;%tmp vars to reduce calculations sq=2*ai.*xi+bi;saq=t.^(-1);sbq=-2*bi./ t;scq=(bi.^2)./ t-ci;%quadratic part (careful 1./t<>t.^(-1)) sl=2*a(i+1:n).*xi+b(i+1:n);sal=zeros(size(xi));sbl=xi;scl=-ai.*xi.^2-bi.*xi-ci;%linear part z=zeros(jend-j+1,1); s(j:jend)=z;sa(j:jend)=z; sb(j:jend)=z;sc(j:jend)=z; s(jq)=sq;sa(jq)=saq;sb(jq)=sbq;sc(jq)=scq; s(jl)=sl;sa(jl)=sal;sb(jl)=sbl;sc(jl)=scl; j=jend+1; end; if c(n) == inf %domain is right-bounded: add a linear part s(j) = inf; sa(j) = 0; sb(j) = x(n-1); sc(j) = -a(n-1)*x(n-1).^2-b(n-1)*x(n-1)-c(n-1); elseif a(n)==0 %last part is linear: add infinity s(j) = inf; sa(j) = 0; sb(j) = 0; sc(j) = inf; else %last part is quadratic: add a quadratic s(j) = 2*a(n)*x(n) + b(n); sa(j) = 1/(4*a(n)); sb(j) = -b(n)/(2*a(n)); sc(j) = b(n).^2/(4*a(n)) - c(n);%always finite value since a(n)>0 end j = j + 1;i = i + 1; plqfstar = plq_clean([ s' , sa' , sb' , sc' ]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PLQ CONJUGATE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
ylucet/CCA-master
dl_maxoninterval.m
.m
CCA-master/macros/plq/dl_maxoninterval.m
787
utf_8
59decfa80407d18793aca4e2c2a0c2b9
%computes the maximum of two functions under the assumption that difference of q1 - q2 is linear function!!!!! function [plq,maxq] = dl_maxoninterval(q1,q2,lb,ub,a,b,c) if b == 0 %horizontal line, i.e. no intersection with the x-axis plq = maxoninterval(q1,q2,lb,ub,a,b,c); if (c > 0) maxq = [1,lb,ub]; else maxq = [2,lb,ub]; end; else x = -c/b; %y=bx+c --> find x-intercept 0=bx+c --> x = -c/b if x <= lb | x >= ub [plq,i] = maxoninterval(q1,q2,lb,ub,a,b,c); maxq = [i,lb,ub]; else [plq_i1,i1] = maxoninterval(q1,q2,lb,x,a,b,c); [plq_i2,i2] = maxoninterval(q1,q2,x,ub,a,b,c); plq = [plq_i1;plq_i2]; maxq = [i1,lb,x;i2,x,ub]; end end; end
github
ylucet/CCA-master
plq_diff.m
.m
CCA-master/macros/plq/plq_diff.m
156
utf_8
b6183f2b53373ceab1df8bdf97be2542
%compute the piecewise linear derivative of p %errors out (in pl_gph) if dp is not a function function dp = plq_diff(p) G=gph_plq(p); dp=pl_gph(G); end%
github
ylucet/CCA-master
plq_pa.m
.m
CCA-master/macros/plq/plq_pa.m
1,125
utf_8
52476e3ee72032dc09e0feb1c4ec5515
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PROXIMAL AVERAGE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pa = plq_pa(f1,f2,lambda_pa,isConvex) if nargin<=3 isConvex=true; end;%default to convex functions pa=[];%default value in case of error %f[lambda] = (lambda(f1 + (1/2)normsquared)* + (1 - lambda)(f2 + (1/2)normsquared)*)* - (1/2)normsquared normsquared = [inf, 1/2, 0, 0]; negnormsquared = plq_scalar(normsquared,-1); f1normsquared = plq_add(f1,normsquared); f2normsquared = plq_add(f2,normsquared); f1normsquaredstar = plq_lft(f1normsquared,isConvex); f2normsquaredstar = plq_lft(f2normsquared,isConvex); f1normsquaredstarlambda = plq_scalar(f1normsquaredstar,1-lambda_pa);%1-lambda first function f2normsquaredstarlambda = plq_scalar(f2normsquaredstar,lambda_pa); f1normsquaredstarlambda=plq_clean(f1normsquaredstarlambda);%remove floating point errors proxadd = plq_add(f1normsquaredstarlambda,f2normsquaredstarlambda); proxaddstar = plq_lft(proxadd); proxaddstar = plq_clean(proxaddstar); pa = plq_add(proxaddstar,negnormsquared); end
github
ylucet/CCA-master
plq_gpa.m
.m
CCA-master/macros/plq/plq_gpa.m
372
utf_8
4ce033348ff00b5b6c66e54118a84053
%generalized proximal average from %W. Hare. A Proximal Average for Nonconvex Functions: %A Proximal Stability Perspective. SIOPT function pa = plq_gpa(p0,p1,lambda,r) pa1 = plq_scalar(plq_me(p0,1/r,false), -(1-lambda)); pa2 = plq_scalar(plq_me(p1,1/r,false), -lambda); pa=plq_add(pa1,pa2); pa=plq_me(pa,1/(r+lambda*(1-lambda)),false); pa=plq_scalar(pa,-1); end
github
ylucet/CCA-master
plq_maxoninterval.m
.m
CCA-master/macros/plq/plq_maxoninterval.m
1,293
utf_8
c0803fd5c071801dbaf2a21496257b6e
%l1,l2,q1,q2 are all represented by the formar [a,b,c] which represents ax^2 + bx + c %Each corresponding function will find the maximum function between two functions %either quadratic-linear, quadratic-quadratic, linear-linear which is valid only %within the interval [lb,ub] the lower and upper bound. %main function %computes the maximum of two functions under the assumption that q1 - q2 is linear or quadratic. %DOES NOT HANDLE SINGLETON INDICATOR FUNCTIONS. function [plq,maxq] = plq_maxoninterval(q1,q2,lb,ub) %printf(" q1=[i,i,i],q2=[i,i,i] lb=i,ub=i",q1(1,1),q1(1,2),q1(1,3),q2(1,1),q2(1,2),q2(1,3),lb,ub); if all(q1==q2) plq=[ub,q1]; %printf(" plq_max: [i,i,i,i]",plq(1,1),plq(1,2),plq(1,3),plq(1,4)); maxq=[]; return; end; %to find where q1 > q2 find where (q1 - q2) > 0 dlq = (q1 - q2); %WARNING: the difference of two quadratics is linear! or quadratic! a=dlq(1,1);b=dlq(1,2);c=dlq(1,3); if a == 0 %dlq is linear [plq,maxq] = dl_maxoninterval(q1,q2,lb,ub,a,b,c); %printf(" plq_max: [i,i,i,i]",plq(1,1),plq(1,2),plq(1,3),plq(1,4)); else %dlq is quadratic [plq,maxq] = dq_maxoninterval(q1,q2,lb,ub,a,b,c); %printf(" plq_max: [i,i,i,i] Q",plq(1,1),plq(1,2),plq(1,3),plq(1,4)); end end
github
ylucet/CCA-master
dq_maxoninterval.m
.m
CCA-master/macros/plq/dq_maxoninterval.m
2,316
utf_8
b48229058294bd7a7a72ba75df6ebe1f
%computes the maximum of two functions under the assumption that the difference of q1 - q2 is quadratic!!!!! function [plq,maxq] = dq_maxoninterval(q1,q2,lb,ub,a,b,c) delta = b.^2 - 4*a*c; %calculating the discriminant of the quadratic %printf(" a: if delta > 0 %there are two real roots %finding the zeros of qd x(1) = (-b - sqrt(delta))/(2*a); x(2) = (-b + sqrt(delta))/(2*a); x = sort([x]); if (x(1) < lb & x(2) > ub) | (x(1) > ub & x(2) > ub) | (x(1) < lb & x(2) < lb) %both zeros are outside our interval %plq = maxoninterval(q1,q2,dq,lb,ub); [plq,i] = maxoninterval(q1,q2,lb,ub,a,b,c); maxq = [i,lb,ub]; elseif x(1) >= lb & x(2) <= ub %both zeros are inside our interval (NOTE: x(1),x(2) are sorted) [plq_i1,i1] = maxoninterval(q1,q2,lb,x(1),a,b,c); [plq_i2,i2] = maxoninterval(q1,q2,x(1),x(2),a,b,c); [plq_i3,i3] = maxoninterval(q1,q2,x(2),ub,a,b,c); plq = [plq_i1;plq_i2;plq_i3]; maxq = [i1,lb,x(1);i2,x(1),x(2);i3,x(2),ub]; elseif x(1) >= lb & x(1) <= ub %only left root inside interval [plq_i1,i1] = maxoninterval(q1,q2,lb,x(1),a,b,c); [plq_i2,i2] = maxoninterval(q1,q2,x(1),ub,a,b,c); plq = [plq_i1;plq_i2]; maxq = [i1,lb,x(1);i2,x(1),ub]; else %only right root inside interval [plq_i1,i1] = maxoninterval(q1,q2,lb,x(2),a,b,c); [plq_i2,i2] = maxoninterval(q1,q2,x(2),ub,a,b,c); plq = [plq_i1;plq_i2]; maxq = [i1,lb,x(2);i2,x(2),ub]; end elseif delta < 0 %there are 2 complex roots (No real roots) [plq,i] = maxoninterval(q1,q2,lb,ub,a,b,c); maxq = [i,lb,ub]; else %delta = 0 then there is 1 real root x(1) = (-b + sqrt(delta))/(2*a); if x(1) <= lb | x(1) >= ub %the root is outside our lower and upper bound [plq,i] = maxoninterval(q1,q2,lb,ub,a,b,c); maxq = [i,lb,ub]; else %zero is inside the interval [plq,i] = maxoninterval(q1,q2,lb,x(1),a,b,c); plq(1,1) = ub; %since the quadratic is tangent to the x-axis, we know that it does not cut the axis maxq = [i,lb,ub]; end end end
github
ylucet/CCA-master
plq_isEqual.m
.m
CCA-master/macros/plq/plq_isEqual.m
912
utf_8
ec1209d3ad6cdaaae0b413ff85b65343
%test whether 2 plq functions are equal %use the clean function to round small values %and contrary to the isEqual function compacts small intervals function b = plq_isEqual(p1,p2) %remove common inf values to prevent inf-inf=NaN isP1inf=(p1(end,1)==inf); isP2inf=(p2(end,1)==inf); large=realmax; i1=find(p1==inf); i2=find(p2==inf); p1(i1)=large; p2(i2)=large; i1=find(p1==-inf); i2=find(p2==-inf); p1(i1)=-large; p2(i2)=-large; %restore plq format without screwing indicator of a point special case if isP1inf p1(end,1)=inf; end; if isP2inf p2(end,1)=inf;end %compute difference of both functions and test it is the zero function q = plq_clean(plq_add(p1,plq_scalar(p2,-1))); if all([size(p1,1)==1,size(p2,1)==1,~isinf(p1(1,1)),~isinf(p2(1,1))]) %SPECIAL CASE: 2 indicators of singleton b = norm(p1-p2) < 1E-6; else b = all(q==[inf 0 0 0]); end end
github
ylucet/CCA-master
plq_prox.m
.m
CCA-master/macros/plq/plq_prox.m
624
utf_8
952b3b805996a1c6b734ec8965dc749b
%compute the proximal mapping of a PLQ function %from the graph of the subdifferential %only works for convex functions function q=plq_prox(p,alpha) eps=1e-8; if alpha<0 cerror('alpha must be nonnegative'); end; G = gph_plq(p); P = [1 alpha;1 0] * G(1:2,:); P(3,:)=zeros(size(1,size(P,2))); q = pl_gph(P); % %TO DO % if n==2 & abs(g(1,1)-g(1,2))<eps then%singleton indicator % h=g(1:2,:); % h(3,:)=alpha*g(3,:); % else % i=find(g==inf); % % h = [1 alpha;1 0] * g(1:2,:); % %multiply 3rd row (values of f) alone to avoid 0*inf giving % h(3,:)=alpha*g(3,:); % h(i)=inf; % end end
github
ylucet/CCA-master
mikeplq_lft.m
.m
CCA-master/macros/plq/mikeplq_lft.m
2,485
utf_8
4a8a376c96a6cdc8dbca409bb0666fd2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PLQ CONJUGATE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plqfstar = mikeplq_lft(plqf) x=plqf(:,1);a=plqf(:,2);b=plqf(:,3);c=plqf(:,4); n = size(x,1); %number of rows i=1;j=1; while i <= n, plqType = getType(n,x,a,b,c,i); switch plqType, case 6 %BOUNDED RHS s(i) = inf; sa(i) = 0; sb(i) = x(i-1); sc(i) = (-1)*a(i-1)*x(i-1).^2-b(i-1)*x(i-1)-c(i-1); j = j + 1; case 5 %BOUNDED LHS s(i) = 2*a(i+1)*x(i) + b(i+1); sa(i) = 0; sb(i) = x(i); sc(i) = (-1)*a(i+1)*x(i).^2-b(i+1)*x(i)-c(i+1); j = j + 1; case 3 %LINE - TO - POINT s(i) = b(i);sa(i) = 0;sb(i) = 0;sc(i) = -c(i); case 4 %POINT - TO - LINE s(i) = inf;sa(i) = 0;sb(i) = x(i);sc(i) = -c(i); case 1 %linear - TO - quadratic or linear %first row of conjugate matrix if i < n s(j) = b(i); else s(j) = inf; end sa(j) = 0;sb(j) = 0;sc(j) = inf; %second row of conjugate matrix if i < n if s(j) < 2*a(i+1)*x(i) + b(i+1) s(j+1) = 2*a(i+1)*x(i) + b(i+1); sa(j+1) = 0; sb(j+1) = x(i); sc(j+1) = (-1)*b(i)*x(i) - c(i); j = j + 2; else j = j + 1; end end case 2 %quadratic - TO - quadratic or linear %first row of conjugate matrix if i < n s(j) = 2*a(i)*x(i) + b(i); else s(j) = inf; end sa(j) = 1/(4*a(i)); sb(j) = (-1/2)*(b(i)/a(i)); sc(j) = (1/4)*(b(i)*b(i))/a(i) - c(i); %potential for infinity value %second row of conjugate matrix if (i < n) if s(j) < 2*a(i+1)*x(i) + b(i+1) s(j+1) = 2*a(i+1)*x(i) + b(i+1); sa(j+1) = 0; sb(j+1) = x(i); sc(j+1) = -a(i)*x(i)*x(i) - b(i)*x(i) - c(i); j = j + 2; else j = j + 1; end end end i = i + 1; end plqfstarDirty = [ s' , sa' , sb' , sc' ]; plqfstar = plq_clean(plqfstarDirty); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PLQ CONJUGATE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
ylucet/CCA-master
plq_clean.m
.m
CCA-master/macros/plq/plq_clean.m
2,258
utf_8
dc8dc83b379d4c42cedca04b558f4848
%%%%%%%%%PLQ CONJUGATE HELPER FUNCTION%%%%%%%%%%%%% function [plqClean] = plq_clean(plqDirty) eps=1E-6;%1E-6;precision below which numbers are rounded to zero % a Temporary Vector or matrix to check presence of infinite dplq=plqDirty(2:end-1,:)-plqDirty(1:end-2,:); %clear duplicate point values e.g [0,1,0,1;0,2,0,0] -> [0,1,0,1] j1=find(abs(dplq(:,1))<eps);%delete j1+1 if length(j1)>0 plqDirty(j1+1,:)=[]; end; dplq=plqDirty(2:end,:)-plqDirty(1:end-1,:); %clear duplicate rows e.g. [0,1,0,0;0,1,0,0]->[0,1,0,0] if size(dplq,1)==1 tempnum = dplq(1,2:end); %Since norm doesn't take infinite argument, replace it with a large number knan = isnan(tempnum); kinf = isinf(tempnum); tempnum(knan) = 1E10; tempnum(kinf) = 1E10; if norm(tempnum)<eps plqDirty(1,:)=[]; end; else m=abs(dplq(:,2:end))*ones(size(dplq(:,2:end), 2), 1); n=abs(plqDirty(1:end-1,2:end))*ones(size(plqDirty(1:end-1,2:end), 2), 1); i=find(n==inf | n==0);n(i)=1;%no division by inf m=m./ n;%use relative error j2=find(m<eps); plqDirty(j2,:)=[]; end %round small numbers to zero %this should be done by the clean function %but clean is buggy when the matrix contains inf %P1=plqDirty(:,2:$) P1=plqDirty; P=reshape(P1,[numel(P1), 1]); ni=find(abs(P)<eps); P(ni)=0; P1=reshape(P,size(P1)); %plqDirty(:,2:$)=P1; plqDirty=P1; %Mike %Addition of infinity values results in functions like % [x x x x] % [x x x inf] % [x x x xinf] % [inf x x inf] %However it is properly represented as % [x x x x] % [inf x x inf] %The following lines of code remove the redundant infinity rows. plqInf = plq_rowalwaysinf(plqDirty); [rs,cs] = find(all([plqInf(1:end-1,:), plqInf(2:end,:)], 2)); if (size(rs,1) ~= 0) plqDirty(rs+1,2:end-1) = 0; % If rs==[], then rs+1==[1], plqDirty(rs,:) = []; % we want rs+1==[], hence the if. end %bounded domains are represented as x0,0,0,inf so force the zeros in if (plqDirty(1,4)==inf) plqDirty(1,2:3)=0; end; %(same for xn,0,0,inf) if (plqDirty(end,4)==inf) plqDirty(end,2:3)=0; end; plqClean = plqDirty; end %%%%%%%%%PLQ CONJUGATE HELPER FUNCTION%%%%%%%%%%%%%
github
ylucet/CCA-master
conv_interval_func.m
.m
CCA-master/macros/plq/conv_interval_func.m
2,426
utf_8
d8db504dd85cad8da52b3d2ab26d23e4
%The following routine solves [PROBLEM 2.]. function [plqco] = conv_interval_func(x,a,b,c,x1,x3,x5), EPS=1E-10; x(1)=x1;x(3)=x3;x(5)=x5; %solving the quadratic for x(2) if a(1) ~= 0 & x(5) < inf A1 = -a(1); B1 = 2*a(1)*x5; C1 = c(1) + b(1)*x5 - a(2)*x5.^2 - b(2)*x5 - c(2); D1 = B1.^2 - 4*A1*C1; if D1<0 printf('D1<0 in _conv_interval_func'); pause cerror('_conv_interval_func: D1<0. Is your function continuous on ri dom?'); end pr1 = (-B1 + sqrt(D1))/(2*A1); %solution is x2 nr1 = (-B1 - sqrt(D1))/(2*A1); %negative root required for the LINEAR-QUADRATIC CASE. if x(1) <= pr1 & pr1 <= x(3) x(2) = pr1; plqco=[x(2),a(1),b(1),c(1); plq_conv_buildl(x,a,b,c,1,2,2,5)]; elseif x(3) <= pr1 & pr1 <= x(5) x(4)=pr1; plqco=[plq_conv_buildl(x,a,b,c,1,1,2,4);x(5),a(2),b(2),c(2)]; %potentially useless elseif x(1) <= nr1 & nr1 <= x(3) x(2) =pr1; plqco=[x(2),a(1),b(1),c(1);plq_conv_buildl(x,a,b,c,1,2,2,5)]; elseif x(3) <= nr1 & nr1 <= x(5) x(4)=pr1; plqco=[plq_conv_buildl(x,a,b,c,1,1,2,4);x(5),a(2),b(2),c(2)]; %potentially useless else plqco=plq_conv_buildl(x,a,b,c,1,1,2,5); end; %solving the quadratic for x(4) %elseif a(2) <> 0 & x(1) > -inf & x(5) < inf then elseif a(2) ~= 0 & x(1) > -inf A2 = a(2); B2 = -2*a(2)*x(1); C2 = -b(2)*x(1) + a(1)*x(1).^2 + b(1)*x(1) + c(1) - c(2); D2 = B2.^2 - 4*A2*C2; pr2 = (-B2 + sqrt(D2))/(2*A2); nr2 = (-B2 - sqrt(D2))/(2*A2); if x(3) <= pr2 & pr2 <= x(5) x(4)=pr2; plqco=[plq_conv_buildl(x,a,b,c,1,1,2,4);x(5),a(2),b(2),c(2)]; elseif x(1) <= pr2 & pr2 <= x(3) x(2)=pr2; plqco=[x(2),a(1),b(1),c(1);plq_conv_buildl(x,a,b,c,1,2,2,5)]; %potentially useless elseif x(3) <= nr2 & nr2 <= x(5) x(4)=nr2; plqco=[plq_conv_buildl(x,a,b,c,1,1,2,4);x(5),a(2),b(2),c(2)]; elseif x(1) <= nr2 & nr2 <= x(3) x(2)=nr2; plqco=[x(2),a(1),b(1),c(1);plq_conv_buildl(x,a,b,c,1,2,2,5)]; %potentially useless else plqco=plq_conv_buildl(x,a,b,c,1,1,2,5); end; else plqco=plq_conv_buildl(x,a,b,c,1,1,2,5); end; end
github
ylucet/CCA-master
maxoninterval.m
.m
CCA-master/macros/plq/maxoninterval.m
628
utf_8
ef4a1cb5891e30edc2832b2b459545fd
%calculates the max between two functions that do not intersect within the given interval. function [plq,i] = maxoninterval(q1,q2,lb,ub,a,b,c) if all(isinf([lb,ub])) m=0;%pick any point else%at most one bound is infinite lb1=lb;ub1=ub; if lb==-inf lb1=ub-1; end; if ub==inf ub1=lb+1; end; m=(lb1+ub1)/2;%midpoint end; %printf(" Maxoninterval: q1=[ if a*m.^2+b*m+c > 0 plq = [ub,q1]; i = 1; %assumes (q1 - q2) = qld else plq = [ub,q2]; i = 2; end; end %%%%%%%%%%%%FINDS THE MAXIMUM OF TWO PLQ FUCNTIONS%%
github
ylucet/CCA-master
getType.m
.m
CCA-master/macros/plq/getType.m
646
utf_8
b963a76342ad79eed66b859448a50f81
%%%%%%%%%PLQ CONJUGATE HELPER FUNCTION%%%%%%%%%%%%% function plqType=getType(n,x,a,b,c,i) if a(i) == 0 plqType = 1;%part is linear else plqType = 2;%part is quadratic end if n == 1 & x(i) == inf & a(i) == 0 plqType = 3;%LINE - TO - POINT elseif n == 1 & x(i) < inf %POINT - TO - LINE plqType = 4; end if a(i) == inf | b(i) == inf | c(i) == inf & i == 1 plqType = 5; %Bounded by the LHS end if a(i) == inf | b(i) == inf | c(i) == inf & i == size(x,1) plqType = 6; %Bounded by the RHS end end %%%%%%%%%PLQ CONJUGATE HELPER FUNCTION%%%%%%%%%%%%%
github
ylucet/CCA-master
plq_scalar.m
.m
CCA-master/macros/plq/plq_scalar.m
727
utf_8
560ba03ddd66d62e121fe08f9ee1358e
%%%%%%%%%%%%%%PLQ SCALAR MULTIPLCATION FUNCTION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function q = plq_scalar(p,lambda) %avoid 0 * inf i=find(p==inf);j=find(p==-inf); q = [p(:,1), lambda*p(:,2:4)]; %restore inf values; if lambda >= 0 q(i)=inf; else q(i)=-inf; %careful not to mess up indicator of singleton if p(end,1)==inf q(end,1)=inf; end; end; if lambda >= 0 q(j)=-inf; else q(j)=inf; end; %need to clean AFTER restauring values otherwise the index i %does not correspond to the cleaned matrix that may have less rows. q = plq_clean(q); end %%%%%%%%%%%%%%PLQ SCALAR MULTIPLCATION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
ylucet/CCA-master
plq_conv_on_interval.m
.m
CCA-master/macros/plq/plq_conv_on_interval.m
3,520
utf_8
136f014a8ae025791037254a1c77f4f4
%We assume x(1) < x(2) < x(3) < x(4) < x(5) are ordered and finite (no infinity values). %In creating the PLQ hull we may need to create points x(2) and x(4). %Note that x(1) is the LEFTBOUND, x(3) is the partition point, and x(5) is the RIGHTBOUND in our PLQ interval. %_plq_conv_on_interval finds the convex hull on the interval [x1,x5]. function [plqco] = plq_conv_on_interval(f1,f2,x1,x3,x5) %Assume f1 is to the left of f2 x(1) = x1; a(1)=f1(1,2); a(2)=f2(1,2); x(3) = x3; b(1)=f1(1,3); b(2)=f2(1,3); x(5) = x5; c(1)=f1(1,4); c(2)=f2(1,4); plqco=[]; if a(1) < 0 %concave down pieces are simply replaced by a linear function. f1=plq_conv_buildl(x,a,b,c,1,1,1,3); f2=[x(5),a(2),b(2),c(2)]; plqco=plq_conv_on_interval(f1,f2,x(1),x(3),x(5)); elseif a(2) < 0 f1=[x(3),a(1),b(1),c(1)]; f2=plq_conv_buildl(x,a,b,c,2,5,2,3); plqco=plq_conv_on_interval(f1,f2,x(1),x(3),x(5)); elseif 2*a(1)*x(3)+b(1) <= 2*a(2)*x(3)+b(2) %trivial case plqco=[x(3),a(1),b(1),c(1);x(5),a(2),b(2),c(2)]; elseif a(1) == 0 & a(2) == 0 %(LINEAR-LINEAR) f1 is linear and f2 is linear. [plqco]=plq_conv_buildl(x,a,b,c,1,1,2,5); elseif a(1) == 0 & a(2) ~= 0 % (LINEAR-QUDARTIC) if f1 is linear and f2 is quadratic then x(4) is determined. plqco=[conv_interval_func(x,a,b,c,x1,x3,x5)]; elseif a(1) ~= 0 & a(2) == 0 % (QUADRATIC-LINEAR) if f1 is quadratic and f2 is linear then x(2) is determined. plqco=[conv_interval_func(x,a,b,c,x1,x3,x5)]; elseif a(1) ~= 0 & a(2) ~= 0 % (QUADRATIC-QUADRATIC) if f1 is quadratic and f2 is quadratic we need to find solutions to A*x(4)^2 + B*x(4) + C. %The following code solves [PROBLEM 1.], A=(1/4)*(-4*a(2).^2+4*a(2)*a(1))/a(1); B=(1/4)*(-4*a(2)*b(2)+4*b(1)*a(2))/a(1); C=(1/4)*(-b(2).^2-b(1).^2+4*c(1)*a(1)+2*b(1)*b(2)-4*c(2)*a(1))/a(1); D = B.^2 - 4*A*C; %Discriminant. %printf("QUADRATIC-QUADRATIC CASE: Solving if A == 0 %Linear case, so we have Bx+C=0 with one zero. x(4) = (-C/B); x(2) = (-1/2)*(b(1)-2*a(2)*x(4)-b(2))/a(1); if x(2) < x(1) | x(3) < x(2) x(2)=inf; end; if x(4) < x(3) | x(4) > x(5) x(4)=inf; end; %and thus we should just ignore them. Similarly if D < 0, just ignore x(2) and x(4) as they don't help with the hull. else % A <> 0, Quadratic case, so we have Ax^2+Bx+C=0, with one or two zeros. Solving for x(4). if D>0 nr = (-B - sqrt(D))/(2*A); %negative root pr = (-B + sqrt(D))/(2*A); %positive root if D==0 nr=pr; end; if x(3) < pr & pr < x(5) x(4) = pr; elseif x(3) < nr & nr < x(5) x(4) = nr; %printf(" NEGATIVE ROOT "); else x(4)=inf; end; x(2) = (-1/2)*(b(1)-2*a(2)*x(4)-b(2))/a(1); if x(1) > x(2) | x(2) > x(3) x(2)=inf; end; else x(2)=inf; x(4)=inf; end end if x(2) < inf & x(4) < inf plqco=[x(2),a(1),b(1),c(1);plq_conv_buildl(x,a,b,c,1,2,2,4);x(5),a(2),b(2),c(2)]; else %x(2) == inf | x(4) == inf, %Here we solve the SECOND PROBLEM: as x(2) or x(4) is infeasible in [PROBLEM 1.] plqco=[conv_interval_func(x,a,b,c,x1,x3,x5)]; end; else cerror('Case does not exist.'); end end
github
ylucet/CCA-master
plq_me.m
.m
CCA-master/macros/plq/plq_me.m
1,423
utf_8
14d93a30667f540fc25fed4ab4f9638b
%%%%%%%%%%%%%%PIECEWISE LINEAR QUADRATIC MOREAU ENVELOPE (WRAPPER) %%%%%%%%%%%%%% function plqme = plq_me(plqf,lambda,isConvex) if nargin<=2 isConvex=false; end;%default to non-convex functions a = plqf(:,2); if (lambda < 0 | a(1) < 0 | a(end) < 0) maxScale = plq_me_max_scale(plqf); if (lambda < 0 | lambda > maxScale) cerror(sprintf('plq_me(): Scale false should be in (0,false].', lambda, maxScale)); plq_me = []; return; end; end; % x=plqf(:,1);a=plqf(:,2);b=plqf(:,3);c=plqf(:,4); % % if size(x,1) == 1 & x(1) ~= inf then %we have an indicator function of a point [x, 0, 0, c] where x is the horizontal pos, and c is the height. % printf("plq_me of indicator:"); % disp(plqf); % plqf = [x, 0, 0, a*x^2 + b*x + c]; % plqf = [x, lambda*a, lambda*b, lambda*c + (1/2)*x^2]; % else % printf("plq_me of function:"); % disp(plqf); % plqf = [x, lambda*a + (1/2), lambda*b, lambda*c]; % end plqme = plq_scalar(plqf,lambda); plqme = plq_add(plqme,[inf,1/2,0,0]); plqme = plq_lft(plqme,isConvex); sx=plqme(:,1);sa=plqme(:,2);sb=plqme(:,3);sc=plqme(:,4); % plqme = [sx, (-1/lambda)*sa + (1/(2*lambda)), (-1/lambda)*sb, (-1/lambda)*sc]; plqme = plq_scalar(plqme,-1); plqme = plq_clean(plqme);%make sure x is increasing plqme = plq_add(plqme,[inf,1/2,0,0]); plqme = plq_scalar(plqme,1/lambda); end
github
ylucet/CCA-master
plq_rowalwaysinf.m
.m
CCA-master/macros/plq/plq_rowalwaysinf.m
324
utf_8
ed134c2e4377a82b7305df411e88ad48
% A polynomial is always infinite if a and b are not infinite % and not NaN, and c is infinite. function [alwaysinf, sgn] = plq_rowalwaysinf(plqf) alwaysinf = ~(any(isinf(plqf(:,2:end-1)), 2) ...... | any(isnan(plqf(:,2:end-1)), 2)) ...... & isinf(plqf(:,end)); sgn = sign(plqf(:,end)); end
github
ylucet/CCA-master
plq_co.m
.m
CCA-master/macros/plq/plq_co.m
394
utf_8
84a6438464a1bd8dadfd7a74e702d207
%%%%%%%%%%PLQ CONVEX HULL%%%%%%%%%%%%%%%%%%%%%%%% %TODO, (1) UPDATE PLQ_EVAL FOR NONCONVEX FUNCTIONS?. % (2) UPDATE PLQ_BUILD FOR NONCONVEX FUNCTIONS. function plqco = plq_co(plqf, method) % Allowed values for method: direct, split. if nargin < 2 method = 'direct'; end; if method == 'direct' plqco = plq_coDirect(plqf); else plqco = plq_coSplit(plqf); end; end
github
ylucet/CCA-master
soqs_build.m
.m
CCA-master/macros/soqs/soqs_build.m
5,023
utf_8
5d3ade6e9a1bf1f46c923cddfcac3598
% _soqs_build % % Builds a Shape-Preserving Osculatory Quadratic Spline (soqs) going % through (x,f(x)) with derivative df(x) at (x,f(x)). % % The code is taken partially from Algorithm 574: Shape-Preserving % Osculatory Quadratic Splines, Feb. 4, 1981 with permission from the % Association for Computing Machinery (ACM). %x, f, df are vectors such that f=f(x) and df=f'(x) %extrapolate: take values: 'constant': extrapolate by a constant, % 'bounded': bounded domain (extrapolate by inf) function spline=soqs_build(x,f,df,extrapolate) n=max(size(x)); spline(1,:)=[x(1),0,0,f(1)];%constant extrapolation for i=1:n-1; M1=df(i); M2=df(i+1); P1=x(i); P2=f(i); Q1=x(i+1); Q2=f(i+1); % Determine the case Case=soqs_choose(P1,P2,M1,M2,Q1,Q2,2.20D-16); % Calculate parameters Z1=0; ZTWO=0; V1=0; V2=0; W1=0; W2=0; Z2=0; if Case==1 Z1=(P2-Q2+M2*Q1-M1*P1)/(M2-M1); ZTWO = P2 + M1*(Z1-P1); V1 = (P1+Z1)/2; V2 = (P2+ZTWO)/2; W1 = (Z1+Q1)/2; W2 = (ZTWO+Q2)/2; Z2 = V2 + ((W2-V2)/(W1-V1))*(Z1-V1); elseif Case==2 Z1 = (P1+Q1)/2; V1 = (P1+Z1)/2; V2 = P2 + M1*(V1-P1); W1 = (Z1+Q1)/2; W2 = Q2 + M2*(W1-Q1); Z2 = (V2+W2)/2; else C1 = P1 + (Q2-P2)/M1; D1 = Q1 + (P2-Q2)/M2; H1 = 2*C1 - P1; J1 = 2*D1 - Q1; MBAR1 = (Q2-P2)/(H1-P1); MBAR2 = (P2-Q2)/(J1-Q1); if Case==3 K1 = (P2-Q2+Q1*MBAR2-P1*MBAR1)/(MBAR2-MBAR1); if (abs(M1)>abs(M2)) Z1=(K1+P1)/2; else Z1=(K1+Q1)/2; end; V1 = (P1+Z1)/2; V2 = P2 + M1*(V1-P1); W1 = (Q1+Z1)/2; W2 = Q2 + M2*(W1-Q1); Z2 = V2 + ((W2-V2)/(W1-V1))*(Z1-V1); else Y1 = (P1+C1)/2; V1 = (P1+Y1)/2; V2 = M1*(V1-P1) + P2; Z1 = (D1+Q1)/2; W1 = (Q1+Z1)/2; W2 = M2*(W1-Q1) + Q2; MBAR3 = (W2-V2)/(W1-V1); Y2 = MBAR3*(Y1-V1) + V2; Z2 = MBAR3*(Z1-V1) + V2; E1 = (Y1+Z1)/2; E2 = MBAR3*(E1-V1) + V2; end; end; % calculate Bernstein coefficients according to case if Case==1 | Case==2 | Case==3 a=(P2+Z2-2*V2)/(Z1-P1).^2; b=(-2*P2*Z1+2*V2*P1+2*V2*Z1-2*Z2*P1)/(Z1-P1).^2; c=(P2*Z1.^2+Z2*P1.^2-2*V2*P1*Z1)/(Z1-P1).^2; spline(end+1,:)=[Z1,a,b,c]; a=(-2*W2+Z2+Q2)/(Q1-Z1).^2'; b=(-2*Z2*Q1+2*W2*Z1+2*W2*Q1-2*Q2*Z1)/(Q1-Z1).^2; c=(Z2*Q1.^2+Q2*Z1.^2-2*W2*Z1*Q1)/((Q1-Z1).^2); spline(end+1,:)=[Q1,a,b,c]; else a=(-2*V2+P2+Y2)/(Y1-P1).^2; b=(-2*P2*Y1+2*V2*P1+2*V2*Y1-2*Y2*P1)/(Y1-P1).^2; c=(P2*Y1.^2+Y2*P1.^2-2*V2*P1*Y1)/(Y1-P1).^2; spline(end+1,:)=[Y1,a,b,c]; a=(-2*E2+Y2+Z2)/(Z1-Y1).^2'; b=(-2*Y2*Z1+2*E2*Y1+2*E2*Z1-2*Z2*Y1)/(Z1-Y1).^2; c=(Y2*Z1.^2+Z2*Y1.^2-2*E2*Y1*Z1)/((Z1-Y1).^2); spline(end+1,:)=[Z1,a,b,c]; a=(-2*W2+Z2+Q2)/(Q1-Z1).^2'; b=(-2*Z2*Q1+2*W2*Z1+2*W2*Q1-2*Q2*Z1)/(Q1-Z1).^2; c=(Z2*Q1.^2+Q2*Z1.^2-2*W2*Z1*Q1)/((Q1-Z1).^2); spline(end+1,:)=[Q1,a,b,c]; end; end; spline(end+1,:)=[inf,0,0,f(n)];%constant extrapolation switch (extrapolate) case 'constant' %constant outside of domain (nothing to do) case 'bounded' %bounded domain: inf outside of domain spline(1,4)=inf; spline(end,4)=inf; otherwise cerror(sprintf('Unknown option end ')) end end
github
ylucet/CCA-master
soqs_choose.m
.m
CCA-master/macros/soqs/soqs_choose.m
3,372
utf_8
5050d77efb4aae22c93013e66d0cb794
% _soqs_choose % % Auxillary function for _soqs_build to determine the type of spline % regarding derivative slopes and distances between the spline end points. % % The code is taken partially from Algorithm 574: Shape-Preserving % Osculatory Quadratic Splines, Feb. 4, 1981 with permission from the % Association for Computing Machinery (ACM). function NCASE=soqs_choose(P1,P2,M1,M2,Q1,Q2,eps) % Initialization PROD=0; PROD1=0; PROD2=0; MREF=0; MREF1=0; MREF2=0; NCASE=0; % Calculate the slope SPQ if the line joining (P1,P2),(Q1,Q2) SPQ = (Q2-P2)/(Q1-P1); if SPQ==0 if M1*M2<0 NCASE=1; else NCASE=2; end; return; else PROD1=SPQ*M1; PROD2=SPQ*M2; MREF=abs(SPQ); MREF1=abs(M1); MREF2=abs(M2); % if the relative deviation of M1 or M2 from SPQ is % less than eps, then choose case 2 or case 3. if ((abs(SPQ-M1)>eps*MREF)&(abs(SPQ-M2)>eps*MREF)) if (PROD1>=0 & PROD2>=0) PROD=(MREF-MREF1)*(MREF-MREF2); if (PROD<0) % L1 and L2 intersect inside [P1,Q1] NCASE=1; return; end; end; end; if ((PROD1 < 0)|(PROD2 < 0)) % the sign of at least one of the slopes M1,M2 % does not agree with the sign of the slope SPQ if (PROD1 < 0) & (PROD2 < 0) NCASE=2; return; end; if (PROD1 < 0) if (MREF2 > (1+eps)*MREF) NCASE=1; else NCASE=2; end; return; else if (MREF1 > (1+eps)*MREF) NCASE=1; else NCASE=2; end; return; end; end; if (MREF1 > 2*MREF) if (MREF2 > (2-eps)*MREF) NCASE=4; else NCASE=3; end; return; end; if (MREF2 > 2*MREF) if (MREF1 > (2-eps)*MREF) NCASE=4; else NCASE=3; end; return; end; NCASE=2; return; end; end
github
ylucet/CCA-master
soqs_slopes.m
.m
CCA-master/macros/soqs/soqs_slopes.m
2,680
utf_8
aac2eddc8af85ce3b7b288e83cabd628
% _soqs_slopes % % Auxillary function for _soqs_build to calculate the derivative at each % data point. The slopes provided will insure that an osculatory % quadratic spline will have one additional knot between two adjacent % points of interpolation. Convexity and monotonicity are preserved % wherever these conditions are compatible with the data. % % The code is taken partially from Algorithm 574: Shape-Preserving % Osculatory Quadratic Splines, Feb. 4, 1981 with permission from the % Association for Computing Machinery (ACM). % % XTAB contains the abscissas of the data points % YTAB contains the ordinates of the data points % MTAB contains the value of the first derivative at each data point function MTAB=soqs_slopes(XTAB,YTAB) NUM = max(size(XTAB)); NUM1 = NUM - 1; IM1 = 1; I = 2; I1 = 3; % Calculate the slopes of the two lines joining the first three data points. YDIF1 = YTAB(2) - YTAB(1); YDIF2 = YTAB(3) - YTAB(2); M1 = YDIF1/(XTAB(2)-XTAB(1)); M1S = M1; M2 = YDIF2/(XTAB(3)-XTAB(2)); M2S = M2; while (1) % if one of the preceding slopes is zero or if they have opposite % sign, assign the value zero to the derivative at the middle point. if (M1==0|M2==0|(M1*M2)<0) MTAB(I) = 0; else if (abs(M1)>abs(M2)) % calculate the slope by extending the line with slope M1 XBAR = (YDIF2/M1) + XTAB(I); XHAT = (XBAR+XTAB(I1))/2; MTAB(I) = YDIF2/(XHAT-XTAB(I)); else % calculate the slope by extending the line with slope M2 XBAR = (-YDIF1/M2) + XTAB(I); XHAT = (XTAB(IM1)+XBAR)/2; MTAB(I) = YDIF1/(XTAB(I)-XHAT); end; end; % increment counters IM1 = I; I = I1; I1 = I1 + 1; if (I > NUM1) break; end; % Calculate the slopes of the two lines joining three consecutive % data points. YDIF1 = YTAB(I) - YTAB(IM1); YDIF2 = YTAB(I1) - YTAB(I); M1 = YDIF1/(XTAB(I)-XTAB(IM1)); M2 = YDIF2/(XTAB(I1)-XTAB(I)); end; % Calculate the slope at the last point, XTAB(NUM). if ((M1*M2)>=0) XMID = (XTAB(NUM1)+XTAB(NUM))/2; YXMID = MTAB(NUM1)*(XMID-XTAB(NUM1)) + YTAB(NUM1); MTAB(NUM) = (YTAB(NUM)-YXMID)/(XTAB(NUM)-XMID); if ((MTAB(NUM)*M2)<0) MTAB(NUM)=0; end; else MTAB(NUM) = 2*M2; end; % Calculate the slope at the first point, XTAB(1). if ((M1S*M2S)<0) MTAB(1)=2*M1S; else XMID = (XTAB(1)+XTAB(2))/2; YXMID = MTAB(2)*(XMID-XTAB(2)) + YTAB(2); MTAB(1) = (YXMID-YTAB(1))/(XMID-XTAB(1)); if ((MTAB(1)*M1S)<0) MTAB(1) =0; end; end; end
github
ylucet/CCA-master
gph_ka.m
.m
CCA-master/macros/gph/gph_ka.m
10,017
utf_8
6448cbb26cb7e4dbecbab6b7fc75e706
% The actual ka calculating function % All matrices in GPH form and the output also is in GPH form % We need 5 parameters, representations are quite obvious % For notation sake, f3 = g here as mentioned in the paper % Return value ka is the GPH matrix of the kernel average % Note : The GPH matrix will have an even number of columns always % TODO : Write unit tests for all subcases function ka = gph_ka(f1,f2,f3,lambda) printf('f1 is ') disp(f1) printf('f2 is ') disp(f2) printf('f3 is ') disp(f3) % First of all lets check if its proper t = gph_ka_isProper(f1,f2,f3,lambda) lambda1 = lambda lambda2 = 1-lambda ka = [] if(t == false) printf('The KA is not proper. Hence not calculating') return; end sz1 = size(f1,2) sz2 = size(f2,2) sz3 = size(f3,2) % The ka matrix in GPH form to be returned ka = [] % Iterating over x1 first i = 1 j = 1 % is the index in f2 k = 1 while i<=sz1 x1 = f1(1,i) s1 = f1(2,i) if(j <= sz2) x2 = f2(1,j) s2 = f2(2,j) else % TODO % 1. find_values should not be called if the function % is bounded % 2. Increment amount should be changed to the previous diff. x2 = x2 + 1 % right now just incrementing it by 1 [s2,y2] = find_values(f2,sz2-1,x2) end x3 = x1-x2 kcols = gph_ka_colsearch(f3,x3) % kcols can be of maximum size 2 sz_k = size(kcols,2) % size being 2 means that the intervals share the point if(sz_k == 2) printf('Size of kcols is 2') k1 = kcols(1) k2 = kcols(2) s3_1 = f3(2,k1) s3_2 = f3(2,k2) if(s3_1 < s2-s1) % check for s3_2 if its still lesser if(s3_2 < s2-s1) % lets increase x1 and see if its greater or equal i = i + 1; elseif(s3_2 == s2-s1) % record and move on printf('Found a point. Include record code here') i = i + 1; else i = i + 1; printf('s3_2 < s2-s1') end elseif(s3_1 == s2-s1) % record and increase x1 printf('Found a point2. Include record code here') else % s3_1 > s2-s1 % going to s3_2 would not help at all as s3 would just inc. if(s3_2 < s2-s1) printf('Error with gph reshape of f3') end j = j + 1; end elseif(sz_k == 1) % Primary stuff, one piece quadratics should work with this k = kcols(1) [s3, y3] = find_values(f3,k,x3) if(s1 < s2-s3) printf('Lesser than case') % We always solve for x2 add_column = gph_ka_solve_equation(f1,f2,f3,i,j,lambda,1) ka = [ka add_column] i = i + 1; elseif(s1 == s2-s3) x_val = lambda1 * x1 + lambda2*x2 f_val = lambda1 * x1 + lambda2 * x2 + lambda1*lambda2*y3 s_val = s2 - s1 col_add = [x_val;f_val;s_val] ka = [ka col_add] % Increase x1 - since equality i = i + 1; else printf('Greater than') if(j <= sz2) j = j + 1; end end else printf('Error: Too many/less values for x3: Not possible') printf('Error with the code/proof'); end end % Iterating over x2 now i = 1 j = 1 k = 1 while j<=sz2 x2 = f2(1,j) s2 = f2(2,j) if(i <= sz1) x1 = f1(1,i) s1 = f1(2,i) else % TODO % 1. find_values should not be called if the function % is bounded % 2. Increment amount should be changed to the previous diff. x1 = x1 + 1 % right now just incrementing it by 1 [s1,y1] = find_values(f1,sz1-1,x1) end x3 = x1-x2 kcols = gph_ka_colsearch(f3,x3) % kcols can be of maximum size 2 sz_k = size(kcols,2) % size being 2 means that the intervals share the point if(sz_k == 2) printf('Size of kcols is 2') k1 = kcols(1) k2 = kcols(2) s3_1 = f3(2,k1) s3_2 = f3(2,k2) if(s3_1 < s2-s1) % check for s3_2 if its still lesser if(s3_2 < s2-s1) % lets increase x1 and see if its greater or equal i = i + 1; elseif(s3_2 == s2-s1) % record and move on printf('Found a point. Include record code here') i = i + 1; else i = i + 1; printf('s3_2 < s2-s1') end elseif(s3_1 == s2-s1) % record and increase x1 printf('Found a point2. Include record code here') else % s3_1 > s2-s1 % going to s3_2 would not help at all as s3 would just inc. if(s3_2 < s2-s1) printf('Error with gph reshape of f3') end j = j + 1; end elseif(sz_k == 1) % Primary stuff, one piece quadratics should work with this k = kcols(1) [s3, y3] = find_values(f3,k,x3) if(s1 < s2-s3) printf('Lesser than case') if(i <= sz1) i = i + 1; end elseif(s1 == s2-s3) printf('Equality case') x_val = lambda1 * x1 + lambda2*x2 f_val = lambda1 * x1 + lambda2 * x2 + lambda1*lambda2*y3 s_val = s2 - s1 col_add = [x_val;f_val;s_val] ka = [ka col_add] % Increase x1 - since equality j = j + 1; else % We solve for x1 printf('Greater than') add_column = gph_ka_solve_equation(f1,f2,f3,i,j,lambda,2) ka = [ka add_column] j = j + 1; end else printf('Error: Too many/less values for x3: Not possible') printf('Error with the code/proof'); end end % Done with iterating over x2 % Iterating over x3 now i = 1 j = 1 k = 1 while k<=sz3 x3 = f3(1,k) s3 = f3(2,k) if(i <= sz1) x1 = f1(1,i) s1 = f1(2,i) else % TODO % 1. find_values should not be called if the function % is bounded % 2. Increment amount should be changed to the previous diff. x1 = x1 + 1 % right now just incrementing it by 1 [s1,y1] = find_values(f1,sz1-1,x1) end x3 = x1-x2 kcols = gph_ka_colsearch(f3,x3) % kcols can be of maximum size 2 sz_k = size(kcols,2) % size being 2 means that the intervals share the point if(sz_k == 2) printf('Size of kcols is 2') k1 = kcols(1) k2 = kcols(2) s3_1 = f3(2,k1) s3_2 = f3(2,k2) if(s3_1 < s2-s1) % check for s3_2 if its still lesser if(s3_2 < s2-s1) % lets increase x1 and see if its greater or equal i = i + 1; elseif(s3_2 == s2-s1) % record and move on printf('Found a point. Include record code here') i = i + 1; else i = i + 1; printf('s3_2 < s2-s1') end elseif(s3_1 == s2-s1) % record and increase x1 printf('Found a point2. Include record code here') else % s3_1 > s2-s1 % going to s3_2 would not help at all as s3 would just inc. if(s3_2 < s2-s1) printf('Error with gph reshape of f3') end j = j + 1; end elseif(sz_k == 1) % Primary stuff, one piece quadratics should work with this k = kcols(1) [s3, y3] = find_values(f3,k,x3) if(s1 < s2-s3) printf('Lesser than case') if(i <= sz1) i = i + 1; end elseif(s1 == s2-s3) printf('Equality case') x_val = lambda1 * x1 + lambda2*x2 f_val = lambda1 * x1 + lambda2 * x2 + lambda1*lambda2*y3 s_val = s2 - s1 col_add = [x_val;f_val;s_val] ka = [ka col_add] % Increase x1 - since equality j = j + 1; else % We solve for x1 printf('Greater than') add_column = gph_ka_solve_equation(f1,f2,f3,i,j,lambda,2) ka = [ka add_column] j = j + 1; end else printf('Error: Too many/less values for x3: Not possible') printf('Error with the code/proof'); end end % Done with iterating over x2 disp(ka) end
github
ylucet/CCA-master
gph_isEqual.m
.m
CCA-master/macros/gph/gph_isEqual.m
139
utf_8
baea777fec6ab7d18a888d6d313b2480
%returns true if both functions are equal function b = gph_isequal(g1,g2) p1=plq_gph(g1); p2=plq_gph(g2); b = plq_isEqual(p1,p2); end
github
ylucet/CCA-master
gph_me1.m
.m
CCA-master/macros/gph/gph_me1.m
816
utf_8
6db3acd48b9b25ca52f496faae0cd5b2
%works but requires gph_prox. Can we do better? function gphstar = gph_me1(gph,lambda) [b,n] = gph_check(gph); if ~b cerror('Unconsistent gph structure in gph_me1'); end; %do not multiply 3rd row (values of f) to avoid 0*inf giving gphstar = [1 lambda; 0 1] * gph(1:2,:); x = gph(1,:)';%s=gph(2,:);f=gph(3,:); Prox = gph_prox(gph,lambda); prox = gph_eval(Prox,x); fprox = gph_eval(gph,prox); gphstar(3,:)= (fprox + (x-prox).^2/(2*lambda))'; % %TO DO: fix bounded domain % if n>2 then%no fix needed for full domain or singleton % B = gph_isBounded(gphstar); % if B(1,1) then gphstar(3,1)=inf;end; % if B(1,2) then gphstar(3,$)=inf;end; % end % B = gph_isBounded(gph); % if B(1,1) then gphstar(3,1)=s(1)*x(1)-f(2);end; % if B(1,$) then gphstar(3,$)=s($)*x($)-f($-1);end; end
github
ylucet/CCA-master
gph_isBounded.m
.m
CCA-master/macros/gph/gph_isBounded.m
168
utf_8
d4a5346e041ef914a25558d0b4c03501
%returns a 1x2 matrix function B = gph_isBounded(gph) B = isinf([(gph(2,2)-gph(2,1))/(gph(1,2)-gph(1,1)), (gph(2,end)-gph(2,end-1))/(gph(1,end)-gph(1,end-1))]); end
github
ylucet/CCA-master
gph_prox.m
.m
CCA-master/macros/gph/gph_prox.m
406
utf_8
0dfa8497825f26f4ad3b641c61dc60be
%TO DO: TEST %compute the proximal mapping of a GPH function %from the graph of the subdifferential %only works for convex functions function Q = gph_prox(G,alpha) if alpha<0 Q=[]; cerror('alpha must be nonnegative'); end; eps=1e-8; P = [1 alpha;1 0] * G(1:2,:); P(3,:)=zeros(size(1,size(P,2))); %convert subdifferential to piecewise linear function q = pl_gph(P); Q = gph_plq(q); end
github
ylucet/CCA-master
intervalIntersect.m
.m
CCA-master/macros/common/intervalIntersect.m
338
utf_8
20cfbfc07e398d3edde51acc558a546c
function J = intervalIntersect(I1,I2) %compute the intersection of 2 intervals %I1,I2: intervals stored as a 1x2 matrix: I1=[lb,ub] %when ub < lb it means the empty set %J: interval J=I1 intersection I2. (may be empty) J(1,1)=max(I1(1),I2(1)); J(1,2)=min(I1(2),I2(2)); end function b = intervalisempty(I) b = I(1)>I(2); end
github
ylucet/CCA-master
cerror.m
.m
CCA-master/macros/common/cerror.m
476
utf_8
6979800df65514b0064c984b5be12456
% All CCA functions should use this function instead of error(), % so that we can act differently depending on when we're generating % an error to pass a test or generating one for real. Currently % this function could be eliminated by having __testing_errors = 9999 % in test.sci:errorTestWrapper(), but this way presents more flexibility. function cerror(msg) global testing_errors; if (testing_errors) error(msg, testing_errors); else error(msg); end; end
github
ylucet/CCA-master
colMap.m
.m
CCA-master/macros/common/colMap.m
384
utf_8
9461e54cb1a9cb21e89387075ac3ed52
% Map a function to each of the columns of a matrix, putting the resulting column vectors into the output matrix % @param func A function that takes two parameters (the first is a column vector, % the second the number of the current column) and returns a column vector function out=colMap(func,m) out=[] s=size(m) n=s(2) for i=1:n out(:,i)=func(m(:,i),i) end end
github
ylucet/CCA-master
gph_plot.m
.m
CCA-master/macros/plots/gph_plot.m
1,156
utf_8
3d4ec654a8b20c3434c895ced533a50d
%plot the subdifferential graph of an unknown number of gph functions %(limit of 5 gph functions) %automatically compute the display window and extrapolate to its boundary %see gph_version for utility functions _gph_plotbounds_gph_yCoord,_gph_extendGph function gph_plot(varargin) if(isempty(varargin)) error("No argument given to gph_plot function"); end if(length(varargin)==1) L=[varargin]; else L=varargin; end rect = gph_plotbounds(varargin); %%FIX THIS %need to plot graph by graph since graphs may not have same number of points hold on %make a vector with the different symbols, colours, and thickness's so as to have multiple plots all unique %limit up to 5 %NOT WORKING spec = ['-xr';'-+b';'-sg';'-*m';'-ok';'-dc']; for i=1:length(varargin) g = varargin{i}; G = gph_extendGph(g, rect); %%extend graph to boundary by linear extrapolation %added figure to hold multiple plots plot(G(1,:)',G(2,:)', spec(i,:)); %plot(G(1,:)',G(2,:)', spec(i+1)); xlim([rect(1) rect(3)]); ylim([rect(2) rect(4)]); end hold off end
github
ylucet/CCA-master
plq_plot.m
.m
CCA-master/macros/plots/plq_plot.m
480
utf_8
325f581208cb8172b688c23b6a05511e
%Quick plot of one or two PLQ functions %x1, x5 can be finite or infinity values. function plq_plot(plqf1, plqf2, x1, x5) if(nargin < 2) plqf2 = 0; end if(nargin < 3 | x1 == -Inf) x1 = -5; end if(nargin < 4 | x5 == Inf) x5 = 5; end x = linspace(x1,x5, 201); y1 = plq_eval(plqf1, x); if(~plqf2) plot(x, y1); else y2=plq_eval(plqf2, x); plot(x, y1, 'r', x, y2, 'b'); end end
github
ylucet/CCA-master
gph_extendGph.m
.m
CCA-master/macros/plots/gph_extendGph.m
543
utf_8
e086ecc88dacc9aca1bdab0fb5cddb40
%extend the graph to boundary values by linear extrapolation %only return the first 2 rows and discard the 3rd row function G = gph_extendGph(g, rect) if g(1,1) == g(1,2) %vertical line on left %ERROR HERE G=[[g(1,1);rect(2)],g(1:2,:)]; else G=[[rect(1); gph_yCoord(rect(1),g(1,1),g(2,1),g(1,2),g(2,2))],g(1:2,:)]; end if(g(1,end)==g(1, end-1)) %vertical line on right G=[G, [g(1, end); rect(4)]]; else G=[G, [rect(3); gph_yCoord(rect(3),g(1,end-1),g(2,end-1),g(1,end),g(2,end))]]; end end
github
ylucet/CCA-master
gph_yCoord.m
.m
CCA-master/macros/plots/gph_yCoord.m
291
utf_8
739e84ef71a3408dc304fa4908bb0a46
%compute the y coordinate for the poin on the line %going to (xi, yi) at x function y = gph_yCoord(x, x1, y1, x2, y2) if x == x1 %warning("yCoord: x == x1"); %warning message is removed to avoid warning y=y1; else y = (y2-y1)/(x2-x1)* (x-x1) + y1; end end
github
ylucet/CCA-master
plq_plotMultiple.m
.m
CCA-master/macros/plots/plq_plotMultiple.m
1,156
utf_8
3a907cc489ebcaf72b3002edd685d145
%Plot mutiple PLQ functions %x1, x5 can be finite or infinity values function plq_plotMultiple(x1, x5, varargin) if(nargin < 1 | x1 == false | x1 == -Inf) x1 = Inf; for i = 1:length(varargin) f = varargin{i}; lb = max(1, min(find(f(:,4) ~= Inf)) -1); x1 = min(x1, f(lb, 1)); end if(isinf(x1)) x1 = -5; end spaceLeft = 1; else spaceLeft = 0; end if(nargin < 2 | x5 == false | x5 == Inf) x5 = - Inf; for i = 1:length(varargin) f = varargin{i}; ub = max(find(f(:,4) ~= Inf)); x5 = max(x5, f(ub,1)); end if(isinf(x5)) x5 = 5; end spaceRight = 1; else spaceRight = 0; end if(length(varargin) == 0) return; end spacing = (x5 - x1) * 0.15; x = linspace(x1-spacing*spaceLeft, x5+spacing*spaceRight, 200)'; y = []; %TODO: Plot indicator functions spcially: plot2d(f(1,1), f(1,4), -5); for i = 1:length(varargin) f = varargin{i}; y(:, i) = plq_eval(f, x); end plot(x, y) end
github
panji530/Robust-shape-interaction-matrix-master
hungarian.m
.m
Robust-shape-interaction-matrix-master/hungarian.m
11,781
utf_8
294996aeeca4dadfc427da4f81f8b99d
function [C,T]=hungarian(A) %HUNGARIAN Solve the Assignment problem using the Hungarian method. % %[C,T]=hungarian(A) %A - a square cost matrix. %C - the optimal assignment. %T - the cost of the optimal assignment. %s.t. T = trace(A(C,:)) is minimized over all possible assignments. % Adapted from the FORTRAN IV code in Carpaneto and Toth, "Algorithm 548: % Solution of the assignment problem [H]", ACM Transactions on % Mathematical Software, 6(1):104-111, 1980. % v1.0 96-06-14. Niclas Borlin, [email protected]. % Department of Computing Science, Ume? University, % Sweden. % All standard disclaimers apply. % A substantial effort was put into this code. If you use it for a % publication or otherwise, please include an acknowledgement or at least % notify me by email. /Niclas [m,n]=size(A); if (m~=n) error('HUNGARIAN: Cost matrix must be square!'); end % Save original cost matrix. orig=A; % Reduce matrix. A=hminired(A); % Do an initial assignment. [A,C,U]=hminiass(A); % Repeat while we have unassigned rows. while (U(n+1)) % Start with no path, no unchecked zeros, and no unexplored rows. LR=zeros(1,n); LC=zeros(1,n); CH=zeros(1,n); RH=[zeros(1,n) -1]; % No labelled columns. SLC=[]; % Start path in first unassigned row. r=U(n+1); % Mark row with end-of-path label. LR(r)=-1; % Insert row first in labelled row set. SLR=r; % Repeat until we manage to find an assignable zero. while (1) % If there are free zeros in row r if (A(r,n+1)~=0) % ...get column of first free zero. l=-A(r,n+1); % If there are more free zeros in row r and row r in not % yet marked as unexplored.. if (A(r,l)~=0 & RH(r)==0) % Insert row r first in unexplored list. RH(r)=RH(n+1); RH(n+1)=r; % Mark in which column the next unexplored zero in this row % is. CH(r)=-A(r,l); end else % If all rows are explored.. if (RH(n+1)<=0) % Reduce matrix. [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR); end % Re-start with first unexplored row. r=RH(n+1); % Get column of next free zero in row r. l=CH(r); % Advance "column of next free zero". CH(r)=-A(r,l); % If this zero is last in the list.. if (A(r,l)==0) % ...remove row r from unexplored list. RH(n+1)=RH(r); RH(r)=0; end end % While the column l is labelled, i.e. in path. while (LC(l)~=0) % If row r is explored.. if (RH(r)==0) % If all rows are explored.. if (RH(n+1)<=0) % Reduce cost matrix. [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR); end % Re-start with first unexplored row. r=RH(n+1); end % Get column of next free zero in row r. l=CH(r); % Advance "column of next free zero". CH(r)=-A(r,l); % If this zero is last in list.. if(A(r,l)==0) % ...remove row r from unexplored list. RH(n+1)=RH(r); RH(r)=0; end end % If the column found is unassigned.. if (C(l)==0) % Flip all zeros along the path in LR,LC. [A,C,U]=hmflip(A,C,LC,LR,U,l,r); % ...and exit to continue with next unassigned row. break; else % ...else add zero to path. % Label column l with row r. LC(l)=r; % Add l to the set of labelled columns. SLC=[SLC l]; % Continue with the row assigned to column l. r=C(l); % Label row r with column l. LR(r)=l; % Add r to the set of labelled rows. SLR=[SLR r]; end end end % Calculate the total cost. T=sum(orig(logical(sparse(C,1:size(orig,2),1)))); function A=hminired(A) %HMINIRED Initial reduction of cost matrix for the Hungarian method. % %B=assredin(A) %A - the unreduced cost matris. %B - the reduced cost matrix with linked zeros in each row. % v1.0 96-06-13. Niclas Borlin, [email protected]. [m,n]=size(A); % Subtract column-minimum values from each column. colMin=min(A); A=A-colMin(ones(n,1),:); % Subtract row-minimum values from each row. rowMin=min(A')'; A=A-rowMin(:,ones(1,n)); % Get positions of all zeros. [i,j]=find(A==0); % Extend A to give room for row zero list header column. A(1,n+1)=0; for k=1:n % Get all column in this row. cols=j(k==i)'; % Insert pointers in matrix. A(k,[n+1 cols])=[-cols 0]; end function [A,C,U]=hminiass(A) %HMINIASS Initial assignment of the Hungarian method. % %[B,C,U]=hminiass(A) %A - the reduced cost matrix. %B - the reduced cost matrix, with assigned zeros removed from lists. %C - a vector. C(J)=I means row I is assigned to column J, % i.e. there is an assigned zero in position I,J. %U - a vector with a linked list of unassigned rows. % v1.0 96-06-14. Niclas Borlin, [email protected]. [n,np1]=size(A); % Initalize return vectors. C=zeros(1,n); U=zeros(1,n+1); % Initialize last/next zero "pointers". LZ=zeros(1,n); NZ=zeros(1,n); for i=1:n % Set j to first unassigned zero in row i. lj=n+1; j=-A(i,lj); % Repeat until we have no more zeros (j==0) or we find a zero % in an unassigned column (c(j)==0). while (C(j)~=0) % Advance lj and j in zero list. lj=j; j=-A(i,lj); % Stop if we hit end of list. if (j==0) break; end end if (j~=0) % We found a zero in an unassigned column. % Assign row i to column j. C(j)=i; % Remove A(i,j) from unassigned zero list. A(i,lj)=A(i,j); % Update next/last unassigned zero pointers. NZ(i)=-A(i,j); LZ(i)=lj; % Indicate A(i,j) is an assigned zero. A(i,j)=0; else % We found no zero in an unassigned column. % Check all zeros in this row. lj=n+1; j=-A(i,lj); % Check all zeros in this row for a suitable zero in another row. while (j~=0) % Check the in the row assigned to this column. r=C(j); % Pick up last/next pointers. lm=LZ(r); m=NZ(r); % Check all unchecked zeros in free list of this row. while (m~=0) % Stop if we find an unassigned column. if (C(m)==0) break; end % Advance one step in list. lm=m; m=-A(r,lm); end if (m==0) % We failed on row r. Continue with next zero on row i. lj=j; j=-A(i,lj); else % We found a zero in an unassigned column. % Replace zero at (r,m) in unassigned list with zero at (r,j) A(r,lm)=-j; A(r,j)=A(r,m); % Update last/next pointers in row r. NZ(r)=-A(r,m); LZ(r)=j; % Mark A(r,m) as an assigned zero in the matrix . . . A(r,m)=0; % ...and in the assignment vector. C(m)=r; % Remove A(i,j) from unassigned list. A(i,lj)=A(i,j); % Update last/next pointers in row r. NZ(i)=-A(i,j); LZ(i)=lj; % Mark A(r,m) as an assigned zero in the matrix . . . A(i,j)=0; % ...and in the assignment vector. C(j)=i; % Stop search. break; end end end end % Create vector with list of unassigned rows. % Mark all rows have assignment. r=zeros(1,n); rows=C(C~=0); r(rows)=rows; empty=find(r==0); % Create vector with linked list of unassigned rows. U=zeros(1,n+1); U([n+1 empty])=[empty 0]; function [A,C,U]=hmflip(A,C,LC,LR,U,l,r) %HMFLIP Flip assignment state of all zeros along a path. % %[A,C,U]=hmflip(A,C,LC,LR,U,l,r) %Input: %A - the cost matrix. %C - the assignment vector. %LC - the column label vector. %LR - the row label vector. %U - the %r,l - position of last zero in path. %Output: %A - updated cost matrix. %C - updated assignment vector. %U - updated unassigned row list vector. % v1.0 96-06-14. Niclas Borlin, [email protected]. n=size(A,1); while (1) % Move assignment in column l to row r. C(l)=r; % Find zero to be removed from zero list.. % Find zero before this. m=find(A(r,:)==-l); % Link past this zero. A(r,m)=A(r,l); A(r,l)=0; % If this was the first zero of the path.. if (LR(r)<0) ...remove row from unassigned row list and return. U(n+1)=U(r); U(r)=0; return; else % Move back in this row along the path and get column of next zero. l=LR(r); % Insert zero at (r,l) first in zero list. A(r,l)=A(r,n+1); A(r,n+1)=-l; % Continue back along the column to get row of next zero in path. r=LC(l); end end function [A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR) %HMREDUCE Reduce parts of cost matrix in the Hungerian method. % %[A,CH,RH]=hmreduce(A,CH,RH,LC,LR,SLC,SLR) %Input: %A - Cost matrix. %CH - vector of column of 'next zeros' in each row. %RH - vector with list of unexplored rows. %LC - column labels. %RC - row labels. %SLC - set of column labels. %SLR - set of row labels. % %Output: %A - Reduced cost matrix. %CH - Updated vector of 'next zeros' in each row. %RH - Updated vector of unexplored rows. % v1.0 96-06-14. Niclas Borlin, [email protected]. n=size(A,1); % Find which rows are covered, i.e. unlabelled. coveredRows=LR==0; % Find which columns are covered, i.e. labelled. coveredCols=LC~=0; r=find(~coveredRows); c=find(~coveredCols); % Get minimum of uncovered elements. m=min(min(A(r,c))); % Subtract minimum from all uncovered elements. A(r,c)=A(r,c)-m; % Check all uncovered columns.. for j=c % ...and uncovered rows in path order.. for i=SLR % If this is a (new) zero.. if (A(i,j)==0) % If the row is not in unexplored list.. if (RH(i)==0) % ...insert it first in unexplored list. RH(i)=RH(n+1); RH(n+1)=i; % Mark this zero as "next free" in this row. CH(i)=j; end % Find last unassigned zero on row I. row=A(i,:); colsInList=-row(row<0); if (length(colsInList)==0) % No zeros in the list. l=n+1; else l=colsInList(row(colsInList)==0); end % Append this zero to end of list. A(i,l)=-j; end end end % Add minimum to all doubly covered elements. r=find(coveredRows); c=find(coveredCols); % Take care of the zeros we will remove. [i,j]=find(A(r,c)<=0); i=r(i); j=c(j); for k=1:length(i) % Find zero before this in this row. lj=find(A(i(k),:)==-j(k)); % Link past it. A(i(k),lj)=A(i(k),j(k)); % Mark it as assigned. A(i(k),j(k))=0; end A(r,c)=A(r,c)+m;
github
Vincentqyw/light-field-TB-master
ViewLightField.m
.m
light-field-TB-master/ViewLightField.m
1,062
utf_8
2f47d417127b5f68c9bc44bbbc3a43e5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 2015.05.14 Jaesik Park % 2017.10.15 Vincent Qin revised %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % function fn_ViewLightField % input : 5D light field image structure (t,s,y,x,ch), single type pixel intensities. function ViewLightField(LF) fprintf('ViewLightField...'); ns = size(LF,1); nt = size(LF,2); h = size(LF,3); w = size(LF,4); % keyboard; bigimg = zeros(h*nt,w*ns,3); % cnt=1; for t=1:nt ts = (t-1)*h+1; te = t*h; for s=1:ns ss = (s-1)*w+1; se = s*w; img = squeeze(LF(t,s,:,:,:)); % bigimg(ts:te,ss:se,:) = img; bigimg(ts:te,ss:se,1) = img(:,:,1); bigimg(ts:te,ss:se,2) = img(:,:,2); bigimg(ts:te,ss:se,3) = img(:,:,3); % cnt = cnt + 1; figure(1); imshow(img); title(sprintf('s : %d, t : %d',s,t)); pause(0.05); end end % bigimg = imresize(bigimg); figure; imshow(bigimg); imwrite(bigimg,'bigimg.jpg','jpg'); fprintf('done.\n');
github
Vincentqyw/light-field-TB-master
LFCalRectifyLF.m
.m
light-field-TB-master/LFToolbox0.4/LFCalRectifyLF.m
4,859
utf_8
58ca494191153d4b172d9f8d2408ca25
% LFCalRectifyLF - rectify a light field using a calibrated camera model, called as part of LFUtilDecodeLytroFolder % % Usage: % [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo, RectOptions ) % [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo ) % % This function is called by LFUtilDecodeLytroFolder to rectify a light field. It follows the % rectification procedure described in: % % D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for % lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE % Conference on. IEEE, Jun 2013. % % Minor differences from the paper: light field indices [i,j,k,l] are 1-based in this % implementation, and not 0-based as described in the paper. % % Note that a calibration should only be applied to a light field decoded using the same lenslet % grid model. This is because the lenslet grid model forms an implicit part of the calibration, % and changing it will invalidate the calibration. % % LFCalDispRectIntrinsics is useful for visualizing the sampling pattern associated with a requested % intrinsic matrix. % % Inputs: % % LF : The light field to rectify; should be floating point % % CalInfo struct contains a calibrated camera model, see LFUtilCalLensletCam: % .EstCamIntrinsicsH : 5x5 homogeneous matrix describing the lenslet camera intrinsics % .EstCamDistortionV : Estimated distortion parameters % % [optional] RectOptions struct (all fields are optional) : % .NInverse_Distortion_Iters : Number of iterations in inverse distortion estimation % .Precision : 'single' or 'double' % .RectCamIntrinsicsH : Requests a specific set of intrinsics for the rectified light % field. By default the rectified intrinsic matrix is % automatically constructed from the calibrated intrinsic % matrix, but this process can in some instances yield poor % results: excessive black space at the edges of the light field % sample space, or excessive loss of scene content off the edges % of the space. This parameters allows you to fine-tune the % desired rectified intrinsic matrix. % % Outputs : % % LF : The rectified light field % RectOptions : The rectification options as applied, including any default values employed. % % See also: LFCalDispRectIntrinsics, LFUtilCalLensletCam, LFUtilDecodeLytroFolder, LFUtilProcessWhiteImages % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo, RectOptions ) %---Defaults--- RectOptions = LFDefaultField( 'RectOptions', 'Precision', 'single' ); RectOptions = LFDefaultField( 'RectOptions', 'NInverse_Distortion_Iters', 2 ); RectOptions = LFDefaultField( 'RectOptions', 'MaxUBlkSize', 32 ); LFSize = size(LF); RectOptions = LFDefaultField( 'RectOptions', 'RectCamIntrinsicsH', LFDefaultIntrinsics( LFSize, CalInfo ) ); %---Build interpolation indices--- fprintf('Generating interpolation indices...\n'); NChans = LFSize(5); LF = cast(LF, RectOptions.Precision); %---chop up the LF along u--- fprintf('Interpolating...'); UBlkSize = RectOptions.MaxUBlkSize; LFOut = LF; for( UStart = 1:UBlkSize:LFSize(4) ) UStop = UStart + UBlkSize - 1; UStop = min(UStop, LFSize(4)); t_in=cast(1:LFSize(1), 'uint16'); % saving some mem by using uint16 s_in=cast(1:LFSize(2), 'uint16'); v_in=cast(1:LFSize(3), 'uint16'); u_in=cast(UStart:UStop, 'uint16'); [tt,ss,vv,uu] = ndgrid(t_in,s_in,v_in,u_in); % InterpIdx initially holds the index of the desired ray, and is evolved through the application % of the inverse distortion model to eventually hold the continuous-domain index of the undistorted % ray, and passed to the interpolation step. InterpIdx = [ss(:)'; tt(:)'; uu(:)'; vv(:)'; ones(size(ss(:)'))]; DestSize = size(tt); clear tt ss vv uu InterpIdx = LFMapRectifiedToMeasured( InterpIdx, CalInfo, RectOptions ); for( ColChan = 1:NChans ) % todo[optimization]: use a weighted interpolation scheme to exploit the weight channel InterpSlice = interpn(squeeze(LF(:,:,:,:,ColChan)), InterpIdx(2,:),InterpIdx(1,:), InterpIdx(4,:),InterpIdx(3,:), 'linear'); InterpSlice = reshape(InterpSlice, DestSize); LFOut(:,:,:,UStart:UStop,ColChan) = InterpSlice; end fprintf('.') end LF = LFOut; clear LFOut; %---Clip interpolation result, which sometimes rings slightly out of range--- LF(isnan(LF)) = 0; LF = max(0, min(1, LF)); fprintf('\nDone\n'); end
github
Vincentqyw/light-field-TB-master
LFWriteMetadata.m
.m
light-field-TB-master/LFToolbox0.4/LFWriteMetadata.m
10,271
utf_8
18ac683694e04562a3249c7226bdde52
% LFWriteMetadata - saves variables to a file in JSON format % % Usage: % LFWriteMetadata( JsonFileFname, DataToSave ) % % This function saves data to a JSON file. % % Based on JSONlab by Qianqian Fang, % http://www.mathworks.com.au/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-encodedecode-json-files-in-matlaboctave % % Minor modifications by Donald G. Dansereau, 2013, to simplify the interface as appropriate for use % in the Light Field Toolbox. % % See also: LFReadMetadata % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFWriteMetadata( JsonFileFname, DataToSave ) rootname = []; varname=inputname(1); opt.FileName = JsonFileFname; opt.IsOctave=exist('OCTAVE_VERSION'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(DataToSave) || islogical(DataToSave) || ischar(DataToSave) || isstruct(DataToSave) || iscell(DataToSave)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(DataToSave) || iscell(DataToSave))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2json(rootname,DataToSave,rootlevel,opt); if(rootisarray) json=sprintf('%s\n',json); else json=sprintf('{\n%s\n}\n',json); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);\n',jsonp,json); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); len=numel(item); % let's handle 1D cell first padding1=repmat(sprintf('\t'),1,level-1); padding0=repmat(sprintf('\t'),1,level); if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [\n',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[\n',padding0); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": null',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%snull',padding0); end end for i=1:len txt=sprintf('%s%s%s',txt,padding1,obj2json(name,item{i},level+(len>1),varargin{:})); if(i<len) txt=sprintf('%s%s',txt,sprintf(',\n')); end end if(len>1) txt=sprintf('%s\n%s]',txt,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end len=numel(item); padding1=repmat(sprintf('\t'),1,level-1); padding0=repmat(sprintf('\t'),1,level); sep=','; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [\n',padding0,checkname(name,varargin{:})); end else if(len>1) txt=sprintf('%s[\n',padding0); end end for e=1:len names = fieldnames(item(e)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {\n',txt,repmat(sprintf('\t'),1,level+(len>1)), checkname(name,varargin{:})); else txt=sprintf('%s%s{\n',txt,repmat(sprintf('\t'),1,level+(len>1))); end if(~isempty(names)) for i=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{i},getfield(item(e),... names{i}),level+1+(len>1),varargin{:})); if(i<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,sprintf('\n')); end end txt=sprintf('%s%s}',txt,repmat(sprintf('\t'),1,level+(len>1))); if(e==len) sep=''; end if(e<len) txt=sprintf('%s%s',txt,sprintf(',\n')); end end if(len>1) txt=sprintf('%s\n%s]',txt,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); sep=sprintf(',\n'); padding1=repmat(sprintf('\t'),1,level); padding0=repmat(sprintf('\t'),1,level+1); if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [\n',padding1,checkname(name,varargin{:})); end else if(len>1) txt=sprintf('%s[\n',padding1); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end if(len==1) DataToSave=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) DataToSave=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,repmat(sprintf('\t'),1,level),DataToSave); else txt=sprintf('%s%s%s%s',txt,repmat(sprintf('\t'),1,level+1),['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s\n%s%s',txt,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end padding1=repmat(sprintf('\t'),1,level); padding0=repmat(sprintf('\t'),1,level+1); if(length(size(item))>2 || issparse(item) || ~isreal(item) || jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{\n%s"_ArrayType_": "%s",\n%s"_ArraySize_": %s,\n',... padding1,padding0,class(item),padding0,regexprep(mat2str(size(item)),'\s+',',') ); else txt=sprintf('%s"%s": {\n%s"_ArrayType_": "%s",\n%s"_ArraySize_": %s,\n',... padding1,checkname(name,varargin{:}),padding0,class(item),padding0,regexprep(mat2str(size(item)),'\s+',',') ); end else if(isempty(name)) txt=sprintf('%s%s',padding1,matdata2json(item,level+1,varargin{:})); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),matdata2json(item,level+1,varargin{:})); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sprintf(',\n')); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sprintf(',\n')); if(find(size(item)==1)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), sprintf('\n')); else txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), sprintf('\n')); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), sprintf('\n')); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sprintf(',\n')); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), sprintf('\n')); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[\n'); post=sprintf('\n%s]',repmat(sprintf('\t'),1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],\n')]]; if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(sprintf('\t'),1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-1:end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function val=jsonopt(key,default,varargin) val=default; if(nargin<=2) return; end opt=varargin{1}; if(isstruct(opt) && isfield(opt,key)) val=getfield(opt,key); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end
github
Vincentqyw/light-field-TB-master
LFBuild4DFreqDualFan.m
.m
light-field-TB-master/LFToolbox0.4/LFBuild4DFreqDualFan.m
4,955
utf_8
b925c1d38066faa9f44d0c51b8c68d91
% LFBuild4DFreqDualFan - construct a 4D dual-fan passband filter in the frequency domain % % Usage: % % [H, FiltOptions] = LFBuild4DFreqDualFan( LFSize, Slope, BW, FiltOptions ) % H = LFBuild4DFreqDualFan( LFSize, Slope, BW ) % % This file constructs a real-valued magnitude response in 4D, for which the passband is a dual-fan, % the intersection of 2 2D fans. % % Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The % LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters. % % A more technical discussion, including the use of filters for denoising and volumetric focus, and % the inclusion of aliases components, is included in: % % [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field % Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015. % % Inputs: % % LFSize : Size of the frequency-domain filter. This should match or exceed the size of the % light field to be filtered. If it's larger than the input light field, the input is % zero-padded to match the filter's size by LFFilt4DFFT. % % Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v, % the optional aspect parameter should be used. % % BW : 3-db Bandwidth of the planar passband. % % [optional] FiltOptions : struct controlling filter construction % SlopeMethod : 'Skew' or 'Rotate' default 'skew' % Precision : 'single' or 'double', default 'single' % Rolloff : 'Gaussian' or 'Butter', default 'Gaussian' % Order : controls the order of the filter when Rolloff is 'Butter', default 3 % Aspect4D : aspect ratio of the light field, default [1 1 1 1] % Window : Default false. By default the edges of the passband are sharp; this adds % a smooth rolloff at the edges when used in conjunction with Extent4D or % IncludeAliased. % Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1] % is the edge of the Nyquist box. When less than 1, enabling windowing % introduces a rolloff after the edge of the passband. Can be greater % than 1 when using IncludeAliased. % IncludeAliased : default false; allows the passband to wrap around off the edge of the % Nyquist box; used in conjunction with Window and/or Extent4D. This can % increase processing time dramatically, e.g. Extent4D = [2,2,2,2] % requires a 2^4 = 16-fold increase in time to construct the filter. % Useful when passband content is aliased, see [2]. % % Outputs: % % H : real-valued frequency magnitude response % FiltOptions : The filter options including defaults, with an added PassbandInfo field % detailing the function and time of construction of the filter % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, % LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, % LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFBuild4DFreqDualFan( LFSize, Slope1, Slope2, BW, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'Aspect4D', 1); FiltOptions = LFDefaultField('FiltOptions', 'Extent4D', 1); if( length(LFSize) == 1 ) LFSize = LFSize .* [1,1,1,1]; end if( length(FiltOptions.Extent4D) == 1 ) FiltOptions.Extent4D = FiltOptions.Extent4D .* [1,1,1,1]; end if( length(FiltOptions.Aspect4D) == 1 ) FiltOptions.Aspect4D = FiltOptions.Aspect4D .* [1,1,1,1]; end FiltOptionsSU = FiltOptions; FiltOptionsSU.Aspect2D = FiltOptionsSU.Aspect4D([2,4]); FiltOptionsSU.Extent2D = FiltOptionsSU.Extent4D([2,4]); Hsu = LFBuild2DFreqFan( LFSize([2,4]), Slope1, Slope2, BW, FiltOptionsSU ); FiltOptionsTV = FiltOptions; FiltOptionsTV.Aspect2D = FiltOptionsSU.Aspect4D([1,3]); FiltOptionsTV.Extent2D = FiltOptionsSU.Extent4D([1,3]); [Htv, FiltOptionsTV] = LFBuild2DFreqFan( LFSize([1,3]), Slope1, Slope2, BW, FiltOptionsTV ); FiltOptions = FiltOptionsTV; FiltOptions = rmfield(FiltOptions, 'Aspect2D'); FiltOptions = rmfield(FiltOptions, 'Extent2D'); Hsu = reshape(Hsu, [1, size(Hsu,1), 1, size(Hsu,2)]); Hsu = repmat(Hsu, [LFSize(1),1,LFSize(3),1]); Htv = reshape(Htv, [size(Htv,1), 1, size(Htv,2), 1]); Htv = repmat(Htv, [1,LFSize(2),1,LFSize(4)]); H = Hsu .* Htv; TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
github
Vincentqyw/light-field-TB-master
LFBuild4DFreqHypercone.m
.m
light-field-TB-master/LFToolbox0.4/LFBuild4DFreqHypercone.m
4,501
utf_8
256d28a026711e06809d334c23db0633
% LFBuild4DFreqHypercone - construct a 4D hypercone passband filter in the frequency domain % % Usage: % % [H, FiltOptions] = LFBuild4DFreqHypercone( LFSize, Slope, BW, FiltOptions ) % H = LFBuild4DFreqHypercone( LFSize, Slope, BW ) % % This file constructs a real-valued magnitude response in 4D, for which the passband is a hypercone. % % Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The % LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters. % % A more technical discussion, including the use of filters for denoising and volumetric focus, and % the inclusion of aliases components, is included in: % % [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field % Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015. % % Inputs: % % LFSize : Size of the frequency-domain filter. This should match or exceed the size of the % light field to be filtered. If it's larger than the input light field, the input is % zero-padded to match the filter's size by LFFilt4DFFT. % % Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v, % the optional aspect parameter should be used. % % BW : 3-db Bandwidth of the planar passband. % % [optional] FiltOptions : struct controlling filter construction % SlopeMethod : 'Skew' or 'Rotate' default 'skew' % Precision : 'single' or 'double', default 'single' % Rolloff : 'Gaussian' or 'Butter', default 'Gaussian' % Order : controls the order of the filter when Rolloff is 'Butter', default 3 % Aspect4D : aspect ratio of the light field, default [1 1 1 1] % Window : Default false. By default the edges of the passband are sharp; this adds % a smooth rolloff at the edges when used in conjunction with Extent4D or % IncludeAliased. % Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1] % is the edge of the Nyquist box. When less than 1, enabling windowing % introduces a rolloff after the edge of the passband. Can be greater % than 1 when using IncludeAliased. % IncludeAliased : default false; allows the passband to wrap around off the edge of the % Nyquist box; used in conjunction with Window and/or Extent4D. This can % increase processing time dramatically, e.g. Extent4D = [2,2,2,2] % requires a 2^4 = 16-fold increase in time to construct the filter. % Useful when passband content is aliased, see [2]. % % Outputs: % % H : real-valued frequency magnitude response % FiltOptions : The filter options including defaults, with an added PassbandInfo field % detailing the function and time of construction of the filter % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, % LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, % LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFBuild4DFreqHypercone( LFSize, BW, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'HyperconeMethod', 'Rotated'); % 'Direct', 'Rotated' DistFunc = @(P, FiltOptions) DistFunc_4DCone( P, FiltOptions ); [H, FiltOptions] = LFHelperBuild4DFreq( LFSize, BW, FiltOptions, DistFunc ); TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); end %----------------------------------------------------------------------------------------------------------------------- function Dist = DistFunc_4DCone( P, FiltOptions ) switch( lower(FiltOptions.HyperconeMethod )) case 'direct' Dist = (P(1,:).*P(4,:) - P(2,:).*P(3,:)).^2 * 4; case 'rotated' R = 1/sqrt(2) .* [1,0,0,1; 0,1,1,0; 0,1,-1,0; 1,0,0,-1]; P=R*P; Dist = (sqrt(P(1,:).^2 + P(3,:).^2) - sqrt(P(2,:).^2 + P(4,:).^2)).^2 /2; otherwise error('Unrecognized hypercone construction method'); end end
github
Vincentqyw/light-field-TB-master
LFUtilProcessWhiteImages.m
.m
light-field-TB-master/LFToolbox0.4/LFUtilProcessWhiteImages.m
12,517
utf_8
82b7183214df46d50702d31ad904317c
% LFUtilProcessWhiteImages - process a folder/tree of white images by fitting a grid model to each % % Usage: % % LFUtilProcessWhiteImages % LFUtilProcessWhiteImages( WhiteImagesPath ) % LFUtilProcessWhiteImages( WhiteImagesPath, FileOptions, GridModelOptions ) % LFUtilProcessWhiteImages( WhiteImagesPath, [], GridModelOptions ) % % All parameters are optional and take on default values as set in the "Defaults" section at the top % of the implementation. As such, this can be called as a function or run directly by editing the % code. When calling as a function, pass an empty array "[]" to omit a parameter. % % As released, the default values are set up to match the naming conventions associated with Lytro % files extracted using LFP Reader v2.0.0. % % Lytro cameras come loaded with a database of white images. These are taken through a diffuser, % and at different zoom and focus settings. They are useful for removing vignetting (darkening near % edges of images) and for locating lenslet centers in raw light field images. % % This function prepares a set of white images for use by the LF Toolbox. To do this, it fits a grid % model to each white image, using the function LFBuildLensletGridModel. It also builds a database % for use in selecting an appropriate white image for decoding a light field, as in the function % LFLytroDecodeImage / LFSelectFromDatabase. The default parameters are set up to deal with the % white images extracted from a Lytro camera. % % For each grid model fit, a display is generated allowing visual confirmation that the grid fit is % a good one. This displays each estimated grid center as a red dot over top the white image. If % the function was successful, each red dot should appear at the center of a lenslet -- i.e. near % the brightest spot on each white bump. It does not matter if there are a few rows of lenslets on % the edges of the image with no red markers. % % % Inputs -- all are optional, see code below for default values : % % WhiteImagesPath : Path to folder containing white images -- note the function operates % recursively, i.e. it will search sub-folders. The white image database will % be created at the top level of this path. A typical configuration is to % create a "Cameras" folder with a separate subfolder of white images for each % camera in use. The appropriate path to pass to this function is the top % level of the cameras folder. % % FileOptions : struct controlling file naming and saving % .SaveResult : Set to false to perform a "dry run" % .ForceRedo : By default, already-processed white images are skipped; set % this to true to force reprocessing of already-processed files % .WhiteImageDatabasePath : Name of file to which white image database is saved % .WhiteMetadataFilenamePattern : File search pattern for finding white image metadata files % .WhiteRawDataFnameExtension : File extension of raw white image files % .ProcessedWhiteImagenamePattern : Pattern defining the names of grid model files; must include % a %s which gets replaced by the white image base filename % .WhiteImageMinMeanIntensity : Images with mean intensities below this threshold are % discarded; this is necessary because some of the Lytro white % images include are very dark and not useful for grid modelling % % GridModelOptions : struct controlling grid construction by LFBuildLensletGridModel % .FilterDiskRadiusMult : Filter disk radius for prefiltering white image for locating % lenslets; expressed relative to lenslet spacing; e.g. a % value of 1/3 means a disk filte with a radius of 1/3 the % lenslet spacing % .CropAmt : Edge pixels to ignore when finding the grid % .SkipStep : As a speed optimization, not all lenslet centers contribute % to the grid estimate; <SkipStep> pixels are skipped between % the lenslet centers that get used; a value of 1 means use all % % Output takes the form of saved grid model files and a white image database. % % See also: LFBuildLensletGridModel, LFUtilDecodeLytroFolder, LFUtilProcessCalibrations % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFUtilProcessWhiteImages( WhiteImagesPath, FileOptions, GridModelOptions ) %---Defaults--- WhiteImagesPath = LFDefaultVal( 'WhiteImagesPath', 'Cameras' ); FileOptions = LFDefaultField( 'FileOptions', 'SaveResult', true ); FileOptions = LFDefaultField( 'FileOptions', 'ForceRedo', false ); FileOptions = LFDefaultField( 'FileOptions', 'WhiteImageDatabasePath', 'WhiteImageDatabase.mat' ); FileOptions = LFDefaultField( 'FileOptions', 'WhiteMetadataFilenamePattern', '*MOD_*.TXT' ); FileOptions = LFDefaultField( 'FileOptions', 'WhiteRawDataFnameExtension', '.RAW' ); FileOptions = LFDefaultField( 'FileOptions', 'ProcessedWhiteImagenamePattern', '%s.grid.json' ); FileOptions = LFDefaultField( 'FileOptions', 'WhiteImageMinMeanIntensity', 500 ); GridModelOptions = LFDefaultField( 'GridModelOptions', 'Orientation', 'horz' ); GridModelOptions = LFDefaultField( 'GridModelOptions', 'FilterDiskRadiusMult', 1/3 ); GridModelOptions = LFDefaultField( 'GridModelOptions', 'CropAmt', 25 ); GridModelOptions = LFDefaultField( 'GridModelOptions', 'SkipStep', 250 ); DispSize_pix = 160; % size of windows for visual confirmation display DebugBuildGridModel = false; % additional debug display %---Load white image info--- fprintf('Building database of white files...\n'); WhiteImageInfo = LFGatherCamInfo( WhiteImagesPath, FileOptions.WhiteMetadataFilenamePattern ); % The Lytro F01 database has two exposures per zoom/focus setting -- this eliminates the darker ones F01Images = find(strcmp({WhiteImageInfo.CamModel}, 'F01')); IsF01Image = false(size(WhiteImageInfo)); IsF01Image(F01Images) = true; ExposureDuration = [WhiteImageInfo.ExposureDuration]; MeanDuration = mean(ExposureDuration(F01Images)); DarkF01Images = find(IsF01Image & (ExposureDuration < MeanDuration)); CamInfoValid = true(size(WhiteImageInfo)); CamInfoValid(DarkF01Images) = false; %---Tagged onto all saved files--- TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); %---Iterate through all white images--- fprintf('Processing each white file...\n'); fprintf('Visually confirm the estimated grid centers (red) are a good match to the lenslet centers...\n'); for( iFile = 1:length(WhiteImageInfo) ) [CurFnamePath, CurFnameBase] = fileparts( WhiteImageInfo(iFile).Fname ); fprintf('%s [File %d / %d]:\n', fullfile(CurFnamePath,CurFnameBase), iFile, length(WhiteImageInfo)); ProcessedWhiteFname = sprintf( FileOptions.ProcessedWhiteImagenamePattern, CurFnameBase ); ProcessedWhiteFname = fullfile(WhiteImagesPath, CurFnamePath, ProcessedWhiteFname); if( ~FileOptions.ForceRedo && exist(ProcessedWhiteFname, 'file') ) fprintf('Output file %s already exists, skipping.\n', ProcessedWhiteFname); % note that the file can still be added to the database, after the if/else/end, % unless it's a dark image as detected below else if( ~CamInfoValid(iFile) ) fprintf('Dark F01 image, skipping and not adding to database\n'); continue; end %---Load white image and white image metadata--- CurMetadataFname = fullfile(WhiteImagesPath, WhiteImageInfo(iFile).Fname); CurRawImageFname = LFFindLytroPartnerFile( CurMetadataFname, FileOptions.WhiteRawDataFnameExtension ); WhiteImageMetadata = LFReadMetadata( CurMetadataFname ); WhiteImageMetadata = WhiteImageMetadata.master.picture.frameArray.frame.metadata; ImgSize = [WhiteImageMetadata.image.width, WhiteImageMetadata.image.height]; switch( WhiteImageInfo(iFile).CamModel ) case 'F01' WhiteImage = LFReadRaw( CurRawImageFname, '12bit' ); %---Detect very dark images in F01 camera--- if( mean(WhiteImage(:)) < FileOptions.WhiteImageMinMeanIntensity ) fprintf('Detected dark image, skipping and not adding to database\n'); CamInfoValid(iFile) = false; continue end case 'B01' WhiteImage = LFReadRaw( CurRawImageFname, '10bit' ); otherwise error('Unrecognized camera model'); end %---Initialize grid finding parameters based on metadata--- GridModelOptions.ApproxLensletSpacing = ... WhiteImageMetadata.devices.mla.lensPitch / WhiteImageMetadata.devices.sensor.pixelPitch; %---Find grid params--- [LensletGridModel, GridCoords] = LFBuildLensletGridModel( WhiteImage, GridModelOptions, DebugBuildGridModel ); GridCoordsX = GridCoords(:,:,1); GridCoordsY = GridCoords(:,:,2); %---Visual confirmation--- if( strcmpi(GridModelOptions.Orientation, 'vert') ) WhiteImage = WhiteImage'; end ImgSize = size(WhiteImage); HPlotSamps = ceil(DispSize_pix/LensletGridModel.HSpacing); VPlotSamps = ceil(DispSize_pix/LensletGridModel.VSpacing); LFFigure(1); clf subplot(331); imagesc(WhiteImage(1:DispSize_pix,1:DispSize_pix)); hold on colormap gray plot(GridCoordsX(1:VPlotSamps,1:HPlotSamps), GridCoordsY(1:VPlotSamps,1:HPlotSamps), 'r.') axis off subplot(333); imagesc(WhiteImage(1:DispSize_pix, ImgSize(2)-DispSize_pix:ImgSize(2))); hold on colormap gray plot(-(ImgSize(2)-DispSize_pix)+1 + GridCoordsX(1:VPlotSamps, end-HPlotSamps:end), GridCoordsY(1:VPlotSamps, end-HPlotSamps:end), 'r.') axis off CenterStart = (ImgSize-DispSize_pix)/2; HCenterStartSamps = floor(CenterStart(2) / LensletGridModel.HSpacing); VCenterStartSamps = floor(CenterStart(1) / LensletGridModel.VSpacing); subplot(335); imagesc(WhiteImage(CenterStart(1):CenterStart(1)+DispSize_pix, CenterStart(2):CenterStart(2)+DispSize_pix)); hold on colormap gray plot(-CenterStart(2)+1 + GridCoordsX(VCenterStartSamps + (1:VPlotSamps), HCenterStartSamps + (1:HPlotSamps)), -CenterStart(1)+1 + GridCoordsY(VCenterStartSamps + (1:VPlotSamps), HCenterStartSamps + (1:HPlotSamps)),'r.'); axis off subplot(337); imagesc(WhiteImage(ImgSize(1)-DispSize_pix:ImgSize(1), 1:DispSize_pix)); hold on colormap gray plot(GridCoordsX(end-VPlotSamps:end,1:HPlotSamps), -(ImgSize(1)-DispSize_pix)+1 + GridCoordsY(end-VPlotSamps:end,1:HPlotSamps), 'r.') axis off subplot(339); imagesc(WhiteImage(ImgSize(1)-DispSize_pix:ImgSize(1),ImgSize(2)-DispSize_pix:ImgSize(2))); hold on colormap gray plot(-(ImgSize(2)-DispSize_pix)+1 + GridCoordsX(end-VPlotSamps:end, end-HPlotSamps:end), -(ImgSize(1)-DispSize_pix)+1 + GridCoordsY(end-VPlotSamps:end, end-HPlotSamps:end), 'r.') axis off truesize % bigger display drawnow %---Optionally save--- if( FileOptions.SaveResult ) fprintf('Saving to %s\n', ProcessedWhiteFname); CamInfo = WhiteImageInfo(iFile); LFWriteMetadata(ProcessedWhiteFname, LFVar2Struct(GeneratedByInfo, GridModelOptions, CamInfo, LensletGridModel)); end end end CamInfo = WhiteImageInfo(CamInfoValid); %---Optionally save the white file database--- if( FileOptions.SaveResult ) FileOptions.WhiteImageDatabasePath = fullfile(WhiteImagesPath, FileOptions.WhiteImageDatabasePath); fprintf('Saving to %s\n', FileOptions.WhiteImageDatabasePath); save(FileOptions.WhiteImageDatabasePath, 'GeneratedByInfo', 'CamInfo'); end fprintf('Done\n'); end
github
Vincentqyw/light-field-TB-master
LFCalDispEstPoses.m
.m
light-field-TB-master/LFToolbox0.4/LFCalDispEstPoses.m
2,604
utf_8
1f7d8e57212bcbb143d2c597e59038f3
% LFCalDispEstPoses - Visualize pose estimates associated with a calibration info file % % Usage: % LFCalDispEstPoses( InputPath, CalOptions, DrawFrameSizeMult, BaseColour ) % % Draws a set of frames, one for each camera pose, in the colour defined by BaseColour. All inputs % except InputPath are optional. Pass an empty array "[]" to omit a parameter. See % LFUtilCalLensletCam for example usage. % % Inputs: % % InputPath : Path to folder containing CalInfo file. % % [optional] CalOptions : struct controlling calibration parameters % .CalInfoFname : Name of the file containing calibration estimate; note that this % parameter is automatically set in the CalOptions struct returned % by LFCalInit % % [optional] DrawFrameSizeMult : Multiplier on the displayed frame sizes % % [optional] BaseColour : RGB triplet defining a base drawing colour, RGB values are in the % range 0-1 % % % See also: LFUtilCalLensletCam % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFCalDispEstPoses( InputPath, CalOptions, DrawFrameSizeMult, BaseColour ) %---Defaults--- CalOptions = LFDefaultField( 'CalOptions', 'CalInfoFname', 'CalInfo.json' ); DrawFrameSizeMult = LFDefaultVal( 'DrawFrameSizeMult', 1 ); BaseColour = LFDefaultVal( 'BaseColour', [1,1,0] ); %--- Fname = fullfile(CalOptions.CalInfoFname); EstCamPosesV = LFStruct2Var( LFReadMetadata(fullfile(InputPath, Fname)), 'EstCamPosesV' ); % Establish an appropriate scale for the drawing AutoDrawScale = EstCamPosesV(:,1:3); AutoDrawScale = AutoDrawScale(:); AutoDrawScale = (max(AutoDrawScale) - min(AutoDrawScale))/10; %---Draw cameras--- BaseFrame = ([0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 0 1]); DrawFrameMed = [AutoDrawScale * DrawFrameSizeMult * BaseFrame; ones(1,6)]; DrawFrameLong = [AutoDrawScale*3/2 * DrawFrameSizeMult * BaseFrame; ones(1,6)]; for( PoseIdx = 1:size(EstCamPosesV, 1) ) CurH = eye(4); CurH(1:3,1:3) = rodrigues( EstCamPosesV(PoseIdx,4:6) ); CurH(1:3,4) = EstCamPosesV(PoseIdx,1:3); CurH = CurH^-1; CamFrame = CurH * DrawFrameMed(:,1:4); plot3( CamFrame(1,:), CamFrame(2,:), CamFrame(3,:), '-', 'color', BaseColour.*0.5, 'LineWidth',2 ); hold on CamFrame = CurH * DrawFrameLong(:,5:6); plot3( CamFrame(1,:), CamFrame(2,:), CamFrame(3,:), '-', 'color', BaseColour, 'LineWidth',2 ); end axis equal grid on xlabel('x [m]'); ylabel('y [m]'); zlabel('z [m]'); title('Estimated camera poses');
github
Vincentqyw/light-field-TB-master
LFMatlabPathSetup.m
.m
light-field-TB-master/LFToolbox0.4/LFMatlabPathSetup.m
629
utf_8
09c19ebacb36d9e2d70336dd7f62bc9c
% LFMatlabPathSetup - convenience function to add the light field toolbox to matlab's path % % It may be convenient to add this to your startup.m file. % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFMatlabPathSetup % Find the path to this script, and use it as the base path LFToolboxPath = fileparts(mfilename('fullpath')); fprintf('Adding paths for LF Toolbox '); addpath( fullfile(LFToolboxPath) ); addpath( fullfile(LFToolboxPath, 'SupportFunctions') ); addpath( fullfile(LFToolboxPath, 'SupportFunctions', 'CameraCal') ); fprintf('%s, done.\n', LFToolboxVersion);
github
Vincentqyw/light-field-TB-master
LFReadLFP.m
.m
light-field-TB-master/LFToolbox0.4/LFReadLFP.m
9,456
utf_8
12a412c0c96c3bd388028f4eb975749f
% LFReadLFP - Load a lytro LFP / LFR file % % Usage: % [LFP, ExtraSections] = LFReadLFP( Fname ) % % The Lytro LFP is a container format and may contain one of several types of data. The file extension varies based on % the source of the files, with exported files, on-camera files and image library files variously taking on the % extensions lfp, lfr, LFP and LFR. % % This function loads all the sections of an LFP and interprets those that it recognizes. Recognized sections include % thumbnails and focal stacks, raw light field and white images, metadata and serial data. If more than one section of % the same type appears, a cell array is constructed in the output struct -- this is the case for focal stacks, for % example. Files generated using Lytro Desktop 4.0 and 3.0 are supported. % % Additional output information includes the appropriate demosaic order for raw light field images, and the size of raw % images. % % Unrecognized sections are returned in the ExtraSections output argument. % % This function is based in part on Nirav Patel's lfpsplitter.c and Doug Kelley's read_lfp; Thanks to Michael Tao for % help and samples for decoding Illum imagery. % % Inputs : % Fname : path to an input LFP file % % Outputs: % LFP : Struct containing decoded LFP sections and supporting information, which may include one or more of % .Jpeg : Thumbnails, focal stacks -- see LFUtilExtractLFPThumbs for saving these to disk % .RawImg : Raw light field image % .WhiteImg : White image bundled into Illum LFP % .Metadata, .Serials : Information about the image and camera % .DemosaicOrder : The appropriate parameter to pass to Matlab's "demosaic" to debayer a RawImg % .ImgSize : Size of RawImg % % ExtraSections : Struct array containing unrecognized LFP sections % .Data : Buffer of chars containing the section's uninterpreted data block % .SectType : Descriptive name for the section, e.g. "hotPixelRef" % .Sha1 : Unique hash identifying the section % .SectHeader : Header bytes identifying the section as a table of contents or data % % See also: LFUtilExtractLFPThumbs, LFUtilUnpackLytroArchive, LFUtilDecodeLytroFolder % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LFP, ExtraSections] = LFReadLFP( Fname ) %---Consts--- LFPConsts.LFPHeader = hex2dec({'89', '4C', '46', '50', '0D', '0A', '1A', '0A', '00', '00', '00', '01'}); % 12-byte LFPSections header LFPConsts.SectHeaderLFM = hex2dec({'89', '4C', '46', '4D', '0D', '0A', '1A', '0A'})'; % header for table of contents LFPConsts.SectHeaderLFC = hex2dec({'89', '4C', '46', '43', '0D', '0A', '1A', '0A'})'; % header for content section LFPConsts.SecHeaderPaddingLen = 4; LFPConsts.Sha1Length = 45; LFPConsts.ShaPaddingLen = 35; % Sha1 codes are followed by 35 null bytes %---Break out recognized sections--- KnownSectionTypes = { ... ... % Lytro Desktop 4 'Jpeg', 'picture.accelerationArray.vendorContent.imageArray.imageRef', 'jpeg'; ... 'Jpeg', 'thumbnails.imageRef', 'jpeg'; ... 'RawImg', 'frames.frame.imageRef', 'raw'; ... 'WhiteImg', 'frames.frame.modulationDataRef', 'raw';... 'Metadata', 'frames.frame.metadataRef', 'json'; ... 'Serials', 'frames.frame.privateMetadataRef', 'json'; ... ... % Earlier Lytro Desktop versions 'RawImg', 'picture.frameArray.frame.imageRef', 'raw'; ... 'Metadata', 'picture.frameArray.frame.metadataRef', 'json'; ... 'Serials', 'picture.frameArray.frame.privateMetadataRef', 'json'; ... }; %--- ExtraSections = []; LFP = []; InFile=fopen(Fname, 'rb'); %---Check for the magic header--- HeaderBytes = fread( InFile, length(LFPConsts.LFPHeader), 'uchar' ); if( (length(HeaderBytes)~=length(LFPConsts.LFPHeader)) || ~all( HeaderBytes == LFPConsts.LFPHeader ) ) fclose(InFile); fprintf( 'Unrecognized file type\n' ); return end %---Confirm headerlength bytes--- HeaderLength = fread(InFile,1,'uint32','ieee-be'); assert( HeaderLength == 0, 'Unexpected length at top-level header' ); %---Read each section--- NSections = 0; TOCIdx = []; while( ~feof(InFile) ) NSections = NSections+1; LFPSections( NSections ) = ReadSection( InFile, LFPConsts ); %---Mark the table of contents section--- if( all( LFPSections( NSections ).SectHeader == LFPConsts.SectHeaderLFM ) ) assert( isempty(TOCIdx), 'Found more than one LFM metadata section' ); TOCIdx = NSections; end end fclose( InFile ); %---Decode the table of contents--- assert( ~isempty(TOCIdx), 'Found no LFM metadata sections' ); TOC = LFReadMetadata( LFPSections(TOCIdx).Data ); LFPSections(TOCIdx).SectType = 'TOC'; %---find all sha1 refs in TOC--- TocData = LFPSections(TOCIdx).Data; ShaIdx = strfind( TocData, 'sha1-' ); SeparatorIdx = find( TocData == ':' ); EolIdx = find( TocData == 10 ); for( iSha = 1:length(ShaIdx) ) LabelStopIdx = SeparatorIdx( find( SeparatorIdx < ShaIdx(iSha), 1, 'last' ) ); LabelStartIdx = EolIdx( find( EolIdx < LabelStopIdx, 1, 'last' ) ); ShaEndIdx = EolIdx( find( EolIdx > ShaIdx(iSha), 1, 'first' ) ); CurLabel = TocData(LabelStartIdx:LabelStopIdx); CurSha = TocData(LabelStopIdx:ShaEndIdx); CurLabel = strsplit(CurLabel, '"'); CurSha = strsplit(CurSha, '"'); CurLabel = CurLabel{2}; CurSha = CurSha{2}; SectNames{iSha} = CurLabel; SectIDs{iSha} = CurSha; end %---Apply section labels--- for( iSect = 1:length(SectNames) ) CurSectSHA = SectIDs{iSect}; MatchingSectIdx = find( strcmp( CurSectSHA, {LFPSections.Sha1} ) ); if( ~isempty(MatchingSectIdx) ) LFPSections(MatchingSectIdx).SectType = SectNames{iSect}; end end for( iSect = 1:size(KnownSectionTypes,1) ) FoundField = true; while(FoundField) [LFP, LFPSections, TOC, FoundField] = ExtractNamedField(LFP, LFPSections, TOC, KnownSectionTypes(iSect,:) ); end end ExtraSections = LFPSections; %---unpack the image(s)--- if( isfield( LFP, 'RawImg') ) LFP.ImgSize = [LFP.Metadata.image.width, LFP.Metadata.image.height]; switch( LFP.Metadata.camera.model ) case 'F01' assert( LFP.Metadata.image.rawDetails.pixelPacking.bitsPerPixel == 12 ); assert( strcmp(LFP.Metadata.image.rawDetails.pixelPacking.endianness, 'big') ); LFP.RawImg = LFUnpackRawBuffer( LFP.RawImg, '12bit', LFP.ImgSize )'; LFP.DemosaicOrder = 'bggr'; case 'ILLUM' assert( LFP.Metadata.image.pixelPacking.bitsPerPixel == 10 ); assert( strcmp(LFP.Metadata.image.pixelPacking.endianness, 'little') ); LFP.RawImg = LFUnpackRawBuffer( LFP.RawImg, '10bit', LFP.ImgSize )'; if( isfield( LFP, 'WhiteImg' ) ) LFP.WhiteImg = LFUnpackRawBuffer( LFP.WhiteImg, '10bit', LFP.ImgSize )'; end LFP.DemosaicOrder = 'grbg'; otherwise warning('Unrecognized camera model'); return end end end % -------------------------------------------------------------------- function LFPSect = ReadSection( InFile, LFPConsts ) LFPSect.SectHeader = fread(InFile, length(LFPConsts.SectHeaderLFM), 'uchar')'; Padding = fread(InFile, LFPConsts.SecHeaderPaddingLen, 'uint8'); % skip padding SectLength = fread(InFile, 1, 'uint32', 'ieee-be'); LFPSect.Sha1 = char(fread(InFile, LFPConsts.Sha1Length, 'uchar')'); Padding = fread(InFile, LFPConsts.ShaPaddingLen, 'uint8'); % skip padding LFPSect.Data = char(fread(InFile, SectLength, 'uchar'))'; while( 1 ) Padding = fread(InFile, 1, 'uchar'); if( feof(InFile) || (Padding ~= 0) ) break; end end if ~feof(InFile) fseek( InFile, -1, 'cof'); % rewind one byte end end % -------------------------------------------------------------------- function [LFP, LFPSections, TOC, FoundField] = ExtractNamedField(LFP, LFPSections, TOC, FieldInfo) FoundField = false; FieldName = FieldInfo{1}; JsonName = FieldInfo{2}; FieldFormat = FieldInfo{3}; JsonTokens = strsplit(JsonName, '.'); TmpToc = TOC; if( ~iscell(JsonTokens) ) JsonTokens = {JsonTokens}; end for( i=1:length(JsonTokens) ) if( ~isfield(TmpToc, JsonTokens{i}) || isempty([TmpToc.(JsonTokens{i})]) ) return; end TmpToc = TmpToc.(JsonTokens{i}); % takes the first one in the case of an array end FieldIdx = find( strcmp( TmpToc, {LFPSections.Sha1} ) ); if( ~isempty(FieldIdx) ) SubField = struct('type','.','subs',FieldName); %--- detect image array and force progress by removing the currently-processed entry --- S = struct('type','.','subs',JsonTokens(1:end-1)); t = subsref( TOC, S ); ArrayLen = length(t); if( (isstruct(t) && ArrayLen>1) || isfield( LFP, FieldName ) ) S(end+1).type = '()'; S(end).subs = {1}; TOC = subsasgn( TOC, S, [] ); % Add an indexing subfield for image arrays SubField(end+1).type = '{}'; SubField(end).subs = {ArrayLen}; end %---Copy the data into the LFP struct--- LFP = subsasgn( LFP, SubField, LFPSections(FieldIdx).Data ); LFPSections = LFPSections([1:FieldIdx-1, FieldIdx+1:end]); %---Decode JSON-formatted sections--- switch( FieldFormat ) case 'json' LFP.(FieldName) = LFReadMetadata( LFP.(FieldName) ); end FoundField = true; end end
github
Vincentqyw/light-field-TB-master
LFBuild4DFreqHyperfan.m
.m
light-field-TB-master/LFToolbox0.4/LFBuild4DFreqHyperfan.m
4,676
utf_8
2bec28d4e5b0d48494ee457844595957
% LFBuild4DFreqHyperfan - construct a 4D hyperfan passband filter in the frequency domain % % Usage: % % [H, FiltOptions] = LFBuild4DFreqHyperfan( LFSize, Slope, BW, FiltOptions ) % H = LFBuild4DFreqHyperfan( LFSize, Slope, BW ) % % This file constructs a real-valued magnitude response in 4D, for which the passband is a hyperfan. % This is useful for selecting objects over a range of depths from a lightfield, i.e. volumetric % focus. % % Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The % LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters. % % A more technical discussion, including the use of filters for denoising and volumetric focus, and % the inclusion of aliases components, is included in: % % [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field % Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015. % % Inputs: % % LFSize : Size of the frequency-domain filter. This should match or exceed the size of the % light field to be filtered. If it's larger than the input light field, the input is % zero-padded to match the filter's size by LFFilt4DFFT. % % Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v, % the optional aspect parameter should be used. % % BW : 3-db Bandwidth of the planar passband. % % [optional] FiltOptions : struct controlling filter construction % SlopeMethod : 'Skew' or 'Rotate' default 'skew' % Precision : 'single' or 'double', default 'single' % Rolloff : 'Gaussian' or 'Butter', default 'Gaussian' % Order : controls the order of the filter when Rolloff is 'Butter', default 3 % Aspect4D : aspect ratio of the light field, default [1 1 1 1] % Window : Default false. By default the edges of the passband are sharp; this adds % a smooth rolloff at the edges when used in conjunction with Extent4D or % IncludeAliased. % Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1] % is the edge of the Nyquist box. When less than 1, enabling windowing % introduces a rolloff after the edge of the passband. Can be greater % than 1 when using IncludeAliased. % IncludeAliased : default false; allows the passband to wrap around off the edge of the % Nyquist box; used in conjunction with Window and/or Extent4D. This can % increase processing time dramatically, e.g. Extent4D = [2,2,2,2] % requires a 2^4 = 16-fold increase in time to construct the filter. % Useful when passband content is aliased, see [2]. % % Outputs: % % H : real-valued frequency magnitude response % FiltOptions : The filter options including defaults, with an added PassbandInfo field % detailing the function and time of construction of the filter % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, % LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, % LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFBuild4DFreqHyperfan( LFSize, Slope1, Slope2, BW, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'HyperfanMethod', 'Direct'); % 'Direct', 'Sweep' switch( lower(FiltOptions.HyperfanMethod )) case 'sweep' FiltOptions = LFDefaultField('FiltOptions', 'SweepSteps', 5); SweepVec = linspace(Slope1, Slope2, FiltOptions.SweepSteps); [H, FiltOptions] = LFBuild4DFreqPlane( LFSize, SweepVec(1), BW, FiltOptions ); for( CurSlope = SweepVec(2:end) ) H = max(H, LFBuild4DFreqPlane( LFSize, CurSlope, BW, FiltOptions )); end case 'direct' FiltOptions = LFDefaultField('FiltOptions', 'HyperconeBW', BW); [H, FiltOptions] = LFBuild4DFreqHypercone( LFSize, FiltOptions.HyperconeBW, FiltOptions ); [Hdf, FiltOptions] = LFBuild4DFreqDualFan( LFSize, Slope1, Slope2, BW, FiltOptions ); H = H .* Hdf; otherwise error('Unrecognized hyperfan construction method'); end TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
github
Vincentqyw/light-field-TB-master
LFUtilProcessCalibrations.m
.m
light-field-TB-master/LFToolbox0.4/LFUtilProcessCalibrations.m
3,086
utf_8
b7ed374da00985b749186101dccbfc70
% LFUtilProcessCalibrations - process a folder/tree of camera calibrations % % Usage: % % LFUtilProcessCalibrations % LFUtilProcessCalibrations( CalibrationsPath ) % LFUtilProcessCalibrations( CalibrationsPath, FileOptions ) % LFUtilProcessCalibrations( [], FileOptions ) % % All parameters are optional and take on default values as set in the "Defaults" section at the top % of the implementation. As such, this can be called as a function or run directly by editing the % code. When calling as a function, pass an empty array "[]" to omit a parameter. % % This function recursively crawls through a folder identifying camera "calibration info" files and % building a database for use in selecting a calibration appropriate to a light field. An example % usage is in the image rectification code in LFUtilDecodeLytroFolder / LFSelectFromDatabase. % % Inputs -- all are optional, see code below for default values : % % CalibrationsPath : Path to folder containing calibrations -- note the function operates % recursively, i.e. it will search sub-folders. The calibration database will % be created at the top level of this path. A typical configuration is to % create a "Cameras" folder with a separate subfolder of calibrations for each % camera in use. The appropriate path to pass to this function is the top % level of that cameras folder. % % % FileOptions : struct controlling file naming and saving % .SaveResult : Set to false to perform a "dry run" % .CalibrationDatabaseFname : Name of file to which white image database is saved % .CalInfoFilenamePattern : File search pattern for finding calibrations % % Output takes the form of a saved calibration database. % % See also: LFUtilDecodeLytroFolder, LFCalRectifyLF, LFSelectFromDatabase, LFUtilCalLensletCam, % LFUtilProcessWhiteImages % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFUtilProcessCalibrations( CalibrationsPath, FileOptions ) %---Defaults--- CalibrationsPath = LFDefaultVal( 'CalibrationsPath', 'Cameras' ); FileOptions = LFDefaultField( 'FileOptions', 'SaveResult', true ); FileOptions = LFDefaultField( 'FileOptions', 'CalibrationDatabaseFname', 'CalibrationDatabase.mat' ); FileOptions = LFDefaultField( 'FileOptions', 'CalInfoFilenamePattern', 'CalInfo*.json' ); %---Crawl folder structure locating calibrations--- fprintf('Building database of calibrations in %s\n', CalibrationsPath); CamInfo = LFGatherCamInfo( CalibrationsPath, FileOptions.CalInfoFilenamePattern ); %---Optionally save--- if( FileOptions.SaveResult ) SaveFpath = fullfile(CalibrationsPath, FileOptions.CalibrationDatabaseFname); fprintf('Saving to %s\n', SaveFpath); TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); save(SaveFpath, 'GeneratedByInfo', 'CamInfo'); end
github
Vincentqyw/light-field-TB-master
LFUtilExtractLFPThumbs.m
.m
light-field-TB-master/LFToolbox0.4/LFUtilExtractLFPThumbs.m
2,528
utf_8
bcf530be1d01e6c00268cf5bbf398fde
% LFUtilExtractLFPThumbs - extract thumbnails from LFP files and write to disk % % Usage: % % LFUtilExtractLFPThumbs % LFUtilExtractLFPThumbs( InputPath ) % % This extracts the thumbnail preview and focal stack images from LFR and LFP files, and is useful in providing a % preview, e.g. when copying files directly from an Illum camera. % % Inputs -- all are optional : % % InputPath : Path / filename pattern for locating LFP files. The function will move recursively through a tree, % matching one or more filename patterns. See LFFindFilesRecursive for a full description. % % The default input path is {'.', '*.LFP','*.LFR','*.lfp','*.lfr'}, i.e. the current folder, recursively searching % for all files matching uppercase and lowercase 'LFP' and 'LFR' extensions. % % Examples: % % LFUtilExtractLFPThumbs % % Will extract thumbnails from all LFP and LFR images in the current folder and its subfolders. % % The following are also valid, see LFFindFilesRecursive for more. % % LFUtilExtractLFPThumbs('Images') % LFUtilExtractLFPThumbs({'*.lfr','*.lfp'}) % LFUtilExtractLFPThumbs({'Images','*.lfr','*.lfp'}) % LFUtilExtractLFPThumbs('Images/*.lfr') % LFUtilExtractLFPThumbs('*.lfr') % LFUtilExtractLFPThumbs('Images/IMG_0001.LFR') % LFUtilExtractLFPThumbs('IMG_0001.LFR') % % See also: LFFindFilesRecursive % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFUtilExtractLFPThumbs( InputPath ) %---Defaults--- InputPath = LFDefaultVal( 'InputPath','.' ); DefaultFileSpec = {'*.LFP','*.LFR','*.lfp','*.lfr'}; % gets overriden below, if a file spec is provided [FileList, BasePath] = LFFindFilesRecursive( InputPath, DefaultFileSpec ); fprintf('Found :\n'); disp(FileList) %---Process each file--- for( iFile = 1:length(FileList) ) CurFname = fullfile(BasePath, FileList{iFile}); fprintf('Processing [%d / %d] %s\n', iFile, length(FileList), CurFname); LFP = LFReadLFP( CurFname ); if( ~isfield(LFP, 'Jpeg') ) continue; end if( ~iscell(LFP.Jpeg) ) LFP.Jpeg = {LFP.Jpeg}; end for( i=1:length(LFP.Jpeg) ) OutFname = sprintf('%s-%03d.jpg', CurFname, i-1); fprintf('%s', OutFname); if( exist(OutFname,'file') ) fprintf(' Exists, skipping\n'); else OutFile = fopen(OutFname, 'wb'); fwrite(OutFile, LFP.Jpeg{i}); fclose(OutFile); fprintf('\n'); end end end
github
Vincentqyw/light-field-TB-master
LFFilt2DFFT.m
.m
light-field-TB-master/LFToolbox0.4/LFFilt2DFFT.m
4,344
utf_8
94c37a901f7a9a1271d469d23be351cc
% LFFilt2DFFT - Apply a 2D frequency-domain filter to a 4D light field using the FFT % % Usage: % % [LF, FiltOptions] = LFFilt2DFFT( LF, H, FiltDims, FiltOptions ) % LF = LFFilt2DFFT( LF, H, FiltDims ) % % % This filter works on 2D slices of the input light field, applying the 2D filter H to each in turn. It takes the FFT % of each slice of the input light field, multiplies by the provided magnitude response H, then calls the inverse FFT. % % The FiltDims input specifies the two dimensions along which H should be applied. The frequency-domain filter H should % match or exceed the size of the light field LF in these dimensions. If H is larger than the input light field, LF is % zero-padded to match the filter's size. If a weight channel is present in the light field it gets used during % normalization. % % See LFDemoBasicFiltLytro for example usage. % % % Inputs % % LF : The light field to be filtered % % H : The frequency-domain filter to apply, as constructed by one of the LFBuild4DFreq* functions % % FiltDims : The dimensions along which H should be applied % % [optional] FiltOptions : struct controlling filter operation % Precision : 'single' or 'double', default 'single' % Normalize : default true; when enabled the output is normalized so that darkening near image edges is % removed % MinWeight : during normalization, pixels for which the output value is not well defined (i.e. for % which the filtered weight is very low) get set to 0. MinWeight sets the threshold at which % this occurs, default is 10 * the numerical precision of the output, as returned by eps % % Outputs: % % LF : The filtered 4D light field % FiltOptions : The filter options including defaults, with an added FilterInfo field detailing the function and % time of filtering. % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine, % LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, % LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LF, FiltOptions] = LFFilt2DFFT( LF, H, FiltDims, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single'); FiltOptions = LFDefaultField('FiltOptions', 'Normalize', true); FiltOptions = LFDefaultField('FiltOptions', 'MinWeight', 10*eps(FiltOptions.Precision)); %--- NColChans = size(LF,5); HasWeight = ( NColChans == 4 || NColChans == 2 ); if( HasWeight ) NColChans = NColChans-1; end %--- IterDims = 1:4; IterDims(FiltDims) = 0; IterDims = find(IterDims~=0); PermuteOrder = [IterDims, FiltDims, 5]; LF = permute(LF, PermuteOrder); LF = LFConvertToFloat(LF, FiltOptions.Precision); %--- LFSize = size(LF); SlicePaddedSize = size(H); for( IterDim1 = 1:LFSize(1) ) fprintf('.'); for( IterDim2 = 1:LFSize(2) ) CurSlice = squeeze(LF(IterDim1,IterDim2,:,:,:)); if( FiltOptions.Normalize ) if( HasWeight ) for( iColChan = 1:NColChans ) CurSlice(:,:,iColChan) = CurSlice(:,:,iColChan) .* CurSlice(:,:,end); end else % add a weight channel CurSlice(:,:,end+1) = ones(size(CurSlice(:,:,1)), FiltOptions.Precision); end end SliceSize = size(CurSlice); for( iColChan = 1:SliceSize(end) ) X = fftn(CurSlice(:,:,iColChan), SlicePaddedSize); X = X .* H; x = ifftn(X,'symmetric'); x = x(1:LFSize(3), 1:LFSize(4)); CurSlice(:,:,iColChan) = x; end if( FiltOptions.Normalize ) WeightChan = CurSlice(:,:,end); InvalidIdx = find(WeightChan < FiltOptions.MinWeight); ChanSize = numel(CurSlice(:,:,1)); for( iColChan = 1:NColChans ) CurSlice(:,:,iColChan) = CurSlice(:,:,iColChan) ./ WeightChan; CurSlice( InvalidIdx + ChanSize.*(iColChan-1) ) = 0; end end % record channel LF(IterDim1,IterDim2,:,:,:) = CurSlice(:,:,1:LFSize(5)); end end LF = max(0,LF); LF = min(1,LF); LF = ipermute(LF, PermuteOrder); %--- TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.FilterInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); fprintf(' Done\n');
github
Vincentqyw/light-field-TB-master
LFBuild2DFreqLine.m
.m
light-field-TB-master/LFToolbox0.4/LFBuild2DFreqLine.m
4,431
utf_8
0dcc452b6b957958b7243b285453790b
% LFBuild2DFreqLine - construct a 2D line passband filter in the frequency domain % % Usage: % % [H, FiltOptions] = LFBuild2DFreqLine( LFSize, Slope, BW, FiltOptions ) % H = LFBuild2DFreqLine( LFSize, Slope, BW ) % % This file constructs a real-valued magnitude response in 2D, for which the passband is a line. The cascade of two line % filters, applied in s,u and in t,v, is identical to a 4D planar filter, e.g. that constructed by LFBuild4DFreqPlane. % % Once constructed the filter must be applied to a light field, e.g. using LFFilt2DFFT. The % LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters. % % A more technical discussion, including the use of filters for denoising and volumetric focus, and % the inclusion of aliases components, is included in: % % [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field % Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015. % % Inputs: % % LFSize : Size of the frequency-domain filter. This should match or exceed the size of the % light field to be filtered. If it's larger than the input light field, the input is % zero-padded to match the filter's size by LFFilt2DFFT. % % Slope : Slopes at the extents of the fan passband. % % BW : 3-db Bandwidth of the planar passband. % % [optional] FiltOptions : struct controlling filter construction % SlopeMethod : only 'Skew' is supported for now % Precision : 'single' or 'double', default 'single' % Rolloff : 'Gaussian' or 'Butter', default 'Gaussian' % Order : controls the order of the filter when Rolloff is 'Butter', default 3 % Aspect2D : aspect ratio of the light field, default [1 1] % Window : Default false. By default the edges of the passband are sharp; this adds % a smooth rolloff at the edges when used in conjunction with Extent2D or % IncludeAliased. % Extent2D : controls where the edge of the passband occurs, the default [1 1] % is the edge of the Nyquist box. When less than 1, enabling windowing % introduces a rolloff after the edge of the passband. Can be greater % than 1 when using IncludeAliased. % IncludeAliased : default false; allows the passband to wrap around off the edge of the % Nyquist box; used in conjunction with Window and/or Extent2D. This can % increase processing time dramatically, e.g. Extent2D = [2,2] % requires a 2^2 = 4-fold increase in time to construct the filter. % Useful when passband content is aliased, see [2]. % % Outputs: % % H : real-valued frequency magnitude response % FiltOptions : The filter options including defaults, with an added PassbandInfo field % detailing the function and time of construction of the filter % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, % LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, % LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFBuild2DFreqLine( LFSize, Slope, BW, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'SlopeMethod', 'Skew'); % 'Skew', 'Rotate' DistFunc = @(P, FiltOptions) DistFunc_2DLine( P, Slope, FiltOptions ); [H, FiltOptions] = LFHelperBuild2DFreq( LFSize, BW, FiltOptions, DistFunc ); TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); end %----------------------------------------------------------------------------------------------------------------------- function Dist = DistFunc_2DLine( P, Slope, FiltOptions ) switch( lower(FiltOptions.SlopeMethod) ) case 'skew' R = eye(2); R(1,2) = Slope; case 'rotate' Angle = -atan2(Slope,1); R = LFRotz( Angle ); R = R(1:2,1:2); otherwise error('Unrecognized slope method'); end P = R * P; Dist = P(1,:).^2; end
github
Vincentqyw/light-field-TB-master
LFColourCorrect.m
.m
light-field-TB-master/LFToolbox0.4/LFColourCorrect.m
1,999
utf_8
07c213f4b7fbcaa5ad2fae5e30c82edf
% LFColourCorrect - applies a colour correction matrix, balance vector, and gamma, called by LFUtilDecodeLytroFolder % % Usage: % LF = LFColourCorrect( LF, ColMatrix, ColBalance, Gamma ) % % This implementation deals with saturated input pixels by aggressively saturating output pixels. % % Inputs : % % LF : a light field or image to colour correct. It should be a floating point array, and % may be of any dimensinality so long as the last dimension has length 3. For example, a 2D % image of size [Nl,Nk,3], a 4D image of size [Nj,Ni,Nl,Nk,3], and a 1D list of size [N,3] % are all valid. % % ColMatrix : a 3x3 colour conversion matrix. This can be built from the metadata provided % with Lytro imagery using the command: % ColMatrix = reshape(cell2mat(LFMetadata.image.color.ccmRgbToSrgbArray), 3,3); % as demonstrated in LFUtilDecodeLytroFolder. % % ColBalance : 3-element vector containing a multiplicative colour balance. % % Gamma : rudimentary gamma correction is applied of the form LF = LF.^Gamma. % % Outputs : % % LF, of the same dimensionality as the input. % % % See also: LFHistEqualize, LFUtilDecodeLytroFolder % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LF = LFColourCorrect(LF, ColMatrix, ColBalance, Gamma) LFSize = size(LF); % Flatten input to a flat list of RGB triplets NDims = numel(LFSize); LF = reshape(LF, [prod(LFSize(1:NDims-1)), 3]); LF = bsxfun(@times, LF, ColBalance); LF = LF * ColMatrix; % Unflatten result LF = reshape(LF, [LFSize(1:NDims-1),3]); % Saturating eliminates some issues with clipped pixels, but is aggressive and loses information % todo[optimization]: find a better approach to dealing with saturated pixels SaturationLevel = ColBalance*ColMatrix; SaturationLevel = min(SaturationLevel); LF = min(SaturationLevel,max(0,LF)) ./ SaturationLevel; % Apply gamma LF = LF .^ Gamma;
github
Vincentqyw/light-field-TB-master
LFBuild4DFreqPlane.m
.m
light-field-TB-master/LFToolbox0.4/LFBuild4DFreqPlane.m
4,768
utf_8
44b35c86e926ed95961fbf34e0872ffb
% LFBuild4DFreqPlane - construct a 4D planar passband filter in the frequency domain % % Usage: % % [H, FiltOptions] = LFBuild4DFreqPlane( LFSize, Slope, BW, FiltOptions ) % H = LFBuild4DFreqPlane( LFSize, Slope, BW ) % % This file constructs a real-valued magnitude response in 4D, for which the passband is a plane. % This is useful for selecting objects at a single depth from a lightfield, and is similar in effect % to refocus using, for example, the shift sum filter LFFiltShiftSum. % % Once constructed the filter must be applied to a light field, e.g. using LFFilt4DFFT. The % LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters. % % A more technical discussion, including the use of filters for denoising and volumetric focus, and % the inclusion of aliases components, is included in: % % [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field % Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015. % % Inputs: % % LFSize : Size of the frequency-domain filter. This should match or exceed the size of the % light field to be filtered. If it's larger than the input light field, the input is % zero-padded to match the filter's size by LFFilt4DFFT. % % Slope : The slope of the planar passband. If different slopes are desired in s,t and u,v, % the optional aspect parameter should be used. % % BW : 3-db Bandwidth of the planar passband. % % [optional] FiltOptions : struct controlling filter construction % SlopeMethod : 'Skew' or 'Rotate' default 'skew' % Precision : 'single' or 'double', default 'single' % Rolloff : 'Gaussian' or 'Butter', default 'Gaussian' % Order : controls the order of the filter when Rolloff is 'Butter', default 3 % Aspect4D : aspect ratio of the light field, default [1 1 1 1] % Window : Default false. By default the edges of the passband are sharp; this adds % a smooth rolloff at the edges when used in conjunction with Extent4D or % IncludeAliased. % Extent4D : controls where the edge of the passband occurs, the default [1 1 1 1] % is the edge of the Nyquist box. When less than 1, enabling windowing % introduces a rolloff after the edge of the passband. Can be greater % than 1 when using IncludeAliased. % IncludeAliased : default false; allows the passband to wrap around off the edge of the % Nyquist box; used in conjunction with Window and/or Extent4D. This can % increase processing time dramatically, e.g. Extent4D = [2,2,2,2] % requires a 2^4 = 16-fold increase in time to construct the filter. % Useful when passband content is aliased, see [2]. % % Outputs: % % H : real-valued frequency magnitude response % FiltOptions : The filter options including defaults, with an added PassbandInfo field % detailing the function and time of construction of the filter % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, % LFBuild2DFreqFan, LFBuild2DFreqLine, LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, % LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFBuild4DFreqPlane( LFSize, Slope, BW, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'SlopeMethod', 'Skew'); % 'Skew', 'Rotate' DistFunc = @(P, FiltOptions) DistFunc_4DPlane( P, Slope, FiltOptions ); [H, FiltOptions] = LFHelperBuild4DFreq( LFSize, BW, FiltOptions, DistFunc ); TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); end %----------------------------------------------------------------------------------------------------------------------- function Dist = DistFunc_4DPlane( P, Slope, FiltOptions ) switch( lower(FiltOptions.SlopeMethod) ) case 'skew' R = eye(4); R(1,3) = Slope; R(2,4) = Slope; case 'rotate' Angle = -atan2(Slope,1); R2D = LFRotz( Angle ); R = eye(4); R(1,1) = R2D(1,1); R(1,3) = R2D(1,2); R(3,1) = R2D(2,1); R(3,3) = R2D(2,2); R(2,2) = R2D(1,1); R(2,4) = R2D(1,2); R(4,2) = R2D(2,1); R(4,4) = R2D(2,2); otherwise error('Unrecognized slope method'); end P = R * P; Dist = P(2,:).^2 + P(1,:).^2; end
github
Vincentqyw/light-field-TB-master
LFFindFilesRecursive.m
.m
light-field-TB-master/LFToolbox0.4/LFFindFilesRecursive.m
3,789
utf_8
d7e26a587e0dd5460fb2f59371802d2e
% LFFindFilesRecursive - Recursively searches a folder for files matching one or more patterns % % Usage: % % [AllFiles, BasePath, FolderList, PerFolderFiles] = LFFindFilesRecursive( InputPath ) % % Inputs: % % InputPath: the folder to recursively search % % Outputs: % % Allfiles : A list of all files found % BasePath : Top of the searched tree, excluding wildcards % FolderList : A list of all the folders explored % PerFolderFiles : A list of files organied by folder -- e.g. PerFolderFiles{1} are all the files % found in FolderList{1} % % Examples: % % LFFindFilesRecursive('Images') % LFFindFilesRecursive({'*.lfr','*.lfp'}) % LFFindFilesRecursive({'Images','*.lfr','*.lfp'}) % LFFindFilesRecursive('Images/*.lfr') % LFFindFilesRecursive('*.lfr') % LFFindFilesRecursive('Images/IMG_0001.LFR') % LFFindFilesRecursive('IMG_0001.LFR') % % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [AllFiles, BasePath, FolderList, PerFolderFiles] = LFFindFilesRecursive( InputPath, DefaultFileSpec, DefaultPath ) PerFolderFiles = []; AllFiles = []; %---Defaults--- DefaultFileSpec = LFDefaultVal( 'DefaultFileSpec', {'*'} ); DefaultPath = LFDefaultVal( 'DefaultPath', '.' ); InputPath = LFDefaultVal( 'InputPath', '.' ); PathOnly = ''; if( ~iscell(InputPath) ) InputPath = {InputPath}; end if( ~iscell(DefaultFileSpec) ) DefaultFileSpec = {DefaultFileSpec}; end InputFileSpec = DefaultFileSpec; if( exist(InputPath{1}, 'dir') ) % try interpreting first param as a folder, if it exists, grab is as such PathOnly = InputPath{1}; InputPath(1) = []; end if( numel(InputPath) > 0 ) % interpret remaining elements as filespecs % Check if the filespec includes a folder name, and crack it out as part of the input path [MorePath, Stripped, Ext] = fileparts(InputPath{1}); PathOnly = fullfile(PathOnly, MorePath); InputPath{1} = [Stripped,Ext]; InputFileSpec = InputPath; end PathOnly = LFDefaultVal('PathOnly', DefaultPath); InputPath = PathOnly; % Clean up the inputpath to omit trailing slashes while( InputPath(end) == filesep ) InputPath = InputPath(1:end-1); end BasePath = InputPath; %---Crawl folder structure locating raw lenslet images--- fprintf('Searching for files [ '); fprintf('%s ', InputFileSpec{:}); fprintf('] in %s\n', InputPath); %--- FolderList = genpath(InputPath); if( isempty(FolderList) ) error(['Input path not found... are you running from the correct folder? ' ... 'Current folder: %s'], pwd); end FolderList = textscan(FolderList, '%s', 'Delimiter', pathsep); FolderList = FolderList{1}; %---Compile a list of all files--- PerFolderFiles = cell(length(FolderList),1); for( iFileSpec=1:length(InputFileSpec) ) FilePattern = InputFileSpec{iFileSpec}; for( iFolder = 1:length(FolderList) ) %---Search each subfolder for raw lenslet files--- CurFolder = FolderList{iFolder}; CurDirList = dir(fullfile(CurFolder, FilePattern)); CurDirList = CurDirList(~[CurDirList.isdir]); CurDirList = {CurDirList.name}; PerFolderFiles{iFolder} = [PerFolderFiles{iFolder}, CurDirList]; % Prepend the current folder name for a complete path to each file % but fist strip off the leading InputPath so that all files are expressed relative to InputPath CurFolder = CurFolder(length(InputPath)+1:end); while( ~isempty(CurFolder) && CurFolder(1) == filesep ) CurFolder = CurFolder(2:end); end CurDirList = cellfun(@(Fname) fullfile(CurFolder, Fname), CurDirList, 'UniformOutput',false); AllFiles = [AllFiles; CurDirList']; end end
github
Vincentqyw/light-field-TB-master
LFDispMousePan.m
.m
light-field-TB-master/LFToolbox0.4/LFDispMousePan.m
3,147
utf_8
19664da990653623f36d25770af65dec
% LFDispMousePan - visualize a 4D light field using the mouse to pan through two dimensions % % Usage: % FigureHandle = LFDispMousePan( LF ) % FigureHandle = LFDispMousePan( LF, ScaleFactor ) % % A figure is set up for high-performance display, with the tag 'LFDisplay'. Subsequent calls to % this function and LFDispVidCirc will reuse the same figure, rather than creating a new window on % each call. The window should be closed when changing ScaleFactor. % % Inputs: % % LF : a colour or single-channel light field, and can a floating point or integer format. For % display, it is converted to 8 bits per channel. If LF contains more than three colour % channels, as is the case when a weight channel is present, only the first three are used. % % Optional Inputs: % % ScaleFactor : Adjusts the size of the display -- 1 means no change, 2 means twice as big, etc. % Integer values are recommended to avoid scaling artifacts. Note that the scale % factor is only applied the first time a figure is created. To change the scale % factor, close the figure before calling LFDispMousePan. % % Outputs: % % FigureHandle % % % See also: LFDisp, LFDispVidCirc % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function FigureHandle = LFDispMousePan( LF, varargin ) %---Defaults--- MouseRateDivider = 30; %---Check for weight channel--- HasWeight = (size(LF,5) == 4); %---Discard weight channel--- if( HasWeight ) LF = LF(:,:,:,:,1:3); end %---Rescale for 8-bit display--- if( isfloat(LF) ) LF = uint8(LF ./ max(LF(:)) .* 255); else LF = uint8(LF.*(255 / double(intmax(class(LF))))); end %---Setup the display--- [ImageHandle,FigureHandle] = LFDispSetup( squeeze(LF(max(1,floor(end/2)),max(1,floor(end/2)),:,:,:)), varargin{:} ); BDH = @(varargin) ButtonDownCallback(FigureHandle, varargin); BUH = @(varargin) ButtonUpCallback(FigureHandle, varargin); set(FigureHandle, 'WindowButtonDownFcn', BDH ); set(FigureHandle, 'WindowButtonUpFcn', BUH ); [TSize,SSize, ~,~] = size(LF(:,:,:,:,1)); CurX = max(1,floor((SSize-1)/2+1)); CurY = max(1,floor((TSize-1)/2+1)); DragStart = 0; %---Update frame before first mouse drag--- LFRender = squeeze(LF(round(CurY), round(CurX), :,:,:)); set(ImageHandle,'cdata', LFRender); fprintf('Click and drag to shift perspective\n'); function ButtonDownCallback(FigureHandle,varargin) set(FigureHandle, 'WindowButtonMotionFcn', @ButtonMotionCallback); DragStart = get(gca,'CurrentPoint')'; DragStart = DragStart(1:2,1)'; end function ButtonUpCallback(FigureHandle, varargin) set(FigureHandle, 'WindowButtonMotionFcn', ''); end function ButtonMotionCallback(varargin) CurPoint = get(gca,'CurrentPoint'); CurPoint = CurPoint(1,1:2); RelPoint = CurPoint - DragStart; CurX = max(1,min(SSize, CurX - RelPoint(1)/MouseRateDivider)); CurY = max(1,min(TSize, CurY - RelPoint(2)/MouseRateDivider)); DragStart = CurPoint; LFRender = squeeze(LF(round(CurY), round(CurX), :,:,:)); set(ImageHandle,'cdata', LFRender); end end
github
Vincentqyw/light-field-TB-master
LFReadGantryArray.m
.m
light-field-TB-master/LFToolbox0.4/LFReadGantryArray.m
4,902
utf_8
80dc406ff9c8008ff8aa0877a0fcdb0f
% LFReadGantryArray - load gantry-style light field, e.g. the Stanford light fields at lightfield.stanford.edu % % Usage: % % LF = LFReadGantryArray( InputPath, DecodeOptions ) % % To use, download and unzip an image archive from the Stanford light field archive, and pass this function the path to % the unzipped files. All inputs are optional, by default the light field is loaded from the current directory. % DecodeOptions.UVScale and DecodeOptions.UVLimit allow the input images to be scaled, either by the constant factor % UVScale, or to achieve the maximum u,v image size specified by UVLimit. If both UVScale and UVLimit are specified, the % one resulting in smaller images is applied. % % The defaults are all set to load Stanford Lego Gantry light fields, and must be adjusted for differently sized or % ordered light fields. % % Inputs : % % InputPath : path to folder of image files, e.g. as obtained by decompressing a Stanford light field % % DecodeOptions : % UVScale : constant scaling factor applied to each input image; default: 1 % UVLimit : scale is adjusted to ensure a maximum image dimension of DecodeOptions.UVLimit % Order : 'RowMajor' or 'ColumnMajor', specifies the order in which images appear when sorted % alphabetically; default: 'RowMajor' % STSize : Size of the array of images; default: [17, 17] % FnamePattern : Pattern used to locate input file, using standard wildcards; default '*.png' % % Outputs: % % LF : 5D array containing a 3-channel (RGB) light field, indexed in the order [j,i,l,k, colour] % DecodeOptions : Reflects the parameters as applied, including the UVScale resulting from UVLimit % % % Example 1: % % After unzipping the LegoKnights Stanford light fields into '~/Data/Stanford/LegoKnights/rectified', the following % reads the light field at full resolution, yielding a 17 x 17 x 1024 x 1024 x 3 array, occupying 909 MBytes of RAM: % % LF = LFReadGantryArray('~/Data/Stanford/LegoKnights/rectified'); % % Example 2: % % As above, but scales each image to a maximum dimension of 256 pixels, yielding a 17 x 17 x 256 x 256 x 3 array. % LFDIspMousePan then displays the light field, click and pan around to view the light field. % % LF = LFReadGantryArray('~/Data/Stanford/LegoKnights/rectified', struct('UVLimit', 256)); % LFDispMousePan(LF) % % Example 3: % % A few of the Stanford "Gantry" (not "Lego Gantry") light fields follow a lawnmower pattern. These can be read and % adjusted as follows: % % LF = LFReadGantryArray('humvee-tree', struct('STSize', [16,16])); % LF(1:2:end,:,:,:,:) = LF(1:2:end,end:-1:1,:,:,:); % See also: LFDispMousePan, LFDispVidCirc % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LF, DecodeOptions] = LFReadGantryArray( InputPath, DecodeOptions ) InputPath = LFDefaultVal('InputPath', '.'); DecodeOptions = LFDefaultField('DecodeOptions','UVScale', 1); DecodeOptions = LFDefaultField('DecodeOptions','UVLimit', []); DecodeOptions = LFDefaultField('DecodeOptions','STSize', [17,17]); DecodeOptions = LFDefaultField('DecodeOptions','FnamePattern', '*.png'); DecodeOptions = LFDefaultField('DecodeOptions','Order', 'RowMajor'); %---Gather info--- FList = dir(fullfile(InputPath, DecodeOptions.FnamePattern)); if( isempty(FList) ) error('No files found'); end NumImgs = length(FList); assert( NumImgs == prod(DecodeOptions.STSize), 'Unexpected image count: expected %d x %d = %d found %d', ... DecodeOptions.STSize(1), DecodeOptions.STSize(2), prod(DecodeOptions.STSize), NumImgs ); %---Get size, scaling info from first file, assuming all are same size--- Img = imread(fullfile(InputPath, FList(1).name)); ImgClass = class(Img); UVSizeIn = size(Img); if( ~isempty(DecodeOptions.UVLimit) ) UVMinScale = min(DecodeOptions.UVLimit ./ UVSizeIn(1:2)); DecodeOptions.UVScale = min(DecodeOptions.UVScale, UVMinScale); end Img = imresize(Img, DecodeOptions.UVScale); UVSize = size(Img); TSize = DecodeOptions.STSize(2); SSize = DecodeOptions.STSize(1); VSize = UVSize(1); USize = UVSize(2); %---Allocate mem--- LF = zeros(TSize, SSize, VSize,USize, 3, ImgClass); LF(1,1,:,:,:) = Img; switch( lower(DecodeOptions.Order) ) case 'rowmajor' [SIdx,TIdx] = ndgrid( 1:SSize, 1:TSize ); case 'columnmajor' [TIdx,SIdx] = ndgrid( 1:TSize, 1:SSize ); otherwise error( 'Unrecognized image order' ); end %---Load and scale images--- fprintf('Loading %d images', NumImgs); for(i=2:NumImgs) if( mod(i, ceil(length(FList)/10)) == 0 ) fprintf('.'); end Img = imread(fullfile(InputPath, FList(i).name)); Img = imresize(Img, DecodeOptions.UVScale); LF(TIdx(i),SIdx(i),:,:,:) = Img; end fprintf(' done\n');
github
Vincentqyw/light-field-TB-master
LFRecenterIntrinsics.m
.m
light-field-TB-master/LFToolbox0.4/LFRecenterIntrinsics.m
599
utf_8
95e4073ad162508fcaf1705124873fc5
% LFRecenterIntrinsics - Recenter a light field intrinsic matrix % % Usage: % H = LFRecenterIntrinsics( H, LFSize ) % % The recentering works by forcing the central sample in a light field of LFSize samples to % correspond to the ray [s,t,u,v] = 0. Note that 1-based indexing is assumed in [i,j,k,l]. % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function H = LFRecenterIntrinsics( H, LFSize ) CenterRay = [(LFSize([2,1,4,3])-1)/2 + 1, 1]'; % note indices start at 1 H(1:4,5) = 0; Decentering = H * CenterRay; H(1:4,5) = -Decentering(1:4); end
github
Vincentqyw/light-field-TB-master
LFCalDispRectIntrinsics.m
.m
light-field-TB-master/LFToolbox0.4/LFCalDispRectIntrinsics.m
3,804
utf_8
9881daba2d9060eef02a39e1c9ac81dd
% LFCalDispRectIntrinsics - Visualize sampling pattern resulting from a prescribed intrinsic matrix % % Usage: % RectOptions = LFCalDispRectIntrinsics( LF, LFMetadata, RectOptions, PaintColour ) % % During rectification, the matrix RectOptions.RectCamIntrinsicsH determines which subset of the light field gets % sampled into the rectified light field. LFCalDispRectIntrinsics visualizes the resulting sampling pattern. The % display is interactive, generated using LFDispMousePan, and can be explored by clicking and dragging the mouse. % % If no intrinsic matrix is provided, a default best-guess is constructed and returned in % RectOptions.RectCamIntrinsicsH. % % A typical usage pattern is to load a light field, call LFCalDispRectIntrinsics to set up the default intrinsic % matrix, manipulate the matrix, then visualize the manipulated sampling pattern prior to employing it in one or more % rectification calls. The function LFRecenterIntrinsics is useful in maintaining a centered sampling pattern. % % This function relies on the presence of a calibration file and associated database, see LFUtilCalLensletCam and % LFUtilDecodeLytroFolder. % % Inputs: % % LF : Light field to visualize % % LFMetadata : The light field's associated metadata - needed to locate the appropriate calibration file % % [optional] RectOptions : all fields are optional, see LFCalRectifyLF for all fields % .RectCamIntrinsicsH : The intrinsic matrix to visualize % % [optional] PaintColour : RGB triplet defining a base drawing colour, RGB values are in the range 0-1 % % Outputs: % % RectOptions : RectOptions updated with any defaults that were applied % LF : The light field with visualized sample pattern % % See also: LFCalRectifyLF, LFRecenterIntrinsics, LFUtilCalLensletCam, LFUtilDecodeLytroFolder % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [RectOptions, LF] = LFCalDispRectIntrinsics( LF, LFMetadata, RectOptions, PaintColour ) PaintColour = LFDefaultVal( 'PaintColour', [0.5,1,1] ); [CalInfo, RectOptions] = LFFindCalInfo( LFMetadata, RectOptions ); %---Discard weight channel--- HasWeight = (size(LF,5) == 4); if( HasWeight ) LF = LF(:,:,:,:,1:3); end LFSize = size(LF); RectOptions = LFDefaultField( 'RectOptions', 'Precision', 'single' ); RectOptions = LFDefaultField( 'RectOptions', 'NInverse_Distortion_Iters', 2 ); RectOptions = LFDefaultField( 'RectOptions', 'RectCamIntrinsicsH', LFDefaultIntrinsics( LFSize, CalInfo ) ); if( isempty( CalInfo ) ) warning('No suitable calibration found, skipping'); return; end %--- visualize image utilization--- t_in=cast(1:LFSize(1), 'uint16'); s_in=cast(1:LFSize(2), 'uint16'); v_in=cast(1:10:LFSize(3), 'uint16'); u_in=cast(1:10:LFSize(4), 'uint16'); [tt,ss,vv,uu] = ndgrid(t_in,s_in,v_in,u_in); InterpIdx = [ss(:)'; tt(:)'; uu(:)'; vv(:)'; ones(size(ss(:)'))]; InterpIdx = LFMapRectifiedToMeasured( InterpIdx, CalInfo, RectOptions ); InterpIdx = round(double(InterpIdx)); PaintVal = cast(double(max(LF(:))).*PaintColour, 'like', LF); LF = 0.7*LF; %---Clamp indices--- STUVChan = [2,1,4,3]; for( Chan=1:4 ) InterpIdx(Chan,:) = min(LFSize(STUVChan(Chan)), max(1,InterpIdx(Chan,:))); end %---Paint onto LF--- RInterpIdx = sub2ind( LFSize, InterpIdx(2,:), InterpIdx(1,:), InterpIdx(4,:), InterpIdx(3,:), 1*ones(size(InterpIdx(1,:)))); LF(RInterpIdx) = PaintVal(1); RInterpIdx = sub2ind( LFSize, InterpIdx(2,:), InterpIdx(1,:), InterpIdx(4,:), InterpIdx(3,:), 2*ones(size(InterpIdx(1,:)))); LF(RInterpIdx) = PaintVal(2); RInterpIdx = sub2ind( LFSize, InterpIdx(2,:), InterpIdx(1,:), InterpIdx(4,:), InterpIdx(3,:), 3*ones(size(InterpIdx(1,:)))); LF(RInterpIdx) = PaintVal(3); %---Display LF--- LFDispMousePan( LF );
github
Vincentqyw/light-field-TB-master
LFFiltShiftSum.m
.m
light-field-TB-master/LFToolbox0.4/LFFiltShiftSum.m
5,666
utf_8
08be7f6f27c502a03f85f49912ae8183
% LFFiltShiftSum - a spatial-domain depth-selective filter, with an effect similar to planar focus % % Usage: % % [ImgOut, FiltOptions, LF] = LFFiltShiftSum( LF, Slope, FiltOptions ) % ImgOut = LFFiltShiftSum( LF, Slope ) % % % This filter works by shifting all u,v slices of the light field to a common depth, then adding the slices together to % yield a single 2D output. The effect is very similar to planar focus, and by controlling the amount of shift one may % focus on different depths. If a weight channel is present in the light field it gets used during normalization. % % % See LFDemoBasicFiltLytro for example usage. % % % Inputs % % LF : The light field to be filtered % % Slope : The amount by which light field slices should be shifted, this encodes the depth at which the output will % be focused. The relationship between slope and depth depends on light field parameterization, but in % general a slope of 0 lies near the center of the captured depth of field. % % [optional] FiltOptions : struct controlling filter operation % Precision : 'single' or 'double', default 'single' % Aspect4D : aspect ratio of the light field, default [1 1 1 1] % Normalize : default true; when enabled the output is normalized so that darkening near image edges is % removed % FlattenMethod : 'Sum', 'Max' or 'Median', default 'Sum'; when the shifted light field slices are combined, % they are by default added together, but median and max can also yield useful results. % InterpMethod : default 'linear'; this is passed on to interpn to determine how shifted light field slices % are found; other useful settings are 'nearest', 'cubic' and 'spline' % ExtrapVal : default 0; when shifting light field slices, pixels falling outside the input light field % are set to this value % MinWeight : during normalization, pixels for which the output value is not well defined (i.e. for % which the filtered weight is very low) get set to 0. MinWeight sets the threshold at which % this occurs, default is 10 * the numerical precision of the output, as returned by eps % % Outputs: % % ImgOut : A 2D filtered image % FiltOptions : The filter options including defaults, with an added FilterInfo field detailing the function and % time of filtering. % LF : The 4D light field resulting from the shifting operation % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine, % LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, % LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [ImgOut, FiltOptions, LF] = LFFiltShiftSum( LF, Slope, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single'); FiltOptions = LFDefaultField('FiltOptions', 'Normalize', true); FiltOptions = LFDefaultField('FiltOptions', 'MinWeight', 10*eps(FiltOptions.Precision)); FiltOptions = LFDefaultField('FiltOptions', 'Aspect4D', 1); FiltOptions = LFDefaultField('FiltOptions', 'FlattenMethod', 'sum'); % 'Sum', 'Max', 'Median' FiltOptions = LFDefaultField('FiltOptions', 'InterpMethod', 'linear'); FiltOptions = LFDefaultField('FiltOptions', 'ExtrapVal', 0); if( length(FiltOptions.Aspect4D) == 1 ) FiltOptions.Aspect4D = FiltOptions.Aspect4D .* [1,1,1,1]; end LFSize = size(LF); NColChans = size(LF,5); HasWeight = ( NColChans == 4 || NColChans == 2 ); if( HasWeight ) NColChans = NColChans-1; end LF = LFConvertToFloat(LF, FiltOptions.Precision); %--- if( FiltOptions.Normalize ) if( HasWeight ) for( iColChan = 1:NColChans ) LF(:,:,:,:,iColChan) = LF(:,:,:,:,iColChan) .* LF(:,:,:,:,end); end else % add a weight channel LF(:,:,:,:,end+1) = ones(size(LF(:,:,:,:,1)), FiltOptions.Precision); end end %--- TVSlope = Slope * FiltOptions.Aspect4D(3) / FiltOptions.Aspect4D(1); SUSlope = Slope * FiltOptions.Aspect4D(4) / FiltOptions.Aspect4D(2); [vv, uu] = ndgrid(1:LFSize(3), 1:LFSize(4)); VVec = linspace(-0.5,0.5, LFSize(1)) * TVSlope*LFSize(1); UVec = linspace(-0.5,0.5, LFSize(2)) * SUSlope*LFSize(2); for( TIdx = 1:LFSize(1) ) VOffset = VVec(TIdx); for( SIdx = 1:LFSize(2) ) UOffset = UVec(SIdx); for( iChan=1:size(LF,5) ) CurSlice = squeeze(LF(TIdx, SIdx, :,:, iChan)); CurSlice = interpn(CurSlice, vv+VOffset, uu+UOffset, FiltOptions.InterpMethod, FiltOptions.ExtrapVal); LF(TIdx,SIdx, :,:, iChan) = CurSlice; end end fprintf('.'); end switch( lower(FiltOptions.FlattenMethod) ) case 'sum' ImgOut = squeeze(sum(sum(LF,1),2)); case 'max' ImgOut = squeeze(max(max(LF,[],1),[],2)); case 'median' t = reshape(LF, [prod(LFSize(1:2)), LFSize(3:end)]); ImgOut = squeeze(median(t)); otherwise error('Unrecognized method'); end %--- if( FiltOptions.Normalize ) WeightChan = ImgOut(:,:,end); InvalidIdx = find(WeightChan < FiltOptions.MinWeight); ChanSize = numel(ImgOut(:,:,1)); for( iColChan = 1:NColChans ) ImgOut(:,:,iColChan) = ImgOut(:,:,iColChan) ./ WeightChan; ImgOut( InvalidIdx + ChanSize.*(iColChan-1) ) = 0; end end TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.FilterInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion);
github
Vincentqyw/light-field-TB-master
LFUtilUnpackLytroArchive.m
.m
light-field-TB-master/LFToolbox0.4/LFUtilUnpackLytroArchive.m
5,667
utf_8
0af0d42eaef631b6f44fbfc81dd81b3e
% LFUtilUnpackLytroArchive - extract white images and other files from a multi-volume Lytro archive % % Usage: % LFUtilUnpackLytroArchive % LFUtilUnpackLytroArchive( InputPath ) % LFUtilUnpackLytroArchive( InputPath, FirstVolumeFname ) % LFUtilUnpackLytroArchive( [], FirstVolumeFname ) % % This extracts all the files from all Lytro archives found in the requested path. Archives typically take on names like % data.C.0, data.C.1 and so forth, and contain white images, metadata and other information. % % The function searches for archives recursively, so if there are archives in multiple sub-folders, they will all be % expanded. The file LFToolbox.json is created to mark completion of the extraction in a folder. Already-expanded % archives are skipped; delete LFToolbox.json to force re-extraction in a folder. % % Based in part on Nirav Patel and Doug Kelley's LFP readers. Thanks to Michael Tao for help and samples for decoding % Illum imagery. % % Inputs -- all are optional : % % InputPath : Path to folder containing the archive, default 'Cameras' % FirstVolumeFname : Name of the first file in the archive, default 'data.C.0' % % Example: % % LFUtilUnpackLytroArchive % % Will extract the contents of all archives in all subfolders of the current folder. If you are working with % multiple cameras, place each multi-volume archve in its own sub-folder, then call this from the top-level folder % to expand them all. % % See also: LFUtilProcessWhiteImages, LFReadLFP, LFUtilExtractLFPThumbs % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFUtilUnpackLytroArchive( InputPath, FirstVolumeFname ) %---Defaults--- InputPath = LFDefaultVal('InputPath','Cameras'); FirstVolumeFname = LFDefaultVal('FirstVolumeFname','data.C.0'); [AllVolumes, BasePath] = LFFindFilesRecursive(InputPath, FirstVolumeFname); fprintf('Found :\n'); disp(AllVolumes) %---Consts--- LFPConsts.LFPHeader = hex2dec({'89', '4C', '46', '50', '0D', '0A', '1A', '0A', '00', '00', '00', '01'}); % 12-byte LFPSections header LFPConsts.SectHeaderLFM = hex2dec({'89', '4C', '46', '4D', '0D', '0A', '1A', '0A'})'; % header for table of contents LFPConsts.SectHeaderLFC = hex2dec({'89', '4C', '46', '43', '0D', '0A', '1A', '0A'})'; % header for content section LFPConsts.SecHeaderPaddingLen = 4; LFPConsts.Sha1Length = 45; LFPConsts.ShaPaddingLen = 35; % Sha1 codes are followed by 35 null bytes LFToolboxInfoFname = 'LFToolbox.json'; %--- for( VolumeIdx = 1:length(AllVolumes) ) CurFile = fullfile(BasePath, AllVolumes{VolumeIdx}); OutPath = fileparts(CurFile); fprintf('Extracting files in "%s"...\n', OutPath); CurInfoFname = fullfile( OutPath, LFToolboxInfoFname ); if( exist(CurInfoFname, 'file') ) fprintf('Already done, skipping (delete "%s" to force redo)\n\n', CurInfoFname); continue; end while( 1 ) fprintf(' %s...\n', CurFile); InFile=fopen(CurFile, 'rb'); %---Check for the magic header--- HeaderBytes = fread( InFile, length(LFPConsts.LFPHeader), 'uchar' ); if( ~all( HeaderBytes == LFPConsts.LFPHeader ) ) fclose(InFile); fprintf( 'Unrecognized file type' ); return end %---Confirm headerlength bytes--- HeaderLength = fread(InFile,1,'uint32','ieee-be'); assert( HeaderLength == 0, 'Unexpected length at top-level header' ); %---Read each section--- % This implementation assumes the TOC appears first in each file clear TOC while( ~feof(InFile) ) CurSection = ReadSection( InFile, LFPConsts ); if( all( CurSection.SectHeader == LFPConsts.SectHeaderLFM ) ) TOC = LFReadMetadata( CurSection.Data ); else assert( exist('TOC','var')==1, 'Expected to find table of contents at top of file' ); MatchingSectIdx = find( strcmp( CurSection.Sha1, {TOC.files.dataRef} ) ); CurFname = TOC.files(MatchingSectIdx).name; CurFname = strrep( CurFname, 'C:\', '' ); CurFname = strrep( CurFname, '\', '__' ); OutFile = fopen( fullfile(OutPath, CurFname), 'wb' ); fwrite( OutFile, CurSection.Data ); fclose(OutFile); end end fclose( InFile ); if( isfield(TOC, 'nextFile') ) CurFile = fullfile(OutPath, TOC.nextFile); else break; end end TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); fprintf( 'Marking completion in "%s"\n\n', CurInfoFname ); LFWriteMetadata( CurInfoFname, GeneratedByInfo ); end fprintf('Done\n'); end % -------------------------------------------------------------------- function LFPSect = ReadSection( InFile, LFPConsts ) LFPSect.SectHeader = fread(InFile, length(LFPConsts.SectHeaderLFM), 'uchar')'; Padding = fread(InFile, LFPConsts.SecHeaderPaddingLen, 'uint8'); % skip padding SectLength = fread(InFile, 1, 'uint32', 'ieee-be'); LFPSect.Sha1 = char(fread(InFile, LFPConsts.Sha1Length, 'uchar')'); Padding = fread(InFile, LFPConsts.ShaPaddingLen, 'uint8'); % skip padding LFPSect.Data = char(fread(InFile, SectLength, 'uchar'))'; while( 1 ) Padding = fread(InFile, 1, 'uchar'); if( feof(InFile) || (Padding ~= 0) ) break; end end if ~feof(InFile) fseek( InFile, -1, 'cof'); % rewind one byte end end
github
Vincentqyw/light-field-TB-master
LFReadMetadata.m
.m
light-field-TB-master/LFToolbox0.4/LFReadMetadata.m
14,953
utf_8
98e987806e2f748e70644b1801d2bf95
% LFReadMetadata - reads the metadata files in the JSON file format, from a file or a char buffer % % Usage: % % Data = LFReadMetadata( JsonFileFname ) % % This function parses a JSON file and returns the data contained therein. If a char buffer is passed in, it's % interpreted directly. % % Based on code from JSONlab by Qianqian Fang, % http://www.mathworks.com.au/matlabcentral/fileexchange/33381-jsonlab-a-toolbox-to-encodedecode-json-files-in-matlaboctave % % Minor modifications by Donald G. Dansereau, 2013, to simplify the interface as appropriate for use % in the Light Field Toolbox, and to tolerate the sha keys appearing at the end of some Lytro JSON % files % % See also: LFWriteMetadata % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function data = LFReadMetadata( JsonFileFname ) global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(JsonFileFname,'[\{\}\]\[]','once')) string=JsonFileFname; elseif(exist(JsonFileFname,'file')) fid = fopen(JsonFileFname,'rt'); string = fscanf(fid,'%c'); fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt = []; % opt=varargin2struct(varargin{:}); jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise pos = len+1; continue; % error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); else ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; if next_char ~= ']' [endpos e1l e1r maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(find(arraystr==sprintf('\n')))=[]; arraystr(find(arraystr==sprintf('\r')))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(find(astr==sprintf('\n')))=[]; astr(find(astr==sprintf('\r')))=[]; astr(find(astr==' '))=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(find(astr==' '))=''; [obj count errmsg nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(find(astr=='['))=''; astr(find(astr==']'))=''; astr(find(astr==' '))=''; [obj count errmsg nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end try object=cell2mat(object')'; if(size(object,1)>1 && ndims(object)==2) object=object'; end catch end parse_char(']'); %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
Vincentqyw/light-field-TB-master
LFUtilDecodeLytroFolder.m
.m
light-field-TB-master/LFToolbox0.4/LFUtilDecodeLytroFolder.m
16,946
utf_8
6867204a9b31f8807a667ab1fe4fa420
% LFUtilDecodeLytroFolder - decode and optionally colour correct and rectify Lytro light fields % % Usage: % % LFUtilDecodeLytroFolder % LFUtilDecodeLytroFolder( InputPath ) % LFUtilDecodeLytroFolder( InputPath, FileOptions, DecodeOptions, RectOptions ) % LFUtilDecodeLytroFolder( InputPath, [], [], RectOptions ) % % All parameters are optional and take on default values as set in the "Defaults" section at the top % of the implementation. As such, this can be called as a function or run directly by editing the % code. When calling as a function, pass an empty array "[]" to omit a parameter. % % As released, the default values are set up to match the naming conventions of LFP Reader v2.0.0. % % This function demonstrates decoding and optionally colour-correction and rectification of 2D % lenslet images into 4D light fields. It recursively crawls through a prescribed folder and its % subfolders, operating on each light field. It can be used incrementally: previously-decoded light % fields can be subsequently colour-corected, rectified, or both. Previously-completed tasks will % not be re-applied. A filename pattern can be provided to work on individual files. All paths and % naming are configurable. % % Decoding and rectification follow the process described in: % % [1] D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for % lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE % Conference on. IEEE, Jun 2013. % % Decoding requires that an appropriate database of white images be created using % LFUtilProcessWhiteImages. Rectification similarly requires a calibration database be created using % LFUtilProcessCalibrations. % % To decode a single light field, it is simplest to include a file specification in InputPath (see % below). It is also possible to call LFLytroDecodeImage directly. % % Colour correction employs the metadata associated with each Lytro picture. It also applies % histogram-based contrast adjustment. It calls the functions LFColourCorrect and LFHistEqualize. % % Rectification employs a calibration info file to rectify the light field, correcting for lens % distortion, making pixels square, and yielding an intrinsics matrix which allows easy conversion % from a pixel index [i,j,k,l] to a ray [s,t,u,v]. A calibration info file is generated by % processing a series of checkeboard images, following the calibration procedure described in % LFToolbox.pdf. A calibration only applies to one specific camera at one specific zoom and focus % setting, and decoded using one specific lenslet grid model. The tool LFUtilProcessCalibrations is % used to build a database of rectifications, and LFSelectFromDatabase isused to select a % calibration appropriate to a given light field. % % This function was written to deal with Lytro imagery, but adapting it to operate with other % lenslet-based cameras should be straightforward. For more information on the decoding process, % refer to LFDecodeLensletImageSimple, [1], and LFToolbox.pdf. % % Some optional parameters are not used or documented at this level -- see each of LFCalRectifyLF, % LFLytroDecodeImage, LFDecodeLensletImageSimple, and LFColourCorrect for further information. % % % Inputs -- all are optional, see code below for default values : % % InputPath : Path to folder containing light fields, or to a specific light field, optionally including one or % more wildcard filename specifications. In case wildcards are used, this searches sub-folders recursively. See % LFFindFilesRecursive.m for more information and examples of how InputPath is interpreted. % % FileOptions : struct controlling file naming and saving % .SaveResult : Set to false to perform a "dry run" % .ForceRedo : If true previous results are ignored and decoding starts from scratch % .SaveFnamePattern : String defining the pattern used in generating the output filename; % sprintf is used to complete this pattern, such that %s gets replaced % with the base name of the input light field % .ThumbFnamePattern : As with SaveFnamePattern, defines the name of the output thumbnail % image % % DecodeOptions : struct controlling the decoding process, see LFDecodeLensletImageSimple for more info % .OptionalTasks : Cell array containing any combination of 'ColourCorrect' and % 'Rectify'; an empty array "{}" means no additional tasks are % requested; case sensitive % .LensletImageFnamePattern : Pattern used to locate input files -- the pattern %s stands in % for the base filename % .ColourHistThresh : Threshold used by LFHistEqualize in optional colour correction % .WhiteImageDatabasePath : Full path to the white images database, as created by % LFUtilProcessWhiteImages % .DoDehex : Controls whether hexagonal sampling is converted to rectangular, default true % .DoSquareST : Controls whether s,t dimensions are resampled to square pixels, default true % .ResampMethod : 'fast'(default) or 'triangulation' % .LevelLimits : a two-element vector defining the black and white levels % .Precision : 'single'(default) or 'double' % % RectOptions : struct controlling the optional rectification process % .CalibrationDatabaseFname : Full path to the calibration file database, as created by % LFUtilProcessCalibrations; % % Example: % % LFUtilDecodeLytroFolder % % Run from the top level of the 'Samples' folder will decode all the light fields in all the % sub-folders, with default settings as set up in the opening section of the code. The % calibration database created by LFUtilProcessWhiteImages is expected to be in % 'Cameras/CaliCalibrationDatabase.mat' by default. % % LFUtilDecodeLytroFolder('Images', [], struct('OptionalTasks', 'ColourCorrect')) % % Run from the top level of the 'Samples' folder will decode and colour correct all light fields in the Images % folder and its sub-folders. % % DecodeOptions.OptionalTasks = {'ColourCorrect', 'Rectify'}; % LFUtilDecodeLytroFolder([], [], DecodeOptions) % % Will perform both colour correction and rectification in the Images folder. % % LFUtilDecodeLytroFolder('Images/Illum/Lorikeet.lfp') % LFUtilDecodeLytroFolder('Lorikeet.lfp') % LFUtilDecodeLytroFolder({'Images', '*Hiding*', 'Jacaranda*'}) % LFUtilDecodeLytroFolder('*.raw') % LFUtilDecodeLytroFolder({'*0002*', '*0003*'}) % % Any of these, run from the top level of the 'Samples' folder, will decode the matching files. See % LFFindFilesRecursive. % % See also: LFUtilExtractLFPThumbs, LFUtilProcessWhiteImages, LFUtilProcessCalibrations, LFUtilCalLensletCam, % LFColourCorrect, LFHistEqualize, LFFindFilesRecursive, LFLytroDecodeImage, LFDecodeLensletImageSimple, % LFSelectFromDatabase % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFUtilDecodeLytroFolder( InputPath, FileOptions, DecodeOptions, RectOptions ) %---Defaults--- InputPath = LFDefaultVal( 'InputPath', 'Images' ); FileOptions = LFDefaultField('FileOptions', 'SaveResult', true); FileOptions = LFDefaultField('FileOptions', 'ForceRedo', false); FileOptions = LFDefaultField('FileOptions', 'SaveFnamePattern', '%s__Decoded.mat'); FileOptions = LFDefaultField('FileOptions', 'ThumbFnamePattern', '%s__Decoded_Thumb.png'); DecodeOptions = LFDefaultField('DecodeOptions', 'OptionalTasks', {}); % 'ColourCorrect', 'Rectify' DecodeOptions = LFDefaultField('DecodeOptions', 'ColourHistThresh', 0.01); DecodeOptions = LFDefaultField(... 'DecodeOptions', 'WhiteImageDatabasePath', fullfile('Cameras','WhiteImageDatabase.mat')); RectOptions = LFDefaultField(... 'RectOptions', 'CalibrationDatabaseFname', fullfile('Cameras','CalibrationDatabase.mat')); % Used to decide if two lenslet grid models are "close enough"... if they're not a warning is raised RectOptions = LFDefaultField( 'RectOptions', 'MaxGridModelDiff', 1e-5 ); % Massage a single-element OptionalTasks list to behave as a cell array while( ~iscell(DecodeOptions.OptionalTasks) ) DecodeOptions.OptionalTasks = {DecodeOptions.OptionalTasks}; end %---Crawl folder structure locating raw lenslet images--- DefaultFileSpec = {'*.lfr', '*.lfp', '*.LFR', '*.raw'}; % gets overriden below, if a file spec is provided DefaultPath = 'Images'; [FileList, BasePath] = LFFindFilesRecursive( InputPath, DefaultFileSpec, DefaultPath ); fprintf('Found :\n'); disp(FileList) %---Process each raw lenslet file--- % Store options so we can reset them for each file OrigDecodeOptions = DecodeOptions; OrigRectOptions = RectOptions; for( iFile = 1:length(FileList) ) SaveRequired = false; %---Start from orig options, avoids values bleeding between iterations--- DecodeOptions = OrigDecodeOptions; RectOptions = OrigRectOptions; %---Find current / base filename--- CurFname = FileList{iFile}; CurFname = fullfile(BasePath, CurFname); % Build filename base without extension, auto-remove '__frame' for legacy .raw format LFFnameBase = CurFname; [~,~,Extension] = fileparts(LFFnameBase); LFFnameBase = LFFnameBase(1:end-length(Extension)); CullIdx = strfind(LFFnameBase, '__frame'); if( ~isempty(CullIdx) ) LFFnameBase = LFFnameBase(1:CullIdx-1); end fprintf('\n---%s [%d / %d]...\n', CurFname, iFile, length(FileList)); %---Decode--- fprintf('Decoding...\n'); % First check if a decoded file already exists [SDecoded, FileExists, CompletedTasks, TasksRemaining, SaveFname] = CheckIfExists( ... LFFnameBase, DecodeOptions, FileOptions.SaveFnamePattern, FileOptions.ForceRedo ); if( ~FileExists ) % No previous result, decode [LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = ... LFLytroDecodeImage( CurFname, DecodeOptions ); if( isempty(LF) ) continue; end fprintf('Decode complete\n'); SaveRequired = true; elseif( isempty(TasksRemaining) ) % File exists, and nothing more to do continue; else % File exists and tasks remain: unpack previous decoding results [LF, LFMetadata, WhiteImageMetadata, LensletGridModel, DecodeOptions] = LFStruct2Var( ... SDecoded, 'LF', 'LFMetadata', 'WhiteImageMetadata', 'LensletGridModel', 'DecodeOptions' ); clear SDecoded end %---Display thumbnail--- Thumb = DispThumb(LF, CurFname, CompletedTasks); %---Optionally colour correct--- if( ismember( 'ColourCorrect', TasksRemaining ) ) LF = ColourCorrect( LF, LFMetadata, DecodeOptions ); CompletedTasks = [CompletedTasks, 'ColourCorrect']; SaveRequired = true; fprintf('Done\n'); %---Display thumbnail--- Thumb = DispThumb(LF, CurFname, CompletedTasks); end %---Optionally rectify--- if( ismember( 'Rectify', TasksRemaining ) ) [LF, RectOptions, Success] = Rectify( LF, LFMetadata, DecodeOptions, RectOptions, LensletGridModel ); if( Success ) CompletedTasks = [CompletedTasks, 'Rectify']; SaveRequired = true; end %---Display thumbnail--- Thumb = DispThumb(LF, CurFname, CompletedTasks); end %---Check that all tasks are completed--- UncompletedTaskIdx = find(~ismember(TasksRemaining, CompletedTasks)); if( ~isempty(UncompletedTaskIdx) ) UncompletedTasks = []; for( i=UncompletedTaskIdx ) UncompletedTasks = [UncompletedTasks, ' ', TasksRemaining{UncompletedTaskIdx}]; end warning(['Could not complete all tasks requested in DecodeOptions.OptionalTasks: ', UncompletedTasks]); end DecodeOptions.OptionalTasks = CompletedTasks; %---Optionally save--- if( SaveRequired && FileOptions.SaveResult ) if( isfloat(LF) ) LF = uint16( LF .* double(intmax('uint16')) ); end ThumbFname = sprintf(FileOptions.ThumbFnamePattern, LFFnameBase); fprintf('Saving to:\n\t%s,\n\t%s...\n', SaveFname, ThumbFname); TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); save('-v7.3', SaveFname, 'GeneratedByInfo', 'LF', 'LFMetadata', 'WhiteImageMetadata', 'LensletGridModel', 'DecodeOptions', 'RectOptions'); imwrite(Thumb, ThumbFname); end end end %--------------------------------------------------------------------------------------------------- function [SDecoded, FileExists, CompletedTasks, TasksRemaining, SaveFname] = ... CheckIfExists( LFFnameBase, DecodeOptions, SaveFnamePattern, ForceRedo ) SDecoded = []; FileExists = false; SaveFname = sprintf(SaveFnamePattern, LFFnameBase); if( ~ForceRedo && exist(SaveFname, 'file') ) %---Task previously completed, check if there's more to do--- FileExists = true; fprintf( ' %s already exists\n', SaveFname ); PrevDecodeOptions = load( SaveFname, 'DecodeOptions' ); PrevOptionalTasks = PrevDecodeOptions.DecodeOptions.OptionalTasks; CompletedTasks = PrevOptionalTasks; TasksRemaining = find(~ismember(DecodeOptions.OptionalTasks, PrevOptionalTasks)); if( ~isempty(TasksRemaining) ) %---Additional tasks remain--- TasksRemaining = {DecodeOptions.OptionalTasks{TasksRemaining}}; % by name fprintf(' Additional tasks remain, loading existing file...\n'); SDecoded = load( SaveFname ); AllTasks = [SDecoded.DecodeOptions.OptionalTasks, TasksRemaining]; SDecoded.DecodeOptions.OptionalTasks = AllTasks; %---Convert to float as this is what subsequent operations require--- OrigClass = class(SDecoded.LF); SDecoded.LF = cast( SDecoded.LF, SDecoded.DecodeOptions.Precision ) ./ ... cast( intmax(OrigClass), SDecoded.DecodeOptions.Precision ); fprintf('Done\n'); else %---No further tasks... move on--- fprintf( ' No further tasks requested\n'); TasksRemaining = {}; end else %---File doesn't exist, all tasks remain--- TasksRemaining = DecodeOptions.OptionalTasks; CompletedTasks = {}; end end %--------------------------------------------------------------------------------------------------- function Thumb = DispThumb( LF, CurFname, CompletedTasks) Thumb = squeeze(LF(floor(end/2),floor(end/2),:,:,:)); % including weight channel for hist equalize Thumb = uint8(LFHistEqualize(Thumb).*double(intmax('uint8'))); Thumb = Thumb(:,:,1:3); % strip off weight channel LFDispSetup(Thumb); Title = CurFname; for( i=1:length(CompletedTasks) ) Title = [Title, ', ', CompletedTasks{i}]; end title(Title, 'Interpreter', 'none'); drawnow end %--------------------------------------------------------------------------------------------------- function LF = ColourCorrect( LF, LFMetadata, DecodeOptions ) fprintf('Applying colour correction... '); %---Weight channel is not used by colour correction, so strip it out--- LFWeight = LF(:,:,:,:,4); LF = LF(:,:,:,:,1:3); %---Apply the color conversion and saturate--- LF = LFColourCorrect( LF, DecodeOptions.ColourMatrix, DecodeOptions.ColourBalance, DecodeOptions.Gamma ); %---Put the weight channel back--- LF(:,:,:,:,4) = LFWeight; end %--------------------------------------------------------------------------------------------------- function [LF, RectOptions, Success] = Rectify( LF, LFMetadata, DecodeOptions, RectOptions, LensletGridModel ) Success = false; fprintf('Applying rectification... '); %---Load cal info--- fprintf('Selecting calibration...\n'); [CalInfo, RectOptions] = LFFindCalInfo( LFMetadata, RectOptions ); if( isempty( CalInfo ) ) warning('No suitable calibration found, skipping'); return; end %---Compare structs a = CalInfo.LensletGridModel; b = LensletGridModel; a.Orientation = strcmp(a.Orientation, 'horz'); b.Orientation = strcmp(b.Orientation, 'horz'); FractionalDiff = abs( (struct2array(a) - struct2array(b)) ./ struct2array(a) ); if( ~all( FractionalDiff < RectOptions.MaxGridModelDiff ) ) warning(['Lenslet grid models differ -- ideally the same grid model and white image are ' ... ' used to decode during calibration and rectification']); end %---Perform rectification--- [LF, RectOptions] = LFCalRectifyLF( LF, CalInfo, RectOptions ); Success = true; end
github
Vincentqyw/light-field-TB-master
LFFilt4DFFT.m
.m
light-field-TB-master/LFToolbox0.4/LFFilt4DFFT.m
3,622
utf_8
bb1d9662c072ab5fb38568d45f44bd28
% LFFilt4DFFT -Applies a 4D frequency-domain filter using the FFT % % Usage: % % [LF, FiltOptions] = LFFilt4DFFT( LF, H, FiltOptions ) % LF = LFFilt4DFFT( LF, H ) % % % This filter works by taking the FFT of the input light field, multiplying by the provided magnitude response H, then % calling the inverse FFT. The frequency-domain filter H should match or exceed the size of the light field LF. If H is % larger than the input light field, LF is zero-padded to match the filter's size. If a weight channel is present in % the light field it gets used during normalization. % % See LFDemoBasicFiltLytro for example usage. % % % Inputs % % LF : The light field to be filtered % % H : The frequency-domain filter to apply, as constructed by one of the LFBuild4DFreq* functions % % [optional] FiltOptions : struct controlling filter operation % Precision : 'single' or 'double', default 'single' % Normalize : default true; when enabled the output is normalized so that darkening near image edges is % removed % MinWeight : during normalization, pixels for which the output value is not well defined (i.e. for % which the filtered weight is very low) get set to 0. MinWeight sets the threshold at which % this occurs, default is 10 * the numerical precision of the output, as returned by eps % % Outputs: % % LF : The filtered 4D light field % FiltOptions : The filter options including defaults, with an added FilterInfo field detailing the function and % time of filtering. % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine, % LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, % LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LF, FiltOptions] = LFFilt4DFFT( LF, H, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single'); FiltOptions = LFDefaultField('FiltOptions', 'Normalize', true); FiltOptions = LFDefaultField('FiltOptions', 'MinWeight', 10*eps(FiltOptions.Precision)); %--- NColChans = size(LF,5); HasWeight = ( NColChans == 4 || NColChans == 2 ); HasColour = ( NColChans == 4 || NColChans == 3 ); if( HasWeight ) NColChans = NColChans-1; end %--- LFSize = size(LF); LFPaddedSize = size(H); LF = LFConvertToFloat(LF, FiltOptions.Precision); if( FiltOptions.Normalize ) if( HasWeight ) for( iColChan = 1:NColChans ) LF(:,:,:,:,iColChan) = LF(:,:,:,:,iColChan) .* LF(:,:,:,:,end); end else % add a weight channel LF(:,:,:,:,end+1) = ones(size(LF(:,:,:,:,1)), FiltOptions.Precision); end end SliceSize = size(LF); for( iColChan = 1:SliceSize(end) ) fprintf('.'); X = fftn(LF(:,:,:,:,iColChan), LFPaddedSize); X = X .* H; x = ifftn(X,'symmetric'); x = x(1:LFSize(1), 1:LFSize(2), 1:LFSize(3), 1:LFSize(4)); LF(:,:,:,:,iColChan) = x; end if( FiltOptions.Normalize ) WeightChan = LF(:,:,:,:,end); InvalidIdx = find(WeightChan <= FiltOptions.MinWeight); ChanSize = numel(LF(:,:,:,:,1)); for( iColChan = 1:NColChans ) LF(:,:,:,:,iColChan) = LF(:,:,:,:,iColChan) ./ WeightChan; LF( InvalidIdx + ChanSize.*(iColChan-1) ) = 0; end end LF = max(0,LF); LF = min(1,LF); %--- TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.FilterInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); fprintf(' Done\n');
github
Vincentqyw/light-field-TB-master
LFUtilCalLensletCam.m
.m
light-field-TB-master/LFToolbox0.4/LFUtilCalLensletCam.m
8,438
utf_8
56382b29c1b601dbae1ec2d6763a51b0
% LFUtilCalLensletCam - calibrate a lenslet-based light field camera % % Usage: % % LFUtilCalLensletCam % LFUtilCalLensletCam( Inputpath ) % LFUtilCalLensletCam( InputPath, CalOptions ) % LFUtilProcessCalibrations( [], CalOptions ) % % All parameters are optional and take on default values as set in the "Defaults" section at the top % of the implementation. As such, this can be called as a function or run directly by editing the % code. When calling as a function, pass an empty array "[]" to omit a parameter. % % This function recursively crawls through a folder identifying decoded light field images and % performing a calibration based on those images. It follows the calibration procedure described in: % % D. G. Dansereau, O. Pizarro, and S. B. Williams, "Decoding, calibration and rectification for % lenslet-based plenoptic cameras," in Computer Vision and Pattern Recognition (CVPR), IEEE % Conference on. IEEE, Jun 2013. % % Minor differences from the paper: camera parameters are automatically initialized, so no prior % knowledge of the camera's parameters is required; the free intrinsic parameters have been reduced % by two: H(3:4,5) were previously redundant with the camera's extrinsics, and are now automatically % centered; and the light field indices [i,j,k,l] are 1-based in this implementation, and not % 0-based as described in the paper. % % The calibration produced by this process is saved in a JSON file, by default named 'CalInfo.json', % in the top-level folder of the calibration images. The calibration includes a 5x5 homogeneous % intrinsic matrix EstCamIntrinsicsH, a 5-element vector EstCamDistortionV describing its distortion % parameters, and the lenslet grid model formed from the white image used to decode the % checkerboard images. Taken together, these relate light field indices [i,j,k,l] to spatial rays % [s,t,u,v], and can be utilized to rectify light fields, as demonstrated in LFUtilDecodeLytroFolder % / LFCalRectifyLF. % % The input light fields are ideally of a small checkerboard (order mm per square), taken at close % range, and over a diverse set of poses to maximize the quality of the calibration. The % checkerboard light field images should be decoded without rectification, and colour correction is % not required. % % Calibration is described in more detail in LFToolbox.pdf, including links to example datasets and % a walkthrough of a calibration process. % % Inputs -- all are optional, see code below for default values : % % InputPath : Path to folder containing decoded checkerboard images -- note the function % operates recursively, i.e. it will search sub-folders. % % CalOptions : struct controlling calibration parameters % .ExpectedCheckerSize : Number of checkerboard corners, as recognized by the automatic % corner detector; edge corners are not recognized, so a standard % 8x8-square chess board yields 7x7 corners % .ExpectedCheckerSpacing_m : Physical extents of the checkerboard, in meters % .LensletBorderSize : Number of pixels to skip around the edges of lenslets; a low % value of 1 or 0 is generally appropriate, as invalid pixels are % automatically skipped % .SaveResult : Set to false to perform a "dry run" % .ShowDisplay : Enables various displays throughout the calibration process % .ForceRedoCornerFinding : Forces the corner finding procedure to run, overwriting existing % results % .ForceRedoInit : Forces the parameter initialization step to run, overwriting % existing results % .OptTolX : Determines when the optimization process terminates. When the % estimted parameter values change by less than this amount, the % optimization terminates. See the Matlab documentation on lsqnonlin, % option `TolX' for more information. The default value of 5e-5 is set % within the LFCalRefine function; a value of 0 means the optimization % never terminates based on this criterion. % .OptTolFun : Similar to OptTolX, except this tolerance deals with the error value. % This corresponds to Matlab's lsqnonlin option `TolFun'. The default % value of 0 is set within the LFCalRefine function, and means the % optimization never terminates based on this criterion. % % Output takes the form of saved checkerboard info and calibration files. % % Example : % % LFUtilCalLensletCam('.', ... % struct('ExpectedCheckerSize', [8,6], 'ExpectedCheckerSpacing_m', 1e-3*[35.1, 35.0])) % % Run from within the top-level path of a set of decoded calibration images of an 8x6 checkerboard % of dimensions 35.1x35.0 mm, will carry out all the stages of a calibration. See the toolbox % documentation for a more complete example. % % See also: LFCalFindCheckerCorners, LFCalInit, LFCalRefine, LFUtilDecodeLytroFolder, LFSelectFromDatabase % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function LFUtilCalLensletCam( InputPath, CalOptions ) %---Tweakables--- InputPath = LFDefaultVal('InputPath', '.'); CalOptions = LFDefaultField( 'CalOptions', 'ExpectedCheckerSize', [19, 19] ); CalOptions = LFDefaultField( 'CalOptions', 'ExpectedCheckerSpacing_m', [3.61, 3.61] * 1e-3 ); CalOptions = LFDefaultField( 'CalOptions', 'LensletBorderSize', 1 ); CalOptions = LFDefaultField( 'CalOptions', 'SaveResult', true ); CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoCornerFinding', false ); CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoInit', false ); CalOptions = LFDefaultField( 'CalOptions', 'ShowDisplay', true ); CalOptions = LFDefaultField( 'CalOptions', 'CalInfoFname', 'CalInfo.json' ); %---Check for previously started calibration--- CalInfoFname = fullfile(InputPath, CalOptions.CalInfoFname); if( ~CalOptions.ForceRedoInit && exist(CalInfoFname, 'file') ) fprintf('---File %s already exists\n Loading calibration state and options\n', CalInfoFname); CalOptions = LFStruct2Var( LFReadMetadata(CalInfoFname), 'CalOptions' ); else CalOptions.Phase = 'Start'; end RefineComplete = false; % always at least refine once %---Step through the calibration phases--- while( ~strcmp(CalOptions.Phase, 'Refine') || ~RefineComplete ) switch( CalOptions.Phase ) case 'Start' %---Find checkerboard corners--- CalOptions.Phase = 'Corners'; CalOptions = LFCalFindCheckerCorners( InputPath, CalOptions ); case 'Corners' %---Initialize calibration process--- CalOptions.Phase = 'Init'; CalOptions = LFCalInit( InputPath, CalOptions ); if( CalOptions.ShowDisplay ) LFFigure(2); clf LFCalDispEstPoses( InputPath, CalOptions, [], [0.7,0.7,0.7] ); end case 'Init' %---First step of optimization process will exclude distortion--- CalOptions.Phase = 'NoDistort'; CalOptions = LFCalRefine( InputPath, CalOptions ); if( CalOptions.ShowDisplay ) LFFigure(2); LFCalDispEstPoses( InputPath, CalOptions, [], [0,0.7,0] ); end case 'NoDistort' %---Next step of optimization process adds distortion--- CalOptions.Phase = 'WithDistort'; CalOptions = LFCalRefine( InputPath, CalOptions ); if( CalOptions.ShowDisplay ) LFFigure(2); LFCalDispEstPoses( InputPath, CalOptions, [], [0,0,1] ); end otherwise %---Subsequent calls refine the estimate--- CalOptions.Phase = 'Refine'; CalOptions = LFCalRefine( InputPath, CalOptions ); RefineComplete = true; if( CalOptions.ShowDisplay ) LFFigure(2); LFCalDispEstPoses( InputPath, CalOptions, [], [1,0,0] ); end end end
github
Vincentqyw/light-field-TB-master
LFHistEqualize.m
.m
light-field-TB-master/LFToolbox0.4/LFHistEqualize.m
6,002
utf_8
aaaa0313c7b80ba9ccf5524a24026bdb
% LFHistEqualize - histogram-based contrast adjustment % % Usage: % % LF = LFHistEqualize( LF ) % [LF, LowerBound, UpperBound] = LFHistEqualize( LF, Cutoff_percent ) % LF = LFHistEqualize( LF, [], LowerBound, UpperBound ) % LF = LFHistEqualize(LF, Cutoff_percent, [], [], Precision) % % This function performs contrast adjustment on images based on a histogram of intensity. Colour % images are handled by building a histogram of the `value' channel in the HSV colour space. % Saturation points are computed based on a desired percentage of saturated white / black pixels. % % All parameters except LF are optional. Pass an empty array "[]" to omit a parameter. % % Inputs: % % LF : a light field or image to adjust. Integer formats are automatically converted to floating % point. The default precision is 'single', though this is controllable via the optional % Precision parameter. The function can handle most input dimensionalities as well as % colour and monochrome inputs. For example, a colour 2D image of size [Nl,Nk,3], a mono 2D % image of size [Nl,Nk], a colour 4D image of size [Nj,Ni,Nl,Nk,3], and a mono 4D image of % size [Nj,Ni,Nl,Nk] are all valid. % % Including a weight channel will result in zero-weight pixels being ignored. Weight should % be included as a fourth colour channel -- e.g. an image of size [Nl,Nk,4]. % % Optional inputs: % % Cutoff_percent : controls how much of the histogram gets saturated on both the high % and lower ends. Higher values result in more saturated black and % white pixels. The default value is 0.1%. % % LowerBound, UpperBound : bypass the histogram computation and instead directly saturate the % input image at the prescribed limits. If no bounds are provided, they % are computed from the histogram. % % Precision : 'single' or 'double' % % % Outputs: % % LF : the contrast-adjusted image, in floating point values scaled between % 0 and 1. % % LowerBound, UpperBound : the saturation points used, on the intensity scale of the input after % converting to the requested floating point precision. These are % useful in applying the same contrast adjustment to a number of light % fields, by saving and passing these bounds on subsequent function % calls. % % Example: % % load('Images/F01/IMG_0002__Decoded.mat', 'LF'); % LF = LFHistEqualize(LF); % LFDispMousePan(LF, 2); % % Run from the top level of the light field samples will load the decoded sample, apply histogram % equalization, then display the result in a shifting-perspective display with x2 magnification. % LFUtilProcessWhiteImages and LFUtilDecodeLytroFolder must be run to decode the light field. % % See also: LFUtilDecodeLytroFolder, LFUtilProcessWhiteImages, LFColourCorrect % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LF, LowerBound, UpperBound] = ... LFHistEqualize(LF, Cutoff_percent, LowerBound, UpperBound, Precision) %---Defaults--- Cutoff_percent = LFDefaultVal( 'Cutoff_percent', 0.1 ); Precision = LFDefaultVal( 'Precision', 'single' ); MaxBlkSize = LFDefaultVal( 'MaxBlkSize', 10e6 ); % slice up to limit memory utilization %---Make sure LF is floating point, as required by hist function--- if( ~strcmp(class(LF), Precision) ) LF = cast(LF, Precision); end %---Flatten to a single list of N x NChans entries--- LFSize = size(LF); NDims = numel(LFSize); NChans = LFSize(end); LF = reshape(LF, [prod(LFSize(1:NDims-1)), NChans]); %---Strip out and use the weight channel if it's present--- if( NChans == 4 ) % Weight channel found, strip it out and use it LFW = LF(:,4); LF = LF(:,1:3); ValidIdx = find(LFW > 0); else LFW = []; ValidIdx = ':'; end %---Convert colour images to HSV, and operate on value only--- if( size(LF,2) == 3 ) LF = LF - min(LF(ValidIdx)); LF = LF ./ max(LF(ValidIdx)); LF = max(0,min(1,LF)); fprintf('Converting to HSV...'); for( UStart = 1:MaxBlkSize:size(LF,1) ) UStop = UStart + MaxBlkSize - 1; UStop = min(UStop, size(LF,1)); % matlab 2014b's rgb2hsv requires doubles LF(UStart:UStop,:) = cast(rgb2hsv( double(LF(UStart:UStop,:)) ), Precision); fprintf('.') end LF_hsv = LF(:,1:2); LF = LF(:,3); % operate on value channel only else LF_hsv = []; end fprintf(' Equalizing...'); %---Compute bounds from histogram--- if( ~exist('LowerBound','var') || ~exist('UpperBound','var') || ... isempty(LowerBound) || isempty(UpperBound)) [ha,xa] = hist(LF(ValidIdx), 2^16); ha = cumsum(ha); ha = ha ./ max(ha(:)); Cutoff = Cutoff_percent / 100; LowerBound = xa(find(ha >= Cutoff, 1, 'first')); UpperBound = xa(find(ha <= 1-Cutoff, 1, 'last')); end if( isempty(UpperBound) ) UpperBound = max(LF(ValidIdx)); end if( isempty(LowerBound) ) LowerBound = min(LF(ValidIdx)); end clear ValidIdx %---Apply bounds and rescale to 0-1 range--- LF = max(LowerBound, min(UpperBound, LF)); LF = (LF - LowerBound) ./ (UpperBound - LowerBound); %---Rebuild hsv, then rgb colour light field--- if( ~isempty(LF_hsv) ) LF = cat(2,LF_hsv,LF); clear LF_hsv fprintf(' Converting to RGB...'); for( UStart = 1:MaxBlkSize:size(LF,1) ) UStop = UStart + MaxBlkSize - 1; UStop = min(UStop, size(LF,1)); LF(UStart:UStop,:) = hsv2rgb(LF(UStart:UStop,:)); fprintf('.'); end end %---Return the weight channel--- if( ~isempty(LFW) ) LF(:,4) = LFW; end %---Unflatten--- LF = reshape(LF, [LFSize(1:NDims-1),NChans]); fprintf(' Done.\n');
github
Vincentqyw/light-field-TB-master
LFReadRaw.m
.m
light-field-TB-master/LFToolbox0.4/LFReadRaw.m
2,387
utf_8
f61af2a213353cf523d8d47f5fd665aa
% LFReadRaw - Reads 8, 10, 12 and 16-bit raw image files % % Usage: % % Img = LFReadRaw( Fname ) % Img = LFReadRaw( Fname, BitPacking, ImgSize ) % Img = LFReadRaw( Fname, [], ImgSize ) % % There is no universal `RAW' file format. This function reads a few variants, including the 12-bit and 10-bit files % commonly employed in Lytro cameras, and the 16-bit files produced by some third-party LFP extraction tools. The output % is always an array of type uint16, except for 8-bit files which produce an 8-bit output. % % Raw images may be converted to more portable formats, including .png, using an external tool such as the % cross-platform ImageMagick tool. % % Inputs : % % Fname : path to raw file to read % % [optional] BitPacking : one of '12bit', '10bit' or '16bit'; default is '12bit' % % [optional] ImgSize : a 2D vector defining the size of the image, in pixels. The default value varies according to % the value of 'BitPacking', to correspond to commonly-found Lytro file formats: 12 bit images are employed by the % Lytro F01, producing images of size 3280x3280, while 10-bit images are produced by the Illum at a resolutio of % 7728x5368; 16-bit images default to 3280x3280. % % Outputs: % % Img : an array of uint16 gray levels. No demosaicing (decoding Bayer pattern) is performed. % % See also: LFReadLFP, LFDecodeLensletImageSimple, demosaic % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function Img = LFReadRaw( Fname, BitPacking, ImgSize ) %---Defaults--- BitPacking = LFDefaultVal( 'BitPacking', '12bit' ); switch( BitPacking ) case '8bit' ImgSize = LFDefaultVal( 'ImgSize', [3280,3280] ); BuffSize = prod(ImgSize); case '12bit' ImgSize = LFDefaultVal( 'ImgSize', [3280,3280] ); BuffSize = prod(ImgSize) * 12/8; case '10bit' ImgSize = LFDefaultVal( 'ImgSize', [7728, 5368] ); BuffSize = prod(ImgSize) * 10/8; case '16bit' ImgSize = LFDefaultVal( 'ImgSize', [3280,3280] ); BuffSize = prod(ImgSize) * 16/8; otherwise error('Unrecognized bit packing format'); end %---Read and unpack--- f = fopen( Fname ); Img = fread( f, BuffSize, 'uchar' ); Img = LFUnpackRawBuffer( Img, BitPacking, ImgSize )'; % note the ' is necessary to get the rotation right fclose( f );
github
Vincentqyw/light-field-TB-master
LFDispVidCirc.m
.m
light-field-TB-master/LFToolbox0.4/LFDispVidCirc.m
3,251
utf_8
7f29b601b697f1bf5daf1621b54fe7b0
% LFDispVidCirc - visualize a 4D light field animating a circular path through two dimensions % % Usage: % % FigureHandle = LFDispVidCirc( LF ) % FigureHandle = LFDispVidCirc( LF, PathRadius_percent, FrameDelay ) % FigureHandle = LFDispVidCirc( LF, PathRadius_percent, FrameDelay, ScaleFactor ) % FigureHandle = LFDispVidCirc( LF, [], [], ScaleFactor ) % % % A figure is set up for high-performance display, with the tag 'LFDisplay'. Subsequent calls to % this function and LFDispVidCirc will reuse the same figure, rather than creating a new window on % each call. All parameters except LF are optional -- pass an empty array "[]" to omit an optional % parameter. % % % Inputs: % % LF : a colour or single-channel light field, and can a floating point or integer format. For % display, it is converted to 8 bits per channel. If LF contains more than three colour % channels, as is the case when a weight channel is present, only the first three are used. % % Optional Inputs: % % PathRadius_percent : radius of the circular path taken by the viewpoint. Values that are too % high can result in collision with the edges of the lenslet image, while % values that are too small result in a less impressive visualization. The % default value is 60%. % % FrameDelay : sets the delay between frames, in seconds. The default value is 1/60th of % a second. % % ScaleFactor : Adjusts the size of the display -- 1 means no change, 2 means twice as % big, etc. Integer values are recommended to avoid scaling artifacts. Note % that the scale factor is only applied the first time a figure is created. % To change the scale factor, close the figure before calling % LFDispMousePan. % % Outputs: % % FigureHandle % % % See also: LFDisp, LFDispMousePan % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function FigureHandle = LFDispVidCirc( LF, PathRadius_percent, FrameDelay, varargin ) %---Defaults--- PathRadius_percent = LFDefaultVal( 'PathRadius_percent', 60 ); FrameDelay = LFDefaultVal( 'FrameDelay', 1/60 ); %---Check for mono and clip off the weight channel if present--- Mono = (ndims(LF) == 4); if( ~Mono ) LF = LF(:,:,:,:,1:3); end %---Rescale for 8-bit display--- if( isfloat(LF) ) LF = uint8(LF ./ max(LF(:)) .* 255); else LF = uint8(LF.*(255 / double(intmax(class(LF))))); end %---Setup the display--- [ImageHandle,FigureHandle] = LFDispSetup( squeeze(LF(floor(end/2),floor(end/2),:,:,:)), varargin{:} ); %---Setup the motion path--- [TSize,SSize, ~,~] = size(LF(:,:,:,:,1)); TCent = (TSize-1)/2 + 1; SCent = (SSize-1)/2 + 1; t = 0; RotRate = 0.05; RotRad = TCent*PathRadius_percent/100; while(1) TVal = TCent + RotRad * cos( 2*pi*RotRate * t ); SVal = SCent + RotRad * sin( 2*pi*RotRate * t ); SIdx = round(SVal); TIdx = round(TVal); CurFrame = squeeze(LF( TIdx, SIdx, :,:,: )); set(ImageHandle,'cdata', CurFrame ); pause(FrameDelay) t = t + 1; end
github
Vincentqyw/light-field-TB-master
LFDisp.m
.m
light-field-TB-master/LFToolbox0.4/LFDisp.m
1,447
utf_8
e7dcaf88325fd23f136fac4a166709e5
% LFDisp - Convenience function to display a 2D slice of a light field % % Usage: % LFSlice = LFDispMousePan( LF ) % LFDispMousePan( LF ) % % % The centermost image is taken in s and t. Also works with 3D arrays of images. If an output argument is included, no % display is generated, but the extracted slice is returned instead. % % Inputs: % % LF : a colour or single-channel light field, and can a floating point or integer format. For % display, it is scaled as in imagesc. If LF contains more than three colour % channels, as is the case when a weight channel is present, only the first three are used. % % % Outputs: % % LFSlice : if an output argument is used, no display is generated, but the extracted slice is returned. % % % See also: LFDispVidCirc, LFDispMousePan % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function ImgOut = LFDisp( LF ) LF = squeeze(LF); LFSize = size(LF); HasWeight = (ndims(LF)>2 && LFSize(end)==2 || LFSize(end)==4); HasColor = (ndims(LF)>2 && (LFSize(end)==3 || LFSize(end)==4) ); HasMonoAndWeight = (ndims(LF)>2 && LFSize(end)==2); if( HasColor || HasMonoAndWeight ) GoalDims = 3; else GoalDims = 2; end while( ndims(LF) > GoalDims ) LF = squeeze(LF(round(end/2),:,:,:,:,:,:)); end if( HasWeight ) LF = squeeze(LF(:,:,1:end-1)); end if( nargout > 0 ) ImgOut = LF; else imagesc(LF); end
github
Vincentqyw/light-field-TB-master
LFBuild2DFreqFan.m
.m
light-field-TB-master/LFToolbox0.4/LFBuild2DFreqFan.m
4,507
utf_8
d3bc64badf14c750b5f1f2a996936c1f
% LFBuild2DFreqFan - construct a 2D fan passband filter in the frequency domain % % Usage: % % [H, FiltOptions] = LFBuild2DFreqFan( LFSize, Slope1, Slope2, BW, FiltOptions ) % H = LFBuild2DFreqFan( LFSize, Slope, BW ) % % This file constructs a real-valued magnitude response in 2D, for which the passband is a fan. % % Once constructed the filter must be applied to a light field, e.g. using LFFilt2DFFT. The % LFDemoBasicFilt* files demonstrate how to contruct and apply frequency-domain filters. % % A more technical discussion, including the use of filters for denoising and volumetric focus, and % the inclusion of aliases components, is included in: % % [2] D.G. Dansereau, O. Pizarro, and S. B. Williams, "Linear Volumetric Focus for Light Field % Cameras," to appear in ACM Transactions on Graphics (TOG), vol. 34, no. 2, 2015. % % Inputs: % % LFSize : Size of the frequency-domain filter. This should match or exceed the size of the % light field to be filtered. If it's larger than the input light field, the input is % zero-padded to match the filter's size by LFFilt2DFFT. % % Slope1, Slope2 : Slopes at the extents of the fan passband. % % BW : 3-db Bandwidth of the planar passband. % % [optional] FiltOptions : struct controlling filter construction % SlopeMethod : only 'Skew' is supported for now % Precision : 'single' or 'double', default 'single' % Rolloff : 'Gaussian' or 'Butter', default 'Gaussian' % Order : controls the order of the filter when Rolloff is 'Butter', default 3 % Aspect2D : aspect ratio of the light field, default [1 1] % Window : Default false. By default the edges of the passband are sharp; this adds % a smooth rolloff at the edges when used in conjunction with Extent2D or % IncludeAliased. % Extent2D : controls where the edge of the passband occurs, the default [1 1] % is the edge of the Nyquist box. When less than 1, enabling windowing % introduces a rolloff after the edge of the passband. Can be greater % than 1 when using IncludeAliased. % IncludeAliased : default false; allows the passband to wrap around off the edge of the % Nyquist box; used in conjunction with Window and/or Extent2D. This can % increase processing time dramatically, e.g. Extent2D = [2,2] % requires a 2^2 = 4-fold increase in time to construct the filter. % Useful when passband content is aliased, see [2]. % % Outputs: % % H : real-valued frequency magnitude response % FiltOptions : The filter options including defaults, with an added PassbandInfo field % detailing the function and time of construction of the filter % % See also: LFDemoBasicFiltGantry, LFDemoBasicFiltIllum, LFDemoBasicFiltLytroF01, LFBuild2DFreqFan, LFBuild2DFreqLine, % LFBuild4DFreqDualFan, LFBuild4DFreqHypercone, LFBuild4DFreqHyperfan, LFBuild4DFreqPlane, LFFilt2DFFT, LFFilt4DFFT, % LFFiltShiftSum % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFBuild2DFreqFan( LFSize, Slope1, Slope2, BW, FiltOptions ) FiltOptions = LFDefaultField('FiltOptions', 'SlopeMethod', 'Skew'); % 'Skew' only for now DistFunc = @(P, FiltOptions) DistFunc_2DFan( P, Slope1, Slope2, FiltOptions ); [H, FiltOptions] = LFHelperBuild2DFreq( LFSize, BW, FiltOptions, DistFunc ); TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); FiltOptions.PassbandInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); end %----------------------------------------------------------------------------------------------------------------------- function Dist = DistFunc_2DFan( P, Slope1, Slope2, FiltOptions ) switch( lower(FiltOptions.SlopeMethod) ) case 'skew' if( Slope2 < Slope1 ) t = Slope1; Slope1 = Slope2; Slope2 = t; end R1 = eye(2); R2 = R1; R1(1,2) = Slope1; R2(1,2) = Slope2; otherwise error('Unrecognized slope method'); end P1 = R1 * P; P2 = R2 * P; TransitionPt = LFSign(P1(2,:)); CurDist1 = max(0, TransitionPt .* P1(1,:)); CurDist2 = max(0,-TransitionPt .* P2(1,:)); Dist = max(CurDist1, CurDist2).^2; end
github
Vincentqyw/light-field-TB-master
LFDefaultIntrinsics.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFDefaultIntrinsics.m
2,030
utf_8
948ce39fff4f94ed954e090033778c04
% LFDefaultIntrinsics - Initializes a set of intrinsics for use in rectifying light fields % % Usage: % % RectCamIntrinsicsH = LFDefaultIntrinsics( LFSize, CalInfo ) % % This gets called by LFCalDispRectIntrinsics to set up a default set of intrinsics for rectification. Based on the % calibration information and the dimensions of the light field, a set of intrinsics is selected which yields square % pixels in ST and UV. Ideally the values will use the hypercube-shaped light field space efficiently, leaving few black % pixels at the edges, and bumping as little information /outside/ the hypercube as possible. % % The sampling pattern yielded by the resulting intrinsics can be visualized using LFCalDispRectIntrinsics. % % Inputs : % % LFSize : Size of the light field to rectify % % CalInfo : Calibration info as loaded by LFFindCalInfo, for example. % % Outputs: % % RectCamIntrinsicsH : The resulting intrinsics. % % See also: LFCalDispRectIntrinsics, LFRecenterIntrinsics, LFFindCalInfo, LFUtilDecodeLytroFolder % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function RectCamIntrinsicsH = LFDefaultIntrinsics( LFSize, CalInfo ) RectCamIntrinsicsH = CalInfo.EstCamIntrinsicsH; ST_ST_Slope = mean([CalInfo.EstCamIntrinsicsH(1,1), CalInfo.EstCamIntrinsicsH(2,2)]); ST_UV_Slope = mean([CalInfo.EstCamIntrinsicsH(1,3), CalInfo.EstCamIntrinsicsH(2,4)]); UV_ST_Slope = mean([CalInfo.EstCamIntrinsicsH(3,1), CalInfo.EstCamIntrinsicsH(4,2)]); UV_UV_Slope = mean([CalInfo.EstCamIntrinsicsH(3,3), CalInfo.EstCamIntrinsicsH(4,4)]); RectCamIntrinsicsH(1,1) = ST_ST_Slope; RectCamIntrinsicsH(2,2) = ST_ST_Slope; RectCamIntrinsicsH(1,3) = ST_UV_Slope; RectCamIntrinsicsH(2,4) = ST_UV_Slope; RectCamIntrinsicsH(3,1) = UV_ST_Slope; RectCamIntrinsicsH(4,2) = UV_ST_Slope; RectCamIntrinsicsH(3,3) = UV_UV_Slope; RectCamIntrinsicsH(4,4) = UV_UV_Slope; %---force s,t translation to CENTER--- RectCamIntrinsicsH = LFRecenterIntrinsics( RectCamIntrinsicsH, LFSize );
github
Vincentqyw/light-field-TB-master
LFDefaultField.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFDefaultField.m
1,979
utf_8
485dfac0b4aba775cf4d1d20f537f0f7
% LFDefaultField - Convenience function to set up structs with default field values % % Usage: % % ParentStruct = LFDefaultField( ParentStruct, FieldName, DefaultVal ) % % This provides an elegant way to establish default field values in a struct. See LFDefaultValue for % setting up non-struct variables with default values. % % Inputs: % % ParentStruct: string giving the name of the struct; the struct need not already exist % FieldName: string giving the name of the field % DefaultVal: default value for the field % % Outputs: % % ParentStruct: if the named struct and field already existed, the output matches the struct's % original value; otherwise the output is a struct with an additional field taking % on the specified default value % % Example: % % clearvars % ExistingStruct.ExistingField = 42; % ExistingStruct = LFDefaultField( 'ExistingStruct', 'ExistingField', 3 ) % ExistingStruct = LFDefaultField( 'ExistingStruct', 'NewField', 36 ) % OtherStruct = LFDefaultField( 'OtherStruct', 'Cheese', 'Indeed' ) % % % Results in : % ExistingStruct = % ExistingField: 42 % NewField: 36 % OtherStruct = % Cheese: 'Indeed' % % Usage for setting up default function arguments is demonstrated in most of the LF Toolbox % functions. % % See also: LFDefaultVal % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function ParentStruct = LFDefaultField( ParentStruct, FieldName, DefaultVal ) %---First make sure the struct exists--- CheckIfExists = sprintf('exist(''%s'', ''var'') && ~isempty(%s)', ParentStruct, ParentStruct); VarExists = evalin( 'caller', CheckIfExists ); if( ~VarExists ) ParentStruct = []; else ParentStruct = evalin( 'caller', ParentStruct ); end %---Now make sure the field exists--- if( ~isfield( ParentStruct, FieldName ) ) ParentStruct.(FieldName) = DefaultVal; end end
github
Vincentqyw/light-field-TB-master
LFSign.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFSign.m
225
utf_8
901dea01bff401571d8125711feeffad
% LFSign - Like Matlab's sign, but never returns 0, treating 0 as positive % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function s = LFSign(i) s = ones(size(i)); s(i<0) = -1;
github
Vincentqyw/light-field-TB-master
LFRotz.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFRotz.m
306
utf_8
2a4fc216ff9e1b6b35762c010ebe50f2
% LFRotz - simple 3D rotation matrix, rotation about z % % Usage: % R = LFRotz( psi ) % % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function R = LFRotz(psi) c = cos(psi); s = sin(psi); R = [ c, -s, 0; ... s, c, 0; ... 0, 0, 1 ];
github
Vincentqyw/light-field-TB-master
LFHelperBuild4DFreq.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFHelperBuild4DFreq.m
4,143
utf_8
5cefe44f63c8fd80b66ad5e267298bff
% LFHelperBuild4DFreq - Helper function used to construct 4D frequency-domain filters % % Much of the complexity in constructing MD frequency-domain filters, especially around including aliased components and % controlling the filter rolloff, is common between filter shapes. This function wraps much of this complexity. % % This gets called by the LFBuild4DFreq* functions. % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFHelperBuild4DFreq( LFSize, BW, FiltOptions, DistFunc ) FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single'); FiltOptions = LFDefaultField('FiltOptions', 'Rolloff', 'Gaussian'); %Gaussian or Butter FiltOptions = LFDefaultField('FiltOptions', 'Aspect4D', 1); FiltOptions = LFDefaultField('FiltOptions', 'Window', false); FiltOptions = LFDefaultField('FiltOptions', 'Extent4D', 1.0); FiltOptions = LFDefaultField('FiltOptions', 'IncludeAliased', false); FiltOptions.Extent4D = cast(FiltOptions.Extent4D, FiltOptions.Precision); % avoid rounding error during comparisons FiltOptions.Aspect4D = cast(FiltOptions.Aspect4D, FiltOptions.Precision); % avoid rounding error during comparisons if( length(LFSize) == 1 ) LFSize = LFSize .* [1,1,1,1]; end if( length(LFSize) == 5 ) LFSize = LFSize(1:4); end if( length(FiltOptions.Extent4D) == 1 ) FiltOptions.Extent4D = FiltOptions.Extent4D .* [1,1,1,1]; end if( length(FiltOptions.Aspect4D) == 1 ) FiltOptions.Aspect4D = FiltOptions.Aspect4D .* [1,1,1,1]; end ExtentWithAspect = FiltOptions.Extent4D.*FiltOptions.Aspect4D / 2; t = LFNormalizedFreqAxis( LFSize(1), FiltOptions.Precision ) .* FiltOptions.Aspect4D(1); s = LFNormalizedFreqAxis( LFSize(2), FiltOptions.Precision ) .* FiltOptions.Aspect4D(2); v = LFNormalizedFreqAxis( LFSize(3), FiltOptions.Precision ) .* FiltOptions.Aspect4D(3); u = LFNormalizedFreqAxis( LFSize(4), FiltOptions.Precision ) .* FiltOptions.Aspect4D(4); [tt,ss,vv,uu] = ndgrid(cast(t,FiltOptions.Precision),cast(s,FiltOptions.Precision),cast(v,FiltOptions.Precision),cast(u,FiltOptions.Precision)); P = [tt(:),ss(:),vv(:),uu(:)]'; clear s t u v ss tt uu vv if( ~FiltOptions.IncludeAliased ) Tiles = [0,0,0,0]; else Tiles = ceil(ExtentWithAspect); end if( FiltOptions.IncludeAliased ) AADist = inf(LFSize, FiltOptions.Precision); end WinDist = 0; % Tiling proceeds only in positive directions, symmetry is enforced afterward, saving some computation overall for( TTile = 0:Tiles(1) ) for( STile = 0:Tiles(2) ) for( VTile = 0:Tiles(3) ) for( UTile = 0:Tiles(4) ) Dist = inf(LFSize, FiltOptions.Precision); if( FiltOptions.Window ) ValidIdx = ':'; WinDist = bsxfun(@minus, abs(P)', ExtentWithAspect); WinDist = sum(max(0,WinDist).^2, 2); WinDist = reshape(WinDist, LFSize); else ValidIdx = find(all(bsxfun(@le, abs(P), ExtentWithAspect'))); end Dist(ValidIdx) = DistFunc(P(:,ValidIdx), FiltOptions); Dist = Dist + WinDist; if( FiltOptions.IncludeAliased ) AADist(:) = min(AADist(:), Dist(:)); end P(4,:) = P(4,:) + FiltOptions.Aspect4D(4); end P(4,:) = P(4,:) - (Tiles(4)+1) .* FiltOptions.Aspect4D(4); P(3,:) = P(3,:) + FiltOptions.Aspect4D(3); end P(3,:) = P(3,:) - (Tiles(3)+1) .* FiltOptions.Aspect4D(3); P(2,:) = P(2,:) + FiltOptions.Aspect4D(2); end P(2,:) = P(2,:) - (Tiles(2)+1) .* FiltOptions.Aspect4D(2); P(1,:) = P(1,:) + FiltOptions.Aspect4D(1); end if( FiltOptions.IncludeAliased ) Dist = AADist; clear AADist end H = zeros(LFSize, FiltOptions.Precision); switch lower(FiltOptions.Rolloff) case 'gaussian' BW = BW.^2 / log(sqrt(2)); H(:) = exp( -Dist / BW ); % Gaussian rolloff case 'butter' FiltOptions = LFDefaultField('FiltOptions', 'Order', 3); Dist = sqrt(Dist) ./ BW; H(:) = sqrt( 1.0 ./ (1.0 + Dist.^(2*FiltOptions.Order)) ); % Butterworth-like rolloff otherwise error('unrecognized rolloff method'); end H = ifftshift(H); % force symmetric H = max(H, H(mod(LFSize(1):-1:1,LFSize(1))+1, mod(LFSize(2):-1:1,LFSize(2))+1,mod(LFSize(3):-1:1,LFSize(3))+1,mod(LFSize(4):-1:1,LFSize(4))+1));
github
Vincentqyw/light-field-TB-master
LFCalInit.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFCalInit.m
10,538
utf_8
50b5d42f601852034d9bfaa26788439a
% LFCalInit - initialize calibration estimate, called by LFUtilCalLensletCam % % Usage: % CalOptions = LFCalInit( InputPath, CalOptions ) % CalOptions = LFCalInit( InputPath ) % % This function is called by LFUtilCalLensletCam to initialize a pose and camera model estimate % given a set of extracted checkerboard corners. % % Inputs: % % InputPath : Path to folder containing processed checkerboard images. Checkerboard corners must % be identified prior to calling this function, by running LFCalFindCheckerCorners % for example. This is demonstrated by LFUtilCalLensletCam. % % [optional] CalOptions : struct controlling calibration parameters, all fields are optional % .SaveResult : Set to false to perform a "dry run" % .CheckerCornersFnamePattern : Pattern for finding checkerboard corner files, as generated by % LFCalFindCheckerCorners; %s is a placeholder for the base filename % .CheckerInfoFname : Name of the output file containing the summarized checkerboard % information % .CalInfoFname : Name of the file containing an initial estimate, to be refined. % Note that this parameter is automatically set in the CalOptions % struct returned by LFCalInit % .ForceRedoInit : Forces the function to overwrite existing results % % Outputs : % % CalOptions struct as applied, including any default values as set up by the function. % % The checkerboard info file and calibration info file are the key outputs of this function. % % See also: LFUtilCalLensletCam, LFCalFindCheckerCorners, LFCalRefine % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function CalOptions = LFCalInit( InputPath, CalOptions ) %---Defaults--- CalOptions = LFDefaultField( 'CalOptions', 'SaveResult', true ); CalOptions = LFDefaultField( 'CalOptions', 'CheckerCornersFnamePattern', '%s__CheckerCorners.mat' ); CalOptions = LFDefaultField( 'CalOptions', 'CheckerInfoFname', 'CheckerboardCorners.mat' ); CalOptions = LFDefaultField( 'CalOptions', 'CalInfoFname', 'CalInfo.json' ); CalOptions = LFDefaultField( 'CalOptions', 'ForceRedoInit', false ); %---Start by checking if this step has already been completed--- fprintf('\n===Initializing calibration process===\n'); CalInfoSaveFname = fullfile(InputPath, CalOptions.CalInfoFname); if( ~CalOptions.ForceRedoInit && exist(CalInfoSaveFname, 'file') ) fprintf(' ---File %s already exists, skipping---\n', CalInfoSaveFname); return; end %---Compute ideal checkerboard geometry - order matters--- IdealCheckerX = CalOptions.ExpectedCheckerSpacing_m(1) .* (0:CalOptions.ExpectedCheckerSize(1)-1); IdealCheckerY = CalOptions.ExpectedCheckerSpacing_m(2) .* (0:CalOptions.ExpectedCheckerSize(2)-1); [IdealCheckerY, IdealCheckerX] = ndgrid(IdealCheckerY, IdealCheckerX); IdealChecker = cat(3,IdealCheckerX, IdealCheckerY, zeros(size(IdealCheckerX))); IdealChecker = reshape(IdealChecker, [], 3)'; %---Crawl folder structure locating corner info files--- fprintf('\n===Locating checkerboard corner files in %s===\n', InputPath); [CalOptions.FileList, BasePath] = LFFindFilesRecursive( InputPath, sprintf(CalOptions.CheckerCornersFnamePattern, '*') ); fprintf('Found :\n'); disp(CalOptions.FileList) %---Initial estimate of focal length--- fprintf('Initial estimate of focal length...\n'); SkippedFileCount = 0; ValidSuperPoseCount = 0; ValidCheckerCount = 0; %---Process each checkerboard corner file--- for( iFile = 1:length(CalOptions.FileList) ) ValidSuperPoseCount = ValidSuperPoseCount + 1; CurFname = CalOptions.FileList{iFile}; [~,ShortFname] = fileparts(CurFname); fprintf('---%s [%3d / %3d]...', ShortFname, ValidSuperPoseCount+SkippedFileCount, length(CalOptions.FileList)); load(fullfile(BasePath, CurFname), 'CheckerCorners', 'LFSize', 'CamInfo', 'LensletGridModel', 'DecodeOptions'); PerImageValidCount = 0; for( TIdx = 1:size(CheckerCorners,1) ) for( SIdx = 1:size(CheckerCorners,2) ) CurChecker = CheckerCorners{TIdx, SIdx}'; CurSize = size(CurChecker); CurValid = (CurSize(2) == prod(CalOptions.ExpectedCheckerSize)); CheckerValid(ValidSuperPoseCount, TIdx, SIdx) = CurValid; %---For valid poses (having expected corner count), compute a homography--- if( CurValid ) ValidCheckerCount = ValidCheckerCount + 1; PerImageValidCount = PerImageValidCount + 1; %--- reorient to expected --- Centroid = mean( CurChecker,2 ); IsTopLeft = all(CurChecker(:,1) < Centroid); IsTopRight = (CurChecker(1,1) > Centroid(1) && CurChecker(2,1) < Centroid(2)); if( IsTopRight ) CurChecker = reshape(CurChecker, [2, CalOptions.ExpectedCheckerSize]); CurChecker = CurChecker(:, end:-1:1, :); CurChecker = permute(CurChecker, [1,3,2]); CurChecker = reshape(CurChecker, 2, []); end IsTopLeft = all(CurChecker(:,1) < Centroid); assert( IsTopLeft, 'Error: unexpected point order from detectCheckerboardPoints' ); CheckerObs{ValidSuperPoseCount, TIdx, SIdx} = CurChecker; %---Compute homography for each subcam pose--- CurH = compute_homography( CurChecker, IdealChecker(1:2,:) ); H(ValidCheckerCount, :,:) = CurH; end end end CalOptions.ValidSubimageCount(iFile) = PerImageValidCount; fprintf(' %d / %d valid.\n', PerImageValidCount, prod(LFSize(1:2))); end A = []; b = []; %---Initialize principal point at the center of the image--- % This section of code is based heavily on code from the Camera Calibration Toolbox for Matlab by % Jean-Yves Bouguet CInit = LFSize([4,3])'/2 - 0.5; RecenterH = [1, 0, -CInit(1); 0, 1, -CInit(2); 0, 0, 1]; for iHomography = 1:size(H,1) CurH = squeeze(H(iHomography,:,:)); CurH = RecenterH * CurH; %---Extract vanishing points (direct and diagonal)--- V_hori_pix = CurH(:,1); V_vert_pix = CurH(:,2); V_diag1_pix = (CurH(:,1)+CurH(:,2))/2; V_diag2_pix = (CurH(:,1)-CurH(:,2))/2; V_hori_pix = V_hori_pix/norm(V_hori_pix); V_vert_pix = V_vert_pix/norm(V_vert_pix); V_diag1_pix = V_diag1_pix/norm(V_diag1_pix); V_diag2_pix = V_diag2_pix/norm(V_diag2_pix); a1 = V_hori_pix(1); b1 = V_hori_pix(2); c1 = V_hori_pix(3); a2 = V_vert_pix(1); b2 = V_vert_pix(2); c2 = V_vert_pix(3); a3 = V_diag1_pix(1); b3 = V_diag1_pix(2); c3 = V_diag1_pix(3); a4 = V_diag2_pix(1); b4 = V_diag2_pix(2); c4 = V_diag2_pix(3); CurA = [a1*a2, b1*b2; a3*a4, b3*b4]; CurB = -[c1*c2; c3*c4]; if( isempty(find(isnan(CurA), 1)) && isempty(find(isnan(CurB), 1)) ) A = [A; CurA]; b = [b; CurB]; end end FocInit = sqrt(b'*(sum(A')') / (b'*b)) * ones(2,1); fprintf('Init focal length est: %.2f, %.2f\n', FocInit); %---Initial estimate of extrinsics--- fprintf('\nInitial estimate of extrinsics...\n'); for( iSuperPoseIdx = 1:ValidSuperPoseCount ) fprintf('---[%d / %d]', iSuperPoseIdx, ValidSuperPoseCount); for( TIdx = 1:size(CheckerCorners,1) ) fprintf('.'); for( SIdx = 1:size(CheckerCorners,2) ) if( ~CheckerValid(iSuperPoseIdx, TIdx, SIdx) ) continue; end CurChecker = CheckerObs{iSuperPoseIdx, TIdx, SIdx}; [CurRot, CurTrans] = compute_extrinsic_init(CurChecker, IdealChecker, FocInit, CInit, zeros(1,5), 0); [CurRot, CurTrans] = compute_extrinsic_refine(CurRot, CurTrans, CurChecker, IdealChecker, FocInit, CInit, zeros(1,5), 0,20,1000000); RotVals{iSuperPoseIdx, TIdx, SIdx} = CurRot; TransVals{iSuperPoseIdx, TIdx, SIdx} = CurTrans; end end %---Approximate each superpose as the median of its sub-poses--- % note the approximation in finding the mean orientation: mean of rodrigues... works because all % sub-orientations within a superpose are nearly identical. MeanRotVals(iSuperPoseIdx,:) = median([RotVals{iSuperPoseIdx, :, :}], 2); MeanTransVals(iSuperPoseIdx,:) = median([TransVals{iSuperPoseIdx, :, :}], 2); fprintf('\n'); %---Track the apparent "baseline" of the camera at each pose--- CurDist = bsxfun(@minus, [TransVals{iSuperPoseIdx, :, :}], MeanTransVals(iSuperPoseIdx,:)'); CurAbsDist = sqrt(sum(CurDist.^2)); % store as estimated diameter; the 3/2 comes from the mean radius of points on a disk (2R/3) BaselineApprox(iSuperPoseIdx) = 2 * 3/2 * mean(CurAbsDist); end %---Initialize the superpose estimates--- EstCamPosesV = [MeanTransVals, MeanRotVals]; %---Estimate full intrinsic matrix--- ST_IJ_SlopeApprox = mean(BaselineApprox) ./ (LFSize(2:-1:1)-1); UV_KL_SlopeApprox = 1./FocInit'; EstCamIntrinsicsH = eye(5); EstCamIntrinsicsH(1,1) = ST_IJ_SlopeApprox(1); EstCamIntrinsicsH(2,2) = ST_IJ_SlopeApprox(2); EstCamIntrinsicsH(3,3) = UV_KL_SlopeApprox(1); EstCamIntrinsicsH(4,4) = UV_KL_SlopeApprox(2); % Force central ray as s,t,u,v = 0, note all indices start at 1, not 0 EstCamIntrinsicsH = LFRecenterIntrinsics( EstCamIntrinsicsH, LFSize ); fprintf('\nInitializing estimate of camera intrinsics to: \n'); disp(EstCamIntrinsicsH); %---Start with no distortion estimate--- EstCamDistortionV = []; %---Optionally save the results--- if( CalOptions.SaveResult ) TimeStamp = datestr(now,'ddmmmyyyy_HHMMSS'); GeneratedByInfo = struct('mfilename', mfilename, 'time', TimeStamp, 'VersionStr', LFToolboxVersion); CheckerSaveFname = fullfile(BasePath, CalOptions.CheckerInfoFname); fprintf('\nSaving to %s...\n', CheckerSaveFname); save(CheckerSaveFname, 'GeneratedByInfo', 'CalOptions', 'CheckerObs', 'IdealChecker', 'LFSize', 'CamInfo', 'LensletGridModel', 'DecodeOptions'); fprintf('Saving to %s...\n', CalInfoSaveFname); LFWriteMetadata(CalInfoSaveFname, LFVar2Struct(GeneratedByInfo, LensletGridModel, EstCamIntrinsicsH, EstCamDistortionV, EstCamPosesV, CamInfo, CalOptions, DecodeOptions)); end fprintf(' ---Calibration initialization done---\n');
github
Vincentqyw/light-field-TB-master
LFHelperBuild2DFreq.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFHelperBuild2DFreq.m
3,367
utf_8
3cd16d8e0a260aa2447e46ea325a04f9
% LFHelperBuild2DFreq - Helper function used to construct 2D frequency-domain filters % % Much of the complexity in constructing MD frequency-domain filters, especially around including aliased components and % controlling the filter rolloff, is common between filter shapes. This function wraps much of this complexity. % % This gets called by the LFBuild2DFreq* functions. % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [H, FiltOptions] = LFHelperBuild2DFreq( LFSize, BW, FiltOptions, DistFunc ) FiltOptions = LFDefaultField('FiltOptions', 'Precision', 'single'); FiltOptions = LFDefaultField('FiltOptions', 'Rolloff', 'Gaussian'); %Gaussian or Butter FiltOptions = LFDefaultField('FiltOptions', 'Aspect2D', 1); FiltOptions = LFDefaultField('FiltOptions', 'Window', false); FiltOptions = LFDefaultField('FiltOptions', 'Extent2D', 1.0); FiltOptions = LFDefaultField('FiltOptions', 'IncludeAliased', false); FiltOptions.Extent2D = cast(FiltOptions.Extent2D, FiltOptions.Precision); % avoid rounding error during comparisons FiltOptions.Aspect2D = cast(FiltOptions.Aspect2D, FiltOptions.Precision); % avoid rounding error during comparisons if( length(LFSize) == 1 ) LFSize = LFSize .* [1,1]; end if( length(FiltOptions.Extent2D) == 1 ) FiltOptions.Extent2D = FiltOptions.Extent2D .* [1,1]; end if( length(FiltOptions.Aspect2D) == 1 ) FiltOptions.Aspect2D = FiltOptions.Aspect2D .* [1,1]; end ExtentWithAspect = FiltOptions.Extent2D.*FiltOptions.Aspect2D / 2; s = LFNormalizedFreqAxis( LFSize(1), FiltOptions.Precision ) .* FiltOptions.Aspect2D(1); u = LFNormalizedFreqAxis( LFSize(2), FiltOptions.Precision ) .* FiltOptions.Aspect2D(2); [ss,uu] = ndgrid(s,u); P = [ss(:),uu(:)]'; clear s u ss uu if( ~FiltOptions.IncludeAliased ) Tiles = [0,0]; else Tiles = ceil(ExtentWithAspect); end if( FiltOptions.IncludeAliased ) AADist = inf(LFSize, FiltOptions.Precision); end WinDist = 0; % Tiling proceeds only in positive directions, symmetry is enforced afterward, saving some computation overall for( STile = 0:Tiles(1) ) for( UTile = 0:Tiles(2) ) Dist = inf(LFSize, FiltOptions.Precision); if( FiltOptions.Window ) ValidIdx = ':'; WinDist = bsxfun(@minus, abs(P)', ExtentWithAspect); WinDist = sum(max(0,WinDist).^2, 2); WinDist = reshape(WinDist, LFSize); else ValidIdx = find(all(bsxfun(@le, abs(P), ExtentWithAspect'))); end Dist(ValidIdx) = DistFunc(P(:,ValidIdx), FiltOptions); Dist = Dist + WinDist; if( FiltOptions.IncludeAliased ) AADist(:) = min(AADist(:), Dist(:)); end P(2,:) = P(2,:) + FiltOptions.Aspect2D(2); end P(2,:) = P(2,:) - (Tiles(2)+1) .* FiltOptions.Aspect2D(2); P(1,:) = P(1,:) + FiltOptions.Aspect2D(1); end if( FiltOptions.IncludeAliased ) Dist = AADist; clear AADist end H = zeros(LFSize, FiltOptions.Precision); switch lower(FiltOptions.Rolloff) case 'gaussian' BW = BW.^2 / log(sqrt(2)); H(:) = exp( -Dist / BW ); % Gaussian rolloff case 'butter' FiltOptions = LFDefaultField('FiltOptions', 'Order', 3); Dist = sqrt(Dist) ./ BW; H(:) = sqrt( 1.0 ./ (1.0 + Dist.^(2*FiltOptions.Order)) ); % Butterworth-like rolloff otherwise error('unrecognized rolloff method'); end H = ifftshift(H); % force symmetric H = max(H, H(mod(LFSize(1):-1:1,LFSize(1))+1, mod(LFSize(2):-1:1,LFSize(2))+1));
github
Vincentqyw/light-field-TB-master
LFFindLytroPartnerFile.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFFindLytroPartnerFile.m
1,439
utf_8
a4f3d1519bad3b234bde99c00a97ea3d
% LFFindLytroPartnerFile - Finds metadata / raw data file partner for Lytro white images % % Usage: % % PartnerFilename = LFFindLytroPartnerFile( OrigFilename, PartnerFilenameExtension ) % % The LF Reader tool prepends filenames extracted from LFP storage files, complicating .txt / .raw % file association as the prefix can vary between two files in a pair. This function finds a file's % partner based on a known filename pattern (using underscores to separate the base filename), and a % know partner filename extension. Note this is set up to work specifically with the naming % conventions used by the LFP Reader tool. % % Inputs: % OrigFilename is the known filename % PartnerFilenameExtension is the extension of the file to find % % Output: % PartnerFilename is the name of the first file found matching the specified extension % % See also: LFUtilProcessWhiteImages, LFUtilProcessCalibrations % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function PartnerFilename = LFFindLytroPartnerFile( OrigFilename, PartnerFilenameExtension ) [CurFnamePath, CurFnameBase] = fileparts( OrigFilename ); PrependIdx = find(CurFnameBase == '_', 1); CurFnamePattern = strcat('*', CurFnameBase(PrependIdx:end), PartnerFilenameExtension); DirResult = dir(fullfile(CurFnamePath, CurFnamePattern)); DirResult = DirResult(1).name; PartnerFilename = fullfile(CurFnamePath, DirResult); end
github
Vincentqyw/light-field-TB-master
LFVar2Struct.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFVar2Struct.m
646
utf_8
8e9d0eed0d9242fdf45c14ba302e05d2
% LFVar2Struct - Convenience function to build a struct from a set of variables % % Usage: % StructOut = LFVar2Struct( var1, var2, ... ) % % Example: % Apples = 3; % Oranges = 4; % FruitCount = LFVar2Struct( Apples, Oranges ) % % Results in a struct FruitCount: % FruitCount = % Apples: 3 % Oranges: 4 % % See also: LFStruct2Var % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function StructOut = LFVar2Struct( varargin ) VarNames = arrayfun( @inputname, 1:nargin, 'UniformOutput', false ); StructOut = cell2struct( varargin, VarNames, 2 ); end
github
Vincentqyw/light-field-TB-master
LFBuildLensletGridModel.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFBuildLensletGridModel.m
9,749
utf_8
77a704b9345494e7a5ab0bc07f763d10
% LFBuildLensletGridModel - builds a lenslet grid model from a white image, called by LFUtilProcessWhiteImages % % Usage: % [LensletGridModel, GridCoords] = LFBuildLensletGridModel( WhiteImg, GridModelOptions, DebugDisplay ) % % Inputs: % WhiteImg : path of an image taken through a diffuser, or of an entirely white scene % % GridModelOptions : struct controlling the model-bulding options % .ApproxLensletSpacing : A rough initial estimate to initialize the lenslet spacing % computation % .FilterDiskRadiusMult : Filter disk radius for prefiltering white image for locating % lenslets; expressed relative to lenslet spacing; e.g. a % value of 1/3 means a disk filte with a radius of 1/3 the % lenslet spacing % .CropAmt : Image edge pixels to ignore when finding the grid % .SkipStep : As a speed optimization, not all lenslet centers contribute % to the grid estimate; <SkipStep> pixels are skipped between % lenslet centers that get used; a value of 1 means use all % [optional] .Precision : 'single' or 'double' % % [optional] DebugDisplay : enables a debugging display, default false % % Outputs: % % LensletGridModel : struct describing the lenslet grid % .HSpacing, .VSpacing : Spacing between lenslets, in pixels % .HOffset, .VOffset : Offset of first lenslet, in pixels % .Rot : Rotation of lenslets, in radians % % GridCoords : a list of N x M x 2 pixel coordinates generated from the estimated % LensletGridModel, where N and M are the estimated number of lenslets in the % horizontal and vertical directions, respectively. % % See also: LFUtilProcessWhiteImages % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [LensletGridModel, GridCoords] = LFBuildLensletGridModel( WhiteImg, GridModelOptions, DebugDisplay ) %---Defaults--- GridModelOptions = LFDefaultField( 'GridModelOptions', 'Precision', 'single' ); DebugDisplay = LFDefaultVal( 'DebugDisplay', false ); %---Optionally rotate for vertically-oriented grids--- if( strcmpi(GridModelOptions.Orientation, 'vert') ) WhiteImg = WhiteImg'; end % Try locating lenslets by convolving with a disk % Also tested Gaussian... the disk seems to yield a stronger result h = zeros( size(WhiteImg), GridModelOptions.Precision ); hr = fspecial( 'disk', GridModelOptions.ApproxLensletSpacing * GridModelOptions.FilterDiskRadiusMult ); hr = hr ./ max( hr(:) ); hs = size( hr,1 ); DiskOffset = round( (size(WhiteImg) - hs)/2 ); h( (1:hs) + DiskOffset(1), (1:hs) + DiskOffset(2) ) = hr; fprintf( 'Filtering...\n' ); % Convolve using fft WhiteImg = fft2(WhiteImg); h = fft2(h); WhiteImg = WhiteImg.*h; WhiteImg = ifftshift(ifft2(WhiteImg)); WhiteImg = (WhiteImg - min(WhiteImg(:))) ./ abs(max(WhiteImg(:))-min(WhiteImg(:))); WhiteImg = cast(WhiteImg, GridModelOptions.Precision); clear h fprintf('Finding Peaks...\n'); % Find peaks in convolution... ideally these are the lenslet centers Peaks = imregionalmax(WhiteImg); PeakIdx = find(Peaks==1); [PeakIdxY,PeakIdxX] = ind2sub(size(Peaks),PeakIdx); clear Peaks % Crop to central peaks; eliminates edge effects InsidePts = find(PeakIdxY>GridModelOptions.CropAmt & PeakIdxY<size(WhiteImg,1)-GridModelOptions.CropAmt & ... PeakIdxX>GridModelOptions.CropAmt & PeakIdxX<size(WhiteImg,2)-GridModelOptions.CropAmt); PeakIdxY = PeakIdxY(InsidePts); PeakIdxX = PeakIdxX(InsidePts); %---Form a Delaunay triangulation to facilitate row/column traversal--- Triangulation = DelaunayTri(PeakIdxY, PeakIdxX); %---Traverse rows and columns of lenslets, collecting stats--- if( DebugDisplay ) LFFigure(3); cla imagesc( WhiteImg ); colormap gray hold on end %--Traverse vertically-- fprintf('Vertical fit...\n'); YStart = GridModelOptions.CropAmt*2; YStop = size(WhiteImg,1)-GridModelOptions.CropAmt*2; XIdx = 1; for( XStart = GridModelOptions.CropAmt*2:GridModelOptions.SkipStep:size(WhiteImg,2)-GridModelOptions.CropAmt*2 ) CurPos = [XStart, YStart]; YIdx = 1; while( 1 ) ClosestLabel = nearestNeighbor(Triangulation, CurPos(2), CurPos(1)); ClosestPt = [PeakIdxX(ClosestLabel), PeakIdxY(ClosestLabel)]; RecPtsY(XIdx,YIdx,:) = ClosestPt; if( DebugDisplay ) plot( ClosestPt(1), ClosestPt(2), 'r.' ); end CurPos = ClosestPt; CurPos(2) = round(CurPos(2) + GridModelOptions.ApproxLensletSpacing * sqrt(3)); if( CurPos(2) > YStop ) break; end YIdx = YIdx + 1; end %--Estimate angle for this most recent line-- LineFitY(XIdx,:) = polyfit(RecPtsY(XIdx, 3:end-3,2), RecPtsY(XIdx, 3:end-3,1), 1); XIdx = XIdx + 1; end if( DebugDisplay ) drawnow; end %--Traverse horizontally-- fprintf('Horizontal fit...\n'); XStart = GridModelOptions.CropAmt*2; XStop = size(WhiteImg,2)-GridModelOptions.CropAmt*2; YIdx = 1; for( YStart = GridModelOptions.CropAmt*2:GridModelOptions.SkipStep:size(WhiteImg,1)-GridModelOptions.CropAmt*2 ) CurPos = [XStart, YStart]; XIdx = 1; while( 1 ) ClosestLabel = nearestNeighbor(Triangulation, CurPos(2), CurPos(1)); ClosestPt = [PeakIdxX(ClosestLabel), PeakIdxY(ClosestLabel)]; RecPtsX(XIdx,YIdx,:) = ClosestPt; if( DebugDisplay ) plot( ClosestPt(1), ClosestPt(2), 'y.' ); end CurPos = ClosestPt; CurPos(1) = round(CurPos(1) + GridModelOptions.ApproxLensletSpacing); if( CurPos(1) > XStop ) break; end XIdx = XIdx + 1; end %--Estimate angle for this most recent line-- LineFitX(YIdx,:) = polyfit(RecPtsX(3:end-3,YIdx,1), RecPtsX(3:end-3,YIdx,2), 1); YIdx = YIdx + 1; end if( DebugDisplay ) drawnow; end %--Trim ends to wipe out alignment, initial estimate artefacts-- RecPtsY = RecPtsY(3:end-2, 3:end-2,:); RecPtsX = RecPtsX(3:end-2, 3:end-2,:); %--Estimate angle-- SlopeX = mean(LineFitX(:,1)); SlopeY = mean(LineFitY(:,1)); AngleX = atan2(-SlopeX,1); AngleY = atan2(SlopeY,1); EstAngle = mean([AngleX,AngleY]); %--Estimate spacing, assuming approx zero angle-- t=squeeze(RecPtsY(:,:,2)); YSpacing = diff(t,1,2); YSpacing = mean(YSpacing(:))/2 / (sqrt(3)/2); t=squeeze(RecPtsX(:,:,1)); XSpacing = diff(t,1,1); XSpacing = mean(XSpacing(:)); %--Correct for angle-- XSpacing = XSpacing / cos(EstAngle); YSpacing = YSpacing / cos(EstAngle); %--Build initial grid estimate, starting with CropAmt for the offsets-- LensletGridModel = struct('HSpacing',XSpacing, 'VSpacing',YSpacing*sqrt(3)/2, 'HOffset',GridModelOptions.CropAmt, ... 'VOffset',GridModelOptions.CropAmt, 'Rot',-EstAngle, 'Orientation', GridModelOptions.Orientation, ... 'FirstPosShiftRow', 2 ); LensletGridModel.UMax = ceil( (size(WhiteImg,2)-GridModelOptions.CropAmt*2)/XSpacing ); LensletGridModel.VMax = ceil( (size(WhiteImg,1)-GridModelOptions.CropAmt*2)/YSpacing/(sqrt(3)/2) ); GridCoords = LFBuildHexGrid( LensletGridModel ); %--Find offset to nearest peak for each-- GridCoordsX = GridCoords(:,:,1); GridCoordsY = GridCoords(:,:,2); BuildGridCoords = [GridCoordsX(:), GridCoordsY(:)]; IdealPts = nearestNeighbor(Triangulation, round(GridCoordsY(:)), round(GridCoordsX(:))); IdealPtCoords = [PeakIdxX(IdealPts), PeakIdxY(IdealPts)]; %--Estimate single offset for whole grid-- EstOffset = IdealPtCoords - BuildGridCoords; EstOffset = median(EstOffset); LensletGridModel.HOffset = LensletGridModel.HOffset + EstOffset(1); LensletGridModel.VOffset = LensletGridModel.VOffset + EstOffset(2); %--Remove crop offset / find top-left lenslet-- NewVOffset = mod( LensletGridModel.VOffset, LensletGridModel.VSpacing ); VSteps = round( (LensletGridModel.VOffset - NewVOffset) / LensletGridModel.VSpacing ); % should be a whole number VStepParity = mod( VSteps, 2 ); if( VStepParity == 1 ) LensletGridModel.HOffset = LensletGridModel.HOffset + LensletGridModel.HSpacing/2; end NewHOffset = mod( LensletGridModel.HOffset, LensletGridModel.HSpacing/2 ); HSteps = round( (LensletGridModel.HOffset - NewHOffset) / (LensletGridModel.HSpacing/2) ); % should be a whole number HStepParity = mod( HSteps, 2 ); LensletGridModel.FirstPosShiftRow = 2-HStepParity; if( DebugDisplay ) plot( LensletGridModel.HOffset, LensletGridModel.VOffset, 'ro' ); plot( NewHOffset, NewVOffset, 'yx'); drawnow end LensletGridModel.HOffset = NewHOffset; LensletGridModel.VOffset = NewVOffset; %---Finalize grid--- LensletGridModel.UMax = floor((size(WhiteImg,2)-LensletGridModel.HOffset)/LensletGridModel.HSpacing) + 1; LensletGridModel.VMax = floor((size(WhiteImg,1)-LensletGridModel.VOffset)/LensletGridModel.VSpacing) + 1; GridCoords = LFBuildHexGrid( LensletGridModel ); fprintf('...Done.\n'); end function [GridCoords] = LFBuildHexGrid( LensletGridModel ) RotCent = eye(3); RotCent(1:2,3) = [LensletGridModel.HOffset, LensletGridModel.VOffset]; ToOffset = eye(3); ToOffset(1:2,3) = [LensletGridModel.HOffset, LensletGridModel.VOffset]; R = ToOffset * RotCent * LFRotz(LensletGridModel.Rot) * RotCent^-1; [vv,uu] = ndgrid((0:LensletGridModel.VMax-1).*LensletGridModel.VSpacing, (0:LensletGridModel.UMax-1).*LensletGridModel.HSpacing); uu(LensletGridModel.FirstPosShiftRow:2:end,:) = uu(LensletGridModel.FirstPosShiftRow:2:end,:) + 0.5.*LensletGridModel.HSpacing; GridCoords = [uu(:), vv(:), ones(numel(vv),1)]; GridCoords = (R*GridCoords')'; GridCoords = reshape(GridCoords(:,1:2), [LensletGridModel.VMax,LensletGridModel.UMax,2]); end
github
Vincentqyw/light-field-TB-master
LFDefaultVal.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFDefaultVal.m
1,291
utf_8
c246f7b5e263b013ced34d42170f53b4
% LFDefaultVal - Convenience function to set up default parameter values % % Usage: % % Var = LFDefaultVal( Var, DefaultVal ) % % % This provides an elegant way to establish default parameter values. See LFDefaultField for setting % up structs with default field values. % % Inputs: % % Var: string giving the name of the parameter % DefaultVal: default value for the parameter % % % Outputs: % % Var: if the parameter already existed, the output matches its original value, otherwise the % output takes on the specified default value % % Example: % % clearvars % ExistingVar = 42; % ExistingVar = LFDefaultVal( 'ExistingVar', 3 ) % OtherVar = LFDefaultVal( 'OtherVar', 3 ) % % Results in : % ExistingVar = % 42 % OtherVar = % 3 % % Usage for setting up default function arguments is demonstrated in most of the LF Toolbox % functions. % % See also: LFDefaultField % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function Var = LFDefaultVal( Var, DefaultVal ) CheckIfExists = sprintf('exist(''%s'', ''var'') && ~isempty(%s)', Var, Var); VarExists = evalin( 'caller', CheckIfExists ); if( ~VarExists ) Var = DefaultVal; else Var = evalin( 'caller', Var ); end end
github
Vincentqyw/light-field-TB-master
LFDispSetup.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFDispSetup.m
2,717
utf_8
018642a726ed8feb41058f29f9ffeb14
% LFDispSetup - helper function used to set up a light field display % % Usage: % % [ImageHandle, FigureHandle] = LFDispSetup( InitialFrame ) % [ImageHandle, FigureHandle] = LFDispSetup( InitialFrame, ScaleFactor ) % % % This sets up a figure for LFDispMousePan and LFDispVidCirc. The figure is configured for % high-performance display, and subsequent calls will reuse the same figure, rather than creating a % new window on each call. The function should handle both mono and colour images. % % % Inputs: % % InitialFrame : a 2D image with which to start the display % % Optional Inputs: % % ScaleFactor : Adjusts the size of the display -- 1 means no change, 2 means twice as big, etc. % Integer values are recommended to avoid scaling artifacts. Note that the scale % factor is only applied the first time a figure is created -- i.e. the figure % must be closed to make a change to scale. % % Outputs: % % FigureHandle, ImageHandle : handles of the created objects % % % See also: LFDispVidCirc, LFDispMousePan % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function [ImageHandle, FigureHandle] = LFDispSetup( InitialFrame, ScaleFactor ) FigureHandle = findobj('tag','LFDisplay'); if( isempty(FigureHandle) ) % Get screen size set( 0, 'units','pixels' ); ScreenSize = get( 0, 'screensize' ); ScreenSize = ScreenSize(3:4); % Get LF display size FrameSize = [size(InitialFrame,2),size(InitialFrame,1)]; % Create the figure FigureHandle = figure(... 'doublebuffer','on',... 'backingstore','off',... ...%'menubar','none',... ...%'toolbar','none',... 'tag','LFDisplay'); % Set the window's position and size WindowPos = get( FigureHandle, 'Position' ); WindowPos(3:4) = FrameSize; WindowPos(1:2) = floor( (ScreenSize - FrameSize)./2 ); set( FigureHandle, 'Position', WindowPos ); % Set the axis position and size within the figure AxesPos = [0,0,size(InitialFrame,2),size(InitialFrame,1)]; axes('units','pixels',... 'Position', AxesPos,... 'xlimmode','manual',... 'ylimmode','manual',... 'zlimmode','manual',... 'climmode','manual',... 'alimmode','manual',... 'layer','bottom'); ImageHandle = imshow(InitialFrame); % If a scaling factor is requested, apply it if( exist('ScaleFactor','var') ) truesize(floor(ScaleFactor*size(InitialFrame(:,:,1)))); end else ImageHandle = findobj(FigureHandle,'type','image'); set(ImageHandle,'cdata', InitialFrame); end
github
Vincentqyw/light-field-TB-master
LFGatherCamInfo.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFGatherCamInfo.m
2,778
utf_8
c0acfa7e282c05682ab4f98ab740a59c
% LFGatherCamInfo - collect metadata from a folder of processed white images or calibrations % % Usage: % % CamInfo = LFGatherCamInfo( FilePath, FilenamePattern ) % % % This function is designed to work with one of two sources of information: a folder of Lytro white % images, as extracted from the calibration data using an LFP tool; or a folder of calibrations, as % generated by LFUtilCalLensletCam. % % Inputs: % % FilePath is a path to the folder containing either the white images or the calibration files. % % FilenamePattern is a pattern, with wildcards, identifying the metadata files to process. Typical % values are 'CalInfo*.json' for calibration info, and '*T1CALIB__MOD_*.TXT' for white images. % % Outputs: % % CamInfo is a struct array containing zoom, focus and filename info for each file. Exposure info % is also included for white images. % % See LFUtilProcessCalibrations and LFUtilProcessWhiteImages for example usage. % % See also: LFUtilProcessWhiteImages, LFUtilProcessCalibrations % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function CamInfo = LFGatherCamInfo( FilePath, FilenamePattern ) %---Locate all input files--- [FileNames, BasePath] = LFFindFilesRecursive( FilePath, FilenamePattern ); if( isempty(FileNames) ) error('No files found'); end fprintf('Found :\n'); disp(FileNames) %---Process each--- fprintf('Filename, Camera Model / Serial, ZoomStep, FocusStep\n'); for( iFile = 1:length(FileNames) ) CurFname = FileNames{iFile}; CurFileInfo = LFReadMetadata( fullfile(BasePath, CurFname) ); CurCamInfo = []; if( isfield( CurFileInfo, 'CamInfo' ) ) %---Calibration file--- CurCamInfo = CurFileInfo.CamInfo; elseif( isfield( CurFileInfo, 'master' ) ) %---Lytro TXT metadata file associated with white image--- CurCamInfo.ZoomStep = CurFileInfo.master.picture.frameArray.frame.metadata.devices.lens.zoomStep; CurCamInfo.FocusStep = CurFileInfo.master.picture.frameArray.frame.metadata.devices.lens.focusStep; CurCamInfo.ExposureDuration = CurFileInfo.master.picture.frameArray.frame.metadata.devices.shutter.frameExposureDuration; CurCamInfo.CamSerial = CurFileInfo.master.picture.frameArray.frame.privateMetadata.camera.serialNumber; CurCamInfo.CamModel = CurFileInfo.master.picture.frameArray.frame.metadata.camera.model; else error('Unrecognized file format reading metadata\n'); end fprintf(' %s :\t%s / %s, %d, %d\n', CurFname, CurCamInfo.CamModel, CurCamInfo.CamSerial, CurCamInfo.ZoomStep, CurCamInfo.FocusStep); CurCamInfo.Fname = CurFname; CamInfo(iFile) = CurCamInfo; end
github
Vincentqyw/light-field-TB-master
LFToolboxVersion.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFToolboxVersion.m
252
utf_8
d37c67edd0424685c2530c25195c3826
% LFToolboxVersion - returns a string describing the current toolbox version % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function VersionStr = LFToolboxVersion VersionStr = 'v0.4 released 12-Feb-2015';
github
Vincentqyw/light-field-TB-master
LFStruct2Var.m
.m
light-field-TB-master/LFToolbox0.4/SupportFunctions/LFStruct2Var.m
871
utf_8
bd1821a5700012dfce0f79c4d5dd8ab0
% LFStruct2Var - Convenience function to break a subset of variables out of a struct % % Usage: % [var1, var2, ...] = LFStruct2Var( StructIn, 'var1', 'var2', ... ) % % This would ideally exclude the named variables in the argument list, but there was no elegant way % to do this given the absence of an `outputname' function to match Matlab's `inputname'. % % Example: % FruitCount = struct('Apples', 3, 'Bacon', 42, 'Oranges', 4); % [Apples, Oranges] = LFStruct2Var( FruitCount, 'Apples', 'Oranges' ) % % Results in % Apples = % 3 % Oranges = % 4 % % See also: LFStruct2Var % Part of LF Toolbox v0.4 released 12-Feb-2015 % Copyright (c) 2013-2015 Donald G. Dansereau function varargout = LFStruct2Var( StructIn, varargin ) for( i=1:length(varargin) ) varargout{i} = StructIn.(varargin{i}); end end