plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
philippboehmsturm/antx-master
spm_cfg_fmri_spec.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_fmri_spec.m
42,012
utf_8
7692832cbcb1b1b77dff681c2a7319f9
function fmri_spec = spm_cfg_fmri_spec % SPM Configuration file for fMRI model specification %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_fmri_spec.m 637 2011-05-11 09:53:31Z vglauche $ rev = '$Rev: 637 $'; % --------------------------------------------------------------------- % dir Directory % --------------------------------------------------------------------- dir = cfg_files; dir.tag = 'dir'; dir.name = 'Directory'; dir.help = {'Select a directory where the SPM.mat file containing the specified design matrix will be written.'}; dir.filter = 'dir'; dir.ufilter = '.*'; dir.num = [1 1]; % --------------------------------------------------------------------- % units Units for design % --------------------------------------------------------------------- units = cfg_menu; units.tag = 'units'; units.name = 'Units for design'; units.help = {'The onsets of events or blocks can be specified in either scans or seconds.'}; units.labels = { 'Scans' 'Seconds' }'; units.values = { 'scans' 'secs' }'; % --------------------------------------------------------------------- % RT Interscan interval % --------------------------------------------------------------------- RT = cfg_entry; RT.tag = 'RT'; RT.name = 'Interscan interval'; RT.help = {'Interscan interval, TR, (specified in seconds). This is the time between acquiring a plane of one volume and the same plane in the next volume. It is assumed to be constant throughout.'}; RT.strtype = 'e'; RT.num = [1 1]; % --------------------------------------------------------------------- % fmri_t Microtime resolution % --------------------------------------------------------------------- fmri_t = cfg_entry; fmri_t.tag = 'fmri_t'; fmri_t.name = 'Microtime resolution'; fmri_t.help = { 'The microtime resolution, t, is the number of time-bins per scan used when building regressors. ' '' 'Do not change this parameter unless you have a long TR and wish to shift regressors so that they are aligned to a particular slice. ' }'; fmri_t.strtype = 'e'; fmri_t.num = [1 1]; fmri_t.def = @(val)spm_get_defaults('stats.fmri.fmri_t', val{:}); % --------------------------------------------------------------------- % fmri_t0 Microtime onset % --------------------------------------------------------------------- fmri_t0 = cfg_entry; fmri_t0.tag = 'fmri_t0'; fmri_t0.name = 'Microtime onset'; fmri_t0.help = { 'The microtime onset, t0, is the first time-bin at which the regressors are resampled to coincide with data acquisition. If t0 = 1 then the regressors will be appropriate for the first slice. If you want to temporally realign the regressors so that they match responses in the middle slice then make t0 = t/2 (assuming there is a negligible gap between volume acquisitions). ' '' 'Do not change the default setting unless you have a long TR. ' }'; fmri_t0.strtype = 'e'; fmri_t0.num = [1 1]; fmri_t0.def = @(val)spm_get_defaults('stats.fmri.fmri_t0', val{:}); % --------------------------------------------------------------------- % timing Timing parameters % --------------------------------------------------------------------- timing = cfg_branch; timing.tag = 'timing'; timing.name = 'Timing parameters'; timing.val = {units RT fmri_t fmri_t0 }; timing.help = { 'Specify various timing parameters needed to construct the design matrix. This includes the units of the design specification and the interscan interval.' '' 'Also, with longs TRs you may want to shift the regressors so that they are aligned to a particular slice. This is effected by changing the microtime resolution and onset. ' }'; % --------------------------------------------------------------------- % scans Scans % --------------------------------------------------------------------- scans = cfg_files; scans.tag = 'scans'; scans.name = 'Scans'; scans.help = {'Select the fMRI scans for this session. They must all have the same image dimensions, orientation, voxel size etc.'}; scans.filter = 'image'; scans.ufilter = '.*'; scans.num = [1 Inf]; % --------------------------------------------------------------------- % name Name % --------------------------------------------------------------------- name = cfg_entry; name.tag = 'name'; name.name = 'Name'; name.help = {'Condition Name'}; name.strtype = 's'; name.num = [1 Inf]; % --------------------------------------------------------------------- % onset Onsets % --------------------------------------------------------------------- onset = cfg_entry; onset.tag = 'onset'; onset.name = 'Onsets'; onset.help = {'Specify a vector of onset times for this condition type. '}; onset.strtype = 'e'; onset.num = [Inf 1]; % --------------------------------------------------------------------- % duration Durations % --------------------------------------------------------------------- duration = cfg_entry; duration.tag = 'duration'; duration.name = 'Durations'; duration.help = {'Specify the event durations. Epoch and event-related responses are modeled in exactly the same way but by specifying their different durations. Events are specified with a duration of 0. If you enter a single number for the durations it will be assumed that all trials conform to this duration. If you have multiple different durations, then the number must match the number of onset times.'}; duration.strtype = 'e'; duration.num = [Inf 1]; % --------------------------------------------------------------------- % tmod Time Modulation % --------------------------------------------------------------------- tmod = cfg_menu; tmod.tag = 'tmod'; tmod.name = 'Time Modulation'; tmod.help = { 'This option allows for the characterisation of linear or nonlinear time effects. For example, 1st order modulation would model the stick functions and a linear change of the stick function heights over time. Higher order modulation will introduce further columns that contain the stick functions scaled by time squared, time cubed etc.' '' 'Interactions or response modulations can enter at two levels. Firstly the stick function itself can be modulated by some parametric variate (this can be time or some trial-specific variate like reaction time) modeling the interaction between the trial and the variate or, secondly interactions among the trials themselves can be modeled using a Volterra series formulation that accommodates interactions over time (and therefore within and between trial types).' }'; tmod.labels = { 'No Time Modulation' '1st order Time Modulation' '2nd order Time Modulation' '3rd order Time Modulation' '4th order Time Modulation' '5th order Time Modulation' '6th order Time Modulation' }'; tmod.values = {0 1 2 3 4 5 6}; tmod.val = {0}; % --------------------------------------------------------------------- % name Name % --------------------------------------------------------------------- name1 = cfg_entry; name1.tag = 'name'; name1.name = 'Name'; name1.help = {'Enter a name for this parameter.'}; name1.strtype = 's'; name1.num = [1 Inf]; % --------------------------------------------------------------------- % param Values % --------------------------------------------------------------------- param = cfg_entry; param.tag = 'param'; param.name = 'Values'; param.help = {'Enter a vector of values, one for each occurence of the event.'}; param.strtype = 'e'; param.num = [Inf 1]; % --------------------------------------------------------------------- % poly Polynomial Expansion % --------------------------------------------------------------------- poly = cfg_menu; poly.tag = 'poly'; poly.name = 'Polynomial Expansion'; poly.help = {'For example, 1st order modulation would model the stick functions and a linear change of the stick function heights over different values of the parameter. Higher order modulation will introduce further columns that contain the stick functions scaled by parameter squared, cubed etc.'}; poly.labels = { '1st order' '2nd order' '3rd order' '4th order' '5th order' '6th order' }'; poly.values = {1 2 3 4 5 6}; % --------------------------------------------------------------------- % pmod Parameter % --------------------------------------------------------------------- pmod = cfg_branch; pmod.tag = 'pmod'; pmod.name = 'Parameter'; pmod.val = {name1 param poly }; pmod.help = { 'Model interractions with user specified parameters. This allows nonlinear effects relating to some other measure to be modelled in the design matrix.' '' 'Interactions or response modulations can enter at two levels. Firstly the stick function itself can be modulated by some parametric variate (this can be time or some trial-specific variate like reaction time) modeling the interaction between the trial and the variate or, secondly interactions among the trials themselves can be modeled using a Volterra series formulation that accommodates interactions over time (and therefore within and between trial types).' }'; % --------------------------------------------------------------------- % generic Parametric Modulations % --------------------------------------------------------------------- generic2 = cfg_repeat; generic2.tag = 'generic'; generic2.name = 'Parametric Modulations'; generic2.help = {'The stick function itself can be modulated by some parametric variate (this can be time or some trial-specific variate like reaction time) modeling the interaction between the trial and the variate. The events can be modulated by zero or more parameters.'}; generic2.values = {pmod }; generic2.num = [0 Inf]; % --------------------------------------------------------------------- % cond Condition % --------------------------------------------------------------------- cond = cfg_branch; cond.tag = 'cond'; cond.name = 'Condition'; cond.val = {name onset duration tmod generic2 }; cond.check = @cond_check; cond.help = {'An array of input functions is contructed, specifying occurrence events or epochs (or both). These are convolved with a basis set at a later stage to give regressors that enter into the design matrix. Interactions of evoked responses with some parameter (time or a specified variate) enter at this stage as additional columns in the design matrix with each trial multiplied by the [expansion of the] trial-specific parameter. The 0th order expansion is simply the main effect in the first column.'}; % --------------------------------------------------------------------- % generic Conditions % --------------------------------------------------------------------- generic1 = cfg_repeat; generic1.tag = 'generic'; generic1.name = 'Conditions'; generic1.help = {'You are allowed to combine both event- and epoch-related responses in the same model and/or regressor. Any number of condition (event or epoch) types can be specified. Epoch and event-related responses are modeled in exactly the same way by specifying their onsets [in terms of onset times] and their durations. Events are specified with a duration of 0. If you enter a single number for the durations it will be assumed that all trials conform to this duration.For factorial designs, one can later associate these experimental conditions with the appropriate levels of experimental factors. '}; generic1.values = {cond }; generic1.num = [0 Inf]; % --------------------------------------------------------------------- % multi Multiple conditions % --------------------------------------------------------------------- multi = cfg_files; multi.tag = 'multi'; multi.name = 'Multiple conditions'; multi.val{1} = {''}; multi.help = { 'Select the *.mat file containing details of your multiple experimental conditions. ' '' 'If you have multiple conditions then entering the details a condition at a time is very inefficient. This option can be used to load all the required information in one go. You will first need to create a *.mat file containing the relevant information. ' '' 'This *.mat file must include the following cell arrays (each 1 x n): names, onsets and durations. eg. names=cell(1,5), onsets=cell(1,5), durations=cell(1,5), then names{2}=''SSent-DSpeak'', onsets{2}=[3 5 19 222], durations{2}=[0 0 0 0], contain the required details of the second condition. These cell arrays may be made available by your stimulus delivery program, eg. COGENT. The duration vectors can contain a single entry if the durations are identical for all events.' '' 'Time and Parametric effects can also be included. For time modulation include a cell array (1 x n) called tmod. It should have a have a single number in each cell. Unused cells may contain either a 0 or be left empty. The number specifies the order of time modulation from 0 = No Time Modulation to 6 = 6th Order Time Modulation. eg. tmod{3} = 1, modulates the 3rd condition by a linear time effect.' '' 'For parametric modulation include a structure array, which is up to 1 x n in size, called pmod. n must be less than or equal to the number of cells in the names/onsets/durations cell arrays. The structure array pmod must have the fields: name, param and poly. Each of these fields is in turn a cell array to allow the inclusion of one or more parametric effects per column of the design. The field name must be a cell array containing strings. The field param is a cell array containing a vector of parameters. Remember each parameter must be the same length as its corresponding onsets vector. The field poly is a cell array (for consistency) with each cell containing a single number specifying the order of the polynomial expansion from 1 to 6.' '' 'Note that each condition is assigned its corresponding entry in the structure array (condition 1 parametric modulators are in pmod(1), condition 2 parametric modulators are in pmod(2), etc. Within a condition multiple parametric modulators are accessed via each fields cell arrays. So for condition 1, parametric modulator 1 would be defined in pmod(1).name{1}, pmod(1).param{1}, and pmod(1).poly{1}. A second parametric modulator for condition 1 would be defined as pmod(1).name{2}, pmod(1).param{2} and pmod(1).poly{2}. If there was also a parametric modulator for condition 2, then remember the first modulator for that condition is in cell array 1: pmod(2).name{1}, pmod(2).param{1}, and pmod(2).poly{1}. If some, but not all conditions are parametrically modulated, then the non-modulated indices in the pmod structure can be left blank. For example, if conditions 1 and 3 but not condition 2 are modulated, then specify pmod(1) and pmod(3). Similarly, if conditions 1 and 2 are modulated but there are 3 conditions overall, it is only necessary for pmod to be a 1 x 2 structure array.' '' 'EXAMPLE:' 'Make an empty pmod structure: ' ' pmod = struct(''name'',{''''},''param'',{},''poly'',{});' 'Specify one parametric regressor for the first condition: ' ' pmod(1).name{1} = ''regressor1'';' ' pmod(1).param{1} = [1 2 4 5 6];' ' pmod(1).poly{1} = 1;' 'Specify 2 parametric regressors for the second condition: ' ' pmod(2).name{1} = ''regressor2-1'';' ' pmod(2).param{1} = [1 3 5 7]; ' ' pmod(2).poly{1} = 1;' ' pmod(2).name{2} = ''regressor2-2'';' ' pmod(2).param{2} = [2 4 6 8 10];' ' pmod(2).poly{2} = 1;' '' 'The parametric modulator should be mean corrected if appropriate. Unused structure entries should have all fields left empty.' }'; multi.filter = 'mat'; multi.ufilter = '.*'; multi.num = [0 1]; % --------------------------------------------------------------------- % name Name % --------------------------------------------------------------------- name = cfg_entry; name.tag = 'name'; name.name = 'Name'; name.help = {'Enter name of regressor eg. First movement parameter'}; name.strtype = 's'; name.num = [1 Inf]; % --------------------------------------------------------------------- % val Value % --------------------------------------------------------------------- val = cfg_entry; val.tag = 'val'; val.name = 'Value'; val.help = {'Enter the vector of regressor values'}; val.strtype = 'e'; val.num = [Inf 1]; % --------------------------------------------------------------------- % regress Regressor % --------------------------------------------------------------------- regress = cfg_branch; regress.tag = 'regress'; regress.name = 'Regressor'; regress.val = {name val }; regress.help = {'regressor'}; % --------------------------------------------------------------------- % generic Regressors % --------------------------------------------------------------------- generic2 = cfg_repeat; generic2.tag = 'generic'; generic2.name = 'Regressors'; generic2.help = {'Regressors are additional columns included in the design matrix, which may model effects that would not be convolved with the haemodynamic response. One such example would be the estimated movement parameters, which may confound the data.'}; generic2.values = {regress }; generic2.num = [0 Inf]; % --------------------------------------------------------------------- % multi_reg Multiple regressors % --------------------------------------------------------------------- multi_reg = cfg_files; multi_reg.tag = 'multi_reg'; multi_reg.name = 'Multiple regressors'; multi_reg.val{1} = {''}; multi_reg.help = { 'Select the *.mat/*.txt file containing details of your multiple regressors. ' '' 'If you have multiple regressors eg. realignment parameters, then entering the details a regressor at a time is very inefficient. This option can be used to load all the required information in one go. ' '' 'You will first need to create a *.mat file containing a matrix R or a *.txt file containing the regressors. Each column of R will contain a different regressor. When SPM creates the design matrix the regressors will be named R1, R2, R3, ..etc.' }'; multi_reg.filter = 'mat'; multi_reg.ufilter = '.*'; multi_reg.num = [0 1]; % --------------------------------------------------------------------- % hpf High-pass filter % --------------------------------------------------------------------- hpf = cfg_entry; hpf.tag = 'hpf'; hpf.name = 'High-pass filter'; hpf.help = {'The default high-pass filter cutoff is 128 seconds.Slow signal drifts with a period longer than this will be removed. Use ''explore design'' to ensure this cut-off is not removing too much experimental variance. High-pass filtering is implemented using a residual forming matrix (i.e. it is not a convolution) and is simply to a way to remove confounds without estimating their parameters explicitly. The constant term is also incorporated into this filter matrix.'}; hpf.strtype = 'e'; hpf.num = [1 1]; hpf.def = @(val)spm_get_defaults('stats.fmri.hpf', val{:}); % --------------------------------------------------------------------- % sess Subject/Session % --------------------------------------------------------------------- sess = cfg_branch; sess.tag = 'sess'; sess.name = 'Subject/Session'; sess.val = {scans generic1 multi generic2 multi_reg hpf }; sess.check = @sess_check; sess.help = {'The design matrix for fMRI data consists of one or more separable, session-specific partitions. These partitions are usually either one per subject, or one per fMRI scanning session for that subject.'}; % --------------------------------------------------------------------- % generic Data & Design % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Data & Design'; generic.help = { 'The design matrix defines the experimental design and the nature of hypothesis testing to be implemented. The design matrix has one row for each scan and one column for each effect or explanatory variable. (e.g. regressor or stimulus function). ' '' 'This allows you to build design matrices with separable session-specific partitions. Each partition may be the same (in which case it is only necessary to specify it once) or different. Responses can be either event- or epoch related, where the latter model involves prolonged and possibly time-varying responses to state-related changes in experimental conditions. Event-related response are modelled in terms of responses to instantaneous events. Mathematically they are both modelled by convolving a series of delta (stick) or box-car functions, encoding the input or stimulus function. with a set of hemodynamic basis functions.' }'; generic.values = {sess }; generic.num = [1 Inf]; % --------------------------------------------------------------------- % name Name % --------------------------------------------------------------------- name = cfg_entry; name.tag = 'name'; name.name = 'Name'; name.help = {'Name of factor, eg. ''Repetition'' '}; name.strtype = 's'; name.num = [1 Inf]; % --------------------------------------------------------------------- % levels Levels % --------------------------------------------------------------------- levels = cfg_entry; levels.tag = 'levels'; levels.name = 'Levels'; levels.help = {'Enter number of levels for this factor, eg. 2'}; levels.strtype = 'e'; levels.num = [Inf 1]; % --------------------------------------------------------------------- % fact Factor % --------------------------------------------------------------------- fact = cfg_branch; fact.tag = 'fact'; fact.name = 'Factor'; fact.val = {name levels }; fact.help = {'Add a new factor to your experimental design'}; % --------------------------------------------------------------------- % generic Factorial design % --------------------------------------------------------------------- generic1 = cfg_repeat; generic1.tag = 'generic'; generic1.name = 'Factorial design'; generic1.help = { 'If you have a factorial design then SPM can automatically generate the contrasts necessary to test for the main effects and interactions. ' '' 'This includes the F-contrasts necessary to test for these effects at the within-subject level (first level) and the simple contrasts necessary to generate the contrast images for a between-subject (second-level) analysis.' '' 'To use this option, create as many factors as you need and provide a name and number of levels for each. SPM assumes that the condition numbers of the first factor change slowest, the second factor next slowest etc. It is best to write down the contingency table for your design to ensure this condition is met. This table relates the levels of each factor to the conditions. ' '' 'For example, if you have 2-by-3 design your contingency table has two rows and three columns where the the first factor spans the rows, and the second factor the columns. The numbers of the conditions are 1,2,3 for the first row and 4,5,6 for the second. ' }'; generic1.values = {fact }; generic1.num = [0 Inf]; % --------------------------------------------------------------------- % derivs Model derivatives % --------------------------------------------------------------------- derivs = cfg_menu; derivs.tag = 'derivs'; derivs.name = 'Model derivatives'; derivs.help = {'Model HRF Derivatives. The canonical HRF combined with time and dispersion derivatives comprise an ''informed'' basis set, as the shape of the canonical response conforms to the hemodynamic response that is commonly observed. The incorporation of the derivate terms allow for variations in subject-to-subject and voxel-to-voxel responses. The time derivative allows the peak response to vary by plus or minus a second and the dispersion derivative allows the width of the response to vary. The informed basis set requires an SPM{F} for inference. T-contrasts over just the canonical are perfectly valid but assume constant delay/dispersion. The informed basis set compares favourably with eg. FIR bases on many data sets. '}; derivs.labels = { 'No derivatives' 'Time derivatives' 'Time and Dispersion derivatives' }'; derivs.values = {[0 0] [1 0] [1 1]}; derivs.val = {[0 0]}; % --------------------------------------------------------------------- % hrf Canonical HRF % --------------------------------------------------------------------- hrf = cfg_branch; hrf.tag = 'hrf'; hrf.name = 'Canonical HRF'; hrf.val = {derivs }; hrf.help = {'Canonical Hemodynamic Response Function. This is the default option. Contrasts of these effects have a physical interpretation and represent a parsimonious way of characterising event-related responses. This option is also useful if you wish to look separately at activations and deactivations (this is implemented using a t-contrast with a +1 or -1 entry over the canonical regressor). '}; % --------------------------------------------------------------------- % length Window length % --------------------------------------------------------------------- length = cfg_entry; length.tag = 'length'; length.name = 'Window length'; length.help = {'Post-stimulus window length (in seconds)'}; length.strtype = 'e'; length.num = [1 1]; % --------------------------------------------------------------------- % order Order % --------------------------------------------------------------------- order = cfg_entry; order.tag = 'order'; order.name = 'Order'; order.help = {'Number of basis functions'}; order.strtype = 'e'; order.num = [1 1]; % --------------------------------------------------------------------- % fourier Fourier Set % --------------------------------------------------------------------- fourier = cfg_branch; fourier.tag = 'fourier'; fourier.name = 'Fourier Set'; fourier.val = {length order }; fourier.help = {'Fourier basis functions. This option requires an SPM{F} for inference.'}; % --------------------------------------------------------------------- % length Window length % --------------------------------------------------------------------- length = cfg_entry; length.tag = 'length'; length.name = 'Window length'; length.help = {'Post-stimulus window length (in seconds)'}; length.strtype = 'e'; length.num = [1 1]; % --------------------------------------------------------------------- % order Order % --------------------------------------------------------------------- order = cfg_entry; order.tag = 'order'; order.name = 'Order'; order.help = {'Number of basis functions'}; order.strtype = 'e'; order.num = [1 1]; % --------------------------------------------------------------------- % fourier_han Fourier Set (Hanning) % --------------------------------------------------------------------- fourier_han = cfg_branch; fourier_han.tag = 'fourier_han'; fourier_han.name = 'Fourier Set (Hanning)'; fourier_han.val = {length order }; fourier_han.help = {'Fourier basis functions with Hanning Window - requires SPM{F} for inference.'}; % --------------------------------------------------------------------- % length Window length % --------------------------------------------------------------------- length = cfg_entry; length.tag = 'length'; length.name = 'Window length'; length.help = {'Post-stimulus window length (in seconds)'}; length.strtype = 'e'; length.num = [1 1]; % --------------------------------------------------------------------- % order Order % --------------------------------------------------------------------- order = cfg_entry; order.tag = 'order'; order.name = 'Order'; order.help = {'Number of basis functions'}; order.strtype = 'e'; order.num = [1 1]; % --------------------------------------------------------------------- % gamma Gamma Functions % --------------------------------------------------------------------- gamma = cfg_branch; gamma.tag = 'gamma'; gamma.name = 'Gamma Functions'; gamma.val = {length order }; gamma.help = {'Gamma basis functions - requires SPM{F} for inference.'}; % --------------------------------------------------------------------- % length Window length % --------------------------------------------------------------------- length = cfg_entry; length.tag = 'length'; length.name = 'Window length'; length.help = {'Post-stimulus window length (in seconds)'}; length.strtype = 'e'; length.num = [1 1]; % --------------------------------------------------------------------- % order Order % --------------------------------------------------------------------- order = cfg_entry; order.tag = 'order'; order.name = 'Order'; order.help = {'Number of basis functions'}; order.strtype = 'e'; order.num = [1 1]; % --------------------------------------------------------------------- % fir Finite Impulse Response % --------------------------------------------------------------------- fir = cfg_branch; fir.tag = 'fir'; fir.name = 'Finite Impulse Response'; fir.val = {length order }; fir.help = {'Finite impulse response - requires SPM{F} for inference.'}; % --------------------------------------------------------------------- % bases Basis Functions % --------------------------------------------------------------------- bases = cfg_choice; bases.tag = 'bases'; bases.name = 'Basis Functions'; bases.val = {hrf }; bases.help = {'The most common choice of basis function is the Canonical HRF with or without time and dispersion derivatives. '}; bases.values = {hrf fourier fourier_han gamma fir }; % --------------------------------------------------------------------- % volt Model Interactions (Volterra) % --------------------------------------------------------------------- volt = cfg_menu; volt.tag = 'volt'; volt.name = 'Model Interactions (Volterra)'; volt.help = { 'Generalized convolution of inputs (U) with basis set (bf).' '' 'For first order expansions the causes are simply convolved (e.g. stick functions) in U.u by the basis functions in bf to create a design matrix X. For second order expansions new entries appear in ind, bf and name that correspond to the interaction among the orginal causes. The basis functions for these efects are two dimensional and are used to assemble the second order kernel. Second order effects are computed for only the first column of U.u.' 'Interactions or response modulations can enter at two levels. Firstly the stick function itself can be modulated by some parametric variate (this can be time or some trial-specific variate like reaction time) modeling the interaction between the trial and the variate or, secondly interactions among the trials themselves can be modeled using a Volterra series formulation that accommodates interactions over time (and therefore within and between trial types).' }'; volt.labels = { 'Do not model Interactions' 'Model Interactions' }'; volt.values = {1 2}; volt.val = {1}; % --------------------------------------------------------------------- % global Global normalisation % --------------------------------------------------------------------- xGlobal = cfg_menu; xGlobal.tag = 'global'; xGlobal.name = 'Global normalisation'; xGlobal.help = {'Global intensity normalisation'}; xGlobal.labels = { 'Scaling' 'None' }'; xGlobal.values = { 'Scaling' 'None' }'; xGlobal.val = {'None'}; % --------------------------------------------------------------------- % mask Explicit mask % --------------------------------------------------------------------- mask = cfg_files; mask.tag = 'mask'; mask.name = 'Explicit mask'; mask.val{1} = {''}; mask.help = {'Specify an image for explicitly masking the analysis. A sensible option here is to use a segmention of structural images to specify a within-brain mask. If you select that image as an explicit mask then only those voxels in the brain will be analysed. This both speeds the estimation and restricts SPMs/PPMs to within-brain voxels. Alternatively, if such structural images are unavailble or no masking is required, then leave this field empty.'}; mask.filter = 'image'; mask.ufilter = '.*'; mask.num = [0 1]; % --------------------------------------------------------------------- % cvi Serial correlations % --------------------------------------------------------------------- cvi = cfg_menu; cvi.tag = 'cvi'; cvi.name = 'Serial correlations'; cvi.help = { 'Serial correlations in fMRI time series due to aliased biorhythms and unmodelled neuronal activity can be accounted for using an autoregressive AR(1) model during Classical (ReML) parameter estimation. ' '' 'This estimate assumes the same correlation structure for each voxel, within each session. ReML estimates are then used to correct for non-sphericity during inference by adjusting the statistics and degrees of freedom appropriately. The discrepancy between estimated and actual intrinsic (i.e. prior to filtering) correlations are greatest at low frequencies. Therefore specification of the high-pass filter is particularly important. ' '' 'Serial correlation can be ignored if you choose the ''none'' option. Note that the above options only apply if you later specify that your model will be estimated using the Classical (ReML) approach. If you choose Bayesian estimation these options will be ignored. For Bayesian estimation, the choice of noisemodel (AR model order) is made under the estimation options. ' }'; cvi.labels = { 'none' 'AR(1)' }'; cvi.values = { 'none' 'AR(1)' }'; for k = 1:20 label = sprintf('AR(%d) [arfit fixed order]',k); cvi.labels{end+1} = label; cvi.values{end+1} = {label k}; end for k = 1:20 label = sprintf('AR(%d) [arfit estimate order]',k); cvi.labels{end+1} = label; cvi.values{end+1} = {label -k}; end cvi.def = @(val)spm_get_defaults('stats.fmri.cvi', val{:}); % --------------------------------------------------------------------- % fmri_spec fMRI model specification % --------------------------------------------------------------------- fmri_spec = cfg_exbranch; fmri_spec.tag = 'fmri_spec'; fmri_spec.name = 'fMRI model specification'; fmri_spec.val = {dir timing generic generic1 bases volt xGlobal mask cvi }; fmri_spec.help = { 'Statistical analysis of fMRI data uses a mass-univariate approach based on General Linear Models (GLMs). It comprises the following steps (1) specification of the GLM design matrix, fMRI data files and filtering (2) estimation of GLM paramaters using classical or Bayesian approaches and (3) interrogation of results using contrast vectors to produce Statistical Parametric Maps (SPMs) or Posterior Probability Maps (PPMs).' '' 'The design matrix defines the experimental design and the nature of hypothesis testing to be implemented. The design matrix has one row for each scan and one column for each effect or explanatory variable. (eg. regressor or stimulus function). You can build design matrices with separable session-specific partitions. Each partition may be the same (in which case it is only necessary to specify it once) or different. ' '' 'Responses can be either event- or epoch related, the only distinction is the duration of the underlying input or stimulus function. Mathematically they are both modeled by convolving a series of delta (stick) or box functions (u), indicating the onset of an event or epoch with a set of basis functions. These basis functions model the hemodynamic convolution, applied by the brain, to the inputs. This convolution can be first-order or a generalized convolution modeled to second order (if you specify the Volterra option). The same inputs are used by the Hemodynamic model or Dynamic Causal Models which model the convolution explicitly in terms of hidden state variables. ' '' 'Basis functions can be used to plot estimated responses to single events once the parameters (i.e. basis function coefficients) have been estimated. The importance of basis functions is that they provide a graceful transition between simple fixed response models (like the box-car) and finite impulse response (FIR) models, where there is one basis function for each scan following an event or epoch onset. The nice thing about basis functions, compared to FIR models, is that data sampling and stimulus presentation does not have to be synchronized thereby allowing a uniform and unbiased sampling of peri-stimulus time.' '' 'Event-related designs may be stochastic or deterministic. Stochastic designs involve one of a number of trial-types occurring with a specified probability at successive intervals in time. These probabilities can be fixed (stationary designs) or time-dependent (modulated or non-stationary designs). The most efficient designs obtain when the probabilities of every trial type are equal. A critical issue in stochastic designs is whether to include null events If you wish to estimate the evoked response to a specific event type (as opposed to differential responses) then a null event must be included (even if it is not modeled explicitly).' '' 'In SPM, analysis of data from multiple subjects typically proceeds in two stages using models at two ''levels''. The ''first level'' models are used to implement a within-subject analysis. Typically there will be as many first level models as there are subjects. Analysis proceeds as described using the ''Specify first level'' and ''Estimate'' options. The results of these analyses can then be presented as ''case studies''. More often, however, one wishes to make inferences about the population from which the subjects were drawn. This is an example of a ''Random-Effects (RFX) analysis'' (or, more properly, a mixed-effects analysis). In SPM, RFX analysis is implemented using the ''summary-statistic'' approach where contrast images from each subject are used as summary measures of subject responses. These are then entered as data into a ''second level'' model. ' }'; fmri_spec.prog = @spm_run_fmri_spec; fmri_spec.vout = @vout_stats; fmri_spec.modality = {'FMRI'}; %------------------------------------------------------------------------ %------------------------------------------------------------------------ function t = cond_check(job) t = {}; if (numel(job.onset) ~= numel(job.duration)) && (numel(job.duration)~=1), t = {sprintf('"%s": Number of event onsets (%d) does not match the number of durations (%d).',... job.name, numel(job.onset),numel(job.duration))}; end; for i=1:numel(job.pmod), if numel(job.onset) ~= numel(job.pmod(i).param), t = {t{:}, sprintf('"%s" & "%s":Number of event onsets (%d) does not equal the number of parameters (%d).',... job.name, job.pmod(i).name, numel(job.onset),numel(job.pmod(i).param))}; end; end; return; %------------------------------------------------------------------------- %------------------------------------------------------------------------- function t = sess_check(sess) t = {}; for i=1:numel(sess.regress), if numel(sess.scans) ~= numel(sess.regress(i).val), t = {t{:}, sprintf('Num scans (%d) ~= Num regress[%d] (%d).',numel(sess.scans),i,numel(sess.regress(i).val))}; end; end; return; %------------------------------------------------------------------------- %------------------------------------------------------------------------- function dep = vout_stats(job) dep(1) = cfg_dep; dep(1).sname = 'SPM.mat File'; dep(1).src_output = substruct('.','spmmat'); dep(1).tgt_spec = cfg_findspec({{'filter','mat','strtype','e'}}); %dep(2) = cfg_dep; %dep(2).sname = 'SPM Variable'; %dep(2).src_output = substruct('.','spmvar'); %dep(2).tgt_spec = cfg_findspec({{'strtype','e'}});
github
philippboehmsturm/antx-master
spm_cfg_bms.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_bms.m
26,212
utf_8
e9c005333a71f641ae7d9147b7144d8d
function bms = spm_cfg_bms % Configuration file for BMS interface. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Maria Joao Rosa % $Id: spm_cfg_bms.m 3955 2010-06-29 17:26:29Z maria $ % --------------------------------------------------------------------- % dir Directory % --------------------------------------------------------------------- dir = cfg_files; dir.tag = 'dir'; dir.name = 'Directory'; dir.help = {['Select the directory where the files containing the '... 'results from BMS (BMS.mat) will be written.']}; dir.filter = 'dir'; dir.ufilter = '.*'; dir.num = [1 1]; % --------------------------------------------------------------------- % mod_dcm Models (.mat) % --------------------------------------------------------------------- mod_dcm = cfg_files; mod_dcm.tag = 'mod_dcm'; mod_dcm.name = 'Models'; mod_dcm.help = {['Select the DCM file (.mat) for each model. '... 'DCM.mat files (models) should be specified '... 'in the same order for each subject and session.']}; mod_dcm.filter = 'mat'; mod_dcm.ufilter = '.*'; mod_dcm.num = [0 Inf]; % --------------------------------------------------------------------- % sess_dcm Sessions % --------------------------------------------------------------------- sess_dcm = cfg_branch; sess_dcm.tag = 'sess_dcm'; sess_dcm.name = 'Session'; sess_dcm.val = {mod_dcm }; % --------------------------------------------------------------------- % subj_dcm Subject % --------------------------------------------------------------------- subj_dcm = cfg_repeat; subj_dcm.tag = 'subj_dcm'; subj_dcm.name = 'Subject'; subj_dcm.values = {sess_dcm }; % --------------------------------------------------------------------- % dcm Data % --------------------------------------------------------------------- dcm = cfg_repeat; dcm.tag = 'dcm'; dcm.name = 'Data'; dcm.help = {['Select DCM file (.mat) for each model, session and '... 'subject.']}'; dcm.values = {subj_dcm }; dcm.num = [0 Inf]; % --------------------------------------------------------------------- % mod_map Models (.img) % --------------------------------------------------------------------- mod_map = cfg_files; mod_map.tag = 'mod_map'; mod_map.name = 'Models'; mod_map.help = {['Specify the log. evidence map (.img) for each model. '... 'Log-evidence maps should be specified '... 'in the same order for each subject and session.']}; mod_map.filter = 'image'; mod_map.ufilter = '.*'; mod_map.num = [1 Inf]; % --------------------------------------------------------------------- % sess_map Sessions (Maps) % --------------------------------------------------------------------- sess_map = cfg_branch; sess_map.tag = 'sess_map'; sess_map.name = 'Session'; sess_map.val = {mod_map }; % --------------------------------------------------------------------- % subj_dcm Subject (Maps) % --------------------------------------------------------------------- subj_map = cfg_repeat; subj_map.tag = 'subj_map'; subj_map.name = 'Subject'; subj_map.values = {sess_map }; % --------------------------------------------------------------------- % map Data % --------------------------------------------------------------------- map = cfg_repeat; map.tag = 'map'; map.name = 'Data'; map.help = {['Select the log. evidence maps (.img) for each '... 'model, session and subject.']}'; map.values = {subj_map }; map.num = [1 Inf]; % --------------------------------------------------------------------- % mod_name Name % --------------------------------------------------------------------- mod_name = cfg_entry; mod_name.tag = 'mod_name'; mod_name.name = 'Name'; mod_name.help = {'Specify name for each model (optional).'}; mod_name.strtype = 's'; mod_name.num = [0 Inf]; mod_name.val = {''}; % --------------------------------------------------------------------- % name_mod Name models % --------------------------------------------------------------------- name_mod = cfg_repeat; name_mod.tag = 'name_mod'; name_mod.name = 'Name models'; name_mod.help = {'Specify name for each model (optional).'}'; name_mod.values = {mod_name }; name_mod.num = [0 Inf]; % --------------------------------------------------------------------- % model_sp Load model space % --------------------------------------------------------------------- model_sp = cfg_files; model_sp.tag = 'model_sp'; model_sp.name = 'Load model space'; model_sp.help = {['Optional: load .mat file with all subjects, sessions '... 'and models. This option is a faster alternative to selecting '... 'the DCM.mat files for each subject/model (above in '... '''Data'').'] ['This file is created if the ''Data'' option has been used. '... 'It is saved in the same directory as BMS.mat and can then be loaded '... 'for future BMS/BMA analyses with the same data.'] ['The model space file should contain the structure ''subj''. ' ... 'This structure should have the field ''sess'' for sessions, '... 'then the subfield ''model'' and in ''model'' there should be '... 'five subfields: ''fname'' contains the path to the DCM.mat file, '... '''.F'' the Free Energy of that model, '... '''.Ep'' and ''Cp'' the mean and covariance of the parameters estimates. '... 'Finally the subfield ''.nonLin'' should be 1 if the model is non-linear and '... '0 otherwise.'] ['Example: subj(3).sess(1).model(4).fname contains the path to the DCM.mat '... 'file for subject 3, session 1 and model 4. subj(3).sess(1).model(4).F '... 'contains the value of the Free Energy for the same model/session/subject.']}; model_sp.filter = 'mat'; model_sp.ufilter = '.*'; model_sp.val = {{''}}; model_sp.num = [0 1]; % --------------------------------------------------------------------- % load_f Log-evidence matrix % --------------------------------------------------------------------- load_f = cfg_files; load_f.tag = 'load_f'; load_f.name = 'Log-evidence matrix'; load_f.help = {['Optional: load .mat file with log-evidence values for '... 'comparison. This option is a faster alternative to selecting '... 'the DCM.mat files for each subject/model (above in '... '''Data'') but it does not allow for Bayesian Model Averaging. '... 'To compute BMA the user needs to specify the DCM.mat files '... 'or the model space. '] ['This file should contain an F matrix consisting ' ... 'of [s x m] log-evidence values, where s is the number '... 'of subjects and m the number of models.']}; load_f.filter = 'mat'; load_f.ufilter = '.*'; load_f.val = {{''}}; load_f.num = [0 1]; % --------------------------------------------------------------------- % method Inference Method % --------------------------------------------------------------------- method = cfg_menu; method.tag = 'method'; method.name = 'Inference method'; method.help = {['Specify inference method: random effects '... '(2nd-level, RFX) or fixed effects (1st-level, FFX) analysis. '... 'RFX uses Gibbs sampling.']}; method.labels = { 'Fixed effects (FFX)' 'Random effects (RFX)' }'; method.values = { 'FFX' 'RFX' }'; % --------------------------------------------------------------------- % method_maps Inference Method (maps) % --------------------------------------------------------------------- method_maps = cfg_menu; method_maps.tag = 'method_maps'; method_maps.name = 'Inference method'; method_maps.help = {['Specify inference method: random effects '... '(2nd-level, RFX) or fixed effects (1st-level, FFX) analysis. '... 'RFX uses a Variational Bayes approach.']}; method_maps.labels = { 'Fixed effects (FFX)' 'Random effects (RFX)' }'; method_maps.values = { 'FFX' 'RFX' }'; % % --------------------------------------------------------------------- % % priors Priors % % --------------------------------------------------------------------- % priors = cfg_menu; % priors.tag = 'priors'; % priors.name = 'Priors'; % priors.help = {['Specify priors for family-level inference (RFX only). % '... % 'Options: ''Family'' sets alpha0=1 for each family '... % 'while ''Model'' sets alpha0=1 for each model (not '... % 'advised).']}; % priors.labels = { % 'Model' % 'Family' % }'; % priors.values = { % 'M-unity' % 'F-unity' % }'; % priors.val = {'F-unity'}; % --------------------------------------------------------------------- % family_file Family file % --------------------------------------------------------------------- family_file = cfg_files; family_file.tag = 'family_file'; family_file.name = 'Load family'; family_file.help = {['Load family.mat file. This file should contain the '... 'structure ''family'' with fields ''names'' and '... '''partition''. Example: family.names = {''F1'', '... '''F2''} and family.partition = [1 2 2 1 1]. '... ' This structure specifies two families with names '... '''F1'' and ''F2'' and assigns model 1, 4 and 5 to '... 'the first family and models 2 and 3 to the second '... 'family.']}; family_file.val{1} = {''}; family_file.filter = 'mat'; family_file.ufilter = '.*'; family_file.num = [0 1]; % --------------------------------------------------------------------- % family_name Family name % --------------------------------------------------------------------- family_name = cfg_entry; family_name.tag = 'family_name'; family_name.name = 'Name'; family_name.help = {'Specify name for family.'}; family_name.strtype = 's'; family_name.num = [0 Inf]; % --------------------------------------------------------------------- % family_models family_models % --------------------------------------------------------------------- family_models = cfg_entry; family_models.tag = 'family_models'; family_models.name = 'Models'; family_models.help = {['Specify models belonging to this family. '... 'Example: write ''2 6'' if the second and sixth model '... 'belong to this family.']}; family_models.strtype = 'e'; family_models.num = [Inf 1]; % --------------------------------------------------------------------- % family Family % --------------------------------------------------------------------- family = cfg_branch; family.tag = 'family'; family.name = 'Family'; family.val = {family_name family_models }; family.help = {'Specify family name and models.'}; % --------------------------------------------------------------------- % select_family Specify family % --------------------------------------------------------------------- select_family = cfg_repeat; select_family.tag = 'select_family'; select_family.name = 'Construct family'; select_family.values = {family }; select_family.help = {'Create family. Specify family name and models.'}; % --------------------------------------------------------------------- % family_level Specify families % --------------------------------------------------------------------- family_level = cfg_choice; family_level.tag = 'family_level'; family_level.name = 'Family inference'; family_level.help = {['Optional field to perform family level inference.'... 'Options: load family.mat '... 'or specify family names and models using '... 'the interface.']}; family_level.val = {family_file }; family_level.values = {family_file select_family }; % --------------------------------------------------------------------- % bma_part Choose family % --------------------------------------------------------------------- bma_part = cfg_entry; bma_part.tag = 'bma_part'; bma_part.name = 'Enter family'; bma_part.help = {['Specify family (integer). E.g. ''2'' for the second '... 'family to use in BMA. ']}; bma_part.strtype = 'e'; bma_part.num = [0 Inf]; % --------------------------------------------------------------------- % bma_no no % --------------------------------------------------------------------- bma_all = cfg_const; bma_all.tag = 'bma_all'; bma_all.name = 'All families'; bma_all.val = {'famwin'}; bma_all.help = {'Use all families for Bayesian Model Averaging (BMA).'}'; % --------------------------------------------------------------------- % bma_no no % --------------------------------------------------------------------- bma_famwin = cfg_const; bma_famwin.tag = 'bma_famwin'; bma_famwin.name = 'Winning family'; bma_famwin.val = {'fanwin'}; bma_famwin.help = {'Use winning family for Bayesian Model Averaging (BMA).'}'; % --------------------------------------------------------------------- % bma_no no % --------------------------------------------------------------------- bma_no = cfg_const; bma_no.tag = 'bma_no'; bma_no.name = 'Do not compute'; bma_no.val = {0}; bma_no.help = {'Do not compute Bayesian Model Averaging (BMA).'}'; % --------------------------------------------------------------------- % bma_yes BMA set % --------------------------------------------------------------------- bma_yes = cfg_choice; bma_yes.tag = 'bma_yes'; bma_yes.name = 'Choose family'; bma_yes.help = {['Specify family for Bayesian Model Averaging (BMA). '... 'Options: ''winning family'', ''enter family'' or '... '''all families''.']}; bma_yes.val = {bma_famwin }; bma_yes.values = {bma_famwin bma_all bma_part }; % --------------------------------------------------------------------- % bma BMA % --------------------------------------------------------------------- bma = cfg_choice; bma.tag = 'bma'; bma.name = 'BMA'; bma.help = {'Optional field to compute Bayesian Model Averaging (BMA).'}; bma.val = {bma_no }; bma.values = {bma_no bma_yes }; % --------------------------------------------------------------------- % verify_id Verify data ID % --------------------------------------------------------------------- verify_id = cfg_menu; verify_id.tag = 'verify_id'; verify_id.name = 'Verify data identity'; verify_id.help = {['Verify whether the model comparison is valid '... 'i.e. whether the models have been fitted to the same data.']}; verify_id.labels = { 'Yes' 'No' }'; verify_id.values = { 1 0 }'; verify_id.val = {0}; % --------------------------------------------------------------------- % out_file Output files % --------------------------------------------------------------------- out_file = cfg_menu; out_file.tag = 'out_file'; out_file.name = 'Output files (RFX)'; out_file.help = {['Specify which output files to save (only valid for'... 'RFX analyses). ']... ''... ['Default option (and faster option): '... 'PPM = xppm.img (Posterior Probability Maps) '... 'for each model. ']... ''... ['Second option: PPM + EPM = xppm.img + '... 'epm.img (Exceedance Probability '... 'Maps + Exceedance Probability Maps) for each model.']... ''... ['Third option: PPM + EPM + Alpha = xppm.img + '... 'epm.img + alpha.img (PPM, EPM and Map of Dirichlet '... 'Parameters) for each model.']}; out_file.labels = { 'PPM' 'PPM + EPM' 'PPM + EPM + Alpha' }'; out_file.values = { 0 1 2 }'; out_file.val = {0}; % --------------------------------------------------------------------- % mask Mask Image % --------------------------------------------------------------------- mask = cfg_files; mask.tag = 'mask'; mask.name = 'Mask Image'; mask.help = {['Specify an image for explicitly masking the analysis. '... '(optional). '... 'A sensible option here is to use a segmention of '... 'structural images to specify a within-brain mask. '... 'If you select that image as an explicit mask then only '... 'those voxels in the brain will be analysed. This both '... 'speeds the inference process and restricts BMS to '... 'within-brain voxels. Alternatively, if such structural '... 'images are unavailble or no masking is required, then '... 'leave this field empty.']}; mask.filter = 'image'; mask.ufilter = '.*'; mask.val = {{''}}; mask.num = [0 1]; % --------------------------------------------------------------------- % nsamp Number of samples % --------------------------------------------------------------------- nsamp = cfg_entry; nsamp.tag = 'nsamp'; nsamp.name = 'Number of samples'; nsamp.help = {['Number of samples used to compute exceedance '... 'probabilities (default: 1e6). '... 'To make computations faster reduce the number of '... 'samples when number of models is bigger than 3.']}; nsamp.strtype = 's'; nsamp.num = [1 Inf]; nsamp.val = {'1e6'}; % --------------------------------------------------------------------- % file BMS.mat % --------------------------------------------------------------------- file = cfg_files; file.tag = 'file'; file.name = 'BMS.mat'; file.help = {['Specify the BMS (.mat) file obtained from previous BMS '... 'analysis (optional). Leave field empty to work on '... 'serial mode.']}; file.filter = 'mat'; file.ufilter = '.*'; file.val = {{''}}; file.num = [0 1]; % --------------------------------------------------------------------- % img Map to display % --------------------------------------------------------------------- img = cfg_files; img.tag = 'img'; img.name = 'Map to display'; img.help = {['Specify map (.img) obtained from BMS Maps '... '(optional). Leave field empty to work on serial mode.']}; img.filter = 'image'; img.ufilter = '.*'; img.val = {{''}}; img.num = [0 1]; % --------------------------------------------------------------------- % thres Probability Threshold % --------------------------------------------------------------------- thres = cfg_entry; thres.tag = 'thres'; thres.name = 'Probability threshold'; thres.help = {['Specify the probability threshold to apply to the '... 'image (optional). Leave field empty to work on '... 'serial mode.']}; thres.strtype = 'e'; thres.num = [0 Inf]; thres.val = {[]}; % --------------------------------------------------------------------- % k Extent threshold % --------------------------------------------------------------------- k = cfg_entry; k.tag = 'k'; k.name = 'Extent threshold'; k.help = {['Specify extent threshold (minimum number of voxels '... 'per cluster).']}; k.strtype = 'e'; k.num = [0 Inf]; k.val = {[]}; % --------------------------------------------------------------------- % scale Map Scale % --------------------------------------------------------------------- scale = cfg_menu; scale.tag = 'scale'; scale.name = 'Map scale'; scale.help = {['Specify scale to display maps (optional). Default: '... 'empty field to work on serial mode. Other options: '... '''None'' will display image with original scale and '... '''Log-odds'' will display image in a log-odds '... ' scale (in this case .img should be a '... 'probability map).']}; scale.labels = { 'Empty' 'None' 'Log-odds' }'; scale.values = { [] 0 1 }'; scale.val = {[]}; % --------------------------------------------------------------------- % bms_dcm BMS: DCM, output is bar plot % --------------------------------------------------------------------- bms_dcm = cfg_exbranch; bms_dcm.tag = 'bms_dcm'; bms_dcm.name = 'BMS: DCM'; bms_dcm.val = {dir dcm model_sp load_f method family_level bma verify_id}; bms_dcm.help = {['Bayesian Model Selection for Dynamic Causal Modelling '... '(DCM) for fMRI or MEEG.']... ''... ['Input: DCM files (.mat) for each model, session and subject. '... 'Note that there must be identical numbers of models for all each '... 'sessions, and identical numbers of sessions for all subjects. ']... ''... ['Output: For the fixed effects analysis, the log-evidence for each '... 'model (relative to the worst model) is plotted in the graphics '... 'window, as well as the posterior probability for each model. In '... 'addition, the corresponding values are saved in the directory '... 'specified (BMS.mat). For the random effects analysis, the '... 'expected posterior probability and exceedance probability of each '... 'model (i.e. the probability that this model is more likely than '... 'any other model) are plotted in the graphics window, and the '... 'corresponding values are saved in the directory specified. If '... 'there are multiple sessions per subject, the random effects '... 'analysis operates on the subject-specific sums of log evidences '... 'across sessions.']}; bms_dcm.prog = @spm_run_bms_dcm; bms_dcm.vout = @vout; % --------------------------------------------------------------------- % bms_dcm_vis: DCM (visualise results) % --------------------------------------------------------------------- bms_dcm_vis = cfg_exbranch; bms_dcm_vis.tag = 'bms_dcm_vis'; bms_dcm_vis.name = 'BMS: DCM (Results)'; bms_dcm_vis.val = {file }; bms_dcm_vis.help = {['Bayesian Model Selection for DCM (Results). '... 'Show results from BMS for DCM.']}; bms_dcm_vis.prog = @spm_run_bms_dcm_vis; % --------------------------------------------------------------------- % bms_map_inf BMS: Maps (Inference), output is BMS map % --------------------------------------------------------------------- bms_map_inf = cfg_exbranch; bms_map_inf.tag = 'bms_map_inf'; bms_map_inf.name = 'BMS: Maps'; bms_map_inf.val = {dir map name_mod method_maps out_file mask nsamp }; bms_map_inf.help = {'Bayesian Model Selection for Log-Evidence Maps. '... ''... ['Input: log-evidence maps (.img) for each model, session and '... 'subject. Note that there must be identical numbers of models for '... 'all sessions, and identical numbers of sessions for all '... 'subjects.']... ''... ['Output: For the fixed effects analysis, posterior probability maps '... '(.img) are created for each model. '... 'For the random effects analysis, expected posterior probability '... 'and exceedance probability (i.e. the probability that this model '... 'is more likely than any other model) maps are created for each '... 'model. If there are multiple sessions per subject, the random '... 'effects analysis operates on the subject-specific sums of log '... 'evidences across sessions. In addition, a BMS.mat file will be save '... 'in the specified directory for both methods']}; bms_map_inf.prog = @spm_run_bms_map; bms_map_inf.vout = @vout; % --------------------------------------------------------------------- % bms_map_vis BMS: Maps (Results), visualisation of BMS Maps results % --------------------------------------------------------------------- bms_map_vis = cfg_exbranch; bms_map_vis.tag = 'bms_map_vis'; bms_map_vis.name = 'BMS: Maps (Results)'; bms_map_vis.val = {file img thres k scale}; bms_map_vis.help = {['Bayesian Model Selection Maps (Results). '... 'Show results from BMS Maps (Inference).']}; bms_map_vis.prog = @spm_run_bms_vis; % --------------------------------------------------------------------- % bms Bayesian Model Selection % --------------------------------------------------------------------- bms = cfg_choice; bms.tag = 'bms'; bms.name = 'Bayesian Model Selection'; bms.help = {['Bayesian Model Selection for group studies (fixed '... 'effects and random effects analysis).']}; bms.values = {bms_dcm bms_dcm_vis bms_map_inf bms_map_vis }; %------------------------------------------------------------------------ function dep = vout(varargin) % Output file names will be saved in a struct with field .files dep(1) = cfg_dep; dep(1).sname = 'BMS Maps'; dep(1).src_output = substruct('.','files'); dep(1).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
github
philippboehmsturm/antx-master
spm_cfg_eeg_convert2images.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_eeg_convert2images.m
1,533
utf_8
278f08c7b6bc00ad2186e3d343a12b7c
function S = spm_cfg_eeg_convert2images % configuration file for writing voxel-based images from SPM M/EEG format, % as a time-series of 2Dimages %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Stefan Kiebel % $Id: spm_cfg_eeg_convert2images.m 3818 2010-04-13 14:36:31Z vladimir $ Fname = cfg_files; Fname.tag = 'Fname'; Fname.name = 'File Names'; Fname.filter = 'mat'; Fname.num = [1 inf]; Fname.help = {'Select the M/EEG mat file.'}; n = cfg_entry; n.tag = 'n'; n.name = 'Output dimension'; n.strtype = 'r'; n.num = [1 1]; n.val = {64}; n.help = {'Enter the Output image dimension'}; yes = cfg_const; yes.tag = 'yes'; yes.name = 'Interpolate bad channels'; yes.val = {1}; no = cfg_const; no.tag = 'no'; no.name = 'Mask out bad channels'; no.val = {1}; Interpolate = cfg_choice; Interpolate.tag = 'interpolate_bad'; Interpolate.name = 'Interpolate'; Interpolate.values = {yes,no}; Interpolate.val = {yes}; Interpolate.help = {'Interpolate bad channels'}; S = cfg_exbranch; S.tag = 'convert2images'; S.name = 'M/EEG Convert2Images'; S.val = {Fname n Interpolate}; S.help = {'Convert SPM M/EEG data to voxel-based images, as a time-series of 2D images'}; S.prog = @eeg_convert2images; S.modality = {'EEG'}; function out = eeg_convert2images(job) % construct the S struct S = job; S.Fname = strvcat(job.Fname); if isfield(S.interpolate_bad, 'yes') S.interpolate_bad = 1; else S.interpolate_bad = 0; end spm_eeg_convert2scalp(S);
github
philippboehmsturm/antx-master
spm_cfg_eeg_inv_results.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_eeg_inv_results.m
3,226
utf_8
4785178456ae76c108a54bc2b56a776c
function results = spm_cfg_eeg_inv_results % configuration file for creating images from results of source % reconstruction %_______________________________________________________________________ % Copyright (C) 2010 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_cfg_eeg_inv_results.m 3976 2010-07-08 14:12:31Z karl $ D = cfg_files; D.tag = 'D'; D.name = 'M/EEG datasets'; D.filter = 'mat'; D.num = [1 Inf]; D.help = {'Select the M/EEG mat files.'}; val = cfg_entry; val.tag = 'val'; val.name = 'Inversion index'; val.strtype = 'n'; val.help = {'Index of the cell in D.inv where the inversion results are be stored.'}; val.val = {1}; woi = cfg_entry; woi.tag = 'woi'; woi.name = 'Time window of interest'; woi.strtype = 'r'; woi.num = [Inf 2]; woi.val = {[-Inf Inf]}; woi.help = {'Time window to average over (ms)'}; foi = cfg_entry; foi.tag = 'foi'; foi.name = 'Frequency window of interest'; foi.strtype = 'r'; foi.num = [1 2]; foi.val = {[0 0]}; foi.help = {'Frequency window (Hz)'}; ctype = cfg_menu; ctype.tag = 'ctype'; ctype.name = 'Contrast type'; ctype.help = {'Contrast type: evoked activity, induced activity or single trials.'}; ctype.labels = {'Evoked', 'Induced', 'Single trials'}; ctype.values = {'evoked', 'induced', 'trials'}; ctype.val = {'evoked'}; space = cfg_menu; space.tag = 'space'; space.name = 'Image space'; space.help = {'Image space to wrote the results in.'}; space.labels = {'MNI', 'Native'}; space.values = {1, 0}; space.val = {1}; smoothing = cfg_entry; smoothing.tag = 'smoothing'; smoothing.name = 'Smoothing kernel width (mm)'; smoothing.strtype = 'r'; smoothing.num = [1 1]; smoothing.val = {8}; results = cfg_exbranch; results.tag = 'results'; results.name = 'M/EEG inversion results'; results.val = {D, val, woi, foi, ctype, space, smoothing}; results.help = {'Generate images from the results of imaging source reconstruction'}; results.prog = @run_results; results.vout = @vout_results; results.modality = {'EEG'}; function out = run_results(job) contrast = []; contrast.fboi = job.foi; contrast.type = job.ctype; contrast.space = job.space; contrast.smoothing = job.smoothing; files = {}; for i = 1:numel(job.D) D = spm_eeg_load(job.D{i}); D.val = job.val; if ~isfield(D.inv{D.val}, 'inverse') || ~isfield(D.inv{D.val}.inverse, 'J') error(sprintf('Imaging source reconstruction is missing for subject %d', i)); end contrast.woi = fix(sort(job.woi,2)); D.inv{D.val}.contrast = contrast; D = spm_eeg_inv_results(D); D = spm_eeg_inv_Mesh2Voxels(D); save(D); fname = D.inv{D.val}.contrast.fname; for j = 1:numel(fname) if iscell(fname{j}) for k = 1:numel(fname{j}) files = [files; fname{j}(k)]; end else files = [files; fname(j)]; end end end out.files = files; function dep = vout_results(job) % Output is always in field "D", no matter how job is structured dep = cfg_dep; dep(1) = cfg_dep; dep(1).sname = 'Exported smoothed images'; dep(1).src_output = substruct('.','files'); dep(1).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
github
philippboehmsturm/antx-master
spm_cfg_eeg_contrast.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_eeg_contrast.m
2,514
utf_8
5ef4acc26bd25c57a355ebd077aecc82
function S = spm_cfg_eeg_contrast % configuration file for computing contrast over epochs %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Stefan Kiebel % $Id: spm_cfg_eeg_contrast.m 3881 2010-05-07 21:02:57Z vladimir $ D = cfg_files; D.tag = 'D'; D.name = 'File Name'; D.filter = 'mat'; D.num = [1 1]; D.help = {'Select the EEG mat file.'}; c = cfg_entry; c.tag = 'c'; c.name = 'Contrast coefficients'; c.strtype = 'r'; c.num = [1 inf]; c.help = {'Enter the contrast vector.'}; label = cfg_entry; label.tag = 'label'; label.name = 'New condition label'; label.strtype = 's'; label.help = {'Enter the label for the condition derived by applying the contrast.'}; contrast = cfg_branch; contrast.tag = 'contrast'; contrast.name = 'Contrast'; contrast.val = {c label}; contrasts = cfg_repeat; contrasts.tag = 'contrasts'; contrasts.name = 'Contrasts'; contrasts.help = {'Each contrast defines a new condition in the output file.'}; contrasts.values = {contrast}; contrasts.num = [1 Inf]; weight = cfg_menu; weight.tag = 'weight'; weight.name = 'Weight average by repetition numbers'; weight.labels = {'yes', 'no'}; weight.values = {1 , 0}; weight.val = {1}; weight.help = {'This option will weight averages by the number of their occurences in the data set. This is only important when there are multiple occurences of a trial type, e.g. in single trial data.'}; S = cfg_exbranch; S.tag = 'contrast'; S.name = 'M/EEG Contrast over epochs'; S.val = {D contrasts weight}; S.help = {'Computes contrasts over EEG/MEG epochs.'}; S.prog = @eeg_contrast; S.vout = @vout_eeg_contrast; S.modality = {'EEG'}; function out = eeg_contrast(job) % construct the S struct S.D = job.D{1}; S.c = cat(1, job.contrast(:).c); S.label = {job.contrast.label}; S.WeightAve = job.weight; out.D = spm_eeg_weight_epochs(S); out.Dfname = {fullfile(out.D.path, out.D.fname)}; function dep = vout_eeg_contrast(job) % Output is always in field "D", no matter how job is structured dep = cfg_dep; dep.sname = 'Contrast of M/EEG epochs'; % reference field "D" from output dep.src_output = substruct('.','D'); % this can be entered into any evaluated input dep.tgt_spec = cfg_findspec({{'strtype','e'}}); dep(2) = cfg_dep; dep(2).sname = 'Contrast Datafile'; % reference field "Dfname" from output dep(2).src_output = substruct('.','Dfname'); % this can be entered into any file selector dep(2).tgt_spec = cfg_findspec({{'filter','mat'}});
github
philippboehmsturm/antx-master
spm_cfg_checkreg.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_checkreg.m
2,265
utf_8
c81f7c3223052066b263026099947cec
function checkreg = spm_cfg_checkreg % SPM Configuration file for Check Reg %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_checkreg.m 4205 2011-02-21 15:39:08Z guillaume $ %-------------------------------------------------------------------------- % data Images to Display %-------------------------------------------------------------------------- data = cfg_files; data.tag = 'data'; data.name = 'Images to Display'; data.help = {'Images to display.'}; data.filter = 'image'; data.ufilter = '.*'; data.num = [1 15]; %-------------------------------------------------------------------------- % checkreg Check Registration %-------------------------------------------------------------------------- checkreg = cfg_exbranch; checkreg.tag = 'checkreg'; checkreg.name = 'Check Registration'; checkreg.val = {data }; checkreg.help = { 'Orthogonal views of one or more images are displayed. Clicking in any image moves the centre of the orthogonal views. Images are shown in orientations relative to that of the first selected image. The first specified image is shown at the top-left, and the last at the bottom right. The fastest increment is in the left-to-right direction (the same as you are reading this).' '' 'If you have put your images in the correct file format, then (possibly after specifying some rigid-body rotations):' ' The top-left image is coronal with the top (superior) of the head displayed at the top and the left shown on the left. This is as if the subject is viewed from behind.' ' The bottom-left image is axial with the front (anterior) of the head at the top and the left shown on the left. This is as if the subject is viewed from above.' ' The top-right image is sagittal with the front (anterior) of the head at the left and the top of the head shown at the top. This is as if the subject is viewed from the left.' }'; checkreg.prog = @check_reg; %========================================================================== function check_reg(job) spm_check_registration(char(job.data));
github
philippboehmsturm/antx-master
spm_cfg_deletefiles.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_deletefiles.m
2,302
utf_8
8fd0b19822b9648162bb473b9dbe360f
function deletefiles = spm_cfg_deletefiles % SPM Configuration file % automatically generated by the MATLABBATCH utility function GENCODE %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_deletefiles.m 2222 2008-09-29 11:08:47Z volkmar $ rev = '$Rev: 2222 $'; % --------------------------------------------------------------------- % deletefiles Files to delete % --------------------------------------------------------------------- deletefiles1 = cfg_files; deletefiles1.tag = 'deletefiles'; deletefiles1.name = 'Files to delete'; deletefiles1.help = {'Select files to delete.'}; deletefiles1.filter = 'any'; deletefiles1.ufilter = '.*'; deletefiles1.num = [0 Inf]; % --------------------------------------------------------------------- % deletefiles Delete Files (Deprecated) % --------------------------------------------------------------------- deletefiles = cfg_exbranch; deletefiles.tag = 'deletefiles'; deletefiles.name = 'Delete Files (Deprecated)'; deletefiles.val = {deletefiles1 }; deletefiles.help = { 'This module is deprecated and has been moved to BasicIO.' 'Jobs which are ready to run may continue using it, but the module inputs can not be changed via GUI. Please switch to the BasicIO module instead.' 'This facilty allows to delete files in a batch. Note that deleting files will not make them disappear from file selection lists. Therefore one has to be careful not to select the original files after they have been programmed to be deleted.' '' 'If image files (.img or .nii) are selected, corresponding .hdr or .mat files will be deleted as well, if they exist.' }; deletefiles.prog = @my_deletefiles; deletefiles.hidden = true; %------------------------------------------------------------------------ function my_deletefiles(varargin) job = varargin{1}; for k = 1:numel(job.deletefiles) [p n e] = spm_fileparts(job.deletefiles{k}); if strcmp(e,'.img') || strcmp(e,'.nii') spm_unlink(fullfile(p,[n '.hdr'])); spm_unlink(fullfile(p,[n '.mat'])); end spm_unlink(fullfile(p,[n e])); end
github
philippboehmsturm/antx-master
spm_cfg_md.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_md.m
1,974
utf_8
7596c832b50c0ecadcf8ef562069a262
function md = spm_cfg_md % SPM Configuration file for making directory function %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_md.m 1827 2008-06-16 13:54:37Z guillaume $ % ---------------------------------------------------------------------- % basedir Select a base directory % ---------------------------------------------------------------------- basedir = cfg_files; basedir.tag = 'basedir'; basedir.name = 'Select a base directory'; basedir.help = {'Select a base directory.'}; basedir.filter = 'dir'; basedir.ufilter = '.*'; basedir.num = [1 1]; % ---------------------------------------------------------------------- % name Enter a directory name % ---------------------------------------------------------------------- name = cfg_entry; name.tag = 'name'; name.name = 'Enter a directory name'; name.help = {'Enter a directory name'}; name.strtype = 's'; name.num = [1 Inf]; % ---------------------------------------------------------------------- % md Make Directory (Deprecated) % ---------------------------------------------------------------------- md = cfg_exbranch; md.tag = 'md'; md.name = 'Make Directory (Deprecated)'; md.val = {basedir name}; md.help = { 'This facilty allows programming a directory change. Directories are selected in the right listbox.' 'This module is deprecated and has been moved to BasicIO.' 'Jobs which are ready to run may continue using it, but the module inputs can not be changed via GUI. Please switch to the BasicIO module instead.' }'; md.prog = @my_mkdir; md.hidden = true; %======================================================================= function my_mkdir(varargin) job = varargin{1}; if ~isempty(job.basedir) && ~isempty(job.name) mkdir(job.basedir{:},job.name); end
github
philippboehmsturm/antx-master
spm_cfg_normalise.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_normalise.m
25,506
utf_8
a01a87d691294117634f2d14d848977e
function normalise = spm_cfg_normalise % SPM Configuration file % automatically generated by the MATLABBATCH utility function GENCODE %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_normalise.m 3804 2010-03-31 16:16:21Z ged $ rev = '$Rev: 3804 $'; % --------------------------------------------------------------------- % source Source Image % --------------------------------------------------------------------- source = cfg_files; source.tag = 'source'; source.name = 'Source Image'; source.help = {'The image that is warped to match the template(s). The result is a set of warps, which can be applied to this image, or any other image that is in register with it.'}; source.filter = 'image'; source.ufilter = '.*'; source.num = [1 1]; % --------------------------------------------------------------------- % wtsrc Source Weighting Image % --------------------------------------------------------------------- wtsrc = cfg_files; wtsrc.tag = 'wtsrc'; wtsrc.name = 'Source Weighting Image'; wtsrc.val = {''}; wtsrc.help = {'Optional weighting images (consisting of pixel values between the range of zero to one) to be used for registering abnormal or lesioned brains. These images should match the dimensions of the image from which the parameters are estimated, and should contain zeros corresponding to regions of abnormal tissue.'}; wtsrc.filter = 'image'; wtsrc.ufilter = '.*'; wtsrc.num = [0 1]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {source wtsrc }; subj.help = {'Data for this subject. The same parameters are used within subject.'}; % --------------------------------------------------------------------- % esubjs Data % --------------------------------------------------------------------- esubjs = cfg_repeat; esubjs.tag = 'esubjs'; esubjs.name = 'Data'; esubjs.help = {'List of subjects. Images of each subject should be warped differently.'}; esubjs.values = {subj }; esubjs.num = [1 Inf]; % --------------------------------------------------------------------- % template Template Image % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Template Image'; template.help = {'Specify a template image to match the source image with. The contrast in the template must be similar to that of the source image in order to achieve a good registration. It is also possible to select more than one template, in which case the registration algorithm will try to find the best linear combination of these images in order to best model the intensities in the source image.'}; template.filter = 'image'; template.ufilter = '.*'; template.dir = fullfile(spm('dir'),'templates'); template.num = [1 Inf]; % --------------------------------------------------------------------- % weight Template Weighting Image % --------------------------------------------------------------------- weight = cfg_files; weight.tag = 'weight'; weight.name = 'Template Weighting Image'; weight.val = {''}; weight.help = { 'Applies a weighting mask to the template(s) during the parameter estimation. With the default brain mask, weights in and around the brain have values of one whereas those clearly outside the brain are zero. This is an attempt to base the normalisation purely upon the shape of the brain, rather than the shape of the head (since low frequency basis functions can not really cope with variations in skull thickness).' '' 'The option is now available for a user specified weighting image. This should have the same dimensions and mat file as the template images, with values in the range of zero to one.' }'; weight.filter = 'image'; weight.ufilter = '.*'; weight.num = [0 1]; % --------------------------------------------------------------------- % smosrc Source Image Smoothing % --------------------------------------------------------------------- smosrc = cfg_entry; smosrc.tag = 'smosrc'; smosrc.name = 'Source Image Smoothing'; smosrc.help = {'Smoothing to apply to a copy of the source image. The template and source images should have approximately the same smoothness. Remember that the templates supplied with SPM have been smoothed by 8mm, and that smoothnesses combine by Pythagoras'' rule.'}; smosrc.strtype = 'e'; smosrc.num = [1 1]; smosrc.def = @(val)spm_get_defaults('normalise.estimate.smosrc', val{:}); % --------------------------------------------------------------------- % smoref Template Image Smoothing % --------------------------------------------------------------------- smoref = cfg_entry; smoref.tag = 'smoref'; smoref.name = 'Template Image Smoothing'; smoref.help = {'Smoothing to apply to a copy of the template image. The template and source images should have approximately the same smoothness. Remember that the templates supplied with SPM have been smoothed by 8mm, and that smoothnesses combine by Pythagoras'' rule.'}; smoref.strtype = 'e'; smoref.num = [1 1]; smoref.def = @(val)spm_get_defaults('normalise.estimate.smoref', val{:}); % --------------------------------------------------------------------- % regtype Affine Regularisation % --------------------------------------------------------------------- regtype = cfg_menu; regtype.tag = 'regtype'; regtype.name = 'Affine Regularisation'; regtype.help = {'Affine registration into a standard space can be made more robust by regularisation (penalising excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains, so greater zooms are likely to be needed). If registering to an image in ICBM/MNI space, then choose the first option. If registering to a template that is close in size, then select the second option. If you do not want to regularise, then choose the third.'}; regtype.labels = { 'ICBM space template' 'Average sized template' 'No regularisation' }'; regtype.values = { 'mni' 'subj' 'none' }'; regtype.def = @(val)spm_get_defaults('normalise.estimate.regtype', val{:}); % --------------------------------------------------------------------- % cutoff Nonlinear Frequency Cutoff % --------------------------------------------------------------------- cutoff = cfg_entry; cutoff.tag = 'cutoff'; cutoff.name = 'Nonlinear Frequency Cutoff'; cutoff.help = {'Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the warps. The number used will depend on the cutoff and the field of view of the template image(s).'}; cutoff.strtype = 'e'; cutoff.num = [1 1]; cutoff.def = @(val)spm_get_defaults('normalise.estimate.cutoff', val{:}); % --------------------------------------------------------------------- % nits Nonlinear Iterations % --------------------------------------------------------------------- nits = cfg_entry; nits.tag = 'nits'; nits.name = 'Nonlinear Iterations'; nits.help = {'Number of iterations of nonlinear warping performed.'}; nits.strtype = 'w'; nits.num = [1 1]; nits.def = @(val)spm_get_defaults('normalise.estimate.nits', val{:}); % --------------------------------------------------------------------- % reg Nonlinear Regularisation % --------------------------------------------------------------------- reg = cfg_entry; reg.tag = 'reg'; reg.name = 'Nonlinear Regularisation'; reg.help = {'The amount of regularisation for the nonlinear part of the spatial normalisation. Pick a value around one. However, if your normalised images appear distorted, then it may be an idea to increase the amount of regularisation (by an order of magnitude) - or even just use an affine normalisation. The regularisation influences the smoothness of the deformation fields.'}; reg.strtype = 'e'; reg.num = [1 1]; reg.def = @(val)spm_get_defaults('normalise.estimate.reg', val{:}); % --------------------------------------------------------------------- % eoptions Estimation Options % --------------------------------------------------------------------- eoptions = cfg_branch; eoptions.tag = 'eoptions'; eoptions.name = 'Estimation Options'; eoptions.val = {template weight smosrc smoref regtype cutoff nits reg }; eoptions.help = {'Various settings for estimating warps.'}; % --------------------------------------------------------------------- % est Normalise: Estimate % --------------------------------------------------------------------- est = cfg_exbranch; est.tag = 'est'; est.name = 'Normalise: Estimate'; est.val = {esubjs eoptions }; est.help = {'Computes the warp that best registers a source image (or series of source images) to match a template, saving it to a file imagename''_sn.mat''.'}; est.prog = @spm_run_normalise_estimate; est.vout = @vout_estimate; % --------------------------------------------------------------------- % matname Parameter File % --------------------------------------------------------------------- matname = cfg_files; matname.tag = 'matname'; matname.name = 'Parameter File'; matname.help = {'Select the ''_sn.mat'' file containing the spatial normalisation parameters for that subject.'}; matname.filter = 'mat'; matname.ufilter = '.*_sn\.mat$'; matname.num = [1 1]; % --------------------------------------------------------------------- % resample Images to Write % --------------------------------------------------------------------- resample = cfg_files; resample.tag = 'resample'; resample.name = 'Images to Write'; resample.help = {'These are the images for warping according to the estimated parameters. They can be any images that are in register with the "source" image used to generate the parameters.'}; resample.filter = 'image'; resample.ufilter = '.*'; resample.num = [1 Inf]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {matname resample }; subj.help = {'Data for this subject. The same parameters are used within subject.'}; % --------------------------------------------------------------------- % wsubjs Data % --------------------------------------------------------------------- wsubjs = cfg_repeat; wsubjs.tag = 'wsubjs'; wsubjs.name = 'Data'; wsubjs.help = {'List of subjects. Images of each subject should be warped differently.'}; wsubjs.values = {subj }; wsubjs.num = [1 Inf]; % --------------------------------------------------------------------- % preserve Preserve % --------------------------------------------------------------------- preserve = cfg_menu; preserve.tag = 'preserve'; preserve.name = 'Preserve'; preserve.help = { 'Preserve Concentrations: Spatially normalised images are not "modulated". The warped images preserve the intensities of the original images.' '' 'Preserve Total: Spatially normalised images are "modulated" in order to preserve the total amount of signal in the images. Areas that are expanded during warping are correspondingly reduced in intensity.' }'; preserve.labels = { 'Preserve Concentrations' 'Preserve Amount' }'; preserve.values = {0 1}; preserve.def = @(val)spm_get_defaults('normalise.write.preserve', val{:}); % --------------------------------------------------------------------- % bb Bounding box % --------------------------------------------------------------------- bb = cfg_entry; bb.tag = 'bb'; bb.name = 'Bounding box'; bb.help = {'The bounding box (in mm) of the volume which is to be written (relative to the anterior commissure).'}; bb.strtype = 'e'; bb.num = [2 3]; bb.def = @(val)spm_get_defaults('normalise.write.bb', val{:}); % --------------------------------------------------------------------- % vox Voxel sizes % --------------------------------------------------------------------- vox = cfg_entry; vox.tag = 'vox'; vox.name = 'Voxel sizes'; vox.help = {'The voxel sizes (x, y & z, in mm) of the written normalised images.'}; vox.strtype = 'e'; vox.num = [1 3]; vox.def = @(val)spm_get_defaults('normalise.write.vox', val{:}); % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.help = { ['The method by which the images are sampled when ' ... 'being written in a different space. ' ... '(Note that Inf or NaN values are treated as zero, ' ... 'rather than as missing data)'] ' Nearest Neighbour:' ' - Fastest, but not normally recommended.' ' Bilinear Interpolation:' ' - OK for PET, realigned fMRI, or segmentations' ' B-spline Interpolation:' [' - Better quality (but slower) interpolation' ... '/* \cite{thevenaz00a}*/, especially with higher ' ... 'degree splines. Can produce values outside the ' ... 'original range (e.g. small negative values from an ' ... 'originally all positive image).'] }'; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree B-spline' '3rd Degree B-Spline ' '4th Degree B-Spline ' '5th Degree B-Spline' '6th Degree B-Spline' '7th Degree B-Spline' }'; interp.values = {0 1 2 3 4 5 6 7}; interp.def = @(val)spm_get_defaults('normalise.write.interp', val{:}); % --------------------------------------------------------------------- % wrap Wrapping % --------------------------------------------------------------------- wrap = cfg_menu; wrap.tag = 'wrap'; wrap.name = 'Wrapping'; wrap.help = { 'These are typically:' ' No wrapping: for PET or images that have already been spatially transformed. ' ' Wrap in Y: for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).' }'; wrap.labels = { 'No wrap' 'Wrap X' 'Wrap Y' 'Wrap X & Y' 'Wrap Z' 'Wrap X & Z' 'Wrap Y & Z' 'Wrap X, Y & Z' }'; wrap.values = {[0 0 0] [1 0 0] [0 1 0] [1 1 0] [0 0 1] [1 0 1] [0 1 1]... [1 1 1]}; wrap.def = @(val)spm_get_defaults('normalise.write.wrap', val{:}); % --------------------------------------------------------------------- % prefix Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Filename Prefix'; prefix.help = {'Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix is ''w''.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; prefix.def = @(val)spm_get_defaults('normalise.write.prefix', val{:}); % --------------------------------------------------------------------- % roptions Writing Options % --------------------------------------------------------------------- roptions = cfg_branch; roptions.tag = 'roptions'; roptions.name = 'Writing Options'; roptions.val = {preserve bb vox interp wrap prefix }; roptions.help = {'Various options for writing normalised images.'}; % --------------------------------------------------------------------- % write Normalise: Write % --------------------------------------------------------------------- write = cfg_exbranch; write.tag = 'write'; write.name = 'Normalise: Write'; write.val = {wsubjs roptions }; write.help = {'Allows previously estimated warps (stored in imagename''_sn.mat'' files) to be applied to series of images.'}; write.prog = @spm_run_normalise_write; write.vout = @vout_write; % --------------------------------------------------------------------- % source Source Image % --------------------------------------------------------------------- source = cfg_files; source.tag = 'source'; source.name = 'Source Image'; source.help = {'The image that is warped to match the template(s). The result is a set of warps, which can be applied to this image, or any other image that is in register with it.'}; source.filter = 'image'; source.ufilter = '.*'; source.num = [1 1]; % --------------------------------------------------------------------- % wtsrc Source Weighting Image % --------------------------------------------------------------------- wtsrc = cfg_files; wtsrc.tag = 'wtsrc'; wtsrc.name = 'Source Weighting Image'; wtsrc.val = {''}; wtsrc.help = {'Optional weighting images (consisting of pixel values between the range of zero to one) to be used for registering abnormal or lesioned brains. These images should match the dimensions of the image from which the parameters are estimated, and should contain zeros corresponding to regions of abnormal tissue.'}; wtsrc.filter = 'image'; wtsrc.ufilter = '.*'; wtsrc.num = [0 1]; % --------------------------------------------------------------------- % resample Images to Write % --------------------------------------------------------------------- resample = cfg_files; resample.tag = 'resample'; resample.name = 'Images to Write'; resample.help = {'These are the images for warping according to the estimated parameters. They can be any images that are in register with the "source" image used to generate the parameters.'}; resample.filter = 'image'; resample.ufilter = '.*'; resample.num = [1 Inf]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {source wtsrc resample }; subj.help = {'Data for this subject. The same parameters are used within subject.'}; % --------------------------------------------------------------------- % ewsubjs Data % --------------------------------------------------------------------- ewsubjs = cfg_repeat; ewsubjs.tag = 'ewsubjs'; ewsubjs.name = 'Data'; ewsubjs.help = {'List of subjects. Images of each subject should be warped differently.'}; ewsubjs.values = {subj }; ewsubjs.num = [1 Inf]; % --------------------------------------------------------------------- % estwrite Normalise: Estimate & Write % --------------------------------------------------------------------- estwrite = cfg_exbranch; estwrite.tag = 'estwrite'; estwrite.name = 'Normalise: Estimate & Write'; estwrite.val = {ewsubjs eoptions roptions }; estwrite.help = {'Computes the warp that best registers a source image (or series of source images) to match a template, saving it to the file imagename''_sn.mat''. This option also allows the contents of the imagename''_sn.mat'' files to be applied to a series of images.'}; estwrite.prog = @spm_run_normalise_estwrite; estwrite.vout = @vout_estwrite; % --------------------------------------------------------------------- % normalise Normalise % --------------------------------------------------------------------- normalise = cfg_choice; normalise.tag = 'normalise'; normalise.name = 'Normalise'; normalise.help = { 'This very ancient module spatially (stereotactically) normalises MRI, PET or SPECT images into a standard space defined by some ideal model or template image[s]. The template images supplied with SPM conform to the space defined by the ICBM, NIH P-20 project, and approximate that of the the space described in the atlas of Talairach and Tournoux (1988). The transformation can also be applied to any other image that has been coregistered with these scans. A few researchers may wish to continue using this strategy, but (when good quality anatomical MRI scans are available) the DARTEL approach is now generally recommended instead.' '' 'Generally, the algorithms work by minimising the sum of squares difference between the image which is to be normalised, and a linear combination of one or more template images. For the least squares registration to produce an unbiased estimate of the spatial transformation, the image contrast in the templates (or linear combination of templates) should be similar to that of the image from which the spatial normalisation is derived. The registration simply searches for an optimum solution. If the starting estimates are not good, then the optimum it finds may not find the global optimum.' '' 'The first step of the normalisation is to determine the optimum 12-parameter affine transformation. Initially, the registration is performed by matching the whole of the head (including the scalp) to the template. Following this, the registration proceeded by only matching the brains together, by appropriate weighting of the template voxels. This is a completely automated procedure (that does not require ``scalp editing'') that discounts the confounding effects of skull and scalp differences. A Bayesian framework is used, such that the registration searches for the solution that maximises the a posteriori probability of it being correct /* \cite{ashburner97b} */. i.e., it maximises the product of the likelihood function (derived from the residual squared difference) and the prior function (which is based on the probability of obtaining a particular set of zooms and shears).' '' 'The affine registration is followed by estimating nonlinear deformations, whereby the deformations are defined by a linear combination of three dimensional discrete cosine transform (DCT) basis functions /* \cite{ashburner99a} */. The default options result in each of the deformation fields being described by 1176parameters, where these represent the coefficients of the deformations in three orthogonal directions. The matching involved simultaneously minimising the membrane energies of the deformation fields and the residual squared difference between the images and template(s).' '' 'The primarily use is for stereotactic normalisation to facilitate inter-subject averaging and precise characterisation of functional anatomy /* \cite{ashburner97bir} */. It is not necessary to spatially normalise the data (this is only a pre-requisite for inter-subject averaging or reporting in the Talairach space). If you wish to circumnavigate this step (e.g. if you have single slice data or do not have an appropriate high resolution MRI scan) simply specify where you think the anterior commissure is with the ORIGIN in the header of the first scan (using the ''Display'' facility) and proceed directly to ''Smoothing''or ''Statistics''.' '' 'All normalised *.img scans are written to the same subdirectory as the original *.img, prefixed with a ''w'' (i.e. w*.img). The details of the transformations are displayed in the results window, and the parameters are saved in the "*_sn.mat" file.' }'; normalise.values = {est write estwrite }; %normalise.num = [1 Inf]; %------------------------------------------------------------------------ %------------------------------------------------------------------------ function dep = vout_estimate(job) for k=1:numel(job.subj) dep(k) = cfg_dep; dep(k).sname = sprintf('Norm Params File (Subj %d)',k); dep(k).src_output = substruct('()',{k},'.','params'); dep(k).tgt_spec = cfg_findspec({{'filter','mat','strtype','e'}}); end; %------------------------------------------------------------------------ %------------------------------------------------------------------------ function dep = vout_write(job) for k=1:numel(job.subj) dep(k) = cfg_dep; dep(k).sname = sprintf('Normalised Images (Subj %d)',k); dep(k).src_output = substruct('()',{k},'.','files'); dep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); end; %------------------------------------------------------------------------ %------------------------------------------------------------------------ function dep = vout_estwrite(job) depe = vout_estimate(job); depw = vout_write(job); dep = [depe depw];
github
philippboehmsturm/antx-master
spm_run_check_reg_adv.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_run_check_reg_adv.m
7,221
utf_8
c6c96f98231a4807166f63e0998bed82
function varargout = spm_run_check_reg_adv(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = spm_run_check_reg_adv(cmd, varargin) % where cmd is one of % 'run' - out = spm_run_check_reg_adv('run', job) % Run a job, and return its output argument % 'vout' - dep = spm_run_check_reg_adv('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = spm_run_check_reg_adv('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = spm_run_check_reg_adv('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % spm_run_check_reg_adv('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)spm_run_check_reg_adv('run', job) % 'vout' - @(job)spm_run_check_reg_adv('vout', job) % 'check' - @(job)spm_run_check_reg_adv('check', 'subcmd', job) % 'defaults' - @(val)spm_run_check_reg_adv('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: spm_run_check_reg_adv.m 664 2012-01-18 08:51:41Z vglauche $ rev = '$Rev: 664 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out % display images spm_check_registration(char([job.imdisp.fname]')); % modify settings, if necessary global st; for k = 1:numel(job.imdisp) st.vols{k}.mapping = job.imdisp(k).mapping; if isfield(job.imdisp(k).window,'auto') st.vols{k}.window = 'auto'; else st.vols{k}.window = job.imdisp(k).window.manual; end switch char(fieldnames(job.imdisp(k).blobs)) case 'blob' switch char(fieldnames(job.imdisp(k).blobs.blob.bsource)) case 'image' spm_orthviews('addimage',k,job.imdisp(k).blobs.blob.bsource.image{1}); otherwise warning('Unsupported blob source'); end if isfield(job.imdisp(k).blobs.blob.window,'manual') st.vols{k}.blobs{1}.min = job.imdisp(k).blobs.blob.window.manual(1); st.vols{k}.blobs{1}.max = job.imdisp(k).blobs.blob.window.manual(2); end case 'cblob' for l = 1:numel(job.imdisp(k).blobs.cblob) switch char(fieldnames(job.imdisp(k).blobs.cblob(l).bsource)) case 'image' for cimg = 1:numel(job.imdisp(k).blobs.cblob(l).bsource.image) spm_orthviews('addcolouredimage',k,job.imdisp(k).blobs.cblob(l).bsource.image{cimg},job.imdisp(k).blobs.cblob(l).colour); end otherwise warning('Unsupported blob source'); end if isfield(job.imdisp(k).blobs.cblob(l).window,'manual') st.vols{k}.blobs{l}.min = job.imdisp(k).blobs.cblob(l).window.manual(1); st.vols{k}.blobs{l}.max = job.imdisp(k).blobs.cblob(l).window.manual(2); end end end end spm_orthviews('redraw'); if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep = dep(false); % determine outputs, return cfg_dep array in variable dep varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
spm_cfg_disp.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_disp.m
4,719
utf_8
9f6f5adf2e1375a3f6df5d5daeb54bae
function disp = spm_cfg_disp % SPM Configuration file for Image Display %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_disp.m 4205 2011-02-21 15:39:08Z guillaume $ %------------------------------------------------------------------------- % data Image to Display %------------------------------------------------------------------------- data = cfg_files; data.tag = 'data'; data.name = 'Image to Display'; data.help = {'Image to display.'}; data.filter = 'image'; data.ufilter = '.*'; data.num = [1 1]; %-------------------------------------------------------------------------- % disp Display Image %-------------------------------------------------------------------------- disp = cfg_exbranch; disp.tag = 'disp'; disp.name = 'Display Image'; disp.val = {data}; disp.help = { 'This is an interactive facility that allows orthogonal sections from an image volume to be displayed. Clicking the cursor on either of the three images moves the point around which the orthogonal sections are viewed. The co-ordinates of the cursor are shown both in voxel co-ordinates and millimetres within some fixed framework. The intensity at that point in the image (sampled using the current interpolation scheme) is also given. The position of the cross-hairs can also be moved by specifying the co-ordinates in millimetres to which they should be moved. Clicking on the horizontal bar above these boxes will move the cursor back to the origin (analogous to setting the cross-hair position (in mm) to [0 0 0]).' '' 'The images can be re-oriented by entering appropriate translations, rotations and zooms into the panel on the left. The transformations can then be saved by hitting the "Reorient images..." button. The transformations that were applied to the image are saved to the header information of the selected images. The transformations are considered to be relative to any existing transformations that may be stored. Note that the order that the transformations are applied in is the same as in spm_matrix.m.' '' 'The "Reset..." button next to it is for setting the orientation of images back to transverse. It retains the current voxel sizes, but sets the origin of the images to be the centre of the volumes and all rotations back to zero.' '' 'The right panel shows miscellaneous information about the image. This includes:' ' Dimensions - the x, y and z dimensions of the image.' ' Datatype - the computer representation of each voxel.' ' Intensity - scale-factors and possibly a DC offset.' ' Miscellaneous other information about the image.' ' Vox size - the distance (in mm) between the centres of neighbouring voxels.' ' Origin - the voxel at the origin of the co-ordinate system' ' DIr Cos - Direction cosines. This is a widely used representation of the orientation of an image.' '' 'There are also a few options for different resampling modes, zooms etc. You can also flip between voxel space (as would be displayed by Analyze) or world space (the orientation that SPM considers the image to be in). If you are re-orienting the images, make sure that world space is specified. Blobs (from activation studies) can be superimposed on the images and the intensity windowing can also be changed.' '' '' 'If you have put your images in the correct file format, then (possibly after specifying some rigid-body rotations):' ' The top-left image is coronal with the top (superior) of the head displayed at the top and the left shown on the left. This is as if the subject is viewed from behind.' ' The bottom-left image is axial with the front (anterior) of the head at the top and the left shown on the left. This is as if the subject is viewed from above.' ' The top-right image is sagittal with the front (anterior) of the head at the left and the top of the head shown at the top. This is as if the subject is viewed from the left.' '/*\begin{figure} \begin{center} \includegraphics[width=150mm]{images/disp1} \end{center} \caption{The Display routine. \label{disp1}}\end{figure} */' }'; disp.prog = @disp_image; %========================================================================== function disp_image(job) spm_image('Init', job.data{1});
github
philippboehmsturm/antx-master
spm_cfg_st.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_st.m
8,731
utf_8
16a36edc715d472d387db03f6733781d
function st = spm_cfg_st % SPM Configuration file for Slice Timing Correction %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_st.m 4269 2011-03-29 16:03:43Z guillaume $ % --------------------------------------------------------------------- % scans Session % --------------------------------------------------------------------- scans = cfg_files; scans.tag = 'scans'; scans.name = 'Session'; scans.help = {'Select images to slice-time correct.'}; scans.filter = 'image'; scans.ufilter = '.*'; scans.num = [2 Inf]; % --------------------------------------------------------------------- % generic Data % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Data'; generic.help = {'Subjects or sessions. The same parameters specified below will be applied to all sessions.'}; generic.values = {scans }; generic.num = [1 Inf]; % --------------------------------------------------------------------- % nslices Number of Slices % --------------------------------------------------------------------- nslices = cfg_entry; nslices.tag = 'nslices'; nslices.name = 'Number of Slices'; nslices.help = {'Enter the number of slices.'}; nslices.strtype = 'n'; nslices.num = [1 1]; % --------------------------------------------------------------------- % tr TR % --------------------------------------------------------------------- tr = cfg_entry; tr.tag = 'tr'; tr.name = 'TR'; tr.help = {'Enter the TR (in seconds).'}; tr.strtype = 'r'; tr.num = [1 1]; % --------------------------------------------------------------------- % ta TA % --------------------------------------------------------------------- ta = cfg_entry; ta.tag = 'ta'; ta.name = 'TA'; ta.help = {'Enter the TA (in seconds). It is usually calculated as TR-(TR/nslices). You can simply enter this equation with the variables replaced by appropriate numbers.'}; ta.strtype = 'e'; ta.num = [1 1]; % --------------------------------------------------------------------- % so Slice order % --------------------------------------------------------------------- so = cfg_entry; so.tag = 'so'; so.name = 'Slice order'; so.help = { 'Enter the slice order. Bottom slice = 1. Sequence types and examples of code to enter are given below.' '' 'ascending (first slice=bottom): [1:1:nslices]' '' 'descending (first slice=top): [nslices:-1:1]' '' 'interleaved (middle-top):' ' for k = 1:nslices,' ' round((nslices-k)/2 + (rem((nslices-k),2) * (nslices - 1)/2)) + 1,' ' end' '' 'interleaved (bottom -> up): [1:2:nslices 2:2:nslices]' '' 'interleaved (top -> down): [nslices:-2:1, nslices-1:-2:1]' }'; so.strtype = 'e'; so.num = [1 Inf]; % --------------------------------------------------------------------- % refslice Reference Slice % --------------------------------------------------------------------- refslice = cfg_entry; refslice.tag = 'refslice'; refslice.name = 'Reference Slice'; refslice.help = {'Enter the reference slice'}; refslice.strtype = 'n'; refslice.num = [1 1]; % --------------------------------------------------------------------- % prefix Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Filename Prefix'; prefix.help = {'Specify the string to be prepended to the filenames of the slice-time corrected image file(s). Default prefix is ''a''.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; prefix.def = @(val)spm_get_defaults('slicetiming.prefix', val{:}); % --------------------------------------------------------------------- % st Slice Timing % --------------------------------------------------------------------- st = cfg_exbranch; st.tag = 'st'; st.name = 'Slice Timing'; st.val = {generic nslices tr ta so refslice prefix }; st.help = { 'Correct differences in image acquisition time between slices. Slice-time corrected files are prepended with an ''a''.' '' 'Note: The sliceorder arg that specifies slice acquisition order is a vector of N numbers, where N is the number of slices per volume. Each number refers to the position of a slice within the image file. The order of numbers within the vector is the temporal order in which those slices were acquired. To check the order of slices within an image file, use the SPM Display option and move the cross-hairs to a voxel co-ordinate of z=1. This corresponds to a point in the first slice of the volume.' '' 'The function corrects differences in slice acquisition times. This routine is intended to correct for the staggered order of slice acquisition that is used during echo-planar scanning. The correction is necessary to make the data on each slice correspond to the same point in time. Without correction, the data on one slice will represent a point in time as far removed as 1/2 the TR from an adjacent slice (in the case of an interleaved sequence).' '' 'This routine "shifts" a signal in time to provide an output vector that represents the same (continuous) signal sampled starting either later or earlier. This is accomplished by a simple shift of the phase of the sines that make up the signal. Recall that a Fourier transform allows for a representation of any signal as the linear combination of sinusoids of different frequencies and phases. Effectively, we will add a constant to the phase of every frequency, shifting the data in time.' '' 'Shifter - This is the filter by which the signal will be convolved to introduce the phase shift. It is constructed explicitly in the Fourier domain. In the time domain, it may be described as an impulse (delta function) that has been shifted in time the amount described by TimeShift. The correction works by lagging (shifting forward) the time-series data on each slice using sinc-interpolation. This results in each time series having the values that would have been obtained had the slice been acquired at the same time as the reference slice. To make this clear, consider a neural event (and ensuing hemodynamic response) that occurs simultaneously on two adjacent slices. Values from slice "A" are acquired starting at time zero, simultaneous to the neural event, while values from slice "B" are acquired one second later. Without correction, the "B" values will describe a hemodynamic response that will appear to have began one second EARLIER on the "B" slice than on slice "A". To correct for this, the "B" values need to be shifted towards the Right, i.e., towards the last value.' '' 'This correction assumes that the data are band-limited (i.e. there is no meaningful information present in the data at a frequency higher than that of the Nyquist). This assumption is support by the study of Josephs et al (1997, NeuroImage) that obtained event-related data at an effective TR of 166 msecs. No physio-logical signal change was present at frequencies higher than our typical Nyquist (0.25 HZ).' '' 'When using the slice timing correction it is very important that you input the correct slice order, and if there is any uncertainty then users are encouraged to work with their physicist to determine the actual slice acquisition order.' '' 'One can also consider augmenting the model by including the temporal derivative in the informed basis set instead of slice timing, which can account for +/- 1 second of changes in timing.' '' 'Written by Darren Gitelman at Northwestern U., 1998. Based (in large part) on ACQCORRECT.PRO from Geoff Aguirre and Eric Zarahn at U. Penn.' }'; st.prog = @spm_run_st; st.vout = @vout; st.modality = {'FMRI'}; % --------------------------------------------------------------------- % --------------------------------------------------------------------- function dep = vout(job) for k=1:numel(job.scans) dep(k) = cfg_dep; dep(k).sname = sprintf('Slice Timing Corr. Images (Sess %d)', k); dep(k).src_output = substruct('()',{k}, '.','files'); dep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); end return;
github
philippboehmsturm/antx-master
spm_cfg_eeg_inv_invert.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_eeg_inv_invert.m
7,820
utf_8
d768c9182c47d6daeccc44b246268094
function invert = spm_cfg_eeg_inv_invert % configuration file for configuring imaging source inversion % reconstruction %_______________________________________________________________________ % Copyright (C) 2010 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_cfg_eeg_inv_invert.m 4326 2011-05-13 14:13:17Z vladimir $ D = cfg_files; D.tag = 'D'; D.name = 'M/EEG datasets'; D.filter = 'mat'; D.num = [1 Inf]; D.help = {'Select the M/EEG mat files.'}; val = cfg_entry; val.tag = 'val'; val.name = 'Inversion index'; val.strtype = 'n'; val.help = {'Index of the cell in D.inv where the forward model can be found and the results will be stored.'}; val.val = {1}; all = cfg_const; all.tag = 'all'; all.name = 'All'; all.val = {1}; condlabel = cfg_entry; condlabel.tag = 'condlabel'; condlabel.name = 'Condition label'; condlabel.strtype = 's'; condlabel.val = {''}; conditions = cfg_repeat; conditions.tag = 'conditions'; conditions.name = 'Conditions'; conditions.help = {'Specify the labels of the conditions to be included in the inversion'}; conditions.num = [1 Inf]; conditions.values = {condlabel}; conditions.val = {condlabel}; whatconditions = cfg_choice; whatconditions.tag = 'whatconditions'; whatconditions.name = 'What conditions to include?'; whatconditions.values = {all, conditions}; whatconditions.val = {all}; standard = cfg_const; standard.tag = 'standard'; standard.name = 'Standard'; standard.help = {'Use default settings for the inversion'}; standard.val = {1}; invtype = cfg_menu; invtype.tag = 'invtype'; invtype.name = 'Inversion type'; invtype.help = {'Select the desired inversion type'}; invtype.labels = {'GS', 'ARD', 'MSP (GS+ARD)' 'COH', 'IID'}; invtype.values = {'GS', 'ARD', 'MSP', 'LOR', 'IID'}; invtype.val = {'GS'}; woi = cfg_entry; woi.tag = 'woi'; woi.name = 'Time window of interest'; woi.strtype = 'r'; woi.num = [1 2]; woi.val = {[-Inf Inf]}; woi.help = {'Time window to include in the inversion (ms)'}; foi = cfg_entry; foi.tag = 'foi'; foi.name = 'Frequency window of interest'; foi.strtype = 'r'; foi.num = [1 2]; foi.val = {[0 256]}; foi.help = {'Frequency window (the same as high-pass and low-pass in the GUI)'}; hanning = cfg_menu; hanning.tag = 'hanning'; hanning.name = 'PST Hanning window'; hanning.help = {'Multiply the time series by a Hanning taper to emphasize the central part of the response.'}; hanning.labels = {'yes', 'no'}; hanning.values = {1, 0}; hanning.val = {1}; priorsmask = cfg_files; priorsmask.tag = 'priorsmask'; priorsmask.name = 'Priors file'; priorsmask.filter = '(.*\.gii$)|(.*\.mat$)|(.*\.nii(,\d+)?$)|(.*\.img(,\d+)?$)'; priorsmask.num = [0 1]; priorsmask.help = {'Select a mask or a mat file with priors.'}; priorsmask.val = {{''}}; space = cfg_menu; space.tag = 'space'; space.name = 'Prior image space'; space.help = {'Space of the mask image.'}; space.labels = {'MNI', 'Native'}; space.values = {1, 0}; space.val = {1}; priors = cfg_branch; priors.tag = 'priors'; priors.name = 'Source priors'; priors.help = {'Restrict solutions to pre-specified VOIs'}; priors.val = {priorsmask, space}; locs = cfg_entry; locs.tag = 'locs'; locs.name = 'Source locations'; locs.strtype = 'r'; locs.num = [Inf 3]; locs.help = {'Input source locations as n x 3 matrix'}; locs.val = {zeros(0, 3)}; radius = cfg_entry; radius.tag = 'radius'; radius.name = 'Radius of VOI (mm)'; radius.strtype = 'r'; radius.num = [1 1]; radius.val = {32}; restrict = cfg_branch; restrict.tag = 'restrict'; restrict.name = 'Restrict solutions'; restrict.help = {'Restrict solutions to pre-specified VOIs'}; restrict.val = {locs, radius}; custom = cfg_branch; custom.tag = 'custom'; custom.name = 'Custom'; custom.help = {'Define custom settings for the inversion'}; custom.val = {invtype, woi, foi, hanning, priors, restrict}; isstandard = cfg_choice; isstandard.tag = 'isstandard'; isstandard.name = 'Inversion parameters'; isstandard.help = {'Choose whether to use standard or custom inversion parameters.'}; isstandard.values = {standard, custom}; isstandard.val = {standard}; modality = cfg_menu; modality.tag = 'modality'; modality.name = 'Select modalities'; modality.help = {'Select modalities for the inversion (only relevant for multimodal datasets).'}; modality.labels = {'All', 'EEG', 'MEG', 'MEGPLANAR', 'EEG+MEG', 'MEG+MEGPLANAR', 'EEG+MEGPLANAR'}; modality.values = { {'All'} {'EEG'} {'MEG'} {'MEGPLANAR'} {'EEG', 'MEG'} {'MEG', 'MEGPLANAR'} {'EEG', 'MEGPLANAR'} }'; modality.val = {{'All'}}; invert = cfg_exbranch; invert.tag = 'invert'; invert.name = 'M/EEG source inversion'; invert.val = {D, val, whatconditions, isstandard, modality}; invert.help = {'Run imaging source reconstruction'}; invert.prog = @run_inversion; invert.vout = @vout_inversion; invert.modality = {'EEG'}; function out = run_inversion(job) D = spm_eeg_load(job.D{1}); inverse = []; if isfield(job.whatconditions, 'condlabel') inverse.trials = job.whatconditions.condlabel; end if isfield(job.isstandard, 'custom') inverse.type = job.isstandard.custom.invtype; inverse.woi = fix([max(min(job.isstandard.custom.woi), 1000*D.time(1)) min(max(job.isstandard.custom.woi), 1000*D.time(end))]); inverse.Han = job.isstandard.custom.hanning; inverse.lpf = fix(min(job.isstandard.custom.foi)); inverse.hpf = fix(max(job.isstandard.custom.foi)); P = char(job.isstandard.custom.priors.priorsmask); if ~isempty(P) [p,f,e] = fileparts(P); switch lower(e) case '.gii' g = gifti(P); inverse.pQ = cell(1,size(g.cdata,2)); for i=1:size(g.cdata,2) inverse.pQ{i} = double(g.cdata(:,i)); end case '.mat' load(P); inverse.pQ = pQ; case {'.img', '.nii'} S.D = D; S.fmri = P; S.space = job.isstandard.custom.priors.space; D = spm_eeg_inv_fmripriors(S); inverse.fmri = D.inv{D.val}.inverse.fmri; load(inverse.fmri.priors); inverse.pQ = pQ; otherwise error('Unknown file type.'); end end if ~isempty(job.isstandard.custom.restrict.locs) inverse.xyz = job.isstandard.custom.restrict.locs; inverse.rad = job.isstandard.custom.restrict.radius; end end [mod, list] = modality(D, 1, 1); if strcmp(job.modality{1}, 'All') inverse.modality = list; else inverse.modality = intersect(list, job.modality); end if numel(inverse.modality) == 1 inverse.modality = inverse.modality{1}; end D = {}; for i = 1:numel(job.D) D{i} = spm_eeg_load(job.D{i}); D{i}.val = job.val; D{i}.con = 1; if ~isfield(D{i}, 'inv') error(sprintf('Forward model is missing for subject %d', i)); elseif numel(D{i}.inv)<D{i}.val || ~isfield(D{i}.inv{D{i}.val}, 'forward') if D{i}.val>1 && isfield(D{i}.inv{D{i}.val-1}, 'forward') D{i}.inv{D{i}.val} = D{i}.inv{D{i}.val-1}; warning(sprintf('Duplicating the last forward model for subject %d', i)); else error(sprintf('Forward model is missing for subject %d', i)); end end D{i}.inv{D{i}.val}.inverse = inverse; end D = spm_eeg_invert(D); if ~iscell(D) D = {D}; end for i = 1:numel(D) save(D{i}); end out.D = job.D; function dep = vout_inversion(job) % Output is always in field "D", no matter how job is structured dep = cfg_dep; dep.sname = 'M/EEG dataset(s) after imaging source reconstruction'; % reference field "D" from output dep.src_output = substruct('.','D'); % this can be entered into any evaluated input dep.tgt_spec = cfg_findspec({{'filter','mat'}});
github
philippboehmsturm/antx-master
spm_cfg_eeg_inv_extract.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_eeg_inv_extract.m
3,307
utf_8
42d3e193e87fc5b983a7382f3f7d68e4
function extract = spm_cfg_eeg_inv_extract % configuration file for extracting source data from imaging source % reconstruction %_______________________________________________________________________ % Copyright (C) 2011 Wellcome Trust Centre for Neuroimaging % Vladimir Litvak % $Id: spm_cfg_eeg_inv_extract.m 4257 2011-03-18 15:28:29Z vladimir $ D = cfg_files; D.tag = 'D'; D.name = 'M/EEG datasets'; D.filter = 'mat'; D.num = [1 Inf]; D.help = {'Select the M/EEG mat files.'}; val = cfg_entry; val.tag = 'val'; val.name = 'Inversion index'; val.strtype = 'n'; val.help = {'Index of the cell in D.inv where the inversion results are be stored.'}; val.val = {1}; xyz = cfg_entry; xyz.tag = 'xyz'; xyz.name = 'Source location'; xyz.strtype = 'r'; xyz.num = [1 3]; xyz.help = {'Source location (in MNI coordinates)'}; label = cfg_entry; label.tag = 'label'; label.name = 'Source label'; label.strtype = 's'; label.num = [1 Inf]; label.help = {'Label for the source channel in the output file'}; source = cfg_branch; source.tag = 'source'; source.name = 'Source'; source.val = {label, xyz}; sources = cfg_repeat; sources.tag = 'sources'; sources.name = 'Sources to extract'; sources.values = {source}; sources.num = [1 Inf]; sources.help = {'Specify sources to extract data from'}; rad = cfg_entry; rad.tag = 'rad'; rad.name = 'VOI radius'; rad.strtype = 'r'; rad.num = [1 1]; rad.val = {5}; woi.help = {'Radius around each location to extract an eigenvariate from (mm).'}; type = cfg_menu; type.tag = 'type'; type.name = 'What to extract'; type.help = {'What to extract: evoked activity or single trials.'}; type.labels = {'Evoked', 'Single trials'}; type.values = {'evoked', 'trials'}; type.val = {'trials'}; fname = cfg_entry; fname.tag = 'fname'; fname.name = 'Output dataset name'; fname.strtype = 's'; fname.num = [0 Inf]; fname.val = {''}; fname.help = {'Output file name (empty for default)'}; extract = cfg_exbranch; extract.tag = 'extract'; extract.name = 'M/EEG source extraction'; extract.val = {D, val, sources, rad, type, fname}; extract.help = {'Extract source data from the results of inverse source reconstruction'}; extract.prog = @run_extract; extract.vout = @vout_extract; extract.modality = {'EEG'}; function out = run_extract(job) source = []; source.XYZ = cat(1, job.source.xyz); source.label = {job.source.label}; source.rad = job.rad; source.type = job.type; if ~isempty(job.fname) source.fname = job.fname; end out.D = {}; for i = 1:numel(job.D) D = spm_eeg_load(job.D{i}); D.val = job.val; if ~isfield(D.inv{D.val}, 'inverse') || ~isfield(D.inv{D.val}.inverse, 'J') error(sprintf('Imaging source reconstruction is missing for subject %d', i)); end D.inv{D.val}.source = source; Ds = spm_eeg_inv_extract(D); out.D{i, 1} = fullfile(Ds.path, Ds.fname); end function dep = vout_extract(job) % Output is always in field "D", no matter how job is structured % Output is always in field "D", no matter how job is structured dep = cfg_dep; dep.sname = 'M/EEG dataset(s) extracted source data'; % reference field "D" from output dep.src_output = substruct('.','D'); % this can be entered into any evaluated input dep.tgt_spec = cfg_findspec({{'filter','mat'}});
github
philippboehmsturm/antx-master
spm_cfg_fmri_est.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_fmri_est.m
24,501
utf_8
14607a45526013760c39408f23f0d2fa
function fmri_est = spm_cfg_fmri_est % SPM Configuration file for Model Estimation %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_fmri_est.m 3753 2010-03-05 13:06:47Z guillaume $ % --------------------------------------------------------------------- % spmmat Select SPM.mat % --------------------------------------------------------------------- spmmat = cfg_files; spmmat.tag = 'spmmat'; spmmat.name = 'Select SPM.mat'; spmmat.help = { 'Select the SPM.mat file that contains the design specification. ' 'The directory containing this file is known as the input directory.' }'; spmmat.filter = 'mat'; spmmat.ufilter = '^SPM\.mat$'; spmmat.num = [1 1]; % --------------------------------------------------------------------- % Classical Classical % --------------------------------------------------------------------- Classical = cfg_const; Classical.tag = 'Classical'; Classical.name = 'Classical'; Classical.val = {1}; Classical.help = { 'Model parameters are estimated using Restricted Maximum Likelihood (ReML). This assumes the error correlation structure is the same at each voxel. This correlation can be specified using either an AR(1) or an Independent and Identically Distributed (IID) error model. These options are chosen at the model specification stage. ReML estimation should be applied to spatially smoothed functional images.' '' 'After estimation, specific profiles of parameters are tested using a linear compound or contrast with the T or F statistic. The resulting statistical map constitutes an SPM. The SPM{T}/{F} is then characterised in terms of focal or regional differences by assuming that (under the null hypothesis) the components of the SPM (ie. residual fields) behave as smooth stationary Gaussian fields.' }'; % --------------------------------------------------------------------- % Volume Volume % --------------------------------------------------------------------- volBlocktype = cfg_menu; volBlocktype.tag = 'block_type'; volBlocktype.name = 'Block type'; volBlocktype.val = {'Slices'}; volBlocktype.help = {'Enter the block type, i.e. "Slices" or "Subvolumes"'}'; volBlocktype.labels = {'Slices', 'Subvolumes'}'; volBlocktype.values = {'Slices', 'Subvolumes'}'; Volume = cfg_branch; Volume.tag = 'volume'; Volume.name = 'Volume'; Volume.val = {volBlocktype}; Volume.help = {'A volume of data is analysed in "blocks", which can be a slice or 3D subvolume, where the extent of each subvolume is determined using a graph partitioning algorithm. Enter the block type, i.e. "Slices" or "Subvolumes".'}; % --------------------------------------------------------------------- % Slices Slices % --------------------------------------------------------------------- SliceNs = cfg_entry; SliceNs.tag = 'numbers'; SliceNs.name = 'Slice numbers'; SliceNs.help = {' '}; SliceNs.strtype = 'e'; SliceNs.num = [Inf 1]; slBlocktype = cfg_menu; slBlocktype.tag = 'block_type'; slBlocktype.name = 'Block type'; slBlocktype.val = {'Slices'}; slBlocktype.help = {'Enter the block type, i.e. "Slices" or "Subvolumes"'}'; slBlocktype.labels = {'Slices', 'Subvolumes'}'; slBlocktype.values = {'Slices', 'Subvolumes'}'; Slices = cfg_branch; Slices.tag = 'slices'; Slices.name = 'Slices'; Slices.val = {SliceNs slBlocktype}; Slices.help = {'Enter Slice Numbers. This can be a single slice or multiple slices. If you select a single slice or only a few slices you must be aware of the interpolation options when, after estimation, displaying the estimated images eg. images of contrasts or AR maps. The default interpolation option may need to be changed to nearest neighbour (NN) (see bottom right hand of graphics window) for you slice maps to be visible.'}; % --------------------------------------------------------------------- % Clusters % --------------------------------------------------------------------- Clustermask = cfg_files; Clustermask.tag = 'mask'; Clustermask.name = 'Cluster mask'; Clustermask.help = {'Select cluster image'}'; Clustermask.filter = 'image'; Clustermask.ufilter = '.*'; Clustermask.num = [0 1]; clBlocktype = cfg_menu; clBlocktype.tag = 'block_type'; clBlocktype.name = 'Block type'; clBlocktype.val = {'Slices'}; clBlocktype.help = {'Enter the block type, i.e. "Slices" or "Subvolumes"'}'; clBlocktype.labels = {'Slices', 'Subvolumes'}'; clBlocktype.values = {'Slices', 'Subvolumes'}'; Clusters = cfg_branch; Clusters.tag = 'clusters'; Clusters.name = 'Clusters'; Clusters.val = {Clustermask clBlocktype}; Clusters.help = {'Because estimation can be time consuming an option is provided to analyse selected clusters rather than the whole volume.'}; % --------------------------------------------------------------------- % space Analysis Space % --------------------------------------------------------------------- space = cfg_choice; space.tag = 'space'; space.name = 'Analysis Space'; space.val = {Volume}; space.help = {'Because estimation can be time consuming options are provided to analyse selected slices or clusters rather than the whole volume.'}; space.values = {Volume Slices Clusters}; % --------------------------------------------------------------------- % LogEv - Compute F % --------------------------------------------------------------------- LogEv = cfg_menu; LogEv.tag = 'LogEv'; LogEv.name = 'Log evidence map'; LogEv.val = {'No'}; LogEv.help = {'Computes the log evidence for each voxel'}; LogEv.labels = {'No','Yes'}'; LogEv.values = {'No','Yes'}'; % --------------------------------------------------------------------- % signal Signal priors % --------------------------------------------------------------------- signal = cfg_menu; signal.tag = 'signal'; signal.name = 'Signal priors'; signal.help = { '[UGL] Unweighted Graph Laplacian. This spatial prior is the recommended option. Regression coefficients at a given voxel are (softly) constrained to be similar to those at nearby voxels. The strength of this constraint is determined by a spatial precision parameter that is estimated from the data. Different regression coefficients have different spatial precisions allowing each putative experimental effect to have its own spatial regularity. ' '' '[GMRF] Gaussian Markov Random Field. This is equivalent to a normalized UGL. ' '' '[LORETA] Low resolution Tomography Prior. This is equivalent to UGL squared. It is a standatd choice for EEG source localisation algorithms. ' '' '[WGL] Weighted Graph Laplacian. This is a generalization of the UGL, where weights can be used to preserve "edges" of functional responses.' '' '[Global] Global Shrinkage prior. This is not a spatial prior in the sense that regression coefficients are constrained to be similar to neighboring voxels. Instead, the average effect over all voxels (global effect) is assumed to be zero and all regression coefficients are shrunk towards this value in proporation to the prior precision. This is the same prior that is used for Bayesian estimation at the second level models, except that here the prior precision is estimated separaetly for each slice. ' '' '[Uninformative] A flat prior. Essentially, no prior information is used. If you select this option then VB reduces to Maximum Likelihood (ML)estimation. This option is useful if, for example, you do not wish to use a spatial prior but wish to take advantage of the voxel-wise AR(P) modelling of noise processes. In this case, you would apply the algorithm to images that have been spatially smoothed. For P=0, ML estimation in turn reduces to Ordinary Least Squares (OLS) estimates, and for P>0 ML estimation is equivalent to a weighted least squares (WLS) but where the weights are different at each voxel (reflecting the different noise correlation at each voxel). ' }'; signal.labels = { 'UGL' 'GMRF' 'LORETA' 'WGL' 'Global' 'Uninformative' }'; signal.values = { 'UGL' 'GMRF' 'LORETA' 'WGL' 'Global' 'Uninformative' }'; signal.val = {'UGL'}; % --------------------------------------------------------------------- % ARP AR model order % --------------------------------------------------------------------- ARP = cfg_entry; ARP.tag = 'ARP'; ARP.name = 'AR model order'; ARP.help = { 'An AR model order of 3 is the default. Cardiac and respiratory artifacts are periodic in nature and therefore require an AR order of at least 2. In previous work, voxel-wise selection of the optimal model order showed that a value of 3 was the highest order required. ' '' 'Higher model orders have little effect on the estimation time. If you select a model order of zero this corresponds to the assumption that the errors are IID. This AR specification overrides any choices that were made in the model specification stage.' '' 'Voxel-wise AR models are fitted separately for each session of data. For each session this therefore produces maps of AR(1), AR(2) etc coefficients in the output directory. ' }'; ARP.strtype = 'e'; ARP.num = [Inf 1]; ARP.val = {3}; % --------------------------------------------------------------------- % UGL UGL % --------------------------------------------------------------------- UGL = cfg_const; UGL.tag = 'UGL'; UGL.name = 'UGL'; UGL.val = {1}; UGL.help = {'[UGL] Unweighted graph-Laplacian. This is the default option. This spatial prior is the same as that used for the regression coefficients. Spatial precisions are estimated separately for each AR coefficient eg. the AR(1) coefficient over space, AR(2) over space etc. '}; % --------------------------------------------------------------------- % GMRF GMRF % --------------------------------------------------------------------- GMRF = cfg_const; GMRF.tag = 'GMRF'; GMRF.name = 'GMRF'; GMRF.val = {1}; GMRF.help = {'[GMRF] Gaussian Markov Random Field. See comments on GMRF priors for regresion coefficients. '}; % --------------------------------------------------------------------- % LORETA LORETA % --------------------------------------------------------------------- LORETA = cfg_const; LORETA.tag = 'LORETA'; LORETA.name = 'LORETA'; LORETA.val = {1}; LORETA.help = {'[LORETA] Low resolution Tomography Prior. See comments on LORETA priors for regresion coefficients.'}; % --------------------------------------------------------------------- % tissue_type Tissue-type % --------------------------------------------------------------------- tissue_type = cfg_files; tissue_type.tag = 'tissue_type'; tissue_type.name = 'Tissue-type'; tissue_type.help = { '[Tissue-type] AR estimates at each voxel are biased towards typical values for that tissue type (eg. gray, white, CSF). If you select this option you will need to then select files that contain tissue type maps (see below). These are typically chosen to be Grey Matter, White Matter and CSF images derived from segmentation of registered structural scans.' '' 'Previous work has shown that there is significant variation in AR values with tissue type. However, GMRF priors have previously been favoured by Bayesian model comparison.' }'; tissue_type.filter = 'image'; tissue_type.ufilter = '.*'; tissue_type.num = [1 Inf]; % --------------------------------------------------------------------- % Robust Robust % --------------------------------------------------------------------- Robust = cfg_const; Robust.tag = 'Robust'; Robust.name = 'Robust'; Robust.val = {1}; Robust.help = {'Robust GLM. Uses Mixture of Gaussians noise model.'}; % --------------------------------------------------------------------- % noise Noise priors % --------------------------------------------------------------------- noise = cfg_choice; noise.tag = 'noise'; noise.name = 'Noise priors'; noise.val = {UGL }; noise.help = { 'There are five noise prior options here (1) UGL, (2) GMRF, (3) LORETA ' '(4) Tissue-type and (5) Robust' }'; noise.values = {UGL GMRF LORETA tissue_type Robust }; % --------------------------------------------------------------------- % first First level % --------------------------------------------------------------------- first = cfg_menu; first.tag = 'first'; first.name = 'First level'; first.val = {'No'}; first.help = { 'This is implemented using Bayesian model comparison. For example, to test for the main effect of a factor two models are compared, one where the levels are represented using different regressors and one using the same regressor. This therefore requires explicit fitting of several models at each voxel and is computationally demanding (requiring several hours of computation). The recommended option is therefore NO.' '' 'To use this option you must have already specified your factorial design during the model specification stage. ' }'; first.labels = { 'No' 'Yes' }'; first.values = { 'No' 'Yes' }'; % --------------------------------------------------------------------- % second Second level % --------------------------------------------------------------------- second = cfg_menu; second.tag = 'second'; second.name = 'Second level'; second.val = {'Yes'}; second.help = { 'This option tells SPM to automatically generate the simple contrasts that are necessary to produce the contrast images for a second-level (between-subject) ANOVA. Naturally, these contrasts can also be used to characterise simple effects for each subject. ' '' 'With the Bayesian estimation option it is recommended that contrasts are computed during the parameter estimation stage (see ''simple contrasts'' below). The recommended option here is therefore YES.' '' 'To use this option you must have already specified your factorial design during the model specification stage. ' '' 'If you wish to use these contrast images for a second-level analysis then you will need to spatially smooth them to take into account between-subject differences in functional anatomy ie. the fact that one persons V5 may be in a different position than anothers. ' }'; second.labels = { 'No' 'Yes' }'; second.values = { 'No' 'Yes' }'; % --------------------------------------------------------------------- % anova ANOVA % --------------------------------------------------------------------- anova = cfg_branch; anova.tag = 'anova'; anova.name = 'ANOVA'; anova.val = {first second }; anova.help = {'Perform 1st or 2nd level Analysis of Variance.'}; % --------------------------------------------------------------------- % name Name % --------------------------------------------------------------------- name = cfg_entry; name.tag = 'name'; name.name = 'Name'; name.help = {'Name of contrast eg. ''Positive Effect'''}; name.strtype = 's'; name.num = [1 Inf]; % --------------------------------------------------------------------- % convec Contrast vector % --------------------------------------------------------------------- convec = cfg_entry; convec.tag = 'convec'; convec.name = 'Contrast vector'; convec.help = {'These contrasts are used to generate PPMs which characterise effect sizes at each voxel. This is in contrast to SPMs in which eg. maps of t-statistics show the ratio of the effect size to effect variability (standard deviation). SPMs are therefore a-dimensional. This is not the case for PPMs as the size of the effect is of primary interest. Some care is therefore needed about the scaling of contrast vectors. For example, if you are interested in the differential effect size averaged over conditions then the contrast 0.5 0.5 -0.5 -0.5 would be more suitable than the 1 1 -1 -1 contrast which looks at the differential effect size summed over conditions. '}; convec.strtype = 'e'; convec.num = [Inf 1]; % --------------------------------------------------------------------- % gcon Simple contrast % --------------------------------------------------------------------- gcon = cfg_branch; gcon.tag = 'gcon'; gcon.name = 'Simple contrast'; gcon.val = {name convec }; gcon.help = {''}; % --------------------------------------------------------------------- % generic Simple contrasts % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Simple contrasts'; generic.help = { '''Simple'' contrasts refers to a contrast that spans one-dimension ie. to assess an effect that is increasing or decreasing.' '' 'If you have a factoral design then the contrasts needed to generate the contrast images for a 2nd-level ANOVA (or to assess these simple effects within-subject) can be specified automatically using the ANOVA->Second level option.' '' 'When using the Bayesian estimation option it is computationally more efficient to compute the contrasts when the parameters are estimated. This is because estimated parameter vectors have potentially different posterior covariance matrices at different voxels and these matrices are not stored. If you compute contrasts post-hoc these matrices must be recomputed (an approximate reconstruction based on a Taylor series expansion is used). It is therefore recommended to specify as many contrasts as possible prior to parameter estimation.' '' 'If you wish to use these contrast images for a second-level analysis then you will need to spatially smooth them to take into account between-subject differences in functional anatomy ie. the fact that one persons V5 may be in a different position than anothers. ' }'; generic.values = {gcon }; generic.num = [0 Inf]; % --------------------------------------------------------------------- % Bayesian Bayesian 1st-level % --------------------------------------------------------------------- Bayesian = cfg_branch; Bayesian.tag = 'Bayesian'; Bayesian.name = 'Bayesian 1st-level'; Bayesian.val = {space signal ARP noise LogEv anova generic }; Bayesian.help = { 'Model parameters are estimated using Variational Bayes (VB). This allows you to specify spatial priors for regression coefficients and regularised voxel-wise AR(P) models for fMRI noise processes. The algorithm does not require functional images to be spatially smoothed. Estimation will take about 5 times longer than with the classical approach. This is why VB is not the default estimation option. ' '' 'Model estimation using this option is only efficient if MATLAB can load a whole slice of data into physical memory. With modern PCs this is usually achieved if the within-plane voxel sizes are 3 by 3 mm. This is therefore the minimum recommended voxel size that your spatial normalisation process should produce. Within-plane voxel sizes of 2 by 2 mm usually result in too many voxels per slice and result in estimation times lasting several hours or days. Such a high resolution is therefore to be avoided. ' '' 'After estimation, contrasts are used to find regions with effects larger than a user-specified size eg. 1 per cent of the global mean signal. These effects are assessed statistically using a Posterior Probability Map (PPM).' }'; % --------------------------------------------------------------------- % Bayesian2 Bayesian 2nd-level % --------------------------------------------------------------------- Bayesian2 = cfg_const; Bayesian2.tag = 'Bayesian2'; Bayesian2.name = 'Bayesian 2nd-level'; Bayesian2.val = {1}; Bayesian2.help = {'Bayesian estimation of 2nd level models. This option uses the Empirical Bayes algorithm with global shrinkage priors that was previously implemented in SPM2. Use of the global shrinkage prior embodies a prior belief that, on average over all voxels, there is no net experimental effect. Some voxels will respond negatively and some positively with a variability determined by the prior precision. This prior precision can be estimated from the data using Empirical Bayes. '}; % --------------------------------------------------------------------- % method Method % --------------------------------------------------------------------- method = cfg_choice; method.tag = 'method'; method.name = 'Method'; method.val = {Classical }; method.help = { 'There are three possible estimation procedures for fMRI models (1) classical (ReML) estimation of first or second level models, (2) Bayesian estimation of first level models and (3) Bayesian estimation of second level models. Option (2) uses a Variational Bayes (VB) algorithm that is new to SPM5. Option (3) uses the Empirical Bayes algorithm with global shrinkage priors that was also in SPM2. ' '' 'To use option (3) you must have already estimated the model using option (1). That is, for second-level models you must run a ReML estimation before running a Bayesian estimation. This is not necessary for option (2). Bayesian estimation of 1st-level models using VB does not require a prior ReML estimation.' }'; method.values = {Classical Bayesian Bayesian2}; % --------------------------------------------------------------------- % fmri_est Model estimation % --------------------------------------------------------------------- fmri_est = cfg_exbranch; fmri_est.tag = 'fmri_est'; fmri_est.name = 'Model estimation'; fmri_est.val = {spmmat method }; fmri_est.help = {'Model parameters can be estimated using classical (ReML - Restricted Maximum Likelihood) or Bayesian algorithms. After parameter estimation, the RESULTS button can be used to specify contrasts that will produce Statistical Parametric Maps (SPMs) or Posterior Probability Maps (PPMs) and tables of statistics.'}; fmri_est.prog = @spm_run_fmri_est; fmri_est.vout = @vout_stats; fmri_est.modality = {'FMRI' 'PET' 'EEG'}; %========================================================================== function dep = vout_stats(job) dep(1) = cfg_dep; dep(1).sname = 'SPM.mat File'; dep(1).src_output = substruct('.','spmmat'); dep(1).tgt_spec = cfg_findspec({{'filter','mat','strtype','e'}}); %dep(2) = cfg_dep; %dep(2).sname = 'SPM Variable'; %dep(2).src_output = substruct('.','spmvar'); %dep(2).tgt_spec = cfg_findspec({{'strtype','e'}}); if isfield(job.method, 'Classical') dep(2) = cfg_dep; dep(2).sname = 'Beta Images'; dep(2).src_output = substruct('.','beta'); dep(2).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); dep(3) = cfg_dep; dep(3).sname = 'Analysis Mask'; dep(3).src_output = substruct('.','mask'); dep(3).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); dep(4) = cfg_dep; dep(4).sname = 'ResMS Image'; dep(4).src_output = substruct('.','resms'); dep(4).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); % can't check whether auto-generated contrasts are generated this is % specified in input SPM.mat, not this job end;
github
philippboehmsturm/antx-master
spm_cfg_plot_fdmar.m
.m
antx-master/freiburgLight/matlab/spm8/config/spm_cfg_plot_fdmar.m
1,538
utf_8
53838da078ffd2b340d1746a4ec0f674
function cfg = spm_cfg_plot_fdmar spmmat = cfg_files; spmmat.name = 'SPM.mat file'; spmmat.tag = 'spmmat'; spmmat.num = [1 1]; spmmat.filter = '^SPM.mat$'; spmmat.help = {'Select SPM.mat file.'}; %spmmat.check = @has_arfit; ana = cfg_const; ana.name = 'SPM analysis mask'; ana.tag = 'ana'; ana.val = {true}; ana.help = {'Plot arfit for all voxels in an analysis.'}; ext = cfg_files; ext.name = 'External analysis mask'; ext.tag = 'ext'; ext.filter = 'image'; ext.num = [1 1]; ext.help = {['Plot arfit for all voxels in an analysis, that are in the ' ... 'external mask.']}; mask = cfg_choice; mask.name = 'Masking'; mask.tag = 'mask'; mask.values = {ana ext}; mask.help = {'Specify mask to use'}; sess = cfg_entry; sess.name = 'Session #'; sess.tag = 'sess'; sess.strtype = 'n'; sess.num = [1 1]; sess.help = {['arfit results can be plotted for only one session at a ' ... 'time.']}; pflag = cfg_menu; pflag.name = 'Print results to PNG'; pflag.tag = 'pflag'; pflag.labels = {'Yes'; 'No'}; pflag.values = {true; false}; cfg = cfg_exbranch; cfg.name = 'Plot arfit diagnostics'; cfg.tag = 'plot_fdmar'; cfg.val = {spmmat,mask,sess,pflag}; cfg.prog = @spm_run_plot_fdmar; function str = has_arfit(spmmat) try load(spmmat{1},'SPM'); SPM.xVi.arfit; str = ''; catch str = sprintf(['File ''%s'' does not contain a SPM.mat file with arfit ' ... 'information.'], spmmat{1}); end
github
philippboehmsturm/antx-master
paint.m
.m
antx-master/freiburgLight/matlab/spm8/@slover/paint.m
10,669
utf_8
58c77775943c79df7da192623addf239
function obj = paint(obj, params) % method to display slice overlay % FORMAT paint(obj, params) % % Inputs % obj - slice overlay object % params - optional structure containing extra display parameters % - refreshf - overrides refreshf in object % - clf - overrides clf in object % - userdata - if 0, does not add object to userdata field % (see below) % % Outputs % obj - which may have been filled with defaults % % paint attaches the object used for painting to the 'UserData' field of % the figure handle, unless instructed not to with 0 in userdata flag % % $Id: paint.m,v 1.2 2005/05/06 22:59:56 matthewbrett Exp $ fig_struct_fields = {'Position', 'Units'}; if nargin < 2 params = []; end params = mars_struct('fillafromb', params, ... struct('refreshf', obj.refreshf,... 'clf', obj.clf, ... 'userdata', obj.userdata)); % Fill any needed defaults obj = fill_defaults(obj); % check if object can be painted if isempty(obj.img) warning('slover:noImages', 'No images, object cannot be painted') return end % get coordinates for plane X=1;Y=2;Z=3; dims = obj.slicedef; xmm = dims(X,1):dims(X,2):dims(X,3); ymm = dims(Y,1):dims(Y,2):dims(Y,3); zmm = obj.slices; [y x] = meshgrid(ymm,xmm'); vdims = [length(xmm),length(ymm),length(zmm)]; % no of slices, and panels (an extra for colorbars) nslices = vdims(Z); minnpanels = nslices; cbars = 0; if ~isempty(obj.cbar) cbars = length(obj.cbar); minnpanels = minnpanels+cbars; end % Get figure data. The figure may be dead, in which case we may want to % revive it. If so, we set position etc as stored. % If written to, the axes may be specified already dead_f = ~ishandle(obj.figure); figno = figure(obj.figure); if dead_f set(figno, obj.figure_struct); end % (re)initialize axes and stuff % check if the figure is set up correctly if ~params.refreshf axisd = flipud(findobj(obj.figure, 'Type','axes','Tag', 'slice overlay panel')); npanels = length(axisd); if npanels < vdims(Z)+cbars; params.refreshf = 1; end end if params.refreshf % clear figure, axis store if params.clf, clf; end % prevent print inversion problems set(figno,'InvertHardCopy','off'); % put copy of object into UserData for callbacks if params.userdata set(figno, 'UserData', obj); end % calculate area of display in pixels parea = obj.area.position; if ~strcmp(obj.area.units, 'pixels') ubu = get(obj.figure, 'units'); set(obj.figure, 'units','pixels'); tmp = get(obj.figure, 'Position'); ascf = tmp(3:4); if ~strcmp(obj.area.units, 'normalized') set(obj.figure, 'units',obj.area.units); tmp = get(obj.figure, 'Position'); ascf = ascf ./ tmp(3:4); end set(figno, 'Units', ubu); parea = parea .* repmat(ascf, 1, 2); end asz = parea(3:4); % by default, make most parsimonious fit to figure yxratio = length(ymm)*dims(Y,2)/(length(xmm)*dims(X,2)); if isempty(obj.xslices) % iteration needed to optimize, surprisingly. Thanks to Ian NS axlen(X,:)=asz(1):-1:1; axlen(Y,:)=yxratio*axlen(X,:); panels = floor(asz'*ones(1,size(axlen,2))./axlen); estnpanels = prod(panels); tmp = find(estnpanels >= minnpanels); if isempty(tmp) error('Whoops, cannot fit panels onto figure'); end b = tmp(1); % best fitting scaling panels = panels(:,b); axlen = axlen(:, b); else % if xslices is specified, assume X is flush with X figure dimensions panels(X:Y,1) = [obj.xslices; 0]; axlen(X:Y,1) = [asz(X)/panels(X); 0]; end % Axis dimensions are in pixels. This prevents aspect ratio rescaling panels(Y) = ceil(minnpanels/panels(X)); axlen(Y) = axlen(X)*yxratio; % centre (etc) panels in display area as required divs = [Inf 2 1];the_ds = [0;0]; the_ds(X) = divs(strcmp(obj.area.halign, {'left','center','right'})); the_ds(Y) = divs(strcmp(obj.area.valign, {'bottom','middle','top'})); startc = parea(1:2)' + (asz'-(axlen.*panels))./the_ds; % make axes for panels r=0;c=1; npanels = prod(panels); lastempty = npanels-cbars; axisd = nan(1, npanels); for i = 1:npanels % panel userdata if i<=nslices u.type = 'slice'; u.no = zmm(i); elseif i > lastempty u.type = 'cbar'; u.no = i - lastempty; else u.type = 'empty'; u.no = i - nslices; end axpos = [r*axlen(X)+startc(X) (panels(Y)-c)*axlen(Y)+startc(Y) axlen']; axisd(i) = axes(... 'Parent',figno,... 'XTick',[],... 'XTickLabel',[],... 'YTick',[],... 'YTickLabel',[],... 'Box','on',... 'XLim',[1 vdims(X)],... 'YLim',[1 vdims(Y)],... 'Units', 'pixels',... 'Position',axpos,... 'Tag','slice overlay panel',... 'UserData',u); r = r+1; if r >= panels(X) r = 0; c = c+1; end end end % sort out labels if ischar(obj.labels) do_labels = ~strcmpi(obj.labels, 'none'); else do_labels = 1; end if do_labels labels = obj.labels; if iscell(labels.format) if length(labels.format)~=vdims(Z) error('Oh dear, expecting %d labels, but found %d', ... vdims(Z), length(labels.contents)); end else % format string for mm from AC labelling fstr = labels.format; labels.format = cell(vdims(Z),1); acpt = obj.transform * [0 0 0 1]'; for i = 1:vdims(Z) labels.format(i) = {sprintf(fstr,zmm(i)-acpt(Z))}; end end end % split images into picture and contour itypes = {obj.img(:).type}; tmp = strcmpi(itypes, 'contour'); contimgs = find(tmp); pictimgs = find(~tmp); % modify picture image colormaps with any new colours npimgs = length(pictimgs); lrn = zeros(npimgs,3); cmaps = cell(npimgs); for i = 1:npimgs cmaps(i)={obj.img(pictimgs(i)).cmap}; lrnv = [obj.img(pictimgs(i)).outofrange, obj.img(pictimgs(i)).nancol]; for j = 1:length(lrnv) if numel(lrnv{j})==1 lrn(i,j) = lrnv{j}; else cmaps(i) = {[cmaps{i}; lrnv{j}(1:3)]}; lrn(i,j) = size(cmaps{i},1); end end end % cycle through slices displaying images nvox = prod(vdims(1:2)); pandims = [vdims([2 1]) 3]; % NB XY transpose for display zimg = zeros(pandims); for i = 1:nslices ixyzmm = [x(:)';y(:)';ones(1,nvox)*zmm(i);ones(1,nvox)]; img = zimg; for j = 1:npimgs thisimg = obj.img(pictimgs(j)); i1 = sf_slice2panel(thisimg, ixyzmm, obj.transform, vdims); % rescale to colormap [csdata badvals]= pr_scaletocmap(... i1,... thisimg.range(1),... thisimg.range(2),... thisimg.cmap,... lrn(j,:)); % take indices from colormap to make true colour image iimg = reshape(cmaps{j}(csdata(:),:),pandims); tmp = repmat(logical(~badvals),[1 1 3]); if strcmpi(thisimg.type, 'truecolour') img(tmp) = img(tmp) + iimg(tmp)*thisimg.prop; else % split colormap effect img(tmp) = iimg(tmp)*thisimg.prop; end end % threshold out of range values img(img>1) = 1; image('Parent', axisd(i),... 'ButtonDownFcn', obj.callback,... 'CData',img); % do contour plot for j=1:length(contimgs) thisimg = obj.img(contimgs(j)); i1 = sf_slice2panel(thisimg, ixyzmm, obj.transform, vdims); if any(any(isfinite(i1))) i1(i1<min(thisimg.range))=min(thisimg.range); i1(i1>max(thisimg.range))=max(thisimg.range); if ~any(diff(i1(isfinite(i1)))), continue, end % skip empty planes if mars_struct('isthere', thisimg, 'linespec') linespec = thisimg.linespec; else linespec = 'w-'; end set(axisd(i),'NextPlot','add'); if mars_struct('isthere', thisimg, 'contours') [c h] = contour(axisd(i), i1, thisimg.contours, linespec); else [c h] = contour(axisd(i), i1, linespec); end if ~isempty(h) if ~mars_struct('isthere', thisimg, 'linespec') % need to reset colours; contour assumes you just set the figure's % colormap, but to overlay coloured contours on a greyscale image, % one needs to have everything in truecolour, setting individual % contour lines to their appropriate colour. % (updated for MATLAB 7 and above) convals = get(h, 'LevelList'); if ~isempty(convals) csdata = pr_scaletocmap(... convals,... thisimg.range(1),... thisimg.range(2),... thisimg.cmap,... [1 size(thisimg.cmap,1) 1]); colvals = thisimg.cmap(csdata(:),:)*thisimg.prop; for ch = get(h, 'Children')' % (NB: transpose needed to loop) CData = get(ch, 'CData'); % (CData is constant with final NaN) colval = colvals(find(convals == CData(1), 1), :); set(ch, 'EdgeColor', colval) end end end if mars_struct('isthere', thisimg, 'linewidth') set(h, 'LineWidth', thisimg.linewidth); end end end end if do_labels text('Parent',axisd(i),... 'Color', labels.colour,... 'FontUnits', 'normalized',... 'VerticalAlignment','bottom',... 'HorizontalAlignment','left',... 'Position', [1 1],... 'FontSize',labels.size,... 'ButtonDownFcn', obj.callback,... 'String', labels.format{i}); end end for i = (nslices+1):npanels set(axisd(i),'Color',[0 0 0]); end % add colorbar(s) for i = 1:cbars axno = axisd(end-cbars+i); cbari = obj.img(obj.cbar(i)); cml = size(cbari.cmap,1); p = get(axno, 'Position'); % position of last axis cw = p(3)*0.2; ch = p(4)*0.75; pc = p(3:4)/2; [axlims idxs] = sort(cbari.range); a=axes(... 'Parent',figno,... 'XTick',[],... 'XTickLabel',[],... 'Units', 'pixels',... 'YLim', axlims,... 'FontUnits', 'normalized',... 'FontSize', 0.075,... 'YColor',[1 1 1],... 'Tag', 'cbar',... 'Box', 'off',... 'Position',[p(1)+pc(1)-cw/2,p(2)+pc(2)-ch/2,cw,ch]... ); image('Parent', a,... 'YData', axlims(idxs),... 'CData', reshape(cbari.cmap,[cml,1,3])); end % colourbars % Get stuff for figure, in case it dies later obj.figure_struct = mars_struct('split', get(figno), fig_struct_fields); return % subfunctions % ------------ function i1 = sf_slice2panel(img, xyzmm, transform, vdims) % to voxel space of image vixyz = (transform*img.vol.mat) \ xyzmm; % raw data if mars_struct('isthere', img.vol, 'imgdata') V = img.vol.imgdata; else V = img.vol; end i1 = spm_sample_vol(V,vixyz(1,:),vixyz(2,:),vixyz(3,:), ... [img.hold img.background]); if mars_struct('isthere', img, 'func') eval(img.func); end % transpose to reverse X and Y for figure i1 = reshape(i1, vdims(1:2))'; return
github
philippboehmsturm/antx-master
pr_basic_ui.m
.m
antx-master/freiburgLight/matlab/spm8/@slover/private/pr_basic_ui.m
3,679
utf_8
88d91189a824825f094d4979cbdc7fb4
function obj = pr_basic_ui(imgs, dispf) % GUI to request parameters for slover routine % FORMAT obj = pr_basic_ui(imgs, dispf) % % GUI requests choices while accepting many defaults % % imgs - string or cell array of image names to display % (defaults to GUI select if no arguments passed) % dispf - optional flag: if set, displays overlay (default = 1) % % $Id: pr_basic_ui.m,v 1.1 2005/04/20 15:05:00 matthewbrett Exp $ if nargin < 1 imgs = ''; end if isempty(imgs) imgs = spm_select(Inf, 'image', 'Image(s) to display'); end if ischar(imgs) imgs = cellstr(imgs); end if nargin < 2 dispf = 1; end spm_input('!SetNextPos', 1); % load images nimgs = size(imgs); % process names nchars = 20; imgns = spm_str_manip(imgs, ['rck' num2str(nchars)]); % Get new default object obj = slover; % identify image types cscale = []; deftype = 1; obj.cbar = []; for i = 1:nimgs obj.img(i).vol = spm_vol(imgs{i}); options = {'Structural','Truecolour', ... 'Blobs','Negative blobs','Contours'}; % if there are SPM results in the workspace, add this option [XYZ Z M] = pr_get_spm_results; if ~isempty(XYZ) options = {'Structural with SPM blobs', options{:}}; end itype = spm_input(sprintf('Img %d: %s - image type?', i, imgns{i}), '+1', ... 'm', char(options),options, deftype); imgns(i) = {sprintf('Img %d (%s)',i,itype{1})}; [mx mn] = slover('volmaxmin', obj.img(i).vol); if ~isempty(strmatch('Structural', itype)) obj.img(i).type = 'truecolour'; obj.img(i).cmap = gray; obj.img(i).range = [mn mx]; deftype = 2; cscale = [cscale i]; if strcmp(itype,'Structural with SPM blobs') obj = add_spm(obj); end else cprompt = ['Colormap: ' imgns{i}]; switch itype{1} case 'Truecolour' obj.img(i).type = 'truecolour'; dcmap = 'flow.lut'; drange = [mn mx]; cscale = [cscale i]; obj.cbar = [obj.cbar i]; case 'Blobs' obj.img(i).type = 'split'; dcmap = 'hot'; drange = [0 mx]; obj.img(i).prop = 1; obj.cbar = [obj.cbar i]; case 'Negative blobs' obj.img(i).type = 'split'; dcmap = 'winter'; drange = [0 mn]; obj.img(i).prop = 1; obj.cbar = [obj.cbar i]; case 'Contours' obj.img(i).type = 'contour'; dcmap = 'white'; drange = [mn mx]; obj.img(i).prop = 1; end obj.img(i).cmap = sf_return_cmap(cprompt, dcmap); obj.img(i).range = spm_input('Img val range for colormap','+1', 'e', drange, 2); end end ncmaps=length(cscale); if ncmaps == 1 obj.img(cscale).prop = 1; else remcol=1; for i = 1:ncmaps ino = cscale(i); obj.img(ino).prop = spm_input(sprintf('%s intensity',imgns{ino}),... '+1', 'e', ... remcol/(ncmaps-i+1),1); remcol = remcol - obj.img(ino).prop; end end obj.transform = deblank(spm_input('Image orientation', '+1', ['Axial|' ... ' Coronal|Sagittal'], strvcat('axial','coronal','sagittal'), ... 1)); % use SPM figure window obj.figure = spm_figure('GetWin', 'Graphics'); % slices for display obj = fill_defaults(obj); slices = obj.slices; obj.slices = spm_input('Slices to display (mm)', '+1', 'e', ... sprintf('%0.0f:%0.0f:%0.0f',... slices(1),... mean(diff(slices)),... slices(end))... ); % and do the display if dispf, obj = paint(obj); end return % Subfunctions % ------------ function cmap = sf_return_cmap(prompt,defmapn) cmap = []; while isempty(cmap) [cmap w]= slover('getcmap', spm_input(prompt,'+1','s', defmapn)); if isempty(cmap), disp(w);end end return
github
philippboehmsturm/antx-master
delete.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/delete.m
1,203
utf_8
f523d5fa52766f6af01c283da5bb87bf
function tree = delete(tree,uid) % XMLTREE/DELETE Delete (delete a subtree given its UID) % % tree - XMLTree object % uid - array of UID's of subtrees to be deleted %_______________________________________________________________________ % % Delete a subtree given its UID % The tree parameter must be in input AND in output %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: delete.m 1460 2008-04-21 17:43:18Z guillaume $ error(nargchk(2,2,nargin)); uid = uid(:); for i=1:length(uid) if uid(i)==1 warning('[XMLTree] Cannot delete root element.'); else p = tree.tree{uid(i)}.parent; tree = sub_delete(tree,uid(i)); tree.tree{p}.contents(find(tree.tree{p}.contents==uid(i))) = []; end end %======================================================================= function tree = sub_delete(tree,uid) if isfield(tree.tree{uid},'contents') for i=1:length(tree.tree{uid}.contents) tree = sub_delete(tree,tree.tree{uid}.contents(i)); end end tree.tree{uid} = struct('type','deleted');
github
philippboehmsturm/antx-master
save.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/save.m
5,121
utf_8
fa70739c5d89fa5e5759fe4d0dd5d1b3
function varargout = save(tree, filename) % XMLTREE/SAVE Save an XML tree in an XML file % FORMAT varargout = save(tree,filename) % % tree - XMLTree % filename - XML output filename % varargout - XML string %_______________________________________________________________________ % % Convert an XML tree into a well-formed XML string and write it into % a file or return it as a string if no filename is provided. %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: save.m 4393 2011-07-18 14:52:32Z guillaume $ error(nargchk(1,2,nargin)); prolog = '<?xml version="1.0" ?>\n'; %- Return the XML tree as a string if nargin == 1 varargout{1} = [sprintf(prolog) ... print_subtree(tree,'',root(tree))]; %- Output specified else %- Filename provided if ischar(filename) [fid, msg] = fopen(filename,'w'); if fid==-1, error(msg); end if isempty(tree.filename), tree.filename = filename; end %- File identifier provided elseif isnumeric(filename) && numel(filename) == 1 fid = filename; prolog = ''; %- With this option, do not write any prolog else error('[XMLTree] Invalid argument.'); end fprintf(fid,prolog); save_subtree(tree,fid,root(tree)); if ischar(filename), fclose(fid); end if nargout == 1 varargout{1} = print_subtree(tree,'',root(tree)); end end %======================================================================= function xmlstr = print_subtree(tree,xmlstr,uid,order) if nargin < 4, order = 0; end xmlstr = [xmlstr blanks(3*order)]; switch tree.tree{uid}.type case 'element' xmlstr = sprintf('%s<%s',xmlstr,tree.tree{uid}.name); for i=1:length(tree.tree{uid}.attributes) xmlstr = sprintf('%s %s="%s"', xmlstr, ... tree.tree{uid}.attributes{i}.key,... tree.tree{uid}.attributes{i}.val); end if isempty(tree.tree{uid}.contents) xmlstr = sprintf('%s/>\n',xmlstr); else xmlstr = sprintf('%s>\n',xmlstr); for i=1:length(tree.tree{uid}.contents) xmlstr = print_subtree(tree,xmlstr, ... tree.tree{uid}.contents(i),order+1); end xmlstr = [xmlstr blanks(3*order)]; xmlstr = sprintf('%s</%s>\n',xmlstr,... tree.tree{uid}.name); end case 'chardata' xmlstr = sprintf('%s%s\n',xmlstr, ... entity(tree.tree{uid}.value)); case 'cdata' xmlstr = sprintf('%s<![CDATA[%s]]>\n',xmlstr, ... tree.tree{uid}.value); case 'pi' xmlstr = sprintf('%s<?%s %s?>\n',xmlstr, ... tree.tree{uid}.target, tree.tree{uid}.value); case 'comment' xmlstr = sprintf('%s<!-- %s -->\n',xmlstr,... tree.tree{uid}.value); otherwise warning(sprintf('Type %s unknown: not saved', ... tree.tree{uid}.type)); end %======================================================================= function save_subtree(tree,fid,uid,order) if nargin < 4, order = 0; end fprintf(fid,blanks(3*order)); switch tree.tree{uid}.type case 'element' fprintf(fid,'<%s',tree.tree{uid}.name); for i=1:length(tree.tree{uid}.attributes) fprintf(fid,' %s="%s"',... tree.tree{uid}.attributes{i}.key, ... tree.tree{uid}.attributes{i}.val); end if isempty(tree.tree{uid}.contents) fprintf(fid,'/>\n'); else fprintf(fid,'>\n'); for i=1:length(tree.tree{uid}.contents) save_subtree(tree,fid,... tree.tree{uid}.contents(i),order+1) end fprintf(fid,blanks(3*order)); fprintf(fid,'</%s>\n',tree.tree{uid}.name); end case 'chardata' fprintf(fid,'%s\n',entity(tree.tree{uid}.value)); case 'cdata' fprintf(fid,'<![CDATA[%s]]>\n',tree.tree{uid}.value); case 'pi' fprintf(fid,'<?%s %s?>\n',tree.tree{uid}.target, ... tree.tree{uid}.value); case 'comment' fprintf(fid,'<!-- %s -->\n',tree.tree{uid}.value); otherwise warning(sprintf('[XMLTree] Type %s unknown: not saved', ... tree.tree{uid}.type)); end %======================================================================= function str = entity(str) % This has the side effect of strtrim'ming the char array. str = char(strrep(cellstr(str), '&', '&amp;' )); str = char(strrep(cellstr(str), '<', '&lt;' )); str = char(strrep(cellstr(str), '>', '&gt;' )); str = char(strrep(cellstr(str), '"', '&quot;')); str = char(strrep(cellstr(str), '''', '&apos;'));
github
philippboehmsturm/antx-master
branch.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/branch.m
1,763
utf_8
f109760669fd1d0e0de8fc92a2a29e7d
function subtree = branch(tree,uid) % XMLTREE/BRANCH Branch Method % FORMAT uid = parent(tree,uid) % % tree - XMLTree object % uid - UID of the root element of the subtree % subtree - XMLTree object (a subtree from tree) %_______________________________________________________________________ % % Return a subtree from a tree. %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: branch.m 1460 2008-04-21 17:43:18Z guillaume $ error(nargchk(2,2,nargin)); if uid > length(tree) || ... numel(uid)~=1 || ... ~strcmp(tree.tree{uid}.type,'element') error('[XMLTree] Invalid UID.'); end subtree = xmltree; subtree = set(subtree,root(subtree),'name',tree.tree{uid}.name); %- fix by Piotr Dollar to copy attributes for the root node: subtree = set(subtree,root(subtree),'attributes',tree.tree{uid}.attributes); child = children(tree,uid); for i=1:length(child) l = length(subtree); subtree = sub_branch(tree,subtree,child(i),root(subtree)); subtree.tree{root(subtree)}.contents = [subtree.tree{root(subtree)}.contents l+1]; end %======================================================================= function tree = sub_branch(t,tree,uid,p) l = length(tree); tree.tree{l+1} = t.tree{uid}; tree.tree{l+1}.uid = l + 1; tree.tree{l+1}.parent = p; tree.tree{l+1}.contents = []; if isfield(t.tree{uid},'contents') contents = get(t,uid,'contents'); m = length(tree); for i=1:length(contents) tree.tree{l+1}.contents = [tree.tree{l+1}.contents m+1]; tree = sub_branch(t,tree,contents(i),l+1); m = length(tree); end end
github
philippboehmsturm/antx-master
flush.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/flush.m
1,426
utf_8
fe4b3a9c9e324178be9b06001c9fec8f
function tree = flush(tree,uid) % XMLTREE/FLUSH Flush (Clear a subtree given its UID) % % tree - XMLTree object % uid - array of UID's of subtrees to be cleared % Default is root %_______________________________________________________________________ % % Clear a subtree given its UID (remove all the leaves of the tree) % The tree parameter must be in input AND in output %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: flush.m 1460 2008-04-21 17:43:18Z guillaume $ error(nargchk(1,2,nargin)); if nargin == 1, uid = root(tree); end uid = uid(:); for i=1:length(uid) tree = sub_flush(tree,uid(i)); end %======================================================================= function tree = sub_flush(tree,uid) if isfield(tree.tree{uid},'contents') % contents is parsed in reverse order because each child is % deleted and the contents vector is then eventually reduced for i=length(tree.tree{uid}.contents):-1:1 tree = sub_flush(tree,tree.tree{uid}.contents(i)); end end if strcmp(tree.tree{uid}.type,'chardata') ||... strcmp(tree.tree{uid}.type,'pi') ||... strcmp(tree.tree{uid}.type,'cdata') ||... strcmp(tree.tree{uid}.type,'comment') tree = delete(tree,uid); end
github
philippboehmsturm/antx-master
copy.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/copy.m
1,644
utf_8
8cbde6d7d6e761ad86ecb0379b54b269
function tree = copy(tree,subuid,uid) % XMLTREE/COPY Copy Method (copy a subtree in another branch) % FORMAT tree = copy(tree,subuid,uid) % % tree - XMLTree object % subuid - UID of the subtree to copy % uid - UID of the element where the subtree must be duplicated %_______________________________________________________________________ % % Copy a subtree to another branch % The tree parameter must be in input AND in output %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: copy.m 1460 2008-04-21 17:43:18Z guillaume $ error(nargchk(2,3,nargin)); if nargin == 2 uid = parent(tree,subuid); end l = length(tree); tree = sub_copy(tree,subuid,uid); tree.tree{uid}.contents = [tree.tree{uid}.contents l+1]; % to have the copy next to the original and not at the end? % contents = get(tree,parent,'contents'); % i = find(contents==uid); % tree = set(tree,parent,'contents',[contents(1:i) l+1 contents(i+1:end)]); %======================================================================= function tree = sub_copy(tree,uid,p) l = length(tree); tree.tree{l+1} = tree.tree{uid}; tree.tree{l+1}.uid = l+1; tree.tree{l+1}.parent = p; tree.tree{l+1}.contents = []; if isfield(tree.tree{uid},'contents') contents = get(tree,uid,'contents'); m = length(tree); for i=1:length(contents) tree.tree{l+1}.contents = [tree.tree{l+1}.contents m+1]; tree = sub_copy(tree,contents(i),l+1); m = length(tree); end end
github
philippboehmsturm/antx-master
convert.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/convert.m
5,612
utf_8
c2c0cfe54bad9ce85b1cccc7c53acfce
function s = convert(tree,uid) % XMLTREE/CONVERT Converter an XML tree in a Matlab structure % % tree - XMLTree object % uid - uid of the root of the subtree, if provided. % Default is root % s - converted structure %_______________________________________________________________________ % % Convert an xmltree into a Matlab structure, when possible. % When several identical tags are present, a cell array is used. % The root tag is not saved in the structure. % If provided, only the structure corresponding to the subtree defined % by the uid UID is returned. %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: convert.m 3756 2010-03-05 18:43:37Z guillaume $ % Exemple: % tree: <toto><titi>field1</titi><tutu>field2</tutu><titi>field3</titi></toto> % toto = convert(tree); % <=> toto = struct('titi',{{'field1', 'field3'}},'tutu','field2') error(nargchk(1,2,nargin)); % Get the root uid of the output structure if nargin == 1 % Get the root uid of the XML tree root_uid = root(tree); else % Uid provided by user root_uid = uid; end % Initialize the output structure % struct([]) should be used but this only works with Matlab 6 % So we create a field that we delete at the end %s = struct(get(tree,root_uid,'name'),''); % struct([]) s = struct('deletedummy',''); %s = sub_convert(tree,s,root_uid,{get(tree,root_uid,'name')}); s = sub_convert(tree,s,root_uid,{}); s = rmfield(s,'deletedummy'); %======================================================================= function s = sub_convert(tree,s,uid,arg) type = get(tree,uid,'type'); switch type case 'element' child = children(tree,uid); l = {}; ll = {}; for i=1:length(child) if isfield(tree,child(i),'name') ll = { ll{:}, get(tree,child(i),'name') }; end end for i=1:length(child) if isfield(tree,child(i),'name') name = get(tree,child(i),'name'); nboccur = sum(ismember(l,name)); nboccur2 = sum(ismember(ll,name)); l = { l{:}, name }; if nboccur || (nboccur2>1) arg2 = { arg{:}, name, {nboccur+1} }; else arg2 = { arg{:}, name}; end else arg2 = arg; end s = sub_convert(tree,s,child(i),arg2); end if isempty(child) s = sub_setfield(s,arg{:},''); end %- saving attributes : does not work with <a t='q'>b</a> %- but ok with <a t='q'><c>b</c></a> % attrb = attributes(tree,'get',uid); %- % if ~isempty(attrb) %- % arg2 = {arg{:} 'attributes'}; %- % s = sub_setfield(s,arg2{:},attrb); %- % end %- case 'chardata' s = sub_setfield(s,arg{:},get(tree,uid,'value')); %- convert strings into their Matlab equivalent when possible %- e.g. string '3.14159' becomes double scalar 3.14159 % v = get(tree,uid,'value'); %- % cv = str2num(v); %- % if isempty(cv) %- % s = sub_setfield(s,arg{:},v); %- % else %- % s = sub_setfield(s,arg{:},cv); %- % end %- case 'cdata' s = sub_setfield(s,arg{:},get(tree,uid,'value')); case 'pi' % Processing instructions are evaluated if possible app = get(tree,uid,'target'); switch app case {'matlab',''} s = sub_setfield(s,arg{:},eval(get(tree,uid,'value'))); case 'unix' s = sub_setfield(s,arg{:},unix(get(tree,uid,'value'))); case 'dos' s = sub_setfield(s,arg{:},dos(get(tree,uid,'value'))); case 'system' s = sub_setfield(s,arg{:},system(get(tree,uid,'value'))); otherwise try s = sub_setfield(s,arg{:},feval(app,get(tree,uid,'value'))); catch warning('[XMLTREE] Unknown target application'); end end case 'comment' % Comments are forgotten otherwise warning(sprintf('Type %s unknown : not saved',get(tree,uid,'type'))); end %======================================================================= function s = sub_setfield(s,varargin) % Same as setfield but using '{}' rather than '()' %if (isempty(varargin) | length(varargin) < 2) % error('Not enough input arguments.'); %end subs = varargin(1:end-1); for i = 1:length(varargin)-1 if (isa(varargin{i}, 'cell')) types{i} = '{}'; elseif ischar(varargin{i}) types{i} = '.'; subs{i} = varargin{i}; %strrep(varargin{i},' ',''); % deblank field name else error('Inputs must be either cell arrays or strings.'); end end % Perform assignment try s = builtin('subsasgn', s, struct('type',types,'subs',subs), varargin{end}); catch error(lasterr) end
github
philippboehmsturm/antx-master
editor.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/editor.m
12,428
utf_8
6344af0067d2405a13d1dabf8e96efc3
function editor(tree) %XMLTREE/EDITOR A Graphical User Interface for an XML tree % EDITOR(TREE) opens a new Matlab figure displaying the xmltree % object TREE. % H = EDITOR(TREE) also returns the figure handle H. % % This is a beta version of <xmltree/view> successor % % See also XMLTREE %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: editor.m 1460 2008-04-21 17:43:18Z guillaume $ error(nargchk(1,1,nargin)); if ~isempty(getfilename(tree)) title = getfilename(tree); elseif ~isempty(inputname(1)) title = ['Variable ''' inputname(1) '''']; else title = 'Untitled'; end h = initWindow(title); setappdata(h,'handles',guihandles(h)); setappdata(h,'save',0); tree = set(tree,root(tree),'show',1); setappdata(h,'tree',tree); doUpdate([],[],h); set(h,'HandleVisibility','callback'); %======================================================================= function h = initWindow(title) wincolor = struct('bg', [0.8 0.8 0.8], ... 'fg', [1.0 1.0 1.0], ... 'title', [0.9 0.9 0.9]); title = [':: XMLTree Editor :: ' title]; h = figure('Name', title, ... 'Units', 'Points', ... 'NumberTitle', 'off', ... 'Resize', 'on', ... 'Color', wincolor.bg,... 'Position', [200 200 440 330], ... 'MenuBar', 'none', ... 'Tag', mfilename); set(h, 'CloseRequestFcn', {@doClose,h}); %- Left box uicontrol('Style', 'listbox', ... 'HorizontalAlignment','left', ... 'Units','Normalized', ... 'Visible','on',... 'BackgroundColor', wincolor.fg, ... 'Max', 1, ... 'Value', 1 , ... 'Enable', 'on', ... 'Position', [0.04 0.12 0.3 0.84], ... 'Callback', {@doList,h}, ... 'String', ' ', ... 'Tag', 'xmllistbox'); %- Right box uicontrol('Style', 'list', ... 'HorizontalAlignment','left', ... 'Units','Normalized', ... 'Visible','on',... 'BackgroundColor', wincolor.bg, ... 'Min', 0, ... 'Max', 2, ... 'Value', [], ... 'Enable', 'inactive', ... 'Position', [0.38 0.50 0.58 0.46], ... 'Callback', '', ... 'String', ' ', ... 'Tag', 'xmllist'); %- The Add button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.04 0.03 0.11 0.06], ... 'String', 'Add', ... 'Enable','on',... 'Tag', 'addbutton', ... 'Callback', {@doAdd,h}); %- The Modify button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.175 0.03 0.11 0.06], ... 'String', 'Modify', ... 'Enable','on',... 'Tag', 'modifybutton', ... 'Callback', {@doModify,h}); %- The Copy button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.310 0.03 0.11 0.06], ... 'String', 'Copy', ... 'Enable','on',... 'Tag', 'copybutton', ... 'Callback', {@doCopy,h}); %- The Delete button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.445 0.03 0.11 0.06], ... 'String', 'Delete', ... 'Enable','on',... 'Tag', 'delbutton', ... 'Callback', {@doDelete,h}); %- The Save button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.580 0.03 0.11 0.06], ... 'String', 'Save', ... 'Tag', 'savebutton', ... 'Callback', {@doSave,h}); %- The Run button %uicontrol('Style', 'pushbutton', ... % 'Units', 'Normalized', ... % 'Position', [0.715 0.03 0.11 0.06], ... % 'String', 'Run', ... % 'Enable', 'off', ... % 'Tag', 'runbutton', ... % 'Callback', {@doRun,h}); %- The Attributes button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.715 0.03 0.11 0.06], ... 'String', 'Attr.', ... 'Enable', 'on', ... 'Tag', 'runbutton', ... 'Callback', {@doAttributes,h}); %- The Close button uicontrol('Style', 'pushbutton', ... 'Units', 'Normalized', ... 'Position', [0.850 0.03 0.11 0.06], ... 'String', 'Close', ... 'Tag', 'closebutton', ... 'Callback', {@doClose,h}); %======================================================================= function doClose(fig,evd,h) s = getappdata(h, 'save'); status = 1; if s button = questdlg(sprintf('Save changes to the XML tree?'),... 'XMLTree Editor','Yes','No','Cancel','Yes'); if strcmp(button,'Yes') status = doSave([],[],h); elseif strcmp(button,'Cancel') status = 0; end end if status delete(h); end function doAdd(fig,evd,h) tree = getappdata(h, 'tree'); uidList = getappdata(h, 'uidlist'); handles = getappdata(h, 'handles'); pos = get(handles.xmllistbox,'value'); uid = uidList(pos); answer = questdlg('Which kind of item to add?', ... 'XMLTree Editor :: Add','Node','Leaf','Node'); switch answer case 'Node' tree = add(tree,uid,'element','New_Node'); case 'Leaf' tree = add(tree,uid,'element','New_Leaf'); l = length(tree); tree = add(tree,l,'chardata','default'); end tree = set(tree,uid,'show',1); setappdata(h, 'tree', tree); setappdata(h, 'save', 1); doUpdate([],[],h); doList([],[],h); function doModify(fig,evd,h) tree = getappdata(h, 'tree'); uidList = getappdata(h, 'uidlist'); handles = getappdata(h, 'handles'); pos = get(handles.xmllistbox,'value'); uid = uidList(pos); contents = children(tree,uid); if length(contents) > 0 & ... strcmp(get(tree,contents(1),'type'),'chardata') str = get(tree,contents(1),'value'); prompt = {'Name :','New value:'}; def = {get(tree,uid,'name'),str}; title = sprintf('Modify %s',get(tree,uid,'name')); lineNo = 1; answer = inputdlg(prompt,title,lineNo,def); if ~isempty(answer) tree = set(tree,uid,'name',answer{1}); str = answer{2}; tree = set(tree,contents(1),'value',str); setappdata(h, 'tree', tree); setappdata(h, 'save', 1); end else str = ['Tag ' get(tree,uid,'name')]; prompt = {'Name :'}; def = {get(tree,uid,'name'),str}; title = sprintf('Modify %s tag',get(tree,uid,'name')); lineNo = 1; answer = inputdlg(prompt,title,lineNo,def); if ~isempty(answer) tree = set(tree,uid,'name',answer{1}); str = ['Tag ' get(tree,uid,'name')]; setappdata(h, 'tree', tree); setappdata(h, 'save', 1); end end %- Trying to keep the slider active set(handles.xmllist, 'Enable', 'on'); set(handles.xmllist, 'String', ' '); set(handles.xmllist, 'Enable', 'Inactive'); set(handles.xmllist, 'String', str); doUpdate([],[],h); doList([],[],h); function doCopy(fig,evd,h) tree = getappdata(h, 'tree'); uidList = getappdata(h, 'uidlist'); handles = getappdata(h, 'handles'); pos = get(handles.xmllistbox,'value'); uid = uidList(pos); if pos ~= 1 tree = copy(tree,uid); setappdata(h, 'tree', tree); setappdata(h, 'save', 1); doUpdate([],[],h); doList([],[],h); end function doDelete(fig,evd,h) tree = getappdata(h, 'tree'); uidList = getappdata(h, 'uidlist'); handles = getappdata(h, 'handles'); pos = get(handles.xmllistbox,'value'); uid = uidList(pos); if pos > 1 tree = delete(tree,uid); set(handles.xmllistbox,'value',pos-1); setappdata(h, 'save', 1); end setappdata(h, 'tree', tree); doUpdate([],[],h); doList([],[],h); function status = doSave(fig,evd,h) tree = getappdata(h, 'tree'); [filename, pathname] = uiputfile({'*.xml' 'XML file (*.xml)'}, ... 'Save XML file as'); status = ~(isequal(filename,0) | isequal(pathname,0)); if status save(tree,fullfile(pathname, filename)); set(h,'Name',[':: XMLTree Editor :: ' filename]); setappdata(h, 'save', 0); end function doRun(fig,evd,h) warndlg('Not implemented','XMLTree :: Run'); function doAttributes(fig,evd,h) tree = getappdata(h, 'tree'); uidList = getappdata(h, 'uidlist'); handles = getappdata(h, 'handles'); pos = get(handles.xmllistbox,'value'); uid = uidList(pos); attr = attributes(tree,'get',uid); if ~isempty(attr) fprintf('This element has %d attributes.\n',length(attr)); %%% %%% Do what you want with 'attr' %%% to modify them, use: %%% tree = attributes(tree,'set',uid,n,key,val) %%% to add one, use: %%% tree = attributes(tree,'add',uid,key,val) %%% to delete one, use: %%% tree = attributes(tree,'del',uid[,n]); %%% setappdata(h, 'tree', tree); setappdata(h, 'save', 1); %- only if attributes have been modified end %======================================================================= function doList(fig,evd,h) tree = getappdata(h, 'tree'); uidList = getappdata(h, 'uidlist'); handles = getappdata(h, 'handles'); uid = uidList(get(handles.xmllistbox, 'value')); %- Single mouse click if strcmp(get(h,'SelectionType'),'normal') contents = children(tree, uid); if length(contents) > 0 & ... strcmp(get(tree,contents(1),'type'),'chardata') str = get(tree,contents(1),'value'); set(handles.addbutton,'Enable','off'); elseif length(contents) == 0 str = ''; tree = add(tree,uid,'chardata',str); setappdata(h, 'tree', tree); set(handles.addbutton,'Enable','off'); else str = ['Tag ' get(tree,uid,'name')]; set(handles.addbutton,'Enable','on'); end if get(handles.xmllistbox,'value') == 1 set(handles.copybutton,'Enable','off'); set(handles.delbutton,'Enable','off'); else set(handles.copybutton,'Enable','on'); set(handles.delbutton,'Enable','on'); end %- Trying to keep the slider active set(handles.xmllist, 'Enable', 'on'); set(handles.xmllist, 'String', ' '); set(handles.xmllist, 'Enable', 'Inactive'); set(handles.xmllist, 'String', str); %- Double mouse click else tree = doFlip(tree, uid); setappdata(h, 'tree', tree); doUpdate([],[],h); end function doUpdate(fig,evd,h) tree = getappdata(h, 'tree'); handles = getappdata(h, 'handles'); [batchString, uidList] = doUpdateR(tree); set(handles.xmllistbox, 'String', batchString); setappdata(h, 'uidlist', uidList); %======================================================================= function [batchString, uidList] = doUpdateR(tree, uid, o) if nargin < 2, uid = root(tree); end if nargin < 3 | o == 0 o = 0; sep = ' '; else sep = blanks(4*o); end if attributes(tree,'length',uid) > 0 batchString = {[sep, get(tree, uid, 'name') ' *']}; else batchString = {[sep, get(tree, uid, 'name')]}; end uidList = [get(tree,uid,'uid')]; haselementchild = 0; contents = get(tree, uid, 'contents'); if isfield(tree, uid, 'show') & get(tree, uid, 'show') == 1 for i=1:length(contents) if strcmp(get(tree,contents(i),'type'),'element') [subbatchString, subuidList] = doUpdateR(tree,contents(i),o+1); batchString = {batchString{:} subbatchString{:}}; uidList = [uidList subuidList]; haselementchild = 1; end end if haselementchild == 1, batchString{1}(length(sep)) = '-'; end else for i=1:length(contents) if strcmp(get(tree,contents(i),'type'),'element') haselementchild = 1; end end if haselementchild == 1, batchString{1}(length(sep)) = '+'; end end function tree = doFlip(tree, uid) if isfield(tree,uid,'show') show = get(tree,uid,'show'); else show = 0; end tree = set(tree,uid,'show',~show);
github
philippboehmsturm/antx-master
find.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/find.m
5,904
utf_8
f06a6b831a6222020bfa34df1176ccaa
function list = find(varargin) % XMLTREE/FIND Find elements in a tree with specified characteristics % FORMAT list = find(varargin) % % tree - XMLTree object % xpath - string path with specific grammar (XPath) % uid - lists of root uid's % parameter/value - pair of pattern % list - list of uid's of matched elements % % list = find(tree,xpath) % list = find(tree,parameter,value[,parameter,value]) % list = find(tree,uid,parameter,value[,parameter,value]) % % Grammar for addressing parts of an XML document: % XML Path Language XPath (http://www.w3.org/TR/xpath) % Example: /element1//element2[1]/element3[5]/element4 %_______________________________________________________________________ % % Find elements in an XML tree with specified characteristics or given % a path (using a subset of XPath language). %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: find.m 3934 2010-06-17 14:58:25Z guillaume $ % TODO: % - clean up subroutines % - find should only be documented using XPath (other use is internal) % - handle '*', 'last()' in [] and '@' % - if a key is invalid, should rather return [] than error ? if nargin==0 error('[XMLTree] A tree must be provided'); elseif nargin==1 list = 1:length(tree.tree); return elseif mod(nargin,2) list = sub_find_subtree1(varargin{1}.tree,root(varargin{1}),varargin{2:end}); elseif isa(varargin{2},'double') && ... ndims(varargin{2}) == 2 && ... min(size(varargin{2})) == 1 list = unique(sub_find_subtree1(varargin{1}.tree,varargin{2:end})); elseif nargin==2 && ischar(varargin{2}) list = sub_pathfinder(varargin{:}); else error('[XMLTree] Arguments must be parameter/value pairs.'); end %======================================================================= function list = sub_find_subtree1(varargin) list = []; for i=1:length(varargin{2}) res = sub_find_subtree2(varargin{1},... varargin{2}(i),varargin{3:end}); list = [list res]; end %======================================================================= function list = sub_find_subtree2(varargin) uid = varargin{2}; list = []; if sub_comp_element(varargin{1}{uid},varargin{3:end}) list = [list varargin{1}{uid}.uid]; end if isfield(varargin{1}{uid},'contents') list = [list sub_find_subtree1(varargin{1},... varargin{1}{uid}.contents,varargin{3:end})]; end %======================================================================= function match = sub_comp_element(varargin) match = 0; try % v = getfield(varargin{1}, varargin{2}); % slow... for i=1:floor(nargin/2) v = subsref(varargin{1}, struct('type','.','subs',varargin{i+1})); if strcmp(v,varargin{i+2}) match = 1; end end catch end % More powerful but much slower %match = 0; %for i=1:length(floor(nargin/2)) % bug: remove length !!! % if isfield(varargin{1},varargin{i+1}) % if ischar(getfield(varargin{1},varargin{i+1})) & ischar(varargin{i+2}) % if strcmp(getfield(varargin{1},varargin{i+1}),char(varargin{i+2})) % match = 1; % end % elseif isa(getfield(varargin{1},varargin{i+1}),'double') & ... % isa(varargin{i+2},'double') % if getfield(varargin{1},varargin{i+1}) == varargin{i+2} % match = 1; % end % else % warning('Cannot compare different objects'); % end % end %end %======================================================================= function list = sub_pathfinder(tree,pth) %- Search for the delimiter '/' in the path i = strfind(pth,'/'); %- Begin search by root list = root(tree); %- Walk through the tree j = 1; while j <= length(i) %- Look for recursion '//' if j<length(i) && i(j+1)==i(j)+1 recursive = 1; j = j + 1; else recursive = 0; end %- Catch the current tag 'element[x]' if j ~= length(i) element = pth(i(j)+1:i(j+1)-1); else element = pth(i(j)+1:end); end %- Search for [] brackets k = xml_findstr(element,'[',1,1); %- If brackets are present in current element if ~isempty(k) l = xml_findstr(element,']',1,1); val = str2num(element(k+1:l-1)); element = element(1:k-1); end %- Use recursivity if recursive list = find(tree,list,'name',element); %- Just look at children else if i(j)==1 % if '/root/...' (list = root(tree) in that case) if sub_comp_element(tree.tree{list},'name',element) % list = 1; % list still contains root(tree) else list = []; return; end else list = sub_findchild(tree,list,element); end end % If an element is specified using a key if ~isempty(k) if val < 1 || val > length(list)+1 error('[XMLTree] Bad key in the path.'); elseif val == length(list)+1 list = []; return; end list = list(val); end if isempty(list), return; end j = j + 1; end %======================================================================= function list = sub_findchild(tree,listt,elmt) list = []; for a=1:length(listt) for b=1:length(tree.tree{listt(a)}.contents) if sub_comp_element(tree.tree{tree.tree{listt(a)}.contents(b)},'name',elmt) list = [list tree.tree{tree.tree{listt(a)}.contents(b)}.uid]; end end end
github
philippboehmsturm/antx-master
xml_parser.m
.m
antx-master/freiburgLight/matlab/spm8/@xmltree/private/xml_parser.m
16,122
utf_8
e9c0fb44fd5c086cab09c4df5a6e0087
function tree = xml_parser(xmlstr) % XML (eXtensible Markup Language) Processor % FORMAT tree = xml_parser(xmlstr) % % xmlstr - XML string to parse % tree - tree structure corresponding to the XML file %_______________________________________________________________________ % % xml_parser.m is an XML 1.0 (http://www.w3.org/TR/REC-xml) parser % written in Matlab. It aims to be fully conforming. It is currently not % a validating XML processor. % % A description of the tree structure provided in output is detailed in % the header of this m-file. %_______________________________________________________________________ % Copyright (C) 2002-2008 http://www.artefact.tk/ % Guillaume Flandin <[email protected]> % $Id: xml_parser.m 4013 2010-07-22 17:12:45Z guillaume $ % XML Processor for MATLAB (The Mathworks, Inc.). % Copyright (C) 2002-2008 Guillaume Flandin <[email protected]> % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. %----------------------------------------------------------------------- % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % Check also the latest developments on the following webpage: % <http://www.artefact.tk/software/matlab/xml/> %----------------------------------------------------------------------- % The implementation of this XML parser is much inspired from a % Javascript parser available at <http://www.jeremie.com/> % A mex-file xml_findstr.c is also required, to encompass some % limitations of the built-in findstr Matlab function. % Compile it on your architecture using 'mex -O xml_findstr.c' command % if the compiled version for your system is not provided. % If this function behaves badly (crash or wrong results), comment the % line '#define __HACK_MXCHAR__' in xml_findstr.c and compile it again. %----------------------------------------------------------------------- % Structure of the output tree: % There are 5 types of nodes in an XML file: element, chardata, cdata, % pi and comment. % Each of them contains an UID (Unique Identifier): an integer between % 1 and the number of nodes of the XML file. % % element (a tag <name key="value"> [contents] </name> % |_ type: 'element' % |_ name: string % |_ attributes: cell array of struct 'key' and 'value' or [] % |_ contents: double array of uid's or [] if empty % |_ parent: uid of the parent ([] if root) % |_ uid: double % % chardata (a character array) % |_ type: 'chardata' % |_ value: string % |_ parent: uid of the parent % |_ uid: double % % cdata (a litteral string <![CDATA[value]]>) % |_ type: 'cdata' % |_ value: string % |_ parent: uid of the parent % |_ uid: double % % pi (a processing instruction <?target value ?>) % |_ type: 'pi' % |_ target: string (may be empty) % |_ value: string % |_ parent: uid of the parent % |_ uid: double % % comment (a comment <!-- value -->) % |_ type: 'comment' % |_ value: string % |_ parent: uid of the parent % |_ uid: double % %----------------------------------------------------------------------- % TODO/BUG/FEATURES: % - [compile] only a warning if TagStart is empty ? % - [attribution] should look for " and ' rather than only " % - [main] with normalize as a preprocessing, CDATA are modified % - [prolog] look for a DOCTYPE in the whole string even if it occurs % only in a far CDATA tag, bug even if the doctype is inside a comment % - [tag_element] erode should replace normalize here % - remove globals? uppercase globals rather persistent (clear mfile)? % - xml_findstr is indeed xml_strfind according to Mathworks vocabulary % - problem with entities: do we need to convert them here? (&eacute;) %----------------------------------------------------------------------- %- XML string to parse and number of tags read global xmlstring Xparse_count xtree; %- Check input arguments error(nargchk(1,1,nargin)); if isempty(xmlstr) error('[XML] Not enough parameters.') elseif ~ischar(xmlstr) || sum(size(xmlstr)>1)>1 error('[XML] Input must be a string.') end %- Initialize number of tags (<=> uid) Xparse_count = 0; %- Remove prolog and white space characters from the XML string xmlstring = normalize(prolog(xmlstr)); %- Initialize the XML tree xtree = {}; tree = fragment; tree.str = 1; tree.parent = 0; %- Parse the XML string tree = compile(tree); %- Return the XML tree tree = xtree; %- Remove global variables from the workspace clear global xmlstring Xparse_count xtree; %======================================================================= % SUBFUNCTIONS %----------------------------------------------------------------------- function frag = compile(frag) global xmlstring xtree Xparse_count; while 1, if length(xmlstring)<=frag.str || ... (frag.str == length(xmlstring)-1 && strcmp(xmlstring(frag.str:end),' ')) return end TagStart = xml_findstr(xmlstring,'<',frag.str,1); if isempty(TagStart) %- Character data error('[XML] Unknown data at the end of the XML file.'); xtree{Xparse_count} = chardata; xtree{Xparse_count}.value = erode(entity(xmlstring(frag.str:end))); xtree{Xparse_count}.parent = frag.parent; xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; frag.str = ''; elseif TagStart > frag.str if strcmp(xmlstring(frag.str:TagStart-1),' ') %- A single white space before a tag (ignore) frag.str = TagStart; else %- Character data xtree{Xparse_count} = chardata; xtree{Xparse_count}.value = erode(entity(xmlstring(frag.str:TagStart-1))); xtree{Xparse_count}.parent = frag.parent; xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; frag.str = TagStart; end else if strcmp(xmlstring(frag.str+1),'?') %- Processing instruction frag = tag_pi(frag); else if length(xmlstring)-frag.str>4 && strcmp(xmlstring(frag.str+1:frag.str+3),'!--') %- Comment frag = tag_comment(frag); else if length(xmlstring)-frag.str>9 && strcmp(xmlstring(frag.str+1:frag.str+8),'![CDATA[') %- Litteral data frag = tag_cdata(frag); else %- A tag element (empty (<.../>) or not) if ~isempty(frag.end) endmk = ['/' frag.end '>']; else endmk = '/>'; end if strcmp(xmlstring(frag.str+1:frag.str+length(frag.end)+2),endmk) || ... strcmp(strip(xmlstring(frag.str+1:frag.str+length(frag.end)+2)),endmk) frag.str = frag.str + length(frag.end)+3; return else frag = tag_element(frag); end end end end end end %----------------------------------------------------------------------- function frag = tag_element(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,'>',frag.str,1); if isempty(close) error('[XML] Tag < opened but not closed.'); else empty = strcmp(xmlstring(close-1:close),'/>'); if empty close = close - 1; end starttag = normalize(xmlstring(frag.str+1:close-1)); nextspace = xml_findstr(starttag,' ',1,1); attribs = ''; if isempty(nextspace) name = starttag; else name = starttag(1:nextspace-1); attribs = starttag(nextspace+1:end); end xtree{Xparse_count} = element; xtree{Xparse_count}.name = strip(name); if frag.parent xtree{Xparse_count}.parent = frag.parent; xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; end if ~isempty(attribs) xtree{Xparse_count}.attributes = attribution(attribs); end if ~empty contents = fragment; contents.str = close+1; contents.end = name; contents.parent = Xparse_count; contents = compile(contents); frag.str = contents.str; else frag.str = close+2; end end %----------------------------------------------------------------------- function frag = tag_pi(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,'?>',frag.str,1); if isempty(close) warning('[XML] Tag <? opened but not closed.') else nextspace = xml_findstr(xmlstring,' ',frag.str,1); xtree{Xparse_count} = pri; if nextspace > close || nextspace == frag.str+2 xtree{Xparse_count}.value = erode(xmlstring(frag.str+2:close-1)); else xtree{Xparse_count}.value = erode(xmlstring(nextspace+1:close-1)); xtree{Xparse_count}.target = erode(xmlstring(frag.str+2:nextspace)); end if frag.parent xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; xtree{Xparse_count}.parent = frag.parent; end frag.str = close+2; end %----------------------------------------------------------------------- function frag = tag_comment(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,'-->',frag.str,1); if isempty(close) warning('[XML] Tag <!-- opened but not closed.') else xtree{Xparse_count} = comment; xtree{Xparse_count}.value = erode(xmlstring(frag.str+4:close-1)); if frag.parent xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; xtree{Xparse_count}.parent = frag.parent; end frag.str = close+3; end %----------------------------------------------------------------------- function frag = tag_cdata(frag) global xmlstring xtree Xparse_count; close = xml_findstr(xmlstring,']]>',frag.str,1); if isempty(close) warning('[XML] Tag <![CDATA[ opened but not closed.') else xtree{Xparse_count} = cdata; xtree{Xparse_count}.value = xmlstring(frag.str+9:close-1); if frag.parent xtree{frag.parent}.contents = [xtree{frag.parent}.contents Xparse_count]; xtree{Xparse_count}.parent = frag.parent; end frag.str = close+3; end %----------------------------------------------------------------------- function all = attribution(str) %- Initialize attributs nbattr = 0; all = cell(nbattr); %- Look for 'key="value"' substrings while 1, eq = xml_findstr(str,'=',1,1); if isempty(str) || isempty(eq), return; end id = sort([xml_findstr(str,'"',1,1),xml_findstr(str,'''',1,1)]); id=id(1); nextid = sort([xml_findstr(str,'"',id+1,1),xml_findstr(str,'''',id+1,1)]);nextid=nextid(1); nbattr = nbattr + 1; all{nbattr}.key = strip(str(1:(eq-1))); all{nbattr}.val = entity(str((id+1):(nextid-1))); str = str((nextid+1):end); end %----------------------------------------------------------------------- function elm = element global Xparse_count; Xparse_count = Xparse_count + 1; elm = struct('type','element','name','','attributes',[],'contents',[],'parent',[],'uid',Xparse_count); %----------------------------------------------------------------------- function cdat = chardata global Xparse_count; Xparse_count = Xparse_count + 1; cdat = struct('type','chardata','value','','parent',[],'uid',Xparse_count); %----------------------------------------------------------------------- function cdat = cdata global Xparse_count; Xparse_count = Xparse_count + 1; cdat = struct('type','cdata','value','','parent',[],'uid',Xparse_count); %----------------------------------------------------------------------- function proce = pri global Xparse_count; Xparse_count = Xparse_count + 1; proce = struct('type','pi','value','','target','','parent',[],'uid',Xparse_count); %----------------------------------------------------------------------- function commt = comment global Xparse_count; Xparse_count = Xparse_count + 1; commt = struct('type','comment','value','','parent',[],'uid',Xparse_count); %----------------------------------------------------------------------- function frg = fragment frg = struct('str','','parent','','end',''); %----------------------------------------------------------------------- function str = prolog(str) %- Initialize beginning index of elements tree b = 1; %- Initial tag start = xml_findstr(str,'<',1,1); if isempty(start) error('[XML] No tag found.') end %- Header (<?xml version="1.0" ... ?>) if strcmpi(str(start:start+2),'<?x') close = xml_findstr(str,'?>',1,1); if ~isempty(close) b = close + 2; else warning('[XML] Header tag incomplete.') end end %- Doctype (<!DOCTYPE type ... [ declarations ]>) start = xml_findstr(str,'<!DOCTYPE',b,1); % length('<!DOCTYPE') = 9 if ~isempty(start) close = xml_findstr(str,'>',start+9,1); if ~isempty(close) b = close + 1; dp = xml_findstr(str,'[',start+9,1); if (~isempty(dp) && dp < b) k = xml_findstr(str,']>',start+9,1); if ~isempty(k) b = k + 2; else warning('[XML] Tag [ in DOCTYPE opened but not closed.') end end else warning('[XML] Tag DOCTYPE opened but not closed.') end end %- Skip prolog from the xml string str = str(b:end); %----------------------------------------------------------------------- function str = strip(str) a = isspace(str); a = find(a==1); str(a) = ''; %----------------------------------------------------------------------- function str = normalize(str) % Find white characters (space, newline, carriage return, tabs, ...) i = isspace(str); i = find(i == 1); str(i) = ' '; % replace several white characters by only one if ~isempty(i) j = i - [i(2:end) i(end)]; k = find(j == -1); str(i(k)) = []; end %----------------------------------------------------------------------- function str = entity(str) str = strrep(str,'&lt;','<'); str = strrep(str,'&gt;','>'); str = strrep(str,'&quot;','"'); str = strrep(str,'&apos;',''''); str = strrep(str,'&amp;','&'); %----------------------------------------------------------------------- function str = erode(str) if ~isempty(str) && str(1)==' ', str(1)=''; end; if ~isempty(str) && str(end)==' ', str(end)=''; end;
github
philippboehmsturm/antx-master
save.m
.m
antx-master/freiburgLight/matlab/spm8/@gifti/save.m
20,878
utf_8
9dda5745b44a50e7b47d1885c7e30435
function save(this,filename,encoding) % Save GIfTI object in a GIfTI format file % FORMAT save(this,filename) % this - GIfTI object % filename - name of GIfTI file to be created [Default: 'untitled.gii'] % encoding - optional argument to specify encoding format, among % ASCII, Base64Binary, GZipBase64Binary, ExternalFileBinary, % Collada (.dae), IDTF (.idtf). [Default: 'GZipBase64Binary'] %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: save.m 4613 2012-01-08 12:04:11Z guillaume $ % Check filename and file format %-------------------------------------------------------------------------- ext = '.gii'; if nargin == 1 filename = 'untitled.gii'; else if nargin == 3 && strcmpi(encoding,'collada') ext = '.dae'; end if nargin == 3 && strcmpi(encoding,'idtf') ext = '.idtf'; end [p,f,e] = fileparts(filename); if ~ismember(lower(e),{ext}) e = ext; end filename = fullfile(p,[f e]); end % Open file for writing %-------------------------------------------------------------------------- fid = fopen(filename,'wt'); if fid == -1 error('Unable to write file %s: permission denied.',filename); end % Write file %-------------------------------------------------------------------------- switch ext case '.gii' if nargin < 3, encoding = 'GZipBase64Binary'; end fid = save_gii(fid,this,encoding); case '.dae' fid = save_dae(fid,this); case '.idtf' fid = save_idtf(fid,this); otherwise error('Unknown file format.'); end % Close file %-------------------------------------------------------------------------- fclose(fid); %========================================================================== % function fid = save_gii(fid,this,encoding) %========================================================================== function fid = save_gii(fid,this,encoding) % Defaults for DataArray's attributes %-------------------------------------------------------------------------- [unused,unused,mach] = fopen(fid); if strncmp('ieee-be',mach,7) def.Endian = 'BigEndian'; elseif strncmp('ieee-le',mach,7) def.Endian = 'LittleEndian'; else error('[GIFTI] Unknown byte order "%s".',mach); end def.Encoding = encoding; def.Intent = 'NIFTI_INTENT_NONE'; def.DataType = 'NIFTI_TYPE_FLOAT32'; def.ExternalFileName = ''; def.ExternalFileOffset = ''; def.offset = 0; % Edit object DataArray attributes %-------------------------------------------------------------------------- for i=1:length(this.data) % Revert the dimension storage d = this.data{i}.attributes.Dim; this.data{i}.attributes = rmfield(this.data{i}.attributes,'Dim'); this.data{i}.attributes.Dimensionality = num2str(length(d)); for j=1:length(d) this.data{i}.attributes.(sprintf('Dim%d',j-1)) = num2str(d(j)); end % Enforce some conventions this.data{i}.attributes.ArrayIndexingOrder = 'ColumnMajorOrder'; if ~isfield(this.data{i}.attributes,'DataType') || ... isempty(this.data{i}.attributes.DataType) warning('DataType set to default: %s', def.DataType); this.data{i}.attributes.DataType = def.DataType; end if ~isfield(this.data{i}.attributes,'Intent') || ... isempty(this.data{i}.attributes.Intent) warning('Intent code set to default: %s', def.Intent); this.data{i}.attributes.Intent = def.Intent; end this.data{i}.attributes.Encoding = def.Encoding; this.data{i}.attributes.Endian = def.Endian; this.data{i}.attributes.ExternalFileName = def.ExternalFileName; this.data{i}.attributes.ExternalFileOffset = def.ExternalFileOffset; switch this.data{i}.attributes.Encoding case {'ASCII', 'Base64Binary','GZipBase64Binary' } case 'ExternalFileBinary' extfilename = this.data{i}.attributes.ExternalFileName; if isempty(extfilename) [p,f] = fileparts(fopen(fid)); extfilename = [f '.dat']; end [p,f,e] = fileparts(extfilename); this.data{i}.attributes.ExternalFileName = fullfile(fileparts(fopen(fid)),[f e]); this.data{i}.attributes.ExternalFileOffset = num2str(def.offset); otherwise error('[GIFTI] Unknown data encoding: %s.',this.data{i}.attributes.Encoding); end end % Prolog %-------------------------------------------------------------------------- fprintf(fid,'<?xml version="1.0" encoding="UTF-8"?>\n'); fprintf(fid,'<!DOCTYPE GIFTI SYSTEM "http://www.nitrc.org/frs/download.php/115/gifti.dtd">\n'); fprintf(fid,'<GIFTI Version="1.0" NumberOfDataArrays="%d">\n',numel(this.data)); o = @(x) blanks(x*3); % MetaData %-------------------------------------------------------------------------- fprintf(fid,'%s<MetaData',o(1)); if isempty(this.metadata) fprintf(fid,'/>\n'); else fprintf(fid,'>\n'); for i=1:length(this.metadata) fprintf(fid,'%s<MD>\n',o(2)); fprintf(fid,'%s<Name><![CDATA[%s]]></Name>\n',o(3),... this.metadata(i).name); fprintf(fid,'%s<Value><![CDATA[%s]]></Value>\n',o(3),... this.metadata(i).value); fprintf(fid,'%s</MD>\n',o(2)); end fprintf(fid,'%s</MetaData>\n',o(1)); end % LabelTable %-------------------------------------------------------------------------- fprintf(fid,'%s<LabelTable',o(1)); if isempty(this.label) fprintf(fid,'/>\n'); else fprintf(fid,'>\n'); for i=1:length(this.label.name) if ~all(isnan(this.label.rgba(i,:))) label_rgba = sprintf(' Red="%f" Green="%f" Blue="%f" Alpha="%f"',... this.label.rgba(i,:)); else label_rgba = ''; end fprintf(fid,'%s<Label Key="%d"%s><![CDATA[%s]]></Label>\n',o(2),... this.label.key(i), label_rgba, this.label.name{i}); end fprintf(fid,'%s</LabelTable>\n',o(1)); end % DataArray %-------------------------------------------------------------------------- for i=1:length(this.data) fprintf(fid,'%s<DataArray',o(1)); if def.offset this.data{i}.attributes.ExternalFileOffset = num2str(def.offset); end fn = sort(fieldnames(this.data{i}.attributes)); oo = repmat({o(5) '\n'},length(fn),1); oo{1} = ' '; oo{end} = ''; for j=1:length(fn) if strcmp(fn{j},'ExternalFileName') [p,f,e] = fileparts(this.data{i}.attributes.(fn{j})); attval = [f e]; else attval = this.data{i}.attributes.(fn{j}); end fprintf(fid,'%s%s="%s"%s',oo{j,1},... fn{j},attval,sprintf(oo{j,2})); end fprintf(fid,'>\n'); % MetaData %---------------------------------------------------------------------- fprintf(fid,'%s<MetaData>\n',o(2)); for j=1:length(this.data{i}.metadata) fprintf(fid,'%s<MD>\n',o(3)); fprintf(fid,'%s<Name><![CDATA[%s]]></Name>\n',o(4),... this.data{i}.metadata(j).name); fprintf(fid,'%s<Value><![CDATA[%s]]></Value>\n',o(4),... this.data{i}.metadata(j).value); fprintf(fid,'%s</MD>\n',o(3)); end fprintf(fid,'%s</MetaData>\n',o(2)); % CoordinateSystemTransformMatrix %---------------------------------------------------------------------- for j=1:length(this.data{i}.space) fprintf(fid,'%s<CoordinateSystemTransformMatrix>\n',o(2)); fprintf(fid,'%s<DataSpace><![CDATA[%s]]></DataSpace>\n',o(3),... this.data{i}.space(j).DataSpace); fprintf(fid,'%s<TransformedSpace><![CDATA[%s]]></TransformedSpace>\n',o(3),... this.data{i}.space(j).TransformedSpace); fprintf(fid,'%s<MatrixData>%s</MatrixData>\n',o(3),... sprintf('%f ',this.data{i}.space(j).MatrixData)); fprintf(fid,'%s</CoordinateSystemTransformMatrix>\n',o(2)); end % Data (saved using MATLAB's ColumnMajorOrder) %---------------------------------------------------------------------- fprintf(fid,'%s<Data>',o(2)); tp = getdict; try tp = tp.(this.data{i}.attributes.DataType); catch error('[GIFTI] Unknown DataType.'); end switch this.data{i}.attributes.Encoding case 'ASCII' fprintf(fid, [tp.format ' '], this.data{i}.data); case 'Base64Binary' fprintf(fid,base64encode(typecast(this.data{i}.data(:),'uint8'))); % uses native machine format case 'GZipBase64Binary' fprintf(fid,base64encode(dzip(typecast(this.data{i}.data(:),'uint8')))); % uses native machine format case 'ExternalFileBinary' extfilename = this.data{i}.attributes.ExternalFileName; dat = this.data{i}.data; if isa(dat,'file_array') dat = subsref(dat,substruct('()',repmat({':'},1,numel(dat.dim)))); end if ~def.offset fide = fopen(extfilename,'w'); % uses native machine format else fide = fopen(extfilename,'a'); % uses native machine format end if fide == -1 error('Unable to write file %s: permission denied.',extfilename); end fseek(fide,0,1); fwrite(fide,dat,tp.class); def.offset = ftell(fide); fclose(fide); otherwise error('[GIFTI] Unknown data encoding.'); end fprintf(fid,'</Data>\n'); fprintf(fid,'%s</DataArray>\n',o(1)); end fprintf(fid,'</GIFTI>\n'); %========================================================================== % function fid = save_dae(fid,this) %========================================================================== function fid = save_dae(fid,this) o = inline('blanks(x*3)'); % Split the mesh into connected components %-------------------------------------------------------------------------- s = struct(this); try C = spm_mesh_label(s.faces); d = []; for i=1:numel(unique(C)) d(i).faces = s.faces(C==i,:); u = unique(d(i).faces); d(i).vertices = s.vertices(u,:); a = 1:max(d(i).faces(:)); a(u) = 1:size(d(i).vertices,1); %a = sparse(1,double(u),1:1:size(d(i).vertices,1)); d(i).faces = a(d(i).faces); end s = d; end % Prolog & root of the Collada XML file %-------------------------------------------------------------------------- fprintf(fid,'<?xml version="1.0"?>\n'); fprintf(fid,'<COLLADA xmlns="http://www.collada.org/2008/03/COLLADASchema" version="1.5.0">\n'); % Assets %-------------------------------------------------------------------------- fprintf(fid,'%s<asset>\n',o(1)); fprintf(fid,'%s<contributor>\n',o(2)); fprintf(fid,'%s<author_website>%s</author_website>\n',o(3),... 'http://www.fil.ion.ucl.ac.uk/spm/'); fprintf(fid,'%s<authoring_tool>%s</authoring_tool>\n',o(3),spm('Ver')); fprintf(fid,'%s</contributor>\n',o(2)); fprintf(fid,'%s<created>%s</created>\n',o(2),datestr(now,'yyyy-mm-ddTHH:MM:SSZ')); fprintf(fid,'%s<modified>%s</modified>\n',o(2),datestr(now,'yyyy-mm-ddTHH:MM:SSZ')); fprintf(fid,'%s<unit name="millimeter" meter="0.001"/>\n',o(2)); fprintf(fid,'%s<up_axis>Z_UP</up_axis>\n',o(2)); fprintf(fid,'%s</asset>\n',o(1)); % Image, Materials, Effects %-------------------------------------------------------------------------- %fprintf(fid,'%s<library_images/>\n',o(1)); fprintf(fid,'%s<library_materials>\n',o(1)); for i=1:numel(s) fprintf(fid,'%s<material id="material%d" name="material%d">\n',o(2),i,i); fprintf(fid,'%s<instance_effect url="#material%d-effect"/>\n',o(3),i); fprintf(fid,'%s</material>\n',o(2)); end fprintf(fid,'%s</library_materials>\n',o(1)); fprintf(fid,'%s<library_effects>\n',o(1)); for i=1:numel(s) fprintf(fid,'%s<effect id="material%d-effect" name="material%d-effect">\n',o(2),i,i); fprintf(fid,'%s<profile_COMMON>\n',o(3)); fprintf(fid,'%s<technique sid="COMMON">\n',o(4)); fprintf(fid,'%s<lambert>\n',o(5)); fprintf(fid,'%s<emission>\n',o(6)); fprintf(fid,'%s<color>%f %f %f %d</color>\n',o(7),[0 0 0 1]); fprintf(fid,'%s</emission>\n',o(6)); fprintf(fid,'%s<ambient>\n',o(6)); fprintf(fid,'%s<color>%f %f %f %d</color>\n',o(7),[0 0 0 1]); fprintf(fid,'%s</ambient>\n',o(6)); fprintf(fid,'%s<diffuse>\n',o(6)); fprintf(fid,'%s<color>%f %f %f %d</color>\n',o(7),[0.5 0.5 0.5 1]); fprintf(fid,'%s</diffuse>\n',o(6)); fprintf(fid,'%s<transparent>\n',o(6)); fprintf(fid,'%s<color>%d %d %d %d</color>\n',o(7),[1 1 1 1]); fprintf(fid,'%s</transparent>\n',o(6)); fprintf(fid,'%s<transparency>\n',o(6)); fprintf(fid,'%s<float>%f</float>\n',o(7),0); fprintf(fid,'%s</transparency>\n',o(6)); fprintf(fid,'%s</lambert>\n',o(5)); fprintf(fid,'%s</technique>\n',o(4)); fprintf(fid,'%s</profile_COMMON>\n',o(3)); fprintf(fid,'%s</effect>\n',o(2)); end fprintf(fid,'%s</library_effects>\n',o(1)); % Geometry %-------------------------------------------------------------------------- fprintf(fid,'%s<library_geometries>\n',o(1)); for i=1:numel(s) fprintf(fid,'%s<geometry id="shape%d" name="shape%d">\n',o(2),i,i); fprintf(fid,'%s<mesh>\n',o(3)); fprintf(fid,'%s<source id="shape%d-positions">\n',o(4),i); fprintf(fid,'%s<float_array id="shape%d-positions-array" count="%d">',o(5),i,numel(s(i).vertices)); fprintf(fid,'%f ',repmat(s(i).vertices',1,[])); fprintf(fid,'</float_array>\n'); fprintf(fid,'%s<technique_common>\n',o(5)); fprintf(fid,'%s<accessor count="%d" offset="0" source="#shape%d-positions-array" stride="3">\n',o(6),size(s(i).vertices,1),i); fprintf(fid,'%s<param name="X" type="float" />\n',o(7)); fprintf(fid,'%s<param name="Y" type="float" />\n',o(7)); fprintf(fid,'%s<param name="Z" type="float" />\n',o(7)); fprintf(fid,'%s</accessor>\n',o(6)); fprintf(fid,'%s</technique_common>\n',o(5)); fprintf(fid,'%s</source>\n',o(4)); fprintf(fid,'%s<vertices id="shape%d-vertices">\n',o(4),i); fprintf(fid,'%s<input semantic="POSITION" source="#shape%d-positions"/>\n',o(5),i); fprintf(fid,'%s</vertices>\n',o(4)); fprintf(fid,'%s<triangles material="material%d" count="%d">\n',o(4),i,size(s(i).faces,1)); fprintf(fid,'%s<input semantic="VERTEX" source="#shape%d-vertices" offset="0"/>\n',o(5),i); fprintf(fid,'%s<p>',o(5)); fprintf(fid,'%d ',repmat(s(i).faces',1,[])-1); fprintf(fid,'</p>\n'); fprintf(fid,'%s</triangles>\n',o(4)); fprintf(fid,'%s</mesh>\n',o(3)); fprintf(fid,'%s</geometry>\n',o(2)); end fprintf(fid,'%s</library_geometries>\n',o(1)); % Scene %-------------------------------------------------------------------------- fprintf(fid,'%s<library_visual_scenes>\n',o(1)); fprintf(fid,'%s<visual_scene id="VisualSceneNode" name="SceneNode">\n',o(2)); for i=1:numel(s) fprintf(fid,'%s<node id="node%d">\n',o(3),i); fprintf(fid,'%s<instance_geometry url="#shape%d">\n',o(4),i); fprintf(fid,'%s<bind_material>\n',o(5)); fprintf(fid,'%s<technique_common>\n',o(6)); fprintf(fid,'%s<instance_material symbol="material%d" target="#material%d"/>\n',o(7),i,i); fprintf(fid,'%s</technique_common>\n',o(6)); fprintf(fid,'%s</bind_material>\n',o(5)); fprintf(fid,'%s</instance_geometry>\n',o(4)); fprintf(fid,'%s</node>\n',o(3)); end fprintf(fid,'%s</visual_scene>\n',o(2)); fprintf(fid,'%s</library_visual_scenes>\n',o(1)); fprintf(fid,'%s<scene>\n',o(1)); fprintf(fid,'%s<instance_visual_scene url="#VisualSceneNode" />\n',o(2)); fprintf(fid,'%s</scene>\n',o(1)); % End of XML %-------------------------------------------------------------------------- fprintf(fid,'</COLLADA>\n'); %========================================================================== % function fid = save_idtf(fid,this) %========================================================================== function fid = save_idtf(fid,this) o = inline('blanks(x*3)'); s = struct(this); % Compute normals %-------------------------------------------------------------------------- if ~isfield(s,'normals') try s.normals = spm_mesh_normals(... struct('vertices',s.vertices,'faces',s.faces),true); catch s.normals = []; end end % Split the mesh into connected components %-------------------------------------------------------------------------- try C = spm_mesh_label(s.faces); d = []; try if size(s.cdata,2) == 1 && (any(s.cdata>1) || any(s.cdata<0)) mi = min(s.cdata); ma = max(s.cdata); s.cdata = (s.cdata-mi)/ (ma-mi); else end end for i=1:numel(unique(C)) d(i).faces = s.faces(C==i,:); u = unique(d(i).faces); d(i).vertices = s.vertices(u,:); d(i).normals = s.normals(u,:); a = 1:max(d(i).faces(:)); a(u) = 1:size(d(i).vertices,1); %a = sparse(1,double(u),1:1:size(d(i).vertices,1)); d(i).faces = a(d(i).faces); d(i).mat = s.mat; try d(i).cdata = s.cdata(u,:); if size(d(i).cdata,2) == 1 d(i).cdata = repmat(d(i).cdata,1,3); end end end s = d; end % FILE_HEADER %-------------------------------------------------------------------------- fprintf(fid,'FILE_FORMAT "IDTF"\n'); fprintf(fid,'FORMAT_VERSION 100\n\n'); % NODES %-------------------------------------------------------------------------- for i=1:numel(s) fprintf(fid,'NODE "MODEL" {\n'); fprintf(fid,'%sNODE_NAME "%s"\n',o(1),sprintf('Mesh%04d',i)); fprintf(fid,'%sPARENT_LIST {\n',o(1)); fprintf(fid,'%sPARENT_COUNT %d\n',o(2),1); fprintf(fid,'%sPARENT %d {\n',o(2),0); fprintf(fid,'%sPARENT_NAME "%s"\n',o(3),'<NULL>'); fprintf(fid,'%sPARENT_TM {\n',o(3)); I = s(i).mat; % eye(4); for j=1:size(I,2) fprintf(fid,'%s',o(4)); fprintf(fid,'%f ',I(:,j)'); fprintf(fid,'\n'); end fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%s}\n',o(2)); fprintf(fid,'%s}\n',o(1)); fprintf(fid,'%sRESOURCE_NAME "%s"\n',o(1),sprintf('Mesh%04d',i)); %fprintf(fid,'%sMODEL_VISIBILITY "BOTH"\n',o(1)); fprintf(fid,'}\n\n'); end % NODE_RESOURCES %-------------------------------------------------------------------------- for i=1:numel(s) fprintf(fid,'RESOURCE_LIST "MODEL" {\n'); fprintf(fid,'%sRESOURCE_COUNT %d\n',o(1),1); fprintf(fid,'%sRESOURCE %d {\n',o(1),0); fprintf(fid,'%sRESOURCE_NAME "%s"\n',o(2),sprintf('Mesh%04d',i)); fprintf(fid,'%sMODEL_TYPE "MESH"\n',o(2)); fprintf(fid,'%sMESH {\n',o(2)); fprintf(fid,'%sFACE_COUNT %d\n',o(3),size(s(i).faces,1)); fprintf(fid,'%sMODEL_POSITION_COUNT %d\n',o(3),size(s(i).vertices,1)); fprintf(fid,'%sMODEL_NORMAL_COUNT %d\n',o(3),size(s(i).normals,1)); if ~isfield(s(i),'cdata') || isempty(s(i).cdata) c = 0; else c = size(s(i).cdata,1); end fprintf(fid,'%sMODEL_DIFFUSE_COLOR_COUNT %d\n',o(3),c); fprintf(fid,'%sMODEL_SPECULAR_COLOR_COUNT %d\n',o(3),0); fprintf(fid,'%sMODEL_TEXTURE_COORD_COUNT %d\n',o(3),0); fprintf(fid,'%sMODEL_BONE_COUNT %d\n',o(3),0); fprintf(fid,'%sMODEL_SHADING_COUNT %d\n',o(3),1); fprintf(fid,'%sMODEL_SHADING_DESCRIPTION_LIST {\n',o(3)); fprintf(fid,'%sSHADING_DESCRIPTION %d {\n',o(4),0); fprintf(fid,'%sTEXTURE_LAYER_COUNT %d\n',o(5),0); fprintf(fid,'%sSHADER_ID %d\n',o(5),0); fprintf(fid,'%s}\n',o(4)); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMESH_FACE_POSITION_LIST {\n',o(3)); fprintf(fid,'%d %d %d\n',s(i).faces'-1); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMESH_FACE_NORMAL_LIST {\n',o(3)); fprintf(fid,'%d %d %d\n',s(i).faces'-1); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMESH_FACE_SHADING_LIST {\n',o(3)); fprintf(fid,'%d\n',zeros(size(s(i).faces,1),1)); fprintf(fid,'%s}\n',o(3)); if c fprintf(fid,'%sMESH_FACE_DIFFUSE_COLOR_LIST {\n',o(3)); fprintf(fid,'%d %d %d\n',s(i).faces'-1); fprintf(fid,'%s}\n',o(3)); end fprintf(fid,'%sMODEL_POSITION_LIST {\n',o(3)); fprintf(fid,'%f %f %f\n',s(i).vertices'); fprintf(fid,'%s}\n',o(3)); fprintf(fid,'%sMODEL_NORMAL_LIST {\n',o(3)); fprintf(fid,'%f %f %f\n',s(i).normals'); fprintf(fid,'%s}\n',o(3)); if c fprintf(fid,'%sMODEL_DIFFUSE_COLOR_LIST {\n',o(3)); fprintf(fid,'%f %f %f\n',s(i).cdata'); fprintf(fid,'%s}\n',o(3)); end fprintf(fid,'%s}\n',o(2)); fprintf(fid,'%s}\n',o(1)); fprintf(fid,'}\n'); end
github
philippboehmsturm/antx-master
gifti.m
.m
antx-master/freiburgLight/matlab/spm8/@gifti/gifti.m
3,622
utf_8
770f3ed1f17658bff49edbacd0062416
function this = gifti(varargin) % GIfTI Geometry file format class % Geometry format under the Neuroimaging Informatics Technology Initiative % (NIfTI): % http://www.nitrc.org/projects/gifti/ % http://nifti.nimh.nih.gov/ %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: gifti.m 3999 2010-07-19 10:54:18Z guillaume $ switch nargin case 0 this = giftistruct; this = class(this,'gifti'); case 1 if isa(varargin{1},'gifti') this = varargin{1}; elseif isstruct(varargin{1}) f = {'faces', 'face', 'tri' 'vertices', 'vert', 'pnt', 'cdata'}; ff = {'faces', 'faces', 'faces', 'vertices', 'vertices', 'vertices', 'cdata'}; [c, ia] = intersect(f,fieldnames(varargin{1})); if ~isempty(c) this = gifti; for i=1:length(c) this = subsasgn(this,... struct('type','.','subs',ff{ia(i)}),... varargin{1}.(c{i})); end elseif isempty(setxor(fieldnames(varargin{1}),... {'metadata','label','data'})) this = class(varargin{1},'gifti'); else error('[GIFTI] Invalid structure.'); end elseif ishandle(varargin{1}) this = struct('vertices',get(varargin{1},'Vertices'), ... 'faces', get(varargin{1},'Faces')); if ~isempty(get(varargin{1},'FaceVertexCData')); this.cdata = get(varargin{1},'FaceVertexCData'); end this = gifti(this); elseif isnumeric(varargin{1}) this = gifti; this = subsasgn(this,... struct('type','.','subs','cdata'),... varargin{1}); elseif ischar(varargin{1}) if size(varargin{1},1)>1 this = gifti(cellstr(varargin{1})); return; end [p,n,e] = fileparts(varargin{1}); if strcmpi(e,'.mat') try this = gifti(load(varargin{1})); catch error('[GIFTI] Loading of file %s failed.', varargin{1}); end else this = read_gifti_file(varargin{1},giftistruct); this = class(this,'gifti'); end elseif iscellstr(varargin{1}) fnames = varargin{1}; this(numel(fnames)) = giftistruct; this = class(this,'gifti'); for i=1:numel(fnames) this(i) = gifti(fnames{i}); end else error('[GIFTI] Invalid object construction.'); end otherwise error('[GIFTI] Invalid object construction.'); end %========================================================================== function s = giftistruct s = struct(... 'metadata', ... struct(... 'name', {}, ... 'value', {} ... ), ... 'label', ... struct(... 'name', {}, ... 'index', {} ... ), ... 'data', ... struct(... 'attributes', {}, ... 'metadata', struct('name',{}, 'value',{}), ... 'space', {}, ... 'data', {} ... ) ... );
github
philippboehmsturm/antx-master
read_gifti_file.m
.m
antx-master/freiburgLight/matlab/spm8/@gifti/private/read_gifti_file.m
6,672
utf_8
6b1ffd0854407b6710a55c2345f19d7e
function this = read_gifti_file(filename, this) % Low level reader of GIfTI 1.0 files % FORMAT this = read_gifti_file(filename, this) % filename - XML GIfTI filename % this - structure with fields 'metaData', 'label' and 'data'. %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: read_gifti_file.m 4613 2012-01-08 12:04:11Z guillaume $ % Import XML-based GIfTI file %-------------------------------------------------------------------------- try t = xmltree(filename); catch error('[GIFTI] Loading of XML file %s failed.', filename); end % Root element of a GIFTI file %-------------------------------------------------------------------------- if ~strcmp(get(t,root(t),'name'),'GIFTI') error('[GIFTI] %s is not a GIFTI 1.0 file.', filename); end attr = cell2mat(attributes(t,'get',root(t))); attr = cell2struct({attr.val},strrep({attr.key},':','___'),2); if ~all(ismember({'Version','NumberOfDataArrays'},fieldnames(attr))) error('[GIFTI] Missing mandatory attributes for GIFTI root element.'); end if str2double(attr.Version) ~= 1 warning('[GIFTI] Unknown specification version of GIFTI file (%s).',attr.Version); end nbData = str2double(attr.NumberOfDataArrays); % Read children elements %-------------------------------------------------------------------------- uid = children(t,root(t)); for i=1:length(uid) switch get(t,uid(i),'name') case 'MetaData' this.metadata = gifti_MetaData(t,uid(i)); case 'LabelTable' this.label = gifti_LabelTable(t,uid(i)); case 'DataArray' this.data{end+1} = gifti_DataArray(t,uid(i),filename); otherwise warning('[GIFTI] Unknown element "%s": ignored.',get(t,uid(i),'name')); end end if nbData ~= length(this.data) warning('[GIFTI] Mismatch between expected and effective number of datasets.'); end %========================================================================== function s = gifti_MetaData(t,uid) s = struct('name',{}, 'value',{}); c = children(t,uid); for i=1:length(c) for j=children(t,c(i)) s(i).(lower(get(t,j,'name'))) = get(t,children(t,j),'value'); end end %========================================================================== function s = gifti_LabelTable(t,uid) s = struct('name',{}, 'key',[], 'rgba',[]); c = children(t,uid); for i=1:length(c) a = attributes(t,'get',c(i)); s(1).rgba(i,1:4) = NaN; for j=1:numel(a) switch lower(a{j}.key) case {'key','index'} s(1).key(i) = str2double(a{j}.val); case 'red' s(1).rgba(i,1) = str2double(a{j}.val); case 'green' s(1).rgba(i,2) = str2double(a{j}.val); case 'blue' s(1).rgba(i,3) = str2double(a{j}.val); case 'alpha' s(1).rgba(i,4) = str2double(a{j}.val); otherwise end end s(1).name{i} = get(t,children(t,c(i)),'value'); end %========================================================================== function s = gifti_DataArray(t,uid,filename) s = struct(... 'attributes', {}, ... 'data', {}, ... 'metadata', struct([]), ... 'space', {} ... ); attr = cell2mat(attributes(t,'get',uid)); s(1).attributes = cell2struct({attr.val},{attr.key},2); s(1).attributes.Dim = []; for i=1:str2double(s(1).attributes.Dimensionality) f = sprintf('Dim%d',i-1); s(1).attributes.Dim(i) = str2double(s(1).attributes.(f)); s(1).attributes = rmfield(s(1).attributes,f); end s(1).attributes = rmfield(s(1).attributes,'Dimensionality'); if isfield(s(1).attributes,'ExternalFileName') && ... ~isempty(s(1).attributes.ExternalFileName) s(1).attributes.ExternalFileName = fullfile(fileparts(filename),... s(1).attributes.ExternalFileName); end c = children(t,uid); for i=1:length(c) switch get(t,c(i),'name') case 'MetaData' s(1).metadata = gifti_MetaData(t,c(i)); case 'CoordinateSystemTransformMatrix' s(1).space(end+1) = gifti_Space(t,c(i)); case 'Data' s(1).data = gifti_Data(t,c(i),s(1).attributes); otherwise error('[GIFTI] Unknown DataArray element "%s".',get(t,c(i),'name')); end end %========================================================================== function s = gifti_Space(t,uid) s = struct('DataSpace','', 'TransformedSpace','', 'MatrixData',[]); for i=children(t,uid) s.(get(t,i,'name')) = get(t,children(t,i),'value'); end s.MatrixData = reshape(str2num(s.MatrixData),4,4)'; %========================================================================== function d = gifti_Data(t,uid,s) tp = getdict; try tp = tp.(s.DataType); catch error('[GIFTI] Unknown DataType.'); end [unused,unused,mach] = fopen(1); sb = @deal; %inline('x'); try if (strcmp(s.Endian,'LittleEndian') && ~isempty(strmatch('ieee-be',mach))) ... || (strcmp(s.Endian,'BigEndian') && ~isempty(strmatch('ieee-le',mach))) sb = @swapbyte; end catch % Byte Order can be absent if encoding is ASCII, assume native otherwise end switch s.Encoding case 'ASCII' d = sscanf(get(t,children(t,uid),'value'),tp.format); case 'Base64Binary' d = typecast(sb(base64decode(get(t,children(t,uid),'value'))), tp.cast); case 'GZipBase64Binary' d = typecast(dunzip(sb(base64decode(get(t,children(t,uid),'value')))), tp.cast); case 'ExternalFileBinary' [p,f,e] = fileparts(s.ExternalFileName); if isempty(p) s.ExternalFileName = fullfile(pwd,[f e]); end if true fid = fopen(s.ExternalFileName,'r'); if fid == -1 error('[GIFTI] Unable to read binary file %s.',s.ExternalFileName); end fseek(fid,str2double(s.ExternalFileOffset),0); d = sb(fread(fid,prod(s.Dim),['*' tp.class])); fclose(fid); else d = file_array(s.ExternalFileName, s.Dim, tp.class, ... str2double(s.ExternalFileOffset),1,0,'ro'); end otherwise error('[GIFTI] Unknown data encoding: %s.',s.Encoding); end if length(s.Dim) == 1, s.Dim(end+1) = 1; end switch s.ArrayIndexingOrder case 'RowMajorOrder' d = permute(reshape(d,fliplr(s.Dim)),length(s.Dim):-1:1); case 'ColumnMajorOrder' d = reshape(d,s.Dim); otherwise error('[GIFTI] Unknown array indexing order.'); end
github
philippboehmsturm/antx-master
isintent.m
.m
antx-master/freiburgLight/matlab/spm8/@gifti/private/isintent.m
2,094
utf_8
558a3aa4dffb45d067e660999e803050
function [a, b] = isintent(this,intent) % Correspondance between fieldnames and NIfTI intents % FORMAT ind = isintent(this,intent) % this - GIfTI object % intent - fieldnames % a - indices of found intent(s) % b - indices of dataarrays of found intent(s) %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: isintent.m 4717 2012-04-19 11:02:50Z guillaume $ a = []; b = []; if ischar(intent), intent = cellstr(intent); end c = cdata; for i=1:length(this(1).data) switch this(1).data{i}.attributes.Intent(14:end) case 'POINTSET' [tf, loc] = ismember('vertices',intent); if tf a(end+1) = loc; b(end+1) = i; end [tf, loc] = ismember('mat',intent); if tf a(end+1) = loc; b(end+1) = i; end case 'TRIANGLE' [tf, loc] = ismember('faces',intent); if tf a(end+1) = loc; b(end+1) = i; end case 'VECTOR' [tf, loc] = ismember('normals',intent); if tf a(end+1) = loc; b(end+1) = i; end case {'NONE', 'LABEL', 'SHAPE', 'TIME_SERIES', 'RGB_VECTOR', ... 'RGBA_VECTOR' c{:}} [tf, loc] = ismember('cdata',intent); if tf a(end+1) = loc; b(end+1) = i; end otherwise fprintf('Intent %s is ignored.\n',this.data{i}.attributes.Intent); end end %[d,i] = unique(a); %if length(d) < length(a) % warning('Several fields match intent type. Using first.'); % a = a(i); % b = b(i); %end function c = cdata c = { 'CORREL' 'TTEST' 'FTEST' 'ZSCORE' 'CHISQ' 'BETA' 'BINOM' 'GAMMA' 'POISSON' 'NORMAL' 'FTEST_NONC' 'CHISQ_NONC' 'LOGISTIC' 'LAPLACE' 'UNIFORM' 'TTEST_NONC' 'WEIBULL' 'CHI' 'INVGAUSS' 'EXTVAL' 'PVAL' 'LOGPVAL' 'LOG10PVAL' 'ESTIMATE' 'LABEL' 'NEURONAMES' };
github
philippboehmsturm/antx-master
mne_load_coil_def.m
.m
antx-master/freiburgLight/matlab/spm8/external/mne/mne_load_coil_def.m
8,644
utf_8
772b6afb3be6c17199d073e9078d092f
function [CoilDef,Header] = mne_load_coil_def(fname); % % % [CoilDef,Header] = mne_load_coil_def(fname); % CoilDef = mne_load_coil_def(fname); % % If file name is not specified, the standard coil definition file % $MNE_ROOT/setup/mne/coil_def.dat or $MNE_ROOT/share/mne/coil_def.dat is read % % The content of the coil definition file is described in % section 5.6 of the MNE manual % % This routine is modified from the original BrainStorm routine % created by John C. Mosher % % % John C. Mosher % Los Alamos National Laboratory % % Author : Matti Hamalainen, MGH Martinos Center % License : BSD 3-clause % % Copyright (c) 2005 BrainStorm MMIV by the University of Southern California % Principal Investigator: % ** Professor Richard M. Leahy, USC Signal & Image Processing Institute % % % Revision 1.5 2006/09/08 19:27:13 msh % Added KIT coil type to mne_load_coil_def % Allow reading of measurement info by specifying just a file name. % % Revision 1.4 2006/04/25 12:29:10 msh % Added Magnes and CTF reference coil drawings. % % Revision 1.3 2006/04/23 15:29:40 msh % Added MGH to the copyright % % Revision 1.2 2006/04/17 15:01:34 msh % More small improvements. % % Revision 1.1 2006/04/17 11:52:15 msh % Added coil definition stuff % % me='MNE:mne_load_coil_def'; %% Setup the default inputs if nargin == 0 fname = mne_file_name('setup/mne/coil_def.dat'); if ~exist(fname,'file') fname = mne_file_name('share/mne/coil_def.dat'); if ~exist(fname,'file') error(me,'The standard coil definition file was not found'); end end end % Read in the coil_def information %% Open, Read in entire file, close fid = fopen(fname,'rt'); if fid < 0 error(me,'Could not open coil definition file %s',fname); end istr = 1; % string indexer str_array = cell(1000,1); % preallocate str_array{istr} = fgetl(fid); % get first string while ischar(str_array{istr}), istr = istr + 1; str_array{istr} = fgetl(fid); % get next string end fclose(fid); str_array = str_array(1:(istr-1)); % trim allocation %% Read the Header, find the structure % Gather the header lines HeaderLines = strmatch('#',str_array); % lines that begin with a comment % where are the structure lines StructureLines = strmatch('# struct',str_array); % subset of header lines % should be two if length(StructureLines) ~= 2, error(me,'%s anticipates two lines of structures',mfilename) end % with each structure line is a format line FormatLines = strmatch('# format',str_array); % subset of header lines % assume there are also two FieldNames = cell(1,2); Format = cell(1,2); % first structure is the coil information % won't actually use the second structure, just its format for i = 1:2, FieldNames{i} = strread(str_array{StructureLines(i)},'%s'); FieldNames{i}(1:2) = []; % strip the comment symbol and struct keyword [ignore,Format{i}] = strtok(str_array{FormatLines(i)},''''); Format{i} = strrep(Format{i},'''',''); % strip the single quotes end %% Allocate the arrays for loading % interleave every fieldname with a null value struct_arg = [FieldNames{1} cell(length(FieldNames{1}),1)]'; % each column an argument pair % Preallocate a structure [CoilDef(1:100)] = deal(struct(struct_arg{:})); % Convert the rest of the string array to a structure iCoil = 0; % counter iLine = HeaderLines(end); % next line after header while iLine < length(str_array), % number of lines in file iCoil = iCoil + 1; % next coil definition iLine = iLine + 1; % next line % first read the integer information on the coil % begin by breaking the line into two parts, numeric and description [numeric_items, description] = strtok(str_array{iLine},'"'); temp = sscanf(numeric_items,Format{1}); % extra %s doesn't matter % assign temp in the order of the fields for i = 1:(length(FieldNames{1})-1), CoilDef(iCoil).(FieldNames{1}{i}) = temp(i); end % then assign the description % let's strip the quotes first description = strrep(description,'"',''); CoilDef(iCoil).(FieldNames{1}{end}) = description; % now read the coil definition CoilDef(iCoil).coildefs = zeros(CoilDef(iCoil).num_points,7); for i = 1:CoilDef(iCoil).num_points, iLine = iLine + 1; CoilDef(iCoil).coildefs(i,:) = sscanf(str_array{iLine},... Format{2})'; end % now draw it % local subfunction below CoilDef(iCoil).FV = draw_sensor(CoilDef(iCoil)); end CoilDef = CoilDef(1:iCoil); % trim allocation Header = str_array(HeaderLines); function FV = draw_sensor(CoilDef); % create a patch based on the sensor type % The definitions as of 14 October 2005: % for i = 1:3:length(CoilDef),fprintf('%d %s\n',CoilDef(i).id,CoilDef(i).description);end % 2 Neuromag-122 planar gradiometer size = 27.89 mm base = 16.20 mm % 2000 Point magnetometer % 3012 Vectorview planar gradiometer T1 size = 26.39 mm base = 16.80 mm % 3013 Vectorview planar gradiometer T2 size = 26.39 mm base = 16.80 mm % 3022 Vectorview magnetometer T1 size = 25.80 mm % 3023 Vectorview magnetometer T2 size = 25.80 mm % 3024 Vectorview magnetometer T3 size = 21.00 mm % 4001 Magnes WH2500 magnetometer size = 11.50 mm % 4002 Magnes WH3600 gradiometer size = 18.00 mm base = 50.00 mm % 5001 CTF axial gradiometer size = 18.00 mm base = 50.00 mm FV = struct('faces',[],'vertices',[]); % standard convention % recall that vertices are 1 per ROW, not column, of matrix switch CoilDef.id case {2,3012,3013,3011} % square figure eight % wound by right hand rule such that +x side is "up" (+z) LongSide = CoilDef.size*1000; % length of long side in mm Offset = 2.5; % mm offset of the center portion of planar grad coil FV.vertices = [0 0 0; Offset 0 0; ... Offset -LongSide/2 0; LongSide/2 -LongSide/2 0; ... LongSide/2 LongSide/2 0; ... Offset LongSide/2 0; Offset 0 0; ... 0 0 0; -Offset 0 0; -Offset -LongSide/2 0; ... -LongSide/2 -LongSide/2 0; ... -LongSide/2 LongSide/2 0; ... -Offset LongSide/2 0; -Offset 0 0]/1000; FV.faces = [1:length(FV.vertices)]; case 2000 % point source LongSide = 2; % mm, tiny square FV.vertices = [-1 1 0;1 1 0;1 -1 0; -1 -1 0]*LongSide/1000/2; FV.faces = [1:length(FV.vertices)]; case {3022, 3023, 3024} % square magnetometer LongSide = CoilDef.size*1000; % mm, length of one side FV.vertices = [-1 1 0;1 1 0;1 -1 0; -1 -1 0]*LongSide/1000/2; FV.faces = [1:length(FV.vertices)]; case {4001,4003,5002} % round magnetometer Radius = CoilDef.size*1000/2; % mm, radius of coil Len_cir = 15; % number of points for circle circle = cos(2*pi*[0:(Len_cir-1)]/Len_cir) + ... sqrt(-1)*sin(2*pi*[0:(Len_cir-1)]/Len_cir); % complex circle unit FV.vertices = ... [real(circle)' imag(circle)' zeros(Len_cir,1)]*Radius/1000; FV.faces = [1:length(FV.vertices)]; case {4002, 5001, 5003, 4004, 6001} % round coil 1st order gradiometer Radius = CoilDef.size*1000/2; % mm radius Baseline = CoilDef.baseline*1000; % axial separation Len_cir = 15; % number of points for circle % This time, go all the way around circle to close it fully circle = cos(2*pi*[0:Len_cir]/Len_cir) + ... sqrt(-1)*sin(2*pi*[0:Len_cir]/Len_cir); % complex circle unit circle = circle*Radius; % scaled FV.vertices = ... [[real(circle)' imag(circle)' zeros(Len_cir+1,1)];... % first coil [real(circle)' -imag(circle)' zeros(Len_cir+1,1)+Baseline]]/1000; % 2nd coil FV.faces = [1:length(FV.vertices)]; case {5004,4005} % round coil 1st order off-diagonal gradiometer Radius = CoilDef.size*1000/2; % mm radius Baseline = CoilDef.baseline*1000; % axial separation Len_cir = 15; % number of points for circle % This time, go all the way around circle to close it fully circle = cos(2*pi*[0:Len_cir]/Len_cir) + ... sqrt(-1)*sin(2*pi*[0:Len_cir]/Len_cir); % complex circle unit circle = circle*Radius; % scaled FV.vertices = ... [[real(circle)'+Baseline/2.0 imag(circle)' zeros(Len_cir+1,1)];... % first coil [real(circle)'-Baseline/2.0 -imag(circle)' zeros(Len_cir+1,1)]]/1000; % 2nd coil FV.faces = [1:length(FV.vertices)]; otherwise FV = []; end
github
philippboehmsturm/antx-master
fiff_find_evoked.m
.m
antx-master/freiburgLight/matlab/spm8/external/mne/fiff_find_evoked.m
2,846
utf_8
f7c5e4fd4395754f0e87d3fe6e984d62
function [data_sets] = fiff_find_evoked(fname) % % [data_sets] = fiff_find_evoked(fname) % % Find all evoked data sets in a fif file and create a list of descriptors % % % Author : Matti Hamalainen, MGH Martinos Center % License : BSD 3-clause % global FIFF; if isempty(FIFF) FIFF = fiff_define_constants(); end me = 'MNE:fiff_find_evoked'; % % Open the file % [ fid, tree ] = fiff_open(fname); data_sets = struct('comment',{},'aspect_kind',{},'aspect_name',{}); % % Find all evoked data sets % evoked = fiff_dir_tree_find(tree, FIFF.FIFFB_EVOKED); if length(evoked) == 0 fclose(fid); return end % % Identify the aspects % naspect = 0; for k = 1:length(evoked) sets(k).aspects = fiff_dir_tree_find(evoked(k), FIFF.FIFFB_ASPECT); sets(k).naspect = length(sets(k).aspects); naspect = naspect + sets(k).naspect; end % % Collect the desired information % count = 1; for k = 1:length(evoked) evoked_comment = find_tag(evoked(k), FIFF.FIFF_COMMENT); for a = 1:sets(k).naspect aspect_comment = find_tag(sets(k).aspects(a), FIFF.FIFF_COMMENT); aspect_kind = find_tag(sets(k).aspects(a), FIFF.FIFF_ASPECT_KIND); if ~isempty(aspect_comment) data_sets(count).comment = aspect_comment.data; elseif ~isempty(evoked_comment) data_sets(count).comment = evoked_comment.data; else data_sets(count).comment = 'No comment'; end if ~isempty(aspect_kind) data_sets(count).aspect_kind = aspect_kind.data; else data_sets(count).aspect_kind = -1; end switch data_sets(count).aspect_kind case FIFF.FIFFV_ASPECT_AVERAGE data_sets(count).aspect_name = 'Average'; case FIFF.FIFFV_ASPECT_STD_ERR data_sets(count).aspect_name = 'Standard error'; case FIFF.FIFFV_ASPECT_SINGLE data_sets(count).aspect_name = 'Single'; case FIFF.FIFFV_ASPECT_SUBAVERAGE data_sets(count).aspect_name = 'Subaverage'; case FIFF.FIFFV_ASPECT_ALTAVERAGE data_sets(count).aspect_name = 'Alt. subaverage'; case FIFF.FIFFV_ASPECT_SAMPLE data_sets(count).aspect_name = 'Sample'; case FIFF.FIFFV_ASPECT_POWER_DENSITY data_sets(count).aspect_name = 'Power density spectrum'; case FIFF.FIFFV_ASPECT_DIPOLE_WAVE data_sets(count).aspect_name = 'Dipole source waveform'; otherwise data_sets(count).aspect_name = 'Unknown'; end count = count + 1; end end fclose(fid); return function [tag] = find_tag(node, findkind) for p = 1:node.nent kind = node.dir(p).kind; pos = node.dir(p).pos; if kind == findkind tag = fiff_read_tag(fid, pos); return end end tag = []; return end end
github
philippboehmsturm/antx-master
bemcp_example.m
.m
antx-master/freiburgLight/matlab/spm8/external/bemcp/bemcp_example.m
21,651
utf_8
253b283a3e15ed5e68f2c888f37b65ff
function bemcp_example % Simple function to test/demonstrate how the Boundary element functions are % used in combination with Fildtrip/Forwinv routines. % % 1. A model is created as 3 concentric meshed spheres (using FT's % icosahedron routines), % 2. then random electrodes are placed on the upper part of the outer % sphere. % 3. the model is then "prepared" with 'ft_prepare_bemmodel', this bits % takes most time as it requires LOTS of calculation. % 4. sensors and volumes are plugged together by 'forwinv_prepare_vol_sens' % 5. Finally the leadfiled for 3 orthogonal sources placed at one location % is calculated with 'forwinv_compute_leadfield.m' % 6. Display the 3 leadfields % % NOTE: % this bit of code needs access to low level fieldtrip/forwinv routines % which have been copy/pasted here under. % Be aware that this way of programming is generally NOT advisable! % I used it only to ensure a quick & dirty check of the BEM module... % Christophe Phillips % $Id: bemcp_example.m 2801 2009-02-27 17:26:22Z christophe $ % create volume conductor starting from unit sphere [pnt, tri] = icosahedron162; vol = []; vol.cond = [1 1/80 1]; vol.source = 1; % index of source compartment vol.skin = 3; % index of skin surface % brain vol.bnd(1).pnt = pnt*88; vol.bnd(1).tri = tri; % skull vol.bnd(2).pnt = pnt*92; vol.bnd(2).tri = tri; % skin vol.bnd(3).pnt = pnt*100; vol.bnd(3).tri = tri; % create the BEM system matrix cfg = []; cfg.method = 'bemcp'; vol1 = ft_prepare_bemmodel(cfg, vol); % create some random electrodes pnt = randn(200,3); pnt = pnt(pnt(:,3)>0, :); % only those on the upper half sens = []; for i=1:size(pnt,1) sens.pnt(i,:) = pnt(i,:) / norm(pnt(i,:)); % scale towards the skin surface sens.label{i} = sprintf('%02d', i); end % prepare the sensor array and volume conduction, i.e. set up the linear % interpolation from vertices to electrodes [vol2, sens] = forwinv_prepare_vol_sens(vol1, sens); lf = forwinv_compute_leadfield([0 0 50], sens, vol2); figure; triplot(sens.pnt, [], lf(:,1)); colorbar figure; triplot(sens.pnt, [], lf(:,2)); colorbar figure; triplot(sens.pnt, [], lf(:,3)); colorbar return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Subfunctions from FieldTrip function [pnt, dhk] = icosahedron162 % ICOSAHEDRON162 creates a 2-fold refined icosahedron % Copyright (C) 2003, Robert Oostenveld % % $Log: icosahedron162.m,v $ % Revision 1.3 2003/11/28 09:40:12 roberto % added a single help line % % Revision 1.2 2003/03/04 21:46:18 roberto % added CVS log entry and synchronized all copyright labels % [pnt, dhk] = icosahedron; [pnt, dhk] = refine(pnt, dhk); [pnt, dhk] = refine(pnt, dhk); pnt = pnt ./ repmat(sqrt(sum(pnt.^2,2)), 1,3); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [pnt, dhk] = icosahedron % ICOSAHEDRON creates an icosahedron % % [pnt, dhk] = icosahedron % creates an icosahedron with 12 vertices and 20 triangles % % See also OCTAHEDRON, ICOSAHEDRON42, ICOSAHEDRON162, ICOSAHEDRON642, ICOSAHEDRON2562 % Copyright (C) 2002, Robert Oostenveld % % $Log: icosahedron.m,v $ % Revision 1.4 2006/07/26 11:03:38 roboos % added "see also octahedron" % % Revision 1.3 2003/03/11 15:35:20 roberto % converted all files from DOS to UNIX % % Revision 1.2 2003/03/04 21:46:18 roberto % added CVS log entry and synchronized all copyright labels % dhk = [ 1 2 3 1 3 4 1 4 5 1 5 6 1 6 2 2 8 3 3 9 4 4 10 5 5 11 6 6 7 2 7 8 2 8 9 3 9 10 4 10 11 5 11 7 6 12 8 7 12 9 8 12 10 9 12 11 10 12 7 11 ]; pnt = zeros(12, 3); rho=0.4*sqrt(5); phi=2*pi*(0:4)/5; pnt( 1, :) = [0 0 1]; % top point pnt(2:6, 1) = rho*cos(phi)'; pnt(2:6, 2) = rho*sin(phi)'; pnt(2:6, 3) = rho/2; pnt(7:11, 1) = rho*cos(phi - pi/5)'; pnt(7:11, 2) = rho*sin(phi - pi/5)'; pnt(7:11, 3) = -rho/2; pnt(12, :) = [0 0 -1]; % bottom point return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [pntr, dhkr] = refine(pnt, dhk, method, varargin) % REFINE a 3D surface that is described by a triangulation % % Use as % [pnt, tri] = refine(pnt, tri) % [pnt, tri] = refine(pnt, tri, 'updown', numtri) % % The default method is to refine the mesh globally by inserting a vertex at % each edge according to the algorithm described in Banks, 1983. % % The alternative 'updown' method refines the mesh a couple of times % using Banks' algorithm, followed by a downsampling using the REDUCEPATCH % function. % The Banks method is a memory efficient implementation which remembers % the previously inserted vertices. The refinement algorithm executes in % linear time with the number of triangles. % Copyright (C) 2002-2005, Robert Oostenveld % % $Log: refine.m,v $ % Revision 1.4 2005/05/06 08:54:31 roboos % added 'updown method, using matlab reducepatch function % % Revision 1.3 2003/03/11 15:35:20 roberto % converted all files from DOS to UNIX % % Revision 1.2 2003/03/04 21:46:19 roberto % added CVS log entry and synchronized all copyright labels % if nargin<3 method = 'banks'; end switch lower(method) case 'banks' npnt = size(pnt,1); ndhk = size(dhk,1); insert = spalloc(3*npnt,3*npnt,3*ndhk); dhkr = zeros(4*ndhk,3); % allocate memory for the new triangles pntr = zeros(npnt+3*ndhk,3); % allocate memory for the maximum number of new vertices pntr(1:npnt,:) = pnt; % insert the original vertices current = npnt; for i=1:ndhk if ~insert(dhk(i,1),dhk(i,2)) current = current + 1; pntr(current,:) = (pnt(dhk(i,1),:) + pnt(dhk(i,2),:))/2; insert(dhk(i,1),dhk(i,2)) = current; insert(dhk(i,2),dhk(i,1)) = current; v12 = current; else v12 = insert(dhk(i,1),dhk(i,2)); end if ~insert(dhk(i,2),dhk(i,3)) current = current + 1; pntr(current,:) = (pnt(dhk(i,2),:) + pnt(dhk(i,3),:))/2; insert(dhk(i,2),dhk(i,3)) = current; insert(dhk(i,3),dhk(i,2)) = current; v23 = current; else v23 = insert(dhk(i,2),dhk(i,3)); end if ~insert(dhk(i,3),dhk(i,1)) current = current + 1; pntr(current,:) = (pnt(dhk(i,3),:) + pnt(dhk(i,1),:))/2; insert(dhk(i,3),dhk(i,1)) = current; insert(dhk(i,1),dhk(i,3)) = current; v31 = current; else v31 = insert(dhk(i,3),dhk(i,1)); end % add the 4 new triangles with the correct indices dhkr(4*(i-1)+1, :) = [dhk(i,1) v12 v31]; dhkr(4*(i-1)+2, :) = [dhk(i,2) v23 v12]; dhkr(4*(i-1)+3, :) = [dhk(i,3) v31 v23]; dhkr(4*(i-1)+4, :) = [v12 v23 v31]; end % remove the space for the vertices that was not used pntr = pntr(1:current, :); case 'updown' ndhk = size(dhk,1); while ndhk<varargin{1} % increase the number of triangles by a factor of 4 [pnt, dhk] = refine(pnt, dhk, 'banks'); ndhk = size(dhk,1); end % reduce number of triangles using Matlab function [dhkr, pntr] = reducepatch(dhk, pnt, varargin{1}); otherwise error(['unsupported method: ' method]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [hs, hc, contour] = triplot(pnt, tri, val, mode, levels) % TRIPLOT make 2D or 3D plot of triangulated surface and interpolated values % The surface can be displayed with linear interpolated values or with % linear interpolated contours of a potential distribution. % % Use as % triplot(pnt, tri, value) % triplot(pnt, tri, value, mode) % triplot(pnt, tri, value, mode, levels) % This will make a plot of value on the surface described by triangles % tri with vertices pnt. The matrix tri can be [], in which case a % it will be computed using a delaunay triangulation. % % The visualization mode can be % 'surface' make interpolated plot of value on surface (default) % 'faces' plot white triangles only (value can be []) % 'faces_red' plot red triangles only (value can be []) % 'faces_blue' plot blue triangles only (value can be []) % 'faces_skin' plot skin-colored triangles only (value can be []) % 'face_index' plot index of each triangle (value can be []) % 'nodes' plot black vertices only (value can be []) % 'node_index' plot index of each vertex (value can be []) % 'node_label' plot label of each vertex (value should be cell array) % 'edges' plot black edges only (value can be []) % 'contour' make interpolated contour plot of value on surface % 'contour_bw' make interpolated black-white contour plot % 'contour_rb' make interpolated contour plot with red-blue % % With the optional levels, you can specify the levels at which contours will % be plotted % % See also PATCH, COLORMAP, VIEW (general Matlab commands) % updated on Mon Jul 23 12:41:44 MET DST 2001 % updated on Fri Jan 31 11:47:28 CET 2003 % Copyright (C) 2001=2006, Robert Oostenveld % % $Log: triplot.m,v $ % Revision 1.7 2008/06/24 13:37:51 roboos % added option faces_blue % always return handle to objects that were plotted % % Revision 1.6 2007/01/03 17:00:35 roboos % updated documentation, changed layout of code and comments % % Revision 1.5 2006/09/19 16:11:35 roboos % added support for line segments, removed "axis equal" at end % % Revision 1.4 2006/05/02 19:15:28 roboos % added 'faces_red' style % % Revision 1.3 2004/06/28 07:51:39 roberto % improved documentation, added faces_skin % % Revision 1.2 2003/03/17 10:37:29 roberto % improved general help comments and added copyrights % % start with empty return values hs = []; hc = []; contour = []; % everything is added to the current figure holdflag = ishold; hold on % check the input variables if ~isempty(val) val = val(:); end if nargin<4 mode = 'surface'; end if isempty(tri) & ~strcmp(mode, 'nodes') % no triangulation was specified but a triangulation is needed if size(pnt,2)==2 % make a 2d triangulation of the points using delaunay tri = delaunay(pnt(:,1), pnt(:,2)); else % make a 2d triangulation of the projected points using delaunay prj = elproj(pnt); tri = delaunay(prj(:,1), prj(:,2)); end end if size(tri,2)==2 % lines are specified instead of triangles, convert to triangles tri(:,3) = tri(:,2); end if nargin<3 warning('only displaying triangle edges') mode='edges'; val = []; elseif nargin<4 % warning('default displaying surface') mode='surface'; elseif nargin<5 % determine contour levels if ~isempty(val) & ~iscell(val) absmax = max(abs([min(val) max(val)])); levels = linspace(-absmax,absmax,21); else levels = []; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute contours for 2D or 3D triangulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(mode, 'contour') || strcmp(mode, 'contour_bw') || strcmp(mode, 'contour_rb') triangle_val = val(tri); triangle_min = min(triangle_val, [], 2); triangle_max = max(triangle_val, [], 2); for cnt_indx=1:length(levels) cnt = levels(cnt_indx); use = cnt>=triangle_min & cnt<=triangle_max; counter = 0; intersect1 = []; intersect2 = []; for tri_indx=find(use)' pos = pnt(tri(tri_indx,:), :); v(1) = triangle_val(tri_indx,1); v(2) = triangle_val(tri_indx,2); v(3) = triangle_val(tri_indx,3); la(1) = (cnt-v(1)) / (v(2)-v(1)); % abcissa between vertex 1 and 2 la(2) = (cnt-v(2)) / (v(3)-v(2)); % abcissa between vertex 2 and 3 la(3) = (cnt-v(3)) / (v(1)-v(3)); % abcissa between vertex 1 and 2 abc(1,:) = pos(1,:) + la(1) * (pos(2,:) - pos(1,:)); abc(2,:) = pos(2,:) + la(2) * (pos(3,:) - pos(2,:)); abc(3,:) = pos(3,:) + la(3) * (pos(1,:) - pos(3,:)); counter = counter + 1; sel = find(la>=0 & la<=1); intersect1(counter, :) = abc(sel(1),:); intersect2(counter, :) = abc(sel(2),:); end % remember the details for external reference contour(cnt_indx).level = cnt; contour(cnt_indx).n = counter; contour(cnt_indx).intersect1 = intersect1; contour(cnt_indx).intersect2 = intersect2; end % collect all different contourlevels for plotting intersect1 = []; intersect2 = []; cntlevel = []; for cnt_indx=1:length(levels) intersect1 = [intersect1; contour(cnt_indx).intersect1]; intersect2 = [intersect2; contour(cnt_indx).intersect2]; cntlevel = [cntlevel; ones(contour(cnt_indx).n,1) * levels(cnt_indx)]; end X = [intersect1(:,1) intersect2(:,1)]'; Y = [intersect1(:,2) intersect2(:,2)]'; C = [cntlevel(:) cntlevel(:)]'; if size(pnt,2)>2 Z = [intersect1(:,3) intersect2(:,3)]'; else Z = zeros(2, length(cntlevel)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plot the desired detail %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(mode) case 'faces' % plot the faces of the 2D or 3D triangulation hs = patch('Vertices', pnt, 'Faces', tri); set(hs, 'FaceColor', 'white'); set(hs, 'EdgeColor', 'none'); case 'faces_skin' % plot the faces of the 2D or 3D triangulation skin = [255 213 119]/255; brain = [202 100 100]/255; cortex = [255 213 119]/255; hs = patch('Vertices', pnt, 'Faces', tri); set(hs, 'FaceColor', skin); set(hs, 'EdgeColor', 'none'); lighting gouraud material shiny camlight case 'faces_red' % plot the faces of the 2D or 3D triangulation hs = patch('Vertices', pnt, 'Faces', tri); set(hs, 'FaceColor', [1 0 0]); set(hs, 'EdgeColor', 'none'); lighting gouraud material shiny camlight case 'faces_blue' % plot the faces of the 2D or 3D triangulation hs = patch('Vertices', pnt, 'Faces', tri); set(hs, 'FaceColor', [0 0 1]); set(hs, 'EdgeColor', 'none'); lighting gouraud material shiny camlight case 'face_index' % plot the triangle indices (numbers) at each face for face_indx=1:size(tri,1) str = sprintf('%d', face_indx); tri_x = (pnt(tri(face_indx,1), 1) + pnt(tri(face_indx,2), 1) + pnt(tri(face_indx,3), 1))/3; tri_y = (pnt(tri(face_indx,1), 2) + pnt(tri(face_indx,2), 2) + pnt(tri(face_indx,3), 2))/3; tri_z = (pnt(tri(face_indx,1), 3) + pnt(tri(face_indx,2), 3) + pnt(tri(face_indx,3), 3))/3; h = text(tri_x, tri_y, tri_z, str, 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); hs = [hs; h]; end case 'edges' % plot the edges of the 2D or 3D triangulation hs = patch('Vertices', pnt, 'Faces', tri); set(hs, 'FaceColor', 'none'); set(hs, 'EdgeColor', 'black'); case 'nodes' % plot the nodes (vertices) only as points if size(pnt, 2)==2 hs = plot(pnt(:,1), pnt(:,2), 'k.'); else hs = plot3(pnt(:,1), pnt(:,2), pnt(:,3), 'k.'); end case 'nodes_blue' % plot the nodes (vertices) only as points if size(pnt, 2)==2 hs = plot(pnt(:,1), pnt(:,2), 'b.', 'MarkerSize', 20); else hs = plot3(pnt(:,1), pnt(:,2), pnt(:,3), 'b.', 'MarkerSize', 20); end case 'nodes_red' % plot the nodes (vertices) only as points if size(pnt, 2)==2 hs = plot(pnt(:,1), pnt(:,2), 'r.', 'MarkerSize', 20); else hs = plot3(pnt(:,1), pnt(:,2), pnt(:,3), 'r.', 'MarkerSize', 20); end case 'node_index' % plot the vertex indices (numbers) at each node for node_indx=1:size(pnt,1) str = sprintf('%d', node_indx); if size(pnt, 2)==2 h = text(pnt(node_indx, 1), pnt(node_indx, 2), str, 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); else h = text(pnt(node_indx, 1), pnt(node_indx, 2), pnt(node_indx, 3), str, 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); end hs = [hs; h]; end case 'node_label' % plot the vertex indices (numbers) at each node for node_indx=1:size(pnt,1) str = val{node_indx}; if ~isempty(str) if size(pnt, 2)==2 h = text(pnt(node_indx, 1), pnt(node_indx, 2), str, 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); else h = text(pnt(node_indx, 1), pnt(node_indx, 2), pnt(node_indx, 3), str, 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); end else h = -1; end hs = [hs; h]; end case 'surface' % plot a 2D or 3D triangulated surface with linear interpolation if length(val)==size(pnt,1) hs = patch('Vertices', pnt, 'Faces', tri, 'FaceVertexCData', val, 'FaceColor', 'interp'); else hs = patch('Vertices', pnt, 'Faces', tri, 'CData', val, 'FaceColor', 'flat'); end set(hs, 'EdgeColor', 'none'); case 'contour_bw' % make black-white contours hc = []; for i=1:length(cntlevel) if cntlevel(i)>0 linestyle = '-'; linewidth = 1; elseif cntlevel(i)<0 linestyle = '--'; linewidth = 1; else linestyle = '-'; linewidth = 2; end h1 = patch('XData', X(:,i), 'Ydata', Y(:,i), ... 'ZData', Z(:,i), 'CData', C(:,i), ... 'facecolor','none','edgecolor','black', ... 'linestyle', linestyle, 'linewidth', linewidth, ... 'userdata',cntlevel(i)); hc = [hc; h1]; end case 'contour_rb' % make red-blue contours hc = []; for i=1:length(cntlevel) if cntlevel(i)>0 edgecolor = 'red'; elseif cntlevel(i)<0 edgecolor = 'blue'; else edgecolor = 'black'; end h1 = patch('XData', X(:,i), 'Ydata', Y(:,i), ... 'ZData', Z(:,i), 'CData', C(:,i), ... 'facecolor','none','edgecolor',edgecolor, ... 'linestyle', '-', 'linewidth', 3, ... 'userdata',cntlevel(i)); hc = [hc; h1]; end case 'contour' % make full-color contours hc = []; for i=1:length(cntlevel) h1 = patch('XData', X(:,i), 'Ydata', Y(:,i), ... 'ZData', Z(:,i), 'CData', C(:,i), ... 'facecolor','none','edgecolor','flat',... 'userdata',cntlevel(i)); hc = [hc; h1]; end end % switch axis off axis vis3d axis equal if nargout==0 clear contour hc hs end if ~holdflag hold off end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [proj] = elproj(pos, method); % ELPROJ makes a azimuthal projection of a 3D electrode cloud % on a plane tangent to the sphere fitted through the electrodes % the projection is along the z-axis % % [proj] = elproj([x, y, z], 'method'); % % Method should be one of these: % 'gnomic' % 'stereographic' % 'ortographic' % 'inverse' % 'polar' % % Imagine a plane being placed against (tangent to) a globe. If % a light source inside the globe projects the graticule onto % the plane the result would be a planar, or azimuthal, map % projection. If the imaginary light is inside the globe a Gnomonic % projection results, if the light is antipodal a Sterographic, % and if at infinity, an Orthographic. % % The default projection is a polar projection (BESA like). % An inverse projection is the opposite of the default polar projection. % Copyright (C) 2000-2008, Robert Oostenveld % % $Log: elproj.m,v $ % Revision 1.4 2008/05/15 10:54:24 roboos % updated documentation % % Revision 1.3 2007/03/20 10:29:35 roboos % renamed method 'default' into 'polar' % % Revision 1.2 2003/03/17 10:37:28 roberto % improved general help comments and added copyrights % x = pos(:,1); y = pos(:,2); if size(pos, 2)==3 z = pos(:,3); end if nargin<2 method='polar'; end if nargin<3 secant=1; end if strcmp(method, 'orthographic') % this method compresses the lowest electrodes very much % electrodes on the bottom half of the sphere are folded inwards xp = x; yp = y; num = length(find(z<0)); str = sprintf('%d electrodes may be folded inwards in orthographic projection\n', num); if num warning(str); end proj = [xp yp]; elseif strcmp(method, 'gnomic') % the lightsource is in the middle of the sphere % electrodes on the equator are projected at infinity % electrodes below the equator are not projected at all rad = mean(sqrt(x.^2 + y.^2 + z.^2)); phi = cart2pol(x, y); th = atan(sqrt(x.^2 + y.^2) ./ z); xp = cos(phi) .* tan(th) .* rad; yp = sin(phi) .* tan(th) .* rad; num = length(find(th==pi/2 | z<0)); str = sprintf('removing %d electrodes from gnomic projection\n', num); if num warning(str); end xp(find(th==pi/2 | z<0)) = NaN; yp(find(th==pi/2 | z<0)) = NaN; proj = [xp yp]; elseif strcmp(method, 'stereographic') % the lightsource is antipodal (on the south-pole) rad = mean(sqrt(x.^2 + y.^2 + z.^2)); z = z + rad; phi = cart2pol(x, y); th = atan(sqrt(x.^2 + y.^2) ./ z); xp = cos(phi) .* tan(th) .* rad * 2; yp = sin(phi) .* tan(th) .* rad * 2; num = length(find(th==pi/2 | z<0)); str = sprintf('removing %d electrodes from stereographic projection\n', num); if num warning(str); end xp(find(th==pi/2 | z<0)) = NaN; yp(find(th==pi/2 | z<0)) = NaN; proj = [xp yp]; elseif strcmp(method, 'inverse') % compute the inverse projection of the default angular projection [th, r] = cart2pol(x, y); [xi, yi, zi] = sph2cart(th, pi/2 - r, 1); proj = [xi, yi, zi]; else % use default angular projection [az, el, r] = cart2sph(x, y, z); [x, y] = pol2cart(az, pi/2 - el); proj = [x, y]; end
github
philippboehmsturm/antx-master
writeCPersist.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/writeCPersist.m
5,086
utf_8
0c56dc571aa56100f050678e5fe815ff
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Function writeCPersist %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeCPersist(filename,Tag) % Version 1.2 24 April 2007. Removed terminating null characters from charatcer strings % types 10,11) % Version 1.1 13 April 2007 % Write a CTF CPersist file. See document CTF MEG File Format, PN900-0066 % Inputs : filename : Name of the output file name including path % Tag: Structure array containing all of the tags, types, and data. % 31 Aug 2006: Recognizes type=1,...,17. If other data types are specified, % writeCPersist will print an error message. % Delete existing file so the new file has the correct creation data/time. if nargin==0 fprintf(['writeCPersist: Version 1.2 24 April 2007 Writes a CTF CPersist file.\n'... '\twriteCPersist(filename,Tag) writes a CPersist file from the contents of\n',... '\tstructure array Tag. Tag is in the format prepared by readCPersist.\n\n']); Tag=[]; return end if exist(filename)==2 delete(filename); end startString='WS1_'; EOFstring='EndOfParameters'; startVal=256.^[3:-1:0]*double(startString)'; % Integer version of startString fid=fopen(filename,'w','ieee-be'); EOFcount=0; % Make sure that the startString's and EOFstring's balance count=0; while count<length(Tag) count=count+1; if strcmp(Tag(count).name,startString) % start of Cpersist object fwrite(fid,startVal,'int32'); EOFcount=EOFcount-1; continue end fwrite(fid,length(Tag(count).name),'int32'); % end of CPersist object fwrite(fid,Tag(count).name,'char'); if strcmp(Tag(count).name,EOFstring); EOFcount=EOFcount+1; continue; end fwrite(fid,Tag(count).type,'int32'); if Tag(count).type==1 fwrite(fid,Tag(count).data,'int32'); elseif Tag(count).type==2 % Start embedded CPersist object elseif Tag(count).type==3 % binary list fwrite(fid,2*length(Tag(count).data),'int32'); fwrite(fid,Tag(count).data,'int16'); elseif Tag(count).type==4 % double fwrite(fid,Tag(count).data,'float64'); elseif Tag(count).type==5 % integer fwrite(fid,Tag(count).data,'int32'); elseif Tag(count).type==6 % short integer fwrite(fid,Tag(count).data,'int16'); elseif Tag(count).type==7 % unsigned short integer fwrite(fid,Tag(count).data,'uint16'); elseif Tag(count).type==8 % Boolean byte fwrite(fid,Tag(count).data,'uint8'); elseif Tag(count).type==9; % CStr32 nChar=min(32,length(Tag(count).data)); fwrite(fid,[double(Tag(count).data(1:nChar)) zeros(1,32-nChar)],'uint8'); elseif Tag(count).type==10; % CString fwrite(fid,length(Tag(count).data),'int32'); fwrite(fid,double(Tag(count).data),'uint8'); elseif Tag(count).type==11; % Cstring list. nList=size(Tag(count).data,1); fwrite(fid,nList,'int32'); for k=1:nList % Do not force termination of strings with nulls (char(0)) Cstring=[deblank(Tag(count).data(k,:))]; fwrite(fid,length(Cstring),'int32'); fwrite(fid,double(Cstring),'uint8'); end clear k CString nList; elseif Tag(count).type==12; % CStr32 list. nList=size(Tag(count).data,1); %size(data)=[nList 32] fwrite(fid,nList,'int32'); % Do not force termination of strings with nulls (char(0)) for k=1:nList strng=deblank(Tag(count).data(k,:)); nChar=min(32,length(strng)); Tag(count).data(k,:)=[strng(1:nChar) char(zeros(1,32-nChar))]; end fwrite(fid,double(Tag(count).data)','uint8'); clear k strng nChar nList; elseif Tag(count).type==13; % SensorClass list. fwrite(fid,length(Tag(count).data),'int32'); fwrite(fid,Tag(count).data,'int32') elseif Tag(count).type==14 % long integer fwrite(fid,Tag(count).data,'int32'); elseif Tag(count).type==15 % unsigned longinteger fwrite(fid,Tag(count).data,'uint32'); elseif Tag(count).type==16 % unsigned integer fwrite(fid,Tag(count).data,'uint32'); elseif Tag(count).type==17 % Boolean if ~any(Tag(count).data==[0 1]) fprintf('writeCPersist: tagname=%s type=%d value=%d? (Must =0 or 1)\n',... tagname,type,Tag(count).data); Tag(count).data=(Tag(count).data~=0); fprintf(' Set value=%d.\n',Tag(count).data); end fwrite(fid,Tag(count).data,'int32'); else fprintf('writeCPersist: Tag(%d) name=%s type=%d\n',count,Tag(count).name,Tag(count).type); fprintf('\t\t UNRECOGNIZED type.\n'); fclose(fid); break; end end % Loop over tags fclose(fid); % EOF_count should be zero at the end of the file if EOFcount~=0; fprintf('write_CPerist: EOFcount=%d Stop strings do not balance start strings.\n',... EOFcount); fprintf(' Start string=%s Stop string=%s\n',startString,EOFstring); end return %%%%%%%% End of writeCPersist %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
philippboehmsturm/antx-master
getCTFBalanceCoefs.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/getCTFBalanceCoefs.m
20,490
utf_8
2c434fcbdb53fbc50ee3fbda72e98883
function [alphaMEG,MEGindex,MEGbalanceindex,alphaGref,Grefindex,Gbalanceindex]=... getCTFBalanceCoefs(ds,balanceType,unit); % Reads balance coefficients for SQUID data in phi0's, and converts to coefficients % for data in physical units. % Input : ds : (1) ds structure from readCTFds % balanceType : 'NONE' : No balancing % 'G1BR' : 1st order balancing % 'G2BR' : 2nd order balancing % 'G3BR' : 3rd order balancing % 'G3AR' : 3rd order balancing + adaptive % If only MEG balance table is requested, size(balanceType)=[1 5] % If Gref balance table is requested also, size(balanceType)=[2 4] % unit: Type of units. Option: 'fT','T','phi0','int'. % If unit is not entered, of unit=[], the default is unit='fT'. % Outputs : % alphaMEG,MEGindex,MEGbalanceindex : MEG balancing coefficients for data in fT or T. % Suppose data array returned by getTrial2 has size(data)=[npt nchan]. % nMEG = number of MEG channels in the data set. % MEG channels have sensorTypeIndex==5. % % MEGindex = list of MEG channels referred to the channel numbering in % the complete dataset (i.e. it is not referred to only the list of % SQUID sensors). % by looking for sensors with ds.res4.senres.sensorTypeIndex==5 % size(MEGindex)=[1 nMEG] % MEG data = data(:,MEGindex) % MEGbalanceindex = list of reference channels for MEG balancing. % size(MEGbalanceindex)=[1 nRef] % Reference data for MEG balancing = data(:,MEGbalanceindex) % alphaMEG = balance coefficients. size(alphaMEG)=[nRef nMEG] % % Balancing MEG data : % - Start with data AFTER converting to physical units. % (I.e. SQUID data must be in fT or T.) % - balanced_data(:,MEGindex)=data(:,MEGindex)-data(:,MEGbalanceindex)*alphaMEG % If user specifies balanceType=[], ' ' or 'none', then getCTFBalanceCoefs returns % alphaMEG=zeros(0,nMEG), MEGindex=list of MEG sensor channels, % MEGbalanceindex=[], alphaGref=zeros(0,nGef), Grefindex=list of Gref channels % and Gbalanceindex=[]; % alphaGref,Grefindex,Gbalanceindex : Reference-gradiometer balancing coeficients. % These output arrays are optional. If the calling statement includes % them, then this program extracts a table of balance coefficients for % the reference gradiometers from the G1BR table in the coefficient files. % nGref = no. of reference gradiometers channels in the data set % (sensorTypeIndex=1) % Grefindex = list of reference channels. size(Grefindex)=[1 nGref] % Gradient reference data = data(:,Grefindex) % Gbalanceindex = list of channels for balancing reference % gradiometers. size(Gbalanceindex)=[1 nGbalcoef] % Balancing reference data = data(:,Gbalanceindex) % alphaGref = balance coefficients for ref. grads. % size(alphaGref)=[nGbalcoef nGref] % % Balancing ref. gradiometer data : % - Use data AFTER converting to physical units. (I.e. data in fT or T.) % balanced_data(:,Grefindex)=data(:,Grefindex)-data(:,Gbalanceindex)*alphaGref % Calls function getRawCTFBalanceCoefs (included in this listing). if nargout==0 & nargin==0 fprintf(['\ngetCTFBalanceCoefs: Version 1.1 17 April 2007 ',... 'Reads balance coefficients from ds.res4.scrr.\n\n',... '\tMEG balancing : [alphaMEG,MEGindex,MEGbalanceindex]=',... 'getCTFBalanceCoefs(ds,balanceType,unit);\n\n',... '\tMEG & Gref balancing : [alphaMEG,MEGindex,MEGbalanceindex,',... 'alphaGref,Grefindex,Gbalanceindex]=\n',... '\t ',... 'getCTFBalanceCoefs(ds,balanceType,unit);\n\n']); return end balanceOptions=strvcat('NONE','G1BR','G2BR','G3BR', 'G3AR'); balanceOptionsEnds = [size(balanceOptions, 1), 2]; % Which options are available for MEGs and Grefs. physical_options=strvcat('fT','T'); raw_options=strvcat('phi0','int'); unit_options=strvcat(physical_options,raw_options); default_unit='fT'; % Specify outputs in case of an early return due to an error. MEGindex=[]; Grefindex=[]; alphaMEG=[]; MEGbalanceindex=[]; alphaGref=[]; Gbalanceindex=[]; % Check that the inputs are sensible. if nargin<2 fprintf(['\ngetCTFBalanceCoefs: Only %d input arguments? ',... 'Must specify at least ds and balanceType.\n\n'],nargin); return elseif ~isstruct(ds) | isempty(ds) | ~ischar(balanceType) | isempty(balanceType) fprintf('\ngetCTFBalanceCoefs: Wrong argument types or sizes.\n\n'); whos ds balanceType return elseif ~isfield(ds,'res4') fprintf('\ngetCTFBalanceCoefs: Field res4 is missing from structure ds.\n\n'); ds return elseif size(balanceType,1)>2 fprintf('\ngetCTFBalanceCoefs: size(balanceType)=[');fprintf(' %d',size(balanceType));... fprintf('] Must be[1 4] or [2 4].\n\n'); return end % Must have 3 or 6 output arguments. Set balanceType(2,:)='NONE' if necessary. if ~any(nargout==[3 6]); fprintf(['\ngetCTFBalanceCoefs: Called with %d output arguments. ',... 'Must be 3 or 6.\n\n'],nargout); return elseif (nargout==3 & size(balanceType,1)>1) | (nargout==6 & size(balanceType,1)==1) balanceType=strvcat(deblank(balanceType(1,:)),'NONE'); end % At this point, size(balanceType,1)=2. % Check that balanceType has allowed values for k=1:size(balanceType,1) % k=1:MEGs, k=2:Grefs if isempty(strmatch(balanceType(k,:),balanceOptions(1:balanceOptionsEnds(k),:))) fprintf('\ngetCTFBalanceCoefs: balanceType(%d,:)=%s Not an allowed option.\n\n',... k,balanceType(k,:)); return end end % Check the data units, convert to lower case and flag incorrect unit specification if ~exist('unit'); unit=default_unit; elseif isempty(unit); unit=default_unit; elseif ~ischar(unit) fprintf('\ngetCTFBalanceCoefs: Input unit has the wrong type: class(unit)=%s\n\n',... class(unit)); return end unit=lower(unit); if isempty(strmatch(unit,lower(strvcat(physical_options,raw_options)))) fprintf('\ngetCTFBalanceCoefs: unit=%s. Must be one of ',unit); for k=1:size(unit_options,1);fprintf(' %s,',deblank(unit_options(k,:)));end; fprintf('\n\n'); return end physical=~isempty(strmatch(unit,lower(physical_options))); balanceType=upper(deblank(balanceType)); [betaMEG,MEGindex,MEGbalanceindex,betaGref,Grefindex,Gbalanceindex]=... getRawCTFBalanceCoefs(ds,balanceType); % No balancing is requested, just return lists of MEGindex and Grefindex. if isempty(MEGbalanceindex) alphaMEG=zeros(0,length(MEGindex)); MEGbalanceindex=[]; % force size=[0 0] end if isempty(Gbalanceindex) alphaGref=zeros(0,length(Grefindex)); Gbalanceindex=[]; % force size=[0 0] end if isempty(MEGbalanceindex) & isempty(Gbalanceindex) return end % betaMEG and betaGref are the balance coefficients when signals are in phi0's. % Convert to balance coefficients when signals are in physical units (T or fT). % invproperGain is introduced to take care of situations where bad channels % are labelled by setting their gain to zero. if physical properGain=zeros(1,ds.res4.no_channels); invproperGain=zeros(1,ds.res4.no_channels); for k=1:ds.res4.no_channels if any(ds.res4.senres(k).sensorTypeIndex==[0 1 5:7]) % SQUIDs only properGain(k)=ds.res4.senres(k).properGain; % properGain = phi0/T if properGain(k)~=0 invproperGain(k)=1/properGain(k); end end end end if ~isempty(MEGbalanceindex) if physical alphaMEG=betaMEG.*(properGain(MEGbalanceindex)'*invproperGain(MEGindex)); else alphaMEG=betaMEG; end end if ~isempty(Gbalanceindex) if physical alphaGref=betaGref.*(properGain(Gbalanceindex)'*invproperGain(Grefindex)); else alphaGref=betaGref; end end return %%%%%%%%%%% End of getBalanceCoef %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%% Function getRawCTFBalanceCoefs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [betaMEG,MEGindex,Refindex,betaGref,Grefindex,Gbalanceindex]=... getRawCTFBalanceCoefs(ds,balanceType); % getRawCTFBalanceCoefs. Extracts raw-data (i.e. integer data) gradiometer balancing % coefficients from structure array ds.res4.scrr (ds is produced % by readCTFds). % Date : 24 OCt 2006 % Author : Harold Wilson % Inputs : ds : Structure returned by readCTFds. % balanceType : 'NONE' : No balancing % 'G1BR' : 1st order balancing % 'G2BR' : 2nd order balancing % 'G3BR' : 3rd order balancing % 'G3AR' : 3rd order balancing + adaptive % If only MEG balance table is requested, size(balanceType)=[1 4] % If Gref balance table is requested also, size(balanceType)=[2 4] % If balancing 'NONE' is specified, getRawCTFBalanceCoefs returns lists MEGindex and % Grefindex, and sets Refindex=[], Gbalanceindex=[]. % The reference gradiometers have only G1BR balancing coefficients. % Outputs : % betaMEG,MEGindex,Refindex : MEG balancing coefficients. % Suppose data array returned by getCTFdata has size(data)=[npt nchan]. % nMEG = number of MEG channels in the data set. % MEG channels have sensorTypeIndex==5. % % MEGindex = list of MEG channels in the data set. It is assembled % by looking for sensors with ds.res4.senres.sensorTypeIndex==5 % size(MEGindex)=[1 nMEG] % MEG data = data(:,MEGindex) % Refindex = list of reference channels for MEG balancing. % size(Refindex)=[1 nRef] % Reference data = data(:,Refindex) % betaMEG = balance coefficients. size(betaMEG)=[nRef nMEG] % % Balancing MEG data : % - Start with data BEFORE converting to physical units. % (I.e. SQUID data must be in phi0's or raw integers.) % - balanced_data(:,MEGindex)=data(:,MEGindex)-data(:,Refindex)*betaMEG % If user specifies balanceType=[] or ' ', then getRawCTFBalanceCoefs returns % betaMEG=zeros(1,nMEG),Refindex=3 and nRef=1; % betaGref,Grefindex,Gbalanceindex : Reference-gradiometer balancing coeficients. % These output arrays are optional. If the calling statement includes % them, then this program extracts a table of balance coefficients for % the reference gradiometers from the G1BR table in the coefficient files. % nGref = no. of reference gradiometers channels in the data set % (sensorTypeIndex=1) % Grefindex = list of reference channels. size(Grefindex)=[1 nGref] % Gradient reference data = data(:,Grefindex) % Gbalanceindex = list of channels for balancing reference % gradiometers. size(Gbalanceindex)=[1 nGbalcoef] % Balancing reference data = data(:,Gbalanceindex) % betaGref = balance coefficients for ref. grads. % size(betaGref)=[nGbalcoef nGref] % % Balancing ref. gradiometer data : % balanced_data(:,Grefindex)=data(:,Grefindex)-data(:,Gbalanceindex)*betaGref % No function calls. missingMEGMessage=0; missingGrefMessage=0; balanceOptions=strvcat('NONE','G1BR','G2BR','G3BR', 'G3AR'); balanceOptionsEnds = [size(balanceOptions, 1), 2]; % Which options are available for MEGs and Grefs. common_mode_only=0; Brefindex=[]; % Index list of reference magnetometers in the data arrays Grefindex=[]; % Index list of reference gradiometers in the data arrays MEGindex=[]; % Index list of MEG sensors in the data arrays Gbalanceindex=[]; % Index list of sensors used as references to balance the reference % gradiometers Refindex=[]; % Index list of sensors used to balance the MEG sensors betaMEG=[]; betaGref=[]; % Check that the inputs are sensible. if nargin<2 fprintf(['\ngetRawCTFBalanceCoefs: Only %d input arguments? ',... 'Must specify at least ds and balance.\n\n'],nargin); return elseif ~isstruct(ds) | isempty(ds) | ~ischar(balanceType) | isempty(balanceType) fprintf('\ngetRawCTFBalanceCoefs: Wrong argument types or sizes.\n\n'); whos ds balanceType return elseif ~isfield(ds,'res4') fprintf('\ngetRawCTFBalanceCoefs: Field res4 is missing from structure ds.\n\n'); ds return end % Check that the output list is OK. if nargout~=3 & nargout~=6 fprintf('\ngetRawCTFBalanceCoefs : Call specifies %d output arguments.\n',nargout); fprintf('\t\tMust have 3 output arguments (MEG balance coefficients)\n'); fprintf('\t\tor 6 output arguments (reference gradiometer balancing also).\n\n'); return elseif nargout==3 if size(balanceType,1)>1;balanceType=balanceType(1,:);end else if size(balanceType,1)==1;balanceType=strvcat(balanceType,'NONE');end end % Check that balanceType has allowed values for k=1:size(balanceType,1) % k=1:MEGs, k=2:Grefs if isempty(strmatch(balanceType(k,:),balanceOptions(1:balanceOptionsEnds(k),:))) fprintf('\ngetRawCTFBalanceCoefs: balance(%d,:)=%s Not an allowed option.\n\n',... k,balanceType(k,:)); return end end % Make lists of reference magnetometers, reference gradiometers and MEG sensors. for q=1:length(ds.res4.senres) if ds.res4.senres(q).sensorTypeIndex==0 Brefindex=[Brefindex q]; elseif ds.res4.senres(q).sensorTypeIndex==1 Grefindex=[Grefindex q]; elseif ds.res4.senres(q).sensorTypeIndex==5 % Allow other MEG sensors? MEGindex=[MEGindex q]; end end nBref=length(Brefindex); % Don't currently use Brefindex or nBref nGref=length(Grefindex); nMEG=length(MEGindex); nGbalcoef=0; % Set to zero until we know the number by examining ds.res4.scrr if nargout==6 & strcmp(balanceType(2,:),'NONE') Gbalanceindex=[]; betaGref=zeros(0,nGref); elseif nargout==6 & ~strcmp(balanceType(2,:),'NONE') m1=1; % Get coefficients for balancing the reference gradiometers. mtot=size(ds.res4.scrr,2); for n=1:nGref Gname=strtok(ds.res4.chanNames(Grefindex(n),:),['- ',char(0)]); nGchar=length(Gname); for m=[m1:mtot 1:(m1-1)] if strncmp(Gname,char(ds.res4.scrr(m).sensorName),nGchar) & ... strcmp('G1BR',char(ds.res4.scrr(m).coefType)); if nGbalcoef<=0 % 1st match. Initialize table and get list of references nGbalcoef=ds.res4.scrr(m).numcoefs; betaGref=zeros(nGbalcoef,nGref); % Assemble index array for balancing the reference gradiometers for q=1:nGbalcoef Refname=strtok(char(ds.res4.scrr(m).sensor(:,q))',['- ',char(0)]); pRef=strmatch(Refname,ds.res4.chanNames); if isempty(pRef) fprintf(['getRawCTFBalanceCoefs : Sensor %s appears in ',... 'ds.res4.scrr, but not in ds.res4.chanNames\n'],Refname); return end Gbalanceindex=[Gbalanceindex pRef]; end end % end setup of balancing table for Ref. gradiometers if ds.res4.scrr(m).numcoefs~=nGbalcoef fprintf('\ngetRawCTFBalanceCoefs : %s has %d coefficients\n',... ds.res4.chanNames(Grefindex(1),1:nGchar),nGbalcoef); fprintf(' %s " %d " ????\n\n',... ds.res4.chanNames(Grefindex(n),1:nGchar),ds.res4.scrr(m).numcoefs); betaGref=[]; % Force useless output. return end betaGref(:,n)=reshape(ds.res4.scrr(m).coefs(1:nGbalcoef),nGbalcoef,1); m1=m+1; break; % Break out of m-loop. Go to nect n value. end if (m==m1-1 & m1>1) | (m==mtot & m1==1) if missingGrefMessage==0 if strncmp(balanceType(2,:), balanceOptions(5,:), 4) % Avoid warning for all sensors for adaptive coefficients. fprintf('\ngetRawCTFBalanceCoefs: Failed to find %s balance coefficients for reference sensors.\n',... balanceType(2,:)); else fprintf(['\ngetRawCTFBalanceCoefs: Failed to find %s balance coefficients',... ' for sensor(s)'],balanceType(2,:)); fprintf('\n\t\t\t\t'); end end missingGrefMessage=missingGrefMessage+1; if ~strncmp(balanceType(2,:), balanceOptions(5,:), 4) if missingGrefMessage==10*round(missingGrefMessage/10) fprintf('\n\t\t\t\t'); end fprintf(' %s',Gname); end betaGRef(:,n)=zeros(nGbalcoef,1); return end end % End loop over m (searching for scrr(m).sensorName) end % End loop over n (list of reference gradiometers) end % End of section getting coefficients to balance the reference gradiometers. if missingGrefMessage>0;fprintf('\n');end if strcmp(balanceType(1,:),'NONE') Refindex=[]; betaMEG=zeros(0,nMEG); return end % Get balance coefficients for the MEG sensors nRef=0; % Pointers for search through ds.res4.scrr structure array. m1=1; mtot=size(ds.res4.scrr,2); for n=1:nMEG MEGname=strtok(ds.res4.chanNames(MEGindex(n),:),['- ',char(0)]); nChar=length(MEGname); for m=[m1:mtot 1:(m1-1)] if strncmp(MEGname,char(ds.res4.scrr(m).sensorName),nChar) & ... strcmp(balanceType(1,:),char(ds.res4.scrr(m).coefType)); if nRef<=0 nRef=ds.res4.scrr(m).numcoefs; betaMEG=zeros(nRef,nMEG); for q=1:nRef % Assemble index array for balancing the MEG sensors Refname=strtok(char(ds.res4.scrr(m).sensor(:,q))',['- ',char(0)]); pRef=strmatch(Refname,ds.res4.chanNames); if isempty(pRef) fprintf(['\ngetRawCTFBalanceCoefs : Sensor %s appears in ',... 'ds.res4.scrr, but not in ds.res4.chanNames\n\n'],Refname); return end Refindex=[Refindex pRef]; end end % end setup of balancing table for MEG sensors if ds.res4.scrr(m).numcoefs~=nRef fprintf('\ngetRawCTFBalanceCoefs : %s - %s has %d coefficients\n',... ds.res4.chanNames(MEGindex(1),1:nChar),balanceType,nRef); fprintf(' %s - %s " %d " ????\n\n',... ds.res4.chanNames(MEGindex(n),1:nChar),balanceType,... ds.res4.scrr(m).numcoefs); betaMEG=[]; % An output that will force an error in the calling program. return end betaMEG(:,n)=reshape(ds.res4.scrr(m).coefs(1:nRef),nRef,1); m1=m+1; break; end if (m==m1-1 & m1>1) | (m==mtot & m1==1) if missingMEGMessage==0 if strncmp(balanceType(2,:), balanceOptions(5,:), 4) % Avoid warning for all sensors for adaptive coefficients. fprintf('\ngetRawCTFBalanceCoefs: Failed to find %s balance coefficients for sensors.\n',... balanceType(2,:)); else fprintf(['\ngetRawCTFBalanceCoefs: Failed to find %s balance coefficients',... ' for sensor(s)'],balanceType(1,:)); fprintf('\n\t\t\t\t'); end end missingMEGMessage=missingMEGMessage+1; if ~strncmp(balanceType(2,:), balanceOptions(5,:), 4) if missingMEGMessage==10*round(missingMEGMessage/10) fprintf('\n\t\t\t\t'); end fprintf(' %s',MEGname); end betaMEG(:,n)=zeros(nRef,1); end end % End of loop over m (ds.res4.scrr table) end % End of loop over MEG sensors if missingMEGMessage>0;fprintf('\n');end if common_mode_only if size(betaMEG,1)>3 & nMEG>0 betaMEG=betaMEG(1:3,:); Refindex=Refindex(1:3); end if size(betaGref,1)>3 & nGref>0 betaGref=betaGref(1:3,:); Gbalanceindex=Gbalanceindex(1:3); end end return
github
philippboehmsturm/antx-master
writeCTFds.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/writeCTFds.m
68,946
utf_8
96615f4833d69490d5b3e47f6f86c538
function ds=writeCTFds(datasetname,ds,data,unit); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % This program creates datasets that can be analyzed by CTF software. % % % % Datasets created by this program MUST NOT BE USED FOR CLINICAL APPLICATIONS. % % % % Please do not redistribute it without permission from VSM MedTech Ltd. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author : Harold Wilson % Version 1.3 5 October 2007 Spelling errors in some variables corrected. % Version 1.2 24 April 2007 Modified to write both MEG and fMEG .hc files. % writeCTFds.m Version 1.1 Prepares a CTF-format data set. MATLAB to CTF conversion. % Adds record of filter changes to hist and newds files. % Adds no-clinical-use messages. % Creates multiple meg4 files when the total size of the data array % >536870910 elements. % Operation : % 1. User reads a data set using readCTFds and getTrial2. % size(data)= [SAMPLES, CHANNELS, TRIALS]. % 2. After working on data in MATLAB, user adjusts ds structure to reflect changes. % (writeCTFds will adjust the number of channels, channel names and trial structure.) % 3. This program then creates a new CTF data set. % datasetname must include the complete path description. % If a data set with name datasetname already exists, writeCTFds will issue an error message. % The new directory contains files for each field of structure ds. If the field is % missing no file is created. If the field is empty, an empty file is created. % Files default.* are not created by writeCTFds. % 4. The following fields of structure ds.res4 are modified based on the size of array data : % no_samples % no_channels % no_trials. % If size(ds.res4.chanNames,1)<no_channels, additional channel names are created % as required. The additional channels are called MXT%%%. It is assumed that % there will be <1000 new channels. % Inputs : datasetname : Output dataset including path. Extension '.ds' is optional. % ds : Structure produced by readCTFds. % data : MEG data array. size(data)=[no_samples no_channels no_trials] % Array data may be single or double. % unit : Determines the unit of the SQUID and EEG signals: % If unit is missing or unit==[], the unit is set to 'fT'. % 'ft' or 'fT' : Convert to fT (MEG), uV (EEG) % 't' or 'T' : Convert to T (MEG), V (EEG) % 'phi0' : Convert to phi0 (MEG), uV (EEG) % 'int': Read plain integers from *.meg4-file % Outputs : - ds : The ds structure of the output data set. % - datasetout : the name of the output data set. % - A data set. The .hz and .hz2 subdirectories are not included. % Function calls % Included in this listing: % - check_senres: Does simple checks on the fields of the senres table. % - writeHc: Creates the new .hc file % - checkMrk: Checks structure ds.mrk to see if it is valid marker set. % - writeEEG: Creates the new .EEG file. % - writeBadSegments: Creates the new bad.segments file. % - writeClassFile: Creates the new ClassFile.cls file. % - writeVirtualChannels: Creates the new VirtualChannels file. % - updateDescriptors: Adds non-clinical-use and creation software messages to % infods, res4, newds and hist fields of ds. % - updateHLC: Adds head-coil movement information to infods. % - updateDateTime : Resets dattime fields of res4 and infods. % - updateBandwidth: Resets bandwidth of newds and infods. Adds res4 filter % description to ds.hist. % - getArrayField : Extracts one field of a structure array to make it easier to % manipulate. % - writeMarkerFile: Creates the new MarkerFile.mrk file. % - writeCPersist: Creates the new .acq and .infods files. % Other calls: % - writeRes4: Writes the new .res4 file. % Output files are opened with 'w' permission and 'ieee-be' machine format in order % to be compatible with the Linux acquisition and analysis software. Do not open files % with 'wt' permission because this will add an extra char(13) byte at the end of each % line of text. persistent printWarning bandwidthMessage delim=filesep; if nargin==0 & nargout==0 % Print a version number fprintf(['\twriteCTFds: Version 1.3 5 October 2007 ',... 'Creates v4.1 and v4.2 CTF data sets.\n',... '\tCall: ds=writeCTFds(datasetname,ds,data,unit);\n',... '\t\tdatasetname = Name of the new dataset including the path.\n',... '\t\tds = Structure describing the new dataset (ds.hc must be v1.2 format).\n',... '\t\tdata = data that will be written to the new dataset .meg4 file.\n',... '\t\tunit = physical units of the data.\n\n']); return end % Allowed 8-byte headers for res4 and meg4 files. res4_headers=strvcat(['MEG41RS',char(0)],['MEG42RS',char(0)]); meg4_headers=strvcat(['MEG41CP',char(0)],['MEG42CP',char(0)]); maxMEG4Size=2^31; % Maximum MEG$ file in bytes. (Limit set by Linux software) MAX_COILS=8; % Parameter that determines the size of the ds.res.senres structure. lenSensorName=32; % Channel names must be 32 characters printDefaultBandwidthMessage=0; % Print a message about default bandwidth? default_flp=0.25; % Default is flp=0.25*ds.res4.sample_rate clinicalUseMessage='NOT FOR CLINICAL USE'; creatorSoftware='writeCTFds'; % Added to .infods file meg4ChunkSize=2^20; % Write new .meg4 file in chunks of 4*meg4ChunkSize bytes. DATASET_HZ_UNKNOWN=round(2^31-1); % Peculiar requirement of DataEditor as of 23 Oct. 2006 if ~exist('clinicalUseMessage'); clinicalUseMessage=char([]); end % Check inputs if nargin<3 fprintf(['\nwriteCTFds: Must supply inputs datasetname,ds,data. ',... 'Only %d input arguments are present.\n\n'],nargin); ds=-1; % Force an error in the calling program. return end % Check input argument unit. Convert unit to lower case. if exist('unit')~=1 unit='ft'; % default elseif isempty(unit) unit='ft'; % default elseif ischar(unit) unit=lower(unit); if ~strcmp(unit,'int') & ~strcmp(unit,'ft') & ~strcmp(unit,'t') & ~strcmp(unit,'phi0') fprintf(['\nwriteCTFds : unit=%s Not a valid option. Must be ',... '''fT'', ''T'', ''phi0'' or ''int''\n\n'],unit); ds=-1; % Force an error in the calling program. return end end % Check argument type if ~isstruct(ds) | ~isnumeric(data) | ~ischar(unit) | ~ischar(datasetname) fprintf('\nwriteCTFds: Some of the inputs are the wrong type.\n'); whos datasetname ds data unit; ds=-1; return elseif ~isfield(ds,'res4') | ~isfield(ds,'meg4') fprintf('\nwriteCTFds: Fields res4 and meg4 must be present in structure ds.\n\n'); ds % List the fields of structure ds. ds=-1; % Force an error in the calling program. return end % Refuse to write a data set with balanced reference gradiometers. balancedGref=0; for k=1:ds.res4.no_channels balancedGref=(ds.res4.senres(k).sensorTypeIndex==1 & ds.res4.senres(k).grad_order_no~=0); end if balancedGref fprintf('\nwriteCTFds: ds.res4.senres indicates balanced reference gradiometers.\n\n'); ds=-1; % Force an error in the calling program. return end clear k balancedGref; % Separate datasetname into a path and the baseName datasetname=deblank(datasetname); ksep=max([0 findstr(datasetname,delim)]); baseName=datasetname((ksep+1):length(datasetname)); path=datasetname(1:ksep); % String path is terminated by the file delimiter (or path=[]). % Remove the last .ds from baseName. kdot=max(findstr(baseName,'.ds')); if kdot==(length(baseName)-2) baseName=baseName(1:(max(kdot)-1)); else datasetname=[datasetname,'.ds']; end clear ksep kdot; % Save the name already in structure ds, and change to the new datset name. if isfield(ds,'baseName') olddatasetname=[ds.baseName,'.ds']; if isfield(ds, 'path') olddatasetname=[ds.path,olddatasetname]; end else olddatasetname=' None '; end ds.path=path; ds.baseName=baseName; % Does the dataset already exist? if exist(datasetname)==7 fprintf('\nwriteCTFds: Dataset %s already exists. Use a different name.\n\n',... datasetname); ds=-1; % Force an error in the calling program. return end if size(ds.res4.chanNames,2)~=lenSensorName fprintf(['\nwriteCTFds : size(ds.res4.chanNames)=[%d %d] ? Must ',... 'have %d-character channel names.\n\n'],size(ds.res4.chanNames),lenSensorName); ds=-1; return end % Check that the channel names have a sensor-file identification extensions. % If it is missing, print a warning message. % Sensor type indices : SQUIDs (0:7), ADCs (10), DACs(14), Clock (17), HLC (13,28,29) % See Document CTF MEG File Formats (PN 900-0088), RES4 File Format/ for index=[0:7 10 13 14 17 28 29] for k=find([ds.res4.senres.sensorTypeIndex]==index); if isempty(strfind(ds.res4.chanNames(k,:),'-')) fprintf(['writeCTFds: Channel %3d %s No sensor-file identification.',... ' (''-xxxx'' appended to channel name).\n',... '\t\tSome CTF software may not work with these channel names.\n'],... k,deblank(ds.res4.chanNames(k,:))); break; end end if isempty(strfind(ds.res4.chanNames(k,:),'-'));break;end end clear index k chanName; % Update the data description in the ds.res4 structure. [nSample, nChan, trials]=size(data); % Update ds.res4 fields to match the size of array data. ds.res4.no_trials=trials; ds.res4.no_channels=nChan; ds.res4.no_samples=nSample; ds.res4.epoch_time=nSample*trials/ds.res4.sample_rate; % Check if channels have been added or removed from array data. [no_chanNames len_chanNames]=size(ds.res4.chanNames); if no_chanNames<nChan % Assume that new channel are at the end of the data set. Add a fake extension. for kx=1:(nChan-no_chanNames) ds.res4.chanNames=... strvcat(ds.res4.chanNames,['MXT' num2str(kx,'%3.3d') '-0001' char(0)]); end fprintf('\tAdded %d SQUID channels to the end of ds.res4.chanNames table.\n',... nChan-no_chanNames); elseif no_chanNames>nChan fprintf(['\nlength(chanNames)=%d, but only %d channels of data. ',... 'writeCTFds cannot tell which channel names to remove.\n\n'],no_chanNames,nChan); ds=-1; return end clear no_chanNames len_chanNames; % The senres table may have been changed, especially if channels are added or removed. % Check structure senres, print error messages, and possibly fix the errors. [ds.res4.senres,status]=check_senres(ds.res4.senres,ds.res4.no_channels); if status<0;ds=-1;return;end clear status; % Check that ds.res4.numcoef is the size of structure array ds.res4.scrr. if isfield(ds.res4,'scrr') if ~isequal(size(ds.res4.scrr,2),ds.res4.numcoef) fprintf('Error in ds.res4: ds.res4.numcoef=%d, but size(ds.res4.scrr)=[',... ds.res4.numcoef); fprintf(' %d',size(ds.res4.scrr));fprintf('] ?\n'); return end elseif ds.res4.numcoef~=0 fprintf(['Error in ds.res4: ds.res4.numcoef=%d,',... ' but scrr is not a field of ds.res4\n'],ds.res4.numcoef); return end % Before converting data to integers, save HLC channels for motion analysis in function % make_new_infods. Pass HLCdata to function make_new_infods if isempty(strmatch('HLC',ds.res4.chanNames)) HLCdata=[]; else % Make a list of head-coil channels coil=0; HLClist=[]; while ~isempty(strmatch(['HLC00',int2str(coil+1)],ds.res4.chanNames)) coil=coil+1; for k=1:3 HLClist=[HLClist strmatch(['HLC00',int2str(coil),int2str(k)],ds.res4.chanNames)]; end end HLCdata=reshape(double(data(:,HLClist,:)),ds.res4.no_samples,3,coil,ds.res4.no_trials); clear coil k HLClist; end % Convert data to integers because CTF data sets are stored as raw numbers and % not as physical qunatities. The res4 file contains the calibrations for % converting back to physical units. Array data may be single precision, so % convert to double before doing any adjustments to the data. % Already checked that unit is valid. if strcmp(unit,'int') data=reshape(data,nSample,nChan*trials); for k=1:nChan*trials if strcmp(class(data),'single') data(:,k)=single(round(double(data(:,k)))); else data(:,k)=round(double(data(:,k))); end end data=reshape(data,nSample,nChan,trials); clear k; else for chan=1:nChan % Convert EEGs from uV to V, SQUIDs from fT to T SQUIDtype=any(ds.res4.senres(chan).sensorTypeIndex==[0:7]); EEGtype=any(ds.res4.senres(chan).sensorTypeIndex==[8 9]); if EEGtype & (strcmp(unit,'ft') | strtcmp(unit,'phi0')) alphaG=1e-6; elseif SQUIDtype & strcmp(unit,'ft') alphaG=1e-15; elseif SQUIDtype & strcmp(unit,'phi0') alphaG=1./(ds.res4.senres(chan).properGain*ds.res4.senres(chan).ioGain); else alphaG=1; end % Convert from physical units to integers using the gains in the senres table. for kt=1:trials buff=round(double(data(:,chan,kt))*(alphaG*... (ds.res4.senres(chan).properGain*ds.res4.senres(chan).qGain*ds.res4.senres(chan).ioGain))); if strcmp(class(data),'single') data(:,chan,kt)=single(buff); else data(:,chan,kt)=buff; end end end clear chan alphaG SQUIDtype EEGtype buff kt; end % Create the output dataset [status,msg]=mkdir(path,[baseName '.ds']); if status==0 | ~isempty(msg) fprintf('\nwriteCTFds: Failed to create directory.\n'); fprintf(' [status,msg]=mkdir(%s)\n',datasetname); fprintf(' returns status=%d, msg=%s',status,msg);fprintf('\n\n'); ds=-1; return end clear msg status; % Write the data file (meg4 file). Check ds.meg4.header and make sure that % the output .meg4 file has an acceptable header. headerMessage=1; if ~isfield(ds.meg4,'header'); % If ds.meg4.header is missing, add it. nChar=length(deblank(meg4_headers(1,:))); ds.meg4.header=[meg4_headers(1,1:min(7,nChar)) char(zeros(1,7-nChar))]; elseif isempty(strmatch(ds.meg4.header(1:7),meg4_headers(:,1:7),'exact')) ds.meg4.header=meg4_headers(1,1:7); else headerMessage=0; end if headerMessage; fprintf('writeCTFds: Set ds.meg4.header=%s\n',ds.meg4.header); end clear headerMessage; if isempty(printWarning) fprintf(['\nwriteCTFds: The data you are writing have been processed by software not\n',... '\tmanufactured by VSM MedTech Ltd. and that has not received marketing clearance\n',... '\tfor clinical applications. These data should not be later employed for clinical\n',... '\tand/or diagnostic purposes.\n\n']); printWarning=1; end % Write the meg4 file(s). If there are more than maxMEG4Size-8 bytes, then additional meg4 % files will be created. % Convert data to a 1-D array ndata=prod(size(data)); data=reshape(data,ndata,1); ptsPerTrial=nSample*nChan; maxPtsPerFile=ptsPerTrial*floor((maxMEG4Size-8)/(4*ptsPerTrial)); pt=0; % Last point written to the output file(s). while pt<ndata endPt=pt+min(ndata-pt,maxPtsPerFile); if pt==0 meg4Ext='.meg4'; else meg4Ext=['.',int2str(floor(pt/maxPtsPerFile)),'_meg4']; end fidMeg4=fopen([path,baseName,'.ds',delim,baseName,meg4Ext],'w','ieee-be'); fwrite(fidMeg4,[ds.meg4.header(1:7),char(0)],'uint8'); while pt<endPt pt1=min(pt+meg4ChunkSize,endPt); % Convert to double in case data is fwrite(fidMeg4,double(data((pt+1):pt1)),'int32'); % is single and write in short pt=pt1; % pieces. end fclose(fidMeg4); end % Update the .meg4 part of structure ds. ds.meg4.fileSize=4*ndata+8*(1+floor(ndata/maxPtsPerFile)); clear data pt pt1 ndata fidMeg4 ptsPerTrial maxPtsPerFile meg4Ext; % Add dataset names to .hist if ~isfield(ds,'hist');ds.hist=char([]);end ds.hist=[ds.hist char(10) char(10) datestr(now) ' :' char(10) ... ' Read into MATLAB as data set ' olddatasetname char(10) ... ' Rewritten by writeCTFds as data set ' datasetname char(10)]; % If infods doesn't exist or is empty create it. if ~isfield(ds,'infods');ds.infods=[];end if isempty(ds.infods) ds.infods=make_dummy_infods(isfield(ds,'hc'),~isempty(HLCdata),ds.res4.sample_rate); end % Update text fields of res4,infods, newds and hist. ds=updateDescriptors(ds,clinicalUseMessage,creatorSoftware); % Add HLC data to infods ds.infods=updateHLC(ds.infods,HLCdata); % Analyze structure array ds.res4.filters to make text info for .hist file and % bandwidth parameters for .newds file. fhp=0; % High-pass cutoff assuming no filters flp=default_flp*ds.res4.sample_rate; % Assumed lowpass cutoff. SHOULD THIS BE CHANGED? if isempty(bandwidthMessage) & printDefaultBandwidthMessage fprintf('writeCTFds: Lowpass filter set to flp=%0.2f*sample_rate\n',default_flp); bandwidthMessage=1; end ds=updateBandwidth(ds,fhp,flp); % Update date/time fields of infods and res4 ds=updateDateTime(ds); % Create the .res4 file in the output dataset. ds.res4=writeRes4([path,baseName,'.ds',delim,baseName,'.res4'],ds.res4,MAX_COILS); if ds.res4.numcoef<0 fprintf('\nwriteCTFds: writeRes4 returned ds.res4.numcoef=%d (<0??)\n\n',... ds.res4.numcoef); % Kill the output dataset. rmdir([path,baseName,'.ds'],'s'); ds=-1; return end % Create .hist file histfile=[path,baseName,'.ds',delim,baseName,'.hist']; fid=fopen(histfile,'w'); fwrite(fid,ds.hist,'uint8'); fclose(fid); % New .newds file if isfield(ds,'newds') fid=fopen([path,baseName,'.ds',delim,baseName,'.newds'],'w'); fwrite(fid,ds.newds,'uint8'); fclose(fid); end % New infods file. if isfield(ds,'infods') writeCPersist([path,baseName,'.ds',delim,baseName,'.infods'],ds.infods); end % new hc file if isfield(ds,'hc') ds.hc=writeHc([path,baseName,'.ds',delim,baseName,'.hc'],ds.hc,HLCdata(:,:,1)); end clear HLCdata; % MarkerFile.mrk if checkMrk(ds) writeMarkerFile([path,baseName,'.ds',delim,'MarkerFile.mrk'],ds.mrk); end % .EEG if isfield(ds,'EEG') writeEEG([path,baseName,'.ds',delim,baseName,'.EEG'],ds.EEG); end % .acq if isfield(ds,'acq'); % Check that ds.acq has the correct fields if isfield(ds.acq,'name') & isfield(ds.acq,'type') & isfield(ds.acq,'data') acqFilename=[path,baseName,'.ds',delim,baseName,'.acq']; writeCPersist(acqFilename,ds.acq); end end % bad.segments file if isfield(ds,'badSegments') writeBadSegments([path,baseName,'.ds',delim,'bad.segments'],ds.badSegments,... ds.res4.no_trials,ds.res4.no_samples/ds.res4.sample_rate); end % BadChannels if isfield(ds,'BadChannels'); if ischar(ds.BadChannels) & ~isempty(ds.BadChannels) fid=fopen([path,baseName,'.ds',delim,'BadChannels'],'w','ieee-be'); for k=1:size(ds.BadChannels,1) fprintf(fid,'%s\n',deblank(ds.BadChannels(k,:))); end fclose(fid); end end % ClassFile if check_cls(ds) writeClassFile([path,baseName,'.ds',delim,'ClassFile.cls'],ds.TrialClass); end % VirtualChannels if isfield(ds,'Virtual') writeVirtualChannels([path,baseName,'.ds',delim,'VirtualChannels'],ds.Virtual); end % processing.cfg if isfield(ds,'processing'); if ischar(ds.processing) fid=fopen([datasetname,delim,'processing.cfg'],'w','ieee-be'); fwrite(fid,ds.processing,'uint8'); fclose(fid); end end % Update the data set path and name ds.path=path; ds.baseName=baseName; return % *************** End of function writeCTFds ******************************************** % ************************************************************************************** % ************************************************************************************** % *************** Function check_senres ************************** function [senres,status]=check_senres(senres,numChan); % A user may have augmented the senres table, so check that all the fields have the % correct size. This will cause errors in programs that try to compute % sensor response using the geometry in the senres table. % Does "sanity" checks on the senres table. If there are obviously incorrect entries, it % tries to fix them, and prints a message. If the senres table does not specify coil % positions, orientations or areas, set them to zero, but give them the correct array % size. newChannelType=4; % Create the fake sensors as MEG magnetometers. This way offsets can be removed. status=-1; % Does the senres table have the correct no. of channels? no_senres=length(senres); if no_senres<numChan % Add channels. Assume that they are gradiometers. ioGain=1; qGain=2^20; gain=0.3; properGain=1e15/(qGain*ioGain*gain); % sensor gain in phi0/fT for kx=(no_senres+1):numChan senres(kx)=struct(... 'sensorTypeIndex',newChannelType,'originalRunNum',0,'coilShape',0,... 'properGain',properGain,'qGain',qGain,'ioGain',ioGain,... 'ioOffset',0,'numCoils',1,... 'grad_order_no',0,... 'gain',gain,... 'pos0',zeros(3,1),'ori0',zeros(3,1),... 'area',0.1,'numturns',1,... 'pos',[0 0 21]','ori',zeros(3,1)); end fprintf(['\tAdded %d SQUID channels to senres table. Nominal gain of each = ',... '%8.4f fT/step\n'],numChan-no_senres,gain); clear kx gain qGain ioGain properGain; elseif no_senres>numChan % Channels have been removed from the data set, but can't tell which elements of the % senres table to remove. fprintf(['length(senres)=%d, but only %d channels of data. writeCTFds can''t',... ' tell which channels to remove from senres table.\n'],no_senres,numChan); return end no_senres=length(senres); % Previous version of check_senres ensures that several fields had size [1 1]. % Seems unnecessary, so removed it. for k=1:no_senres % Check the fields that define pickup loops. Force the field defining the pickup % loops to have the correct size. It is not clear why the EEG channels and % the type=13,28,29 HLC channels need numCoils=1, and area>0. if any(senres(k).sensorTypeIndex==[0:7]) % SQUID channels correct_numCoils=rem(senres(k).sensorTypeIndex,4)+1; elseif any(senres(k).sensorTypeIndex==[13 28 29]) % HLC channels correct_numCoils=1; elseif any(senres(k).sensorTypeIndex==[8 9]) % EEG channels correct_numCoils=1; else correct_numCoils=0; end if senres(k).numCoils~=correct_numCoils & any(senres(k).sensorTypeIndex==[0:7]) fprintf('writeCTFds_test: senres(%d).sensorTypeIndex=%d but numCoils=%d??\n',... k,senres(k).sensorTypeIndex,senres(k).numCoils); fprintf(' Set numCoils=%d\n',correct_numCoils); senres(k).numCoils=correct_numCoils; end numCoils=senres(k).numCoils; if size(senres(k).pos0)~=[3 numCoils];pos0=zeros(3,numCoils);end if size(senres(k).ori0)~=[3 numCoils];ori0=zeros(3,numCoils);end if size(senres(k).pos)~=[3 numCoils];pos=zeros(3,numCoils);end if size(senres(k).ori)~=[3 numCoils];ori=zeros(3,numCoils);end if size(senres(k).numturns)~=[1 numCoils];numturns=zeros(1,numCoils);end if size(senres(k).area)~=[1 numCoils];area=zeros(3,numCoils);end end status=1; return % ************* End of function check_senres********************************************* % ************************************************************************************** % ************************************************************************************** % ************* function make_dummy_infods********************************************* function Tag=make_dummy_infods(exist_hc,exist_HLC,sample_rate); % If the user does not supply ds.infos, this code makes a dummy version. It has all of % the tags that Acq created in file Richard_SEF_20060606_04.infods. % *********************************************************************************** % *********************************************************************************** DATASET_HZ_UNKNOWN=round(2^31-1); % Peculiar requirement of DataEditor as of 23 Oct. 2006 fprintf('writeCTDds (make_dummy_infods): Creating a dummy infods file with all the tags.\n'); Tag(1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_PATIENT_INFO','type',2,'data',[]); Tag(length(Tag)+1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_PATIENT_UID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0011'); Tag(length(Tag)+1)=struct('name','_PATIENT_NAME_FIRST','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_NAME_MIDDLE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_NAME_LAST','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_ID','type',10,'data','x'); Tag(length(Tag)+1)=struct('name','_PATIENT_BIRTHDATE','type',10,'data','19500101000000'); Tag(length(Tag)+1)=struct('name','_PATIENT_SEX','type',5,'data',2); Tag(length(Tag)+1)=struct('name','_PATIENT_PACS_NAME','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_PACS_UID','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_INSTITUTE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); Tag(length(Tag)+1)=struct('name','_PROCEDURE_INFO','type',2,'data',[]); Tag(length(Tag)+1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_PROCEDURE_VERSION','type',5,'data',1); Tag(length(Tag)+1)=struct('name','_PROCEDURE_UID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0041'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_ACCESSIONNUMBER','type',10,'data','0'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_TITLE','type',10,'data','0'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_SITE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PROCEDURE_STATUS','type',5,'data',1); Tag(length(Tag)+1)=struct('name','_PROCEDURE_TYPE','type',5,'data',2); % Research type Tag(length(Tag)+1)=struct('name','_PROCEDURE_STARTEDDATETIME','type',10,... 'data','20060606164306'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_CLOSEDDATETIME','type',10,... 'data','19000100000000'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_COMMENTS','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PROCEDURE_LOCATION','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PROCEDURE_ISINDB','type',5,'data',0); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); Tag(length(Tag)+1)=struct('name','_DATASET_INFO','type',2,'data',[]); Tag(length(Tag)+1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_DATASET_VERSION','type',5,'data',2); Tag(length(Tag)+1)=struct('name','_DATASET_UID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0042'); Tag(length(Tag)+1)=struct('name','_DATASET_PATIENTUID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0011'); Tag(length(Tag)+1)=struct('name','_DATASET_PROCEDUREUID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0041'); Tag(length(Tag)+1)=struct('name','_DATASET_STATUS','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_RPFILE','type',10,'data','default.rp'); Tag(length(Tag)+1)=struct('name','_DATASET_PROCSTEPTITLE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_PROCSTEPPROTOCOL','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_PROCSTEPDESCRIPTION','type',10,... 'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_COLLECTIONDATETIME','type',10,... 'data','Unknown'); Tag(length(Tag)+1)=struct('name','_DATASET_COLLECTIONSOFTWARE','type',10,... 'data','Acq '); Tag(length(Tag)+1)=struct('name','_DATASET_CREATORDATETIME','type',10,... 'data',sprintf('%d',floor(clock))); Tag(length(Tag)+1)=struct('name','_DATASET_CREATORSOFTWARE','type',10,... 'data','Acq '); Tag(length(Tag)+1)=struct('name','_DATASET_KEYWORDS','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_COMMENTS','type',10,... 'data','Dummy infods.'); Tag(length(Tag)+1)=struct('name','_DATASET_OPERATORNAME','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_LASTMODIFIEDDATETIME','type',10,... 'data',sprintf('%d',floor(clock))); if exist_hc nominalPositions=0; % Measured else nominalPositions=1; % Nominal end Tag(length(Tag)+1)=struct('name','_DATASET_NOMINALHCPOSITIONS','type',5,... 'data',nominalPositions); Tag(length(Tag)+1)=struct('name','_DATASET_COEFSFILENAME','type',10,... 'data','ds.res4.scrr'); Tag(length(Tag)+1)=struct('name','_DATASET_SENSORSFILENAME','type',10,... 'data','ds.res4.senres'); %Tag(length(Tag)+1)=struct('name','_DATASET_COEFSFILENAME','type',10,... % 'data','/opt/ctf-5.1/hardware/M015/M015_1609.coef'); %Tag(length(Tag)+1)=struct('name','_DATASET_SENSORSFILENAME','type',10,... % 'data','/opt/ctf-5.1/hardware/M015/M015_1609.sens'); Tag(length(Tag)+1)=struct('name','_DATASET_SYSTEM','type',10,'data','DSQ-2010'); Tag(length(Tag)+1)=struct('name','_DATASET_SYSTEMTYPE','type',10,'data','Untitled'); Tag(length(Tag)+1)=struct('name','_DATASET_LOWERBANDWIDTH','type',4,'data',0); Tag(length(Tag)+1)=struct('name','_DATASET_UPPERBANDWIDTH','type',4,'data',... round(0.25*sample_rate)); Tag(length(Tag)+1)=struct('name','_DATASET_ISINDB','type',5,'data',0); if exist_HLC HZ_MODE=5; elseif exist_hc HZ_MODE=1; else HZ_MODE=DATASET_HZ_UNKNOWN; end Tag(length(Tag)+1)=struct('name','_DATASET_HZ_MODE','type',5,'data',HZ_MODE); Tag(length(Tag)+1)=struct('name','_DATASET_MOTIONTOLERANCE','type',4,'data',0.005); Tag(length(Tag)+1)=struct('name','_DATASET_MAXHEADMOTION','type',4,'data',0.005); Tag(length(Tag)+1)=struct('name','_DATASET_MAXHEADMOTIONTRIAL','type',7,'data',0); Tag(length(Tag)+1)=struct('name','_DATASET_MAXHEADMOTIONCOIL','type',10,'data','1'); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); return % ************* End of function make_dummy_infods********************************************* % ************************************************************************************** % ************************************************************************************** % ************* Function writeHc********************************************* function hc=writeHc(hcFileName,hc,HLCdata); % Modified for v1.2 ds.hc structures. ds.hc.names has the exact, complete names of the % head coils. The coordinates relative to the subject may be ds.hc.head(MEG) OR % ds.hc.abdomen (fMEG). % Creates a .hc file in a CTF dataset % Inputs: hcFileName : Complete name of .hc file including path, basename and .hc ext. % hc : structure with nasion, left, right head coil positions in dewar and % CTF head coordinates. % HLCdata : head coil locations at the start of 1st trial. unit=m % coordinates=dewar. Used only if structure hc is empty and it is MEG % data (not fMEG data). % Output : hc : hc structure. hc=struct([]) on failure. hc is set to the coil positions % in array HLCdata if hc=[] on entry. % Check inputs if exist('hc')~=1 hc=struct([]); elseif ~isstruct(hc) hc=struct([]); end hcfields=fieldnames(hc); if exist('HLCdata')~=1 HLCdata=[]; elseif ~isnumeric(HLCdata) | size(HLCdata,1)~=3 | size(HLCdata,2)<3 HLCdata=[]; end % Check hc Filename if exist('hcFileName')~=1;hcFileName=char([]);end if ~ischar(hcFileName) | isempty(hcFileName) fprintf('writeCTFds (writeHc): Called writeHc with bad file name.\n'); hcFileName return end % Both hc and HLCdata bad? if length(hcfields)~=4 & isempty(HLCdata) fprintf('writeCTFds (writeHc): Called writeHc with bad hc and bad HLCdata.\n'); hc=struct([]) return elseif length(hcfields)~=4 rstandard=8/sqrt(2)*[1 1 0;-1 1 0;1 -1 0]'; rstandard(3,:)=-27; rdewar=100*HLCdata(:,1:3); % Convert from dewar coordinates to CTF head coordinates. originCTF=0.5*(hc.dewar(:,2)+hc.dewar(:,3)); % Unit vectors for the CTF coordinates uCTF(:,1)=hc.dewar(:,1)-originCTF; uCTF(:,3)=cross(uxCTF,hc.dewar(:,2)-hc.dewar(:,3)); uCTF(:,2)=cross(uCTF(:,3),uCTF(:,1)); uCTF=uCTF./(ones(3,1)*sqrt(sum(uCTF.^2,1))); rCTF=uCTF'*(rdewar-originCTF*ones(1,3)) hc=struct('names',strvcat('nasion','left ear','right ear'),... 'standard',rstandard,'dewar',rdewar,'head',rCTF); clear originCTF uCTF rstandard rdewar rCTF; end % Character strings for generating the .hc text file % Should never have both 'head' and 'abdomen' fields. labelword=strvcat('standard','measured','measured'); printField=[strmatch('standard',hcfields) strmatch('dewar',hcfields) ... strmatch('head',hcfields) strmatch('abdomen',hcfields)]; if ~strmatch('names',hcfields) | length(printField)~=3 fprintf(['writeCTFds (writeHc): Structure hc does not have all of the required fields.\n',... ' No .hc file will appear in the output dataset.\n']); hc; hc=struct([]); return end relative=strvcat('dewar','dewar',hcfields{printField(3)}); coilcoord=strvcat('standard','dewar',hcfields{printField(3)}); comp='xyz'; coilname=hc.names; fid=fopen(hcFileName,'w','ieee-be'); for k=1:size(coilcoord,1) rcoil=getfield(hc,coilcoord(k,:)); for coil=1:size(hc.names,1) clName=deblank(hc.names(coil,:)); fwrite(fid,[labelword(k,:) ' ' clName ' coil position relative to ',... deblank(relative(k,:)) ' (cm):' char(10)],'uint8'); for m=1:3 fwrite(fid,[char(9) comp(m) ' = ' num2str(rcoil(m,coil),'%7.5f') char(10)],'uint8'); end end end fclose(fid); status=0; return % ************* End of function writeHc********************************************* % ************************************************************************************** %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%Function checkMrk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MarkerFileOK=checkMrk(ds); % Examines structure ds to see if a sensible MarkerFile can be created from ds.mrk. % Output: MarkerFileOK=1 : ds.mrk looks OK % MarkerFileOK=0 : ds.mrk cannot be a set of valid markers for these data. MarkerFileOK=isfield(ds,'mrk'); if MarkerFileOK MarkerFileOK=~isempty(ds.mrk); end if MarkerFileOK % Are the markers appropriate? minMarkerTrial=[]; minMarkerTime=[]; maxMarkerTrial=[]; maxMarkerTime=[]; for k=1:length(ds.mrk) maxMarkerTrial=max([maxMarkerTrial max(ds.mrk(k).trial)]); maxMarkerTime=max([maxMarkerTime max(ds.mrk(k).time)]); minMarkerTrial=min([minMarkerTrial min(ds.mrk(k).trial)]); minMarkerTime=min([minMarkerTime min(ds.mrk(k).time)]); end if isempty(maxMarkerTrial) | isempty(maxMarkerTime) MarkerFileOK=0; % Do not create MarkerFile.mrk if all of the marker classes are empty. else MarkerFileOK=(maxMarkerTrial<=ds.res4.no_trials & minMarkerTrial>=1 & ... maxMarkerTime<=(ds.res4.no_samples/ds.res4.sample_rate) & ... minMarkerTime>=(-ds.res4.preTrigPts/ds.res4.sample_rate)); if ~MarkerFileOK fprintf(['\nwriteCTFds (checkMrk): ds.mrk cannot possibly be a set of markers ',... 'for array(data).\n']); fprintf([' minMarkerTrial=%d (must be >=1) ',... 'maxMarkerTrial=%d (must be <=%d)\n'],... minMarkerTrial,maxMarkerTrial,ds.res4.no_trials); fprintf([' minMarkerTime=%7.4f (must be >=%7.4f) ',... 'maxMarkerTrial=%7.4f (must be <=%7.4f )\n'],... minMarkerTime,-ds.res4.preTrigPts/ds.res4.sample_rate,... maxMarkerTime,ds.res4.no_samples/ds.res4.sample_rate); fprintf(' MarkerFile.mrk will not be created.\n\n'); end end end return %%%%%%%%%%%%%% end of checkMrk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function writeEEG %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeEEG(eegFileName,EEG); % Reads the EEG file of a dtaset and stores the infoemation in strucure array EEG. % EEG(k).chanName = channel name in the dataset (EEGmmm where mmm=channel number) % EEG(k).name = channel name given by the user (e.g. Fp4) % EEG(k).pos = electrode position in cm in CTF head coordinates % Check inputs if exist('eegFileName')~=1;eegFileName=char([]);end if ~ischar(eegFileName) | isempty(eegFileName) fprintf('writeCTFds (writeEEG): Called writeEEG with bad file name.\n'); eegFileName EEG=struct([]); end if exist('EEG')~=1 EEG=struct([]); elseif ~isstruct(EEG) EEG=struct([]); end if isempty(EEG);return;end fid=fopen(eegFileName,'w','ieee-be'); if fid<0 fprintf('writeCTFds (writeEEG): Could not open file %s\n',eegFileName); return end nEEG=length(EEG); for k=1:nEEG fprintf(fid,'%d\t%s\t%7.5f\t%7.5f\t%7.5f\n',EEG(k).chanNum,EEG(k).name,EEG(k).pos); end fclose(fid); return %%%%%%%%% End of writeEEG %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function writeBadSegments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeBadSegments(badSegmentsFile,badSegments,nTrial,tTrial); % Creates a bad.segements file in a CTF data set from the information in structure % badSegments which is created by read_badSegments, or by the user. % If structure badSegments is empty, then the file is not created. % badSegments structure: % badSegments.trial = List of trial numbers % badSegments.StartTime = List of bad segment start times (relative to trial). % badSegments.EndTime = List of bad segment end times. % Check badSegmentsFile if exist('badSegmentsFile')~=1;badSegmentsFile=char([]);end if isempty(badSegmentsFile) | ~ischar(badSegmentsFile) fprintf('writeCTFds(writeBadSegments): Bad file name.\n'); badSegmentsFile return end % Check that structure badSegments is defined correctly if exist('badSegments')~=1 | exist('nTrial')~=1 return elseif ~isstruct(badSegments) | isempty(badSegments) return elseif ~isfield(badSegments,'trial') | ~isfield(badSegments,'StartTime') | ... ~isfield(badSegments,'EndTime') return elseif isempty(badSegments.trial) | isempty(badSegments.StartTime) | ... isempty(badSegments.EndTime) return elseif ~isequal(size(badSegments.trial),size(badSegments.StartTime),... size(badSegments.EndTime)) fprintf(['\nwriteCTFds (writeBadSegments): ',... 'The fields of structure badSegments do not all have the same size.\n']); return elseif any(badSegments.trial>nTrial) | any(badSegments.trial<1) | ... any(badSegments.EndTime>tTrial) fprintf(['\nwriteCTFds (writeBadSegments): ds.badSegments cannot possibly describe ',... 'bad segments for these data.\n',... '\tmin(badSegments.trial)=%d max(badSegments.trial)=%d ',... 'max(badSegments.EndTime)=%0.4f s\n\t\tDataset: nTrial=%d tTrial=%0.4f s\n'],... min(badSegments.trial),max(badSegments.trial),max(badSegments.EndTime),... nTrial,tTrial); fprintf('\t\tbad.segments file will not be created.\n\n'); return end % Convert all fields to simple vectors nSeg=prod(size(badSegments.trial)); trial=reshape(badSegments.trial,1,nSeg); StartTime=reshape(badSegments.StartTime,1,nSeg); EndTime=reshape(badSegments.EndTime,1,nSeg); fid=fopen(badSegmentsFile,'w','ieee-be'); if fid<0 fprintf('writeCTFds (writeBadSegments): Could not open file %s\n',badSegmentsFile); return end % Extra tabs are inserted to reproduce the format of bad.segments files produced by % DataEditor (5.3.0-experimental-linux-20060918). fprintf(fid,'%0.6g\t\t%0.6g\t\t%0.6g\t\t\n',[trial;StartTime;EndTime]); fclose(fid); return %%%%%%%%% End of writeBadSegments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%Function check_cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ClassFileOK=check_cls(ds); % Examines structure ds to see if a sensible ClassFile can be created from ds.TrialClass. ClassFileOK=isfield(ds,'TrialClass'); if ClassFileOK ClassFileOK=~isempty(ds.TrialClass); end if ClassFileOK % Are the class trials appropriate? minClassTrial=[]; maxClassTrial=[]; for k=1:length(ds.TrialClass) maxClassTrial=max([maxClassTrial max(ds.TrialClass(k).trial)]); minClassTrial=min([minClassTrial min(ds.TrialClass(k).trial)]); end % Create ClassFile.cls even when the trail classes are empty. if ~isempty(maxClassTrial) ClassFileOK=(maxClassTrial<=ds.res4.no_trials & minClassTrial>=1); if ~ClassFileOK fprintf(['\nwriteCTFds (check_cls): ds.TrialClass cannot possibly be a set of ',... 'trial classes for array(data).\n minClassTrial=%d (must be >=1) ',... 'maxClassTrial=%d (must be <=%d)\n'],... minClassTrial,maxClassTrial,ds.res4.no_trials); fprintf(' ClassFile.cls will not be created.\n'); end end end return %%%%%%%%%%%%%% end of check_cls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% Function writeClassFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeClassFile(ClassFile,TrialClass); % Write the ClassFile of a CTF data set. % The CLassFile allows a user to store a list of trial classifications in a data set. % The ClassFile format is defined in document CTF MEG File Formats, PN900-0088. % This format is rigid. % Inputs : % ClassFile : marker file including the full path and extension .mrk. % TrialClass : Structure creted by read_ClassFile. % Output : ClassFile.cls. % Check input TrialClass. if exist('TrialClass')~=1;TrialClass=[];end if isempty(TrialClass) | ~isstruct(TrialClass) fprintf('writeCTFds (writeClassFile): TrialClass is empty or is not a structure.\n'); TrialClass return end % Check ClassFile if exist('ClassFile')~=1;ClassFile=char([]);end if isempty(ClassFile) | ~ischar(ClassFile) fprintf('writeCTFds (writeClassFile): Bad file name.\n'); ClassFile end fid=fopen(ClassFile,'w','ieee-be'); if fid<0 fprintf('writeCTFds (writeClassFile): Could not open file %s\n',ClassFile); return end nClass=length(TrialClass); % Generate datasetname from ClassFIle. ksep=max([0 strfind(ClassFile,filesep)]); datasetname=ClassFile(1:ksep-1); if isempty(datasetname);datasetname=cd;end fprintf(fid,'PATH OF DATASET:\n%s\n\n\n',datasetname); fprintf(fid,'NUMBER OF CLASSES:\n%d\n\n\n',nClass); for k=1:nClass if k==1 % Add sign character to make output match the output of Acq. sgn=char([]); % There should be no real significance to this. else % Why does DataEditor places the + sign only on ClassID 2,3,...? sgn='+'; end No_of_Trials=prod(size(TrialClass(k).trial)); fprintf(fid,'CLASSGROUPID:\n%s%d\nNAME:\n%s\nCOMMENT:\n%s\n',... sgn,TrialClass(k).ClassGroupId,TrialClass(k).Name,TrialClass(k).Comment); fprintf(fid,'COLOR:\n%s\nEDITABLE:\n%s\nCLASSID:\n%s%d\nNUMBER OF TRIALS:\n%d\n',... TrialClass(k).Color,TrialClass(k).Editable,sgn,TrialClass(k).ClassId,No_of_Trials); fprintf(fid,'LIST OF TRIALS:\nTRIAL NUMBER\n'); % Subtract one so trial numbering starts at 0 in ClassFile.cls fprintf(fid,'%20d\n',reshape(TrialClass(k).trial,1,No_of_Trials)-1); fprintf(fid,'\n\n'); end fclose(fid); return %%%%%%%%%%%%%% end of writeClassFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% Function writeVirtualChannels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeVirtualChannels(VirtualChannelsFile,Virtual); % Writes a VirtualChannels file using the information in structure Virtual. % S\tructure Virtual is prepared by read_VirtualChannels % Check VirtualChannelsFile if exist('VirtualChannelsFile')~=1;VirtualChannelsFile=char([]);end if isempty(VirtualChannelsFile) | ~ischar(VirtualChannelsFile) fprintf('write_VirtualChannelsFile: Bad file name.\n'); VirtualChannelsFile return end % Check structure array Virtual if exist('Virtual')~=1 fprintf('writeVirtualChannels: Must specify structure Virtual.\n'); return elseif isempty(Virtual) | ~isstruct(Virtual) return elseif ~isfield(Virtual,'Name') | ~isfield(Virtual,'wt'); return elseif isempty(Virtual(1).Name) return end fid=fopen(VirtualChannelsFile,'w','ieee-be'); if fid<0 fprintf('writeCTFds (writeVirtualChannels): Could not open file %s\n',VirtualChannelsFile); return end fprintf(fid,'//Virtual channel configuration\n\n'); for k=1:length(Virtual) fprintf(fid,'VirtualChannel\n{\n\tName:\t%s\n\tUnit:\t%s\n',... Virtual(k).Name,Virtual(k).Unit); for q=1:size(Virtual(k).wt) % Floating format chosen to match VirtualChanels file creatd by % DataEditor (5.3.0-experimental-linux-20060918). fprintf(fid,'\tRef:\t%s,%0.6g\n',deblank(Virtual(k).chan(q,:)),Virtual(k).wt(q)); end fprintf(fid,'}\n\n'); end fclose(fid); return %%%%%%%%%%%%%% end of writeVirtualChannels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function updateDescriptors %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ds=updateDescriptors(ds,comment,creatorSoftware,HLCcntrl); % Makes sure that certain tags are in structure infods, and makes sure that information % is transfered to infods and newds from res4. Updates several fields of res4 with % clinical use message (=comment) and name of creator program. % Inputs: ds : ds structure produced by readCTFds. % comment : Character string that is added to infods tags listed in addCommentTag % and res4 fields listed in addCommentField % creatorSoftware : Character string indicating that the data set was % created by writeCTFds. Added to infods tags listed in addCreatorTag and % appName field of res4. % HLCcntrl: If ds.infods is missing or empty, HLCcntrl determines the % _DATA_HZ_MODE tage of infods. if noit present or empty, HLCcntrl=0. % Creates a dummy infods structure if necessary using function make_dummy_infods. % Changes infods and newds to match information in % ds.res4.nf_run_title % ds.res4.collect_descriptor % ds.res4.nf_subject_id % ds.res4.nf_operator % Adds comment (clinical use message) and creator software name to infods, newds and hist files. if ~isfield(ds,'infods');ds.infods=[];end % infods tags that will display the comment. addCommentTag=strvcat('_PATIENT_ID','_PATIENT_INSTITUTE','_PROCEDURE_COMMENTS',... '_DATASET_COMMENTS','_DATASET_STATUS','_DATASET_PROCSTEPTITLE'); % res4 text fields that will display the comment addCommentField=strvcat('appName','dataOrigin','dataDescription',... 'nf_run_title','nf_subject_id','run_description'); % res4 text string lengths (from document "CTF MEG File Formats", PN900-0088) addCommentLength=[256 256 256 256 32 -1]'; % -1 indicates variable length % infods tags that will display the creator software. addCreatorTag=strvcat('_PROCEDURE_COMMENTS','_DATASET_STATUS',... '_DATASET_COLLECTIONSOFTWARE','_DATASET_CREATORSOFTWARE'); % res4 text fields that will display the creator software. addCreatorField=strvcat('appName','run_description'); addCreatorLength=[256 -1]'; % List of infods tags that will be set to ds.res4.fields (not necessarily fields listed in % addCommentField or addCreatorField addRes4Tag=strvcat('_PATIENT_ID','_DATASET_PROCSTEPTITLE',... '_DATASET_PROCSTEPDESCRIPTION','_DATASET_OPERATORNAME'); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add the Tags to infods. In most cases they will already be there, but just to be sure. addTag=strvcat(addRes4Tag,addCommentTag,addCreatorTag); tagClass=strvcat('_PATIENT','_PROCEDURE','_DATASET'); % List of all the tag names as a character array tagName=getArrayField(ds.infods,'name')'; if length(ds.infods)==1;tagName=tagName';end tagType=getArrayField(ds.infods,'type'); tagPtr=1; % If a class is missing, inject the class starting at tagPtr+1. for k=1:size(tagClass,1) addIndex=strmatch(deblank(tagClass(k,:)),addTag)'; % Are there any tags to be added in this class? if isempty(addIndex);continue;end % List of infods tags in the tagClass, but excluding the CPerist type (which marks the % start of a class. infodsIndex=strmatch(deblank(tagClass(k,:)),tagName); if isempty(infodsIndex) % Create a new class of tags. if strcmp(deblank(tagName(tagPtr+1,:)),'EndOfParameters') & k>1; tagPtr=tagPtr+1; end nTag=length(ds.infods); tagName((tagPtr+4):(nTag+3),:)=tagName((tagPtr+1):nTag,:); ds.infods((tagPtr+4):(nTag+3))=ds.infods((tagPtr+1):nTag); ds.infods(tagPtr+1)=struct('name',[deblank(tagClass(k,:)),'_INFO'],'type',2,'data',[]); ds.infods(tagPtr+2)=struct('name','WS1_','type',0,'data',[]); ds.infods(tagPtr+3)=struct('name','EndOfParameters','type',-1,'data',[]); tagName=strvcat(tagName(1:tagPtr,:),... strvcat([deblank(tagClass(k,:)),'_INFO'],'WS1_','EndOfParameters'),... tagName(tagPtr+1:nTag,:)); nTag=nTag+3; tagPtr=tagPtr+2; else if ds.infods(max(infodsIndex)).type==2 tagPtr=max(infodsIndex)+1; % Class consists of no tags beyond the CPersist definition else tagPtr=max(infodsIndex); % Class contains at least one real tag. end clear infodsIndex; end for q=addIndex if isempty(strmatch(deblank(addTag(q,:)),tagName)) tagName=strvcat(tagName(1:tagPtr,:),deblank(addTag(q,:)),tagName(tagPtr+1:nTag,:)); ds.infods((tagPtr+2):(nTag+1))=ds.infods((tagPtr+1):nTag); ds.infods(tagPtr+1)=struct('name',deblank(addTag(q,:)),'type',10,'data',char([])); tagPtr=tagPtr+1; nTag=nTag+1; end end end clear k q nTag tagPtr infodsIndex addIndex; % All of the tags in addTag have been added to ds.infods. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if exist('creatorSoftware')~=1; creatorSoftware=char([]); elseif ~ischar(creatorSoftware) creatorSoftware=char([]); else creatorSoftware=deblank(creatorSoftware); end if exist('comment')~=1; comment=char([]); elseif ~ischar(comment) comment=char([]); else comment=deblank(comment); end tagName=getArrayField(ds.infods,'name')'; % Update the res4 fields : add creator message. % Don't check field length, but truncate later. for q=1:size(addCreatorField,1); strng=deblank(getfield(ds.res4,deblank(addCreatorField(q,:)))); if isempty(strfind(strng,creatorSoftware)) newStrng=creatorSoftware; if ~isempty(strng);newStrng=[strng ' ' newStrng];end ds.res4=setfield(ds.res4,deblank(addCreatorField(q,:)),newStrng); end end clear q strng nChar strng0 ns; % Update the res4 fields : add comment (= clinical use message) % Don't check field length, but truncate later. for q=1:size(addCommentField,1); strng=deblank(getfield(ds.res4,deblank(addCommentField(q,:)))); if isempty(strfind(strng,comment)) newStrng=comment; if ~isempty(strng);newStrng=[strng ' ' newStrng];end ds.res4=setfield(ds.res4,deblank(addCommentField(q,:)),newStrng); end end clear strng newStrng q; % Update res4.run_description ds.res4.run_description=[ds.res4.run_description,char(0)]; ds.res4.rdlen=length(ds.res4.run_description); % Update infods entries from .res4 fields ds.infods(strmatch('_PATIENT_ID',tagName)).data=deblank(ds.res4.nf_subject_id); ds.infods(strmatch('_DATASET_PROCSTEPTITLE',tagName)).data=deblank(ds.res4.nf_run_title); ds.infods(strmatch('_DATASET_PROCSTEPDESCRIPTION',tagName)).data=... deblank(ds.res4.nf_collect_descriptor); ds.infods(strmatch('_DATASET_OPERATORNAME',tagName)).data=deblank(ds.res4.nf_operator); % Truncate the .res4. fields. Leave room for a final char(0). for q=1:size(addCreatorField,1); strng=deblank(getfield(ds.res4,deblank(addCreatorField(q,:)))); if length(strng)>addCreatorLength(q)-1 & addCreatorLength(q)>0 ds.res4=setfield(ds.res4,deblank(addCreatorField(q,:)),... strng(length(strng)+[-addCreatorLength(q)+2:0])); end end for q=1:size(addCommentField,1); strng=deblank(getfield(ds.res4,deblank(addCommentField(q,:)))); if length(strng)>addCommentLength(q)-1 & addCommentLength(q)>0 ds.res4=setfield(ds.res4,deblank(addCommentField(q,:)),... strng(length(strng)+[-addCommentLength(q)+2:0])); end end clear q strng; % Add creator software to infods tags. Have already cheked that the tags are there. for q=1:size(addCreatorTag,1) if isempty(strmatch(deblank(addCreatorTag(q,:)),addRes4Tag)) k=strmatch(deblank(addCreatorTag(q,:)),tagName); if length(k)==1 if isempty(strfind(ds.infods(k).data,creatorSoftware)) newStrng=creatorSoftware; if ~isempty(deblank(ds.infods(k).data)); newStrng=[deblank(ds.infods(k).data) ' ' newStrng]; end ds.infods(k).data=newStrng; end else fprintf('writeCTFds: Tag %s appears %d times in ds.infods ??\n',... deblank(addCreatorTag(q,:)),length(k)); end end end clear q k; % Add comment (clinical use statement) to ds.infods for q=1:size(addCommentTag,1) if isempty(strmatch(deblank(addCommentTag(q,:)),addRes4Tag)) k=strmatch(deblank(addCommentTag(q,:)),tagName); if length(k)==1 if isempty(strfind(ds.infods(k).data,comment)) newStrng=comment; if ~isempty(deblank(ds.infods(k).data)); newStrng=[deblank(ds.infods(k).data) ' ' newStrng]; end ds.infods(k).data=newStrng; end else fprintf(['writeCTFds (updateDescriptors): Tag %s appears %d times in ',... 'ds.infods ??\n'],deblank(addCommentTag(q,:)),length(k)); end end end clear q k; % Add the creator and comment information to the newds file if isfield(ds,'newds'); nChar=length(ds.newds); % Keyword positions aNpos=max(strfind(ds.newds,[char(9) 'appName:' char(9)])); if isempty(aNpos) fprintf(['writeCTFds (update_decsriptors): Keyword ''appName'' ',... 'does not appear in ds.newds.\n',... ' set ds.newds=[].\n']); ds.newds=char([]); else eol=max([11 min(strfind(ds.newds(aNpos+1:length(ds.newds)),char(10)))]); ds.newds=[ds.newds(1:(aNpos+eol-1)) ' ' creatorSoftware ' ' comment ... ds.newds((aNpos+eol):length(ds.newds))]; end clear nChar aNpos eol; end % Add clinical use message to hist file. if isfield(ds,'hist') & ~isempty(comment) ds.hist=[ds.hist char(10) comment char(10)]; end return %%%%%%%%%%%%%% End of updateDescriptors %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function updateHLC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [infods,status]=updateHLC(infods,HLCdata); % Adds notes and continuous-head-localization tags to .infods file % Inputs : infods : Structure of tags to be written to output infods file. % HLCdata : 0 or [] or not defined - There are no HLC channels % (head-coil position) in the data. Just pass the existing tags to % the output dataset. % HLCdata : real array : size(HLCdata)=[samplesPerTrial 3 Ncoil nTrial] % Calculate the head motion tags. % Outputs : status : 0: Everything looks OK % 1: Couldn't find _DATASET tags. % <0: There is a problem with the new infods file. % Calls: % - getArrayField: Extracts field names from structure array S. % Defaults for the head localization tags. % Might do this better with a structure. HZ_MODE_UNKNOWN=2^31-1; % Bug in DataEditor and acquisition software, Oct. 2006 % Should be -1. % New dataset tags for HLC specification. addTag=strvcat('_DATASET_HZ_MODE',... '_DATASET_MOTIONTOLERANCE',... '_DATASET_MAXHEADMOTION',... '_DATASET_MAXHEADMOTIONTRIAL',... '_DATASET_MAXHEADMOTIONCOIL'); addTagType=[5 4 4 7 10]'; % Check HLCdata array. HLCdata=[] indicates no continuous head localization. if ~exist('HLCdata')==1 HLCdata=[]; elseif ~isempty(HLCdata) [samplesPerTrial nDim Ncoil nTrial]=size(HLCdata); if nDim~=3; fprintf('writeCTFds (updateHLC): size(HLCdata)=[');fprintf(' %d',size(HLCdata)); fprintf(']\n'); fprintf(' nDim=%d?? Setting HLCdata=[].\n',nDim); HLCdata=[]; end end % Assume that all the tag names are different. There is no checking when a tag listed in % addTag matches more than one entry in array name. name=getArrayField(infods,'name')'; %size(name)=[nTag lengthTag] DATASET_tags=strmatch('_DATASET',name)'; % size(DATASET_tags)=[1 nTag] if isempty(DATASET_tags) status=1; % No _DATASET tags. Don't add anything. else status=0; if isempty(HLCdata) TagValue(1)=HZ_MODE_UNKNOWN; TextTagValue=char(0); addTag=addTag(1,:); % Remove the other HLC tags addTagType=addTagType(1); else % ~isempty(HLCdata) % Remove HLC offsets. HLCoffset=squeeze(HLCdata(1,:,:,1)); for q=1:Ncoil for k=1:3 HLCdata(:,k,q,:)=HLCdata(:,k,q,:)-HLCoffset(k,q); end end % Calculate motions as displacement from the start of the dataset. absMotion=squeeze(sqrt(sum(HLCdata.^2,2))); %size(absMotion)=[samplesPerTrial Ncoil nTrial] maxCoilMotion=squeeze(max(absMotion,[],1)); % size(maxCoilMovement)=[Ncoil nTrial] maxHeadMotion=max(max(maxCoilMotion)); [mx maxHeadMotionCoil]=max(max(maxCoilMotion,[],2)); [mx maxHeadMotionTrial]=max(max(maxCoilMotion,[],1)); % Create a list of head motion tag values TagValue(1)=5; % Indicates continuous head localization TagValue(2)=max(2*maxHeadMotion,0.02); % _DATASET_MOTIONTOLERANCE TagValue(3)=maxHeadMotion; % _DATASET_MAXHEADMOTION % Subtract 1 from the trial so trial numbering starts at 0. TagValue(4)=maxHeadMotionTrial-1; % _DATASET_MAXHEADMOTIONTRIAL TextTagValue=char(zeros(4,1)); % Placeholder since tags1:4 are numerical % _MAXHEADMOTIONCOIL value TextTagValue=strvcat(TextTagValue,sprintf('%d',maxHeadMotionCoil)); TagValue=[TagValue 0]; % Placeholder only since the 5th tag is a text string. end % Add or insert tags. for q=1:size(addTag,1) nTag=length(infods); tagName=deblank(addTag(q,:)); TagNo=strmatch(tagName,name,'exact')'; if isempty(TagNo) % Insert a tag at the end of the _DATASET tags. TagNo=max(DATASET_tags)+1; infods((TagNo+1):(nTag+1))=infods(TagNo:nTag); name=strvcat(name(1:TagNo-1,:),tagName,name(TagNo:nTag,:)); DATASET_tags=[DATASET_tags TagNo]; end if addTagType(q)~=10 infods(TagNo)=struct('name',tagName,'type',addTagType(q),'data',TagValue(q)); else infods(TagNo)=struct('name',tagName,'type',addTagType(q),... 'data',deblank(TextTagValue(q,:))); end end % End loop over head position and head motion tags. clear q TagNo TextTagValue TagValue; end % End section add _DATASET tags return %%%%%%%%%%%%%% End of updateHLC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function updateBandwidth %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ds=updateBandwidth(ds,fhp,flp); % Updates the bandwidth fields of infods and newds. % 3 possible dources of bandwidth: % 1. fhp,flp inputs (default) % 2. newds fiels % 3. res4.filter % 4. infods field % Almost always, fhp,flp will have the default values, but it could be defined in the % fields of ds, so check. Result: lots of code to achieve a simple result. % read fhp,flp from newds (if it exists) if isfield(ds,'newds') BWpos=max(strfind(ds.newds,[char(9) 'bandwidth:' char(9)])); % Keyword position if isempty(BWpos) fprintf(['writeCTFds (updateBandwidth): Keyword ''bandwidth:''',... 'does not appear in ds.newds.\n',... ' Field newds removed from structure ds.\n']); ds=rmfield(ds,'newds'); else % Get the bandwidth parameters from ds.newds. eol=max([13 min(strfind(ds.newds(BWpos+1:length(ds.newds)),char(10)))]); buff=sscanf(ds.newds((BWpos+13):(BWpos+eol)),'%f%c%f'); fhp=max(fhp,buff(1)); flp=min(flp,buff(3)); end clear eol buff BWpos; end % Get fhp, flp from res4. if ~isempty(ds.res4.filters) for kq=1:ds.res4.num_filters freq=ds.res4.filters(kq).freq; if ds.res4.filters(kq).fType==1; flp=min(flp,freq); elseif ds.res4.filters(kq).fType==2; fhp=max(fhp,freq); end end clear kq freq; end % Get fhp, flp from ds.infods if isfield(ds,'infods') name=getArrayField(ds.infods,'name')'; TagNo=strmatch('_DATASET_LOWERBANDWIDTH',name,'exact'); if ~isempty(TagNo);fhp=max(fhp,ds.infods(TagNo).data);end TagNo=strmatch('_DATASET_UPPERBANDWIDTH',name,'exact'); if ~isempty(TagNo);flp=min(flp,ds.infods(TagNo).data);end end % Now have fhp,flp. Update hist. Add all the res4 filters. if ~isempty(ds.res4.filters) if ~isfield(ds,'hist');hist=char([]);end ds.hist=[ds.hist 'Filters specified in res4 file :' char(10)]; for kq=1:ds.res4.num_filters freq=ds.res4.filters(kq).freq; if ds.res4.filters(kq).fType==1; ds.hist=[ds.hist ... num2str(kq,'%8d') ' Lowpass ' num2str(freq,'%6.2f') ' Hz' char(10)]; elseif ds.res4.filters(kq).fType==2; ds.hist=[ds.hist ... num2str(kq,'%8d') ' Highpass ' num2str(freq,'%6.2f') ' Hz' char(10)]; elseif ds.res4.filters(kq).fType==3; ds.hist=[ds.hist num2str(kq,'%8d') ' Notch ' num2str(freq,'%6.2f') ... ' Hz width=' num2str(ds.res4.filters(kq).Param,'%6.2f') ' Hz' char(10)]; else ds.hist=[ds.hist ' fType=',num2str(ds.res4.filters(kq).fType,'%d') char(10)]; end end ds.hist=[ds.hist ,... 'Bandwidth: ',num2str(fhp,'%0.3g'),' - ',num2str(flp,'%0.3g'),' Hz',char(10)]; clear kq freq; end % Update newds bandwidth if isfield(ds,'newds') BWpos=max(strfind(ds.newds,[char(9) 'bandwidth:' char(9)])); eol=max([12 min(strfind(ds.newds(BWpos+1:length(ds.newds)),char(10)))]); ds.newds=[ds.newds(1:BWpos+11) num2str(fhp,'%0.6f') ', ' num2str(flp,'%0.6f') ... ds.newds((BWpos+eol):length(ds.newds))]; clear BWpos eol; end % Update infods bandwidth tags. Lots of coding becasue it's possible that infods does % not already have bandwidth tags. name=getArrayField(ds.infods,'name')'; DATASET_tags=strmatch('_DATASET_',name); if ~isempty(DATASET_tags) addTag=strvcat('_DATASET_LOWERBANDWIDTH','_DATASET_UPPERBANDWIDTH'); TagValue=[fhp flp]; % Add or update tags. for q=1:size(addTag,1) nTag=length(ds.infods); TagNo=strmatch(deblank(addTag(q,:)),name,'exact')'; if isempty(TagNo) % Insert a tag at the end of the _DATASET tags. TagNo=max(DATASET_tags)+1; ds.infods((TagNo+1):(nTag+1))=ds.infods(TagNo:nTag); ds.infods(TagNo)=struct('name',deblank(addTag(q,:)),'type',4,'data',TagValue(q)); name=strvcat(name(1:TagNo-1,:),deblank(addTag(q,:)),name(TagNo:nTag,:)); DATASET_tags=[DATASET_tags TagNo]; else ds.infods(TagNo).data=TagValue(q); % Tag exists. Just update the value. end end % End loop over head position and head motion tags. clear q nTag DATASET_tags; else fprintf(['writeCTFds (updateBandwidth): Found no _DATASET tags in infods.\n'... '\t\t\tDid not add bandwidth tags.\n']); end return %%%%%%%%%%%%%% End of updateBandwidth %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function updateDateTime %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ds=updateDateTime(ds); % Update the dat/time fields of res4 and and infods datetime=floor(clock); if isfield(ds,'infods'); name=getArrayField(ds.infods,'name')'; DATASET_tags=strmatch('_DATASET_',name); if ~isempty(DATASET_tags) addTag=strvcat('_DATASET_CREATORDATETIME','_DATASET_LASTMODIFIEDDATETIME'); tagData=sprintf('%d%2.2d%2.2d%2.2d%2.2d%2.2d',datetime); tagType=10; for q=1:size(addTag,1) nTag=length(ds.infods); TagNo=strmatch(deblank(addTag(q,:)),name,'exact')'; if isempty(TagNo) % Insert a tag at the end of the _DATASET tags. TagNo=max(DATASET_tags)+1; ds.infods((TagNo+1):(nTag+1))=ds.infods(TagNo:nTag); name=strvcat(name(1:TagNo-1,:),deblank(addTag(q,:)),name(TagNo:nTag,:)); DATASET_tags=[DATASET_tags TagNo]; end ds.infods(TagNo)=struct('name',deblank(addTag(q,:)),'type',tagType,'data',tagData); end clear nTag TagNo name DATASET_tags addTag tagData tagType; else fprintf('writeCTFds (updateDateTime): Cannot find any _DATASET tags in ds.infods.\n'); end % End loop over head position and head motion tags. else fprintf('writeCTFds (updateDateTime): Cannot find ds.infods.\n'); end ds.res4.data_date=sprintf('%4d/%2.2d/%2.2d',datetime(1:3)); ds.res4.data_time=sprintf('%2.2d:%2.2d:%2.2d',datetime(4:6)); return %%%%%%%%%%%%%% End of updateDateTime %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Function getArrayField %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x=getArrayField(S,yfield) % Extracts one field of a structure array. % Inputs: S : structure array. % yfield: name of field of S (string) % Output: x. x(:,n)=S(n).yfield; size(x)=[size(yfield) length(S)] % Field sizes: Two options: % 1. size(S(n).yfield) is the same for all n. Any size allowed. % 2. S(n).yfield is a 2-D array for all structure elements S(n). % Then yfield of different array elements S(n) can have different sizes. % The array returned will be large enough to accomodate all of the data. sizeS=size(S); nS=prod(sizeS); S=reshape(S,1,nS); % Determine which array-size option to use. sizey=size(getfield(S,{1},yfield)); option1=1; option2=(length(sizey)==2); for n=2:nS sizeyn=size(getfield(S,{n},yfield)); option1=option1 & isequal(sizey,sizeyn); option2=option2 & length(sizeyn)==2; if option2 sizey=max([sizey;sizeyn],[],1); end end if option1 % All fields have the same size nY=prod(sizey); if isnumeric(getfield(S,{1},yfield)) x=zeros(nY,nS); elseif ischar(getfield(S,{1},yfield)) x=char(zeros(nY,nS)); end for n=1:nS x(:,n)=reshape(getfield(S,{n},yfield),nY,1); end x=reshape(x,[sizey nS]); elseif option2 % All fields have only two dimensions if isnumeric(getfield(S,{1},yfield)) x=zeros([sizey nS]); elseif ischar(getfield(S,{1},yfield)) x=char(zeros([sizey nS])); end for n=1:nS y=getfield(S,{n},yfield); sizeyn=size(y); x(1:sizeyn(1),1:sizeyn(2),n)=y; end else fprintf(['getArrayField: Field %s of the structure array has >2 dimensions ',... 'and not all field have the same size.\n'],yfield); x=[]; end x=squeeze(x); return %%%%%%%% End of getArrayField %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
philippboehmsturm/antx-master
writeRes4.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/writeRes4.m
8,560
utf_8
416bc2b62624835c63140e54415d2f49
function res4=writeRes4(res4File,res4,MAX_COILS); % Write the new .res4 file. Use ieee-be (big endian) format % Character-string output is done using function writeCTFstring which % checks that strings are the correct length for the .res4 file format. % Function calls: - writeCTFstring (included in this listing). fid_res4=fopen(res4File,'w','ieee-be'); if fid_res4<0 fprintf('writeCTFds (writeRes4): Could not open file %s\n',res4File); return end fwrite(fid_res4,[res4.header(1:7),char(0)],'uint8'); % 8-byte header % meg41GeneralResRec res4.appName=writeCTFstring(res4.appName,-256,fid_res4); res4.dataOrigin=writeCTFstring(res4.dataOrigin,-256,fid_res4); res4.dataDescription=writeCTFstring(res4.dataDescription,-256,fid_res4); fwrite(fid_res4,res4.no_trials_avgd,'int16'); res4.data_time=writeCTFstring(res4.data_time,255,fid_res4); res4.data_date=writeCTFstring(res4.data_date,255,fid_res4); % new_general_setup_rec_ext part of meg41GeneralResRec fwrite(fid_res4,res4.no_samples,'int32'); % 4 fwrite(fid_res4,[res4.no_channels 0],'int16'); % 2*2 fwrite(fid_res4,res4.sample_rate,'double'); % 8 fwrite(fid_res4,res4.epoch_time,'double'); % 8 fwrite(fid_res4,[res4.no_trials 0],'int16'); % 2*2 fwrite(fid_res4,res4.preTrigPts,'int32'); % 4 fwrite(fid_res4,res4.no_trials_done,'int16'); % 2 fwrite(fid_res4,res4.no_trials_display,'int16'); % 2 fwrite(fid_res4,res4.save_trials,'int32'); % 4 CTFBoolean % meg41TriggerData part of new_general_setup_rec_ext 10 bytes total fwrite(fid_res4,res4.primaryTrigger,'int32'); % 4 fwrite(fid_res4,res4.triggerPolarityMask,'int32'); % 4 fwrite(fid_res4,[0 0],'uint8'); % 2 bytes % end of meg41TriggerData part of new_general_setup_rec_ext fwrite(fid_res4,[0 0],'uint8'); % 2 bytes padding fwrite(fid_res4,[res4.trigger_mode 0],'int16'); % 2*2 fwrite(fid_res4,res4.accept_reject_Flag,'int32'); % 4 CTFBoolean fwrite(fid_res4,[res4.run_time_display 0],'int16');% 2*2 fwrite(fid_res4,res4.zero_Head_Flag,'int32'); % 4 CTFBoolean fwrite(fid_res4,res4.artifact_mode,'int32'); % 4 CTFBoolean % end of new_general_setup_rec_ext part of meg41GeneralResRec % meg4FileSetup part of meg41GeneralResRec res4.nf_run_name=writeCTFstring(res4.nf_run_name,32,fid_res4); res4.nf_run_title=writeCTFstring(res4.nf_run_title,-256,fid_res4); res4.nf_instruments=writeCTFstring(res4.nf_instruments,32,fid_res4); res4.nf_collect_descriptor=writeCTFstring(res4.nf_collect_descriptor,32,fid_res4); res4.nf_subject_id=writeCTFstring(res4.nf_subject_id,-32,fid_res4); res4.nf_operator=writeCTFstring(res4.nf_operator,32,fid_res4); res4.nf_sensorFileName=writeCTFstring(res4.nf_sensorFileName,56,fid_res4); res4.rdlen=length(res4.run_description); % Run_description may have been changed. fwrite(fid_res4,[0 res4.rdlen 0],'int32'); % 12-byte structure of the .res4 file. res4.run_description=writeCTFstring(res4.run_description,res4.rdlen,fid_res4); % end of meg4FileSetup part of meg41GeneralResRec % filter descriptions fwrite(fid_res4,res4.num_filters,'int16'); for kfilt=1:res4.num_filters fwrite(fid_res4,res4.filters(kfilt).freq,'double'); fwrite(fid_res4,res4.filters(kfilt).fClass,'int32'); fwrite(fid_res4,res4.filters(kfilt).fType,'int32'); fwrite(fid_res4,res4.filters(kfilt).numParam,'int16'); for kparm=1:res4.filters(kfilt).numParam fwrite(fid_res4,res4.filters(kfilt).Param(kparm),'double'); end end % Write channel names. Must have size(res4.chanNames)=[nChan 32] [no_chanNames len_chanNames]=size(res4.chanNames); for kchan=1:res4.no_channels res4.chanNames(kchan,:)=writeCTFstring(res4.chanNames(kchan,:),len_chanNames,fid_res4); end % Write sensor resource table for kchan=1:res4.no_channels fwrite(fid_res4,res4.senres(kchan).sensorTypeIndex,'int16'); fwrite(fid_res4,res4.senres(kchan).originalRunNum,'int16'); fwrite(fid_res4,res4.senres(kchan).coilShape,'int32'); fwrite(fid_res4,res4.senres(kchan).properGain,'double'); fwrite(fid_res4,res4.senres(kchan).qGain,'double'); fwrite(fid_res4,res4.senres(kchan).ioGain,'double'); fwrite(fid_res4,res4.senres(kchan).ioOffset,'double'); fwrite(fid_res4,res4.senres(kchan).numCoils,'int16'); numCoils=res4.senres(kchan).numCoils; fwrite(fid_res4,res4.senres(kchan).grad_order_no,'int16'); fwrite(fid_res4,0,'int32'); % Padding to 8-byte boundary % coilTbl for qx=1:numCoils fwrite(fid_res4,[res4.senres(kchan).pos0(:,qx)' 0],'double'); fwrite(fid_res4,[res4.senres(kchan).ori0(:,qx)' 0],'double'); fwrite(fid_res4,[res4.senres(kchan).numturns(qx) 0 0 0],'int16'); fwrite(fid_res4,res4.senres(kchan).area(qx),'double'); end if numCoils<MAX_COILS fwrite(fid_res4,zeros(10*(MAX_COILS-numCoils),1),'double'); end %HdcoilTbl for qx=1:numCoils fwrite(fid_res4,[res4.senres(kchan).pos(:,qx)' 0],'double'); fwrite(fid_res4,[res4.senres(kchan).ori(:,qx)' 0],'double'); fwrite(fid_res4,[res4.senres(kchan).numturns(qx) 0 0 0],'int16'); fwrite(fid_res4,res4.senres(kchan).area(qx),'double'); end if numCoils<MAX_COILS fwrite(fid_res4,zeros(10*(MAX_COILS-numCoils),1),'double'); end end % End writing sensor resource table % Write the table of balance coefficients. if res4.numcoef<=0 fwrite(fid_res4,res4.numcoef,'int16'); % Number of coefficient records elseif res4.numcoef>0 scrx_out=[]; for kx=1:res4.numcoef sName=strtok(char(res4.scrr(kx).sensorName),['- ',char(0)]); if ~isempty(strmatch(sName,res4.chanNames)) scrx_out=[scrx_out kx]; end end % Remove the extra coefficient records res4.scrr=res4.scrr(scrx_out); res4.numcoef=size(res4.scrr,2); fwrite(fid_res4,res4.numcoef,'int16'); % Number of coefficient records % Convert res4.scrr to double before writing to output file. In MATLAB 5.3.1, % when the 'ieee-be' option is applied, fwrite cannot write anything except % doubles and character strings, even if fwrite does allow you to specify short % integer formats in the output file. for nx=1:res4.numcoef fwrite(fid_res4,double(res4.scrr(nx).sensorName),'uint8'); fwrite(fid_res4,[double(res4.scrr(nx).coefType) 0 0 0 0],'uint8'); fwrite(fid_res4,double(res4.scrr(nx).numcoefs),'int16'); fwrite(fid_res4,double(res4.scrr(nx).sensor),'uint8'); fwrite(fid_res4,res4.scrr(nx).coefs,'double'); end end fclose(fid_res4); return % ************************************************************************************* %*************** Function writeCTFstring ************************************************ function strng=writeCTFstring(instrng,strlen,fid) % Writes a character string to output unit fid. Append nulls to get the correct length. % instrng : Character string. size(instrng)=[nLine nPerLine]. strng is reformulated as a % long string of size [1 nChar]. Multiple lines are allowed so the user can % easily append text. If necessary, characters are removed from % instrng(1:nLine-1,:) so all of strng(nLine,:) can be accomodated. % strlen: Number of characters to write. strlen<0 means remove leading characters. % If abs(strlen)>length(strng) pad with nulls (char(0)) % If 0<strlen<length(strng), truncate strng and terminate with a null. % If -length(string)<strlen<0, remove leading characters and terminate with a null. % Form a single long string nLine=size(instrng,1); strng=deblank(instrng(1,:)); if nLine>1 % Concatenate lines 1:nLine-1 for k=2:nLine-1 if length(strng)>0 if ~strcmp(strng(length(strng)),'.') & ~strcmp(strng(length(strng)),',') strng=[strng '.']; % Force a period at the end of the string. end end strng=[strng ' ' deblank(instrng(k,:))]; end if length(strng)>0 if ~strcmp(strng(length(strng)),'.') % Force a period at the end of the string. strng=[strng '.']; end end % Add all of the last line. nChar=length(strng); nLast=length(deblank(instrng(nLine,:))); strng=[strng(1:min(nChar,abs(strlen)-nLast-4)) ' ' deblank(instrng(nLine,:))]; end if length(strng)<abs(strlen) strng=[strng char(zeros(1,abs(strlen)-length(strng)))]; elseif length(strng)>=strlen & strlen>0 strng=[strng(1:strlen-1) char(0)]; else strng=[strng(nLast+[strlen+2:0]) char(0)]; end fwrite(fid,strng,'char'); return % ************* End of function writeCTFstring *************************************** % ************************************************************************************
github
philippboehmsturm/antx-master
addCTFtrial.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/addCTFtrial.m
51,483
utf_8
b59730fdb231f07741e7e87dea9e6c1c
function cntrl=addCTFtrial(datasetname,data,unit,mrk,cls,badSegments); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % This program creates datasets that can be analyzed by CTF software. % % % % Datasets created by this program MUST NOT BE USED FOR CLINICAL APPLICATIONS. % % % % Please do not redistribute it without permission from VSM MedTech Ltd. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % addCTFtrial.m Version 1.1 Adds trial(s) to a a CTF-format data set previously % created from MATLAB by writeCTFds.m. The purpose of addCTFtrial is to allow % users to write CTF data sets that are too large for the computer's memory. % Date : 18 April 2007 % Author : Harold Wilson % Operation : % 1. Use writeCTFds to create a dataset (name = DATASET) consisting of one or % more trials. size(data)= [SAMPLES, CHANNELS, TRIALS]. % 2. Later, a trial is to be added to DATASET. This program adds the new information % to the .res4, .mrk, .cls and badSegements files and appends the new data to the % existing .meg4 file. % Inputs : datasetname : Dataset including path. Extension '.ds' is optional. % data : MEG data array. size(data)=[no_samples no_channels no_trials_added] % Array data may be single or double. % unit : Determines the unit of the SQUID and EEG signals: % If unit is missing or unit==[], the unit is set to 'fT'. % 'ft' or 'fT' : Convert to fT (MEG), uV (EEG) % 't' or 'T' : Convert to T (MEG), V (EEG) % 'phi0' : Convert to phi0 (MEG), uV (EEG) % 'int': Read plain integers from *.meg4-file % mrk,cls,badSegments : Structures describing the markers, trial classes and bad % segments of the new trials. Trial numbering refers to the new trials % being added to the dataset, starting at trial=1. Markers are updated % only when there is already as .mrk file in the dataset. % Outputs : - Dataset with trial(s) added. % - cntrl : 0 - failure. The dataset is not modified. % 1 - success. The new data is added to the dataset % Function calls % Included in this listing: % - combineMarkers: Combines marker specifications in structures ds.mrk and mrk. % - combineClasses: Combines trial class specifications in structures % ds.TrialClass and cls. % - writeBadSegments: Creates the new bad.segments file. % - writeClassFile: Creates the new ClassFile.cls file. % - updateCreatorSoftware: Adds non-clinical-use and creation software messages to % infods, res4, newds and hist fields of ds. % - updateHLC: Adds head-coil movement information from the trials being added to an % existing ds.infods. % - getArrayField : Extracts one field of a structure array to make it easier to % manipulate. % Not included in this listing: % - writeRes4: Writes the new .res4 file. % - writeMarkerFile: Creates the new MarkerFile.mrk file. % - writeCPersist: Creates the new .acq and .infods files. % Output files are opened with 'w' permission and 'ieee-be' machine format in order % to be compatible with the Linux acquisition and analysis software. Do not open files % with 'wt' permission because this will add an extra byte (char(13)) at the end of each % line of text. %persistent printWarning % No clinical-use warning with addCTFtrial. %printWarning=1; delim=filesep; if nargin==0 & nargout==0 % Print a version number fprintf(['\taddCTFtrial: Version 1.1 18 April 2007 ',... 'Adds trials to v4.1 and v4.2 CTF data sets.\n',... '\tCall: cntrl=addCTFtrial(datasetname,data,unit,mrk,cls,badSegments);\n',... '\t\tdatasetname = Name of existing dataset including the path.\n',... '\t\tdata = Data that will be written to the new dataset .meg4 file.\n',... '\t\tunit = Physical units of the data.\n',... '\t\tmrk,cls,badSegments = descriptions of markers, trial classes and',... ' bad segments of data.\n\n']); return end % Indicate failure on an early return. cntrl=0; % Allowed 8-byte headers for res4 and meg4 files. res4_headers=strvcat(['MEG41RS',char(0)],['MEG42RS',char(0)]); meg4_headers=strvcat(['MEG41CP',char(0)],['MEG42CP',char(0)]); MAX_COILS=8; % Parameter that determines the size of the ds.res4.senres structure. maxMEG4Size=2^31; % Maximum MEG$ file in bytes. (Limit set by Linux software) % addCTFds will add trials to datasets only if they were created by writeCTFds. originalCreatorSoftware='writeCTFds'; creatorSoftware='addCTFtrial'; % Added to .infods file meg4ChunkSize=2^20; % Write new .meg4 file in chunks of 4*meg4ChunkSize bytes. clinical_use_message='NOT FOR CLINICAL USE'; if ~exist('clinical_use_message'); clinical_use_message=char([]); end % Check number of inputs if nargin<2 fprintf(['addCTFtrial: Must supply inputs datasetname,data. ',... 'Only %d input arguments are present.\n'],nargin); return end % Check input argument unit. Convert unit to lower case. if exist('unit')~=1 unit='ft'; % default elseif isempty(unit) unit='ft'; % default elseif ischar(unit) unit=lower(unit); if ~strcmp(unit,'int') & ~strcmp(unit,'ft') & ~strcmp(unit,'t') & ~strcmp(unit,'phi0') fprintf(['addCTFtrial : unit=%s Not a valid option. Must be ',... '''fT'', ''T'', ''phi0'' or ''int''\n'],unit); ds=-1; % Force an error in the calling program. return end end % Check argument type if ~isnumeric(data) fprintf('\naddCTFtrial: Input data is not numeric.\n'); return elseif ~ischar(unit) fprintf('\naddCTFtrial: Input unit is not char.\n'); return elseif~ischar(datasetname) fprintf('\naddCTFtrial: Input datasetname is not char.\n'); return end if exist('mrk')==1 if ~isstruct(mrk) fprintf('\naddCTFtrial: Input mrk is not a structure.\n\n'); return end else mrk=struct([]); end if exist('cls')==1 if ~isstruct(cls) fprintf('\naddCTFtrial: Input cls is not a structure.\n\n'); return end else cls=struct([]); end if exist('badSegments')==1 if ~isstruct(badSegments) fprintf('\naddCTFtrial: Input badSegments is not a structure.\n\n'); return end else badSegments=struct([]); end % Does the dataset exist? if exist(datasetname)~=7 fprintf('addCTFtrial: Dataset %s does not exist.\n',datasetname); return end % Separate datasetname into a path and the baseName datasetname=deblank(datasetname); ksep=max([0 findstr(datasetname,delim)]); baseName=datasetname((ksep+1):length(datasetname)); path=datasetname(1:ksep); % String path is terminated by the file delimiter (or path=[]). % Remove the last .ds from baseName. kdot=max(findstr(baseName,'.ds')); if kdot==(length(baseName)-2) baseName=baseName(1:(max(kdot)-1)); else datasetname=[datasetname,'.ds']; end clear ksep kdot; % Get the ds structure of the dataset ds=readCTFds(datasetname); % Update text fields of res4,infods, newds. ds=updateCreatorSoftware(ds,creatorSoftware,originalCreatorSoftware); if isempty(ds);return;end nSample=ds.res4.no_samples; fSample=ds.res4.sample_rate; nChan=ds.res4.no_channels; % Check that the new data and the existing data have the same number of channels % and points per trial. if size(data,1)~=nSample | size(data,2)~=nChan | size(data,3)==0 fprintf(['addCTFtrial: size(data)=[%d %d %d], but existing data has no_samples=%d,',... ' no_channels=%d\n'],[size(data,1) size(data,2) size(data,3)],... nSample,nChan); return end % Update ds.res4 fields to match the size of array data. nTrialNew=size(data,3); nTrialOld=ds.res4.no_trials; ds.res4.no_trials=nTrialOld+nTrialNew; ds.res4.epoch_time=nSample*ds.res4.no_trials/fSample; % Before converting data to integers, save the HLC channels for motion analysis in function % function updateHLC. if isempty(strmatch('HLC',ds.res4.chanNames)) HLCdata=[]; else % Make a list of head-coil channels coil=0; HLClist=[]; while ~isempty(strmatch(['HLC00',int2str(coil+1)],ds.res4.chanNames)) coil=coil+1; for k=1:3 HLClist=[HLClist strmatch(['HLC00',int2str(coil),int2str(k)],ds.res4.chanNames)]; end end HLCdata=reshape(double(data(:,HLClist,:)),nSample,3,coil,nTrialNew); clear coil k HLClist; end % Convert data to integers because CTF data sets are stored as raw numbers and % not as physical qunatities. The res4 file contains the calibrations for % converting back to physical units. Array data may be single precision, so % convert to double before doing any adjustments to the data. % Already checked that unit is valid. if strcmp(unit,'int') data=reshape(data,nSample,nChan*nTrialNew); for k=1:nChan*nTrialNew if strcmp(class(data),'single') data(:,k)=single(round(double(data(:,k)))); else data(:,k)=round(double(data(:,k))); end end data=reshape(data,nSample,nChan,nTrialNew); clear k; else for chan=1:nChan % Convert EEGs from uV to V, SQUIDs from fT to T SQUIDtype=any(ds.res4.senres(chan).sensorTypeIndex==[0:7]); EEGtype=any(ds.res4.senres(chan).sensorTypeIndex==[8 9]); if EEGtype & (strcmp(unit,'ft') | strtcmp(unit,'phi0')) alphaG=1e-6; elseif SQUIDtype & strcmp(unit,'ft') alphaG=1e-15; elseif SQUIDtype & strcmp(unit,'phi0') alphaG=1./(ds.res4.senres(chan).properGain*ds.res4.senres(chan).ioGain); else alphaG=1; end % Convert from physical units to integers using the gains in the senres table. for kt=1:nTrialNew buff=round(double(data(:,chan,kt))*(alphaG*... (ds.res4.senres(chan).properGain*ds.res4.senres(chan).qGain*ds.res4.senres(chan).ioGain))); if strcmp(class(data),'single') data(:,chan,kt)=single(buff); else data(:,chan,kt)=buff; end end end clear chan alphaG SQUIDtype EEGtype buff kt; end % Check the meg4 file header. fidMeg4=fopen([path,baseName,'.ds\',baseName,'.meg4'],'r','ieee-be'); fileHeader=fread(fidMeg4,8,'char')'; fclose(fidMeg4); if isempty(strmatch(fileHeader(1:7),meg4_headers(:,1:7),'exact')) ds.meg4.header=meg4_headers(1,1:7); fprintf('addCTFtrial: meg4 header=%s ?\n',fileHeader); return end % Create the .res4 file in the output dataset. ds.res4=writeRes4([path,baseName,'.ds\',baseName,'.res4'],ds.res4,MAX_COILS); if ds.res4.numcoef<0 fprintf('addCTFtrial: writeRes4 returned ds.res4.numcoef=%d (<0??)\n',ds.res4.numcoef); fprintf(' Deleting dataset %s\n',baseName); rmdir([path,baseName,'.ds'],'s'); return end % Add trial(s) to the existing meg4 file. Complicated coding in case the use requests % writing several trials, which fill up one meg4 file and start the next one. ptsPerTrial=nSample*nChan; data=reshape(data,ptsPerTrial,nTrialNew); maxTrialPerFile=floor((maxMEG4Size-8)/(4*ptsPerTrial)); maxPtsPerFile=ptsPerTrial*maxTrialPerFile; nExt=-1; trial=0; pt=0; while trial<nTrialNew nExt=nExt+1; if nExt==0 meg4Ext='.meg4'; else meg4Ext=['.',int2str(nExt),'_meg4']; end meg4File=[path,baseName,'.ds\',baseName,meg4Ext]; D=dir(meg4File); if isempty(D) % Create the next meg4 file and write the header. fidMeg4=fopen(meg4File,'w','ieee-be'); fwrite(fidMeg4,[ds.meg4.header(1:7),char(0)],'uint8'); fclose(fidMeg4); D=struct('bytes',8); end nWrite=min(nTrialNew-trial,floor((maxMEG4Size-D.bytes)/(4*ptsPerTrial))); %fprintf('nExt=%d meg4File=%s\n\t\tsize=%d bytes nWrite=%d\n',nExt,meg4File,D.bytes,nWrite); if nWrite>0 fidMeg4=fopen(meg4File,'a','ieee-be'); endPt=pt+nWrite*ptsPerTrial; while pt<endPt pt1=min(pt+meg4ChunkSize,endPt); % Convert to double in case data is fwrite(fidMeg4,double(data(pt+1:pt1)),'int32'); % single. This may cause memory pt=pt1; % problems so write in short pieces. end fclose(fidMeg4); trial=trial+nWrite; end end clear trial pt meg4Ext meg4File D fidMeg4 nWrite endPt pt1; % Set variable cntrl to indicate that the meg4 and res4 files have been updated. cntrl=1; % Update the .meg4 part of structure ds. ds.meg4.fileSize=8*(nExt+1); clear data pt pt1 ndata fidMeg4; % Add dataset names to .hist, and write new .hist file. if ~isfield(ds,'hist'); ds.hist=char([]); else q0=max(strfind(ds.hist,originalCreatorSoftware)); if ~isempty(q0) & isempty(strfind(ds.hist(q0:length(ds.hist)),creatorSoftware)) ds.hist=[ds.hist(1:q0+length(originalCreatorSoftware)-1) ', ' creatorSoftware ... ds.hist(q0+length(originalCreatorSoftware):length(ds.hist))]; end % Create .hist file histfile=[path,baseName,'.ds\',baseName,'.hist']; fid=fopen(histfile,'w'); fwrite(fid,ds.hist,'char'); fclose(fid); end % Add HLC data and write new infods file. if isfield(ds,'infods') ds.infods=updateHLC(ds.infods,HLCdata); writeCPersist([path,baseName,'.ds',delim,baseName,'.infods'],ds.infods); end clear HLCdata; % New .newds file. if isfield(ds,'newds') fid=fopen([path,baseName,'.ds\',baseName,'.newds'],'w'); fwrite(fid,ds.newds,'char'); fclose(fid); end % Add markers, and create new MarkerFile.mrk if isfield(ds,'mrk') mrk=combineMarkers(ds.mrk,nTrialOld,mrk,nTrialNew,ds.res4); if ~isempty(mrk) writeMarkerFile([path,baseName,'.ds',delim,'MarkerFile.mrk'],mrk); end elseif ~isempty(mrk) fprintf(['addCTFtrial: Existing dataset has no MarkerFile, but structure mrk is',... ' specified in call to addCTFtrial.\n',... ' MarkerFile.mrk not created.\n']); end % bad.segments file if isfield(ds,'badSegments') & ~isempty(badSegments) ds.badSegments.trial=[ds.badSegments.trial badSegments.trial+nTrialOld]; ds.badSegments.StartTime=[ds.badSegments.StartTime badSegments.StartTime]; ds.badSegments.EndTime=[ds.badSegments.EndTime badSegments.EndTime]; writeBadSegments([path,baseName,'.ds',delim,'bad.segments'],ds.badSegments,... ds.res4.no_trials,nSample/fSample); end % ClassFile. Add trial classes, and create new ClassFile.cls if ~isempty(cls) if isfield(ds,'TrialClass') cls=combineClasses(ds.TrialClass,nTrialOld,cls,nTrialNew); if ~isempty(cls) writeClassFile([path,baseName,'.ds',delim,'ClassFile.cls'],cls); end else fprintf(['addCTFtrial: Existing dataset has no ClassFile, but structure cls is',... ' specified in call to addCTFtrial.\n',... ' ClassFile.cls not created.\n']); end end return % *************** End of function addCTFtrial ******************************************** % ************************************************************************************** % ************************************************************************************** % ************* function make_dummy_infods********************************************* function Tag=make_dummy_infods(exist_hc,exist_HLC,sample_rate); % If the user does not supply ds.infos, this code makes a dummy version. It has all of % the tags that Acq created in file Richard_SEF_20060606_04.infods. % *********************************************************************************** % *********************************************************************************** DATASET_HZ_UNKNOWN=round(2^31-1); % Peculiar requirement of DataEditor as of 23 Oct. 2006 fprintf('writeCTDds (make_dummy_infods): Creating a dummy infods file with all the tags.\n'); Tag(1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_PATIENT_INFO','type',2,'data',[]); Tag(length(Tag)+1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_PATIENT_UID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0011'); Tag(length(Tag)+1)=struct('name','_PATIENT_NAME_FIRST','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_NAME_MIDDLE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_NAME_LAST','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_ID','type',10,'data','x'); Tag(length(Tag)+1)=struct('name','_PATIENT_BIRTHDATE','type',10,'data','19500101000000'); Tag(length(Tag)+1)=struct('name','_PATIENT_SEX','type',5,'data',2); Tag(length(Tag)+1)=struct('name','_PATIENT_PACS_NAME','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_PACS_UID','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PATIENT_INSTITUTE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); Tag(length(Tag)+1)=struct('name','_PROCEDURE_INFO','type',2,'data',[]); Tag(length(Tag)+1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_PROCEDURE_VERSION','type',5,'data',1); Tag(length(Tag)+1)=struct('name','_PROCEDURE_UID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0041'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_ACCESSIONNUMBER','type',10,'data','0'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_TITLE','type',10,'data','0'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_SITE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PROCEDURE_STATUS','type',5,'data',1); Tag(length(Tag)+1)=struct('name','_PROCEDURE_TYPE','type',5,'data',2); % Research type Tag(length(Tag)+1)=struct('name','_PROCEDURE_STARTEDDATETIME','type',10,... 'data','20060606164306'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_CLOSEDDATETIME','type',10,... 'data','19000100000000'); Tag(length(Tag)+1)=struct('name','_PROCEDURE_COMMENTS','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PROCEDURE_LOCATION','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_PROCEDURE_ISINDB','type',5,'data',0); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); Tag(length(Tag)+1)=struct('name','_DATASET_INFO','type',2,'data',[]); Tag(length(Tag)+1)=struct('name','WS1_','type',0,'data',[]); Tag(length(Tag)+1)=struct('name','_DATASET_VERSION','type',5,'data',2); Tag(length(Tag)+1)=struct('name','_DATASET_UID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0042'); Tag(length(Tag)+1)=struct('name','_DATASET_PATIENTUID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0011'); Tag(length(Tag)+1)=struct('name','_DATASET_PROCEDUREUID','type',10,... 'data','2.16.124.113000.000000.00000000000000.000000000.00000000.0041'); Tag(length(Tag)+1)=struct('name','_DATASET_STATUS','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_RPFILE','type',10,'data','default.rp'); Tag(length(Tag)+1)=struct('name','_DATASET_PROCSTEPTITLE','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_PROCSTEPPROTOCOL','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_PROCSTEPDESCRIPTION','type',10,... 'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_COLLECTIONDATETIME','type',10,... 'data','Unknown'); Tag(length(Tag)+1)=struct('name','_DATASET_COLLECTIONSOFTWARE','type',10,... 'data','Acq '); Tag(length(Tag)+1)=struct('name','_DATASET_CREATORDATETIME','type',10,... 'data',sprintf('%d',floor(clock))); Tag(length(Tag)+1)=struct('name','_DATASET_CREATORSOFTWARE','type',10,... 'data','Acq '); Tag(length(Tag)+1)=struct('name','_DATASET_KEYWORDS','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_COMMENTS','type',10,... 'data','Dummy infods.'); Tag(length(Tag)+1)=struct('name','_DATASET_OPERATORNAME','type',10,'data',''); Tag(length(Tag)+1)=struct('name','_DATASET_LASTMODIFIEDDATETIME','type',10,... 'data',sprintf('%d',floor(clock))); if exist_hc nominalPositions=0; % Measured else nominalPositions=1; % Nominal end Tag(length(Tag)+1)=struct('name','_DATASET_NOMINALHCPOSITIONS','type',5,... 'data',nominalPositions); Tag(length(Tag)+1)=struct('name','_DATASET_COEFSFILENAME','type',10,... 'data','ds.res4.scrr'); Tag(length(Tag)+1)=struct('name','_DATASET_SENSORSFILENAME','type',10,... 'data','ds.res4.senres'); %Tag(length(Tag)+1)=struct('name','_DATASET_COEFSFILENAME','type',10,... % 'data','/opt/ctf-5.1/hardware/M015/M015_1609.coef'); %Tag(length(Tag)+1)=struct('name','_DATASET_SENSORSFILENAME','type',10,... % 'data','/opt/ctf-5.1/hardware/M015/M015_1609.sens'); Tag(length(Tag)+1)=struct('name','_DATASET_SYSTEM','type',10,'data','DSQ-2010'); Tag(length(Tag)+1)=struct('name','_DATASET_SYSTEMTYPE','type',10,'data','Untitled'); Tag(length(Tag)+1)=struct('name','_DATASET_LOWERBANDWIDTH','type',4,'data',0); Tag(length(Tag)+1)=struct('name','_DATASET_UPPERBANDWIDTH','type',4,'data',... round(0.25*sample_rate)); Tag(length(Tag)+1)=struct('name','_DATASET_ISINDB','type',5,'data',0); if exist_HLC HZ_MODE=5; elseif exist_hc HZ_MODE=1; else HZ_MODE=DATASET_HZ_UNKNOWN; end Tag(length(Tag)+1)=struct('name','_DATASET_HZ_MODE','type',5,'data',HZ_MODE); Tag(length(Tag)+1)=struct('name','_DATASET_MOTIONTOLERANCE','type',4,'data',0.005); Tag(length(Tag)+1)=struct('name','_DATASET_MAXHEADMOTION','type',4,'data',0.005); Tag(length(Tag)+1)=struct('name','_DATASET_MAXHEADMOTIONTRIAL','type',7,'data',0); Tag(length(Tag)+1)=struct('name','_DATASET_MAXHEADMOTIONCOIL','type',10,'data','1'); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); Tag(length(Tag)+1)=struct('name','EndOfParameters','type',-1,'data',[]); return % ************* End of function make_dummy_infods********************************************* % ************************************************************************************** %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%Function combineMarkers %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function mrkNew=combineMarkers(mrkOld,nTrialOld,mrk,nTrialNew,res4); % Combines existing marker information with markers for new trial(s) being added to the % dataset ny addCTFtral. % Start by examining the new markers defined in structure mrk. % Examines structure ds to see if a sensible MarkerFile can be created from ds.mrk. % Output: mrkNew : New marker structure. If the new markers are invlaid, or empty, then % mrkNew=struct([]) is returned. MarkerFileOK=~isempty(mrk); if MarkerFileOK if isempty([mrk.trial]) | isempty([mrk.time]) MarkerFileOK=0; % Do not create MarkerFile.mrk if all of the marker classes are empty. else % Are the markers appropriate? minMarkerTrial=min(min([mrk.trial])); maxMarkerTrial=max(max([mrk.trial])); minMarkerTime=min(min([mrk.time])); maxMarkerTime=max(max([mrk.time])); MarkerFileOK=(maxMarkerTrial<=nTrialNew & minMarkerTrial>=1 & ... maxMarkerTime<=(res4.no_samples/res4.sample_rate) & ... minMarkerTime>=(-res4.preTrigPts/res4.sample_rate)); if ~MarkerFileOK fprintf(['addCTFtrial: Structure mrk cannot possibly be a set of markers ',... 'for %d trial(s) in array(data).\n'],nTrialNew); fprintf([' minMarkerTrial=%d (must be >=1) ',... 'maxMarkerTrial=%d (must be <=%d)\n'],... minMarkerTrial,maxMarkerTrial,ds.res4.no_trials); fprintf([' minMarkerTime=%7.4f (must be >=%7.4f) ',... 'maxMarkerTrial=%7.4f (must be <=%7.4f )\n'],... minMarkerTime,-res4.preTrigPts/res4.sample_rate,... maxMarkerTime,res4.no_samples/res4.sample_rate); fprintf(' MarkerFile.mrk will not be updated.\n'); end end end if MarkerFileOK==0 mrkNew=struct([]); % return an empty marker structure % Check mrkOld to see if each existing trial had at least one marker. if isequal(unique([mrkOld.trial]),[1:nTrialOld]) fprintf(['addCTFtrial: All of the trials in the existing data have at least one\n',... ' marked point,but the new trials have no marker points?\n']); end return end % There are valid new markers. Add the new markers to the existing marker structure, % and extend the marker definition if new markers have been defined. % Check the Name mrkNew=mrkOld; maxClassId=max([mrkNew.ClassId]); for k=1:length(mrk) addq=1; % Check if the marker is already defined. for q=1:length(mrkOld) if strcmp(mrkOld(q).Name,mrk(k).Name) mrkNew(q).trial=[mrkNew(q).trial mrk(k).trial+nTrialOld]; mrkNew(q).time=[mrkNew(q).time mrk(k).time]; addq=0; break; end end if addq % Create a new marker class newClassId=~isfield(mrk(k),'ClassId'); if ~newClassId newClassId=any(mrk(k).ClassId==[mrkNew.ClassId]); end if newClassId mrk(k).ClassId=max([mrkNew.ClassId])+1; end if ~isfield(mrk(k),'Color');mrk(k).Color='Red';end if ~isfield(mrk(k),'Comment');mrk(k).Comment=char([]);end if ~isfield(mrk(k),'ClassGroupId');mrk(k).ClassGroupId=3;end if mrk(k).ClassGroupId==0 if ~isfield(mrk(k),'BitNumber') | ~isfield(mrk(k),'Polarity') | ... ~isfield(mrk(k),'Source') | ~isfield(mrk(k),'Threshold') fprintf(['addCTFtrial: Structure mrk defines ClassGroupId=0 marker %s, ',... 'but not fields BitNumber, Polarity, Source or Threshold.\n'],mrk(k).Name); fprintf(' Marker set %s will be defined with ClassGroupId=3.\n',... mrk(k).Name); mrk(k).ClassGroupId=3; end end % ClassGroupId : make 4 fields empty. if mrk(k).ClassGroupId==3 mrk(k).BitNumber=[]; mrk(k).Polarity=[]; mrk(k).Source=[]; mrk(k).Threshold=[]; end q0=length(mrkNew)+1; mrkNew(q0)=mrk(k); mrkNew(q0).trial=mrk(k).trial+nTrialOld; mrkNew(q0).time=mrk(k).time; end clear addq; end return %%%%%%%%%%%%%% end of combineMarkers %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function writeBadSegments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeBadSegments(badSegmentsFile,badSegments,nTrial,tTrial); % Creates a bad.segments file in a CTF data set from the information in structure % badSegments which is created by read_badSegments, or by the user. % If structure badSegments is empty, then the file is not created. % badSegments structure: % badSegments.trial = List of trial numbers % badSegments.StartTime = List of bad segment start times (relative to trial). % badSegments.EndTime = List of bad segment end times. % Check badSegmentsFile if exist('badSegmentsFile')~=1;badSegmentsFile=char([]);end if isempty(badSegmentsFile) | ~ischar(badSegmentsFile) fprintf('addCTFtrial(writeBadSegments): Bad file name.\n'); badSegmentsFile return end % Check that structure badSegments is defined correctly if exist('badSegments')~=1 | exist('nTrial')~=1 return elseif ~isstruct(badSegments) | isempty(badSegments) return elseif ~isfield(badSegments,'trial') | ~isfield(badSegments,'StartTime') | ... ~isfield(badSegments,'EndTime') return elseif isempty(badSegments.trial) | isempty(badSegments.StartTime) | ... isempty(badSegments.EndTime) return elseif ~isequal(size(badSegments.trial),size(badSegments.StartTime),... size(badSegments.EndTime)) fprintf(['\naddCTFtrial (writeBadSegments): ',... 'The fields of structure badSegments do not all have the same size.\n']); return elseif any(badSegments.trial>nTrial) | any(badSegments.trial<1) | ... any(badSegments.StartTime<0) | any(badSegments.EndTime>tTrial) fprintf(['\naddCTFtrial (writeBadSegments): badSegments cannot possibly describe ',... 'bad segments for these data.\n',... '\tmin(badSegments.trial)=%d max(badSegments.trial)=%d ',... 'min(badSegments.StartTime)=%0.4f max(badSegments.EndTime)=%0.4f s\n\t\tDataset:',... ' nTrial=%d tTrial=%0.4f s\n'],... min(badSegments.trial),max(badSegments.trial),min(badSegments.StartTime),... max(badSegments.EndTime),nTrial,tTrial); fprintf('\t\tNew bad.segments file will not be created.\n\n'); return end % Convert all fields to simple vectors nSeg=prod(size(badSegments.trial)); trial=reshape(badSegments.trial,1,nSeg); StartTime=reshape(badSegments.StartTime,1,nSeg); EndTime=reshape(badSegments.EndTime,1,nSeg); fid=fopen(badSegmentsFile,'w','ieee-be'); if fid<0 fprintf('writeCTFds (writeBadSegments): Could not open file %s\n',badSegmentsFile); return end % Extra tabs are inserted to reproduce the format of bad.segments files produced by % DataEditor (5.3.0-experimental-linux-20060918). fprintf(fid,'%0.6g\t\t%0.6g\t\t%0.6g\t\t\n',[trial;StartTime;EndTime]); fclose(fid); return %%%%%%%%% End of writeBadSegments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%Function checkCls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ClassFileOK=checkCls(ds); % Examines structure ds to see if a sensible ClassFile can be created from ds.TrialClass. ClassFileOK=isfield(ds,'TrialClass'); if ClassFileOK ClassFileOK=~isempty(ds.TrialClass); end if ClassFileOK % Are the class trials appropriate? minClassTrial=[]; maxClassTrial=[]; for k=1:length(ds.TrialClass) maxClassTrial=max([maxClassTrial max(ds.TrialClass(k).trial)]); minClassTrial=min([minClassTrial min(ds.TrialClass(k).trial)]); end % Create ClassFile.cls even when the trail classes are empty. if ~isempty(maxClassTrial) ClassFileOK=(maxClassTrial<=ds.res4.no_trials & minClassTrial>=1); if ~ClassFileOK fprintf(['\nwriteCTFds (checkCls): ds.TrialClass cannot possibly be a set of ',... 'trial classes for array(data).\n minClassTrial=%d (must be >=1) ',... 'maxClassTrial=%d (must be <=%d)\n'],... minClassTrial,maxClassTrial,ds.res4.no_trials); fprintf(' ClassFile.cls will not be created.\n'); end end end return %%%%%%%%%%%%%% end of checkCls %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%Function combineClasses %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function clsNew=combineClasses(clsOld,nTrialOld,cls,nTrialNew); % Combines existing trial class information with classes for new trial(s) that are % being added to the dataset by addCTFtral. % Start by examining the new markers defined in structure mrk. % Examines structure ds to see if a sensible CLassFile can be created from clsOld and cls. % Output: clsNew : New class structure. If the new classes are invalid, or empty, then % clsNew=struct([]) is returned. ClassFileOK=~isempty(cls); if ClassFileOK if isempty([cls.trial]) ClassFileOK=0; % Do not create ClassFile.cls if all of the trial classes are empty. else % Are the markers appropriate? minClassTrial=min(min([cls.trial])); maxClassTrial=max(max([cls.trial])); ClassFileOK=(maxClassTrial<=nTrialNew & minClassTrial>=1); if ~ClassFileOK fprintf(['addCTFtrial: Structure cls cannot possibly be a set of classes ',... 'for %d trial(s) in array data .\n'],nTrialNew); fprintf([' minClassTrial=%d (must be >=1) ',... 'maxClassTrial=%d (must be <=%d)\n'],... minClassTrial,maxClassTrial,nTrialNew); fprintf(' ClassFile.cls will not be updated.\n'); end end end if ClassFileOK==0 clsNew=struct([]); % return an empty class structure % Check clsOld to see if each existing trial had at least one class. if isequal(unique([clsOld.trial]),[1:nTrialOld]) fprintf(['addCTFtrial: All of the trials in the existing data are assigned to at ',... 'least one class\n',... ' but the new trials have no classes?\n']); end return end % There are valid new classes. Add the new classes to the existing class structure, % and extend the class definition if new classes have been defined. clsNew=clsOld; maxClassId=max([clsNew.ClassId]); for k=1:length(cls) addq=1; % Check if the class is already defined. for q=1:length(clsOld) if strcmp(clsOld(q).Name,cls(k).Name) clsNew(q).trial=[clsNew(q).trial cls(k).trial+nTrialOld]; addq=0; break; end end if addq % Create a new trial class newClassId=~isfield(cls(k),'ClassId'); if ~newClassId % Check if cls(k).ClassId is already in use. newClassId=any(cls(k).ClassId==[clsNew.ClassId]); end if newClassId cls(k).ClassId=max([clsNew.ClassId])+1; end if ~isfield(cls(k),'Color');cls(k).Color='Red';end if ~isfield(cls(k),'Comment');cls(k).Comment=char([]);end if ~isfield(cls(k),'ClassGroupId');cls(k).ClassGroupId=3;end q0=length(clsNew)+1; clsNew(q0)=cls(k); clsNew(q0).trial=cls(k).trial+nTrialOld; end clear addq; end return %%%%%%%%%%%%%% end of combineClasses %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%% Function writeClassFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function writeClassFile(ClassFile,TrialClass); % Write the ClassFile of a CTF data set. % The CLassFile allows a user to store a list of trial classifications in a data set. % The ClassFile format is defined in document CTF MEG File Formats, PN900-0088. % This format is rigid. % Inputs : % ClassFile : marker file including the full path and extension .mrk. % TrialClass : Structure creted by read_ClassFile. % Output : ClassFile.cls. % Check input TrialClass. if exist('TrialClass')~=1;TrialClass=[];end if isempty(TrialClass) | ~isstruct(TrialClass) fprintf('writeCTFds (writeClassFile): TrialClass is empty or is not a structure.\n'); TrialClass return end % Check ClassFile if exist('ClassFile')~=1;ClassFile=char([]);end if isempty(ClassFile) | ~ischar(ClassFile) fprintf('writeCTFds (writeClassFile): Bad file name.\n'); ClassFile end fid=fopen(ClassFile,'w','ieee-be'); if fid<0 fprintf('writeCTFds (writeClassFile): Could not open file %s\n',ClassFile); return end nClass=length(TrialClass); % Generate datasetname from ClassFIle. ksep=max([0 strfind(ClassFile,filesep)]); datasetname=ClassFile(1:ksep-1); if isempty(datasetname);datasetname=cd;end fprintf(fid,'PATH OF DATASET:\n%s\n\n\n',datasetname); fprintf(fid,'NUMBER OF CLASSES:\n%d\n\n\n',nClass); for k=1:nClass if k==1 % Add sign character to make output match the output of Acq. sgn=char([]); % There should be no real significance to this. else % Why does DataEditor places the + sign only on ClassID 2,3,...? sgn='+'; end No_of_Trials=prod(size(TrialClass(k).trial)); fprintf(fid,'CLASSGROUPID:\n%s%d\nNAME:\n%s\nCOMMENT:\n%s\n',... sgn,TrialClass(k).ClassGroupId,TrialClass(k).Name,TrialClass(k).Comment); fprintf(fid,'COLOR:\n%s\nEDITABLE:\n%s\nCLASSID:\n%s%d\nNUMBER OF TRIALS:\n%d\n',... TrialClass(k).Color,TrialClass(k).Editable,sgn,TrialClass(k).ClassId,No_of_Trials); fprintf(fid,'LIST OF TRIALS:\nTRIAL NUMBER\n'); % Subtract one so trial numbering starts at 0 in ClassFile.cls fprintf(fid,'%20d\n',reshape(TrialClass(k).trial,1,No_of_Trials)-1); fprintf(fid,'\n\n'); end fclose(fid); return %%%%%%%%%%%%%% end of writeClassFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function updateCreatorSoftware %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ds=updateCreatorSoftware(ds,creatorSoftware,originalCreatorSoftware); % Changes the creator software fields of the ds structure, and returns ds=struct([]) if % field infods is missing from structure ds, or if it thinks that the dataset was not % created by the MATLAB code specified by originalCreatorSoftware (i.e. writeCTFds). % Makes sure that creatorSoftware info is changed in structure infods, newds and res4. % Inputs: ds : ds structure produced by readCTFds. % creatorSoftware : Character string indicating that the data set was % modified by addCTFtrial. Added to infods tags listed in addCreatorTag and % appName field of res4. % originalCreatorSoftware : Character string indicating that the data set was % created by writeCTFds. Added to infods tags listed in addCreatorTag and % appName field of res4. % Output: ds : ds structure with changes to ds.infids, ds.res4, ds.newds. % If the input ds structure does not indicate that iot was created by % writeCTFds (originalCreatorSoftware), ds=struct([]) is returned. % Adds comment (clinical use message) and creator software name to infods, newds and hist files. if ~isfield(ds,'infods'); fprintf(['addCTFtrial (updateCreatorSoftware): Structure ds does not include',... ' field infods.\n']); whos ds ds=struct([]); % Force an error in the calling program return end % The infods tags and red4 fields that display creator software must also indicate that % the dataset was created by originalCreatorSoftware. % infods tags that will display the creator software. addCreatorTag=strvcat('_PROCEDURE_COMMENTS','_DATASET_STATUS',... '_DATASET_COLLECTIONSOFTWARE','_DATASET_CREATORSOFTWARE'); % res4 text fields that will display the creator software. addCreatorField=strvcat('appName','run_description'); addCreatorLength=[256 -1]'; % -1 indicates variable length if exist('creatorSoftware')~=1; creatorSoftware=char([]); elseif ~ischar(creatorSoftware) creatorSoftware=char([]); else creatorSoftware=deblank(creatorSoftware); end if exist('originalCreatorSoftware')~=1; originalCreatorSoftware=char([]); elseif ~ischar(originalCreatorSoftware) originalCreatorSoftware=char([]); else originalCreatorSoftware=deblank(originalCreatorSoftware); end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check that the string originalCreatorSoftware appears in the infods and res4 files. tagName=getArrayField(ds.infods,'name')'; if length(ds.infods)==1;tagName=tagName';end % Update the infods fields. for k=1:size(addCreatorTag,1) q=strmatch(deblank(addCreatorTag(k,:)),tagName); if isempty(q); fprintf('addCTFtrial (updateCreatorSoftware): Tag %s is missing from ds.infods.\n',... deblank(addCreatorTag(k,:))); ds=struct([]); return elseif length(q)>1 fprintf(['addCTFtrial (updateCreatorSoftware): Tag %s appears %d times in ',... 'ds.infods.\n'],deblank(addCreatorTag(k,:)),length(q)); ds=struct([]); return else strng=ds.infods(q).data; % Strng must contain originalCreatorSoftware nChar=length(strng); if length(originalCreatorSoftware)>0 qpos=strfind(strng,originalCreatorSoftware); if isempty(qpos) fprintf(['addCTFtrial (updateCreatorSoftware): String %s does not appear in',... ' ds.infods tag %s\n'],originalCreatorSoftware,addCreatorTag(k,:)); fprintf([' This dataset was not created ',... 'by CTF MATLAB Export software.\n']); ds=struct([]); return end qpos=qpos+length(originalCreatorSoftware)-1; else qpos=length(strng); end % Add creatorSoftware string if it is not already present. if isempty(strfind(strng,creatorSoftware)) ds.infods(q).data=[strng(1:qpos) ' ' creatorSoftware ' ' strng(qpos+1:nChar)]; end end end % Update the res4 fields: add creatorSoftware message. % Don't check field length. Truncate later. for q=1:size(addCreatorField,1); strng=deblank(getfield(ds.res4,deblank(addCreatorField(q,:)))); nChar=length(strng); if length(originalCreatorSoftware)>0 qpos=strfind(strng,originalCreatorSoftware); if isempty(qpos) fprintf(['addCTFtrial (updateCreatorSoftware): String %s does not appear in',... ' ds.res4.%s\n'],originalCreatorSoftware,deblank(addCreatorField(q,:))); fprintf([' This dataset was not created ',... 'by CTF MATLAB Export software.\n']); ds=struct([]); return end qpos=qpos+length(originalCreatorSoftware); else qpos=nChar; end % Add creatorSoftware string if it is not already present. if isempty(strfind(strng,creatorSoftware)) newStrng=[strng(1:qpos) ' ' creatorSoftware ' ' strng(qpos+1:nChar)]; ds.res4=setfield(ds.res4,deblank(addCreatorField(q,:)),newStrng); end end clear q strng nChar strng0 ns newStrng; % Update res4.run_description ds.res4.run_description=[deblank(ds.res4.run_description),char(0)]; ds.res4.rdlen=length(ds.res4.run_description); % Truncate the .res4. fields. Leave room for a final char(0). for q=1:size(addCreatorField,1); strng=deblank(getfield(ds.res4,deblank(addCreatorField(q,:)))); if length(strng)>addCreatorLength(q)-1 & addCreatorLength(q)>0 ds.res4=setfield(ds.res4,deblank(addCreatorField(q,:)),... strng(length(strng)+[-addCreatorLength(q)+2:0])); end end clear q strng; % Add the creator and comment information to the newds file if isfield(ds,'newds'); nChar=length(ds.newds); % Keyword positions aNpos=max(strfind(ds.newds,[char(9) 'appName:' char(9)])); if isempty(aNpos) fprintf(['addCTFtrial (updateCreatorSoftware): Keyword ''appName'' ',... 'does not appear in ds.newds.\n',... ' set ds.newds=[].\n']); ds.newds=char([]); else eol=max([11 min(strfind(ds.newds(aNpos+1:length(ds.newds)),char(10)))]); wPos=min(strfind(ds.newds(aNpos+[1:eol]),originalCreatorSoftware)); addPos=min(strfind(ds.newds(aNpos+[1:eol]),creatorSoftware)); if isempty(addPos) if isempty(wPos) ds.newds=[ds.newds(1:(aNpos+eol-1)) ' ' creatorSoftware ... ds.newds((aNpos+eol):length(ds.newds))]; else ds.newds=[ds.newds(1:(aNpos+wPos+length(originalCreatorSoftware)-1)) ', ' ... creatorSoftware ... ds.newds((aNpos+wPos+length(originalCreatorSoftware)):length(ds.newds))]; end end clear eol wPos addPos; end clear nChar aNpos; end return %%%%%%%%%%%%%% End of update_creatorSoftware %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function updateHLC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [infods,status]=updateHLC(infods,HLCdata,HLC0,nTrial0); % Adds notes and continuous-head-localization tags to .infods file. % Updates MAXHEADMOTION tags when called from addCTFtrial % Inputs : infods : Structure of tags to be written to output infods file. % HLCdata : 0 or [] or not defined - There are no HLC channels % (head-coil position) in the data. Just pass the existing tags to % the output dataset. % HLCdata : real array : size(HLCdata)=[samplesPerTrial 3 Ncoil nTrial] % Calculate the head motion tags. % HLC0 : Head coil positions (m) in dewar coordinates at the start of the run. % size(HLC0)=[3 Ncoil] % nTrial0=No. of trials of data already written to the dataset. % Outputs : status : 0: Everything looks OK % 1: Couldn't find _DATASET tags. % <0: There is a problem with the new infods file. % Calls: % - getArrayField: Extracts field names from structure array S. % Defaults for the head localization tags. % Might do this better with a structure. HZ_MODE_UNKNOWN=2^31-1; % Bug in DataEditor and acquisition software, Oct. 2006 % Should be -1. % New dataset tags for HLC specification. addTag=strvcat('_DATASET_HZ_MODE',... '_DATASET_MOTIONTOLERANCE',... '_DATASET_MAXHEADMOTION',... '_DATASET_MAXHEADMOTIONTRIAL',... '_DATASET_MAXHEADMOTIONCOIL'); addTagType=[5 4 4 7 10]'; if exist('nTrial0')~=1 nTrial0=0; elseif isempty(nTrial0) nTrial0=0; elseif min(nTrial0)<0 nTrial0=0; end % Check HLCdata array. HLCdata=[] indicates no continuous head localization. if exist('HLCdata')~=1 HLCdata=[]; elseif ~isempty(HLCdata) [samplesPerTrial nDim Ncoil nTrial]=size(HLCdata); if nDim~=3; fprintf('addCTFtrial (updateHLC): size(HLCdata)=[');fprintf(' %d',size(HLCdata)); fprintf(']\n'); fprintf(' nDim=%d?? Setting HLCdata=[].\n',nDim); HLCdata=[]; end end if exist('HLC0')~=1 HLC0=[]; elseif ~isequal(size(HLC0),[3 size(HLCdata,3)]) HLC0=[]; end if isempty(HLC0) & ~isempty(HLCdata) HLC0=squeeze(HLCdata(1,:,:,1)); end % Assume that all the tag names are different. There is no checking when a tag listed in % addTag matches more than one entry in array name. name=getArrayField(infods,'name')'; %size(name)=[nTag lengthTag] DATASET_tags=strmatch('_DATASET',name)'; % size(DATASET_tags)=[1 nTag] if isempty(DATASET_tags) status=1; % No _DATASET tags. Don't add anything. else status=0; if isempty(HLCdata) TagValue(1)=HZ_MODE_UNKNOWN; TextTagValue=char(0); addTag=addTag(1,:); % Remove the other HLC tags addTagType=addTagType(1); else % ~isempty(HLCdata) % Remove HLC offsets. for q=1:Ncoil for k=1:3 HLCdata(:,k,q,:)=HLCdata(:,k,q,:)-HLC0(k,q); end end % Calculate motions as displacement from the start of the dataset. absMotion=squeeze(sqrt(sum(HLCdata.^2,2))); %size(absMotion)=[samplesPerTrial Ncoil nTrial] maxCoilMotion=squeeze(max(absMotion,[],1)); % size(maxCoilMovement)=[Ncoil nTrial] maxHeadMotion=max(max(maxCoilMotion)); [mx maxHeadMotionCoil]=max(max(maxCoilMotion,[],2)); [mx maxHeadMotionTrial]=max(max(maxCoilMotion,[],1)); % Create a list of head motion tag values TagValue(1)=5; % Indicates continuous head localization TagValue(2)=max(2*maxHeadMotion,0.02); % _DATASET_MOTIONTOLERANCE TagValue(3)=maxHeadMotion; TagValue(4)=maxHeadMotionTrial-1+nTrial0; % _DATASET_MAXHEADMOTIONTRIAL TextTagValue=strvcat(char(zeros(4,1)),sprintf('%d',maxHeadMotionCoil)); % Does the existing infods have the head-motion tags? TagNo2=strmatch(deblank(addTag(2,:)),name,'exact'); TagNo3=strmatch(deblank(addTag(3,:)),name,'exact'); TagNo4=strmatch(deblank(addTag(4,:)),name,'exact'); TagNo5=strmatch(deblank(addTag(5,:)),name,'exact'); if ~isempty(TagNo2) & ~isempty(TagNo3) & ~isempty(TagNo4) & ... ~isempty(TagNo5) & nTrial0>0 % Structure infods already has the head-motions tags from previous data. TagValue(2)=max(TagValue(2),infods(TagNo2).data); if TagValue(3)<=infods(TagNo3).data TagValue(3)=infods(TagNo3).data; TagValue(4)=infods(TagNo4).data; TextTagValue=strvcat(char(zeros(4,1)),infods(TagNo5).data); end elseif (~isempty(TagNo2) | ~isempty(TagNo3) | ~isempty(TagNo4) | ... ~isempty(TagNo5)) & nTrial0>0 fprintf(['addCTFtrial (updateHLC): Some, but not all, of the ds.infods CHL ',... 'tags are defined.\n',... ' Infods will be defines with information from the %d new ',... 'trial(s) being added.\n'],size(HLCdata,4)); end TagValue=[TagValue 0]; % Placeholder only since the 5th tag is a text string. end % Add or insert tags. for q=1:size(addTag,1) nTag=length(infods); tagName=deblank(addTag(q,:)); TagNo=strmatch(tagName,name,'exact')'; if isempty(TagNo) % Insert a tag at the end of the _DATASET tags. TagNo=max(DATASET_tags)+1; infods((TagNo+1):(nTag+1))=infods(TagNo:nTag); name=strvcat(name(1:TagNo-1,:),tagName,name(TagNo:nTag,:)); DATASET_tags=[DATASET_tags TagNo]; end if addTagType(q)~=10 infods(TagNo)=struct('name',tagName,'type',addTagType(q),'data',TagValue(q)); else infods(TagNo)=struct('name',tagName,'type',addTagType(q),... 'data',deblank(TextTagValue(q,:))); end end % End loop over head position and head motion tags. clear q TagNo TextTagValue TagValue; end % End section add _DATASET tags return %%%%%%%%%%%%%% End of updateHLC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% Function getArrayField %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x=getArrayField(S,yfield) % Extracts one field of a structure array. % Inputs: S : structure array. % yfield: name of field of S (string) % Output: x. x(:,n)=S(n).yfield; size(x)=[size(yfield) length(S)] % Field sizes: Two options: % 1. size(S(n).yfield) is the same for all n. Any size allowed. % 2. S(n).yfield is a 2-D array for all structure elements S(n). % Then yfield of different array elements S(n) can have different sizes. % The array returned will be large enough to accomodate all of the data. sizeS=size(S); nS=prod(sizeS); S=reshape(S,1,nS); % Determine which array-size option to use. sizey=size(getfield(S,{1},yfield)); option1=1; option2=(length(sizey)==2); for n=2:nS sizeyn=size(getfield(S,{n},yfield)); option1=option1 & isequal(sizey,sizeyn); option2=option2 & length(sizeyn)==2; if option2 sizey=max([sizey;sizeyn],[],1); end end if option1 % All fields have the same size nY=prod(sizey); if isnumeric(getfield(S,{1},yfield)) x=zeros(nY,nS); elseif ischar(getfield(S,{1},yfield)) x=char(zeros(nY,nS)); end for n=1:nS x(:,n)=reshape(getfield(S,{n},yfield),nY,1); end x=reshape(x,[sizey nS]); elseif option2 % All fields have only two dimensions if isnumeric(getfield(S,{1},yfield)) x=zeros([sizey nS]); elseif ischar(getfield(S,{1},yfield)) x=char(zeros([sizey nS])); end for n=1:nS y=getfield(S,{n},yfield); sizeyn=size(y); x(1:sizeyn(1),1:sizeyn(2),n)=y; end else fprintf(['getArrayField: Field %s of the structure array has >2 dimensions ',... 'and not all field have the same size.\n'],yfield); x=[]; end x=squeeze(x); return %%%%%%%% End of getArrayField %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
philippboehmsturm/antx-master
setCTFDataBalance.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/setCTFDataBalance.m
32,056
utf_8
894c3744554abe635876ce6944dca0cd
function [data,ds]=setCTFDataBalance(data,ds,balance1,unit,chanList,messages); % Version 1.1 13 April 2007 Mod to chanList: If chanList is omitted and % size(data,2)<ds.res4.no_channels, then setCTFDataBalance % sets chanList=1:size(data,2) and prints a warning the first % time it happens. % 7 Dec. 2006. Fixed a bug. Changed calls to getCTFBalanceCoefs so % setCTFDataBalance would balance and unbalance reference gradiometers. % Version 1.0 27 October 2006 % Adjusts the gradient order balance from balance0 to balance1. % Inputs : % data : Array of data to be balanced. precision= single or double. % size(data)=[Npt Nchan Ntrial]. If chanList is not supplied, it is assumed that % array data has dataset channels 1:Nchan (i.e. data is not just SQUID sensors % although only SQUID channels are affected by setCTFDataBalance.) % ds : Structure produced by readCTFds that describes the dataset. % balance1 : Character array defining balance of the output data. % Parameter balance1 must be specified, even if it is only balance1=[]; % balance1=[],' ' or 'NONE' : Output is unbalanced. % size(balance,1)=1 : MEG balancing. Assume no reference balancing. % size(balance,1)=2 : MEG balance = balance(1,:). % Gref balance = balance(2,:) % unit : Options : [],' ', 'fT', or 'T' : Physical unit % 'int' or 'phi0' : Raw units. % If the unit argument is not included, unit is set to 'fT'. % chanList : Optional list of dataset channels included in array data. % Channel numbering is referred to structure ds (the output of readCTFds). % If length(chanList)=Nchan. % data(:,k,q)=trial q of channel chanList(k) of the dataset. % If chanList=[],<0 or not defined : Array data has dataset channels 1:Nchan. % Otherwise, length(chanList)=Nchan=size(data,2). % If length(chanList)~=size(data,2) : Error. % messages=0: Don't print tracing message % =1: Print a message when there is a change in requested balance. % =2: Always print a message % Outputs: data: Data with balanced SQUID signals. Set data=[] on failure. % ds: ds structure for balanced data. Set ds=-1 on failure. % In any event, print error messages.if exist('messages')~=1;messages=1;end % The balance and unbalance is made complicated because this code allows for situations % where the reference gradiometers are also balanced (although this option seems never % to be used). % Function calls: Most functions are called only once, and are intended to be % called only by setCTFDataBalance or its subprograms. % - getCTFBalanceCoefs. Called by balance_data and unbalance_data. Gets the balance % tables from structure ds. % Included in this listing: % - getDsBalance: Gets the current balance state of the data and checks for error in % the grad_order_no field of ds.rs4.senres. % - check_balance : Makes balance1 into [2 4] character arrays. % - unbalance_data : Converts data from balance0 to unbalanced. % - balance_data: Converts data from unbalanced to balance1. % - reindex : Called by functions unbalance_data and balance_data to re-order indices % when chanList does not include all the channels, or the channels have % been reordered in array data. % If virtual memory is a problem, consider bringing functions balance_data and % unbalance_data into the code. In the present configuration, a copy of array data is % made when these functions are called. % In the event of an error, returns data=[], ds1=-1 This should force an error in the % calling program. persistent chanListWarning if nargout==0 & nargin==0 fprintf(['\nsetCTFDataBalance: Version 1.1 13 April 2007 ',... 'Balances MEG data.\n',... '\t\tCall : ',... '[data1,ds1]=setCTFDataBalance(data0,ds0,balance1,unit,chanList,messages);\n\n']); return end buffsize=6e6; % process blocks of buffsize words (=8*buffsize bytes) at a time balanceOptions=strvcat('NONE','G1BR','G2BR','G3BR'); unit_options=strvcat('fT','T','phi0','int'); default_unit='fT'; % Check that the inputs are sensible. if nargin<3 fprintf(['\nsetCTFDataBalance: Only %d input arguments? ',... 'Must specify at least data, ds and balance.\n\n'],nargin); data=[];ds=-1; return elseif ~any(strmatch(class(data),strvcat('single','double'))) | isempty(data) | ... ~isstruct(ds) | isempty(ds) | isempty(balance1) |~ischar(balance1) fprintf('\nsetCTFDataBalance: Wrong argument types or sizes.\n\n'); whos data ds balance1 data=[];ds=-1; return elseif ~isfield(ds,'res4') fprintf('\nsetCTFDataBalance: Field res4 is missing from structure ds.\n\n'); ds data=[];ds=-1; return end if nargout~=2 fprintf(['\nsetCTFDataBalance: %d output arguments specified. ',... 'Must have 2 outputs (data,ds).\n\n'],nargout); data=[];ds=-1; return end % Single or double precision data. prec=class(data); % Force upper-case characters balance1=upper(balance1); % Check that arrays data and chanList are consistent and sensible if size(data,2)>ds.res4.no_channels fprintf('\nsetCTFDataBalance: ds.res4.no_channels=%d, but size data=[',... ds.res4.no_channels); fprintf(' %d',size(data));fprintf(']\n\n'); data=[];ds=-1; return end if exist('chanList')~=1;chanList=[];end if ~isempty(chanList) % chanList~=[]. Check chanList if ~isnumeric(chanList) fprintf('\nsetCTFDataBalance: chanList has the wrong type.\n\n'); whos data ds balance1 chanList data=[];ds=-1; return else % chanList is numeric and non-empty % Check that chanList is a vector if sum(size(chanList)>1)>1 fprintf('\nsetCTFDataBalance: size(chanList)=[');fprintf(' %d',size(chanList)); fprintf('] Not a vector.\n\n'); data=[];ds=-1; % Force an error in the calling program return else chanList=reshape(chanList,1,length(chanList)); % chanList is a row vector. if any(chanList<=0) | any(chanList>ds.res4.no_channels) | ... length(chanList)~=size(data,2) fprintf('setCTFDataBalance: Error in input chanList:\n'); fprintf(' min(chanList)=%d max(chanList)=%d Dataset has %d channels.\n',... min(chanList),max(chanList),ds.res4.no_channels); fprintf('length(chanList)=%d size(data)=[',length(chanList)); fprintf(' %d',size(data)); fprintf('] Must have length(chanList)=size(data,2)\n'); data=[];ds=-1; % Force an error in the calling program return end end end else % chanList=[]. Array data must include all of the channels. if size(data,2)<ds.res4.no_channels if isempty(chanListWarning) fprintf('setCTFDataBalance: No chanList supplied and size(data)=['); fprintf(' %d',size(data));fprintf(']\n'); fprintf(' Set chanList=1:%d\n',size(data,2)); fprintf(' No. of channels=ds.res4.no_channels=%d\n',... ds.res4.no_channels); chanListWarning=1; end chanList=1:size(data,2); end end % Check the data units, convert to lower case and flag incorrect unit specification if ~exist('unit'); unit=default_unit; elseif isempty(unit); unit=default_unit; elseif ~ischar(unit) fprintf('\nsetCTFDataBalance: Input unit has the wrong type: class(unit)=%s\n\n',... class(unit)); data=[];ds=-1; return end unit=lower(unit); if isempty(strmatch(unit,lower(unit_options))) fprintf('\nsetCTFDataBalance: unit=%s. Must be one of',unit); for k=1:size(unit_options,1);fprintf(' %s',unit_options(k,:));end;fprintf('\n'); data=[];ds=-1; % Force an error in the calling program return end % Make sure message request is sensible. This is important only as a way of checking % that the input list is sensible. The value of messages does not affect the output of % setCTFDataBalance. if exist('messages')~=1;messages=1;end if ~isnumeric(messages) fprintf(['\nsetCTFDataBalance: Input messages has the wrong type: ',... 'class(messages)=%s\n\n'],class(messages)); data=[];ds=-1; return elseif isempty(messages); messages=1; elseif ~isequal(size(messages),[1 1]) fprintf('\nsetCTFDataBalance: Input messages doesn''t make sense. size(messages)=['); fprintf(' %d',size(messages));fprintf('] (Must be [1 1])\n\n'); data=[];ds=-1; return elseif messages<0 | messages>2 fprintf('\nsetCTFDataBalance: Input messages=%d. Must be [], 0, 1 or 2.\n\n',messages); data=[];ds=-1; return end % Process data in blocks of nChBlock channels to reduce virtual memory demand. nChBlock=max(1,floor(buffsize/size(data,1))); % badGref = list of bad reference gradiometers referred to dataset channel numbering. % badGMEG = list of bad MEG gradiometers referred to dataset channel numbering. % These gradiometers are considered bad because their grad_order_no is wrong, not % because thay are listed in ds.BadChannels [balance0,badGref,badGMEG,Greflist,GMEGlist]=getDsBalance(ds); if strmatch('BAD',balance0) fprintf(['\nsetCTFDataBalance: The balance order of the Grefs and/or the MEG ',... 'channels cannot be determined.\n',... ' Check ds.res4.senres().grad_order_no.\n\n']); data=[];ds=-1; % Force an error in the calling program return end % Check balance1 and put in a standard form. balance1=check_balance(balance1); if isempty(balance1) | isempty(balance0) fprintf(['\nsetCTFDataBalance: size(ds balance) =[%d %d] (after call to ',... 'getDsBalance.)\n',... ' size(new balance)=[%d %d] (after call to check_balance.)\n\n'],... size(balance0),size(balance1)); data=[];ds=-1; % Force an error in the calling program return end % Print a message? chanset=strvcat('MEGs','Grefs'); for k=1:2 if messages==2 | (messages==1 & ~strcmp(balance0(k,:),balance1(k,:))) fprintf('setCTFDataBalance: Adjusting %s from balance=%s to balance=%s.\n',... chanset(k,:),balance0(k,:),balance1(k,:)); end end clear k chanset; if isequal(balance0,balance1) return end % Convert from balance0 to unbalanced. if ~isequal(balance0,strvcat('NONE','NONE')); data=unbalance_data(data,ds,balance0,unit,nChBlock,chanList,badGref); % unbalance_data returns data=[] when list badGref includes a Gref that is required for % balancing. if isempty(data);ds=-1;return;end end % Convert from unbalanced to balance1. if ~isequal(balance1,strvcat('NONE','NONE')); % balance_data returns data=[] when badGref includes a Gref that is required for % balancing. data=balance_data(data,ds,balance1,unit,nChBlock,chanList,badGref,messages); if isempty(data);ds=-1;return;end end % Mark the balance order in structure ds. % Make sure that the bad channels are marked with a different order. This will force % errors if these data are used later. Set the data in the bad channels to zero, and add % the bad channels to ds.BadChannels. Gorder=strmatch(balance1(2,:),balanceOptions)-1; MEGorder=strmatch(balance1(1,:),balanceOptions)-1; for k=setdiff(Greflist,badGref) ds.res4.senres(k).grad_order_no=Gorder; end for k=setdiff(GMEGlist,badGMEG) ds.res4.senres(k).grad_order_no=MEGorder; end for k=badGref ds.res4.senres(k).grad_order_no=0; end for k=badGMEG ds.res4.senres(k).grad_order_no=round(3-MEGorder); end % Set channels with bad balance order parameter to zero. kBad=[badGref badGMEG]; if ~isempty(chanList) kBad=reindex(chanList,intersect(chanList,kBad)); end for k=kBad if strcmp(prec,'single') data(:,k,:)=single(zeros(size(data,1),1,size(data,3))); else data(:,k,:)=zeros(size(data,1),1,size(data,3)); end end clear k Gorder MEGorder; if isempty([badGref badGMEG]);return;end % Add bad channels to ds.BadChannels if ~isfield(ds,'BadChannels');ds.BadChannels=char([]);end BadList=union(badGref,badGMEG); if ~isempty(ds.BadChannels) for k=1:size(ds.BadChannels,1) BadList=[BadList strmatch(deblank(ds.BadChannels(k,:)),ds.res4.chanNames)]; end ds.BadChannels=char([]); end for k=sort(BadList) ds.BadChannels=strvcat(ds.BadChannels,strtok(ds.res4.chanNames(k,:),'- ')); end return % ************** End of function setCTFDataBalance ********************************** % ********************************************************************************** % ******************************************************************************** % ******************* function getDsBalance ************************************** function [dsbalance,badGref,badGMEG,Greflist,GMEGlist]=getDsBalance(ds); % Get the current balance state from structure ds. Check for channels that are marked % as bad by having a different grad_order_no. % Check whether things make sense. % Return the balance and lists of bad gradiometers. % Also return the complete list of reference gradiometers and MEG gradiometers since % setCTFDataBalance uses them. % In normal operation, getDsBalance will return badGref=[], badGMEG=[]; balanceOptions=strvcat('NONE','G1BR','G2BR','G3BR'); Greflist=[]; % List of reference gradiometers (sensorTypeIndex=1) Greforder=[]; GMEGlist=[]; % List of MEG gradiometers (sensorTypeIndex=5) GMEGorder=[]; % Make lists of sensors and gradient balancing. for k=1:ds.res4.no_channels if ds.res4.senres(k).sensorTypeIndex==1 Greflist=[Greflist k]; Greforder=[Greforder ds.res4.senres(k).grad_order_no]; elseif ds.res4.senres(k).sensorTypeIndex==5 GMEGlist=[GMEGlist k]; GMEGorder=[GMEGorder ds.res4.senres(k).grad_order_no]; end end % Reference balance OK? dsbalance=char(zeros(2,4)); if any(Greforder<0) | any(Greforder>1) fprintf(['\nsetCTFDataBalance: The reference gradiometer balance orders make no ',... 'sense.\n %2d Gref channels. %2d have grad_order_no=0\n'],... length(Greflist),sum(Greforder==0)); fprintf(' %2d have grad_order_no=1\n',sum(Greforder==1)); fprintf(' %2d have grad_order_no<0 or >1\n',... sum(Greforder>1)+sum(Greforder<0)); dsbalance=strvcat(dsbalance(1,:),'BAD'); badGref=Greflist; % Mark everything bad elseif sum(Greforder==0)>sum(Greforder==1) dsbalance=strvcat(dsbalance(1,:),balanceOptions(1,:)); badGref=Greflist(find(Greforder~=0)); else dsbalance=strvcat(dsbalance(1,:),balanceOptions(2,:)); badGref=Greflist(find(Greforder~=1)); end % Sort MEG gradiometer balance. In correct operation, all MEG channels should have the % same balance (0,1,2 or 3). for bal=0:3 nMEGbal(bal+1)=sum(GMEGorder==bal); end [maxbal MEGorder]=max(nMEGbal); MEGorder=MEGorder-1; if maxbal>ceil(0.5*length(GMEGlist)) & all(GMEGorder>=0) & all(GMEGorder<=3) dsbalance(1,:)=balanceOptions(MEGorder+1,:); badGMEG=GMEGlist(GMEGorder~=MEGorder); else fprintf('\nsetCTFDataBalance: The MEG-sensor balance orders make no sense.\n'); fprintf(' %3d MEG gradiometer channels.\n',length(GMEGlist)); fprintf(' %3d have grad_order_no=%d\n',[nMEGbal;0:3]); if sum(nMEGbal)<length(GMEGlist) fprintf(' %3d have grad_order_no<0 or >3\n\n',... length(GMEGlist)-sum(nMEGbal)); end dsbalance=strvcat('BAD',dsbalance(2,:)); badGMEG=GMEGlist; % Mark everything bad` end return % ************** End of function getDsBalance ********************************** % ********************************************************************************** % ******************************************************************************** % ******************* function check_balance ************************************** function balance=check_balance(balance); % make sure that character array balance has the correct format. balance_options=strvcat('NONE','G1BR','G2BR','G3BR'); % Make balance into a [4 2] character array if ~ischar(balance) & ~isempty(balance) fprintf('setCTFDataBalance (check_balance): balance is not a character array.\n'); balance=char([]); % Force an error. return; elseif isempty(deblank(balance)) balance=strvcat('NONE','NONE'); return elseif size(balance,1)==1 balance=strvcat(balance,'NONE'); % No Gref balancing elseif size(balance,1)>2 fprintf('setCTFDataBalance (check_balance): size(balance)=[%d %d]?\n',size(balance)); balance=char([]); % Force an error. return end balance=upper(balance); if size(balance,2)>4;balance=balance(:,1:4);end for k=1:2 % k=1:MEGs, k=2:Grefs if isempty(deblank(balance(k,:))); balance(k,:)='NONE'; elseif isempty(strmatch(balance(k,:),balance_options(1:(6-2*k),:))) fprintf('check_balance: balance(%d,:)=%s Not an allowed option.\n',k,balance(k,:)); balance=char([]); % Force an error? return end end return % ************** End of function check_balance ********************************** % ********************************************************************************** % ************************************************************************ % ****** Convert from balanced to unbalanced data ********************** function data=unbalance_data(data,ds,balance0,unit,nChBlock,chanList,badGref); % Inputs: data: Data array. size(data)=[Npt Nchan Ntrial] % ds: ds strtcuture for the data. % balance0: balance0(1,:) = MEG balance before unbalancing % balance0(2,:) = Gref balance before unbalancing % unit : 'ft','t' (physical units) % 'int', 'phi0' % chanList: List if channels included in array data (referred to the channel % numbering in structure ds) % badGref: A list of gRef channels markes as bad because they seen to have the % wrong grad_order_no. if ~exist('chanList');chanList=[];end prec=class(data); % Read the balance tables for both MEG and reference gradiometers. % Usually balance0(2,:)='NONE', and it returns alphaGref=[]. [alphaMEG,MEGindex,MEGbalanceindex,alphaGref,Grefindex,Gbalanceindex]=... getCTFBalanceCoefs(ds,balance0,unit); % Unbalance the Grefs first. In almost all cases, balance0(2,:)='NONE', % so the program will skip this section. if ~strcmp(upper(balance0(2,:)),'NONE') % The index lists give channel numbers referred to data set channel numbering if isempty(Grefindex) | isempty(Gbalanceindex) fprintf('setCTFDataBalance (unbalance_data): balance=%s\n',... '\t\tsize(Grefindex)=[%d %d] size(Gbalanceindex)=[%d %d] ??\n',balance0(2,:),... size(Grefindex),size(Gbalanceindex)); data=[]; % Force an error in the calling program return end % Are there any badGref in the Gbalanceindex list? if ~isempty(intersect(Gbalanceindex,badGref)) fprintf(['setCTFDataBalance (unbalance_data): A reference gradiometer marked bad ',... 'because of its grad_order_no\n',... ' appears in the list of reference sensors required for ',... '%s Gref balancing.\n'],balance0(2,:)); fprintf(' Gbalanceindex=');fprintf(' %d',Gbalanceindex);fprintf('\n'); fprintf(' badGref=');fprintf(' %d',badGref);fprintf('\n'); data=[]; % Force an error in the calling program return end if isequal(chanList,1:max(max(Gbalanceindex),max(Grefindex)));chanList=[];end if ~isempty(chanList) if ~isempty(setdiff(Gbalanceindex,chanList)) fprintf(['setCTFDataBalance (unbalance_data): List chanList does not include ',... 'all of the reference sensors in the %s table for reference gradiometers.\n'],... balance0(2,:)); data=[]; return end [Gbalanceindex,Grefindex,alphaGref]=... reindex(chanList,Gbalanceindex,Grefindex,alphaGref); end % Balancing reference gradiometers: % balanced_data(:,Grefindex) % =raw_data(:,Grefindex)-raw_data(:,Gbalanceindex)*alphaGref % size(alphaGref)=[length(Gbalanceindex) length(Grefindex)] % Note : not all of the sensors in list Gbalanceindex are gradiometers. % Rewrite as a matrix equation: % balanced_data(:,Gindex)=raw_data(:,Gindex)*Gbalmat % Gindex=list of all the sensors involved in balancing the reference % gradiometers. % size(Gbalmat)=[length(Gindex) length(Gindex)] [Gindex]=union(Gbalanceindex,Grefindex); [Cx,Fbal]=intersect(Gindex,Gbalanceindex); % Gindex(Fbal)=Gbalanceindex [Cx,Fref]=intersect(Gindex,Grefindex); % Gindex(Fref)=Grefindex Gbalmat=eye(length(Gindex)); Gbalmat(Fbal,Fref)=Gbalmat(Fbal,Fref)-alphaGref; clear Fbal Fref Cx Grefindex Gbalanceindex alphaGref; % Convert to unbalanced reference gradiometers for pt=1:size(data,3) if strcmp(prec,'single') data(:,Gindex,pt)=single(double(data(:,Gindex,pt))/Gbalmat); else data(:,Gindex,pt)=data(:,Gindex,pt)/Gbalmat; end end clear Gbalmat pt; end % Finished unbalancing the reference gradiometers if strcmp(upper(balance0(1,:)),'NONE'); return; % No unbalancing required for MEG gradiometers end % Are there any badGref in the MEGbalanceindex list? if ~isempty(intersect(MEGbalanceindex,badGref)) fprintf(['setCTFDataBalance (unbalance_data): A reference gradiometer marked bad ',... 'because of its grad_order_no\n',... ' appears in the list of reference sensors required for ',... '%s MEG balancing.\n'],balance0(1,:)); fprintf(' MEGbalanceindex=');fprintf(' %d',MEGbalanceindex);fprintf('\n'); fprintf(' badGref=');fprintf(' %d',badGref);fprintf('\n'); data=[]; % Force an error in the calling program return end % Don't bother with chanList if it obviously includes all the SQUID channels and in % the dataset ordering. if isequal(chanList,1:max(max(MEGindex),max(MEGbalanceindex)));chanList=[];end if isempty(alphaMEG) | isempty(MEGindex) | isempty(MEGbalanceindex) return; elseif ~isequal(size(alphaMEG),[length(MEGbalanceindex) length(MEGindex)]) fprintf(['setCTFDataBalance (unbalance_data): size(alphaMEG)=[%d %d] ',... 'length(MEGbalanceindex)=%d length(MEGindex)=%d\n'],... size(alphaMEG),length(MEGbalanceindex),length(MEGindex)); data=[]; return elseif all(reshape(alphaMEG,1,length(MEGbalanceindex)*length(MEGindex))==0) return end % Make the index lists refer to the entries in chanList. if ~isempty(chanList) if ~isempty(setdiff(MEGbalanceindex,chanList)) fprintf(['setCTFDataBalance (unbalance_data): List chanList does not include ',... 'all of the reference sensors in the %s table for MEG gradiometers.\n'],... balance0(1,:)); data=[]; return end [MEGbalanceindex,MEGindex,alphaMEG]=... reindex(chanList,MEGbalanceindex,MEGindex,alphaMEG); end % Reverse the balance applied to the MEG channels. Needs unbalanced reference data. if ~isempty(alphaMEG) & ... ~isequal(alphaMEG,zeros(length(MEGbalanceindex),length(MEGindex))) % Unbalance MEG data trial-by-trial and in blocks of nChBlock channels for pt=1:size(data,3) for m=1:nChBlock:length(MEGindex) mptr=m:min(m+nChBlock-1,length(MEGindex)); MEGblock=MEGindex(mptr); if strcmp(prec,'single'); data(:,MEGblock,pt)=single(double(data(:,MEGblock,pt))+... double(data(:,MEGbalanceindex,pt))*alphaMEG(:,mptr)); else data(:,MEGblock,pt)=data(:,MEGblock,pt)+... data(:,MEGbalanceindex,pt)*alphaMEG(:,mptr); end end end clear pt m mptr MEGblock; end return % ******************* End of function unbalance_data **************************** % *********************************************************************************** % *********************************************************************************** % *************** Convert from unbalanced data to balanced data ******************* function data=balance_data(data,ds,balance,unit,nChBlock,chanList,badGref,messages); % Extracts the balance table from structure ds and balances data as specified in balance. % If the balancing requires a reference gradiometer marked in the badGref list, an error % message is printed and the data array is set to []. % If a MEG channel is missing from the balance table, then the channel is set to zero. % Inputs: data: The aray of data to be balanced. % ds: The ds structure read by readCTFds that contains the balance table. % balance: The desired output balance state. % balance(1,:) = MEG balance % balance(2,:) = Gref balance % unit : Data units ('fT','T','phio','int') % nChBlock : rad the data in blocks of nChBlock to reduce memory requirements. % chanList: List of the channels that actual;ly appear in data. referred to the % dataset channel numbering (not to te list of SQUID channels) % badGref: List of reference gradiometer channels that cannot be used for % balancing. if ~exist('chanList');chanList=[];end prec=class(data); [alphaMEG,MEGindex,MEGbalanceindex,alphaGref,Grefindex,Gbalanceindex]=... getCTFBalanceCoefs(ds,balance,unit); if ~strcmp(lower(balance(1,:)),'NONE'); % Are there any MEG channels missing from list MEGindex (i.e. missing from the balance table)? % Make a list of MEG channels referred to dataset channel numbering. MEGlist=[]; for k=1:ds.res4.no_channels if ds.res4.senres(k).sensorTypeIndex==5;MEGlist=[MEGlist k];end end missingMEG=setdiff(MEGlist,MEGindex); if ~isempty(missingMEG) & messages~=0 & ... (isempty(chanList) | intersect(missingMEG,chanList)) fprintf('setCTFDataBalance (balance_data): Channel(s) missing from the balance table:\n'); for k=missingMEG fprintf('\t%3d: %s\n',k,strtok(ds.res4.chanNames(k,:),'- ')); end end clear MEGlist k; % Are there any badGref in the MEGbalanceindex list? if ~isempty(intersect(MEGbalanceindex,badGref)) fprintf(['setCTFDataBalance (unbalance_data): A reference gradiometer marked bad ',... 'because of its grad_order_no\n',... ' appears in the list of reference sensors required for ',... '%s MEG balancing.\n'],balance(1,:)); fprintf(' MEGbalanceindex=');fprintf(' %d',MEGbalanceindex);fprintf('\n'); fprintf(' badGref=');fprintf(' %d',badGref);fprintf('\n'); data=[]; % Force an error in the calling program return end if isequal(chanList,1:max(max(MEGindex),max(MEGbalanceindex))); chanList=[]; end % Check if alphaMEG is all zeros or is improperly defined. do_balance=~isempty(alphaMEG) & ~isempty(MEGindex) & ~isempty(MEGbalanceindex); if do_balance if ~isequal(size(alphaMEG),[length(MEGbalanceindex) length(MEGindex)]); fprintf(['setCTFDataBalance (balance_data): size(alphaMEG)=[%d %d] ',... 'length(MEGbalanceindex)=%d length(MEGindex)=%d\n'],... size(alphaMEG),length(MEGbalanceindex),length(MEGindex)); data=[]; return elseif isempty(chanList) & size(data,2)<max(MEGindex) fprintf(['setCTFDataBalance (balance_data): chanList=[], but size(data,2)=%d ',... 'max(MEGindex)=%d ?\n'],size(data,2),max(MEGindex)); data=[]; return end do_balance=~all(reshape(alphaMEG,1,length(MEGbalanceindex)*length(MEGindex))==0); end if do_balance if ~isempty(chanList) % Re-sort the reference sensor indices and make them refer to chanList [MEGbalanceindex,MEGindex,alphaMEG]=... reindex(chanList,MEGbalanceindex,MEGindex,alphaMEG); % Refer the missing MEG channels to chanList if ~isempty(missingMEG);missingMEG=reindex(chanList,missingMEG);end end % Balance MEGs data trial-by-trial and in blocks of nChBlock channels for pt=1:size(data,3) for m=1:nChBlock:length(MEGindex) mptr=m:min(m+nChBlock-1,length(MEGindex)); MEGblock=MEGindex(mptr); if strcmp(prec,'single') data(:,MEGblock,pt)=single(double(data(:,MEGblock,pt))-... double(data(:,MEGbalanceindex,pt))*alphaMEG(:,mptr)); else data(:,MEGblock,pt)=data(:,MEGblock,pt)-... data(:,MEGbalanceindex,pt)*alphaMEG(:,mptr); end end % Zero the channel with missing coefficients. They cannot possibly be correct. for m=missingMEG if strcmp(prec,'single') data(:,m,pt)=single(zeros(size(data,1),1,1)); else data(:,m,pt)=zeros(size(data,1),1,1); end end end end clear alphaMEG MEGindex MEGbalanceindex Ix pt m mptr MEGblock do_balance missingMEG; end % Finished balancing the MEG data % Is Gref balancing requested? In most cases, balance(2,:)='NONE' if size(balance,1)==1;return;end if strcmp(balance(2,:),'NONE');return;end % Are there any bad Gref sensors in the Gbalanceindex list? if ~isempty(intersect(Gbalanceindex,badGref)) fprintf(['setCTFDataBalance (balance_data): A reference gradiometer marked bad ',... 'because of its grad_order_no\n',... ' appears in the list of reference sensors required for ',... '%s Gref balancing.\n'],balance(2,:)); fprintf(' Gbalanceindex=');fprintf(' %d',Gbalanceindex);fprintf('\n'); fprintf(' badGref=');fprintf(' %d',badGref);fprintf('\n'); data=[]; % Force an error in the calling program return end % Make the index lists refer to the entries in chanList. if ~isempty(chanList) [Gbalanceindex,Grefindex,alphaGref]=... reindex(chanList,Gbalanceindex,Grefindex,alphaGref); end % Balance the reference channels for pt=1:size(data,3) for m=1:nChBlock:length(Grefindex) mptr=m:min(m+nChBlock-1,length(Grefindex)); Grefblock=Grefindex(mptr); if strcmp(prec,'single'); data(:,Grefblock,pt)=single(double(data(:,Grefblock,pt))-... double(data(:,Gbalanceindex,pt))*alphaGref(:,mptr)); else data(:,Grefblock,pt)=data(:,Grefblock,pt)-... data(:,Gbalanceindex,pt)*alphaGref(:,mptr); end end end clear pt m mptr Grefblock Grefindex Gbalanceindex; return % ******************** End of function balance_data **************************** % *********************************************************************************** % *********************************************************************************** % ************** Reassign indices in sensor and reference lists. ****************** function [refindex,sensorindex,alfa2]=reindex(chanlist,reflist,sensorlist,alfa); % Reindex lists reflist and sensor list, and reorders 2nd index of matrix alfa. % Inputs : Lists of sensor and references for balancing and matrix of balance % coefficients. % Outputs : index lists: chanlist(refindex)=reflist % chanlist(sensorindex)=sensorlist % alfa2=The part of alfa that refers to the part of sensorlist % that appears in chanlist. refindex=[];sensorindex=[];alfa2=[]; % Force an error on an early return. % Sensible argument lists? if nargout>nargin-1 | nargout==0 fprintf('reindex: %d outputs, but only %d inputs.\n',nargout,nargin); return end [X c1 c2]=intersect(chanlist,reflist); [Y ylist]=sort(c2); refindex=c1(ylist); if length(refindex)~=length(reflist) fprintf('setCTFDataBalance (reindex): length(refindex)=%d length(reflist)=%d\n',... length(refindex),length(reflist)); fprintf(' Some references are not included in chanlist.\n'); return end if nargin>=3 & nargout>=2 [X c1 c2]=intersect(chanlist,sensorlist); [Y ylist]=sort(c2); sensorindex=c1(ylist); end if nargin>=4 & nargout>=3 alfa2=alfa(:,Y); end return % ***********************************************************************************
github
philippboehmsturm/antx-master
writeCTFMRI.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/writeCTFMRI.m
8,517
utf_8
c6bdbc15d67e3621b8109f6b399f5eae
function writeCTFMRI(fileName,MRItags,MRIdata); % Version 1.2 25 April 2007 Module writeCPersist changed, and removed from this text % file. % Version 1.1 19 April 2007 : No changes from v1.0 % Version 1.0 27 Oct. 2006 % Write a CTF MRI in v4 format. % For file format and a defineition fo CPersist objects, see document % "CTF MEG FIle Formats", PN900-0088 % Input: fileName : Name of MRI file including path and extension. % Outputs: MRItags : CPersist tags describing the MRI in the format of the structure array % produced by readMRI. There must be no start and stop tags. % Clnical use messages are added to _PATIENT_ID, _PATIENT_NAME, % _STUDY_COMMENTS, _CTFMRI_COMMENTS. % I.e name='WS1_', type=0, data=[] and % name='EndOfParameters', type -1, data=[] % MRIdata: 256x256x256 array. No value may exceed 2^15-1 since the data are % converted to int16. % MRIdata(j,k,n) = pixel(j,k) of slice n. % j = coronal slice. j=1:anterior, j=256:posterior % k = axial slice. k=1:superior, k=256:inferior % n = sagittal slice. j=1:left, j=256:right % Calls: writeCPersist (not included in this listing) % update_MRI_descriptors (included in this listing) persistent printWarning clinical_use_message='NOT FOR CLINICAL USE'; creatorSoftware='writeCTFMRI.m'; % Added to .infods file NpxNot256Warning=1; % Print a warning if the no. of slices is not 256 if nargin==0 & nargout==0 fprintf(['writeCTFMRI: Version 1.2 25 April 2007 Creates MRIs in CTFMRI v4 format.\n',... '\twriteCTFMRI(MRIfilename,MRItags,MRIdata);\n',... '\t\tMRIfilename = complete name including path and extension .mri\n',... '\t\tMRItags= structure array listing descriptors in the format produced',... 'by function readMRI.\n',... '\t\tMRIdata = MRI data array.\n\n',... '\tSee document "CTF MEG FIle Formats", PN900-0088\n']); return end if nargin~=3 fprintf(['writeCTFMRI: Found %d input arguments. ',... 'Must have 3 inputs (filename,MRItags,MRIdata).\n'],nargin); return elseif ~ischar(fileName) | isempty(fileName) | ~isstruct(MRItags) | isempty(MRItags) |... ~isnumeric(MRIdata) | isempty(MRIdata) fprintf('writeCTFMRI : Wrong argument type, or argument(s) empty.\n'); whos fileName MRItags MRIdata; return elseif ~isfield(MRItags,'name') | ~isfield(MRItags,'type') | ~isfield(MRItags,'data') fprintf('writeCTFMRI: MRItags does not have the correct fields (name, type,data).\n'); MRItags return elseif ndims(MRIdata)~=3 | ~all(size(MRIdata)==size(MRIdata,1)) fprintf('writeCTFMRI: size(MRIdata)=[');fprintf(' %d',size(MRIdata));... fprintf('] Must be Npx*[1 1 1] in CTF MRI format.\n'); return elseif exist(fileName)==2 fprintf('writeCTFMRI: File %s already exists.\n',fileName); return end % Verify that this really is a CTF MRI. name=char([]); for k=1:length(MRItags); name=strvcat(name,MRItags(k).name); end isCTFMRI=(~isempty(strmatch('_CTFMRI_',name))); MRIsize=size(MRIdata,1); % assume square slices nSlice=size(MRIdata,3); if NpxNot256Warning & MRIsize~=256 fprintf(['\nwriteCTFMRI: size(MRIdata)=%d*[1 1 1]. CTF MRI format standard is ',... '256*[1 1 1].\n\t\t\tThis file may not work with MRIViewer.\n\n'],MRIsize); end if isCTFMRI sizeTag=strmatch('_CTFMRI_SIZE',name,'exact'); if length(sizeTag)~=1 isCTFMRI=0; else MRItags(sizeTag).data=MRIsize; end clear sizeTag; end if ~isCTFMRI fprintf(['writeCTFMRI: Structure array MRItags does not contain the tags ',... 'for a CTF MRI file (v4 format).\n'],fileName); return end clear isCTFMRI % Add clinical use and creator software messgaes MRItags=update_MRI_descriptors(MRItags,clinical_use_message,creatorSoftware); % Add MRIdata to MRItags, and add start and end tags nTag=length(MRItags); MRItags(2:nTag+1)=MRItags(1:nTag); MRItags(1)=struct('name','WS1_','type',0,'data',[]); % Start tag nTag=nTag+1; for k=1:nSlice MRItags(nTag+k)=struct('name',['_CTFMRI_SLICE_DATA#',num2str(k,'%5.5d')],'type',3,... 'data',int16(reshape(MRIdata(:,:,k),MRIsize^2,1))); end nTag=nTag+nSlice; MRItags(nTag+1)=struct('name','EndOfParameters','type',-1,'data',[]); % End tag clear MRIdata k nSlice MRIsize nTag; if isempty(printWarning) fprintf(['\nwriteCTFMRI: The MRI you are creating has been processed by software not\n',... '\tmanufactured by VSM MedTech Ltd. and that has not received marketing clearance\n',... '\tfor clinical applications. This MRI should not be later employed for clinical\n',... '\tand/or diagnostic purposes.\n']); printWarning=1; end % Create the MRI file. writeCPersist(fileName,MRItags); return %%%%%%%%%%%%%% end of readMRI %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%% Function update_MRI_descriptors %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MRItags=update_MRI_descriptors(MRItags,comment,creatorSoftware); % Makes sure that certain tags are in structure MRItags. % Inputs: MRItags : Structure array produced by readCTFMRI. % comment : Character string that is added to infods tags listed in addCommentTag. % creatorSoftware : Character string indicating that the MRI set was % created by writeCTFMRI. Added to the tags listed in addCreatorTag. % Adds comment (clinical use message) and creator software name to % MRI tags that will display the comment. addCommentTag=strvcat('_PATIENT_ID','_PATIENT_NAME',... '_STUDY_COMMENTS','_CTFMRI_COMMENT'); % MRI tags that will display the creator software. addCreatorTag=strvcat('_CTFMRI_COMMENT'); % Check that the comment and creator tags are in structure MRItags. If not, issue an % error message and set MRItags to []. addTag=strvcat(addCommentTag,addCreatorTag); addIndex=zeros(1,size(addTag,1)); k=0; for k=1:length(MRItags) tagIndex=strmatch(MRItags(k).name,addTag,'exact'); addIndex(tagIndex)=k; if all(addIndex)~=0;break;end end % addTag(j) is MRItags(addIndex(j)) if any(addIndex==0) % At least one of the addTags is missing. Print an error message and return. fprintf(['writeCTFMRI (update_MRI_descriptors): At least one tag is missing from ',... 'structure array MRItags.\n']); for k=1:size(addTag,1) if isempty(strmatch(addTag(k,:),addTag(1:k-1,:),'exact')) fprintf('\t\t\t%s\n',deblank(addTag(k,:))); end end MRItags=struct([]); % Force an error in the calling program. return end % Check that all of the addTags are text strings type=[MRItags.type]; if any(type(addIndex)~=9 & type(addIndex)~=10) fprintf('writeCTFMRI (update_MRI_descriptors): At least one of the new tags is not a character string.\n'); for k=1:length(addTag) if isempty(strmatch(addTag(k,:),addTag(1:k-1,:),'exact')) fprintf('\t\t\t%s type=%d\n',deblank(addTag(k,:)),type(addIndex(k))); end end MRItags=struct([]); % Force an error in the calling program. return end addCommentIndex=addIndex(1:size(addCommentTag,1)); addCreatorIndex=addIndex(size(addCommentTag,1)+[1:size(addCreatorTag,1)]); if exist('creatorSoftware')~=1; creatorSoftware=char([]); elseif ~ischar(creatorSoftware) creatorSoftware=char([]); else creatorSoftware=deblank(creatorSoftware); end if exist('comment')~=1; comment=char([]); elseif ~ischar(comment) comment=char([]); else comment=deblank(comment); end for k=addCreatorIndex if isempty(MRItags(k).data) MRItags(k).data=creatorSoftware; else MRItags(k).data=[creatorSoftware ' ' MRItags(k).data]; end end for k=addCommentIndex if isempty(MRItags(k).data) MRItags(k).data=comment; else MRItags(k).data=[comment ' ' MRItags(k).data]; end end % Shorten type 9 (CStr32) strings to 31 characters plus a terminating null. for k=addIndex if MRItags(k).type==9 & length(MRItags(k).data)>31; MRItags(k).data=[MRItags(k).data(1:31) char(0)]; end end return %%%%%%%%%%%%%% End of update_MRI_descriptors %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
philippboehmsturm/antx-master
readCTFds.m
.m
antx-master/freiburgLight/matlab/spm8/external/ctf/readCTFds.m
36,336
utf_8
4526ccf95cbee4b0f46584ff977b80ba
function ds=readCTFds(datasetname) % ************************************************************************ % % This program is provided to users of CTF MEG systems as a courtesy only. % It's operation has not been verified for clinical use. % Please do not redistribute it without permission from CTF Systems Inc. % % ************************************************************************ % readCTFds opens a CTF data set and creates a MATLAB structure with the information % in the .res4, .infods, .newds, .acq, .hc, .hist, .EEG, bad.segments, BadChannels, % ClassFile.cls andMarkerFile.mrk files. It confirms the existence of a .meg4 file % with the correct size. % See document CTF MEG File Formats, PN900-0088 for a description of the formats of % dataset files. % Author : Harold Wilson % ***************** Revisions and bug fixes ************************************** % Version 1.3 4 October 2007 % 1. readCTFds v1.2 failed when run in MATLAB 7.2, but ran correctly in % MATLAB 6.5 and 7.3. The failure occurred when calls to fscanf with a % final '\n' in the format string were followed by fgetl. In MATLAB 6.5 and 7.3, % this returns the next line of a text file, but in MATLAB 7.2, this % returns an empty charatcer string. % Changes were made to subprograms % - readHc, % - readClassFile % - readMarkerFile. % 2. In v1.1 and 1.2, if any of the head coil positions exceeded 100 cm, readHc % reported an error and returned hc=struct([]). In v1.3, is reports the error, % and returns the erroneaous values. % Version 1.2: 24 April 2007 % - readHc modified to read fMEG .hc files. % - readCPersist modified to handle extra bytes that appear in some .acq files. % Version 1.1: 13 April 2007 % readCTFds is modified to handle cases where the data files exceed a total of 2^31-8 % bytes. In these cases files .1_meg4,.2_meg4,... appear in the dataset. % *********************************************************************************** % Inputs : datasetname : Complete name of the data set directory. Includes the complete % path and the .ds extension. % Output: ds : A structure that gives data set parameters. % Function calls included in this listing: % - readRes4 % - readHc % - readEEG % - readMarkerFile % - readClassFile % - readBadSegments % - readVirtualChannels % External functions: - readCPersist Reads infods and acq files. % - The data directory is datasetname. % - path is the complete path to the directory including the last file delimiter. % - baseName is the directory name, less the last file extension. % - datasetname=[path,baseName,'.ds']; persistent printWarning multipleMeg4Files if nargin==0 & nargout==0 % Print a version number fprintf(['\treadCTFds: Version 1.3 4 October 2007 ',... 'Reads v4.1 and v4.2 CTF data sets including fMEG .hc files.\n',... '\tCall: ds=readCTFds(datasetname)\n',... '\t\tdatasetname = Name of the dataset including the path.\n',... '\t\tds = Structure containing all dataset information except for data in ',... 'the .meg4 file.\n\n']); return end MAX_COILS=8; MAX_BALANCING=50; % max. no. of balancing coefficients SENSOR_LABEL=31; % No. of characters in sensor labels in the balancing % coefficient tables len_sensor_name=32; % length of sensor coefficient records in bytes. See listing for MEGDefs.h %senres_lenrec=len_sensor_name+8+2+MAX_BALANCING*SENSOR_LABEL+8*MAX_BALANCING; % Allowed 8-byte headers for res4 and meg4 files. res4Headers=strvcat(['MEG41RS',char(0)],['MEG42RS',char(0)]); meg4Headers=strvcat(['MEG41CP',char(0)],['MEG42CP',char(0)]); delim=filesep; ds=struct([]); % Check that the data set exists. if exist('datasetname')~=1 fprintf('\nreadCTFds: No input datasetname specified.\n\n'); return elseif ~ischar(datasetname) | isempty(datasetname) | size(datasetname,1)~=1 fprintf('\nreadCTFds: Dataset name is not a string, or is empty, or is an array.\n\n'); whos datasetname return else % Separate datasetname into a path and the baseName and add extension .ds. datasetname=deblank(datasetname); ksep=max([0 findstr(datasetname,delim)]); baseName=datasetname((ksep+1):length(datasetname)); path=datasetname(1:ksep); % String path is terminated by the file delimiter (or path=[]). % Remove the last .ds from baseName. kdot=max(findstr(baseName,'.ds')); if kdot==(length(baseName)-2) baseName=baseName(1:(max(kdot)-1)); else datasetname=[datasetname,'.ds']; end clear ksep kdot; if exist(datasetname)~=7 fprintf('\nreadCTFds: Cannot find dataset %s.\n\n',datasetname); return end end % Check that the res4 and meg4 files exist. res4File=[datasetname,delim,baseName,'.res4']; meg4File=[datasetname,delim,baseName,'.meg4']; if exist(res4File)~=2 | exist(meg4File)~=2 fprintf('readCTFds: In directory %s, cannot find .res4 and/or .meg4 files.\n',... datasetname); return end % Check the headers on .meg4, .1_meg4, ... qFile=0; meg4Ext='.meg4'; meg4Size=[]; while 1 if qFile>0; meg4Ext=['.',int2str(qFile),'_meg4']; meg4File=[datasetname,delim,baseName,meg4Ext]; end if qFile>1 & isempty(multipleMeg4Files) fprintf('readCTFds: This dataset has multiple meg4 files.\n'); multipleMeg4Files=1; end fid=fopen(meg4File,'r','ieee-be'); if fid<=0;break;end D=dir([datasetname,delim,baseName,meg4Ext]); meg4Size=[meg4Size D.bytes]; meg4Header=char(fread(fid,8,'uint8')'); fclose(fid); if isempty(strmatch(meg4Header,meg4Headers,'exact')) fprintf('\nreadCTFds: %s file header=%s Valid header options:',meg4Ext,meg4Header); for k=1:size(meg4Headers,1);fprintf(' %s',meg4Headers(k,:));end fprintf('\n\n'); ds=struct([]); return end qFile=qFile+1; end Nmeg4=length(meg4Size); clear D fid qFile; % Add baseName and path to structure ds. ds=struct('baseName',baseName,'path',path); % Read the res4 file ds.res4=readRes4(res4File,res4Headers,... MAX_COILS,MAX_BALANCING,SENSOR_LABEL,len_sensor_name); if isempty(ds.res4);ds=struct([]);return;end dataBytes=4*ds.res4.no_trials*ds.res4.no_channels*ds.res4.no_samples; % Assemble ds.meg4. ds.meg4.fileSize=sum(meg4Size); ds.meg4.header=meg4Header; clear meg4Header meg4Size; % Does the size of the .meg4 file match the size specified by the .res4 file? if ds.meg4.fileSize~=8*Nmeg4+dataBytes fprintf(['\nreadCTFds: Data set error : size of meg4 file(s)\n\t\t',... '%10d bytes (from dir command)\n'],ds.meg4.fileSize); fprintf('\t\t%10d bytes (from res4 file)\n\n',8*Nmeg4+dataBytes); return end if isempty(printWarning) fprintf(['\nreadCTFds: You are reading CTF data for use with a software-application tool\n',... '\tthat is not manufactured by VSM MedTech Ltd. and has not received marketing\n',... '\tclearance for clinical applications. If CTF MEG data are processed by this tool,\n',... '\tthey should not be later employed for clinical and/or diagnostic purposes.\n\n']); printWarning=1; end % .infods file if exist([datasetname,delim,baseName,'.infods'])==2 ds.infods=readCPersist([datasetname,delim,baseName,'.infods']); end % .newds file if exist([datasetname,delim,baseName,'.newds'])==2 fid=fopen([datasetname,delim,baseName,'.newds'],'r','ieee-be'); ds.newds=char(fread(fid,'uint8'))'; fclose(fid); clear fid; end % .acq file if exist([datasetname,delim,baseName,'.acq'])==2 ds.acq=readCPersist([datasetname,delim,baseName,'.acq']); end % .hist file if exist([datasetname,delim,baseName,'.hist'])==2 fid=fopen([datasetname,delim,baseName,'.hist'],'r','ieee-be'); ds.hist=char(fread(fid,'uint8'))'; fclose(fid); end % .hc file if exist([datasetname,delim,baseName,'.hc'])==2 ds.hc=readHc([datasetname,delim,baseName,'.hc']); end % .eeg file if exist([datasetname,delim,baseName,'.eeg'])==2 ds.eeg=readEEG([datasetname,delim,baseName,'.eeg']); if isempty(ds.eeg);ds=rmfield(ds,'eeg');end end % marker file if exist([datasetname,delim,'MarkerFile.mrk'])==2 ds.mrk=readMarkerFile([datasetname,delim,'MarkerFile.mrk']); end % ClassFile if exist([datasetname,delim,'ClassFile.cls'])==2 ds.TrialClass=readClassFile([datasetname,delim,'ClassFile.cls']); end % bad.segments if exist([datasetname,delim,'bad.segments'])==2 ds.badSegments=readBadSegments([datasetname,delim,'bad.segments']); end % BadChannels if exist([datasetname,delim,'BadChannels'])==2 fid=fopen([datasetname,delim,'BadChannels'],'r','ieee-be'); ds.BadChannels=char([]); while 1 strng=fscanf(fid,'%s\n',1); if isempty(strng);break;end ds.BadChannels=strvcat(ds.BadChannels,strng); end fclose(fid); clear fid; end % VirtualChannels Assume this is the name of the file. Modify to accept *.vc? if exist([datasetname,delim,'VirtualChannels'])==2 ds.Virtual=readVirtualChannels([datasetname,delim,'VirtualChannels']); end % processing.cfg if exist([datasetname,delim,'processing.cfg'])==2 fid=fopen([datasetname,delim,'processing.cfg']); ds.processing=char(fread(fid,'uint8'))'; fclose(fid); clear fid; end return %%%%%%%%%%%%%%%%% End of readCTFds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readRes4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res4=readRes4(res4File,res4Headers,... MAX_COILS,MAX_BALANCING,SENSOR_LABEL,len_sensor_name); % Open the res4 file fid=fopen(res4File,'r','ieee-be'); % Check header. res4.header=char(fread(fid,8,'uint8')'); if isempty(strmatch(res4.header,res4Headers,'exact')) fprintf(['\nreadCTFds (readRes4):res4 file header = %s. ',... 'Valid header options:'],res4.header); for k=1:size(res4Headers,1);fprintf(' %s',res4Headers(k,:));end;fprintf('\n\n'); res4=struct([]); fclose(fid); return end % Remove trailing blanks, but include a final null (char(0)). res4.appName=[deblank(char(fread(fid,256,'uint8')')) char(0)]; res4.dataOrigin=[deblank(char(fread(fid,256,'uint8')')) char(0)]; res4.dataDescription=[deblank(char(fread(fid,256,'uint8')')) char(0)]; res4.no_trials_avgd=fread(fid,1,'int16'); res4.data_time=[deblank(char(fread(fid,255,'uint8')')) char(0)]; res4.data_date=[deblank(char(fread(fid,255,'uint8')')) char(0)]; % new_general_setup_rec_ext part of meg41GeneralResRec res4.no_samples=fread(fid,1,'int32'); temp=fread(fid,2,'int16'); res4.no_channels=temp(1); res4.sample_rate=fread(fid,1,'float64'); res4.epoch_time=fread(fid,1,'float64'); temp=fread(fid,2,'int16'); res4.no_trials=temp(1); res4.preTrigPts=fread(fid,1,'int32'); res4.no_trials_done=fread(fid,1,'int16'); res4.no_trials_display=fread(fid,1,'int16'); res4.save_trials=fread(fid,1,'int32'); % meg41TriggerData part of new_general_setup_rec_ext 10 bytes total res4.primaryTrigger=fread(fid,1,'int32'); res4.triggerPolarityMask=fread(fid,1,'int32'); temp=fread(fid,1,'int16'); %Skip 2 bytes of padding % end of meg41TriggerData part of new_general_setup_rec_ext temp=fread(fid,3,'int16'); %Skip 2 bytes of padding res4.trigger_mode=temp(2); res4.accept_reject_Flag=fread(fid,1,'int32'); temp=fread(fid,2,'int16'); %Skip 2 bytes of padding res4.run_time_display=temp(1); res4.zero_Head_Flag=fread(fid,1,'int32'); res4.artifact_mode=fread(fid,1,'int32'); % end of new_general_setup_rec_ext part of meg41GeneralResRec % meg4FileSetup part of meg41GeneralResRec % Remove trailing blanks, but include a final null (char(0)) res4.nf_run_name=[deblank(char(fread(fid,32,'uint8')')) char(0)]; res4.nf_run_title=[deblank(char(fread(fid,256,'uint8')')) char(0)]; res4.nf_instruments=[deblank(char(fread(fid,32,'uint8')')) char(0)]; res4.nf_collect_descriptor=[deblank(char(fread(fid,32,'uint8')')) char(0)]; res4.nf_subject_id=[deblank(char(fread(fid,32,'uint8')')) char(0)]; res4.nf_operator=[deblank(char(fread(fid,32,'uint8')')) char(0)]; res4.nf_sensorFileName=[deblank(char(fread(fid,56,'uint8')')) char(0)]; temp=fread(fid,3,'int32'); res4.rdlen=temp(2); res4.run_description=[deblank(char(fread(fid,res4.rdlen,'uint8')')) char(0)]; % end of meg4FileSetup part of meg41GeneralResRec % Filter descriptions. Set field res4.filters=[] if no filters are % defined. res4.num_filters=fread(fid,1,'int16'); if res4.num_filters==0 res4.filters=[]; else for kfilt=1:res4.num_filters res4.filters(kfilt).freq=fread(fid,1,'float64'); res4.filters(kfilt).fClass=fread(fid,1,'int32'); res4.filters(kfilt).fType=fread(fid,1,'int32'); res4.filters(kfilt).numParam=fread(fid,1,'int16'); for kparm=1:res4.filters(kfilt).numParam res4.filters(kfilt).Param(kparm)=fread(fid,1,'float64'); end end clear kfilt kparm; end % Read channel names. Must have size(res4.chanNames)=[channels 32] % Clean up the channel names. The MEG system software leaves junk % bytes in the channel name following the first zero. res4.chanNames=char(zeros(res4.no_channels,32)); for kchan=1:res4.no_channels xname=strtok(char(fread(fid,32,'uint8')'),char(0)); res4.chanNames(kchan,1:length(xname))=xname; end clear kchan xname; % Read sensor resource table. Floating point values are 'double' % but the code could be changed to convert to 'single' to save memory. for kchan=1:res4.no_channels res4.senres(kchan).sensorTypeIndex=fread(fid,1,'int16'); res4.senres(kchan).originalRunNum=fread(fid,1,'int16'); res4.senres(kchan).coilShape=fread(fid,1,'int32'); res4.senres(kchan).properGain=fread(fid,1,'double'); res4.senres(kchan).qGain=fread(fid,1,'double'); res4.senres(kchan).ioGain=fread(fid,1,'double'); res4.senres(kchan).ioOffset=fread(fid,1,'double'); res4.senres(kchan).numCoils=fread(fid,1,'int16'); numCoils=res4.senres(kchan).numCoils; temp=fread(fid,3,'int16'); res4.senres(kchan).grad_order_no=temp(1); % Special code to take care of situations where someone wants to label bad channels % by setting their gain to zero. invgain=(res4.senres(kchan).ioGain*... res4.senres(kchan).properGain*res4.senres(kchan).qGain); if abs(invgain)>1e-50 res4.senres(kchan).gain=1/invgain; else res4.senres(kchan).gain=sign(invgain)*1e50; end if res4.senres(kchan).sensorTypeIndex>=0 & res4.senres(kchan).sensorTypeIndex<=7 % Nominal gain (fT/integer step) res4.senres(kchan).gain=1e15*res4.senres(kchan).gain; end % Data that was included in res4.senres(kchan).coilTbl in earlier versions of readCTFds res4.senres(kchan).pos0=zeros(3,res4.senres(kchan).numCoils); res4.senres(kchan).ori0=zeros(3,res4.senres(kchan).numCoils); res4.senres(kchan).area=zeros(1,res4.senres(kchan).numCoils); res4.senres(kchan).numturns=zeros(1,res4.senres(kchan).numCoils); for qx=1:numCoils buff=fread(fid,8,'double'); res4.senres(kchan).pos0(:,qx)=buff(1:3); res4.senres(kchan).ori0(:,qx)=buff(5:7); temp=fread(fid,4,'int16'); res4.senres(kchan).numturns(qx)=temp(1); res4.senres(kchan).area(qx)=fread(fid,1,'double'); end if numCoils<MAX_COILS % Skip the rest of the coilTbl buff=fread(fid,10*(MAX_COILS-numCoils),'double'); end % Data that was included in res4.senres(kchan).HdcoilTbl in earlier versions of readCTFds res4.senres(kchan).pos=zeros(3,res4.senres(kchan).numCoils); res4.senres(kchan).ori=zeros(3,res4.senres(kchan).numCoils); for qx=1:numCoils buff=fread(fid,8,'double'); res4.senres(kchan).pos(:,qx)=buff(1:3); res4.senres(kchan).ori(:,qx)=buff(5:7); temp=fread(fid,2,'double'); % Don't bother with area and numturns. Already read. end if numCoils<MAX_COILS % Skip the rest of the HdcoilTbl buff=fread(fid,10*(MAX_COILS-numCoils),'double'); end end clear kchan buff numCoils temp qx; % End reading sensor resource table res4.numcoef=fread(fid,1,'int16'); % Number of coefficient records % Create structure array res4.scrr which holds the balancing tables. for nx=1:res4.numcoef res4.scrr(nx).sensorName=uint8(fread(fid,len_sensor_name,'uint8'))'; buff=fread(fid,8,'uint8'); res4.scrr(nx).coefType=uint8(buff(1:4))'; % discard bytes 5-8 res4.scrr(nx).numcoefs=double(fread(fid,1,'int16')); numcoef=res4.scrr(nx).numcoefs; buff=fread(fid,SENSOR_LABEL*MAX_BALANCING,'uint8'); buff=reshape(buff,SENSOR_LABEL,MAX_BALANCING); res4.scrr(nx).sensor=[uint8(buff(:,1:numcoef)) ... uint8(zeros(SENSOR_LABEL,MAX_BALANCING-numcoef))]; buff=fread(fid,MAX_BALANCING,'double'); res4.scrr(nx).coefs=[buff(1:numcoef);zeros(MAX_BALANCING-numcoef,1)]; end fclose(fid); % Close the res4 file return %%%%%%%%%% End of readRes4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readHc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hc=readHc(hcFile); % Reads the .hc file and returns a structure with head-coil posiiotns. % The hc file format is given in document CTF MEG File Formats (PN900-0088). % .hc file format: Coils and positions are specified by 4 lines of text: % Line 1: A B coil position relative to C (cm): % " 2: [tag]x = F % " 3: [tag]y = F % " 4: [tag]z = F % A = 'standard' or 'stadard' or 'measured'. 'stadard' is a typographical error that % appeared in v4 of the CTF Acq. The first set of coil positions is 'standard' or % 'stanard'. The next two sets are 'measured'. % B = coil label. For MEG systems, the first three coils must have the names 'nasion', % 'left ear', 'right ear'. They may be followed by other coil names. % For fMEG systems, there is no fixed standard for coil names.b readHc will % accept any coil names. Typically the coils are 'back','left hip','right hip', % 'sternum', 'belly'. In some UAMS data the names are 'nasion',... % The string 'coil position relative to' appears in all valid .hc files. It marks % the end of the coil label and the start ot the coordinate-system. % C = coordinate system = 'dewar' and 'head'(MEG) or 'abdomen' (fMEG). No variations % are permitted. The first two sets of coil positions are in dewar coordinates. % The last set is in 'head' or 'abdomen' coordinates. % Units : For .hc to be a valid coil position file, the coordinates must be in cm. % The program searches for the string '(cm):'. % F = coordinate (numeric) % There are exactly 3 sets of coil positions in the file appearing in the order % (1) A='standard', C='dewar' % (2) A='measured', C='dewar' % (3) A='measured', C='head' or 'abdomen' % The coils must appear in the same order in each set. % Input : Name of hc file (including complete path and .hc extension) % Output : Structure hc containing standard, dewar and CTF coordinates of the % nasion,left,right coils. % hc.name= names of the coils size(hc.name)=[nCoil x] % MEG: hc.standard, hc.dewar, hc.head : size=[3 nCoil] : coil positions in cm % fMEG: hc.standard, hc.dewar, hc.abdomen : size=[3 nCoil] : coil positions in cm if nargin==0 & nargout==0 fprintf(['readHc: Version 1.3 4 Oct. 2007\n',... '\thc=readHc(hcFile) reads head-coil file hcFile and returns the head coil',... '\t positions in structure hc\n\n',... '\tThe file format is defined in document CTF MEG File Formats, PN900-0088.\n\n']); return end basicString='coil position relative to'; % In MEG systems, the first three coil names are fixed. MEGCoilLabel=strvcat('nasion','left ear','right ear'); C3options=strvcat('head','abdomen'); unitString='(cm):'; maxRCoil=200; % Report an error if any coil position is > maxRCoil cm. printWarning=1; hc=struct([]); % Return in event of an error. if exist(hcFile)~=2 return end prec=1e-6; % Round positions. % Decide if this is a MEG or an fMEG system. Find the first line that contains the % string 'coil position relative to'. % MEG system: This line contains 'nasion'. % fMEG system: This line does not contains 'nasion'. fhc=fopen(hcFile,'rt','ieee-be'); % Decide system type and generate arrays for strings A and C. % Search for first line. Allow for the posibility that extra text lines migt be added at % the start of the file. strngA=char([]); while 1 textline=fgetl(fhc); if isequal(textline,-1) break elseif strfind(textline,'coil position relative to'); stringA=strtok(textline); % Fix typographic error in some releases of Acq, not in all coils. if strcmp(stringA,'stadard') stringA = 'standard'; end if ~strcmp(stringA,'standard') break end stringA=strvcat(stringA,'measured','measured'); break; end end if isequal(textline,-1) | size(stringA,1)<3 fprintf('readHc: File %s does not have the head position file format.\n',hcFile); fclose(fhc); return end % Set stringC(3,:)='head' or 'abdomen' later. stringC=strvcat('dewar','dewar'); % textline is the first useful line of the head coil file. coilLabel=char([]); % Names given to the coils rhc=zeros(3,0); % Coil positions (cm) coil=0; nCoil=0; lastPositionSet=1; while ~isequal(textline,-1) % Parse the line [A,R]=strtok(textline); % Fix typographic error in some releases of Acq, not in all coils. if strcmp(A,'stadard') A = 'standard'; end kpos=strfind(R,basicString); coilName=deblank(R(2:kpos-1)); [C,R]=strtok(R(kpos+length(basicString):length(R))); if strmatch(C,C3options) stringC=strvcat(stringC,C); end [unit,R]=strtok(R); positionSet=intersect(strmatch(A,stringA),strmatch(C,stringC)); if isempty(positionSet) | ~strcmp(unit,unitString) | ~isempty(R) break; end if positionSet==lastPositionSet coil=coil+1; else coil=1; end if positionSet==1 % Assemble list of coil names coilLabel=strvcat(coilLabel,coilName); nCoil=coil; elseif ~strcmp(coilName,deblank(coilLabel(coil,:))); break; end % The line describing the coil and coordinate frame is OK. % Get the coordinates by reading 3 lines. buff=fscanf(fhc,'%s%s%f',9); if ~isequal(size(buff),[9 1]) break end rhc=[rhc prec*round(buff(3:3:9)/prec)]; fgetl(fhc); % Skip to the start of the next line. textline=fgetl(fhc); lastPositionSet=positionSet; end fclose(fhc); clear lastPositionSet coil textline fhc; clear stringA A C R kpos coilName unit buff; if size(rhc,2)~=positionSet*nCoil fprintf('readHc: File %s does not have %d complete sets of %d coils.\n',... hcFile,positionSet,nCoil); return end if max(max(abs(rhc)))>maxRCoil & printWarning fprintf('readHc: Head Coil file %s\n max(coil position)>%d.\n',... hcFile,round(maxRCoil)); end % Assemble structure hc. hc=struct('names',coilLabel); coilCoords=deblank(strvcat('standard','dewar',stringC(3,:))); for q=1:positionSet hc=setfield(hc,deblank(coilCoords(q,:)),rhc(:,nCoil*(q-1)+[1:nCoil])); end return %%%%%%%%% End of readHc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readEEG %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function EEG=readEEG(EEGfile); % Reads the EEG file of a dataset and stores the infoemation in strucure array EEG. % EEG(k).chanName = channel name in the dataset (EEGmmm where mmm=channel number) % EEG(k).name = channel name given by the user (e.g. Fp4) % EEG(k).pos = electrode position in cm in CTF head coordinates if exist(EEGfile)~=2 EEG=struct([]); return end fid=fopen(EEGfile,'r'); EEG=struct('chanNum',[],'name',char([]),'pos',[]); nEEG=0; while 1 chanNum=fscanf(fid,'%d',1); name=fscanf(fid,'%s',1); pos=fscanf(fid,'%f',3); if isempty(pos);break;end nEEG=nEEG+1; EEG(nEEG)=struct('chanNum',chanNum,'name',name,'pos',pos); end fclose(fid); return %%%%%%%%% End of readEEG %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readClassFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function TrialClass=readClassFile(ClassFileName); % Reads a CTF ClassFile and stores information in a structure. % The class file allows a user to store a list of classsified trials in a data set. % The ClassFile format is defined in document CTF MEG File Formats, PN900-0088. % This format is rigid and readClassFile assumes that the ClassFile has the format % current in October 2006. % Inputs : % ClassFileName : marker file including the full path and extension .mrk. % trialList : List of trials to read. Trial numbering : 1,2,... % If omitted or empty, read all markers. % Output : Structure array marker. Output trial numbering starts at 1. % See CTF MEG File Formats, (PN900-0088) for the meaning of the structure % fields. A trial mat=y start before the t=0 point, so it is possible to have % markers with time<0 (see ds.res4.preTrigPts). TrialClass=struct([]); if exist(ClassFileName)~=2 return % File doesn't exist. end fid=fopen(ClassFileName,'r','ieee-be'); for k=1:5;fgetl(fid);end % Skip 5 lines (including path info) nClass=sscanf(fgetl(fid),'%d',1); %Read value and skip to the start of the next non-blank line. if nClass<=0 fprintf('readClassFile: File %s has %d classes.\n',nClass); return end TrialClass=struct('ClassGroupId',[],'Name',char([]),... 'Comment',char([]),'Color',char([]),'Editable',char([]),'ClassId',[],'trial',[]); for k=1:nClass % Find the start of the next class identification % There is no need to check for end of file because the loop ends before an attempt % is made to read class nClass+1. while ~strcmp('CLASSGROUPID:',fgetl(fid));end ClassGroupId=sscanf(fgetl(fid),'%d',1); fgetl(fid); Name=deblank(fgetl(fid)); fgetl(fid); Comment=deblank(fgetl(fid)); fgetl(fid); Color=deblank(fgetl(fid)); fgetl(fid); Editable=deblank(fgetl(fid)); fgetl(fid); ClassId=sscanf(fgetl(fid),'%d',1); fgetl(fid); No_of_Trials=sscanf(fgetl(fid),'%d',1); fgetl(fid);fgetl(fid); if No_of_Trials>0 trial=reshape(fscanf(fid,'%d',No_of_Trials),1,No_of_Trials); else trial=[]; end % Adjust trial numbering so it starts at 1. TrialClass(k)=struct('ClassGroupId',ClassGroupId,'Name',Name,... 'Comment',Comment,'Color',Color,'Editable',Editable,'ClassId',ClassId,... 'trial',trial+1); end fclose(fid); return %%%%%%%%% End of readClassFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readBadSegments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function badSegments=readBadSegments(badSegmentsFile); % Reads the bad.segements file of a CTF data set and stores the information in structure % bad_segments. % badSegments.trial = List of trial numbers % badSegments.StartTime = List of bad segment start times (relative to trial). % badSegments.EndTime = List of bad segment end times. % Reads the file one line at a time. Each line has three numbers. % 1st: Trial number=integer. Trial numbering for bad.segments starts at 1. % 2nd,3rd : Start, End times (s). if exist(badSegmentsFile)~=2 badSegments=struct([]); return end fid=fopen(badSegmentsFile,'r','ieee-be'); badSegments=struct('chanName',char([]),'name',char([]),'pos',[]); nLine=0; data=zeros(3,0); while 1 txt=fgetl(fid); if isequal(txt,-1);break;end nLine=nLine+1; [buff,count]=sscanf(txt,'%f'); % Are the data good? badline=(count~=3); if ~badline;badline=(abs((buff(1)-round(buff(1)))>0.0001) | buff(3)<buff(2));end if badline fprintf('readCTFds (readBadSegments): Format error in file bad.segments.\n'); fprintf('\tLine %d has %d numbers: ',nLine,count);fprintf('\t %g',buff);fprintf('\n'); fprintf('\tMust have 3 numbers on each line: #1=integer, #2,#3=float, #3>=#2.\n'); badSegments=struct([]); return end data=[data buff]; end fclose(fid); badSegments=struct('trial',data(1,:),'StartTime',data(2,:),'EndTime',data(3,:)); return %%%%%%%%% End of readBadSegments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readVirtualChannels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Virtual=readVirtualChannels(VirtualChannelsName); % Reads the Virtual channels file associated with a data set Virtual=struct([]); % Check VirtualChannelsName if exist('VirtualChannelsName')~=1;VirtualChannelsName=char([]);end if isempty(VirtualChannelsName) fprintf('readVirtualChannels: Must specify a VirtualChannels file.\n'); return elseif ~ischar(VirtualChannelsName) fprintf('readVirtualChannels: VirtualChannelsName must be a character string.\n'); return elseif exist(VirtualChannelsName)~=2 fprintf('readVirtualChannels: Cannot find file %s\n',VirtualChannelsName); return end fid=fopen(VirtualChannelsName,'r'); count=0; Virtual=struct('Name',char([]),'Unit',char([]),'chan',char([]),'wt',[]); strng=textread(VirtualChannelsName,'%s','delimiter',',\t'); k=0; while k<length(strng) k=k+1; if strmatch('VirtualChannel',strng{k}); Refcount=0; chan=char([]); wt=[]; elseif strmatch('Name:',strng{k}); k=k+1; Name=strng{k}; if isempty(Name);break;end elseif strmatch('Unit:',strng{k}); k=k+1; Unit=strng{k}; elseif strmatch('Ref:',strng{k}); chan=strvcat(chan,strng{k+1}); wt=[wt;str2num(strng{k+2})]; k=k+2; elseif strmatch('}',strng{k}); count=count+1; Virtual(count)=struct('Name',Name,'Unit',Unit,'chan',chan,'wt',wt); clear Name Unit chan wt Refcount; end end fclose(fid); if isempty(Virtual(1).Name) Virtual=struct([]); end return %%%%%%%%% End of readVirtualChannels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%% Function readMarkerFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function marker=readMarkerFile(MarkerFileName,trialList); % Version 1.3 4 Oct. 2007 % Reads specified trials of a CTF MarkerFile. % The MarkerFile format is defined in document CTF MEG File Formats, PN900-0088. % This format is rigid and readMarkerFile assumes that the MarkerFile has the format % current in October 2006. The document lists 4 Class Groups, but only CLASSGROUPID=0 % (triggers) and CLASSGROUPID=3 (Manual) are actually used. read_MArkerFile reads only % these two groups, but it prints a message if the other groups are encountered. % Trigger markers (CLASSGROUPID=0) have an additional 4 pieces of information supplied: % BITNUMBER(int), POLARITY(+ or 1),SOURCE(text) and THRESHOLD (float). FOr % CLASSGROUPID=3, these fields are left empty. % Inputs : % MarkerFileName : marker file including the full path and extension .mrk. % trialList : List of trials to read. Trial numbering : 1,2,... % If omitted or empty, read all markers. % Output : marker: Structure array. Output trial numbering starts at 1. % See CTF MEG File Formats, (PN900-0088) for the meaning of the structure % fields. A trial may start before the t=0 point, so it is possible to have % markers with time<0 (see ds.res4.preTrigPts). % Fields: ClassGroupId, Name,Comment,Color,Editable,ClassId,trial,time; % Other fields that appear with ClassGroupId=0 are not included. if nargin==0 & nargout==0 fprintf(['readMarkerFile: Version 1.3 4 Oct. 2007\n',... '\tReads a CTF dataset MarkerFile and returns a structure array.\n',... '\tmarker=readMarkerFile(FileName) reads ',... 'a marker file and returns the trials and times.\n',... '\tmarker=readMarkerFile(FileName,trialList) reads a marker file and returns only\n',... '\t\t\tthe markers for trials listed in vector trialList.\n\n',... '\treadMarkerFile increments trial numbers by 1 so first trial in a dataset has trial=1.\n\n',... '\tThe MarkerFile format is defined in document CTF MEG File Formats, PN900-0088.\n\n']); return end marker=struct([]); % Check MarkerFileName if exist('MarkerFileName')~=1;MarkerFileName=char([]);end if exist(MarkerFileName)~=2 % No MarkerFile present fprintf('readMarkerFile: Could not find MarkerFile.\n'); MarkerFileName return end % Check input trialList if exist('trialList')~=1 trialList=[]; else trialList=reshape(trialList,1,length(trialList)); if any((trialList-round(trialList))>0.1) | any(round(trialList)<=0) fprintf('readMarkerFile: trialList must have only positive integers.\n'); return end end fid=fopen(MarkerFileName,'r','ieee-be'); for k=1:5;fgetl(fid);end % Skip 5 lines (including path info) nMarker=sscanf(fgetl(fid),'%d',1); %Read value and skip to the start of the next non-blank line. if nMarker<=0 fprintf('readMarkerFile: File %s has %d markers.\n',nMarker); fclose(fid); return end marker=struct('ClassGroupId',[],'Name',char([]),... 'Comment',char([]),'Color',char([]),'Editable',char([]),'ClassId',[],... 'BitNumber',[],'Polarity',char([]),'Source',char([]),'Threshold',[],... 'trial',[],'time',[]); for k=1:nMarker % Find the start of the next marker identification % There is no need to check for end of file because the loop ends before an attempt % is made to read marker class nClass+1. while ~strcmp('CLASSGROUPID:',fgetl(fid));end ClassGroupId=sscanf(fgetl(fid),'%d',1); if ~any(ClassGroupId==[0 3]) fprintf('read_MarkerFile: Skipping a marker with CLASSGROUPID=%d\n',ClassGroupId); continue; end fgetl(fid); Name=deblank(fgetl(fid)); fgetl(fid); Comment=deblank(fgetl(fid)); fgetl(fid); Color=deblank(fgetl(fid)); fgetl(fid); Editable=deblank(fgetl(fid)); fgetl(fid); ClassId=sscanf(fgetl(fid),'%d',1); if ClassGroupId==0 fgetl(fid); BitNumber=sscanf(fgetl(fid),'%d',1); fgetl(fid); Polarity=deblank(fgetl(fid)); fgetl(fid); Source=deblank(fgetl(fid)); fgetl(fid); Threshold=sscanf(fgetl(fid),'%f',1); else BitNumber=[]; Polarity=char([]); Source=char([]); Threshold=[]; end fgetl(fid); No_of_Samples=sscanf(fgetl(fid),'%d',1); fgetl(fid);fgetl(fid); trial=zeros(1,No_of_Samples); time=zeros(1,No_of_Samples); if No_of_Samples>0 buff=fscanf(fid,'%d %f\n',2*No_of_Samples); trial=reshape(buff(1:2:2*No_of_Samples-1),1,No_of_Samples)+1; % Trial numbering starts at 1. time=reshape(buff(2:2:2*No_of_Samples),1,No_of_Samples); clear buff; end % Keep only the specified trials. if ~isempty(trialList) index=[]; for q=trialList; index=[index find(trial==q)]; end trial=trial(index); time=time(index); No_of_Samples=length(index); clear q index; end marker(k)=struct('ClassGroupId',ClassGroupId,'Name',Name,... 'Comment',Comment,'Color',Color,'Editable',Editable,'ClassId',ClassId,... 'BitNumber',BitNumber,'Polarity',Polarity,'Source',Source,'Threshold',Threshold,... 'trial',trial,'time',time); end fclose(fid); %clear k ClassGroupId Name Comment Color Editable ClassID No_of_Samples trial time; return %%%%%%%%%%%% End of readMarkerFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
philippboehmsturm/antx-master
ft_artifact_manual.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_artifact_manual.m
18,495
utf_8
532b06f68db8ce590b675f50faa4380e
function [cfg, artifact] = ft_artifact_manual(cfg); % THIS FUNCTION IS DEPRECIATED, USE FT_REJECTVISUAL INSTEAD % % FT_ARTIFACT_MANUAL allows the user to detect artifacts manually using visual % inspection. % % Use as: % [cfg, artifact] = ft_artifact_manual(cfg) % required configuration options: % cfg.dataset or both cfg.headerfile and cfg.datafile % % The configuration should also contain: % cfg.artfctdef.manual.channel = cell-array with channels to be displayed. % (Be careful not to specify to much channels because the function then will be very slow.) % cfg.continuous = 'yes' or 'no' whether the file contains continuous data % % You can specify: % cfg.artfctdef.manual.pretrialtime = time shown before trialstart (default 0) % cfg.artfctdef.manual.posttrialtime = time shown after trialend (default 0) % cfg.artfctdef.manual.fft = 'no' (default) or 'yes' turns on FFT window % cfg.artfctdef.manual.padding = 'no' (default) or FFT-padding in seconds % % The FFT will be executed on the complete time interval including pre and post % trial times. % % cfg.artfctdef.manual.timeaxrelative = 'yes' (default) or 'no'. % % Set to yes defines the time axes relative to trialstart. Set to no defines it % relative to the beginning of the experiment. % % cfg.artfctdef.manual.demean = 'no' (default) or 'yes' apply baseline correction % cfg.artfctdef.manual.bpfilter = 'no' (default) or 'yes' apply bandpass filter % cfg.artfctdef.manual.bpfreq = [0.3 30] in Hz % cfg.artfctdef.manual.bpfiltord = 2 % % See also FT_REJECTARTIFACT, FT_REJECTVISUAL % Undocumented local options: % cfg.artfctdef.manual.maxnumberofchannels = 20 (default) % Copyright (C) 2004, Geerten Kramer, FCDC % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_artifact_manual.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'renamed', {'datatype', 'continuous'}); cfg = ft_checkconfig(cfg, 'renamedval', {'continuous', 'continuous', 'yes'}); % set default rejection parameters if necessary. if ~isfield(cfg, 'artfctdef'), cfg.artfctdef = []; end if ~isfield(cfg.artfctdef,'manual'), cfg.artfctdef.manual = []; end if ~isfield(cfg.artfctdef.manual,'zscale'), cfg.artfctdef.manual.zscale = 100; end if ~isfield(cfg.artfctdef.manual,'fft'), cfg.artfctdef.manual.fft ='no'; end if ~isfield(cfg.artfctdef.manual,'padding'), cfg.artfctdef.manual.padding ='no'; end if ~isfield(cfg.artfctdef.manual,'pretrialtime'), cfg.artfctdef.manual.pretrialtime = 0; end if ~isfield(cfg.artfctdef.manual,'posttrialtime'), cfg.artfctdef.manual.posttrialtime = 0; end if ~isfield(cfg.artfctdef.manual,'timeaxrelative'), cfg.artfctdef.manual.timeaxrelative = 'yes'; end if ~isfield(cfg.artfctdef.manual,'maxnumberofchannels'),cfg.artfctdef.manual.maxnumberofchannels = 20; end if ~isfield(cfg, 'headerformat'), cfg.headerformat = []; end if ~isfield(cfg, 'dataformat'), cfg.dataformat = []; end % for backward compatibility if isfield(cfg.artfctdef.manual,'sgn') cfg.artfctdef.manual.channel = cfg.artfctdef.manual.sgn; cfg.artfctdef.manual = rmfield(cfg.artfctdef.manual, 'sgn'); end cfg.artfctdef = ft_checkconfig(cfg.artfctdef, 'renamed', {'blc', 'demean'}); cfg.artfctdef = ft_checkconfig(cfg.artfctdef, 'renamed', {'blcwindow' 'baselinewindow'}); if ~isfield(cfg.artfctdef.manual,'channel'), % set an unusual default because all crashes the program. cfg.artfctdef.manual.channel = []; end % read the header and do some preprocessing on the configuration fprintf('Reading raw data...'); cfg = ft_checkconfig(cfg, 'dataset2files', {'yes'}); cfg = ft_checkconfig(cfg, 'required', {'headerfile', 'datafile'}); hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat); cfg.artfctdef.manual.channel=ft_channelselection(cfg.artfctdef.manual.channel, hdr.label); cfg.artfctdef.manual.trl=cfg.trl; if(isempty(cfg.artfctdef.manual.channel)) error(sprintf('\nNo channels selected for artifact_manual!\nSelect at least one channel in cfg.artfctdef.manual.channel')); end; channelindx=match_str(hdr.label, cfg.artfctdef.manual.channel); ntrial=size(cfg.trl, 1); nch=length(channelindx); if(nch<1) error(sprintf('\nNo channels selected for artifact_manual!\nSelect at least one channel in cfg.artfctdef.manual.channel')); elseif(nch>cfg.artfctdef.manual.maxnumberofchannels) error(sprintf('\nMore than %i channels selected in cfg.artfctdef.manual.channel',cfg.artfctdef.manual.maxnumberofchannels)); end % set default cfg.continuous if ~isfield(cfg, 'continuous') if hdr.nTrials==1 cfg.continuous = 'yes'; else cfg.continuous = 'no'; end end show=ft_read_data(cfg.datafile, 'header', hdr, 'begsample', 1, 'endsample', hdr.nTrials*hdr.nSamples, 'chanindx', channelindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat); show=show'; N=length(show); S=floor(N./hdr.Fs); % In seconds x=1:N; x=x./hdr.Fs; % In seconds. fprintf(' done.\n'); fprintf('Processing raw data for artifact_manual...'); % these elements are stored inside the figure so that the callback routines can modify them dat.RejMarkList=zeros(length(cfg.trl),1); dat.ResRejMarkList=zeros(length(cfg.trl),1); dat.RejCount=0; dat.ResRejCount=0; dat.stop=0; dat.trln=1; dat.numtrl=length(cfg.trl); dat.FFT=strcmp(cfg.artfctdef.manual.fft,'yes')|strcmp(cfg.artfctdef.manual.fft,'Yes')... |strcmp(cfg.artfctdef.manual.fft,'on')|strcmp(cfg.artfctdef.manual.fft,'On'); if(strcmp(cfg.artfctdef.manual.padding,'no')|strcmp(cfg.artfctdef.manual.padding,'No')... |strcmp(cfg.artfctdef.manual.padding,'Off')|strcmp(cfg.artfctdef.manual.padding,'off')) cfg.artfctdef.manual.padding=[]; end; dat.IfRelOn=strcmp(cfg.artfctdef.manual.timeaxrelative,'yes')|strcmp(cfg.artfctdef.manual.timeaxrelative,'Yes')... |strcmp(cfg.artfctdef.manual.timeaxrelative,'on')|strcmp(cfg.artfctdef.manual.timeaxrelative,'On'); ival=cell(dat.numtrl,1); dataX=cell(dat.numtrl,1); dataY=cell(dat.numtrl,1); dataFx=cell(dat.numtrl,1); dataFy=cell(dat.numtrl,1); dataXLim=cell(dat.numtrl,1); dataYLim=cell(dat.numtrl,1); % first we calculate everything and put it into varables. for(i=1:dat.numtrl) begpadding = round(cfg.artfctdef.manual.pretrialtime.*hdr.Fs); endpadding = round(cfg.artfctdef.manual.posttrialtime.*hdr.Fs); ival{i}=(cfg.trl(i,1)-begpadding):(cfg.trl(i,2)+endpadding); dataY{i}=show(ival{i},:); % don't remove the padding [dataY{i}, dumlab, dumtime, dumcfg] = preproc(dataY{i}', cfg.artfctdef.manual.channel, hdr.Fs, cfg.artfctdef.manual, cfg.trl(i,3)-begpadding, 0, 0); dataY{i} = dataY{i}'; try, if(~rem(i,fix(dat.numtrl/10)))fprintf('.');end; end end; clear show; % Now, we don't need the complete dataset anymore... for(i=1:dat.numtrl) % we go on with the calculations .... dataX{i}=x(ival{i})-dat.IfRelOn.*(x(ival{i}(1))+cfg.artfctdef.manual.pretrialtime); dataYLim{i}=[]; for(j=1:nch) mini=min(dataY{i}(:,j)); maxi=max(dataY{i}(:,j)); dataYLim{i}=[dataYLim{i};[mini-.03.*(maxi-mini),maxi+.03.*(maxi-mini)]]; dataXLim{i}=[min(dataX{i}),max(dataX{i})]; end; if(dat.FFT) % if FFT is on, calculate the FFT of the trials too... tmp=[]; for(k=1:nch) tmp=[tmp,dataY{i}(:,k)-mean(dataY{i}(:,k),1)];end; dataFy{i}=abs(fft(tmp,cfg.artfctdef.manual.padding,1)); tmp=floor((max(ival{i})-min(ival{i}))/2); dataFx{i}=(1:tmp)./tmp.*hdr.Fs./2; dataFy{i}=dataFy{i}(1:length(dataFx{i}),:); end; if(~rem(i,fix(dat.numtrl/10)))fprintf('.');end; end; fprintf(' done.\n'); thisfig('fig_trace');% See the help of thisfig set(fig_trace,'name','Traces'); if(dat.FFT); thisfig('fig_spec'); set(fig_spec,'name','Spectra of traces'); end; gt=[5 40 5 25 0 50 5 60 5 60 5 60 5 60 5 60 5 25 0 25]; uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:1)),5,gt(2),18],'String','Done','Callback',@stop); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:3)),5,gt(4),18],'String','<','Callback',@prevtrial); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:5)),5,gt(6),18],'String','>','Callback',@nexttrial); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:7)),5,gt(8),18],'String','Reject >','Callback',@reject_next); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:9)),5,gt(10),18],'String','Reject','Callback',@reject); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:11)),5,gt(12),18],'String','Accept','Callback',@undo); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:13)),5,gt(14),18],'String','Accept All','Callback',@undoAll); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:15)),5,gt(16),18],'String','Redo All','Callback',@redoAll); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:17)),5,gt(18),18],'String','<<','Callback',@pptrial); uicontrol(fig_trace,'units','pixels','position',[sum(gt(1:19)),5,gt(20),18],'String','>>','Callback',@nntrial); set(fig_trace, 'KeyPressFcn',@keypress); % set(get(fig_trace, 'children'),'KeyPressFcn',@keypress); show_help; thisfig('fig_trace'); % See the help of thisfig. while(ishandle(fig_trace)) if(dat.FFT) % Plots FFT when requested if(exist('HF')) % this is for remembering the zoom of the FFT-window if(ishandle(HF)) % while zapping trough the data. saveXLim=get(HF,'XLim'); saveYLim=get(HF,'YLim'); end; end; thisfig('fig_spec'); plot(dataFx{dat.trln},dataFy{dat.trln}); HF=get(fig_spec,'CurrentAxes'); if(exist('saveXLim'))set(HF,'XLim',saveXLim);end; if(exist('saveYLim'))set(HF,'YLim',saveYLim);end; xlabel('Frequency [Hz]'); ylabel('Power [A.U.]'); thisfig('fig_trace'); end; for(j=1:nch) % This loop fils the traces figure with the traces. H=subplot(nch,1,j); plot(dataX{dat.trln},dataY{dat.trln}(:,j),'b-'); line([dataXLim{1}(1)+cfg.artfctdef.manual.pretrialtime dataXLim{1}(1)+cfg.artfctdef.manual.pretrialtime], dataYLim{dat.trln}(j,:), 'color', 'g'); line([dataXLim{1}(2)-cfg.artfctdef.manual.posttrialtime dataXLim{1}(2)-cfg.artfctdef.manual.posttrialtime], dataYLim{dat.trln}(j,:), 'color', 'r'); set(H,'YLim',dataYLim{dat.trln}(j,:) + [-eps +eps]); set(H,'XLim',dataXLim{dat.trln}); xlabel('Time [s]','position',... [dataXLim{dat.trln}(2),dataYLim{dat.trln}(j,1)-(dataYLim{dat.trln}(j,2)-dataYLim{dat.trln}(j,1)).*.05]... ,'HorizontalAlignment','left'); ylabel(sprintf('%s', cfg.artfctdef.manual.channel{j})); end; if(dat.RejMarkList(dat.trln)==0) tiet=sprintf('trial %i: ACCEPT',dat.trln); else tiet=sprintf('trial %i: REJECT',dat.trln); end; H=subplot(nch,1,1); title(tiet); guidata(fig_trace,dat); uiwait; if(ishandle(fig_trace)) dat=guidata(fig_trace);end; if(dat.stop)break;end; end if(~ishandle(fig_trace)) error('Figure closed unexpectedly, no manual artifacts marked.'); else close(fig_trace) end; if(dat.FFT) if(ishandle(fig_spec))close(fig_spec);end; end; fprintf('Rejected %i trials.\n',dat.RejCount); fprintf('Exported %i trials.\n',length(cfg.trl)-dat.RejCount); artifact=cfg.trl(find((dat.RejMarkList)),[1,2]); % remember the details that were used here cfg.artfctdef.manual.artifact = artifact; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_artifact_manual.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % here the SUBFUNCTIONS start that implement the gui callbacks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout=nexttrial(h, eventdata, handles, varargin) dat=guidata(h); if(dat.trln<dat.numtrl) dat.trln=dat.trln + 1; else dat.trln=1; end; guidata(h,dat); uiresume; function varargout=prevtrial(h, eventdata, handles, varargin) dat=guidata(h); if(dat.trln > 1), dat.trln=dat.trln - 1; else dat.trln=dat.numtrl; end; guidata(h,dat); uiresume; function varargout=stop(h, eventdata, handles, varargin) dat=guidata(h); dat.stop=1; guidata(h,dat); uiresume; function varargout=reject(h, eventdata, handles, varargin) dat=guidata(h); if(dat.RejMarkList(dat.trln)==0) dat.RejCount=dat.RejCount+1; dat.RejMarkList(dat.trln)=1; if(~dat.ResRejMarkList(dat.trln)) dat.ResRejCount=dat.ResRejCount+1; dat.ResRejMarkList(dat.trln)=1; fprintf('Rejected trial %i!\n',dat.trln); else fprintf('Rejected trial %i again!\n',dat.trln); end; else fprintf('Trial %i is already marked for rejection.\n',dat.trln); end; guidata(h,dat); uiresume; function varargout=reject_next(h, eventdata, handles, varargin) dat=guidata(h); if(dat.RejMarkList(dat.trln)==0) dat.RejCount=dat.RejCount+1; dat.RejMarkList(dat.trln)=1; if(~dat.ResRejMarkList(dat.trln)) dat.ResRejCount=dat.ResRejCount+1; dat.ResRejMarkList(dat.trln)=1; fprintf('Rejected trial %i!\n',dat.trln); else fprintf('Rejected trial %i again!\n',dat.trln); end; else fprintf('Trial %i is already marked for rejection.\n',dat.trln); end; if(dat.trln < dat.numtrl) dat.trln=dat.trln + 1; else dat.trln=1; end; guidata(h,dat); uiresume; function varargout=undo(h, eventdata, handles, varargin) dat=guidata(h); if(dat.RejMarkList(dat.trln)>0) dat.RejCount=dat.RejCount-1; dat.RejMarkList(dat.trln)=0; fprintf('Rejected trial %i recovered.\n',dat.trln); end; guidata(h,dat); uiresume; function varargout=undoAll(h, eventdata, handles, varargin) dat=guidata(h); dat.RejCount=0; dat.RejMarkList=zeros(dat.numtrl,1); fprintf('All rejected trials recovered.\n'); guidata(h,dat); uiresume; function varargout=redoAll(h, eventdata, handles, varargin) dat=guidata(h); dat.RejMarkList=dat.ResRejMarkList; dat.RejCount=dat.ResRejCount; fprintf('All recovered trials rejected again.\n'); guidata(h,dat); uiresume; function varargout=nntrial(h, eventdata, handles, varargin) dat=guidata(h); if(dat.trln<(dat.numtrl-10)) dat.trln=dat.trln + 10; else dat.trln=1; end; guidata(h,dat); uiresume; function varargout=pptrial(h, eventdata, handles, varargin) dat=guidata(h); if(dat.trln > 10), dat.trln=dat.trln - 10; else dat.trln=dat.numtrl; end; guidata(h,dat); uiresume; function keypress(h, eventdata, handles, varargin) dat=guidata(gcbf); key=get(gcbf, 'CurrentCharacter'); if key switch key case 28 % arrow left if(dat.trln > 1), dat.trln=dat.trln - 1; else dat.trln=dat.numtrl; end; case 29 % arrow right if(dat.trln<dat.numtrl) dat.trln=dat.trln + 1; else dat.trln=1; end; % case 30 % arrow up % dat.zscale=data.zscale*1.5; % case 31 % arrow down % dat.zscale=data.zscale/1.5; % case 'a' % dat.reject(data.trlop)=0; % case 'r' % dat.reject(data.trlop)=1; case {'a', 'A'} if(dat.RejMarkList(dat.trln)==1) dat.RejCount=dat.RejCount-1; dat.RejMarkList(dat.trln)=0; fprintf('Accepted trial %i\n',dat.trln); end if(dat.trln < dat.numtrl) dat.trln=dat.trln + 1; else dat.trln=1; end; case {'0', 'r', 'R'} if(dat.RejMarkList(dat.trln)==0) dat.RejCount=dat.RejCount+1; dat.RejMarkList(dat.trln)=1; if(~dat.ResRejMarkList(dat.trln)) dat.ResRejCount=dat.ResRejCount+1; dat.ResRejMarkList(dat.trln)=1; fprintf('Rejected trial %i! \n',dat.trln); else fprintf('Rejected trial %i again! \n',dat.trln); end; else fprintf('Trial %i is already marked for rejection.\n',dat.trln); end; if(dat.trln < dat.numtrl) dat.trln=dat.trln + 1; else dat.trln=1; end; otherwise show_help; end end set(gcbf, 'CurrentCharacter', '-'); guidata(gcbf, dat); uiresume(h); function show_help; fprintf('You can use the buttons in the window to navigate through the trials, \n'); fprintf('reject trials or undo and redo your rejection selection. If you want to \n'); fprintf('use the keyboard, you first have to click in the figure every time you \n'); fprintf('pressed a button with the mouse. \n'); fprintf(' \n'); fprintf('Use the left and right arrow to walk through the trials \n'); fprintf('Press "a" to accept, "r" to reject. \n'); function thisfig(NameOfHandle); assignin('caller','This_Name_Will_Never_be_Used_gk',NameOfHandle); if(~evalin('caller','exist(This_Name_Will_Never_be_Used_gk)')|~ishandle(evalin('caller',NameOfHandle))) H=figure; assignin('caller',NameOfHandle,H); else figure(evalin('caller',NameOfHandle)); end; evalin('caller','clear This_Name_Will_Never_be_Used_gk;');
github
philippboehmsturm/antx-master
ft_prepare_layout.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_prepare_layout.m
26,587
utf_8
117888be4827d20a2f38900a75e94637
function [lay] = ft_prepare_layout(cfg, data) % FT_PREPARE_LAYOUT creates a 2-D layout of the channel locations. This layout % is required for plotting the topographical distribution of the potential % or field distribution, or for plotting timecourses in a topographical % arrangement. % % Use as % lay = ft_prepare_layout(cfg, data) % % There are several ways in which a 2-D layout can be made: it can be read % directly from a *.lay file, it can be created based on 3-D electrode or % gradiometer positions in the configuration or in the data, or it can be % created based on the specification of an electrode of gradiometer file. % % You can specify either one of the following configuration options % cfg.layout filename containg the layout % cfg.rotate number, rotation around the z-axis in degrees (default = [], which means automatic) % cfg.projection string, 2D projection method can be 'stereographic', 'orthographic', 'polar', 'gnomic' or 'inverse' (default = 'polar') % cfg.elec structure with electrode positions, or % cfg.elecfile filename containing electrode positions % cfg.grad structure with gradiometer definition, or % cfg.gradfile filename containing gradiometer definition % cfg.output filename to which the layout will be written (default = []) % cfg.montage 'no' or a montage structure (default = 'no') % cfg.image filename, use an image to construct a layout (e.g. usefull for ECoG grids) % cfg.bw if an image is used and bw = 1 transforms the image in black and white (default = 0, do not transform) % % Alternatively the layout can be constructed from either % data.elec structure with electrode positions % data.grad structure with gradiometer definition % % Alternatively you can specify the following layouts which will be % generated for all channels present in the data. Note that these layouts % are suitable for multiplotting, but not for topoplotting. % cfg.layout = 'ordered' will give you a NxN ordered layout % cfg.layout = 'vertical' will give you a Nx1 ordered layout % cfg.layout = 'butterfly' will give you a layout with all channels on top of each other % % See also FT_LAYOUTPLOT, FT_TOPOPLOTER, FT_TOPOPLOTTFR, FT_MULTIPLOTER, FT_MULTIPLOTTFR % TODO switch to using planarchannelset function % undocumented and non-recommended option (for SPM only) % cfg.style string, '2d' or '3d' (default = '2d') % Copyright (C) 2007-2009, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_prepare_layout.m 3800 2011-07-07 15:17:47Z roboos $ % Undocumented option: % cfg.layout can contain a lay structure which is simply returned as is ft_defaults %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % basic check/initialization of input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (nargin<1) || (nargin>2), error('incorrect number of input arguments'); end; if (nargin<2), data = []; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set default configuration options %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(cfg, 'rotate'), cfg.rotate = []; end % [] => rotation is determined based on the type of sensors if ~isfield(cfg, 'style'), cfg.style = '2d'; end if ~isfield(cfg, 'projection'), cfg.projection = 'polar'; end if ~isfield(cfg, 'layout'), cfg.layout = []; end if ~isfield(cfg, 'grad'), cfg.grad = []; end if ~isfield(cfg, 'elec'), cfg.elec = []; end if ~isfield(cfg, 'gradfile'), cfg.gradfile = []; end if ~isfield(cfg, 'elecfile'), cfg.elecfile = []; end if ~isfield(cfg, 'output'), cfg.output = []; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end if ~isfield(cfg, 'montage'), cfg.montage = 'no'; end if ~isfield(cfg, 'image'), cfg.image = []; end if ~isfield(cfg, 'bw'), cfg.bw = 0; end if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'skipscale'), cfg.skipscale = 'no'; end if ~isfield(cfg, 'skipcomnt'), cfg.skipcomnt = 'no'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % try to generate the layout structure %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% skipscale = strcmp(cfg.skipscale, 'yes'); % in general a scale is desired skipcomnt = strcmp(cfg.skipcomnt, 'yes'); % in general a comment desired if isa(cfg.layout, 'config') % convert the nested config-object back into a normal structure cfg.layout = struct(cfg.layout); end % check whether cfg.layout already contains a valid layout structure (this can % happen when higher level plotting functions are called with cfg.layout set to % a lay structure) if isstruct(cfg.layout) && isfield(cfg.layout, 'pos') && isfield(cfg.layout, 'label') && isfield(cfg.layout, 'width') && isfield(cfg.layout, 'height') lay = cfg.layout; elseif isstruct(cfg.layout) && isfield(cfg.layout, 'pos') && isfield(cfg.layout, 'label') && (~isfield(cfg.layout, 'width') || ~isfield(cfg.layout, 'height')) lay = cfg.layout; % add width and height for multiplotting d = dist(lay.pos'); nchans = length(lay.label); for i=1:nchans d(i,i) = inf; % exclude the diagonal end mindist = min(d(:)); lay.width = ones(nchans,1) * mindist * 0.8; lay.height = ones(nchans,1) * mindist * 0.6; elseif isequal(cfg.layout, 'butterfly') if nargin>1 && ~isempty(data) % look at the data to determine the overlapping channels cfg.channel = ft_channelselection(cfg.channel, data.label); chanindx = match_str(data.label, cfg.channel); nchan = length(data.label(chanindx)); lay.label = data.label(chanindx); else nchan = length(cfg.channel); lay.label = cfg.channel; end lay.pos = zeros(nchan,2); % centered at (0,0) lay.width = ones(nchan,1) * 1.0; lay.height = ones(nchan,1) * 1.0; lay.mask = {}; lay.outline = {}; skipscale = true; % a scale is not desired skipcomnt = true; % a comment is initially not desired, or at least requires more thought elseif isequal(cfg.layout, 'vertical') if nargin>1 && ~isempty(data) % look at the data to determine the overlapping channels cfg.channel = ft_channelselection(data.label, cfg.channel); % with this order order of channels stays the same [dum chanindx] = match_str(cfg.channel, data.label); % order of channels according to cfg specified by user nchan = length(data.label(chanindx)); lay.label = data.label(chanindx); else nchan = length(cfg.channel); lay.label = cfg.channel; end for i=1:(nchan+2) x = 0.5; y = 1-i/(nchan+1+2); lay.pos (i,:) = [x y]; lay.width (i,1) = 0.9; lay.height(i,1) = 0.9 * 1/(nchan+1+2); if i==(nchan+1) lay.label{i} = 'SCALE'; elseif i==(nchan+2) lay.label{i} = 'COMNT'; end end lay.mask = {}; lay.outline = {}; elseif isequal(cfg.layout, 'ordered') if nargin>1 && ~isempty(data) % look at the data to determine the overlapping channels cfg.channel = ft_channelselection(cfg.channel, data.label); chanindx = match_str(data.label, cfg.channel); nchan = length(data.label(chanindx)); lay.label = data.label(chanindx); else nchan = length(cfg.channel); lay.label = cfg.channel; end ncol = ceil(sqrt(nchan))+1; nrow = ceil(sqrt(nchan))+1; k = 0; for i=1:nrow for j=1:ncol k = k+1; if k<=nchan x = (j-1)/ncol; y = (nrow-i-1)/nrow; lay.pos(k,:) = [x y]; lay.width(k,1) = 0.8 * 1/ncol; lay.height(k,1) = 0.8 * 1/nrow; end end end lay.label{end+1} = 'SCALE'; lay.width(end+1) = 0.8 * 1/ncol; lay.height(end+1) = 0.8 * 1/nrow; x = (ncol-2)/ncol; y = 0/nrow; lay.pos(end+1,:) = [x y]; lay.label{end+1} = 'COMNT'; lay.width(end+1) = 0.8 * 1/ncol; lay.height(end+1) = 0.8 * 1/nrow; x = (ncol-1)/ncol; y = 0/nrow; lay.pos(end+1,:) = [x y]; % try to generate layout from other configuration options elseif ischar(cfg.layout) && ft_filetype(cfg.layout, 'matlab') fprintf('reading layout from file %s\n', cfg.layout); load(cfg.layout, 'lay'); elseif ischar(cfg.layout) && ft_filetype(cfg.layout, 'layout') fprintf('reading layout from file %s\n', cfg.layout); lay = readlay(cfg.layout); elseif ischar(cfg.layout) && ~ft_filetype(cfg.layout, 'layout') % assume that cfg.layout is an electrode file fprintf('creating layout from electrode file %s\n', cfg.layout); lay = sens2lay(ft_read_sens(cfg.layout), cfg.rotate, cfg.projection, cfg.style); elseif ischar(cfg.elecfile) fprintf('creating layout from electrode file %s\n', cfg.elecfile); lay = sens2lay(ft_read_sens(cfg.elecfile), cfg.rotate, cfg.projection, cfg.style); elseif ~isempty(cfg.elec) && isstruct(cfg.elec) fprintf('creating layout from cfg.elec\n'); lay = sens2lay(cfg.elec, cfg.rotate, cfg.projection, cfg.style); elseif isfield(data, 'elec') && isstruct(data.elec) fprintf('creating layout from data.elec\n'); lay = sens2lay(data.elec, cfg.rotate, cfg.projection, cfg.style); elseif ischar(cfg.gradfile) fprintf('creating layout from gradiometer file %s\n', cfg.gradfile); lay = sens2lay(ft_read_sens(cfg.gradfile), cfg.rotate, cfg.projection, cfg.style); elseif ~isempty(cfg.grad) && isstruct(cfg.grad) fprintf('creating layout from cfg.grad\n'); lay = sens2lay(cfg.grad, cfg.rotate, cfg.projection, cfg.style); elseif isfield(data, 'grad') && isstruct(data.grad) fprintf('creating layout from data.grad\n'); lay = sens2lay(data.grad, cfg.rotate, cfg.projection, cfg.style); elseif ~isempty(cfg.image) && isempty(cfg.layout) fprintf('reading background image from %s\n', cfg.image); img = imread(cfg.image); img = flipdim(img, 1); % in combination with "axis xy" figure bw = cfg.bw; if bw % convert to greyscale image img = mean(img, 3); imagesc(img); colormap gray else % plot as RGB image image(img); end hold on axis equal axis off axis xy % get the electrode positions pos = zeros(0,2); electrodehelp = [ ... '-----------------------------------------------------\n' ... 'specify electrode locations\n' ... 'press the right mouse button to add another electrode\n' ... 'press backspace on the keyboard to remove the last electrode\n' ... 'press "q" on the keyboard to continue\n' ... ]; again = 1; while again fprintf(electrodehelp) disp(round(pos)); % values are integers/pixels try [x, y, k] = ginput(1); catch % this happens if the figure is closed return; end switch k case 1 pos = cat(1, pos, [x y]); % add it to the figure plot(x, y, 'b.'); plot(x, y, 'yo'); case 8 if size(pos,1)>0 % remove the last point pos = pos(1:end-1,:); % completely redraw the figure cla h = image(img); hold on axis equal axis off plot(pos(:,1), pos(:,2), 'b.'); plot(pos(:,1), pos(:,2), 'yo'); end case 'q' again = 0; otherwise warning('invalid button (%d)', k); end end % get the mask outline polygon = {}; thispolygon = 1; polygon{thispolygon} = zeros(0,2); maskhelp = [ ... '------------------------------------------------------------------------\n' ... 'specify polygons for masking the topgraphic interpolation\n' ... 'press the right mouse button to add another point to the current polygon\n' ... 'press backspace on the keyboard to remove the last point\n' ... 'press "c" on the keyboard to close this polygon and start with another\n' ... 'press "q" on the keyboard to continue\n' ... ]; again = 1; while again fprintf(maskhelp); fprintf('\n'); for i=1:length(polygon) fprintf('polygon %d has %d points\n', i, size(polygon{i},1)); end try [x, y, k] = ginput(1); catch % this happens if the figure is closed return; end switch k case 1 polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]); % add the last line segment to the figure if size(polygon{thispolygon},1)>1 x = polygon{i}([end-1 end],1); y = polygon{i}([end-1 end],2); end plot(x, y, 'g.-'); case 8 % backspace if size(polygon{thispolygon},1)>0 % remove the last point polygon{thispolygon} = polygon{thispolygon}(1:end-1,:); % completely redraw the figure cla h = image(img); hold on axis equal axis off % plot the electrode positions plot(pos(:,1), pos(:,2), 'b.'); plot(pos(:,1), pos(:,2), 'yo'); for i=1:length(polygon) x = polygon{i}(:,1); y = polygon{i}(:,2); if i~=thispolygon % close the polygon in the figure x(end) = x(1); y(end) = y(1); end plot(x, y, 'g.-'); end end case 'c' if size(polygon{thispolygon},1)>0 % close the polygon polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:); % close the polygon in the figure x = polygon{i}([end-1 end],1); y = polygon{i}([end-1 end],2); plot(x, y, 'g.-'); % switch to the next polygon thispolygon = thispolygon + 1; polygon{thispolygon} = zeros(0,2); end case 'q' if size(polygon{thispolygon},1)>0 % close the polygon polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:); % close the polygon in the figure x = polygon{i}([end-1 end],1); y = polygon{i}([end-1 end],2); plot(x, y, 'g.-'); end again = 0; otherwise warning('invalid button (%d)', k); end end % remember this set of polygons as the mask mask = polygon; % get the outline, e.g. head shape and sulci polygon = {}; thispolygon = 1; polygon{thispolygon} = zeros(0,2); maskhelp = [ ... '-----------------------------------------------------------------------------------\n' ... 'specify polygons for adding outlines (e.g. head shape and sulci) to the layout\n' ... 'press the right mouse button to add another point to the current polygon\n' ... 'press backspace on the keyboard to remove the last point\n' ... 'press "c" on the keyboard to close this polygon and start with another\n' ... 'press "n" on the keyboard to start with another without closing the current polygon\n' ... 'press "q" on the keyboard to continue\n' ... ]; again = 1; while again fprintf(maskhelp); fprintf('\n'); for i=1:length(polygon) fprintf('polygon %d has %d points\n', i, size(polygon{i},1)); end try [x, y, k] = ginput(1); catch % this happens if the figure is closed return; end switch k case 1 polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]); % add the last line segment to the figure if size(polygon{thispolygon},1)>1 x = polygon{i}([end-1 end],1); y = polygon{i}([end-1 end],2); end plot(x, y, 'm.-'); case 8 % backspace if size(polygon{thispolygon},1)>0 % remove the last point polygon{thispolygon} = polygon{thispolygon}(1:end-1,:); % completely redraw the figure cla h = image(img); hold on axis equal axis off % plot the electrode positions plot(pos(:,1), pos(:,2), 'b.'); plot(pos(:,1), pos(:,2), 'yo'); for i=1:length(polygon) x = polygon{i}(:,1); y = polygon{i}(:,2); if i~=thispolygon % close the polygon in the figure x(end) = x(1); y(end) = y(1); end plot(x, y, 'm.-'); end end case 'c' if size(polygon{thispolygon},1)>0 x = polygon{thispolygon}(1,1); y = polygon{thispolygon}(1,2); polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]); % add the last line segment to the figure x = polygon{i}([end-1 end],1); y = polygon{i}([end-1 end],2); plot(x, y, 'm.-'); % switch to the next polygon thispolygon = thispolygon + 1; polygon{thispolygon} = zeros(0,2); end case 'n' if size(polygon{thispolygon},1)>0 % switch to the next polygon thispolygon = thispolygon + 1; polygon{thispolygon} = zeros(0,2); end case 'q' again = 0; otherwise warning('invalid button (%d)', k); end end % remember this set of polygons as the outline outline = polygon; % convert electrode positions into a layout structure lay.pos = pos; nchans = size(pos,1); for i=1:nchans lay.label{i,1} = sprintf('chan%03d', i); end % add width and height for multiplotting d = dist(pos'); for i=1:nchans d(i,i) = inf; % exclude the diagonal end mindist = min(d(:)); lay.width = ones(nchans,1) * mindist * 0.8; lay.height = ones(nchans,1) * mindist * 0.6; % add mask and outline polygons lay.mask = mask; lay.outline = outline; else error('no layout detected, please specify cfg.layout') end % FIXME there is a conflict between the use of cfg.style here and in topoplot if ~strcmp(cfg.style, '3d') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check whether outline and mask are available % if not, add default "circle with triangle" to resemble the head % in case of "circle with triangle", the electrode positions should also be % scaled %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(lay, 'outline') || ~isfield(lay, 'mask') rmax = 0.5; l = 0:2*pi/100:2*pi; HeadX = cos(l).*rmax; HeadY = sin(l).*rmax; NoseX = [0.18*rmax 0 -0.18*rmax]; NoseY = [rmax-.004 rmax*1.15 rmax-.004]; EarX = [.497 .510 .518 .5299 .5419 .54 .547 .532 .510 .489]; EarY = [.0555 .0775 .0783 .0746 .0555 -.0055 -.0932 -.1313 -.1384 -.1199]; % Scale the electrode positions to fit within a unit circle, i.e. electrode radius = 0.45 ind_scale = strmatch('SCALE', lay.label); ind_comnt = strmatch('COMNT', lay.label); sel = setdiff(1:length(lay.label), [ind_scale ind_comnt]); % these are excluded for scaling x = lay.pos(sel,1); y = lay.pos(sel,2); xrange = range(x); yrange = range(y); % First scale the width and height of the box for multiplotting lay.width = lay.width./xrange; lay.height = lay.height./yrange; % Then shift and scale the electrode positions lay.pos(:,1) = 0.9*((lay.pos(:,1)-min(x))/xrange-0.5); lay.pos(:,2) = 0.9*((lay.pos(:,2)-min(y))/yrange-0.5); % Define the outline of the head, ears and nose lay.outline{1} = [HeadX(:) HeadY(:)]; lay.outline{2} = [NoseX(:) NoseY(:)]; lay.outline{3} = [ EarX(:) EarY(:)]; lay.outline{4} = [-EarX(:) EarY(:)]; % Define the anatomical mask based on a circular head lay.mask{1} = [HeadX(:) HeadY(:)]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % apply the montage, i.e. combine bipolar channels into a new representation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~strcmp(cfg.montage, 'no') Norg = length(cfg.montage.labelorg); Nnew = length(cfg.montage.labelnew); for i=1:Nnew cfg.montage.tra(i,:) = abs(cfg.montage.tra(i,:)); cfg.montage.tra(i,:) = cfg.montage.tra(i,:) ./ sum(cfg.montage.tra(i,:)); end % pretend it is a sensor structure, this achieves averaging after channel matching tmp.tra = lay.pos; tmp.label = lay.label; new = ft_apply_montage(tmp, cfg.montage); lay.pos = new.tra; lay.label = new.label; % do the same for the width and height tmp.tra = lay.width(:); new = ft_apply_montage(tmp, cfg.montage); lay.width = new.tra; tmp.tra = lay.height(:); new = ft_apply_montage(tmp, cfg.montage); lay.height = new.tra; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % add axes positions for comments and scale information if required %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~any(strcmp('COMNT', lay.label)) && strcmpi(cfg.style, '2d') && ~skipcomnt % add a placeholder for the comment in the upper left corner lay.label{end+1} = 'COMNT'; lay.width(end+1) = mean(lay.width); lay.height(end+1) = mean(lay.height); X = min(lay.pos(:,1)); Y = max(lay.pos(:,2)); Y = min(lay.pos(:,2)); lay.pos(end+1,:) = [X Y]; elseif any(strcmp('COMNT', lay.label)) && skipcomnt % remove the scale entry sel = find(strcmp('COMNT', lay.label)); lay.label(sel) = []; lay.pos(sel,:) = []; lay.width(sel) = []; lay.height(sel) = []; end if ~any(strcmp('SCALE', lay.label)) && strcmpi(cfg.style, '2d') && ~skipscale % add a placeholder for the scale in the upper right corner lay.label{end+1} = 'SCALE'; lay.width(end+1) = mean(lay.width); lay.height(end+1) = mean(lay.height); X = max(lay.pos(:,1)); Y = max(lay.pos(:,2)); Y = min(lay.pos(:,2)); lay.pos(end+1,:) = [X Y]; elseif any(strcmp('SCALE', lay.label)) && skipscale % remove the scale entry sel = find(strcmp('SCALE', lay.label)); lay.label(sel) = []; lay.pos(sel,:) = []; lay.width(sel) = []; lay.height(sel) = []; end % to plot the layout for debugging, you can use this code snippet if strcmp(cfg.feedback, 'yes') && strcmpi(cfg.style, '2d') tmpcfg = []; tmpcfg.layout = lay; ft_layoutplot(tmpcfg); end % to write the layout to a text file, you can use this code snippet if ~isempty(cfg.output) && strcmpi(cfg.style, '2d') fprintf('writing layout to ''%s''\n', cfg.output); fid = fopen(cfg.output, 'wt'); for i=1:numel(lay.label) fprintf(fid, '%d %f %f %f %f %s\n', i, lay.pos(i,1), lay.pos(i,2), lay.width(i), lay.height(i), lay.label{i}); end fclose(fid); elseif ~isempty(cfg.output) && strcmpi(cfg.style, '3d') % the layout file format does not support 3D positions, furthermore for % a 3D layout the width and height are currently set to NaN error('writing a 3D layout to an output file is not supported'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION % read the layout information from the ascii file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function lay = readlay(filename) if ~exist(filename, 'file') error(sprintf('could not open layout file: %s', filename)); end [chNum,X,Y,Width,Height,Lbl,Rem] = textread(filename,'%f %f %f %f %f %q %q'); if length(Rem)<length(Lbl) Rem{length(Lbl)} = []; end for i=1:length(Lbl) if ~isempty(Rem{i}) % this ensures that channel names with a space in them are also supported (i.e. Neuromag) Lbl{i} = [Lbl{i} ' ' Rem{i}]; end end lay.pos = [X Y]; lay.width = Width; lay.height = Height; lay.label = Lbl; return % function readlay %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION % convert 3D electrode positions into 2D layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function lay = sens2lay(sens, rz, method, style) % remove the balancing from the sensor definition, e.g. 3rd order gradients, PCA-cleaned data or ICA projections sens = undobalancing(sens); fprintf('creating layout for %s system\n', ft_senstype(sens)); % apply rotation if isempty(rz) switch ft_senstype(sens) case {'ctf151', 'ctf275', 'bti148', 'bti248', 'ctf151_planar', 'ctf275_planar', 'bti148_planar', 'bti248_planar', 'yokogawa160', 'yokogawa160_planar', 'yokogawa64', 'yokogawa64_planar', 'yokogawa440', 'yokogawa440_planar', 'magnetometer', 'meg'} rz = 90; case {'neuromag122', 'neuromag306'} rz = 0; case 'electrode' rz = 90; otherwise rz = 0; end end sens.pnt = warp_apply(rotate([0 0 rz]), sens.pnt, 'homogenous'); % use helper function for 3D layout [pnt, label] = channelposition(sens); if strcmpi(style, '3d') lay.pos = pnt; lay.label = label; else prj = elproj(pnt, method); d = dist(prj'); d(find(eye(size(d)))) = inf; % This is a fix for .sfp files, containing positions of 'fiducial % electrodes'. Their presence determines the minimum distance between % projected electrode positions, leading to very small boxes. % This problem has been detected and reported by Matt Mollison. % FIXME: consider changing the box-size being determined by mindist % by a mean distance or so; this leads to overlapping boxes, but that % also exists for some .lay files if any(strmatch('Fid', label)) tmpsel = strmatch('Fid', label); d(tmpsel, :) = inf; d(:, tmpsel) = inf; end mindist = min(d(:)); X = prj(:,1); Y = prj(:,2); Width = ones(size(X)) * mindist * 0.8; Height = ones(size(X)) * mindist * 0.6; lay.pos = [X Y]; lay.width = Width; lay.height = Height; lay.label = label; end
github
philippboehmsturm/antx-master
ft_spike_triggeredspectrum.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_triggeredspectrum.m
15,754
utf_8
e32c9544218da94d42d8ff2acd4ec6f5
function [freq] = ft_spike_triggeredspectrum(cfg, data, spike) % FT_SPIKE_TRIGGEREDSPECTRUM computes the Fourier spectrup of the LFP around the spikes. % % When spikes have binary representation, as obtained from APPENDSPIKE or FT_SPIKE_SPIKE2DATA, use % [freq] = spiketriggeredspectrum(cfg, data) % When spikes from SPIKE struct need to be directly combined with continuous representation, use as % [freq] = ft_spike_triggeredspectrum(cfg,data,spike) % Important: in that case data.time and spike.trialtime should be matched! % % Configurations: % cfg.timwin = [begin end], time around each spike (default = [-0.1 0.1]) % cfg.foilim = [begin end], frequency band of interest (default = [0 150]) % cfg.taper = 'hanning' or many others, see WINDOW (default = 'hanning'). % cfg.tapsmofrq = number, the amount of spectral smoothing through % multi-tapering. Note that 4 Hz smoothing means % plus-minus 4 Hz, i.e. a 8 Hz smoothing box. % cfg.taperopt = additional inputs going to WINDOW func as cell array, e.g. % cfg.taperopt = {5, -35} with cfg.taper = 'taylorwin'. % Note: multitapering rotates phases (no problem for consistency) % cfg.spikechannel = string, name of single spike channel to trigger on. See FT_CHANNELSELECTION % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.feedback = 'no', 'text', 'textbar', 'gui' (default = 'no') % cfg.algorithm = 'vectorized' (default) or 'loop'. If the window around each spike % is short, a moderate a speed up of 5-10 times is typical using vectorized % code. However, for long windows (e.g. 0.5-1 second), vectorized % algorithm is typically 50-100 times faster because it calls FFT only % once per trial (instead of nSpikes times). % In case an lfp segment contains NaNs, we use specest_nanfft. % cfg.borderspikes = 'yes' (default) or 'no'. If 'yes', we process the spikes falling at the % border using the same taper for the LFP that falls within the trial. % % If the triggered spike leads a spike in another channel, then the angle % of the Fourier spectrum of that other channel will be negative. NOTE that % this should be checked for consistency. % % $Id: ft_spike_triggeredspectrum.m 3669 2011-06-09 20:26:57Z marvin $ % Copyright (C) 2008-2011, Robert Oostenveld, Martin Vinck % set the defaults if ~isfield(cfg, 'timwin'), cfg.timwin = [-0.1 0.1]; end if ~isfield(cfg, 'foilim'), cfg.foilim = [0 150]; end if ~isfield(cfg, 'taper'), cfg.taper = 'hanning'; end if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'spikechannel'), cfg.spikechannel = []; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end if ~isfield(cfg, 'algorithm'), cfg.algorithm = 'loop'; end if ~isfield(cfg, 'taperopt'), cfg.taperopt = []; end if ~isfield(cfg,'borderspikes'), cfg.borderspikes = 'yes'; end if strcmp(cfg.taper, 'sine') error('sorry, sine taper is not yet implemented'); end % determine which algorithm to use if strcmp(cfg.algorithm,'loop') doLoop = 1; elseif strcmp(cfg.algorithm,'vectorized') doLoop = 0; else error('unrecognized option for cfg.algorithm') end doBorderSpikes = strcmp(cfg.borderspikes,'yes'); % check whether a third input is specified hasSpike = nargin==3; % do the selection of the spikechannels if hasSpike, spikelabel = spike.label; else spikelabel = data.label; end % determine the channels to be averaged cfg.channel = ft_channelselection(cfg.channel, data.label); chansel = match_str(data.label, cfg.channel); % selected channels nchansel = length(cfg.channel); % number of channels % get the spikechannels cfg.spikechannel = ft_channelselection(cfg.spikechannel, spikelabel); spikesel = match_str(spikelabel, cfg.spikechannel); nspikesel = length(cfg.spikechannel); % number of spike channels if nspikesel~=1, error('MATLAB:ft_spike_triggeredspectrum:cfg:spiketriggeredspectrum:notOneSelected',... 'Onle one spike channel can be selected at a time'); end nTrials = length(data.trial); % number of trials % calculate number of samples left and right from spike and construct the taper begpad = round(cfg.timwin(1)*data.fsample); % number of samples before spike endpad = round(cfg.timwin(2)*data.fsample); % number of samples after spike numsmp = endpad - begpad + 1; % number of samples of segment if ~strcmp(cfg.taper,'dpss') if iscell(cfg.taperopt) taper = window(cfg.taper, numsmp, cfg.taperopt{:}); else taper = window(cfg.taper, numsmp); end taper = taper./norm(taper); else % not implemented yet: keep tapers, or selecting only a subset of them. taper = dpss(numsmp, cfg.tapsmofrq); taper = taper(:,1:end-1); % we get 2*NW-1 tapers taper = sum(taper,2)./size(taper,2); % using the linearity of multitapering end % frequency selection freqaxis = linspace(0, data.fsample, numsmp); fbeg = nearest(freqaxis, cfg.foilim(1)); fend = nearest(freqaxis, cfg.foilim(2)); freqs = freqaxis(fbeg:fend)'; % column vector that we use for rephasing later nFreqs = fend - fbeg + 1; cfg.foilim(1) = freqaxis(fbeg); % update the configuration to account for rounding off differences cfg.foilim(2) = freqaxis(fend); % make a representation of the spike, this is used for the phase rotation spk = zeros(numsmp,1); spk(1-begpad) = 1; spike_fft = fft(spk); spike_fft = spike_fft(fbeg:fend); spike_fft = spike_fft./abs(spike_fft); rephase = conj(spike_fft); % preallocate the outputs spectrum = cell(1,nTrials); spiketime = cell(1,nTrials); spiketrial = cell(1,nTrials); % compute the spectra for iTrial = 1:nTrials if hasSpike % get all the samples at once without using loops hasTrial = spike.trial{spikesel} == iTrial; ts = spike.time{spikesel}(hasTrial); spikesmp = zeros(1,length(ts)); for k = 1:length(ts) spikesmp(k) = nearest(data.time{iTrial},ts(k)); % this gives unique samples back end % calculate the phase shift based on difference between 'exact' and sample time ts = ts(:); smptime = data.time{iTrial}(spikesmp); shift = ts - smptime(:); elseif ~hasSpike spikesmp = find(data.trial{iTrial}(spikesel,:)); % simply find the LFP segment belonging to the time-stamp here. spikecnt = data.trial{iTrial}(spikesel,spikesmp); % instead of doing the bookkeeping of double spikes below, replicate the double spikes by looking at spikecnt sel = find(spikecnt>1); tmp = zeros(1,sum(spikecnt(sel))); n = 1; for j=1:length(sel) for k=1:spikecnt(sel(j)) tmp(n) = spikesmp(sel(j)); n = n + 1; end end % remove the double spikes spikesmp(sel) = []; % remove the double spikes spikesmp = sort([spikesmp tmp]); % add the double spikes as replicated single spikes end % determine the beginning and end of the segments begsmp = spikesmp + begpad; endsmp = spikesmp + endpad; % determine which spikes do not have their windows at the edges of the data nSpikes = length(begsmp); vldSpikes = begsmp>=1&endsmp<=size(data.trial{iTrial},2); % determine the valid spikes earlySpikes = begsmp<1 & spikesmp>=1; lateSpikes = spikesmp<=size(data.trial{iTrial},2) & endsmp>size(data.trial{iTrial},2); if doBorderSpikes vldSpikes = find(vldSpikes(:) | earlySpikes(:) | lateSpikes(:)); begsmp(earlySpikes) = 1; endsmp(earlySpikes) = numsmp; endsmp(lateSpikes) = size(data.trial{iTrial},2); begsmp(lateSpikes) = size(data.trial{iTrial},2)-numsmp+1; else vldSpikes = find(vldSpikes); end nVld = length(vldSpikes); % we want to process the incomplete spikes, also with hann window % determine the new begsmp and endsmp for the spikes that fall around the border, we should not % discard these, esp. not for low frequencies. fprintf('processing trial %d of %d (%d spikes)\n', iTrial, nTrials, sum(nSpikes)); % store the spiketimes and spiketrials, constructing a type of SPIKE format if ~hasSpike % otherwise we can immediate copy to FREQ.origtime and FREQ.origtrial spiketime{iTrial} = data.time{iTrial}(spikesmp); spiketrial{iTrial} = iTrial*ones(1,nSpikes); end % preallocate the spectrum that we create, also the spikes that will have NaNs spectrum{iTrial} = NaN(nSpikes, nchansel, nFreqs); rephaseMat = rephase(:,ones(1,nVld),ones(1,nchansel)); if doBorderSpikes && sum(earlySpikes)>0 for k = find(earlySpikes) spk = zeros(numsmp,1); spk(spikesmp(k)) = 1; spike_fft = fft(spk); spike_fft = spike_fft(fbeg:fend); spike_fft = spike_fft./abs(spike_fft); reph = conj(spike_fft); rephaseMat(:,k,:) = repmat(reph,[1 1 nchansel]); end end if doBorderSpikes && sum(lateSpikes)>0 n = size(data.trial{iTrial},2); bg = n-numsmp; for k = find(lateSpikes) spk = zeros(numsmp,1); spk(spikesmp(k)-bg) = 1; spike_fft = fft(spk); spike_fft = spike_fft(fbeg:fend); spike_fft = spike_fft./abs(spike_fft); reph = conj(spike_fft); rephaseMat(:,k,:) = repmat(reph,[1 1 nchansel]); end end if nVld<1,continue,end % continue to the next trial if this one does not contain valid spikes if ~doLoop % get the lfp, and reshape it such that we can index it at once. lfp = data.trial{iTrial}(chansel,:); lfp = reshape(lfp', [size(lfp,2) 1 nchansel]); % reshape to by time-by-1-by-nchansel % form the indices to index the LFP at once segment = linspacevec(begsmp(vldSpikes),endsmp(vldSpikes),numsmp)'; % cut out all windows at once to form a large 2-D matrix segment = lfp(segment,:,:); segment = reshape(segment,[numsmp nVld nchansel]); segmentMean = repmat(nanmean(segment,1),[numsmp 1 1]); % nChan x Numsmp segment = segment - segmentMean; % LFP has average of zero now (no DC) segmentMean = []; % remove to save memory lfp = []; hasNan = find(any(isnan(segment))); % this will be indx for nSpikes-by-nChans [row,col] = ind2sub([nVld nchansel], hasNan); % replace the parts in segment where there were nans in the data %my_fft = @specest_nanfft; my_fft = @specest_nanfft_; nNans = length(row); fftNan = zeros(numsmp,nNans); time = randn(size(segment)); % this is actually not used (MV: why is it there then?) for iNan = 1:nNans fftNan(:,iNan) = my_fft(segment(:,row(iNan),col(iNan)).*taper, time); end % fourier transform the data matrix segment = fft(segment .* taper(:,ones(1,nVld), ones(1,nchansel))); % replace the part of the segment with NaNs now for iNan = 1:nNans segment(:,row(iNan),col(iNan)) = fftNan(:,iNan); end % select the desired output frequencies and normalize segment = segment(fbeg:fend,:,:) ./ sqrt(numsmp/2); % rotate the phase at each frequency to correct for segment t=0 not being at the first sample if hasSpike % phase rotation according to difference data timeaxis and raw timestamps shift = shift(vldSpikes)'; shiftrephase = shift(ones(nFreqs,1),:,ones(1,nchansel)).*freqs(:,ones(1,nVld),ones(1,nchansel)); shiftrephase = exp(i*2*pi*shiftrephase); % rephase the fourier transform segment = segment .* (rephase(:,ones(1,nVld),ones(1,nchansel)) .* shiftrephase); else segment = segment .* (rephase(:,ones(1,nVld),ones(1,nchansel))); end % collect the results spectrum{iTrial}(vldSpikes,1:nchansel,1:nFreqs) = permute(segment,[2 3 1]); else my_fft = @specest_nanfft; ft_progress('init', cfg.feedback, 'spectrally decomposing data around spikes'); reph = repmat(rephase,1,nchansel).'; for iSpike = vldSpikes ft_progress(iTrial/nTrials, 'spectrally decomposing data around spike %d of %d\n', iSpike, length(spikesmp)); begsmp = spikesmp(iSpike) + begpad; endsmp = spikesmp(iSpike) + endpad; segment = data.trial{iTrial}(chansel,begsmp:endsmp); % substract the DC component from every segment, to avoid any leakage of the taper segmentMean = repmat(nanmean(segment,2),1,numsmp); % nChan x Numsmp segment = segment - segmentMean; % LFP has average of zero now (no DC) % taper the data segment around the spike and compute the fft time = randn(size(segment)); % this is actually not used (MV: why is it there then?) segment_fft = my_fft(segment * sparse(diag(taper)),time); % select the desired output frequencies and normalize segment_fft = segment_fft(:,fbeg:fend) ./ sqrt(numsmp/2); % rotate the phase at each frequency to correct for segment t=0 not being at the first sample if hasSpike % phase rotation according to difference data timeaxis and raw timestamps spikerephase = exp(2*pi*1i*shift(iSpike)*freqs); % use fft shift property segment_fft = segment_fft.* reph .* spikerephase(:,ones(1,nchansel)).'; else segment_fft = segment_fft.* reph; end % store the result for this spike in this trial spectrum{iTrial}(iSpike,:,:) = segment_fft; end % for each spike in this trial ft_progress('close'); end end % for each trial % collect the results freq.label = data.label(chansel); freq.freq = freqaxis(fbeg:fend); freq.dimord = 'rpt_chan_freq'; freq.fourierspctrm = cat(1, spectrum{:}); if ~hasSpike freq.time = cat(2,spiketime{:})'; freq.trial = cat(2,spiketrial{:})'; for iTrial = 1:nTrials freq.trialtime(iTrial,:) = [min(data.time{iTrial}) max(data.time{iTrial})]; end else freq.time = spike.time{spikesel}(:); freq.trial = spike.trial{spikesel}(:); freq.trialtime = spike.trialtime; end % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, ind] = dbstack; cfg.version.name = st(ind); end % remember the configuration details of the input data try, cfg.previous = data.cfg; end % remember the exact configuration details in the output freq.cfg = cfg; function y = linspacevec(d1, d2, n) %LINSPACEVEC Linearly spaced matrix with different stop and end values. % Example: % d1 = 1:10; % d2 = 11:2:30; % n = 10; % indx = linspacevec(d1,d2,n) % Copyright 2008 Vinck if nargin == 2 n = 100; end d1 = d1(:); d2 = d2(:); d = d2-d1; if numel(d1)==1 n = double(n); y = [d1+(0:n-2)*d/(floor(n)-1) d2]; else D = d(:,ones(n-1,1)); v = (0:n-2)'; N = v(:,ones(length(d1),1))'; D1 = d1(:,ones(n-1,1)); y = [D1+N.*D/(n-1) d2]; end
github
philippboehmsturm/antx-master
ft_freqbaseline.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_freqbaseline.m
7,075
utf_8
4dcbe7bcd54a8553f75b2a5fc67d4c45
function [freqOut] = ft_freqbaseline(cfg, freq) % FT_FREQBASELINE performs baseline normalization for time-frequency data % % Use as % [freq] = ft_freqbaseline(cfg, freq) % where the freq data comes from FT_FREQANALYSIS and the configuration % should contain % cfg.baseline = [begin end] (default = 'no') % cfg.baselinetype = 'absolute' 'relchange' 'relative' (default = 'absolute') % cfg.param = field for which to apply baseline normalization, or % cell array of strings to specify multiple fields to normalize % (default = 'powspctrm') % % See also FT_FREQANALYSIS, FT_TIMELOCKBASELINE, FT_FREQCOMPARISON % Undocumented local options: % cfg.inputfile = one can specifiy preanalysed saved data as input % cfg.outputfile = one can specify output as file to save to disk % Copyright (C) 2004-2006, Marcel Bastiaansen % Copyright (C) 2005-2006, Robert Oostenveld % Copyright (C) 2011, Eelke Spaak % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_freqbaseline.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); %% Input scaffolding cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % set the defaults in the cfg structure cfg.baseline = ft_getopt(cfg, 'baseline', 'no'); cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute'); cfg.param = ft_getopt(cfg, 'param', 'powspctrm'); cfg.inputfile = ft_getopt(cfg, 'inputfile', []); cfg.outputfile = ft_getopt(cfg, 'outputfile', []); % check validity of input options cfg = ft_checkopt(cfg, 'baseline', {'char', 'doublevector'}); cfg = ft_checkopt(cfg, 'baselinetype', 'char', {'absolute', 'relative', 'relchange'}); cfg = ft_checkopt(cfg, 'param', {'char', 'charcell'}); % make sure cfg.param is a cell array of strings if (~isa(cfg.param, 'cell')) cfg.param = {cfg.param}; end % is input consistent? if ischar(cfg.baseline) && strcmp(cfg.baseline, 'no') && ~isempty(cfg.baselinetype) warning('no baseline correction done'); end % process possible yes/no value of cfg.baseline if ischar(cfg.baseline) && strcmp(cfg.baseline, 'yes') % default is to take the prestimulus interval cfg.baseline = [-inf 0]; elseif ischar(cfg.baseline) && strcmp(cfg.baseline, 'no') % nothing to do return end % should we read input data from file? if ~isempty(cfg.inputfile) if (nargin > 1) error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else freq = loadvar(cfg.inputfile, 'freq'); end end % check if the input data is valid for this function freq = ft_checkdata(freq, 'datatype', 'freq', 'feedback', 'yes'); % check if the field of interest is present in the data if (~all(isfield(freq, cfg.param))) error('cfg.param should be a string or cell array of strings referring to (a) field(s) in the freq input structure') end %% Computation of output % initialize output structure freqOut = []; freqOut.label = freq.label; freqOut.freq = freq.freq; freqOut.dimord = freq.dimord; freqOut.time = freq.time; if isfield(freq, 'grad') freqOut.grad = freq.grad; end if isfield(freq, 'elec') freqOut.elec = freq.elec; end if isfield(freq, 'trialinfo') freqOut.trialinfo = freq.trialinfo; end % loop over all fields that should be normalized for k = 1:numel(cfg.param) par = cfg.param{k}; if strcmp(freq.dimord, 'chan_freq_time') freqOut.(par) = ... performNormalization(freq.time, freq.(par), cfg.baseline, cfg.baselinetype); elseif strcmp(freq.dimord, 'rpt_chan_freq_time') || strcmp(freq.dimord, 'chan_chan_freq_time') freqOut.(par) = zeros(size(freq.(par))); % loop over trials, perform normalization per trial for l = 1:size(freq.(par), 1) tfdata = freq.(par)(l,:,:,:); siz = size(tfdata); tfdata = reshape(tfdata, siz(2:end)); freqOut.(par)(l,:,:,:) = ... performNormalization(freq.time, tfdata, cfg.baseline, cfg.baselinetype); end else error('unsupported data dimensions: %s', freq.dimord); end end %% Output scaffolding % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_freqbaseline.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data if isfield(freq, 'cfg'), cfg.previous = freq.cfg; end % remember the exact configuration details in the output freqOut.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'freq', freqOut); % use the variable name "freq" in the output file end %% Helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction that actually performs the normalization on an arbitrary % quantity %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = performNormalization(timeVec, data, baseline, baselinetype) baselineTimes = (timeVec >= baseline(1) & timeVec <= baseline(2)); if length(size(data)) ~= 3, error('time-frequency matrix should have three dimensions (chan,freq,time)'); end % compute mean of time/frequency quantity in the baseline interval, % ignoring NaNs, and replicate this over time dimension meanVals = repmat(nanmean(data(:,:,baselineTimes), 3), [1 1 size(data, 3)]); if (strcmp(baselinetype, 'absolute')) data = data - meanVals; elseif (strcmp(baselinetype, 'relative')) data = data ./ meanVals; elseif (strcmp(baselinetype, 'relchange')) data = (data - meanVals) ./ meanVals; else error('unsupported method for baseline normalization: %s', baselinetype); end end end % end of top-level function
github
philippboehmsturm/antx-master
ft_spike_psth.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_psth.m
12,255
utf_8
df3235e096d34b7c5dab6c7fe244a8a1
function [psth] = ft_spike_psth(cfg,spike) % FT_SPIKE_PSTH computes the peristimulus histogram of spiketrains. % % Use as % [PSTH] = FT_SPIKE_PSTH(CFG,SPIKE) % % The input SPIKE should be organised as: % The SPIKE datatype, obtained from FT_SPIKE_DATA2SPIKE or % FT_SPIKE_MAKETRIALS. % % Configurations options: % % cfg.binsize = [binsize] in sec (default = 0.025 sec); % cfg.outputunit = - 'rate' (default) If 'rate', we convert the % output per bin to firing rates (spikes/sec). % - 'spike': we count the number spikes per bin. % cfg.spikechannel = See FT_CHANNELSELECTION for details. % cfg.trials = - vector of indices (e.g., 1:2:10) % - logical selection of trials (e.g., [1010101010]) % - 'all' (default), selects all trials % cfg.vartriallen = - 'yes' (default) % Accept variable trial lengths and use all available % trials and the samples in every trial. Missing values will be % ignored in the computation of the average and the variance and % stored as NaNs in the output PSTH.TRIAL. % - 'no' % Only select those trials that fully cover the window as specified % by cfg.latency and discard those trials that do not. % cfg.latency = - [begin end] in seconds % - 'maxperiod' (default), i.e., maximum period available % - 'minperiod', i.e., the minimal period all trials share % - 'prestim' (all t<=0) % - 'poststim' (all t>=0). % cfg.keeptrials = 'yes' or 'no' (default). % % Outputs: % Psth is a structure similar to FT_TIMELOCKANALYSIS or FT_SPIKE_DENSITY. % Psth.time = center histogram bin points % Psth.fsample = 1/binsize; % Psth.avg = contains average PSTH per unit % Psth.trial = contains PSTH per unit per trial % Psth.var = contains variance of PSTH per unit across trials % % PSTH can be fed into FT_TIMELOCKSTATISTICS, into FT_SPIKE_PLOT_PSTH (for % plotting the PSTH), into FT_SPIKE_JPSTH (calculating the joint psth), into % FT_SPIKE_PLOT_RASTER as cfg.topdata, in which we plot it above a rasterplot. % % Copyright (C) 2010, Martin Vinck % TO ADD: binsize should be optimally determined based on % standard techniques to compute binsize based on bandwidth. Same for FT_SPIKE_DENSITY if nargin~=2, error('ft:spike_psth:nargin','Two input arguments required'), end % check configuration inputs and enter the defaults, should be standardized within fieldtrip defaults.binsize = {0.025}; % sec defaults.outputunit = {'rate' 'spikecount'}; defaults.spikechannel = {'all'}; defaults.trials = {'all'}; defaults.latency = {'maxperiod'}; defaults.vartriallen = {'yes' 'no'}; defaults.keeptrials = {'yes' 'no'}; cfg = ft_spike_sub_defaultcfg(cfg,defaults); % detect whether the format of spike is correct, % should - when the spike format solidifies, in the end be done with checkdata in fieldtrip hasAllFields = all(isfield(spike, {'trial', 'time', 'trialtime' 'label'})); if ~hasAllFields, error('ft:spike_psth:wrongStructInput',... 'input SPIKE should be structure with .trial, .time, .trialtime .label fields') end % check whether all are of right format correctInp = iscell(spike.time) && iscell(spike.trial) && iscell(spike.label) && isrealmat(spike.trialtime) ... && size(spike.trialtime,2)==2; if ~correctInp, error('ft:spike_psth:wrongStructInput',... '.time, .trial and .label should be cell arrays, .trialtime should be nTrials-by-2 matrix') end % get the number of trials or change DATA according to cfg.trials cfg = trialselection(cfg,spike); % select the unit - this should be done with channelselection function cfg.channel = ft_channelselection(cfg.spikechannel, spike.label); spikesel = match_str(spike.label, cfg.channel); nUnits = length(spikesel); if nUnits==0, error('ft:spike_psth:cfg:spikechannel:noSpikeChanSelected',... 'No spikechannel selected by means of cfg.spikechannel'); end % determine the duration of each trial - we assume N by 2, see error check before begTrialLatency = spike.trialtime(cfg.trials,1); % remember: already selected on trial here endTrialLatency = spike.trialtime(cfg.trials,2); trialDur = endTrialLatency - begTrialLatency; % while we could simply deselect trials with trialtime field messed up, this may detect bugs if any(trialDur<0), error('MATLAB:spike_psth:SPIKE.time:reversedOrder',... 'SPIKE.time(:,1) should preceed SPIKE.time(:,2), your SPIKE.time field is messed up'); end % select the latencies, use the same modular function in all the scripts cfg = latencyselection(cfg,begTrialLatency,endTrialLatency); % do some error checking on the binsize if cfg.binsize<=0 || cfg.binsize>(cfg.latency(2)-cfg.latency(1)), error('ft:spike_psth:cfg:binsize:wrongInput',... 'cfg.binsize should be greater than zero and not exceed the trialduration'); end % end of trial should be late enough, beginning should be early enough fullDur = trialDur>=cfg.binsize; % trials which have full duration overlaps = endTrialLatency>=(cfg.latency(1)+cfg.binsize) & begTrialLatency<=(cfg.latency(2)-cfg.binsize); if strcmp(cfg.vartriallen,'no') % only select trials that fully cover our latency window startsLater = single(begTrialLatency)>single(cfg.latency(1)); endsEarlier = single(endTrialLatency)<single(cfg.latency(2)); hasWindow = ~(startsLater | endsEarlier); % it should not start later or end earlier else hasWindow = ones(1,length(cfg.trials)); end trialSel = fullDur(:) & overlaps(:) & hasWindow(:); cfg.trials = cfg.trials(trialSel); % note that endTrialLatency was of length cfg.trials if isempty(cfg.trials), % it should be explicitly tested that selecting no trial gives no error here warning('ft:spike_psth:cfg:trials','No trials were selected after latency selection'); end nTrials = length(cfg.trials); begTrialLatency = begTrialLatency(trialSel); % note that begTrialLatency was of length cfg.trials here endTrialLatency = endTrialLatency(trialSel); % create the bins, this might harbour some inaccuracy if the latency window is not an % integer multiple; we start arbitrarily at cfg.latency(1) bins = cfg.latency(1) : cfg.binsize : cfg.latency(end); nBins = length(bins); % preallocate before computing the psth, otherwise, compute stuff 'on the run' if strcmp(cfg.keeptrials,'yes'), singleTrials = NaN(nTrials,nUnits,nBins-1); end [s,ss] = deal(zeros(nUnits, nBins-1)); %sum, and sum of squared in the loop, to get mean & var % preallocate and compute degrees of freedom allStartEarlier = all(begTrialLatency<=cfg.latency(1)); allEndLater = all(endTrialLatency>=cfg.latency(2)); if ~ (allStartEarlier && allEndLater), dof = zeros(1,nBins-1); else dof = ones(1,nBins-1)*nTrials; % if all exceed latency, then this is dof end % compute the peristimulus histogram, different algorithms per data type for iTrial = 1:nTrials % nTrials redefined on line 149, only the selected trials origTrial = cfg.trials(iTrial); if ~ (allStartEarlier && allEndLater) % select bins and count dof + 1 binSel = begTrialLatency(iTrial)<=bins(1:end-1) & endTrialLatency(iTrial)>=bins(2:end); dof(binSel) = dof(binSel) + 1; else binSel = 1:(nBins-1); % always deselect the last bin end for iUnit = 1:nUnits unitIndx = spikesel(iUnit); % select the unit spikesInTrial = (spike.trial{unitIndx}==origTrial); % get spikes in trial spikeTimes = spike.time{unitIndx}(spikesInTrial); % compute the psth trialPsth = histc(spikeTimes(:), bins); % we deselect the last bin per default trialPsth = trialPsth(:)'; % force into row vec if isempty(trialPsth), trialPsth = zeros(1,length(bins)); end % convert to firing rates if requested, with spikecount do nothing if strcmp(cfg.outputunit,'rate'), trialPsth = trialPsth/cfg.binsize; end % compute the sum and the sum of squares for the var and the mean on the fly s(iUnit,binSel) = s(iUnit,binSel) + trialPsth(binSel); % last bin is single value ss(iUnit,binSel) = ss(iUnit,binSel) + trialPsth(binSel).^2; if strcmp(cfg.keeptrials,'yes'), singleTrials(iTrial,iUnit,binSel) = trialPsth(binSel); end end end % get the results dof = dof(ones(nUnits,1),:); psth.avg = s ./ dof; psth.var = (ss - s.^2./dof)./(dof-1); % since sumPsth.^2 ./ dof = dof .* (sumPsth/dof).^2 psth.dof = dof; % combined with psth.var we can get SEM psth.fsample = 1/(cfg.binsize); % might be more compatible with feeding psth in other funcs psth.time = bins(1:end-1) + 0.5*cfg.binsize; % use .time name psth.label = spike.label(spikesel); if (strcmp(cfg.keeptrials,'yes')) psth.trial = singleTrials; psth.dimord = 'rpt_chan_time'; % perhaps we need two dimords here, what's the FT convention? else psth.dimord = 'chan_time'; end % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; cfg.version.name = st(i); end % remember the configuration details of the input data if isfield(spike,'cfg'),cfg.previous = spike.cfg; end % remember the exact configuration details in the output psth.cfg = cfg; %%%%%%%%% SUB FUNCTIONS %%%%%%%%% function [cfg] = latencyselection(cfg,begTrialLatency,endTrialLatency) if strcmp(cfg.latency,'minperiod') cfg.latency = [max(begTrialLatency) min(endTrialLatency)]; elseif strcmp(cfg.latency,'maxperiod') cfg.latency = [min(begTrialLatency) max(endTrialLatency)]; elseif strcmp(cfg.latency,'prestim') cfg.latency = [min(begTrialLatency) 0]; elseif strcmp(cfg.latency,'poststim') cfg.latency = [0 max(endTrialLatency)]; elseif ~isrealvec(cfg.latency)||length(cfg.latency)~=2 error('ft:spike_psth:cfg:latency:unknownOption',... 'cfg.latency should be "maxperiod", "minperiod", "prestim", "poststim" or 1-by-2 numerical vector'); end if cfg.latency(1)>=cfg.latency(2), % check if it is ordered vector error('ft:spike_psth:cfg:latency:decreasingLatencyVector',... 'cfg.latency should be ascending vector, such that cfg.latency(2)>cfg.latency(1)'); end % check whether the time window fits with the data if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency); warning('ft:spike_psth:cfg:latencyBegBeforeTrialBeg',... 'Correcting begin latency because it is before all trial beginnings'); end if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency); warning('ft:spike_psth:cfg:latencyEndAfterTrialEnd',... 'Correcting end latency because it is after all trial ends'); end %%% function [cfg] = trialselection(cfg,spike) % get the number of trials or change DATA according to cfg.trials nTrials = size(spike.trialtime,1); if strcmp(cfg.trials,'all') cfg.trials = 1:nTrials; elseif islogical(cfg.trials) cfg.trials = find(cfg.trials); elseif ~isrealvec(cfg.trials); error('ft:spike_psth:cfg:trials:unknownOption',... 'cfg.trials should be logical or numerical selection or string "all"'); end cfg.trials = sort(cfg.trials(:)); if max(cfg.trials)>nTrials, error('ft:spike_psth:cfg:trials:maxExceeded',... 'maximum trial number in cfg.trials should not exceed length of DATA.trial') end if isempty(cfg.trials), error('ft:spike_psth:cfg:trials:noneSelected',... 'No trials were selected by you, rien ne va plus'); end
github
philippboehmsturm/antx-master
ft_sourceinterpolate.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sourceinterpolate.m
18,752
utf_8
19e7fac5cb7784e717324357e8b95815
function [interp] = ft_sourceinterpolate(cfg, functional, anatomical) % FT_SOURCEINTERPOLATE reslices and interpolates a source reconstruction % or a statistical distribution as an overlay onto an anatomical MRI. % % Both the functional data and the anatomical data can either describe a % 3-dimensional volume, an arbitrary cloud of points, or a triangulated % mesh. % % The following scenarios are possible: % % -The functional data is defined on a low resolution 2-dimensional triangulated % mesh, the vertices being a subset of the high resolution 2-dimensional % triangulated anatomical mesh. This allows for mesh based interpolation. The % algorithm currently implemented is so-called 'smudging' as it is also % applied by the MNE-suite software. % % -Both the functional and the anatomical data are defined on an irregular % point cloud (can be a 2D triangulated mesh). % % -The functional data is defined on an irregular point cloud (can be a 2D % triangulated mesh), and the anatomical data is a volumetric image. % % -The functional data is defined on a 3D regular grid of source positions % and the anatomical data is defined on an irregular point cloud (can be a % 2D triangulated mesh). % % -The functional data is defined on a 3D regular grid of source positions % and the anatomical data is a volumetric image. % % The functional and anatomical data should be expressed in the same % coordinate sytem, i.e. either both in CTF coordinates (NAS/LPA/RPA) % or both in SPM coordinates (AC/PC). % % The output data will contain a description of the functional data at the % locations at which the anatomical data are defined. For example, if the % anatomical data was volumetric, the output data is a volume-structure, % containing the resliced source and the anatomical volume that can be % plotted together, using FT_SOURCEPLOT or FT_SLICEINTERP, % or that can be written to file using FT_SOURCEWRITE. % % Use as % [interp] = ft_sourceinterpolate(cfg, source, mri) or % [interp] = ft_sourceinterpolate(cfg, stat, mri) % where % source is the output of FT_SOURCEANALYSIS % stat is the output of FT_SOURCESTATISTICS % mri is the output of FT_READ_MRI or the filename of a MRI, % or % the output of FT_READ_HEADSHAPE or the filename of a file % containing the description of a cortical sheet. % and cfg is a structure with any of the following fields % cfg.parameter = string, default is 'all' % cfg.interpmethod = 'linear', 'cubic', 'nearest' or 'spline' when % interpolating two 3D volumes onto each other % cfg.interpmethod = 'nearest', 'sphere_avg' or 'smudge' when % interpolating a point cloud onto a 3D volume, a % 3D volume onto a point cloud, or a point cloud % with another point cloud % cfg.downsample = integer number (default = 1, i.e. no downsampling) % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_SOURCEANALYSIS, FT_SOURCESTATISTICS, FT_READ_MRI, % FT_READ_HEADSHAPE % Undocumented options % cfg.voxelcoord = 'yes' (default) or 'no' determines whether the % downsampled output anatomical MRI will have the x/y/zgrid converted or % the homogeneous transformation matrix % Copyright (C) 2003-2007, Robert Oostenveld % Copyright (C) 2011, Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_sourceinterpolate.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); %% ft_checkdata see below!!! %% % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'unused', {'keepinside'}); cfg = ft_checkconfig(cfg, 'deprecated', {'sourceunits', 'mriunits'}); % set the defaults if ~isfield(cfg, 'parameter'), cfg.parameter = 'all'; end if ~isfield(cfg, 'sphereradius'), cfg.sphereradius = []; end if ~isfield(cfg, 'downsample'); cfg.downsample = 1; end if ~isfield(cfg, 'voxelcoord'), cfg.voxelcoord = 'yes'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'text'; end if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end hasdata = (nargin>1); hasinputfile = ~isempty(cfg.inputfile); if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); end % load optional given *.mat inputfile as data if hasinputfile functional = loadvar(cfg.inputfile{1}); anatomical = loadvar(cfg.inputfile{2}); end % read the anatomical MRI or cortical mesh from file if ischar(anatomical) try fprintf('trying to read anatomical MRI from file\n'); anatomical = ft_read_mri(anatomical); catch fprintf('anatomical file does not seem to be an anatomical MRI\n'); end end % if ischar if ischar(anatomical) try fprintf('trying to read cortical mesh from file\n'); anatomical = ft_read_headshape(anatomical); catch fprintf('anatomical file does not seem to be a cortical mesh\n'); end end % if ischar if ischar(anatomical) % if it ends up here, it means that all previous attempts failed error('the anatomical file does not seem to contain an anatomical MRI, nor a cortical mesh'); end % if ischar if isfield(anatomical, 'pnt') % anatomical data consists of a mesh, but no smudging possible is2Dana = 1; elseif isfield(anatomical, 'transform') && isfield(anatomical, 'dim') is2Dana = 0; end if isfield(functional, 'dim') && numel(functional.dim)==3 is2Dfun = 0; else is2Dfun = 1; end if is2Dfun && is2Dana && isfield(anatomical, 'orig') && isfield(anatomical.orig, 'pnt') && isfield(anatomical.orig, 'tri'), % anatomical data consists of a decimated triangulated mesh, containing % the original description, allowing for smudging. The coordinate systems % do not necessarily have to align. Should this be imposed? dosmudge = 1; else dosmudge = 0; end if dosmudge && is2Dana && is2Dfun % smudge the low resolution functional data according to the strategy in % MNE-suite (chapter 8.3 of the manual) % hmmmm, if the input data contains a time dimension, then the output % may be terribly blown up; most convenient would be to output only the % smudging matrix, and project the data when plotting if ~isfield(anatomical, 'orig') error('this is not yet implemented'); end interpmat = interp_ungridded(anatomical.pnt, anatomical.orig.pnt, 'projmethod', 'smudge', 'triout', anatomical.orig.tri); interp = []; interp.pos = anatomical.orig.pnt; interp.tri = anatomical.orig.tri; if isfield(interp, 'dim'), interp = rmfield(interp, 'dim'); end interp.inside = (1:size(interp.pos,1))'; interp.outside = []; for k = 1:numel(cfg.parameter) interp = setsubfield(interp, cfg.parameter{k}, interpmat*getsubfield(functional, cfg.parameter{k})); end elseif is2Dana && is2Dfun % 'interp_ungridded' error('not yet implemented'); elseif ~is2Dana && is2Dfun cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'nearest'); % interpolate onto a 3D volume, ensure that the anatomical is indeed a % volume anatomical = ft_checkdata(anatomical, 'datatype', 'volume', 'inside', 'logical', 'feedback', 'yes', 'hasunits', 'yes'); functional = ft_convert_units(functional, anatomical.unit); % get voxel indices and use interp_ungridded dim = anatomical.dim; [X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3)); interpmat = interp_ungridded(functional.pos, warp_apply(anatomical.transform, [X(:) Y(:) Z(:)]), ... 'projmethod', cfg.interpmethod, 'sphereradius', cfg.sphereradius); %FIXME include other key-value pairs as well clear X Y Z; interp = []; interp.dim = dim; interp.transform = anatomical.transform; interp.inside = anatomical.inside; interpmat(~anatomical.inside(:), :) = 0; for k = 1:numel(cfg.parameter) interp = setsubfield(interp, cfg.parameter{k}, reshape(interpmat*getsubfield(functional, cfg.parameter{k}),dim)); end elseif is2Dana && ~is2Dfun cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'nearest'); % interpolate the 3D volume onto the anatomy anatomical = ft_convert_units(anatomical); functional = ft_checkdata(functional, 'datatype', 'volume', 'inside', 'logical', 'feedback', 'yes', 'hasunits', 'yes'); functional = ft_convert_units(functional, anatomical.unit); % get voxel indices and use interp_ungridded dim = functional.dim; [X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3)); interpmat = interp_ungridded([X(:) Y(:) Z(:)], warp_apply(inv(functional.transform), anatomical.pnt), ..., 'projmethod', cfg.interpmethod, 'sphereradius', cfg.sphereradius); clear X Y Z; interp = []; interp.pos = anatomical.pnt; interp.inside = (1:size(anatomical.pnt,1))'; interp.outside = []; if isfield(anatomical, 'tri'), interp.tri = anatomical.tri; end for k = 1:numel(cfg.parameter) tmp = getsubfield(functional, cfg.parameter{k}); interp = setsubfield(interp, cfg.parameter{k}, interpmat*reshape(tmp, [prod(dim) numel(tmp)./prod(dim)])); end elseif ~is2Dana && ~is2Dfun cfg.interpmethod = ft_getopt(cfg, 'interpmethod', 'linear'); % original implementation interpolate a 3D volume onto another 3D volume % check if the input data is valid for this function and ensure that the structures correctly describes a volume functional = ft_checkdata(functional, 'datatype', 'volume', 'inside', 'logical', 'feedback', 'yes', 'hasunits', 'yes'); anatomical = ft_checkdata(anatomical, 'datatype', 'volume', 'inside', 'logical', 'feedback', 'yes', 'hasunits', 'yes'); % ensure that the functional data has the same unit as the anatomical % data functional = ft_convert_units(functional, anatomical.unit); % select the parameters that should be interpolated cfg.parameter = parameterselection(cfg.parameter, functional); cfg.parameter = setdiff(cfg.parameter, 'inside'); % inside is handled separately if ~isequal(cfg.downsample, 1) % downsample the anatomical volume tmpcfg = []; tmpcfg.downsample = cfg.downsample; tmpcfg.parameter = 'anatomy'; anatomical = ft_volumedownsample(tmpcfg, anatomical); end % collect the functional volumes that should be converted vol_name = {}; vol_data = {}; for i=1:length(cfg.parameter) if ~iscell(getsubfield(functional, cfg.parameter{i})) vol_name{end+1} = cfg.parameter{i}; vol_data{end+1} = getsubfield(functional, cfg.parameter{i}); else fprintf('not interpolating %s, since it is not a scalar field\n', cfg.parameter{i}); end end % remember the coordinate trandsformation for both transform_ana = anatomical.transform; transform_fun = functional.transform; % convert the anatomical voxel positions into voxel indices into the functional volume anatomical.transform = functional.transform \ anatomical.transform; functional.transform = eye(4); [fx, fy, fz] = voxelcoords(functional); [ax, ay, az] = voxelcoords(anatomical); % estimate the subvolume of the anatomy that is spanned by the functional volume minfx = 1; minfy = 1; minfz = 1; maxfx = functional.dim(1); maxfy = functional.dim(2); maxfz = functional.dim(3); sel = ax(:)>=minfx & ... ax(:)<=maxfx & ... ay(:)>=minfy & ... ay(:)<=maxfy & ... az(:)>=minfz & ... az(:)<=maxfz; fprintf('selecting subvolume of %.1f%%\n', 100*sum(sel)./prod(anatomical.dim)); % start with an empty output structure interp = []; dimf = [functional.dim 1 1]; allav = zeros([anatomical.dim dimf(4:end)]); functional.inside = functional.inside(:,:,:,1,1); if all(functional.inside(:)) % keep all voxels marked as inside interp.inside = true(anatomical.dim); else % reslice and interpolate inside interp.inside = zeros(anatomical.dim); % interpolate with method nearest interp.inside( sel) = my_interpn(double(functional.inside), ax(sel), ay(sel), az(sel), 'nearest', cfg.feedback); interp.inside(~sel) = 0; interp.inside = logical(interp.inside); end % prepare the grid that is used in the interpolation fg = [fx(:) fy(:) fz(:)]; clear fx fy fz % reslice and interpolate all functional volumes for i=1:length(vol_name) fprintf('reslicing and interpolating %s\n', vol_name{i}); for k=1:dimf(4) for m=1:dimf(5) fv = vol_data{i}(:,:,:,k,m); if ~isa(fv, 'double') % only convert if needed, this saves memory fv = double(fv); end av = zeros(anatomical.dim); % av( sel) = my_interpn(fx, fy, fz, fv, ax(sel), ay(sel), az(sel), cfg.interpmethod, cfg.feedback); if islogical(vol_data{i}) % interpolate always with method nearest av( sel) = my_interpn(fv, ax(sel), ay(sel), az(sel), 'nearest', cfg.feedback); av = logical(av); else if ~all(functional.inside(:)) % extrapolate the outside of the functional volumes for better interpolation at the edges fv(~functional.inside) = griddatan(fg(functional.inside(:), :), fv(functional.inside(:)), fg(~functional.inside(:), :), 'nearest'); end % interpolate functional onto anatomical grid av( sel) = my_interpn(fv, ax(sel), ay(sel), az(sel), cfg.interpmethod, cfg.feedback); clear fv av(~sel) = nan; av(~interp.inside) = nan; end allav(:,:,:,k,m) = av; clear av end end interp = setsubfield(interp, vol_name{i}, allav); end % add the other parameters to the output interp.dim = anatomical.dim; interp.transform = transform_ana; % the original coordinate system if ~any(strcmp(cfg.parameter, 'anatomy')) % copy the anatomy into the functional data interp.anatomy = anatomical.anatomy; end end % these stay the same as the input anatomical MRI if isfield(anatomical, 'coordsys') interp.coordsys = anatomical.coordsys; end if isfield(anatomical, 'unit') interp.unit = anatomical.unit; end % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_sourceinterpolate.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data cfg.previous = []; if isfield(functional, 'cfg'), cfg.previous{1} = functional.cfg; end if isfield(anatomical, 'cfg'), cfg.previous{2} = anatomical.cfg; end % remember the exact configuration details in the output interp.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', interp); % use the variable name "data" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION this function computes the location of all voxels in head % coordinates in a memory efficient manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [x, y, z] = voxelcoords(volume) dim = volume.dim; transform = volume.transform; if isfield(volume, 'xgrid') xgrid = volume.xgrid; ygrid = volume.ygrid; zgrid = volume.zgrid; else xgrid = 1:dim(1); ygrid = 1:dim(2); zgrid = 1:dim(3); end npix = prod(dim(1:2)); % number of voxels in a single slice x = zeros(dim); y = zeros(dim); z = zeros(dim); X = zeros(1,npix); Y = zeros(1,npix); Z = zeros(1,npix); E = ones(1,npix); % determine the voxel locations per slice for i=1:dim(3) [X(:), Y(:), Z(:)] = ndgrid(xgrid, ygrid, zgrid(i)); tmp = transform*[X; Y; Z; E]; x((1:npix)+(i-1)*npix) = tmp(1,:); y((1:npix)+(i-1)*npix) = tmp(2,:); z((1:npix)+(i-1)*npix) = tmp(3,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for memory efficient interpolation % the only reason for this function is that it does the interpolation in smaller chuncks % this prevents memory problems that I often encountered here %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % function [av] = my_interpn(fx, fy, fz, fv, ax, ay, az, interpmethod, feedback); function [av] = my_interpn(fv, ax, ay, az, interpmethod, feedback) num = numel(ax); % total number of voxels blocksize = floor(num/20); % number of voxels to interpolate at once, split it into 20 chuncks lastblock = 0; % boolean flag for while loop sel = 1:blocksize; % selection of voxels that are interpolated, this is the first chunck av = zeros(size(ax)); ft_progress('init', feedback, 'interpolating'); while (1) ft_progress(sel(1)/num, 'interpolating %.1f%%\n', 100*sel(1)/num); if sel(end)>num sel = sel(1):num; lastblock = 1; end av(sel) = interpn(fv, ax(sel), ay(sel), az(sel), interpmethod); if lastblock break end sel = sel + blocksize; end ft_progress('close');
github
philippboehmsturm/antx-master
ft_megplanar.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_megplanar.m
13,770
utf_8
a0374c6a05ac11b0542b63351812b05c
function [interp] = ft_megplanar(cfg, data) % FT_MEGPLANAR computes planar MEG gradients gradients for raw data % obtained from FT_PREPROCESSING or an average ERF that was computed using % FT_TIMELOCKANALYSIS. It can also work on data in the frequency domain, % obtained with FREQANALYSIS. Prerequisite for this is that the data contain % complex-valued fourierspectra. % % Use as % [interp] = ft_megplanar(cfg, data) % % The configuration should contain % cfg.planarmethod = 'orig' | 'sincos' | 'fitplane' | 'sourceproject' % cfg.channel = Nx1 cell-array with selection of channels (default = 'MEG'), % see FT_CHANNELSELECTION for details % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % % The methods orig, sincos and fitplane are all based on a neighbourhood % interpolation. For these methods you need to specify % cfg.neighbours = neighbourhood structure, see FT_NEIGHBOURSELECTION % % In the 'sourceproject' method a minumum current estimate is done using a % large number of dipoles that are placed in the upper layer of the brain % surface, followed by a forward computation towards a planar gradiometer % array. This requires the specification of a volume conduction model of % the head and of a source model. The 'sourceproject' method is not supported for % frequency domain data. % % A head model must be specified with % cfg.hdmfile = string, file containing the volume conduction model % or alternatively manually using % cfg.vol.r = radius of sphere % cfg.vol.o = [x, y, z] position of origin % % A dipole layer representing the brain surface must be specified with % cfg.inwardshift = depth of the source layer relative to the head model surface (default = 2.5, which is adequate for a skin-based head model) % cfg.spheremesh = number of dipoles in the source layer (default = 642) % cfg.pruneratio = for singular values, default is 1e-3 % cfg.headshape = a filename containing headshape, a structure containing a % single triangulated boundary, or a Nx3 matrix with surface % points % If no headshape is specified, the dipole layer will be based on the inner compartment % of the volume conduction model. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_COMBINEPLANAR, FT_NEIGHBOURSELECTION % This function depends on FT_PREPARE_BRAIN_SURFACE which has the following options: % cfg.headshape (default set in FT_MEGPLANAR: cfg.headshape = 'headmodel'), documented % cfg.inwardshift (default set in FT_MEGPLANAR: cfg.inwardshift = 2.5), documented % cfg.spheremesh (default set in FT_MEGPLANAR: cfg.spheremesh = 642), documented % % This function depends on FT_PREPARE_VOL_SENS which has the following options: % cfg.channel % cfg.elec % cfg.elecfile % cfg.grad % cfg.gradfile % cfg.hdmfile, documented % cfg.order % cfg.vol, documented % Copyright (C) 2004, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_megplanar.m 3876 2011-07-20 08:04:29Z jorhor $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % set defaults if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end cfg = ft_checkconfig(cfg, 'required', {'neighbours'}); if iscell(cfg.neighbours) warning('Neighbourstructure is in old format - converting to structure array'); cfg.neighbours = fixneighbours(cfg.neighbours); end % load optional given inputfile as data hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'data'); end end isfreq = ft_datatype(data, 'freq'); israw = ft_datatype(data, 'raw'); istlck = ft_datatype(data, 'timelock'); % this will be temporary converted into raw % check if the input data is valid for this function data = ft_checkdata(data, 'datatype', {'raw' 'freq'}, 'feedback', 'yes', 'hassampleinfo', 'yes', 'ismeg', 'yes', 'senstype', {'ctf151', 'ctf275', 'bti148', 'bti248', 'itab153', 'yokogawa160', 'yokogawa64'}); if istlck % the timelocked data has just been converted to a raw representation % and will be converted back to timelocked at the end of this function israw = true; end if isfreq, if ~isfield(data, 'fourierspctrm'), error('freq data should contain Fourier spectra'); end end % set the default configuration if ~isfield(cfg, 'channel'), cfg.channel = 'MEG'; end if ~isfield(cfg, 'trials'), cfg.trials = 'all'; end if ~isfield(cfg, 'planarmethod'), cfg.planarmethod = 'sincos'; end if strcmp(cfg.planarmethod, 'sourceproject') if ~isfield(cfg, 'headshape'), cfg.headshape = []; end % empty will result in the vol being used if ~isfield(cfg, 'inwardshift'), cfg.inwardshift = 2.5; end if ~isfield(cfg, 'pruneratio'), cfg.pruneratio = 1e-3; end if ~isfield(cfg, 'spheremesh'), cfg.spheremesh = 642; end end if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config') % convert the nested config-object back into a normal structure cfg.headshape = struct(cfg.headshape); end % put the low-level options pertaining to the dipole grid in their own field cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'}); cfg = ft_checkconfig(cfg, 'renamedvalue', {'headshape', 'headmodel', []}); % select trials of interest if ~strcmp(cfg.trials, 'all') fprintf('selecting %d trials\n', length(cfg.trials)); data = ft_selectdata(data, 'rpt', cfg.trials); end if strcmp(cfg.planarmethod, 'sourceproject') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Do an inverse computation with a simplified distributed source model % and compute forward again with the axial gradiometer array replaced by % a planar one. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfreq error('the method ''sourceproject'' is not supported for frequency data as input'); end Nchan = length(data.label); Ntrials = length(data.trial); % FT_PREPARE_VOL_SENS will match the data labels, the gradiometer labels and the % volume model labels (in case of a multisphere model) and result in a gradiometer % definition that only contains the gradiometers that are present in the data. [vol, axial.grad, cfg] = prepare_headmodel(cfg, data); % determine the dipole layer that represents the surface of the brain if isempty(cfg.headshape) % construct from the inner layer of the volume conduction model pos = headsurface(vol, axial.grad, 'surface', 'cortex', 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh); else % get the surface describing the head shape if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt') % use the headshape surface specified in the configuration headshape = cfg.headshape; elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3 % use the headshape points specified in the configuration headshape.pnt = cfg.headshape; elseif ischar(cfg.headshape) % read the headshape from file headshape = ft_read_headshape(cfg.headshape); else error('cfg.headshape is not specified correctly') end if ~isfield(headshape, 'tri') % generate a closed triangulation from the surface points headshape.pnt = unique(headshape.pnt, 'rows'); headshape.tri = projecttri(headshape.pnt); end % construct from the head surface pos = headsurface([], [], 'headshape', headshape, 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh); end % compute the forward model for the axial gradiometers fprintf('computing forward model for %d dipoles\n', size(pos,1)); lfold = ft_compute_leadfield(pos, axial.grad, vol); % construct the planar gradient definition and compute its forward model % this will not work for a multisphere model, compute_leadfield will catch % the error planar.grad = constructplanargrad([], axial.grad); lfnew = ft_compute_leadfield(pos, planar.grad, vol); % compute the interpolation matrix transform = lfnew * prunedinv(lfold, cfg.pruneratio); % interpolate the data towards the planar gradiometers for i=1:Ntrials fprintf('interpolating trial %d to planar gradiometer\n', i); interp.trial{i} = transform * data.trial{i}(dataindx,:); end % for Ntrials % all planar gradiometer channels are included in the output interp.grad = planar.grad; interp.label = planar.grad.label; % copy the non-gradiometer channels back into the output data other = setdiff(1:Nchan, dataindx); for i=other interp.label{end+1} = data.label{i}; for j=1:Ntrials interp.trial{j}(end+1,:) = data.trial{j}(i,:); end end else % generically call megplanar_orig megplanar_sincos or megplanar_fitplante fun = ['megplanar_' cfg.planarmethod]; if ~exist(fun, 'file') error('unknown method for computation of planar gradient'); end [sens.pnt, sens.ori, sens.label] = channelposition(data.grad); cfg.channel = ft_channelselection(cfg.channel, sens.label); cfg.neighbsel = channelconnectivity(cfg); % determine fprintf('average number of neighbours is %.2f\n', mean(sum(cfg.neighbsel))); Ngrad = length(sens.label); cfg.distance = zeros(Ngrad,Ngrad); for i=1:Ngrad j=find(cfg.neighbsel(i, :)); d = sqrt(sum((sens.pnt(j,:) - repmat(sens.pnt(i, :), numel(j), 1)).^2, 2)); cfg.distance(i,j) = d; cfg.distance(j,i) = d; end fprintf('minimum distance between neighbours is %6.2f %s\n', min(cfg.distance(cfg.distance~=0)), data.grad.unit); fprintf('maximum distance between gradiometers is %6.2f %s\n', max(cfg.distance(cfg.distance~=0)), data.grad.unit); montage = eval([fun '(cfg, data.grad)']); % apply the linear transformation to the data interp = ft_apply_montage(data, montage, 'keepunused', 'yes'); % also apply the linear transformation to the gradiometer definition interp.grad = ft_apply_montage(data.grad, montage, 'balancename', 'planar', 'keepunused', 'yes'); % ensure that the old sensor type does not stick around, because it is now invalid % the sensor type is added in FT_PREPARE_VOL_SENS but is not used in external fieldtrip code if isfield(interp.grad, 'type') interp.grad = rmfield(interp.grad, 'type'); end end if istlck % convert the raw structure back into a timelock structure interp = ft_checkdata(interp, 'datatype', 'timelock'); israw = false; end % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % store the configuration of this function call, including that of the previous function call cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_megplanar.m 3876 2011-07-20 08:04:29Z jorhor $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try cfg.previous = data.cfg; end % remember the exact configuration details in the output interp.cfg = cfg; % copy the trial specific information into the output if isfield(data, 'trialinfo') interp.trialinfo = data.trialinfo; end % copy the sampleinfo field as well if isfield(data, 'sampleinfo') interp.sampleinfo = data.sampleinfo; end % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', interp); % use the variable name "data" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that computes the inverse using a pruned SVD %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lfi] = prunedinv(lf, r) [u, s, v] = svd(lf); p = find(s<(s(1,1)*r) & s~=0); fprintf('pruning %d out of %d singular values\n', length(p), min(size(s))); s(p) = 0; s(find(s~=0)) = 1./s(find(s~=0)); lfi = v * s' * u';
github
philippboehmsturm/antx-master
ft_volumerealign.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_volumerealign.m
20,951
utf_8
d1ad8363bae8b0ea6ebc4bad08d6d197
function [mri] = ft_volumerealign(cfg, mri) % FT_VOLUMEREALIGN spatially aligns an anatomical MRI with head coordinates based on % external fiducials or anatomical landmarks. This function does not change the % volume itself, but adjusts the homogeneous transformation matrix that describes % the coordinate system. % % This function only changes the coordinate system of an anatomical % MRI, it does not change the MRI as such. For spatial normalisation % (warping) of an MRI to a template brain you should use the % FT_VOLUMENORMALISE function. % % Use as % [mri] = ft_volumerealign(cfg, mri) % where mri is an anatomical volume (i.e. MRI) or a functional % volume (i.e. source recunstruction that has been interpolated on % an MRI). % % The configuration can contain the following options % cfg.clim = [min max], scaling of the anatomy color (default % is to adjust to the minimum and maximum) % cfg.method = different methods for aligning the volume % 'fiducial' realign the volume to the fiducials, % using 'ALS_CTF' convention, i.e. % the origin is exactly between lpa and rpa % the X-axis goes towards nas % the Y-axis goes approximately towards lpa, % orthogonal to X and in the plane spanned % by the fiducials % the Z-axis goes approximately towards the vertex, % orthogonal to X and Y % 'landmark' realign the volume to anatomical landmarks, % using RAS_Tal convention, i.e. % the origin corresponds with the anterior commissure % the Y-axis is along the line from the posterior % commissure to the anterior commissure % the Z-axis is towards the vertex, in between the % hemispheres % the X-axis is orthogonal to the YZ-plane, % positive to the right % 'interactive' manually using graphical user interface % % For realigning to the fiducials, you should specify the position of the % fiducials in voxel indices. % cfg.fiducial.nas = [i j k], position of nasion % cfg.fiducial.lpa = [i j k], position of LPA % cfg.fiducial.rpa = [i j k], position of RPA % % For realigning to the landmarks, you should specify the position of the % landmarks in voxel indices. % cfg.landmark.ac = [i j k], position of anterior commissure % cfg.landmark.pc = [i j k], position of posterior commissure % cfg.landmark.xzpoint = [i j k], point on the midsagittal-plane with positive Z-coordinate, % i.e. interhemispheric point above ac and pc % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_READ_MRI, FT_ELECTRODEREALIGN % Undocumented option % cfg.coordsys, works for interactive and fiducial % Copyright (C) 2006-2009, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_volumerealign.m 3888 2011-07-20 14:25:23Z jansch $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducial', 'fiducial'}); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'required', 'method'); % set the defaults if ~isfield(cfg, 'fiducial'), cfg.fiducial = []; end if ~isfield(cfg, 'landmark'), cfg.landmark = []; end if ~isfield(cfg, 'parameter'), cfg.parameter = 'anatomy'; end if ~isfield(cfg, 'clim'), cfg.clim = []; end if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'),cfg.outputfile = []; end if ~isfield(cfg, 'coordsys') && (strcmp(cfg.method, 'interactive') || strcmp(cfg.method, 'fiducial')) cfg.coordsys = 'ctf'; end hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else mri = loadvar(cfg.inputfile, 'mri'); end end % check if the input data is valid for this function mri = ft_checkdata(mri, 'datatype', 'volume', 'feedback', 'yes'); if ~isfield(cfg, 'method') if ~isempty(cfg.fiducial) cfg.method = 'fiducial'; basedonfid = 1; basedonmrk = 0; elseif ~isempty(cfg.landmark) cfg.method = 'landmark'; basedonfid = 0; basedonmrk = 1; else cfg.method = 'interactive'; end end if strcmp(cfg.method, 'interactive') basedonfid = 0; basedonmrk = 0; elseif strcmp(cfg.method, 'fiducial') basedonfid = 1; basedonmrk = 0; elseif strcmp(cfg.method, 'landmark') basedonfid = 0; basedonmrk = 1; end % select the parameter that should be displayed cfg.parameter = parameterselection(cfg.parameter, mri); if iscell(cfg.parameter) cfg.parameter = cfg.parameter{1}; end h1 = subplot('position',[0.02 0.55 0.44 0.44]);%subplot(2,2,1); h2 = subplot('position',[0.52 0.55 0.44 0.44]);%subplot(2,2,2); h3 = subplot('position',[0.02 0.05 0.44 0.44]);%subplot(2,2,3); handles = {h1 h2 h3}; switch cfg.method case 'fiducial' % do nothing case 'landmark' % do nothing case 'interactive' showcrosshair = true; showmarkers = true; dat = mri.(cfg.parameter); nas = []; lpa = []; rpa = []; antcomm = []; pstcomm = []; xzpoint = []; x = 1:mri.dim(1); y = 1:mri.dim(2); z = 1:mri.dim(3); xc = round(mri.dim(1)/2); yc = round(mri.dim(2)/2); zc = round(mri.dim(3)/2); updatepanel = [1 2 3]; pnt = zeros(0,3); markerpos = zeros(0,3); markerlabel = {}; markercolor = {}; while true % break when 'q' is pressed fprintf('click with mouse button to reslice the display to a new position\n'); fprintf('press n/l/r on keyboard to record the current position as fiducial location\n'); fprintf('press a/p/z on keyboard to record the current position as anatomical landmark\n'); fprintf('press the arrow keys on the keyboard to increment or decrement the slice number by one\n'); fprintf('press c or C on the keyboard to show or hide the crosshair\n'); fprintf('press q on keyboard to quit interactive mode\n'); xc = round(xc); xc = max(1,xc); xc = min(mri.dim(1),xc); yc = round(yc); yc = max(1,yc); yc = min(mri.dim(2),yc); zc = round(zc); zc = max(1,zc); zc = min(mri.dim(3),zc); markers = {markerpos markerlabel markercolor}; [h1, h2, h3] = volplot(x, y, z, dat, [xc yc zc], cfg.clim, showcrosshair, updatepanel, handles, showmarkers, markers); drawnow; try, [d1, d2, key] = ginput(1); catch, key='q'; end switch key case 113 % 'q' break; case 108 % 'l' lpa = [xc yc zc]; case 114 % 'r' rpa = [xc yc zc]; case 110 % 'n' nas = [xc yc zc]; case 97 % 'a' antcomm = [xc yc zc]; case 112 % 'p' pstcomm = [xc yc zc]; case 122 % 'z' xzpoint = [xc yc zc]; case 99 % 'c' showcrosshair = true; case 67 % 'C' showcrosshair = false; case 1 % left mouse click % update the view to a new position l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); switch l1, case 'i' xc = d1; case 'j' yc = d1; case 'k' zc = d1; otherwise continue; end switch l2, case 'i' xc = d2; case 'j' yc = d2; case 'k' zc = d2; otherwise continue; end if l1=='i' && l2=='j' updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' updatepanel = [3 1 2]; end case 3 % right mouse click % add point to a list l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); switch l1, case 'i' xc = d1; case 'j' yc = d1; case 'k' zc = d1; end switch l2, case 'i' xc = d2; case 'j' yc = d2; case 'k' zc = d2; end pnt = [pnt; xc yc zc]; if l1=='i' && l2=='j' updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' updatepanel = [3 1 2]; end case 2 % middle mouse click l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); % remove the previous point if size(pnt,1)>0 pnt(end,:) = []; end if l1=='i' && l2=='j' updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' updatepanel = [3 1 2]; end case 28 % arrow left % update the coordinates l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); if l1=='i' && l2=='j' xc = xc-1; updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' xc = xc-1; updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' yc = yc-1; updatepanel = [3 1 2]; end case 30 % arrow up % update the coordinates l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); if l1=='i' && l2=='j' yc = yc+1; updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' zc = zc+1; updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' zc = zc+1; updatepanel = [3 1 2]; end case 29 % arrow right % update the coordinates l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); if l1=='i' && l2=='j' xc = xc+1; updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' xc = xc+1; updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' yc = yc+1; updatepanel = [3 1 2]; end case 31 % arrow down % update the coordinates l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); if l1=='i' && l2=='j' yc = yc-1; updatepanel = [1 2 3]; elseif l1=='i' && l2=='k' zc = zc-1; updatepanel = [2 3 1]; elseif l1=='j' && l2=='k' zc = zc-1; updatepanel = [3 1 2]; end otherwise % do nothing end fprintf('============================================================\n'); if all(round([xc yc zc])<=mri.dim) str = sprintf('voxel %d, indices [%d %d %d]', sub2ind(mri.dim(1:3), round(xc), round(yc), round(zc)), round([xc yc zc])); if isfield(mri, 'coordsys') && isfield(mri, 'unit') str = sprintf('%s, %s coordinates [%.1f %.1f %.1f] %s', str, mri.coordsys, warp_apply(mri.transform, [xc yc zc]), mri.unit); elseif ~isfield(mri, 'coordsys') && isfield(mri, 'unit') str = sprintf('%s, location [%.1f %.1f %.1f] %s', str, warp_apply(mri.transform, [xc yc zc]), mri.unit); elseif isfield(mri, 'coordsys') && ~isfield(mri, 'unit') str = sprintf('%s, %s coordinates [%.1f %.1f %.1f]', str, mri.coordsys, warp_apply(mri.transform, [xc yc zc])); elseif ~isfield(mri, 'coordsys') && ~isfield(mri, 'unis') str = sprintf('%s, location [%.1f %.1f %.1f]', str, warp_apply(mri.transform, [xc yc zc])); end fprintf('%s\n', str); % fprintf('cur_voxel = [%f %f %f], cur_head = [%f %f %f]\n', [xc yc zc], warp_apply(mri.transform, [xc yc zc])); end markerpos = zeros(0,3); markerlabel = {}; markercolor = {}; if ~isempty(nas), fprintf('nas_voxel = [%f %f %f], nas_head = [%f %f %f]\n', nas, warp_apply(mri.transform, nas)); markerpos = [markerpos; nas]; markerlabel = [markerlabel; {'nas'}]; markercolor = [markercolor; {'b'}]; end if ~isempty(lpa), fprintf('lpa_voxel = [%f %f %f], lpa_head = [%f %f %f]\n', lpa, warp_apply(mri.transform, lpa)); markerpos = [markerpos; lpa]; markerlabel = [markerlabel; {'lpa'}]; markercolor = [markercolor; {'g'}]; end if ~isempty(rpa), fprintf('rpa_voxel = [%f %f %f], rpa_head = [%f %f %f]\n', rpa, warp_apply(mri.transform, rpa)); markerpos = [markerpos; rpa]; markerlabel = [markerlabel; {'rpa'}]; markercolor = [markercolor; {'r'}]; end if ~isempty(antcomm), fprintf('antcomm_voxel = [%f %f %f], antcomm_head = [%f %f %f]\n', antcomm, warp_apply(mri.transform, antcomm)); markerpos = [markerpos; antcomm]; markerlabel = [markerlabel; {'antcomm'}]; markercolor = [markercolor; {'b'}]; end if ~isempty(pstcomm), fprintf('pstcomm_voxel = [%f %f %f], pstcomm_head = [%f %f %f]\n', pstcomm, warp_apply(mri.transform, pstcomm)); markerpos = [markerpos; pstcomm]; markerlabel = [markerlabel; {'pstcomm'}]; markercolor = [markercolor; {'g'}]; end if ~isempty(xzpoint), fprintf('xzpoint_voxel = [%f %f %f], xzpoint_head = [%f %f %f]\n', xzpoint, warp_apply(mri.transform, xzpoint)); markerpos = [markerpos; xzpoint]; markerlabel = [markerlabel; {'xzpoint'}]; markercolor = [markercolor; {'r'}]; end if ~isempty(pnt) fprintf('%f extra points selected\n', size(pnt,1)); markerpos = [markerpos; pnt]; markerlabel = [markerlabel; repmat({''}, size(pnt,1), 1)]; markercolor = [markercolor; repmat({'m'}, size(pnt,1), 1)]; end end % while true cfg.fiducial.nas = nas; cfg.fiducial.lpa = lpa; cfg.fiducial.rpa = rpa; cfg.landmark.ac = antcomm; cfg.landmark.pc = pstcomm; cfg.landmark.xzpoint = xzpoint; if ~isempty(nas) && ~isempty(lpa) && ~isempty(rpa) basedonfid = 1; end if ~isempty(antcomm) && ~isempty(pstcomm) && ~isempty(xzpoint) basedonmrk = 1; end otherwise error('unsupported method'); end if basedonfid && basedonmrk basedonmrk = 0; warning('both fiducials and anatomical landmarks have been defined interactively: using the fiducials for realignment'); end if basedonfid % the fiducial locations are now specified in voxels, convert them to head % coordinates according to the existing transform matrix nas_head = warp_apply(mri.transform, cfg.fiducial.nas); lpa_head = warp_apply(mri.transform, cfg.fiducial.lpa); rpa_head = warp_apply(mri.transform, cfg.fiducial.rpa); % compute the homogenous transformation matrix describing the new coordinate system [realign, coordsys] = headcoordinates(nas_head, lpa_head, rpa_head, cfg.coordsys); elseif basedonmrk % the fiducial locations are now specified in voxels, convert them to head % coordinates according to the existing transform matrix ac = warp_apply(mri.transform, cfg.landmark.ac); pc = warp_apply(mri.transform, cfg.landmark.pc); xzpoint= warp_apply(mri.transform, cfg.landmark.xzpoint); % compute the homogenous transformation matrix describing the new coordinate system [realign, coordsys] = headcoordinates(ac, pc, xzpoint, 'spm'); else realign = []; end if ~isempty(realign) % combine the additional transformation with the original one mri.transformorig = mri.transform; mri.transform = realign * mri.transform; mri.coordsys = coordsys; else warning('no coordinate system realignment has been done'); end if exist('pnt', 'var') mri.pnt = pnt; end % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_volumerealign.m 3888 2011-07-20 14:25:23Z jansch $'; % add information about the Matlab version used to the configuration cfg.version.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); if isfield(mri, 'cfg'), cfg.previous = mri.cfg; end % remember the configuration mri.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'mri', mri); % use the variable name "data" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to show three orthogonal slices %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h1, h2, h3] = volplot(x, y, z, dat, c, cscale, showcrosshair, updatepanel, handles, showmarkers, markers) xi = c(1); yi = c(2); zi = c(3); % manual color scaling of anatomy data is usefull in case of some pixel noise if nargin<6 || isempty(cscale) cmin = min(dat(:)); cmax = max(dat(:)); else cmin = cscale(1); cmax = cscale(2); end if nargin<8 updatepanel = [1 2 3]; end if nargin<9 h1 = []; h2 = []; h3 = []; else h1 = handles{1}; h2 = handles{2}; h3 = handles{3}; end if showmarkers markerpos = round(markers{1}); markercolor = markers{3}; sel1 = find(markerpos(:,2)==repmat(c(2),size(markerpos,1),1)); sel2 = find(markerpos(:,1)==repmat(c(1),size(markerpos,1),1)); sel3 = find(markerpos(:,3)==repmat(c(3),size(markerpos,1),1)); end for k = 1:numel(updatepanel) update = updatepanel(k); if update==1 subplot(h1); imagesc(x, z, squeeze(dat(:,yi,:))'); set(gca, 'ydir', 'normal') axis equal; axis tight; xlabel('i'); ylabel('k'); caxis([cmin cmax]); if showcrosshair crosshair([x(xi) z(zi)], 'color', 'yellow'); end if showmarkers && numel(sel1)>0 hold on; for kk = 1:numel(sel1) plot(markerpos(sel1(kk),1), markerpos(sel1(kk),3), 'marker', '.', 'color', markercolor{sel1(kk)}); end hold off; end end if update==2 subplot(h2); imagesc(y, z, squeeze(dat(xi,:,:))'); set(gca, 'ydir', 'normal') axis equal; axis tight; xlabel('j'); ylabel('k'); caxis([cmin cmax]); if showcrosshair crosshair([y(yi) z(zi)], 'color', 'yellow'); end if showmarkers && numel(sel2)>0 hold on; for kk = 1:numel(sel2) plot(markerpos(sel2(kk),2), markerpos(sel2(kk),3), 'marker', '.', 'color', markercolor{sel2(kk)}); end hold off; end end if update==3 subplot(h3); imagesc(x, y, squeeze(dat(:,:,zi))'); set(gca, 'ydir', 'normal') axis equal; axis tight; xlabel('i'); ylabel('j'); caxis([cmin cmax]); if showcrosshair crosshair([x(xi) y(yi)], 'color', 'yellow'); end if showmarkers && numel(sel3)>0 hold on; for kk = 1:numel(sel3) plot(markerpos(sel3(kk),1), markerpos(sel3(kk),2), 'marker', '.', 'color', markercolor{sel3(kk)}); end hold off; end end end colormap gray h = gca;
github
philippboehmsturm/antx-master
ft_qualitycheck.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_qualitycheck.m
26,394
utf_8
9352272d7862a9702b7cf92f071cf8c0
function [varargout] = ft_qualitycheck(cfg) % FT_QUALITYCHECK facilitates quality inspection of a dataset. 1) The data is % analyzed, quantified, and stored in a .mat file in a timelock- and % freq- like fashion. 2) The quantifications are visualized and exported to % a .PNG and .PDF file. % % In case the data is MEG data recorded with a CTF system, the output contains % the headpositions. % % Use as: % [info, timelock, freq, summary, headpos] = ft_qualitycheck(cfg) % % The configuration should contain: % cfg.dataset = a string (e.g. 'dataset.ds') % % The following parameters can be used: % cfg.analyze = 'yes' or 'no' to analyze the dataset (default = 'yes') % cfg.savemat = 'yes' or 'no' to save the analysis (default = 'yes') % cfg.matfile = a string (e.g. 'previousoutput.mat'), preferably in combination % with analyze = 'no' % cfg.visualize = 'yes' or 'no' to visualize the analysis (default = 'yes') % cfg.saveplot = 'yes' or 'no' to save the visualization (default = 'yes') % Copyright (C) 2010-2011, Arjen Stolk, Bram Daams, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % defaults if ~isfield(cfg,'analyze'), cfg.analyze = 'yes'; end if ~isfield(cfg,'savemat'), cfg.savemat = 'yes'; end if ~isfield(cfg,'matfile'), cfg.matfile = []; end if ~isfield(cfg,'visualize'), cfg.visualize = 'yes'; end if ~isfield(cfg,'saveplot'), cfg.saveplot = 'yes'; end %% ANALYSIS if strcmp(cfg.analyze,'yes') tic % checks cfg = ft_checkconfig(cfg, 'dataset2files', 'yes'); % translate into datafile+headerfile % these will be replaced by more appropriate values info.datasetname = 'unknown'; info.starttime = 'unknown'; info.startdate = 'unknown'; info.stoptime = 'unknown'; info.stopdate = 'unknown'; % the exportname is also used in the cron job exportname = qualitycheck_exportname(cfg.dataset); [iseeg, ismeg, isctf, fltp] = filetyper(cfg.dataset); if isctf try % update the info fields info = read_ctf_hist(cfg.dataset); end end % add info info.event = ft_read_event(cfg.dataset); info.hdr = ft_read_header(cfg.dataset); info.filetype = fltp; % trial definition cfgdef = []; cfgdef.dataset = cfg.dataset; cfgdef.trialdef.triallength = 10; %cfgdef.trialdef.ntrials = 3; cfgdef.continuous = 'yes'; cfgdef = ft_definetrial(cfgdef); ntrials = size(cfgdef.trl,1)-1; % remove last trial timeunit = cfgdef.trialdef.triallength; % channelselection for jump detection (all) and for FFT (brain) if ismeg allchans = ft_channelselection({'MEG','MEGREF'}, info.hdr.label); chans = ft_channelselection('MEG', info.hdr.label); % brain allchanindx = match_str(info.hdr.label, allchans); chanindx = match_str(chans, allchans); jumpthreshold = 1e-10; elseif iseeg allchans = ft_channelselection('EEG', info.hdr.label); chans = allchans; % brain allchanindx = match_str(info.hdr.label, allchans); chanindx = match_str(chans, allchans); jumpthreshold = 1e4; end % find headcoil channels if isctf % this fails for older CTF data sets try Nx = strmatch('HLC0011', info.hdr.label); % x nasion coil Ny = strmatch('HLC0012', info.hdr.label); % y nasion Nz = strmatch('HLC0013', info.hdr.label); % z nasion Lx = strmatch('HLC0021', info.hdr.label); % x left coil Ly = strmatch('HLC0022', info.hdr.label); % y left Lz = strmatch('HLC0023', info.hdr.label); % z left Rx = strmatch('HLC0031', info.hdr.label); % x right coil Ry = strmatch('HLC0032', info.hdr.label); % y right Rz = strmatch('HLC0033', info.hdr.label); % z right hasheadpos = true; headpos.dimord = 'chan_time'; headpos.time = [timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2]; headpos.label = {'Nx';'Ny';'Nz';'Lx';'Ly';'Lz';'Rx';'Ry';'Rz'}; headpos.avg = NaN(length(headpos.label), ntrials); headpos.grad = info.hdr.grad; end % try end % if % analysis settings cfgredef = []; cfgredef.length = 1; cfgredef.overlap = 0; cfgfreq = []; cfgfreq.output = 'pow'; cfgfreq.channel = allchans; cfgfreq.method = 'mtmfft'; cfgfreq.taper = 'hanning'; cfgfreq.keeptrials = 'no'; cfgfreq.foilim = [0 min(info.hdr.Fs/2, 400)]; % output variables timelock.dimord = 'chan_time'; timelock.label = allchans; timelock.time = [timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2]; timelock.avg = NaN(length(allchans), ntrials); % updated in loop timelock.median = NaN(length(allchans), ntrials); % updated in loop timelock.jumps = NaN(length(allchans), ntrials); % updated in loop timelock.range = NaN(length(allchans), ntrials); % updated in loop timelock.min = NaN(length(allchans), ntrials); % updated in loop timelock.max = NaN(length(allchans), ntrials); % updated in loop freq.dimord = 'chan_freq_time'; freq.label = allchans; freq.freq = [cfgfreq.foilim(1):cfgfreq.foilim(2)]; freq.time = [timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2]; freq.powspctrm = NaN(length(allchans), length(freq.freq), ntrials); % updated in loop summary.dimord = 'chan_time'; summary.time = [timeunit-timeunit/2:timeunit:timeunit*ntrials-timeunit/2]; summary.label = {'Mean';'Median';'Min';'Max';'Range';'HmotionN';'HmotionL';'HmotionR';'LowFreqPower';'LineFreqPower';'Jumps'}; summary.avg = NaN(length(summary.label), ntrials); % updated in loop % try add gradiometer info try timelock.grad = info.hdr.grad; freq.grad = info.hdr.grad; summary.grad = info.hdr.grad; end % process trial by trial for t = 1:ntrials fprintf('analyzing trial %s of %s \n', num2str(t), num2str(ntrials)); % preprocess cfgpreproc = cfgdef; cfgpreproc.trl = cfgdef.trl(t,:); data = ft_preprocessing(cfgpreproc); clear cfgpreproc; % determine headposition if isctf && hasheadpos headpos.avg(1,t) = mean(data.trial{1,1}(Nx,:) * 100); % meter to cm headpos.avg(2,t) = mean(data.trial{1,1}(Ny,:) * 100); headpos.avg(3,t) = mean(data.trial{1,1}(Nz,:) * 100); headpos.avg(4,t) = mean(data.trial{1,1}(Lx,:) * 100); headpos.avg(5,t) = mean(data.trial{1,1}(Ly,:) * 100); headpos.avg(6,t) = mean(data.trial{1,1}(Lz,:) * 100); headpos.avg(7,t) = mean(data.trial{1,1}(Rx,:) * 100); headpos.avg(8,t) = mean(data.trial{1,1}(Ry,:) * 100); headpos.avg(9,t) = mean(data.trial{1,1}(Rz,:) * 100); end % update values timelock.avg(:,t) = mean(data.trial{1}(allchanindx,:),2); timelock.median(:,t) = median(data.trial{1}(allchanindx,:),2); timelock.range(:,t) = max(data.trial{1}(allchanindx,:),[],2) - min(data.trial{1}(allchanindx,:),[],2); timelock.min(:,t) = min(data.trial{1}(allchanindx,:),[],2); timelock.max(:,t) = max(data.trial{1}(allchanindx,:),[],2); % detect jumps for c = 1:size(data.trial{1}(allchanindx,:),1) timelock.jumps(c,t) = length(find(diff(data.trial{1,1}(allchanindx(c),:)) > jumpthreshold)); end % FFT and noise estimation redef = ft_redefinetrial(cfgredef, data); clear data; FFT = ft_freqanalysis(cfgfreq, redef); clear redef; freq.powspctrm(:,:,t) = FFT.powspctrm; summary.avg(9,t) = mean(mean(findpower(0, 2, FFT, chanindx))); % Low Freq Power summary.avg(10,t) = mean(mean(findpower(49, 51, FFT, chanindx))); clear FFT; % Line Freq Power toc end % end of trial loop % determine headmotion: distance from initial trial (in cm) if isctf && hasheadpos summary.avg(6,:) = sqrt(sum((headpos.avg(1:3,:)-repmat(headpos.avg(1:3,1),1,size(headpos.avg,2))).^2,1)); % N summary.avg(7,:) = sqrt(sum((headpos.avg(4:6,:)-repmat(headpos.avg(4:6,1),1,size(headpos.avg,2))).^2,1)); % L summary.avg(8,:) = sqrt(sum((headpos.avg(7:9,:)-repmat(headpos.avg(7:9,1),1,size(headpos.avg,2))).^2,1)); % R end % summarize/mean and store variables of brain info only summary.avg(1,:) = mean(timelock.avg(chanindx,:),1); summary.avg(2,:) = mean(timelock.median(chanindx,:),1); summary.avg(3,:) = mean(timelock.min(chanindx,:),1); summary.avg(4,:) = mean(timelock.max(chanindx,:),1); summary.avg(5,:) = mean(timelock.range(chanindx,:),1); summary.avg(11,:) = mean(timelock.jumps(chanindx,:),1); % add the version details of this function call to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_qualitycheck.m 3710 2011-06-16 14:04:19Z eelspa $'; cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % Matlab version used % add the cfg to the output variables timelock.cfg = cfg; freq.cfg = cfg; summary.cfg = cfg; % save to .mat if strcmp(cfg.savemat, 'yes') if isctf && hasheadpos headpos.cfg = cfg; save(exportname, 'info','timelock','freq','summary','headpos'); else save(exportname, 'info','timelock','freq','summary'); end end end % end of analysis %% VISUALIZATION if strcmp(cfg.visualize, 'yes') % load data if strcmp(cfg.analyze, 'no') if ~isempty(cfg.matfile) exportname = cfg.matfile; else exportname = qualitycheck_exportname(cfg.dataset); end fprintf('loading %s \n', exportname); load(exportname); end % determine number of 1-hour plots to be made nplots = ceil(length(freq.time)/(3600/10)); % create GUI-like figure(s) for p = 1:nplots fprintf('visualizing %s of %s \n', num2str(p), num2str(nplots)); toi = [p*3600-3595 p*3600-5]; % select 1-hour chunks if exist('headpos','var') temp_timelock = ft_selectdata(timelock, 'toilim', toi); temp_freq = ft_selectdata(freq, 'toilim', toi); temp_summary = ft_selectdata(summary, 'toilim', toi); temp_headpos = ft_selectdata(headpos, 'toilim', toi); draw_figure(info, temp_timelock, temp_freq, temp_summary, temp_headpos, toi); clear temp_timelock; clear temp_freq; clear temp_summary; clear temp_headpos; clear toi; else temp_timelock = ft_selectdata(timelock, 'toilim', toi); temp_freq = ft_selectdata(freq, 'toilim', toi); temp_summary = ft_selectdata(summary, 'toilim', toi); draw_figure(info, temp_timelock, temp_freq, temp_summary, toi); clear temp_timelock; clear temp_freq; clear temp_summary; clear toi; end % export to .PNG and .PDF if strcmp(cfg.saveplot, 'yes') [pathstr,name,extr,versn] = fileparts(exportname); if p == 1 exportfilename = name; else exportfilename = strcat(name,'_pt',num2str(p)); end fprintf('exporting %s of %s \n', num2str(p), num2str(nplots)); set(gcf, 'PaperType', 'a4'); print(gcf, '-dpng', strcat(exportfilename,'.png')); orient landscape; print(gcf, '-dpdf', strcat(exportfilename,'.pdf')); close end end % end of nplots end % end of visualization %% VARARGOUT if nargout>0 mOutputArgs{1} = info; mOutputArgs{2} = timelock; mOutputArgs{3} = freq; mOutputArgs{4} = summary; try mOutputArgs{5} = headpos; end [varargout{1:nargout}] = mOutputArgs{:}; clearvars -except varargout else clear end %%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%% function [x] = clipat(x, v, v2) v = [v v2]; % clip between value v and v2 if length(v) == 1 x(find(x>v)) = v; elseif length(v) == 2 x(find(x<v(1))) = v(1); x(find(x>v(2))) = v(2); end %%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%% function [iseeg, ismeg, isctf, fltp] = filetyper(dataset) fltp = ft_filetype(dataset); iseeg = ft_filetype(dataset,'brainvision_eeg') | ... ft_filetype(dataset,'ns_eeg') | ... ft_filetype(dataset,'bci2000_dat') | ... ft_filetype(dataset,'neuroprax_eeg') | ... ft_filetype(dataset,'egi_sbin') | ... ft_filetype(dataset,'biosemi_bdf'); ismeg = ft_filetype(dataset,'ctf_ds') | ... ft_filetype(dataset,'4d') | ... ft_filetype(dataset,'neuromag_fif') | ... ft_filetype(dataset,'itab_raw'); isctf = ft_filetype(dataset, 'ctf_ds'); if ~ismeg && ~iseeg % if none found, try less strict checks [p, f, ext] = fileparts(dataset); if strcmp(ext, '.eeg') fltp = 'brainvision_eeg'; iseeg = 1; elseif strcmp(ext, '.bdf') fltp = 'biosemi_bdf'; iseeg = 1; elseif strcmp(ext, '.ds') fltp = 'ctf_ds'; ismeg = 1; else % otherwise use eeg settings for stability reasons iseeg = 1; end end %%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%% function [power, freq] = findpower(low, high, freqinput, chans) % replace value with the index of the nearest bin xmin = nearest(getsubfield(freqinput, 'freq'), low); xmax = nearest(getsubfield(freqinput, 'freq'), high); % select the freq range power = freqinput.powspctrm(chans, xmin:xmax); freq = freqinput.freq(:, xmin:xmax); %%%%%%%%%%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%% function draw_figure(varargin) % deal with input if nargin == 6 info = varargin{1}; timelock = varargin{2}; freq = varargin{3}; summary = varargin{4}; headpos = varargin{5}; toi = varargin{6}; elseif nargin == 5 info = varargin{1}; timelock = varargin{2}; freq = varargin{3}; summary = varargin{4}; toi = varargin{5}; end % determine whether it is EEG or MEG [iseeg, ismeg, isctf, fltp] = filetyper(timelock.cfg.dataset); if ismeg scaling = 1e15; % assuming data is in T and needs to become fT powscaling = scaling^2; ylab = 'fT'; elseif iseeg scaling = 1e0; % assuming data is in muV already powscaling = scaling^2; ylab = '\muV'; end % PARENT FIGURE h.MainFigure = figure(... 'MenuBar','none',... 'Name','ft_qualitycheck',... 'Units','normalized',... 'color','white',... 'Position',[0.01 0.01 .99 .99]); % nearly fullscreen if strcmp(info.startdate,'unknown') tmp = 'unknown'; else [d,w] = weekday(info.startdate); tmp = [w ' ' info.startdate]; end h.MainText = uicontrol(... 'Parent',h.MainFigure,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',tmp,... 'Backgroundcolor','white',... 'Position',[.06 .96 .15 .02]); h.MainText2 = uicontrol(... 'Parent',h.MainFigure,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String','Jump artefacts',... 'Backgroundcolor','white',... 'Position',[.08 .46 .12 .02]); h.MainText3 = uicontrol(... 'Parent',h.MainFigure,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String','Mean powerspectrum',... 'Backgroundcolor','white',... 'Position',[.4 .3 .15 .02]); h.MainText4 = uicontrol(... 'Parent',h.MainFigure,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String','Timecourses',... 'Backgroundcolor','white',... 'Position',[.5 .96 .11 .02]); h.MainText5 = uicontrol(... 'Parent',h.MainFigure,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String','Events',... 'Backgroundcolor','white',... 'Position',[.81 .3 .06 .02]); % HEADMOTION PANEL h.HmotionPanel = uipanel(... 'Parent',h.MainFigure,... 'Units','normalized',... 'Backgroundcolor','white',... 'Position',[.01 .5 .25 .47]); h.DataText = uicontrol(... 'Parent',h.HmotionPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',info.datasetname,... 'Backgroundcolor','white',... 'Position',[.01 .85 .99 .1]); h.TimeText = uicontrol(... 'Parent',h.HmotionPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',[info.starttime ' - ' info.stoptime],... 'Backgroundcolor','white',... 'Position',[.01 .78 .99 .1]); if ismeg allchans = ft_senslabel('ctf275'); misschans = setdiff(ft_channelselection('MEG', info.hdr.label), allchans); nchans = num2str(size(ft_channelselection('MEG', info.hdr.label),1)); else misschans = ''; nchans = num2str(size(ft_channelselection('EEG', info.hdr.label),1)); end h.DataText2 = uicontrol(... 'Parent',h.HmotionPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',[fltp ', fs: ' num2str(info.hdr.Fs) ', nchans: ' nchans],... 'Backgroundcolor','white',... 'Position',[.01 .71 .99 .1]); h.DataText3 = uicontrol(... 'Parent',h.HmotionPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',['missing chans: ' misschans'],... 'Backgroundcolor','white',... 'Position',[.01 .64 .99 .1]); % boxplot headmotion (*10; cm-> mm) per coil if exist('headpos','var') h.HmotionAxes = axes(... 'Parent',h.HmotionPanel,... 'Units','normalized',... 'color','white',... 'Position',[.05 .08 .9 .52]); hmotions = ([summary.avg(8,:)' summary.avg(7,:)' summary.avg(6,:)'])*10; boxplot(h.HmotionAxes, hmotions, 'orientation', 'horizontal', 'notch', 'on'); set(h.HmotionAxes,'YTick',[1:3]); set(h.HmotionAxes,'YTickLabel',{'R','L','N'}); xlim(h.HmotionAxes, [0 10]); xlabel(h.HmotionAxes, 'Headmotion from start [mm]'); end % TIMECOURSE PANEL h.SignalPanel = uipanel(... 'Parent',h.MainFigure,... 'Units','normalized',... 'Backgroundcolor','white',... 'Position',[.28 .34 .71 .63]); h.SignalAxes = axes(... 'Parent',h.SignalPanel,... 'Units','normalized',... 'color','white',... 'Position',[.08 .36 .89 .3]); h.LinenoiseAxes = axes(... 'Parent',h.SignalPanel,... 'Units','normalized',... 'color','white',... 'Position',[.08 .23 .89 .1]); h.LowfreqnoiseAxes = axes(... 'Parent',h.SignalPanel,... 'Units','normalized',... 'color','white',... 'Position',[.08 .1 .89 .1]); % plot hmotion timecourses per coil (*10; cm-> mm) if exist('headpos','var') h.HmotionTimecourseAxes = axes(... 'Parent',h.SignalPanel,... 'Units','normalized',... 'color','white',... 'Position',[.08 .73 .89 .22]); plot(h.HmotionTimecourseAxes, summary.time, clipat(summary.avg(6,:)*10, 0, 10), ... summary.time, clipat(summary.avg(7,:)*10, 0, 10), ... summary.time, clipat(summary.avg(8,:)*10, 0, 10), 'LineWidth',2); ylim(h.HmotionTimecourseAxes,[0 10]); ylabel(h.HmotionTimecourseAxes, 'Coil distance [mm]'); xlim(h.HmotionTimecourseAxes,[toi]); grid(h.HmotionTimecourseAxes,'on'); legend(h.HmotionTimecourseAxes, 'N','L','R'); end % plot mean and range of the raw signal plot(h.SignalAxes, summary.time, summary.avg(5,:)*scaling, summary.time, summary.avg(1,:)*scaling, 'LineWidth', 2); set(h.SignalAxes,'Nextplot','add'); plot(h.SignalAxes, summary.time, summary.avg(3,:)*scaling, summary.time, summary.avg(4,:)*scaling, 'LineWidth', 1, 'Color', [255/255 127/255 39/255]); grid(h.SignalAxes,'on'); ylabel(h.SignalAxes, ['Amplitude [' ylab ']']); xlim(h.SignalAxes,[toi]); legend(h.SignalAxes,'Range','Mean','Min','Max'); set(h.SignalAxes,'XTickLabel',''); % plot linenoise semilogy(h.LinenoiseAxes, summary.time, clipat(summary.avg(10,:)*powscaling, 1e2, 1e4), 'LineWidth',2); grid(h.LinenoiseAxes,'on'); legend(h.LinenoiseAxes, ['LineFreq [' ylab '^2/Hz]']); set(h.LinenoiseAxes,'XTickLabel',''); xlim(h.LinenoiseAxes,[toi]); ylim(h.LinenoiseAxes,[1e2 1e4]); % before april 28th this was 1e0 - 1e3 % plot lowfreqnoise semilogy(h.LowfreqnoiseAxes, summary.time, clipat(summary.avg(9,:)*powscaling, 1e10, 1e12), 'LineWidth',2); grid(h.LowfreqnoiseAxes,'on'); xlim(h.LowfreqnoiseAxes,[toi]); ylim(h.LowfreqnoiseAxes,[1e10 1e12]); legend(h.LowfreqnoiseAxes, ['LowFreq [' ylab '^2/Hz]']); xlabel(h.LowfreqnoiseAxes, 'Time [seconds]'); % before april 28th this was 1e0 - 1e10 % EVENT PANEL h.EventPanel = uipanel(... 'Parent',h.MainFigure,... 'Units','normalized',... 'Backgroundcolor','white',... 'Position',[.7 .01 .29 .3]); % event details [a,b,c] = unique({info.event.type}); eventtypes = {}; eventtriggers = {}; eventvalues = {}; for j=1:length(a) eventtypes{j,1} = a{j}; eventtriggers{j,1} = sum(c==j); eventvalues{j,1} = length(unique([info.event(c==j).value])); end if isempty(eventtypes) eventtypes{1,1} = 'no triggers found'; end h.EventText = uicontrol(... 'Parent',h.EventPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',['Types'; ' '; eventtypes],... 'Backgroundcolor','white',... 'Position',[.05 .05 .4 .85]); h.EventText2 = uicontrol(... 'Parent',h.EventPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',['Triggers'; ' '; eventtriggers],... 'Backgroundcolor','white',... 'Position',[.55 .05 .2 .85]); h.EventText3 = uicontrol(... 'Parent',h.EventPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',['Values'; ' '; eventvalues],... 'Backgroundcolor','white',... 'Position',[.8 .05 .15 .85]); % POWERSPECTRUM PANEL h.SpectrumPanel = uipanel(... 'Parent',h.MainFigure,... 'Units','normalized',... 'Backgroundcolor','white',... 'Position',[.28 .01 .4 .3]); h.SpectrumAxes = axes(... 'Parent',h.SpectrumPanel,... 'Units','normalized',... 'color','white',... 'Position',[.15 .2 .8 .7]); % plot powerspectrum loglog(h.SpectrumAxes, freq.freq, squeeze(mean(mean(freq.powspctrm,1),3))*powscaling,'r','LineWidth',2); xlabel(h.SpectrumAxes, 'Frequency [Hz]'); ylabel(h.SpectrumAxes, ['Power [' ylab '^2/Hz]']); % ARTEFACT PANEL h.JumpPanel = uipanel(... 'Parent',h.MainFigure,... 'Units','normalized',... 'Backgroundcolor','white',... 'Position',[.01 .01 .25 .46]); % jump details jumpchans = {}; jumpcounts = {}; [jumps,i] = find(timelock.jumps>0); % find all jumps [a,b,c] = unique(jumps); for j=1:length(a) jumpchans{j,1} = timelock.label{a(j)}; jumpcounts{j,1} = sum(c==j); end if isempty(jumpchans) jumpchans{1,1} = 'no jumps detected'; end h.JumpText = uicontrol(... 'Parent',h.JumpPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',[jumpchans],... 'Backgroundcolor','white',... 'Position',[.15 .5 .25 .4]); h.JumpText2 = uicontrol(... 'Parent',h.JumpPanel,... 'Style','text',... 'Units','normalized',... 'FontSize',10,... 'String',[jumpcounts],... 'Backgroundcolor','white',... 'Position',[.65 .5 .2 .4]); % plot jumps on the dewar sensors if ismeg h.TopoMEG = axes(... 'Parent',h.JumpPanel,... 'color','white',... 'Units','normalized',... 'Position',[0.4 0.05 0.55 0.4]); MEGchans = ft_channelselection('MEG', timelock.label); MEGchanindx = match_str(timelock.label, MEGchans); cfgtopo = []; cfgtopo.marker = 'off'; cfgtopo.colorbar = 'no'; cfgtopo.comment = 'no'; cfgtopo.style = 'blank'; cfgtopo.layout = ft_prepare_layout(timelock); cfgtopo.highlight = 'on'; cfgtopo.highlightsymbol = '.'; cfgtopo.highlightsize = [14]; cfgtopo.highlightchannel = [find(sum(timelock.jumps(MEGchanindx,:),2)>0)]; data.label = MEGchans; data.powspctrm = sum(timelock.jumps(MEGchanindx,:),2); data.dimord = 'chan_freq'; data.freq = 1; axes(h.TopoMEG); ft_topoplotTFR(cfgtopo, data); clear data; end
github
philippboehmsturm/antx-master
ft_denoise_pca.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_denoise_pca.m
16,221
utf_8
ca602a310a7e0a8f6d90d988eef7ee81
function [data, pca, stdpre, stdpst] = ft_denoise_pca(cfg, varargin) % DENOISE_PCA performs a pca on specified reference channels and subtracts % the projection of the data of interest onto this orthogonal basis from % the data of interest. This is the algorithm which is applied by 4D to % compute noise cancellation weights on a dataset of interest. % % Use as % [data] = ft_denoise_pca(cfg, data) or [data] = ft_denoise_pca(cfg, data, refdata) % % The configuration should be according to % cfg.refchannel = the channels used as reference signal (default = 'MEGREF') % cfg.channel = the channels to be denoised (default = 'MEG') % cfg.truncate = optional truncation of the singular value spectrum % cfg.zscore = standardise reference data prior to PCA (default = 'no') % if cfg.truncate is integer n > 1, n will be the number of singular values kept. % if 0 < cfg.truncate < 1, the singular value spectrum will be thresholded at the % fraction cfg.truncate of the largest singular value. % (default = 'no'); % Copyright (c) 2008-2009, Jan-Mathijs Schoffelen, CCNi Glasgow % Copyright (c) 2010, Jan-Mathijs Schoffelen, DCCN Nijmegen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_denoise_pca.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'renamed', {'blc', 'demean'}); if ~isfield(cfg, 'truncate'), cfg.truncate = 'no'; end; if ~isfield(cfg, 'channel'), cfg.channel = 'MEG'; end; if ~isfield(cfg, 'refchannel'), cfg.refchannel = 'MEGREF'; end; if ~isfield(cfg, 'trials'), cfg.trials = 'all'; end; if ~isfield(cfg, 'zscore'), cfg.zscore = 'no'; end; if ~isfield(cfg, 'demean'), cfg.demean = 'yes'; end; if ~isfield(cfg, 'pertrial'), cfg.pertrial = 'no'; end if strcmp(cfg.pertrial, 'yes'), tmpcfg = cfg; tmpcfg.pertrial = 'no'; tmp = cell(numel(varargin{1}.trial)); for k = 1:numel(varargin{1}.trial) tmpcfg.trials = k; tmp{k,1} = ft_denoise_pca(tmpcfg, varargin{:}); end data = ft_appenddata([], tmp{:}); return; end computeweights = ~isfield(cfg, 'pca'); %overrule insensible user specifications if ~strcmp(cfg.demean, 'yes'), cfg.demean = 'yes'; end if length(varargin)==1, data = varargin{1}; megchan = ft_channelselection(cfg.channel, data.label); refchan = ft_channelselection(cfg.refchannel, data.label); %split data into data and refdata tmpcfg = []; tmpcfg.channel = refchan; refdata = ft_preprocessing(tmpcfg, data); tmpcfg.channel = megchan; data = ft_preprocessing(tmpcfg, data); else data = varargin{1}; refdata = varargin{2}; megchan = ft_channelselection(cfg.channel, data.label); refchan = ft_channelselection(cfg.refchannel, refdata.label); %split data into data and refdata tmpcfg = []; tmpcfg.channel = refchan; refdata = ft_preprocessing(tmpcfg, refdata); tmpcfg.channel = megchan; data = ft_preprocessing(tmpcfg, data); %FIXME do compatibility check on data vs refdata with respect to dimensions (time-trials) end % select trials of interest if ~isfield(cfg, 'trials'), cfg.trials = 'all'; end % set the default if ~strcmp(cfg.trials, 'all') fprintf('selecting %d trials\n', length(cfg.trials)); data = ft_selectdata(data, 'rpt', cfg.trials); refdata = ft_selectdata(refdata, 'rpt', cfg.trials); end refchan = ft_channelselection(cfg.refchannel, refdata.label); refindx = match_str(refdata.label, refchan); megchan = ft_channelselection(cfg.channel, data.label); megindx = match_str(data.label, megchan); if ~computeweights %check whether the weight table contains the specified references %ensure the ordering of the meg-data to be consistent with the weights %ensure the ordering of the ref-data to be consistent with the weights [i1,i2] = match_str(refchan, cfg.pca.reflabel); [i3,i4] = match_str(megchan, cfg.pca.label); if length(i2)~=length(cfg.pca.reflabel), error('you specified fewer references to use as there are in the precomputed weight table'); end refindx = refindx(i1); megindx = megindx(i3); cfg.pca.w = cfg.pca.w(i4,i2); cfg.pca.label = cfg.pca.label(i4); cfg.pca.reflabel= cfg.pca.reflabel(i2); if isfield(cfg.pca, 'rotmat'), cfg.pca = rmfield(cfg.pca, 'rotmat'); %dont know end else %do nothing end nmeg = length(megindx); nref = length(refindx); if ischar(cfg.truncate) && strcmp(cfg.truncate, 'no'), cfg.truncate = length(refindx); elseif ischar(cfg.truncate) || (cfg.truncate>1 && cfg.truncate/round(cfg.truncate)~=1) || ... cfg.truncate>length(refindx), error('cfg.truncate should be either ''no'', an integer number <= the number of references, or a number between 0 and 1'); %FIXME the default truncation applied by 4D is 1x10^-8 end ntrl = length(data.trial); nchan = length(data.label); nsmp = cellfun('size', data.trial, 2); %compute and remove mean from data if strcmp(cfg.demean, 'yes'), m = cellmean(data.trial, 2); data.trial = cellvecadd(data.trial, -m); m = cellmean(refdata.trial, 2); refdata.trial = cellvecadd(refdata.trial, -m); end %compute std of data before stdpre = cellstd(data.trial, 2); if computeweights, %zscore if strcmp(cfg.zscore, 'yes'), [refdata.trial, sdref] = cellzscore(refdata.trial, 2, 0); %forced demeaned already else sdref = ones(nref,1); end %compute covariance of refchannels and do svd crefdat = cellcov(refdata.trial, [], 2, 0); [u,s,v] = svd(crefdat); %determine the truncation and rotation if cfg.truncate<1 %keep all singular vectors with singular values >= cfg.truncate*s(1,1) s1 = s./max(s(:)); keep = find(diag(s1)>cfg.truncate); else keep = 1:cfg.truncate; end rotmat = u(:, keep)'; %rotate the refdata refdata.trial = cellfun(@mtimes, repmat({rotmat}, 1, ntrl), refdata.trial, 'UniformOutput', 0); %project megdata onto the orthogonal basis nom = cellcov(data.trial, refdata.trial, 2, 0); denom = cellcov(refdata.trial, [], 2, 0); rw = (pinv(denom)*nom')'; %subtract projected data for k = 1:ntrl data.trial{k} = data.trial{k} - rw*refdata.trial{k}; end %rotate back and 'unscale' pca.w = rw*rotmat*diag(1./sdref); pca.label = data.label; pca.reflabel = refdata.label; pca.rotmat = rotmat; cfg.pca = pca; else fprintf('applying precomputed weights to the data\n'); pca = cfg.pca; for k = 1:ntrl data.trial{k} = data.trial{k} - pca.w*refdata.trial{k}; end end %compute std of data after stdpst = cellstd(data.trial, 2); %demean if strcmp(cfg.demean, 'yes'), m = cellmean(data.trial, 2); data.trial = cellvecadd(data.trial, -m); end %apply weights to the gradiometer-array if isfield(data, 'grad') montage = []; labelnew = pca.label; nlabelnew = length(labelnew); %add columns of refchannels not yet present in labelnew %[id, i1] = setdiff(pca.reflabel, labelnew); %labelorg = [labelnew; pca.reflabel(sort(i1))]; labelorg = data.grad.label; nlabelorg = length(labelorg); %start with identity montage.tra = eye(nlabelorg); %subtract weights [i1, i2] = match_str(labelorg, pca.reflabel); [i3, i4] = match_str(labelorg, pca.label); montage.tra(i3,i1) = montage.tra(i3,i1) - pca.w(i4,i2); montage.labelorg = labelorg; montage.labelnew = labelorg; if isfield(data.grad, 'balance'), mnt = fieldnames(data.grad.balance); sel = strmatch('pca', mnt); if isempty(sel), sel = zeros(0,1); end bname = ['pca',num2str(length(sel)+1)]; else bname = 'pca1'; end data.grad = ft_apply_montage(data.grad, montage, 'keepunused', 'yes', 'balancename', bname); % order the fields fnames = fieldnames(data.grad.balance); for k = 1:numel(fnames) tmp(k) = isstruct(data.grad.balance.(fnames{k})); end [srt, ix] = sort(tmp,'descend'); data.grad.balance = orderfields(data.grad.balance, fnames(ix)); else warning('weights have been applied to the data only, not to the sensors'); end % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add the version details of this function call to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_denoise_pca.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data cfg.previous = []; for i=1:numel(varargin) try, cfg.previous{i} = varargin{i}.cfg; end end %-----cellcov function [c] = cellcov(x, y, dim, flag) % [C] = CELLCOV(X, DIM) computes the covariance, across all cells in x along % the dimension dim. When there are three inputs, covariance is computed between % all cells in x and y % % X (and Y) should be linear cell-array(s) of matrices for which the size in at % least one of the dimensions should be the same for all cells if nargin==2, flag = 1; dim = y; y = []; elseif nargin==3, flag = 1; end nx = size(x); if ~iscell(x) || length(nx)>2 || all(nx>1), error('incorrect input for cellmean'); end if nargin==1, scx1 = cellfun('size', x, 1); scx2 = cellfun('size', x, 2); if all(scx2==scx2(1)), dim = 2; %let second dimension prevail elseif all(scx1==scx1(1)), dim = 1; else error('no dimension to compute covariance for'); end end if flag, mx = cellmean(x, 2); x = cellvecadd(x, -mx); if ~isempty(y), my = cellmean(y, 2); y = cellvecadd(y, -my); end end nx = max(nx); nsmp = cellfun('size', x, dim); if isempty(y), csmp = cellfun(@covc, x, repmat({dim},1,nx), 'UniformOutput', 0); else csmp = cellfun(@covc, x, y, repmat({dim},1,nx), 'UniformOutput', 0); end nc = size(csmp{1}); c = sum(reshape(cell2mat(csmp), [nc(1) nc(2) nx]), 3)./sum(nsmp); function [c] = covc(x, y, dim) if nargin==2, dim = y; y = x; end if dim==1, c = x'*y; elseif dim==2, c = x*y'; end %-----cellmean function [m] = cellmean(x, dim) % [M] = CELLMEAN(X, DIM) computes the mean, across all cells in x along % the dimension dim. % % X should be an linear cell-array of matrices for which the size in at % least one of the dimensions should be the same for all cells nx = size(x); if ~iscell(x) || length(nx)>2 || all(nx>1), error('incorrect input for cellmean'); end if nargin==1, scx1 = cellfun('size', x, 1); scx2 = cellfun('size', x, 2); if all(scx2==scx2(1)), dim = 2; %let second dimension prevail elseif all(scx1==scx1(1)), dim = 1; else error('no dimension to compute mean for'); end end nx = max(nx); nsmp = cellfun('size', x, dim); ssmp = cellfun(@sum, x, repmat({dim},1,nx), 'UniformOutput', 0); m = sum(cell2mat(ssmp), dim)./sum(nsmp); %-----cellstd function [sd] = cellstd(x, dim, flag) % [M] = CELLSTD(X, DIM, FLAG) computes the standard deviation, across all cells in x along % the dimension dim, normalising by the total number of samples % % X should be an linear cell-array of matrices for which the size in at % least one of the dimensions should be the same for all cells. If flag==1, the mean will % be subtracted first (default behaviour, but to save time on already demeaned data, it % can be set to 0). nx = size(x); if ~iscell(x) || length(nx)>2 || all(nx>1), error('incorrect input for cellstd'); end if nargin<2, scx1 = cellfun('size', x, 1); scx2 = cellfun('size', x, 2); if all(scx2==scx2(1)), dim = 2; %let second dimension prevail elseif all(scx1==scx1(1)), dim = 1; else error('no dimension to compute mean for'); end elseif nargin==2, flag = 1; end if flag, m = cellmean(x, dim); x = cellvecadd(x, -m); end nx = max(nx); nsmp = cellfun('size', x, dim); ssmp = cellfun(@sumsq, x, repmat({dim},1,nx), 'UniformOutput', 0); sd = sqrt(sum(cell2mat(ssmp), dim)./sum(nsmp)); function [s] = sumsq(x, dim) s = sum(x.^2, dim); %-----cellvecadd function [y] = cellvecadd(x, v) % [Y]= CELLVECADD(X, V) - add vector to all rows or columns of each matrix % in cell-array X % check once and for all to save time persistent bsxfun_exists; if isempty(bsxfun_exists); bsxfun_exists=(exist('bsxfun')==5); if ~bsxfun_exists; error('bsxfun not found.'); end end nx = size(x); if ~iscell(x) || length(nx)>2 || all(nx>1), error('incorrect input for cellmean'); end if ~iscell(v), v = repmat({v}, nx); end sx1 = cellfun('size', x, 1); sx2 = cellfun('size', x, 2); sv1 = cellfun('size', v, 1); sv2 = cellfun('size', v, 2); if all(sx1==sv1) && all(sv2==1), dim = mat2cell([ones(length(sx2),1) sx2(:)]', repmat(2,nx(1),1), repmat(1,nx(2),1)); elseif all(sx2==sv2) && all(sv1==1), dim = mat2cell([sx1(:) ones(length(sx1),1)]', repmat(2,nx(1),1), repmat(1,nx(2),1)); elseif all(sv1==1) && all(sv2==1), dim = mat2cell([sx1(:) sx2(:)]'', nx(1), nx(2)); else error('inconsistent input'); end y = cellfun(@bsxfun, repmat({@plus}, nx), x, v, 'UniformOutput', 0); %y = cellfun(@vplus, x, v, dim, 'UniformOutput', 0); function y = vplus(x, v, dim) y = x + repmat(v, dim); %-----cellvecmult function [y] = cellvecmult(x, v) % [Y]= CELLVECMULT(X, V) - multiply vectors in cell-array V % to all rows or columns of each matrix in cell-array X % V can be a vector or a cell-array of vectors % check once and for all to save time persistent bsxfun_exists; if isempty(bsxfun_exists); bsxfun_exists=(exist('bsxfun')==5); if ~bsxfun_exists; error('bsxfun not found.'); end end nx = size(x); if ~iscell(x) || length(nx)>2 || all(nx>1), error('incorrect input for cellmean'); end if ~iscell(v), v = repmat({v}, nx); end sx1 = cellfun('size', x, 1); sx2 = cellfun('size', x, 2); sv1 = cellfun('size', v, 1); sv2 = cellfun('size', v, 2); if all(sx1==sv1) && all(sv2==1), elseif all(sx2==sv2) && all(sv1==1), elseif all(sv1==1) && all(sv2==1), else error('inconsistent input'); end y = cellfun(@bsxfun, repmat({@times}, nx), x, v, 'UniformOutput', 0); %-----cellzscore function [z, sd, m] = cellzscore(x, dim, flag) % [Z, SD] = CELLZSCORE(X, DIM, FLAG) computes the zscore, across all cells in x along % the dimension dim, normalising by the total number of samples % % X should be an linear cell-array of matrices for which the size in at % least one of the dimensions should be the same for all cells. If flag==1, the mean will % be subtracted first (default behaviour, but to save time on already demeaned data, it % can be set to 0). SD is a vector containing the standard deviations, used for the normalisation. nx = size(x); if ~iscell(x) || length(nx)>2 || all(nx>1), error('incorrect input for cellstd'); end if nargin<2, scx1 = cellfun('size', x, 1); scx2 = cellfun('size', x, 2); if all(scx2==scx2(1)), dim = 2; %let second dimension prevail elseif all(scx1==scx1(1)), dim = 1; else error('no dimension to compute mean for'); end elseif nargin==2, flag = 1; end if flag, m = cellmean(x, dim); x = cellvecadd(x, -m); end sd = cellstd(x, dim, 0); z = cellvecmult(x, 1./sd);
github
philippboehmsturm/antx-master
ft_sensorrealign.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sensorrealign.m
31,808
utf_8
d579e892f804b2535ec8664491e736c5
function [elec_realigned] = ft_sensorrealign(cfg, elec_original) % FT_SENSORREALIGN rotates and translates electrode and gradiometer % sensor positions to template electrode positions or towards the head % surface. It can either perform a rigid body transformation, in which only % the coordinate system is changed, or it can apply additional deformations % to the input sensors. Different methods for aligning the input electrodes % to the subjects head are implemented, which are described in detail % below. % % FIDUCIAL - You can apply a rigid body realignment based on three fiducial % locations. After realigning, the fiducials in the input electrode set % (typically nose, left and right ear) are along the same axes as the % fiducials in the template electrode set. % % TEMPLATE - You can apply a spatial transformation/deformation that % automatically minimizes the distance between the electrodes or % gradiometers and a template or sensor array. The warping methods use a % non-linear search to minimize the distance between the input sensor % positions and the corresponding template sensors. % % HEADSHAPE - You can apply a spatial transformation/deformation that % automatically minimizes the distance between the electrodes and the head % surface. The warping methods use a non-linear search to minimize the % distance between the input sensor positions and the projection of the % electrodes on the head surface. % % INTERACTIVE - You can display the skin surface together with the % electrode or gradiometer positions, and manually (using the graphical % user interface) adjust the rotation, translation and scaling parameters, % so that the electrodes correspond with the skin. % % MANUAL - You can display the skin surface and manually determine the % electrode positions by clicking on the skin surface. % % Use as % [sensor] = ft_sensorrealign(cfg) or % [sensor] = ft_sensorrealign(cfg, sensor) % where you specify the electrodes or gradiometers in the configuration % structure (see below) or as the second input argument. % % The configuration can contain the following options % cfg.method = string representing the method for aligning or placing the electrodes % 'fiducial' realign using three fiducials (e.g. NAS, LPA and RPA) % 'template' realign the sensors to match a template set % 'headshape' realign the sensors to fit the head surface % 'interactive' realign manually using a graphical user interface % 'manual' manual positioning of the electrodes by clicking in a graphical user interface % cfg.warp = string describing the spatial transformation for the template method % 'rigidbody' apply a rigid-body warp (default) % 'globalrescale' apply a rigid-body warp with global rescaling % 'traditional' apply a rigid-body warp with individual axes rescaling % 'nonlin1' apply a 1st order non-linear warp % 'nonlin2' apply a 2nd order non-linear warp % 'nonlin3' apply a 3rd order non-linear warp % 'nonlin4' apply a 4th order non-linear warp % 'nonlin5' apply a 5th order non-linear warp % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.fiducial = cell-array with the name of three fiducials used for % realigning (default = {'nasion', 'lpa', 'rpa'}) % cfg.casesensitive = 'yes' or 'no', determines whether string comparisons % between electrode labels are case sensitive (default = 'yes') % cfg.feedback = 'yes' or 'no' (default = 'no') % % The electrodes or the gradiometers that will be realigned can be % specified in the second input argument, or optionally as % cfg.elecfile = string with filename, or alternatively % cfg.elec = structure with electrode definition % cfg.gradfile = string with filename, or alternatively % cfg.grad = structure with gradiometer definition % % To realign the sensors using the fiducials, the target has to contain the % three template fiducials, e.g. % cfg.target.pnt(1,:) = [110 0 0] % location of the nose % cfg.target.pnt(2,:) = [0 90 0] % location of the left ear % cfg.target.pnt(3,:) = [0 -90 0] % location of the right ear % cfg.target.label = {'NAS', 'LPA', 'RPA'} % % To align the sensors to a single template set or to multiple electrode % sets (which will be averaged), you should specify the target as % cfg.target = single electrode or gradiometer set that serves as standard % or % cfg.target(1..N) = list of electrode or gradiometer sets that are averaged into the standard % The target electrode or gradiometer sets can be specified either as % structures (i.e. when they are already read in memory) or as file names. % % To align existing electrodes to the head surface, or to manually position % new electrodes using the head surface, you should specify % cfg.headshape = a filename containing headshape, a structure containing a % single triangulated boundary, or a Nx3 matrix with surface % points % % See also FT_READ_SENS, FT_VOLUMEREALIGN, FT_INTERACTIVEREALIGN % Copyright (C) 2005-2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_sensorrealign.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % this is used for feedback of the lower-level functions global fb % the interactive method uses a global variable to get the data from the figure when it is closed global norm % set the defaults if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'coordsys'), cfg.coordsys = []; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end if ~isfield(cfg, 'casesensitive'), cfg.casesensitive = 'yes'; end if ~isfield(cfg, 'warp'), cfg.warp = 'rigidbody'; end if ~isfield(cfg, 'label'), cfg.label = 'off'; end cfg = ft_checkconfig(cfg, 'renamed', {'template', 'target'}); cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducials', 'fiducial'}); cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducial', 'fiducial'}); cfg = ft_checkconfig(cfg, 'renamedval', {'warp', 'homogenous', 'rigidbody'}); cfg = ft_checkconfig(cfg, 'forbidden', 'outline'); if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config') % convert the nested config-object back into a normal structure cfg.headshape = struct(cfg.headshape); end if ~isempty(cfg.coordsys) switch lower(cfg.coordsys) case 'ctf' cfg.target = []; cfg.target.pnt(1,:) = [100 0 0]; cfg.target.pnt(2,:) = [0 80 0]; cfg.target.pnt(3,:) = [0 -80 0]; cfg.target.label{1} = 'NAS'; cfg.target.label{2} = 'LPA'; cfg.target.label{3} = 'RPA'; otherwise error('the %s coordinate system is not automatically supported, please specify the details in cfg.target') end end % ensure that the right cfg options have been set corresponding to the method switch cfg.method case 'template' % realign the sensors to match a template set cfg = ft_checkconfig(cfg, 'required', 'target', 'forbidden', 'headshape'); case 'headshape' % realign the sensors to fit the head surface cfg = ft_checkconfig(cfg, 'required', 'headshape', 'forbidden', 'target'); case 'fiducial' % realign using the NAS, LPA and RPA fiducials cfg = ft_checkconfig(cfg, 'required', 'target', 'forbidden', 'headshape'); case 'interactive' % realign manually using a graphical user interface cfg = ft_checkconfig(cfg, 'required', 'headshape'); case 'manual' % manual positioning of the electrodes by clicking in a graphical user interface cfg = ft_checkconfig(cfg, 'required', 'headshape', 'forbidden', 'target'); end % switch cfg.method if strcmp(cfg.feedback, 'yes') % use the global fb field to tell the warping toolbox to print feedback fb = 1; else fb = 0; end % get the electrode definition that should be warped if isfield(cfg, 'elec') elec_original = cfg.elec; elseif isfield(cfg, 'elecfile') elec_original = ft_read_sens(cfg.elecfile); elseif isfield(cfg, 'grad') elec_original = cfg.grad; elseif isfield(cfg, 'gradfile') elec_original = ft_read_sens(cfg.gradfile); elseif nargin>1 % the input electrodes were specified as second input argument else % start with an empty set of electrodes, this is usefull for manual positioning elec_original = []; elec_original.pnt = zeros(0,3); elec_original.label = cell(0,1); elec_original.unit = 'mm'; end % ensure that the units are specified elec_original = ft_convert_units(elec_original); % remember the original electrode locations and labels and do all the work % with a temporary copy, this involves channel selection and changing to % lower case elec = elec_original; if strcmp(cfg.method, 'fiducial') && isfield(elec, 'fid') % instead of working with all sensors, only work with the fiducials % this is useful for gradiometer structures fprintf('using the fiducials instead of the sensor positions\n'); elec.fid.unit = elec.unit; elec = elec.fid; end usetemplate = isfield(cfg, 'target') && ~isempty(cfg.target); useheadshape = isfield(cfg, 'headshape') && ~isempty(cfg.headshape); if usetemplate % get the template electrode definitions if ~iscell(cfg.target) cfg.target = {cfg.target}; end Ntemplate = length(cfg.target); for i=1:Ntemplate if isstruct(cfg.target{i}) template(i) = cfg.target{i}; else template(i) = ft_read_sens(cfg.target{i}); end end clear tmp for i=1:Ntemplate tmp(i) = ft_convert_units(template(i), elec.unit); % ensure that the units are consistent with the electrodes end template = tmp; end if useheadshape % get the surface describing the head shape if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt') % use the headshape surface specified in the configuration headshape = cfg.headshape; elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3 % use the headshape points specified in the configuration headshape.pnt = cfg.headshape; elseif ischar(cfg.headshape) % read the headshape from file headshape = ft_read_headshape(cfg.headshape); else error('cfg.headshape is not specified correctly') end if ~isfield(headshape, 'tri') % generate a closed triangulation from the surface points headshape.pnt = unique(headshape.pnt, 'rows'); headshape.tri = projecttri(headshape.pnt); end headshape = ft_convert_units(headshape, elec.unit); % ensure that the units are consistent with the electrodes end % convert all labels to lower case for string comparisons % this has to be done AFTER keeping the original labels and positions if strcmp(cfg.casesensitive, 'no') for i=1:length(elec.label) elec.label{i} = lower(elec.label{i}); end for j=1:length(template) for i=1:length(template(j).label) template(j).label{i} = lower(template(j).label{i}); end end end if strcmp(cfg.feedback, 'yes') % create an empty figure, continued below... figure axis equal axis vis3d hold on xlabel('x') ylabel('y') zlabel('z') end % start with an empty structure, this will be returned at the end norm = []; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(cfg.method, 'template') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine electrode selection and overlapping subset for warping cfg.channel = ft_channelselection(cfg.channel, elec.label); for i=1:Ntemplate cfg.channel = ft_channelselection(cfg.channel, template(i).label); end % make consistent subselection of electrodes [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); for i=1:Ntemplate [cfgsel, datsel] = match_str(cfg.channel, template(i).label); template(i).label = template(i).label(datsel); template(i).pnt = template(i).pnt(datsel,:); end % compute the average of the template electrode positions average = ft_average_sens(template); fprintf('warping electrodes to average template... '); % the newline comes later [norm.pnt, norm.m] = warp_optim(elec.pnt, average.pnt, cfg.warp); norm.label = elec.label; dpre = mean(sqrt(sum((average.pnt - elec.pnt).^2, 2))); dpost = mean(sqrt(sum((average.pnt - norm.pnt).^2, 2))); fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost); if strcmp(cfg.feedback, 'yes') % plot all electrodes before warping ft_plot_sens(elec, 'r*'); % plot all electrodes after warping ft_plot_sens(norm, 'm.', 'label', 'label'); % plot the template electrode locations ft_plot_sens(average, 'b.'); % plot lines connecting the input and the realigned electrode locations with the template locations my_line3(elec.pnt, average.pnt, 'color', 'r'); my_line3(norm.pnt, average.pnt, 'color', 'm'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'headshape') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine electrode selection and overlapping subset for warping cfg.channel = ft_channelselection(cfg.channel, elec.label); % make subselection of electrodes [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); fprintf('warping electrodes to skin surface... '); % the newline comes later [norm.pnt, norm.m] = warp_optim(elec.pnt, headshape, cfg.warp); norm.label = elec.label; dpre = warp_error([], elec.pnt, headshape, cfg.warp); dpost = warp_error(norm.m, elec.pnt, headshape, cfg.warp); fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'fiducial') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the fiducials have to be present in the electrodes and in the template set label = intersect(lower(elec.label), lower(template.label)); if ~isfield(cfg, 'fiducial') || isempty(cfg.fiducial) % try to determine the names of the fiducials automatically option1 = {'nasion' 'left' 'right'}; option2 = {'nasion' 'lpa' 'rpa'}; option3 = {'nz' 'left' 'right'}; option4 = {'nz' 'lpa' 'rpa'}; option5 = {'nas' 'left' 'right'}; option6 = {'nas' 'lpa' 'rpa'}; if length(match_str(label, option1))==3 cfg.fiducial = option1; elseif length(match_str(label, option2))==3 cfg.fiducial = option2; elseif length(match_str(label, option3))==3 cfg.fiducial = option3; elseif length(match_str(label, option4))==3 cfg.fiducial = option4; elseif length(match_str(label, option5))==3 cfg.fiducial = option5; elseif length(match_str(label, option6))==3 cfg.fiducial = option6; else error('could not determine consistent fiducials in the input and the target, please specify cfg.fiducial or cfg.coordsys') end end fprintf('matching fiducials {''%s'', ''%s'', ''%s''}\n', cfg.fiducial{1}, cfg.fiducial{2}, cfg.fiducial{3}); % determine electrode selection cfg.channel = ft_channelselection(cfg.channel, elec.label); [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); if length(cfg.fiducial)~=3 error('you must specify three fiducials'); end % do case-insensitive search for fiducial locations nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3})); if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1 error('not all fiducials were found in the electrode set'); end elec_nas = elec.pnt(nas_indx,:); elec_lpa = elec.pnt(lpa_indx,:); elec_rpa = elec.pnt(rpa_indx,:); % FIXME change the flow in the remainder % if one or more template electrode sets are specified, then align to the average of those % if no template is specified, then align so that the fiducials are along the axis % find the matching fiducials in the template and average them templ_nas = nan(Ntemplate,3); templ_lpa = nan(Ntemplate,3); templ_rpa = nan(Ntemplate,3); for i=1:Ntemplate nas_indx = match_str(lower(template(i).label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{3})); if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1 error(sprintf('not all fiducials were found in template %d', i)); end templ_nas(i,:) = template(i).pnt(nas_indx,:); templ_lpa(i,:) = template(i).pnt(lpa_indx,:); templ_rpa(i,:) = template(i).pnt(rpa_indx,:); end templ_nas = mean(templ_nas,1); templ_lpa = mean(templ_lpa,1); templ_rpa = mean(templ_rpa,1); % realign both to a common coordinate system elec2common = headcoordinates(elec_nas, elec_lpa, elec_rpa); templ2common = headcoordinates(templ_nas, templ_lpa, templ_rpa); % compute the combined transform and realign the electrodes to the template norm = []; norm.m = elec2common * inv(templ2common); norm.pnt = warp_apply(norm.m, elec.pnt, 'homogeneous'); norm.label = elec.label; nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3})); dpre = mean(sqrt(sum((elec.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2))); nas_indx = match_str(lower(norm.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{3})); dpost = mean(sqrt(sum((norm.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2))); fprintf('mean distance between fiducials prior to realignment %f, after realignment %f\n', dpre, dpost); if strcmp(cfg.feedback, 'yes') % plot the first three electrodes before transformation my_plot3(elec.pnt(1,:), 'r*'); my_plot3(elec.pnt(2,:), 'r*'); my_plot3(elec.pnt(3,:), 'r*'); my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r'); my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r'); my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r'); % plot the template fiducials my_plot3(templ_nas, 'b*'); my_plot3(templ_lpa, 'b*'); my_plot3(templ_rpa, 'b*'); my_text3(templ_nas, ' nas', 'color', 'b'); my_text3(templ_lpa, ' lpa', 'color', 'b'); my_text3(templ_rpa, ' rpa', 'color', 'b'); % plot all electrodes after transformation my_plot3(norm.pnt, 'm.'); my_plot3(norm.pnt(1,:), 'm*'); my_plot3(norm.pnt(2,:), 'm*'); my_plot3(norm.pnt(3,:), 'm*'); my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm'); my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm'); my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'interactive') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % give the user instructions disp('Use the mouse to rotate the head and the electrodes around, and click "redisplay"'); disp('Close the figure when you are done'); % open a figure fig = figure; % add the data to the figure set(fig, 'CloseRequestFcn', @cb_close); setappdata(fig, 'elec', elec); setappdata(fig, 'transform', eye(4)); if useheadshape setappdata(fig, 'headshape', headshape); end if usetemplate % FIXME interactive realigning to template electrodes is not yet supported % this requires a consistent handling of channel selection etc. setappdata(fig, 'template', template); end % add the GUI elements cb_creategui(gca); cb_redraw(gca); rotate3d on waitfor(fig); % get the data from the figure that was left behind as global variable tmp = norm; clear global norm norm = tmp; clear tmp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'manual') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % give the user instructions disp('Use the mouse to click on the desired electrode positions'); disp('Afterwards you manually have to assign the electrode names to "elec.label"'); disp('Close the figure or press "q" when you are done'); % open a figure figure; % plot the faces of the 2D or 3D triangulation skin = [255 213 119]/255; ft_plot_mesh(headshape,'facecolor', skin,'EdgeColor','none','facealpha',0.7); lighting gouraud material shiny camlight % rotate3d on xyz = ft_select_point3d(headshape, 'multiple', true); norm.pnt = xyz; for i=1:size(norm.pnt,1) norm.label{i,1} = sprintf('%d', i); end else error('unknown method'); end % apply the spatial transformation to all electrodes, and replace the % electrode labels by their case-sensitive original values switch cfg.method case {'template', 'headshape'} try % convert the vector with fitted parameters into a 4x4 homogenous transformation % apply the transformation to the original complete set of sensors elec_realigned = ft_transform_sens(feval(cfg.warp, norm.m), elec_original); catch % the previous section will fail for nonlinear transformations elec_realigned.label = elec_original.label; elec_realigned.pnt = warp_apply(norm.m, elec_original.pnt, cfg.warp); end % remember the transformation elec_realigned.(cfg.warp) = norm.m; case {'fiducial', 'interactive'} % the transformation is a 4x4 homogenous matrix homogenous = norm.m; % apply the transformation to the original complete set of sensors elec_realigned = ft_transform_sens(homogenous, elec_original); % remember the transformation elec_realigned.homogenous = norm.m; case 'manual' % the positions are already assigned in correspondence with the mesh elec_realigned = norm; otherwise error('unknown method'); end % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_sensorrealign.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the exact configuration details in the output elec_realigned.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % some simple SUBFUNCTIONs that facilitate 3D plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = my_plot3(xyz, varargin) h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function h = my_text3(xyz, varargin) h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function my_line3(xyzB, xyzE, varargin) for i=1:size(xyzB,1) line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:}) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to layout a moderately complex graphical user interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = layoutgui(fig, geometry, position, style, string, value, tag, callback) horipos = geometry(1); % lower left corner of the GUI part in the figure vertpos = geometry(2); % lower left corner of the GUI part in the figure width = geometry(3); % width of the GUI part in the figure height = geometry(4); % height of the GUI part in the figure horidist = 0.05; vertdist = 0.05; options = {'units', 'normalized', 'HorizontalAlignment', 'center'}; % 'VerticalAlignment', 'middle' Nrow = size(position,1); h = cell(Nrow,1); for i=1:Nrow if isempty(position{i}) continue; end position{i} = position{i} ./ sum(position{i}); Ncol = size(position{i},2); ybeg = (Nrow-i )/Nrow + vertdist/2; yend = (Nrow-i+1)/Nrow - vertdist/2; for j=1:Ncol xbeg = sum(position{i}(1:(j-1))) + horidist/2; xend = sum(position{i}(1:(j ))) - horidist/2; pos(1) = xbeg*width + horipos; pos(2) = ybeg*height + vertpos; pos(3) = (xend-xbeg)*width; pos(4) = (yend-ybeg)*height; h{i}{j} = uicontrol(fig, ... options{:}, ... 'position', pos, ... 'style', style{i}{j}, ... 'string', string{i}{j}, ... 'tag', tag{i}{j}, ... 'value', value{i}{j}, ... 'callback', callback{i}{j} ... ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_creategui(hObject, eventdata, handles) % define the position of each GUI element position = { [2 1 1 1] [2 1 1 1] [2 1 1 1] [1] [1] [1] [1] [1 1] }; % define the style of each GUI element style = { {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'pushbutton'} {'pushbutton'} {'toggle'} {'toggle'} {'text' 'edit'} }; % define the descriptive string of each GUI element string = { {'rotate' 0 0 0} {'translate' 0 0 0} {'scale' 1 1 1} {'redisplay'} {'apply'} {'toggle labels'} {'toggle axes'} {'opacity' 0.7} }; % define the value of each GUI element value = { {[] [] [] []} {[] [] [] []} {[] [] [] []} {[]} {[]} {0} {0} {[] []} }; % define a tag for each GUI element tag = { {'' 'rx' 'ry' 'rz'} {'' 'tx' 'ty' 'tz'} {'' 'sx' 'sy' 'sz'} {''} {''} {'toggle labels'} {'toggle axes'} {'' 'alpha'} }; % define the callback function of each GUI element callback = { {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {@cb_redraw} {@cb_apply} {@cb_redraw} {@cb_redraw} {[] @cb_redraw} }; fig = get(hObject, 'parent'); layoutgui(fig, [0.7 0.05 0.25 0.50], position, style, string, value, tag, callback); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_redraw(hObject, eventdata, handles) fig = get(hObject, 'parent'); headshape = getappdata(fig, 'headshape'); elec = getappdata(fig, 'elec'); template = getappdata(fig, 'template'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; elec = ft_transform_sens(H, elec); axis vis3d; cla xlabel('x') ylabel('y') zlabel('z') if ~isempty(template) disp('Plotting the template electrodes in blue'); if size(template.pnt, 2)==2 hs = plot(template.pnt(:,1), template.pnt(:,2), 'b.', 'MarkerSize', 20); else hs = plot3(template.pnt(:,1), template.pnt(:,2), template.pnt(:,3), 'b.', 'MarkerSize', 20); end end if ~isempty(headshape) % plot the faces of the 2D or 3D triangulation skin = [255 213 119]/255; ft_plot_mesh(headshape,'facecolor', skin,'EdgeColor','none','facealpha',0.7); lighting gouraud material shiny camlight end if isfield(elec, 'fid') && ~isempty(elec.fid.pnt) disp('Plotting the fiducials in red'); ft_plot_sens(elec.fid,'style', 'r*'); end if get(findobj(fig, 'tag', 'toggle axes'), 'value') axis on grid on else axis off grid on end hold on if get(findobj(fig, 'tag', 'toggle labels'), 'value') ft_plot_sens(elec,'label', 'on'); else ft_plot_sens(elec,'label', 'off'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_apply(hObject, eventdata, handles) fig = get(hObject, 'parent'); elec = getappdata(fig, 'elec'); transform = getappdata(fig, 'transform'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; elec = ft_transform_headshape(H, elec); transform = H * transform; set(findobj(fig, 'tag', 'rx'), 'string', 0); set(findobj(fig, 'tag', 'ry'), 'string', 0); set(findobj(fig, 'tag', 'rz'), 'string', 0); set(findobj(fig, 'tag', 'tx'), 'string', 0); set(findobj(fig, 'tag', 'ty'), 'string', 0); set(findobj(fig, 'tag', 'tz'), 'string', 0); set(findobj(fig, 'tag', 'sx'), 'string', 1); set(findobj(fig, 'tag', 'sy'), 'string', 1); set(findobj(fig, 'tag', 'sz'), 'string', 1); setappdata(fig, 'elec', elec); setappdata(fig, 'transform', transform); cb_redraw(hObject); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_close(hObject, eventdata, handles) % make the current transformation permanent and subsequently allow deleting the figure cb_apply(gca); % get the updated electrode from the figure fig = hObject; % hmmm, this is ugly global norm norm = getappdata(fig, 'elec'); norm.m = getappdata(fig, 'transform'); set(fig, 'CloseRequestFcn', @delete); delete(fig);
github
philippboehmsturm/antx-master
ft_spike_data2spike.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_data2spike.m
4,689
utf_8
1519e77ecd52978f98a93437ee57a7d2
function [spike] = ft_spike_data2spike(cfg,data) % FT_SPIKE_DATA2SPIKE converts a continuous spikestation DATA structure to a point % representation of the data in a spikestation SPIKE structure. % % Configurations options (CFG): % % Configuration options related to selection of spike channel and trials: % % cfg.spikechannel = string or index of single spike channel to trigger on % (default = 'all'). See FT_CHANNELSELECTION for details % Martin Vinck 2010 (C). if nargin~=2, error('MATLAB:ft_spike_data2spike:data2spike:nargin','Two input arguments required'), end % put the defaults and check whether there are ununsed fields defaults.spikechannel = {'all'}; cfg = ft_spike_sub_defaultcfg(cfg,defaults); % check if the input data is valid for this function, should be done with CHECKDATA hasAllFields = all(isfield(data,{'time','trial', 'label'})); if ~hasAllFields, error('MATLAB:ft_spike_data2spike:data2spike:wrongInput',... 'DATA should contain .time, .trial, .label'); end % spike channel selection, avoid check on max number of spikes here, since we may use spike format % for events as well cfg.channel = ft_channelselection(cfg.spikechannel, data.label); spikesel = match_str(data.label, cfg.channel); nUnits = length(spikesel); % number of units if nUnits==0, error('MATLAB:ft_spike_data2spike:cfg:spikechannel:noChanSelected',... 'No spikechannel selected by means of cfg.spikechannel'); end % do the conversion nTrials = length(data.trial); trialTimes = zeros(nTrials,2); for iUnit = 1:nUnits unitIndx = spikesel(iUnit); spikeTimes = []; % we dont know how large it will be, so use concatenation inside loop trialInds = []; for iTrial = 1:nTrials % read in the spike times [spikeTimesTrial] = getspiketimes(data, iTrial, unitIndx); nSpikes = length(spikeTimesTrial); spikeTimes = [spikeTimes; spikeTimesTrial(:)]; trialInds = [trialInds; ones(nSpikes,1)*iTrial]; % get the begs and ends of trials if iUnit==1, trialTimes(iTrial,:) = data.time{iTrial}([1 end]); end end spike.label{iUnit} = data.label{unitIndx}; spike.waveform{iUnit} = []; spike.time{iUnit} = spikeTimes; spike.trial{iUnit} = trialInds; if iUnit==1, spike.trialtime = trialTimes; end end % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; cfg.version.name = st(i); end % remember the configuration details of the input data try, cfg.previous = data.cfg; end % remember the exact configuration details in the output spike.cfg = cfg; %%%%%%%%%% SUB FUNCTION %%%%%%%%%% function [spikeTimes spikeIndx] = getspiketimes(data,trial,unit) % GETSPIKETIMES extracts the spike times and spike samples from a continuous fieldtrip % DATA structure in a selected trial for a selected unit. % % Inputs: % DATA is a contiuous fieldtrip data structure % % TRIAL is a natural number indicating which trial is selected % UNIT is a natural number indicating which channel is selected % % Outputs: % SPIKETIMES contains the spike times, sampled at frequency data.fsample; % SPIKEINDX contains the samples in data.trial{trial}(unit,:) at which we find the % spikes. spikeIndx = logical(data.trial{trial}(unit,:)); spikeCount = data.trial{trial}(unit,spikeIndx); spikeTimes = data.time{trial}(spikeIndx); multiSpikes = find(spikeCount>1); % preallocate the additional times that we get from the double spikes nMultiSpikes = sum(spikeCount(multiSpikes)); [addTimes,addSamples] = deal(zeros(nMultiSpikes,1)); binWidth = 1/data.fsample; % the width of each bin halfBinWidth = binWidth/2; % get the additional samples and spike times, we need only loop through the bins n = 1; for iBin = multiSpikes(:)' % looping over row vector nSpikesInBin = spikeCount(iBin); addTimes(n : n+nSpikesInBin-1) = ones(1,nSpikesInBin)*spikeTimes(iBin); addSamples(n : n+nSpikesInBin-1) = ones(1,nSpikesInBin)*spikeIndx(iBin); n = n + nSpikesInBin; end % before adding these times, first remove the old ones spikeTimes(multiSpikes) = []; spikeIndx(multiSpikes) = []; spikeTimes = sort([spikeTimes(:); addTimes(:)]); spikeIndx = sort([spikeIndx(:) ; addSamples(:)]);
github
philippboehmsturm/antx-master
ft_databrowser.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_databrowser.m
51,564
utf_8
bbe291a12d02c5fbf5eb26906a44cbe5
function [cfg] = ft_databrowser(cfg, data) % FT_DATABROWSER can be used for visual inspection of data. Artifacts that were detected % by artifact functions (see FT_ARTIFACT_xxx functions where xxx is the type of artifact) % are marked. Additionally data pieces can be marked and unmarked as artifact by % manual selection. The output cfg contains the updated artifactdef field. % % Use as % cfg = ft_databrowser(cfg) % required configuration options: % with the cfg.dataset or cfg.headerfile and cfg.datafile option, or use as % cfg = ft_databrowser(cfg, data) % where the input data is a structure as obtained from FT_PREPROCESSING or FT_COMPONENTANALYSIS. % % The following configuration options are supported: % cfg.ylim = vertical scaling, can be 'maxmin', 'maxabs' or [ymin ymax] (default = 'maxabs') % cfg.blocksize = duration in seconds for cutting the data up, only aplicable for continuous data % cfg.trl = structure that defines the data segments of interest, only applicable for trial-based data % cfg.continuous = 'yes' or 'no' whether the data should be interpreted as continuous or trial-based % cfg.channel = cell-array with channel labels, see FT_CHANNELSELECTION % cfg.viewmode = string, 'butterfly', 'vertical', 'component' for visualizing components e.g. from an ICA (default is 'butterfly') % cfg.artfctdef.xxx.artifact = Nx2 matrix with artifact segments see FT_ARTIFACT_xxx functions % cfg.selectfeature = string, name of feature to be selected/added (default = 'visual') % cfg.selectmode = string, what to do with a selection, can be 'mark', or 'eval' (default = 'mark') % 'mark': artfctdef field is updated, 'eval': the function defined in % cfg.selfun is evaluated f.i. browse_movieplotER calls movieplotER which makes % a movie of the selected data % cfg.colorgroups = 'sequential' 'labelcharx' (x = xth character in label), 'chantype' or % vector with length(data/hdr.label) defining groups (default = 'sequential') % cfg.channelcolormap = COLORMAP (default = customized lines map with 15 colors) % cfg.selfun = string, name of function which is evaluated if selectmode is set to 'eval'. % The selected data and the selcfg are passed on to this function. % cfg.selcfg = configuration options for selfun % cfg.eegscale = number, scaling to apply to the EEG channels prior to display % cfg.eogscale = number, scaling to apply to the EOG channels prior to display % cfg.ecgscale = number, scaling to apply to the ECG channels prior to display % cfg.emgscale = number, scaling to apply to the EMG channels prior to display % cfg.megscale = number, scaling to apply to the MEG channels prior to display % cfg.gradscale = number, scaling to apply to the MEG gradiometer channels prior to display (in addition to the cfg.megscale factor) % cfg.magscale = number, scaling to apply to the MEG magnetometer channels prior to display (in addition to the cfg.megscale factor) % % The scaling to the EEG, EOG, ECG, EMG and MEG channels is optional and can % be used to bring the absolute numbers of the different channel types in % the same range (e.g. fT and uV). The channel types are determined from % the input data using FT_CHANNELSELECTION. % % The "artifact" field in the output cfg is a Nx2 matrix comparable to the % "trl" matrix of FT_DEFINETRIAL. The first column of which specifying the % beginsamples of an artifact period, the second column contains the % endsamples of the artifactperiods. % % NOTE for debugging: in case the databrowser crashes, use delete(gcf) to kill the figure. % % See also FT_PREPROCESSING, FT_REJECTARTIFACT, FT_ARTIFACT_EOG, FT_ARTIFACT_MUSCLE, % FT_ARTIFACT_JUMP, FT_ARTIFACT_MANUAL, FT_ARTIFACT_THRESHOLD, % FT_ARTIFACT_CLIP, FT_ARTIFACT_ECG, FT_COMPONENTANALYIS % Copyright (C) 2009-2011, Robert Oostenveld, Ingrid Niewenhuis % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_databrowser.m 3862 2011-07-14 13:41:01Z jorhor $ % FIXME these should be removed % FIXME document these % cfg.preproc % cfg.channelcolormap % cfg.colorgroups ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); hasdata = (nargin>1); hascomp = hasdata && ft_datatype(data, 'comp'); % for backward compatibility cfg = ft_checkconfig(cfg, 'unused', {'comps', 'inputfile', 'outputfile'}); cfg = ft_checkconfig(cfg, 'renamed', {'zscale', 'ylim'}); cfg = ft_checkconfig(cfg, 'renamedval', {'ylim', 'auto', 'maxabs'}); % set the defaults if ~isfield(cfg, 'ylim'), cfg.ylim = 'maxabs'; end if ~isfield(cfg, 'artfctdef'), cfg.artfctdef = struct; end if ~isfield(cfg, 'selectfeature'), cfg.selectfeature = 'visual'; end % string or cell-array if ~isfield(cfg, 'selectmode'), cfg.selectmode = 'mark'; end if ~isfield(cfg, 'blocksize'), cfg.blocksize = 1; end % only for segmenting continuous data, i.e. one long trial if ~isfield(cfg, 'preproc'), cfg.preproc = []; end % see preproc for options if ~isfield(cfg, 'selfun'), cfg.selfun = 'browse_multiplotER'; end if ~isfield(cfg, 'selcfg'), cfg.selcfg = []; end if ~isfield(cfg, 'colorgroups'), cfg.colorgroups = 'sequential'; end if ~isfield(cfg, 'channelcolormap'), cfg.channelcolormap = [0.75 0 0;0 0 1;0 1 0;0.44 0.19 0.63;0 0.13 0.38;0.5 0.5 0.5;1 0.75 0;1 0 0;0.89 0.42 0.04;0.85 0.59 0.58;0.57 0.82 0.31;0 0.69 0.94;1 0 0.4;0 0.69 0.31;0 0.44 0.75]; end if ~isfield(cfg, 'eegscale'), cfg.eegscale = []; end if ~isfield(cfg, 'eogscale'), cfg.eogscale = []; end if ~isfield(cfg, 'ecgscale'), cfg.ecgscale = []; end if ~isfield(cfg, 'emgscale'), cfg.emgscale = []; end if ~isfield(cfg, 'megscale'), cfg.megscale = []; end if ~isfield(cfg, 'magscale'), cfg.magscale = []; end if ~isfield(cfg, 'gradscale'), cfg.gradscale = []; end if ~isfield(cfg, 'layout'), cfg.layout = []; end if ~isfield(cfg, 'event'), cfg.event = []; end % this only exists for backward compatibility and should not be documented if ~isfield(cfg, 'continuous'), cfg.continuous = []; end % the default is set further down in the code, conditional on the input data if ~isfield(cfg, 'viewmode') % butterfly, vertical, component if hascomp cfg.viewmode = 'component'; else cfg.viewmode = 'butterfly'; end end if ~isfield(cfg, 'channel'), if hascomp cfg.channel = 1:10; else cfg.channel = 'all'; end end if strcmp(cfg.viewmode, 'component') % read or create the layout that will be used for the topoplots tmpcfg = []; tmpcfg.layout = cfg.layout; if isfield(data, 'grad') tmpcfg.grad = data.grad; elseif isfield(data, 'elec') tmpcfg.elec = data.elec; end cfg.layout = ft_prepare_layout(tmpcfg); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set the defaults and do some preparation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if hasdata % check if the input data is valid for this function data = ft_checkdata(data, 'datatype', {'raw', 'comp'}, 'feedback', 'yes', 'hassampleinfo', 'yes'); % fetch the header from the data structure in memory hdr = ft_fetch_header(data); if isfield(data, 'cfg') && ~isempty(ft_findcfg(data.cfg, 'origfs')) % don't use the events in case the data has been resampled event = []; elseif ~isempty(cfg.event) % use the events that the user passed in the configuration event = cfg.event; else % fetch the events from the data structure in memory event = ft_fetch_event(data); end cfg.channel = ft_channelselection(cfg.channel, hdr.label); chansel = match_str(data.label, cfg.channel); Nchans = length(chansel); if isempty(cfg.continuous) if length(data.trial) == 1 cfg.continuous = 'yes'; else cfg.continuous = 'no'; end end % this is how the input data is segmented trlorg = zeros(numel(data.trial), 3); trlorg(:,[1 2]) = data.sampleinfo; % recreate offset vector (databrowser depends on this for visualisation) for ntrl = 1:numel(data.trial) trlorg(ntrl,3) = time2offset(data.time{ntrl}, data.fsample); end Ntrials = size(trlorg, 1); else % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'dataset2files', {'yes'}); cfg = ft_checkconfig(cfg, 'required', {'headerfile', 'datafile'}); cfg = ft_checkconfig(cfg, 'renamed', {'datatype', 'continuous'}); cfg = ft_checkconfig(cfg, 'renamedval', {'continuous', 'continuous', 'yes'}); % read the header from file hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat); if isempty(cfg.continuous) if hdr.nTrials==1 cfg.continuous = 'yes'; else cfg.continuous = 'no'; end end if ~isempty(cfg.event) % use the events that the user passed in the configuration event = cfg.event; else % read the events from file event = ft_read_event(cfg.dataset); end cfg.channel = ft_channelselection(cfg.channel, hdr.label); chansel = match_str(hdr.label, cfg.channel); Nchans = length(chansel); if strcmp(cfg.continuous, 'yes') Ntrials = 1; else Ntrials = hdr.nTrials; end % FIXME in case of continuous=yes the trl should be [1 hdr.nSamples*nTrials 0] % and a scrollbar should be used % construct trl-matrix for data from file on disk trlorg = zeros(Ntrials,3); for k = 1:Ntrials trlorg(k,[1 2]) = [1 hdr.nSamples] + [hdr.nSamples hdr.nSamples] .* (k-1); end end % if hasdata % FIXME make a check for the consistency of cfg.continous, cfg.blocksize, cfg.trl and the data header if Nchans == 0 error('no channels to display'); end if Ntrials == 0 error('no trials to display'); end if ischar(cfg.selectfeature) % ensure that it is a cell array cfg.selectfeature = {cfg.selectfeature}; end if ~isempty(cfg.selectfeature) for i=1:length(cfg.selectfeature) if ~isfield(cfg.artfctdef, cfg.selectfeature{i}) cfg.artfctdef.(cfg.selectfeature{i}) = []; cfg.artfctdef.(cfg.selectfeature{i}).artifact = zeros(0,2); end end end % determine the vertical scaling if ischar(cfg.ylim) if hasdata % the first trial is used to determine the vertical scaling dat = data.trial{1}(chansel,:); else % one second of data is read from file to determine the vertical scaling dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', 1, 'endsample', round(hdr.Fs), 'chanindx', chansel, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat, 'headerformat', cfg.headerformat); end % if hasdata minval = min(dat(:)); maxval = max(dat(:)); switch cfg.ylim case 'maxabs' cfg.ylim = [-max(abs([minval maxval])) max(abs([minval maxval]))]; case 'maxmin' cfg.ylim = [minval maxval]; otherwise error('unsupported value for cfg.ylim'); end % switch ylim end % determine coloring of channels if hasdata labels_all = data.label; else labels_all= hdr.label; end if size(cfg.channelcolormap,2) ~= 3 error('cfg.channelcolormap is not valid, size should be Nx3') end if isnumeric(cfg.colorgroups) % groups defined by user if length(labels_all) ~= length(cfg.colorgroups) error('length(cfg.colorgroups) should be length(data/hdr.label)') end R = cfg.channelcolormap(:,1); G = cfg.channelcolormap(:,2); B = cfg.channelcolormap(:,3); chancolors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))]; elseif strcmp(cfg.colorgroups, 'chantype') type = ft_chantype(labels_all); [tmp1 tmp2 cfg.colorgroups] = unique(type); fprintf('%3d colorgroups were identified\n',length(tmp1)) R = cfg.channelcolormap(:,1); G = cfg.channelcolormap(:,2); B = cfg.channelcolormap(:,3); chancolors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))]; elseif strcmp(cfg.colorgroups(1:9), 'labelchar') % groups determined by xth letter of label labelchar_num = str2double(cfg.colorgroups(10)); vec_letters = num2str(zeros(length(labels_all),1)); for iChan = 1:length(labels_all) vec_letters(iChan) = labels_all{iChan}(labelchar_num); end [tmp1 tmp2 cfg.colorgroups] = unique(vec_letters); fprintf('%3d colorgroups were identified\n',length(tmp1)) R = cfg.channelcolormap(:,1); G = cfg.channelcolormap(:,2); B = cfg.channelcolormap(:,3); chancolors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))]; elseif strcmp(cfg.colorgroups, 'sequential') % no grouping chancolors = lines(length(labels_all)); else error('do not understand cfg.colorgroups') end % collect the artifacts that have been detected from cfg.artfctdef.xxx.artifact artlabel = fieldnames(cfg.artfctdef); sel = zeros(size(artlabel)); artifact = cell(size(artlabel)); for i=1:length(artlabel) sel(i) = isfield(cfg.artfctdef.(artlabel{i}), 'artifact'); if sel(i) artifact{i} = cfg.artfctdef.(artlabel{i}).artifact; fprintf('detected %3d %s artifacts\n', size(artifact{i}, 1), artlabel{i}); end end % get the subset of the artfctdef fields that seem to contain artifacts artifact = artifact(sel==1); artlabel = artlabel(sel==1); if length(artlabel) > 9 error('only up to 9 artifacts groups supported') end % make artdata representing all artifacts in a "raw data" format datendsample = max(trlorg(:,2)); artdata = []; artdata.trial{1} = convert_event(artifact, 'boolvec', 'endsample', datendsample); % every artifact is a "channel" artdata.time{1} = offset2time(0, hdr.Fs, datendsample); artdata.label = artlabel; artdata.fsample = hdr.Fs; artdata.cfg.trl = [1 datendsample 0]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set up the data structures used in the GUI %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % opt represents the global data/settings, it should contain % - the original data, epoched or continuous % - the artifacts represented as continuous data % - the redraw_cb settings % - the preproc settings % - the select_range_cb settings (also used in keyboard_cb) % these elements are stored inside the figure so that the callback routines can modify them opt = []; if hasdata opt.orgdata = data; else opt.orgdata = []; % this means that it will look in cfg.dataset end if strcmp(cfg.continuous, 'yes') opt.trialname = 'segment'; % this will be shown in the figure title else opt.trialname = 'trial'; % this will be shown in the figure title end opt.artdata = artdata; opt.hdr = hdr; opt.event = event; opt.trlop = 1; % the active trial being displayed opt.ftsel = find(strcmp(artlabel,cfg.selectfeature)); % current artifact/feature being selected opt.trlorg = trlorg; opt.fsample = hdr.Fs; opt.artcolors = [0.9686 0.7608 0.7686; 0.7529 0.7098 0.9647; 0.7373 0.9725 0.6824;0.8118 0.8118 0.8118; 0.9725 0.6745 0.4784; 0.9765 0.9176 0.5686; 0.6863 1 1; 1 0.6863 1; 0 1 0.6000]; opt.chancolors = chancolors; opt.cleanup = false; % this is needed for a corrent handling if the figure is closed (either in the corner or by "q") opt.chanindx = []; % this is used to check whether the component topographies need to be redrawn h = figure; setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set up the figure and callbacks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% set(h, 'KeyPressFcn', @keyboard_cb); set(h, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonDownFcn'}); set(h, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonUpFcn'}); set(h, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonMotionFcn'}); % make the user interface elements for the data view uicontrol('tag', 'group1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', opt.trialname, 'userdata', 't') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'leftarrow') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'rightarrow') uicontrol('tag', 'group1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'channel','userdata', 'c') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'uparrow') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'downarrow') uicontrol('tag', 'group1a', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'horizontal', 'userdata', 'h') uicontrol('tag', 'group2a', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'shift+leftarrow') uicontrol('tag', 'group2a', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+rightarrow') if strcmp(cfg.continuous, 'no') ft_uilayout(h, 'tag', 'group1a', 'visible', 'off', 'retag', 'group1'); ft_uilayout(h, 'tag', 'group2a', 'visible', 'off', 'retag', 'group2'); else ft_uilayout(h, 'tag', 'group1a', 'visible', 'on', 'retag', 'group1'); ft_uilayout(h, 'tag', 'group2a', 'visible', 'on', 'retag', 'group2'); end uicontrol('tag', 'group1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'vertical', 'userdata', 'v') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'shift+downarrow') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+uparrow') % legend artifacts/features for iArt = 1:length(artlabel) uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', artlabel{iArt}, 'userdata', num2str(iArt), 'position', [0.91, 0.9 - ((iArt-1)*0.09), 0.08, 0.04], 'backgroundcolor', opt.artcolors(iArt,:)) uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', ['shift+' num2str(iArt)], 'position', [0.91, 0.855 - ((iArt-1)*0.09), 0.03, 0.04], 'backgroundcolor', opt.artcolors(iArt,:)) uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', ['control+' num2str(iArt)], 'position', [0.96, 0.855 - ((iArt-1)*0.09), 0.03, 0.04], 'backgroundcolor', opt.artcolors(iArt,:)) end if strcmp(cfg.viewmode, 'butterfly') % button to find label of nearest channel to datapoint uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'identify', 'userdata', 'i', 'position', [0.91, 0.1, 0.08, 0.05], 'backgroundcolor', [1 1 1]) end ft_uilayout(h, 'tag', 'group1', 'width', 0.10, 'height', 0.05); ft_uilayout(h, 'tag', 'group2', 'width', 0.05, 'height', 0.05); ft_uilayout(h, 'tag', 'group1', 'style', 'pushbutton', 'callback', @keyboard_cb); ft_uilayout(h, 'tag', 'group2', 'style', 'pushbutton', 'callback', @keyboard_cb); ft_uilayout(h, 'tag', 'group3', 'style', 'pushbutton', 'callback', @keyboard_cb); ft_uilayout(h, 'tag', 'group1', 'retag', 'viewui'); ft_uilayout(h, 'tag', 'group2', 'retag', 'viewui'); ft_uilayout(h, 'tag', 'viewui', 'BackgroundColor', [0.8 0.8 0.8], 'hpos', 'auto', 'vpos', 0); definetrial_cb(h); redraw_cb(h); % %% Scrollbar % % % set initial scrollbar value % dx = maxtime; % % % set scrollbar position % fig_pos=get(gca,'position'); % scroll_pos=[fig_pos(1) fig_pos(2) fig_pos(3) 0.02]; % % % define callback % S=['set(gca,''xlim'',get(gcbo,''value'')+[ ' num2str(mintime) ',' num2str(maxtime) '])']; % % % Creating Uicontrol % s=uicontrol('style','slider',... % 'units','normalized','position',scroll_pos,... % 'callback',S,'min',0,'max',0, ... % 'visible', 'off'); %'value', xmin % set initial scrollbar value % dx = maxtime; % % % set scrollbar position % fig_pos=get(gca,'position'); % scroll_pos=[fig_pos(1) fig_pos(2) fig_pos(3) 0.02]; % % % define callback % S=['set(gca,''xlim'',get(gcbo,''value'')+[ ' num2str(mintime) ',' num2str(maxtime) '])']; % % % Creating Uicontrol % s=uicontrol('style','slider',... % 'units','normalized','position',scroll_pos,... % 'callback',S,'min',0,'max',0, ... % 'visible', 'off'); %'value', xmin %initialize postion of plot % set(gca,'xlim',[xmin xmin+dx]); if nargout % wait until the user interface is closed, get the user data with the updated artifact details set(h, 'CloseRequestFcn', @cleanup_cb); while ishandle(h) uiwait(h); opt = getappdata(h, 'opt'); if opt.cleanup delete(h); end end % add the updated artifact definitions to the output cfg for i=1:length(opt.artdata.label) cfg.artfctdef.(opt.artdata.label{i}).artifact = convert_event(opt.artdata.trial{1}(i,:), 'artifact'); end end % if nargout % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_databrowser.m 3862 2011-07-14 13:41:01Z jorhor $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data if hasdata && isfield(data, 'cfg') cfg.previous = data.cfg; end end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cleanup_cb(h, eventdata) opt = getappdata(h, 'opt'); opt.cleanup = true; setappdata(h, 'opt', opt); uiresume end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function definetrial_cb(h, eventdata) opt = getappdata(h, 'opt'); cfg = getappdata(h, 'cfg'); if strcmp(cfg.continuous, 'no') % keep the original trial definition for visualisation opt.trlvis = opt.trlorg; else % construct a trial definition for visualisation if isfield(opt, 'trlvis') thistrlbeg = opt.trlvis(opt.trlop,1); thistrlend = opt.trlvis(opt.trlop,2); % remember a representative sample of the current trial % thissample = round((thistrlbeg+thistrlend)/2); thissample = thistrlbeg; end % look at cfg.blocksize and make opt.trl accordingly % if original data contains more than one trial, it will fail in ft_fetch_data datbegsample = min(opt.trlorg(:,1)); datendsample = max(opt.trlorg(:,2)); smppertrl = round(opt.fsample * cfg.blocksize); begsamples = datbegsample:smppertrl:datendsample; endsamples = datbegsample+smppertrl-1:smppertrl:datendsample; if numel(endsamples)<numel(begsamples) endsamples(end+1) = datendsample; end trlvis = []; trlvis(:,1) = begsamples'; trlvis(:,2) = endsamples'; if size(opt.trlorg,1) > 1 || isempty(opt.orgdata) % offset is now (re)defined that 1st sample is time 0 trlvis(:,3) = begsamples-1; else % offset according to original time axis trlvis(:,3) = opt.trlorg(3) + begsamples - opt.trlorg(1); end if isfield(opt, 'trlvis') % update the current trial counter and try to keep the current sample the same % opt.trlop = nearest(round((begsamples+endsamples)/2), thissample); opt.trlop = nearest(begsamples, thissample); end opt.trlvis = trlvis; end % if continuous setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function help_cb(h, eventdata) fprintf('------------------------------------------------------------------------------------\n') fprintf('You can use the following buttons in the data viewer\n') fprintf('1-9 : select artifact type 1-9\n'); fprintf('shift 1-9 : select previous artifact of type 1-9\n'); fprintf('control 1-9 : select next artifact of type 1-9\n'); fprintf('alt 1-9 : select next artifact of type 1-9\n'); fprintf('arrow-left : previous trial\n'); fprintf('arrow-right : next trial\n'); fprintf('shift arrow-up : increase vertical scaling\n'); fprintf('shift arrow-down : decrease vertical scaling\n'); fprintf('shift arrow-left : increase horizontal scaling\n'); fprintf('shift arrow-down : decrease horizontal scaling\n'); fprintf('q : quit\n'); fprintf('------------------------------------------------------------------------------------\n') fprintf('\n') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_range_cb(range, h) %range 1X4 in sec relative to current trial opt = getappdata(h, 'opt'); cfg = getappdata(h, 'cfg'); % FIXME this is broken at the moment switch cfg.viewmode case 'butterfly' begsample = opt.trlvis(opt.trlop,1); endsample = opt.trlvis(opt.trlop,2); offset = opt.trlvis(opt.trlop,3); % determine the selection if strcmp(opt.trialname, 'trial') % this is appropriate when the offset is defined according to a % different trigger in each trial, which is usually the case in trial data begsel = round(range(1)*opt.fsample+begsample-offset-1); endsel = round(range(2)*opt.fsample+begsample-offset); elseif strcmp(opt.trialname, 'segment') % this is appropriate when the offset is defined according to a % one trigger, which is always the case in segment data [I think ingnie] begsel = round(range(1)*opt.fsample+1); endsel = round(range(2)*opt.fsample+1); end % the selection should always be confined to the current trial begsel = max(begsample, begsel); endsel = min(endsample, endsel); case {'vertical', 'component'} % the range should be in the displayed box range(1) = max(opt.hpos-opt.width/2, range(1)); range(2) = max(opt.hpos-opt.width/2, range(2)); range(1) = min(opt.hpos+opt.width/2, range(1)); range(2) = min(opt.hpos+opt.width/2, range(2)); range = (range-(opt.hpos-opt.width/2)) / opt.width; % left side of the box becomes 0, right side becomes 1 range = range * (opt.hlim(2) - opt.hlim(1)) + opt.hlim(1); % 0 becomes hlim(1), 1 becomes hlim(2) begsample = opt.trlvis(opt.trlop,1); endsample = opt.trlvis(opt.trlop,2); offset = opt.trlvis(opt.trlop,3); % determine the selection if strcmp(opt.trialname, 'trial') % this is appropriate when the offset is defined according to a % different trigger in each trial, which is usually the case in trial data begsel = round(range(1)*opt.fsample+begsample-offset-1); endsel = round(range(2)*opt.fsample+begsample-offset); elseif strcmp(opt.trialname, 'segment') % this is appropriate when the offset is defined according to % one trigger, which is always the case in segment data [I think ingnie] begsel = round(range(1)*opt.fsample+1); endsel = round(range(2)*opt.fsample+1); end % the selection should always be confined to the current trial begsel = max(begsample, begsel); endsel = min(endsample, endsel); otherwise error('unknown cfg.viewmode "%s"', cfg.viewmode); end % switch if strcmp(cfg.selectmode, 'disp') % FIXME this is only for debugging disp([begsel endsel]) elseif strcmp(cfg.selectmode, 'mark') % mark or unmark artifacts artval = opt.artdata.trial{1}(opt.ftsel, begsel:endsel); artval = any(artval,1); if any(artval) fprintf('there is overlap with the active artifact (%s), disable this artifact\n',opt.artdata.label{opt.ftsel}); opt.artdata.trial{1}(opt.ftsel, begsel:endsel) = 0; else fprintf('there is no overlap with the active artifact (%s), mark this as a new artifact\n',opt.artdata.label{opt.ftsel}); opt.artdata.trial{1}(opt.ftsel, begsel:endsel) = 1; end elseif strcmp(cfg.selectmode, 'eval') % cut out the requested data segment seldata.label = opt.curdat.label; seldata.time{1} = offset2time(offset+begsel-begsample, opt.fsample, endsel-begsel+1); seldata.trial{1} = ft_fetch_data(opt.curdat, 'begsample', begsel, 'endsample', endsel); seldata.fsample = opt.fsample; seldata.cfg.trl = [begsel endsel offset]; feval(cfg.selfun, cfg.selcfg, seldata); else error('unknown value for cfg.selectmode'); end setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h); end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function keyboard_cb(h, eventdata) if isempty(eventdata) % determine the key that corresponds to the uicontrol element that was activated key = get(h, 'userdata'); else % determine the key that was pressed on the keyboard key = eventdata.Key; if ~isempty(eventdata.Modifier) key = [eventdata.Modifier{1} '+' key]; end end % get focus back to figure if ~strcmp(get(h, 'type'), 'figure') set(h, 'enable', 'off'); drawnow; set(h, 'enable', 'on'); end h = getparent(h); opt = getappdata(h, 'opt'); cfg = getappdata(h, 'cfg'); switch key case {'1' '2' '3' '4' '5' '6' '7' '8' '9'} % switch to another artifact type opt.ftsel = str2double(key); numart = size(opt.artdata.trial{1}, 1); if opt.ftsel > numart fprintf('data has no artifact type %i \n', opt.ftsel) else setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); fprintf('switching to the "%s" artifact\n', opt.artdata.label{opt.ftsel}); redraw_cb(h, eventdata); end case {'shift+1' 'shift+2' 'shift+3' 'shift+4' 'shift+5' 'shift+6' 'shift+7' 'shift+8' 'shift+9'} % go to previous artifact opt.ftsel = str2double(key(end)); numart = size(opt.artdata.trial{1}, 1); if opt.ftsel > numart fprintf('data has no artifact type %i \n', opt.ftsel) else cursam = opt.trlvis(opt.trlop,1); artsam = find(opt.artdata.trial{1}(opt.ftsel,1:cursam-1), 1, 'last'); if isempty(artsam) fprintf('no earlier "%s" artifact found\n', opt.artdata.label{opt.ftsel}); else fprintf('going to previous "%s" artifact\n', opt.artdata.label{opt.ftsel}); if opt.trlvis(nearest(opt.trlvis(:,1),artsam),1) < artsam arttrl = nearest(opt.trlvis(:,1),artsam); else arttrl = nearest(opt.trlvis(:,1),artsam)-1; end opt.trlop = arttrl; setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); end end case {'control+1' 'control+2' 'control+3' 'control+4' 'control+5' 'control+6' 'control+7' 'control+8' 'control+9' 'alt+1' 'alt+2' 'alt+3' 'alt+4' 'alt+5' 'alt+6' 'alt+7' 'alt+8' 'alt+9'} % go to next artifact opt.ftsel = str2double(key(end)); numart = size(opt.artdata.trial{1}, 1); if opt.ftsel > numart fprintf('data has no artifact type %i \n', opt.ftsel) else cursam = opt.trlvis(opt.trlop,2); artsam = find(opt.artdata.trial{1}(opt.ftsel,cursam+1:end), 1, 'first') + cursam; if isempty(artsam) fprintf('no later "%s" artifact found\n', opt.artdata.label{opt.ftsel}); else fprintf('going to next "%s" artifact\n', opt.artdata.label{opt.ftsel}); if opt.trlvis(nearest(opt.trlvis(:,1),artsam),1) < artsam arttrl = nearest(opt.trlvis(:,1),artsam); else arttrl = nearest(opt.trlvis(:,1),artsam)-1; end opt.trlop = arttrl; setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); end end case 'leftarrow' opt.trlop = max(opt.trlop - 1, 1); % should not be smaller than 1 setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'rightarrow' opt.trlop = min(opt.trlop + 1, size(opt.trlvis,1)); % should not be larger than the number of trials setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'uparrow' chansel = match_str(opt.hdr.label, cfg.channel); minchan = min(chansel); numchan = length(chansel); chansel = minchan - numchan : minchan - 1; if min(chansel)<1 chansel = chansel - min(chansel) + 1; end % convert numeric array into cell-array with channel labels cfg.channel = opt.hdr.label(chansel); disp(cfg.channel); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'downarrow' chansel = match_str(opt.hdr.label, cfg.channel); maxchan = max(chansel); numchan = length(chansel); chansel = maxchan + 1 : maxchan + numchan; if max(chansel)>length(opt.hdr.label) chansel = chansel - (max(chansel) - length(opt.hdr.label)); end % convert numeric array into cell-array with channel labels cfg.channel = opt.hdr.label(chansel); disp(cfg.channel); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'shift+leftarrow' cfg.blocksize = cfg.blocksize*sqrt(2); disp(cfg.blocksize); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); definetrial_cb(h, eventdata); redraw_cb(h, eventdata); case 'shift+rightarrow' cfg.blocksize = cfg.blocksize/sqrt(2); disp(cfg.blocksize); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); definetrial_cb(h, eventdata); redraw_cb(h, eventdata); case 'shift+uparrow' cfg.ylim = cfg.ylim/sqrt(2); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'shift+downarrow' cfg.ylim = cfg.ylim*sqrt(2); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'q' setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); cleanup_cb(h); case 't' % select the trial to display response = inputdlg(sprintf('%s to display', opt.trialname), 'specify', 1, {num2str(opt.trlop)}); if ~isempty(response) opt.trlop = str2double(response); opt.trlop = min(opt.trlop, size(opt.trlvis,1)); % should not be larger than the number of trials opt.trlop = max(opt.trlop, 1); % should not be smaller than 1 setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); end case 'h' % select the horizontal scaling response = inputdlg('horizontal scale', 'specify', 1, {num2str(cfg.blocksize)}); if ~isempty(response) cfg.blocksize = str2double(response); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); definetrial_cb(h, eventdata); redraw_cb(h, eventdata); end case 'v' % select the vertical scaling response = inputdlg('vertical scale, [ymin ymax], ''maxabs'' or ''maxmin''', 'specify', 1, {['[ ' num2str(cfg.ylim) ' ]']}); if ~isempty(response) response = ['[' response{1} ']']; % convert to string and add brackets, just to ensure that str2num will work if strcmp(response, '[maxmin]') minval = min(opt.curdat.trial{1}(:)); maxval = max(opt.curdat.trial{1}(:)); cfg.ylim = [minval maxval]; elseif strcmp(response, '[maxabs]') minval = min(opt.curdat.trial{1}(:)); maxval = max(opt.curdat.trial{1}(:)); cfg.ylim = [-max(abs([minval maxval])) max(abs([minval maxval]))]; else tmp = str2num(response); if numel(tmp)==2 cfg.ylim = tmp; else warning('incorrect specification of cfg.ylim, not changing the limits for the vertical axes') end end setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); end case 'c' % select channels select = match_str(opt.hdr.label, cfg.channel); select = select_channel_list(opt.hdr.label, select); cfg.channel = opt.hdr.label(select); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); redraw_cb(h, eventdata); case 'i' if strcmp(cfg.viewmode, 'butterfly') % click in data and get name of nearest channel fprintf('click in the figure to identify the name of the closest channel\n'); val = ginput(1); channame = val2nearestchan(opt.curdat,val); channb = match_str(opt.curdat.label,channame); fprintf('channel name: %s\n',channame); redraw_cb(h, eventdata); ft_plot_text(val(1), 0.9*cfg.ylim(2), channame, 'FontSize', 16); if ~ishold hold on plot(opt.curdat.time{1}, opt.curdat.trial{1}(channb,:),'k','LineWidth',2) hold off else plot(opt.curdat.time{1}, opt.curdat.trial{1}(channb,:),'k','LineWidth',2) end else warning('only supported with cfg.viewmode=''butterfly'''); end case 'control+control' % do nothing case 'shift+shift' % do nothing case 'alt+alt' % do nothing otherwise setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); help_cb(h); end uiresume(h); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function toggle_viewmode_cb(h, eventdata, varargin) % FIXME should be used opt = guidata(getparent(h)); if ~isempty(varargin) && ischar(varargin{1}) cfg.viewmode = varargin{1}; end guidata(getparent(h), opt); redraw_cb(h); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = getparent(h) p = h; while p~=0 h = p; p = get(h, 'parent'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function redraw_cb(h, eventdata) h = getparent(h); opt = getappdata(h, 'opt'); cfg = getappdata(h, 'cfg'); figure(h); % ensure that the calling figure is in the front fprintf('redrawing with viewmode %s\n', cfg.viewmode); begsample = opt.trlvis(opt.trlop, 1); endsample = opt.trlvis(opt.trlop, 2); offset = opt.trlvis(opt.trlop, 3); chanindx = match_str(opt.hdr.label, cfg.channel); if ~isempty(opt.event) % select only the events in the current time window event = opt.event; evtsample = [event(:).sample]; event = event(evtsample>=begsample & evtsample<=endsample); else event = []; end if isempty(opt.orgdata) fprintf('reading data... '); dat = ft_read_data(cfg.datafile, 'header', opt.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat, 'headerformat', cfg.headerformat); else fprintf('fetching data... '); dat = ft_fetch_data(opt.orgdata, 'header', opt.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx); end fprintf('done\n'); fprintf('fetching artifacts... '); art = ft_fetch_data(opt.artdata, 'begsample', begsample, 'endsample', endsample); fprintf('done\n'); % apply preprocessing and determine the time axis fprintf('preprocessing data... '); [dat, lab, tim] = preproc(dat, opt.hdr.label(chanindx), opt.fsample, cfg.preproc, offset); fprintf('done\n'); opt.curdat.label = lab; opt.curdat.time{1} = tim; opt.curdat.trial{1} = dat; opt.curdat.fsample = opt.fsample; opt.curdat.sampleinfo = [begsample endsample offset]; % apply scaling to selected channels % using wildcard to support subselection of channels if ~isempty(cfg.eegscale) chansel = match_str(lab, ft_channelselection('EEG', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.eegscale; end if ~isempty(cfg.eogscale) chansel = match_str(lab, ft_channelselection('EOG', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.eogscale; end if ~isempty(cfg.ecgscale) chansel = match_str(lab, ft_channelselection('ECG', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.ecgscale; end if ~isempty(cfg.emgscale) chansel = match_str(lab, ft_channelselection('EMG', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.emgscale; end if ~isempty(cfg.megscale) chansel = match_str(lab, ft_channelselection('MEG', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.megscale; end if ~isempty(cfg.magscale) chansel = match_str(lab, ft_channelselection('MEGMAG', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.magscale; end if ~isempty(cfg.gradscale) chansel = match_str(lab, ft_channelselection('MEGGRAD', lab)); dat(chansel,:) = dat(chansel,:) .* cfg.gradscale; end % to assure current feature is plotted on top ordervec = 1:length(opt.artdata.label); ordervec(opt.ftsel) = []; ordervec(end+1) = opt.ftsel; % FIXME speedup ft_prepare_layout if strcmp(cfg.viewmode, 'butterfly') laytime = []; laytime.label = {'dummy'}; laytime.pos = [0.5 0.5]; laytime.width = 1; laytime.height = 1; else % this needs to be reconstructed if the channel selection changes tmpcfg = []; tmpcfg.layout = 'vertical'; tmpcfg.channel = cfg.channel; tmpcfg.skipcomnt = 'yes'; tmpcfg.skipscale = 'yes'; laytime = ft_prepare_layout(tmpcfg, opt.orgdata); end % determine the position of the channel/component labels relative to the real axes % FIXME needs a shift to the left for components labelx = laytime.pos(:,1) - laytime.width/2 - 0.01; labely = laytime.pos(:,2); % determine the total extent of all virtual axes relative to the real axes ax(1) = min(laytime.pos(:,1) - laytime.width/2); ax(2) = max(laytime.pos(:,1) + laytime.width/2); ax(3) = min(laytime.pos(:,2) - laytime.height/2); ax(4) = max(laytime.pos(:,2) + laytime.height/2); axis(ax) % determine a single local axis that encompasses all channels % this is in relative figure units opt.hpos = (ax(1)+ax(2))/2; opt.vpos = (ax(3)+ax(4))/2; opt.width = ax(2)-ax(1); opt.height = ax(4)-ax(3); % these determine the scaling inside the virtual axes % the hlim will be in seconds, the vlim will be in Tesla or Volt opt.hlim = [tim(1) tim(end)]; opt.vlim = cfg.ylim; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('plotting artifacts...\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% delete(findobj(h,'tag', 'artifact')); for j = ordervec tmp = diff([0 art(j,:) 0]); artbeg = find(tmp==+1); artend = find(tmp==-1) - 1; for k=1:numel(artbeg) h_artifact = ft_plot_box([tim(artbeg(k)) tim(artend(k)) -1 1], 'facecolor', opt.artcolors(j,:), 'edgecolor', 'none', 'tag', 'artifact', ... 'hpos', opt.hpos, 'vpos', opt.vpos, 'width', opt.width, 'height', opt.height, 'hlim', opt.hlim, 'vlim', [-1 1]); end end % for each of the artifact channels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('plotting events...\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% delete(findobj(h,'tag', 'event')); for k=1:length(event) try eventstr = sprintf('%s=%s', event(k).type, num2str(event(k).value)); % value can be both number and string catch eventstr = 'unknown'; end eventtim = (event(k).sample-begsample)/opt.fsample + opt.hlim(1); ft_plot_line([eventtim eventtim], [-1 1], 'tag', 'event', ... 'hpos', opt.hpos, 'vpos', opt.vpos, 'width', opt.width, 'height', opt.height, 'hlim', opt.hlim, 'vlim', [-1 1]); ft_plot_text(eventtim, 0.9, eventstr, 'tag', 'event', ... 'hpos', opt.hpos, 'vpos', opt.vpos, 'width', opt.width, 'height', opt.height, 'hlim', opt.hlim, 'vlim', [-1 1]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('plotting data...\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% delete(findobj(h,'tag', 'timecourse')); if strcmp(cfg.viewmode, 'butterfly') set(gca,'ColorOrder',opt.chancolors(chanindx,:)) % plot vector does not clear axis, therefore this is possible ft_plot_vector(tim, dat, 'box', false, 'tag', 'timecourse', ... 'hpos', laytime.pos(1,1), 'vpos', laytime.pos(1,2), 'width', laytime.width(1), 'height', laytime.height(1), 'hlim', opt.hlim, 'vlim', opt.vlim); elseif any(strcmp(cfg.viewmode, {'vertical' 'component'})) for i = 1:length(chanindx) if strcmp(cfg.viewmode, 'component') color = 'k'; else color = opt.chancolors(chanindx(i),:); end datsel = i; laysel = match_str(laytime.label, opt.hdr.label(chanindx(i))); if ~isempty(datsel) && ~isempty(laysel) ft_plot_text(labelx(laysel), labely(laysel), opt.hdr.label(chanindx(i)), 'tag', 'timecourse', 'HorizontalAlignment', 'right'); ft_plot_vector(tim, dat(datsel, :), 'box', false, 'color', color, 'tag', 'timecourse', ... 'hpos', laytime.pos(laysel,1), 'vpos', laytime.pos(laysel,2), 'width', laytime.width(laysel), 'height', laytime.height(laysel), 'hlim', opt.hlim, 'vlim', opt.vlim); end end if length(chanindx)>19 % no space for xticks yTickLabel = []; elseif length(chanindx)> 6 % one tick per channel set(gca, 'yTick', sort([laytime.pos(:,2)+(laytime.height(laysel)/4); laytime.pos(:,2)-(laytime.height(laysel)/4)])) yTickLabel = {num2str(-opt.vlim(2)/2), num2str(opt.vlim(2)/2)}; else % two ticks per channel set(gca, 'yTick', sort([laytime.pos(:,2)+(laytime.height(laysel)/2); laytime.pos(:,2)+(laytime.height(laysel)/4); laytime.pos(:,2)-(laytime.height(laysel)/4); laytime.pos(:,2)-(laytime.height(laysel)/2)])) yTickLabel = {num2str(-opt.vlim(2)), num2str(-opt.vlim(2)/2), num2str(opt.vlim(2)/2), num2str(opt.vlim(2))}; end yTickLabel = repmat(yTickLabel, 1, length(chanindx)); set(gca, 'yTick', []); set(gca, 'yTickLabel', yTickLabel) else error('unknown viewmode "%s"', cfg.viewmode); end % if strcmp viewmode nticks = 11; xTickLabel = cellstr(num2str( linspace(tim(1), tim(end), nticks)' , '%1.2f'))'; set(gca, 'xTick', linspace(ax(1), ax(2), nticks)) set(gca, 'xTickLabel', xTickLabel) if strcmp(cfg.viewmode, 'component') % determine the position of each of the original channels for the topgraphy tmpcfg = []; tmpcfg.layout = cfg.layout; laychan = ft_prepare_layout(tmpcfg, opt.orgdata); % determine the position of each of the topographies laytopo.pos(:,1) = laytime.pos(:,1) - laytime.width/2 - laytime.height*2; laytopo.pos(:,2) = laytime.pos(:,2); laytopo.width = laytime.height; laytopo.height = laytime.height; laytopo.label = laytime.label; if ~isequal(opt.chanindx, chanindx) opt.chanindx = chanindx; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('plotting component topographies...\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% delete(findobj(h,'tag', 'topography')); [sel1, sel2] = match_str(opt.orgdata.topolabel, laychan.label); chanx = laychan.pos(sel2,1); chany = laychan.pos(sel2,2); for i=1:length(chanindx) % plot the topography of this component laysel = match_str(laytime.label, opt.hdr.label(chanindx(i))); chanz = opt.orgdata.topo(sel1,chanindx(i)); chanz = chanz./max(abs(chanz)); ft_plot_topo(chanx, chany, chanz, 'mask', laychan.mask, 'interplim', 'mask', 'outline', laychan.outline, 'tag', 'topography', ... 'hpos', laytopo.pos(laysel,1), 'vpos', laytopo.pos(laysel,2), 'width', laytopo.width(laysel), 'height', laytopo.height(laysel)); axis equal drawnow end end % if redraw_topo set(gca, 'yTick', []) ax(1) = min(laytopo.pos(:,1) - laytopo.width/2); ax(2) = max(laytime.pos(:,1) + laytime.width/2); ax(3) = min(laytime.pos(:,2) - laytime.height/2); ax(4) = max(laytime.pos(:,2) + laytime.height/2); axis(ax) end % plotting topographies title(sprintf('%s %d, time from %g to %g s', opt.trialname, opt.trlop, tim(1), tim(end))); xlabel('time'); fprintf('done\n'); setappdata(h, 'opt', opt); setappdata(h, 'cfg', cfg); end
github
philippboehmsturm/antx-master
ft_singleplotER.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_singleplotER.m
24,509
utf_8
b68b1345c22cb3b2deb537b1c49bc458
function [cfg] = ft_singleplotER(cfg, varargin) % ft_singleplotER plots the event-related fields or potentials of a single channel % or the average over multiple channels. multiple datasets can be overlayed. % % use as: % ft_singleplotER(cfg, data) % ft_singleplotER(cfg, data1, data2, ..., datan) % % the data can be an erp/erf produced by ft_timelockanalysis, a powerspectrum % produced by ft_freqanalysis or a coherencespectrum produced by ft_freqdescriptives. % if you specify multiple datasets they must contain the same channels, etc. % % the configuration can have the following parameters: % cfg.xparam = field to be plotted on x-axis (default depends on data.dimord) % 'time' or 'freq' % cfg.zparam = field to be plotted on y-axis (default depends on data.dimord) % 'avg', 'powspctrm' or 'cohspctrm' % cfg.maskparameter = field in the first dataset to be used for masking of data % (not possible for mean over multiple channels, or when input contains multiple subjects % or trials) % cfg.maskstyle = style used for masking of data, 'box', 'thickness' or 'saturation' (default = 'box') % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin') % cfg.channel = nx1 cell-array with selection of channels (default = 'all'), % see ft_channelselection for details % cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui' % cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see ft_timelockbaseline % cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute') % cfg.trials = 'all' or a selection given as a 1xn vector (default = 'all') % cfg.fontsize = font size of title (default = 8) % cfg.hotkeys = enables hotkeys (up/down/left/right arrows) for dynamic x/y axis translation (Ctrl+) and zoom adjustment % cfg.interactive = interactive plot 'yes' or 'no' (default = 'no') % in a interactive plot you can select areas and produce a new % interactive plot when a selected area is clicked. multiple areas % can be selected by holding down the shift key. % cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = []) % cfg.linestyle = linestyle/marker type, see options of the matlab plot function (default = '-') % can be a single style for all datasets, or a cell-array containing one style for each dataset % cfg.linewidth = linewidth in points (default = 0.5) % cfg.graphcolor = color(s) used for plotting the dataset(s) (default = 'brgkywrgbkywrgbkywrgbkyw') % alternatively, colors can be specified as nx3 matrix of rgb values % % to facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % if you specify this option the input data will be read from a *.mat % file on disk. this mat files should contain only a single variable named 'data', % corresponding to the input structure. % % see also: % ft_singleplotTFR, ft_multiplotER, ft_multiplotTFR, ft_topoplotER, ft_topoplotTFR % this function depends on ft_timelockbaseline which has the following options: % cfg.baseline, documented % cfg.channel % cfg.baselinewindow % cfg.previous % cfg.version % copyright (c) 2003-2006, ole jensen % % this file is part of fieldtrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % fieldtrip is free software: you can redistribute it and/or modify % it under the terms of the gnu general public license as published by % the free software foundation, either version 3 of the license, or % (at your option) any later version. % % fieldtrip is distributed in the hope that it will be useful, % but without any warranty; without even the implied warranty of % merchantability or fitness for a particular purpose. see the % gnu general public license for more details. % % you should have received a copy of the gnu general public license % along with fieldtrip. if not, see <http://www.gnu.org/licenses/>. % % $id: ft_singleplotER.m 3147 2011-03-17 12:38:09z jansch $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'}); cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedforward', 'outflow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedback', 'inflow'}); cfg = ft_checkconfig(cfg, 'renamed', {'channelindex', 'channel'}); cfg = ft_checkconfig(cfg, 'renamed', {'channelname', 'channel'}); cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'}); % set default for inputfile cfg.inputfile = ft_getopt(cfg, 'inputfile', []); hasdata = nargin>1; hasinputfile = ~isempty(cfg.inputfile); if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); end if hasdata % do nothing elseif hasinputfile if ~ischar(cfg.inputfile) cfg.inputfile = {cfg.inputfile}; end for i = 1:numel(cfg.inputfile) varargin{i} = loadvar(cfg.inputfile{i}, 'data'); % read datasets end if isfield(cfg, 'interactive') && strcmp(cfg.interactive, 'yes'), warning('switching off interactive mode, this is not supported when loading an inputfile from disk'); end end % set the defaults: cfg.baseline = ft_getopt(cfg, 'baseline', 'no'); cfg.trials = ft_getopt(cfg, 'trials', 'all'); cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin'); cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin'); cfg.comment = ft_getopt(cfg, 'comment', strcat([date '\n'])); cfg.axes = ft_getopt(cfg,' axes', 'yes'); cfg.fontsize = ft_getopt(cfg, 'fontsize', 8); cfg.graphcolor = ft_getopt(cfg, 'graphcolor', 'brgkywrgbkywrgbkywrgbkyw'); cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no'); cfg.interactive = ft_getopt(cfg, 'interactive', 'no'); cfg.renderer = ft_getopt(cfg, 'renderer', []); cfg.maskparameter = ft_getopt(cfg, 'maskparameter',[]); cfg.linestyle = ft_getopt(cfg, 'linestyle', '-'); cfg.linewidth = ft_getopt(cfg, 'linewidth', 0.5); cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'box'); cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.matrixside = ft_getopt(cfg, 'matrixside', 'outflow'); ndata = numel(varargin); % interactive plotting is not allowed with more than 1 input % if ndata >1 && strcmp(cfg.interactive, 'yes') % error('interactive plotting is not supported with more than 1 input data set'); % end %fixme rename matrixside and cohrefchannel in more meaningful options if ischar(cfg.graphcolor) graphcolor = ['k' cfg.graphcolor]; elseif isnumeric(cfg.graphcolor) graphcolor = [0 0 0; cfg.graphcolor]; end % check for linestyle being a cell-array, check it's length, and lengthen it if does not have enough styles in it if ischar(cfg.linestyle) cfg.linestyle = {cfg.linestyle}; end if ndata > 1 if (length(cfg.linestyle) < ndata ) && (length(cfg.linestyle) > 1) error('either specify cfg.linestyle as a cell-array with one cell for each dataset, or only specify one linestyle') elseif (length(cfg.linestyle) < ndata ) && (length(cfg.linestyle) == 1) tmpstyle = cfg.linestyle{1}; cfg.linestyle = cell(ndata , 1); for idataset = 1:ndata cfg.linestyle{idataset} = tmpstyle; end end end % ensure that the input is correct, also backward compatibility with old data structures: dtype = cell(ndata , 1); for i=1:ndata varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'timelock', 'freq'}); dtype{i} = ft_datatype(varargin{i}); % this is needed for correct treatment of graphcolor later on if nargin>1, if ~isempty(inputname(i+1)) iname{i+1} = inputname(i+1); else iname{i+1} = ['input',num2str(i,'%02d')]; end else iname{i+1} = cfg.inputfile{i}; end end if ndata >1, if ~all(strcmp(dtype{1}, dtype)) error('input data are of different type; this is not supported'); end end dtype = dtype{1}; dimord = varargin{1}.dimord; dimtok = tokenize(dimord, '_'); % set x/y/zparam defaults according to datatype and dimord switch dtype case 'timelock' cfg.xparam = ft_getopt(cfg, 'xparam', 'time'); cfg.yparam = ft_getopt(cfg, 'yparam', ''); cfg.zparam = ft_getopt(cfg, 'zparam', 'avg'); case 'freq' if sum(ismember(dimtok, 'time')) cfg.xparam = ft_getopt(cfg, 'xparam', 'time'); cfg.yparam = ft_getopt(cfg, 'yparam', 'freq');%fixme cfg.zparam = ft_getopt(cfg, 'zparam', 'powspctrm'); else cfg.xparam = ft_getopt(cfg, 'xparam', 'freq'); cfg.yparam = ft_getopt(cfg, 'yparam', ''); cfg.zparam = ft_getopt(cfg, 'zparam', 'powspctrm'); end case 'comp' % not supported otherwise % not supported end % user specified own fields, but no yparam (which is not asked in help) if isfield(cfg, 'xparam') && isfield(cfg, 'zparam') && ~isfield(cfg, 'yparam') cfg.yparam = ''; end if isfield(cfg, 'channel') && isfield(varargin{1}, 'label') cfg.channel = ft_channelselection(cfg.channel, varargin{1}.label); elseif isfield(cfg, 'channel') && isfield(varargin{1}, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(varargin{1}.labelcmb(:))); end % check whether rpt/subj is present and remove if necessary and whether hasrpt = sum(ismember(dimtok, {'rpt' 'subj'})); if strcmp(dtype, 'timelock') && hasrpt, tmpcfg = []; tmpcfg.trials = cfg.trials; for i=1:ndata varargin{i} = ft_timelockanalysis(tmpcfg, varargin{i}); end dimord = varargin{1}.dimord; dimtok = tokenize(dimord, '_'); elseif strcmp(dtype, 'freq') && hasrpt, % this also deals with fourier-spectra in the input % or with multiple subjects in a frequency domain stat-structure % on the fly computation of coherence spectrum is not supported for i=1:ndata if isfield(varargin{i}, 'crsspctrm'), varargin{i} = rmfield(varargin{i}, 'crsspctrm'); end end tmpcfg = []; tmpcfg.trials = cfg.trials; tmpcfg.jackknife = 'no'; for i=1:ndata if isfield(cfg, 'zparam') && ~strcmp(cfg.zparam,'powspctrm') % freqdesctiptives will only work on the powspctrm field % hence a temporary copy of the data is needed tempdata.dimord = varargin{i}.dimord; tempdata.freq = varargin{i}.freq; tempdata.label = varargin{i}.label; tempdata.powspctrm = varargin{i}.(cfg.zparam); tempdata.cfg = varargin{i}.cfg; tempdata = ft_freqdescriptives(tmpcfg, tempdata); varargin{i}.(cfg.zparam) = tempdata.powspctrm; clear tempdata else varargin{i} = ft_freqdescriptives(tmpcfg, varargin{i}); end end dimord = varargin{1}.dimord; dimtok = tokenize(dimord, '_'); end % apply baseline correction if ~strcmp(cfg.baseline, 'no') for i=1:ndata if strcmp(dtype, 'timelock') && strcmp(cfg.xparam, 'time') varargin{i} = ft_timelockbaseline(cfg, varargin{i}); elseif strcmp(dtype, 'freq') && strcmp(cfg.xparam, 'time') varargin{i} = ft_freqbaseline(cfg, varargin{i}); elseif strcmp(dtype, 'freq') && strcmp(cfg.xparam, 'freq') error('baseline correction is not supported for spectra without a time dimension'); else warning('baseline correction not applied, please set cfg.xparam'); end end end % handle the bivariate case % check for bivariate metric with 'chan_chan' in the dimord selchan = strmatch('chan', dimtok); isfull = length(selchan)>1; % check for bivariate metric with a labelcmb haslabelcmb = isfield(varargin{1}, 'labelcmb'); if (isfull || haslabelcmb) && isfield(varargin{1}, cfg.zparam) % a reference channel is required: if ~isfield(cfg, 'refchannel') error('no reference channel is specified'); end % check for refchannel being part of selection if ~strcmp(cfg.refchannel,'gui') if (isfull && ~any(ismember(varargin{1}.label, cfg.refchannel))) || ... (haslabelcmb && ~any(ismember(varargin{1}.labelcmb(:), cfg.refchannel))) error('cfg.refchannel is a not present in the (selected) channels)') end end % interactively select the reference channel if strcmp(cfg.refchannel, 'gui') error('cfg.refchannel = ''gui'' is not supported in ft_singleplotER'); end for i=1:ndata if ~isfull, % convert 2-dimensional channel matrix to a single dimension: if isempty(cfg.matrixside) sel1 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,2), 'exact'); sel2 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'outflow') sel1 = []; sel2 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'inflow') sel1 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,2), 'exact'); sel2 = []; end fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.zparam); varargin{i}.(cfg.zparam) = varargin{i}.(cfg.zparam)([sel1;sel2],:,:); varargin{i}.label = [varargin{i}.labelcmb(sel1,1);varargin{i}.labelcmb(sel2,2)]; varargin{i}.labelcmb = varargin{i}.labelcmb([sel1;sel2],:); varargin{i} = rmfield(varargin{i}, 'labelcmb'); else % general case sel = match_str(varargin{i}.label, cfg.refchannel); siz = [size(varargin{i}.(cfg.zparam)) 1]; if strcmp(cfg.matrixside, 'inflow') || isempty(cfg.matrixside) %the interpretation of 'inflow' and 'outflow' depend on %the definition in the bivariate representation of the data %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(:,sel,:),2),[siz(1) 1 siz(3:end)]); sel1 = 1:siz(1); sel2 = sel; meandir = 2; elseif strcmp(cfg.matrixside, 'outflow') %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(sel,:,:),1),[siz(1) 1 siz(3:end)]); sel1 = sel; sel2 = 1:siz(1); meandir = 1; elseif strcmp(cfg.matrixside, 'ff-fd') error('cfg.matrixside = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); elseif strcmp(cfg.matrixside, 'fd-ff') error('cfg.matrixside = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); end %if matrixside end %if ~isfull end %for i end %handle the bivariate data % get physical min/max range of x if strcmp(cfg.xlim,'maxmin') % find maxmin throughout all varargins: xmin = []; xmax = []; for i=1:ndata xmin = min([xmin varargin{i}.(cfg.xparam)]); xmax = max([xmax varargin{i}.(cfg.xparam)]); end else xmin = cfg.xlim(1); xmax = cfg.xlim(2); end % get the index of the nearest bin for i=1:ndata xidmin(i,1) = nearest(varargin{i}.(cfg.xparam), xmin); xidmax(i,1) = nearest(varargin{i}.(cfg.xparam), xmax); end %fixme do something with yparam here %technically should not be defined for multiplotER, but can be defined (and %use ft_selectdata to average across frequencies cla hold on; colorlabels = []; % plot each data set: for i=1:ndata if isfield(varargin{1}, 'label') selchannel = ft_channelselection(cfg.channel, varargin{i}.label); elseif isfield(varargin{1}, 'labelcmb') selchannel = ft_channelselection(cfg.channel, unique(varargin{i}.labelcmb(:))); else error('the input data does not contain a label or labelcmb-field'); end % make vector dat with one value for each channel dat = varargin{i}.(cfg.zparam); xparam = varargin{i}.(cfg.xparam); % take subselection of channels % this works for bivariate data with labelcmb because at this point the % data has a label-field sellab = match_str(varargin{i}.label, selchannel); if ~isempty(cfg.yparam) if isfull dat = dat(sel1, sel2, ymin:ymax, xidmin(i):xidmax(i)); dat = nanmean(nanmean(dat, meandir), 3); siz = size(dat); %fixmedat = reshape(dat, [siz(1:2) siz(4)]); dat = reshape(dat, [siz(1) siz(3)]); dat = dat(sellab, :); elseif haslabelcmb dat = dat(sellab, ymin:ymax, xidmin(i):xidmax(i)); dat = nanmean(dat, 2); siz = size(dat); dat = reshape(dat, [siz(1) siz(3)]); else dat = dat(sellab, ymin:ymax, xidmin(i):xidmax(i)); dat = nanmean(nanmean(dat, 3), 2); siz = size(dat); dat = reshape(dat, [siz(1) siz(3)]); end else if isfull dat = dat(sel1, sel2, xidmin(i):xidmax(i)); dat = nanmean(dat, meandir); siz = size(dat); siz(find(siz(1:2)==1)) = []; dat = reshape(dat, siz); dat = dat(sellab, :); elseif haslabelcmb dat = dat(sellab, xidmin(i):xidmax(i)); else dat = dat(sellab, xidmin(i):xidmax(i)); end end xvector = xparam(xidmin(i):xidmax(i)); datavector = reshape(mean(dat, 1), [1 numel(xvector)]); % average over channels % make mask if ~isempty(cfg.maskparameter) datmask = varargin{1}.(cfg.maskparameter)(sellab,:); datmask = datmask(xidmin(i):xidmax(i)); maskdatavector = reshape(mean(datmask,1), [1 numel(xvector)]); else maskdatavector = []; end if ndata > 1 if ischar(graphcolor); colorlabels = [colorlabels iname{i+1} '=' graphcolor(i+1) '\n']; elseif isnumeric(graphcolor); colorlabels = [colorlabels iname{i+1} '=' num2str(graphcolor(i+1,:)) '\n']; end end if ischar(graphcolor); color = graphcolor(i+1); elseif isnumeric(graphcolor); color = graphcolor(i+1,:); end % update ymin and ymax for the current data set: if strcmp(cfg.ylim,'maxmin') if i==1 ymin = []; ymax = []; end % select the channels in the data that match with the layout: ymin = min([ymin min(datavector)]); ymax = max([ymax max(datavector)]); else ymin = cfg.ylim(1); ymax = cfg.ylim(2); end % only plot the mask once, for the first line (it's the same anyway for % all lines, and if plotted multiple times, it will overlay the others if i>1 && strcmp(cfg.maskstyle, 'box') ft_plot_vector(xvector, datavector, 'style', cfg.linestyle{i}, 'color', color, ... 'linewidth', cfg.linewidth, 'hlim', cfg.xlim, 'vlim', cfg.ylim); else ft_plot_vector(xvector, datavector, 'style', cfg.linestyle{i}, 'color', color, ... 'highlight', maskdatavector, 'highlightstyle', cfg.maskstyle, 'linewidth', cfg.linewidth, ... 'hlim', cfg.xlim, 'vlim', cfg.ylim); end end % set xlim and ylim: xlim([xmin xmax]); ylim([ymin ymax]); % adjust mask box extents to ymin/ymax ptchs = findobj(gcf,'type','patch'); for i = 1:length(ptchs) YData = get(ptchs(i),'YData'); YData(YData == min(YData)) = ymin; YData(YData == max(YData)) = ymax; set(ptchs(i),'YData',YData); end if strcmp('yes',cfg.hotkeys) % attach data and cfg to figure and attach a key listener to the figure set(gcf, 'keypressfcn', {@key_sub, xmin, xmax, ymin, ymax}) end % make the figure interactive if strcmp(cfg.interactive, 'yes') set(gcf, 'windowbuttonupfcn', {@ft_select_range, 'multiple', false, 'yrange', false, 'callback', {@select_topoplotER, cfg, varargin{:}}, 'event', 'windowbuttonupfcn'}); set(gcf, 'windowbuttondownfcn', {@ft_select_range, 'multiple', false, 'yrange', false, 'callback', {@select_topoplotER, cfg, varargin{:}}, 'event', 'windowbuttondownfcn'}); set(gcf, 'windowbuttonmotionfcn', {@ft_select_range, 'multiple', false, 'yrange', false, 'callback', {@select_topoplotER, cfg, varargin{:}}, 'event', 'windowbuttonmotionfcn'}); end % create title text containing channel name(s) and channel number(s): if length(sellab) == 1 t = [char(cfg.channel) ' / ' num2str(sellab) ]; else t = sprintf('mean(%0s)', join(',', cfg.channel)); end h = title(t,'fontsize', cfg.fontsize); % set renderer if specified if ~isempty(cfg.renderer) set(gcf, 'renderer', cfg.renderer) end % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function t = join(separator,cells) if isempty(cells) t = ''; return; end t = char(cells{1}); for i=2:length(cells) t = [t separator char(cells{i})]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction which is called by ft_select_channel in case cfg.refchannel='gui' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_singleplotER(label, cfg, varargin) cfg.refchannel = label; fprintf('selected cfg.refchannel = ''%s''\n', cfg.refchannel); p = get(gcf, 'position'); f = figure; set(f, 'position', p); ft_singleplotER(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction which is called after selecting a time range %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_topoplotER(range, cfg, varargin) cfg.comment = 'auto'; cfg.yparam = []; cfg.xlim = range(1:2); if isfield(cfg, 'showlabels') % this is not allowed in topoplotER cfg = rmfield(cfg, 'showlabels'); end fprintf('selected cfg.xlim = [%f %f]\n', cfg.xlim(1), cfg.xlim(2)); p = get(gcf, 'position'); f = figure; set(f, 'position', p); ft_topoplotER(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction which handles hot keys in the current plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key_sub(handle, eventdata, varargin) xlimits = xlim; ylimits = ylim; incr_x = abs(xlimits(2) - xlimits(1)) /10; incr_y = abs(ylimits(2) - ylimits(1)) /10; % TRANSLATE by 10% if length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'leftarrow') xlim([xlimits(1)+incr_x xlimits(2)+incr_x]) elseif length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'rightarrow') xlim([xlimits(1)-incr_x xlimits(2)-incr_x]) elseif length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'uparrow') ylim([ylimits(1)-incr_y ylimits(2)-incr_y]) elseif length(eventdata.Modifier) == 1 && strcmp(eventdata.Modifier{:},'control') && strcmp(eventdata.Key,'downarrow') ylim([ylimits(1)+incr_y ylimits(2)+incr_y]) % ZOOM by 10% elseif strcmp(eventdata.Key,'leftarrow') xlim([xlimits(1)-incr_x xlimits(2)+incr_x]) elseif strcmp(eventdata.Key,'rightarrow') xlim([xlimits(1)+incr_x xlimits(2)-incr_x]) elseif strcmp(eventdata.Key,'uparrow') ylim([ylimits(1)-incr_y ylimits(2)+incr_y]) elseif strcmp(eventdata.Key,'downarrow') ylim([ylimits(1)+incr_y ylimits(2)-incr_y]) % resort to minmax of data for x-axis and y-axis elseif strcmp(eventdata.Key,'m') xlim([varargin{1} varargin{2}]) ylim([varargin{3} varargin{4}]) end
github
philippboehmsturm/antx-master
ft_spikesimulation.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spikesimulation.m
4,954
utf_8
f336f0a180f84b0a80ef24d6bd862640
function data = ft_spikesimulation(cfg) % FT_SPIKESIMULATION % % Use as % data = ft_spikesimulation(cfg) % and please look in the code for the cfg details. % % See also FT_DIPOLESIMULATION, FT_FREQSIMULATION % Copyright (C) 2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_spikesimulation.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % set the defaults if ~isfield(cfg, 'trlduration'), cfg.trlduration = 1; end % in seconds if ~isfield(cfg, 'nlfpchan'), cfg.nlfpchan = 10; end if ~isfield(cfg, 'nspikechan'), cfg.nspikechan = 10; end if ~isfield(cfg, 'spikerate'), cfg.spikerate = ones(cfg.nspikechan,1)*10; end if ~isfield(cfg, 'ntrial'), cfg.ntrial = 10; end if ~isfield(cfg, 'bpfreq'), cfg.bpfreq = [40 80]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define the parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % cfg.spikerate = [ 10 50 100 200]; % cfg.nspikechan = 4; % nlfpchan = 2; % cfg.ntrial = 10; % cfg.bpfreq = [40 80]; % cfg.trlduration = 1; spikemix = eye(cfg.nspikechan, cfg.nlfpchan); spikemix(5,1:2) = [0.5 0.5]; % mix with lfp chan 1 and 2 spikemix(6,1:2) = [0.5 0.5]; % mix with lfp chan 1 and 2 % cfg.spikerate = 100*ones(1,cfg.nspikechan); % for each channel, per second % cfg.spikerate = [100 100 300 300 100 300]; fsample = 1000; nsample = cfg.trlduration*fsample; nchan = cfg.nlfpchan + cfg.nspikechan; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % create the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % start with empty data data = []; data.fsample = fsample; % create channel labels k = 1; for i=1:cfg.nlfpchan, data.label{k} = sprintf('lfp%02d', i); k=k+1; end for i=1:cfg.nspikechan, data.label{k} = sprintf('spike%02d', i); k=k+1; end data.label = data.label(:); for t=1:cfg.ntrial fprintf('creating trial %d\n', t); data.time{t} = (1:nsample)./fsample; lfp = zeros(cfg.nlfpchan, nsample); spike = zeros(cfg.nspikechan, nsample); for i=1:cfg.nlfpchan, lfp(i,:) = ft_preproc_bandpassfilter(randn(1,nsample), fsample, cfg.bpfreq); end for i=1:cfg.nspikechan % the spikes are generated from a probabilistic mix of the LFP channels x = spikemix(i,:) * lfp; % apply a non-linear mapping to the spike probablility, output should be defined between 0 and 1 x = mapping(x); % normalize the total probability to one x = x./sum(x); % randomly assign the spikes over the time series spike(i,:) = ((cfg.spikerate(i)*nsample/fsample)*x)>=rand(size(x)); end data.time{t} = (1:nsample)./fsample; data.trial{t} = [lfp; spike]; clear lfp spike end % add the version details of this function call to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_spikesimulation.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details data.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to strengthen the temporal strucure in the spike train % by a non-linear modulation of the spike probability %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = mapping(x) x = 6*(x-mean(x))/std(x); y = 1./(1+exp(-x)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % IIRFILTER simple brick wall filter in the frequency domain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = myiirfilter(s, fs, fb, a) f = fft(s); ax = linspace(0, fs, length(s)); fl = nearest(ax, fb(1))-1; fh = nearest(ax, fb(2))+1; f(1:fl) = a.*f(1:fl); f(fh:end) = a.*f(fh:end); s = real(ifft(f));
github
philippboehmsturm/antx-master
ft_analysisprotocol.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_analysisprotocol.m
11,770
utf_8
3969ed9e334c7c7690a1581f8466046d
function [script, details] = ft_analysisprotocol(cfg, datacfg) % FT_ANALYSISPROTOCOL tries to reconstruct the complete analysis protocol that % was used to create an arbitrary FieldTrip data structure. It will create % a Matlab script (as text file) and a flowchart with a graphical % representation. % % Use as % ft_analysisprotocol(cfg, data) % % where the first cfg input contains the settings that apply to the % behaviour of this particular function and the second data input argument % can be the output of any FieldTrip function, e.g. FT_PREPROCESSING, % FT_TIMELOCKANALYSIS, FT_SOURCEANALYSIS, FT_FREQSTATISTICS or whatever you like. % % Alternatively, for the second input argument you can also only give the % configuration of the processed data (i.e. "data.cfg") instead of the full % data. % % The configuration options that apply to the behaviour of this function are % cfg.feedback = 'no', 'text', 'gui' or 'yes', whether text and/or % graphical feedback should be presented (default = 'yes') % cfg.filename = string, filename of m-file to which the script will be % written (default = []) % cfg.remove = cell-array with strings, determines which objects will % be removed from the configuration prior to writing it to % file. For readibility of the script, you may want to % remove the large objectssuch as event structure, trial % definition, source positions % cfg.keepremoved = 'yes' or 'no', determines whether removed fields are % completely removed, or only replaced by a short textual % description (default = 'no') % % This function uses the nested cfg and cfg.previous that are present in % the data structure. It will use the configuration and the nested previous % configurations to climb all the way back into the tree. This funtction % will print a complete Matlab script to screen (and optionally to file). % Furthermore, it will show an interactive graphical flowchart % representation of the steps taken during the analysis. In the flowchart % you can click on one of the steps to see the configuration details of % that step. % % Note that the nested cfg and cfg.previous in your data might not contain % all details that are required to reconstruct a complete and valid % analysis script. % TODO the output of this function can perhaps be used as input for the wizard function % Copyright (C) 2006-2009, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_analysisprotocol.m 2439 2010-12-15 16:33:34Z johzum $ persistent depth % this corresponds to the vertical direction in the figure persistent branch % this corresponds to the horizontal direction in the figure persistent parent persistent info ft_defaults % set the defaults if ~isfield(cfg, 'filename'), cfg.filename = []; end if ~isfield(cfg, 'keepremoved'), cfg.keepremoved = 'no'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'yes'; end if ~isfield(cfg, 'remove') % this is the default list of configuration elements to be removed. These % elements would be very large to print and make the script difficult to % read. To get a correctly behaving script, you may have to change this. cfg.remove = { 'sgncmb' 'channelcmb' 'event' 'trl' 'trlold' 'artfctdef.eog.trl' 'artfctdef.jump.trl' 'artfctdef.muscle.trl' 'pos' 'inside' 'outside' 'grid.pos' 'grid.inside' 'grid.outside' 'version.name' 'version.id' 'vol.bnd.pnt' 'vol.bnd.tri' }; end feedbackgui = strcmp(cfg.feedback, 'gui') || strcmp(cfg.feedback, 'yes'); feedbacktext = strcmp(cfg.feedback, 'text') || strcmp(cfg.feedback, 'yes'); % we are only interested in the cfg-part of the data if isfield(datacfg, 'cfg') datacfg = datacfg.cfg; end % set up the persistent variables if isempty(depth), depth = 1; end if isempty(branch), branch = 1; end % start with an empty script script = ''; % get the function call details before they are removed try thisname = getsubfield(datacfg, 'version.name'); if isstruct(thisname) % I think that this was needed for Matlab 6.5 thisname = thisname.name; end [p, f] = fileparts(thisname); thisname = f; catch thisname = 'unknown'; end try thisid = getsubfield(datacfg, 'version.id'); catch thisid = 'unknown'; end if feedbacktext % give some feedback on screen fprintf('\n'); fprintf('recursion depth = %d, branch = %d\n', depth, branch); disp(thisname) disp(thisid) end % remove the fields that are too large or not interesting for i=1:length(cfg.remove) if issubfield(datacfg, cfg.remove{i}) if feedbacktext fprintf('removing %s\n', cfg.remove{i}); end siz = size(getsubfield(datacfg, cfg.remove{i})); if strcmp(cfg.keepremoved, 'yes') % keep the field, but replace the value with a descriptive string datacfg = setsubfield(datacfg, cfg.remove{i}, sprintf('empty - this was cleared by analysisprotocol, original size = [%s]', num2str(siz))); else datacfg = rmsubfield(datacfg, cfg.remove{i}); end end end % convert this part of the configuration to a matlab script if isfield(datacfg, 'previous') thiscfg = rmfield(datacfg, 'previous'); else thiscfg = datacfg; end code = printstruct('cfg', thiscfg); nl = sprintf('\n'); emptycfg = sprintf('cfg = [];\n'); sep = sprintf('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n'); head1 = sprintf('%% version name = %s\n', thisname); head2 = sprintf('%% version id = %s\n', thisid); thisscript = [nl sep head1 head2 sep emptycfg code nl]; % remember this part of the configuration info info(branch,depth).name = thisname; info(branch,depth).id = thisid; info(branch,depth).cfg = thiscfg; info(branch,depth).script = thisscript; info(branch,depth).this = [branch depth]; info(branch,depth).parent = parent; info(branch,depth).children = {}; % this will be determined later if isfield(datacfg, 'previous') prev = parent; parent = [branch depth]; % this will be used in the recursive call if isstruct(datacfg.previous) % increment the depth counter depth = depth + 1; % use recursion to parse the previous section of the tree ft_analysisprotocol(cfg, datacfg.previous); elseif iscell(datacfg.previous) for i=1:length(datacfg.previous(:)) % increment the branch counter branch = branch + (i>1); % increment the depth counter depth = depth + 1; % use recursion to parse each previous section of the tree ft_analysisprotocol(cfg, datacfg.previous{i}); end end % revert to the orignal parent parent = prev; end if depth==1 % the recursion has finished, we are again at the top level % the parents were determined while climbing up the tree % now it is time to descend and determine the children for branch=1:size(info,1) for depth=1:size(info,2) if ~isempty(info(branch, depth).parent) parentbranch = info(branch, depth).parent(1); parentdepth = info(branch, depth).parent(2); info(parentbranch, parentdepth).children{end+1} = [branch depth]; end end end % complement the individual scripts with the input and output variables % and the actual function call for branch=1:size(info,1) for depth=1:size(info,2) outputvar = sprintf('var_%d_%d', info(branch, depth).this); inputvar = ''; commandline = sprintf('%s = %s(cfg%s);', outputvar, info(branch, depth).name, inputvar); disp(commandline); end end if nargout>0 % return the complete script as output argument script = ''; for branch=1:size(info,1) for depth=1:size(info,2) script = [info(branch,depth).script script]; end end end if nargout>1 % return the information details as output argument details = info; end if feedbackgui fig = figure; hold on % the axis should not change during the contruction of the arrows, % otherwise the arrowheads will be distorted axis manual; for branch=1:size(info,1) for depth=1:size(info,2) plotinfo(info(branch,depth)); end end axis auto axis off guidata(fig,info); set(fig, 'WindowButtonUpFcn', @button); set(fig, 'KeyPressFcn', @key); end % feedbackgui if ~isempty(cfg.filename) % write the complete script to file fprintf('writing result to file ''%s''\n', cfg.filename); fid = fopen(cfg.filename, 'wb'); fprintf(fid, '%s', script); fclose(fid); end % clear all persistent variables depth = []; branch = []; info = []; parent = []; fig = []; else % this level of recursion has finished, decrease the depth depth = depth - 1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotinfo(element) if isempty(element.name) return end w = 0.6; h = 0.3; % create the 4 courners that can be used as patch x = [-w/2 w/2 w/2 -w/2]; y = [-h/2 -h/2 h/2 h/2]; % close the patch x = [x x(end)]; y = [y y(end)]; % move the patch to the desired location x = element.this(1) + x; y = element.this(2) + y; p = patch(x', y', 0); set(p, 'Facecolor', [1 1 0.6]) label{1} = element.name; % label{2} = num2str(element.this); l = text(element.this(1), element.this(2), label); set(l, 'HorizontalAlignment', 'center') set(l, 'interpreter', 'none') set(l, 'fontUnits', 'normalized') set(l, 'fontSize', 0.03) % set(l, 'fontName', 'courier') % draw an arrow to connect this box to its parent if ~isempty(element.parent) base = element.this - [0 h/2]; tip = element.parent + [0 h/2]; % ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) arrow(base, tip, [], [], [], [], [], []); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = key(h, eventdata, handles, varargin) % this is just a placeholder for future functionality % at the moment it does not do anything %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = button(h, eventdata, handles, varargin) pos = get(get(gcbo, 'CurrentAxes'), 'CurrentPoint'); x = pos(1,1); y = pos(1,2); info = guidata(h); dist = zeros(size(info)) + inf; for i=1:numel(info) if ~isempty(info(i).this) dist(i) = norm(info(i).this - [x y]); end end % determine the box that is nearest by the mouse click [m, indx] = min(dist(:)); % show the information contained in that box uidisplaytext(info(indx).script, info(indx).name);
github
philippboehmsturm/antx-master
ft_mvaranalysis.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_mvaranalysis.m
19,679
utf_8
f71777fe8c5f884fd1d2671943107b3c
function [mvardata] = ft_mvaranalysis(cfg, data) % FT_MVARANALYSIS performs multivariate autoregressive modeling on % time series data over multiple trials. % % Use as % [mvardata] = ft_mvaranalysis(cfg, data) % % The input data should be organised in a structure as obtained from % the FT_PREPROCESSING function. The configuration depends on the type % of computation that you want to perform. % The output is a data structure of datatype 'mvar' which contains the % multivariate autoregressive coefficients in the field coeffs, and the % covariance of the residuals in the field noisecov. % % The configuration should contain: % cfg.toolbox = the name of the toolbox containing the function for the % actual computation of the ar-coefficients % this can be 'biosig' (default) or 'bsmart' % you should have a copy of the specified toolbox in order % to use mvaranalysis (both can be downloaded directly). % cfg.mvarmethod = scalar (only required when cfg.toolbox = 'biosig'). % default is 2, relates to the algorithm used for the % computation of the AR-coefficients by mvar.m % cfg.order = scalar, order of the autoregressive model (default=10) % cfg.channel = 'all' (default) or list of channels for which an mvar model % is fitted. (Do NOT specify if cfg.channelcmb is % defined) % cfg.channelcmb = specify channel combinations as a % two-column cell array with channels in each column between % which a bivariate model will be fit (overrides % cfg.channel) % cfg.keeptrials = 'no' (default) or 'yes' specifies whether the coefficients % are estimated for each trial seperately, or on the % concatenated data % cfg.jackknife = 'no' (default) or 'yes' specifies whether the coefficients % are estimated for all leave-one-out sets of trials % cfg.zscore = 'no' (default) or 'yes' specifies whether the channel data % are z-transformed prior to the model fit. This may be % necessary if the magnitude of the signals is very different % e.g. when fitting a model to combined MEG/EMG data % cfg.demean = 'yes' (default) or 'no' explicit removal of DC-offset % cfg.ems = 'no' (default) or 'yes' explicit removal ensemble mean % % ft_mvaranalysis can be used to obtain one set of coefficients for % the whole common time axis defined in the data. It will throw an error % if the trials are of variable length, or if the time axes of the trials % are not equal to one another. % % ft_mvaranalysis can be also used to obtain time-dependent sets of % coefficients based on a sliding window. In this case the input cfg % should contain: % % cfg.t_ftimwin = the width of the sliding window on which the coefficients % are estimated % cfg.toi = [t1 t2 ... tx] the time points at which the windows are % centered % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % Undocumented local options: % cfg.keeptapers % cfg.taper % Copyright (C) 2009, Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_mvaranalysis.m 3766 2011-07-04 10:44:39Z eelspa $ % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'renamed', {'blc', 'demean'}); cfg = ft_checkconfig(cfg, 'renamed', {'blcwindow', 'baselinewindow'}); % set default configurations if ~isfield(cfg, 'toolbox'), cfg.toolbox = 'biosig'; end if ~isfield(cfg, 'mvarmethod'), cfg.mvarmethod = 2; end if ~isfield(cfg, 'order'), cfg.order = 10; end if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'keeptrials'), cfg.keeptrials = 'no'; end if ~isfield(cfg, 'jackknife'), cfg.jackknife = 'no'; end if ~isfield(cfg, 'zscore'), cfg.zscore = 'no'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'textbar'; end if ~isfield(cfg, 'demean'), cfg.demean = 'yes'; end if ~isfield(cfg, 'ems'), cfg.ems = 'no'; end if ~isfield(cfg, 'toi'), cfg.toi = []; end if ~isfield(cfg, 't_ftimwin'), cfg.t_ftimwin = []; end if ~isfield(cfg, 'keeptapers'), cfg.keeptapers = 'yes'; end if ~isfield(cfg, 'taper'), cfg.taper = 'rectwin'; end if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end %check whether the requested toolbox is present switch cfg.toolbox case 'biosig' ft_hastoolbox('biosig', 1); nnans = cfg.order; case 'bsmart' ft_hastoolbox('bsmart', 1); nnans = 0; otherwise error('toolbox %s is not yet supported', cfg.toolbox); end %check that cfg.channel and cfg.channelcmb are not both specified if ~any(strcmp(cfg.channel, 'all')) && isfield(cfg, 'channelcmb') warning('cfg.channelcmb defined, overriding cfg.channel setting and computing over bivariate pairs'); end % load optional given inputfile as data hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'data'); end end %check the input-data data = ft_checkdata(data, 'datatype', 'raw', 'hassampleinfo', 'yes'); %check configurations switch cfg.toolbox case 'biosig' cfg = ft_checkconfig(cfg, 'required', 'mvarmethod'); case 'bsmart' %nothing extra required end if isempty(cfg.toi) && isempty(cfg.t_ftimwin) %fit model to entire data segment ok = 1; for k = 1:numel(data.trial) %if any(data.time{k}~=data.time{1}), if size(data.trial{k},2) ~= size(data.trial{1},2) ok = 0; break end end if ~ok error('time axes of all trials should be identical'); else cfg.toi = mean(data.time{1}([1 end])) + 0.5/data.fsample; cfg.t_ftimwin = data.time{1}(end)-data.time{1}(1) + 1/data.fsample; end elseif ~isempty(cfg.toi) && ~isempty(cfg.t_ftimwin) %do sliding window approach else error('cfg should contain both cfg.toi and cfg.t_ftimwin'); end cfg.channel = ft_channelselection(cfg.channel, data.label); keeprpt = strcmp(cfg.keeptrials, 'yes'); keeptap = strcmp(cfg.keeptapers, 'yes'); dojack = strcmp(cfg.jackknife, 'yes'); dozscore = strcmp(cfg.zscore, 'yes'); dobvar = isfield(cfg, 'channelcmb'); if ~keeptap, error('not keeping tapers is not possible yet'); end if dojack && keeprpt, error('you cannot simultaneously keep trials and do jackknifing'); end tfwin = round(data.fsample.*cfg.t_ftimwin); ntrl = length(data.trial); ntoi = length(cfg.toi); if ~dobvar chanindx = match_str(data.label, cfg.channel); nchan = length(chanindx); label = data.label(chanindx); ncmb = nchan*nchan; cmbindx1 = repmat(chanindx(:), [1 nchan]); cmbindx2 = repmat(chanindx(:)', [nchan 1]); labelcmb = [data.label(cmbindx1(:)) data.label(cmbindx2(:))]; else cfg.channelcmb = ft_channelcombination(cfg.channelcmb, data.label); cmbindx = zeros(size(cfg.channelcmb)); for k = 1:size(cmbindx,1) [tmp, cmbindx(k,:)] = match_str(cfg.channelcmb(k,:)', data.label); end nchan = 2; label = data.label(cmbindx); ncmb = nchan*nchan; labelcmb = cell(0,2); cmb = cfg.channelcmb; for k = 1:size(cmbindx,1) labelcmb{end+1,1} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end ,2} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end+1,1} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end ,2} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end+1,1} = [cmb{k,1},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end ,2} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end+1,1} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']']; labelcmb{end ,2} = [cmb{k,2},'[',cmb{k,1},cmb{k,2},']']; end end %---think whether this makes sense at all if strcmp(cfg.taper, 'dpss') % create a sequence of DPSS (Slepian) tapers % ensure that the input arguments are double precision tap = double_dpss(tfwin,tfwin*(cfg.tapsmofrq./data.fsample))'; tap = tap(1,:); %only use first 'zero-order' taper elseif strcmp(cfg.taper, 'sine') tap = sine_taper(tfwin, tfwin*(cfg.tapsmofrq./data.fsample))'; tap = tap(1,:); else tap = window(cfg.taper, tfwin)'; tap = tap./norm(tap); end ntap = size(tap,1); %---preprocess data if necessary %---cut off the uninteresting data segments tmpcfg = []; tmpcfg.toilim = cfg.toi([1 end]) + cfg.t_ftimwin.*[-0.5 0.5]; data = ft_redefinetrial(tmpcfg, data); %---demean if strcmp(cfg.demean, 'yes'), tmpcfg = []; tmpcfg.demean = 'yes'; tmpcfg.baselinewindow = cfg.toi([1 end]) + cfg.t_ftimwin.*[-0.5 0.5]; data = ft_preprocessing(tmpcfg, data); else %do nothing end %---ensemble mean subtraction if strcmp(cfg.ems, 'yes') % to be implemented end %---zscore if dozscore, zwindow = cfg.toi([1 end]) + cfg.t_ftimwin.*[-0.5 0.5]; sumval = 0; sumsqr = 0; numsmp = 0; trlindx = []; for k = 1:ntrl begsmp = nearest(data.time{k}, zwindow(1)); endsmp = nearest(data.time{k}, zwindow(2)); if endsmp>=begsmp, sumval = sumval + sum(data.trial{k}(:, begsmp:endsmp), 2); sumsqr = sumsqr + sum(data.trial{k}(:, begsmp:endsmp).^2, 2); numsmp = numsmp + endsmp - begsmp + 1; trlindx = [trlindx; k]; end end datavg = sumval./numsmp; datstd = sqrt(sumsqr./numsmp - (sumval./numsmp).^2); data.trial = data.trial(trlindx); data.time = data.time(trlindx); ntrl = length(trlindx); for k = 1:ntrl rvec = ones(1,size(data.trial{k},2)); data.trial{k} = (data.trial{k} - datavg*rvec)./(datstd*rvec); end else %do nothing end %---generate time axis maxtim = -inf; mintim = inf; for k = 1:ntrl maxtim = max(maxtim, data.time{k}(end)); mintim = min(mintim, data.time{k}(1)); end timeaxis = mintim:1/data.fsample:maxtim; %---allocate memory if ~dobvar && (keeprpt || dojack) coeffs = zeros(length(data.trial), nchan, nchan, cfg.order, ntoi, ntap); noisecov = zeros(length(data.trial), nchan, nchan, ntoi, ntap); elseif ~dobvar coeffs = zeros(1, nchan, nchan, cfg.order, ntoi, ntap); noisecov = zeros(1, nchan, nchan, ntoi, ntap); elseif dobvar && (keeprpt || dojack) % not yet implemented error('doing bivariate model fits in combination with multiple replicates is not yet possible'); elseif dobvar coeffs = zeros(1, size(cmbindx,1), 2*nchan, cfg.order, ntoi, ntap); noisecov = zeros(1, size(cmbindx,1), 2*nchan, ntoi, ntap); end %---loop over the tois ft_progress('init', cfg.feedback, 'computing AR-model'); for j = 1:ntoi ft_progress(j/ntoi, 'processing timewindow %d from %d\n', j, ntoi); sample = nearest(timeaxis, cfg.toi(j)); cfg.toi(j) = timeaxis(sample); tmpcfg = []; tmpcfg.toilim = [timeaxis(sample-floor(tfwin/2)) timeaxis(sample+ceil(tfwin/2)-1)]; tmpcfg.feedback = 'no'; tmpcfg.minlength= 'maxperlen'; tmpdata = ft_redefinetrial(tmpcfg, data); cfg.toi(j) = mean(tmpdata.time{1}([1 end]))+0.5./data.fsample; %FIXME think about this %---create cell-array indexing which original trials should go into each replicate rpt = {}; nrpt = numel(tmpdata.trial); if dojack rpt = cell(nrpt,1); for k = 1:nrpt rpt{k,1} = setdiff(1:nrpt,k); end elseif keeprpt for k = 1:nrpt rpt{k,1} = k; end else rpt{1} = 1:numel(tmpdata.trial); nrpt = 1; end for rlop = 1:nrpt if dobvar % bvar for m = 1:ntap %---construct data-matrix for k = 1:size(cmbindx,1) dat = catnan(tmpdata.trial, cmbindx(k,:), rpt{rlop}, tap(m,:), nnans, dobvar); %---estimate autoregressive model switch cfg.toolbox case 'biosig' [ar, rc, pe] = mvar(dat', cfg.order, cfg.mvarmethod); %---compute noise covariance tmpnoisecov = pe(:,nchan*cfg.order+1:nchan*(cfg.order+1)); case 'bsmart' [ar, tmpnoisecov] = armorf(dat, numel(rpt{rlop}), size(tmpdata.trial{1},2), cfg.order); ar = -ar; %convention is swapped sign with respect to biosig %FIXME check which is which: X(t) = A1*X(t-1) + ... + An*X(t-n) + E %the other is then X(t) + A1*X(t-1) + ... + An*X(t-n) = E end coeffs(rlop,k,:,:,j,m) = reshape(ar, [nchan*2 cfg.order]); %---rescale noisecov if necessary if dozscore, % FIX ME for bvar noisecov(rlop,k,:,:,j,m) = diag(datstd)*tmpnoisecov*diag(datstd); else noisecov(rlop,k,:,j,m) = reshape(tmpnoisecov,[1 4]); end dof(rlop,:,j) = numel(rpt{rlop}); end end else % mvar for m = 1:ntap %---construct data-matrix dat = catnan(tmpdata.trial, chanindx, rpt{rlop}, tap(m,:), nnans, dobvar); %---estimate autoregressive model switch cfg.toolbox case 'biosig' [ar, rc, pe] = mvar(dat', cfg.order, cfg.mvarmethod); %---compute noise covariance tmpnoisecov = pe(:,nchan*cfg.order+1:nchan*(cfg.order+1)); case 'bsmart' [ar, tmpnoisecov] = armorf(dat, numel(rpt{rlop}), size(tmpdata.trial{1},2), cfg.order); ar = -ar; %convention is swapped sign with respect to biosig %FIXME check which is which: X(t) = A1*X(t-1) + ... + An*X(t-n) + E %the other is then X(t) + A1*X(t-1) + ... + An*X(t-n) = E end coeffs(rlop,:,:,:,j,m) = reshape(ar, [nchan nchan cfg.order]); %---rescale noisecov if necessary if dozscore, noisecov(rlop,:,:,j,m) = diag(datstd)*tmpnoisecov*diag(datstd); else noisecov(rlop,:,:,j,m) = tmpnoisecov; end dof(rlop,:,j) = numel(rpt{rlop}); end %---tapers end end %---replicates end %---tois ft_progress('close'); %---create output-structure mvardata = []; if ~dobvar && dojack, mvardata.dimord = 'rptjck_chan_chan_lag'; elseif ~dobvar && keeprpt, mvardata.dimord = 'rpt_chan_chan_lag'; elseif ~dobvar mvardata.dimord = 'chan_chan_lag'; mvardata.label = label; siz = size(coeffs); coeffs = reshape(coeffs, siz(2:end)); siz = size(noisecov); noisecov = reshape(noisecov, siz(2:end)); elseif dobvar mvardata.dimord = 'chancmb_lag'; siz = [size(coeffs) 1]; coeffs = reshape(coeffs, [siz(2) * siz(3) siz(4) siz(5)]); siz = [size(noisecov) 1]; noisecov = reshape(noisecov, [siz(2) * siz(3) siz(4)]); mvardata.labelcmb = labelcmb; end mvardata.coeffs = coeffs; mvardata.noisecov = noisecov; mvardata.dof = dof; if numel(cfg.toi)>1 mvardata.time = cfg.toi; mvardata.dimord = [mvardata.dimord,'_time']; end mvardata.fsampleorig = data.fsample; % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_mvaranalysis.m 3766 2011-07-04 10:44:39Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try cfg.previous = data.cfg; end mvardata.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', mvardata); % use the variable name "data" in the output file end %---------------------------------------------------- %subfunction to concatenate data with nans in between function [datamatrix] = catnan(datacells, chanindx, trials, taper, nnans, dobvar) nchan = length(chanindx); nsmp = size(datacells{1}, 2); nrpt = numel(trials); %---initialize datamatrix = zeros(nchan, nsmp*nrpt + nnans*(nrpt-1)) + nan; %---fill the matrix for k = 1:nrpt if k==1, begsmp = (k-1)*nsmp + 1; endsmp = k *nsmp ; else begsmp = (k-1)*(nsmp+nnans) + 1; endsmp = k *(nsmp+nnans) - nnans; end if ~dobvar datamatrix(:,begsmp:endsmp) = datacells{trials(k)}(chanindx,:).*taper(ones(nchan,1),:); else datamatrix(:,begsmp:endsmp) = datacells{trials(k)}(chanindx',:).*taper(ones(nchan,1),:); end end %------------------------------------------------------ %---subfunction to ensure that the first two input arguments are of double % precision this prevents an instability (bug) in the computation of the % tapers for Matlab 6.5 and 7.0 function [tap] = double_dpss(a, b, varargin) tap = dpss(double(a), double(b), varargin{:});
github
philippboehmsturm/antx-master
ft_databrowser_old.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_databrowser_old.m
56,720
utf_8
3bc8d11301b8bf813ef8c432cf0c49e3
function [cfg] = ft_databrowser_old(cfg, data) % FT_DATABROWSER can be used for visual inspection of data. Artifacts that were detected % by artifact functions (see FT_ARTIFACT_xxx functions where xxx is the type of artifact) % are marked. Additionally data pieces can be marked and unmarked as artifact by % manual selection. The output cfg contains the updated artifactdef field. % % Use as % cfg = ft_databrowser(cfg) % required configuration options: % cfg.dataset or both cfg.headerfile and cfg.datafile % or as % cfg = ft_databrowser(cfg, data) % with the data as obtained from FT_PREPROCESSING % % The following configuration options are supported: % cfg.trl = structure that defines the data segments of interest. See FT_DEFINETRIAL % cfg.continuous = 'yes' or 'no' wh ether the file contains continuous data % cfg.channel = cell-array with channel labels, see FT_CHANNELSELECTION % cfg.comps = a vector with the components to plot (ex. 1:10) (optional) % cfg.zscale = [zmin zmax] or 'auto' (default = 'auto') % cfg.blocksize = number (in seconds), only aplicable if data contains only 1 (long) trial % cfg.viewmode = string, 'butterfly', 'vertical', 'component' (default = 'butterfly') % cfg.artfctdef.xxx.artifact = Nx2 matrix with artifact segments see FT_ARTIFACT_xxx functions % cfg.selectfeature = string, name of feature to be selected/added (default = 'visual') % cfg.selectmode = string, what to do with a selection, can be 'mark', or 'eval' (default = 'mark') % 'mark': artfctdef field is updated, 'eval': the function defined in % cfg.selfun is evaluated f.i. browse_movieplotER calls movieplotER which makes % a movie of the selected data % cfg.colorgroups = 'sequential' 'labelcharx' (x = xth character in label), 'chantype' or % vector with length(data/hdr.label) defining groups (default = 'sequential') % cfg.channelcolormap = COLORMAP (default = customized lines map with 15 colors) % cfg.selfun = string, name of function which is evaluated if selectmode is set to 'eval'. % The selected data and the selcfg are passed on to this function. % cfg.selcfg = configuration options for selfun % cfg.eegscale = number, scaling to apply to the EEG channels prior to display % cfg.eogscale = number, scaling to apply to the EOG channels prior to display % cfg.ecgscale = number, scaling to apply to the ECG channels prior to display % cfg.emgscale = number, scaling to apply to the EMG channels prior to display % cfg.megscale = number, scaling to apply to the MEG channels prior to display % % The "artifact" field in the output cfg is a Nx2 matrix comparable to the % "trl" matrix of FT_DEFINETRIAL. The first column of which specifying the % beginsamples of an artifact period, the second column contains the % endsamples of the artifactperiods. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. % These mat % files should contain only a single variable, corresponding with the % input/output structure. % % NOTE for debugging: in case the databrowser crashes, use delete(gcf) to kill the figure. % % See also FT_PREPROCESSING, FT_REJECTARTIFACT, FT_ARTIFACT_EOG, FT_ARTIFACT_MUSCLE, % FT_ARTIFACT_JUMP, FT_ARTIFACT_MANUAL, FT_ARTIFACT_THRESHOLD, FT_ARTIFACT_CLIP, FT_ARTIFACT_ECG % Copyright (C) 2009, Robert Oostenveld, Ingrid Niewenhuis % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_databrowser_old.m 3862 2011-07-14 13:41:01Z jorhor $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % set defaults for optional cfg.input and or cfg.outputfile if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end % set the defaults if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'zscale'), cfg.zscale = 'auto'; end if ~isfield(cfg, 'artfctdef'), cfg.artfctdef = struct; end if ~isfield(cfg, 'selectfeature'), cfg.selectfeature = 'visual'; end % string or cell-array if ~isfield(cfg, 'selectmode'), cfg.selectmode = 'mark'; end if ~isfield(cfg, 'viewmode'), cfg.viewmode = 'butterfly'; end % butterfly, vertical, component, settings if ~isfield(cfg, 'blocksize'), cfg.blocksize = 1; end % only for segmenting continuous data, i.e. one long trial if ~isfield(cfg, 'preproc'), cfg.preproc = []; end % see preproc for options if ~isfield(cfg, 'event'), cfg.event = []; end if ~isfield(cfg, 'selfun'), cfg.selfun = 'browse_multiplotER'; end if ~isfield(cfg, 'selcfg'), cfg.selcfg = []; end if ~isfield(cfg, 'colorgroups'), cfg.colorgroups = 'sequential'; end if ~isfield(cfg, 'channelcolormap'), cfg.channelcolormap = [0.75 0 0;0 0 1;0 1 0;0.44 0.19 0.63;0 0.13 0.38;0.5 0.5 0.5;1 0.75 0;1 0 0;0.89 0.42 0.04;0.85 0.59 0.58;0.57 0.82 0.31;0 0.69 0.94;1 0 0.4;0 0.69 0.31;0 0.44 0.75]; end if ~isfield(cfg, 'eegscale'), cfg.eegscale = []; end if ~isfield(cfg, 'eogscale'), cfg.eogscale = []; end if ~isfield(cfg, 'ecgscale'), cfg.ecgscale = []; end if ~isfield(cfg, 'emgscale'), cfg.emgscale = []; end if ~isfield(cfg, 'megscale'), cfg.megscale = []; end hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'data'); hasdata = true; end end if hasdata data = ft_checkdata(data, 'datatype', {'raw', 'comp'}, 'feedback', 'yes', 'hassampleinfo', 'yes'); % fetch the header from memory hdr = ft_fetch_header(data); if ~isfield(cfg, 'continuous') && length(data.trial) == 1 cfg.continuous = 'yes'; elseif ~isfield(cfg, 'continuous') && length(data.trial) > 1 cfg.continuous = 'no'; end else % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'dataset2files', {'yes'}); cfg = ft_checkconfig(cfg, 'required', {'headerfile', 'datafile'}); cfg = ft_checkconfig(cfg, 'renamed', {'datatype', 'continuous'}); cfg = ft_checkconfig(cfg, 'renamedval', {'continuous', 'continuous', 'yes'}); % read the header from file hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat); if ~isfield(cfg, 'continuous') if hdr.nTrials==1 cfg.continuous = 'yes'; else cfg.continuous = 'no'; end end end if hasdata && isfield(data, 'topo') && strcmp(cfg.viewmode, 'component') if ~isfield(cfg, 'comp') cfg.comp = 1:10; % to avoid plotting 274 components topographically end cfg.channel = data.label(cfg.comp); end if ischar(cfg.selectfeature) % ensure that it is a cell array cfg.selectfeature = {cfg.selectfeature}; end % get some initial parameters from the data if hasdata % check whether data has been resampled if isfield(data, 'cfg') && isempty(ft_findcfg(data.cfg, 'origfs')) resampled = false; else resampled = true; end % fetch the events event = ft_fetch_event(data); cfg.channel = ft_channelselection(cfg.channel, data.label); chansel = match_str(data.label, cfg.channel); fsample = 1/(data.time{1}(2)-data.time{1}(1)); Nchans = length(chansel); % this is how the input data is segmented trlorg = zeros(numel(data.trial), 3); trlorg(:,[1 2]) = data.sampleinfo; % recreate offset vector (databrowser depends on this for visualisation) for ntrl = 1:numel(data.trial) trlorg(ntrl,3) = time2offset(data.time{ntrl}, data.fsample); end Ntrials = size(trlorg, 1); if strcmp(cfg.viewmode, 'component') if ~isfield(cfg, 'layout') error('You need to specify a layout-file when browsing through components'); end % read or create the layout that will be used for the topoplots cfg.layout = ft_prepare_layout(cfg, data); if ~isfield(cfg, 'comp') cfg.comp = 1:10; % to avoid plotting 274 components topographically end cfg.channel = data.label(cfg.comp); end else % data has not been resampled resampled = false; % read the events if isempty(cfg.event) event = ft_read_event(cfg.dataset); else event = cfg.event; end cfg.channel = ft_channelselection(cfg.channel, hdr.label); chansel = match_str(hdr.label, cfg.channel); fsample = hdr.Fs; Nchans = length(chansel); Ntrials = hdr.nTrials; % construct trl-matrix for data from file on disk trlorg = zeros(Ntrials,3); for k = 1:Ntrials trlorg(k,[1 2]) = [1 hdr.nSamples] + [hdr.nSamples hdr.nSamples] .* (k-1); end end % if hasdata if Nchans == 0 error('no channels to display'); end if Ntrials == 0 error('no trials to display'); end % determine coloring of channels if hasdata labels_all = data.label; else labels_all= hdr.label; end if size(cfg.channelcolormap,2) ~= 3 error('cfg.channelcolormap is not valid, size should be Nx3') end if isnumeric(cfg.colorgroups) % groups defined by user if length(labels_all) ~= length(cfg.colorgroups) error('length(cfg.colorgroups) should be length(data/hdr.label)') end R = cfg.channelcolormap(:,1); G = cfg.channelcolormap(:,2); B = cfg.channelcolormap(:,3); chan_colors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))]; elseif strcmp(cfg.colorgroups, 'chantype') type = ft_chantype(labels_all); [tmp1 tmp2 cfg.colorgroups] = unique(type); fprintf('%3d colorgroups were identified\n',length(tmp1)) R = cfg.channelcolormap(:,1); G = cfg.channelcolormap(:,2); B = cfg.channelcolormap(:,3); chan_colors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))]; elseif strcmp(cfg.colorgroups(1:9), 'labelchar') % groups determined by xth letter of label labelchar_num = str2double(cfg.colorgroups(10)); vec_letters = num2str(zeros(length(labels_all),1)); for iChan = 1:length(labels_all) vec_letters(iChan) = labels_all{iChan}(labelchar_num); end [tmp1 tmp2 cfg.colorgroups] = unique(vec_letters); fprintf('%3d colorgroups were identified\n',length(tmp1)) R = cfg.channelcolormap(:,1); G = cfg.channelcolormap(:,2); B = cfg.channelcolormap(:,3); chan_colors = [R(cfg.colorgroups(:)) G(cfg.colorgroups(:)) B(cfg.colorgroups(:))]; elseif strcmp(cfg.colorgroups, 'sequential') % no grouping chan_colors = lines(length(labels_all)); else error('do not understand cfg.colorgroups') end % collect the artifacts that have been detected from cfg.artfctdef.xxx.artifact artlabel = fieldnames(cfg.artfctdef); sel = zeros(size(artlabel)); artifact = cell(size(artlabel)); for i=1:length(artlabel) sel(i) = issubfield(cfg.artfctdef, [artlabel{i} '.artifact']); if sel(i) artifact{i} = getsubfield(cfg.artfctdef, [artlabel{i} '.artifact']); num = size(artifact{i}, 1); if isempty(num) num = 0; end fprintf('detected %3d %s artifacts\n', num, artlabel{i}); end end artifact = artifact(sel==1); artlabel = artlabel(sel==1); for i=1:length(cfg.selectfeature) if ~any(strcmp(cfg.selectfeature{i}, artlabel)) artifact = {[], artifact{:}}; artlabel = {cfg.selectfeature{i}, artlabel{:}}; end end if length(artlabel) > 9 error('only upto 9 artifacts groups supported') end % make artdata representing all artifacts in a "raw data" format datendsample = max(trlorg(:,2)); artdat = convert_event(artifact, 'boolvec', 'endsample', datendsample); artdata = []; artdata.trial{1} = artdat; % every artifact is a "channel" artdata.time{1} = offset2time(0, fsample, datendsample); artdata.label = artlabel; artdata.fsample = fsample; artdata.cfg.trl = [1 datendsample 0]; if ischar(cfg.zscale) && strcmp(cfg.zscale, 'auto') if nargin>1 dat = data.trial{1}(chansel,:); time = data.time{1}; else % one second of data is read from file to determine the vertical scaling dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', 1, 'endsample', round(hdr.Fs), 'chanindx', chansel, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat, 'headerformat', cfg.headerformat); time = (1:hdr.nSamples) / fsample; end minval = min(dat(:)); maxval = max(dat(:)); mintime = min(time(:)); maxtime = max(time(:)); cfg.zscale = max(abs(minval), abs(maxval)); cfg.yscale = max(abs(mintime), abs(maxtime)); end h = figure; set(h, 'KeyPressFcn', @keyboard_cb); set(h, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonDownFcn'}); set(h, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonUpFcn'}); set(h, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'xrange', true, 'yrange', false, 'clear', true, 'callback', {@select_range_cb, h}, 'event', 'WindowButtonMotionFcn'}); % opt represents the global data/settings, it should contain % - the original data, epoched or continuous % - the artifacts represented as continuous data % - the redraw_cb settings % - the preproc settings % - the select_range_cb settings (also used in keyboard_cb) % these elements are stored inside the figure so that the callback routines can modify them opt = []; if hasdata opt.orgdata = data; else opt.orgdata = []; % this means that it will look in opt.cfg.dataset end opt.artdata = artdata; opt.cfg = cfg; % the configuration of this function, not of the preprocessing opt.hdr = hdr; opt.event = event; opt.trlop = 1; % active trial being displayed opt.ftsel = find(strcmp(artlabel,cfg.selectfeature)); % current artifact/feature being selected opt.trlorg = trlorg; opt.fsample = fsample; opt.artcol = [0.9686 0.7608 0.7686; 0.7529 0.7098 0.9647; 0.7373 0.9725 0.6824;0.8118 0.8118 0.8118; 0.9725 0.6745 0.4784; 0.9765 0.9176 0.5686; 0.6863 1 1; 1 0.6863 1; 0 1 0.6000]; opt.chan_colors = chan_colors; opt.cleanup = false; % this is needed for a corrent handling if the figure is closed (either in the corner or by "q") opt.compindx = []; % index of components to be drawn (if viewmode = "component") opt.resampled = resampled; if strcmp(cfg.continuous, 'yes') opt.trialname = 'segment'; else opt.trialname = 'trial'; end guidata(h, opt); % make the user interface elements for the data view uicontrol('tag', 'group1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', opt.trialname, 'userdata', 't') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'leftarrow') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'rightarrow') uicontrol('tag', 'group1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'channel','userdata', 'c') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', 'uparrow') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', 'downarrow') uicontrol('tag', 'group1a', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'horizontal', 'userdata', 'h') uicontrol('tag', 'group2a', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'shift+leftarrow') uicontrol('tag', 'group2a', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+rightarrow') if strcmp(cfg.continuous, 'no') ft_uilayout(h, 'tag', 'group1a', 'visible', 'on', 'retag', 'group1'); ft_uilayout(h, 'tag', 'group2a', 'visible', 'on', 'retag', 'group2'); else ft_uilayout(h, 'tag', 'group1a', 'visible', 'on', 'retag', 'group1'); ft_uilayout(h, 'tag', 'group2a', 'visible', 'on', 'retag', 'group2'); end uicontrol('tag', 'group1', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'vertical', 'userdata', 'v') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '-', 'userdata', 'shift+downarrow') uicontrol('tag', 'group2', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '+', 'userdata', 'shift+uparrow') % legend artifacts/features for iArt = 1:length(artlabel) uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', artlabel{iArt}, 'userdata', num2str(iArt), 'position', [0.91, 0.9 - ((iArt-1)*0.09), 0.08, 0.04], 'backgroundcolor', opt.artcol(iArt,:)) uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '<', 'userdata', ['shift+' num2str(iArt)], 'position', [0.91, 0.85 - ((iArt-1)*0.09), 0.03, 0.04], 'backgroundcolor', opt.artcol(iArt,:)) uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', '>', 'userdata', ['control+' num2str(iArt)], 'position', [0.96, 0.85 - ((iArt-1)*0.09), 0.03, 0.04], 'backgroundcolor', opt.artcol(iArt,:)) end if strcmp(cfg.viewmode, 'butterfly') % button to find label of nearest channel to datapoint uicontrol('tag', 'group3', 'parent', h, 'units', 'normalized', 'style', 'pushbutton', 'string', 'identify', 'userdata', 'i', 'position', [0.91, 0.1, 0.08, 0.05], 'backgroundcolor', [1 1 1]) end ft_uilayout(h, 'tag', 'group1', 'width', 0.10, 'height', 0.05); ft_uilayout(h, 'tag', 'group2', 'width', 0.05, 'height', 0.05); ft_uilayout(h, 'tag', 'group1', 'style', 'pushbutton', 'callback', @keyboard_cb); ft_uilayout(h, 'tag', 'group2', 'style', 'pushbutton', 'callback', @keyboard_cb); ft_uilayout(h, 'tag', 'group3', 'style', 'pushbutton', 'callback', @keyboard_cb); ft_uilayout(h, 'tag', 'group1', 'retag', 'viewui'); ft_uilayout(h, 'tag', 'group2', 'retag', 'viewui'); ft_uilayout(h, 'tag', 'viewui', 'BackgroundColor', [0.8 0.8 0.8], 'hpos', 'auto', 'vpos', 0); definetrial_cb(h); redraw_cb(h); % %% Scrollbar % % % set initial scrollbar value % dx = maxtime; % % % set scrollbar position % fig_pos=get(gca,'position'); % scroll_pos=[fig_pos(1) fig_pos(2) fig_pos(3) 0.02]; % % % define callback % S=['set(gca,''xlim'',get(gcbo,''value'')+[ ' num2str(mintime) ',' num2str(maxtime) '])']; % % % Creating Uicontrol % s=uicontrol('style','slider',... % 'units','normalized','position',scroll_pos,... % 'callback',S,'min',0,'max',0, ... % 'visible', 'off'); %'value', xmin % set initial scrollbar value % dx = maxtime; % % % set scrollbar position % fig_pos=get(gca,'position'); % scroll_pos=[fig_pos(1) fig_pos(2) fig_pos(3) 0.02]; % % % define callback % S=['set(gca,''xlim'',get(gcbo,''value'')+[ ' num2str(mintime) ',' num2str(maxtime) '])']; % % % Creating Uicontrol % s=uicontrol('style','slider',... % 'units','normalized','position',scroll_pos,... % 'callback',S,'min',0,'max',0, ... % 'visible', 'off'); %'value', xmin %initialize postion of plot % set(gca,'xlim',[xmin xmin+dx]); if nargout % wait until the user interface is closed, get the user data with the updated artifact details set(h, 'CloseRequestFcn', @cleanup_cb); while ishandle(h) uiwait(h); opt = guidata(h); if opt.cleanup delete(h); end end % add the updated artifact definitions to the output cfg for i=1:length(opt.artdata.label) cfg.artfctdef.(opt.artdata.label{i}).artifact = convert_event(opt.artdata.trial{1}(i,:), 'artifact'); end end % if nargout % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_databrowser_old.m 3862 2011-07-14 13:41:01Z jorhor $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data if hasdata && isfield(data, 'cfg') cfg.previous = data.cfg; end % remember the exact configuration details in the output dataout.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', dataout); % use the variable name "data" in the output file end end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cleanup_cb(h, eventdata) opt = guidata(h); opt.cleanup = true; guidata(h, opt); uiresume end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function definetrial_cb(h, eventdata) opt = guidata(h); if strcmp(opt.cfg.continuous, 'no') % keep the original trial definition for visualisation opt.trlvis = opt.trlorg; else % construct a trial definition for visualisation if isfield(opt, 'trlvis') thistrlbeg = opt.trlvis(opt.trlop,1); thistrlend = opt.trlvis(opt.trlop,2); % remember a representative sample of the current trial % thissample = round((thistrlbeg+thistrlend)/2); thissample = thistrlbeg; end % look at opt.cfg.blocksize and make opt.trl accordingly % if original data contains more than one trial, it will fail in ft_fetch_data datbegsample = min(opt.trlorg(:,1)); datendsample = max(opt.trlorg(:,2)); smppertrl = round(opt.fsample * opt.cfg.blocksize); begsamples = datbegsample:smppertrl:datendsample; endsamples = datbegsample+smppertrl-1:smppertrl:datendsample; if numel(endsamples)<numel(begsamples) endsamples(end+1) = datendsample; end trlvis = []; trlvis(:,1) = begsamples'; trlvis(:,2) = endsamples'; if size(opt.trlorg,1) > 1 || isempty(opt.orgdata) % offset is now (re)defined that 1st sample is time 0 trlvis(:,3) = begsamples-1; else % offset according to original time axis trlvis(:,3) = opt.trlorg(3) + begsamples - opt.trlorg(1); end if isfield(opt, 'trlvis') % update the current trial counter and try to keep the current sample the same % opt.trlop = nearest(round((begsamples+endsamples)/2), thissample); opt.trlop = nearest(begsamples, thissample); end opt.trlvis = trlvis; end % if continuous guidata(h, opt); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function help_cb(h, eventdata) fprintf('------------------------------------------------------------------------------------\n') fprintf('You can use the following buttons in the data viewer\n') fprintf('1-9 : select artifact type 1-9\n'); fprintf('shift 1-9 : select previous artifact of type 1-9\n'); fprintf('control 1-9 : select next artifact of type 1-9\n'); fprintf('alt 1-9 : select next artifact of type 1-9\n'); fprintf('arrow-left : previous trial\n'); fprintf('arrow-right : next trial\n'); fprintf('shift arrow-up : increase vertical scaling\n'); fprintf('shift arrow-down : decrease vertical scaling\n'); fprintf('shift arrow-left : increase horizontal scaling\n'); fprintf('shift arrow-down : decrease horizontal scaling\n'); fprintf('q : quit\n'); fprintf('------------------------------------------------------------------------------------\n') fprintf('\n') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_range_cb(range, h) %range 1X4 in sec relative to current trial opt = guidata(h); switch opt.cfg.viewmode case 'butterfly' begsample = opt.trlvis(opt.trlop,1); endsample = opt.trlvis(opt.trlop,2); offset = opt.trlvis(opt.trlop,3); % determine the selection if strcmp(opt.trialname, 'trial') % this is appropriate when the offset is defined according to a % different trigger in each trial, which is usually the case in trial data begsel = round(range(1)*opt.fsample+begsample-offset-1); endsel = round(range(2)*opt.fsample+begsample-offset); elseif strcmp(opt.trialname, 'segment') % this is appropriate when the offset is defined according to a % one trigger, which is always the case in segment data [I think ingnie] begsel = round(range(1)*opt.fsample+1); endsel = round(range(2)*opt.fsample+1); end % the selection should always be confined to the current trial begsel = max(begsample, begsel); endsel = min(endsample, endsel); case {'vertical', 'component'} % the range should be in the displayed box range(1) = max(opt.hpos(1), range(1)); range(2) = max(opt.hpos(1), range(2)); range(1) = min(opt.hpos(2), range(1)); range(2) = min(opt.hpos(2), range(2)); range = (range - opt.hpos(1)) / (opt.hpos(2) - opt.hpos(1)); % left side of the box becomes 0, right side becomes 1 range = range * (opt.hlim(2) - opt.hlim(1)) + opt.hlim(1); % 0 becomes hlim(1), 1 becomes hlim(2) begsample = opt.trlvis(opt.trlop,1); endsample = opt.trlvis(opt.trlop,2); offset = opt.trlvis(opt.trlop,3); % determine the selection if strcmp(opt.trialname, 'trial') % this is appropriate when the offset is defined according to a % different trigger in each trial, which is usually the case in trial data begsel = round(range(1)*opt.fsample+begsample-offset-1); endsel = round(range(2)*opt.fsample+begsample-offset); elseif strcmp(opt.trialname, 'segment') % this is appropriate when the offset is defined according to % one trigger, which is always the case in segment data [I think ingnie] begsel = round(range(1)*opt.fsample+1); endsel = round(range(2)*opt.fsample+1); end % the selection should always be confined to the current trial begsel = max(begsample, begsel); endsel = min(endsample, endsel); otherwise error('unknown opt.cfg.viewmode "%s"', opt.cfg.viewmode); end % switch if strcmp(opt.cfg.selectmode, 'disp') % FIXME this is only for debugging disp([begsel endsel]) elseif strcmp(opt.cfg.selectmode, 'mark') % mark or unmark artifacts artval = opt.artdata.trial{1}(opt.ftsel, begsel:endsel); artval = any(artval,1); if any(artval) fprintf('there is overlap with the active artifact (%s), disable this artifact\n',opt.artdata.label{opt.ftsel}); opt.artdata.trial{1}(opt.ftsel, begsel:endsel) = 0; else fprintf('there is no overlap with the active artifact (%s), mark this as a new artifact\n',opt.artdata.label{opt.ftsel}); opt.artdata.trial{1}(opt.ftsel, begsel:endsel) = 1; end elseif strcmp(opt.cfg.selectmode, 'eval') % cut out the requested data segment seldata.label = opt.curdat.label; seldata.time{1} = offset2time(offset+begsel-begsample, opt.fsample, endsel-begsel+1); seldata.trial{1} = ft_fetch_data(opt.curdat, 'begsample', begsel, 'endsample', endsel); seldata.fsample = opt.fsample; seldata.cfg.trl = [begsel endsel offset]; feval(opt.cfg.selfun, opt.cfg.selcfg, seldata); else error('unknown value for cfg.selectmode'); end guidata(h, opt); redraw_cb(h); end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function keyboard_cb(h, eventdata) opt = guidata(h); if isempty(eventdata) % determine the key that corresponds to the uicontrol element that was activated key = get(h, 'userdata'); h = getparent(h); else % determine the key that was pressed on the keyboard key = eventdata.Key; if ~isempty(eventdata.Modifier) key = [eventdata.Modifier{1} '+' key]; end end switch key case {'1' '2' '3' '4' '5' '6' '7' '8' '9'} % switch to another artifact type opt.ftsel = str2double(key); numart = size(opt.artdata.trial{1}, 1); if opt.ftsel > numart fprintf('data has no artifact type %i \n', opt.ftsel) else guidata(h, opt); fprintf('switching to the "%s" artifact\n', opt.artdata.label{opt.ftsel}); redraw_cb(h, eventdata); end case {'shift+1' 'shift+2' 'shift+3' 'shift+4' 'shift+5' 'shift+6' 'shift+7' 'shift+8' 'shift+9'} % go to previous artifact opt.ftsel = str2double(key(end)); numart = size(opt.artdata.trial{1}, 1); if opt.ftsel > numart fprintf('data has no artifact type %i \n', opt.ftsel) else cursam = opt.trlvis(opt.trlop,1); artsam = find(opt.artdata.trial{1}(opt.ftsel,1:cursam-1), 1, 'last'); if isempty(artsam) fprintf('no earlier "%s" artifact found\n', opt.artdata.label{opt.ftsel}); else fprintf('going to previous "%s" artifact\n', opt.artdata.label{opt.ftsel}); if opt.trlvis(nearest(opt.trlvis(:,1),artsam),1) < artsam arttrl = nearest(opt.trlvis(:,1),artsam); else arttrl = nearest(opt.trlvis(:,1),artsam)-1; end opt.trlop = arttrl; guidata(h, opt); redraw_cb(h, eventdata); end end case {'control+1' 'control+2' 'control+3' 'control+4' 'control+5' 'control+6' 'control+7' 'control+8' 'control+9' 'alt+1' 'alt+2' 'alt+3' 'alt+4' 'alt+5' 'alt+6' 'alt+7' 'alt+8' 'alt+9'} % go to next artifact opt.ftsel = str2double(key(end)); numart = size(opt.artdata.trial{1}, 1); if opt.ftsel > numart fprintf('data has no artifact type %i \n', opt.ftsel) else cursam = opt.trlvis(opt.trlop,2); artsam = find(opt.artdata.trial{1}(opt.ftsel,cursam+1:end), 1, 'first') + cursam; if isempty(artsam) fprintf('no later "%s" artifact found\n', opt.artdata.label{opt.ftsel}); else fprintf('going to next "%s" artifact\n', opt.artdata.label{opt.ftsel}); if opt.trlvis(nearest(opt.trlvis(:,1),artsam),1) < artsam arttrl = nearest(opt.trlvis(:,1),artsam); else arttrl = nearest(opt.trlvis(:,1),artsam)-1; end opt.trlop = arttrl; guidata(h, opt); redraw_cb(h, eventdata); end end case 'leftarrow' opt.trlop = max(opt.trlop - 1, 1); % should not be smaller than 1 guidata(h, opt); redraw_cb(h, eventdata); case 'rightarrow' opt.trlop = min(opt.trlop + 1, size(opt.trlvis,1)); % should not be larger than the number of trials guidata(h, opt); redraw_cb(h, eventdata); case 'uparrow' chansel = match_str(opt.hdr.label, opt.cfg.channel); minchan = min(chansel); numchan = length(chansel); chansel = minchan - numchan : minchan - 1; if min(chansel)<1 chansel = chansel - min(chansel) + 1; end % convert numeric array into cell-array with channel labels opt.cfg.channel = opt.hdr.label(chansel); disp(opt.cfg.channel); guidata(h, opt); redraw_cb(h, eventdata); case 'downarrow' chansel = match_str(opt.hdr.label, opt.cfg.channel); maxchan = max(chansel); numchan = length(chansel); chansel = maxchan + 1 : maxchan + numchan; if max(chansel)>length(opt.hdr.label) chansel = chansel - (max(chansel) - length(opt.hdr.label)); end % convert numeric array into cell-array with channel labels opt.cfg.channel = opt.hdr.label(chansel); disp(opt.cfg.channel); guidata(h, opt); redraw_cb(h, eventdata); case 'shift+leftarrow' opt.cfg.blocksize = opt.cfg.blocksize*sqrt(2); disp(opt.cfg.blocksize); guidata(h, opt); definetrial_cb(h, eventdata); redraw_cb(h, eventdata); case 'shift+rightarrow' opt.cfg.blocksize = opt.cfg.blocksize/sqrt(2); disp(opt.cfg.blocksize); guidata(h, opt); definetrial_cb(h, eventdata); redraw_cb(h, eventdata); case 'shift+uparrow' opt.cfg.zscale = opt.cfg.zscale/sqrt(2); guidata(h, opt); redraw_cb(h, eventdata); case 'shift+downarrow' opt.cfg.zscale = opt.cfg.zscale*sqrt(2); guidata(h, opt); redraw_cb(h, eventdata); case 'q' guidata(h, opt); cleanup_cb(h); case 't' % select the trial to display response = inputdlg(sprintf('%s to display', opt.trialname), 'specify', 1, {num2str(opt.trlop)}); if ~isempty(response) opt.trlop = str2double(response); opt.trlop = min(opt.trlop, size(opt.trlvis,1)); % should not be larger than the number of trials opt.trlop = max(opt.trlop, 1); % should not be smaller than 1 end guidata(h, opt); redraw_cb(h, eventdata); case 'h' % select the horizontal scaling response = inputdlg('horizontal scale', 'specify', 1, {num2str(opt.cfg.blocksize)}); if ~isempty(response) opt.cfg.blocksize = str2double(response); end guidata(h, opt); definetrial_cb(h, eventdata); redraw_cb(h, eventdata); case 'v' % select the vertical scaling response = inputdlg('vertical scale, number or ''maxabs'')', 'specify', 1, {num2str(opt.cfg.zscale)}); if ~isempty(response) if isnan(str2double(response)) && strcmp(response, 'maxabs') minval = min(opt.curdat.trial{1}(:)); maxval = max(opt.curdat.trial{1}(:)); opt.cfg.zscale = max(abs([minval maxval])); else opt.cfg.zscale = str2double(response); end end guidata(h, opt); redraw_cb(h, eventdata); case 'c' % select channels select = match_str(opt.hdr.label, opt.cfg.channel); select = select_channel_list(opt.hdr.label, select); opt.cfg.channel = opt.hdr.label(select); guidata(h, opt); redraw_cb(h, eventdata); case 'i' if strcmp(opt.cfg.viewmode, 'butterfly') % click in data and get name of nearest channel fprintf('click in the figure to identify the name of the closest channel\n'); val = ginput(1); channame = val2nearestchan(opt.curdat,val); channb = match_str(opt.curdat.label,channame); fprintf('channel name: %s\n',channame); redraw_cb(h, eventdata); hold on xtext = opt.cfg.zscale - 0.1*opt.cfg.zscale; ft_plot_text(val(1), xtext, channame, 'FontSize', 16); plot(opt.curdat.time{1}, opt.curdat.trial{1}(channb,:),'k','LineWidth',2) end case 'control+control' % do nothing case 'shift+shift' % do nothing case 'alt+alt' % do nothing otherwise guidata(h, opt); help_cb(h); end uiresume(h); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function toggle_viewmode_cb(h, eventdata, varargin) opt = guidata(getparent(h)); if ~isempty(varargin) && ischar(varargin{1}) opt.cfg.viewmode = varargin{1}; end guidata(getparent(h), opt); redraw_cb(h); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = getparent(h) p = h; while p~=0 h = p; p = get(h, 'parent'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function redraw_cb(h, eventdata) h = getparent(h); opt = guidata(h); figure(h); % ensure that the calling figure is in the front fprintf('redrawing with viewmode %s\n', opt.cfg.viewmode); begsample = opt.trlvis(opt.trlop, 1); endsample = opt.trlvis(opt.trlop, 2); offset = opt.trlvis(opt.trlop, 3); chanindx = match_str(opt.hdr.label, opt.cfg.channel); if ~isempty(opt.event) % select only the events in the current time window event = opt.event; evtsample = [event(:).sample]; event = event(evtsample>=begsample & evtsample<=endsample); else event = []; end if isempty(opt.orgdata) fprintf('reading data... '); dat = ft_read_data(opt.cfg.datafile, 'header', opt.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx, 'checkboundary', strcmp(opt.cfg.continuous, 'no'), 'dataformat', opt.cfg.dataformat, 'headerformat', opt.cfg.headerformat); else fprintf('fetching data... '); dat = ft_fetch_data(opt.orgdata, 'header', opt.hdr, 'begsample', begsample, 'endsample', endsample, 'chanindx', chanindx); end fprintf('done\n'); fprintf('fetching artifacts... '); art = ft_fetch_data(opt.artdata, 'begsample', begsample, 'endsample', endsample); fprintf('done\n'); % apply preprocessing and determine the time axis fprintf('preprocessing data... '); [dat, lab, tim] = preproc(dat, opt.hdr.label(chanindx), opt.fsample, opt.cfg.preproc, offset); fprintf('done\n'); opt.curdat.label = lab; opt.curdat.time{1} = tim; opt.curdat.trial{1} = dat; opt.curdat.fsample = opt.fsample; opt.curdat.cfg.trl = [begsample endsample offset]; % apply scaling to selected channels % using wildcard to support subselection of channels if ~isempty(opt.cfg.megscale) chansel = match_str(lab, ft_channelselection('MEG*', lab)); dat(chansel,:) = dat(chansel,:) .* opt.cfg.megscale; end if ~isempty(opt.cfg.eegscale) chansel = match_str(lab, ft_channelselection('EEG*', lab)); dat(chansel,:) = dat(chansel,:) .* opt.cfg.eegscale; end if ~isempty(opt.cfg.eogscale) chansel = match_str(lab, ft_channelselection('EOG*', lab)); dat(chansel,:) = dat(chansel,:) .* opt.cfg.eogscale; end if ~isempty(opt.cfg.ecgscale) chansel = match_str(lab, ft_channelselection('ECG*', lab)); dat(chansel,:) = dat(chansel,:) .* opt.cfg.ecgscale; end if ~isempty(opt.cfg.emgscale) chansel = match_str(lab, ft_channelselection('EMG*', lab)); dat(chansel,:) = dat(chansel,:) .* opt.cfg.emgscale; end fprintf('plotting data... '); switch opt.cfg.viewmode case 'butterfly' cla; % clear the content in the current axis % to assure current feature is plotted on top ordervec = 1:length(opt.artdata.label); ordervec(opt.ftsel) = []; ordervec(end+1) = opt.ftsel; for i = ordervec tmp = diff([0 art(i,:) 0]); artbeg = find(tmp==+1); artend = find(tmp==-1) - 1; for j=1:numel(artbeg) ft_plot_box([tim(artbeg(j)) tim(artend(j)) -opt.cfg.zscale opt.cfg.zscale], 'facecolor', opt.artcol(i,:), 'edgecolor', 'none'); end end h_event = zeros(0, length(event)); h_event_txt = zeros(0, length(event)); if ~opt.resampled try % plot a line with text for each event for k=1:length(event) try eventstr = sprintf('%s=%s', event(k).type, num2str(event(k).value)); %value can be both number and string catch eventstr = 'unknown'; end eventtim = (event(k).sample-begsample+offset)/opt.fsample; eventtim = (eventtim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 eventtim = eventtim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_event(k) = ft_plot_line([eventtim eventtim], [0 1]); % h_event(k) = ft_plot_line([eventtim eventtim], [-opt.cfg.zscale opt.cfg.zscale]); h_event_txt(k) = ft_plot_text(eventtim, ax(4)-0.01, eventstr); end end % try else if isfield(opt, 'orgdata') && isfield(opt.orgdata, 'sampleinfo') && isfield(opt.orgdata, 'offset') % find trials within this segment trlindx = find(((opt.orgdata.sampleinfo(:, 1)-opt.orgdata.offset) >= begsample & (opt.orgdata.sampleinfo(:, 1)-opt.orgdata.offset) <= endsample)==1); for t = 1:numel(trlindx) eventtim = (opt.orgdata.sampleinfo(trlindx(t), 1)-opt.orgdata.offset(trlindx(t))-begsample+offset)/opt.fsample; eventtim = (eventtim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 eventtim = eventtim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_event(end+1) = ft_plot_line([eventtim eventtim], [-opt.cfg.zscale 1]); h_event_txt(end+1) = ft_plot_text(eventtim, ax(4)+.01, 'stim'); end end end set(h_event, 'tag', 'events'); set(h_event_txt, 'tag', 'events'); set(gca,'ColorOrder',opt.chan_colors(chanindx,:)) % plot vector does not clear axis, therefore this is possible % plot the data on top of the box h_act = ft_plot_vector(tim, dat); set(h_act, 'tag', 'activations'); ax(1) = tim(1); ax(2) = tim(end); ax(3) = -opt.cfg.zscale; ax(4) = opt.cfg.zscale; axis(ax); title(sprintf('%s %d, time from %g to %g s', opt.trialname, opt.trlop, tim(1), tim(end))); xlabel('time'); % set tags case 'vertical' cla; % clear the content in the current axis tmpcfg = []; tmpcfg.layout = 'vertical'; tmpcfg.channel = opt.cfg.channel; tmpcfg.skipcomnt = 'yes'; tmpcfg.skipscale = 'yes'; laytime = ft_prepare_layout(tmpcfg, opt.orgdata); hlim = [tim(1) tim(end)]; vlim = [-opt.cfg.zscale +opt.cfg.zscale]; % determine the position of each of the labels labelx = laytime.pos(:,1) - laytime.width/2 - 0.01; labely = laytime.pos(:,2); ax(1) = min(laytime.pos(:,1) - laytime.width/2); ax(2) = max(laytime.pos(:,1) + laytime.width/2); ax(3) = min(laytime.pos(:,2) - laytime.height/2); ax(4) = max(laytime.pos(:,2) + laytime.height/2); axis(ax) % remember the scaling of the horizontal axis, this is needed for mouse input hpos(1) = laytime.pos(1,1) - laytime.width(1)/2; % the position of the left side of the timecourse box hpos(2) = laytime.pos(1,1) + laytime.width(1)/2; % the position of the right side of the timecourse box opt.hlim = hlim; opt.hpos = hpos; % to assure current feature is plotted on top ordervec = 1:length(opt.artdata.label); ordervec(opt.ftsel) = []; ordervec(end+1) = opt.ftsel; for j = ordervec tmp = diff([0 art(j,:) 0]); artbeg = find(tmp==+1); artend = find(tmp==-1) - 1; arttim = [tim(artbeg)' tim(artend)']; % convert the artifact sample number to time arttim = (arttim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 arttim = arttim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis for k=1:numel(artbeg) ft_plot_box([arttim(k,1) arttim(k,2) ax(3) ax(4)], 'facecolor', opt.artcol(j,:), 'edgecolor', 'none'); end end % for each of the artifact channels h_event = zeros(0, length(event)); h_event_txt = zeros(0, length(event)); if ~opt.resampled % plot a line with text for each event for k=1:length(event) try eventstr = sprintf('%s=%s', event(k).type, num2str(event(k).value)); %value can be both number and string catch eventstr = 'unknown'; end eventtim = (event(k).sample-begsample+offset)/opt.fsample; eventtim = (eventtim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 eventtim = eventtim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_event(k) = ft_plot_line([eventtim eventtim], [0 1]); % h_event(k) = ft_plot_line([eventtim eventtim], [-opt.cfg.zscale opt.cfg.zscale]); h_event_txt(k) = ft_plot_text(eventtim, ax(4)-0.01, eventstr); end else if isfield(opt, 'orgdata') && isfield(opt.orgdata, 'sampleinfo') && isfield(opt.orgdata, 'offset') % find trials within this segment trlindx = find(((opt.orgdata.sampleinfo(:, 1)-opt.orgdata.offset) >= begsample & (opt.orgdata.sampleinfo(:, 1)-opt.orgdata.offset) <= endsample)==1); for t = 1:numel(trlindx) eventtim = (opt.orgdata.sampleinfo(trlindx(t), 1)-opt.orgdata.offset(trlindx(t))-begsample+offset)/opt.fsample; eventtim = (eventtim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 eventtim = eventtim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_event(end+1) = ft_plot_line([eventtim eventtim], [-opt.cfg.zscale 1]); h_event_txt(end+1) = ft_plot_text(eventtim, ax(4)+.01, 'stim'); end end end % set tags set(h_event, 'tag', 'events'); set(h_event_txt, 'tag', 'events'); for i = 1:length(chanindx) datsel = i; laysel = match_str(laytime.label, opt.hdr.label(chanindx(i))); if ~isempty(datsel) h_text = ft_plot_text(labelx(laysel), labely(laysel), opt.hdr.label(chanindx(i)), 'HorizontalAlignment', 'right'); h_act = ft_plot_vector(tim, dat(datsel, :), 'hpos', laytime.pos(laysel,1), 'vpos', laytime.pos(laysel,2), 'width', laytime.width(laysel), 'height', laytime.height(laysel), 'hlim', hlim, 'vlim', vlim, 'box', false, 'color', opt.chan_colors(chanindx(i),:)); end end % set tags set(h_text, 'tag', 'activations'); set(h_act, 'tag', 'activations'); nticks = 11; set(gca, 'xTick', linspace(ax(1), ax(2), nticks)) xTickLabel = cellstr(num2str( linspace(tim(1), tim(end), nticks)' , '%1.2f'))'; set(gca, 'xTickLabel', xTickLabel) set(gca, 'yTick', []) if length(chanindx)<7 % two ticks per channel set(gca, 'yTick', sort([laytime.pos(:,2)+(laytime.height(laysel)/2); laytime.pos(:,2)+(laytime.height(laysel)/4); laytime.pos(:,2)-(laytime.height(laysel)/4); laytime.pos(:,2)-(laytime.height(laysel)/2)])) yTickLabel = {num2str(-vlim(2)), num2str(-vlim(2)/2), num2str(vlim(2)/2), num2str(vlim(2))}; elseif length(chanindx)> 6 && length(chanindx)< 20 % one tick per channel set(gca, 'yTick', sort([laytime.pos(:,2)+(laytime.height(laysel)/4); laytime.pos(:,2)-(laytime.height(laysel)/4)])) yTickLabel = {num2str(-vlim(2)/2), num2str(vlim(2)/2)}; else % no space for xticks yTickLabel = []; end tmp = yTickLabel; for chanloop = 2:length(chanindx) yTickLabel = [yTickLabel tmp]; end set(gca, 'yTickLabel', yTickLabel) title(sprintf('%s %d, time from %g to %g s', opt.trialname, opt.trlop, tim(1), tim(end))); case 'component' % delete time courses delete(findobj(h,'tag', 'activations')); delete(findobj(h,'tag', 'events')); delete(findobj(h,'tag', 'artifacts')); compindx = chanindx; clear chanindx tmpcfg = []; tmpcfg.layout = 'vertical'; tmpcfg.channel = opt.cfg.channel; tmpcfg.skipcomnt = 'yes'; tmpcfg.skipscale = 'yes'; laytime = ft_prepare_layout(tmpcfg, opt.orgdata); ax(1) = min(laytime.pos(:,1) - laytime.width/2); ax(2) = max(laytime.pos(:,1) + laytime.width/2); ax(3) = min(laytime.pos(:,2) - laytime.height/2); ax(4) = max(laytime.pos(:,2) + laytime.height/2); tmpcfg = []; tmpcfg.layout = opt.cfg.layout; laychan = ft_prepare_layout(tmpcfg, opt.orgdata); % determine the position of each of the topographies laytopo.pos(:,1) = laytime.pos(:,1) - laytime.width/2 - laytime.height*2; laytopo.pos(:,2) = laytime.pos(:,2); laytopo.width = laytime.height; laytopo.height = laytime.height; laytopo.label = laytime.label; % determine the position of each of the labels labelx = laytopo.pos(:,1) + laytopo.width; labely = laytopo.pos(:,2); hlim = [tim(1) tim(end)]; vlim = [-opt.cfg.zscale +opt.cfg.zscale]; hpos(1) = laytime.pos(1,1) - laytime.width(1)/2; % the position of the left side of the timecourse box hpos(2) = laytime.pos(1,1) + laytime.width(1)/2; % the position of the right side of the timecourse box opt.hlim = hlim; opt.hpos = hpos; % check if topographies need to be redrawn redraw_topo = false; if ~isequal(opt.compindx, compindx) redraw_topo = true; cla; % clear axis end % to assure current feature is plotted on top ordervec = 1:length(opt.artdata.label); ordervec(opt.ftsel) = []; ordervec(end+1) = opt.ftsel; h_art = cell(1, ordervec); for j = ordervec tmp = diff([0 art(j,:) 0]); artbeg = find(tmp==+1); artend = find(tmp==-1) - 1; arttim = [tim(artbeg)' tim(artend)']; % convert the artifact sample number to time arttim = (arttim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 arttim = arttim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_art{j} = zeros(1, length(artbeg)); for k=1:numel(artbeg) h_art{j}(k) = ft_plot_box([arttim(k,1) arttim(k,2) ax(3) ax(4)], 'facecolor', opt.artcol(j,:), 'edgecolor', 'none'); end end % for each of the artifact channels [sel1, sel2] = match_str(opt.orgdata.topolabel, laychan.label); chanx = laychan.pos(sel2,1); chany = laychan.pos(sel2,2); h_act = zeros(1, length(compindx)); h_text = zeros(1, length(compindx)); for i=1:length(compindx) datsel = i; laysel = match_str(laytime.label,opt.hdr.label(compindx(i))); if ~isempty(datsel) % plot the timecourse of this component h_act(i) = ft_plot_vector(tim, dat(datsel, :), 'hpos', laytime.pos(laysel,1), 'vpos', laytime.pos(laysel,2), 'width', laytime.width(laysel), 'height', laytime.height(laysel), 'hlim', hlim, 'vlim', vlim); if redraw_topo h_text(i) = ft_plot_text(labelx(laysel), labely(laysel), opt.hdr.label(compindx(i))); % plot the topography of this component chanz = opt.orgdata.topo(sel1,compindx(i)); ft_plot_topo(chanx, chany, chanz./max(abs(chanz)), 'hpos', laytopo.pos(laysel,1), ... 'vpos', laytopo.pos(laysel,2), 'mask', laychan.mask, ... 'interplim', 'mask', 'outline', laychan.outline, ... 'width', laytopo.width(laysel), 'height', laytopo.height(laysel)); end axis equal drawnow end end % draw events h_event = zeros(0, length(event)); h_event_txt = zeros(0, length(event)); if ~opt.resampled % plot a line with text for each event for k=1:length(event) try eventstr = sprintf('%s=%s', event(k).type, num2str(event(k).value)); %value can be both number and string catch eventstr = 'unknown'; end eventtim = (event(k).sample-begsample+offset)/opt.fsample; eventtim = (eventtim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 eventtim = eventtim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_event(k) = ft_plot_line([eventtim eventtim], [0 1]); % h_event(k) = ft_plot_line([eventtim eventtim], [-opt.cfg.zscale opt.cfg.zscale]); h_event_txt(k) = ft_plot_text(eventtim, ax(4)-0.01, eventstr); end else if isfield(opt, 'orgdata') && isfield(opt.orgdata, 'sampleinfo') && isfield(opt.orgdata, 'offset') % find trials within this segment trlindx = find(((opt.orgdata.sampleinfo(:, 1)-opt.orgdata.offset) >= begsample & (opt.orgdata.sampleinfo(:, 1)-opt.orgdata.offset) <= endsample)==1); for t = 1:numel(trlindx) eventtim = (opt.orgdata.sampleinfo(trlindx(t), 1)-opt.orgdata.offset(trlindx(t))-begsample+offset)/opt.fsample; eventtim = (eventtim - opt.hlim(1)) / (opt.hlim(2) - opt.hlim(1)); % convert to value relative to box, i.e. from 0 to 1 eventtim = eventtim * (opt.hpos(2) - opt.hpos(1)) + opt.hpos(1); % convert from relative to actual value along the horizontal figure axis h_event(end+1) = ft_plot_line([eventtim eventtim], [-opt.cfg.zscale 1]); h_event_txt(end+1) = ft_plot_text(eventtim, ax(4)+.01, 'stim'); end end end % set tags set(h_event, 'tag', 'events'); set(h_event_txt, 'tag', 'events'); set(h_act, 'tag', 'activations'); for k = 1:numel(h_art) set(h_art{k}, 'tag', 'artifacts'); end h_topo = findobj(h, 'type', 'surface'); set(h_text, 'tag', 'comptopo') set(h_topo, 'tag', 'comptopo') opt.compindx = compindx; set(gca, 'xTick', []) set(gca, 'yTick', []) title(sprintf('%s %d, time from %g to %g s', opt.trialname, opt.trlop, tim(1), tim(end))); ax(1) = min(laytopo.pos(:,1) - laytopo.width/2); ax(2) = max(laytime.pos(:,1) + laytime.width/2); ax(3) = min(laytime.pos(:,2) - laytime.height/2); ax(4) = max(laytime.pos(:,2) + laytime.height/2); axis(ax) % remember the scaling of the horizontal axis, this is needed for mouse input hpos(1) = laytime.pos(1,1) - laytime.width(1)/2; % the position of the left side of the timecourse box hpos(2) = laytime.pos(1,1) + laytime.width(1)/2; % the position of the right side of the timecourse box opt.hlim = hlim; opt.hpos = hpos; case 'settings' % FIXME implement further details otherwise error('unknown viewmode "%s"', opt.cfg.viewmode); end % switch viewmode fprintf('done\n'); guidata(h, opt); end
github
philippboehmsturm/antx-master
ft_volumesegment.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_volumesegment.m
22,470
utf_8
78a76e125b0adb93d8d39508455d1428
function [segment] = ft_volumesegment(cfg, mri) % FT_VOLUMESEGMENT segments an anatomical MRI. The behaviour depends on the % output requested. It can return probabilistic tissue maps of % gray/white/csf compartments, a skull-stripped anatomy, or binary masks % representing the brain surface, skull, or scalp surface. % % This function uses the SPM8 toolbox, see http://www.fil.ion.ucl.ac.uk/spm/ % % Use as % [segment] = ft_volumesegment(cfg, mri) % % The input arguments are a configuration structure (see below) and an % anatomical MRI structure. Instead of an MRI structure, you can also % specify a string with a filename of an MRI file. You can also provide an % already segmented volume in the input for the purpose of creating a % binary mask. % % The configuration options are % cfg.output = 'tpm' (default), 'brain', 'skull', 'skullstrip', 'scalp', or any % combination of these in a cell-array % cfg.spmversion = 'spm8' (default) or 'spm2' % cfg.template = filename of the template anatomical MRI (default is the 'T1.nii' % (spm8) or 'T1.mnc' (spm2) in the (spm-directory)/templates/) % cfg.name = string for output filename % cfg.write = 'no' or 'yes' (default = 'no'), % writes the probabilistic tissue maps to SPM compatible analyze (spm2), % or nifti (spm8) files, % with the suffix (spm2) % _seg1, for the gray matter segmentation % _seg2, for the white matter segmentation % _seg3, for the csf segmentation % or with the prefix (spm8) % c1, for the gray matter segmentation % c2, for the white matter segmentation % c3, for the csf segmentation % % cfg.smooth = 'no', or scalar, the FWHM of the gaussian kernel in % voxels, default depends on the requested output % cfg.threshold = 'no', or scalar, relative threshold value which is % used to threshold the data in order to create a % volumetric mask (see below). % the default depends on the requested output % cfg.downsample = integer, amount of downsampling before segmentation % (default = 1; i.e., no downsampling) % cfg.coordsys = string, specifying the coordinate system in which the % anatomical data is defined. This will be used if % the input mri does not contain a coordsys-field. % (default = '', which results in the user being % forced to evaluate the coordinate system) % cfg.units = the physical units in which the output will be % expressed. (default = 'mm') % % Example use: % % segment = ft_volumesegment([], mri) will segment the anatomy and will output % the segmentation result as 3 probabilistic masks in % segment.gray/.white/.csf % % cfg.output = 'skullstrip'; % segment = ft_volumesegment(cfg, mri) will generate a skullstripped anatomy % based on a brainmask generated from the probabilistic % tissue maps. The skull-stripped anatomy is be stored in % the field segment.anatomy. % % % cfg.output = {'brain' 'scalp' 'skull'}; % segment = ft_volumesegment(cfg, mri) will produce a volume with 3 binary % masks, representing the brain surface, scalp surface, and skull % % For the SPM-based segmentation to work, the coordinate frame of the input % MRI needs to be approximately coregistered to the templates of the % probabilistic tissue maps. The templates are defined in SPM/MNI-space. % FieldTrip attempts to do an automatic alignment based on the % coordsys-field in the mri, and if this is not present, based on the % coordsys-field in the cfg. If none of them is specified the % FT_DETERMINE_COORDSYS function is used to interactively assess the % coordinate system in which the MRI is expressed. % % The template mri is defined in SPM/MNI-coordinates: % x-axis pointing to the right ear % y-axis along the acpc-line % z-axis pointing to the top of the head % origin in the anterior commissure. % Note that the segmentation only works if the template MRI is in SPM % coordinates. % % If the input mri is a string pointing to a CTF *.mri file, the % x-axis is assumed to point to the nose, and the origin is assumed % to be on the interauricular line. In this specific case, when ft_read_mri % is used to read in the mri, the coordsys field is automatically attached. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_READ_MRI FT_DETERMINE_COORDSYS % undocumented options % cfg.keepintermediate = 'yes' or 'no' % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_volumesegment.m 3735 2011-06-29 08:22:09Z jorhor $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'renamed', {'coordinates', 'coordsys'}); % set the defaults cfg.output = ft_getopt(cfg, 'output', 'tpm'); cfg.downsample = ft_getopt(cfg, 'downsample', 1); cfg.spmversion = ft_getopt(cfg, 'spmversion', 'spm8'); cfg.write = ft_getopt(cfg, 'write', 'no'); cfg.keepintermediate = ft_getopt(cfg, 'keepintermediate', 'no'); cfg.coordsys = ft_getopt(cfg, 'coordsys', ''); cfg.units = ft_getopt(cfg, 'units', ''); cfg.inputfile = ft_getopt(cfg, 'inputfile', []); cfg.outputfile = ft_getopt(cfg, 'outputfile', []); % check if the required spm is in your path: if strcmpi(cfg.spmversion, 'spm2'), ft_hastoolbox('SPM2',1); elseif strcmpi(cfg.spmversion, 'spm8'), ft_hastoolbox('SPM8',1); end % get the names of the templates for the segmentation if ~isfield(cfg, 'template'), spmpath = spm('dir'); if strcmpi(cfg.spmversion, 'spm8'), cfg.template = [spmpath,filesep,'templates',filesep,'T1.nii']; end if strcmpi(cfg.spmversion, 'spm2'), cfg.template = [spmpath,filesep,'templates',filesep,'T1.mnc']; end end if ~isfield(cfg,'name') if ~strcmp(cfg.write,'yes') tmp = tempname; cfg.name = tmp; else error('you must specify the output filename in cfg.name'); end end if ~iscell(cfg.output) % ensure it to be cell, to allow for multiple outputs cfg.output = {cfg.output}; end for k = 1:numel(cfg.output) % set defaults for the smoothing and thresholding if needed switch cfg.output{k} case 'tpm' tmp = ft_getopt(cfg, 'smooth', nan); if ischar(tmp) && strcmp(tmp, 'no') cfgsmooth(k) = nan; elseif ischar(tmp) error('invalid value %s for cfg.smooth', tmp); else cfgsmooth(k) = tmp; end cfgthreshold(k) = ft_getopt(cfg, 'threshold', nan); case {'skullstrip' 'brain' 'skull'} tmp = ft_getopt(cfg, 'smooth', 5); if ischar(tmp) && strcmp(tmp, 'no') cfgsmooth(k) = nan; elseif ischar(tmp) error('invalid value %s for cfg.smooth', tmp); else cfgsmooth(k) = tmp; end cfgthreshold(k) = ft_getopt(cfg, 'threshold', 0.5); case 'scalp' tmp = ft_getopt(cfg, 'smooth', 5); if ischar(tmp) && strcmp(tmp, 'no') cfgsmooth(k) = nan; elseif ischar(tmp) error('invalid value %s for cfg.smooth', tmp); else cfgsmooth(k) = tmp; end cfgthreshold(k) = ft_getopt(cfg, 'threshold', 0.1); otherwise error('unknown output %s requested', cfg.output); end end cfg.smooth = cfgsmooth; cfg.threshold = cfgthreshold; hasdata = (nargin>1); hasinputfile = ~isempty(cfg.inputfile); if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); elseif hasinputfile % the input data should be read from file mri = loadvar(cfg.inputfile, 'mri'); elseif hasdata if ischar(mri), % read the anatomical MRI data from file filename = mri; fprintf('reading MRI from file\n'); mri = ft_read_mri(filename); if ft_filetype(filename, 'ctf_mri') && isempty(cfg.coordsys) % based on the filetype assume that the coordinates correspond with CTF convention cfg.coordsys = 'ctf'; end end else error('neither a data structure, nor a cfg.inputfile is provided'); end % check if the input data is valid for this function mri = ft_checkdata(mri, 'datatype', 'volume', 'feedback', 'yes'); % check whether spm is needed to generate tissue probability maps needtpm = any(ismember(cfg.output, {'tpm' 'brain' 'skullstrip'})); hastpm = isfield(mri, 'gray') && isfield(mri, 'white') && isfield(mri, 'csf'); if needtpm && ~hastpm % spm needs to be used for the creation of the tissue probability maps dotpm = 1; else dotpm = 0; end needana = any(ismember(cfg.output, {'scalp' 'skullstrip'})) || dotpm; hasanatomy = isfield(mri, 'anatomy'); if needana && ~hasanatomy error('the input volume needs an anatomy-field'); end % perform optional downsampling before segmentation if cfg.downsample ~= 1 tmpcfg = []; tmpcfg.downsample = cfg.downsample; tmpcfg.smooth = 'no'; % smoothing is done in ft_volumesegment itself mri = ft_volumedownsample(tmpcfg, mri); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % create the tissue probability maps if needed %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if dotpm % ensure that the data has interpretable units and that the coordinate % system is in approximate spm space if ~isfield(mri, 'unit'), mri.unit = cfg.units; end if ~isfield(mri, 'coordsys'), mri.coordsys = cfg.coordsys; end % remember the original transformation matrix coordinate system original.transform = mri.transform; original.coordsys = mri.coordsys; mri = ft_convert_units(mri, 'mm'); mri = ft_convert_coordsys(mri, 'spm'); % flip and permute the 3D volume itself, so that the voxel and % headcoordinates approximately correspond this improves the convergence % of the segmentation algorithm [mri,permutevec,flipflags] = align_ijk2xyz(mri); Va = ft_write_volume([cfg.name,'.img'], mri.anatomy, 'transform', mri.transform, 'spmversion', cfg.spmversion); % spm is quite noisy, prevent the warnings from displaying on screen % warning off; if strcmpi(cfg.spmversion, 'spm2'), % set the spm segmentation defaults (from /opt/spm2/spm_defaults.m script) defaults.segment.estimate.priors = str2mat(... fullfile(spm('Dir'),'apriori','gray.mnc'),... fullfile(spm('Dir'),'apriori','white.mnc'),... fullfile(spm('Dir'),'apriori','csf.mnc')); defaults.segment.estimate.reg = 0.01; defaults.segment.estimate.cutoff = 30; defaults.segment.estimate.samp = 3; defaults.segment.estimate.bb = [[-88 88]' [-122 86]' [-60 95]']; defaults.segment.estimate.affreg.smosrc = 8; defaults.segment.estimate.affreg.regtype = 'mni'; %defaults.segment.estimate.affreg.weight = fullfile(spm('Dir'),'apriori','brainmask.mnc'); defaults.segment.estimate.affreg.weight = ''; defaults.segment.write.cleanup = 1; defaults.segment.write.wrt_cor = 1; flags = defaults.segment; % perform the segmentation fprintf('performing the segmentation on the specified volume\n'); spm_segment(Va,cfg.template,flags); Vtmp = spm_vol({[cfg.name,'_seg1.img'];... [cfg.name,'_seg2.img'];... [cfg.name,'_seg3.img']}); % read the resulting volumes for j = 1:3 vol = spm_read_vols(Vtmp{j}); Vtmp{j}.dat = vol; V(j) = struct(Vtmp{j}); end % keep or remove the files according to the configuration if strcmp(cfg.keepintermediate,'no'), delete([cfg.name,'.img']); delete([cfg.name,'.hdr']); delete([cfg.name,'.mat']); end if strcmp(cfg.write,'no'), delete([cfg.name,'_seg1.hdr']); delete([cfg.name,'_seg2.hdr']); delete([cfg.name,'_seg3.hdr']); delete([cfg.name,'_seg1.img']); delete([cfg.name,'_seg2.img']); delete([cfg.name,'_seg3.img']); delete([cfg.name,'_seg1.mat']); delete([cfg.name,'_seg2.mat']); delete([cfg.name,'_seg3.mat']); elseif strcmp(cfg.write,'yes'), for j = 1:3 % put the original transformation-matrix in the headers V(j).mat = original.transform; % write the updated header information back to file ??????? V(j) = spm_create_vol(V(j)); end end elseif strcmpi(cfg.spmversion, 'spm8'), fprintf('performing the segmentation on the specified volume\n'); if isfield(cfg, 'tpm') px.tpm = cfg.tpm; p = spm_preproc(Va, px); else p = spm_preproc(Va); end [po,pin] = spm_prep2sn(p); % I took these settings from a batch opts = []; opts.GM = [0 0 1]; opts.WM = [0 0 1]; opts.CSF = [0 0 1]; opts.biascor = 1; opts.cleanup = 0; spm_preproc_write(po, opts); [pathstr,name,ext] = fileparts(cfg.name); Vtmp = spm_vol({fullfile(pathstr,['c1',name,'.img']);... fullfile(pathstr,['c2',name,'.img']);... fullfile(pathstr,['c3',name,'.img'])}); % read the resulting volumes for j = 1:3 vol = spm_read_vols(Vtmp{j}); Vtmp{j}.dat = vol; V(j) = struct(Vtmp{j}); end % keep or remove the files according to the configuration if strcmp(cfg.keepintermediate,'no'), delete([cfg.name,'.img']); delete([cfg.name,'.hdr']); if exist([cfg.name,'.mat'], 'file'), delete([cfg.name,'.mat']); end %does not always exist end % keep the files written to disk or remove them % FIXME check whether this works at all if strcmp(cfg.write,'no'), delete(fullfile(pathstr,['c1',name,'.hdr'])); %FIXME this may not be needed in spm8 delete(fullfile(pathstr,['c1',name,'.img'])); delete(fullfile(pathstr,['c2',name,'.hdr'])); delete(fullfile(pathstr,['c2',name,'.img'])); delete(fullfile(pathstr,['c3',name,'.hdr'])); delete(fullfile(pathstr,['c3',name,'.img'])); delete(fullfile(pathstr,['m',name,'.hdr'])); delete(fullfile(pathstr,['m',name,'.img'])); elseif strcmp(cfg.write,'yes'), for j = 1:3 % put the original transformation-matrix in the headers V(j).mat = original.transform; % write the updated header information back to file ??????? V(j) = spm_create_vol(V(j)); end end end % collect the results segment.dim = size(V(1).dat); segment.dim = segment.dim(:)'; % enforce a row vector segment.transform = original.transform; % use the original transform segment.coordsys = original.coordsys; % use the original coordsys if isfield(mri, 'unit') segment.unit = mri.unit; end segment.gray = V(1).dat; if length(V)>1, segment.white = V(2).dat; end if length(V)>2, segment.csf = V(3).dat; end segment.anatomy = mri.anatomy; % flip the volumes back according to the changes introduced by align_ijk2xyz for k = 1:3 if flipflags(k) segment.gray = flipdim(segment.gray, k); segment.anatomy = flipdim(segment.anatomy, k); if isfield(segment, 'white'), segment.white = flipdim(segment.white, k); end if isfield(segment, 'csf'), segment.csf = flipdim(segment.csf, k); end end end if ~all(permutevec == [1 2 3]) segment.gray = ipermute(segment.gray, permutevec); segment.anatomy = ipermute(segment.anatomy, permutevec); if isfield(segment, 'white'), segment.white = ipermute(segment.white, permutevec); end if isfield(segment, 'csf'), segment.csf = ipermute(segment.csf, permutevec); end segment.dim = size(segment.gray); end else % rename the data segment = mri; clear mri; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % now the data contains the tissue probability maps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % create the requested output fields removefields = {'anatomy' 'csf' 'gray' 'white'}; for k = 1:numel(cfg.output) dosmooth = isfinite(cfg.smooth(k)); dothresh = isfinite(cfg.threshold(k)); switch cfg.output{k} case 'tpm' % do nothing if dosmooth, warning_once('You requested the tpms to be smoothed, which is not possible because does not make sense'); end if dothresh, warning_once('You requested the tpms to be thresholded, which is not possible because it does not make sense');end removefields = intersect(removefields, {'anatomy'}); case 'skullstrip' % create brain surface from tissue probability maps fprintf('creating brainmask\n'); brain = segment.gray + segment.white + segment.csf; if dosmooth, brain = dosmoothing(brain, cfg.smooth(k), 'brainmask'); end if dothresh, brain = threshold(brain, cfg.threshold(k), 'brainmask'); end fprintf('creating skullstripped anatomy\n'); brain = cast(brain, class(segment.anatomy)); segment.anatomy = segment.anatomy.*brain; removefields = intersect(removefields, {'gray' 'white' 'csf'}); clear brain; case 'brain' % create brain surface from tissue probability maps fprintf('creating brainmask\n'); brain = segment.gray + segment.white + segment.csf; if dosmooth, brain = dosmoothing(brain, cfg.smooth(k), 'brainmask'); end if dothresh, brain = threshold(brain, cfg.threshold(k), 'brainmask'); end segment.brain = brain>0; removefields = intersect(removefields, {'gray' 'white' 'csf' 'anatomy'}); clear brain; case 'skull' % create brain surface from tissue probability maps fprintf('creating brainmask\n'); brain = segment.gray + segment.white + segment.csf; if dosmooth, brain = dosmoothing(brain, cfg.smooth(k), 'brainmask'); end if dothresh, brain = threshold(brain, cfg.threshold(k), 'brainmask'); end % create skull from brain mask FIXME check this (e.g. strel_bol) fprintf('creating skullmask\n'); braindil = imdilate(brain>0, strel_bol(6)); segment.skull = braindil & ~brain; removefields = intersect(removefields, {'gray' 'white' 'csf' 'anatomy'}); clear brain braindil; case 'scalp' % create scalp surface from anatomy fprintf('creating scalpmask\n'); anatomy = segment.anatomy; anatomy(1) = anatomy(1)+1-1; % ensure that spm's smoothing does not affect % the original segment.anatomy if dosmooth, anatomy = dosmoothing(anatomy, cfg.smooth(k), 'anatomy'); end if dothresh, anatomy = threshold(anatomy, cfg.threshold(k), 'anatomy'); end % fill in the holes anatomy = fill(anatomy); segment.scalp = anatomy>0; removefields = intersect(removefields, {'gray' 'white' 'csf' 'anatomy'}); clear anatomy; otherwise error('unknown output %s requested', cfg.output); end end % remove unnecessary fields for k = 1:numel(removefields) try, segment = rmfield(segment, removefields{k}); end end % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_volumesegment.m 3735 2011-06-29 08:22:09Z jorhor $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % remember the configuration details of the input data if isfield(segment, 'cfg'), cfg.previous = segment.cfg; end % remember the exact configuration details in the output segment.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'segment', segment); % use the variable name "segment" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [output] = dosmoothing(input, fwhm, str) fprintf('smoothing %s with a %d-voxel FWHM kernel\n', str, fwhm); spm_smooth(input, input, fwhm); output = input; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [output] = threshold(input, thresh, str) fprintf('thresholding %s at a relative threshold of %0.3f\n', str, thresh); % mask by taking the negative of the brain, thus ensuring % that no holes are within the compartment and do a two-pass % approach to eliminate potential vitamin E capsules etc. output = double(input>(thresh*max(input(:)))); [tmp, N] = spm_bwlabel(output, 6); for k = 1:N n(k,1) = sum(tmp(:)==k); end output = double(tmp~=find(n==max(n))); clear tmp; [tmp, N] = spm_bwlabel(output, 6); for k = 1:N m(k,1) = sum(tmp(:)==k); end output = double(tmp~=find(m==max(m))); clear tmp; function [output] = fill(input) output = input; dim = size(input); for i=1:dim(2) slice=squeeze(input(:,i,:)); im = imfill(slice,8,'holes'); output(:,i,:) = im; end
github
philippboehmsturm/antx-master
ft_sourceplot.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sourceplot.m
45,118
utf_8
7add1886d3ca1752014d51f9fdaf2071
function [cfg] = ft_sourceplot(cfg, data) % FT_SOURCEPLOT plots functional source reconstruction data on slices or on a % surface, optionally as an overlay on anatomical MRI data, where % statistical data can be used to determine the opacity of the mask. % Input data comes from FT_SOURCEANALYSIS, FT_SOURCEGRANDAVERAGE or % statistical values from FT_SOURCESTATISTICS. % % Use as: % ft_sourceplot(cfg, data) % % The data can contain functional data, anatomical MRI data and statistical data, % interpolated onto the same grid. % % The configuration should contain: % cfg.method = 'slice', plots the data on a number of slices in the same plane % 'ortho', plots the data on three orthogonal slices % 'surface', plots the data on a 3D brain surface % % cfg.anaparameter = string, field in data with the anatomical data (default = 'anatomy' if present in data) % cfg.funparameter = string, field in data with the functional parameter of interest (default = []) % cfg.maskparameter = string, field in the data to be used for opacity masking of fun data (default = []) % If values are between 0 and 1, zero is fully transparant and one is fully opaque. % If values in the field are not between 0 and 1 they will be scaled depending on the values % of cfg.opacitymap and cfg.opacitylim (see below) % You can use masking in several ways, f.i. % - use outcome of statistics to show only the significant values and mask the insignificant % NB see also cfg.opacitymap and cfg.opacitylim below % - use the functional data itself as mask, the highest value (and/or lowest when negative) % will be opaque and the value closest to zero transparent % - Make your own field in the data with values between 0 and 1 to control opacity directly % % The following parameters can be used in all methods: % cfg.downsample = downsampling for resolution reduction, integer value (default = 1) (orig: from surface) % cfg.atlas = string, filename of atlas to use (default = []) SEE FT_PREPARE_ATLAS % for ROI masking (see "masking" below) or in interactive mode (see "ortho-plotting" below) % cfg.coordsys = 'mni' or 'tal', coordinate system of the input data, used to lookup the label from the atlas % % The following parameters can be used for the functional data: % cfg.funcolormap = colormap for functional data, see COLORMAP (default = 'auto') % 'auto', depends structure funparameter, or on funcolorlim % - funparameter: only positive values, or funcolorlim:'zeromax' -> 'hot' % - funparameter: only negative values, or funcolorlim:'minzero' -> 'cool' % - funparameter: both pos and neg values, or funcolorlim:'maxabs' -> 'jet' % - funcolorlim: [min max] if min & max pos-> 'hot', neg-> 'cool', both-> 'jet' % cfg.funcolorlim = color range of the functional data (default = 'auto') % [min max] % 'maxabs', from -max(abs(funparameter)) to +max(abs(funparameter)) % 'zeromax', from 0 to max(abs(funparameter)) % 'minzero', from min(abs(funparameter)) to 0 % 'auto', if funparameter values are all positive: 'zeromax', % all negative: 'minzero', both possitive and negative: 'maxabs' % cfg.colorbar = 'yes' or 'no' (default = 'yes') % % The following parameters can be used for the masking data: % cfg.opacitymap = opacitymap for mask data, see ALPHAMAP (default = 'auto') % 'auto', depends structure maskparameter, or on opacitylim % - maskparameter: only positive values, or opacitylim:'zeromax' -> 'rampup' % - maskparameter: only negative values, or opacitylim:'minzero' -> 'rampdown' % - maskparameter: both pos and neg values, or opacitylim:'maxabs' -> 'vdown' % - opacitylim: [min max] if min & max pos-> 'rampup', neg-> 'rampdown', both-> 'vdown' % - NB. to use p-values use 'rampdown' to get lowest p-values opaque and highest transparent % cfg.opacitylim = range of mask values to which opacitymap is scaled (default = 'auto') % [min max] % 'maxabs', from -max(abs(maskparameter)) to +max(abs(maskparameter)) % 'zeromax', from 0 to max(abs(maskparameter)) % 'minzero', from min(abs(maskparameter)) to 0 % 'auto', if maskparameter values are all positive: 'zeromax', % all negative: 'minzero', both possitive and negative: 'maxabs' % cfg.roi = string or cell of strings, region(s) of interest from anatomical atlas (see cfg.atlas above) % everything is masked except for ROI % % The folowing parameters apply for ortho-plotting % cfg.location = location of cut, (default = 'auto') % 'auto', 'center' if only anatomy, 'max' if functional data % 'min' and 'max' position of min/max funparameter % 'center' of the brain % [x y z], coordinates in voxels or head, see cfg.locationcoordinates % cfg.locationcoordinates = coordinate system used in cfg.location, 'head' or 'voxel' (default = 'head') % 'head', headcoordinates from anatomical MRI % 'voxel', voxelcoordinates % cfg.crosshair = 'yes' or 'no' (default = 'yes') % cfg.axis = 'on' or 'off' (default = 'on') % cfg.interactive = 'yes' or 'no' (default = 'no') % in interactive mode cursor click determines location of cut % cfg.queryrange = number, in atlas voxels (default 3) % % % The folowing parameters apply for slice-plotting % cfg.nslices = number of slices, (default = 20) % cfg.slicerange = range of slices in data, (default = 'auto') % 'auto', full range of data % [min max], coordinates of first and last slice in voxels % cfg.slicedim = dimension to slice 1 (x-axis) 2(y-axis) 3(z-axis) (default = 3) % cfg.title = string, title of the figure window % % The folowing parameters apply for surface-plotting % cfg.surffile = string, file that contains the surface (default = 'single_subj_T1.mat') % 'single_subj_T1.mat' contains a triangulation that corresponds with the % SPM anatomical template in MNI coordinates % cfg.surfinflated = string, file that contains the inflated surface (default = []) % cfg.surfdownsample = number (default = 1, i.e. no downsampling) % cfg.projmethod = projection method, how functional volume data is % projected onto surface % 'nearest', 'project', 'sphere_avg', 'sphere_weighteddistance' % cfg.projvec = vector (in mm) to allow different projections that % are combined with the method specified in cfg.projcomb % cfg.projcomb = 'mean', 'max', method to combine the different % projections % cfg.projweight = vector of weights for the different projections % (default: 1) % cfg.projthresh = implements thresholding on the surface level % (cfg.projthresh = 0.7 means 70% of maximum) % cfg.sphereradius = maximum distance from each voxel to the surface to be % included in the sphere projection methods, expressed in mm % cfg.distmat = precomputed distance matrix (default = []) % cfg.camlight = 'yes' or 'no' (default = 'yes') % cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = 'opengl') % When using opacity the OpenGL renderer is required. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. % % See also FT_SOURCEANALYSIS, FT_SOURCEGRANDAVERAGE, FT_SOURCESTATISTICS, % FT_VOLUMELOOKUP, FT_PREPARE_ATLAS % TODO have to be built in: % cfg.marker = [Nx3] array defining N marker positions to display (orig: from sliceinterp) % cfg.markersize = radius of markers (default = 5) % cfg.markercolor = [1x3] marker color in RGB (default = [1 1 1], i.e. white) (orig: from sliceinterp) % white background option % undocumented TODO % slice in all directions % surface also optimal when inside present % come up with a good glass brain projection % Copyright (C) 2007-2008, Robert Oostenveld, Ingrid Nieuwenhuis % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_sourceplot.m 3744 2011-06-30 06:06:20Z jansch $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'renamed', {'inputcoordsys', 'coordsys'}); %%% ft_checkdata see below!!! %%% % set default for inputfile cfg.inputfile = ft_getopt(cfg, 'inputfile', []); % load optional given inputfile as data hasdata = (nargin>1); hasinputfile = ~isempty(cfg.inputfile); if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); elseif hasdata % do nothing elseif hasinputfile data = loadvar(cfg.inputfile, 'data'); end % set the common defaults cfg.method = ft_getopt(cfg, 'method', 'ortho'); if ~isfield(cfg, 'anaparameter'), if isfield(data, 'anatomy'), cfg.anaparameter = 'anatomy'; else cfg.anaparameter = []; end end % all methods cfg.funparameter = ft_getopt(cfg, 'funparameter', []); cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []); cfg.downsample = ft_getopt(cfg, 'downsample', 1); cfg.title = ft_getopt(cfg, 'title', ''); cfg.atlas = ft_getopt(cfg, 'atlas', []); cfg.marker = ft_getopt(cfg, 'marker', []); cfg.markersize = ft_getopt(cfg, 'markersize', 5); cfg.markercolor = ft_getopt(cfg, 'markercolor', [1 1 1]); % set the common defaults for the functional data cfg.funcolormap = ft_getopt(cfg, 'funcolormap', 'auto'); cfg.funcolorlim = ft_getopt(cfg, 'funcolorlim', 'auto'); % set the common defaults for the statistical data cfg.opacitymap = ft_getopt(cfg, 'opacitymap', 'auto'); cfg.opacitylim = ft_getopt(cfg, 'opacitylim', 'auto'); cfg.roi = ft_getopt(cfg, 'roi', []); % set the defaults per method % ortho cfg.location = ft_getopt(cfg, 'location', 'auto'); cfg.locationcoordinates = ft_getopt(cfg, 'locationcoordinates', 'head'); cfg.crosshair = ft_getopt(cfg, 'crosshair', 'yes'); cfg.colorbar = ft_getopt(cfg, 'colorbar', 'yes'); cfg.axis = ft_getopt(cfg, 'axis', 'on'); cfg.interactive = ft_getopt(cfg, 'interactive', 'no'); cfg.queryrange = ft_getopt(cfg, 'queryrange', 3); cfg.coordsys = ft_getopt(cfg, 'coordsys', []); cfg.units = ft_getopt(cfg, 'units', []); if isfield(cfg, 'TTlookup'), error('TTlookup is old; now specify cfg.atlas, see help!'); end % slice cfg.nslices = ft_getopt(cfg, 'nslices', 20); cfg.slicedim = ft_getopt(cfg, 'slicedim', 3); cfg.slicerange = ft_getopt(cfg, 'slicerange', 'auto'); % surface cfg.downsample = ft_getopt(cfg, 'downsample', 1); cfg.surfdownsample = ft_getopt(cfg, 'surfdownsample', 1); cfg.surffile = ft_getopt(cfg, 'surffile', 'single_subj_T1.mat');% use a triangulation that corresponds with the collin27 anatomical template in MNI coordinates cfg.surfinflated = ft_getopt(cfg, 'surfinflated', []); cfg.sphereradius = ft_getopt(cfg, 'sphereradius', []); cfg.projvec = ft_getopt(cfg, 'projvec', 1); cfg.projweight = ft_getopt(cfg, 'projweight', ones(size(cfg.projvec))); cfg.projcomb = ft_getopt(cfg, 'projcomb', 'mean'); %or max cfg.projthresh = ft_getopt(cfg, 'projthresh', []); cfg.distmat = ft_getopt(cfg, 'distmat', []); cfg.camlight = ft_getopt(cfg, 'camlight', 'yes'); cfg.renderer = ft_getopt(cfg, 'renderer', 'opengl'); if isequal(cfg.method,'surface') if ~isfield(cfg, 'projmethod'), error('specify cfg.projmethod'); end end % for backward compatibility if strcmp(cfg.location, 'interactive') cfg.location = 'auto'; cfg.interactive = 'yes'; end %%%%%%% if ischar(data) % read the anatomical MRI data from file filename = data; fprintf('reading MRI from file\n'); data = ft_read_mri(filename); end % check if the input data is valid for this function data = ft_checkdata(data, 'datatype', 'volume', 'feedback', 'yes'); % ensure that the data has interpretable spatial units if ~isfield(data, 'unit') && ~isempty(cfg.units) data.unit = cfg.units; elseif ~isfield(data, 'unit') && isempty(cfg.units) data = ft_convert_units(data); elseif isfield(data, 'unit') && ~isempty(cfg.units) data = ft_convert_units(data, cfg.units); elseif isfield(data, 'unit') && isempty(cfg.units) % nothing to do end % ensure that the data has an interpretable coordinate system if ~isfield(data, 'coordsys') && ~isempty(cfg.coordsys) data.coordsys = cfg.coordsys; elseif ~isfield(data, 'coordsys') && isempty(cfg.coordsys) && ~isempty(cfg.atlas) % only needed if an atlas was specified for volumelookup data = ft_convert_coordsys(data); elseif isfield(data, 'coordsys') && ~isempty(cfg.coordsys) && ~isempty(cfg.atlas) % only needed if an atlas was specified for volumelookup data = ft_convert_coordsys(data, cfg.units); elseif isfield(data, 'coordsys') && isempty(cfg.coordsys) % nothing to do end % select the functional and the mask parameter cfg.funparameter = parameterselection(cfg.funparameter, data); cfg.maskparameter = parameterselection(cfg.maskparameter, data); % only a single parameter should be selected try, cfg.funparameter = cfg.funparameter{1}; end try, cfg.maskparameter = cfg.maskparameter{1}; end % downsample all volumes tmpcfg = []; tmpcfg.parameter = {cfg.funparameter, cfg.maskparameter, cfg.anaparameter}; tmpcfg.downsample = cfg.downsample; data = ft_volumedownsample(tmpcfg, data); %%% make the local variables: dim = data.dim; hasatlas = ~isempty(cfg.atlas); if hasatlas % initialize the atlas [p, f, x] = fileparts(cfg.atlas); fprintf(['reading ', f,' atlas coordinates and labels\n']); atlas = ft_prepare_atlas(cfg.atlas); end hasroi = ~isempty(cfg.roi); if hasroi if ~hasatlas error('specify cfg.atlas which belongs to cfg.roi') else % get the mask tmpcfg = []; tmpcfg.roi = cfg.roi; tmpcfg.atlas = cfg.atlas; tmpcfg.coordsys = cfg.coordsys; roi = ft_volumelookup(tmpcfg,data); end end %%% anaparameter if isempty(cfg.anaparameter); hasana = 0; fprintf('not plotting anatomy\n'); elseif isfield(data, cfg.anaparameter) hasana = 1; ana = getsubfield(data, cfg.anaparameter); % convert integers to single precision float if neccessary if isa(ana, 'uint8') || isa(ana, 'uint16') || isa(ana, 'int8') || isa(ana, 'int16') fprintf('converting anatomy to double\n'); ana = double(ana); end else warning('do not understand cfg.anaparameter, not plotting anatomy\n') hasana = 0; end %%% funparameter % has fun? if ~isempty(cfg.funparameter) if issubfield(data, cfg.funparameter) hasfun = 1; fun = getsubfield(data, cfg.funparameter); else error('cfg.funparameter not found in data'); end else hasfun = 0; fprintf('no functional parameter\n'); end % handle fun if hasfun && issubfield(data, 'dimord') && strcmp(data.dimord(end-2:end),'rgb') % treat functional data as rgb values if any(fun(:)>1 | fun(:)<0) %scale tmpdim = size(fun); nvox = prod(tmpdim(1:end-1)); tmpfun = reshape(fun,[nvox tmpdim(end)]); m1 = max(tmpfun,[],1); m2 = min(tmpfun,[],1); tmpfun = (tmpfun-m2(ones(nvox,1),:))./(m1(ones(nvox,1),:)-m2(ones(nvox,1),:)); fun = reshape(tmpfun, tmpdim); end qi = 1; hasfreq = 0; hastime = 0; doimage = 1; fcolmin = 0; fcolmax = 1; elseif hasfun % determine scaling min and max (fcolmin fcolmax) and funcolormap if ~isa(fun, 'logical') funmin = min(fun(:)); funmax = max(fun(:)); else funmin = 0; funmax = 1; end % smart lims: make from auto other string if isequal(cfg.funcolorlim,'auto') if sign(funmin)>-1 && sign(funmax)>-1 cfg.funcolorlim = 'zeromax'; elseif sign(funmin)<1 && sign(funmax)<1 cfg.funcolorlim = 'minzero'; else cfg.funcolorlim = 'maxabs'; end end if ischar(cfg.funcolorlim) % limits are given as string if isequal(cfg.funcolorlim,'maxabs') fcolmin = -max(abs([funmin,funmax])); fcolmax = max(abs([funmin,funmax])); if isequal(cfg.funcolormap,'auto'); cfg.funcolormap = 'jet'; end; elseif isequal(cfg.funcolorlim,'zeromax') fcolmin = 0; fcolmax = funmax; if isequal(cfg.funcolormap,'auto'); cfg.funcolormap = 'hot'; end; elseif isequal(cfg.funcolorlim,'minzero') fcolmin = funmin; fcolmax = 0; if isequal(cfg.funcolormap,'auto'); cfg.funcolormap = 'cool'; end; else error('do not understand cfg.funcolorlim'); end else % limits are numeric fcolmin = cfg.funcolorlim(1); fcolmax = cfg.funcolorlim(2); % smart colormap if isequal(cfg.funcolormap,'auto') if sign(fcolmin) == -1 && sign(fcolmax) == 1 cfg.funcolormap = 'jet'; else if fcolmin < 0 cfg.funcolormap = 'cool'; else cfg.funcolormap = 'hot'; end end end end %if ischar clear funmin funmax; % ensure that the functional data is real if ~isreal(fun) fprintf('taking absolute value of complex data\n'); fun = abs(fun); end %what if fun is 4D? if ndims(fun)>3, if isfield(data, 'time') && isfield(data, 'freq'), %data contains timefrequency representation qi = [1 1]; hasfreq = 1; hastime = 1; elseif isfield(data, 'time') %data contains evoked field qi = 1; hasfreq = 0; hastime = 1; elseif isfield(data, 'freq') %data contains frequency spectra qi = 1; hasfreq = 1; hastime = 0; end else %do nothing qi = 1; hasfreq = 0; hastime = 0; end doimage = 0; else qi = 1; hasfreq = 0; hastime = 0; doimage = 0; end % handle fun %%% maskparameter % has mask? if ~isempty(cfg.maskparameter) if issubfield(data, cfg.maskparameter) if ~hasfun error('you can not have a mask without functional data') else hasmsk = 1; msk = getsubfield(data, cfg.maskparameter); if islogical(msk) %otherwise sign() not posible msk = double(msk); end end else error('cfg.maskparameter not found in data'); end else hasmsk = 0; fprintf('no masking parameter\n'); end % handle mask if hasmsk % determine scaling and opacitymap mskmin = min(msk(:)); mskmax = max(msk(:)); % determine the opacity limits and the opacity map % smart lims: make from auto other string, or equal to funcolorlim if funparameter == maskparameter if isequal(cfg.opacitylim,'auto') if isequal(cfg.funparameter,cfg.maskparameter) cfg.opacitylim = cfg.funcolorlim; else if sign(mskmin)>-1 && sign(mskmax)>-1 cfg.opacitylim = 'zeromax'; elseif sign(mskmin)<1 && sign(mskmax)<1 cfg.opacitylim = 'minzero'; else cfg.opacitylim = 'maxabs'; end end end if ischar(cfg.opacitylim) % limits are given as string switch cfg.opacitylim case 'zeromax' opacmin = 0; opacmax = mskmax; if isequal(cfg.opacitymap,'auto'), cfg.opacitymap = 'rampup'; end; case 'minzero' opacmin = mskmin; opacmax = 0; if isequal(cfg.opacitymap,'auto'), cfg.opacitymap = 'rampdown'; end; case 'maxabs' opacmin = -max(abs([mskmin, mskmax])); opacmax = max(abs([mskmin, mskmax])); if isequal(cfg.opacitymap,'auto'), cfg.opacitymap = 'vdown'; end; otherwise error('incorrect specification of cfg.opacitylim'); end % switch opacitylim else % limits are numeric opacmin = cfg.opacitylim(1); opacmax = cfg.opacitylim(2); if isequal(cfg.opacitymap,'auto') if sign(opacmin)>-1 && sign(opacmax)>-1 cfg.opacitymap = 'rampup'; elseif sign(opacmin)<1 && sign(opacmax)<1 cfg.opacitymap = 'rampdown'; else cfg.opacitymap = 'vdown'; end end end % handling opacitylim and opacitymap clear mskmin mskmax; end % prevent outside fun from being plotted if hasfun && isfield(data,'inside') && ~hasmsk hasmsk = 1; msk = zeros(dim); cfg.opacitymap = 'rampup'; opacmin = 0; opacmax = 1; % make intelligent mask if isequal(cfg.method,'surface') msk(data.inside) = 1; else if hasana msk(data.inside) = 0.5; %so anatomy is visible else msk(data.inside) = 1; end end end % if region of interest is specified, mask everything besides roi if hasfun && hasroi && ~hasmsk hasmsk = 1; msk = roi; cfg.opacitymap = 'rampup'; opacmin = 0; opacmax = 1; elseif hasfun && hasroi && hasmsk msk = roi .* msk; elseif hasroi error('you can not have a roi without functional data') end %%% set color and opacity mapping for this figure if hasfun cfg.funcolormap = colormap(cfg.funcolormap); colormap(cfg.funcolormap); end if hasmsk cfg.opacitymap = alphamap(cfg.opacitymap); alphamap(cfg.opacitymap); end %%% determine what has to be plotted, depends on method if isequal(cfg.method,'ortho') if ~ischar(cfg.location) if strcmp(cfg.locationcoordinates, 'head') % convert the headcoordinates location into voxel coordinates loc = inv(data.transform) * [cfg.location(:); 1]; loc = round(loc(1:3)); elseif strcmp(cfg.locationcoordinates, 'voxel') % the location is already in voxel coordinates loc = round(cfg.location(1:3)); else error('you should specify cfg.locationcoordinates'); end else if isequal(cfg.location,'auto') if hasfun if isequal(cfg.funcolorlim,'maxabs'); loc = 'max'; elseif isequal(cfg.funcolorlim, 'zeromax'); loc = 'max'; elseif isequal(cfg.funcolorlim, 'minzero'); loc = 'min'; else %if numerical loc = 'max'; end else loc = 'center'; end; else loc = cfg.location; end end % determine the initial intersection of the cursor (xi yi zi) if ischar(loc) && strcmp(loc, 'min') if isempty(cfg.funparameter) error('cfg.location is min, but no functional parameter specified'); end [minval, minindx] = min(fun(:)); [xi, yi, zi] = ind2sub(dim, minindx); elseif ischar(loc) && strcmp(loc, 'max') if isempty(cfg.funparameter) error('cfg.location is max, but no functional parameter specified'); end [maxval, maxindx] = max(fun(:)); [xi, yi, zi] = ind2sub(dim, maxindx); elseif ischar(loc) && strcmp(loc, 'center') xi = round(dim(1)/2); yi = round(dim(2)/2); zi = round(dim(3)/2); elseif ~ischar(loc) % using nearest instead of round ensures that the position remains within the volume xi = nearest(1:dim(1), loc(1)); yi = nearest(1:dim(2), loc(2)); zi = nearest(1:dim(3), loc(3)); end %% do the actual plotting %% nas = []; lpa = []; rpa = []; interactive_flag = 1; % it happens at least once while(interactive_flag) interactive_flag = strcmp(cfg.interactive, 'yes'); xi = round(xi); xi = max(xi, 1); xi = min(xi, dim(1)); yi = round(yi); yi = max(yi, 1); yi = min(yi, dim(2)); zi = round(zi); zi = max(zi, 1); zi = min(zi, dim(3)); if interactive_flag fprintf('\n'); fprintf('click with mouse button to reposition the cursor\n'); fprintf('press n/l/r on keyboard to record a fiducial position\n'); fprintf('press q on keyboard to quit interactive mode\n'); end ijk = [xi yi zi 1]'; xyz = data.transform * ijk; % construct a string with user feedback str = sprintf('voxel %d, indices [%d %d %d]', sub2ind(dim(1:3), xi, yi, zi), ijk(1:3)); if isfield(data, 'coordsys') && isfield(data, 'unit') str = sprintf('%s, %s coordinates [%.1f %.1f %.1f] %s', str, data.coordsys, xyz(1:3), data.unit); elseif ~isfield(data, 'coordsys') && isfield(data, 'unit') str = sprintf('%s, location [%.1f %.1f %.1f] %s', str, xyz(1:3), data.unit); elseif isfield(data, 'coordsys') && ~isfield(data, 'unit') str = sprintf('%s, %s coordinates [%.1f %.1f %.1f]', str, data.coordsys, xyz(1:3)); elseif ~isfield(data, 'coordsys') && ~isfield(data, 'unis') str = sprintf('%s, location [%.1f %.1f %.1f]', str, xyz(1:3)); end if hasfreq && hastime, str = sprintf('%s, %.1f s, %.1f Hz', str, qi(1), qi(2)); elseif ~hasfreq && hastime, str = sprintf('%s, %.1f s', str, qi(1)); elseif hasfreq && ~hastime, str = sprintf('%s, %.1f Hz', str, qi(1)); end if hasfun if ~hasfreq && ~hastime val = fun(xi, yi, zi); elseif ~hasfreq && hastime val = fun(xi, yi, zi, qi); elseif hasfreq && ~hastime val = fun(xi, yi, zi, qi); elseif hasfreq && hastime val = fun(xi, yi, zi, qi(1), qi(2)); end str = sprintf('%s, value %f', str, val); end fprintf('%s\n', str); if hasatlas % determine the anatomical label of the current position lab = atlas_lookup(atlas, (xyz(1:3)), 'inputcoord', data.coordsys, 'queryrange', cfg.queryrange); if isempty(lab) fprintf([f,' labels: not found\n']); else fprintf([f,' labels: ']) fprintf('%s', lab{1}); for i=2:length(lab) fprintf(', %s', lab{i}); end fprintf('\n'); end end % make vols and scales, containes volumes to be plotted (fun, ana, msk) vols = {}; if hasana; vols{1} = ana; scales{1} = []; end; % needed when only plotting ana if hasfun; vols{2} = fun; scales{2} = [fcolmin fcolmax]; end; if hasmsk; vols{3} = msk; scales{3} = [opacmin opacmax]; end; if isempty(vols) % this seems to be a problem that people often have error('no anatomy is present and no functional data is selected, please check your cfg.funparameter'); end h1 = subplot(2,2,1); [vols2D] = handle_ortho(vols, [xi yi zi qi], 2, dim, doimage); plot2D(vols2D, scales, doimage); xlabel('i'); ylabel('k'); axis(cfg.axis); if strcmp(cfg.crosshair, 'yes'), crosshair([xi zi]); end h2 = subplot(2,2,2); [vols2D] = handle_ortho(vols, [xi yi zi qi], 1, dim, doimage); plot2D(vols2D, scales, doimage); xlabel('j'); ylabel('k'); axis(cfg.axis); if strcmp(cfg.crosshair, 'yes'), crosshair([yi zi]); end h3 = subplot(2,2,3); [vols2D] = handle_ortho(vols, [xi yi zi qi], 3, dim, doimage); plot2D(vols2D, scales, doimage); xlabel('i'); ylabel('j'); axis(cfg.axis); if strcmp(cfg.crosshair, 'yes'), crosshair([xi yi]); end if hasfreq && hastime && hasfun, h=subplot(2,2,4); %uimagesc(data.time, data.freq, squeeze(vols{2}(xi,yi,zi,:,:))');axis xy; tmpdat = double(squeeze(vols{2}(xi,yi,zi,:,:))); pcolor(double(data.time), double(data.freq), double(squeeze(vols{2}(xi,yi,zi,:,:)))); shading('interp'); xlabel('time'); ylabel('freq'); try caxis([-1 1].*max(abs(caxis))); end colorbar; %caxis([fcolmin fcolmax]); %set(gca, 'Visible', 'off'); elseif hasfreq && hasfun, subplot(2,2,4); plot(data.freq, squeeze(vols{2}(xi,yi,zi,:))); xlabel('freq'); axis([data.freq(1) data.freq(end) scales{2}]); elseif hastime && hasfun, subplot(2,2,4); plot(data.time, squeeze(vols{2}(xi,yi,zi,:))); xlabel('time'); axis([data.time(1) data.time(end) scales{2}]); elseif strcmp(cfg.colorbar, 'yes'), if hasfun % vectorcolorbar = linspace(fcolmin, fcolmax,length(cfg.funcolormap)); % imagesc(vectorcolorbar,1,vectorcolorbar);colormap(cfg.funcolormap); subplot(2,2,4); % use a normal Matlab colorbar, attach it to the invisible 4th subplot try caxis([fcolmin fcolmax]); end hc = colorbar; try set(hc, 'YLim', [fcolmin fcolmax]); end set(gca, 'Visible', 'off'); else warning('no colorbar possible without functional data') end end set(gcf, 'renderer', cfg.renderer); % ensure that this is done in interactive mode drawnow; if interactive_flag try [d1, d2, key] = ginput(1); catch % this happens if the figure is closed key='q'; end if isempty(key) % this happens if you press the apple key key = ''; end switch key case '' % do nothing case 'q' break; case 'l' lpa = [xi yi zi]; case 'r' rpa = [xi yi zi]; case 'n' nas = [xi yi zi]; case {'i' 'j''k' 'm'} % update the view to a new position if l1=='i' && l2=='k' && key=='i', zi = zi+1; elseif l1=='i' && l2=='k' && key=='j', xi = xi-1; elseif l1=='i' && l2=='k' && key=='k', xi = xi+1; elseif l1=='i' && l2=='k' && key=='m', zi = zi-1; elseif l1=='i' && l2=='j' && key=='i', yi = yi+1; elseif l1=='i' && l2=='j' && key=='j', xi = xi-1; elseif l1=='i' && l2=='j' && key=='k', xi = xi+1; elseif l1=='i' && l2=='j' && key=='m', yi = yi-1; elseif l1=='j' && l2=='k' && key=='i', zi = zi+1; elseif l1=='j' && l2=='k' && key=='j', yi = yi-1; elseif l1=='j' && l2=='k' && key=='k', yi = yi+1; elseif l1=='j' && l2=='k' && key=='m', zi = zi-1; end; otherwise % update the view to a new position l1 = get(get(gca, 'xlabel'), 'string'); l2 = get(get(gca, 'ylabel'), 'string'); switch l1, case 'i' xi = d1; case 'j' yi = d1; case 'k' zi = d1; case 'freq' qi = nearest(data.freq,d1); case 'time' qi = nearest(data.time,d1); end switch l2, case 'i' xi = d2; case 'j' yi = d2; case 'k' zi = d2; case 'freq' qi = [nearest(data.freq,d2) qi(1)]; end end % switch key end % if interactive_flag if ~isempty(nas), fprintf('nas = [%f %f %f]\n', nas); cfg.fiducial.nas = nas; else fprintf('nas = undefined\n'); end if ~isempty(lpa), fprintf('lpa = [%f %f %f]\n', lpa); cfg.fiducial.lpa = lpa; else fprintf('lpa = undefined\n'); end if ~isempty(rpa), fprintf('rpa = [%f %f %f]\n', rpa); cfg.fiducial.rpa = rpa; else fprintf('rpa = undefined\n'); end end % while interactive_flag elseif isequal(cfg.method,'glassbrain') tmpcfg = []; tmpcfg.funparameter = cfg.funparameter; tmpcfg.method = 'ortho'; tmpcfg.location = [1 1 1]; tmpcfg.funcolorlim = cfg.funcolorlim; tmpcfg.funcolormap = cfg.funcolormap; tmpcfg.opacitylim = cfg.opacitylim; tmpcfg.locationcoordinates = 'voxel'; tmpcfg.maskparameter = 'inside'; tmpcfg.axis = cfg.axis; tmpcfg.renderer = cfg.renderer; if hasfun, fun = getsubfield(data, cfg.funparameter); fun(1,:,:) = max(fun, [], 1); fun(:,1,:) = max(fun, [], 2); fun(:,:,1) = max(fun, [], 3); data = setsubfield(data, cfg.funparameter, fun); end if hasana, ana = getsubfield(data, cfg.anaparameter); %ana(1,:,:) = max(ana, [], 1); %ana(:,1,:) = max(ana, [], 2); %ana(:,:,1) = max(ana, [], 3); data = setsubfield(data, cfg.anaparameter, ana); end if hasmsk, msk = getsubfield(data, 'inside'); msk(1,:,:) = squeeze(fun(1,:,:))>0 & imfill(abs(squeeze(ana(1,:,:))-1))>0; msk(:,1,:) = squeeze(fun(:,1,:))>0 & imfill(abs(squeeze(ana(:,1,:))-1))>0; msk(:,:,1) = squeeze(fun(:,:,1))>0 & imfill(abs(ana(:,:,1)-1))>0; data = setsubfield(data, 'inside', msk); end ft_sourceplot(tmpcfg, data); elseif isequal(cfg.method,'surface') % read the triangulated cortical surface from file tmp = load(cfg.surffile, 'bnd'); surf = tmp.bnd; if isfield(surf, 'transform'), % compute the surface vertices in head coordinates surf.pnt = warp_apply(surf.transform, surf.pnt); end % downsample the cortical surface if cfg.surfdownsample > 1 if ~isempty(cfg.surfinflated) error('downsampling the surface is not possible in combination with an inflated surface'); end fprintf('downsampling surface from %d vertices\n', size(surf.pnt,1)); [surf.tri, surf.pnt] = reducepatch(surf.tri, surf.pnt, 1/cfg.surfdownsample); end % these are required if ~isfield(data, 'inside') data.inside = true(dim); end fprintf('%d voxels in functional data\n', prod(dim)); fprintf('%d vertices in cortical surface\n', size(surf.pnt,1)); if (hasfun && strcmp(cfg.projmethod,'project')), val=zeros(size(surf.pnt,1),1); if hasmsk maskval = val; end; %convert projvec in mm to a factor, assume mean distance of 70mm cfg.projvec=(70-cfg.projvec)/70; for iproj = 1:length(cfg.projvec), sub = round(warp_apply(inv(data.transform), surf.pnt*cfg.projvec(iproj), 'homogenous')); % express sub(sub(:)<1) = 1; sub(sub(:,1)>dim(1),1) = dim(1); sub(sub(:,2)>dim(2),2) = dim(2); sub(sub(:,3)>dim(3),3) = dim(3); disp('projecting...') ind = sub2ind(dim, sub(:,1), sub(:,2), sub(:,3)); if strcmp(cfg.projcomb,'mean') val = val + cfg.projweight(iproj) * fun(ind); if hasmsk maskval = maskval + cfg.projweight(iproj) * msk(ind); end elseif strcmp(cfg.projcomb,'max') val = max([val cfg.projweight(iproj) * fun(ind)],[],2); tmp2 = min([val cfg.projweight(iproj) * fun(ind)],[],2); fi = find(val < max(tmp2)); val(fi) = tmp2(fi); if hasmsk maskval = max(abs([maskval cfg.projweight(iproj) * fun(ind)]),[],2); end else error('undefined method to combine projections; use cfg.projcomb= mean or max') end end if strcmp(cfg.projcomb,'mean'), val=val/length(cfg.projvec); if hasmsk maskval = max(abs([maskval cfg.projweight(iproj) * fun(ind)]),[],2); end end; if ~isempty(cfg.projthresh), mm=max(abs(val(:))); maskval(abs(val) < cfg.projthresh*mm) = 0; end end if (hasfun && ~strcmp(cfg.projmethod,'project')), [interpmat, cfg.distmat] = interp_gridded(data.transform, fun, surf.pnt, 'projmethod', cfg.projmethod, 'distmat', cfg.distmat, 'sphereradius', cfg.sphereradius, 'inside', data.inside); % interpolate the functional data val = interpmat * fun(data.inside(:)); end; if (hasmsk && ~strcmp(cfg.projmethod,'project')), % also interpolate the opacity mask maskval = interpmat * msk(data.inside(:)); end if ~isempty(cfg.surfinflated) % read the inflated triangulated cortical surface from file tmp = load(cfg.surfinflated, 'bnd'); surf = tmp.bnd; if isfield(surf, 'transform'), % compute the surface vertices in head coordinates surf.pnt = warp_apply(surf.transform, surf.pnt); end end %------do the plotting cortex_light = [0.781 0.762 0.664]; cortex_dark = [0.781 0.762 0.664]/2; if isfield(surf, 'curv') % the curvature determines the color of gyri and sulci color = surf.curv(:) * cortex_light + (1-surf.curv(:)) * cortex_dark; else color = repmat(cortex_light, size(surf.pnt,1), 1); end h1 = patch('Vertices', surf.pnt, 'Faces', surf.tri, 'FaceVertexCData', color , 'FaceColor', 'interp'); set(h1, 'EdgeColor', 'none'); axis off; axis vis3d; axis equal; h2 = patch('Vertices', surf.pnt, 'Faces', surf.tri, 'FaceVertexCData', val , 'FaceColor', 'interp'); set(h2, 'EdgeColor', 'none'); if hasmsk set(h2, 'FaceVertexAlphaData', maskval); set(h2, 'FaceAlpha', 'interp'); set(h2, 'AlphaDataMapping', 'scaled'); try alim(gca, [opacmin opacmax]); end end try caxis(gca,[fcolmin fcolmax]); end lighting gouraud if hasfun colormap(cfg.funcolormap); end if hasmsk alphamap(cfg.opacitymap); end if strcmp(cfg.camlight,'yes') camlight end if strcmp(cfg.colorbar, 'yes'), if hasfun % use a normal Matlab colorbar hc = colorbar; set(hc, 'YLim', [fcolmin fcolmax]); else warning('no colorbar possible without functional data') end end elseif isequal(cfg.method,'slice') % white BG => mskana %% TODO: HERE THE FUNCTION THAT MAKES TO SLICE DIMENSION ALWAYS THE THIRD %% DIMENSION, AND ALSO KEEP TRANSFORMATION MATRIX UP TO DATE % zoiets %if hasana; ana = shiftdim(ana,cfg.slicedim-1); end; %if hasfun; fun = shiftdim(fun,cfg.slicedim-1); end; %if hasmsk; msk = shiftdim(msk,cfg.slicedim-1); end; %%%%% select slices if ~ischar(cfg.slicerange) ind_fslice = cfg.slicerange(1); ind_lslice = cfg.slicerange(2); elseif isequal(cfg.slicerange, 'auto') if hasfun %default if isfield(data,'inside') ind_fslice = min(find(max(max(data.inside,[],1),[],2))); ind_lslice = max(find(max(max(data.inside,[],1),[],2))); else ind_fslice = min(find(~isnan(max(max(fun,[],1),[],2)))); ind_lslice = max(find(~isnan(max(max(fun,[],1),[],2)))); end elseif hasana %if only ana, no fun ind_fslice = min(find(max(max(ana,[],1),[],2))); ind_lslice = max(find(max(max(ana,[],1),[],2))); else error('no functional parameter and no anatomical parameter, can not plot'); end else error('do not understand cfg.slicerange'); end ind_allslice = linspace(ind_fslice,ind_lslice,cfg.nslices); ind_allslice = round(ind_allslice); % make new ana, fun, msk, mskana with only the slices that will be plotted (slice dim is always third dimension) if hasana; new_ana = ana(:,:,ind_allslice); clear ana; ana=new_ana; clear new_ana; end; if hasfun; new_fun = fun(:,:,ind_allslice); clear fun; fun=new_fun; clear new_fun; end; if hasmsk; new_msk = msk(:,:,ind_allslice); clear msk; msk=new_msk; clear new_msk; end; %if hasmskana; new_mskana = mskana(:,:,ind_allslice); clear mskana; mskana=new_mskana; clear new_mskana; end; % update the dimensions of the volume if hasana; dim=size(ana); else dim=size(fun); end; %%%%% make "quilts", that contain all slices on 2D patched sheet % Number of patches along sides of Quilt (M and N) % Size (in voxels) of side of patches of Quilt (m and n) m = dim(1); n = dim(2); M = ceil(sqrt(dim(3))); N = ceil(sqrt(dim(3))); num_patch = N*M; if cfg.slicedim~=3 error('only supported for slicedim=3'); end num_slice = (dim(cfg.slicedim)); num_empt = num_patch-num_slice; % put empty slides on ana, fun, msk, mskana to fill Quilt up if hasana; ana(:,:,end+1:num_patch)=0; end; if hasfun; fun(:,:,end+1:num_patch)=0; end; if hasmsk; msk(:,:,end+1:num_patch)=0; end; %if hasmskana; mskana(:,:,end:num_patch)=0; end; % put the slices in the quilt for iSlice = 1:num_slice xbeg = floor((iSlice-1)./M); ybeg = mod(iSlice-1, M); if hasana quilt_ana(ybeg.*m+1:(ybeg+1).*m, xbeg.*n+1:(xbeg+1).*n)=squeeze(ana(:,:,iSlice)); end if hasfun quilt_fun(ybeg.*m+1:(ybeg+1).*m, xbeg.*n+1:(xbeg+1).*n)=squeeze(fun(:,:,iSlice)); end if hasmsk quilt_msk(ybeg.*m+1:(ybeg+1).*m, xbeg.*n+1:(xbeg+1).*n)=squeeze(msk(:,:,iSlice)); end % if hasmskana % quilt_mskana(ybeg.*m+1:(ybeg+1).*m, xbeg.*n+1:(xbeg+1).*n)=squeeze(mskana(:,:,iSlice)); % end end % make vols and scales, containes volumes to be plotted (fun, ana, msk) %added ingnie if hasana; vols2D{1} = quilt_ana; scales{1} = []; end; % needed when only plotting ana if hasfun; vols2D{2} = quilt_fun; scales{2} = [fcolmin fcolmax]; end; if hasmsk; vols2D{3} = quilt_msk; scales{3} = [opacmin opacmax]; end; plot2D(vols2D, scales, doimage); axis off if strcmp(cfg.colorbar, 'yes'), if hasfun % use a normal Matlab coorbar hc = colorbar; set(hc, 'YLim', [fcolmin fcolmax]); else warning('no colorbar possible without functional data') end end end title(cfg.title); set(gcf, 'renderer', cfg.renderer); % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % handle_ortho makes an overlay of 3D anatomical, functional and probability % volumes. The three volumes must be scaled between 0 and 1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [vols2D] = handle_ortho(vols, indx, slicedir, dim, doimage) % put 2Dvolumes in fun, ana and msk if length(vols)>=1 && isempty(vols{1}); hasana=0; else ana=vols{1}; hasana=1; end; if length(vols)>=2 if isempty(vols{2}); hasfun=0; else fun=vols{2}; hasfun=1; end; else hasfun=0; end if length(vols)>=3 if isempty(vols{3}); hasmsk=0; else msk=vols{3}; hasmsk=1; end; else hasmsk=0; end % select the indices of the intersection xi = indx(1); yi = indx(2); zi = indx(3); qi = indx(4); if length(indx)>4, qi(2) = indx(5); else qi(2) = 1; end % select the slice to plot if slicedir==1 yi = 1:dim(2); zi = 1:dim(3); elseif slicedir==2 xi = 1:dim(1); zi = 1:dim(3); elseif slicedir==3 xi = 1:dim(1); yi = 1:dim(2); end % cut out the slice of interest if hasana; ana = squeeze(ana(xi,yi,zi)); end; if hasfun; if doimage fun = squeeze(fun(xi,yi,zi,:)); else fun = squeeze(fun(xi,yi,zi,qi(1),qi(2))); end end if hasmsk && length(size(msk))>3 msk = squeeze(msk(xi,yi,zi,qi(1),qi(2))); elseif hasmsk msk = squeeze(msk(xi,yi,zi)); end; %put fun, ana and msk in vols2D if hasana; vols2D{1} = ana; end; if hasfun; vols2D{2} = fun; end; if hasmsk; vols2D{3} = msk; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plot2D plots a two dimensional plot, used in ortho and slice %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plot2D(vols2D, scales, doimage); cla; % put 2D volumes in fun, ana and msk hasana = length(vols2D)>0 && ~isempty(vols2D{1}); hasfun = length(vols2D)>1 && ~isempty(vols2D{2}); hasmsk = length(vols2D)>2 && ~isempty(vols2D{3}); % the transpose is needed for displaying the matrix using the Matlab image() function if hasana; ana = vols2D{1}'; end; if hasfun && ~doimage; fun = vols2D{2}'; end; if hasfun && doimage; fun = permute(vols2D{2},[2 1 3]); end; if hasmsk; msk = vols2D{3}'; end; if hasana % scale anatomy between 0 and 1 fprintf('scaling anatomy\n'); amin = min(ana(:)); amax = max(ana(:)); ana = (ana-amin)./(amax-amin); clear amin amax; % convert anatomy into RGB values ana = cat(3, ana, ana, ana); ha = imagesc(ana); end hold on if hasfun if doimage hf = image(fun); else hf = imagesc(fun); try caxis(scales{2}); end % apply the opacity mask to the functional data if hasmsk % set the opacity set(hf, 'AlphaData', msk) set(hf, 'AlphaDataMapping', 'scaled') try alim(scales{3}); end elseif hasana set(hf, 'AlphaData', 0.5) end end end axis equal axis tight axis xy
github
philippboehmsturm/antx-master
ft_spike_rate.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_rate.m
9,725
utf_8
fae9529146eb80f86cd4594d1ba8325a
function [rate] = ft_spike_rate(cfg,spike) % FT_SPIKE_RATE computes the firing rate of spiketrains and their variance % % Use as % [RATE] = FT_SPIKE_RATE(CFG,SPIKE) % % The input SPIKE should be organised as: % The SPIKE datatype, obtained from FT_SPIKE_DATA2SPIKE or % FT_SPIKE_MAKETRIALS. % % Configurations options: % % cfg.outputunit = - 'rate' (default) If 'rate', we convert the % output per trial to firing rates (spikes/sec). % - 'spike': we count the number spikes per trial. % cfg.spikechannel = See FT_CHANNELSELECTION for details % cfg.trials = - vector of indices (e.g., 1:2:10) % - logical selection of trials (e.g., [1010101010]) % - 'all' (default), selects all trials% cfg.trials % cfg.vartriallen = 'yes' (default) or 'no'. % If 'yes' - accept variable trial lengths and use all available trials % and the samples in every trial. % If 'no' - only select those trials that fully cover the window as % specified by cfg.latency and discard those trials that do not. % cfg.latency = - [begin end] in seconds % - 'maxperiod' (default) % - 'minperiod', i.e., the minimal period all trials share % - 'prestim' (all t<=0) % - 'poststim' (all t>=0). % cfg.keeptrials = 'yes' or 'no' (default). % % The outputs from spike are the following: % - rate.trial: nTrials x nUnits matrix containing the firing rate per unit % and trial % - rate.avg: nTrials array containing the average firing rate per unit % - rate.var: nTrials array containing the variance of firing rates per unit % - rate.dof: nTrials array containing the degree of freedom per unit % - rate.label: nUnits cell array containing the labels of the neuronal units% % Copyright (C) 2010, Martin Vinck % removed covariance / correlation here since one may get it very easily with COV or % corrcoef % ADD: selection on condition % ADD: population script, for correlation - principal components - population vector if nargin~=2, error('ft:spike_rate:nargin','Two input arguments required'), end % defaults defaults.outputunit = {'rate' 'spikecount'}; defaults.spikechannel = {'all'}; defaults.trials = {'all'}; defaults.latency = {'maxperiod'}; defaults.vartriallen = {'yes' 'no'}; defaults.keeptrials = {'yes' 'no'}; cfg = ft_spike_sub_defaultcfg(cfg,defaults); % detect the format of spike, replace with CHECKDATA eventually, but that needs modification hasAllFields = all(isfield(spike, {'time', 'trial', 'trialtime', 'label'})); if ~hasAllFields, error('ft:spike_rate:wrongStructInput',... 'input spike should be struct with .time, .trial, .trialtime, .label fields') end % check whether all are of right format correctInp = iscell(spike.time) && iscell(spike.trial) && iscell(spike.label) && isrealmat(spike.trialtime) ... && size(spike.trialtime,2)==2; if ~correctInp, error('ft:spike_rate:wrongStructInput',... '.time, .trial and .label should be cell arrays, trialtime should be nTrials-by-2 matrix') end % get the spikechannels cfg.channel = ft_channelselection(cfg.spikechannel, spike.label); spikesel = match_str(spike.label, cfg.channel); nUnits = length(spikesel); % number of spike channels if nUnits==0, error('ft:spike_rate:cfg:spikechannel:noSpikeChanSelected',... 'No spikechannel selected by means of cfg.spikechannel'); end % get the number of trials cfg = trialselection(cfg,spike); nTrials = length(cfg.trials); % actual number of trials we use % determine the duration of each trial begTrialLatency = spike.trialtime(cfg.trials,1); endTrialLatency = spike.trialtime(cfg.trials,2); % select the latencies cfg = latencyselection(cfg,begTrialLatency,endTrialLatency); % check which trials will be used based on the latency overlaps = endTrialLatency>(cfg.latency(1)) & begTrialLatency<(cfg.latency(2)); hasWindow = ones(nTrials,1); if strcmp(cfg.vartriallen,'no') % only select trials that fully cover our latency window startsLater = begTrialLatency>cfg.latency(1); endsEarlier = endTrialLatency<cfg.latency(2); hasWindow = ~(startsLater | endsEarlier); % it should not start later or end earlier trialDur = ones(nTrials,1)*(cfg.latency(2)-cfg.latency(1)); elseif strcmp(cfg.vartriallen,'yes') winBeg = max([begTrialLatency(:) cfg.latency(1)*ones(nTrials,1)],[],2); winEnd = min([endTrialLatency(:) cfg.latency(2)*ones(nTrials,1)],[],2); trialDur = winEnd-winBeg; end cfg.trials = cfg.trials(overlaps(:) & hasWindow(:)); trialDur = trialDur(overlaps(:) & hasWindow(:)); % select the durations, we will need this later nTrials = length(cfg.trials); % issue an explicit error if nothing was selected, this is in general indicative of bug if isempty(cfg.trials), warning('ft:spike_rate:cfg:trials:noneSelected',... 'No trials were selected in the end, please give us something to analyse'); end % preallocate before computing the psth keepTrials = strcmp(cfg.keeptrials,'yes'); if keepTrials, singleTrials = NaN(nTrials,nUnits); end % preallocate single trials with NaNs [s,ss] = deal(zeros(nUnits,1)); dof = nTrials*ones(nUnits,1); % compute degrees of freedom for iUnit = 1:nUnits unitIndx = spikesel(iUnit); ts = spike.time{unitIndx}(:); % get the times latencySel = ts>=cfg.latency(1) & ts<=cfg.latency(2); % select timestamps within latency trialNums = spike.trial{unitIndx}(latencySel);% trial indices % use the fact that trial numbers are integers >=1 apart, so we can use histc trialBins = sort([cfg.trials-0.5; cfg.trials+0.5]); trialRate = histc(trialNums(:),trialBins); trialRate = trialRate(1:2:end-1); % the uneven bins correspond to the trial integers if isempty(trialRate), trialRate = zeros(nTrials,1); end % convert to firing rates if requested if strcmp(cfg.outputunit,'rate') ,trialRate = trialRate(:)./trialDur(:); end % store and compute sum, just fill the single trials up with nans if keepTrials, singleTrials(:,iUnit) = trialRate(:); end s(iUnit) = sum(trialRate); ss(iUnit) = sum(trialRate.^2); end % compute the average rate rate.avg = s ./ dof; rate.var = (ss - s.^2./dof)./(dof); % since sumrate.^2 ./ dof = dof .* (sumrate/dof).^2 rate.var(dof<2) = 0; % gather the rest of the results rate.dof = dof; rate.label = spike.label(spikesel); rate.dimord = 'chan'; if (strcmp(cfg.keeptrials,'yes')) rate.trial = singleTrials; rate.dimord = 'rpt_chan'; end % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; cfg.version.name = st(i); end % remember the configuration details of the input data try, cfg.previous = spike.cfg; end % remember the exact configuration details in the output rate.cfg = cfg; %%%%%%%%% SUB FUNCTIONS %%%%%%%%% function [cfg] = latencyselection(cfg,begTrialLatency,endTrialLatency) if strcmp(cfg.latency,'minperiod') cfg.latency = [max(begTrialLatency) min(endTrialLatency)]; elseif strcmp(cfg.latency,'maxperiod') cfg.latency = [min(begTrialLatency) max(endTrialLatency)]; elseif strcmp(cfg.latency,'prestim') cfg.latency = [min(begTrialLatency) 0]; elseif strcmp(cfg.latency,'poststim') cfg.latency = [0 max(endTrialLatency)]; elseif ~isrealvec(cfg.latency)||length(cfg.latency)~=2 error('ft:spike_rate:cfg:latency',... 'cfg.latency should be "max", "min", "prestim", "poststim" or 1-by-2 numerical vector'); end if cfg.latency(1)>cfg.latency(2), error('ft:spike_rate:incorrectLatencyWindow',... 'cfg.latency should be a vector in ascending order, i.e., cfg.latency(2)>cfg.latency(1)'); end % check whether the time window fits with the data if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency); warning('ft:spike_rate:incorrectLatencyWindow','%s %2.2f',... 'Correcting begin latency of averaging window to ', cfg.latency(1)); end if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency); warning('ft:spike_rate:incorrectLatencyWindow','%s %2.2f',... 'Correcting end latency of averaging window to ',cfg.latency(2)); end %%% function [cfg] = trialselection(cfg,spike) % get the number of trials or change DATA according to cfg.trials nTrials = size(spike.trialtime,1); if strcmp(cfg.trials,'all') cfg.trials = 1:nTrials; elseif islogical(cfg.trials) cfg.trials = find(cfg.trials); elseif ~isrealvec(cfg.trials); error('ft:spike_rate:cfg:trials:unknownOption',... 'cfg.trials should be logical or numerical selection or string "all"'); end cfg.trials = sort(cfg.trials(:)); if max(cfg.trials)>nTrials, error('ft:spike_rate:cfg:trials:maxExceeded',... 'maximum trial number in cfg.trials should not exceed length of DATA.trial') end if isempty(cfg.trials), error('ft:spike_rate:cfg:trials:noneSelected',... 'No trials were selected by you, rien ne va plus'); end
github
philippboehmsturm/antx-master
ft_megrealign.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_megrealign.m
18,970
utf_8
26effaa10bc2b32a00cc201f2126ce5b
function [interp] = ft_megrealign(cfg, data); % FT_MEGREALIGN interpolates MEG data towards standard gradiometer locations % by projecting the individual timelocked data towards a coarse source % reconstructed representation and computing the magnetic field on % the standard gradiometer locations. % % Use as % [interp] = ft_megrealign(cfg, data) % % Required configuration options: % cfg.template % cfg.inwardshift % % The new gradiometer definition is obtained from a template dataset, % or can be constructed by averaging the gradiometer positions over % multiple datasets. % cfg.template = single dataset that serves as template % cfg.template(1..N) = datasets that are averaged into the standard % % The realignment is done by computing a minumum current estimate using a % large number of dipoles that are placed in the upper layer of the brain % surface, followed by a forward computation towards the template % gradiometer array. This requires the specification of a volume conduction % model of the head and of a source model. % % A head model must be specified with % cfg.hdmfile = string, file containing the volume conduction model % or alternatively manually using % cfg.vol.r = radius of sphere % cfg.vol.o = [x, y, z] position of origin % % A source model (i.e. a superficial layer with distributed sources) can be % constructed from a headshape file, or from the volume conduction model % cfg.spheremesh = number of dipoles in the source layer (default = 642) % cfg.inwardshift = depth of the source layer relative to the headshape % surface or volume conduction model (no default % supplied, see below) % cfg.headshape = a filename containing headshape, a structure containing a % single triangulated boundary, or a Nx3 matrix with surface % points % % If you specify a headshape and it describes the skin surface, you should specify an % inward shift of 2.5 cm. % % For a single-sphere or a local-spheres volume conduction model based on the skin % surface, an inward shift of 2.5 cm is reasonable. % % For a single-sphere or a local-spheres volume conduction model based on the brain % surface, you should probably use an inward shift of about 1 cm. % % For a realistic single-shell volume conduction model based on the brain surface, you % should probably use an inward shift of about 1 cm. % % Other options are % cfg.pruneratio = for singular values, default is 1e-3 % cfg.verify = 'yes' or 'no', show the percentage difference (default = 'yes') % cfg.feedback = 'yes' or 'no' (default = 'no') % cfg.channel = Nx1 cell-array with selection of channels (default = 'MEG'), % see FT_CHANNELSELECTION for details % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % % This implements the method described by T.R. Knosche, Transformation % of whole-head MEG recordings between different sensor positions. % Biomed Tech (Berl). 2002 Mar;47(3):59-62. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_PREPARE_LOCALSPHERES, FT_PREPARE_SINGLESHELL % This function depends on FT_PREPARE_DIPOLE_GRID % % This function depends on FT_PREPARE_VOL_SENS which has the following options: % cfg.channel % cfg.elec % cfg.elecfile % cfg.grad % cfg.gradfile % cfg.hdmfile, documented % cfg.order % cfg.vol, documented % Copyright (C) 2004-2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_megrealign.m 3766 2011-07-04 10:44:39Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % set the default configuration if ~isfield(cfg, 'headshape'), cfg.headshape = []; end if ~isfield(cfg, 'pruneratio'), cfg.pruneratio = 1e-3; end if ~isfield(cfg, 'spheremesh'), cfg.spheremesh = 642; end if ~isfield(cfg, 'verify'), cfg.verify = 'yes'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'yes'; end if ~isfield(cfg, 'trials'), cfg.trials = 'all'; end if ~isfield(cfg, 'channel'), cfg.channel = 'MEG'; end if ~isfield(cfg, 'topoparam'), cfg.topoparam = 'rms'; end if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end % load optional given inputfile as data hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'data'); end end % store original datatype dtype = ft_datatype(data); % check if the input data is valid for this function data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes', 'hassampleinfo', 'yes', 'ismeg', 'yes'); % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'renamed', {'plot3d', 'feedback'}); cfg = ft_checkconfig(cfg, 'renamedval', {'headshape', 'headmodel', []}); cfg = ft_checkconfig(cfg, 'required', {'inwardshift', 'template'}); %do realignment per trial pertrial = all(ismember({'nasX';'nasY';'nasZ';'lpaX';'lpaY';'lpaZ';'rpaX';'rpaY';'rpaZ'}, data.label)); % put the low-level options pertaining to the dipole grid in their own field cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'}); % select trials of interest if ~strcmp(cfg.trials, 'all') fprintf('selecting %d trials\n', length(cfg.trials)); data = ft_selectdata(data, 'rpt', cfg.trials); end Ntrials = length(data.trial); % retain only the MEG channels in the data and temporarily store % the rest, these will be added back to the transformed data later. cfg.channel = ft_channelselection(cfg.channel, data.label); dataindx = match_str(data.label, cfg.channel); restindx = setdiff(1:length(data.label),dataindx); if ~isempty(restindx) fprintf('removing %d non-MEG channels from the data\n', length(restindx)); rest.label = data.label(restindx); % first remember the rest data.label = data.label(dataindx); % then reduce the data for i=1:Ntrials rest.trial{i} = data.trial{i}(restindx,:); % first remember the rest data.trial{i} = data.trial{i}(dataindx,:); % then reduce the data end else rest.label = {}; rest.trial = {}; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % construct the average template gradiometer array %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ntemplate = length(cfg.template); for i=1:Ntemplate if ischar(cfg.template{i}), fprintf('reading template sensor position from %s\n', cfg.template{i}); template(i) = ft_read_sens(cfg.template{i}); elseif isstruct(cfg.template{i}) && isfield(cfg.template{i}, 'pnt') && isfield(cfg.template{i}, 'ori') && isfield(cfg.template{i}, 'tra'), template(i) = cfg.template{i}; end end grad = ft_average_sens(template); % construct the final template gradiometer definition template = []; template.grad = grad; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % FT_PREPARE_VOL_SENS will match the data labels, the gradiometer labels and the % volume model labels (in case of a multisphere model) and result in a gradiometer % definition that only contains the gradiometers that are present in the data. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% volcfg = []; if isfield(cfg, 'hdmfile') volcfg.hdmfile = cfg.hdmfile; elseif isfield(cfg, 'vol') volcfg.vol = cfg.vol; end volcfg.grad = data.grad; volcfg.channel = data.label; % this might be a subset of the MEG channels [volold, data.grad] = prepare_headmodel(volcfg); % note that it is neccessary to keep the two volume conduction models % seperate, since the single-shell Nolte model contains gradiometer specific % precomputed parameters. Note that this is not guaranteed to result in a % good projection for local sphere models. volcfg.grad = template.grad; volcfg.channel = 'MEG'; % include all MEG channels [volnew, template.grad] = prepare_headmodel(volcfg); if strcmp(ft_senstype(data.grad), ft_senstype(template.grad)) [id, it] = match_str(data.grad.label, template.grad.label); fprintf('mean distance towards template gradiometers is %.2f %s\n', mean(sum((data.grad.pnt(id,:)-template.grad.pnt(it,:)).^2, 2).^0.5), template.grad.unit); else % the projection is from one MEG system to another MEG system, which makes a comparison of the data difficult cfg.feedback = 'no'; cfg.verify = 'no'; end % create the dipole grid on which the data will be projected tmpcfg = []; tmpcfg.vol = volold; tmpcfg.grad = data.grad; % copy all options that are potentially used in ft_prepare_sourcemodel try, tmpcfg.grid = cfg.grid; end try, tmpcfg.mri = cfg.mri; end try, tmpcfg.headshape = cfg.headshape; end try, tmpcfg.tightgrid = cfg.tightgrid; end try, tmpcfg.symmetry = cfg.symmetry; end try, tmpcfg.smooth = cfg.smooth; end try, tmpcfg.threshold = cfg.threshold; end try, tmpcfg.spheremesh = cfg.spheremesh; end try, tmpcfg.inwardshift = cfg.inwardshift; end try, tmpcfg.sourceunits = cfg.sourceunits; end [grid, tmpcfg] = ft_prepare_sourcemodel(tmpcfg); pos = grid.pos; % sometimes some of the dipole positions are nan, due to problems with the headsurface triangulation % remove them to prevent problems with the forward computation sel = find(any(isnan(pos(:,1)),2)); pos(sel,:) = []; % compute the forward model for the new gradiometer positions fprintf('computing forward model for %d dipoles\n', size(pos,1)); lfnew = ft_compute_leadfield(pos, template.grad, volnew); if ~pertrial, %this needs to be done only once lfold = ft_compute_leadfield(pos, data.grad, volold); [realign, noalign, bkalign] = computeprojection(lfold, lfnew, cfg.pruneratio, cfg.verify); else %the forward model and realignment matrices have to be computed for each trial %this also goes for the singleshell volume conductor model %x = which('rigidbodyJM'); %this function is needed %if isempty(x), % error('you are trying out experimental code for which you need some extra functionality which is currently not in the release version of fieldtrip. if you are interested in trying it out, contact jan-mathijs'); %end end % interpolate the data towards the template gradiometers for i=1:Ntrials fprintf('realigning trial %d\n', i); if pertrial, %warp the gradiometer array according to the motiontracking data sel = match_str(rest.label, {'nasX';'nasY';'nasZ';'lpaX';'lpaY';'lpaZ';'rpaX';'rpaY';'rpaZ'}); hmdat = rest.trial{i}(sel,:); if ~all(hmdat==repmat(hmdat(:,1),[1 size(hmdat,2)])) error('only one position per trial is at present allowed'); else %M = rigidbodyJM(hmdat(:,1)) M = headcoordinates(hmdat(1:3,1),hmdat(4:6,1),hmdat(7:9,1)); grad = ft_transform_sens(M, data.grad); end volcfg.grad = grad; %compute volume conductor [volold, grad] = prepare_headmodel(volcfg); %compute forward model lfold = ft_compute_leadfield(pos, grad, volold); %compute projection matrix [realign, noalign, bkalign] = computeprojection(lfold, lfnew, cfg.pruneratio, cfg.verify); end data.realign{i} = realign * data.trial{i}; if strcmp(cfg.verify, 'yes') % also compute the residual variance when interpolating [id,it] = match_str(data.grad.label, template.grad.label); rvrealign = rv(data.trial{i}(id,:), data.realign{i}(it,:)); fprintf('original -> template RV %.2f %%\n', 100 * mean(rvrealign)); datnoalign = noalign * data.trial{i}; datbkalign = bkalign * data.trial{i}; rvnoalign = rv(data.trial{i}, datnoalign); rvbkalign = rv(data.trial{i}, datbkalign); fprintf('original -> original RV %.2f %%\n', 100 * mean(rvnoalign)); fprintf('original -> template -> original RV %.2f %%\n', 100 * mean(rvbkalign)); end end % plot the topography before and after the realignment if strcmp(cfg.feedback, 'yes') warning('showing MEG topography (RMS value over time) in the first trial only'); Nchan = length(data.grad.label); [id,it] = match_str(data.grad.label, template.grad.label); pnt1 = data.grad.pnt(id,:); pnt2 = template.grad.pnt(it,:); prj1 = elproj(pnt1); tri1 = delaunay(prj1(:,1), prj1(:,2)); prj2 = elproj(pnt2); tri2 = delaunay(prj2(:,1), prj2(:,2)); switch cfg.topoparam case 'rms' p1 = sqrt(mean(data.trial{1}(id,:).^2, 2)); p2 = sqrt(mean(data.realign{1}(it,:).^2, 2)); case 'svd' [u, s, v] = svd(data.trial{1}(id,:)); p1 = u(:,1); [u, s, v] = svd(data.realign{1}(it,:)); p2 = u(:,1); otherwise error('unsupported cfg.topoparam'); end X = [pnt1(:,1) pnt2(:,1)]'; Y = [pnt1(:,2) pnt2(:,2)]'; Z = [pnt1(:,3) pnt2(:,3)]'; % show figure with old an new helmets, volume model and dipole grid figure tmpcfg = []; tmpcfg.vol = volold; tmpcfg.grad = data.grad; tmpcfg.grid = grid; tmpcfg.plotsensors = 'no'; % these are plotted seperately below ft_headmodelplot(tmpcfg); hold on plot3(pnt1(:,1), pnt1(:,2), pnt1(:,3), 'r.') % original positions plot3(pnt2(:,1), pnt2(:,2), pnt2(:,3), 'g.') % template positions line(X,Y,Z, 'color', 'black'); view(-90, 90); % show figure with data on old helmet location figure hold on plot3(pnt1(:,1), pnt1(:,2), pnt1(:,3), 'r.') % original positions plot3(pnt2(:,1), pnt2(:,2), pnt2(:,3), 'g.') % template positions line(X,Y,Z, 'color', 'black'); axis equal; axis vis3d triplot(pnt1, tri1, p1); title('RMS, before realignment') view(-90, 90) % show figure with data on new helmet location figure hold on plot3(pnt1(:,1), pnt1(:,2), pnt1(:,3), 'r.') % original positions plot3(pnt2(:,1), pnt2(:,2), pnt2(:,3), 'g.') % template positions line(X,Y,Z, 'color', 'black'); axis equal; axis vis3d triplot(pnt2, tri2, p2); title('RMS, after realignment') view(-90, 90) end % store the realigned data in a new structure interp.label = template.grad.label; interp.grad = template.grad; % replace with the template gradiometer array interp.trial = data.realign; % remember the processed data interp.fsample = data.fsample; interp.time = data.time; % add the rest channels back to the data, these were not interpolated if ~isempty(rest.label) fprintf('adding %d non-MEG channels back to the data (', length(rest.label)); fprintf('%s, ', rest.label{1:end-1}); fprintf('%s)\n', rest.label{end}); for trial=1:length(rest.trial) interp.trial{trial} = [interp.trial{trial}; rest.trial{trial}]; end interp.label = [interp.label; rest.label]; end % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % store the configuration of this function call, including that of the previous function call cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_megrealign.m 3766 2011-07-04 10:44:39Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try, cfg.previous = data.cfg; end % remember the exact configuration details in the output interp.cfg = cfg; % copy the trial specific information into the output if isfield(data, 'trialinfo') interp.trialinfo = data.trialinfo; end % copy the sampleinfo field as well if isfield(data, 'sampleinfo') interp.sampleinfo = data.sampleinfo; end % convert back to input type if necessary switch dtype case 'timelock' interp = ft_checkdata(interp, 'datatype', 'timelock'); otherwise % keep the output as it is end % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', interp); % use the variable name "data" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction that computes the projection matrix(ces) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [realign, noalign, bkalign] = computeprojection(lfold, lfnew, pruneratio, verify) % compute this inverse only once, although it is used twice tmp = prunedinv(lfold, pruneratio); % compute the three interpolation matrices fprintf('computing interpolation matrix #1\n'); realign = lfnew * tmp; if strcmp(verify, 'yes') fprintf('computing interpolation matrix #2\n'); noalign = lfold * tmp; fprintf('computing interpolation matrix #3\n'); bkalign = lfold * prunedinv(lfnew, pruneratio) * realign; else noalign = []; bkalign = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction that computes the inverse using a pruned SVD %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lfi] = prunedinv(lf, r) [u, s, v] = svd(lf); if r<1, % treat r as a ratio p = find(s<(s(1,1)*r) & s~=0); else % treat r as the number of spatial components to keep diagels = 1:(min(size(s))+1):(min(size(s)).^2); p = diagels((r+1):end); end fprintf('pruning %d from %d, i.e. removing the %d smallest spatial components\n', length(p), min(size(s)), length(p)); s(p) = 0; s(find(s~=0)) = 1./s(find(s~=0)); lfi = v * s' * u';
github
philippboehmsturm/antx-master
ft_volumelookup.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_volumelookup.m
11,255
utf_8
0c598c2c597ea0a8c5584aaa8fed4178
function [output] = ft_volumelookup(cfg, volume) % FT_VOLUMELOOKUP can be used in to combine an anatomical or functional % atlas with source recunstruction. You can use it for forward and reverse % lookup. % % Given the anatomical or functional label, it looks up the locations and % creates a mask (as a binary volume) based on the label, or creates a % sphere or box around a point of interest. In this case the function is to % be used as: % mask = ft_volumelookup(cfg, volume) % % Given a binary volume that indicates a region of interest, it looks up % the corresponding anatomical or functional labels from a given atlas. In % this case the function is to be used as follows: % labels = ft_volumelookup(cfg, volume) % % In both cases the input volume can be: % mri is the output of FT_READ_MRI % source is the output of FT_SOURCEANALYSIS % stat is the output of FT_SOURCESTATISTICS % % The configuration options for a mask according to an atlas: % cfg.inputcoord = 'mni' or 'tal', coordinate system of the mri/source/stat % cfg.atlas = string, filename of atlas to use, either the AFNI % brik file that is available from http://afni.nimh.nih.gov/afni/doc/misc/ttatlas_tlrc, % or the WFU atlasses available from http://fmri.wfubmc.edu. see FT_PREPARE_ATLAS % cfg.roi = string or cell of strings, region(s) of interest from anatomical atlas % % The configuration options for a spherical/box mask around a point of interest: % cfg.roi = Nx3 vector, coordinates of the points of interest % cfg.sphere = radius of each sphere in cm/mm dep on unit of input % cfg.box = Nx3 vector, size of each box in cm/mm dep on unit of input % cfg.round2nearestvoxel = 'yes' or 'no' (default = 'no'), voxel closest to point of interest is calculated % and box/sphere is centered around coordinates of that voxel % % The configuration options for labels from a mask: % cfg.inputcoord = 'mni' or 'tal', coordinate system of the mri/source/stat % cfg.atlas = string, filename of atlas to use, either the AFNI % brik file that is available from http://afni.nimh.nih.gov/afni/doc/misc/ttatlas_tlrc, % or the WFU atlasses available from http://fmri.wfubmc.edu. see FT_PREPARE_ATLAS % cfg.maskparameter = string, field in volume to be lookedup, data in field should be logical % cfg.maxqueryrange = number, should be 1, 3, 5 (default = 1) % % The label output has a field "names", a field "count" and a field "usedqueryrange" % To get a list of areas of the given mask you can do for instance: % [tmp ind] = sort(labels.count,1,'descend'); % sel = find(tmp); % for j = 1:length(sel) % found_areas{j,1} = [num2str(labels.count(ind(j))) ': ' labels.name{ind(j)}]; % end % in found_areas you can then see how many times which labels are found % NB in the AFNI brick one location can have 2 labels! % % Dependent on the input coordinates and the coordinates of the atlas, the % input MRI is transformed betweem MNI and Talairach-Tournoux coordinates % See http://www.mrc-cbu.cam.ac.uk/Imaging/Common/mnispace.shtml for more details. % % See also FT_PREPARE_ATLAS, FT_SOURCEPLOT % Copyright (C) 2008, Robert Oostenveld, Ingrid Nieuwenhuis % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_volumelookup.m 2439 2010-12-15 16:33:34Z johzum $ ft_defaults roi2mask = 0; mask2label = 0; if isfield(cfg, 'roi'); roi2mask = 1; elseif isfield(cfg, 'maskparameter') mask2label = 1; else error('either specify cfg.roi, or cfg.maskparameter') end if roi2mask % only for volume data volume = ft_checkdata(volume, 'datatype', 'volume'); % set the defaults if ~isfield(cfg, 'round2nearestvoxel'), cfg.round2nearestvoxel = 'no'; end if iscell(cfg.roi) || ischar(cfg.roi) ft_checkconfig(cfg, 'forbidden', {'sphere' 'box'}, 'required', {'atlas' 'inputcoord'}); isatlas = 1; ispoi = 0; elseif isnumeric(cfg.roi) ft_checkconfig(cfg, 'forbidden', {'atlas' 'inputcoord'}); isatlas = 0; ispoi = 1; else error('do not understand cfg.roi') end % determine location of each anatomical voxel in its own voxel coordinates dim = volume.dim; i = 1:dim(1); j = 1:dim(2); k = 1:dim(3); [I, J, K] = ndgrid(i, j, k); ijk = [I(:) J(:) K(:) ones(prod(dim),1)]'; % determine location of each anatomical voxel in head coordinates xyz = volume.transform * ijk; % note that this is 4xN if isatlas atlas = ft_prepare_atlas(cfg.atlas); if ischar(cfg.roi) cfg.roi = {cfg.roi}; end sel = []; for i = 1:length(cfg.roi) sel = [sel; strmatch(cfg.roi{i}, atlas.descr.name, 'exact')]; end fprintf('found %d matching anatomical labels\n', length(sel)); brick = atlas.descr.brick(sel); value = atlas.descr.value(sel); % convert between MNI head coordinates and TAL head coordinates % coordinates should be expressed compatible with the atlas if strcmp(cfg.inputcoord, 'mni') && strcmp(atlas.coord, 'tal') xyz(1:3,:) = mni2tal(xyz(1:3,:)); elseif strcmp(cfg.inputcoord, 'mni') && strcmp(atlas.coord, 'mni') % nothing to do elseif strcmp(cfg.inputcoord, 'tal') && strcmp(atlas.coord, 'tal') % nothing to do elseif strcmp(cfg.inputcoord, 'tal') && strcmp(atlas.coord, 'mni') xyz(1:3,:) = tal2mni(xyz(1:3,:)); end % determine location of each anatomical voxel in atlas voxel coordinates ijk = inv(atlas.transform) * xyz; ijk = round(ijk(1:3,:))'; inside_vol = ijk(:,1)>=1 & ijk(:,1)<=atlas.dim(1) & ... ijk(:,2)>=1 & ijk(:,2)<=atlas.dim(2) & ... ijk(:,3)>=1 & ijk(:,3)<=atlas.dim(3); inside_vol = find(inside_vol); % convert the selection inside the atlas volume into linear indices ind = sub2ind(atlas.dim, ijk(inside_vol,1), ijk(inside_vol,2), ijk(inside_vol,3)); brick0_val = zeros(prod(dim),1); brick1_val = zeros(prod(dim),1); % search the two bricks for the value of each voxel brick0_val(inside_vol) = atlas.brick0(ind); brick1_val(inside_vol) = atlas.brick1(ind); mask = zeros(prod(dim),1); for i=1:length(sel) fprintf('constructing mask for %s\n', atlas.descr.name{sel(i)}); if brick(i)==0 mask = mask | (brick0_val==value(i)); elseif brick(i)==1 mask = mask | (brick1_val==value(i)); end end elseif ispoi if strcmp(cfg.round2nearestvoxel, 'yes') for i=1:size(cfg.roi,1) cfg.roi(i,:) = poi2voi(cfg.roi(i,:), xyz); end end % sphere(s) if isfield(cfg, 'sphere') mask = zeros(1,prod(dim)); for i=1:size(cfg.roi,1) dist = sqrt( (xyz(1,:) - cfg.roi(i,1)).^2 + (xyz(2,:) - cfg.roi(i,2)).^2 + (xyz(3,:) - cfg.roi(i,3)).^2 ); mask = mask | (dist <= cfg.sphere(i)); end % box(es) elseif isfield(cfg, 'box') mask = zeros(1, prod(dim)); for i=1:size(cfg.roi,1) mask = mask | ... (xyz(1,:) <= (cfg.roi(i,1) + cfg.box(i,1)./2) & xyz(1,:) >= (cfg.roi(i,1) - cfg.box(i,1)./2)) & ... (xyz(2,:) <= (cfg.roi(i,2) + cfg.box(i,2)./2) & xyz(2,:) >= (cfg.roi(i,2) - cfg.box(i,2)./2)) & ... (xyz(3,:) <= (cfg.roi(i,3) + cfg.box(i,3)./2) & xyz(3,:) >= (cfg.roi(i,3) - cfg.box(i,3)./2)); end else error('either specify cfg.sphere or cfg.box') end end mask = reshape(mask, dim); fprintf('%i voxels in mask, which is %.3f %% of total volume\n', sum(mask(:)), 100*mean(mask(:))); output = mask; elseif mask2label % convert to source representation (easier to work with) volume = ft_checkdata(volume, 'datatype', 'source'); ft_checkconfig(cfg, 'required', {'atlas' 'inputcoord'}); % set defaults if ~isfield(cfg, 'maxqueryrange'), cfg.maxqueryrange = 1; end if isempty(intersect(cfg.maxqueryrange, [1 3 5])) error('incorrect query range, should be one of [1 3 5]'); end atlas = ft_prepare_atlas(cfg.atlas); sel = find(volume.(cfg.maskparameter)(:)); labels.name = atlas.descr.name; labels.name{end+1} = 'no_label_found'; labels.count = zeros(length(labels.name),1); for iLab = 1:length(labels.name) labels.usedqueryrange{iLab} = []; end for iVox = 1:length(sel) usedQR = 1; label = atlas_lookup(atlas, [volume.pos(sel(iVox),1) volume.pos(sel(iVox),2) volume.pos(sel(iVox),3)], 'inputcoord', cfg.inputcoord, 'queryrange', 1); if isempty(label) && cfg.maxqueryrange > 1 label = atlas_lookup(atlas, [volume.pos(sel(iVox),1) volume.pos(sel(iVox),2) volume.pos(sel(iVox),3)], 'inputcoord', cfg.inputcoord, 'queryrange', 3); usedQR = 3; end if isempty(label) && cfg.maxqueryrange > 3 label = atlas_lookup(atlas, [volume.pos(sel(iVox),1) volume.pos(sel(iVox),2) volume.pos(sel(iVox),3)], 'inputcoord', cfg.inputcoord, 'queryrange', 5); usedQR = 5; end if isempty(label) label = {'no_label_found'}; elseif length(label) == 1 label = {label}; end ind_lab = []; for iLab = 1:length(label) ind_lab = [ind_lab find(strcmp(label{iLab}, labels.name))]; end labels.count(ind_lab) = labels.count(ind_lab) + (1/length(ind_lab)); for iFoundLab = 1:length(ind_lab) if isempty(labels.usedqueryrange{ind_lab(iFoundLab)}) labels.usedqueryrange{ind_lab(iFoundLab)} = usedQR; else labels.usedqueryrange{ind_lab(iFoundLab)} = [labels.usedqueryrange{ind_lab(iFoundLab)} usedQR]; end end end %iVox output = labels; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION point of interest to voxel of interest %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function voi = poi2voi(poi, xyz) xmin = min(abs(xyz(1,:) - poi(1))); xcl = round(abs(xyz(1,:) - poi(1))) == round(xmin); ymin = min(abs(xyz(2,:) - poi(2))); ycl = round(abs(xyz(2,:) - poi(2))) == round(ymin); zmin = min(abs(xyz(3,:) - poi(3))); zcl = round(abs(xyz(3,:) - poi(3))) == round(zmin); xyzcls = xcl + ycl + zcl; ind_voi = xyzcls == 3; if sum(ind_voi) > 1; fprintf('%i voxels at same distance of poi, taking first voxel\n', sum(ind_voi)) ind_voi_temp = find(ind_voi); ind_voi_temp = ind_voi_temp(1); ind_voi = zeros(size(ind_voi)); ind_voi(ind_voi_temp) = 1; ind_voi = logical(ind_voi); end voi = xyz(1:3,ind_voi); fprintf('coordinates of voi: %.1f %.1f %.1f\n', voi(1), voi(2), voi(3));
github
philippboehmsturm/antx-master
ft_freqanalysis_tfr.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_freqanalysis_tfr.m
8,844
utf_8
1a8fc9097d265161321abe1a02974fb5
function [freq] = ft_freqanalysis_tfr(cfg, data); % FT_FREQANALYSIS_TFR computes time-frequency representations of single-trial % data using a convolution in the time-domain with Morlet's wavelets. % % Use as % [freq] = ft_freqanalysis(cfg, data) % % The data should be organised in a structure as obtained from % the FT_PREPROCESSING function. The configuration should be according to % cfg.method = method used for frequency or time-frequency decomposition % see FT_FREQANALYSIS for details % cfg.foi = vector 1 x numfoi, frequencies of interest % cfg.waveletwidth = 'width' of wavelets expressed in cycles (default = 7) % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.downsample = ratio for downsampling, which occurs after convolution (default = 1) % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % cfg.keeptrials = 'yes' or 'no', return individual trials or average (default = 'no') % % See also FT_FREQANALYSIS % Undocumented local options: % cfg.latency % cfg.output % Copyright (C) 2003, Ole Jensen, FCDC % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_freqanalysis_tfr.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % ensure that this function is started as a subfunction of the FT_FREQANALYSIS wrapper if ~exist('OCTAVE_VERSION') [s, i] = dbstack; if length(s)>1 [caller_path, caller_name, caller_ext] = fileparts(s(2).name); else caller_path = ''; caller_name = ''; caller_ext = ''; end % evalin('caller', 'mfilename') does not work for Matlab 6.1 and 6.5 if ~strcmp(caller_name, 'ft_freqanalysis') error(['you should call FREQANALYSIS, instead of the ' upper(mfilename) ' subfunction']); end end % set the defaults if ~isfield(cfg, 'method'), cfg.method = 'tfr'; end if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'latency'), cfg.latency = 'minperlength'; end if ~isfield(cfg, 'keeptrials'), cfg.keeptrials = 'no'; end if ~isfield(cfg, 'waveletwidth'), cfg.waveletwidth = 7; end if ~isfield(cfg, 'downsample'), cfg.downsample = 1; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'text'; end if isfield(cfg, 'output') && strcmp(cfg.output, 'powandcsd'), error('This function does not compute cross-spectra\n'); end % determine the channels of interest cfg.channel = ft_channelselection(cfg.channel, data.label); chansel = match_str(data.label, cfg.channel); % determine the duration of each trial ntrial = length(data.trial); nchan = size(data.trial{1}, 1); for i=1:ntrial nsampl(i) = size(data.trial{i}, 2); begsamplatency(i) = min(data.time{i}); endsamplatency(i) = max(data.time{i}); end; if cfg.downsample > 1 % perform a decimation of the input data warning('decimating the input data, better is to use RESAMPLEDATA'); for k=1:ntrial dTmp = data.trial{k}; data.trial{k} = dTmp(:,1:cfg.downsample:end); tTmp = data.time{k}; data.time{k} = tTmp(1:cfg.downsample:end); end data.fsample = data.fsample / cfg.downsample; end % automatically determine the latency window which is possible in all trials minperlength = [max(begsamplatency) min(endsamplatency)]; % latency window for averaging and variance computation is given in seconds if (strcmp(cfg.latency, 'minperlength')) cfg.latency = []; cfg.latency(1) = minperlength(1); cfg.latency(2) = minperlength(2); end if (strcmp(cfg.latency, 'prestim')) cfg.latency = []; cfg.latency(1) = minperlength(1); cfg.latency(2) = 0; end if (strcmp(cfg.latency, 'poststim')) cfg.latency = []; cfg.latency(1) = 0; cfg.latency(2) = minperlength(2); end M = waveletfam(cfg.foi,data.fsample,cfg.waveletwidth); ft_progress('init', cfg.feedback, 'convolving wavelets'); for i=1:ntrial indicvect = data.time{i}; ft_progress(i/ntrial, 'convolving wavelets, trial %d of %d\n', i, ntrial); %for average and variance begsampl = nearest(indicvect,cfg.latency(1)); endsampl = nearest(indicvect,cfg.latency(2)); numsamples(i) = endsampl-begsampl+1; if (i==1) % allocate memory to hold the resulting powerspectra if strcmp(cfg.keeptrials, 'yes') freq.powspctrm = zeros(ntrial,nchan,length(cfg.foi),ceil((endsampl-begsampl+1)/cfg.downsample)); else freq.powspctrm = zeros(nchan,length(cfg.foi),ceil((endsampl-begsampl+1)/cfg.downsample)); end end; dat = data.trial{i}(chansel,begsampl:endsampl); for k=1:size(dat,1) for j=1:length(cfg.foi) cTmp = conv(dat(k,:),M{j}); cTmp = 2*(abs(cTmp).^2)/data.fsample; cTmp = cTmp(ceil(length(M{j})/2):length(cTmp)-floor(length(M{j})/2)); cTmp = cTmp(:,1:cfg.downsample:end); if strcmp(cfg.keeptrials, 'yes') freq.powspctrm(i,k,j,:) = cTmp'; else freq.powspctrm(k,j,:) = squeeze(freq.powspctrm(k,j,:)) + cTmp'; % compute the running sum end end end end %for ntrial ft_progress('close'); if strcmp(cfg.keeptrials, 'yes') freq.dimord = 'rpt_chan_freq_time'; else freq.dimord = 'chan_freq_time'; freq.powspctrm = freq.powspctrm / ntrial; % compute the average end freq.label = cfg.channel; freq.freq = cfg.foi; freq.time = indicvect(1:cfg.downsample:end); % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; cfg.version.name = st(i); end cfg.version.id = '$Id: ft_freqanalysis_tfr.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try, cfg.previous = data.cfg; end % remember the exact configuration details in the output freq.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for waveletanalysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = waveletfam(foi,Fs,width) dt = 1/Fs; for k=1:length(foi) sf = foi(k)/width; st = 1/(2*pi*sf); toi=-3.5*st:dt:3.5*st; A = 1/sqrt(st*sqrt(pi)); M{k}= A*exp(-toi.^2/(2*st^2)).*exp(i*2*pi*foi(k).*toi); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for waveletanalysis % % Return a vector containing the energy as a % function of time for frequency f. The energy % is calculated using Morlet's wavelets. % s : signal % Fs: sampling frequency % width: width of Morlet wavelet (>= 5 suggested). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = energyvec(f,s,Fs,width) dt = 1/Fs; sf = f/width; st = 1/(2*pi*sf); t=-3.5*st:dt:3.5*st; m = morlet(f,t,width); size(m) y = conv(s,m); y = (2*abs(y)/Fs).^2; y = y(ceil(length(m)/2):length(y)-floor(length(m)/2)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction for waveletanalysis % % Morlet's wavelet for frequency f and time t. % The wavelet will be normalized so the total energy is 1. % width defines the ``width'' of the wavelet. % A value >= 5 is suggested. % % Ref: Tallon-Baudry et al., J. Neurosci. 15, 722-734 (1997) % % See also: PHASEGRAM, PHASEVEC, WAVEGRAM, ENERGY % % Ole Jensen, August 1998 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = morlet(f,t,width) sf = f/width; st = 1/(2*pi*sf); A = 1/sqrt(st*sqrt(pi)); y = A*exp(-t.^2/(2*st^2)).*exp(i*2*pi*f.*t);
github
philippboehmsturm/antx-master
ft_multiplotTFR.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_multiplotTFR.m
27,659
utf_8
e73168c92f7898f4de31ba530431bcf3
function [cfg] = ft_multiplotTFR(cfg, data) % ft_multiplotTFR plots time-frequency representations of power or coherence in a % topographical layout. The plots of the indivual sensors are arranged according % to their location specified in the layout. % % Use as: % ft_multiplotTFR(cfg, data) % % The data can be a time-frequency representation of power or coherence % that % was computed using the FT_FREQANALYSIS or FT_FREQDESCRIPTIVES functions. % % The configuration can have the following parameters: % cfg.xparam = field to be plotted on x-axis (default depends on % data.dimord) % 'time' % cfg.yparam = field to be plotted on y-axis (default depends on data.dimord) % 'freq' % cfg.zparam = field to be represented as color (default depends on data.dimord) % 'powspctrm' or 'cohspctrm' % cfg.maskparameter = field in the data to be used for opacity masking of data % cfg.maskstyle = style used to mask nans, 'opacity' or 'saturation' (default = 'opacity') % use 'saturation' when saving to vector-format (like *.eps) to avoid all % sorts of image-problems (currently only possible with a white backgroud) % cfg.maskalpha = alpha value used for masking areas dictated by cfg.maskparameter (0 - 1, default = 1) % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin') % cfg.zlim = 'maxmin','maxabs' or [zmin zmax] (default = 'maxmin') % cfg.gradscale = number, scaling to apply to the MEG gradiometer channels prior to display % cfg.magscale = number, scaling to apply to the MEG magnetometer channels prior to display % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details % cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui' % cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see FT_FREQBASELINE % cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute') % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % cfg.box = 'yes', 'no' (default = 'no' if maskparameter given default = 'yes') % Draw a box around each graph % cfg.hotkeys = enables hotkeys (up/down arrows) for dynamic colorbar adjustment % cfg.colorbar = 'yes', 'no' (default = 'no') % cfg.colormap = any sized colormap, see COLORMAP % cfg.comment = string of text (default = date + zlimits) % Add 'comment' to graph (according to COMNT in the layout) % cfg.showlabels = 'yes', 'no' (default = 'no') % cfg.showoutline = 'yes', 'no' (default = 'no') % cfg.fontsize = font size of comment and labels (if present) (default = 8) % cfg.interactive = Interactive plot 'yes' or 'no' (default = 'no') % In a interactive plot you can select areas and produce a new % interactive plot when a selected area is clicked. Multiple areas % can be selected by holding down the SHIFT key. % cfg.masknans = 'yes' or 'no' (default = 'yes') % cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = []) % cfg.layout = specify the channel layout for plotting using one of % the following ways: % % The layout defines how the channels are arranged and what the size of each % subplot is. You can specify the layout in a variety of ways: % - you can provide a pre-computed layout structure (see ft_prepare_layout) % - you can give the name of an ascii layout file with extension *.lay % - you can give the name of an electrode file % - you can give an electrode definition, i.e. "elec" structure % - you can give a gradiometer definition, i.e. "grad" structure % If you do not specify any of these and the data structure contains an % electrode or gradiometer structure (common for MEG data, since the header % of the MEG datafile contains the gradiometer information), that will be % used for creating a layout. If you want to have more fine-grained control % over the layout of the subplots, you should create your own layout file. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. For this particular function, the % data should be provided as a cell array. % % See also: % FT_MULTIPLOTER, FT_SINGLEPLOTER, FT_SINGLEPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR, % FT_PREPARE_LAYOUT % Undocumented local options: % cfg.channel % cfg.layoutname % cfg.xparam % cfg.zparam % % This function depends on FT_FREQBASELINE which has the following options: % cfg.baseline, documented % cfg.baselinetype, documented % Copyright (C) 2003-2006, Ole Jensen % Copyright (C) 2007-2011, Roemer van der Meij & Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_multiplotTFR.m 3883 2011-07-20 13:21:04Z eelspa $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'}); cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedforward', 'outflow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedback', 'inflow'}); cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'}); % set default for inputfile if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end hasdata = (nargin>1); hasinputfile = ~isempty(cfg.inputfile); if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); end if hasdata % do nothing elseif hasinputfile data = loadvar(cfg.inputfile, 'data'); end % Set the defaults: if ~isfield(cfg,'baseline'), cfg.baseline = 'no'; end if ~isfield(cfg,'baselinetype'), cfg.baselinetype = 'absolute'; end if ~isfield(cfg,'trials'), cfg.trials = 'all'; end if ~isfield(cfg,'xlim'), cfg.xlim = 'maxmin'; end if ~isfield(cfg,'ylim'), cfg.ylim = 'maxmin'; end if ~isfield(cfg,'zlim'), cfg.zlim = 'maxmin'; end if ~isfield(cfg,'magscale'), cfg.magscale = 1; end if ~isfield(cfg,'gradscale'), cfg.gradscale = 1; end if ~isfield(cfg,'colorbar'), cfg.colorbar = 'no'; end if ~isfield(cfg,'comment'), cfg.comment = date; end if ~isfield(cfg,'showlabels'), cfg.showlabels = 'no'; end if ~isfield(cfg,'showoutline'), cfg.showoutline = 'no'; end if ~isfield(cfg,'channel'), cfg.channel = 'all'; end if ~isfield(cfg,'fontsize'), cfg.fontsize = 8; end if ~isfield(cfg,'interactive'), cfg.interactive = 'no'; end if ~isfield(cfg,'hotkeys'), cfg.hotkeys = 'no'; end if ~isfield(cfg,'renderer'), cfg.renderer = []; end % let matlab decide on default if ~isfield(cfg,'maskalpha'), cfg.maskalpha = 1; end if ~isfield(cfg,'masknans'), cfg.masknans = 'no'; end if ~isfield(cfg,'maskparameter'), cfg.maskparameter = []; end if ~isfield(cfg,'maskstyle'), cfg.maskstyle = 'opacity'; end if ~isfield(cfg,'matrixside'), cfg.matrixside = 'outflow'; end if ~isfield(cfg,'channel'), cfg.channel = 'all'; end if ~isfield(cfg,'box') if ~isempty(cfg.maskparameter) cfg.box = 'yes'; else cfg.box = 'no'; end end % for backward compatibility with old data structures data = ft_checkdata(data, 'datatype', 'freq'); dimord = data.dimord; dimtok = tokenize(dimord, '_'); % Set x/y/zparam defaults if ~any(ismember(dimtok, 'time')) error('input data needs a time dimension'); else if ~isfield(cfg, 'xparam'), cfg.xparam='time'; end if ~isfield(cfg, 'yparam'), cfg.yparam='freq'; end if ~isfield(cfg, 'zparam'), cfg.zparam='powspctrm'; end end if isfield(cfg, 'channel') && isfield(data, 'label') cfg.channel = ft_channelselection(cfg.channel, data.label); elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); end % perform channel selection but only allow this when cfg.interactive = 'no' if isfield(data, 'label') && strcmp(cfg.interactive, 'no') selchannel = ft_channelselection(cfg.channel, data.label); elseif isfield(data, 'labelcmb') && strcmp(cfg.interactive, 'no') selchannel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); end % check whether rpt/subj is present and remove if necessary and whether hasrpt = any(ismember(dimtok, {'rpt' 'subj'})); if hasrpt, % this also deals with fourier-spectra in the input % or with multiple subjects in a frequency domain stat-structure % on the fly computation of coherence spectrum is not supported if isfield(data, 'crsspctrm'), data = rmfield(data, 'crsspctrm'); end tmpcfg = []; tmpcfg.trials = cfg.trials; tmpcfg.jackknife = 'no'; if isfield(cfg, 'zparam') && ~strcmp(cfg.zparam,'powspctrm') % freqdesctiptives will only work on the powspctrm field % hence a temporary copy of the data is needed tempdata.dimord = data.dimord; tempdata.freq = data.freq; tempdata.label = data.label; tempdata.powspctrm = data.(cfg.zparam); tempdata.cfg = data.cfg; tempdata = ft_freqdescriptives(tmpcfg, tempdata); data.(cfg.zparam) = tempdata.powspctrm; clear tempdata else data = ft_freqdescriptives(tmpcfg, data); end dimord = data.dimord; dimtok = tokenize(dimord, '_'); end % if hasrpt % Read or create the layout that will be used for plotting: clf; lay = ft_prepare_layout(cfg, data); cfg.layout = lay; ft_plot_lay(lay, 'box', false,'label','no','point','no'); % Apply baseline correction: if ~strcmp(cfg.baseline, 'no') data = ft_freqbaseline(cfg, data); end % Handle the bivariate case % Check for bivariate metric with 'chan_chan' in the dimord selchan = strmatch('chan', dimtok); isfull = length(selchan)>1; % Check for bivariate metric with a labelcmb haslabelcmb = isfield(data, 'labelcmb'); if (isfull || haslabelcmb) && isfield(data, cfg.zparam) % A reference channel is required: if ~isfield(cfg, 'refchannel') error('no reference channel is specified'); end % check for refchannel being part of selection if ~strcmp(cfg.refchannel,'gui') if (isfull && ~any(ismember(data.label, cfg.refchannel))) || ... (haslabelcmb && ~any(ismember(data.labelcmb(:), cfg.refchannel))) error('cfg.refchannel is a not present in the (selected) channels)') end end % Interactively select the reference channel if strcmp(cfg.refchannel, 'gui') % Open a single figure with the channel layout, the user can click on a reference channel h = clf; ft_plot_lay(lay, 'box', false); title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...'); % add the channel information to the figure info = guidata(gcf); info.x = lay.pos(:,1); info.y = lay.pos(:,2); info.label = lay.label; guidata(h, info); %set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}}); set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'}); return end if ~isfull, % Convert 2-dimensional channel matrix to a single dimension: if isempty(cfg.matrixside) sel1 = strmatch(cfg.refchannel, data.labelcmb(:,2), 'exact'); sel2 = strmatch(cfg.refchannel, data.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'outflow') sel1 = []; sel2 = strmatch(cfg.refchannel, data.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'inflow') sel1 = strmatch(cfg.refchannel, data.labelcmb(:,2), 'exact'); sel2 = []; end fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.zparam); data.(cfg.zparam) = data.(cfg.zparam)([sel1;sel2],:,:); data.label = [data.labelcmb(sel1,1);data.labelcmb(sel2,2)]; data.labelcmb = data.labelcmb([sel1;sel2],:); data = rmfield(data, 'labelcmb'); else % General case sel = match_str(data.label, cfg.refchannel); siz = [size(data.(cfg.zparam)) 1]; if strcmp(cfg.matrixside, 'inflow') || isempty(cfg.matrixside) %the interpretation of 'inflow' and 'outflow' depend on %the definition in the bivariate representation of the data %in FieldTrip the row index 'causes' the column index channel %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(:,sel,:),2),[siz(1) 1 siz(3:end)]); sel1 = 1:siz(1); sel2 = sel; meandir = 2; elseif strcmp(cfg.matrixside, 'outflow') %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(sel,:,:),1),[siz(1) 1 siz(3:end)]); sel1 = sel; sel2 = 1:siz(1); meandir = 1; elseif strcmp(cfg.matrixside, 'ff-fd') error('cfg.matrixside = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); elseif strcmp(cfg.matrixside, 'fd-ff') error('cfg.matrixside = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); end %if matrixside end %if ~isfull end %handle the bivariate data % Get physical x-axis range: if strcmp(cfg.xlim,'maxmin') xmin = min(data.(cfg.xparam)); xmax = max(data.(cfg.xparam)); else xmin = cfg.xlim(1); xmax = cfg.xlim(2); end % Replace value with the index of the nearest bin if ~isempty(cfg.xparam) xmin = nearest(data.(cfg.xparam), xmin); xmax = nearest(data.(cfg.xparam), xmax); end % Get physical y-axis range: if strcmp(cfg.ylim,'maxmin') ymin = min(data.(cfg.yparam)); ymax = max(data.(cfg.yparam)); else ymin = cfg.ylim(1); ymax = cfg.ylim(2); end % Replace value with the index of the nearest bin if ~isempty(cfg.yparam) ymin = nearest(data.(cfg.yparam), ymin); ymax = nearest(data.(cfg.yparam), ymax); end % test if X and Y are linearly spaced (to within 10^-12): % FROM UIMAGE x = data.(cfg.xparam)(xmin:xmax); y = data.(cfg.yparam)(ymin:ymax); dx = min(diff(x)); % smallest interval for X dy = min(diff(y)); % smallest interval for Y evenx = all(abs(diff(x)/dx-1)<1e-12); % true if X is linearly spaced eveny = all(abs(diff(y)/dy-1)<1e-12); % true if Y is linearly spaced if ~evenx || ~eveny warning('(one of the) axis is/are not evenly spaced, but plots are made as if axis are linear') end % Take subselection of channels, this only works % in the interactive mode if exist('selchannel', 'var') sellab = match_str(data.label, selchannel); label = data.label(sellab); else sellab = 1:numel(data.label); label = data.label; end dat = data.(cfg.zparam); if isfull dat = dat(sel1, sel2, ymin:ymax, xmin:xmax); dat = nanmean(dat, meandir); siz = size(dat); dat = reshape(dat, [max(siz(1:2)) siz(3) siz(4)]); dat = dat(sellab, :, :); elseif haslabelcmb dat = dat(sellab, ymin:ymax, xmin:xmax); else dat = dat(sellab, ymin:ymax, xmin:xmax); end if ~isempty(cfg.maskparameter) mask = data.(cfg.maskparameter); if isfull && cfg.maskalpha == 1 mask = mask(sel1, sel2, ymin:ymax, xmin:xmax); mask = nanmean(nanmean(nanmean(mask, meandir), 4), 3); elseif haslabelcmb && cfg.maskalpha == 1 mask = mask(sellab, ymin:ymax, xmin:xmax); mask = nanmean(nanmean(mask, 3), 2); elseif cfg.maskalpha == 1 mask = mask(sellab, ymin:ymax, xmin:xmax); mask = nanmean(nanmean(mask, 3), 2); elseif isfull && cfg.maskalpha ~= 1 maskl = mask(sel1, sel2, ymin:ymax, xmin:xmax); %% check this for full representation mask = zeros(size(maskl)); mask(maskl) = 1; mask(~maskl) = cfg.maskalpha; elseif haslabelcmb && cfg.maskalpha ~= 1 maskl = mask(sellab, ymin:ymax, xmin:xmax); mask = zeros(size(maskl)); mask(maskl) = 1; mask(~maskl) = cfg.maskalpha; elseif cfg.maskalpha ~= 1 maskl = mask(sellab, ymin:ymax, xmin:xmax); mask = zeros(size(maskl)); mask(maskl) = 1; mask(~maskl) = cfg.maskalpha; end end % Select the channels in the data that match with the layout: [seldat, sellay] = match_str(label, lay.label); if isempty(seldat) error('labels in data and labels in layout do not match'); end % if magnetometer/gradiometer scaling is requested, get indices for % channels if (cfg.magscale ~= 1) magInd = match_str(label, ft_channelselection('MEGMAG', label)); end if (cfg.gradscale ~= 1) gradInd = match_str(label, ft_channelselection('MEGGRAD', label)); end datavector = dat(seldat,:,:); if ~isempty(cfg.maskparameter) maskvector = mask(seldat,:,:); end % Select x and y coordinates and labels of the channels in the data chanX = lay.pos(sellay, 1); chanY = lay.pos(sellay, 2); chanWidth = lay.width(sellay); chanHeight = lay.height(sellay); chanLabels = lay.label(sellay); % Get physical z-axis range (color axis): if strcmp(cfg.zlim,'maxmin') zmin = min(datavector(:)); zmax = max(datavector(:)); elseif strcmp(cfg.zlim,'maxabs') zmin = -max(abs(datavector(:))); zmax = max(abs(datavector(:))); else zmin = cfg.zlim(1); zmax = cfg.zlim(2); end hold on; if isfield(lay, 'outline') && strcmp(cfg.showoutline, 'yes') for i=1:length(lay.outline) if ~isempty(lay.outline{i}) tmpX = lay.outline{i}(:,1); tmpY = lay.outline{i}(:,2); h = line(tmpX, tmpY); set(h, 'color', 'k'); set(h, 'linewidth', 2); end end end % set colormap if isfield(cfg,'colormap') if size(cfg.colormap,2)~=3, error('multiplotTFR(): Colormap must be a n x 3 matrix'); end set(gcf,'colormap',cfg.colormap); end; % Plot channels: for k=1:length(seldat) % Get cdata: cdata = squeeze(datavector(k,:,:)); if ~isempty(cfg.maskparameter) mdata = squeeze(maskvector(k,:,:)); end % scale if needed if (cfg.magscale ~= 1 && any(magInd == seldat(k))) cdata = cdata .* cfg.magscale; end if (cfg.gradscale ~= 1 && any(gradInd == seldat(k))) cdata = cdata .* cfg.gradscale; end % Get axes for this panel xas = (chanX(k) + linspace(0,1,size(cdata,2))*chanWidth(k)) - chanWidth(k)/2; yas = (chanY(k) + linspace(0,1,size(cdata,1))*chanHeight(k)) - chanHeight(k)/2; % Draw plot (and mask Nan's with maskfield if requested) if isequal(cfg.masknans,'yes') && isempty(cfg.maskparameter) nans_mask = ~isnan(cdata); mask = double(nans_mask); patch([min(xas) min(xas) max(xas) max(xas)],[min(yas) max(yas) max(yas) min(yas)],'k'); ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) elseif isequal(cfg.masknans,'yes') && ~isempty(cfg.maskparameter) nans_mask = ~isnan(cdata); mask = nans_mask .* mdata; mask = double(mask); patch([min(xas) min(xas) max(xas) max(xas)],[min(yas) max(yas) max(yas) min(yas)],'k'); ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) elseif isequal(cfg.masknans,'no') && ~isempty(cfg.maskparameter) mask = mdata; mask = double(mask); patch([min(xas) min(xas) max(xas) max(xas)],[min(yas) max(yas) max(yas) min(yas)],'k'); ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) else ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip') end % Currently the handle isn't being used below, this is here for possible use in the future h = findobj('tag','cip'); % Draw box around plot if strcmp(cfg.box,'yes') xstep = xas(2) - xas(1); ystep = yas(2) - yas(1); xvalmin(1:length(yas)+2) = min(xas)-(0.5*xstep); xvalmax(1:length(yas)+2) = max(xas)+(0.5*xstep); yvalmin(1:length(xas)+2) = min(yas)-(0.5*ystep); yvalmax(1:length(xas)+2) = max(yas)+(0.5*ystep); xas2 = [xvalmin(1) xas xvalmax(1)]; yas2 = [yvalmin(1) yas yvalmax(1)]; ft_plot_box([min(xas2) max(xas2) min(yas2) max(yas2)]) end % Draw channel labels: if strcmp(cfg.showlabels,'yes') ft_plot_text(chanX(k)-chanWidth(k)/2, chanY(k)+chanHeight(k)/2, sprintf(' %0s\n ', chanLabels{k}), 'Fontsize', cfg.fontsize); end end % write comment: k = cellstrmatch('COMNT',lay.label); if ~isempty(k) comment = cfg.comment; comment = sprintf('%0s\nxlim=[%.3g %.3g]', comment, data.(cfg.xparam)(xmin), data.(cfg.xparam)(xmax)); comment = sprintf('%0s\nylim=[%.3g %.3g]', comment, data.(cfg.yparam)(ymin), data.(cfg.yparam)(ymax)); comment = sprintf('%0s\nzlim=[%.3g %.3g]', comment, zmin, zmax); ft_plot_text(lay.pos(k,1), lay.pos(k,2), sprintf(comment), 'Fontsize', cfg.fontsize); end % plot scale: k = cellstrmatch('SCALE',lay.label); if ~isempty(k) % Get average cdata across channels: cdata = squeeze(mean(datavector, 1)); % Get axes for this panel: xas = (lay.pos(k,1) + linspace(0,1,size(cdata,2))*lay.width(k)); yas = (lay.pos(k,2) + linspace(0,1,size(cdata,1))*lay.height(k)); % Draw plot (and mask Nan's with maskfield if requested) if isequal(cfg.masknans,'yes') && isempty(cfg.maskparameter) mask = ~isnan(cdata); mask = double(mask); ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) elseif isequal(cfg.masknans,'yes') && ~isempty(cfg.maskparameter) mask = ~isnan(cdata); mask = mask .* mdata; mask = double(mask); ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) elseif isequal(cfg.masknans,'no') && ~isempty(cfg.maskparameter) mask = mdata; mask = double(mask); ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) else ft_plot_matrix(xas, yas, cdata,'clim',[zmin zmax],'tag','cip') end % Currently the handle isn't being used below, this is here for possible use in the future h = findobj('tag','cip'); end % plot colorbar: if isfield(cfg, 'colorbar') && (strcmp(cfg.colorbar, 'yes')) colorbar; end % Set colour axis caxis([zmin zmax]); if strcmp('yes',cfg.hotkeys) % Attach data and cfg to figure and attach a key listener to the figure set(gcf, 'KeyPressFcn', {@key_sub, zmin, zmax}) end % Make the figure interactive: if strcmp(cfg.interactive, 'yes') % add the channel information to the figure info = guidata(gcf); info.x = lay.pos(:,1); info.y = lay.pos(:,2); info.label = lay.label; guidata(gcf, info); set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'}); end axis tight axis off if strcmp(cfg.box, 'yes') abc = axis; axis(abc + [-1 +1 -1 +1]*mean(abs(abc))/10) end orient landscape hold off % Set renderer if specified if ~isempty(cfg.renderer) set(gcf, 'renderer', cfg.renderer) end % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function l = cellstrmatch(str,strlist) l = []; for k=1:length(strlist) if strcmp(char(str),char(strlist(k))) l = [l k]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called by ft_select_channel in case cfg.refchannel='gui' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_multiplotTFR(label, cfg, varargin) cfg.refchannel = label; fprintf('selected cfg.refchannel = ''%s''\n', join(',', cfg.refchannel)); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_multiplotTFR(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_singleplotTFR(label, cfg, varargin) if ~isempty(label) %cfg.xlim = 'maxmin'; cfg.ylim = 'maxmin'; cfg.channel = label; fprintf('selected cfg.channel = {'); for i=1:(length(cfg.channel)-1) fprintf('''%s'', ', cfg.channel{i}); end fprintf('''%s''}\n', cfg.channel{end}); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_singleplotTFR(cfg, varargin{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function t = join(separator,cells) if isempty(cells) t = ''; return; end t = char(cells{1}); for i=2:length(cells) t = [t separator char(cells{i})]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which handles hot keys in the current plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key_sub(handle, eventdata, varargin) incr = (max(caxis)-min(caxis)) /10; % symmetrically scale color bar down by 10 percent if strcmp(eventdata.Key,'uparrow') caxis([min(caxis)-incr max(caxis)+incr]); % symmetrically scale color bar up by 10 percent elseif strcmp(eventdata.Key,'downarrow') caxis([min(caxis)+incr max(caxis)-incr]); % resort to minmax of data for colorbar elseif strcmp(eventdata.Key,'m') caxis([varargin{1} varargin{2}]); end
github
philippboehmsturm/antx-master
ft_spike_spike2data.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_spike2data.m
7,855
utf_8
99e4f74cba1a0d29f32d4dbf155682be
function [spikedata] = ft_spikestation_ets2data(cfg,spike,data) % FT_SPIKESTATION_SPIKE2DATA converts a point representation SPIKE structure to a continuous % representation DATA structure. % Use as: % [data] = ft_spikestation_spike2data(cfg,spike,data) % or % [data] = ft_spikestation_spike2data(cfg,spike) % % Inputs: % % DATA is a standard continuous structure. DATA is an optionary input. If DATA % is given as input, the output structure will be using the time-axis as given in DATA, % where each spike is assigned a sample on that time-axis. % Note that in this case, it is very important that for both DATA and SPIKE, the trial definitions % should be synchronized, i.e., t = 0 has the same meaning, and there are equal amount of trials. % % Configurations options (CFG): % % Configuration options related to selection of spike channel and trials: % % cfg.fsample = number in Hz. If DATA.fsample is given as input, cfg.fsample is % not used and set to DATA.fsample. Otherwise, the default is 1000 (hz). % cfg.sparse = 'yes' (default) or 'no'. % % Outputs: % SPIKEDATA is a continuous representation standard spikestation structure. % If requested, SPIKEDATA.trial contains sparse matrices. % Appending should take place with FT_APPENDDATA! % Copyright (c), Martin Vinck (2010) if nargin<2, error('MATLAB:ft_spike_spike2data','Minimal twoinputs required'), end % set the defaults try defaults.fsample = {data.fsample}; catch try defaults.fsample = {cfg.fsample}; catch % user should be aware that this is not safe, so issue a warning warning('MATLAB:ft_spike_spike2data:cfg:fsample','%s\n%s',... 'fsample can not be determined from cfg.fsample or data.fsample, setting',... 'cfg.fsample to 1000 by default') defaults.fsample = {1000}; end end defaults.sparse = {'yes' 'no'}; cfg = ft_spike_sub_defaultcfg(cfg,defaults); % check whether the data has the right structure hasAllFields = all(isfield(spike, {'time', 'trial', 'trialtime', 'label'})); if ~hasAllFields, error('MATLAB:ft_spike_spike2data:wrongStructInput',... 'input SPIKE should be struct with .time, .trial, .trialtime, .label fields') end % check whether all are of right format correctInp = iscell(spike.time) & iscell(spike.trial) & iscell(spike.label) & size(spike.trialtime,2)==2; if ~correctInp, error('MATLAB:ft_spike_spike2data:wrongStructInput',... '.timestamp, .trial and .label should be cell arrays, time should be nTrials-by-2 matrix') end % check whether the data should be appended doSparse = strcmp(cfg.sparse, 'yes'); % get some sizes nUnits = length(spike.label); nTrials = size(spike.trialtime,1); % check whether number of trials of DATA matches that of SPIKE: it should if nargin==3 nTrialsData = length(data.trial); if nTrials~=nTrialsData error('MATLAB:ft_spike_spike2data:numberOfTrials',... 'number trials SPIKE should match number trials of input DATA') end end % preallocate spikedata.trial(1:nTrials) = {[]}; spikedata.time(1:nTrials) = {[]}; for iTrial = 1:nTrials % create the time-axis that belongs to this trial if nargin==3 timeAx = data.time{iTrial}; else timeAx = spike.trialtime(iTrial,1):(1/cfg.fsample):spike.trialtime(iTrial,2); end % convert to continuous trialData = zeros(nUnits,length(timeAx)); for iUnit = 1:nUnits % get the timestamps and only select those timestamps that are in the trial ts = spike.time{iUnit}; hasTrial = spike.trial{iUnit}==iTrial; ts = ts(hasTrial); % get all the samples at once without using loops sample = nearest_nd(timeAx,ts); % because we have duplicates, simply get our vector by using histc trick [N] = histc(sample,1:length(timeAx)); % store it in a matrix trialData(iUnit,:) = N; end % put the created data in the original DATA, which is empty if doAppend==0 if doSparse, trialData = sparse(trialData); end spikedata.trial{iTrial} = [spikedata.trial{iTrial};trialData]; spikedata.time{iTrial} = timeAx; end % create the associated labels and other aspects of data such as the header spikedata.label = spike.label; if nargin~=3 spikedata.fsample = cfg.fsample; end try spikedata.hdr = spike.hdr; catch spikedata.hdr = struct([]); end % add version information to the configuration try % get the full name of the function cfg.version.name = mfilename('fullpath'); catch % required for compatibility with Matlab versions prior to release 13 (6.5) [st, i] = dbstack; cfg.version.name = st(i); end % remember the configuration details of the input data cfg.previous = []; try, cfg.previous = spike.cfg; end % remember the exact configuration details in the output spikedata.cfg = cfg; function [indx] = nearest_nd(x,y) % NEAREST return the index of an n-d matrix to an n-d matrix. % % [indx] = nearest_nd(x, y) % % Inputs: % X can be a n-d matrix of any size (scalar, vector, n-d matrix). % Y can be an n-d matrix of any size (scalar, vector, n-d matrix). % % If Y is larger than any X, we return the last index that the maximum value of X occurred. % Otherwise, we return the first occurence of the nearest X. % % If Y contains NaNs, we return a NaN for every NaN in Y. % % Outputs: % INDX is a vector of size Y and contains the indices of the values in X that are % closest to the respective value of Y. INDX is a linear index, such that x(INDX) gives % the nearest values of X to Y. To convert INDX to subscripts, see IND2SUB. % % Example: % y = 100*rand(5,10); % x = 1:100; % indx = nearest_nd(x,y); % disp(max(max(y-x(indx)))) % % x = reshape([1:100 100*ones(1,20)],[20 6]); % y = rand(5,10)*max(x(:)); % y(1) = 100.2; % indx = nearest_nd(x,y); % disp(max(max(y-x(indx)))) % Note that indx(1) returns the last occurence and indx is a linear index to 2-d X. % % Demonstrate the use with a 3-D x and y array. % x = reshape([1:100],[10 5 2]); % y = rand(5,10,2)*max(x(:)); % indx = nearest_nd(x,y); % d = x(indx)-y; disp(max(d(:))); % y(1) = NaN; % indx = nearest_nd(x,y); % disp(indx(1)) % % Copyright, Martin Vinck, 2009. % store the sizes of x and y, this is used to reshape INDX later on szY = size(y); % vectorize both x and y x = x(:); y = y(:); % from now on we can treat X and Y as vectors nY = length(y); nX = length(x); hasNan = isnan(y); % indices with nans in y, indx(hasNaN) will be set to NaN later. if nX==1, indx = ones(1,nY); % only one x value, so nearest is always only element else if nY==1 % in this case only one y value, so use the old NEAREST code if y>max(x) % return the last occurence of the nearest number [dum, indx] = max(flipud(x)); indx = nX + 1 - indx; else % return the first occurence of the nearest number [mindist, indx] = min(abs(x(:) - y)); end else if any(y>max(x)) % for these return the last occurence of every number as in NEAREST indx = zeros(1,nY); i = y>max(x); [dum,indx] = max(flipud(x)); indx(i) = nX + 1 - indx; % for the rest return the first occurence of every number x = x(:); y = y(~i)'; xRep = x(:,ones(1,length(y))); yRep = y(ones(nX,1),:); [mindist,indx(~i)] = min(abs(xRep-yRep)); else x = x(:); y = y'; xRep = x(:,ones(1,nY)); yRep = y(ones(nX,1),:); [mindist,indx] = min(abs(xRep-yRep)); end end end % return a NaN in INDX for a NaN in Y indx(hasNan) = NaN; % reshape the indx back to the y format if (sum(szY>1)>1 || length(szY)>2) % in this case we are dealing with a matrix indx = reshape(indx,[szY]); end
github
philippboehmsturm/antx-master
ft_connectivityanalysis.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_connectivityanalysis.m
36,072
utf_8
f78d6c55b565a6fd2c80168cc398abca
function [stat] = ft_connectivityanalysis(cfg, data) % FT_CONNECTIVITYANALYIS computes various measures of connectivity % between MEG/EEG channels or between source-level signals. % % Use as % stat = ft_connectivityanalysis(cfg, data) % stat = ft_connectivityanalysis(cfg, timelock) % stat = ft_connectivityanalysis(cfg, freq) % stat = ft_connectivityanalysis(cfg, source) % where the first input argument is a configuration structure (see % below) and the second argument is the output of FT_PREPROCESSING, % FT_TIMELOCKANLAYSIS, FT_FREQANALYSIS, FT_MVARANALYSIS, % FT_SOURCEANALYSIS or FT_CONNECTIVITYANALYSIS depending on the % connectivity metric that you want to compute. % % The configuration structure has to contain % cfg.method = 'coh', coherence, support for freq, freqmvar and % source data. For partial coherence also % specify cfg.partchannel % 'csd', cross-spectral density matrix, can also % calculate partial csds - % if cfg.partchannel is specified, support for freq and % freqmvar data % 'plv', phase-locking value, support for freq and freqmvar data % 'powcorr', power correlation, support for freq and source data % 'amplcorr', amplitude correlation, support for freq and source data % 'granger', granger causality, support for freq and freqmvar data % 'dtf', directed transfer function, support for freq and freqmvar data % 'pdc', partial directed coherence, support for freq and freqmvar data % 'psi', phaseslope index, support for freq and freqmvar data % 'wpli', weighted phase lag index (signed one, % still have to take absolute value to get indication of % strength of interaction. Note: measure has % positive bias. Use wpli_debiased to avoid % this. % 'wpli_debiased' debiased weighted phase lag index % (estimates squared wpli) % 'ppc' pairwise phase consistency % 'wppc' weighted pairwise phase consistency % % The following methods can be used on channel-level data which already contains % a connectivity measure (i.e. with dimord 'chan_chan_XXX'). These methods are % implemented using the brain connectivity toolbox developed by Olaf Sporns and % colleagues: www.brain-connectivity-toolbox.net. % % 'clustering_coef' clustering coefficient. % 'degrees' % % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % Methods to be implemented % % 'xcorr', cross correlation function % 'di', directionality index % 'spearman' spearman's rank correlation % 'corr' pearson correlation % % Copyright (C) 2009, Jan-Mathijs Schoffelen, Andre Bastos, Martin Vinck, Robert Oostenveld % Copyright (C) 2010-2011, Jan-Mathijs Schoffelen, Martin Vinck % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_connectivityanalysis.m 3875 2011-07-20 06:31:44Z jansch $ %ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % set the defaults %FIXME do method specific calls to ft_checkconfig cfg.feedback = ft_getopt(cfg, 'feedback', 'none'); cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.channelcmb = ft_getopt(cfg, 'channelcmb', {'all' 'all'}); cfg.refindx = ft_getopt(cfg, 'refindx', 'all'); cfg.trials = ft_getopt(cfg, 'trials', 'all'); cfg.complex = ft_getopt(cfg, 'complex', 'abs'); cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no'); cfg.removemean = ft_getopt(cfg, 'removemean', 'yes'); cfg.partchannel = ft_getopt(cfg, 'partchannel', ''); cfg.conditional = ft_getopt(cfg, 'conditional', []); cfg.blockindx = ft_getopt(cfg, 'blockindx', {}); cfg.inputfile = ft_getopt(cfg, 'inputfile', []); cfg.outputfile = ft_getopt(cfg, 'outputfile', []); cfg.parameter = ft_getopt(cfg, 'parameter', []); % load optional given inputfile as data hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'data'); end end hasjack = (isfield(data, 'method') && strcmp(data.method, 'jackknife')) || (isfield(data, 'dimord') && strcmp(data.dimord(1:6), 'rptjck')); hasrpt = (isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'rpt'))) || ... (isfield(data, 'avg') && isfield(data.avg, 'mom')); %FIXME old-fashioned pcc data dojack = strcmp(cfg.jackknife, 'yes'); normrpt = 0; % default, has to be overruled e.g. in plv, because of single replicate normalisation normpow = 1; % default, has to be overruled e.g. in csd, % select trials of interest if ~strcmp(cfg.trials, 'all') data = ft_selectdata(data, 'rpt', cfg.trials); end % select channels/channelcombination of interest and set the cfg-options accordingly if isfield(data, 'label'), selchan = cell(0,1); if ~isempty(cfg.channelcmb) && ~isequal(cfg.channelcmb, {'all' 'all'}), tmpcmb = ft_channelcombination(cfg.channelcmb, data.label); tmpchan = unique(tmpcmb(:)); cfg.channelcmb = ft_channelcombination(cfg.channelcmb, tmpchan, 1); selchan = [selchan;unique(cfg.channelcmb(:))]; end cfg.channel = ft_channelselection(cfg.channel, data.label); selchan = [selchan;cfg.channel]; if ~isempty(cfg.partchannel) cfg.partchannel = ft_channelselection(cfg.partchannel, data.label); selchan = [selchan; cfg.partchannel]; end data = ft_selectdata(data, 'channel', unique(selchan)); elseif isfield(data, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); if ~isempty(cfg.partchannel) error('partialisation is only possible without linearly indexed bivariate data'); end if ~isempty(cfg.channelcmb), %FIXME do something extra here end %FIXME call selectdata end % FIXME check which methods require hasrpt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % data bookkeeping: % ensure that the input data is appropriate for the method %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% needrpt = 1; % logical flag to specify whether (pseudo)-repetitions are required in the lower level % connectivity function (can be singleton) switch cfg.method case {'coh' 'csd'} if ~isempty(cfg.partchannel) if hasrpt && ~hasjack, warning('partialisation on single trial observations is not supported, removing trial dimension'); try data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbrepresentation', 'fullfast'); inparam = 'crsspctrm'; hasrpt = 0; catch error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation'); end else try data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}, 'cmbrepresentation', 'full'); inparam = 'crsspctrm'; catch error('partial coherence/csd is only supported for input allowing for a all-to-all csd representation'); end end else data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'}); inparam = 'crsspctrm'; end if strcmp(cfg.method, 'csd'), normpow = 0; end dtype = ft_datatype(data); switch dtype case 'source' if isempty(cfg.refindx), error('indices of reference voxels need to be specified'); end % if numel(cfg.refindx)>1, error('more than one reference voxel is not yet supported'); end otherwise end % FIXME think of accommodating partial coherence for source data with only a few references case {'wpli'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; debiaswpli = 0; if hasjack, error('to compute wpli, data should be in rpt format'); end case {'wpli_debiased'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; debiaswpli = 1; if hasjack, error('to compute wpli, data should be in rpt format'); end case {'ppc'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; weightppc = 0; if hasjack, error('to compute ppc, data should be in rpt format'); end case {'wppc'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; weightppc = 1; if hasjack, error('to compute wppc, data should be in rpt format'); end case {'plv'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; normrpt = 1; case {'corr' 'xcorr'} data = ft_checkdata(data, 'datatype', 'raw'); case {'amplcorr' 'powcorr'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq' 'source'}); dtype = ft_datatype(data); switch dtype case {'freq' 'freqmvar'} inparam = 'powcovspctrm'; case 'source' inparam = 'powcov'; if isempty(cfg.refindx), error('indices of reference voxels need to be specified'); end % if numel(cfg.refindx)>1, error('more than one reference voxel is not yet supported'); end otherwise end case {'granger'} data = ft_checkdata(data, 'datatype', {'mvar' 'freqmvar' 'freq'}); inparam = {'transfer', 'noisecov', 'crsspctrm'}; % FIXME could also work with time domain data case {'instantaneous_causality'} data = ft_checkdata(data, 'datatype', {'mvar' 'freqmvar' 'freq'}); inparam = {'transfer', 'noisecov', 'crsspctrm'}; case {'total_interdependence'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; case {'dtf' 'pdc'} data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'transfer'; case {'psi'} if ~isfield(cfg, 'normalize'), cfg.normalize = 'no'; end data = ft_checkdata(data, 'datatype', {'freqmvar' 'freq'}); inparam = 'crsspctrm'; case {'di'} %wat eigenlijk? case {'clustering_coef' 'degrees'} ft_hastoolbox('BCT', 1); if ~strcmp(data.dimord(1:9), 'chan_chan'), error('the dimord of the input data should start with ''chan_chan'''); end if isempty(cfg.parameter) error('when using functions from the brain connectivity toolbox you should give a parameter for which the metric is to be computed'); else inparam = cfg.parameter; end needrpt = 0; otherwise error('unknown method %s', cfg.method); end dtype = ft_datatype(data); % ensure that source data is in 'new' representation if strcmp(dtype, 'source'), data = ft_checkdata(data, 'sourcerepresentation', 'new'); end % FIXME throw an error if cfg.complex~='abs', and dojack==1 % FIXME throw an error if no replicates and cfg.method='plv' % FIXME trial selection has to be implemented still %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % data bookkeeping: % check whether the required inparam is present in the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if any(~isfield(data, inparam)) || (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm'))), if iscell(inparam) % in the case of multiple inparams, use the first one to check the % input data (e.g. checking for 'transfer' for requested granger) inparam = inparam{1}; end switch dtype case {'freq' 'freqmvar'} if strcmp(inparam, 'crsspctrm') if isfield(data, 'fourierspctrm') [data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 'cmb', cfg.channelcmb, 'keeprpt', normrpt); elseif strcmp(inparam, 'crsspctrm') && isfield(data, 'powspctrm') % if input data is old-fashioned, i.e. contains powandcsd [data, powindx, hasrpt] = univariate2bivariate(data, 'powandcsd', 'crsspctrm', dtype, 'cmb', cfg.channelcmb, 'keeprpt', normrpt); elseif isfield(data, 'labelcmb') powindx = labelcmb2indx(data.labelcmb); else powindx = []; end elseif strcmp(inparam, 'powcovspctrm') if isfield(data, 'powspctrm'), [data, powindx] = univariate2bivariate(data, 'powspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean,'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method,'amplcorr')); elseif isfield(data, 'fourierspctrm'), [data, powindx] = univariate2bivariate(data, 'fourierspctrm', 'powcovspctrm', dtype, 'demeanflag', strcmp(cfg.removemean,'yes'), 'cmb', cfg.channelcmb, 'sqrtflag', strcmp(cfg.method,'amplcorr')); end elseif strcmp(inparam, 'transfer') if isfield(data, 'fourierspctrm') %FIXME this is fast but throws away the trial dimension, consider %a way to keep trial information if needed, but use the fast way %if possible data = ft_checkdata(data, 'cmbrepresentation', 'fullfast'); hasrpt = 0; elseif isfield(data, 'powspctrm') data = ft_checkdata(data, 'cmbrepresentation', 'full'); end tmpcfg = ft_checkconfig(cfg, 'createsubcfg', {'npsf'}); % check whether multiple pairwise decomposition is required (this % can most conveniently be handled at this level %tmpcfg.npsf = rmfield(tmpcfg.npsf, 'channelcmb'); try,tmpcfg.npsf = rmfield(tmpcfg.npsf, 'block'); end try,tmpcfg.npsf = rmfield(tmpcfg.npsf, 'blockindx'); end % end optarg = ft_cfg2keyval(tmpcfg.npsf); data = csd2transfer(data, optarg{:}); % convert the inparam back to cell array in the case of granger if strcmp(cfg.method, 'granger') inparam = {'transfer' 'noisecov' 'crsspctrm'}; end end case 'source' if strcmp(inparam, 'crsspctrm') [data, powindx, hasrpt] = univariate2bivariate(data, 'mom', 'crsspctrm', dtype, 'cmb', cfg.refindx, 'keeprpt', 0); %[data, powindx, hasrpt] = univariate2bivariate(data, 'fourierspctrm', 'crsspctrm', dtype, 0, cfg.refindx, [], 1); elseif strcmp(inparam, 'powcov') data = ft_checkdata(data, 'sourcerepresentation', 'new', 'haspow', 'yes'); [data, powindx, hasrpt] = univariate2bivariate(data, 'pow', 'powcov', dtype, 'demeanflag', strcmp(cfg.removemean,'yes'), 'cmb', cfg.refindx, 'sqrtflag', strcmp(cfg.method,'amplcorr'), 'keeprpt', 0); end otherwise end elseif (isfield(data, 'crsspctrm') && (ischar(inparam) && strcmp(inparam, 'crsspctrm'))) % this means that there is a sparse crsspctrm in the data else powindx = []; end % do some additional work if single trial normalisation is required % for example when plv needs to be computed if normrpt && hasrpt, if strcmp(inparam, 'crsspctrm'), tmp = data.(inparam); nrpt = size(tmp,1); ft_progress('init', cfg.feedback, 'normalising...'); for k = 1:nrpt ft_progress(k/nrpt, 'normalising amplitude of replicate %d from %d to 1\n', k, nrpt); tmp(k,:,:,:,:) = tmp(k,:,:,:,:)./abs(tmp(k,:,:,:,:)); end ft_progress('close'); data.(inparam) = tmp; end end % convert the labels for the partialisation channels into indices % do the same for the labels of the channels that should be kept % convert the labels in the output to reflect the partialisation if ~isempty(cfg.partchannel) allchannel = ft_channelselection(cfg.channel, data.label); pchanindx = match_str(allchannel,cfg.partchannel); kchanindx = setdiff(1:numel(allchannel), pchanindx); keepchn = allchannel(kchanindx); cfg.pchanindx = pchanindx; cfg.allchanindx = kchanindx; partstr = ''; for k = 1:numel(cfg.partchannel) partstr = [partstr,'-',cfg.partchannel{k}]; end for k = 1:numel(keepchn) keepchn{k} = [keepchn{k},'\',partstr(2:end)]; end data.label = keepchn; % update labels to remove the partialed channels % FIXME consider keeping track of which channels have been partialised else cfg.pchanindx = []; cfg.allchanindx = []; end % check if jackknife is required if hasrpt && dojack && hasjack, % do nothing elseif hasrpt && dojack && ~(exist('debiaswpli', 'var') || exist('weightppc', 'var')), % compute leave-one-outs data = ft_selectdata(data, 'jackknife', 'yes'); hasjack = 1; elseif hasrpt && ~(exist('debiaswpli', 'var') || exist('weightppc', 'var')) % create dof variable if isfield(data, 'dof') dof = data.dof; elseif isfield(data, 'cumtapcnt') dof = sum(data.cumtapcnt); end data = ft_selectdata(data, 'avgoverrpt', 'yes'); hasrpt = 0; else % nothing required end % ensure that the first dimension is singleton if ~hasrpt if hasrpt % nothing required elseif needrpt if ischar(inparam) data.(inparam) = reshape(data.(inparam), [1 size(data.(inparam))]); else for k = 1:numel(inparam) data.(inparam{k}) = reshape(data.(inparam{k}), [1 size(data.(inparam{k}))]); end end if isfield(data, 'dimord') data.dimord = ['rpt_',data.dimord]; else data.([inparam,'dimord']) = ['rpt_',data.([inparam,'dimord'])]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the desired connectivity metric by % calling the appropriate ft_connectivity_XXX % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch cfg.method case 'coh' % coherence (unsquared), if cfg.complex = 'imag' imaginary part of % coherency optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, ... 'pownorm', normpow, 'hasjack', hasjack}; if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end [datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:}); outparam = 'cohspctrm'; case 'csd' % cross-spectral density (e.g. useful if partialisation is required) optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, ... 'pownorm', normpow, 'hasjack', hasjack}; if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end [datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:}); outparam = 'crsspctrm'; case {'wpli' 'wpli_debiased'} % weighted pli or debiased weighted phase lag index. tmpcfg = []; tmpcfg.feedback = cfg.feedback; tmpcfg.dojack = dojack; tmpcfg.debias = debiaswpli; optarg = ft_cfg2keyval(tmpcfg); [datout, varout, nrpt] = ft_connectivity_wpli(data.(inparam), optarg{:}); if debiaswpli outparam = 'wpli_debiasedspctrm'; else outparam = 'wplispctrm'; end case {'wppc' 'ppc'} % weighted pairwise phase consistency or pairwise phase consistency tmpcfg = []; tmpcfg.feedback = cfg.feedback; tmpcfg.dojack = dojack; tmpcfg.weighted = weightppc; optarg = ft_cfg2keyval(tmpcfg); [datout, varout, nrpt] = ft_connectivity_ppc(data.(inparam), optarg{:}); if weightppc outparam = 'wppcspctrm'; else outparam = 'ppcspctrm'; end case 'plv' % phase locking value optarg = {'complex', cfg.complex, 'dimord', data.dimord, 'feedback', cfg.feedback, ... 'pownorm', normpow, 'hasjack', hasjack}; if ~isempty(cfg.pchanindx), optarg = cat(2, optarg, {'pchanindx', cfg.pchanindx, 'allchanindx', cfg.allchanindx}); end if exist('powindx', 'var'), optarg = cat(2, optarg, {'powindx', powindx}); end [datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:}); outparam = 'plvspctrm'; case 'corr' % pearson's correlation coefficient case 'xcorr' % cross-correlation function case 'spearman' % spearman's rank correlation case 'amplcorr' % amplitude correlation tmpcfg = []; tmpcfg.feedback = cfg.feedback; if isfield(data, 'dimord'), tmpcfg.dimord = data.dimord; else tmpcfg.dimord = data.([inparam,'dimord']); end tmpcfg.complex = 'real'; tmpcfg.pownorm = 1; tmpcfg.pchanindx = []; tmpcfg.hasjack = hasjack; if exist('powindx', 'var'), tmpcfg.powindx = powindx; end optarg = ft_cfg2keyval(tmpcfg); [datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:}); outparam = 'amplcorrspctrm'; case 'powcorr' % power correlation tmpcfg = []; tmpcfg.feedback = cfg.feedback; if isfield(data, 'dimord'), tmpcfg.dimord = data.dimord; else tmpcfg.dimord = data.([inparam,'dimord']); end tmpcfg.complex = 'real'; tmpcfg.pownorm = 1; tmpcfg.pchanindx = []; tmpcfg.hasjack = hasjack; if exist('powindx', 'var'), tmpcfg.powindx = powindx; end optarg = ft_cfg2keyval(tmpcfg); [datout, varout, nrpt] = ft_connectivity_corr(data.(inparam), optarg{:}); outparam = 'powcorrspctrm'; case 'granger' % granger causality if sum(ft_datatype(data, {'freq' 'freqmvar'})), if isfield(data, 'labelcmb') && isempty(cfg.conditional), % multiple pairwise non-parametric transfer functions % linearly indexed % The following is very slow, one may make assumptions regarding % the order of the channels -> csd2transfer gives combinations in % quadruplets, where the first and fourth are auto-combinations, % and the second and third are cross-combinations %powindx = labelcmb2indx(data.labelcmb); powindx = zeros(size(data.labelcmb)); for k = 1:size(powindx,1)/4 ix = ((k-1)*4+1):k*4; powindx(ix,:) = [1 1;4 1;1 4;4 4] + (k-1)*4; end elseif isfield(data, 'labelcmb') % conditional (blockwise) needs linearly represented cross-spectra for k = 1:size(cfg.conditional,1) tmp{k,1} = cfg.conditional(k,:); tmp{k,2} = cfg.conditional(k,[1 3]); end [cmbindx, n] = blockindx2cmbindx(data.labelcmb, cfg.blockindx, tmp); powindx.cmbindx = cmbindx; powindx.n = n; elseif isfield(cfg, 'block') && ~isempty(cfg.block) % blockwise granger powindx = cfg.block; for k = 1:2 newlabel{k,1} = cat(2,powindx{k}); end data.label = newlabel; else powindx = []; end %fs = cfg.fsample; %FIXME do we really need this, or is this related to how %noisecov is defined and normalised? fs = 1; if ~exist('powindx', 'var'), powindx = []; end [datout, varout, nrpt] = ft_connectivity_granger(data.transfer, data.noisecov, data.crsspctrm, fs, hasjack, powindx); outparam = 'grangerspctrm'; else error('granger for time domain data is not yet implemented'); end case 'instantaneous_causality' % instantaneous ft_connectivity between the series, requires the same elements as granger if sum(ft_datatype(data, {'freq' 'freqmvar'})), if isfield(data, 'labelcmb'), % multiple pairwise non-parametric transfer functions % linearly indexed powindx = labelcmb2indx(data.labelcmb); elseif isfield(cfg, 'block') && ~isempty(cfg.block) % blockwise granger powindx = cfg.block; for k = 1:2 newlabel{k,1} = cat(2,powindx{k}); end data.label = newlabel; else % do nothing end %fs = cfg.fsample; %FIXME do we really need this, or is this related to how %noisecov is defined and normalised? if ~exist('powindx', 'var'), powindx = []; end fs = 1; [datout, varout, nrpt] = ft_connectivity_instantaneous(data.transfer, data.noisecov, data.crsspctrm, fs, hasjack, powindx); outparam = 'instantspctrm'; else error('instantaneous causality for time domain data is not yet implemented'); end case 'total_interdependence' %total interdependence tmpcfg = []; tmpcfg.complex = 'abs'; tmpcfg.feedback = cfg.feedback; tmpcfg.dimord = data.dimord; tmpcfg.pownorm = normpow; tmpcfg.pchanindx = cfg.pchanindx; tmpcfg.allchanindx = cfg.allchanindx; tmpcfg.hasrpt = hasrpt; tmpcfg.hasjack = hasjack; if exist('powindx', 'var'), tmpcfg.powindx = powindx; end optarg = ft_cfg2keyval(tmpcfg); [datout, varout, nrpt] = ft_connectivity_toti(tmpcfg, data.(inparam), hasrpt, hasjack); outparam = 'totispctrm'; case 'dtf' % directed transfer function if isfield(data, 'labelcmb'), powindx = labelcmb2indx(data.labelcmb); else powindx = []; end tmpcfg = []; tmpcfg.feedback = cfg.feedback; tmpcfg.powindx = powindx; tmpcfg.hasjack = hasjack; optarg = ft_cfg2keyval(tmpcfg); hasrpt = ~isempty(strfind(data.dimord, 'rpt')); if hasrpt, nrpt = size(data.(inparam),1); datin = data.(inparam); else nrpt = 1; datin = reshape(data.(inparam), [1 size(data.(inparam))]); end [datout, varout, nrpt] = ft_connectivity_dtf(datin, optarg{:}); outparam = 'dtfspctrm'; case 'pdc' % partial directed coherence if isfield(data, 'labelcmb'), powindx = labelcmb2indx(data.labelcmb); else powindx = []; end tmpcfg = []; tmpcfg.feedback = cfg.feedback; tmpcfg.powindx = powindx; tmpcfg.hasjack = hasjack; optarg = ft_cfg2keyval(tmpcfg); hasrpt = ~isempty(strfind(data.dimord, 'rpt')); if hasrpt, nrpt = size(data.(inparam),1); datin = data.(inparam); else nrpt = 1; datin = reshape(data.(inparam), [1 size(data.(inparam))]); end [datout, varout, nrpt] = ft_connectivity_pdc(datin, optarg{:}); outparam = 'pdcspctrm'; case 'psi' % phase slope index tmpcfg = []; tmpcfg.feedback = cfg.feedback; tmpcfg.dimord = data.dimord; tmpcfg.nbin = nearest(data.freq, data.freq(1)+cfg.bandwidth)-1; tmpcfg.normalize = cfg.normalize; tmpcfg.hasrpt = hasrpt; tmpcfg.hasjack = hasjack; if exist('powindx', 'var'), tmpcfg.powindx = powindx; end optarg = ft_cfg2keyval(tmpcfg); [datout, varout, nrpt] = ft_connectivity_psi(data.(inparam), optarg{:}); outparam = 'psispctrm'; case 'di' % directionality index case {'clustering_coef' 'degrees'} [datout, outdimord] = ft_connectivity_bct(data.(inparam), 'method', cfg.method); varout = []; outparam = [cfg.method,'spctrm']; data.dimord = outdimord; otherwise error('unknown method %s', cfg.method); end %remove the auto combinations if necessary if exist('powindx', 'var') && ~isempty(powindx), switch dtype case {'freq' 'freqmvar'} if isfield(data, 'labelcmb') && ~isstruct(powindx), keepchn = powindx(:,1) ~= powindx(:,2); datout = datout(keepchn,:,:,:,:); if ~isempty(varout), varout = varout(keepchn,:,:,:,:); end data.labelcmb = data.labelcmb(keepchn,:); end case 'source' nvox = size(unique(data.pos(:,1:3),'rows'),1); ncmb = size(data.pos,1)/nvox-1; remove = (powindx(:,1) == powindx(:,2)) & ((1:size(powindx,1))' > nvox*ncmb); keepchn = ~remove; datout = datout(keepchn,:,:,:,:); if ~isempty(varout), varout = varout(keepchn,:,:,:,:); end inside = logical(zeros(1,size(data.pos,1))); inside(data.inside) = true; inside = inside(keepchn); data.inside = find(inside)'; data.outside = find(inside==0)'; data.pos = data.pos(keepchn,:); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % create the output structure %%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch dtype case {'freq' 'freqmvar'}, stat = []; if isfield(data, 'label'), stat.label = data.label; end if isfield(data, 'labelcmb'), stat.labelcmb = data.labelcmb; end tok = tokenize(data.dimord, '_'); dimord = ''; for k = 1:numel(tok) if isempty(strfind(tok{k}, 'rpt')) dimord = [dimord, '_', tok{k}]; end end stat.dimord = dimord(2:end); stat.(outparam) = datout; if ~isempty(varout), stat.([outparam,'sem']) = (varout./nrpt).^0.5; end case 'source' stat = []; stat.pos = data.pos; stat.dim = data.dim; stat.inside = data.inside; stat.outside = data.outside; stat.(outparam) = datout; if ~isempty(varout), stat.([outparam,'sem']) = (varout/nrpt).^0.5; end end if isfield(data, 'freq'), stat.freq = data.freq; end if isfield(data, 'frequency'), stat.frequency = data.frequency; end if isfield(data, 'time'), stat.time = data.time; end if isfield(data, 'grad'), stat.grad = data.grad; end if isfield(data, 'elec'), stat.elec = data.elec; end if exist('dof', 'var'), stat.dof = dof; end %FIXME this needs to be implemented still % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_connectivityanalysis.m 3875 2011-07-20 06:31:44Z jansch $'; % add information about the Matlab version used to the configuration cfg.version.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try cfg.previous = data.cfg; end % remember the exact configuration details in the output stat.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', stat); % use the variable name "data" in the output file end %------------------------------------------------------------- function [c, v, n] = ft_connectivity_toti(cfg, input, hasrpt, hasjack) % FIXME move functionality into ft_connectivity_granger cfg.hasrpt = hasrpt; cfg.hasjack = hasjack; optarg = ft_cfg2keyval(cfg); [c, v, n] = ft_connectivity_corr(input, optarg{:}); c = -log(1-c.^2); v = -log(1-v.^2); %FIXME this is probably not correct %---------------------------------------------------------------- function [instc, v, n] = ft_connectivity_instantaneous(H, Z, S, fs, hasjack,powindx) % FIXME move functionality into ft_connectivity_granger %Usage: causality = hz2causality(H,S,Z,fs); %Inputs: transfer = transfer function, % crsspctrm = 3-D spectral matrix; % noisecov = noise covariance, % fs = sampling rate %Outputs: instantaneous causality spectrum between the channels. %Total Interdependence = Granger (X->Y) + Granger (Y->X) + Instantaneous Causality % : auto-causality spectra are set to zero % Reference: Brovelli, et. al., PNAS 101, 9849-9854 (2004), Rajagovindan % and Ding, PLoS One Vol. 3, 11, 1-8 (2008) %M. Dhamala, UF, August 2006. %FIXME speed up code and check siz = size(H); if numel(siz)==4, siz(5) = 1; end n = siz(1); Nc = siz(2); outsum = zeros(siz(2:end)); outssq = zeros(siz(2:end)); if isempty(powindx) %clear S; for k = 1:size(H,3), h = squeeze(H(:,:,k)); S(:,:,k) = h*Z*h'/fs; end; for kk = 1:n for ii = 1:Nc for jj = 1:Nc if ii ~=jj, zc1 = reshape(Z(kk,jj,jj,:) - Z(kk,ii,jj,:).^2./Z(kk,ii,ii,:),[1 1 1 1 siz(5)]); zc1 = repmat(zc1,[1 1 1 siz(4) 1]); zc2 = reshape(Z(kk,ii,ii,:) - Z(kk,jj,ii,:).^2./Z(kk,jj,jj,:),[1 1 1 1 siz(5)]); zc2 = repmat(zc2,[1 1 1 siz(4) 1]); CTH1 = reshape(ctranspose(squeeze(H(kk,ii,jj,:,:))),1,1,1,siz(4)); CTH2 = reshape(ctranspose(squeeze(H(kk,jj,ii,:,:))),1,1,1,siz(4)); term1 = (S(kk,ii,ii,:,:) - H(kk,ii,jj,:,:).*zc1.*CTH1); term2 = (S(kk,jj,jj,:,:) - H(kk,jj,ii,:,:).*zc2.*CTH2); Sdet = (S(kk,ii,ii,:,:).*S(kk,jj,jj,:,:)) - (S(kk,ii,jj,:,:).*S(kk,jj,ii,:,:)); outsum(jj,ii,:) = outsum(jj,ii) + log((term1.*term2)./Sdet(kk,:,:,:)); outssq(jj,ii,:) = outssq(jj,ii) + log((term1.*term2)./Sdet(kk,:,:,:)).^2; end end outsum(ii,ii,:,:) = 0;%self-granger set to zero end end elseif ~iscell(powindx) % data are linearly indexed for k = 1:Nc for j = 1:n iauto1 = find(sum(powindx==powindx(k,1),2)==2); iauto2 = find(sum(powindx==powindx(k,2),2)==2); icross1 = k; icross2 = find(sum(powindx==powindx(ones(Nc,1)*k,[2 1]),2)==2); if iauto1 ~= iauto2 zc1 = Z(j,iauto1) - Z(j,icross2).^2./Z(j,iauto2); zc1 = repmat(zc1,[1 1 siz(3)]); zc2 = Z(j,iauto2) - Z(j,icross1).^2./Z(j,iauto1); zc2 = repmat(zc2,[1 1 siz(3)]); CTH1 = reshape(ctranspose(squeeze(H(j,icross2,:))),1,1,siz(3)); CTH2 = reshape(ctranspose(squeeze(H(j,icross1,:))),1,1,siz(3)); term1 = (S(j,iauto2,:) - H(j,icross2,:).*zc1.*CTH1); term2 = (S(j,iauto1,:) - H(j,icross1,:).*zc2.*CTH2); Sdet = (S(j,iauto2,:).*S(j,iauto1,:)) - (S(j,icross2,:).*S(j,icross1,:)); outsum(k,:) = outsum(k) + log((term1.*term2)./Sdet(j,:,:)); outssq(k,:) = outssq(k) + log((term1.*term2)./Sdet(j,:,:)).^2; end end end end instc = outsum./n; if n>1, if hasjack bias = (n-1).^2; else bias = 1; end v = bias*(outssq - (outsum.^2)./n)./(n - 1); else v = []; end
github
philippboehmsturm/antx-master
ft_spiketriggeredspectrum.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spiketriggeredspectrum.m
10,372
utf_8
265b67d97bf3022ba71efd52ec02f999
function [freq] = ft_spiketriggeredspectrum(cfg, data) % FT_SPIKETRIGGEREDSPECTRUM computes the Fourier spectrup of the LFP around the spikes. % % Use as % [freq] = ft_spiketriggeredspectrum(cfg, data) % % The input data should be organised in a structure as obtained from % the FT_APPENDSPIKE function. The configuration should be according to % % cfg.timwin = [begin end], time around each spike (default = [-0.1 0.1]) % cfg.foilim = [begin end], frequency band of interest (default = [0 150]) % cfg.taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'hanning') % cfg.tapsmofrq = number, the amount of spectral smoothing through % multi-tapering. Note that 4 Hz smoothing means % plus-minus 4 Hz, i.e. a 8 Hz smoothing box. % Note: multitapering rotates phases (no problem for consistency) % cfg.spikechannel = string, name of single spike channel to trigger on % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.feedback = 'no', 'text', 'textbar', 'gui' (default = 'no') % % If the triggered spike leads a spike in another channel, then the angle % of the Fourier spectrum of that other channel will be negative. NOTE that % this should be checked for consistency. % % NOTE: Function should be merged with ft_spike_triggeredspectrum % % Copyright (C) 2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_spiketriggeredspectrum.m 3710 2011-06-16 14:04:19Z eelspa $ % This function uses a NaN-aware spectral estimation technique, which will % default to the standard Matlab FFT routine if no NaNs are present. The % fft_along_rows subfunction below demonstrates the expected function % behaviour. ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % set the defaults if ~isfield(cfg, 'timwin'), cfg.timwin = [-0.1 0.1]; end if ~isfield(cfg, 'foilim'), cfg.foilim = [0 150]; end if ~isfield(cfg, 'taper'), cfg.taper = 'hanning'; end if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'spikechannel'), cfg.spikechannel = []; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end if ~isfield(cfg, 'tapsmofrq'), cfg.tapsmofrq = 4; end if strcmp(cfg.taper, 'sine') error('sorry, sine taper is not yet implemented'); end % autodetect the spike channels ntrial = length(data.trial); nchans = length(data.label); spikechan = zeros(nchans,1); for i=1:ntrial for j=1:nchans spikechan(j) = spikechan(j) + all(data.trial{i}(j,:)==0 | data.trial{i}(j,:)==1 | data.trial{i}(j,:)==2); end end spikechan = (spikechan==ntrial); % determine the channels to be averaged cfg.channel = ft_channelselection(cfg.channel, data.label); chansel = match_str(data.label, cfg.channel); nchansel = length(cfg.channel); % number of channels % determine the spike channel on which will be triggered cfg.spikechannel = ft_channelselection(cfg.spikechannel, data.label); spikesel = match_str(data.label, cfg.spikechannel); nspikesel = length(cfg.spikechannel); % number of channels if nspikesel==0 error('no spike channel selected'); end if nspikesel>1 error('only supported for a single spike channel'); end if ~spikechan(spikesel) error('the selected spike channel seems to contain continuous data'); end begpad = round(cfg.timwin(1)*data.fsample); endpad = round(cfg.timwin(2)*data.fsample); numsmp = endpad - begpad + 1; if ~strcmp(cfg.taper,'dpss') taper = window(cfg.taper, numsmp); taper = taper./norm(taper); else % not implemented yet: keep tapers, or selecting only a subset of them. taper = dpss(numsmp, cfg.tapsmofrq); taper = taper(:,1:end-1); % we get 2*NW-1 tapers taper = sum(taper,2)./size(taper,2); % using the linearity of multitapering end taper = sparse(diag(taper)); spectrum = cell(1,ntrial); spiketime = cell(1,ntrial); spiketrial = cell(1,ntrial); cumsum = zeros(nchansel, numsmp); cumcnt = 0; timeaxis = linspace(cfg.timwin(1),cfg.timwin(2), numsmp); freqaxis = linspace(0, data.fsample, numsmp); fbeg = nearest(freqaxis, cfg.foilim(1)); fend = nearest(freqaxis, cfg.foilim(2)); % update the configuration to acocunt for rounding off differences cfg.foilim(1) = freqaxis(fbeg); cfg.foilim(2) = freqaxis(fend); % make a representation of the spike, this is used for the phase rotation spike = zeros(1,numsmp); time = randn(1,numsmp); % this is actually not used spike(1-begpad) = 1; spike_fft = specest_nanfft(spike, time); spike_fft = spike_fft(fbeg:fend); spike_fft = spike_fft./abs(spike_fft); rephase = sparse(diag(conj(spike_fft))); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the spectra %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:ntrial spikesmp = find(data.trial{i}(spikesel,:)); spikecnt = data.trial{i}(spikesel,spikesmp); if any(spikecnt>5) || any(spikecnt<0) error('the spike count lies out of the regular bounds'); end % instead of doing the bookkeeping of double spikes below, replicate the double spikes by looking at spikecnt sel = find(spikecnt>1); tmp = zeros(1,sum(spikecnt(sel))); n = 1; for j=1:length(sel) for k=1:spikecnt(sel(j)) tmp(n) = spikesmp(sel(j)); n = n + 1; end end spikesmp(sel) = []; % remove the double spikes spikecnt(sel) = []; % remove the double spikes spikesmp = [spikesmp tmp]; % add the double spikes as replicated single spikes spikecnt = [spikecnt ones(size(tmp))]; % add the double spikes as replicated single spikes spikesmp = sort(spikesmp); % sort them to keep the original ordering (not needed on spikecnt, since that is all ones) spiketime{i} = data.time{i}(spikesmp); spiketrial{i} = i*ones(size(spikesmp)); fprintf('processing trial %d of %d (%d spikes)\n', i, ntrial, sum(spikecnt)); spectrum{i} = zeros(length(spikesmp), nchansel, fend-fbeg+1); ft_progress('init', cfg.feedback, 'spectrally decomposing data around spikes'); for j=1:length(spikesmp) ft_progress(i/ntrial, 'spectrally decomposing data around spike %d of %d\n', j, length(spikesmp)); begsmp = spikesmp(j) + begpad; endsmp = spikesmp(j) + endpad; if (begsmp<1) segment = nan*zeros(nchansel, numsmp); elseif endsmp>size(data.trial{i},2) segment = nan*zeros(nchansel, numsmp); else segment = data.trial{i}(chansel,begsmp:endsmp); end % substract the DC component from every segment, to avoid any leakage of the taper segmentMean = repmat(nanmean(segment,2),1,numsmp); % nChan x Numsmp segment = segment - segmentMean; % LFP has average of zero now (no DC) time = randn(size(segment)); % this is actually not used % taper the data segment around the spike and compute the fft segment_fft = specest_nanfft(segment * taper, time); % select the desired output frquencies and normalize segment_fft = segment_fft(:,fbeg:fend) ./ sqrt(numsmp/2); % rotate the estimated phase at each frequency to correct for the segment t=0 not being at the first sample segment_fft = segment_fft * rephase; % store the result for this spike in this trial spectrum{i}(j,:,:) = segment_fft; end % for each spike in this trial ft_progress('close'); end % for each trial %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % collect the results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% freq.label = data.label(chansel); freq.freq = freqaxis(fbeg:fend); freq.dimord = 'rpt_chan_freq'; freq.fourierspctrm = cat(1, spectrum{:}); freq.origtime = cat(2,spiketime{:})'; % this deviates from the standard output, but is included for reference freq.origtrial = cat(2,spiketrial{:})'; % this deviates from the standard output, but is included for reference % select all trials that do not contain data in the first sample sel = isnan(freq.fourierspctrm(:,1,1)); fprintf('removing %d trials from the output that do not contain data\n', sum(sel)); % remove the selected trials from the output freq.fourierspctrm = freq.fourierspctrm(~sel,:,:); freq.origtime = freq.origtime(~sel); freq.origtrial = freq.origtrial(~sel); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_spiketriggeredspectrum.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try, cfg.previous = data.cfg; end % remember the exact configuration details in the output freq.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for demonstration purpose %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = fft_along_rows(x) y = fft(x, [], 2); % use normal Matlab function to compute the fft along 2nd dimension
github
philippboehmsturm/antx-master
ft_conjunctionanalysis.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_conjunctionanalysis.m
9,072
utf_8
58afcd8bb20e28e073829a3e2c688a99
function [Cval] = ft_conjunctionanalysis(cfg, varargin) % FT_CONJUNCTIONANALYSIS finds minimalistic (maximum common) T values, % clusters and probabilities in the input contrasts (n>=2). % Furthermore, the output mask structure shows the overlap of sensors/voxels % that are significantly different (logical AND). % % Alternatively, it finds minimalistic mean power values in the input datasets. % Here, a type 'relative change' baselinecorrection prior to conjunction is advised. % % Use as: % [stat] = ft_conjunctionanalysis(cfg, data1, data2, .., dataN) % % where data comes from % - ft_sourcestatistics post ft_sourceanalysis % with or without ft_sourceinterpolate % - ft_freqstatistics post ft_freqanalysis % - ft_sourceanalysis % - ft_freqanalysis % % No configuration options are yet implemented. % % Copyright (C) 2010-2011, Arjen Stolk % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % input check if nargin < 3 error('not enough input arguments; there should be at least two'); elseif nargin >= 3 ndatasets = nargin - 1; fprintf('performing conjunction analysis on %s input datasets \n', num2str(ndatasets)); Cval = []; end % output check voxflag = 0; sensflag = 0; % conjunction loop, in case ndatasets > 2 for i = 1:ndatasets-1 % align input arguments for conjunction if isempty(Cval) data1 = varargin{i}; data2 = varargin{i+1}; else data1 = Cval; % use already conjunct output data2 = varargin{i+1}; end %% SOURCE DATA if isfield(data1, 'inside') % check voxflag = 1; if isfield(data1, 'stat') % conjunction on t-values fprintf('minimum statistics on voxel T values \n'); % equal size input check if ~isequal(size(data1.stat), size(data2.stat)) error('the input arguments have different sizes'); end Cval = data1; Cval.stat = minimumstatistics(data1.stat, data2.stat); if isfield(data1, 'posclusterslabelmat') % conjunction on cluster values fprintf('minimum statistics on positive clusters \n'); Cval.posclusterslabelmat = minimumstatistics(data1.posclusterslabelmat, data2.posclusterslabelmat); end if isfield(data1, 'negclusterslabelmat') % conjunction on cluster values fprintf('minimum statistics on negative clusters \n'); Cval.negclusterslabelmat = minimumstatistics(data1.negclusterslabelmat, data2.negclusterslabelmat); end if isfield(data1, 'prob') % conjunction on probabilities fprintf('minimum statistics on probabilities \n'); Cval.prob = maximumprobabilities(data1.prob, data2.prob); end if isfield(data1, 'mask') % conjunction on mask parameters fprintf('logical AND on masking parameters \n'); Cval.mask = logicalAND(data1.mask, data2.mask); end elseif isfield(data1, 'avg') % conjunction on mean power values fprintf('minimum statistics on mean voxel power \n'); % equal size input check if ~isequal(size(data1.avg.pow), size(data2.avg.pow)) error('the input arguments have different sizes'); end Cval = data1; Cval.avg.pow = minimumstatistics(data1.avg.pow, data2.avg.pow); elseif isfield(data1, 'trial') fprintf('please first compute the averages with ft_sourcedescriptives \n'); else fprintf('this source level data does not fit conjunction analysis \n'); end end % end of source level conjunction %% SENSOR DATA if isfield(data1, 'dimord') && ... (strcmp(data1.dimord, 'chan_freq') || ... strcmp(data1.dimord, 'chan_freq_time') || ... strcmp(data1.dimord, 'subj_chan_freq') || ... strcmp(data1.dimord, 'subj_chan_freq_time') || ... strcmp(data1.dimord, 'rpt_chan_freq') || ... strcmp(data1.dimord, 'rpt_chan_freq_time')); % check sensflag = 1; if isfield(data1, 'stat') % conjunction on t-values fprintf('minimum statistics on sensor T values \n'); % equal size input check if ~isequal(size(data1.stat), size(data2.stat)) error('the input arguments have different sizes'); end Cval = data1; Cval.stat = minimumstatistics(data1.stat, data2.stat); if isfield(data1, 'posclusterslabelmat') % conjunction on cluster values fprintf('minimum statistics on positive clusters \n'); Cval.posclusterslabelmat = minimumstatistics(data1.posclusterslabelmat, data2.posclusterslabelmat); end if isfield(data1, 'negclusterslabelmat') % conjunction on cluster values fprintf('minimum statistics on negative clusters \n'); Cval.negclusterslabelmat = minimumstatistics(data1.negclusterslabelmat, data2.negclusterslabelmat); end if isfield(data1, 'prob') % conjunction on probabilities fprintf('minimum statistics on probabilities \n'); Cval.prob = maximumprobabilities(data1.prob, data2.prob); end if isfield(data1, 'mask') % conjunction on mask parameters fprintf('logical AND on masking parameters \n'); Cval.mask = logicalAND(data1.mask, data2.mask); end elseif isfield(data1, 'powspctrm') % conjunction on mean power values fprintf('minimum statistics on mean sensor power \n'); % equal size input check if ~isequal(size(data1.powspctrm), size(data2.powspctrm)) error('the input arguments have different sizes'); end Cval = data1; Cval.powspctrm = minimumstatistics(data1.powspctrm, data2.powspctrm); else fprintf('this sensor level data does not fit conjunction analysis \n'); end end % end of sensor level conjunction clear data1; clear data2; end % end of conjunction loop %% UNIDENTIFIED DATA if voxflag == 0 && sensflag == 0 fprintf('this data does not fit conjunction analysis \n'); Cval = []; end % add the version details of this function call to the configuration Cval.cfg.version.name = mfilename('fullpath'); Cval.cfg.version.id = '$Id: ft_conjunctionanalysis.m 3710 2011-06-16 14:04:19Z eelspa $'; Cval.cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % Matlab version used %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [minstat] = minimumstatistics(variable1, variable2) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% minAbsT = min(abs(variable1), abs(variable2)); % minimum of the absolute values equalSign = (sign(variable1) == sign(variable2)); % 1 is signs are equal, 0 otherwise origSign = sign(variable1); % sign(varagin2) gives same result minstat = minAbsT.*equalSign.*origSign; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [maxprob] = maximumprobabilities(variable1, variable2) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% maxprob = max(variable1, variable2); % maximum of the probabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [logic] = logicalAND(variable1, variable2) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% logic = (variable1 & variable2); % compute logical AND
github
philippboehmsturm/antx-master
ft_spike_plot_psth.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_plot_psth.m
6,101
utf_8
6d81db6e1cbd9184978d301b0120b096
function [hdl] = ft_spike_plot_psth(cfg,psth) % FT_SPIKE_PLOT_PSTH makes a bar plot of PSTH structure (output from FT_SPIKE_PSTH) % with error bars. % % Inputs: % PSTH typically is a structure from FT_SPIKE_PSTH. % % Configurations (cfg): % % cfg.latency = [begin end] in seconds, 'maxperiod' (default), 'prestim'(t<=0), or % 'poststim' (t>=0). % cfg.errorbars = 'no', 'std', 'sem' (default), 'conf95%' (requires statistic toolbox, % according to student-T distribution), 'var' % cfg.spikechannel = string or index of single spike channel to trigger on (default = 1) % Only one spikechannel can be plotted at a time. % cfg.ylim = [min max] or 'auto' (default) % If 'standard', we plot from 0 to 110% of maximum plotted value); % Outputs: % HDL.avg = figure handle for the bar plot, psth average. Use SET and GET to access. % HDL.var = figure handle for the error lines. Use GET and SET to access. % % Martin Vinck (C) 2010. defaults.latency = {'maxperiod'}; defaults.errorbars = {'sem' 'std' 'conf95%', 'no' 'var'}; defaults.spikechannel = {1}; defaults.ylim = {'auto'}; cfg = ft_spike_sub_defaultcfg(cfg,defaults);% change prefix % select the latencies if ischar(cfg.latency) if strcmp(cfg.latency, 'maxperiod') cfg.latency = [min(psth.time) max(psth.time)]; elseif strcmp(cfg.latency, 'prestim') cfg.latency = [min(psth.time) 0]; elseif strcmp(cfg.latency, 'poststim') cfg.latency = [0 max(psth.time)]; end elseif ~isnumeric(cfg.latency)||length(cfg.latency)~=2 error('MATLAB:ft_spike_plot_psth:cfg:latency',... 'cfg.latency should be "maxperiod", "prestim", "poststim" or 1-by-2 numerical vector'); end if cfg.latency(1)>=cfg.latency(2), error('MATLAB:spikestation:plot_psth:incorrectLatencyWindow',... 'cfg.latency should be a vector in ascending order, i.e., cfg.latency(2)>cfg.latency(1)'); end % check whether the time window fits with the data if cfg.latency(1) < min(psth.time), cfg.latency(1) = min(psth.time); warning('MATLAB:ft_spike_plot_psth:incorrectLatencyWindow',... 'Correcting begin latency of averaging window'); end if (cfg.latency(2) > max(psth.time)), cfg.latency(2) = max(psth.time); warning('MATLAB:ft_spike_plot_psth:incorrectLatencyWindow',... 'Correcting begin latency of averaging window'); end % get the spikechannels cfg.channel = ft_channelselection(cfg.spikechannel, psth.label); spikesel = match_str(psth.label, cfg.channel); nUnits = length(spikesel); if nUnits~=1, error('MATLAB:ft_spike_plot_psth:cfg:spikechannel:wrongInput',... 'You selected more or less than one spikechannel by means of cfg.spikechannel'); end % select the timepoints within the latencies timeSel = psth.time>=cfg.latency(1) & psth.time <= cfg.latency(2); if isempty(timeSel), error('MATLAB:ft_spike_plot_psth:cfg:latency',... 'no time points selected, please change cfg.latency or inspect input PSTH'); end % plot the average psth psthHdl = bar(psth.time(timeSel),psth.avg(spikesel,timeSel),'k'); set(psthHdl,'BarWidth', 1) % check if fields .dof and .var are correct given cfg.errorbars if ~strcmp(cfg.errorbars,'no') if ~isfield(psth,'var') || ~any(isfinite(psth.var(spikesel,:))) error('MATLAB:ft_spike_plot_psth:cfg:var',... 'PSTH should contain field .var that contain numbers. If you do not want the variance',... 'please specify cfg.errorbars = "no"'); end if ~ (strcmp(cfg.errorbars,'std') || strcmp(cfg.errorbars,'var')) if ~isfield(psth,'dof') || ~any(isfinite(psth.dof(spikesel,:))) error('MATLAB:ft_spike_plot_psth:cfg:dof',... 'psth should contain field dof that contains numbers. Use cfg.errorbars = "no" if you do not',... 'want the variance plotted'); end end end % add standard error bars to it x = [psth.time(timeSel);psth.time(timeSel)]; % create x doublets if strcmp(cfg.errorbars, 'sem') err = sqrt(psth.var(spikesel,timeSel)./psth.dof(timeSel)); elseif strcmp(cfg.errorbars, 'std') err = sqrt(psth.var(spikesel,timeSel)); elseif strcmp(cfg.errorbars, 'var') err = psth.var(spikesel,timeSel); elseif strcmp(cfg.errorbars, 'conf95%') % use a try statement just in case the statistics toolbox doesn't work. try tCrit = tinv(0.975,psth.dof(timeSel)); err = tCrit.*sqrt(psth.var(spikesel,timeSel)./psth.dof(timeSel)); % assuming normal distribution, SHOULD BE REPLACED BY STUDENTS-T! end else err = 0; end y = psth.avg(spikesel,timeSel) + err; % create the error values % plot the errorbars as line plot on top of the bar plot if ~strcmp(cfg.errorbars,'no') hold on y = [zeros(1,length(y));y]; % let lines run from 0 to error values psthSemHdl = plot(x,y,'k'); % plot the error bars end % create labels xlabel('bin centers (sec)') try ylabel(psth.cfg.outputunit) catch ylabel('firing activity') end % set the axis if strcmp(cfg.ylim, 'auto'), cfg.ylim = [0 max(y(:))*1.1+eps]; end if ~isnumeric(cfg.ylim)||length(cfg.ylim)~=2 || cfg.ylim(2)<=cfg.ylim(1) error('MATLAB:spikestation:plot_psth:cfg:ylim',... 'cfg.ylim should be "auto" or ascending order 1-by-2 vector in seconds'); end set(gca,'YLim', cfg.ylim, 'XLim', cfg.latency) set(gca,'TickDir','out', 'Box', 'off') % store the handles hdl.avg = psthHdl; if ~strcmp(cfg.errorbars,'no'), hdl.error = psthSemHdl; end % as usual, make sure that panning and zooming does not distort the y limits set(zoom,'ActionPostCallback',{@mypostcallback,cfg.ylim,cfg.latency}); set(pan,'ActionPostCallback',{@mypostcallback,cfg.ylim,cfg.latency}); function [] = mypostcallback(fig,evd,limY,limX) % get the x limits and reset them ax = evd.Axes; xlim = get(ax(1), 'XLim'); ylim = get(ax(1), 'YLim'); if limX(1)>xlim(1), xlim(1) = limX(1); end if limX(2)<xlim(2), xlim(2) = limX(2); end if limY(1)>ylim(1), ylim(1) = limY(1); end if limY(2)<ylim(2), ylim(2) = limY(2); end set(ax(1), 'XLim',xlim) set(ax(1), 'YLim',ylim);
github
philippboehmsturm/antx-master
ft_sliceinterp.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sliceinterp.m
18,011
utf_8
5faba7a0b4387433ccdcfa79d195336e
function [outim]=ft_sliceinterp(cfg, ininterp) % FT_SLICEINTERP plots a 2D-montage of source reconstruction and anatomical MRI % after these have been interpolated onto the same grid. % % Use as % ft_sliceinterp(cfg, interp) % or % [rgbimage] = ft_sliceinterp(cfg, interp), rgbimage is the monatage image % % where interp is the output of sourceinterpolate and cfg is a structure % with any of the following fields: % % cfg.funparameter string with the functional parameter of interest (default = 'source') % cfg.maskparameter parameter used as opacity mask (default = 'none') % cfg.clipmin value or 'auto' (clipping of source data) % cfg.clipmax value or 'auto' (clipping of source data) % cfg.clipsym 'yes' or 'no' (default) symmetrical clipping % cfg.colormap colormap for source overlay (default is jet(128)) % cfg.colmin source value mapped to the lowest color (default = 'auto') % cfg.colmax source value mapped to the highest color (default = 'auto') % cfg.maskclipmin value or 'auto' (clipping of mask data) % cfg.maskclipmax value or 'auto' (clipping of mask data) % cfg.maskclipsym 'yes' or 'no' (default) symmetrical clipping % cfg.maskmap opacitymap for source overlay % (default is linspace(0,1,128)) % cfg.maskcolmin mask value mapped to the lowest opacity, i.e. % completely transparent (default ='auto') % cfg.maskcolmin mask value mapped to the highest opacity, i.e. % non-transparent (default = 'auto') % cfg.alpha value between 0 and 1 or 'adaptive' (default) % cfg.nslices integer value, default is 20 % cfg.dim integer value, default is 3 (dimension to slice) % cfg.spacemin 'auto' (default) or integer (first slice position) % cfg.spacemax 'auto' (default) or integer (last slice position) % cfg.resample integer value, default is 1 (for resolution reduction) % cfg.rotate number of ccw 90 deg slice rotations (default = 0) % cfg.title optional title (default is '') % cfg.whitebg 'yes' or 'no' (default = 'yes') % cfg.flipdim flip data along the sliced dimension, 'yes' or 'no' % (default = 'no') % cfg.marker [Nx3] array defining N marker positions to display % cfg.markersize radius of markers (default = 5); % cfg.markercolor [1x3] marker color in RGB (default = [1 1 1], i.e. white) % cfg.interactive 'yes' or 'no' (default), interactive coordinates % and source values % % if cfg.alpha is set to 'adaptive' the opacity of the source overlay % linearly follows the source value: maxima are opaque and minima are % transparent. % % if cfg.spacemin and/or cfg.spacemax are set to 'auto' the sliced % space is automatically restricted to the evaluated source-space % % if cfg.colmin and/or cfg.colmax are set to 'auto' the colormap is mapped % to source values the following way: if source values are either all % positive or all negative the colormap is mapped to from % min(source) to max(source). If source values are negative and positive % the colormap is symmetrical mapped around 0 from -max(abs(source)) to % +max(abs(source)). % % If cfg.maskparameter specifies a parameter to be used as an opacity mask % cfg.alpha is not used. Instead the mask values are maped to an opacitymap % that can be specified using cfg.maskmap. The mapping onto that % opacitymap is controlled as for the functional data using the % corresponding clipping and min/max options. % % if cfg.whitebg is set to 'yes' the function estimates the head volume and % displays a white background outside the head, which can save a lot of black % printer toner. % % if cfg.interactive is set to 'yes' a button will be displayed for % interactive data evaluation and coordinate reading. After clicking the % button named 'coords' you can click on any position in the slice montage. % After clicking these coordinates and their source value are displayed in % a text box below the button. The coordinates correspond to indeces in the % input data array: % % f = interp.source(coord_1,coord_2,coord_3) % % The coordinates are not affected by any transformations used for displaying % the data such as cfg.dim, cfg.rotate,cfg.flipdim or cfg.resample. % Copyright (C) 2004, Markus Siegel, [email protected] % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_sliceinterp.m 2439 2010-12-15 16:33:34Z johzum $ ft_defaults % check if the input data is valid for this function ininterp = ft_checkdata(ininterp, 'datatype', 'volume', 'feedback', 'yes'); if ~isfield(cfg, 'clipmin'); cfg.clipmin = 'auto'; end if ~isfield(cfg, 'clipmax'); cfg.clipmax = 'auto'; end if ~isfield(cfg, 'clipsym'); cfg.clipsym = 'no'; end if ~isfield(cfg, 'alpha'); cfg.alpha = 'adaptive'; end if ~isfield(cfg, 'nslices'); cfg.nslices = 20; end if ~isfield(cfg, 'dim'); cfg.dim = 3; end if ~isfield(cfg, 'colormap'); cfg.colormap = jet(128); end if ~isfield(cfg, 'spacemin'); cfg.spacemin = 'auto'; end if ~isfield(cfg, 'spacemax'); cfg.spacemax = 'auto'; end if ~isfield(cfg, 'colmin'); cfg.colmin = 'auto'; end if ~isfield(cfg, 'colmax'); cfg.colmax = 'auto'; end if ~isfield(cfg, 'resample'); cfg.resample = 1; end if ~isfield(cfg, 'rotate'); cfg.rotate = 0; end if ~isfield(cfg, 'title'); cfg.title = ''; end if ~isfield(cfg, 'whitebg'); cfg.whitebg = 'no'; end if ~isfield(cfg, 'flipdim'); cfg.flipdim = 'no'; end if ~isfield(cfg, 'marker'); cfg.marker = []; end if ~isfield(cfg, 'markersize'); cfg.markersize = 5; end if ~isfield(cfg, 'markercolor'); cfg.markercolor = [1,1,1]; end if ~isfield(cfg, 'interactive'); cfg.interactive = 'no'; end if ~isfield(cfg, 'maskclipmin'); cfg.maskclipmin = 'auto'; end if ~isfield(cfg, 'maskclipmax'); cfg.maskclipmax = 'auto'; end if ~isfield(cfg, 'maskclipsym'); cfg.maskclipsym = 'no'; end if ~isfield(cfg, 'maskmap'); cfg.maskmap = linspace(0,1,128); end if ~isfield(cfg, 'maskcolmin'); cfg.maskcolmin = 'auto'; end if ~isfield(cfg, 'maskcolmax'); cfg.maskcolmax = 'auto'; end if ~isfield(cfg, 'maskparameter');cfg.maskparameter = []; end % perform some checks on the configuration for backward compatibility if ~isfield(cfg, 'funparameter') && isfield(ininterp, 'source') % if present, the default behavior should be to use this field for plotting cfg.funparameter = 'source'; end % make the selection of functional and mask data consistent with the data cfg.funparameter = parameterselection(cfg.funparameter, ininterp); cfg.maskparameter = parameterselection(cfg.maskparameter, ininterp); % only a single parameter should be selected try, cfg.funparameter = cfg.funparameter{1}; end try, cfg.maskparameter = cfg.maskparameter{1}; end % check anatomical data if isfield(ininterp,'anatomy'); interp.anatomy = reshape(ininterp.anatomy, ininterp.dim); else error('no anatomical data supplied'); end % check functional data if ~isempty(cfg.funparameter) interp.source = double(reshape(getsubfield(ininterp, cfg.funparameter), ininterp.dim)); else error('no functional data supplied'); end % check mask data if ~isempty(cfg.maskparameter) interp.mask = double(reshape(getsubfield(ininterp,cfg.maskparameter), ininterp.dim)); maskdat = 1; else fprintf('no opacity mask data supplied\n'); interp.mask = []; maskdat = 0; end % only work with the copy of the relevant parameters in "interp" clear ininterp; % convert anatomy data type and optimize contrast if isa(interp.anatomy, 'uint8') || isa(interp.anatomy, 'uint16') fprintf('converting anatomy to floating point values...'); interp.anatomy = double(interp.anatomy); fprintf('done\n'); end fprintf('optimizing contrast of anatomical data ...'); minana = min(interp.anatomy(:)); maxana = max(interp.anatomy(:)); interp.anatomy = (interp.anatomy-minana)./(maxana-minana); fprintf('done\n'); % store original data if 'interactive' mode if strcmp(cfg.interactive,'yes') data.source = interp.source; end % place markers marker = zeros(size(interp.anatomy)); if ~isempty(cfg.marker) fprintf('placing markers ...'); [x,y,z] = ndgrid([1:size(interp.anatomy,1)],[1:size(interp.anatomy,2)],[1:size(interp.anatomy,3)]); for imarker = 1:size(cfg.marker,1) marker(find(sqrt((x-cfg.marker(imarker,1)).^2 + (y-cfg.marker(imarker,2)).^2 + (z-cfg.marker(imarker,3)).^2)<=cfg.markersize)) = 1; end fprintf('done\n'); end % shift dimensions fprintf('sorting dimensions...'); interp.anatomy = shiftdim(interp.anatomy,cfg.dim-1); interp.source = shiftdim(interp.source,cfg.dim-1); interp.mask = shiftdim(interp.mask,cfg.dim-1); marker = shiftdim(marker,cfg.dim-1); fprintf('done\n'); % flip dimensions if strcmp(cfg.flipdim,'yes') fprintf('flipping dimensions...'); interp.anatomy = flipdim(interp.anatomy,1); interp.source = flipdim(interp.source,1); interp.mask = flipdim(interp.mask,1); marker = flipdim(marker,1); fprintf('done\n'); end % set slice space if ischar(cfg.spacemin) fprintf('setting first slice position...'); spacemin = min(find(~isnan(max(max(interp.source,[],3),[],2)))); fprintf('%d...done\n',spacemin); else spacemin = cfg.spacemin; end if ischar(cfg.spacemax) fprintf('setting last slice position...'); spacemax = max(find(~isnan(max(max(interp.source,[],3),[],2)))); fprintf('%d...done\n',spacemax); else spacemax = cfg.spacemax; end % clip funtional data if ~ischar(cfg.clipmin) fprintf('clipping functional minimum...'); switch cfg.clipsym case 'no' interp.source(find(interp.source<cfg.clipmin)) = nan; case 'yes' interp.source(find(abs(interp.source)<cfg.clipmin)) = nan; end fprintf('done\n'); end if ~ischar(cfg.clipmax) fprintf('clipping functional maximum...'); switch cfg.clipsym case 'no' interp.source(find(interp.source>cfg.clipmax)) = nan; case 'yes' interp.source(find(abs(interp.source)>cfg.clipmax)) = nan; end fprintf('done\n'); end % clip mask data if maskdat if ~ischar(cfg.maskclipmin) fprintf('clipping mask minimum...'); switch cfg.maskclipsym case 'no' interp.mask(find(interp.mask<cfg.maskclipmin)) = nan; case 'yes' interp.mask(find(abs(interp.mask)<cfg.maskclipmin)) = nan; end fprintf('done\n'); end if ~ischar(cfg.maskclipmax) fprintf('clipping mask maximum...'); switch cfg.maskclipsym case 'no' interp.mask(find(interp.mask>cfg.maskclipmax)) = nan; case 'yes' interp.mask(find(abs(interp.mask)>cfg.maskclipmax)) = nan; end fprintf('done\n'); end end % scale functional data fprintf('scaling functional data...'); fmin = min(interp.source(:)); fmax = max(interp.source(:)); if ~ischar(cfg.colmin) fcolmin = cfg.colmin; else if sign(fmin)==sign(fmax) fcolmin = fmin; else fcolmin = -max(abs([fmin,fmax])); end end if ~ischar(cfg.colmax) fcolmax = cfg.colmax; else if sign(fmin)==sign(fmax) fcolmax = fmax; else fcolmax = max(abs([fmin,fmax])); end end interp.source = (interp.source-fcolmin)./(fcolmax-fcolmin); if ~ischar(cfg.colmax) interp.source(find(interp.source>1)) = 1; end if ~ischar(cfg.colmin) interp.source(find(interp.source<0)) = 0; end fprintf('done\n'); % scale mask data if maskdat fprintf('scaling mask data...'); fmin = min(interp.mask(:)); fmax = max(interp.mask(:)); if ~ischar(cfg.maskcolmin) mcolmin = cfg.maskcolmin; else if sign(fmin)==sign(fmax) mcolmin = fmin; else mcolmin = -max(abs([fmin,fmax])); end end if ~ischar(cfg.maskcolmax) mcolmax = cfg.maskcolmax; else if sign(fmin)==sign(fmax) mcolmax = fmax; else mcolmax = max(abs([fmin,fmax])); end end interp.mask = (interp.mask-mcolmin)./(mcolmax-mcolmin); if ~ischar(cfg.maskcolmax) interp.mask(find(interp.mask>1)) = 1; end if ~ischar(cfg.maskcolmin) interp.mask(find(interp.mask<0)) = 0; end fprintf('done\n'); end % merge anatomy, functional data and mask fprintf('constructing overlay...'); if ischar(cfg.colormap) % replace string by colormap using standard Matlab function cfg.colormap = colormap(cfg.colormap); end cmap = cfg.colormap; cmaplength = size(cmap,1); maskmap = cfg.maskmap(:); maskmaplength = size(maskmap,1); indslice = round(linspace(spacemin,spacemax,cfg.nslices)); nvox1 = length(1:cfg.resample:size(interp.anatomy,2)); nvox2 = length(1:cfg.resample:size(interp.anatomy,3)); if mod(cfg.rotate,2) dummy = nvox1; nvox1 = nvox2; nvox2 = dummy; end out = zeros(nvox1,nvox2,3,cfg.nslices); for islice = 1:cfg.nslices dummy1 = squeeze(interp.anatomy(indslice(islice),1:cfg.resample:end,1:cfg.resample:end)); dummy2 = squeeze(interp.source(indslice(islice),1:cfg.resample:end,1:cfg.resample:end)); indmarker = find(squeeze(marker(indslice(islice),1:cfg.resample:end,1:cfg.resample:end))); indsource = find(~isnan(dummy2)); if maskdat dummymask = squeeze(interp.mask(indslice(islice),1:cfg.resample:end,1:cfg.resample:end)); indsource = find(~isnan(dummy2) & ~isnan(dummymask)); end for icol = 1:3 dummy3 = dummy1; if not(maskdat) if ~ischar(cfg.alpha) try dummy3(indsource) = ... (1-cfg.alpha) * dummy3(indsource) + ... cfg.alpha * cmap(round(dummy2(indsource)*(cmaplength-1))+1,icol); end else try dummy3(indsource) = ... (1-dummy2(indsource)) .* dummy3(indsource) + ... dummy2(indsource) .* cmap(round(dummy2(indsource)*(cmaplength-1))+1,icol); end end else dummy3(indsource) = ... (1-maskmap(round(dummymask(indsource)*(maskmaplength-1))+1)).* ... dummy3(indsource) + ... maskmap(round(dummymask(indsource)*(maskmaplength-1))+1) .* ... cmap(round(dummy2(indsource)*(cmaplength-1))+1,icol); end dummy3(indmarker) = cfg.markercolor(icol); out(:,:,icol,islice) = rot90(dummy3,cfg.rotate); end if strcmp(cfg.whitebg,'yes') bgmask = zeros(nvox1,nvox2); bgmask(find(conv2(mean(out(:,:,:,islice),3),ones(round((nvox1+nvox2)/8))/(round((nvox1+nvox2)/8).^2),'same')<0.1)) = 1; for icol = 1:3 out(:,:,icol,islice) = bgmask.*ones(nvox1,nvox2) + (1-bgmask).* out(:,:,icol,islice); end end end fprintf('done\n'); clf; fprintf('plotting...'); axes('position',[0.9 0.3 0.02 0.4]); image(permute(cmap,[1 3 2])); set(gca,'YAxisLocation','right'); set(gca,'XTick',[]); set(gca,'YDir','normal'); set(gca,'YTick',linspace(1,cmaplength,5)); set(gca,'YTickLabel',linspace(fcolmin,fcolmax,5)); set(gca,'Box','on'); axes('position',[0.01 0.01 0.88 0.90]); [h,nrows,ncols]=slicemon(out); xlim=get(gca,'XLim'); ylim=get(gca,'YLim'); text(diff(xlim)/2,-diff(ylim)/100,cfg.title,'HorizontalAlignment','center','Interpreter','none'); drawnow; fprintf('done\n'); if nargout > 0 outim=get(h,'CData'); end if strcmp(cfg.interactive,'yes') data.sin = size(interp.source); data.nrows = nrows; data.ncols = ncols; data.out = out; data.indslice = indslice; data.cfg = cfg; data.hfig = gcf; uicontrol('Units','norm', 'Position', [0.9 0.2 0.08 0.05], 'Style','pushbutton', 'String','coords',... 'Callback',@getcoords,'FontSize',7); data.hcoords = uicontrol('Units','norm', 'Position', [0.9 0.05 0.08 0.13], 'Style','text', 'String','','HorizontalAlign','left','FontSize',7); guidata(data.hfig,data); end % ---------------- subfunctions ---------------- function getcoords(h,eventdata,handles,varargin) data = guidata(gcf); [xi,yi] = ginput(1); co(2,1) = round(mod(yi,size(data.out,1))); co(3,1) = round(mod(xi,size(data.out,2))); switch mod(data.cfg.rotate,4) case 1, t1 = co(2); co(2) = co(3); co(3) = data.sin(3)-t1; case 2, co(2) = data.sin(2)-co(2); co(3) = data.sin(3)-co(3); case 3, t1 = co(3); co(3) = co(2); co(2) = data.sin(2)-t1; end try co(1) = data.indslice(fix(xi/size(data.out,2)) + fix(yi/size(data.out,1))*data.ncols + 1); catch co(1) = NaN; end if strcmp(data.cfg.flipdim, 'yes') co(1) = data.sin(1) - co(1) + 1; end co = co(:); co(2:3) = round(co(2:3)*data.cfg.resample); for ishift = 1:data.cfg.dim-1 co = [co(3);co(1);co(2)]; end set(data.hcoords,'String',sprintf('1: %d\n2: %d\n3: %d\nf: %0.4f',co(1),co(2),co(3),data.source(co(1),co(2),co(3)))); function [h,nrows,ncols] = slicemon(a) % display the montage w/o image_toolbox siz = [size(a,1) size(a,2) size(a,4)]; nn = sqrt(prod(siz))/siz(2); mm = siz(3)/nn; if (ceil(nn)-nn) < (ceil(mm)-mm), nn = ceil(nn); mm = ceil(siz(3)/nn); else mm = ceil(mm); nn = ceil(siz(3)/mm); end b = a(1,1); b(1,1) = 0; b = repmat(b, [mm*siz(1), nn*siz(2), size(a,3), 1]); rows = 1:siz(1); cols = 1:siz(2); for i=0:mm-1, for j=0:nn-1, k = j+i*nn+1; if k<=siz(3), b(rows+i*siz(1),cols+j*siz(2),:) = a(:,:,:,k); end end end hh = image(b); axis image; box off; set(gca,'XTick',[],'YTick',[],'Visible','off'); if nargout > 0 h = hh; nrows = mm; ncols = nn; end
github
philippboehmsturm/antx-master
ft_clusterplot.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_clusterplot.m
16,490
utf_8
b8379032ebcbc79b3690053a475183fd
function ft_clusterplot(cfg, stat) % FT_CLUSTERPLOT plots a series of topoplots with found clusters highlighted. % stat is 2D or 1D data from FT_TIMELOCKSTATISTICS or FT_FREQSTATISTICS with 'cluster' % as cfg.correctmc. 2D: stat from FT_TIMELOCKSTATISTICS not averaged over % time, or stat from FT_FREQSTATISTICS averaged over frequency not averaged over % time. 1D: averaged over time as well. % % use as: ft_clusterplot(cfg,stat) % % configuration options % cfg.alpha = number, highest cluster p-value to be plotted % max 0.3 (default = 0.05) % cfg.highlightseries = 1x5 cell-array, highlight option series ('on','labels','numbers') % default {'on','on','on','on','on'} for p < [0.01 0.05 0.1 0.2 0.3] % cfg.highlightsymbolseries = 1x5 vector, highlight marker symbol series % default ['*','x','+','o','.'] for p < [0.01 0.05 0.1 0.2 0.3] % cfg.highlightsizeseries = 1x5 vector, highlight marker size series % default [6 6 6 6 6] for p < [0.01 0.05 0.1 0.2 0.3] % cfg.highlightcolorpos = color of highlight marker for positive clusters % default = [0 0 0] % cfg.highlightcolorneg = color of highlight marker for negative clusters % default = [0 0 0] % cfg.saveaspng = string, path where figure has to be saved to (default = 'no') % When multiple figures figure gets extension with fignum % % It is also possible to specify other cfg options that apply to FT_TOPOPLOTER. % You CANNOT specify cfg.xlim, any of the FT_TOPOPLOTER highlight % options, cfg.comment and cfg.commentpos. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. % % See also: % FT_TOPOPLOTER, FT_SINGLEPLOTER % Copyright (C) 2007, Ingrid Nieuwenhuis, F.C. Donders Centre % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_clusterplot.m 3016 2011-03-01 19:09:40Z eelspa $ ft_defaults % default for inputfile if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end % load optional given inputfile as data hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else stat = loadvar(cfg.inputfile, 'stat'); end end % check if given data is appropriate if isfield(stat,'freq') && length(stat.freq) > 1 error('stat contains multiple frequencies which is not allowed because it should be averaged over frequencies') end % old config options cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkerseries', 'highlightsymbolseries'}); cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkersizeseries', 'highlightsizeseries'}); cfg = ft_checkconfig(cfg, 'renamed', {'hlcolorpos', 'highlightcolorpos'}); cfg = ft_checkconfig(cfg, 'renamed', {'hlcolorneg', 'highlightcolorneg'}); cfg = ft_checkconfig(cfg, 'deprecated', {'hllinewidthseries'}); % added several forbidden options cfg = ft_checkconfig(cfg, 'forbidden', {'highlight'}); cfg = ft_checkconfig(cfg, 'forbidden', {'highlightchannel'}); cfg = ft_checkconfig(cfg, 'forbidden', {'highlightsymbol'}); cfg = ft_checkconfig(cfg, 'forbidden', {'highlightcolor'}); cfg = ft_checkconfig(cfg, 'forbidden', {'highlightsize'}); cfg = ft_checkconfig(cfg, 'forbidden', {'highlightfontsize'}); cfg = ft_checkconfig(cfg, 'forbidden', {'xlim'}); cfg = ft_checkconfig(cfg, 'forbidden', {'comment'}); cfg = ft_checkconfig(cfg, 'forbidden', {'commentpos'}); % set the defaults if ~isfield(cfg,'alpha'), cfg.alpha = 0.05; end; if ~isfield(cfg,'highlightseries'), cfg.highlightseries = {'on','on','on','on','on'}; end; if ~isfield(cfg,'highlightsymbolseries'), cfg.highlightsymbolseries = ['*','x','+','o','.']; end; if ~isfield(cfg,'highlightsizeseries'), cfg.highlightsizeseries = [6 6 6 6 6]; end; if ~isfield(cfg,'hllinewidthseries'), cfg.hllinewidthseries = [1 1 1 1 1]; end; if ~isfield(cfg,'highlightcolorpos'), cfg.highlightcolorpos = [0 0 0]; end; if ~isfield(cfg,'highlightcolorneg'), cfg.highlightcolorneg = [0 0 0]; end; if ~isfield(cfg,'zparam'), cfg.zparam = 'stat'; end; if ~isfield(cfg,'saveaspng'), cfg.saveaspng = 'no'; end; % error if cfg.highlightseries is not a cell, for possible confusion with cfg-options if ~iscell(cfg.highlightseries) error('cfg.highlightseries should be a cell-array of strings') end % set additional options for topoplotting if isfield(cfg, 'marker'), cfgtopo.marker = cfg.marker ; end if ~isfield(cfg,'marker'), cfgtopo.marker = 'off'; end if isfield(cfg, 'markersymbol'), cfgtopo.markersymbol = cfg.markersymbol; end if isfield(cfg, 'markercolor'), cfgtopo.markercolor = cfg.markercolor; end if isfield(cfg, 'markersize'), cfgtopo.markersize = cfg.markersize; end if isfield(cfg, 'markerfontsize'), cfgtopo.markerfontsize = cfg.markerfontsize; end if isfield(cfg, 'style'), cfgtopo.style = cfg.style ; end if isfield(cfg, 'gridscale'), cfgtopo.gridscale = cfg.gridscale; end if isfield(cfg, 'interplimits'), cfgtopo.interplimits = cfg.interplimits; end if isfield(cfg, 'interpolation'), cfgtopo.interpolation = cfg.interpolation; end if isfield(cfg, 'contournum'), cfgtopo.contournum = cfg.contournum; end if isfield(cfg, 'colorbar'), cfgtopo.colorbar = cfg.colorbar; end if isfield(cfg, 'shading'), cfgtopo.shading = cfg.shading'; end if isfield(cfg, 'zlim'), cfgtopo.zlim = cfg.zlim; end cfgtopo.zparam = cfg.zparam; % prepare the layout, this only has to be done once cfgtopo.layout = ft_prepare_layout(cfg, stat); % detect 2D or 1D is2D = isfield(stat,'time'); % add .time field to 1D data, topoplotER wants it if ~is2D stat.time = 0; %doesn't matter what it is, so just choose 0 end; % find significant clusters sigpos = []; signeg = []; haspos = isfield(stat,'posclusters'); hasneg = isfield(stat,'negclusters'); if haspos == 0 && hasneg == 0 fprintf('%s\n','no significant clusters in data; nothing to plot') else if haspos for iPos = 1:length(stat.posclusters) sigpos(iPos) = stat.posclusters(iPos).prob < cfg.alpha; end end if hasneg for iNeg = 1:length(stat.negclusters) signeg(iNeg) = stat.negclusters(iNeg).prob < cfg.alpha; end end sigpos = find(sigpos == 1); signeg = find(signeg == 1); Nsigpos = length(sigpos); Nsigneg = length(signeg); Nsigall = Nsigpos + Nsigneg; if Nsigall == 0 error('no clusters present with a p-value lower than the specified alpha, nothing to plot') end % make clusterslabel matrix per significant cluster posCLM = squeeze(stat.posclusterslabelmat); sigposCLM = zeros(size(posCLM)); probpos = []; for iPos = 1:length(sigpos) sigposCLM(:,:,iPos) = (posCLM == sigpos(iPos)); probpos(iPos) = stat.posclusters(iPos).prob; hlsignpos(iPos) = prob2hlsign(probpos(iPos), cfg.highlightsymbolseries); end negCLM = squeeze(stat.negclusterslabelmat); signegCLM = zeros(size(negCLM)); probneg = []; for iNeg = 1:length(signeg) signegCLM(:,:,iNeg) = (negCLM == signeg(iNeg)); probneg(iNeg) = stat.negclusters(iNeg).prob; hlsignneg(iNeg) = prob2hlsign(probneg(iNeg), cfg.highlightsymbolseries); end fprintf('%s%i%s%g%s\n','There are ',Nsigall,' clusters smaller than alpha (',cfg.alpha,')') if is2D % define time window per cluster for iPos = 1:length(sigpos) possum_perclus = sum(sigposCLM(:,:,iPos),1); %sum over Chans for each timepoint ind_min = min(find(possum_perclus~=0)); ind_max = max(find(possum_perclus~=0)); time_perclus = [stat.time(ind_min) stat.time(ind_max)]; fprintf('%s%s%s%s%s%s%s%s%s%s%s\n','Positive cluster: ',num2str(sigpos(iPos)),', pvalue: ',num2str(probpos(iPos)),' (',hlsignpos(iPos),')',', t = ',num2str(time_perclus(1)),' to ',num2str(time_perclus(2))) end for iNeg = 1:length(signeg) negsum_perclus = sum(signegCLM(:,:,iNeg),1); ind_min = min(find(negsum_perclus~=0)); ind_max = max(find(negsum_perclus~=0)); time_perclus = [stat.time(ind_min) stat.time(ind_max)]; fprintf('%s%s%s%s%s%s%s%s%s%s%s\n','Negative cluster: ',num2str(signeg(iNeg)),', pvalue: ',num2str(probneg(iNeg)),' (',hlsignneg(iNeg),')',', t = ',num2str(time_perclus(1)),' to ',num2str(time_perclus(2))) end % define timewindow containing all significant clusters possum = sum(sigposCLM,3); %sum over Chans for timevector possum = sum(possum,1); negsum = sum(signegCLM,3); negsum = sum(negsum,1); allsum = possum + negsum; ind_timewin_min = min(find(allsum~=0)); ind_timewin_max = max(find(allsum~=0)); timewin = stat.time(ind_timewin_min:ind_timewin_max); else for iPos = 1:length(sigpos) fprintf('%s%s%s%s%s%s%s\n','Positive cluster: ',num2str(sigpos(iPos)),', pvalue: ',num2str(probpos(iPos)),' (',hlsignpos(iPos),')') end for iNeg = 1:length(signeg) fprintf('%s%s%s%s%s%s%s\n','Negative cluster: ',num2str(signeg(iNeg)),', pvalue: ',num2str(probneg(iNeg)),' (',hlsignneg(iNeg),')') end end % setup highlight options for all clusters and make comment for 1D data compos = []; comneg = []; for iPos = 1:length(sigpos) if stat.posclusters(sigpos(iPos)).prob < 0.01 cfgtopo.highlight{iPos} = cfg.highlightseries{1}; cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(1); cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(1); elseif stat.posclusters(sigpos(iPos)).prob < 0.05 cfgtopo.highlight{iPos} = cfg.highlightseries{2}; cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(2); cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(2); elseif stat.posclusters(sigpos(iPos)).prob < 0.1 cfgtopo.highlight{iPos} = cfg.highlightseries{3}; cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(3); cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(3); elseif stat.posclusters(sigpos(iPos)).prob < 0.2 cfgtopo.highlight{iPos} = cfg.highlightseries{4}; cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(4); cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(4); elseif stat.posclusters(sigpos(iPos)).prob < 0.3 cfgtopo.highlight{iPos} = cfg.highlightseries{5}; cfgtopo.highlightsymbol{iPos} = cfg.highlightsymbolseries(5); cfgtopo.highlightsize{iPos} = cfg.highlightsizeseries(5); end cfgtopo.highlightcolor{iPos} = cfg.highlightcolorpos; compos = strcat(compos,cfgtopo.highlightsymbol{iPos}, 'p=',num2str(probpos(iPos)),' '); % make comment, only used for 1D data end for iNeg = 1:length(signeg) if stat.negclusters(signeg(iNeg)).prob < 0.01 cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{1}; cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(1); cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(1); elseif stat.negclusters(signeg(iNeg)).prob < 0.05 cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{2}; cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(2); cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(2); elseif stat.negclusters(signeg(iNeg)).prob < 0.1 cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{3}; cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(3); cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(3); elseif stat.negclusters(signeg(iNeg)).prob < 0.2 cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{4}; cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(4); cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(4); elseif stat.negclusters(signeg(iNeg)).prob < 0.3 cfgtopo.highlight{length(sigpos)+iNeg} = cfg.highlightseries{5}; cfgtopo.highlightsymbol{length(sigpos)+iNeg} = cfg.highlightsymbolseries(5); cfgtopo.highlightsize{length(sigpos)+iNeg} = cfg.highlightsizeseries(5); end cfgtopo.highlightcolor{length(sigpos)+iNeg} = cfg.highlightcolorneg; comneg = strcat(comneg,cfgtopo.highlightsymbol{length(sigpos)+iNeg}, 'p=',num2str(probneg(iNeg)),' '); % make comment, only used for 1D data end if is2D Npl = length(timewin); else Npl = 1; end Nfig = ceil(Npl/15); % put channel indexes in list if is2D for iPl = 1:Npl for iPos = 1:length(sigpos) list{iPl}{iPos} = find(sigposCLM(:,ind_timewin_min+iPl-1,iPos) == 1); end for iNeg = 1:length(signeg) list{iPl}{length(sigpos)+iNeg} = find(signegCLM(:,ind_timewin_min+iPl-1,iNeg) == 1); end end else for iPl = 1:Npl for iPos = 1:length(sigpos) list{iPl}{iPos} = find(sigposCLM(:,iPos) == 1); end for iNeg = 1:length(signeg) list{iPl}{length(sigpos)+iNeg} = find(signegCLM(:,iNeg) == 1); end end end % make plots for iPl = 1:Nfig figure; if is2D if iPl < Nfig for iT = 1:15 PlN = (iPl-1)*15 + iT; %plotnumber cfgtopo.xlim = [stat.time(ind_timewin_min+PlN-1) stat.time(ind_timewin_min+PlN-1)]; cfgtopo.highlightchannel = list{PlN}; cfgtopo.comment = strcat('time: ',num2str(stat.time(ind_timewin_min+PlN-1)), ' s'); cfgtopo.commentpos = 'title'; subplot(3,5,iT); ft_topoplotER(cfgtopo, stat); end elseif iPl == Nfig for iT = 1:Npl-(15*(Nfig-1)) PlN = (iPl-1)*15 + iT; %plotnumber cfgtopo.xlim = [stat.time(ind_timewin_min+PlN-1) stat.time(ind_timewin_min+PlN-1)]; cfgtopo.highlightchannel = list{PlN}; cfgtopo.comment = strcat('time: ',num2str(stat.time(ind_timewin_min+PlN-1)), ' s'); cfgtopo.commentpos = 'title'; subplot(3,5,iT); ft_topoplotER(cfgtopo, stat); end end else cfgtopo.highlightchannel = list{1}; cfgtopo.xparam = 'time'; cfgtopo.yparam = ''; cfgtopo.comment = strcat(compos,comneg); cfgtopo.commentpos = 'title'; ft_topoplotER(cfgtopo, stat); end % save figure if isequal(cfg.saveaspng,'no'); else filename = strcat(cfg.saveaspng, '_fig', num2str(iPl)); print(gcf,'-dpng',filename); end end end %% subfunctions %% function sign = prob2hlsign(prob, hlsign) if prob < 0.01 sign = hlsign(1); elseif prob < 0.05 sign = hlsign(2); elseif prob < 0.1 sign = hlsign(3); elseif prob < 0.2 sign = hlsign(4); elseif prob < 0.3 sign = hlsign(5); end
github
philippboehmsturm/antx-master
ft_sourcemovie.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sourcemovie.m
8,106
utf_8
74b719b98fa2f7af869cfc332e70a7fa
function cfg = ft_sourcemovie(cfg, source) % FT_SOURCEMOVIE displays the source reconstruction on a cortical mesh % and allows the user to scroll through time with a movie % % Use as % FT_SOURCEMOVIE(cfg, source) % where indata is obtained from FT_SOURCEANALYSIS % and cfg is a configuratioun structure that should contain % % cfg.xparam = string, parameter over which the movie unrolls (default = 'time') % cfg.zparam = string, parameter that is color coded (default = 'avg.pow') % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. % % See also FT_SOURCEPLOT, FT_SOURCEINTERPOLATE % Copyright (C) 2011, Robert Oostenveld % % $Id: ft_sourcemovie.m 3710 2011-06-16 14:04:19Z eelspa $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the initial part deals with parsing the input options and data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); if isfield(cfg, 'inputfile') && ~isempty(cfg.inputfile) % the input data should be read from file if (nargin>1) error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else source = loadvar(cfg.inputfile, 'source'); end end % ensure that the input data is valiud for this function, this will also do % backward-compatibility conversions of old data that for example was % read from an old *.mat file source = ft_checkdata(source, 'datatype', 'source', 'feedback', 'yes'); % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % get the options xlim = ft_getopt(cfg, 'xlim'); zlim = ft_getopt(cfg, 'zlim'); xparam = ft_getopt(cfg, 'xparam', 'time'); % use time as default zparam = ft_getopt(cfg, 'zparam', 'avg.pow'); % use power as default mask = ft_getopt(cfg, 'mask', []); % update the configuration cfg.xparam = xparam; cfg.zparam = zparam; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the actual computation is done in the middle part %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xparam = source.(xparam); zparam = getsubfield(source, zparam); % might be avg.pow if length(xparam)~=size(zparam,2) error('inconsistent size of "%s" compared to "%s"', cfg.zparam, cfg.xparam); end if size(source.pos)~=size(zparam,1) error('inconsistent number of vertices in the cortical mesh', cfg.zparam, cfg.xparam); end if ~isfield(source, 'tri') error('source.tri missing, this function requires a triangulated cortical sheet as source model'); end if isempty(xlim) xlim(1) = min(xparam); xlim(2) = max(xparam); end xbeg = nearest(xparam, xlim(1)); xend = nearest(xparam, xlim(2)); % update the configuration cfg.xlim = xparam([xbeg xend]); % make a subselection of the data xparam = xparam(xbeg:xend); zparam = zparam(:,xbeg:xend); clear xbeg xend if isempty(zlim) zlim(1) = min(zparam(:)); zlim(2) = max(zparam(:)); % update the configuration cfg.zlim = zlim; end h = gcf; pos = get(gcf, 'position'); set(h, 'toolbar', 'figure'); s = uicontrol('style', 'slider'); set(s, 'position', [20 20 pos(3)-40 20]); p = uicontrol('style', 'pushbutton'); set(p, 'position', [20 50 50 20]); set(p, 'string', 'play') button_slower = uicontrol('style', 'pushbutton'); set(button_slower, 'position', [75 50 20 20]); set(button_slower, 'string', '-') set(button_slower, 'Callback', @cb_slower); button_faster = uicontrol('style', 'pushbutton'); set(button_faster, 'position', [100 50 20 20]); set(button_faster, 'string', '+') set(button_faster, 'Callback', @cb_faster); ht = uicontrol('style', 'text'); set(ht, 'position', [125 50 pos(3)-145 20]); set(ht, 'string', 'time = '); set(ht, 'horizontalalignment', 'left'); text(0,0, sprintf('%s = \n', cfg.xparam)); t = timer; set(t, 'timerfcn', {@cb_timer, h}, 'period', 0.1, 'executionmode', 'fixedSpacing'); % collect the data and the options to be used in the figure opt.pnt = source.pos; opt.tri = source.tri; opt.tim = xparam; opt.dat = zparam; opt.speed = 1; opt.cfg = cfg; opt.s = s; opt.p = p; opt.t = t; if ~isempty(mask) && ischar(mask) opt.mask = double(getsubfield(source, mask)); end ft_plot_mesh(opt, 'edgecolor', 'none', 'facecolor', [0.5 0.5 0.5]); lighting gouraud hs = ft_plot_mesh(opt, 'edgecolor', 'none', 'vertexcolor', 0*opt.dat(:,1), 'facealpha', 0*opt.mask(:,1)); caxis(cfg.zlim); lighting gouraud camlight left camlight right % add the handle to the mesh opt.hs = hs; % add the text-handle to the mesh opt.ht = ht; guidata(h, opt); % from now it is safe to hand over the control to the callback function set(s, 'Callback', @cb_slider); % from now it is safe to hand over the control to the callback function set(p, 'Callback', @cb_playbutton); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % deal with the output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add the version details of this function call to the configuration cfg.version.name = mfilename('fullpath'); % this is helpful for debugging cfg.version.id = '$Id: ft_sourcemovie.m 3710 2011-06-16 14:04:19Z eelspa $'; % this will be auto-updated by the revision control system % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % this is helpful for debugging if isfield(source, 'cfg') % remember the configuration details of the input data cfg.previous = source.cfg; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_slider(h, eventdata) opt = guidata(h); val = get(opt.s, 'value'); val = round(val*(size(opt.dat,2)-1))+1; val = min(val, size(opt.dat,2)); val = max(val, 1); %text(0, 0, sprintf('%s = %f\n', opt.cfg.xparam, opt.tim(val))); set(opt.ht, 'string', sprintf('%s = %f\n', opt.cfg.xparam, opt.tim(val))); set(opt.hs, 'FaceVertexCData', opt.dat(:,val)); if isfield(opt, 'mask') set(opt.hs, 'FaceVertexAlphaData', opt.mask(:,val)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_playbutton(h, eventdata) if ~ishandle(h) return end opt = guidata(h); switch get(h, 'string') case 'play' set(h, 'string', 'stop'); start(opt.t); case 'stop' set(h, 'string', 'play'); stop(opt.t); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_timer(obj, info, h) if ~ishandle(h) return end opt = guidata(h); delta = opt.speed/size(opt.dat,2); val = get(opt.s, 'value'); val = val + delta; if val>1 val = val-1; end set(opt.s, 'value', val); cb_slider(h); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_faster(h, eventdata) if ~ishandle(h) return end opt = guidata(h); opt.speed = opt.speed*sqrt(2); guidata(h, opt); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_slower(h, eventdata) if ~ishandle(h) return end opt = guidata(h); opt.speed = opt.speed/sqrt(2); opt.speed = max(opt.speed, 1); % should not be smaller than 1 guidata(h, opt);
github
philippboehmsturm/antx-master
ft_sourcestatistics.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sourcestatistics.m
21,411
utf_8
aad51cd6bbd790904f065535f4c33a11
function [stat] = ft_sourcestatistics(cfg, varargin) % FT_SOURCESTATISTICS computes the probability for a given null-hypothesis using % a parametric statistical test or using a non-parametric randomization test. % % Use as % [stat] = ft_sourcestatistics(cfg, source1, source2, ...) % where the input data is the result from FT_SOURCEANALYSIS, FT_SOURCEDESCRIPTIVES % or FT_SOURCEGRANDAVERAGE. The source structures should be spatially alligned % to each other and should have the same positions for the source grid. % % The configuration should contain the following option for data selection % cfg.parameter = string, describing the functional data to be processed, e.g. 'pow', 'nai' or 'coh' % % Furthermore, the configuration should contain: % cfg.method = different methods for calculating the probability of the null-hypothesis, % 'montecarlo' uses a non-parametric randomization test to get a Monte-Carlo estimate of the probability, % 'analytic' uses a parametric test that results in analytic probability, % 'stats' (soon deprecated) uses a parametric test from the Matlab statistics toolbox, % 'parametric' uses the Matlab statistics toolbox (very similar to 'stats'), % 'randomization' uses randomization of the data prior to source reconstruction, % 'randcluster' uses randomization of the data prior to source reconstruction % in combination with spatial clusters. % % You can restrict the statistical analysis to regions of interest (ROIs) % or to the average value inside ROIs using the following options: % cfg.atlas = filename of the atlas % cfg.roi = string or cell of strings, region(s) of interest from anatomical atlas % cfg.avgoverroi = 'yes' or 'no' (default = 'no') % cfg.hemisphere = 'left', 'right', 'both', 'combined', specifying this is % required when averaging over regions % cfg.inputcoord = 'mni' or 'tal', the coordinate system in which your source % reconstruction is expressed % % The other cfg options depend on the method that you select. You % should read the help of the respective subfunction STATISTICS_XXX % for the corresponding configuration options and for a detailed % explanation of each method. % % See also FT_SOURCEANALYSIS, FT_SOURCEDESCRIPTIVES, FT_SOURCEGRANDAVERAGE % Copyright (C) 2005-2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_sourcestatistics.m 3732 2011-06-29 07:49:26Z jorhor $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % this wrapper should be compatible with the already existing statistical % functions that only work for source input data if ~isfield(cfg, 'implementation'), cfg.implementation = 'old'; end if strcmp(cfg.implementation, 'old'), %-------------------------------- % use the original implementation % check if the input data is valid for this function for i=1:length(varargin) if isfield(cfg, 'roi') && ~isempty(cfg.roi) varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'source', 'feedback', 'no', 'inside', 'index'); else varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'source', 'volume'}, 'feedback', 'no', 'inside', 'index'); end end if strcmp(cfg.method, 'parametric') % use the source-specific statistical subfunction stat = sourcestatistics_parametric(cfg, varargin{:}); elseif strcmp(cfg.method, 'randomization') % use the source-specific statistical subfunction stat = sourcestatistics_randomization(cfg, varargin{:}); elseif strcmp(cfg.method, 'randcluster') % use the source-specific statistical subfunction stat = sourcestatistics_randcluster(cfg, varargin{:}); else [stat, cfg] = statistics_wrapper(cfg, varargin{:}); end % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_sourcestatistics.m 3732 2011-06-29 07:49:26Z jorhor $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration of the input data cfg.previous = []; for i=1:length(varargin) if isfield(varargin{i}, 'cfg') cfg.previous{i} = varargin{i}.cfg; else cfg.previous{i} = []; end end % remember the exact configuration details stat.cfg = cfg; elseif strcmp(cfg.implementation, 'new') %--------------------------- % use the new implementation issource = ft_datatype(varargin{1}, 'source'); isvolume = ft_datatype(varargin{1}, 'volume'); % check if the input data is valid for this function for i=1:length(varargin) if isfield(cfg, 'roi') && ~isempty(cfg.roi) % FIXME implement roi-based statistics for the new implementation % (code is copied over from the old implementation but not yet tested error('roi based sourcestatistics is not yet implemented for the new implementation'); varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'source', 'feedback', 'no', 'inside', 'index'); else varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'source', 'volume'}, 'feedback', 'no', 'inside', 'index', 'sourcerepresentation', 'new'); if strcmp(cfg.parameter, 'pow') && ~isfield(varargin{i}, 'pow'), varargin{i} = ft_checkdata(varargin{i}, 'sourcerepresentation', 'new', 'haspow', 'yes'); end end end if any(strcmp(cfg.method, {'parametric' 'randomization' 'randcluster'})) % FIXME only supported for old-style source representation for i = 1:numel(varargin) varargin{i} = ft_checkdata(varargin{i}, 'sourcerepresentation', 'old'); end if exist(['statistics_',cfg.method]), statmethod = str2func(['statistics_' cfg.method]); else error(sprintf('could not find the corresponding function for cfg.method="%s"\n', cfg.method)); end stat = statmethod(cfg, varargin{:}); else % convert representation of input data to new style for i = 1:numel(varargin) varargin{i} = ft_checkdata(varargin{i}, 'sourcerepresentation', 'new'); end % check the input configuration cfg = ft_checkconfig(cfg, 'renamed', {'approach', 'method'}); cfg = ft_checkconfig(cfg, 'required', {'method', 'parameter'}); cfg = ft_checkconfig(cfg, 'forbidden', {'transform'}); % set the defaults if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'latency'), cfg.latency = 'all'; end if ~isfield(cfg, 'frequency'), cfg.frequency = 'all'; end if ~isfield(cfg, 'roi'), cfg.roi = []; end if ~isfield(cfg, 'avgoverchan'), cfg.avgoverchan = 'no'; end if ~isfield(cfg, 'avgovertime'), cfg.avgovertime = 'no'; end if ~isfield(cfg, 'avgoverfreq'), cfg.avgoverfreq = 'no'; end if ~isfield(cfg, 'avgoverroi'), cfg.avgoverroi = 'no'; end % test that all source inputs have the same dimensions and are spatially aligned for i=2:length(varargin) if isfield(varargin{1}, 'dim') && (numel(varargin{i}.dim)~=length(varargin{1}.dim) || ~all(varargin{i}.dim==varargin{1}.dim)) error('dimensions of the source reconstructions do not match, use VOLUMENORMALISE first'); end if isfield(varargin{1}, 'pos') && (numel(varargin{i}.pos(:))~=numel(varargin{1}.pos(:)) || ~all(varargin{i}.pos(:)==varargin{1}.pos(:))) error('grid locations of the source reconstructions do not match, use VOLUMENORMALISE first'); end end Nsource = length(varargin); Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside); %FIXME ft_selectdata should be used for the subselection %FIXME ft_selectdata has to be adjusted to work with new style source data %if isfield(varargin{1}, 'freq') && ~strcmp(cfg.frequency, 'all'), % for i=1:length(varargin) % varargin{i} = ft_selectdata(varargin{i}, 'foilim', cfg.frequency, ... % 'avgoverfreq', cfg.avgoverfreq); % end %end % this part contains the functionality of the old statistics_wrapper % with source data in the input if ~isempty(cfg.roi) if ischar(cfg.roi) cfg.roi = {cfg.roi}; end % the source representation should specify the position of each voxel in MNI coordinates x = varargin{1}.pos(:,1); % this is from left (negative) to right (positive) % determine the mask to restrict the subsequent analysis % process each of the ROIs, and optionally also left and/or right seperately roimask = {}; roilabel = {}; for i=1:length(cfg.roi) tmpcfg.roi = cfg.roi{i}; tmpcfg.inputcoord = cfg.inputcoord; tmpcfg.atlas = cfg.atlas; tmp = ft_volumelookup(tmpcfg, varargin{1}); if strcmp(cfg.avgoverroi, 'no') && ~isfield(cfg, 'hemisphere') % no reason to deal with seperated left/right hemispheres cfg.hemisphere = 'combined'; end if strcmp(cfg.hemisphere, 'left') tmp(x>=0) = 0; % exclude the right hemisphere roimask{end+1} = tmp; roilabel{end+1} = ['Left ' cfg.roi{i}]; elseif strcmp(cfg.hemisphere, 'right') tmp(x<=0) = 0; % exclude the right hemisphere roimask{end+1} = tmp; roilabel{end+1} = ['Right ' cfg.roi{i}]; elseif strcmp(cfg.hemisphere, 'both') % deal seperately with the voxels on the left and right side of the brain tmpL = tmp; tmpL(x>=0) = 0; % exclude the right hemisphere tmpR = tmp; tmpR(x<=0) = 0; % exclude the left hemisphere roimask{end+1} = tmpL; roimask{end+1} = tmpR; roilabel{end+1} = ['Left ' cfg.roi{i}]; roilabel{end+1} = ['Right ' cfg.roi{i}]; clear tmpL tmpR elseif strcmp(cfg.hemisphere, 'combined') % all voxels of the ROI can be combined roimask{end+1} = tmp; roilabel{end+1} = cfg.roi{i}; else error('incorrect specification of cfg.hemisphere'); end clear tmp end % for each roi % note that avgoverroi=yes is implemented differently at a later stage % avgoverroi=no is implemented using the inside/outside mask if strcmp(cfg.avgoverroi, 'no') for i=2:length(roimask) % combine them all in the first mask roimask{1} = roimask{1} | roimask{i}; end roimask = roimask{1}; % only keep the combined mask % the source representation should have an inside and outside vector containing indices sel = find(~roimask); varargin{1}.inside = setdiff(varargin{1}.inside, sel); varargin{1}.outside = union(varargin{1}.outside, sel); clear roimask roilabel end % if avgoverroi=no end % if ~isempty cfg.roi % get the required source level data [dat, cfg] = getfunctional(cfg, varargin{:}); % note that avgoverroi=no is implemented differently at an earlier stage if strcmp(cfg.avgoverroi, 'yes') tmp = zeros(length(roimask), size(dat,2)); for i=1:length(roimask) % the data only reflects those points that are inside the brain, % the atlas-based mask reflects points inside and outside the brain roi = roimask{i}(varargin{1}.inside); tmp(i,:) = mean(dat(roi,:), 1); end % replace the original data with the average over each ROI dat = tmp; clear tmp roi roimask % remember the ROIs cfg.dimord = 'roi'; end end %get the design from the information in the cfg and data if ~isfield(cfg, 'design'), cfg.design = data.design; cfg = prepare_design(cfg); end if size(cfg.design, 2)~=size(dat, 2) cfg.design = transpose(cfg.design); end % determine the function handle to the intermediate-level statistics function if exist(['statistics_' cfg.method]) statmethod = str2func(['statistics_' cfg.method]); else error(sprintf('could not find the corresponding function for cfg.method="%s"\n', cfg.method)); end fprintf('using "%s" for the statistical testing\n', func2str(statmethod)); % check that the design completely describes the data if size(dat,2) ~= size(cfg.design,2) error('the size of the design matrix does not match the number of observations in the data'); end % determine the number of output arguments try % the nargout function in Matlab 6.5 and older does not work on function handles num = nargout(statmethod); catch num = 1; end % perform the statistical test if strcmp(func2str(statmethod),'statistics_montecarlo') % because statistics_montecarlo (or to be precise, clusterstat) % requires to know whether it is getting source data, % the following (ugly) work around is necessary if num>1 [stat, cfg] = statmethod(cfg, dat, cfg.design, 'issource', 1); else [stat] = statmethod(cfg, dat, cfg.design, 'issource', 1); end else if num>1 [stat, cfg] = statmethod(cfg, dat, cfg.design); else [stat] = statmethod(cfg, dat, cfg.design); end end if isstruct(stat) % the statistical output contains multiple elements, e.g. F-value, beta-weights and probability statfield = fieldnames(stat); else % only the probability was returned as a single matrix, reformat into a structure dum = stat; stat = []; % this prevents a Matlab warning that appears from release 7.0.4 onwards stat.prob = dum; statfield = fieldnames(stat); end % add descriptive information to the output and rehape into the input format if isempty(cfg.roi) || strcmp(cfg.avgoverroi, 'no') % remember the definition of the volume, assume that they are identical for all input arguments try, stat.dim = varargin{1}.dim; end try, stat.xgrid = varargin{1}.xgrid; end try, stat.ygrid = varargin{1}.ygrid; end try, stat.zgrid = varargin{1}.zgrid; end try, stat.inside = varargin{1}.inside; end try, stat.outside = varargin{1}.outside; end try, stat.pos = varargin{1}.pos; end try, stat.transform = varargin{1}.transform; end else stat.inside = 1:length(roilabel); stat.outside = []; stat.label = roilabel(:); end % additional descriptive fields hasfreq = strcmp(cfg.avgoverfreq, 'no') && isfield(varargin{1},'freq'); hastime = strcmp(cfg.avgovertime, 'no') && isfield(varargin{1},'time'); stat.dimord = 'pos_'; if hasfreq, stat.dimord = [stat.dimord, 'freq_']; stat.freq = varargin{1}.freq; nfreq = numel(varargin{1}.freq); else nfreq = 1; end if hastime, stat.dimord = [stat.dimord, 'time_']; stat.time = varargin{1}.time; ntime = numel(varargin{1}.time); else ntime = 1; end stat.dimord = stat.dimord(1:end-1); if issource, if hasfreq, newdim = [size(stat.pos,1) nfreq ntime]; else newdim = [size(stat.pos,1) ntime]; end elseif isvolume, if hasfreq, newdim = [stat.dim nfreq ntime]; else newdim = [stat.dim ntime]; end end for i=1:length(statfield) tmp = getsubfield(stat, statfield{i}); tmp2 = []; ntmp = numel(tmp); if hasfreq, tmpdim = [ntmp/(nfreq*ntime) nfreq ntime]; else tmpdim = [ntmp/ntime ntime]; end if isfield(varargin{1}, 'inside') && numel(tmp)==nfreq*ntime*length(varargin{1}.inside) % the statistic was only computed on voxels that are inside the brain % sort the inside and outside voxels back into their original place if islogical(tmp) if hasfreq, tmp2 = logical(zeros(prod(varargin{1}.dim),nfreq,ntime)); tmp2(varargin{1}.inside, 1:nfreq, 1:ntime) = reshape(tmp, [ntmp/(nfreq*ntime) nfreq ntime]); else tmp2 = logical(zeros(prod(varargin{1}.dim),nfreq,ntime)); tmp2(varargin{1}.inside, 1:nfreq, 1:ntime) = reshape(tmp, [ntmp/ntime ntime]); end else if hasfreq, tmp2 = zeros(prod(varargin{1}.dim),nfreq,ntime)+nan; tmp2(varargin{1}.inside, 1:nfreq, 1:ntime) = reshape(tmp, [ntmp/(nfreq*ntime) nfreq ntime]); else tmp2 = zeros(prod(varargin{1}.dim),nfreq,ntime)+nan; tmp2(varargin{1}.inside, 1:nfreq, 1:ntime) = reshape(tmp, [ntmp/ntime ntime]); end end end if numel(tmp2)==prod(newdim) % reshape the statistical volumes into the original format stat = setsubfield(stat, statfield{i}, reshape(tmp2, newdim)); end end % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_sourcestatistics.m 3732 2011-06-29 07:49:26Z jorhor $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration of the input data cfg.previous = []; for i=1:length(varargin) if isfield(varargin{i}, 'cfg') cfg.previous{i} = varargin{i}.cfg; else cfg.previous{i} = []; end end % remember the exact configuration details stat.cfg = cfg; else error('cfg.implementation can be only old or new'); end %----------------------------------------------------- %subfunction to extract functional data from the input %and convert it into a 2D representation function [dat, cfg] = getfunctional(cfg, varargin) %FIXME think of how this generalizes to volumetric data (boolean inside etc) Nsource = numel(varargin); Nvox = size(varargin{1}.pos, 1); inside = varargin{1}.inside; Ninside = numel(inside); dimord = varargin{1}.([cfg.parameter,'dimord']); dimtok = tokenize(dimord, '_'); %check whether the requested parameter is represented as cell-array x1 = strfind(dimord, '{'); x2 = strfind(dimord, '}'); if ~isempty(x1) && ~isempty(x2) cellparam = 1; cellsiz = size(varargin{1}.(cfg.parameter)); %this only explicitly keeps the first singleton dimension %the last to be removed cellsiz(find(cellsiz(2:end)==1)+1) = []; cellsiz(cellsiz==Nvox) = Ninside; else cellparam = 0; end %check whether there are single observations/subjects in the data rptdim = ~cellfun(@isempty, strfind(dimtok, 'rpt')) | ~cellfun(@isempty, strfind(dimtok, 'subj')); hasrpt = sum(rptdim); if hasrpt && Nsource>1, error('only a single input with multiple observations or multiple inputs with a single observation are supported'); end if hasrpt, if cellparam, tmpsiz = [cellsiz size(varargin{1}.(cfg.parameter){inside(1)})]; tmp = zeros(tmpsiz); %FIXME what about volumetric data? for k = 1:Ninside tmp(k,:,:,:,:,:) = varargin{1}.(cfg.parameter){inside(k)}; end %tmp = cell2mat(varargin{1}.(cfg.parameter)(inside,:,:,:,:)); else if find(rptdim)==1, tmp = varargin{1}.(cfg.parameter)(:,inside,:,:,:); else tmp = varargin{1}.(cfg.parameter)(inside,:,:,:,:); end end if numel(rptdim)==1, rptdim = [rptdim 0]; end %put the repetition dimension to the last dimension tmp = permute(tmp, [find(rptdim==0) find(rptdim==1)]); %reshape the data to 2D siz = size(tmp); dat = reshape(tmp, [prod(siz(1:end-1)) siz(end)]); else for k = 1:Nsource %check for cell-array representation in the input data %FIXME this assumes positions to be in the first dimension always %FIXME what about volumetric dadta if cellparam tmp = cell2mat(varargin{k}.(cfg.parameter)(inside,:,:,:,:)); else tmp = varargin{k}.(cfg.parameter)(inside,:,:,:,:); end %allocate memory if k==1, dat = zeros(numel(tmp), Nsource); end %reshape the data siz = size(tmp); dat(:,k) = tmp(:); end end cfg.dim = varargin{1}.dim; cfg.inside = varargin{1}.inside; %FIXME take the intersection between all inputs cfg.dimord = 'voxel'; cfg.origdim = [cfg.dim siz(2:end-1)];
github
philippboehmsturm/antx-master
ft_sourcedescriptives.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_sourcedescriptives.m
47,954
utf_8
f734bb25dae653941d53735ba4b2598e
function [source] = ft_sourcedescriptives(cfg, source) % FT_SOURCEDESCRIPTIVES computes descriptive parameters of the source % analysis results. % % Use as: % [source] = ft_sourcedescriptives(cfg, source) % % where cfg is a structure with the configuration details and source is the % result from a beamformer source estimation. The configuration can contain % cfg.cohmethod = 'regular', 'lambda1', 'canonical' % cfg.powmethod = 'regular', 'lambda1', 'trace', 'none' % cfg.supmethod = string % cfg.projectmom = 'yes' or 'no' (default = 'no') % cfg.eta = 'yes' or 'no' (default = 'no') % cfg.kurtosis = 'yes' or 'no' (default = 'no') % cfg.keeptrials = 'yes' or 'no' (default = 'no') % cfg.resolutionmatrix = 'yes' or 'no' (default = 'no') % cfg.feedback = 'no', 'text', 'textbar', 'gui' (default = 'text') % % The following option only applies to LCMV single-trial timecourses. % cfg.fixedori = 'within_trials' or 'over_trials' (default = 'over_trials') % % You can apply a custom mathematical transformation such as a log-transform % on the estimated power using % cfg.transform = string describing the transformation (default is []) % The nai, i.e. neural activity index (power divided by projected noise), % is computed prior to applying the optional transformation. Subsequently, % the transformation is applied on the power and on the projected noise % using "feval". A useful transformation is for example 'log' or 'log10'. % % If repeated trials are present that have undergone some sort of % resampling (i.e. jackknife, bootstrap, singletrial or rawtrial), the mean, % variance and standard error of mean will be computed for all source % parameters. This is done after applying the optional transformation % on the power and projected noise. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_SOURCEANALYSIS, FT_SOURCESTATISTICS % Copyright (C) 2004-2007, Robert Oostenveld & Jan-Mathijs Schoffelen % Copyright (C) 2010, Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_sourcedescriptives.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % set the defaults if ~isfield(cfg, 'transform'), cfg.transform = []; end if ~isfield(cfg, 'projectmom'), cfg.projectmom = 'no'; end % if yes -> svdfft if ~isfield(cfg, 'numcomp'), cfg.numcomp = 1; end if ~isfield(cfg, 'powmethod'), cfg.powmethod = []; end % see below if ~isfield(cfg, 'cohmethod'), cfg.cohmethod = []; end % see below if ~isfield(cfg, 'feedback'), cfg.feedback = 'textbar'; end if ~isfield(cfg, 'supmethod'), cfg.supmethod = 'none'; end if ~isfield(cfg, 'resolutionmatrix'), cfg.resolutionmatrix = 'no'; end if ~isfield(cfg, 'eta'), cfg.eta = 'no'; end if ~isfield(cfg, 'fa'), cfg.fa = 'no'; end if ~isfield(cfg, 'kurtosis'), cfg.kurtosis = 'no'; end if ~isfield(cfg, 'keeptrials'), cfg.keeptrials = 'no'; end if ~isfield(cfg, 'keepcsd'), cfg.keepcsd = 'no'; end if ~isfield(cfg, 'fixedori'), cfg.fixedori = 'over_trials'; end if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end % only works for minimumnormestimate if ~isfield(cfg, 'demean'), cfg.demean = 'yes'; end if ~isfield(cfg, 'baselinewindow'), cfg.baselinewindow = [-inf 0]; end if ~isfield(cfg, 'zscore'), cfg.zscore = 'yes'; end zscore = strcmp(cfg.zscore, 'yes'); demean = strcmp(cfg.demean, 'yes'); hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'source'); end end % check if the input data is valid for this function source = ft_checkdata(source, 'datatype', 'source', 'feedback', 'yes'); % this is required for backward compatibility with the old sourceanalysis if isfield(source, 'method') && strcmp(source.method, 'randomized') source.method = 'randomization'; elseif isfield(source, 'method') && strcmp(source.method, 'permuted') source.method = 'permutation'; elseif isfield(source, 'method') && strcmp(source.method, 'jacknife') source.method = 'jackknife'; end % determine the type of data, this is only relevant for a few specific types ispccdata = isfield(source, 'avg') && isfield(source.avg, 'csdlabel'); islcmvavg = isfield(source, 'avg') && isfield(source, 'time') && isfield(source.avg, 'mom') && size(source.avg.pow, 2)==1; islcmvtrl = isfield(source, 'trial') && isfield(source, 'time') && isfield(source.trial, 'mom'); ismneavg = isfield(source, 'avg') && isfield(source, 'time') && isfield(source.avg, 'mom') && size(source.avg.pow, 2)==numel(source.time); % check the consistency of the defaults if strcmp(cfg.projectmom, 'yes') if isempty(cfg.powmethod) cfg.powmethod = 'regular'; % set the default elseif ~strcmp(cfg.powmethod, 'regular') error('unsupported powmethod in combination with projectmom'); end if isempty(cfg.cohmethod) cfg.cohmethod = 'regular';% set the default elseif ~strcmp(cfg.cohmethod, 'regular') error('unsupported cohmethod in combination with projectmom'); end else if isempty(cfg.powmethod) cfg.powmethod = 'lambda1'; % set the default end if isempty(cfg.cohmethod) cfg.cohmethod = 'lambda1'; % set the default end end % this is required for backward compatibility with an old version of sourcedescriptives if isfield(cfg, 'singletrial'), cfg.keeptrials = cfg.singletrial; end % do a validity check on the input data and specified options if strcmp(cfg.resolutionmatrix, 'yes') if ~isfield(source.avg, 'filter') error('The computation of the resolution matrix requires keepfilter=''yes'' in sourceanalysis.'); elseif ~isfield(source, 'leadfield') error('The computation of the resolution matrix requires keepleadfield=''yes'' in sourceanalysis.'); end end if strcmp(cfg.eta, 'yes') && strcmp(cfg.cohmethod, 'svdfft'), error('eta cannot be computed in combination with the application of svdfft'); end if strcmp(cfg.keeptrials, 'yes') && ~strcmp(cfg.supmethod, 'none'), error('you cannot keep trials when you want to partialize something'); end % set some flags for convenience isnoise = isfield(source, 'avg') && isfield(source.avg, 'noisecsd'); keeptrials = strcmp(cfg.keeptrials, 'yes'); projectmom = strcmp(cfg.projectmom, 'yes'); % determine the subfunction used for computing power switch cfg.powmethod case 'regular' powmethodfun = @powmethod_regular; case 'lambda1' powmethodfun = @powmethod_lambda1; case 'trace' powmethodfun = @powmethod_trace; case 'none' powmethodfun = []; otherwise error('unsupported powmethod'); end if ispccdata % the source reconstruction was computed using the pcc beamformer Ndipole = length(source.inside) + length(source.outside); dipsel = match_str(source.avg.csdlabel, 'scandip'); refchansel = match_str(source.avg.csdlabel, 'refchan'); refdipsel = match_str(source.avg.csdlabel, 'refdip'); supchansel = match_str(source.avg.csdlabel, 'supchan'); supdipsel = match_str(source.avg.csdlabel, 'supdip'); % cannot handle reference channels and reference dipoles simultaneously if length(refchansel)>0 && length(refdipsel)>0 error('cannot simultaneously handle reference channels and reference dipole'); end % these are only used to count the number of reference/suppression dipoles and channels refsel = [refdipsel refchansel]; supsel = [supdipsel supchansel]; if projectmom source.avg.ori = cell(1, Ndipole); ft_progress('init', cfg.feedback, 'projecting dipole moment'); for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'projecting dipole moment %d/%d\n', diplop, length(source.inside)); i = source.inside(diplop); mom = source.avg.mom{i}(dipsel, :); ref = source.avg.mom{i}(refdipsel, :); sup = source.avg.mom{i}(supdipsel, :); refchan = source.avg.mom{i}(refchansel, :); supchan = source.avg.mom{i}(supchansel, :); % compute the projection of the scanning dipole along the direction of the dominant amplitude if length(dipsel)>1, [mom, rmom] = svdfft(mom, cfg.numcomp, source.cumtapcnt); else rmom = []; end source.avg.ori{source.inside(diplop)} = rmom; % compute the projection of the reference dipole along the direction of the dominant amplitude if length(refdipsel)>1, [ref, rref] = svdfft(ref, 1, source.cumtapcnt); else rref = []; end % compute the projection of the supression dipole along the direction of the dominant amplitude if length(supdipsel)>1, [sup, rsup] = svdfft(sup, 1, source.cumtapcnt); else rsup = []; end % compute voxel-level fourier-matrix source.avg.mom{i} = cat(1, mom, ref, sup, refchan, supchan); % create rotation-matrix rotmat = zeros(0, length(source.avg.csdlabel)); if ~isempty(rmom), rotmat = [rotmat; rmom zeros(1,length([refsel(:);supsel(:)]))]; end if ~isempty(rref), rotmat = [rotmat; zeros(1, length([dipsel])), rref, zeros(1,length([refchansel(:);supsel(:)]))]; end if ~isempty(rsup), rotmat = [rotmat; zeros(1, length([dipsel(:);refdipsel(:)])), rsup, zeros(1,length([refchansel(:);supchansel(:)]))]; end for j=1:length(supchansel) rotmat(end+1,:) = 0; rotmat(end,length([dipsel(:);refdipsel(:);supdipsel(:)])+j) = 1; end for j=1:length(refchansel) rotmat(end+1,:) = 0; rotmat(end,length([dipsel(:);refdipsel(:);supdipsel(:);supchansel(:)])+j) = 1; end % compute voxel-level csd-matrix source.avg.csd{i} = rotmat * source.avg.csd{i} * rotmat'; % compute voxel-level noisecsd-matrix if isfield(source.avg, 'noisecsd'), source.avg.noisecsd{i} = rotmat * source.avg.noisecsd{i} * rotmat'; end % compute rotated filter if isfield(source.avg, 'filter'), source.avg.filter{i} = rotmat * source.avg.filter{i}; end % compute rotated leadfield % FIXME in the presence of a refdip and/or supdip, this does not work; leadfield is Nx3 if isfield(source, 'leadfield'), %FIXME this is a proposed dirty fix n1 = size(source.leadfield{i},2); %n2 = size(rotmat,2) - n1; n2 = size(rotmat,2) - n1 +1; %added 1 JM source.leadfield{i} = source.leadfield{i} * rotmat(1:n2, 1:n1)'; end end %for diplop ft_progress('close'); % remember what the interpretation is of all CSD output components scandiplabel = repmat({'scandip'}, 1, cfg.numcomp); % only one dipole orientation remains refdiplabel = repmat({'refdip'}, 1, length(refdipsel)>0); % for svdfft at max. only one dipole orientation remains supdiplabel = repmat({'supdip'}, 1, length(supdipsel)>0); % for svdfft at max. only one dipole orientation remains refchanlabel = repmat({'refchan'}, 1, length(refchansel)); supchanlabel = repmat({'supchan'}, 1, length(supchansel)); % concatenate all the labels source.avg.csdlabel = cat(2, scandiplabel, refdiplabel, supdiplabel, refchanlabel, supchanlabel); % update the indices dipsel = match_str(source.avg.csdlabel, 'scandip'); refchansel = match_str(source.avg.csdlabel, 'refchan'); refdipsel = match_str(source.avg.csdlabel, 'refdip'); supchansel = match_str(source.avg.csdlabel, 'supchan'); supdipsel = match_str(source.avg.csdlabel, 'supdip'); refsel = [refdipsel refchansel]; supsel = [supdipsel supchansel]; end % if projectmom if keeptrials cumtapcnt = source.cumtapcnt(:); sumtapcnt = cumsum([0;cumtapcnt]); Ntrial = length(cumtapcnt); ft_progress('init', cfg.feedback, 'computing singletrial voxel-level cross-spectral densities'); for triallop = 1:Ntrial source.trial(triallop).csd = cell(Ndipole, 1); % allocate memory for this trial source.trial(triallop).mom = cell(Ndipole, 1); % allocate memory for this trial ft_progress(triallop/Ntrial, 'computing singletrial voxel-level cross-spectral densities %d%d\n', triallop, Ntrial); for diplop=1:length(source.inside) i = source.inside(diplop); dat = source.avg.mom{i}; tmpmom = dat(:, sumtapcnt(triallop)+1:sumtapcnt(triallop+1)); tmpcsd = [tmpmom * tmpmom'] ./cumtapcnt(triallop); source.trial(triallop).mom{i} = tmpmom; source.trial(triallop).csd{i} = tmpcsd; end %for diplop end % for triallop ft_progress('close'); % remove the average, continue with separate trials source = rmfield(source, 'avg'); else fprintf('using average voxel-level cross-spectral densities\n'); end % if keeptrials hasrefdip = ~isempty(refdipsel); hasrefchan = ~isempty(refchansel); hassupdip = ~isempty(supdipsel); hassupchan = ~isempty(supchansel); if keeptrials % do the processing of the CSD matrices for each trial if ~strcmp(cfg.supmethod, 'none') error('suppression is only supported for average CSD'); end dipselcell = mat2cell(repmat(dipsel(:)', [Ndipole 1]), ones(Ndipole,1), length(dipsel)); if hasrefdip, refdipselcell = mat2cell(repmat(refdipsel(:)', [Ndipole 1]), ones(Ndipole,1), length(refdipsel)); end if hasrefchan, refchanselcell = mat2cell(repmat(refchansel(:)', [Ndipole 1]), ones(Ndipole,1), length(refchansel)); end if hassupdip, supdipselcell = mat2cell(repmat(supdipsel(:)', [Ndipole 1]), ones(Ndipole,1), length(supdipsel)); end if hassupchan, supchanselcell = mat2cell(repmat(supchansel(:)', [Ndipole 1]), ones(Ndipole,1), length(supchansel)); end ft_progress('init', cfg.feedback, 'computing singletrial voxel-level power'); for triallop = 1:Ntrial %initialize the variables source.trial(triallop).pow = zeros(Ndipole, 1); if hasrefdip, source.trial(triallop).refdippow = zeros(Ndipole, 1); end if hasrefchan, source.trial(triallop).refchanpow = zeros(Ndipole, 1); end if hassupdip, source.trial(triallop).supdippow = zeros(Ndipole, 1); end if hassupchan, source.trial(triallop).supchanpow = zeros(Ndipole, 1); end ft_progress(triallop/Ntrial, 'computing singletrial voxel-level power %d%d\n', triallop, Ntrial); source.trial(triallop).pow(source.inside) = cellfun(powmethodfun, source.trial(triallop).csd(source.inside), dipselcell(source.inside)); if hasrefdip, source.trial(triallop).refdippow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), refdipselcell(source.inside)); end if hassupdip, source.trial(triallop).supdippow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), supdipselcell(source.inside)); end if hasrefchan, source.trial(triallop).refchanpow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), refchanselcell(source.inside)); end if hassupchan, source.trial(triallop).supchanpow(source.inside) = cellfun(powmethodfun,source.trial(triallop).csd(source.inside), supchanselcell(source.inside)); end %FIXME kan volgens mij niet if isnoise && isfield(source.trial(triallop), 'noisecsd'), % compute the power of the noise projected on each source component source.trial(triallop).noise = cellfun(powmethodfun,source.trial(triallop).csd, dipselcell); if hasrefdip, source.trial(triallop).refdipnoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, refdipselcell); end if hassupdip, source.trial(triallop).supdipnoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, supdipselcell); end if hasrefchan, source.trial(triallop).refchannoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, refchanselcell); end if hassupchan, source.trial(triallop).supchannoise = cellfun(powmethodfun,source.trial(triallop).noisecsd, supchanselcell); end end % if isnoise end % for triallop ft_progress('close'); if strcmp(cfg.keepcsd, 'no') source.trial = rmfield(source.trial, 'csd'); end else % do the processing of the average CSD matrix for diplop = 1:length(source.inside) i = source.inside(diplop); switch cfg.supmethod case 'chan_dip' supindx = [supdipsel supchansel]; if diplop==1, refsel = refsel - length(supdipsel); end%adjust index only once case 'chan' supindx = [supchansel]; case 'dip' supindx = [supdipsel]; if diplop==1, refsel = refsel - length(supdipsel); end case 'none' % do nothing supindx = []; end tmpcsd = source.avg.csd{i}; scnindx = setdiff(1:size(tmpcsd,1), supindx); tmpcsd = tmpcsd(scnindx, scnindx) - [tmpcsd(scnindx, supindx)*pinv(tmpcsd(supindx, supindx))*tmpcsd(supindx, scnindx)]; source.avg.csd{i} = tmpcsd; end % for diplop source.avg.csdlabel = source.avg.csdlabel(scnindx); if isnoise && ~strcmp(cfg.supmethod, 'none') source.avg = rmfield(source.avg, 'noisecsd'); end % initialize the variables source.avg.pow = nan*zeros(Ndipole, 1); if ~isempty(refdipsel), source.avg.refdippow = nan*zeros(Ndipole, 1); end if ~isempty(refchansel), source.avg.refchanpow = nan*zeros(Ndipole, 1); end if ~isempty(supdipsel), source.avg.supdippow = nan*zeros(Ndipole, 1); end if ~isempty(supchansel), source.avg.supchanpow = nan*zeros(Ndipole, 1); end if isnoise source.avg.noise = nan*zeros(Ndipole, 1); if ~isempty(refdipsel), source.avg.refdipnoise = nan*zeros(Ndipole, 1); end if ~isempty(refchansel), source.avg.refchannoise = nan*zeros(Ndipole, 1); end if ~isempty(supdipsel), source.avg.supdipnoise = nan*zeros(Ndipole, 1); end if ~isempty(supchansel), source.avg.supchannoise = nan*zeros(Ndipole, 1); end end % if isnoise if ~isempty(refsel), source.avg.coh = nan*zeros(Ndipole, 1); end if strcmp(cfg.eta, 'yes'), source.avg.eta = nan*zeros(Ndipole, 1); source.avg.ori = cell(1, Ndipole); end if strcmp(cfg.eta, 'yes') && ~isempty(refsel), source.avg.etacsd = nan*zeros(Ndipole, 1); source.avg.ucsd = cell(1, Ndipole); end if strcmp(cfg.fa, 'yes'), source.avg.fa = nan*zeros(Ndipole, 1); end for diplop = 1:length(source.inside) i = source.inside(diplop); % compute the power of each source component if strcmp(cfg.projectmom, 'yes') && cfg.numcomp>1, source.avg.pow(i) = powmethodfun(source.avg.csd{i}(dipsel,dipsel), 1); else source.avg.pow(i) = powmethodfun(source.avg.csd{i}(dipsel,dipsel)); end if ~isempty(refdipsel), source.avg.refdippow(i) = powmethodfun(source.avg.csd{i}(refdipsel,refdipsel)); end if ~isempty(supdipsel), source.avg.supdippow(i) = powmethodfun(source.avg.csd{i}(supdipsel,supdipsel)); end if ~isempty(refchansel), source.avg.refchanpow(i) = powmethodfun(source.avg.csd{i}(refchansel,refchansel)); end if ~isempty(supchansel), source.avg.supchanpow(i) = powmethodfun(source.avg.csd{i}(supchansel,supchansel)); end if isnoise % compute the power of the noise projected on each source component if strcmp(cfg.projectmom, 'yes') && cfg.numcomp>1, source.avg.noise(i) = powmethodfun(source.avg.noisecsd{i}(dipsel,dipsel), 1); else source.avg.noise(i) = powmethodfun(source.avg.noisecsd{i}(dipsel,dipsel)); end if ~isempty(refdipsel), source.avg.refdipnoise(i) = powmethodfun(source.avg.noisecsd{i}(refdipsel,refdipsel)); end if ~isempty(supdipsel), source.avg.supdipnoise(i) = powmethodfun(source.avg.noisecsd{i}(supdipsel,supdipsel)); end if ~isempty(refchansel), source.avg.refchannoise(i) = powmethodfun(source.avg.noisecsd{i}(refchansel,refchansel)); end if ~isempty(supchansel), source.avg.supchannoise(i) = powmethodfun(source.avg.noisecsd{i}(supchansel,supchansel)); end end % if isnoise if ~isempty(refsel) % compute coherence csd = source.avg.csd{i}; switch cfg.cohmethod case 'regular' % assume that all dipoles have been projected along the direction of maximum power Pd = abs(csd(dipsel, dipsel)); Pr = abs(csd(refsel, refsel)); Cdr = csd(dipsel, refsel); source.avg.coh(i) = (Cdr.^2) ./ (Pd*Pr); case 'lambda1' %compute coherence on Joachim Gross' way Pd = lambda1(csd(dipsel, dipsel)); Pr = lambda1(csd(refsel, refsel)); Cdr = lambda1(csd(dipsel, refsel)); source.avg.coh(i) = abs(Cdr).^2 ./ (Pd*Pr); case 'canonical' [ccoh, c2, v1, v2] = cancorr(csd, dipsel, refsel); [cmax, indmax] = max(ccoh); source.avg.coh(i) = ccoh(indmax); otherwise error('unsupported cohmethod'); end % cohmethod end % compute eta if strcmp(cfg.eta, 'yes') [source.avg.eta(i), source.avg.ori{i}] = csd2eta(source.avg.csd{i}(dipsel,dipsel)); if ~isempty(refsel), %FIXME this only makes sense when only a reference signal OR a dipole is selected [source.avg.etacsd(i), source.avg.ucsd{i}] = csd2eta(source.avg.csd{i}(dipsel,refsel)); end end %compute fa if strcmp(cfg.fa, 'yes') source.avg.fa(i) = csd2fa(source.avg.csd{i}(dipsel,dipsel)); end end % for diplop if strcmp(cfg.keepcsd, 'no') source.avg = rmfield(source.avg, 'csd'); end if strcmp(cfg.keepcsd, 'no') && isnoise source.avg = rmfield(source.avg, 'noisecsd'); end end elseif ismneavg %the source reconstruction was computed using the minimumnormestimate and contains an average timecourse if demean begsmp = nearest(source.time, cfg.baselinewindow(1)); endsmp = nearest(source.time, cfg.baselinewindow(2)); ft_progress('init', cfg.feedback, 'baseline correcting dipole moments'); for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'baseline correcting dipole moments %d/%d\n', diplop, length(source.inside)); mom = source.avg.mom{source.inside(diplop)}; mom = ft_preproc_baselinecorrect(mom, begsmp, endsmp); source.avg.mom{source.inside(diplop)} = mom; end ft_progress('close'); end if projectmom ft_progress('init', cfg.feedback, 'projecting dipole moment'); for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'projecting dipole moment %d/%d\n', diplop, length(source.inside)); mom = source.avg.mom{source.inside(diplop)}; [mom, rmom] = svdfft(mom, 1); source.avg.mom{source.inside(diplop)} = mom; source.avg.ori{source.inside(diplop)} = rmom; end ft_progress('close'); end if zscore begsmp = nearest(source.time, cfg.baselinewindow(1)); endsmp = nearest(source.time, cfg.baselinewindow(2)); % zscore using baselinewindow for power ft_progress('init', cfg.feedback, 'computing power'); source.avg.absmom = source.avg.pow; for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'computing power %d/%d\n', diplop, length(source.inside)); mom = source.avg.mom{source.inside(diplop)}; mmom = mean(mom(begsmp:endsmp)); smom = std(mom(begsmp:endsmp)); pow = sum(((mom-mmom)./smom).^2,1); source.avg.pow(source.inside(diplop),:) = pow; source.avg.absmom(source.inside(diplop),:) = sum((mom-mmom)./smom,1); end ft_progress('close'); else % just square for power ft_progress('init', cfg.feedback, 'computing power'); source.avg.absmom = source.avg.pow; for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'computing power %d/%d\n', diplop, length(source.inside)); mom = source.avg.mom{source.inside(diplop)}; pow = sum(mom.^2,1); source.avg.pow(source.inside(diplop),:) = pow; source.avg.absmom(source.inside(diplop),:) = sum(mom,1); end ft_progress('close'); end if strcmp(cfg.kurtosis, 'yes') fprintf('computing kurtosis based on dipole timecourse\n'); source.avg.k2 = nan*zeros(size(source.pos,1),1); for diplop=1:length(source.inside) mom = source.avg.mom{source.inside(diplop)}; if length(mom)~=prod(size(mom)) error('kurtosis can only be computed for projected dipole moment'); end source.avg.k2(source.inside(diplop)) = kurtosis(mom); end end elseif islcmvavg % the source reconstruction was computed using the lcmv beamformer and contains an average timecourse if projectmom ft_progress('init', cfg.feedback, 'projecting dipole moment'); for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'projecting dipole moment %d/%d\n', diplop, length(source.inside)); mom = source.avg.mom{source.inside(diplop)}; [mom, rmom] = svdfft(mom, 1); source.avg.mom{source.inside(diplop)} = mom; source.avg.ori{source.inside(diplop)} = rmom; end ft_progress('close'); end if ~strcmp(cfg.powmethod, 'none') fprintf('recomputing power based on dipole timecourse\n') source.avg.pow = nan*zeros(size(source.pos,1),1); for diplop=1:length(source.inside) mom = source.avg.mom{source.inside(diplop)}; cov = mom * mom'; source.avg.pow(source.inside(diplop)) = powmethodfun(cov); end end if strcmp(cfg.kurtosis, 'yes') fprintf('computing kurtosis based on dipole timecourse\n'); source.avg.k2 = nan*zeros(size(source.pos,1),1); for diplop=1:length(source.inside) mom = source.avg.mom{source.inside(diplop)}; if length(mom)~=prod(size(mom)) error('kurtosis can only be computed for projected dipole moment'); end source.avg.k2(source.inside(diplop)) = kurtosis(mom); end end elseif islcmvtrl % the source reconstruction was computed using the lcmv beamformer and contains a single-trial timecourse ntrial = length(source.trial); if projectmom && strcmp(cfg.fixedori, 'within_trials') % the dipole orientation is re-determined for each trial ft_progress('init', cfg.feedback, 'projecting dipole moment'); for trllop=1:ntrial ft_progress(trllop/ntrial, 'projecting dipole moment %d/%d\n', trllop, ntrial); for diplop=1:length(source.inside) mom = source.trial(trllop).mom{source.inside(diplop)}; [mom, rmom] = svdfft(mom, 1); source.trial(trllop).mom{source.inside(diplop)} = mom; source.trial(trllop).ori{source.inside(diplop)} = rmom; % remember the orientation end end ft_progress('close'); elseif projectmom && strcmp(cfg.fixedori, 'over_trials') ft_progress('init', cfg.feedback, 'projecting dipole moment'); % compute average covariance over all trials for trllop=1:ntrial for diplop=1:length(source.inside) mom = source.trial(trllop).mom{source.inside(diplop)}; if trllop==1 cov{diplop} = mom*mom'./size(mom,2); else cov{diplop} = mom*mom'./size(mom,2) + cov{diplop}; end end end % compute source orientation over all trials for diplop=1:length(source.inside) [dum, ori{diplop}] = svdfft(cov{diplop}, 1); end % project the data in each trial for trllop=1:ntrial ft_progress(trllop/ntrial, 'projecting dipole moment %d/%d\n', trllop, ntrial); for diplop=1:length(source.inside) mom = source.trial(trllop).mom{source.inside(diplop)}; mom = ori{diplop}*mom; source.trial(trllop).mom{source.inside(diplop)} = mom; source.trial(trllop).ori{source.inside(diplop)} = ori{diplop}; end end ft_progress('close'); end if ~strcmp(cfg.powmethod, 'none') fprintf('recomputing power based on dipole timecourse\n') for trllop=1:ntrial for diplop=1:length(source.inside) mom = source.trial(trllop).mom{source.inside(diplop)}; cov = mom * mom'; source.trial(trllop).pow(source.inside(diplop)) = powmethodfun(cov); end end end if strcmp(cfg.kurtosis, 'yes') fprintf('computing kurtosis based on dipole timecourse\n'); for trllop=1:ntrial source.trial(trllop).k2 = nan*zeros(size(source.pos,1),1); for diplop=1:length(source.inside) mom = source.trial(trllop).mom{source.inside(diplop)}; if length(mom)~=prod(size(mom)) error('kurtosis can only be computed for projected dipole moment'); end source.trial(trllop).k2(source.inside(diplop)) = kurtosis(mom); end end end end % dealing with pcc or lcmv input if isfield(source, 'avg') && isfield(source.avg, 'pow') && isfield(source.avg, 'noise') % compute the neural activity index for the average source.avg.nai = source.avg.pow(:) ./ source.avg.noise(:); end if isfield(source, 'trial') && isfield(source.trial, 'pow') && isfield(source.trial, 'noise') % compute the neural activity index for the trials ntrials = length(source.trial); for trlop=1:ntrials source.trial(trlop).nai = source.trial(trlop).pow ./ source.trial(trlop).noise; end end if strcmp(source.method, 'randomization') || strcmp(source.method, 'permutation') % compute the neural activity index for the two randomized conditions source.avgA.nai = source.avgA.pow ./ source.avgA.noise; source.avgB.nai = source.avgB.pow ./ source.avgB.noise; for trlop=1:length(source.trialA) source.trialA(trlop).nai = source.trialA(trlop).pow ./ source.trialA(trlop).noise; end for trlop=1:length(source.trialB) source.trialB(trlop).nai = source.trialB(trlop).pow ./ source.trialB(trlop).noise; end end if ~isempty(cfg.transform) fprintf('applying %s transformation on the power and projected noise\n', cfg.transform); % apply the specified transformation on the power if isfield(source, 'avg' ) && isfield(source.avg , 'pow'), source.avg .pow = feval(cfg.transform, source.avg .pow); end if isfield(source, 'avgA' ) && isfield(source.avgA , 'pow'), source.avgA.pow = feval(cfg.transform, source.avgA.pow); end if isfield(source, 'avgB' ) && isfield(source.avgB , 'pow'), source.avgB.pow = feval(cfg.transform, source.avgB.pow); end if isfield(source, 'trial' ) && isfield(source.trial , 'pow'), for i=1:length(source.trial ), source.trial (i).pow = feval(cfg.transform, source.trial (i).pow); end; end if isfield(source, 'trialA') && isfield(source.trialA, 'pow'), for i=1:length(source.trialA), source.trialA(i).pow = feval(cfg.transform, source.trialA(i).pow); end; end if isfield(source, 'trialB') && isfield(source.trialB, 'pow'), for i=1:length(source.trialB), source.trialB(i).pow = feval(cfg.transform, source.trialB(i).pow); end; end % apply the specified transformation on the projected noise if isfield(source, 'avg' ) && isfield(source.avg , 'noise'), source.avg .noise = feval(cfg.transform, source.avg .noise); end if isfield(source, 'avgA' ) && isfield(source.avgA , 'noise'), source.avgA.noise = feval(cfg.transform, source.avgA.noise); end if isfield(source, 'avgB' ) && isfield(source.avgB , 'noise'), source.avgB.noise = feval(cfg.transform, source.avgB.noise); end if isfield(source, 'trial' ) && isfield(source.trial , 'noise'), for i=1:length(source.trial ), source.trial (i).noise = feval(cfg.transform, source.trial (i).noise); end; end if isfield(source, 'trialA') && isfield(source.trialA, 'noise'), for i=1:length(source.trialA), source.trialA(i).noise = feval(cfg.transform, source.trialA(i).noise); end; end if isfield(source, 'trialB') && isfield(source.trialB, 'noise'), for i=1:length(source.trialB), source.trialB(i).noise = feval(cfg.transform, source.trialB(i).noise); end; end end if strcmp(source.method, 'pseudovalue') % compute the pseudovalues for the beamformer output avg = source.trial(1); % the first is the complete average Ntrials = length(source.trial)-1; % the remaining are the leave-one-out averages pseudoval = []; if isfield(source.trial, 'pow') allavg = getfield(avg, 'pow'); for i=1:Ntrials thisavg = getfield(source.trial(i+1), 'pow'); thisval = Ntrials*allavg - (Ntrials-1)*thisavg; pseudoval(i).pow = thisval; end end if isfield(source.trial, 'coh') allavg = getfield(avg, 'coh'); for i=1:Ntrials thisavg = getfield(source.trial(i+1), 'coh'); thisval = Ntrials*allavg - (Ntrials-1)*thisavg; pseudoval(i).coh = thisval; end end if isfield(source.trial, 'nai') allavg = getfield(avg, 'nai'); for i=1:Ntrials thisavg = getfield(source.trial(i+1), 'nai'); thisval = Ntrials*allavg - (Ntrials-1)*thisavg; pseudoval(i).nai = thisval; end end if isfield(source.trial, 'noise') allavg = getfield(avg, 'noise'); for i=1:Ntrials thisavg = getfield(source.trial(i+1), 'noise'); thisval = Ntrials*allavg - (Ntrials-1)*thisavg; pseudoval(i).noise = thisval; end end % store the pseudovalues instead of the original values source.trial = pseudoval; end if strcmp(source.method, 'jackknife') || strcmp(source.method, 'bootstrap') || strcmp(source.method, 'pseudovalue') || strcmp(source.method, 'singletrial') || strcmp(source.method, 'rawtrial') % compute descriptive statistics (mean, var, sem) for multiple trial data % compute these for as many source parameters as possible % for convenience copy the trials out of the source structure dip = source.trial; % determine the (original) number of trials in the data if strcmp(source.method, 'bootstrap') %VERANDERD ER ZAT GEEN .RESAMPLE IN SOURCE Ntrials = size(source.trial,2);% WAS size(source.resample, 2); else Ntrials = length(source.trial); end fprintf('original data contained %d trials\n', Ntrials); % allocate memory for all elements in the dipole structure sumdip = []; if isfield(dip(1), 'var'), sumdip.var = zeros(size(dip(1).var )); sumdip.var(source.outside)=nan; end if isfield(dip(1), 'pow'), sumdip.pow = zeros(size(dip(1).pow )); sumdip.pow(source.outside)=nan; end if isfield(dip(1), 'coh'), sumdip.coh = zeros(size(dip(1).coh )); sumdip.coh(source.outside)=nan; end if isfield(dip(1), 'rv'), sumdip.rv = zeros(size(dip(1).rv )); sumdip.rv(source.outside)=nan; end if isfield(dip(1), 'noise'), sumdip.noise = zeros(size(dip(1).noise)); sumdip.noise(source.outside)=nan; end if isfield(dip(1), 'nai'), sumdip.nai = zeros(size(dip(1).nai )); sumdip.nai(source.outside)=nan; end sqrdip = []; if isfield(dip(1), 'var'), sqrdip.var = zeros(size(dip(1).var )); sqrdip.var(source.outside)=nan; end if isfield(dip(1), 'pow'), sqrdip.pow = zeros(size(dip(1).pow )); sqrdip.pow(source.outside)=nan; end if isfield(dip(1), 'coh'), sqrdip.coh = zeros(size(dip(1).coh )); sqrdip.coh(source.outside)=nan; end if isfield(dip(1), 'rv'), sqrdip.rv = zeros(size(dip(1).rv )); sqrdip.rv(source.outside)=nan; end if isfield(dip(1), 'noise'), sqrdip.noise = zeros(size(dip(1).noise)); sqrdip.noise(source.outside)=nan; end if isfield(dip(1), 'nai'), sqrdip.nai = zeros(size(dip(1).nai )); sqrdip.nai(source.outside)=nan; end if isfield(dip(1), 'mom') sumdip.mom = cell(size(dip(1).mom)); sqrdip.mom = cell(size(dip(1).mom)); for i=1:length(dip(1).mom) sumdip.mom{i} = nan*zeros(size(dip(1).mom{i})); sqrdip.mom{i} = nan*zeros(size(dip(1).mom{i})); end end if isfield(dip(1), 'csd') sumdip.csd = cell(size(dip(1).csd)); sqrdip.csd = cell(size(dip(1).csd)); for i=1:length(dip(1).csd) sumdip.csd{i} = nan*zeros(size(dip(1).csd{i})); sqrdip.csd{i} = nan*zeros(size(dip(1).csd{i})); end end for trial=1:length(dip) % compute the sum of all values if isfield(dip(trial), 'var'), sumdip.var = sumdip.var + dip(trial).var; end if isfield(dip(trial), 'pow'), sumdip.pow = sumdip.pow + dip(trial).pow; end if isfield(dip(trial), 'coh'), sumdip.coh = sumdip.coh + dip(trial).coh; end if isfield(dip(trial), 'rv'), sumdip.rv = sumdip.rv + dip(trial).rv; end if isfield(dip(trial), 'noise'), sumdip.noise = sumdip.noise + dip(trial).noise; end if isfield(dip(trial), 'nai'), sumdip.nai = sumdip.nai + dip(trial).nai; end % compute the sum of squared values if isfield(dip(trial), 'var'), sqrdip.var = sqrdip.var + (dip(trial).var ).^2; end if isfield(dip(trial), 'pow'), sqrdip.pow = sqrdip.pow + (dip(trial).pow ).^2; end if isfield(dip(trial), 'coh'), sqrdip.coh = sqrdip.coh + (dip(trial).coh ).^2; end if isfield(dip(trial), 'rv'), sqrdip.rv = sqrdip.rv + (dip(trial).rv ).^2; end if isfield(dip(trial), 'noise'), sqrdip.noise = sqrdip.noise + (dip(trial).noise).^2; end if isfield(dip(trial), 'nai'), sqrdip.nai = sqrdip.nai + (dip(trial).nai ).^2; end % do the same for the cell array with mom if isfield(dip(trial), 'mom') for i=1:length(dip(1).mom) sumdip.mom{i} = sumdip.mom{i} + dip(trial).mom{i}; sqrdip.mom{i} = sqrdip.mom{i} + (dip(trial).mom{i}).^2; end end % do the same for the cell array with csd if isfield(dip(trial), 'csd') for i=1:length(dip(1).csd) sumdip.csd{i} = sumdip.csd{i} + dip(trial).csd{i}; sqrdip.csd{i} = sqrdip.csd{i} + (dip(trial).csd{i}).^2; end end end % compute the mean over all repetitions if isfield(sumdip, 'var'), dipmean.var = sumdip.var / length(dip); end if isfield(sumdip, 'pow'), dipmean.pow = sumdip.pow / length(dip); end if isfield(sumdip, 'coh'), dipmean.coh = sumdip.coh / length(dip); end if isfield(sumdip, 'rv'), dipmean.rv = sumdip.rv / length(dip); end if isfield(sumdip, 'noise'), dipmean.noise = sumdip.noise / length(dip); end if isfield(sumdip, 'nai'), dipmean.nai = sumdip.nai / length(dip); end % for the cell array with mom, this is done further below % for the cell array with csd, this is done further below % the estimates for variance and SEM are biased if we are working with the jackknife/bootstrap % determine the proper variance scaling that corrects for this bias % note that Ntrials is not always the same as the length of dip, especially in case of the bootstrap if strcmp(source.method, 'singletrial') bias = 1; elseif strcmp(source.method, 'rawtrial') bias = 1; elseif strcmp(source.method, 'jackknife') % Effron gives SEM estimate for the jackknife method in equation 11.5 (paragraph 11.2) % to get the variance instead of SEM, we also have to multiply with the number of trials bias = (Ntrials - 1)^2; elseif strcmp(source.method, 'bootstrap') % Effron gives SEM estimate for the bootstrap method in algorithm 6.1 (equation 6.6) % to get the variance instead of SEM, we also have to multiply with the number of trials bias = Ntrials; elseif strcmp(source.method, 'pseudovalue') % note that I have not put any thought in this aspect yet warning('don''t know how to compute bias for pseudovalue resampling'); bias = 1; end % compute the variance over all repetitions if isfield(sumdip, 'var'), dipvar.var = bias*(sqrdip.var - (sumdip.var .^2)/length(dip))/(length(dip)-1); end if isfield(sumdip, 'pow'), dipvar.pow = bias*(sqrdip.pow - (sumdip.pow .^2)/length(dip))/(length(dip)-1); end if isfield(sumdip, 'coh'), dipvar.coh = bias*(sqrdip.coh - (sumdip.coh .^2)/length(dip))/(length(dip)-1); end if isfield(sumdip, 'rv' ), dipvar.rv = bias*(sqrdip.rv - (sumdip.rv .^2)/length(dip))/(length(dip)-1); end if isfield(sumdip, 'noise' ), dipvar.noise = bias*(sqrdip.noise - (sumdip.noise .^2)/length(dip))/(length(dip)-1); end if isfield(sumdip, 'nai' ), dipvar.nai = bias*(sqrdip.nai - (sumdip.nai .^2)/length(dip))/(length(dip)-1); end % compute the SEM over all repetitions if isfield(sumdip, 'var'), dipsem.var = (dipvar.var /Ntrials).^0.5; end if isfield(sumdip, 'pow'), dipsem.pow = (dipvar.pow /Ntrials).^0.5; end if isfield(sumdip, 'coh'), dipsem.coh = (dipvar.coh /Ntrials).^0.5; end if isfield(sumdip, 'rv' ), dipsem.rv = (dipvar.rv /Ntrials).^0.5; end if isfield(sumdip, 'noise' ), dipsem.noise = (dipvar.noise /Ntrials).^0.5; end if isfield(sumdip, 'nai' ), dipsem.nai = (dipvar.nai /Ntrials).^0.5; end % compute the mean and SEM over all repetitions for the cell array with mom if isfield(dip(trial), 'mom') for i=1:length(dip(1).mom) dipmean.mom{i} = sumdip.mom{i}/length(dip); dipvar.mom{i} = bias*(sqrdip.mom{i} - (sumdip.mom{i}.^2)/length(dip))/(length(dip)-1); dipsem.mom{i} = (dipvar.mom{i}/Ntrials).^0.5; end end % compute the mean and SEM over all repetitions for the cell array with csd if isfield(dip(trial), 'csd') for i=1:length(dip(1).csd) dipmean.csd{i} = sumdip.csd{i}/length(dip); dipvar.csd{i} = bias*(sqrdip.csd{i} - (sumdip.csd{i}.^2)/length(dip))/(length(dip)-1); dipsem.csd{i} = (dipvar.csd{i}/Ntrials).^0.5; end end if strcmp(source.method, 'pseudovalue') % keep the trials, since they have been converted to pseudovalues % and hence the trials contain the interesting data elseif keeptrials % keep the trials upon request else % remove the original trials source = rmfield(source, 'trial'); % assign the descriptive statistics to the output source structure source.avg = dipmean; source.var = dipvar; source.sem = dipsem; end end if strcmp(cfg.resolutionmatrix, 'yes') % this is only implemented for pcc and no refdips/chans at the moment Nchan = size(source.leadfield{source.inside(1)}, 1); Ninside = length(source.inside); allfilter = zeros(Ninside,Nchan); allleadfield = zeros(Nchan,Ninside); dipsel = match_str(source.avg.csdlabel, 'scandip'); ft_progress('init', cfg.feedback, 'computing resolution matrix'); for diplop=1:length(source.inside) ft_progress(diplop/length(source.inside), 'computing resolution matrix %d/%d\n', diplop, length(source.inside)); i = source.inside(diplop); % concatenate all filters allfilter(diplop,:) = source.avg.filter{i}(dipsel,:); % concatenate all leadfields allleadfield(:,diplop) = source.leadfield{i}; end ft_progress('close'); % multiply the filters and leadfields to obtain the resolution matrix % see equation 1 and 2 in De Peralta-Menendez RG, Gonzalez-Andino SL: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Transactions on Biomedical Engineering 45: 440-448, 1998. source.resolution = nan*zeros(Ndipole, Ndipole); source.resolution(source.inside, source.inside) = allfilter*allleadfield; end % accessing this field here is needed for the configuration tracking % by accessing it once, it will not be removed from the output cfg cfg.outputfile; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_sourcedescriptives.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try, cfg.previous = source.cfg; end % remember the exact configuration details in the output source.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'source', source); % use the variable name "data" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute eta from a csd-matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [eta, u] = csd2eta(csd) [u,s,v] = svd(real(csd)); eta = s(2,2)./s(1,1); u = u'; %orientation is defined in the rows %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute fa from a csd-matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fa] = csd2fa(csd) s = svd(real(csd)); ns = rank(real(csd)); s = s(1:ns); ms = mean(s); fa = sqrt( (ns./(ns-1)) .* (sum((s-ms).^2))./(sum(s.^2)) ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute power %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function p = powmethod_lambda1(x, ind); if nargin==1, ind = 1:size(x,1); end s = svd(x(ind,ind)); p = s(1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute power %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function p = powmethod_trace(x, ind); if nargin==1, ind = 1:size(x,1); end p = trace(x(ind,ind)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to compute power %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function p = powmethod_regular(x, ind); if nargin==1, ind = 1:size(x,1); end p = abs(x(ind,ind)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function to obtain the largest singular value or trace of the % source CSD matrices resulting from DICS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = lambda1(x); s = svd(x); s = s(1);
github
philippboehmsturm/antx-master
ft_componentbrowser_old.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_componentbrowser_old.m
8,188
utf_8
42dd5e64a1f8b29bbc4398a22c2aa440
function [varargout] = ft_componentbrowser_old(cfg, comp) % FT_COMPONENTBROWSER plots topography and activations of ICA components % This function is deprecated, use FT_DATABROWSER with cfg.viewmode='template' instead. % % Use as % ft_componentbrowser_old(cfg, comp) % where comp is a FieldTrip structure obtained from FT_COMPONENTANALYSIS. % % The configuration has the following parameters: % cfg.comp = a vector with the components to plot (ex. 1:10) (optional) % cfg.trial = choose which trial to plot first (optional, only one trial) % cfg.layout = because the output of componentanalysis does not contain % information on the layout, you need to specify in a variety of ways: % - you can provide a pre-computed layout structure (see prepare_layout) % - you can give the name of an ascii layout file with extension *.lay % - you can give the name of an electrode file % - you can give an electrode definition, i.e. "elec" structure % - you can give a gradiometer definition, i.e. "grad" structure % % See also FT_COMPONENTANALYSIS % Copyright (C) 2009, Giovanni Piantoni % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_componentbrowser_old.m 3862 2011-07-14 13:41:01Z jorhor $ warning('FT_COMPONENTBROWSER is deprecated, please use FT_DATABROWSER with cfg.viewmode = ''component'' instead.') ft_defaults %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Prepare the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check that the data comes from componentanalysis comp = ft_checkdata(comp, 'datatype', 'comp'); % set the defaults: if ~isfield(cfg, 'comp'), cfg.comp = 1:10; end if ~isfield(cfg, 'trial'), cfg.trial = 1; end if numel(cfg.trial) > 1, warning('componentbrowser:cfg_onetrial', 'only one trial can be plotted at the time'); cfg.trial = cfg.trial(1); end % Read or create the layout that will be used for plotting: [cfg.layout] = ft_prepare_layout(cfg, comp); % Identify the channels to plot [labels, cfg.chanidx.lay, cfg.chanidx.comp] = intersect(cfg.layout.label, comp.topolabel); % in case channels are missing if isempty(cfg.chanidx.lay) error('componentbrowser:labelmismatch', 'The channel labels in the data do not match the labels of the layout'); end % fixed variables cfg.shift = 1.2; % distance between topoplots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create figure and assign userdata %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % create figure and axes cfg.h = figure('uni','pix', 'name', 'componentbrowser', 'vis', 'off', 'numbertitle', 'off'); cfg.axis = axes; hold on %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Buttons and Callbacks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % scroll components uicontrol(cfg.h,'uni','pix','pos',[105 5 25 18],'str','-',... 'call',{@plottopography, comp}); cfg.ncomp = uicontrol(cfg.h,'sty','text','uni','pix','pos',[130 5 150 18],... 'str',['comp n.' num2str(cfg.comp(1)) '-' num2str(cfg.comp(end))]); uicontrol(cfg.h,'uni','pix','pos',[280 5 25 18],'str','+',... 'call',{@plottopography, comp}); % scroll trials uicontrol(cfg.h,'uni','pix','pos',[330 5 25 18],'str','<<',... 'call',{@plotactivation, comp}); uicontrol(cfg.h,'uni','pix','pos',[355 5 25 18],'str', '<',... 'call',{@plotactivation, comp}); cfg.ntrl = uicontrol(cfg.h,'sty','text','uni','pix','pos',[380 5 70 18],... 'str',['trial n.' num2str(cfg.trial)]); uicontrol(cfg.h,'uni','pix','pos',[450 5 25 18],'str', '>',... 'call',{@plotactivation, comp}); uicontrol(cfg.h,'uni','pix','pos',[475 5 25 18],'str','>>',... 'call',{@plotactivation, comp}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % First callback and final adjustments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % first call of the two plotting functions plottopography([], cfg, comp) plotactivation([], cfg, comp) % final adjustments set(cfg.h, 'vis', 'on') axis equal axis off hold off % the (optional) output is the handle if nargout == 1; varargout{1} = cfg.h; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % PLOTTOPOGRAPHY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plottopography(h, cfg, comp) % now plottopography is not associated with a callback, but it might in % the future if isempty(h) % when called in isolation set(cfg.h, 'user', cfg) else cfg = get(get(h, 'par'), 'user'); % which button has been pressed if intersect(h, findobj(cfg.h, 'str', '+')) cfg.comp = cfg.comp + numel(cfg.comp); if cfg.comp(end) > size(comp.label,1) cfg.comp = cfg.comp - (cfg.comp(end) - size(comp.label,1)); end elseif intersect(h, findobj(cfg.h, 'str', '-')) cfg.comp = cfg.comp - numel(cfg.comp); if cfg.comp(1) < 1 cfg.comp = cfg.comp - cfg.comp(1) + 1; end end end set(cfg.ncomp, 'str', ['comp n.' num2str(cfg.comp(1)) '-' num2str(cfg.comp(end))]) drawnow delete(findobj(cfg.h, 'tag', 'comptopo')) cnt = 0; for k = cfg.comp cnt = cnt + 1; % write number of the component on the left h_text(cnt) = ft_plot_text(-2.5, -cnt*cfg.shift, ['n. ' num2str(cfg.comp(cnt))]); % plot only topography (*and* layout) ft_plot_topo(cfg.layout.pos(cfg.chanidx.lay,1), cfg.layout.pos(cfg.chanidx.lay,2), ... comp.topo(cfg.chanidx.comp, k)./max(abs(comp.topo(cfg.chanidx.comp, k))), ... % for proper scaling 'hpos', -1, 'vpos', -cnt*cfg.shift, 'mask', cfg.layout.mask, ... 'interplim','mask', 'outline',cfg.layout.outline); end h_topo = findobj(cfg.h, 'type', 'surface'); set(h_text, 'tag', 'comptopo') set(h_topo, 'tag', 'comptopo') % in the colorbar, green should be zero set(cfg.axis, 'clim', [-1 1]) plotactivation([], cfg, comp) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % PLOTACTIVATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotactivation(h, cfg, comp) % plotactivation can be called in isolation or by buttondownfcn % cfg is stored in 'user' of the main figure if isempty(h) % when called in isolation set(cfg.h, 'user', cfg) else cfg = get(get(h, 'par'), 'user'); % which button has been pressed if intersect(h, findobj(cfg.h, 'str', '>>')) cfg.trial = cfg.trial + 10; if cfg.trial > size(comp.trial,2) cfg.trial = size(comp.trial,2); end elseif intersect(h, findobj(cfg.h, 'str', '>')) cfg.trial = cfg.trial + 1; if cfg.trial > size(comp.trial,2) cfg.trial = size(comp.trial,2); end elseif intersect(h, findobj(cfg.h, 'str', '<')) cfg.trial = cfg.trial - 1; if cfg.trial < 1 cfg.trial = 1; end elseif intersect(h, findobj(cfg.h, 'str', '<<')) cfg.trial = cfg.trial - 10; if cfg.trial < 1 cfg.trial = 1; end end end set(cfg.ntrl,'str',['trial n. ' num2str(cfg.trial)]) drawnow delete(findobj(cfg.h,'tag', 'activations')); hold on cnt = 0; for k = cfg.comp cnt = cnt + 1; % plot the activations h_act(cnt) = ft_plot_vector(comp.trial{cfg.trial}(k,:), 'hpos', 6 , 'vpos', -cnt*cfg.shift, 'width', 12, 'height', 1, 'box', true); end h_inv = plot(6+12+1, -cnt*cfg.shift, '.'); % set(h_inv, 'vis', 'off') set(h_act, 'tag', 'activations') set(cfg.h, 'user', cfg) hold off
github
philippboehmsturm/antx-master
ft_freqanalysis_mvar.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_freqanalysis_mvar.m
4,454
utf_8
fa9d69e0cc7817d01bd2e89dccc5cfe6
function [freq] = ft_freqanalysis_mvar(cfg, data) % FT_FREQANALYSIS_MVAR performs frequency analysis on % mvar data. % % Use as % [freq] = ft_freqanalysis(cfg, data) % Copyright (C) 2009, Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_freqanalysis_mvar.m 3538 2011-05-13 06:48:41Z jansch $ if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'channelcmb'), cfg.channelcmb = {'all' 'all'}; end if ~isfield(cfg, 'foi'), cfg.foi = 'all'; end if ~isfield(cfg, 'keeptrials'), cfg.keeptrials = 'no'; end if ~isfield(cfg, 'jackknife'), cfg.jackknife = 'no'; end if ~isfield(cfg, 'keeptapers'), cfg.keeptapers = 'yes'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'none'; end if strcmp(cfg.foi, 'all'), cfg.foi = (0:1:data.fsampleorig/2); end cfg.channel = ft_channelselection(cfg.channel, data.label); %cfg.channelcmb = channelcombination(cfg.channelcmb, data.label); %keeprpt = strcmp(cfg.keeptrials, 'yes'); %keeptap = strcmp(cfg.keeptapers, 'yes'); %dojack = strcmp(cfg.jackknife, 'yes'); %dozscore = strcmp(cfg.zscore, 'yes'); %if ~keeptap, error('not keeping tapers is not possible yet'); end %if dojack && keeprpt, error('you cannot simultaneously keep trials and do jackknifing'); end nfoi = length(cfg.foi); if isfield(data, 'time') ntoi = numel(data.time); else ntoi = 1; end nlag = size(data.coeffs,3); %change in due course chanindx = match_str(data.label, cfg.channel); nchan = length(chanindx); label = data.label(chanindx); %---allocate memory h = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi)); a = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi)); crsspctrm = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi)); %FIXME build in repetitions %---loop over the tois ft_progress('init', cfg.feedback, 'computing MAR-model based TFR'); for j = 1:ntoi ft_progress(j/ntoi, 'processing timewindow %d from %d\n', j, ntoi); %---compute transfer function ar = reshape(data.coeffs(:,:,:,j), [nchan nchan*nlag]); [h(:,:,:,j), a(:,:,:,j)] = ar2h(ar, cfg.foi, data.fsampleorig); %---compute cross-spectra nc = data.noisecov(:,:,j); for k = 1:nfoi tmph = h(:,:,k,j); crsspctrm(:,:,k,j) = tmph*nc*tmph'; end end ft_progress('close'); %---create output-structure freq = []; freq.label = label; freq.freq = cfg.foi; %freq.cumtapcnt= ones(ntrl, 1)*ntap; if ntoi>1 freq.time = data.time; freq.dimord = 'chan_chan_freq_time'; else freq.dimord = 'chan_chan_freq'; end freq.transfer = h; %freq.itransfer = a; freq.noisecov = data.noisecov; freq.crsspctrm = crsspctrm; freq.dof = data.dof; try cfg.previous = data.cfg; end freq.cfg = cfg; %---SUBFUNCTION to compute transfer-function from ar-parameters function [h, zar] = ar2h(ar, foi, fsample) nchan = size(ar,1); ncmb = nchan*nchan; nfoi = length(foi); %---z-transform frequency axis zfoi = exp(-2.*pi.*1i.*(foi./fsample)); %---reorganize the ar-parameters ar = reshape(ar, [ncmb size(ar,2)./nchan]); ar = fliplr([reshape(eye(nchan), [ncmb 1]) -ar]); zar = complex(zeros(ncmb, nfoi), zeros(ncmb, nfoi)); for k = 1:ncmb zar(k,:) = polyval(ar(k,:),zfoi); end zar = reshape(zar, [nchan nchan nfoi]); h = zeros(size(zar)); for k = 1:nfoi h(:,:,k) = inv(zar(:,:,k)); end h = sqrt(2).*h; %account for the negative frequencies, normalization necessary for %comparison with non-parametric (fft based) results in fieldtrip %FIXME probably the normalization for the zero Hz bin is incorrect zar = zar./sqrt(2);
github
philippboehmsturm/antx-master
ft_interactiverealign.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_interactiverealign.m
15,069
utf_8
aee4683cbadc909e326c438c1bbf57fc
function cfg = ft_interactiverealign(cfg) % FT_INTERACTIVEREALIGN interactively rotates, scales and translates % electrode positions to template electrode positions or towards % the head surface. % % Use as % [cfg] = ft_interactiverealign(cfg) % % Required configuration options: % cfg.individual.vol % cfg.individual.elec % cfg.individual.grad % cfg.individual.headshape % cfg.individual.headshapestyle = 'vertex' (default), 'surface' or 'both' % cfg.individual.volstyle = 'edge' (default), 'surface' or 'both' % % cfg.template.vol % cfg.template.elec % cfg.template.grad % cfg.template.headshape % cfg.template.headshapestyle = 'surface' (default), 'vertex' or 'both' % cfg.individual.volstyle = 'surface' (default), 'edge' or 'both' % % See also FT_VOLUMEREALIGN, FT_ELECTRODEREALIGN, FT_READ_SENS, FT_READ_VOL, FT_READ_HEADSHAPE % Copyright (C) 2008, Vladimir Litvak % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_interactiverealign.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'required', {'individual', 'template'}); if ~isfield(cfg.individual, 'vol'), cfg.individual.vol = []; end if ~isfield(cfg.individual, 'elec'), cfg.individual.elec = []; end if ~isfield(cfg.individual, 'grad'), cfg.individual.grad = []; end if ~isfield(cfg.individual, 'headshape'), cfg.individual.headshape = []; end if ~isfield(cfg.individual, 'headshapestyle'), cfg.individual.headshapestyle = 'vertex'; end if ~isfield(cfg.individual, 'volstyle'), cfg.individual.volstyle = 'edge'; end if ~isfield(cfg.template, 'vol'), cfg.template.vol = []; end if ~isfield(cfg.template, 'elec'), cfg.template.elec = []; end if ~isfield(cfg.template, 'grad'), cfg.template.grad = []; end if ~isfield(cfg.template, 'headshape'), cfg.template.headshape = []; end if ~isfield(cfg.template, 'headshapestyle'), cfg.template.headshapestyle = 'surface'; end if ~isfield(cfg.template, 'volstyle'), cfg.template.volstyle = 'surface'; end template = cfg.template; individual = cfg.individual; if ~isempty(template.headshape) if ~isfield(template.headshape, 'tri') || isempty(template.headshape.tri) template.headshape.tri = projecttri(template.headshape.pnt); end end if ~isempty(individual.headshape) && isfield(individual.headshape, 'pnt') && ... ~isempty(individual.headshape.pnt) if ~isfield(individual.headshape, 'tri') || isempty(individual.headshape.tri) individual.headshape.tri = projecttri(individual.headshape.pnt); end end % open a figure fig = figure; % add the data to the figure set(fig, 'CloseRequestFcn', @cb_close); setappdata(fig, 'individual', individual); setappdata(fig, 'template', template); setappdata(fig, 'transform', eye(4)); % add the GUI elements cb_creategui(gca); cb_redraw(gca); rotate3d on waitfor(fig); % get the data from the figure that was left behind as global variable % FIXME pass this as appdata global norm tmp = norm; clear global norm norm = tmp; clear tmp % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_interactiverealign.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the transform cfg.m = norm.m; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % some simple SUBFUNCTIONs that facilitate 3D plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = my_plot3(xyz, varargin) h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function h = my_text3(xyz, varargin) h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function my_line3(xyzB, xyzE, varargin) for i=1:size(xyzB,1) line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:}) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to layout a moderately complex graphical user interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = layoutgui(fig, geometry, position, style, string, value, tag, callback); horipos = geometry(1); % lower left corner of the GUI part in the figure vertpos = geometry(2); % lower left corner of the GUI part in the figure width = geometry(3); % width of the GUI part in the figure height = geometry(4); % height of the GUI part in the figure horidist = 0.05; vertdist = 0.05; options = {'units', 'normalized', 'HorizontalAlignment', 'center'}; % 'VerticalAlignment', 'middle' Nrow = size(position,1); h = cell(Nrow,1); for i=1:Nrow if isempty(position{i}) continue; end position{i} = position{i} ./ sum(position{i}); Ncol = size(position{i},2); ybeg = (Nrow-i )/Nrow + vertdist/2; yend = (Nrow-i+1)/Nrow - vertdist/2; for j=1:Ncol xbeg = sum(position{i}(1:(j-1))) + horidist/2; xend = sum(position{i}(1:(j ))) - horidist/2; pos(1) = xbeg*width + horipos; pos(2) = ybeg*height + vertpos; pos(3) = (xend-xbeg)*width; pos(4) = (yend-ybeg)*height; h{i}{j} = uicontrol(fig, ... options{:}, ... 'position', pos, ... 'style', style{i}{j}, ... 'string', string{i}{j}, ... 'tag', tag{i}{j}, ... 'value', value{i}{j}, ... 'callback', callback{i}{j} ... ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_creategui(hObject, eventdata, handles); % define the position of each GUI element position = { [2 1 1 1] [2 1 1 1] [2 1 1 1] [1] [1] [1] [1] [1 1] }; % define the style of each GUI element style = { {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'pushbutton'} {'pushbutton'} {'toggle'} {'toggle'} {'text' 'edit'} }; % define the descriptive string of each GUI element string = { {'rotate' 0 0 0} {'translate' 0 0 0} {'scale' 1 1 1} {'redisplay'} {'apply'} {'toggle grid'} {'toggle axes'} {'alpha' 0.7} }; % define the value of each GUI element value = { {[] [] [] []} {[] [] [] []} {[] [] [] []} {[]} {[]} {0} {0} {[] []} }; % define a tag for each GUI element tag = { {'' 'rx' 'ry' 'rz'} {'' 'tx' 'ty' 'tz'} {'' 'sx' 'sy' 'sz'} {''} {''} {'toggle grid'} {'toggle axes'} {'' 'alpha'} }; % define the callback function of each GUI element callback = { {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {@cb_redraw} {@cb_apply} {@cb_redraw} {@cb_redraw} {[] @cb_redraw} }; fig = get(hObject, 'parent'); layoutgui(fig, [0.7 0.05 0.25 0.50], position, style, string, value, tag, callback); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_redraw(hObject, eventdata, handles) fig = get(hObject, 'parent'); individual = getappdata(fig, 'individual'); template = getappdata(fig, 'template'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; axis vis3d; cla xlabel('x') ylabel('y') zlabel('z') hold on % the "individual" struct is a local copy, so it is safe to change it here if ~isempty(individual.vol) individual.vol = ft_transform_vol(H, individual.vol); end if ~isempty(individual.elec) individual.elec = ft_transform_sens(H, individual.elec); end if ~isempty(individual.grad) individual.grad = ft_transform_sens(H, individual.grad); end if ~isempty(individual.headshape) individual.headshape = ft_transform_headshape(H, individual.headshape); end if ~isempty(template.elec) hs = triplot(template.elec.pnt, [], [], 'nodes'); set(hs, 'MarkerSize', 10); set(hs, 'Color', 'b'); if isfield(template.elec, 'line') hs = triplot(template.elec.pnt, template.elec.line, [], 'edges'); try, set(hs, 'MarkerEdgeColor', 'b'); end end end if ~isempty(individual.elec) hs = triplot(individual.elec.pnt, [], [], 'nodes'); set(hs, 'MarkerSize', 10); set(hs, 'Color', 'r'); if isfield(individual.elec, 'line') hs = triplot(individual.elec.pnt, elec.line, [], 'edges'); try, set(hs, 'MarkerEdgeColor', 'r'); end end end if ~isempty(template.grad) hs = triplot(template.grad.pnt, [], [], 'nodes'); set(hs, 'MarkerSize', 10); set(hs, 'Color', 'b'); % FIXME also plot lines? end if ~isempty(individual.grad) hs = triplot(individual.grad.pnt, [], [], 'nodes'); set(hs, 'MarkerSize', 10); set(hs, 'Color', 'r'); % FIXME also plot lines? end if ~isempty(template.vol) % FIXME this only works for boundary element models for i = 1:numel(template.vol.bnd) if strcmp(template.volstyle, 'edge') || ... strcmp(template.volstyle, 'both') hs = triplot(template.vol.bnd(i).pnt, template.vol.bnd(i).tri, [], 'edges'); try, set(hs, 'EdgeColor', 'b'); end end if strcmp(template.volstyle, 'surface') || ... strcmp(template.volstyle, 'both') hs = triplot(template.vol.bnd(i).pnt, template.vol.bnd(i).tri, [], 'faces_blue'); end end end if ~isempty(individual.vol) % FIXME this only works for boundary element models for i = 1:numel(individual.vol.bnd) if strcmp(individual.volstyle, 'edge') || ... strcmp(individual.volstyle, 'both') hs = triplot(individual.vol.bnd(i).pnt, individual.vol.bnd(i).tri, [], 'edges'); try, set(hs, 'EdgeColor', 'r'); end end if strcmp(individual.volstyle, 'surface') || ... strcmp(individual.volstyle, 'both') hs = triplot(individual.vol.bnd(i).pnt, individual.vol.bnd(i).tri, [], 'faces_red'); end end end if ~isempty(template.headshape) if isfield(template.headshape, 'pnt') && ~isempty(template.headshape.pnt) if strcmp(template.headshapestyle, 'surface') || ... strcmp(template.headshapestyle, 'both') triplot(template.headshape.pnt, template.headshape.tri, [], 'faces_blue'); alpha(str2num(get(findobj(fig, 'tag', 'alpha'), 'string'))); end if strcmp(template.headshapestyle, 'vertex') || ... strcmp(template.headshapestyle, 'both') hs = triplot(template.headshape.pnt, [], [], 'nodes'); set(hs, 'Color', 'b'); end end if isfield(template.headshape, 'fid') && ~isempty(template.headshape.fid.pnt) triplot(template.headshape.fid.pnt, [], [], 'nodes_blue'); end end if ~isempty(individual.headshape) if isfield(individual.headshape, 'pnt') && ~isempty(individual.headshape.pnt) if strcmp(individual.headshapestyle, 'surface') || ... strcmp(individual.headshapestyle, 'both') triplot(individual.headshape.pnt, individual.headshape.tri, [], 'faces_red'); alpha(str2num(get(findobj(fig, 'tag', 'alpha'), 'string'))); end if strcmp(individual.headshapestyle, 'vertex') || ... strcmp(individual.headshapestyle, 'both') hs = triplot(individual.headshape.pnt, [], [], 'nodes'); set(hs, 'Color', 'r'); end end if isfield(individual.headshape, 'fid') && ~isempty(individual.headshape.fid.pnt) triplot(individual.headshape.fid.pnt, [], [], 'nodes_red'); end end if get(findobj(fig, 'tag', 'toggle axes'), 'value') axis on else axis off end if get(findobj(fig, 'tag', 'toggle grid'), 'value') grid on else grid off end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_apply(hObject, eventdata, handles); fig = get(hObject, 'parent'); transform = getappdata(fig, 'transform'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; transform = H * transform; set(findobj(fig, 'tag', 'rx'), 'string', 0); set(findobj(fig, 'tag', 'ry'), 'string', 0); set(findobj(fig, 'tag', 'rz'), 'string', 0); set(findobj(fig, 'tag', 'tx'), 'string', 0); set(findobj(fig, 'tag', 'ty'), 'string', 0); set(findobj(fig, 'tag', 'tz'), 'string', 0); set(findobj(fig, 'tag', 'sx'), 'string', 1); set(findobj(fig, 'tag', 'sy'), 'string', 1); set(findobj(fig, 'tag', 'sz'), 'string', 1); setappdata(fig, 'transform', transform); cb_redraw(hObject); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_close(hObject, eventdata, handles); % make the current transformation permanent and subsequently allow deleting the figure cb_apply(gca); % get the updated electrode from the figure fig = hObject; % hmmm, this is ugly global norm norm.m = getappdata(fig, 'transform'); set(fig, 'CloseRequestFcn', @delete); delete(fig);
github
philippboehmsturm/antx-master
ft_topoplotER.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_topoplotER.m
41,447
utf_8
2ed7fe6daff435d1ed7ef28c7c343eb9
function [cfg] = ft_topoplotER(cfg, varargin) % FT_TOPOPLOTER plots the topographic distribution of 2-Dimensional ft_datatypes as % event-related fields (ERF), potentials (ERP), the powerspectrum or coherence spectum % that was computed using the FT_TIMELOCKANALYSIS, FT_TIMELOCKGRANDAVERAGE, FT_FREQANALYSIS or % FT_FREQDESCRIPTIVES functions, as a 2-D circular view (looking down at the top of the head). % % Use as: % ft_topoplotER(cfg, data) % % cfg.xparam = first dimension in data in which a selection is made % 'time' or 'freq' (default depends on data.dimord) % cfg.zparam = field that contains the data to be plotted as color % 'avg', 'powspctrm' or 'cohspctrm' (default depends on data.dimord) % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.zlim = 'maxmin', 'maxabs' or [zmin zmax] (default = 'maxmin') % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details % cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui' % cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see FT_TIMELOCKBASELINE or FT_FREQBASELINE % cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute') % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % cfg.colormap = any sized colormap, see COLORMAP % cfg.marker = 'on', 'labels', 'numbers', 'off' % cfg.markersymbol = channel marker symbol (default = 'o') % cfg.markercolor = channel marker color (default = [0 0 0] (black)) % cfg.markersize = channel marker size (default = 2) % cfg.markerfontsize = font size of channel labels (default = 8 pt) % cfg.highlight = 'on', 'labels', 'numbers', 'off' % cfg.highlightchannel = Nx1 cell-array with selection of channels, or vector containing channel indices see FT_CHANNELSELECTION % cfg.highlightsymbol = highlight marker symbol (default = 'o') % cfg.highlightcolor = highlight marker color (default = [0 0 0] (black)) % cfg.highlightsize = highlight marker size (default = 6) % cfg.highlightfontsize = highlight marker size (default = 8) % cfg.hotkeys = enables hotkeys (up/down arrows) for dynamic colorbar adjustment % cfg.colorbar = 'yes' % 'no' (default) % 'North' inside plot box near top % 'South' inside bottom % 'East' inside right % 'West' inside left % 'NorthOutside' outside plot box near top % 'SouthOutside' outside bottom % 'EastOutside' outside right % 'WestOutside' outside left % cfg.interplimits = limits for interpolation (default = 'head') % 'electrodes' to furthest electrode % 'head' to edge of head % cfg.interpolation = 'linear','cubic','nearest','v4' (default = 'v4') see GRIDDATA % cfg.style = plot style (default = 'both') % 'straight' colormap only % 'contour' contour lines only % 'both' (default) both colormap and contour lines % 'fill' constant color between lines % 'blank' only the head shape % cfg.gridscale = scaling grid size (default = 67) % determines resolution of figure % cfg.shading = 'flat' 'interp' (default = 'flat') % cfg.comment = string 'no' 'auto' or 'xlim' (default = 'auto') % 'auto': date, xparam and zparam limits are printed % 'xlim': only xparam limits are printed % cfg.commentpos = string or two numbers, position of comment (default 'leftbottom') % 'lefttop' 'leftbottom' 'middletop' 'middlebottom' 'righttop' 'rightbottom' % 'title' to place comment as title % 'layout' to place comment as specified for COMNT in layout % [x y] coordinates % cfg.interactive = Interactive plot 'yes' or 'no' (default = 'no') % In a interactive plot you can select areas and produce a new % interactive plot when a selected area is clicked. Multiple areas % can be selected by holding down the SHIFT key. % cfg.layout = specification of the layout, see below % % The layout defines how the channels are arranged. You can specify the % layout in a variety of ways: % - you can provide a pre-computed layout structure (see prepare_layout) % - you can give the name of an ascii layout file with extension *.lay % - you can give the name of an electrode file % - you can give an electrode definition, i.e. "elec" structure % - you can give a gradiometer definition, i.e. "grad" structure % If you do not specify any of these and the data structure contains an % electrode or gradiometer structure, that will be used for creating a % layout. If you want to have more fine-grained control over the layout % of the subplots, you should create your own layout file. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. For this particular function, the input should be % structured as a cell array. % % See also: % FT_TOPOPLOTTFR, FT_TOPOPLOTIC, FT_SINGLEPLOTER, FT_MULTIPLOTER, FT_PREPARE_LAYOUT % Undocumented local options: % The following additional cfg parameters are used when plotting 3-dimensional % data (i.e. when ft_topoplotTFR calls ft_topoplotER): % cfg.yparam field to be plotted on y-axis % cfg.ylim 'maxmin' or [ymin ymax] (default = 'maxmin') % It is possible to use multiple highlight-selections (e.g.: multiple statistical clusters of channels) % To do this, all the content of the highlight-options (including cfg.highlight) should be placed in a cell-array % (even if the normal content was already in a cell-array). Specific marker settings (e.g. color, size) are defaulted when % not present. % Example (3 selections): % cfg.highlight = {'labels', 'labels', 'numbers'} % cfg.highlightchannel = {{'MZF03','MZC01','MRT54'}, [1:5], 'C*'} % cfg.highlightsymbol = {'o',[],'+'} % the empty option will be defaulted % cfg.highlightcolor = {'r',[0 0 1]}; % the missing option will be defaulted % cfg.highlightsize = []; % will be set to default, as will the missing cfg.highlightfontsize % % Other options: % cfg.labeloffset (offset of labels to their marker, default = 0.005) % cfg.inputfile = one can specifiy preanalysed saved data as input % The data should be provided in a cell array % This function depends on FT_TIMELOCKBASELINE which has the following options: % cfg.baseline, documented % cfg.channel % cfg.baselinewindow % % This function depends on FT_FREQBASELINE which has the following options: % cfg.baseline, documented % cfg.baselinetype % Copyright (C) 2005-2006, F.C. Donders Centre % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_topoplotER.m 3734 2011-06-29 08:14:36Z jorhor $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'}); cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel' 'refchannel'}); % set default for inputfile if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end hasdata = nargin>1; hasinputfile = ~isempty(cfg.inputfile); Ndata = numel(varargin); if isnumeric(varargin{end}) Ndata = Ndata - 1; indx = varargin{end}; else indx = 1; end if Ndata>1 && ~isnumeric(varargin{end}) for k=1:Ndata if k>1 % create a new figure for the additional input arguments figure end ft_topoplotER(cfg, varargin{1:Ndata}, indx); indx = indx + 1; end return end if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); end if hasdata data = varargin{indx}; elseif hasinputfile if iscell(cfg.inputfile), cfg.inputfile = cfg.inputfile{1}; end data = loadvar(cfg.inputfile, 'data'); if isfield(cfg, 'interactive') && strcmp(cfg.interactive, 'yes'), warning('switching off interactive mode, this is not supported when loading an inputfile from disk'); end end % For backward compatibility with old data structures: %data = ft_checkdata(data, 'datatype', {'timelock', 'freq', 'comp'}); % check for option-values to be renamed cfg = ft_checkconfig(cfg, 'renamedval', {'electrodes', 'dotnum', 'numbers'}); cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedforward', 'outflow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedback', 'inflow'}); % check for renamed options cfg = ft_checkconfig(cfg, 'renamed', {'electrodes', 'marker'}); cfg = ft_checkconfig(cfg, 'renamed', {'emarker', 'markersymbol'}); cfg = ft_checkconfig(cfg, 'renamed', {'ecolor', 'markercolor'}); cfg = ft_checkconfig(cfg, 'renamed', {'emarkersize', 'markersize'}); cfg = ft_checkconfig(cfg, 'renamed', {'efontsize', 'markerfontsize'}); cfg = ft_checkconfig(cfg, 'renamed', {'hlmarker', 'highlightsymbol'}); cfg = ft_checkconfig(cfg, 'renamed', {'hlcolor', 'highlightcolor'}); cfg = ft_checkconfig(cfg, 'renamed', {'hlmarkersize', 'highlightsize'}); cfg = ft_checkconfig(cfg, 'renamed', {'maplimits', 'zlim'}); % old ft_checkconfig adapted partially from topoplot.m (backwards backwards compatability) cfg = ft_checkconfig(cfg, 'renamed', {'grid_scale', 'gridscale'}); cfg = ft_checkconfig(cfg, 'renamed', {'interpolate', 'interpolation'}); cfg = ft_checkconfig(cfg, 'renamed', {'numcontour', 'contournum'}); cfg = ft_checkconfig(cfg, 'renamed', {'electrod', 'marker'}); cfg = ft_checkconfig(cfg, 'renamed', {'electcolor', 'markercolor'}); cfg = ft_checkconfig(cfg, 'renamed', {'emsize', 'markersize'}); cfg = ft_checkconfig(cfg, 'renamed', {'efsize', 'markerfontsize'}); cfg = ft_checkconfig(cfg, 'renamed', {'headlimits', 'interplimits'}); % check for forbidden options cfg = ft_checkconfig(cfg, 'forbidden', {'hllinewidth'}); cfg = ft_checkconfig(cfg, 'forbidden', {'headcolor'}); cfg = ft_checkconfig(cfg, 'forbidden', {'hcolor'}); cfg = ft_checkconfig(cfg, 'forbidden', {'hlinewidth'}); cfg = ft_checkconfig(cfg, 'forbidden', {'contcolor'}); cfg = ft_checkconfig(cfg, 'forbidden', {'outline'}); cfg = ft_checkconfig(cfg, 'forbidden', {'highlightfacecolor'}); cfg = ft_checkconfig(cfg, 'forbidden', {'showlabels'}); cfg = ft_checkconfig(cfg, 'forbidden', {'hllinewidth'}); % Set other config defaults: cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin'); cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin'); cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin'); cfg.style = ft_getopt(cfg, 'style', 'both'); cfg.gridscale = ft_getopt(cfg, 'gridscale', 67); cfg.interplimits = ft_getopt(cfg, 'interplimits', 'head'); cfg.interpolation = ft_getopt(cfg, 'interpolation', 'v4'); cfg.contournum = ft_getopt(cfg, 'contournum', 6); cfg.colorbar = ft_getopt(cfg, 'colorbar', 'no'); cfg.shading = ft_getopt(cfg, 'shading', 'flat'); cfg.comment = ft_getopt(cfg, 'comment', 'auto'); cfg.commentpos = ft_getopt(cfg, 'commentpos', 'leftbottom'); cfg.fontsize = ft_getopt(cfg, 'fontsize', 8); cfg.baseline = ft_getopt(cfg, 'baseline', 'no'); %to avoid warning in timelock/freqbaseline cfg.trials = ft_getopt(cfg, 'trials', 'all'); cfg.interactive = ft_getopt(cfg, 'interactive', 'no'); cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no'); cfg.renderer = ft_getopt(cfg, 'renderer', []); % matlab sets the default cfg.marker = ft_getopt(cfg, 'marker', 'on'); cfg.markersymbol = ft_getopt(cfg, 'markersymbol', 'o'); cfg.markercolor = ft_getopt(cfg, 'markercolor', [0 0 0]); cfg.markersize = ft_getopt(cfg, 'markersize', 2); cfg.markerfontsize = ft_getopt(cfg, 'markerfontsize', 8); cfg.highlight = ft_getopt(cfg, 'highlight', 'off'); cfg.highlightchannel = ft_getopt(cfg, 'highlightchannel', 'all'); cfg.highlightsymbol = ft_getopt(cfg, 'highlightsymbol', '*'); cfg.highlightcolor = ft_getopt(cfg, 'highlightcolor', [0 0 0]); cfg.highlightsize = ft_getopt(cfg, 'highlightsize', 6); cfg.highlightfontsize = ft_getopt(cfg, 'highlightfontsize', 8); cfg.labeloffset = ft_getopt(cfg, 'labeloffset', 0.005); cfg.maskparameter = ft_getopt(cfg, 'maskparameter', []); cfg.component = ft_getopt(cfg, 'component', []); cfg.matrixside = ft_getopt(cfg, 'matrixside', 'outflow'); cfg.channel = ft_getopt(cfg, 'channel', 'all'); % compatibility for previous highlighting option if isnumeric(cfg.highlight) cfg.highlightchannel = cfg.highlight; cfg.highlight = 'on'; warning('cfg.highlight is now used for specifing highlighting-mode, use cfg.highlightchannel instead of cfg.highlight for specifiying channels') elseif iscell(cfg.highlight) if ~iscell(cfg.highlightchannel) cfg.highlightchannel = cell(1,length(cfg.highlight)); end for icell = 1:length(cfg.highlight) if isnumeric(cfg.highlight{icell}) cfg.highlightchannel{icell} = cfg.highlight{icell}; cfg.highlight{icell} = 'on'; warning('cfg.highlight is now used for specifing highlighting-mode, use cfg.highlightchannel instead of cfg.highlight for specifiying channels') end end end % Converting all higlight options to cell-arrays if they're not cell-arrays, % to make defaulting, checking for backwards compatability and error % checking easier if ~iscell(cfg.highlight), cfg.highlight = {cfg.highlight}; end if ~iscell(cfg.highlightchannel), cfg.highlightchannel = {cfg.highlightchannel}; end if ischar(cfg.highlightchannel{1}), cfg.highlightchannel = {cfg.highlightchannel}; end % {'all'} is valid input to channelselection, {1:5} isn't if ~iscell(cfg.highlightsymbol), cfg.highlightsymbol = {cfg.highlightsymbol}; end if ~iscell(cfg.highlightcolor), cfg.highlightcolor = {cfg.highlightcolor}; end if ~iscell(cfg.highlightsize), cfg.highlightsize = {cfg.highlightsize}; end if ~iscell(cfg.highlightfontsize), cfg.highlightfontsize = {cfg.highlightfontsize}; end % then make sure all cell-arrays for options have length ncellhigh and default the last element if not present ncellhigh = length(cfg.highlight); if length(cfg.highlightsymbol) < ncellhigh, cfg.highlightsymbol{ncellhigh} = 'o'; end if length(cfg.highlightcolor) < ncellhigh, cfg.highlightcolor{ncellhigh} = [0 0 0]; end if length(cfg.highlightsize) < ncellhigh, cfg.highlightsize{ncellhigh} = 6; end if length(cfg.highlightfontsize) < ncellhigh, cfg.highlightfontsize{ncellhigh} = 8; end % then default all empty cells for icell = 1:ncellhigh if isempty(cfg.highlightsymbol{icell}), cfg.highlightsymbol{icell} = 'o'; end if isempty(cfg.highlightcolor{icell}), cfg.highlightcolor{icell} = [0 0 0]; end if isempty(cfg.highlightsize{icell}), cfg.highlightsize{icell} = 6; end if isempty(cfg.highlightfontsize{icell}), cfg.h1tighlightfontsize{icell} = 8; end end % for backwards compatability if strcmp(cfg.marker,'highlights') warning('using cfg.marker option -highlights- is no longer used, please use cfg.highlight') cfg.marker = 'off'; end % check colormap is proper format and set it if isfield(cfg,'colormap') if size(cfg.colormap,2)~=3, error('topoplot(): Colormap must be a n x 3 matrix'); end colormap(cfg.colormap); end; dtype = ft_datatype(data); % identify the interpretation of the functional data switch dtype case 'raw' data = ft_checkdata(data, 'datatype', 'timelock'); dtype = ft_datatype(data); dimord = data.dimord; case {'timelock' 'freq' 'unknown'} dimord = data.dimord; case 'comp' dimord = 'chan_comp'; otherwise end dimtok = tokenize(dimord, '_'); % Set x/y/zparam defaults according to datatype and dimord switch dtype case 'timelock' cfg.xparam = ft_getopt(cfg, 'xparam', 'time'); cfg.yparam = ft_getopt(cfg, 'yparam', ''); cfg.zparam = ft_getopt(cfg, 'zparam', 'avg'); case 'freq' if any(ismember(dimtok, 'time')) cfg.xparam = ft_getopt(cfg, 'xparam', 'time'); cfg.yparam = ft_getopt(cfg, 'yparam', 'freq'); cfg.zparam = ft_getopt(cfg, 'zparam', 'powspctrm'); else cfg.xparam = ft_getopt(cfg, 'xparam', 'freq'); cfg.yparam = ft_getopt(cfg, 'yparam', ''); cfg.zparam = ft_getopt(cfg, 'zparam', 'powspctrm'); end case 'comp' % Add a pseudo-axis with the component numbers: data.comp = 1:size(data.topo,2); % Specify the components if ~isempty(cfg.component) data.comp = cfg.component; data.topo = data.topo(:,cfg.component); end % Rename the field with topographic label information: data.label = data.topolabel; cfg.xparam = ft_getopt(cfg, 'xparam', 'comp'); cfg.yparam = ft_getopt(cfg, 'yparam', ''); cfg.zparam = ft_getopt(cfg, 'zparam', 'topo'); otherwise % if the input data is not one of the standard data types, or if % the functional data is just one value per channel % in this case xparam, yparam are not defined % and the user should define the zparam if ~isfield(data, 'label'), error('the input data should at least contain a label-field'); end if ~isfield(cfg, 'zparam'), error('the configuration should at least contain a ''zparam'' field'); end if ~isfield(cfg, 'xparam'), cfg.xlim = [1 1]; cfg.xparam = ''; end end % user specified own fields, but no yparam (which is not asked in help) if isfield(cfg, 'xparam') && isfield(cfg, 'zparam') && ~isfield(cfg, 'yparam') cfg.yparam = ''; end % check whether rpt/subj is present and remove if necessary and whether hasrpt = any(ismember(dimtok, {'rpt' 'subj'})); if strcmp(dtype, 'timelock') && hasrpt, tmpcfg = []; tmpcfg.trials = cfg.trials; data = ft_timelockanalysis(tmpcfg, data); dimord = data.dimord; dimtok = tokenize(dimord, '_'); elseif strcmp(dtype, 'freq') && hasrpt, % this also deals with fourier-spectra in the input % or with multiple subjects in a frequency domain stat-structure % on the fly computation of coherence spectrum is not supported if isfield(data, 'crsspctrm'), data = rmfield(data, 'crsspctrm'); end tmpcfg = []; tmpcfg.trials = cfg.trials; tmpcfg.jackknife = 'no'; if isfield(cfg, 'zparam') && ~strcmp(cfg.zparam,'powspctrm') % freqdesctiptives will only work on the powspctrm field % hence a temporary copy of the data is needed tempdata.dimord = data.dimord; tempdata.freq = data.freq; tempdata.label = data.label; tempdata.powspctrm = data.(cfg.zparam); tempdata.cfg = data.cfg; tempdata = ft_freqdescriptives(tmpcfg, tempdata); data.(cfg.zparam) = tempdata.powspctrm; clear tempdata else data = ft_freqdescriptives(tmpcfg, data); end dimord = data.dimord; dimtok = tokenize(dimord, '_'); end if isfield(cfg, 'channel') && isfield(data, 'label') cfg.channel = ft_channelselection(cfg.channel, data.label); elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); end % perform channel selection but only allow this when cfg.interactive = 'no' if isfield(data, 'label') && strcmp(cfg.interactive, 'no') selchannel = ft_channelselection(cfg.channel, data.label); elseif isfield(data, 'labelcmb') && strcmp(cfg.interactive, 'no') selchannel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); end % Read or create the layout that will be used for plotting: lay = ft_prepare_layout(cfg, data); cfg.layout = lay; % Create time-series of small topoplots: if ~ischar(cfg.xlim) && length(cfg.xlim)>2 % Switch off interactive mode: cfg.interactive = 'no'; xlims = cfg.xlim; % Iteratively call topoplotER with different xlim values: for i=1:length(xlims)-1 subplot(ceil(sqrt(length(xlims)-1)), ceil(sqrt(length(xlims)-1)), i); cfg.xlim = xlims(i:i+1); ft_topoplotER(cfg, data); end return end % Apply baseline correction: if ~strcmp(cfg.baseline, 'no') if strcmp(cfg.xparam, 'freq') || strcmp(cfg.yparam, 'freq') data = ft_freqbaseline(cfg, data); else data = ft_timelockbaseline(cfg, data); end end % Handle the bivariate case % Check for bivariate metric with 'chan_chan' in the dimord: selchan = strmatch('chan', dimtok); isfull = length(selchan)>1; % Check for bivariate metric with a labelcmb field: haslabelcmb = isfield(data, 'labelcmb'); if (isfull || haslabelcmb) && isfield(data, cfg.zparam) % A reference channel is required: if ~isfield(cfg, 'refchannel') error('no reference channel is specified'); end % check for refchannel being part of selection if ~strcmp(cfg.refchannel,'gui') if (isfull && ~any(ismember(data.label, cfg.refchannel))) || ... (haslabelcmb && ~any(ismember(data.labelcmb(:), cfg.refchannel))) error('cfg.refchannel is a not present in the (selected) channels)') end end % Interactively select the reference channel if strcmp(cfg.refchannel, 'gui') % Open a single figure with the channel layout, the user can click on a reference channel h = clf; ft_plot_lay(lay, 'box', false); title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...'); % add the channel information to the figure info = guidata(gcf); info.x = lay.pos(:,1); info.y = lay.pos(:,2); info.label = lay.label; guidata(h, info); %set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}}); set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_topoplotER, cfg, data}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_topoplotER, cfg, data}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_topoplotER, cfg, data}, 'event', 'WindowButtonMotionFcn'}); return end if ~isfull, % Convert 2-dimensional channel matrix to a single dimension: if isempty(cfg.matrixside) sel1 = strmatch(cfg.refchannel, data.labelcmb(:,2), 'exact'); sel2 = strmatch(cfg.refchannel, data.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'outflow') sel1 = []; sel2 = strmatch(cfg.refchannel, data.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'inflow') sel1 = strmatch(cfg.refchannel, data.labelcmb(:,2), 'exact'); sel2 = []; end fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.zparam); data.(cfg.zparam) = data.(cfg.zparam)([sel1;sel2],:,:); data.label = [data.labelcmb(sel1,1);data.labelcmb(sel2,2)]; data.labelcmb = data.labelcmb([sel1;sel2],:); data = rmfield(data, 'labelcmb'); else % General case sel = match_str(data.label, cfg.refchannel); siz = [size(data.(cfg.zparam)) 1]; if strcmp(cfg.matrixside, 'inflow') || isempty(cfg.matrixside) %the interpretation of 'inflow' and 'outflow' depend on %the definition in the bivariate representation of the data %in FieldTrip the row index 'causes' the column index channel %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(:,sel,:),2),[siz(1) 1 siz(3:end)]); sel1 = 1:siz(1); sel2 = sel; meandir = 2; elseif strcmp(cfg.matrixside, 'outflow') %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(sel,:,:),1),[siz(1) 1 siz(3:end)]); sel1 = sel; sel2 = 1:siz(1); meandir = 1; elseif strcmp(cfg.matrixside, 'ff-fd') error('cfg.matrixside = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); elseif strcmp(cfg.matrixside, 'fd-ff') error('cfg.matrixside = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); end end end % Get physical min/max range of x: if strcmp(cfg.xlim,'maxmin') xmin = min(data.(cfg.xparam)); xmax = max(data.(cfg.xparam)); else xmin = cfg.xlim(1); xmax = cfg.xlim(2); end % Replace value with the index of the nearest bin if ~isempty(cfg.xparam) xmin = nearest(data.(cfg.xparam), xmin); xmax = nearest(data.(cfg.xparam), xmax); end % Get physical min/max range of y: if isfield(cfg, 'yparam') && ~isempty(cfg.yparam) if strcmp(cfg.ylim,'maxmin') ymin = min(data.(cfg.yparam)); ymax = max(data.(cfg.yparam)); else ymin = cfg.ylim(1); ymax = cfg.ylim(2); end % Replace value with the index of the nearest bin: ymin = nearest(data.(cfg.yparam), ymin); ymax = nearest(data.(cfg.yparam), ymax); end % Take subselection of channels, this only works % if the interactive mode is switched off if exist('selchannel', 'var') sellab = match_str(data.label, selchannel); label = data.label(sellab); else sellab = 1:numel(data.label); label = data.label; end if isfull sel1 = intersect(sel1, sellab); sel2 = intersect(sel2, sellab); end % Make vector dat with one value for each channel dat = data.(cfg.zparam); if ~isempty(cfg.yparam) if isfull dat = dat(sel1, sel2, ymin:ymax, xmin:xmax); dat = nanmean(nanmean(nanmean(dat, meandir), 4), 3); elseif haslabelcmb dat = dat(sellab, ymin:ymax, xmin:xmax); dat = nanmean(nanmean(dat, 3), 2); else dat = dat(sellab, ymin:ymax, xmin:xmax); dat = nanmean(nanmean(dat, 3), 2); end elseif ~isempty(cfg.component) else if isfull dat = dat(sel1, sel2, xmin:xmax); dat = nanmean(nanmean(dat, meandir), 3); elseif haslabelcmb dat = dat(sellab, xmin:xmax); dat = nanmean(dat, 2); else dat = dat(sellab, xmin:xmax); dat = nanmean(dat, 2); end end dat = dat(:); % Select the channels in the data that match with the layout: [seldat, sellay] = match_str(label, cfg.layout.label); if isempty(seldat) error('labels in data and labels in layout do not match'); end datavector = dat(seldat); % Select x and y coordinates and labels of the channels in the data chanX = cfg.layout.pos(sellay,1); chanY = cfg.layout.pos(sellay,2); chanLabels = cfg.layout.label(sellay); % make datmask structure with one value for each channel if ~isempty(cfg.maskparameter) datmask = data.(cfg.maskparameter); if numel(datmask) ~= length(data.label) error('data in cfg.maskparameter should be vector with one value per channel') end datmask = datmask(:); % Select the channels in the maskdata that match with the layout: maskdatavector = datmask(sellab(seldat)); %maskdatavector = datmask(seldat); else maskdatavector = []; end % Get physical min/max range of z: if strcmp(cfg.zlim,'maxmin') zmin = min(datavector); zmax = max(datavector); elseif strcmp(cfg.zlim,'maxabs') zmin = -max(max(abs(datavector))); zmax = max(max(abs(datavector))); else zmin = cfg.zlim(1); zmax = cfg.zlim(2); end % make comment if strcmp(cfg.comment, 'auto') comment = date; if ~isempty(cfg.xparam) if strcmp(cfg.xlim,'maxmin') comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, cfg.xparam, data.(cfg.xparam)(xmin), data.(cfg.xparam)(xmax)); else comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, cfg.xparam, cfg.xlim(1), cfg.xlim(2)); end end if ~isempty(cfg.yparam) if strcmp(cfg.ylim,'maxmin') comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, cfg.yparam, data.(cfg.yparam)(ymin), data.(cfg.yparam)(ymax)); else comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, cfg.yparam, cfg.ylim(1), cfg.ylim(2)); end end if ~isempty(cfg.zparam) comment = sprintf('%0s\n%0s=[%.3g %.3g]', comment, cfg.zparam, zmin, zmax); end cfg.comment = comment; elseif strcmp(cfg.comment, 'xlim') if strcmp(cfg.xlim,'maxmin') comment = sprintf('%0s=[%.3g %.3g]', cfg.xparam, data.(cfg.xparam)(xmin), data.(cfg.xparam)(xmax)); else comment = sprintf('%0s=[%.3g %.3g]', cfg.xparam, cfg.xlim(1), cfg.xlim(2)); end cfg.comment = comment; elseif ~ischar(cfg.comment) error('cfg.comment must be string'); end if isfield(cfg,'refchannel') if iscell(cfg.refchannel) cfg.comment = sprintf('%s\nreference=%s %s', comment, cfg.refchannel{:}); else cfg.comment = sprintf('%s\nreference=%s %s', comment, cfg.refchannel); end end % Specify the x and y coordinates of the comment if strcmp(cfg.commentpos,'layout') ind_comment = strmatch('COMNT', cfg.layout.label); x_comment = cfg.layout.pos(ind_comment,1); y_comment = cfg.layout.pos(ind_comment,2); elseif strcmp(cfg.commentpos,'lefttop') x_comment = -0.7; y_comment = 0.6; HorAlign = 'left'; VerAlign = 'top'; elseif strcmp(cfg.commentpos,'leftbottom') x_comment = -0.6; y_comment = -0.6; HorAlign = 'left'; VerAlign = 'bottom'; elseif strcmp(cfg.commentpos,'middletop') x_comment = 0; y_comment = 0.75; HorAlign = 'center'; VerAlign = 'top'; elseif strcmp(cfg.commentpos,'middlebottom') x_comment = 0; y_comment = -0.7; HorAlign = 'center'; VerAlign = 'bottom'; elseif strcmp(cfg.commentpos,'righttop') x_comment = 0.65; y_comment = 0.6; HorAlign = 'right'; VerAlign = 'top'; elseif strcmp(cfg.commentpos,'rightbottom') x_comment = 0.6; y_comment = -0.6; HorAlign = 'right'; VerAlign = 'bottom'; elseif isnumeric(cfg.commentpos) x_comment = cfg.commentpos(1); y_comment = cfg.commentpos(2); HorAlign = 'left'; VerAlign = 'middle'; x_comment = 0.9*((x_comment-min(x))/(max(x)-min(x))-0.5); y_comment = 0.9*((y_comment-min(y))/(max(y)-min(y))-0.5); end % Draw topoplot cla hold on % Set ft_plot_topo specific options if strcmp(cfg.interplimits,'head'), interplimits = 'mask'; else interplimits = cfg.interplimits; end if strcmp(cfg.style,'both'); style = 'surfiso'; end if strcmp(cfg.style,'straight'); style = 'surf'; end if strcmp(cfg.style,'contour'); style = 'iso'; end if strcmp(cfg.style,'fill'); style = 'isofill'; end % Draw plot if ~strcmp(cfg.style,'blank') ft_plot_topo(chanX,chanY,datavector,'interpmethod',cfg.interpolation,... 'interplim',interplimits,... 'gridscale',cfg.gridscale,... 'outline',cfg.layout.outline,... 'shading',cfg.shading,... 'isolines',cfg.contournum,... 'mask',cfg.layout.mask,... 'style',style,... 'datmask', maskdatavector); elseif ~strcmp(cfg.style,'blank') ft_plot_lay(lay,'box','no','label','no','point','no') end % Plotting markers for channels and/or highlighting a selection of channels highlightchansel = []; % used for remembering selection of channels templay.outline = lay.outline; templay.mask = lay.mask; % For Highlight (channel-selection) for icell = 1:length(cfg.highlight) if ~strcmp(cfg.highlight{icell},'off') [dum labelindex] = match_str(ft_channelselection(cfg.highlightchannel{icell}, data.label), lay.label); highlightchansel = [highlightchansel; match_str(data.label,ft_channelselection(cfg.highlightchannel{icell}, data.label))]; templay.pos = lay.pos(labelindex,:); templay.width = lay.width(labelindex); templay.height = lay.height(labelindex); templay.label = lay.label(labelindex); if strcmp(cfg.highlight{icell}, 'labels') || strcmp(cfg.highlight{icell}, 'numbers') labelflg = 1; else labelflg = 0; end if strcmp(cfg.highlight{icell}, 'numbers') for ichan = 1:length(labelindex) templay.label{ichan} = num2str(match_str(data.label,templay.label{ichan})); end end ft_plot_lay(templay,'box','no','label',labelflg,'point','yes',... 'pointsymbol',cfg.highlightsymbol{icell},... 'pointcolor',cfg.highlightcolor{icell},... 'pointsize',cfg.highlightsize{icell},... 'labelsize',cfg.highlightfontsize{icell},... 'labeloffset',cfg.labeloffset) end end % for icell % For Markers (all channels) if ~strcmp(cfg.marker,'off') [dum labelindex] = match_str(ft_channelselection(setdiff(1:length(data.label),highlightchansel), data.label),lay.label); templay.pos = lay.pos(labelindex,:); templay.width = lay.width(labelindex); templay.height = lay.height(labelindex); templay.label = lay.label(labelindex); if strcmp(cfg.marker, 'labels') || strcmp(cfg.marker, 'numbers') labelflg = 1; else labelflg = 0; end if strcmp(cfg.marker, 'numbers') for ichan = 1:length(labelindex) templay.label{ichan} = num2str(match_str(data.label,templay.label{ichan})); end end ft_plot_lay(templay,'box','no','label',labelflg,'point','yes',... 'pointsymbol',cfg.markersymbol,... 'pointcolor',cfg.markercolor,... 'pointsize',cfg.markersize,... 'labelsize',cfg.markerfontsize,... 'labeloffset',cfg.labeloffset) end % Write comment if ~strcmp(cfg.comment,'no') if strcmp(cfg.commentpos, 'title') title(cfg.comment, 'Fontsize', cfg.fontsize); else ft_plot_text(x_comment,y_comment, cfg.comment, 'Fontsize', cfg.fontsize, 'HorizontalAlignment', 'left', 'VerticalAlignment', 'bottom'); end end % plot colorbar: if isfield(cfg, 'colorbar') if strcmp(cfg.colorbar, 'yes') colorbar; elseif ~strcmp(cfg.colorbar, 'no') colorbar('location',cfg.colorbar); end end % Set renderer if specified if ~isempty(cfg.renderer) set(gcf, 'renderer', cfg.renderer) end % The remainder of the code is meant to make the figure interactive hold on; % Set colour axis caxis([zmin zmax]); if strcmp('yes',cfg.hotkeys) % Attach data and cfg to figure and attach a key listener to the figure set(gcf, 'KeyPressFcn', {@key_sub, zmin, zmax}) end % Make the figure interactive if strcmp(cfg.interactive, 'yes') % add the channel position information to the figure % this section is required for ft_select_channel to do its work info = guidata(gcf); info.x = lay.pos(:,1); info.y = lay.pos(:,2); info.label = lay.label; guidata(gcf, info); if any(strcmp(data.dimord, {'chan_time', 'chan_freq', 'subj_chan_time', 'rpt_chan_time', 'chan_chan_freq'})) set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{1:Ndata}}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{1:Ndata}}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{1:Ndata}}, 'event', 'WindowButtonMotionFcn'}); elseif any(strcmp(data.dimord, {'chan_freq_time', 'subj_chan_freq_time', 'rpt_chan_freq_time', 'rpttap_chan_freq_time', 'chan_chan_freq_time'})) set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, varargin{1:Ndata}}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, varargin{1:Ndata}}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotTFR, cfg, varargin{1:Ndata}}, 'event', 'WindowButtonMotionFcn'}); else error('unsupported dimord "%" for interactive plotting', data.dimord); end end axis off; hold off; axis equal; % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting channels in case of cfg.refchannel='gui' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_topoplotER(label, cfg, varargin) cfg.refchannel = label; fprintf('selected cfg.refchannel = ''%s''\n', cfg.refchannel{:}); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); cfg.highlight = 'on'; cfg.highlightsymbol = '.'; cfg.highlightcolor = 'r'; cfg.highlightsize = 20; cfg.highlightchannel = cfg.refchannel; ft_topoplotER(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_singleplotER(label, cfg, varargin) if ~isempty(label) cfg.xlim = 'maxmin'; cfg.channel = label; fprintf('selected cfg.channel = {'); for i=1:(length(cfg.channel)-1) fprintf('''%s'', ', cfg.channel{i}); end fprintf('''%s''}\n', cfg.channel{end}); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_singleplotER(cfg, varargin{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_singleplotTFR(label, cfg, varargin) if ~isempty(label) cfg.xlim = 'maxmin'; cfg.ylim = 'maxmin'; cfg.channel = label; fprintf('selected cfg.channel = {'); for i=1:(length(cfg.channel)-1) fprintf('''%s'', ', cfg.channel{i}); end fprintf('''%s''}\n', cfg.channel{end}); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_singleplotTFR(cfg, varargin{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which handles hot keys in the current plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key_sub(handle, eventdata, varargin) incr = (max(caxis)-min(caxis)) /10; % symmetrically scale color bar down by 10 percent if strcmp(eventdata.Key,'uparrow') caxis([min(caxis)-incr max(caxis)+incr]); % symmetrically scale color bar up by 10 percent elseif strcmp(eventdata.Key,'downarrow') caxis([min(caxis)+incr max(caxis)-incr]); % resort to minmax of data for colorbar elseif strcmp(eventdata.Key,'m') caxis([varargin{1} varargin{2}]); end
github
philippboehmsturm/antx-master
ft_spike_plot_raster.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_plot_raster.m
14,853
utf_8
6ff7ffacc8bc4b5b2e8c94560944ae5b
function [hdl] = ft_spike_plot_raster(cfg, spike) % FT_SPIKE_RASTERPLOT: % - makes a raster plot of spike-trains % - allows for spike-density or psth plot on top % % The input SPIKE should be organised as: % The SPIKE datatype, obtained from FT_SPIKESTATION_DATA2SPIKE or FT_SPIKE_MAKETRIALS % % The optional input TOPDATA is a structure as the output from FT_SPIKE_PSTH % or FT_SPIKEDENSITY or FT_TIMELOCKANALYSIS. See those functions for more info. % % Configurations options (CFG): % % Configuration options related to selection of spike channel and trials and latencies % % cfg.spikechannel = see FT_CHANNELSELECTION for details % cfg.latency = [begin end]` in seconds, 'maxperiod' (default), 'minperiod', % 'prestim' (all t<=0), or 'poststim' (all t>=0). % cfg.linewidth = number indicating the width of the lines (default = 1); % cfg.cmapneurons = 'auto' (default), or nUnits-by-3 matrix, or cell array with % color strings (e.g., {'k' 'r' 'b'}). If 'auto', we are using a % private colormap that has good visibility on white background. % cfg.spikelength = number >0 and <=1 indicating the length of the spike. If % cfg.spikelength = 1, then no space will be left between % subsequent rows representing trials (row-unit is 1). % % Configuration options related to additionally plotting the TOPDATA % % cfg.topdata = output structure from FT_SPIKE_PSTH % or FT_SPIKEDENSITY or FT_TIMELOCKANALYSIS. See those functions for more % info. % cfg.topplotsize = number ranging from 0 to 1, indicating the proportion of the % rasterplot that the top plot will take (e.g., with 0.7 the top % plot will be 70% of the rasterplot in size). Default = 0.5. % cfg.topplotfunc = 'bar' (default) or 'line'. % % Outputs: % HDL.TOP = handle of the plot of the TOPDATA (psth or sdf) % HDL.RASTER = handle for each individual spike. % HDL.AX = axes handles: AX(1) the rasterplot and AX(2) the topplot. % HDL.CFG % Martin Vinck (C) 2010 F.C. Donders Centre for Neuroimaging, University of Amsterdam if nargin<2, error('MATLAB:ft_spike_plot_raster:nargin','>=2 input arguments required'), end % check the configuration inputs and enter the defaults defaults.spikechannel = {'all'}; defaults.trials = {'all'}; defaults.latency = {'maxperiod'}; defaults.linewidth = {1}; defaults.cmapneurons = {'auto'}; % auto based on the number of cells defaults.spikelength = {0.9}; defaults.topdata = {[]}; defaults.topplotsize = {0.5}; % meaning: top plot takes 50% defaults.topplotfunc = {'bar' 'line'}; % auto means: we check if sdf or psth REMOVE cfg = ft_spike_sub_defaultcfg(cfg,defaults); % check which features should be present in the rasterplot and psth doTopData = ~isempty(cfg.topdata); if doTopData topData = cfg.topdata; % make sure TOPDATA is struct with right fields, and warn if VAR or DOF are missing if ~isstruct(topData) || ~all(isfield(topData,{'avg' 'time' 'label'})) error('MATLAB:ft_spike_plot_raster:topData:wrongFormatStruct',... 'TOPDATA needs to be (timelock or psth) struct with fields avg, time and label'); end end % check if input is of correct format hasAllFields = all(isfield(spike, {'time', 'trial', 'trialtime', 'label'})); if ~hasAllFields, error('MATLAB:spikestation:plot_raster:wrongStructInput',... 'input ETS should be struct with .time, .trial, .trialtime, .label fields') end % check whether all are of right format correctInp = iscell(spike.time) & iscell(spike.trial) & iscell(spike.label) & size(spike.trialtime,2)==2; if ~correctInp, error('MATLAB:spikestation:plot_raster:wrongStructInput',... '.time, .trial and .label should be cell arrays, .trialtime should be nTrials-by-2 matrix') end % get the spikechannels cfg.channel = ft_channelselection(cfg.spikechannel, spike.label); spikesel = match_str(spike.label, cfg.channel); nUnits = length(spikesel); % number of spike channels if nUnits==0, error('MATLAB:ft_spike_plot_raster:cfg:spikechannel:noSpikeChanSelected',... 'No spikechannel selected by means of cfg.spikechannel'); end % get the number of trials or change DATA according to cfg.trials nTrialsOrig = size(spike.trialtime,1); if strcmp(cfg.trials,'all') cfg.trials = 1:nTrialsOrig; elseif islogical(cfg.trials) cfg.trials = find(cfg.trials); elseif ~isrealvec(cfg.trials); error('MATLAB:ft_spike_plot_raster:cfg:trials:wrongInput',... 'cfg.trials should be logical or numerical selection or string "all"'); end cfg.trials = sort(cfg.trials(:)); if max(cfg.trials)>nTrialsOrig, error('MATLAB:ft_spike_plot_raster:cfg:trials:maxExceeded',... 'maximum trial number in cfg.trials should not exceed length of DATA.trial') end if isempty(cfg.trials), errors('MATLAB:ft_spike_plot_raster:cfg:trials','No trials were selected in cfg.trials'); end nTrials = length(cfg.trials); % determine the duration of each trial begTrialLatency = spike.trialtime(cfg.trials,1); endTrialLatency = spike.trialtime(cfg.trials,2); % select the latencies if strcmp(cfg.latency,'minperiod') cfg.latency = [max(begTrialLatency) min(endTrialLatency)]; elseif strcmp(cfg.latency,'maxperiod') cfg.latency = [min(begTrialLatency) max(endTrialLatency)]; elseif strcmp(cfg.latency,'prestim') cfg.latency = [min(begTrialLatency) 0]; elseif strcmp(cfg.latency,'poststim') cfg.latency = [0 max(endTrialLatency)]; elseif ~isrealvec(cfg.latency)||length(cfg.latency)~=2 error('MATLAB:fieldtrip:spikerate:cfg:latency',... 'cfg.latency should be "max", "min", "prestim", "poststim" or 1-by-2 numerical vector'); end if cfg.latency(1)>cfg.latency(2), error('MATLAB:ft_spike_plot_raster:cfg:latency:wrongOrder',... 'cfg.latency should be a vector in ascending order, i.e., cfg.latency(2)>cfg.latency(1)'); end % check whether the time window fits with the data if (cfg.latency(1) < min(begTrialLatency)), cfg.latency(1) = min(begTrialLatency); warning('MATLAB:ft_spike_plot_raster:cfg:latency:correctBeg',... 'Correcting begin latency of averaging window'); end if (cfg.latency(2) > max(endTrialLatency)), cfg.latency(2) = max(endTrialLatency); warning('MATLAB:ft_spike_plot_raster:cfg:latency:correctEnd',... 'Correcting begin latency of averaging window'); end trialDur = cfg.latency(2) - cfg.latency(1); % delete trials that are not in our window overlaps = endTrialLatency>=cfg.latency(1) & begTrialLatency<=cfg.latency(2); trialSel = overlaps(:); cfg.trials = cfg.trials(trialSel); %update the trial selection if isempty(cfg.trials), warning('MATLAB:ft_spike_plot_raster:cfg:trials','No trials were selected'); end nTrials = length(cfg.trials); % create the data that should be plotted [unitX,unitY] = deal(cell(1,nUnits)); % find the spiketimes per neuron and make one vector of them with y value per element for iUnit = 1:nUnits unitIndx = spikesel(iUnit); latencySel = spike.time{unitIndx}>=cfg.latency(1) & spike.time{unitIndx} <= cfg.latency(2); isInTrials = ismember(spike.trial{unitIndx},cfg.trials); unitX{iUnit} = spike.time{unitIndx}(isInTrials(:) & latencySel(:)); unitY{iUnit} = spike.trial{unitIndx}(isInTrials(:) & latencySel(:)); end if ~isscalar(cfg.spikelength) || cfg.spikelength<=0 || cfg.spikelength>1 error('MATLAB:ft_spike_plot_raster:cfg:spikelength:unknownOption',... 'cfg.spikelength should be a single number >0 and <=1. 1 row (1 trial) = 1'); end if ~isscalar(cfg.topplotsize) || cfg.topplotsize<=0 || cfg.topplotsize>1 error('MATLAB:ft_spike_plot_raster:cfg:topplotsize:unknownOption',... 'cfg.topplotsize should be a single number >0 and <=1. 0.7 = 70%'); end % start plotting the rasterplot for iUnit = 1:nUnits % create the x and y value to be plotted x = [unitX{iUnit}(:)'; unitX{iUnit}(:)']; % create x duplicates, spike times y = unitY{iUnit}(:); % these are the trial values y = [y' - cfg.spikelength/2; y' + cfg.spikelength/2]; % process the color information for the different units if strcmp(cfg.cmapneurons, 'auto'), cfg.cmapneurons = colormap_cgbprb(nUnits); end if isrealmat(cfg.cmapneurons) && all(size(cfg.cmapneurons) ./ [nUnits 3]) color = cfg.cmapneurons(iUnit,:); elseif iscell(cfg.cmapneurons) && length(cfg.cmapneurons)==nUnits color = cfg.cmapneurons{iUnit}; else error('MATLAB:ft_spike_plot_raster:cfg:cmapneurons:unknownOption',... 'cfg.cmapneurons should be nUnits-by-3 matrix or 1-by-nUnits cell or "auto"'); end % create axes for the rasterplot, all go to the same position, so do this for unit 1 if iUnit==1 ax(1) = newplot; posOrig = get(ax(1), 'Position'); % original position for a standard plot pos = posOrig; if doTopData % if topdata, we leave space on top posRaster = [pos(1:3) pos(4)*(1-cfg.topplotsize)]; % and decrease the size of width and height else posRaster = pos; end set(ax(1), 'ActivePositionProperty', 'position', 'Position', posRaster) end % make the raster plot and hold on for the next plots rasterHdl = plot(x, y,'linewidth', cfg.linewidth,'Color', color); set(ax(1),'NextPlot', 'add') set(ax(1),'Box', 'off') end % create the labels for the first axes xlabel('time (sec)') ylabel('Trial Number') axis ij % plot the top data if doTopData % match on the basis of labels, and specify this in the documentary unitIndx = find(ismember(topData.label,spike.label(spikesel))); if sum(unitIndx)<nUnits, error('MATLAB:ft_spike_plot_raster:topData:missingLabel',... 'topData.label should contain all label of selected units'); end % select timepoints and get the data to be plotted binSel = topData.time>=cfg.latency(1) & topData.time<=cfg.latency(2); y = topData.avg(unitIndx,binSel); % create the position for the topplot and axes with this position posTopPlot = [0 pos(4)*(1-cfg.topplotsize) 0 0] + pos.*[1 1 1 cfg.topplotsize]; ax(2) = axes('Units', get(ax(1), 'Units'), 'Position', posTopPlot,... 'Parent', get(ax(1), 'Parent')); % make the bar or the line plot if strcmp(cfg.topplotfunc,'bar') avgHdl = feval(cfg.topplotfunc,topData.time(binSel),y', 'Stack'); for iUnit = 1:nUnits set(avgHdl(iUnit),'FaceColor',cfg.cmapneurons(iUnit,:),'EdgeColor', cfg.cmapneurons(iUnit,:)); end if strcmp(cfg.topplotfunc,'bar'),set(avgHdl,'BarWidth', 1); end else x = topData.time(binSel); x = repmat(x(:),1,nUnits); % it puts multiple neurons here? check> avgHdl = feval(cfg.topplotfunc,x,y'); for iUnit = 1:nUnits set(avgHdl(iUnit),'Color',cfg.cmapneurons(iUnit,:)); end end % modify the axes set(ax(2),'YAxisLocation', 'right') % swap y axis location set(ax(2),'XTickLabel', {}) % remove ticks and labels for x axis set(ax(2),'XTick', []) set(ax(2), 'Box', 'off') % turn the box off % change the axis settings try ylabel(topData.cfg.outputunit) catch ylabel('Firing Rate') end end % set the limits for the axis set(ax,'XLim', [cfg.latency]) set(ax(1), 'YLim', [0.5 nTrialsOrig+0.5]); % number of trials set(ax,'TickDir','out') % put the tickmarks outside % collect the handles hdl.raster = rasterHdl; if doTopData, hdl.top = avgHdl; end hdl.ax = ax; % now link the axes, constrain zooming and keep ticks intact limX = [cfg.latency]; limY = get(ax,'YLim'); if ~iscell(limY), limY = {limY}; end % constrain the zooming and zoom psth together with the jpsth, remove ticklabels jpsth set(zoom,'ActionPostCallback',{@mypostcallback,ax,limX,limY}); set(pan,'ActionPostCallback',{@mypostcallback,ax,limX,limY}); hdl.cfg = cfg; function [] = mypostcallback(fig,evd,ax,lim,ylim) currentAxes = evd.Axes; indx = find(currentAxes==ax); % keep the y axis within boundaries origLim = ylim{indx}; ylim = get(ax(indx), 'YLim'); if origLim(1)>ylim(1), ylim(1) = origLim(1); end if origLim(2)<ylim(2), ylim(2) = origLim(2); end set(ax(indx), 'YLim', ylim) % keep the x axis within boundaries and reset for both xlim = get(ax(indx), 'XLim'); if lim(1)>xlim(1), xlim(1) = lim(1); end if lim(2)<xlim(2), xlim(2) = lim(2); end set(ax,'XLim', xlim) function [X,Y] = polygon(x,mn,sm,multiplier) if nargin < 4 multiplier = 1; end X = [x x(end:-1:1) x(1)]; up = mn + multiplier*sm; down = mn - multiplier*sm; Y = [down up(end:-1:1) down(1)]; function [colorspace] = colormap_cgbprb(N) % COLORMAP_SEPARATION returns a color map with well separated colors that does not include % white, yellow or orange since these are not well visible in white plots. % % Inputs: N is the number of colors desired % Outputs: COLORSPACE is an N-by-3 colorspace. % Chosen colors are green, cyan, blue, purple, red and black % Script was adapted from varycolors.m from FEX % Copyright (c) 2009, Martin Vinck if nargin<1 error('specify the number of colors that you want') end % create a well visible color space % green cyan blue purple red black colors = [[0 1 0]; [0 1 1] ; [0 0 1] ; [1 0 1]; [1 0 0]; [0 0 0]]; order = [1 5 3 2 4 6]; % our preference order when plotting different lines rm{2} = [2:5]; rm{3} = [2 4 5]; rm{4} = [2 4]; rm{5} = [4]; if N==1 colorspace = colors(end,:); elseif N>1&&N<6 colors(rm{N},:) = []; colorspace = colors; else n = floor(N/5)*ones(1,5); rest = mod(N,5); order = [1 5 3 2 4]; % if we have some rest, add them starting oppositly n(order(1:rest)) = n(order(1:rest)) + 1; colorspace = []; for iColor = 1:5 corStart = colors(iColor,:); corEnd = colors(iColor+1,:); dim = corStart~=corEnd; subColors = corStart(ones(n(iColor)+1,1),:); if iColor>1 subColors(:,dim) = linspace(corStart(dim),corEnd(dim),n(iColor)+1); subColors(1,:) = []; else subColors(1:end-1,dim) = linspace(corStart(dim),corEnd(dim),n(iColor)); subColors(end,:) = []; end colorspace = [colorspace;subColors]; end end
github
philippboehmsturm/antx-master
ft_electroderealign.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_electroderealign.m
28,009
utf_8
3f54c6cc419ca2ba2fa35dd3892ae692
function [norm] = ft_electroderealign(cfg) % FT_ELECTRODEREALIGN rotates and translates electrode positions to % template electrode positions or towards the head surface. It can % either perform a rigid body transformation, in which only the % coordinate system is changed, or it can apply additional deformations % to the input electrodes. % % Use as % [elec] = ft_electroderealign(cfg) % % Different methods for aligning the input electrodes to the subjects head % are implemented, which are described in detail below: % % TEMPLATE - You can apply a spatial transformation/deformation that % automatically minimizes the distance between the electrodes and the % template or standard electrode set. The warping methods use a non-linear % search to minimize the error between the input electrodes and % corresponding template electrodes or between the input electrodes and a % head surface. % % FIDUCIAL - You can apply a rigid body realignment based on three fiducial % locations. Realigning using the fiducials only ensures that the fiducials % (typically nose, left and right ear) are along the same axes in the input % eectrode set as in the template electrode set. % % INTERACTIVE - You can display the skin surface together with the % electrode position, and manually (using the graphical user interface) % adjust the rotation, translation and scaling parameters, so that the % electrodes correspond with the skin. % % MANUAL - You can display the skin surface and manually determine the % electrode positions by clicking on the skin surface. % % The configuration can contain the following options % cfg.method = string representing the method for aligning or placing the electrodes % 'template' realign the electrodes to a template electrode set % 'fiducial' realign using the NAS, LPA and RPA fiducials % 'interactive' realign manually using a graphical user interface % 'manual' manual positioning of the electrodes by clicking in a graphical user interface % cfg.warp = string describing the spatial transformation for the template method % 'rigidbody' apply a rigid-body warp (default) % 'globalrescale' apply a rigid-body warp with global rescaling % 'traditional' apply a rigid-body warp with individual axes rescaling % 'nonlin1' apply a 1st order non-linear warp % 'nonlin2' apply a 2nd order non-linear warp % 'nonlin3' apply a 3rd order non-linear warp % 'nonlin4' apply a 4th order non-linear warp % 'nonlin5' apply a 5th order non-linear warp % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.fiducial = cell-array with the name of three fiducials used for % realigning (default = {'nasion', 'lpa', 'rpa'}) % cfg.casesensitive = 'yes' or 'no', determines whether string comparisons % between electrode labels are case sensitive (default = 'yes') % cfg.feedback = 'yes' or 'no' (default = 'no') % % The electrode set that will be realigned is specified as % cfg.elecfile = string with filename, or alternatively % cfg.elec = structure with electrode definition % % If you want to align the electrodes to a single template electrode set % or to multiple electrode sets (which will be averaged), you should % specify the template electrode sets as % cfg.template = single electrode set that serves as standard % or % cfg.template{1..N} = list of electrode sets that are averaged into the standard % The template electrode sets can be specified either as electrode % structures (i.e. when they are already read in memory) or as electrode % files. % % If you only want to realign using the fiducials, the template has to contain % the three fiducials, e.g. % cfg.template.pnt(1,:) = [110 0 0] % location of the nose % cfg.template.pnt(2,:) = [0 90 0] % left ear % cfg.template.pnt(3,:) = [0 -90 0] % right ear % cfg.template.label = {'nasion', 'lpa', 'rpa'} % % If you want to align existing electrodes to the head surface or position % new electrodes on the head surface, you should specify the head surface as % cfg.headshape = a filename containing headshape, a structure containing a % single triangulated boundary, or a Nx3 matrix with surface % points % % See also FT_READ_SENS, FT_VOLUMEREALIGN % Copyright (C) 2005-2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_electroderealign.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); %text output disp('Close the figure to output new sensor positions'); % this is used for feedback of the lower-level functions global fb % set the defaults if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'feedback'), cfg.feedback = 'no'; end if ~isfield(cfg, 'casesensitive'), cfg.casesensitive = 'yes'; end if ~isfield(cfg, 'headshape'), cfg.headshape = []; end % for triangulated head surface, without labels if ~isfield(cfg, 'template'), cfg.template = []; end % for electrodes or fiducials, always with labels if ~isfield(cfg, 'warp'), cfg.warp = 'rigidbody'; end if ~isfield(cfg, 'label'), cfg.label = 'off'; end % show labels cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducials', 'fiducial'}); cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'realignfiducial', 'fiducial'}); cfg = ft_checkconfig(cfg, 'forbidden', 'outline'); cfg = ft_checkconfig(cfg, 'renamedval',{'warp', 'homogenous', 'rigidbody'}); if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config') % convert the nested config-object back into a normal structure cfg.headshape = struct(cfg.headshape); end if strcmp(cfg.feedback, 'yes') % use the global fb field to tell the warping toolbox to print feedback fb = 1; else fb = 0; end % get the electrode definition that should be warped if isfield(cfg, 'elec') elec = cfg.elec; elseif isfield(cfg, 'elecfile') elec = ft_read_sens(cfg.elecfile); else % start with an empty set of electrodes (usefull for manual positioning) elec = []; elec.pnt = zeros(0,3); elec.label = cell(0,1); elec.unit = 'mm'; end elec = ft_convert_units(elec); % ensure that the units are specified usetemplate = isfield(cfg, 'template') && ~isempty(cfg.template); useheadshape = isfield(cfg, 'headshape') && ~isempty(cfg.headshape); if usetemplate % get the template electrode definitions if ~iscell(cfg.template) cfg.template = {cfg.template}; end Ntemplate = length(cfg.template); for i=1:Ntemplate if isstruct(cfg.template{i}) template(i) = cfg.template{i}; else template(i) = ft_read_sens(cfg.template{i}); end end clear tmp for i=1:Ntemplate tmp(i) = ft_convert_units(template(i), elec.unit); % ensure that the units are consistent with the electrodes end template = tmp; end if useheadshape % get the surface describing the head shape if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt') % use the headshape surface specified in the configuration headshape = cfg.headshape; elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3 % use the headshape points specified in the configuration headshape.pnt = cfg.headshape; elseif ischar(cfg.headshape) % read the headshape from file headshape = ft_read_headshape(cfg.headshape); else error('cfg.headshape is not specified correctly') end if ~isfield(headshape, 'tri') % generate a closed triangulation from the surface points headshape.pnt = unique(headshape.pnt, 'rows'); headshape.tri = projecttri(headshape.pnt); end headshape = ft_convert_units(headshape, elec.unit); % ensure that the units are consistent with the electrodes end % remember the original electrode locations and labels orig = elec; % convert all labels to lower case for string comparisons % this has to be done AFTER keeping the original labels and positions if strcmp(cfg.casesensitive, 'no') for i=1:length(elec.label) elec.label{i} = lower(elec.label{i}); end for j=1:length(template) for i=1:length(template(j).label) template(j).label{i} = lower(template(j).label{i}); end end end if strcmp(cfg.feedback, 'yes') % create an empty figure, continued below... figure axis equal axis vis3d hold on xlabel('x') ylabel('y') zlabel('z') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(cfg.method, 'template') && usetemplate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine electrode selection and overlapping subset for warping cfg.channel = ft_channelselection(cfg.channel, elec.label); for i=1:Ntemplate cfg.channel = ft_channelselection(cfg.channel, template(i).label); end % make subselection of electrodes [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); for i=1:Ntemplate [cfgsel, datsel] = match_str(cfg.channel, template(i).label); template(i).label = template(i).label(datsel); template(i).pnt = template(i).pnt(datsel,:); end % compute the average of the template electrode positions all = []; for i=1:Ntemplate all = cat(3, all, template(i).pnt); end avg = mean(all,3); stderr = std(all, [], 3); fprintf('warping electrodes to template... '); % the newline comes later [norm.pnt, norm.m] = warp_optim(elec.pnt, avg, cfg.warp); norm.label = elec.label; dpre = mean(sqrt(sum((avg - elec.pnt).^2, 2))); dpost = mean(sqrt(sum((avg - norm.pnt).^2, 2))); fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost); if strcmp(cfg.feedback, 'yes') % plot all electrodes before warping my_plot3(elec.pnt, 'r.'); my_plot3(elec.pnt(1,:), 'r*'); my_plot3(elec.pnt(2,:), 'r*'); my_plot3(elec.pnt(3,:), 'r*'); my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r'); my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r'); my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r'); % plot all electrodes after warping my_plot3(norm.pnt, 'm.'); my_plot3(norm.pnt(1,:), 'm*'); my_plot3(norm.pnt(2,:), 'm*'); my_plot3(norm.pnt(3,:), 'm*'); my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm'); my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm'); my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm'); % plot the template electrode locations my_plot3(avg, 'b.'); my_plot3(avg(1,:), 'b*'); my_plot3(avg(2,:), 'b*'); my_plot3(avg(3,:), 'b*'); my_text3(avg(1,:), norm.label{1}, 'color', 'b'); my_text3(avg(2,:), norm.label{2}, 'color', 'b'); my_text3(avg(3,:), norm.label{3}, 'color', 'b'); % plot lines connecting the input/warped electrode locations with the template locations my_line3(elec.pnt, avg, 'color', 'r'); my_line3(norm.pnt, avg, 'color', 'm'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'template') && useheadshape %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine electrode selection and overlapping subset for warping cfg.channel = ft_channelselection(cfg.channel, elec.label); % make subselection of electrodes [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); fprintf('warping electrodes to head shape... '); % the newline comes later [norm.pnt, norm.m] = warp_optim(elec.pnt, headshape, cfg.warp); norm.label = elec.label; dpre = warp_error([], elec.pnt, headshape, cfg.warp); dpost = warp_error(norm.m, elec.pnt, headshape, cfg.warp); fprintf('mean distance prior to warping %f, after warping %f\n', dpre, dpost); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'fiducial') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % try to determine the fiducials automatically if not specified if ~isfield(cfg, 'fiducial') option1 = {'nasion' 'left' 'right'}; option2 = {'nasion' 'lpa' 'rpa'}; option3 = {'nz' 'lpa' 'rpa'}; if length(match_str(elec.label, option1))==3 cfg.fiducial = option1; elseif length(match_str(elec.label, option2))==3 cfg.fiducial = option2; elseif length(match_str(elec.label, option3))==3 cfg.fiducial = option3; else error('could not determine three fiducials, please specify cfg.fiducial') end end fprintf('using fiducials {''%s'', ''%s'', ''%s''}\n', cfg.fiducial{1}, cfg.fiducial{2}, cfg.fiducial{3}); % determine electrode selection cfg.channel = ft_channelselection(cfg.channel, elec.label); [cfgsel, datsel] = match_str(cfg.channel, elec.label); elec.label = elec.label(datsel); elec.pnt = elec.pnt(datsel,:); if length(cfg.fiducial)~=3 error('you must specify three fiducials'); end % do case-insensitive search for fiducial locations nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3})); if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1 error('not all fiducials were found in the electrode set'); end elec_nas = elec.pnt(nas_indx,:); elec_lpa = elec.pnt(lpa_indx,:); elec_rpa = elec.pnt(rpa_indx,:); % FIXME change the flow in the remainder % if one or more template electrode sets are specified, then align to the average of those % if no template is specified, then align so that the fiducials are along the axis % find the matching fiducials in the template and average them templ_nas = []; templ_lpa = []; templ_rpa = []; for i=1:Ntemplate nas_indx = match_str(lower(template(i).label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(template(i).label), lower(cfg.fiducial{3})); if length(nas_indx)~=1 || length(lpa_indx)~=1 || length(rpa_indx)~=1 error(sprintf('not all fiducials were found in template %d', i)); end templ_nas(end+1,:) = template(i).pnt(nas_indx,:); templ_lpa(end+1,:) = template(i).pnt(lpa_indx,:); templ_rpa(end+1,:) = template(i).pnt(rpa_indx,:); end templ_nas = mean(templ_nas,1); templ_lpa = mean(templ_lpa,1); templ_rpa = mean(templ_rpa,1); % realign both to a common coordinate system elec2common = headcoordinates(elec_nas, elec_lpa, elec_rpa); templ2common = headcoordinates(templ_nas, templ_lpa, templ_rpa); % compute the combined transform and realign the electrodes to the template norm = []; norm.m = elec2common * inv(templ2common); norm.pnt = warp_apply(norm.m, elec.pnt, 'homogeneous'); norm.label = elec.label; nas_indx = match_str(lower(elec.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(elec.label), lower(cfg.fiducial{3})); dpre = mean(sqrt(sum((elec.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2))); nas_indx = match_str(lower(norm.label), lower(cfg.fiducial{1})); lpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{2})); rpa_indx = match_str(lower(norm.label), lower(cfg.fiducial{3})); dpost = mean(sqrt(sum((norm.pnt([nas_indx lpa_indx rpa_indx],:) - [templ_nas; templ_lpa; templ_rpa]).^2, 2))); fprintf('mean distance between fiducials prior to realignment %f, after realignment %f\n', dpre, dpost); if strcmp(cfg.feedback, 'yes') % plot the first three electrodes before transformation my_plot3(elec.pnt(1,:), 'r*'); my_plot3(elec.pnt(2,:), 'r*'); my_plot3(elec.pnt(3,:), 'r*'); my_text3(elec.pnt(1,:), elec.label{1}, 'color', 'r'); my_text3(elec.pnt(2,:), elec.label{2}, 'color', 'r'); my_text3(elec.pnt(3,:), elec.label{3}, 'color', 'r'); % plot the template fiducials my_plot3(templ_nas, 'b*'); my_plot3(templ_lpa, 'b*'); my_plot3(templ_rpa, 'b*'); my_text3(templ_nas, ' nas', 'color', 'b'); my_text3(templ_lpa, ' lpa', 'color', 'b'); my_text3(templ_rpa, ' rpa', 'color', 'b'); % plot all electrodes after transformation my_plot3(norm.pnt, 'm.'); my_plot3(norm.pnt(1,:), 'm*'); my_plot3(norm.pnt(2,:), 'm*'); my_plot3(norm.pnt(3,:), 'm*'); my_text3(norm.pnt(1,:), norm.label{1}, 'color', 'm'); my_text3(norm.pnt(2,:), norm.label{2}, 'color', 'm'); my_text3(norm.pnt(3,:), norm.label{3}, 'color', 'm'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'interactive') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % open a figure fig = figure; % add the data to the figure set(fig, 'CloseRequestFcn', @cb_close); setappdata(fig, 'elec', elec); setappdata(fig, 'transform', eye(4)); if useheadshape setappdata(fig, 'headshape', headshape); end if usetemplate % FIXME interactive realigning to template electrodes is not yet supported % this requires a consistent handling of channel selection etc. setappdata(fig, 'template', template); end % add the GUI elements cb_creategui(gca); cb_redraw(gca); rotate3d on waitfor(fig); % get the data from the figure that was left behind as global variable global norm tmp = norm; clear global norm norm = tmp; clear tmp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(cfg.method, 'manual') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % open a figure fig = figure; rotate3d on ft_plot_mesh(headshape, 'edgecolor', 'k') xyz = ft_select_point3d(headshape, 'multiple', true); orig.pnt = xyz; for i=1:size(orig.pnt,1) orig.label{i,1} = 'unknown'; end else error('unknown method'); end % apply the spatial transformation to all electrodes, and replace the % electrode labels by their case-sensitive original values switch cfg.method case 'template' norm.pnt = warp_apply(norm.m, orig.pnt, cfg.warp); case {'fiducial' 'interactive'} norm.pnt = warp_apply(norm.m, orig.pnt); case 'manual' % the positions are already assigned in correspondence with the mesh norm = orig; otherwise error('unknown method'); end if isfield(orig, 'label') norm.label = orig.label; end % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_electroderealign.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the exact configuration details in the output norm.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % some simple SUBFUNCTIONs that facilitate 3D plotting %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = my_plot3(xyz, varargin) h = plot3(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function h = my_text3(xyz, varargin) h = text(xyz(:,1), xyz(:,2), xyz(:,3), varargin{:}); function my_line3(xyzB, xyzE, varargin) for i=1:size(xyzB,1) line([xyzB(i,1) xyzE(i,1)], [xyzB(i,2) xyzE(i,2)], [xyzB(i,3) xyzE(i,3)], varargin{:}) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to layout a moderately complex graphical user interface %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = layoutgui(fig, geometry, position, style, string, value, tag, callback); horipos = geometry(1); % lower left corner of the GUI part in the figure vertpos = geometry(2); % lower left corner of the GUI part in the figure width = geometry(3); % width of the GUI part in the figure height = geometry(4); % height of the GUI part in the figure horidist = 0.05; vertdist = 0.05; options = {'units', 'normalized', 'HorizontalAlignment', 'center'}; % 'VerticalAlignment', 'middle' Nrow = size(position,1); h = cell(Nrow,1); for i=1:Nrow if isempty(position{i}) continue; end position{i} = position{i} ./ sum(position{i}); Ncol = size(position{i},2); ybeg = (Nrow-i )/Nrow + vertdist/2; yend = (Nrow-i+1)/Nrow - vertdist/2; for j=1:Ncol xbeg = sum(position{i}(1:(j-1))) + horidist/2; xend = sum(position{i}(1:(j ))) - horidist/2; pos(1) = xbeg*width + horipos; pos(2) = ybeg*height + vertpos; pos(3) = (xend-xbeg)*width; pos(4) = (yend-ybeg)*height; h{i}{j} = uicontrol(fig, ... options{:}, ... 'position', pos, ... 'style', style{i}{j}, ... 'string', string{i}{j}, ... 'tag', tag{i}{j}, ... 'value', value{i}{j}, ... 'callback', callback{i}{j} ... ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_creategui(hObject, eventdata, handles); % define the position of each GUI element position = { [2 1 1 1] [2 1 1 1] [2 1 1 1] [1] [1] [1] [1] [1 1] }; % define the style of each GUI element style = { {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'text' 'edit' 'edit' 'edit'} {'pushbutton'} {'pushbutton'} {'toggle'} {'toggle'} {'text' 'edit'} }; % define the descriptive string of each GUI element string = { {'rotate' 0 0 0} {'translate' 0 0 0} {'scale' 1 1 1} {'redisplay'} {'apply'} {'toggle labels'} {'toggle axes'} {'alpha' 0.7} }; % define the value of each GUI element value = { {[] [] [] []} {[] [] [] []} {[] [] [] []} {[]} {[]} {0} {0} {[] []} }; % define a tag for each GUI element tag = { {'' 'rx' 'ry' 'rz'} {'' 'tx' 'ty' 'tz'} {'' 'sx' 'sy' 'sz'} {''} {''} {'toggle labels'} {'toggle axes'} {'' 'alpha'} }; % define the callback function of each GUI element callback = { {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {[] @cb_redraw @cb_redraw @cb_redraw} {@cb_redraw} {@cb_apply} {@cb_redraw} {@cb_redraw} {[] @cb_redraw} }; fig = get(hObject, 'parent'); layoutgui(fig, [0.7 0.05 0.25 0.50], position, style, string, value, tag, callback); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_redraw(hObject, eventdata, handles); fig = get(hObject, 'parent'); headshape = getappdata(fig, 'headshape'); bnd.pnt = headshape.pnt; %ft_plot_mesh wants headshape in bnd fields bnd.tri = headshape.tri; elec = getappdata(fig, 'elec'); template = getappdata(fig, 'template'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; elec = ft_transform_sens(H, elec); axis vis3d; cla xlabel('x') ylabel('y') zlabel('z') if ~isempty(template) if size(template.pnt, 2)==2 hs = plot(template.pnt(:,1), template.pnt(:,2), 'b.', 'MarkerSize', 20); else hs = plot3(template.pnt(:,1), template.pnt(:,2), template.pnt(:,3), 'b.', 'MarkerSize', 20); end end if ~isempty(headshape) % plot the faces of the 2D or 3D triangulation skin = [255 213 119]/255; brain = [202 100 100]/255; cortex = [255 213 119]/255; ft_plot_mesh(bnd,'facecolor', skin,'EdgeColor','none','facealpha',0.7); lighting gouraud material shiny camlight end if isfield(elec, 'fid') && ~isempty(elec.fid.pnt) ft_plot_sens(elec.fid,'style', 'r*'); end if get(findobj(fig, 'tag', 'toggle axes'), 'value') axis on grid on else axis off grid on end if get(findobj(fig, 'tag', 'toggle labels'), 'value') cfg.label = 'on'; else cfg.label = 'off'; end hold on ft_plot_sens(elec,'label',cfg.label); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_apply(hObject, eventdata, handles); fig = get(hObject, 'parent'); elec = getappdata(fig, 'elec'); transform = getappdata(fig, 'transform'); % get the transformation details rx = str2num(get(findobj(fig, 'tag', 'rx'), 'string')); ry = str2num(get(findobj(fig, 'tag', 'ry'), 'string')); rz = str2num(get(findobj(fig, 'tag', 'rz'), 'string')); tx = str2num(get(findobj(fig, 'tag', 'tx'), 'string')); ty = str2num(get(findobj(fig, 'tag', 'ty'), 'string')); tz = str2num(get(findobj(fig, 'tag', 'tz'), 'string')); sx = str2num(get(findobj(fig, 'tag', 'sx'), 'string')); sy = str2num(get(findobj(fig, 'tag', 'sy'), 'string')); sz = str2num(get(findobj(fig, 'tag', 'sz'), 'string')); R = rotate ([rx ry rz]); T = translate([tx ty tz]); S = scale ([sx sy sz]); H = S * T * R; elec = ft_transform_headshape(H, elec); transform = H * transform; set(findobj(fig, 'tag', 'rx'), 'string', 0); set(findobj(fig, 'tag', 'ry'), 'string', 0); set(findobj(fig, 'tag', 'rz'), 'string', 0); set(findobj(fig, 'tag', 'tx'), 'string', 0); set(findobj(fig, 'tag', 'ty'), 'string', 0); set(findobj(fig, 'tag', 'tz'), 'string', 0); set(findobj(fig, 'tag', 'sx'), 'string', 1); set(findobj(fig, 'tag', 'sy'), 'string', 1); set(findobj(fig, 'tag', 'sz'), 'string', 1); setappdata(fig, 'elec', elec); setappdata(fig, 'transform', transform); cb_redraw(hObject); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_close(hObject, eventdata, handles); % make the current transformation permanent and subsequently allow deleting the figure cb_apply(gca); % get the updated electrode from the figure fig = hObject; % hmmm, this is ugly global norm norm = getappdata(fig, 'elec'); norm.m = getappdata(fig, 'transform'); set(fig, 'CloseRequestFcn', @delete); delete(fig);
github
philippboehmsturm/antx-master
ft_singleplotTFR.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_singleplotTFR.m
19,869
utf_8
a7375cdecd992f1c7ac3a85269e85753
function [cfg] = ft_singleplotTFR(cfg, data) % ft_singleplotTFR plots the time-frequency representations of power of a % single channel or the average over multiple channels. % % Use as: % ft_singleplotTFR(cfg,data) % % The data can be a time-frequency representation of power that was % computed using the FT_FREQANALYSIS function. % % The configuration can have the following parameters: % cfg.xparam = field to be plotted on x-axis, e.g. 'time' (default depends on data.dimord) % cfg.yparam = field to be plotted on y-axis, e.g. 'freq' (default depends on data.dimord) % cfg.zparam = field to be plotted on z-axis, e.g. 'powspcrtrm' (default depends on data.dimord) % cfg.maskparameter = field in the data to be used for masking of data % (not possible for mean over multiple channels, or when input contains multiple subjects % or trials) % cfg.maskstyle = style used to mask nans, 'opacity' or 'saturation' (default = 'opacity') % use 'saturation' when saving to vector-format (like *.eps) to avoid all sorts of image-problems % cfg.maskalpha = alpha value used for masking areas dictated by cfg.maskparameter (0 - 1, default = 1) % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin') % cfg.zlim = 'maxmin','maxabs' or [zmin zmax] (default = 'maxmin') % cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see FT_FREQBASELINE % cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute') % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), % see FT_CHANNELSELECTION for details % cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui' % cfg.fontsize = font size of title (default = 8) % cfg.hotkeys = enables hotkeys (up/down arrows) for dynamic colorbar adjustment % cfg.colormap = any sized colormap, see COLORMAP % cfg.colorbar = 'yes', 'no' (default = 'yes') % cfg.interactive = Interactive plot 'yes' or 'no' (default = 'no') % In a interactive plot you can select areas and produce a new % interactive plot when a selected area is clicked. Multiple areas % can be selected by holding down the SHIFT key. % cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = []) % cfg.masknans = 'yes' or 'no' (default = 'yes') % % See also: % FT_SINGLEPLOTER, FT_MULTIPLOTER, FT_MULTIPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR % This function depends on FT_FREQBASELINE which has the following options: % cfg.baseline, documented % cfg.baselinetype, documented % Copyright (C) 2005-2006, F.C. Donders Centre % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_singleplotTFR.m 3733 2011-06-29 08:02:30Z jorhor $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'}); cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedforward', 'outflow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedback', 'inflow'}); cfg = ft_checkconfig(cfg, 'renamed', {'channelindex', 'channel'}); cfg = ft_checkconfig(cfg, 'renamed', {'channelname', 'channel'}); cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'}); % Set the defaults: cfg.baseline = ft_getopt(cfg, 'baseline', 'no'); cfg.baselinetype = ft_getopt(cfg, 'baselinetype', 'absolute'); cfg.trials = ft_getopt(cfg, 'trials', 'all'); cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin'); cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin'); cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin'); cfg.fontsize = ft_getopt(cfg, 'fontsize', 8); cfg.colorbar = ft_getopt(cfg, 'colorbar', 'yes'); cfg.interactive = ft_getopt(cfg, 'interactive', 'no'); cfg.hotkeys = ft_getopt(cfg, 'hotkeys', 'no'); cfg.renderer = ft_getopt(cfg, 'renderer', []); cfg.maskalpha = ft_getopt(cfg, 'maskalpha', 1); cfg.maskparameter = ft_getopt(cfg, 'maskparameter',[]); cfg.maskstyle = ft_getopt(cfg, 'maskstyle', 'opacity'); cfg.channel = ft_getopt(cfg, 'channel', 'all'); cfg.masknans = ft_getopt(cfg, 'masknans', 'yes'); cfg.matrixside = ft_getopt(cfg, 'matrixside', 'outflow'); % for backward compatibility with old data structures data = ft_checkdata(data, 'datatype', 'freq'); dimord = data.dimord; dimtok = tokenize(dimord, '_'); % Set x/y/zparam defaults if ~any(ismember(dimtok, 'time')) error('input data needs a time dimension'); else if ~isfield(cfg, 'xparam'), cfg.xparam='time'; end if ~isfield(cfg, 'yparam'), cfg.yparam='freq'; end if ~isfield(cfg, 'zparam'), cfg.zparam='powspctrm'; end end if isfield(cfg, 'channel') && isfield(data, 'label') cfg.channel = ft_channelselection(cfg.channel, data.label); elseif isfield(cfg, 'channel') && isfield(data, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(data.labelcmb(:))); end if isempty(cfg.channel) error('no channels selected'); end % check whether rpt/subj is present and remove if necessary and whether hasrpt = any(ismember(dimtok, {'rpt' 'subj'})); if hasrpt, % this also deals with fourier-spectra in the input % or with multiple subjects in a frequency domain stat-structure % on the fly computation of coherence spectrum is not supported if isfield(data, 'crsspctrm'), data = rmfield(data, 'crsspctrm'); end tmpcfg = []; tmpcfg.trials = cfg.trials; tmpcfg.jackknife = 'no'; if isfield(cfg, 'zparam') && ~strcmp(cfg.zparam,'powspctrm') % freqdesctiptives will only work on the powspctrm field % hence a temporary copy of the data is needed tempdata.dimord = data.dimord; tempdata.freq = data.freq; tempdata.label = data.label; tempdata.powspctrm = data.(cfg.zparam); tempdata.cfg = data.cfg; tempdata = ft_freqdescriptives(tmpcfg, tempdata); data.(cfg.zparam) = tempdata.powspctrm; clear tempdata else data = ft_freqdescriptives(tmpcfg, data); end dimord = data.dimord; dimtok = tokenize(dimord, '_'); end % if hasrpt % Handle the bivariate case % Check for bivariate metric with 'chan_chan' in the dimord selchan = strmatch('chan', dimtok); isfull = length(selchan)>1; % Check for bivariate metric with a labelcmb haslabelcmb = isfield(data, 'labelcmb'); if (isfull || haslabelcmb) && isfield(data, cfg.zparam) % A reference channel is required: if ~isfield(cfg, 'refchannel') error('no reference channel is specified'); end % check for refchannel being part of selection if ~strcmp(cfg.refchannel,'gui') if (isfull && ~any(ismember(data.label, cfg.refchannel))) || ... (haslabelcmb && ~any(ismember(data.labelcmb(:), cfg.refchannel))) error('cfg.refchannel is a not present in the (selected) channels)') end end % Interactively select the reference channel if strcmp(cfg.refchannel, 'gui') error('coh.refchannel = ''gui'' is not supported at the moment for ft_singleplotTFR'); % % % Open a single figure with the channel layout, the user can click on a reference channel % h = clf; % ft_plot_lay(lay, 'box', false); % title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...'); % % add the channel information to the figure % info = guidata(gcf); % info.x = lay.pos(:,1); % info.y = lay.pos(:,2); % info.label = lay.label; % guidata(h, info); % %set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}}); % set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'}); % set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'}); % set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'}); % return end if ~isfull, % Convert 2-dimensional channel matrix to a single dimension: if isempty(cfg.matrixside) sel1 = strmatch(cfg.refchannel, data.labelcmb(:,2), 'exact'); sel2 = strmatch(cfg.refchannel, data.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'outflow') sel1 = []; sel2 = strmatch(cfg.refchannel, data.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'inflow') sel1 = strmatch(cfg.refchannel, data.labelcmb(:,2), 'exact'); sel2 = []; end fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.zparam); data.(cfg.zparam) = data.(cfg.zparam)([sel1;sel2],:,:); data.label = [data.labelcmb(sel1,1);data.labelcmb(sel2,2)]; data.labelcmb = data.labelcmb([sel1;sel2],:); data = rmfield(data, 'labelcmb'); else % General case sel = match_str(data.label, cfg.refchannel); siz = [size(data.(cfg.zparam)) 1]; if strcmp(cfg.matrixside, 'inflow') || isempty(cfg.matrixside) %the interpretation of 'inflow' and 'outflow' depend on %the definition in the bivariate representation of the data %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(:,sel,:),2),[siz(1) 1 siz(3:end)]); sel1 = 1:siz(1); sel2 = sel; meandir = 2; elseif strcmp(cfg.matrixside, 'outflow') %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(sel,:,:),1),[siz(1) 1 siz(3:end)]); sel1 = sel; sel2 = 1:siz(1); meandir = 1; elseif strcmp(cfg.matrixside, 'ff-fd') error('cfg.matrixside = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); elseif strcmp(cfg.matrixside, 'fd-ff') error('cfg.matrixside = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); end %if matrixside end %if ~isfull end %handle the bivariate data % Apply baseline correction: if ~strcmp(cfg.baseline, 'no') data = ft_freqbaseline(cfg, data); end % Get physical x-axis range: if strcmp(cfg.xlim,'maxmin') xmin = min(data.(cfg.xparam)); xmax = max(data.(cfg.xparam)); else xmin = cfg.xlim(1); xmax = cfg.xlim(2); end % Replace value with the index of the nearest bin if ~isempty(cfg.xparam) xmin = nearest(data.(cfg.xparam), xmin); xmax = nearest(data.(cfg.xparam), xmax); end % Get physical y-axis range: if strcmp(cfg.ylim,'maxmin') ymin = min(data.(cfg.yparam)); ymax = max(data.(cfg.yparam)); else ymin = cfg.ylim(1); ymax = cfg.ylim(2); end % Replace value with the index of the nearest bin if ~isempty(cfg.yparam) ymin = nearest(data.(cfg.yparam), ymin); ymax = nearest(data.(cfg.yparam), ymax); end % test if X and Y are linearly spaced (to within 10^-12): % FROM UIMAGE x = data.(cfg.xparam)(xmin:xmax); y = data.(cfg.yparam)(ymin:ymax); dx = min(diff(x)); % smallest interval for X dy = min(diff(y)); % smallest interval for Y evenx = all(abs(diff(x)/dx-1)<1e-12); % true if X is linearly spaced eveny = all(abs(diff(y)/dy-1)<1e-12); % true if Y is linearly spaced % masking only possible for evenly spaced axis if strcmp(cfg.masknans, 'yes') && (~evenx || ~eveny) warning('(one of the) axis are not evenly spaced -> nans cannot be masked out -> cfg.masknans is set to ''no'';') cfg.masknans = 'no'; end if ~isempty(cfg.maskparameter) && (~evenx || ~eveny) warning('(one of the) axis are not evenly spaced -> no masking possible -> cfg.maskparameter cleared') cfg.maskparameter = []; end % perform channel selection selchannel = ft_channelselection(cfg.channel, data.label); sellab = match_str(data.label, selchannel); % cfg.maskparameter only possible for single channel if length(sellab) > 1 && ~isempty(cfg.maskparameter) warning('no masking possible for average over multiple channels -> cfg.maskparameter cleared') cfg.maskparameter = []; end dat = data.(cfg.zparam); if isfull dat = dat(sel1, sel2, ymin:ymax, xmin:xmax); dat = nanmean(dat, meandir); siz = size(dat); dat = reshape(dat, [max(siz(1:2)) siz(3) siz(4)]); dat = dat(sellab, :, :); elseif haslabelcmb dat = dat(sellab, ymin:ymax, xmin:xmax); else dat = dat(sellab, ymin:ymax, xmin:xmax); end if ~isempty(cfg.maskparameter) mask = data.(cfg.maskparameter); if isfull && cfg.maskalpha == 1 mask = mask(sel1, sel2, ymin:ymax, xmin:xmax); mask = nanmean(mask, meandir); siz = size(mask); mask = reshape(mask, [max(siz(1:2)) siz(3) siz(4)]); mask = reshape(mask(sellab, :, :), [siz(3) siz(4)]); elseif haslabelcmb && cfg.maskalpha == 1 mask = mask(sellab, ymin:ymax, xmin:xmax); elseif cfg.maskalpha == 1 mask = mask(sellab, ymin:ymax, xmin:xmax); elseif isfull && cfg.maskalpha ~= 1 %% check me maskl = mask(sel1, sel2, ymin:ymax, xmin:xmax); maskl = nanmean(maskl, meandir); siz = size(maskl); maskl = reshape(maskl, [max(siz(1:2)) siz(3) siz(4)]); maskl = squeeze(reshape(maskl(sellab, :, :), [siz(3) siz(4)])); mask = zeros(size(maskl)); mask(maskl) = 1; mask(~maskl) = cfg.maskalpha; elseif haslabelcmb && cfg.maskalpha ~= 1 maskl = squeeze(mask(sellab, ymin:ymax, xmin:xmax)); mask = zeros(size(maskl)); mask(maskl) = 1; mask(~maskl) = cfg.maskalpha; elseif cfg.maskalpha ~= 1 maskl = squeeze(mask(sellab, ymin:ymax, xmin:xmax)); mask = zeros(size(maskl)); mask(maskl) = 1; mask(~maskl) = cfg.maskalpha; end end siz = size(dat); datamatrix = reshape(mean(dat, 1), siz(2:end)); xvector = data.(cfg.xparam)(xmin:xmax); yvector = data.(cfg.yparam)(ymin:ymax); % Get physical z-axis range (color axis): if strcmp(cfg.zlim,'maxmin') zmin = min(datamatrix(:)); zmax = max(datamatrix(:)); elseif strcmp(cfg.zlim,'maxabs') zmin = -max(abs(datamatrix(:))); zmax = max(abs(datamatrix(:))); else zmin = cfg.zlim(1); zmax = cfg.zlim(2); end % set colormap if isfield(cfg,'colormap') if size(cfg.colormap,2)~=3, error('singleplotTFR(): Colormap must be a n x 3 matrix'); end set(gcf,'colormap',cfg.colormap); end; % Draw plot (and mask NaN's if requested): cla if isequal(cfg.masknans,'yes') && isempty(cfg.maskparameter) nans_mask = ~isnan(datamatrix); mask = double(nans_mask); ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) elseif isequal(cfg.masknans,'yes') && ~isempty(cfg.maskparameter) nans_mask = ~isnan(datamatrix); mask = mask .* nans_mask; mask = double(mask); ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) elseif isequal(cfg.masknans,'no') && ~isempty(cfg.maskparameter) mask = double(mask); ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip','highlightstyle',cfg.maskstyle,'highlight', mask) else ft_plot_matrix(xvector, yvector, datamatrix, 'clim',[zmin,zmax],'tag','cip') end hold on axis xy; set(gca,'Color','k') if isequal(cfg.colorbar,'yes') colorbar; end % Set adjust color axis if strcmp('yes',cfg.hotkeys) % Attach data and cfg to figure and attach a key listener to the figure set(gcf, 'KeyPressFcn', {@key_sub, zmin, zmax}) end % Make the figure interactive: if strcmp(cfg.interactive, 'yes') set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg, data}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg, data}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'callback', {@select_topoplotTFR, cfg, data}, 'event', 'WindowButtonMotionFcn'}); end % Create title text containing channel name(s) and channel number(s): if length(sellab) == 1 t = [char(cfg.channel) ' / ' num2str(sellab) ]; else t = sprintf('mean(%0s)', join(',', cfg.channel)); end h = title(t,'fontsize', cfg.fontsize); axis tight; hold off; % Set renderer if specified if ~isempty(cfg.renderer) set(gcf, 'renderer', cfg.renderer) end % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function t = join(separator,cells) if isempty(cells) t = ''; return; end t = char(cells{1}); for i=2:length(cells) t = [t separator char(cells{i})]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called by ft_select_channel in case cfg.refchannel='gui' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_singleplotTFR(label, cfg, varargin) cfg.refchannel = label; fprintf('selected cfg.refchannel = ''%s''\n', cfg.refchannel); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_singleplotTFR(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting a time range %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_topoplotTFR(range, cfg, varargin) cfg.comment = 'auto'; cfg.xlim = range(1:2); cfg.ylim = range(3:4); % compatibility fix for new ft_topoplotER/TFR cfg options if isfield(cfg,'showlabels') && strcmp(cfg.showlabels,'yes') cfg = rmfield(cfg,'showlabels'); cfg.marker = 'labels'; elseif isfield(cfg,'showlabels') && strcmp(cfg.showlabels,'no') cfg = rmfield(cfg,'showlabels'); cfg.marker = 'on'; end fprintf('selected cfg.xlim = [%f %f]\n', cfg.xlim(1), cfg.xlim(2)); fprintf('selected cfg.ylim = [%f %f]\n', cfg.ylim(1), cfg.ylim(2)); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_topoplotER(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which handles hot keys in the current plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key_sub(handle, eventdata, varargin) incr = (max(caxis)-min(caxis)) /10; % symmetrically scale color bar down by 10 percent if strcmp(eventdata.Key,'uparrow') caxis([min(caxis)-incr max(caxis)+incr]); % symmetrically scale color bar up by 10 percent elseif strcmp(eventdata.Key,'downarrow') caxis([min(caxis)+incr max(caxis)-incr]); % resort to minmax of data for colorbar elseif strcmp(eventdata.Key,'m') caxis([varargin{1} varargin{2}]); end
github
philippboehmsturm/antx-master
ft_multiplotER.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_multiplotER.m
30,333
utf_8
e0c6664daaa3c05950c772ba99a61345
function [cfg] = ft_multiplotER(cfg, varargin) % ft_multiplotER plots the event-related fields or potentials versus time % or of oscillatory activity (power or coherence) versus frequency. Multiple % datasets can be overlayed. The plots are arranged according to their % location specified in the layout. % % Use as: % ft_multiplotER(cfg, data) % ft_multiplotER(cfg, data, data2, ..., dataN) % % The data can be an ERP/ERF produced by FT_TIMELOCKANALYSIS, a powerspectrum % produced by FT_FREQANALYSIS or a coherencespectrum produced by FT_FREQDESCRIPTIVES. % If you specify multiple datasets they must contain the same channels, etc. % % The configuration can have the following parameters: % cfg.xparam = field to be plotted on x-axis (default depends on data.dimord) % 'time' or 'freq' % cfg.zparam = field to be plotted on y-axis (default depends on data.dimord) % 'avg', 'powspctrm' or 'cohspctrm' % cfg.maskparameter = field in the first dataset to be used for marking significant data % cfg.maskstyle = style used for masking of data, 'box', 'thickness' or 'saturation' (default = 'box') % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.ylim = 'maxmin' or [ymin ymax] (default = 'maxmin') % cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details % cfg.refchannel = name of reference channel for visualising connectivity, can be 'gui' % cfg.baseline = 'yes','no' or [time1 time2] (default = 'no'), see FT_TIMELOCKBASELINE or FT_FREQBASELINE % cfg.baselinetype = 'absolute' or 'relative' (default = 'absolute') % cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all') % cfg.axes = 'yes', 'no' (default = 'yes') % Draw x- and y-axes for each graph % cfg.box = 'yes', 'no' (default = 'no') % Draw a box around each graph % cfg.comment = string of text (default = date + colors) % Add 'comment' to graph (according to COMNT in the layout) % cfg.showlabels = 'yes', 'no' (default = 'no') % cfg.showoutline = 'yes', 'no' (default = 'no') % cfg.fontsize = font size of comment and labels (if present) (default = 8) % cfg.interactive = Interactive plot 'yes' or 'no' (default = 'no') % In a interactive plot you can select areas and produce a new % interactive plot when a selected area is clicked. Multiple areas % can be selected by holding down the SHIFT key. % cfg.renderer = 'painters', 'zbuffer',' opengl' or 'none' (default = []) % cfg.linestyle = linestyle/marker type, see options of the matlab PLOT function (default = '-') % can be a single style for all datasets, or a cell-array containing one style for each dataset % cfg.linewidth = linewidth in points (default = 0.5) % cfg.graphcolor = color(s) used for plotting the dataset(s) (default = 'brgkywrgbkywrgbkywrgbkyw') % alternatively, colors can be specified as Nx3 matrix of RGB values % % cfg.layout = specify the channel layout for plotting using one of % the following ways: % % The layout defines how the channels are arranged and what the size of each % subplot is. You can specify the layout in a variety of ways: % - you can provide a pre-computed layout structure (see prepare_layout) % - you can give the name of an ascii layout file with extension *.lay % - you can give the name of an electrode file % - you can give an electrode definition, i.e. "elec" structure % - you can give a gradiometer definition, i.e. "grad" structure % If you do not specify any of these and the data structure contains an % electrode or gradiometer structure, that will be used for creating a % layout. If you want to have more fine-grained control over the layout % of the subplots, you should create your own layout file. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. For this particular function, the % data should be provided as a cell array. % % See also: % FT_MULTIPLOTTFR, FT_SINGLEPLOTER, FT_SINGLEPLOTTFR, FT_TOPOPLOTER, FT_TOPOPLOTTFR, % FT_PREPARE_LAYOUT % Undocumented local options: % cfg.layoutname % % This function depends on FT_TIMELOCKBASELINE which has the following options: % cfg.baseline, documented % cfg.channel % cfg.baselinewindow % cfg.previous % cfg.version % % This function depends on FT_FREQBASELINE which has the following options: % cfg.baseline, documented % cfg.baselinetype % Copyright (C) 2003-2006, Ole Jensen % Copyright (C) 2007-2011, Roemer van der Meij & Jan-Mathijs Schoffelen % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_multiplotER.m 3734 2011-06-29 08:14:36Z jorhor $ ft_defaults cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'unused', {'cohtargetchannel'}); cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedforward', 'outflow'}); cfg = ft_checkconfig(cfg, 'renamedval', {'matrixside', 'feedback', 'inflow'}); cfg = ft_checkconfig(cfg, 'renamed', {'cohrefchannel', 'refchannel'}); % set default for inputfile if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end hasdata = nargin>1; hasinputfile = ~isempty(cfg.inputfile); if hasdata && hasinputfile error('cfg.inputfile should not be used in conjunction with giving input data to this function'); end if hasdata % do nothing elseif hasinputfile if ~ischar(cfg.inputfile) cfg.inputfile = {cfg.inputfile}; end for i = 1:numel(cfg.inputfile) varargin{i} = loadvar(cfg.inputfile{i}, 'data'); % read datasets end if isfield(cfg, 'interactive') && strcmp(cfg.interactive, 'yes'), warning('switching off interactive mode, this is not supported when loading an inputfile from disk'); end end % set the defaults: if ~isfield(cfg,'baseline'), cfg.baseline = 'no'; end if ~isfield(cfg,'trials'), cfg.trials = 'all'; end if ~isfield(cfg,'xlim'), cfg.xlim = 'maxmin'; end if ~isfield(cfg,'ylim'), cfg.ylim = 'maxmin'; end if ~isfield(cfg,'comment'), cfg.comment = strcat([date '\n']); end if ~isfield(cfg,'axes'), cfg.axes = 'yes'; end if ~isfield(cfg,'showlabels'), cfg.showlabels = 'no'; end if ~isfield(cfg,'showoutline'), cfg.showoutline = 'no'; end if ~isfield(cfg,'box'), cfg.box = 'no'; end if ~isfield(cfg,'fontsize'), cfg.fontsize = 8; end if ~isfield(cfg,'graphcolor'), cfg.graphcolor = 'brgkywrgbkywrgbkywrgbkyw'; end if ~isfield(cfg,'interactive'), cfg.interactive = 'no'; end if ~isfield(cfg,'renderer'), cfg.renderer = []; end if ~isfield(cfg,'maskparameter'), cfg.maskparameter = []; end if ~isfield(cfg,'linestyle'), cfg.linestyle = '-'; end if ~isfield(cfg,'linewidth'), cfg.linewidth = 0.5; end if ~isfield(cfg,'maskstyle'), cfg.maskstyle = 'box'; end if ~isfield(cfg,'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'matrixside'), cfg.matrixside = 'outflow'; end Ndata = numel(varargin); %FIXME rename matrixside and refchannel in more meaningful options if ischar(cfg.graphcolor) GRAPHCOLOR = ['k' cfg.graphcolor]; elseif isnumeric(cfg.graphcolor) GRAPHCOLOR = [0 0 0; cfg.graphcolor]; end % check for linestyle being a cell-array, check it's length, and lengthen it if does not have enough styles in it if ischar(cfg.linestyle) cfg.linestyle = {cfg.linestyle}; end if Ndata > 1 if (length(cfg.linestyle) < Ndata ) && (length(cfg.linestyle) > 1) error('either specify cfg.linestyle as a cell-array with one cell for each dataset, or only specify one linestyle') elseif (length(cfg.linestyle) < Ndata ) && (length(cfg.linestyle) == 1) tmpstyle = cfg.linestyle{1}; cfg.linestyle = cell(Ndata , 1); for idataset = 1:Ndata cfg.linestyle{idataset} = tmpstyle; end end end % % interactive plotting is not allowed with more than 1 input % if numel(varargin)>1 && strcmp(cfg.interactive, 'yes') % error('interactive plotting is not supported with more than 1 input data set'); % end % ensure that the input is correct, also backward compatibility with old data structures: for i=1:Ndata varargin{i} = ft_checkdata(varargin{i}, 'datatype', {'timelock', 'freq'}); dtype{i} = ft_datatype(varargin{i}); % this is needed for correct treatment of GRAPHCOLOR later on if nargin>1, if ~isempty(inputname(i+1)) iname{i+1} = inputname(i+1); else iname{i+1} = ['input',num2str(i,'%02d')]; end else iname{i+1} = cfg.inputfile{i}; end end if Ndata>1, if ~all(strcmp(dtype{1}, dtype)) error('input data are of different type; this is not supported'); end end dtype = dtype{1}; dimord = varargin{1}.dimord; dimtok = tokenize(dimord, '_'); % Set x/y/zparam defaults according to datatype and dimord switch dtype case 'timelock' if ~isfield(cfg, 'xparam'), cfg.xparam = 'time'; end if ~isfield(cfg, 'yparam'), cfg.yparam = ''; end if ~isfield(cfg, 'zparam'), cfg.zparam = 'avg'; end case 'freq' if any(ismember(dimtok, 'time')) if ~isfield(cfg, 'xparam'), cfg.xparam = 'time'; end if ~isfield(cfg, 'yparam'), cfg.yparam = 'freq'; end %FIXME if ~isfield(cfg, 'zparam'), cfg.zparam = 'powspctrm'; end else if ~isfield(cfg, 'xparam'), cfg.xparam = 'freq'; end if ~isfield(cfg, 'yparam'), cfg.yparam = ''; end if ~isfield(cfg, 'zparam'), cfg.zparam = 'powspctrm'; end end case 'comp' % not supported otherwise % not supported end % user specified own fields, but no yparam (which is not asked in help) if isfield(cfg, 'xparam') && isfield(cfg, 'zparam') && ~isfield(cfg, 'yparam') cfg.yparam = ''; end if isfield(cfg, 'channel') && isfield(varargin{1}, 'label') cfg.channel = ft_channelselection(cfg.channel, varargin{1}.label); elseif isfield(cfg, 'channel') && isfield(varargin{1}, 'labelcmb') cfg.channel = ft_channelselection(cfg.channel, unique(varargin{1}.labelcmb(:))); end % perform channel selection but only allow this when cfg.interactive = 'no' if isfield(varargin{1}, 'label') && strcmp(cfg.interactive, 'no') selchannel = ft_channelselection(cfg.channel, varargin{1}.label); elseif isfield(varargin{1}, 'labelcmb') && strcmp(cfg.interactive, 'no') selchannel = ft_channelselection(cfg.channel, unique(varargin{1}.labelcmb(:))); end % check whether rpt/subj is present and remove if necessary and whether hasrpt = sum(ismember(dimtok, {'rpt' 'subj'})); if strcmp(dtype, 'timelock') && hasrpt, tmpcfg = []; tmpcfg.trials = cfg.trials; for i=1:Ndata varargin{i} = ft_timelockanalysis(tmpcfg, varargin{i}); end dimord = varargin{1}.dimord; dimtok = tokenize(dimord, '_'); elseif strcmp(dtype, 'freq') && hasrpt, % this also deals with fourier-spectra in the input % or with multiple subjects in a frequency domain stat-structure % on the fly computation of coherence spectrum is not supported for i=1:Ndata if isfield(varargin{i}, 'crsspctrm'), varargin{i} = rmfield(varargin{i}, 'crsspctrm'); end end tmpcfg = []; tmpcfg.trials = cfg.trials; tmpcfg.jackknife = 'no'; for i=1:Ndata if isfield(cfg, 'zparam') && ~strcmp(cfg.zparam,'powspctrm') % freqdesctiptives will only work on the powspctrm field % hence a temporary copy of the data is needed tempdata.dimord = varargin{i}.dimord; tempdata.freq = varargin{i}.freq; tempdata.label = varargin{i}.label; tempdata.powspctrm = varargin{i}.(cfg.zparam); tempdata.cfg = varargin{i}.cfg; tempdata = ft_freqdescriptives(tmpcfg, tempdata); varargin{i}.(cfg.zparam) = tempdata.powspctrm; clear tempdata else varargin{i} = ft_freqdescriptives(tmpcfg, varargin{i}); end end dimord = varargin{1}.dimord; dimtok = tokenize(dimord, '_'); end % Read or create the layout that will be used for plotting cla lay = ft_prepare_layout(cfg, varargin{1}); cfg.layout = lay; ft_plot_lay(lay, 'box', false,'label','no','point','no'); % Apply baseline correction if ~strcmp(cfg.baseline, 'no') for i=1:Ndata if strcmp(dtype, 'timelock') && strcmp(cfg.xparam, 'time') varargin{i} = ft_timelockbaseline(cfg, varargin{i}); elseif strcmp(dtype, 'freq') && strcmp(cfg.xparam, 'time') varargin{i} = ft_freqbaseline(cfg, varargin{i}); elseif strcmp(dtype, 'freq') && strcmp(cfg.xparam, 'freq') error('Baseline correction is not supported for spectra without a time dimension'); else warning('Baseline correction not applied, please set cfg.xparam'); end end end % Handle the bivariate case % Check for bivariate metric with 'chan_chan' in the dimord selchan = strmatch('chan', dimtok); isfull = length(selchan)>1; % Check for bivariate metric with a labelcmb haslabelcmb = isfield(varargin{1}, 'labelcmb'); if (isfull || haslabelcmb) && isfield(varargin{1}, cfg.zparam) % A reference channel is required: if ~isfield(cfg, 'refchannel') error('no reference channel is specified'); end % check for refchannel being part of selection if ~strcmp(cfg.refchannel,'gui') if (isfull && ~any(ismember(varargin{1}.label, cfg.refchannel))) || ... (haslabelcmb && ~any(ismember(varargin{1}.labelcmb(:), cfg.refchannel))) error('cfg.refchannel is a not present in the (selected) channels)') end end % Interactively select the reference channel if strcmp(cfg.refchannel, 'gui') % Open a single figure with the channel layout, the user can click on a reference channel h = clf; ft_plot_lay(lay, 'box', false); title('Select the reference channel by dragging a selection window, more than 1 channel can be selected...'); % add the channel information to the figure info = guidata(gcf); info.x = lay.pos(:,1); info.y = lay.pos(:,2); info.label = lay.label; guidata(h, info); %set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'callback', {@select_topoplotER, cfg, data}}); set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotER, cfg, varargin{1}}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotER, cfg, varargin{1}}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_multiplotER, cfg, varargin{1}}, 'event', 'WindowButtonMotionFcn'}); return end for i=1:Ndata if ~isfull, % Convert 2-dimensional channel matrix to a single dimension: if isempty(cfg.matrixside) sel1 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,2), 'exact'); sel2 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'outflow') sel1 = []; sel2 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,1), 'exact'); elseif strcmp(cfg.matrixside, 'inflow') sel1 = strmatch(cfg.refchannel, varargin{i}.labelcmb(:,2), 'exact'); sel2 = []; end fprintf('selected %d channels for %s\n', length(sel1)+length(sel2), cfg.zparam); varargin{i}.(cfg.zparam) = varargin{i}.(cfg.zparam)([sel1;sel2],:,:); varargin{i}.label = [varargin{i}.labelcmb(sel1,1);varargin{i}.labelcmb(sel2,2)]; varargin{i}.labelcmb = varargin{i}.labelcmb([sel1;sel2],:); varargin{i} = rmfield(varargin{i}, 'labelcmb'); else % General case sel = match_str(varargin{i}.label, cfg.refchannel); siz = [size(varargin{i}.(cfg.zparam)) 1]; if strcmp(cfg.matrixside, 'inflow') || isempty(cfg.matrixside) %the interpretation of 'inflow' and 'outflow' depend on %the definition in the bivariate representation of the data %in FieldTrip the row index 'causes' the column index channel %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(:,sel,:),2),[siz(1) 1 siz(3:end)]); sel1 = 1:siz(1); sel2 = sel; meandir = 2; elseif strcmp(cfg.matrixside, 'outflow') %data.(cfg.zparam) = reshape(mean(data.(cfg.zparam)(sel,:,:),1),[siz(1) 1 siz(3:end)]); sel1 = sel; sel2 = 1:siz(1); meandir = 1; elseif strcmp(cfg.matrixside, 'ff-fd') error('cfg.matrixside = ''ff-fd'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); elseif strcmp(cfg.matrixside, 'fd-ff') error('cfg.matrixside = ''fd-ff'' is not supported anymore, you have to manually subtract the two before the call to ft_topoplotER'); end %if matrixside end %if ~isfull end %for i end %handle the bivariate data % Get physical min/max range of x if strcmp(cfg.xlim,'maxmin') % Find maxmin throughout all varargins: xmin = []; xmax = []; for i=1:length(varargin) xmin = min([xmin varargin{i}.(cfg.xparam)]); xmax = max([xmax varargin{i}.(cfg.xparam)]); end else xmin = cfg.xlim(1); xmax = cfg.xlim(2); end % Get the index of the nearest bin for i=1:Ndata xidmin(i,1) = nearest(varargin{i}.(cfg.xparam), xmin); xidmax(i,1) = nearest(varargin{i}.(cfg.xparam), xmax); end %FIXME do something with yparam here %technically should not be defined for multiplotER, but can be defined (and %use ft_selectdata to average across frequencies % Get physical y-axis range (ylim / zparam): if strcmp(cfg.ylim,'maxmin') % Find maxmin throughout all varargins: ymin = []; ymax = []; for i=1:length(varargin) % Select the channels in the data that match with the layout: dat = []; dat = varargin{i}.(cfg.zparam); [seldat, sellay] = match_str(varargin{i}.label, lay.label); if isempty(seldat) error('labels in data and labels in layout do not match'); end data = dat(seldat,:); ymin = min([ymin min(min(min(data)))]); ymax = max([ymax max(max(max(data)))]); end else ymin = cfg.ylim(1); ymax = cfg.ylim(2); end % convert the layout to Ole's style of variable names X = lay.pos(:,1); Y = lay.pos(:,2); width = lay.width; height = lay.height; Lbl = lay.label; % Create empty channel coordinates and labels arrays: chanX(1:length(Lbl)) = NaN; chanY(1:length(Lbl)) = NaN; chanLabels = cell(1,length(Lbl)); hold on; colorLabels = []; if isfield(lay, 'outline') && strcmp(cfg.showoutline, 'yes') for i=1:length(lay.outline) if ~isempty(lay.outline{i}) tmpX = lay.outline{i}(:,1); tmpY = lay.outline{i}(:,2); h = line(tmpX, tmpY); set(h, 'color', 'k'); set(h, 'linewidth', 2); end end end % Plot each data set: for i=1:Ndata % Make vector dat with one value for each channel dat = varargin{i}.(cfg.zparam); xparam = varargin{i}.(cfg.xparam); % Take subselection of channels, this only works % in the interactive mode if exist('selchannel', 'var') sellab = match_str(varargin{i}.label, selchannel); label = varargin{i}.label(sellab); else sellab = 1:numel(varargin{i}.label); label = varargin{i}.label; end if ~isempty(cfg.yparam) if isfull dat = dat(sel1, sel2, ymin:ymax, xidmin(i):xidmax(i)); dat = nanmean(nanmean(dat, meandir), 3); siz = size(dat); %FIXMEdat = reshape(dat, [siz(1:2) siz(4)]); elseif haslabelcmb dat = dat(sellab, ymin:ymax, xidmin(i):xidmax(i)); dat = nanmean(dat, 2); siz = size(dat); dat = reshape(dat, [siz(1) siz(3)]); else dat = dat(sellab, ymin:ymax, xidmin(i):xidmax(i)); dat = nanmean(nanmean(dat, 3), 2); siz = size(dat); dat = reshape(dat, [siz(1) siz(3)]); end else if isfull dat = dat(sel1, sel2, xidmin(i):xidmax(i)); dat = nanmean(dat, meandir); %FIXME elseif haslabelcmb dat = dat(sellab, xidmin(i):xidmax(i)); else dat = dat(sellab, xidmin(i):xidmax(i)); end end xparam = xparam(xidmin(i):xidmax(i)); % Select the channels in the data that match with the layout: [seldat, sellay] = match_str(label, cfg.layout.label); if isempty(seldat) error('labels in data and labels in layout do not match'); end datamatrix = dat(seldat, :); % Select x and y coordinates and labels of the channels in the data layX = cfg.layout.pos(sellay,1); layY = cfg.layout.pos(sellay,2); layLabels = cfg.layout.label(sellay); if ~isempty(cfg.maskparameter) % one value for each channel, or one value for each channel-time point maskmatrix = varargin{1}.(cfg.maskparameter)(seldat,:); maskmatrix = maskmatrix(:,xidmin:xidmax); else % create an Nx0 matrix maskmatrix = zeros(length(seldat), 0); end if Ndata > 1 if ischar(GRAPHCOLOR); colorLabels = [colorLabels iname{i+1} '=' GRAPHCOLOR(i+1) '\n']; elseif isnumeric(GRAPHCOLOR); colorLabels = [colorLabels iname{i+1} '=' num2str(GRAPHCOLOR(i+1,:)) '\n']; end end if ischar(GRAPHCOLOR); color = GRAPHCOLOR(i+1); elseif isnumeric(GRAPHCOLOR); color = GRAPHCOLOR(i+1,:); end for m=1:length(layLabels) % Plot ER plotWnd(xparam, datamatrix(m,:),[xmin xmax],[ymin ymax], layX(m), layY(m), width(m), height(m), layLabels(m), cfg, color, cfg.linestyle{i}, maskmatrix(m,:),i); %FIXME shouldn't this be replaced with a call to ft_plot_vector? if i==1, % Keep ER plot coordinates (at centre of ER plot), and channel labels (will be stored in the figure's UserData struct): chanX(m) = X(m) + 0.5 * width(m); chanY(m) = Y(m) + 0.5 * height(m); chanLabels{m} = Lbl{m}; end end %for m end %for i % Add the colors of the different datasets to the comment: cfg.comment = [cfg.comment colorLabels]; % Write comment text: l = cellstrmatch('COMNT',Lbl); if ~isempty(l) ft_plot_text(X(l),Y(l),sprintf(cfg.comment),'Fontsize',cfg.fontsize); end % Plot scales: l = cellstrmatch('SCALE',Lbl); if ~isempty(l) plotScales([xmin xmax],[ymin ymax],X(l),Y(l),width(1),height(1),cfg) end % Make the figure interactive: if strcmp(cfg.interactive, 'yes') % add the channel information to the figure info = guidata(gcf); info.x = lay.pos(:,1); info.y = lay.pos(:,2); info.label = lay.label; guidata(gcf, info); set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{:}}, 'event', 'WindowButtonUpFcn'}); set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{:}}, 'event', 'WindowButtonDownFcn'}); set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', {@select_singleplotER, cfg, varargin{:}}, 'event', 'WindowButtonMotionFcn'}); end axis tight axis off if strcmp(cfg.box, 'yes') abc = axis; axis(abc + [-1 +1 -1 +1]*mean(abs(abc))/10) end orient landscape hold off % Set renderer if specified if ~isempty(cfg.renderer) set(gcf, 'renderer', cfg.renderer) end % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotScales(xlim,ylim,xpos,ypos,width,height,cfg) x1 = xpos; x2 = xpos+width; y1 = ypos; y2 = ypos+width; ft_plot_box([xpos xpos+width ypos ypos+height],'edgecolor','b') if xlim(1) <= 0 && xlim(2) >= 0 xs = xpos+width*([0 0]-xlim(1))/(xlim(2)-xlim(1)); ys = ypos+height*(ylim-ylim(1))/(ylim(2)-ylim(1)); ft_plot_vector(xs,ys,'color','b'); end if ylim(1) <= 0 && ylim(2) >= 0 xs = xpos+width*(xlim-xlim(1))/(xlim(2)-xlim(1)); ys = ypos+height*([0 0]-ylim(1))/(ylim(2)-ylim(1)); ft_plot_vector(xs,ys,'color','b'); end ft_plot_text( x1,y1,num2str(xlim(1),3),'rotation',90,'HorizontalAlignment','Right','VerticalAlignment','middle','Fontsize',cfg.fontsize); ft_plot_text( x2,y1,num2str(xlim(2),3),'rotation',90,'HorizontalAlignment','Right','VerticalAlignment','middle','Fontsize',cfg.fontsize); ft_plot_text( x2,y1,num2str(ylim(1),3),'HorizontalAlignment','Left','VerticalAlignment','bottom','Fontsize',cfg.fontsize); ft_plot_text( x2,y2,num2str(ylim(2),3),'HorizontalAlignment','Left','VerticalAlignment','bottom','Fontsize',cfg.fontsize); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function plotWnd(x,y,xlim,ylim,xpos,ypos,width,height,label,cfg,color,style,mask,i) % Clip out of bounds y values: y(y > ylim(2)) = ylim(2); y(y < ylim(1)) = ylim(1); xs = xpos+width*(x-xlim(1))/(xlim(2)-xlim(1)); ys = ypos+height*(y-ylim(1))/(ylim(2)-ylim(1)); % Add boxes when masktyle is box, ft_plot_vector doesnt support boxes higher than ydata yet, so this code is left here if i<2 && ~isempty(mask) && strcmp(cfg.maskstyle, 'box') % i stops box from being plotted more than once % determine how many boxes mask = mask(:)'; mask = mask~=0; mask = diff([0 mask 0]); boxbeg = find(mask== 1); boxend = find(mask==-1)-1; numbox = length(boxbeg); for i = 1:numbox xmaskmin = xpos+width*(x(boxbeg(i))-xlim(1))/(xlim(2)-xlim(1)); xmaskmax = xpos+width*(x(boxend(i))-xlim(1))/(xlim(2)-xlim(1)); %plot([xmaskmin xmaskmax xmaskmax xmaskmin xmaskmin],[ypos ypos ypos+height ypos+height ypos],'r'); hs = patch([xmaskmin xmaskmax xmaskmax xmaskmin xmaskmin],[ypos ypos ypos+height ypos+height ypos], [.6 .6 .6]); set(hs, 'EdgeColor', 'none'); end end if isempty(mask) || (~isempty(mask) && strcmp(cfg.maskstyle,'box')) ft_plot_vector(xs, ys, 'color', color, 'style', style, 'linewidth', cfg.linewidth); elseif ~isempty(mask) && ~strcmp(cfg.maskstyle,'box') % ft_plot_vector does not support boxes higher than ydata yet, so a separate option remains below ft_plot_vector(xs, ys, 'color', color, 'style', style, 'linewidth', cfg.linewidth, 'highlight', mask, 'highlightstyle', cfg.maskstyle); end if strcmp(cfg.showlabels,'yes') ft_plot_text(xpos,ypos+1.0*height,label,'Fontsize',cfg.fontsize); end % Draw x axis if strcmp(cfg.axes,'yes') || strcmp(cfg.axes, 'xy') || strcmp(cfg.axes,'x') xs = xpos+width*(xlim-xlim(1))/(xlim(2)-xlim(1)); if prod(ylim) < 0 % this is equivalent to including 0 ys = ypos+height*([0 0]-ylim(1))/(ylim(2)-ylim(1)); else ys = [ypos ypos]; end ft_plot_vector(xs,ys,'color','k'); end % Draw y axis if strcmp(cfg.axes,'yes') || strcmp(cfg.axes, 'xy') || strcmp(cfg.axes,'y') if prod(xlim) < 0 % this is equivalent to including 0 xs = xpos+width*([0 0]-xlim(1))/(xlim(2)-xlim(1)); else % if not, move the y-axis to the x-axis xs = [xpos xpos]; end ys = ypos+height*(ylim-ylim(1))/(ylim(2)-ylim(1)); ft_plot_vector(xs,ys,'color','k'); end % Draw box around plot: if strcmp(cfg.box,'yes') ft_plot_box([xpos xpos+width ypos ypos+height],'edgecolor','k'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function l = cellstrmatch(str,strlist) l = []; for k=1:length(strlist) if strcmp(char(str),char(strlist(k))) l = [l k]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting channels in case of cfg.refchannel='gui' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_multiplotER(label, cfg, varargin) if iscell(label) label = label{1}; end cfg.refchannel = label; %FIXME this only works with label being a string fprintf('selected cfg.refchannel = ''%s''\n', cfg.refchannel); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_multiplotER(cfg, varargin{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION which is called after selecting channels in case of cfg.interactive='yes' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function select_singleplotER(label, cfg, varargin) if ~isempty(label) %cfg.xlim = 'maxmin'; cfg.channel = label; fprintf('selected cfg.channel = {'); for i=1:(length(cfg.channel)-1) fprintf('''%s'', ', cfg.channel{i}); end fprintf('''%s''}\n', cfg.channel{end}); p = get(gcf, 'Position'); f = figure; set(f, 'Position', p); ft_singleplotER(cfg, varargin{:}); end
github
philippboehmsturm/antx-master
ft_spikesorting.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spikesorting.m
7,854
utf_8
a39d6cf535b4f2352fc27a704698a019
function [spike] = ft_spikesorting(cfg, spike); % FT_SPIKESORTING performs clustering of spike-waveforms and returns the unit number to which each spike belongs. % % Use as % [spike] = ft_spikesorting(cfg, spike) % % The configuration can contain % cfg.channel cell-array with channel selection (default = 'all'), see FT_CHANNELSELECTION for details % cfg.method 'kmeans', 'ward' % cfg.feedback 'no', 'text', 'textbar', 'gui' (default = 'textbar') % cfg.kmeans substructure with additional low-level options for this method % cfg.ward substructure with additional low-level options for this method % cfg.ward.distance 'L1', 'L2', 'correlation', 'cosine' % % The input spike structure can be imported using READ_FCDC_SPIKE and should contain % spike.label = 1 x Nchans cell-array, with channel labels % spike.waveform = 1 x Nchans cell-array, each element contains a matrix (Nsamples x Nspikes), can be empty % spike.timestamp = 1 x Nchans cell-array, each element contains a vector (1 x Nspikes) % spike.unit = 1 x Nchans cell-array, each element contains a vector (1 x Nspikes) % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following options: % cfg.inputfile = ... % cfg.outputfile = ... % If you specify one of these (or both) the input data will be read from a *.mat % file on disk and/or the output data will be written to a *.mat file. These mat % files should contain only a single variable, corresponding with the % input/output structure. % % See also FT_READ_SPIKE, FT_SPIKEDOWNSAMPLE % Copyright (C) 2006-2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_spikesorting.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); % set the defaults if ~isfield(cfg, 'feedback'), cfg.feedback = 'textbar'; end if ~isfield(cfg, 'method'), cfg.method = 'ward'; end if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end if ~isfield(cfg, 'inputfile'), cfg.inputfile = []; end if ~isfield(cfg, 'outputfile'), cfg.outputfile = []; end if isequal(cfg.method, 'ward') if ~isfield(cfg, 'ward'), cfg.ward = []; end if ~isfield(cfg.ward, 'distance'), cfg.ward.distance = 'L2'; end if ~isfield(cfg.ward, 'optie'), cfg.ward.optie = 'ward'; end if ~isfield(cfg.ward, 'aantal'), cfg.ward.aantal = 10; end if ~isfield(cfg.ward, 'absoluut'), cfg.ward.absoluut = 1; end end if isequal(cfg.method, 'kmeans') if ~isfield(cfg, 'kmeans'), cfg.kmeans = []; end if ~isfield(cfg.kmeans, 'aantal'), cfg.kmeans.aantal = 10; end end % load optional given inputfile as data hasdata = (nargin>1); if ~isempty(cfg.inputfile) % the input data should be read from file if hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); else data = loadvar(cfg.inputfile, 'data'); end end % select the channels cfg.channel = ft_channelselection(cfg.channel, spike.label); sel = match_str(spike.label, cfg.channel); spike.label = spike.label(sel); spike.waveform = spike.waveform(sel); spike.timestamp = spike.timestamp(sel); spike.unit = {}; % this will be assigned by the clustering nchan = length(spike.label); for chanlop=1:nchan label = spike.label{chanlop}; waveform = spike.waveform{chanlop}; timestamp = spike.timestamp{chanlop}; nspike = size(waveform,2); unit = zeros(1,nspike); fprintf('sorting %d spikes in channel %s\n', nspike, label); switch cfg.method case 'ward' dist = ward_distance(cfg, waveform); [grootte,ordening] = cluster_ward(dist,cfg.ward.optie,cfg.ward.absoluut,cfg.ward.aantal); for i=1:cfg.ward.aantal begsel = sum([1 grootte(1:(i-1))]); endsel = sum([0 grootte(1:(i ))]); unit(ordening(begsel:endsel)) = i; end case 'kmeans' unit = kmeans(waveform', cfg.kmeans.aantal)'; % 'sqEuclidean' - Squared Euclidean distance % 'cityblock' - Sum of absolute differences, a.k.a. L1 % 'cosine' - One minus the cosine of the included angle % between points (treated as vectors) % 'correlation' - One minus the sample correlation between % points (treated as sequences of values) otherwise error('unsupported clustering method'); end % remember the sorted units spike.unit{chanlop} = unit; end % add version information to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: ft_spikesorting.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % remember the configuration details of the input data try, cfg.previous = spike.cfg; end % remember the configuration spike.cfg = cfg; % the output data should be saved to a MATLAB file if ~isempty(cfg.outputfile) savevar(cfg.outputfile, 'data', spike); % use the variable name "data" in the output file end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that computes the distance between all spike waveforms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dist] = ward_distance(cfg, waveform); nspike = size(waveform,2); dist = zeros(nspike, nspike); ft_progress('init', cfg.feedback, 'computing distance'); switch lower(cfg.ward.distance) case 'l1' for i=1:nspike ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike); for j=2:nspike dist(i,j) = sum(abs(waveform(:,j)-waveform(:,i))); dist(j,i) = dist(i,j); end end case 'l2' for i=1:nspike ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike); for j=2:nspike dist(i,j) = sqrt(sum((waveform(:,j)-waveform(:,i)).^2)); dist(j,i) = dist(i,j); end end case 'correlation' for i=1:nspike ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike); for j=2:nspike dist(i,j) = corrcoef(waveform(:,j),waveform(:,i)); dist(j,i) = dist(i,j); end end case 'cosine' for i=1:nspike ft_progress((i-1)/nspike, 'computing distance for spike %d/%d', i, nspike); for j=2:nspike x = waveform(:,j); y = waveform(:,i); x = x./norm(x); y = y./norm(y); dist(i,j) = dot(x, y); dist(j,i) = dist(i,j); end end otherwise error('unsupported distance metric'); end ft_progress('close');
github
philippboehmsturm/antx-master
ft_spike_plot_isi.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_plot_isi.m
3,481
utf_8
7fae512a14b0530b7173a35ff65c5dbf
function [H] = ft_spike_plot_isih(cfg,isih) % FT_SPIKE_PLOT_ISI makes an inter-spike-interval bar plot % % Inputs: % ISIH is the output from FT_SPIKE_ISIHIST % % Configurations (cfg): % % cfg.spikechannel = string or index or logical array to to select 1 spike channel. % (default = 1). % cfg.ylim = [min max] or 'auto' (default) % If 'auto', we plot from 0 to 110% of maximum plotted value); % cfg.plotfit = 'yes' (default) or 'no'. This requires that when calling % FT_SPIKESTATION_ISI, cfg.gammafit = 'yes'. % % Outputs: % H.fit = handle for line fit. Use SET and GET to access. % H.isih = handle for bar isi histogram. Use SET and GET to access. % % Martin Vinck (C) 2010. defaults.plotfit = {'no' 'yes'}; defaults.spikechannel = {1}; defaults.ylim = {'auto'}; cfg = ft_spike_sub_defaultcfg(cfg,defaults); % get the spikechannels cfg.channel = ft_channelselection(cfg.spikechannel, isih.label); spikesel = match_str(isih.label, cfg.channel); nUnits = length(spikesel); % number of spike channels if nUnits~=1, error('MATLAB:ft_spike_plot_isi:cfg:spikechannel:wrongInput',... 'One spikechannel should be selected by means of cfg.spikechannel'); end % plot the average isih isiHdl = bar(isih.time,isih.avg(spikesel,:),'k'); set(isiHdl,'BarWidth', 1) if strcmp(cfg.plotfit,'yes') if ~isfield(isih,'gammaShape') || ~isfield(isih,'gammaScale') error('MATLAB:ft_spike_plot_isi:fitConflict',... 'ISIH.gammaShape and .gammaScale should be present when cfg.plotfit = yes'); end % generate the probabilities according to the gamma model pGamma = gampdf(isih.time, isih.gammaShape(spikesel), isih.gammaScale(spikesel)); pGamma = pGamma./sum(pGamma); % scale the fit in the same way (total area is equal) sumIsih = sum(isih.avg(spikesel,:),2); pGamma = pGamma*sumIsih; % plot the fit hold on fitHdl = plot(isih.time, pGamma,'r'); else pGamma = 0; end try if strcmp(isih.cfg.outputunit, 'proportion') ylabel('probability') elseif strcmp(isih.cfg.outputunit, 'spikecount') ylabel('spikecount') end end xlabel('bin edges (sec)') % set the x axis set(gca,'XLim', [min(isih.time) max(isih.time)]) % set the y axis if strcmp(cfg.ylim, 'auto') y = [isih.avg(spikesel,:) pGamma]; cfg.ylim = [0 max(y(:))*1.1+eps]; elseif ~isrealvec(cfg.ylim)||length(cfg.ylim)~=2 || cfg.ylim(2)<cfg.ylim(1) error('MATLAB:ft_spike_plot_isi:cfg:ylim',... 'cfg.ylim should be "auto" or ascending order 1-by-2 vector in seconds'); end set(gca,'YLim', cfg.ylim) set(gca,'TickDir','out') % store the handles if strcmp(cfg.plotfit,'yes'), H.fit = fitHdl; end H.isih = isiHdl; % as usual, make sure that panning and zooming does not distort the y limits set(zoom,'ActionPostCallback',{@mypostcallback,cfg.ylim,[min(isih.time) max(isih.time)]}); set(pan,'ActionPostCallback',{@mypostcallback,cfg.ylim,[min(isih.time) max(isih.time)]}); function [] = mypostcallback(fig,evd,limY,limX) % get the x limits and reset them ax = evd.Axes; xlim = get(ax(1), 'XLim'); ylim = get(ax(1), 'YLim'); if limX(1)>xlim(1), xlim(1) = limX(1); end if limX(2)<xlim(2), xlim(2) = limX(2); end if limY(1)>ylim(1), ylim(1) = limY(1); end if limY(2)<ylim(2), ylim(2) = limY(2); end set(ax(1), 'XLim',xlim) set(ax(1), 'YLim',ylim);
github
philippboehmsturm/antx-master
ft_spike_plot_jpsth.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_plot_jpsth.m
12,629
utf_8
d6fc9d84b5e6bbd6b41575640eb64396
function [H] = plot_jpsth(cfg,jpsth) % plot_jpsth makes a return plot from JPSTH structure (output from % plot_jpsth). % % Inputs: % JPSTH must be the output structure from SPIKE_JPSTH and contain the field % JPSTH.avg. If cfg.psth = 'yes', the field JPSTH.psth must be % present as well. % % Use must be as follows: % [HDL]=plot_jpsth(CFG,JPSTH) % % Here we should definitely think of making a matrix % With the same electrode somehow as the diagonal % % General configurations (cfg): % % cfg.channelcmb = string or index of single channel combination to trigger on. % See SPIKESTATION_FT_SUB_CHANNELCOMBINATION for details. % cfg.psth = 'yes' (default) or 'no'. If 'yes', the psth histogram is down % the x and left from the y axis. % cfg.axlim = [begin end] in seconds or 'max' (default), 'prestim' or % 'poststim'; % cfg.colorbar = 'yes' (default) or 'no' % cfg.colormap = N-by-3 colormap (see COLORMAP). or 'auto' (default,hot(256)) % cfg.interpolate = 'yes' or 'no', determines whether we interpolate the density % plot % Configurations related to smoothing % % cfg.smooth = 'yes' or 'no' (default) % If 'yes', we overlay a smooth density plot calculated by % non-parametric symmetric kernel smoothing with cfg.kernel. % cfg.kernel = 'gausswin' or 'boxcar', or N-by-N matrix containing window % values with which we convolve the scatterplot that is binned % with resolution cfg.dt. N should be uneven, so it can be centered % at each point of the lattice. % 'gausswin' is N-by-N multivariate gaussian, where the diagonal of the % covariance matrix is set by cfg.gaussvar. % 'boxcar' is N-by-N rectangular window. % If cfg.kernel is numeric, it should be of size N-by-N. % cfg.gaussvar = variance (default = 1/16 of window length in sec). % cfg.winlen = window length in seconds (default = 5*binwidth). The total % length of our window is 2*round*(cfg.winlen/binwidth) % where binwidth is the binwidth of the jpsth (jpsth.time(2) - % jpsth.time(1)). % % See also SPIKE_JOINTPSTH, SPIKE_PSTH, SPIKE_XCORR % if nargin~=2, error('MATLAB:spikestation:plot_jpsth:narginWrong',... 'Two input arguments are required') end % general configuration options defaults.channelcmb = {{1,2}}; defaults.psth = {'yes' 'no'}; defaults.latency = {'maxperiod'}; defaults.colorbar = {'yes' 'no'}; defaults.colormap = {jet(256)}; defaults.interpolate = {'no' 'yes'}; % further kernel smoothing configurations defaults.smooth = {'no' 'yes'}; defaults.kernel = {'mvgauss'}; try defaults.winlen = {5*(jpsth.time(2)-jpsth.time(1))}; catch defaults.winlen = {0.01}; %sec end try defaults.gaussvar = {(cfg.winlen/4).^2}; catch defaults.gaussvar = {(defaults.winlen{1}/4).^2}; end cfg = ft_spike_sub_defaultcfg(cfg,defaults); % channel combination selection cmbindx = ft_spikestation_sub_channelcombination(cfg.channelcmb, jpsth.label); nCmbs = size(cmbindx,1); if nCmbs~=1, error('MATLAB:spikestation:plot_jpsth:cfg:channelcmb:tooManySelected', ... 'Currently only supported for a single channel combination') end % select the time minTime = jpsth.time(1); maxTime = jpsth.time(end); if strcmp(cfg.latency,'maxperiod') cfg.latency = [minTime maxTime]; elseif strcmp(cfg.latency,'poststim') cfg.latency = [0 maxTime]; elseif strcmp(cfg.latency,'prestim') cfg.latency = [minTime 0]; elseif ~isrealvec(cfg.latency)||length(cfg.latency)~=2 error('MATLAB:spikestation:plot_jpsth:cfg:latency',... 'cfg.latency should be "max" or 1-by-2 numerical vector'); end if cfg.latency(1)>=cfg.latency(2), error('MATLAB:spikestation:plot_jpsth:cfg:latency:wrongOrder',... 'cfg.latency(2) should be greater than cfg.latency(1)') end % check whether the time window fits with the data if (cfg.latency(1) < minTime), cfg.latency(1) = minTime; warning('MATLAB:spikestation:plot_jpsth:correctLatencyBeg',... 'Correcting begin latency of averaging window'); end if (cfg.latency(2) > maxTime), cfg.latency(2) = maxTime; warning('MATLAB:spikestation:plot_jpsth:correctLatencyEnd',... 'Correcting end latency of averaging window'); end % get the samples of our window, and the binwidth of the JPSTH timeSel = jpsth.time>=cfg.latency(1) & jpsth.time <= cfg.latency(2); sampleTime = jpsth.time(2) - jpsth.time(1); % get the binwidth % for convenience create a separate variable dens = squeeze(jpsth.avg(:,:,cmbindx(1,1),cmbindx(1,2))); % density % smooth the jpsth with a kernel if requested if strcmp(cfg.smooth,'yes') % construct the kernel winTime = [fliplr(0:-sampleTime:-cfg.winlen) sampleTime:sampleTime:cfg.winlen]; winLen = length(winTime); if strcmp(cfg.kernel, 'mvgauss') % multivariate gaussian A = winTime'*ones(1,winLen); B = A'; T = [A(:) B(:)]; % makes rows with each time combination on it covmat = diag([cfg.gaussvar cfg.gaussvar]); % covariance matrix win = mvnpdf(T,0,covmat); % multivariate gaussian function elseif strcmp(cfg.kernel, 'boxcar') win = ones(winLen); elseif ~isrealmat(cfg.kernel) error('MATLAB:spikestation:plot_jpsth:cfg:kernel:unknownOption',... 'cfg.kernel should be "gausswin", "boxcar" or numerical N-by-N matrix') else win = cfg.kernel; szWin = size(cfg.kernel); if szWin(1)~=szWin(2)||~mod(szWin(1),2), error('MATLAB:spikestation:plot_jpsth:cfg:kernel:wrongSize', ... 'cfg.kernel should be 2-dimensional, N-by-N matrix with N uneven') end end % turn into discrete probabilities again (sum(p)=1); win = win./sum(win(:)); win = reshape(win,[],winLen); % do 2-D convolution and rescale dens = conv2(dens,win,'same'); outputOnes = conv2(ones(size(dens)),win,'same'); % NOTE $$$ SHOULD BE IN RIGHT ROW/COLUMN! rescale = 1./outputOnes; dens = dens.*rescale; end bins = jpsth.time; ax(1) = newplot; % create a new axis object origPos = get(ax(1), 'Position'); pos = origPos; if strcmp(cfg.interpolate,'yes') binAxis = linspace(min(bins), max(bins), 1000); % CHANGE THIS densInterp = interp2(bins(:), bins(:), dens, binAxis(:), binAxis(:)', 'spline'); jpsthHdl = imagesc(binAxis, binAxis, densInterp); else jpsthHdl = imagesc(bins,bins,dens); end axis xy; colormap(cfg.colormap); % set the colormap view(ax(1),2); % use the top view grid(ax(1),'off'); % toggle grid off % we need to leave some space for the colorbar on the top if strcmp(cfg.colorbar,'yes'), pos(3) = pos(3)*0.95; end % plot the histogram if requested if strcmp(cfg.psth,'yes') startPos = pos(1:2) + pos(3:4)*0.2 ; % shift the height and the width 20% sz = pos(3:4)*0.8; % decrease the size of width and height set(ax(1), 'ActivePositionProperty', 'position', 'Position', [startPos sz]) % scale the isi such that it becomes 1/5 of the return plot for iChan = 1:2 % get the data and create the strings that should be the labels psth = jpsth.psth(cmbindx(1,iChan),timeSel); label = jpsth.label{cmbindx(1,iChan)}; if iChan==2 startPos = pos(1:2) + pos(3:4).*[0.2 0] ; % shift the width 20% sz = pos(3:4).*[0.8 0.2]; % and decrease the size of width and height ax(2) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],... 'Parent', get(ax(1), 'Parent')); psthHdl(iChan) = bar(jpsth.time(timeSel),psth,'k'); % plot the psth under the jpsth set(ax(2),'YDir', 'reverse') ylabel(label) else startPos = pos(1:2) + pos(3:4).*[0 0.2] ; % shift the height 20% sz = pos(3:4).*[0.2 0.8]; % and decrease the size of width and height ax(3) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],... 'Parent', get(ax(1), 'Parent')); psthHdl(iChan) = barh(jpsth.time(timeSel),psth,'k'); % plot the psth left set(ax(3),'XDir', 'reverse') xlabel(label) end end set(ax(2), 'YAxisLocation', 'Right', 'XGrid', 'off'); % change the y axis location set(ax(3), 'XAxisLocation', 'Top', 'XGrid', 'off'); % change the x axis location set(psthHdl, 'BarWidth', 1); % make sure bars have no space between % change the limits to get the same time limits set(ax(2),'XLim', cfg.latency) set(ax(3),'YLim', cfg.latency) set(get(ax(2),'XLabel'),'String', 'time (sec)') set(get(ax(3),'YLabel'),'String', 'time (sec)') set(ax(1), 'YTickLabel', {},'XTickLabel', {}); % we remove the labels from JPSTH now H.psthleft = psthHdl(2); H.psthbottom = psthHdl(1); elseif strcmp(cfg.psth,'no') xlabel('time (sec)') ylabel('time (sec') set(ax(1), 'ActivePositionProperty', 'position', 'Position',pos) end % create the colorbar if requested if strcmp(cfg.colorbar,'yes') caxis([min(dens(:)) max(dens(:))]) colormap(cfg.colormap); % create the colormap as the user wants H.colorbarHdl = colorbar; % create a colorbar % create a position vector and reset the position, it should be alligned right of JPSTH startPos = [(pos(1) + 0.96*origPos(3)) (pos(2) + pos(4)*0.25)]; sizePos = [0.04*origPos(3) 0.75*pos(4)]; set(H.colorbarHdl, 'Position', [startPos sizePos]) % set the text, try all the possible configurations try isNormalized = strcmp(jpsth.cfg.normalization,'yes'); catch isNormalized = 0; end try unit = jpsth.cfg.previous.outputunit; if strcmp(unit,'rate') isRate = 1; elseif strcmp(unit,'spikecount') isRate = 2; end catch isRate = 3; end if isNormalized colorbarLabel = 'Normalized Joint Activity'; elseif isRate==1 colorbarLabel = 'Joint Firing Rate (spikes^2/sec^2)'; elseif isRate==2 colorbarLabel = 'Joint Spike Count (spikes^2)'; else colorbarLabel = 'Joint Peristimulus Activity'; end try if strcmp(jpsth.cfg.shiftpredictor,'yes') colorbarLabel = strcat(colorbarLabel,' Shift Predictor'); end catch,end set(get(H.colorbarHdl,'YLabel'),'String',colorbarLabel) end set(ax,'TickDir','out') set(ax(1),'XLim', cfg.latency,'YLim', cfg.latency) % get the psth limits for constraining the zooming and panning psthLim = {}; if strcmp(cfg.psth,'yes') psthLim{1} = get(ax(2),'YLim'); psthLim{2} = get(ax(3),'XLim'); end % collect the handles H.ax = ax; H.jpsth = jpsthHdl; H.cfg = cfg; % constrain the zooming and zoom psth together with the jpsth, remove ticklabels jpsth set(zoom,'ActionPostCallback',{@mypostcallback,ax,cfg.latency,psthLim}); set(pan,'ActionPostCallback',{@mypostcallback,ax,cfg.latency,psthLim}); function [] = mypostcallback(fig,evd,ax,lim,psthLim) currentAxes = evd.Axes; xlim = get(currentAxes, 'XLim'); ylim = get(currentAxes, 'YLim'); if currentAxes==ax(1) % reset the x limits to the shared limits if lim(1)>xlim(1), xlim(1) = lim(1); end if lim(2)<xlim(2), xlim(2) = lim(2); end set(ax(1:2), 'XLim',xlim) % reset the y limits if lim(1)>ylim(1), ylim(1) = lim(1); end if lim(2)<ylim(2), ylim(2) = lim(2); end set(ax([1 3]), 'YLim',ylim) elseif currentAxes == ax(2) % reset the x and y limits if lim(1)>xlim(1), xlim(1) = lim(1); end if lim(2)<xlim(2), xlim(2) = lim(2); end if psthLim{1}(1)>ylim(1), ylim(1) = psthLim{1}(1); end if psthLim{1}(2)<ylim(2), ylim(2) = psthLim{1}(2); end set(ax(1:2), 'XLim',xlim) set(ax(3), 'YLim', xlim) set(ax(2),'YLim', ylim) elseif currentAxes == ax(3) % y limits are shared limits here if lim(1)>ylim(1), ylim(1) = lim(1); end if lim(2)<ylim(2), ylim(2) = lim(2); end % psth limit is specific to its x axis if psthLim{2}(1)>xlim(1), xlim(1) = psthLim{2}(1); end if psthLim{2}(2)<xlim(2), xlim(2) = psthLim{2}(2); end set(ax(1:2), 'XLim',ylim) set(ax(3), 'YLim', ylim) set(ax(3),'XLim', xlim) end set(ax(1), 'YTickLabel', {}); set(ax(1), 'XTickLabel', {});
github
philippboehmsturm/antx-master
besa2fieldtrip.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/besa2fieldtrip.m
16,494
utf_8
a73c6b43c6f501a6bf90b208ebe22bdf
function [data] = besa2fieldtrip(input) % BESA2FIELDTRIP reads and converts various BESA datafiles into a FieldTrip % data structure, which subsequently can be used for statistical analysis % or other analysis methods implemented in Fieldtrip. % % Use as % [data] = besa2fieldtrip(filename) % where the filename should point to a BESA datafile (or data that % is exported by BESA). The output is a Matlab structure that is % compatible with FieldTrip. % % The format of the output structure depends on the type of datafile: % *.avr is converted to a structure similar to the output of TIMELOCKANALYSIS % *.mul is converted to a structure similar to the output of TIMELOCKANALYSIS % *.swf is converted to a structure similar to the output of TIMELOCKANALYSIS (*) % *.tfc is converted to a structure similar to the output of FREQANALYSIS (*) % *.dat is converted to a structure similar to the output of SOURCANALYSIS % *.dat combined with a *.gen or *.generic is converted to a structure similar to the output of PREPROCESSING % % Note (*): If the BESA toolbox by Karsten Hochstatter is found on your % Matlab path, the readBESAxxx functions will be used (where xxx=tfc/swf), % alternatively the private functions from FieldTrip will be used. % % See also EEGLAB2FIELDTRIP % Copyright (C) 2005-2010, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: besa2fieldtrip.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock(); if isstruct(input) && numel(input)>1 % use a recursive call to convert multiple inputs data = cell(size(input)); for i=1:numel(input) data{i} = besa2fieldtrip(input(i)); end return end if isstruct(input) fprintf('besa2fieldtrip: converting structure\n'); %---------------------TFC-------------------------------------------------% if strcmp(input.structtype, 'besa_tfc') %fprintf('BESA tfc\n'); data.time = input.latencies; data.freq = input.frequencies; temp_chans = char(input.channellabels'); Nchan = size(temp_chans,1); %{ if strcmp(input.type,'COHERENCE_SQUARED') % it contains coherence between channel pairs fprintf('reading coherence between %d channel pairs\n', Nchan); for i=1:Nchan tmp = tokenize(deblank(temp_chans(i,:)), '-'); data.labelcmb{i,1} = deblank(tmp{1}); data.labelcmb{i,2} = deblank(tmp{2}); data.label{i,1} = deblank(temp_chans(i,:)); end data.cohspctrm = input.data; else %} % it contains power on channels fprintf('reading power on %d channels\n', Nchan); for i=1:Nchan data.label{i,1} = deblank(temp_chans(i,:)); end data.powspctrm = input.data; data.dimord = 'chan_freq_time'; data.condition = input.condition; %not original Fieldtrip fieldname %end clear temp; %--------------------Image------------------------------------------------% elseif strcmp(input.structtype, 'besa_image') %fprintf('BESA image\n'); data.avg.pow = input.data; xTemp = input.xcoordinates; yTemp = input.ycoordinates; zTemp = input.zcoordinates; data.xgrid = xTemp; data.ygrid = yTemp; data.zgrid = zTemp; nx = size(data.xgrid,2); ny = size(data.ygrid,2); nz = size(data.zgrid,2); % Number of points in each dimension data.dim = [nx ny nz]; % Array with all possible positions (x,y,z) data.pos = WritePosArray(xTemp,yTemp,zTemp,nx,ny,nz); data.inside = 1:prod(data.dim);%as in Fieldtrip - not correct data.outside = []; %--------------------Source Waveform--------------------------------------% elseif strcmp(input.structtype, 'besa_sourcewaveforms') %fprintf('BESA source waveforms\n'); data.label = input.labels'; %not the same as Fieldtrip! data.dimord = 'chan_time'; data.fsample = input.samplingrate; data.time = input.latencies / 1000.0; data.avg = input.waveforms'; data.cfg.filename = input.datafile; %--------------------Data Export------------------------------------------% elseif strcmp(input.structtype, 'besa_channels') %fprintf('BESA data export\n'); if isfield(input,'datatype') switch input.ft_datatype case {'Raw_Data','Epoched_Data','Segment'} data.fsample = input.samplingrate; data.label = input.channellabels'; for k=1:size(input.data,2) data.time{1,k} = input.data(k).latencies / 1000.0'; data.trial{1,k} = input.data(k).amplitudes'; end otherwise fprintf('ft_datatype other than Raw_Data, Epoched or Segment'); end else fprintf('workspace created with earlier MATLAB version'); end %--------------------else-------------------------------------------------% else error('unrecognized format of the input structure'); end elseif ischar(input) fprintf('besa2fieldtrip: reading from file\n'); % This function can either use the reading functions included in FieldTrip % (with contributions from Karsten, Vladimir and Robert), or the official % released functions by Karsten Hoechstetter from BESA. The functions in the % official toolbox have precedence. hasbesa = ft_hastoolbox('besa',1, 1); type = filetype(input); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(type, 'besa_avr') && hasbesa fprintf('reading ERP/ERF\n'); % this should be similar to the output of TIMELOCKANALYSIS tmp = readBESAavr(input); % convert into a TIMELOCKANALYSIS compatible data structure data = []; data.label = []; if isfield(tmp, 'ChannelLabels'), data.label = fixlabels(tmp.ChannelLabels); end; data.avg = tmp.Data; data.time = tmp.Time / 1000; % convert to seconds data.fsample = 1000/tmp.DI; data.dimord = 'chan_time'; elseif strcmp(type, 'besa_avr') && ~hasbesa fprintf('reading ERP/ERF\n'); % this should be similar to the output of TIMELOCKANALYSIS tmp = read_besa_avr(input); % convert into a TIMELOCKANALYSIS compatible data structure data = []; data.label = fixlabels(tmp.label); data.avg = tmp.data; data.time = (0:(tmp.npnt-1)) * tmp.di + tmp.tsb; data.time = data.time / 1000; % convert to seconds data.fsample = 1000/tmp.di; data.dimord = 'chan_time'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_mul') && hasbesa fprintf('reading ERP/ERF\n'); % this should be similar to the output of TIMELOCKANALYSIS tmp = readBESAmul(input); % convert into a TIMELOCKANALYSIS compatible data structure data = []; data.label = tmp.ChannelLabels(:); data.avg = tmp.data'; data.time = (0:(tmp.Npts-1)) * tmp.DI + tmp.TSB; data.time = data.time / 1000; %convert to seconds data.fsample = 1000/tmp.DI; data.dimord = 'chan_time'; elseif strcmp(type, 'besa_mul') && ~hasbesa fprintf('reading ERP/ERF\n'); % this should be similar to the output of TIMELOCKANALYSIS tmp = read_besa_mul(input); % convert into a TIMELOCKANALYSIS compatible data structure data = []; data.label = tmp.label(:); data.avg = tmp.data; data.time = (0:(tmp.TimePoints-1)) * tmp.SamplingInterval_ms_ + tmp.BeginSweep_ms_; data.time = data.time / 1000; % convert to seconds data.fsample = 1000/tmp.SamplingInterval_ms_; data.dimord = 'chan_time'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_sb') if hasbesa fprintf('reading preprocessed channel data using BESA toolbox\n'); else error('this data format requires the BESA toolbox'); end [p, f, x] = fileparts(input); input = fullfile(p, [f '.dat']); [time,buf,ntrial] = readBESAsb(input); time = time/1000; % convert from ms to sec nchan = size(buf,1); ntime = size(buf,3); % convert into a PREPROCESSING compatible data structure data = []; data.trial = {}; data.time = {}; for i=1:ntrial data.trial{i} = reshape(buf(:,i,:), [nchan, ntime]); data.time{i} = time; end data.label = {}; for i=1:size(buf,1) data.label{i,1} = sprintf('chan%03d', i); end data.fsample = 1/(time(2)-time(1)); % time is already in seconds %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_tfc') && hasbesa fprintf('reading time-frequency representation using BESA toolbox\n'); % this should be similar to the output of FREQANALYSIS tfc = readBESAtfc(input); Nchan = size(tfc.ChannelLabels,1); % convert into a FREQANALYSIS compatible data structure data = []; data.time = tfc.Time(:)'; data.freq = tfc.Frequency(:)'; if isfield(tfc, 'DataType') && strcmp(tfc.DataType, 'COHERENCE_SQUARED') % it contains coherence between channel pairs fprintf('reading coherence between %d channel pairs\n', Nchan); for i=1:Nchan tmp = tokenize(deblank(tfc.ChannelLabels(i,:)), '-'); data.labelcmb{i,1} = tmp{1}; data.labelcmb{i,2} = tmp{2}; end data.cohspctrm = permute(tfc.Data, [1 3 2]); else % it contains power on channels fprintf('reading power on %d channels\n', Nchan); for i=1:Nchan data.label{i,1} = deblank(tfc.ChannelLabels(i,:)); end data.powspctrm = permute(tfc.Data, [1 3 2]); end data.dimord = 'chan_freq_time'; data.condition = tfc.ConditionName; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_tfc') && ~hasbesa fprintf('reading time-frequency representation\n'); % this should be similar to the output of FREQANALYSIS [ChannelLabels, Time, Frequency, Data, Info] = read_besa_tfc(input); Nchan = size(ChannelLabels,1); % convert into a FREQANALYSIS compatible data structure data = []; data.time = Time * 1e-3; % convert to seconds; data.freq = Frequency; if isfield(Info, 'DataType') && strcmp(Info.DataType, 'COHERENCE_SQUARED') % it contains coherence between channel pairs fprintf('reading coherence between %d channel pairs\n', Nchan); for i=1:Nchan tmp = tokenize(deblank(ChannelLabels(i,:)), '-'); data.labelcmb{i,1} = tmp{1}; data.labelcmb{i,2} = tmp{2}; end data.cohspctrm = permute(Data, [1 3 2]); else % it contains power on channels fprintf('reading power on %d channels\n', Nchan); for i=1:Nchan data.label{i} = deblank(ChannelLabels(i,:)); end data.powspctrm = permute(Data, [1 3 2]); end data.dimord = 'chan_freq_time'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_swf') && hasbesa fprintf('reading source waveform using BESA toolbox\n'); swf = readBESAswf(input); % convert into a TIMELOCKANALYSIS compatible data structure data = []; data.label = fixlabels(swf.waveName); data.avg = swf.data; data.time = swf.Time * 1e-3; % convert to seconds data.fsample = 1/(data.time(2)-data.time(1)); data.dimord = 'chan_time'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_swf') && ~hasbesa fprintf('reading source waveform\n'); % hmm, I guess that this should be similar to the output of TIMELOCKANALYSIS tmp = read_besa_swf(input); % convert into a TIMELOCKANALYSIS compatible data structure data = []; data.label = fixlabels(tmp.label); data.avg = tmp.data; data.time = (0:(tmp.npnt-1)) * tmp.di + tmp.tsb; data.time = data.time / 1000; % convert to seconds data.fsample = 1000/tmp.di; data.dimord = 'chan_time'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_src') && hasbesa src = readBESAimage(input); data.xgrid = src.Coordinates.X; data.ygrid = src.Coordinates.Y; data.zgrid = src.Coordinates.Z; data.avg.pow = src.Data; data.dim = size(src.Data); [X, Y, Z] = ndgrid(data.xgrid, data.ygrid, data.zgrid); data.pos = [X(:) Y(:) Z(:)]; % cannot determine which voxels are inside the brain volume data.inside = 1:prod(data.dim); data.outside = []; elseif strcmp(type, 'besa_src') && ~hasbesa src = read_besa_src(input); data.xgrid = linspace(src.X(1), src.X(2), src.X(3)); data.ygrid = linspace(src.Y(1), src.Y(2), src.Y(3)); data.zgrid = linspace(src.Z(1), src.Z(2), src.Z(3)); data.avg.pow = src.vol; data.dim = size(src.vol); [X, Y, Z] = ndgrid(data.xgrid, data.ygrid, data.zgrid); data.pos = [X(:) Y(:) Z(:)]; % cannot determine which voxels are inside the brain volume data.inside = 1:prod(data.dim); data.outside = []; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif strcmp(type, 'besa_pdg') % hmmm, I have to think about this one... error('sorry, pdg is not yet supported'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% else error('unrecognized file format for importing BESA data'); end end % isstruct || ischar % construct and add a configuration to the output cfg = []; if isstruct(input) && isfield(input,'datafile') cfg.filename = input.datafile; elseif isstruct(input) && ~isfield(input,'datafile') cfg.filename = 'Unknown'; elseif ischar(input) cfg.filename = input; end % add the version details of this function call to the configuration cfg.version.name = mfilename('fullpath'); cfg.version.id = '$Id: besa2fieldtrip.m 3710 2011-06-16 14:04:19Z eelspa $'; % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); data.cfg = cfg; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION that fixes the channel labels, should be a cell-array %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [newlabels] = fixlabels(labels) if iscell(labels) && length(labels)>1 % seems to be ok newlabels = labels; elseif iscell(labels) && length(labels)==1 % could be a cell with a single long string in it if length(tokenize(labels{1}, ' '))>1 % seems like a long string that accidentaly ended up in a single cell newlabels = tokenize(labels{1}, ' '); else % seems to be ok newlabels = labels; end elseif ischar(labels) && any(size(labels)==1) newlabels = tokenize(labels(:)', ' '); % also ensure that it is a row-string elseif ischar(labels) && ~any(size(labels)==1) for i=1:size(labels) newlabels{i} = strtrim(labels(i,:)); end end % convert to column newlabels = newlabels(:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [PArray] = WritePosArray(x,y,z,mx,my,mz) A1 = repmat(x,1,my*mz); A21 = repmat(y,mx,mz); A2 = reshape(A21,1,mx*my*mz); A31 = repmat(z,mx*my,1); A3 = reshape(A31,1,mx*my*mz); PArray = [A1;A2;A3]';
github
philippboehmsturm/antx-master
ft_spike_plot_isireturn.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_spike_plot_isireturn.m
11,709
utf_8
1cdf323ebae6bacda934fc6851fbdc30
function [hdl] = ft_spike_plot_isireturn(cfg,isih) % FT_SPIKE_PLOT_ISIRETURN makes a return plot from ISIH structure (output from FT_SPIKE_ISIHIST). A % return plot (or Poincare plots) plots the isi to the next spike versus the isi from the next % spike to the second next spike, and thus gives insight in the second order isi statistics. % This func also plots the raw isi-histogram on left and bottom and thereby give a rather % complete visualization of the spike-train interval statistics. % % Inputs: % ISIH must be the output structure from SPIKE_ISIH and contain the field % ISIH.isi. If cfg.isihist = 'yes', the field ISIH.isih & ISIH.time must be % present as well. % % Use must be as follows: % [HDL]=SPIKE_ISIRETURNPLOT(CFG,DATA) % % General configurations (cfg): % % cfg.spikechannel = string or index of single spike channel to trigger on (default = 1) % Only one spikechannel can be plotted at a time. % cfg.density = 'yes' or 'no', if 'yes', we will use color shading on top of % the individual datapoints to indicate the density. % cfg.scatter = 'yes' (default) or 'no'. If 'yes', we plot the individual values. % % General configurations related to smoothing the scatterplot % % cfg.smoothmethod = 'kernel' (default) or 'hist'. % If 'kernel', we overlay a smooth density plot calculated by % non-parametric kernel smoothing with cfg.kernel. % If 'hist', we overlay a 2-D histogram. % cfg.dt = resolution of the 2-D histogram, or of the kernel plot. Since we % have to smooth for a finite number of values, cfg.dt determines % the resolution of our smooth density plot. % cfg.colormap = N-by-3 colormap (see COLORMAP). Default = hot(256); % cfg.interpolate = 'yes' or 'no', determines whether we interpolate the density % plot % % Specific configurations related to kernel smoothing of scatterplot. % cfg.kernel = 'gausswin' or 'boxcar', or N-by-N matrix containing window % values with which we convolve the scatterplot that is binned % with resolution cfg.dt. N should be uneven, so it can be centered % at each point of the lattice. % 'gausswin' is N-by-N multivariate gaussian, where the diagonal of the % covariance matrix is set by cfg.gaussvar. % 'boxcar' is N-by-N rectangular window. % If cfg.kernel is numeric, it should be of size N-by-N. % cfg.gaussvar = variance (default = 1/16 of window length in sec). % cfg.winlen = window length in seconds (default = 5*cfg.dt). The total % length of our window is 2*round*(cfg.winlen/cfg.dt) +1; if nargin~=2, error('MATLAB:spikestation:isireturn:nargin','Two input arguments required'), end % general configuration defaults defaults.spikechannel = {1}; defaults.scatter = {'yes' 'no'}; defaults.density = {'yes' 'no'}; defaults.colormap = flipud(hot(300)); defaults.colormap = {defaults.colormap(1:256,:)}; defaults.interpolate = {'yes' 'no'}; defaults.scattersize = {0.3}; defaults.smoothmethod = {'kernel' 'hist'}; defaults.dt = {0.001}; defaults.kernel = {'mvgauss'}; try defaults.winlen = {cfg.dt*5}; catch defaults.winlen = {0.003}; end try defaults.gaussvar = {(diff(cfg.winlen)/4).^2}; catch defaults.gaussvar = {(defaults.winlen{1}/4).^2}; end cfg = ft_spike_sub_defaultcfg(cfg,defaults); % check if all the required fields are there if ~all(isfield(isih,{'isi' 'label' 'time'})) error('MATLAB:spikestation:plot_isireturn:cfg:spikechannel:missingFields',... 'input ISIH should contain the fields isi, label and time') end % get the spikechannels: maybe replace this by one function with checking etc. in it cfg.channel = ft_channelselection(cfg.spikechannel, isih.label); spikesel = match_str(isih.label, cfg.channel); nUnits = length(cfg.spikechannel); % number of spike channels if nUnits~=1, error('MATLAB:spikestation:plot_isireturn:cfg:spikechannel:notOneChan',... 'Only one unit can be selected at a time'); end isi = isih.isi{spikesel}; % create the axis ax(1) = newplot; [origPos,pos] = deal(get(ax(1), 'Position')); if strcmp(cfg.density,'yes'), pos(3) = pos(3)*0.95; end % because of the color bar which takes place bins = min(isih.time):cfg.dt:max(isih.time); nbins = length(bins); % two-dimensional kernel smoothing to get a density behind our scatterplot if strcmp(cfg.density,'yes') isivld1 = (~isnan(isi(1:end-1))&~isnan(isi(2:end))); isivld2 = (isi(1:end-1)<=max(isih.time)-cfg.dt&isi(2:end)<=max(isih.time)-cfg.dt); isivld = isivld1&isivld2; hold on % make a 2-D histogram, we need this for both the kernel and the hist [N,indx1] = histc(isi(find(isivld)),bins); [N,indx2] = histc(isi(find(isivld)+1),bins); % remove the outer counts rmv = indx1==length(bins)|indx2==length(bins); indx1(rmv) = []; indx2(rmv) = []; dens = full(sparse(indx2,indx1,ones(1,length(indx1)),nbins,nbins)); if strcmp(cfg.smoothmethod,'kernel') if cfg.winlen<cfg.dt, error('MATLAB:spikestation:plot_isireturn:cfg:dt:winlen',... 'please configure cfg.winlen such that cfg.winlen>=cfg.dt') end winTime = [fliplr(0:-cfg.dt:-cfg.winlen) cfg.dt:cfg.dt:cfg.winlen]; winLen = length(winTime); if strcmp(cfg.kernel, 'mvgauss') % multivariate gaussian A = winTime'*ones(1,winLen); B = A'; T = [A(:) B(:)]; % makes rows with each time combination on it covmat = diag([cfg.gaussvar cfg.gaussvar]); % covariance matrix win = mvnpdf(T,0,covmat); % multivariate gaussian function elseif strcmp(cfg.kernel, 'boxcar') win = ones(winLen); elseif ~isrealmat(cfg.kernel) error('MATLAB:spikestation:plot_isireturn:cfg:kernel:wrongInput',... 'cfg.kernel should be "gausswin", "boxcar" or numerical N-by-N matrix') else win = cfg.kernel; szWin = size(cfg.kernel); if szWin(1)~=szWin(2)||~mod(szWin(1),2), error('MATLAB:spikestation:spike_isireturnplot:cfg:kernel:wrongSize', ... 'cfg.kernel should be N-by-N matrix with N an uneven number') end end % turn into discrete probabilities again (sum(p)=1); win = win./sum(win); win = reshape(win,[],length(winTime)); % reshape to matrix corresponding to grid again % do 2-D convolution and rescale dens = conv2(dens,win,'same'); outputOnes = conv2(ones(size(dens)),win,'same'); rescale = 1./outputOnes; dens = dens.*rescale; end % create the surface hdl.density = imagesc(bins,bins,dens); if strcmp(cfg.interpolate,'yes') binAxis = linspace(min(bins)-0.5*(bins(2)-bins(1)), max(bins)+0.5*(bins(2)-bins(1)), 1000); densInterp = interp2(bins(:), bins(:), dens, binAxis(:), binAxis(:)', 'spline'); hdl.density = imagesc(binAxis, binAxis, densInterp); end if isrealmat(cfg.colormap) && size(cfg.colormap,2)==3 colormap(cfg.colormap); else error('MATLAB:spikestation:plot_isireturn:cfg:colormap', ... 'cfg.colormap should be N-by-3 numerical matrix') end view(ax(1),2); % use the top view grid(ax(1),'off') end hold on % create scatter return plot and get the handle if strcmp(cfg.scatter, 'yes') hdl.scatter = plot(isi(1:end-1), isi(2:end),'ko'); set(hdl.scatter,'MarkerFaceColor', 'k','MarkerSize', cfg.scattersize) end %keyboard % plot the histogram (user can cut away in adobe of canvas himself if needed) posisih = [pos(1:2) + pos(3:4)*0.2 pos(3:4)*0.8]; % shift the height and the width 20% set(ax(1), 'ActivePositionProperty', 'position', 'Position', posisih) startPos = pos(1:2) + pos(3:4).*[0.2 0] ; % shift the width 20% sz = pos(3:4).*[0.8 0.2]; % and decrease the size of width and height ax(2) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],... 'Parent', get(ax(1), 'Parent')); isihist = isih.avg(spikesel,:); %divide by proportion and 5 to get 20% of size hdl.isi(1) = bar(isih.time(:),isihist,'k'); set(ax(2),'YDir', 'reverse') startPos = pos(1:2) + pos(3:4).*[0 0.2] ; % shift the height 20% sz = pos(3:4).*[0.2 0.8]; % and decrease the size of width and height ax(3) = axes('Units', get(ax(1), 'Units'), 'Position', [startPos sz],... 'Parent', get(ax(1), 'Parent')); hdl.isi(2) = barh(isih.time(:),isihist,'k'); set(hdl.isi,'BarWidth',1) set(ax(2:3), 'Box', 'off') set(ax(3),'XDir', 'reverse') set(ax(1), 'YTickLabel', {},'XTickLabel',{}, 'XTick',[],'YTick', []); % take care of all the x and y limits at once set(ax,'Box', 'off','TickDir','out') set(ax(1),'XLim', [0 max(isih.time)],'YLim',[0 max(isih.time)]); limIsi = [0 max(isih.avg(:))*1.05]; set(ax(2),'XLim', [0 max(isih.time)],'YLim',limIsi); set(ax(3),'YLim', [0 max(isih.time)],'XLim',limIsi); set(ax(2),'YAxisLocation', 'Right') set(ax(3),'XAxisLocation', 'Top') set(get(ax(2),'Xlabel'),'String','isi(n) (sec)') set(get(ax(3),'Ylabel'),'String','isi(n+1) (sec)') % create the colorbar (who doesn't want one) caxis([min(dens(:)) max(dens(:))]); colormap(cfg.colormap); % create the colormap as the user wants colorbarHdl = colorbar; % create a colorbar % create a position vector and reset the position, it should be alligned right of isih startPos = [(pos(1) + 0.96*origPos(3)) (pos(2) + pos(4)*0.25)]; sizePos = [0.04*origPos(3) 0.75*pos(4)]; set(colorbarHdl, 'Position', [startPos sizePos]) set(get(colorbarHdl,'YLabel'),'String','Number of spikes per bin'); % set the text hdl.colorbar = colorbarHdl; hdl.ax = ax; hdl.cfg = cfg; % constrain the zooming and zoom psth together with the isih, remove ticklabels isih set(zoom,'ActionPostCallback',{@mypostcallback,ax,[0 max(isih.time)],limIsi}); set(pan,'ActionPostCallback',{@mypostcallback,ax,[0 max(isih.time)],limIsi}); function [] = mypostcallback(fig,evd,ax,lim,limIsi) currentAxes = evd.Axes; indx = find(currentAxes==ax); if currentAxes==ax(1) % get the x limits and reset them xlim = get(ax(1), 'XLim'); ylim = get(ax(1), 'YLim'); [axlim] = [min(xlim(1),ylim(1)) max(xlim(2),ylim(2))]; % make the zoom symmetric if lim(1)>axlim(1), axlim(1) = lim(1); end if lim(2)<axlim(2), axlim(2) = lim(2); end set(ax(1:2), 'XLim',axlim) set(ax([1 3]), 'YLim',axlim); elseif currentAxes == ax(2) xlim = get(ax(2), 'XLim'); if lim(1)>xlim(1), xlim(1) = lim(1); end if lim(2)<xlim(2), xlim(2) = lim(2); end set(ax(1:2), 'XLim',xlim) set(ax(3), 'YLim', xlim) ylim = get(ax(2), 'YLim'); if limIsi(1)>ylim(1), ylim(1) = limIsi(1); end if limIsi(2)<ylim(2), ylim(2) = limIsi(2); end set(ax(2), 'YLim', ylim) set(ax(3), 'XLim', ylim) elseif currentAxes == ax(3) ylim = get(ax(3), 'YLim'); if lim(1)>ylim(1), ylim(1) = lim(1); end if lim(2)<ylim(2), ylim(2) = lim(2); end set(ax([1 3]), 'YLim',ylim); set(ax(2), 'XLim', ylim) xlim = get(ax(3), 'XLim'); if limIsi(1)>xlim(1), xlim(1) = limIsi(1); end if limIsi(2)<xlim(2), xlim(2) = limIsi(2); end set(ax(3), 'XLim', xlim) set(ax(2), 'YLim', xlim) end
github
philippboehmsturm/antx-master
ft_movieplotER.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_movieplotER.m
12,072
utf_8
f8d2c7570d15e8b4bdfd15e988591d98
function ft_movieplotER(cfg, timelock) % FT_MOVIEPLOTER makes a movie of the topographic distribution of the % time-locked average. % % Use as % ft_movieplotER(cfg, timelock) % where the input data is from FT_TIMELOCKANALYSIS and the configuration % can contain % cfg.xparam = string, parameter over which the movie unrolls (default = 'time') % cfg.zparam = string, parameter that is color coded (default = 'avg') % cfg.xlim = 'maxmin' or [xmin xmax] (default = 'maxmin') % cfg.zlim = 'maxmin', 'maxabs' or [zmin zmax] (default = 'maxmin') % cfg.samperframe = number, samples per fram (default = 1) % cfg.framespersec = number, frames per second (default = 5) % cfg.framesfile = 'no', no file saved, or 'sting', filename of saved frames.mat (default = 'no'); % cfg.layout = specification of the layout, see below % % The layout defines how the channels are arranged. You can specify the % layout in a variety of ways: % - you can provide a pre-computed layout structure (see prepare_layout) % - you can give the name of an ascii layout file with extension *.lay % - you can give the name of an electrode file % - you can give an electrode definition, i.e. "elec" structure % - you can give a gradiometer definition, i.e. "grad" structure % If you do not specify any of these and the data structure contains an % electrode or gradiometer structure, that will be used for creating a % layout. If you want to have more fine-grained control over the layout % of the subplots, you should create your own layout file. % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. % Copyright (C) 2009, Ingrid Nieuwenhuis % Copyright (C) 2011, Jan-Mathijs Schoffelen, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_movieplotER.m 3710 2011-06-16 14:04:19Z eelspa $ ft_defaults % record start time and total processing time ftFuncTimer = tic(); ftFuncClock = clock();; % check if the input cfg is valid for this function cfg = ft_checkconfig(cfg, 'renamedval', {'zlim', 'absmax', 'maxabs'}); cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); % set defaults xlim = ft_getopt(cfg, 'xlim', 'maxmin'); zlim = ft_getopt(cfg, 'zlim', 'maxmin'); xparam = ft_getopt(cfg, 'xparam', 'time'); zparam = ft_getopt(cfg, 'zparam', 'avg'); samperframe = ft_getopt(cfg, 'samperframe', 1); framespersec = ft_getopt(cfg, 'framespersec', 5); framesfile = ft_getopt(cfg, 'framesfile', []); inputfile = ft_getopt(cfg, 'inputfile', []); mask = ft_getopt(cfg, 'mask', []); interactive = ft_getopt(cfg, 'interactive', 'no'); dointeractive = istrue(interactive); % load optional given inputfile as data hasdata = (nargin>1); hasinputfile = ~isempty(inputfile); if hasinputfile && hasdata error('cfg.inputfile should not be used in conjunction with giving input data to this function'); elseif hasinputfile timelock = loadvar(inputfile, 'data'); elseif hasdata % nothing to be done end % Checkdata timelock = ft_checkdata(timelock, 'datatype', 'timelock'); % Read or create the layout that will be used for plotting: layout = ft_prepare_layout(cfg); % update the configuration cfg.xparam = xparam; cfg.zparam = zparam; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the actual computation is done in the middle part %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% xparam = timelock.(xparam); zparam = timelock.(zparam); if length(xparam)~=size(zparam,2) error('inconsistent size of "%s" compared to "%s"', cfg.zparam, cfg.xparam); end if ischar(xlim) && strcmp(xlim, 'maxmin') xlim = []; xlim(1) = min(xparam); xlim(2) = max(xparam); end xbeg = nearest(xparam, xlim(1)); xend = nearest(xparam, xlim(2)); % update the configuration cfg.xlim = xparam([xbeg xend]); % select the channels in the data that match with the layout: [seldat, sellay] = match_str(timelock.label, layout.label); if isempty(seldat) error('labels in timelock and labels in layout do not match'); end % make a subselection of the data xparam = xparam(xbeg:xend); zparam = zparam(seldat, xbeg:xend); clear xbeg xend % get the x and y coordinates and labels of the channels in the data chanX = layout.pos(sellay,1); chanY = layout.pos(sellay,2); % get the z-range if ischar(zlim) && strcmp(zlim, 'maxmin') zlim = []; zlim(1) = min(zparam(:)); zlim(2) = max(zparam(:)); % update the configuration cfg.zlim = zlim; elseif ischar(zlim) && strcmp(cfg.zlim,'maxabs') zlim = []; zlim(1) = -max(abs(datavector(:))); zlim(2) = max(abs(datavector(:))); cfg.zlim = zlim; end h = gcf; pos = get(gcf, 'position'); set(h, 'toolbar', 'figure'); if dointeractive, s = uicontrol('style', 'slider'); set(s, 'position', [20 20 pos(3)-40 20]); p = uicontrol('style', 'pushbutton'); set(p, 'position', [20 50 50 20]); set(p, 'string', 'play') button_slower = uicontrol('style', 'pushbutton'); set(button_slower, 'position', [75 50 20 20]); set(button_slower, 'string', '-') set(button_slower, 'Callback', @cb_slower); button_faster = uicontrol('style', 'pushbutton'); set(button_faster, 'position', [100 50 20 20]); set(button_faster, 'string', '+') set(button_faster, 'Callback', @cb_faster); ht = uicontrol('style', 'text'); set(ht, 'position', [20 80 100 20]); set(ht, 'string', 'time = '); set(ht, 'horizontalalignment', 'left'); %text(0,0, sprintf('%s = \n', cfg.xparam)); %t = timer; %set(t, 'timerfcn', {@cb_timer, h}, 'period', 0.1, 'executionmode', 'fixedSpacing'); % collect the data and the options to be used in the figure opt.lay = layout; opt.chanX = chanX; opt.chanY = chanY; opt.tim = xparam; opt.dat = zparam; opt.zlim = zlim; opt.speed = 1; opt.cfg = cfg; opt.s = s; opt.p = p; opt.t = t; if ~isempty(mask) && ischar(mask) opt.mask = double(getsubfield(source, mask)); end [dum, hs] = ft_plot_topo(chanX, chanY, zeros(numel(chanX),1), 'mask', layout.mask, 'outline', layout.outline, 'interpmethod', 'cubic'); caxis(cfg.zlim); axis off; % add sum stuff at a higher level for quicker access in the callback % routine opt.xdata = get(hs, 'xdata'); opt.ydata = get(hs, 'ydata'); opt.nanmask = get(hs, 'cdata'); % add the handle to the mesh opt.hs = hs; % add the text-handle to the guidata opt.ht = ht; guidata(h, opt); % from now it is safe to hand over the control to the callback function set(s, 'Callback', @cb_slider); % from now it is safe to hand over the control to the callback function set(p, 'Callback', @cb_playbutton); else % old implementation: use variables samperframe and framepersec % and optionally save movie in a file [dum, hs] = ft_plot_topo(chanX, chanY, zeros(numel(chanX),1), 'mask', layout.mask, 'outline', layout.outline, 'interpmethod', 'cubic'); caxis(cfg.zlim); axis off; xdata = get(hs, 'xdata'); ydata = get(hs, 'ydata'); nanmask = get(hs, 'cdata'); for iFrame = 1:floor(size(zparam, 2)/samperframe) indx = ((iFrame-1)*samperframe+1):iFrame*samperframe; datavector = mean(zparam(:, indx), 2); datamatrix = griddata(chanX, chanY, datavector, xdata, ydata, 'cubic'); set(hs, 'cdata', datamatrix + nanmask); F(iFrame) = getframe; end if ~isempty(framesfile) save(framesfile, 'F'); end movie(F, 1, framespersec); % hmov = figure; % axis off % data_movie.F = F; % data_movie.cfg = cfg; % % uicontrol('parent', hmov, 'units', 'normalized', 'style', 'pushbutton', 'string', 'replay', 'userdata', 1, 'position', [0.86, 0.1, 0.12, 0.05], 'backgroundcolor', [1 1 1], 'callback', @replay_cb) % uicontrol('parent', hmov, 'units', 'normalized', 'style', 'pushbutton', 'string', 'frames/s', 'userdata', 1, 'position', [0.86, 0.18, 0.12, 0.05], 'backgroundcolor', [1 1 1], 'callback', @framespersec_cb) % % movie(F,1,cfg.framespersec) % guidata(hmov, data_movie); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % deal with the output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); % add the version details of this function call to the configuration cfg.version.name = mfilename('fullpath'); % this is helpful for debugging cfg.version.id = '$Id: ft_movieplotER.m 3710 2011-06-16 14:04:19Z eelspa $'; % this will be auto-updated by the revision control system % add information about the Matlab version used to the configuration cfg.callinfo.matlab = version(); % add information about the function call to the configuration cfg.callinfo.proctime = toc(ftFuncTimer); cfg.callinfo.calltime = ftFuncClock; cfg.callinfo.user = getusername(); % this is helpful for debugging if isfield(timelock, 'cfg') % remember the configuration details of the input data cfg.previous = timelock.cfg; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_slider(h, eventdata) opt = guidata(h); val = get(opt.s, 'value'); val = round(val*(size(opt.dat,2)-1))+1; val = min(val, size(opt.dat,2)); val = max(val, 1); % update timer info set(opt.ht, 'string', sprintf('%s = %1.3f\n', opt.cfg.xparam, opt.tim(val))); % update data, interpolate and render datamatrix = griddata(opt.chanX, opt.chanY, opt.dat(:,val), opt.xdata, opt.ydata, 'cubic'); set(opt.hs, 'cdata', datamatrix + opt.nanmask); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_playbutton(h, eventdata) if ~ishandle(h) return end opt = guidata(h); switch get(h, 'string') case 'play' set(h, 'string', 'stop'); start(opt.t); case 'stop' set(h, 'string', 'play'); stop(opt.t); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_timer(obj, info, h) if ~ishandle(h) return end opt = guidata(h); delta = opt.speed/size(opt.dat,2); val = get(opt.s, 'value'); val = val + delta; if val>1 val = val-1; end set(opt.s, 'value', val); cb_slider(h); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_faster(h, eventdata) if ~ishandle(h) return end opt = guidata(h); opt.speed = opt.speed*sqrt(2); guidata(h, opt); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb_slower(h, eventdata) if ~ishandle(h) return end opt = guidata(h); opt.speed = opt.speed/sqrt(2); opt.speed = max(opt.speed, 1); % should not be smaller than 1 guidata(h, opt);
github
philippboehmsturm/antx-master
ft_topoplotCC.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/ft_topoplotCC.m
9,403
utf_8
cc237e56a89500a093d28a09a0104331
function cfg = ft_topoplotCC(cfg, freq) % FT_TOPOPLOTCC plots the connections between significantly coherent % sensor pairs % % Use as % ft_topoplotCC(cfg, freq) % % The configuration should contain: % cfg.feedback = string (default = 'textbar') % cfg.layout = specification of the layout, see FT_PREPARE_LAYOUT % cfg.foi = the frequency of interest which is to be plotted (default is the first frequency bin) % cfg.widthparam = string, parameter to be used to control the line width % cfg.alphaparam = string, parameter to be used to control the opacity % cfg.colorparam = string, parameter to be used to control the line color % % The widthparam should be indicated in pixels, e.g. usefull numbers are 1 % and larger. % % The alphaparam should be indicated as opacity between 0 (fully transparent) % and 1 (fully opaque). % % The default is to plot the connections as lines, but you can also use % bidirectional arrows: % cfg.arrowhead = none, stop, start, both (default = 'none') % cfg.arrowsize = size of the arrow head (default = automatic) % cfg.arrowoffset = amount that the arrow is shifted to the side (default = automatic) % cfg.arrowlength = amount by which the length is reduced (default = 0.8) % % To facilitate data-handling and distributed computing with the peer-to-peer % module, this function has the following option: % cfg.inputfile = ... % If you specify this option the input data will be read from a *.mat % file on disk. This mat files should contain only a single variable named 'data', % corresponding to the input structure. For this particular function, the input should be % structured as a cell array. % % See also FT_PREPARE_LAYOUT, FT_MULTIPLOTCC % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_topoplotCC.m 3016 2011-03-01 19:09:40Z eelspa $ ft_defaults % check if the input data is valid for this function freq = ft_checkdata(freq, 'cmbrepresentation', 'sparse'); % check if the input configuration is valid for this function cfg = ft_checkconfig(cfg, 'trackconfig', 'on'); cfg = ft_checkconfig(cfg, 'required', {'foi', 'layout'}); % set the defaults if ~isfield(cfg, 'feedback'), cfg.feedback = 'text'; end if ~isfield(cfg, 'alphaparam'), cfg.alphaparam = []; end if ~isfield(cfg, 'widthparam'), cfg.widthparam = []; end if ~isfield(cfg, 'colorparam'), cfg.colorparam = 'cohspctrm'; end if ~isfield(cfg, 'newfigure'), cfg.newfigure = 'yes'; end if ~isfield(cfg, 'arrowhead'), cfg.arrowhead = 'none'; end % none, stop, start, both if ~isfield(cfg, 'arrowsize'), cfg.arrowsize = nan; end % length of the arrow head, should be in in figure units, i.e. the same units as the layout if ~isfield(cfg, 'arrowoffset'), cfg.arrowoffset = nan; end % absolute, should be in in figure units, i.e. the same units as the layout if ~isfield(cfg, 'arrowlength'), cfg.arrowlength = 0.8; end % relative to the complete line lay = ft_prepare_layout(cfg, freq); beglabel = freq.labelcmb(:,1); endlabel = freq.labelcmb(:,2); ncmb = size(freq.labelcmb,1); % select the data to be used in the figure fbin = nearest(freq.freq, cfg.foi); if isfield(freq, cfg.widthparam) widthparam = freq.(cfg.widthparam)(:,fbin); else widthparam = ones(ncmb,1); end if isfield(freq, cfg.alphaparam) alphaparam = freq.(cfg.alphaparam)(:,fbin); else alphaparam = []; end if isfield(freq, cfg.colorparam) colorparam = freq.(cfg.colorparam)(:,:,fbin); else colorparam = []; end if strcmp(cfg.newfigure, 'yes') figure end hold on axis equal if isnan(cfg.arrowsize) % use the size of the figure to estimate a decent number siz = axis; cfg.arrowsize = (siz(2) - siz(1))/50; warning('using an arrowsize of %f', cfg.arrowsize); end if isnan(cfg.arrowoffset) % use the size of the figure to estimate a decent number siz = axis; cfg.arrowoffset = (siz(2) - siz(1))/100; warning('using an arrowoffset of %f', cfg.arrowoffset); end rgb = colormap; if ~isempty(colorparam) cmin = min(colorparam(:)); cmax = max(colorparam(:)); colorparam = (colorparam - cmin)./(cmax-cmin); colorparam = round(colorparam * (size(rgb,1)-1) + 1); end if strcmp(cfg.newfigure, 'yes') % also plot the position of the electrodes ft_plot_vector(lay.pos(:,1), lay.pos(:,2), 'style','k.'); % also plot the outline, i.e. head shape or sulci if isfield(lay, 'outline') fprintf('solid lines indicate the outline, e.g. head shape or sulci\n'); for i=1:length(lay.outline) if ~isempty(lay.outline{i}) X = lay.outline{i}(:,1); Y = lay.outline{i}(:,2); ft_plot_line(X, Y, 'color', 'k', 'linewidth', 1.5, 'linestyle', '-'); end end end % also plot the mask, i.e. global outline for masking the topoplot if isfield(lay, 'mask') fprintf('dashed lines indicate the mask for topograpic interpolation\n'); for i=1:length(lay.mask) if ~isempty(lay.mask{i}) X = lay.mask{i}(:,1); Y = lay.mask{i}(:,2); % the polygon representing the mask should be closed X(end+1) = X(1); Y(end+1) = Y(1); ft_plot_line(X, Y, 'color', 'k', 'linewidth', 1.5, 'linestyle', '-'); end end end end % if newfigure % fix the limits for the axis axis(axis); ft_progress('init', cfg.feedback, 'plotting connections...'); for i=1:ncmb if strcmp(beglabel{i}, endlabel{i}) % skip autocombinations continue end ft_progress(i/ncmb, 'plotting connection %d from %d (%s -> %s)\n', i, ncmb, beglabel{i}, endlabel{i}); if widthparam(i)>0 begindx = strmatch(beglabel{i}, lay.label); endindx = strmatch(endlabel{i}, lay.label); xbeg = lay.pos(begindx,1); ybeg = lay.pos(begindx,2); xend = lay.pos(endindx,1); yend = lay.pos(endindx,2); if strcmp(cfg.arrowhead, 'none') x = [xbeg xend]'; y = [ybeg yend]'; % h = line(x, y); h = patch(x, y, 1); else arrowbeg = [xbeg ybeg]; arrowend = [xend yend]; center = (arrowbeg+arrowend)/2; direction = (arrowend - arrowbeg); direction = direction/norm(direction); offset = [direction(2) -direction(1)]; arrowbeg = cfg.arrowlength * (arrowbeg-center) + center + cfg.arrowoffset * offset; arrowend = cfg.arrowlength * (arrowend-center) + center + cfg.arrowoffset * offset; h = arrow(arrowbeg, arrowend, 'Ends', cfg.arrowhead, 'length', 0.05); end % if arrow if ~isempty(widthparam) set(h, 'LineWidth', widthparam(i)); end if ~isempty(alphaparam) set(h, 'EdgeAlpha', alphaparam(i)); set(h, 'FaceAlpha', alphaparam(i)); % for arrowheads end if ~isempty(colorparam) set(h, 'EdgeColor', rgb(colorparam(i),:)); set(h, 'FaceColor', rgb(colorparam(i),:)); % for arrowheads end end end ft_progress('close'); % improve the fit in the axis axis tight % get the output cfg cfg = ft_checkconfig(cfg, 'trackconfig', 'off', 'checksize', 'yes'); if nargout<1 clear cfg end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for plotting arrows, see also fieldtrip/private/arrow %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = arrow(arrowbeg, arrowend, varargin) ends = keyval('ends', varargin); length = keyval('length', varargin); % the length of the arrow head, in figure units color = [0 0 0]; % in RGB direction = (arrowend - arrowbeg); direction = direction/norm(direction); offset = [direction(2) -direction(1)]; pnt1 = arrowbeg; pnt2 = arrowend; h = patch([pnt1(1) pnt2(1)], [pnt1(2) pnt2(2)], color); switch ends case 'stop' pnt1 = arrowend - length*direction + 0.4*length*offset; pnt2 = arrowend; pnt3 = arrowend - length*direction - 0.4*length*offset; h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color); case 'start' pnt1 = arrowbeg + length*direction + 0.4*length*offset; pnt2 = arrowbeg; pnt3 = arrowbeg + length*direction - 0.4*length*offset; h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color); case 'both' pnt1 = arrowend - length*direction + 0.4*length*offset; pnt2 = arrowend; pnt3 = arrowend - length*direction - 0.4*length*offset; h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color); pnt1 = arrowbeg + length*direction + 0.4*length*offset; pnt2 = arrowbeg; pnt3 = arrowbeg + length*direction - 0.4*length*offset; h(end+1) = patch([pnt1(1) pnt2(1) pnt3(1)]', [pnt1(2) pnt2(2) pnt3(2)]', color); case 'none' % don't draw arrow heads end
github
philippboehmsturm/antx-master
ft_struct2single.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_struct2single.m
2,973
utf_8
b9e20af224d511cefc32a176b8d020d0
function [x] = ft_struct2single(x, maxdepth); % FT_STRUCT2SINGLE converts all double precision numeric data in a structure % into single precision, which takes up half the amount of memory compared % to double precision. It will also convert plain matrices and cell-arrays. % % Use as % x = ft_struct2single(x); % % Starting from Matlab 7.0, you can use single precision data in your % computations, i.e. you do not have to convert back to double precision. % % Matlab version 6.5 and older only support single precision for storing % data in memory or on disk, but do not allow computations on single % precision data. After reading a single precision structure from file, you % can convert it back with FT_STRUCT2DOUBLE. % % See also FT_STRUCT2DOUBLE % Copyright (C) 2005, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_struct2single.m 3772 2011-07-04 15:19:01Z jansch $ if nargin<2 maxdepth = inf; end % convert the data, work recursively through the complete structure x = convert(x, 0, maxdepth); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this subfunction does the actual work %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a] = convert(a, depth, maxdepth); if depth>maxdepth error('recursive depth exceeded'); end switch class(a) case 'struct' % process all fields of the structure recursively fna = fieldnames(a); % process all elements of the array for j=1:length(a(:)) % warning, this is a recursive call to traverse nested structures for i=1:length(fna) fn = fna{i}; ra = getfield(a(j), fn); ra = convert(ra, depth+1, maxdepth); a(j) = setfield(a(j), fn, ra); end end case 'cell' % process all elements of the cell-array recursively % warning, this is a recursive call to traverse nested structures for i=1:length(a(:)) a{i} = convert(a{i}, depth+1, maxdepth); end case {'double' 'int32' 'uint32' 'int16' 'uint16'} % convert the values to single precision if ~issparse(a) a = single(a); end otherwise warning_once(sprintf('not converting class %s', class(a))); % do nothing end
github
philippboehmsturm/antx-master
ft_checkconfig.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_checkconfig.m
20,215
utf_8
27c3f11d00ec0a63a1a446f4b4c30121
function [cfg] = ft_checkconfig(cfg, varargin) % FT_CHECKCONFIG checks the input cfg of the main FieldTrip functions. % % 1: It checks whether the cfg contains all the required options, it gives % a warning when renamed or deprecated options are used, and it makes sure % no forbidden options are used. If necessary and possible, this function % will adjust the cfg to the input requirements. If the input cfg does NOT % correspond to the requirements, this function gives an elaborate warning % message. % % 2: It controls the relevant cfg options that are being passed on to other % functions, by putting them into substructures or converting them into the % required format. % % 3: It controls the output cfg (data.cfg) such that it only contains % relevant and used fields. The size of fields in the output cfg is also % controlled: fields exceeding a certain maximum size are emptied. % This part of the functionality is still under construction! % % Use as % [cfg] = ft_checkconfig(cfg, ...) % % The behaviour of checkconfig can be controlled by the following cfg options, % which can be set as global fieldtrip defaults (see FT_DEFAULTS) % cfg.checkconfig = 'pedantic', 'loose' or 'silent' (control the feedback behaviour of checkconfig) % cfg.trackconfig = 'cleanup', 'report' or 'off' % cfg.checksize = number in bytes, can be inf (set max size allowed for output cfg fields) % % Optional input arguments should be specified as key-value pairs and can include % renamed = {'old', 'new'} % list the old and new option % renamedval = {'opt', 'old', 'new'} % list option and old and new value % required = {'opt1', 'opt2', etc.} % list the required options % deprecated = {'opt1', 'opt2', etc.} % list the deprecated options % unused = {'opt1', 'opt2', etc.} % list the unused options, these will be removed and a warning is issued % forbidden = {'opt1', 'opt2', etc.} % list the forbidden options, these result in an error % createsubcfg = {'subname', etc.} % list the names of the subcfg % dataset2files = 'yes', 'no' % converts dataset into headerfile and datafile % checksize = 'yes', 'no' % remove large fields from the cfg % trackconfig = 'on', 'off' % start/end config tracking % % See also FT_CHECKDATA, FT_DEFAULTS % Copyright (C) 2007-2008, Robert Oostenveld, Saskia Haegens % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_checkconfig.m 3653 2011-06-09 07:20:07Z jansch $ if isempty(cfg) cfg = struct; % ensure that it is an empty struct, not empty double end global ft_default if isempty(ft_default) ft_default = struct; end fieldsused = fieldnames(ft_default); for i=1:length(fieldsused) fn = fieldsused{i}; if ~isfield(cfg, fn), cfg.(fn) = ft_default.(fn); end end renamed = keyval('renamed', varargin); renamedval = keyval('renamedval', varargin); required = keyval('required', varargin); deprecated = keyval('deprecated', varargin); unused = keyval('unused', varargin); forbidden = keyval('forbidden', varargin); createsubcfg = keyval('createsubcfg', varargin); ckeckfilenames = keyval('dataset2files', varargin); checksize = keyval('checksize', varargin); if isempty(checksize), checksize = 'off'; end trackconfig = keyval('trackconfig', varargin); if ~isempty(trackconfig) && strcmp(trackconfig, 'on') % infer from the user configuration whether tracking should be enabled if isfield(cfg, 'trackconfig') && (strcmp(cfg.trackconfig, 'report') || strcmp(cfg.trackconfig, 'cleanup')) trackconfig = 'on'; % turn on configtracking if user requests report/cleanup else trackconfig = []; % disable configtracking if user doesn't request report/cleanup end end % these should be cell arrays and not strings if ischar(required), required = {required}; end if ischar(deprecated), deprecated = {deprecated}; end if ischar(unused), unused = {unused}; end if ischar(forbidden), forbidden = {forbidden}; end if isfield(cfg, 'checkconfig') silent = strcmp(cfg.checkconfig, 'silent'); loose = strcmp(cfg.checkconfig, 'loose'); pedantic = strcmp(cfg.checkconfig, 'pedantic'); else silent = false; loose = true; pedantic = false; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % rename old to new options, give warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(renamed) fieldsused = fieldnames(cfg); if any(strcmp(renamed{1}, fieldsused)) cfg = setfield(cfg, renamed{2}, (getfield(cfg, renamed{1}))); cfg = rmfield(cfg, renamed{1}); if silent % don't mention it elseif loose warning('use cfg.%s instead of cfg.%s', renamed{2}, renamed{1}); elseif pedantic error(sprintf('use cfg.%s instead of cfg.%s', renamed{2}, renamed{1})); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % rename old to new value, give warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(renamedval) && isfield(cfg, renamedval{1}) if strcmpi(getfield(cfg, renamedval{1}), renamedval{2}) cfg = setfield(cfg, renamedval{1}, renamedval{3}); if silent % don't mention it elseif loose warning('use cfg.%s=''%s'' instead of cfg.%s=''%s''', renamedval{1}, renamedval{3}, renamedval{1}, renamedval{2}); elseif pedantic error(sprintf('use cfg.%s=''%s'' instead of cfg.%s=''%s''', renamedval{1}, renamedval{3}, renamedval{1}, renamedval{2})); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check for required fields, give error when missing %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(required) fieldsused = fieldnames(cfg); [c, ia, ib] = setxor(required, fieldsused); if ~isempty(ia) error(sprintf('The field cfg.%s is required\n', required{ia})); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check for deprecated fields, give warning when present %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(deprecated) fieldsused = fieldnames(cfg); if any(ismember(deprecated, fieldsused)) if silent % don't mention it elseif loose warning('The option cfg.%s is deprecated, support is no longer guaranteed\n', deprecated{ismember(deprecated, fieldsused)}); elseif pedantic error(sprintf('The option cfg.%s is deprecated, support is no longer guaranteed\n', deprecated{ismember(deprecated, fieldsused)})); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check for unused fields, give warning when present and remove them %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(unused) fieldsused = fieldnames(cfg); if any(ismember(unused, fieldsused)) cfg = rmfield(cfg, unused(ismember(unused, fieldsused))); if silent % don't mention it elseif loose warning('The field cfg.%s is unused, it will be removed from your configuration\n', unused{ismember(unused, fieldsused)}); elseif pedantic error(sprintf('The field cfg.%s is unused\n', unused{ismember(unused, fieldsused)})); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check for forbidden fields, give error when present %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(forbidden) fieldsused = fieldnames(cfg); if any(ismember(forbidden, fieldsused)) cfg = rmfield(cfg, forbidden(ismember(forbidden, fieldsused))); if silent % don't mention it elseif loose warning('The field cfg.%s is forbidden, it will be removed from your configuration\n', forbidden{ismember(forbidden, fieldsused)}); elseif pedantic error(sprintf('The field cfg.%s is forbidden\n', forbidden{ismember(forbidden, fieldsused)})); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % createsubcfg % % This collects the optional arguments for some of the low-level % functions and puts them in a separate substructure. This function is to % ensure backward compatibility of end-user scripts, fieldtrip functions % and documentation that do not use the nested detailled configuration % but that use a flat configuration. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(createsubcfg) for j=1:length(createsubcfg) subname = createsubcfg{j}; if isfield(cfg, subname) % get the options that are already specified in the substructure subcfg = getfield(cfg, subname); else % start with an empty substructure subcfg = []; end % add all other relevant options to the substructure switch subname case 'preproc' fieldname = { 'reref' 'refchannel' 'implicitref' 'detrend' 'bpfiltdir' 'bpfilter' 'bpfiltord' 'bpfilttype' 'bpfreq' 'bsfiltdir' 'bsfilter' 'bsfiltord' 'bsfilttype' 'bsfreq' 'demean' 'baselinewindow' 'denoise' 'dftfilter' 'dftfreq' 'hpfiltdir' 'hpfilter' 'hpfiltord' 'hpfilttype' 'hpfreq' 'lpfiltdir' 'lpfilter' 'lpfiltord' 'lpfilttype' 'lpfreq' 'medianfilter' 'medianfiltord' 'hilbert' 'derivative' 'rectify' 'boxcar' 'absdiff' }; case 'grid' fieldname = { 'xgrid' 'ygrid' 'zgrid' 'resolution' 'filter' 'leadfield' 'inside' 'outside' 'pos' 'dim' 'tight' }; case 'dics' fieldname = { 'feedback' 'fixedori' 'keepfilter' 'keepmom' 'lambda' 'normalize' 'normalizeparam' 'powmethod' 'projectnoise' 'reducerank' 'keepcsd' 'realfilter' 'subspace' 'keepsubspace' }; case 'lcmv' fieldname = { 'feedback' 'fixedori' 'keepfilter' 'keepmom' 'lambda' 'normalize' 'normalizeparam' 'powmethod' 'projectnoise' 'projectmom' 'reducerank' 'keepcov' 'subspace' 'keepsubspace' }; case 'pcc' fieldname = { 'feedback' 'keepfilter' 'keepmom' 'lambda' 'normalize' 'normalizeparam' %'powmethod' 'projectnoise' 'reducerank' 'keepcsd' 'realfilter' }; case {'mne', 'loreta', 'rv'} fieldname = { 'feedback' 'lambda' }; case 'music' fieldname = { 'feedback' 'numcomponent' }; case 'sam' fieldname = { 'meansphereorigin' 'spinning' 'feedback' 'lambda' 'normalize' 'normalizeparam' 'reducerank' }; case 'mvl' fieldname = {}; case 'npsf' % non-parametric spectral factorization -> csd2transfer fieldname = { 'block' 'blockindx' 'channelcmb' 'feedback' 'numiteration' 'tol' 'sfmethod' 'svd' }; otherwise error('unexpected name of the subfunction'); fieldname = {}; end % switch subname for i=1:length(fieldname) if ~isfield(subcfg, fieldname{i}) && isfield(cfg, fieldname{i}) subcfg = setfield(subcfg, fieldname{i}, getfield(cfg, fieldname{i})); % set it in the subconfiguration cfg = rmfield(cfg, fieldname{i}); % remove it from the main configuration end end % copy the substructure back into the main configuration structure cfg = setfield(cfg, subname, subcfg); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ckeckfilenames, i.e. dataset2files % % Converts cfg.dataset into cfg.headerfile and cfg.datafile if neccessary. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(ckeckfilenames) && strcmp(ckeckfilenames, 'yes') % start with empty fields if they are not present if ~isfield(cfg, 'dataset') cfg.dataset = []; end if ~isfield(cfg, 'datafile') cfg.datafile = []; end if ~isfield(cfg, 'headerfile') cfg.headerfile = []; end if ~isempty(cfg.dataset) if strcmp(cfg.dataset, 'gui'); [f, p] = uigetfile('*.*', 'Select a file'); if isequal(f, 0) error('User pressed cancel'); else d = fullfile(p, f); end cfg.dataset = d; end % ensure that the headerfile and datafile are defined, which are sometimes different than the name of the dataset % this requires correct autodetection of the format [cfg.dataset, cfg.headerfile, cfg.datafile] = dataset2files(cfg.dataset, []); % fill dataformat if unspecified if ~isfield(cfg,'dataformat') || isempty(cfg.dataformat) cfg.dataformat = ft_filetype(cfg.datafile); end % fill dataformat if unspecified if ~isfield(cfg,'headerformat') || isempty(cfg.headerformat) cfg.headerformat = ft_filetype(cfg.headerfile); end elseif ~isempty(cfg.datafile) && isempty(cfg.headerfile); % assume that the datafile also contains the header cfg.headerfile = cfg.datafile; elseif isempty(cfg.datafile) && ~isempty(cfg.headerfile); % assume that the headerfile also contains the data cfg.datafile = cfg.headerfile; end % remove empty fields (otherwise a subsequent check on required fields doesn't make any sense) if isempty(cfg.dataset), cfg=rmfield(cfg, 'dataset'); end if isempty(cfg.headerfile), cfg=rmfield(cfg, 'headerfile'); end if isempty(cfg.datafile), cfg=rmfield(cfg, 'datafile'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % configtracking % % switch configuration tracking on/off %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(trackconfig) try if strcmp(trackconfig, 'on') && isa(cfg, 'struct') % turn ON configuration tracking cfg = config(cfg); % remember that configtracking has been turned on cfg.trkcfgcount = 1; elseif strcmp(trackconfig, 'on') && isa(cfg, 'config') % remember how many times configtracking has been turned on cfg.trkcfgcount = cfg.trkcfgcount+1; % count the 'ONs' end if strcmp(trackconfig, 'off') && isa(cfg, 'config') % turn OFF configuration tracking, optionally give report and/or cleanup cfg.trkcfgcount=cfg.trkcfgcount-1; % count(down) the 'OFFs' if cfg.trkcfgcount==0 % only proceed when number of 'ONs' matches number of 'OFFs' cfg=rmfield(cfg, 'trkcfgcount'); if strcmp(cfg.trackconfig, 'report') || strcmp(cfg.trackconfig, 'cleanup') % gather information about the tracked results r = access(cfg, 'reference'); o = access(cfg, 'original'); key = fieldnames(cfg); key = key(:)'; ignorefields = {'checksize', 'trl', 'trlold', 'event', 'artifact', 'artfctdef', 'previous'}; % these fields should never be removed! skipsel = match_str(key, ignorefields); key(skipsel) = []; used = zeros(size(key)); original = zeros(size(key)); for i=1:length(key) used(i) = (r.(key{i})>0); original(i) = (o.(key{i})>0); end if ~silent % give report on screen fprintf('\nThe following config fields were specified by YOU and were USED\n'); sel = find(used & original); if numel(sel) fprintf(' cfg.%s\n', key{sel}); else fprintf(' <none>\n'); end fprintf('\nThe following config fields were specified by YOU and were NOT USED\n'); sel = find(~used & original); if numel(sel) fprintf(' cfg.%s\n', key{sel}); else fprintf(' <none>\n'); end fprintf('\nThe following config fields were set to DEFAULTS and were USED\n'); sel = find(used & ~original); if numel(sel) fprintf(' cfg.%s\n', key{sel}); else fprintf(' <none>\n'); end fprintf('\nThe following config fields were set to DEFAULTS and were NOT USED\n'); sel = find(~used & ~original); if numel(sel) fprintf(' cfg.%s\n', key{sel}); else fprintf(' <none>\n'); end end % report end % report/cleanup if strcmp(cfg.trackconfig, 'cleanup') % remove the unused options from the configuration unusedkey = key(~used); for i=1:length(unusedkey) cfg = rmfield(cfg, unusedkey{i}); end end % convert the configuration back to a struct cfg = struct(cfg); end end % off catch disp(lasterr); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % check the size of fields in the cfg, remove large fields % the max allowed size should be specified in cfg.checksize (this can be % set with ft_defaults) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if strcmp(checksize, 'yes') && ~isinf(cfg.checksize) cfg = checksizefun(cfg, cfg.checksize); end function [cfg] = checksizefun(cfg, max_size) ignorefields = {'checksize', 'trl', 'trlold', 'event', 'artifact', 'artfctdef', 'previous'}; % these fields should never be removed! fieldsorig = fieldnames(cfg); for i=1:numel(fieldsorig) for k=1:numel(cfg) if ~isstruct(cfg(k).(fieldsorig{i})) && ~any(strcmp(fieldsorig{i}, ignorefields)) % find large fields and remove them from the cfg, skip fields that should be ignored temp = cfg(k).(fieldsorig{i}); s = whos('temp'); if s.bytes>max_size cfg(k).(fieldsorig{i}) = 'empty - this was cleared by checkconfig'; end %%% cfg(k).(fieldsorig{i})=s.bytes; % remember the size of each field for debugging purposes elseif isstruct(cfg(k).(fieldsorig{i})); % run recursively on subfields that are structs cfg(k).(fieldsorig{i}) = checksizefun(cfg(k).(fieldsorig{i}), max_size); elseif iscell(cfg(k).(fieldsorig{i})) && strcmp(fieldsorig{i}, 'previous') % run recursively on 'previous' fields that are cells for j=1:numel(cfg(k).(fieldsorig{i})) cfg(k).(fieldsorig{i}){j} = checksizefun(cfg(k).(fieldsorig{i}){j}, max_size); end end end end
github
philippboehmsturm/antx-master
ft_determine_coordsys.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_determine_coordsys.m
9,713
utf_8
8f08a860d0f42103b7c4b63fba2cbbeb
function [data] = ft_determine_coordsys(data, varargin) % FT_DETERMINECOORDSYS plots a geometrical object, allowing you to perform a visual % check on the coordinatesystem, the units and on the anatomical labels for the % coordinate system axes. % % Use as % [dataout] = ft_checkcoordsys(datain, varargin) % where the input data structure can be % - an anatomical MRI, which can be segmented % - an electrode or gradiometer definition % - a volume conduction model % or most other FieldTrip structures that represent geometrical information. % % The optional key-value pairs are % interactive = string, 'yes' or 'no' (default = 'yes') % % This function wil pop up a figure that allows you to check whether the % alignment of the object relative to the coordinate system axes is correct % and what the anatomical labels of the coordinate system axes are. You should % switch on the 3D rotation option in the figure panel to rotate and see the % figure from all angles. To change the anatomical labels of the coordinate % system, you should press the corresponding keyboard button. % % See also FT_VOLUMEREALIGN, FT_VOLUMERESLICE % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_determine_coordsys.m 3732 2011-06-29 07:49:26Z jorhor $ dointeractive = ft_getopt(varargin, 'interactive', 'yes'); dtype = ft_datatype(data); data = ft_convert_units(data); unit = data.unit; % the high-level data structures are detected with ft_datatype, but there are % also some low-level data structures that need to be supproted here if strcmp(dtype, 'unknown') if isfield(data, 'fid') dtype = 'headshape'; elseif ~strcmp(ft_voltype(data), 'unknown') dtype = 'headmodel'; elseif ~strcmp(ft_senstype(data), 'unknown') dtype = 'sens'; end end % determine the size of the "unit" sphere in the origin and the length of the axes switch unit case 'mm' axmax = 150; rbol = 5; case 'cm' axmax = 15; rbol = 0.5; case 'm' axmax = 0.15; rbol = 0.005; otherwise error('unknown units (%s)', unit); end if isfield(data, 'coordsys') && ~isempty(data.coordsys) if length(data.coordsys)==3 && length(intersect(data.coordsys, 'rlasif'))==3 for i=1:3 switch data.coordsys(i) case 'l' label{i} = 'the left'; case 'r' label{i} = 'the right'; case 'i' label{i} = 'inferior'; case 's' label{i} = 'superior'; case 'a' label{i} = 'anterior'; case 'p' label{i} = 'posterior'; otherwise error('incorrect letter in the coordsys'); end % switch end % for each of the three axes elseif strcmpi(data.coordsys, 'itab') || strcmpi(data.coordsys, 'neuromag') label{1} = 'the right'; label{2} = 'anterior'; label{3} = 'superior'; elseif strcmpi(data.coordsys, 'ctf') || strcmpi(data.coordsys, '4d') || strcmpi(data.coordsys, 'bti') label{1} = 'anterior'; label{2} = 'the left'; label{3} = 'superior'; elseif strcmpi(data.coordsys, 'tal') || strcmpi(data.coordsys, 'mni') || strcmpi(data.coordsys, 'spm') label{1} = 'the right'; label{2} = 'anterior'; label{3} = 'superior'; else error('unsupported coordsys'); end fprintf('The positive x-axis is pointing towards %s\n', label{1}); fprintf('The positive y-axis is pointing towards %s\n', label{2}); fprintf('The positive z-axis is pointing towards %s\n', label{3}); end % create the labels that are to be plotted along the axes if isfield(data, 'coordsys') [labelx, labely, labelz] = xyz2label(data.coordsys); else [labelx, labely, labelz] = xyz2label('unknown'); end % plot the geometrical object % the plotting style depends on the data content switch dtype case 'volume' if isfield(data, 'anatomy') funparam = data.anatomy; elseif isfield(data, 'gray') funparam = data.gray; else error('don''t know which volumetric parameter to plot'); end ft_plot_ortho(funparam, 'transform', data.transform, 'resolution', 1, 'style', 'intersect'); axis vis3d view([110 36]); case 'source' ft_plot_mesh(data, 'edgecolor','none', 'facecolor', [0.6 0.8 0.6], 'facealpha', 0.6); camlight; case 'dip' ft_plot_mesh(data, 'edgecolor','none', 'facecolor', 'none'); camlight; case 'headshape' ft_plot_headshape(data); camlight; case 'headmodel' ft_plot_vol(data); camlight; case 'sens' ft_plot_sens(data); camlight; case {'raw', 'timelock', 'freq', 'mvar', 'freqmvar', 'comp'} % the data may contain a gradiometer or electrode definition if isfield(data, 'grad') ft_plot_sens(data.grad); elseif isfield(data, 'elec') ft_plot_sens(data.elec); end case 'unknown' end % switch dtype{k} % get the xyz-axes xdat = [-axmax 0 0; axmax 0 0]; ydat = [0 -axmax 0; 0 axmax 0]; zdat = [0 0 -axmax; 0 0 axmax]; % get the xyz-axes dotted xdatdot = (-axmax:(axmax/15):axmax); xdatdot = xdatdot(1:floor(numel(xdatdot)/2)*2); xdatdot = reshape(xdatdot, [2 numel(xdatdot)/2]); n = size(xdatdot,2); ydatdot = [zeros(2,n) xdatdot zeros(2,n)]; zdatdot = [zeros(2,2*n) xdatdot]; xdatdot = [xdatdot zeros(2,2*n)]; % plot axes hl = line(xdat, ydat, zdat); set(hl(1), 'linewidth', 1, 'color', 'r'); set(hl(2), 'linewidth', 1, 'color', 'g'); set(hl(3), 'linewidth', 1, 'color', 'b'); hld = line(xdatdot, ydatdot, zdatdot); for k = 1:n set(hld(k ), 'linewidth', 3, 'color', 'r'); set(hld(k+n*1), 'linewidth', 3, 'color', 'g'); set(hld(k+n*2), 'linewidth', 3, 'color', 'b'); end % create the ball at the origin [O.pnt, O.tri] = icosahedron42; O.pnt = O.pnt.*rbol; ft_plot_mesh(O, 'edgecolor', 'none'); % add the labels to the axis text(xdat(1,1),ydat(1,1),zdat(1,1),labelx{1},'color','y','fontsize',15,'linewidth',2); text(xdat(1,2),ydat(1,2),zdat(1,2),labely{1},'color','y','fontsize',15,'linewidth',2); text(xdat(1,3),ydat(1,3),zdat(1,3),labelz{1},'color','y','fontsize',15,'linewidth',2); text(xdat(2,1),ydat(2,1),zdat(2,1),labelx{2},'color','y','fontsize',15,'linewidth',2); text(xdat(2,2),ydat(2,2),zdat(2,2),labely{2},'color','y','fontsize',15,'linewidth',2); text(xdat(2,3),ydat(2,3),zdat(2,3),labelz{2},'color','y','fontsize',15,'linewidth',2); if dointeractive, if ~isfield(data, 'coordsys') || isempty(data.coordsys) % default is yes value = smartinput('Do you want to change the anatomical labels for the axes [Y, n]? ', 'y'); else % default is no value = smartinput('Do you want to change the anatomical labels for the axes [y, N]? ', 'n'); end if strcmpi(value, 'n') return end % interactively determine orientation orientation = ' '; while ~any(strcmp(orientation(1), {'r', 'l', 'a', 'p', 's', 'i'})) orientation(1) = smartinput('What is the anatomical label for the positive X-axis [r, l, a, p, s, i]? ', ''); end while ~any(strcmp(orientation(2), {'r', 'l', 'a', 'p', 's', 'i'})) orientation(2) = smartinput('What is the anatomical label for the positive Y-axis [r, l, a, p, s, i]? ', ''); end while ~any(strcmp(orientation(3), {'r', 'l', 'a', 'p', 's', 'i'})) orientation(3) = smartinput('What is the anatomical label for the positive Z-axis [r, l, a, p, s, i]? ', ''); end % interactively determine origin origin = ' '; while ~any(strcmp(origin, {'a', 'i', 'n'})) origin = input('Is the origin of the coordinate system at the a(nterior commissure), i(nterauricular), n(ot a landmark)? ', 's'); end if origin=='a' && strcmp(orientation, 'ras') coordsys = 'spm'; elseif origin=='i' && strcmp(orientation, 'als') coordsys = 'ctf'; elseif origin=='i' && strcmp(orientation, 'ras') coordsys = 'neuromag'; % also used for itab else % just use the orientation coordsys = orientation; end data.coordsys = coordsys; end % if interactive %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to go from aplrsi to better interpretable format %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [labelx, labely, labelz] = xyz2label(str) if ~isempty(str) && ~strcmp(str, 'unknown') % the first part is important for th eorientations % the second part optionally contains information on the origin strx = tokenize(str, '_'); switch lower(strx{1}) case {'ras' 'itab' 'neuromag'} labelx = {'-X (left)' '+X (right)' }; labely = {'-Y (posterior)' '+Y (anterior)'}; labelz = {'-Z (inferior)' '+Z (superior)'}; case {'als' 'ctf' '4d', 'bti'} labelx = {'-X (posterior)' '+X (anterior)'}; labely = {'-Y (right)' '+Y (left)'}; labelz = {'-Z (inferior)' '+Z (superior)'}; otherwise error('unknown coordsys'); end else labelx = {'-X (unknown)' '+X (unknown)'}; labely = {'-Y (unknown)' '+Y (unknown)'}; labelz = {'-Z (unknown)' '+Z (unknown)'}; end
github
philippboehmsturm/antx-master
ft_hastoolbox.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_hastoolbox.m
15,262
utf_8
614a00df8ff0166ef4b5ad254779bc35
function [status] = ft_hastoolbox(toolbox, autoadd, silent) % FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally % it will try to determine the path to the toolbox and install it % automatically. % % Use as % [status] = ft_hastoolbox(toolbox, autoadd, silent) % % autoadd = 0 means that it will not be added % autoadd = 1 means that give an error if it cannot be added % autoadd = 2 means that give a warning if it cannot be added % autoadd = 3 means that it remains silent if it cannot be added % % silent = 0 means that it will give some feedback about adding the toolbox % silent = 1 means that it will not give feedback % Copyright (C) 2005-2010, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_hastoolbox.m 3872 2011-07-19 14:23:15Z tilsan $ % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before persistent previous previouspath if ~isequal(previouspath, path) previous = []; end if isempty(previous) previous = struct; elseif isfield(previous, fixname(toolbox)) status = previous.(fixname(toolbox)); return end % this points the user to the website where he/she can download the toolbox url = { 'AFNI' 'see http://afni.nimh.nih.gov' 'DSS' 'see http://www.cis.hut.fi/projects/dss' 'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab' 'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox' 'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm' 'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd' 'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com' 'BIOSIG' 'see http://biosig.sourceforge.net' 'EEG' 'see http://eeg.sourceforge.net' 'EEGSF' 'see http://eeg.sourceforge.net' % alternative name 'MRI' 'see http://eeg.sourceforge.net' % alternative name 'NEUROSHARE' 'see http://www.neuroshare.org' 'BESA' 'see http://www.megis.de, or contact Karsten Hoechstetter' 'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde' 'YOKOGAWA' 'see http://www.yokogawa.co.jp, or contact Nobuhiko Takahashi' 'YOKOGAWA_MEG_READER' 'contact Masayuki dot Mochiduki at jp.yokogawa.com' 'BEOWULF' 'see http://oostenveld.net, or contact Robert Oostenveld' 'MENTAT' 'see http://oostenveld.net, or contact Robert Oostenveld' 'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth' '4D-VERSION' 'contact Christian Wienbruch' 'SIGNAL' 'see http://www.mathworks.com/products/signal' 'OPTIM' 'see http://www.mathworks.com/products/optim' 'IMAGE' 'see http://www.mathworks.com/products/image' 'SPLINES' 'see http://www.mathworks.com/products/splines' 'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica' 'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm' 'FILEIO' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'FORWINV' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'PLOTTING' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne' 'BCI2000' 'see http://bci2000.org' 'NLXNETCOM' 'see http://www.neuralynx.com' 'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external' 'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php' 'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydes?ter' 'BEMCP' 'contact Christophe Phillips' 'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435' 'PRTOOLS' 'see http://www.prtools.org' 'ITAB' 'contact Stefania Della Penna' 'BSMART' 'see http://www.brain-smart.org' 'PEER' 'see http://fieldtrip.fcdonders.nl/development/peer' 'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki' 'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page' 'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS' 'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti' 'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0' 'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab' 'BCT' 'see http://www.brain-connectivity-toolbox.net/' }; if nargin<2 % default is not to add the path automatically autoadd = 0; end if nargin<3 % default is not to be silent silent = 0; end % determine whether the toolbox is installed toolbox = upper(toolbox); switch toolbox case 'AFNI' status = (exist('BrikLoad') && exist('BrikInfo')); case 'DSS' status = exist('denss', 'file') && exist('dss_create_state', 'file'); case 'EEGLAB' status = exist('runica', 'file'); case 'NWAY' status = exist('parafac', 'file'); case 'SPM' status = exist('spm.m'); % any version of SPM is fine case 'SPM99' status = exist('spm.m') && strcmp(spm('ver'),'SPM99'); case 'SPM2' status = exist('spm.m') && strcmp(spm('ver'),'SPM2'); case 'SPM5' status = exist('spm.m') && strcmp(spm('ver'),'SPM5'); case 'SPM8' status = exist('spm.m') && strncmp(spm('ver'),'SPM8', 4); case 'MEG-PD' status = (exist('rawdata') && exist('channames')); case 'MEG-CALC' status = (exist('megmodel') && exist('megfield') && exist('megtrans')); case 'BIOSIG' status = (exist('sopen') && exist('sread')); case 'EEG' status = (exist('ctf_read_res4') && exist('ctf_read_meg4')); case 'EEGSF' % alternative name status = (exist('ctf_read_res4') && exist('ctf_read_meg4')); case 'MRI' % other functions in the mri section status = (exist('avw_hdr_read') && exist('avw_img_read')); case 'NEUROSHARE' status = (exist('ns_OpenFile') && exist('ns_SetLibrary') && exist('ns_GetAnalogData')); case 'BESA' status = (exist('readBESAtfc') && exist('readBESAswf')); case 'EEPROBE' status = (exist('read_eep_avr') && exist('read_eep_cnt')); case 'YOKOGAWA' status = (exist('hasyokogawa') && hasyokogawa('16bitBeta6')); case 'YOKOGAWA16BITBETA3' status = (exist('hasyokogawa') && hasyokogawa('16bitBeta3')); case 'YOKOGAWA16BITBETA6' status = (exist('hasyokogawa') && hasyokogawa('16bitBeta6')); case 'YOKOGAWA_MEG_READER' status = (exist('hasyokogawa') && hasyokogawa('1.4')); case 'BEOWULF' status = (exist('evalwulf') && exist('evalwulf') && exist('evalwulf')); case 'MENTAT' status = (exist('pcompile') && exist('pfor') && exist('peval')); case 'SON2' status = (exist('SONFileHeader') && exist('SONChanList') && exist('SONGetChannel')); case '4D-VERSION' status = (exist('read4d') && exist('read4dhdr')); case {'STATS', 'STATISTICS'} status = license('checkout', 'statistics_toolbox'); % also check the availability of a toolbox license case {'OPTIM', 'OPTIMIZATION'} status = license('checkout', 'optimization_toolbox'); % also check the availability of a toolbox license case {'SPLINES', 'CURVE_FITTING'} status = license('checkout', 'curve_fitting_toolbox'); % also check the availability of a toolbox license case 'SIGNAL' status = license('checkout', 'signal_toolbox'); % also check the availability of a toolbox license case 'IMAGE' status = license('checkout', 'image_toolbox'); % also check the availability of a toolbox license case 'DCT' status = license('checkout', 'distrib_computing_toolbox'); % also check the availability of a toolbox license case 'FASTICA' status = exist('fastica', 'file'); case 'BRAINSTORM' status = exist('bem_xfer'); case 'FILEIO' status = (exist('ft_read_header') && exist('ft_read_data') && exist('ft_read_event') && exist('ft_read_sens')); case 'FORMWARD' status = (exist('ft_compute_leadfield') && exist('ft_prepare_vol_sens')); case 'DENOISE' status = (exist('tsr') && exist('sns')); case 'CTF' status = (exist('getCTFBalanceCoefs') && exist('getCTFdata')); case 'BCI2000' status = exist('load_bcidat'); case 'NLXNETCOM' status = (exist('MatlabNetComClient') && exist('NlxConnectToServer') && exist('NlxGetNewCSCData')); case 'DIPOLI' status = exist('dipoli.m', 'file'); case 'MNE' status = (exist('fiff_read_meas_info', 'file') && exist('fiff_setup_read_raw', 'file')); case 'TCP_UDP_IP' status = (exist('pnet', 'file') && exist('pnet_getvar', 'file') && exist('pnet_putvar', 'file')); case 'BEMCP' status = (exist('bem_Cij_cog', 'file') && exist('bem_Cij_lin', 'file') && exist('bem_Cij_cst', 'file')); case 'OPENMEEG' status = exist('openmeeg.m', 'file'); case 'PLOTTING' status = (exist('ft_plot_topo', 'file') && exist('ft_plot_mesh', 'file') && exist('ft_plot_matrix', 'file')); case 'PRTOOLS' status = (exist('prversion', 'file') && exist('dataset', 'file') && exist('svc', 'file')); case 'ITAB' status = (exist('lcReadHeader', 'file') && exist('lcReadData', 'file')); case 'BSMART' status = exist('bsmart'); case 'PEER' status = exist('peerslave', 'file') && exist('peermaster', 'file'); case 'CONNECTIVITY' status = exist('ft_connectivity_corr', 'file') && exist('ft_connectivity_granger', 'file'); case 'FREESURFER' status = exist('MRIread', 'file') && exist('vox2ras_0to1', 'file'); case 'FNS' status = exist('elecsfwd', 'file') && exist('img_get_gray', 'file'); case 'SIMBIO' status = exist('ipm_linux_opt_Venant', 'file'); case 'GIFTI' status = exist('gifti', 'file'); case 'XML4MAT' status = exist('xml2struct.m', 'file') && exist('xml2whos.m', 'file'); case 'SQDPROJECT' status = exist('sqdread.m', 'file') && exist('sqdwrite.m', 'file'); case 'BCT' status = exist('macaque71.mat', 'file') && exist('motif4funct_wei.m', 'file'); otherwise if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end status = 0; end % it should be a boolean value status = (status~=0); % try to determine the path of the requested toolbox if autoadd>0 && ~status % for core fieldtrip modules prefix = fileparts(which('ft_defaults')); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for external fieldtrip modules prefix = fullfile(fileparts(which('ft_defaults')), 'external'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for linux computers in the F.C. Donders Centre prefix = '/home/common/matlab'; if ~status && (strcmp(computer, 'GLNX86') || strcmp(computer, 'GLNXA64')) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for windows computers in the F.C. Donders Centre prefix = 'h:\common\matlab'; if ~status && (strcmp(computer, 'PCWIN') || strcmp(computer, 'PCWIN64')) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % use the matlab subdirectory in your homedirectory, this works on unix and mac prefix = [getenv('HOME') '/matlab']; if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end if ~status % the toolbox is not on the path and cannot be added sel = find(strcmp(url(:,1), toolbox)); if ~isempty(sel) msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2}); else msg = sprintf('the %s toolbox is not installed', toolbox); end if autoadd==1 error(msg); elseif autoadd==2 warning(msg); else % fail silently end end end % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before if status previous.(fixname(toolbox)) = status; end % remember the previous path, allows us to determine on the next call % whether the path has been modified outise of this function previouspath = path; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = myaddpath(toolbox, silent) if exist(toolbox, 'dir') if ~silent, ws = warning('backtrace', 'off'); warning('adding %s toolbox to your Matlab path', toolbox); warning(ws); % return to the previous warning level end addpath(toolbox); status = 1; else status = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function out = fixname(toolbox) out = lower(toolbox); out(out=='-') = '_'; % fix dashes out(out==' ') = '_'; % fix spaces out(out=='/') = '_'; % fix forward slashes out(out=='\') = '_'; % fix backward slashes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = hasfunction(funname, toolbox) try % call the function without any input arguments, which probably is inapropriate feval(funname); % it might be that the function without any input already works fine status = true; catch % either the function returned an error, or the function is not available % availability is influenced by the function being present and by having a % license for the function, i.e. in a concurrent licensing setting it might % be that all toolbox licenses are in use m = lasterror; if strcmp(m.identifier, 'MATLAB:license:checkouterror') if nargin>1 warning('the %s toolbox is available, but you don''t have a license for it', toolbox); else warning('the function ''%s'' is available, but you don''t have a license for it', funname); end status = false; elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction') status = false; else % the function seems to be available and it gave an unknown error, % which is to be expected with inappropriate input arguments status = true; end end
github
philippboehmsturm/antx-master
ft_checkdata.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_checkdata.m
58,801
utf_8
8d543f06e04e77fc4583d7f265baf5e4
function [data] = ft_checkdata(data, varargin) % FT_CHECKDATA checks the input data of the main FieldTrip functions, e.g. whether % the type of data strucure corresponds with the required data. If neccessary % and possible, this function will adjust the data structure to the input % requirements (e.g. change dimord, average over trials, convert inside from % index into logical). % % If the input data does NOT correspond to the requirements, this function % is supposed to give a elaborate warning message and if applicable point % the user to external documentation (link to website). % % Use as % [data] = ft_checkdata(data, ...) % % Optional input arguments should be specified as key-value pairs and can include % feedback = yes, no % datatype = raw, freq, timelock, comp, spike, source, volume, dip % dimord = any combination of time, freq, chan, refchan, rpt, subj, chancmb, rpttap, pos % senstype = ctf151, ctf275, ctf151_planar, ctf275_planar, neuromag122, neuromag306, bti148, bti248, bti248_planar, magnetometer, electrode % inside = logical, index % ismeg = yes, no % hastrials = yes, no % hasunits = yes, no % hassampleinfo = yes, no, ifmakessense % hascumtapcnt = yes, no (only applies to freq data) % hasdim = yes, no % hasdof = yes, no % cmbrepresentation = sparse, full (applies to covariance and cross-spectral density) % % For some options you can specify multiple values, e.g. % [data] = ft_checkdata(data, 'senstype', {'ctf151', 'ctf275'}), e.g. in megrealign % [data] = ft_checkdata(data, 'datatype', {'timelock', 'freq'}), e.g. in sourceanalysis % Copyright (C) 2007-2009, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Publhasoffsetic License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_checkdata.m 3880 2011-07-20 09:39:40Z jansch $ % in case of an error this function could use dbstack for more detailled % user feedback % % this function should replace/encapsulate % fixdimord % fixinside % fixprecision % fixvolume % data2raw % raw2data % grid2transform % transform2grid % fourier2crsspctrm % freq2cumtapcnt % sensortype % time2offset % offset2time % % other potential uses for this function: % time -> offset in freqanalysis % average over trials % csd as matrix % get the optional input arguments feedback = keyval('feedback', varargin); if isempty(feedback), feedback = 'no'; end dtype = keyval('datatype', varargin); % should not conflict with the ft_datatype function dimord = keyval('dimord', varargin); stype = keyval('senstype', varargin); % senstype is a function name which should not be masked ismeg = keyval('ismeg', varargin); inside = keyval('inside', varargin); % can be logical or index hastrials = keyval('hastrials', varargin); hasunits = keyval('hasunits', varargin); hassampleinfo = keyval('hassampleinfo', varargin); if isempty(hassampleinfo), hassampleinfo = 'no'; end hasdimord = keyval('hasdimord', varargin); if isempty(hasdimord), hasdimord = 'no'; end hasdim = keyval('hasdim', varargin); hascumtapcnt = keyval('hascumtapcnt', varargin); hasdof = keyval('hasdof', varargin); if isempty(hasdof), hasdof = 'no'; end haspow = keyval('haspow', varargin); if isempty(haspow), haspow = 'no'; end cmbrepresentation = keyval('cmbrepresentation', varargin); channelcmb = keyval('channelcmb', varargin); sourcedimord = keyval('sourcedimord', varargin); sourcerepresentation = keyval('sourcerepresentation', varargin); % check whether people are using deprecated stuff depHastrialdef = keyval('hastrialdef', varargin); if (~isempty(depHastrialdef)) warning_once('ft_checkdata option ''hastrialdef'' is deprecated; use ''hassampleinfo'' instead'); hassampleinfo = depHastrialdef; end if (~isempty(keyval('hasoffset', varargin))) warning_once('ft_checkdata option ''hasoffset'' has been removed and will be ignored'); end % determine the type of input data % this can be raw, freq, timelock, comp, spike, source, volume, dip israw = ft_datatype(data, 'raw'); isfreq = ft_datatype(data, 'freq'); istimelock = ft_datatype(data, 'timelock'); iscomp = ft_datatype(data, 'comp'); isspike = ft_datatype(data, 'spike'); isvolume = ft_datatype(data, 'volume'); issource = ft_datatype(data, 'source'); isdip = ft_datatype(data, 'dip'); ismvar = ft_datatype(data, 'mvar'); isfreqmvar = ft_datatype(data, 'freqmvar'); ischan = ft_datatype(data, 'chan'); % FIXME use the istrue function on ismeg and hasxxx options if ~isequal(feedback, 'no') if israw nchan = length(data.label); ntrial = length(data.trial); fprintf('the input is raw data with %d channels and %d trials\n', nchan, ntrial); elseif isfreq nchan = length(data.label); nfreq = length(data.freq); if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end fprintf('the input is freq data with %d channels, %d frequencybins and %s timebins\n', nchan, nfreq, ntime); elseif istimelock nchan = length(data.label); ntime = length(data.time); fprintf('the input is timelock data with %d channels and %d timebins\n', nchan, ntime); elseif iscomp ncomp = length(data.label); nchan = length(data.topolabel); fprintf('the input is component data with %d components and %d original channels\n', ncomp, nchan); elseif isspike nchan = length(data.label); fprintf('the input is spike data\n'); elseif isvolume fprintf('the input is volume data with dimensions [%d %d %d]\n', data.dim(1), data.dim(2), data.dim(3)); elseif issource nsource = size(data.pos, 1); fprintf('the input is source data with %d positions\n', nsource); elseif isdip fprintf('the input is dipole data\n'); elseif ismvar fprintf('the input is mvar data\n'); elseif isfreqmvar fprintf('the input is freqmvar data\n'); end end % give feedback if issource && isvolume % it should be either one or the other: the choice here is to % represent it as volume description since that is simpler to handle % the conversion is done by remove the grid positions data = rmfield(data, 'pos'); issource = false; end % the ft_datatype_XXX functions ensures the consistency of the XXX datatype % and provides a detailled description of the dataformat and its history if israw data = ft_datatype_raw(data); elseif isfreq data = ft_datatype_freq(data); elseif istimelock data = ft_datatype_timelock(data); elseif iscomp data = ft_datatype_comp(data); elseif isspike data = ft_datatype_spike(data); elseif isvolume data = ft_datatype_volume(data); elseif issource data = ft_datatype_source(data); elseif isdip data = ft_datatype_dip(data); elseif ismvar || isfreqmvar data = ft_datatype_mvar(data); end if ~isempty(dtype) if ~isa(dtype, 'cell') dtype = {dtype}; end okflag = 0; for i=1:length(dtype) % check that the data matches with one or more of the required ft_datatypes switch dtype{i} case 'raw' okflag = okflag + israw; case 'freq' okflag = okflag + isfreq; case 'timelock' okflag = okflag + istimelock; case 'comp' okflag = okflag + iscomp; case 'spike' okflag = okflag + isspike; case 'volume' okflag = okflag + isvolume; case 'source' okflag = okflag + issource; case 'dip' okflag = okflag + isdip; case 'mvar' okflag = okflag + ismvar; case 'freqmvar' okflag = okflag + isfreqmvar; end % switch dtype end % for dtype if ~okflag % try to convert the data for iCell = 1:length(dtype) if isequal(dtype(iCell), {'source'}) && isvolume data = volume2source(data); isvolume = 0; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'volume'}) && issource data = source2volume(data); isvolume = 1; issource = 0; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && issource data = data2raw(data); issource = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && istimelock data = timelock2raw(data); istimelock = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && israw data = raw2timelock(data); israw = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && isfreq data = freq2raw(data); isfreq = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && iscomp data = comp2raw(data); iscomp = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && iscomp data = comp2raw(data); data = raw2timelock(data); iscomp = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && ischan data = chan2timelock(data); ischan = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'freq'}) && ischan data = chan2freq(data); ischan = 0; isfreq = 1; okflag = 1; end end % for iCell end % if okflag if ~okflag % construct an error message if length(dtype)>1 str = sprintf('%s, ', dtype{1:(end-2)}); str = sprintf('%s%s or %s', str, dtype{end-1}, dtype{end}); else str = dtype{1}; end str = sprintf('This function requires %s data as input.', str); error(str); end % if okflag end if ~isempty(dimord) if ~isa(dimord, 'cell') dimord = {dimord}; end if isfield(data, 'dimord') okflag = any(strcmp(data.dimord, dimord)); else okflag = 0; end if ~okflag % construct an error message if length(dimord)>1 str = sprintf('%s, ', dimord{1:(end-2)}); str = sprintf('%s%s or %s', str, dimord{end-1}, dimord{end}); else str = dimord{1}; end str = sprintf('This function requires data with a dimord of %s.', str); error(str); end % if okflag end if ~isempty(stype) if ~isa(stype, 'cell') stype = {stype}; end if isfield(data, 'grad') || isfield(data, 'elec') if any(strcmp(ft_senstype(data), stype)); okflag = 1; else okflag = 0; end else okflag = 0; end if ~okflag % construct an error message if length(stype)>1 str = sprintf('%s, ', stype{1:(end-2)}); str = sprintf('%s%s or %s', str, stype{end-1}, stype{end}); else str = stype{1}; end str = sprintf('This function requires %s data as input, but you are giving %s data.', str, ft_senstype(data)); error(str); end % if okflag end if ~isempty(ismeg) if isequal(ismeg, 'yes') okflag = isfield(data, 'grad'); elseif isequal(ismeg, 'no') okflag = ~isfield(data, 'grad'); end if ~okflag && isequal(ismeg, 'yes') error('This function requires MEG data with a ''grad'' field'); elseif ~okflag && isequal(ismeg, 'no') error('This function should not be given MEG data with a ''grad'' field'); end % if okflag end if ~isempty(inside) % TODO absorb the fixinside function into this code data = fixinside(data, inside); okflag = isfield(data, 'inside'); if ~okflag % construct an error message error('This function requires data with an ''inside'' field.'); end % if okflag end %if isvolume % % ensure consistent dimensions of the volumetric data % % reshape each of the volumes that is found into a 3D array % param = parameterselection('all', data); % dim = data.dim; % for i=1:length(param) % tmp = getsubfield(data, param{i}); % tmp = reshape(tmp, dim); % data = setsubfield(data, param{i}, tmp); % end %end if isequal(hasunits, 'yes') && ~isfield(data, 'units') % calling convert_units with only the input data adds the units without converting data = ft_convert_units(data); end if issource || isvolume, % the following section is to make a dimord-consistent representation of % volume and source data, taking trials, time and frequency into account if isequal(hasdimord, 'yes') && (~isfield(data, 'dimord') || ~strcmp(data.dimord,sourcedimord)) % determine the size of the data if isfield(data, 'dimord'), dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('time', dimtok)), Ntime = length(data.time); else Ntime = 1; end if ~isempty(strmatch('freq', dimtok)), Nfreq = length(data.freq); else Nfreq = 1; end else Nfreq = 1; Ntime = 1; end %convert old style source representation into new style if isfield(data, 'avg') && isfield(data.avg, 'mom') && (isfield(data, 'freq') || isfield(data, 'frequency')) && strcmp(sourcedimord, 'rpt_pos'), %frequency domain source representation convert to single trial power Npos = size(data.pos,1); Nrpt = size(data.cumtapcnt,1); tmpmom = zeros(Npos, size(data.avg.mom{data.inside(1)},2)); tmpmom(data.inside,:) = cat(1,data.avg.mom{data.inside}); tmppow = zeros(Npos, Nrpt); tapcnt = [0;cumsum(data.cumtapcnt)]; for k = 1:Nrpt Ntap = tapcnt(k+1)-tapcnt(k); tmppow(data.inside,k) = sum(abs(tmpmom(data.inside,(tapcnt(k)+1):tapcnt(k+1))).^2,2)./Ntap; end data.pow = tmppow'; data = rmfield(data, 'avg'); if strcmp(inside, 'logical'), data = fixinside(data, 'logical'); data.inside = repmat(data.inside(:)',[Nrpt 1]); end elseif isfield(data, 'avg') && isfield(data.avg, 'mom') && (isfield(data, 'freq') || isfield(data, 'frequency')) && strcmp(sourcedimord, 'rpttap_pos'), %frequency domain source representation convert to single taper fourier coefficients Npos = size(data.pos,1); Nrpt = sum(data.cumtapcnt); data.fourierspctrm = complex(zeros(Nrpt, Npos), zeros(Nrpt, Npos)); data.fourierspctrm(:, data.inside) = transpose(cat(1, data.avg.mom{data.inside})); data = rmfield(data, 'avg'); elseif isfield(data, 'avg') && isfield(data.avg, 'mom') && isfield(data, 'time') && strcmp(sourcedimord, 'pos_time'), Npos = size(data.pos,1); Nrpt = 1; tmpmom = zeros(Npos, size(data.avg.mom{data.inside(1)},2)); tmpmom(data.inside,:) = cat(1,data.avg.mom{data.inside}); data.mom = tmpmom; if isfield(data.avg, 'noise'), tmpnoise = data.avg.noise(:); data.noise = tmpnoise(:,ones(1,size(tmpmom,2))); end data = rmfield(data, 'avg'); Ntime = length(data.time); elseif isfield(data, 'trial') && isfield(data.trial(1), 'mom') && isfield(data, 'time') && strcmp(sourcedimord, 'rpt_pos_time'), Npos = size(data.pos,1); Nrpt = length(data.trial); Ntime = length(data.time); tmpmom = zeros(Nrpt, Npos, Ntime); for k = 1:Nrpt tmpmom(k,data.inside,:) = cat(1,data.trial(k).mom{data.inside}); end data = rmfield(data, 'trial'); data.mom = tmpmom; elseif isfield(data, 'trial') && isstruct(data.trial) Nrpt = length(data.trial); else Nrpt = 1; end % start with an initial specification of the dimord and dim if (~isfield(data, 'dim') || ~isfield(data, 'dimord')) if issource % at least it should have a Nx3 pos data.dim = size(data.pos, 1); data.dimord = 'pos'; elseif isvolume % at least it should have a 1x3 dim data.dim = data.dim; data.dimord = 'dim1_dim2_dim3'; end end % add the additional dimensions if Nfreq>1 data.dimord = [data.dimord '_freq']; data.dim = [data.dim Nfreq]; end if Ntime>1 data.dimord = [data.dimord '_time']; data.dim = [data.dim Ntime]; end if Nrpt>1 && strcmp(sourcedimord, 'rpt_pos'), data.dimord = ['rpt_' data.dimord]; data.dim = [Nrpt data.dim ]; elseif Nrpt>1 && strcmp(sourcedimord, 'rpttap_pos'), data.dimord = ['rpttap_' data.dimord]; data.dim = [Nrpt data.dim ]; end % the nested trial structure is not compatible with dimord if isfield(data, 'trial') && isstruct(data.trial) param = fieldnames(data.trial); for i=1:length(param) if isa(data.trial(1).(param{i}), 'cell') concat = cell(data.dim(1), prod(data.dim(2:end))); else concat = zeros(data.dim(1), prod(data.dim(2:end))); end for j=1:length(data.trial) tmp = data.trial(j).(param{i}); concat(j,:) = tmp(:); end % for each trial data.trial = rmfield(data.trial, param{i}); data.(param{i}) = reshape(concat, data.dim); end % for each param data = rmfield(data, 'trial'); end end % ensure consistent dimensions of the source reconstructed data % reshape each of the source reconstructed parameters if issource && isfield(data, 'dim') && prod(data.dim)==size(data.pos,1) dim = [prod(data.dim) 1]; elseif issource && any(~cellfun('isempty',strfind(fieldnames(data), 'dimord'))) dim = [size(data.pos,1) 1]; %sparsely represented source structure new style elseif isfield(data, 'dim'), dim = [data.dim 1]; elseif issource dim = [size(data.pos,1) 1]; elseif isfield(data, 'dimord'), %HACK dimtok = tokenize(data.dimord, '_'); for i=1:length(dimtok) if strcmp(dimtok(i), 'pos') dim(1,i) = size(getsubfield(data,dimtok{i}),1); elseif strcmp(dimtok(i), 'rpt') dim(1,i) = nan; else dim(1,i) = length(getsubfield(data,dimtok{i})); end end i = find(isnan(dim)); if ~isempty(i) n = fieldnames(data); for ii=1:length(n) numels(1,ii) = numel(getfield(data,n{ii})); end nrpt = numels./prod(dim(setdiff(1:length(dim),i))); nrpt = nrpt(nrpt==round(nrpt)); dim(i) = max(nrpt); end if numel(dim)==1, dim(1,2) = 1; end; end % these fields should not be reshaped exclude = {'cfg' 'fwhm' 'leadfield' 'q' 'rough'}; if ~strcmp(inside, 'logical') % also exclude the inside/outside from being reshaped exclude = cat(2, exclude, {'inside' 'outside'}); end param = setdiff(parameterselection('all', data), exclude); for i=1:length(param) if any(param{i}=='.') % the parameter is nested in a substructure, which can have multiple elements (e.g. source.trial(1).pow, source.trial(2).pow, ...) % loop over the substructure array and reshape for every element tok = tokenize(param{i}, '.'); sub1 = tok{1}; % i.e. this would be 'trial' sub2 = tok{2}; % i.e. this would be 'pow' tmp1 = getfield(data, sub1); for j=1:numel(tmp1) tmp2 = getfield(tmp1(j), sub2); tmp2 = reshape(tmp2, dim); tmp1(j) = setfield(tmp1(j), sub2, tmp2); end data = setfield(data, sub1, tmp1); else tmp = getfield(data, param{i}); tmp = reshape(tmp, dim); data = setfield(data, param{i}, tmp); end end end if isequal(hastrials, 'yes') okflag = isfield(data, 'trial'); if ~okflag error('This function requires data with a ''trial'' field'); end % if okflag end if isequal(hassampleinfo, 'yes') || isequal(hassampleinfo, 'ifmakessense') data = fixsampleinfo(data); end if isequal(hasdim, 'yes') && ~isfield(data, 'dim') data.dim = pos2dim(data.pos); elseif isequal(hasdim, 'no') && isfield(data, 'dim') data = rmfield(data, 'dim'); end % if hasdim if isequal(hascumtapcnt, 'yes') && ~isfield(data, 'cumtapcnt') error('This function requires data with a ''cumtapcnt'' field'); elseif isequal(hascumtapcnt, 'no') && isfield(data, 'cumtapcnt') data = rmfield(data, 'cumtapcnt'); end % if hascumtapcnt if isequal(hasdof, 'yes') && ~isfield(data, 'hasdof') error('This function requires data with a ''dof'' field'); elseif isequal(hasdof, 'no') && isfield(data, 'hasdof') data = rmfield(data, 'cumtapcnt'); end % if hasdof if ~isempty(cmbrepresentation) if istimelock data = fixcov(data, cmbrepresentation); elseif isfreq data = fixcsd(data, cmbrepresentation, channelcmb); elseif isfreqmvar data = fixcsd(data, cmbrepresentation, channelcmb); else error('This function requires data with a covariance, coherence or cross-spectrum'); end end % cmbrepresentation if issource && ~isempty(sourcerepresentation) data = fixsource(data, 'type', sourcerepresentation); end if issource && ~strcmp(haspow, 'no') data = fixsource(data, 'type', sourcerepresentation, 'haspow', haspow); end if isfield(data, 'grad') % ensure that the gradiometer balancing is specified if ~isfield(data.grad, 'balance') || ~isfield(data.grad.balance, 'current') data.grad.balance.current = 'none'; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % represent the covariance matrix in a particular manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = fixcov(data, desired) if isfield(data, 'cov') && ~isfield(data, 'labelcmb') current = 'full'; elseif isfield(data, 'cov') && isfield(data, 'labelcmb') current = 'sparse'; else error('Could not determine the current representation of the covariance matrix'); end if isequal(current, desired) % nothing to do elseif strcmp(current, 'full') && strcmp(desired, 'sparse') % FIXME should be implemented error('not yet implemented'); elseif strcmp(current, 'sparse') && strcmp(desired, 'full') % FIXME should be implemented error('not yet implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % represent the cross-spectral density matrix in a particular manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = fixcsd(data, desired, channelcmb) % FIXCSD converts univariate frequency domain data (fourierspctrm) into a bivariate % representation (crsspctrm), or changes the representation of bivariate frequency % domain data (sparse/full/sparsewithpow, sparsewithpow only works for crsspctrm or % fourierspctrm) % Copyright (C) 2010, Jan-Mathijs Schoffelen, Robert Oostenveld if isfield(data, 'crsspctrm') && isfield(data, 'powspctrm') current = 'sparsewithpow'; elseif isfield(data, 'powspctrm') current = 'sparsewithpow'; elseif isfield(data, 'fourierspctrm') && ~isfield(data, 'labelcmb') current = 'fourier'; elseif ~isfield(data, 'labelcmb') current = 'full'; elseif isfield(data, 'labelcmb') current = 'sparse'; else error('Could not determine the current representation of the %s matrix', param); end % first go from univariate fourier to the required bivariate representation if strcmp(current, 'fourier') && strcmp(desired, 'fourier') % nothing to do elseif strcmp(current, 'fourier') && strcmp(desired, 'sparsewithpow') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt,1); flag = 0; else nrpt = 1; flag = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1)); %create auto-spectra nchan = length(data.label); if fastflag % all trials have the same amount of tapers powspctrm = zeros(nrpt,nchan,nfrq,ntim); ntap = data.cumtapcnt(1); for p = 1:ntap powspctrm = powspctrm + abs(data.fourierspctrm(p:ntap:end,:,:,:,:)).^2; end powspctrm = powspctrm./ntap; else % different amount of tapers powspctrm = zeros(nrpt,nchan,nfrq,ntim)+i.*zeros(nrpt,nchan,nfrq,ntim); sumtapcnt = [0;cumsum(data.cumtapcnt(:))]; for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat = data.fourierspctrm(indx,:,:,:); powspctrm(p,:,:,:) = (sum(tmpdat.*conj(tmpdat),1))./data.cumtapcnt(p); end end %create cross-spectra if ~isempty(channelcmb), ncmb = size(channelcmb,1); cmbindx = zeros(ncmb,2); labelcmb = cell(ncmb,2); for k = 1:ncmb ch1 = find(strcmp(data.label, channelcmb(k,1))); ch2 = find(strcmp(data.label, channelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(k,:) = [ch1 ch2]; labelcmb(k,:) = data.label([ch1 ch2])'; end end crsspctrm = zeros(nrpt,ncmb,nfrq,ntim)+i.*zeros(nrpt,ncmb,nfrq,ntim); if fastflag for p = 1:ntap tmpdat1 = data.fourierspctrm(p:ntap:end,cmbindx(:,1),:,:,:); tmpdat2 = data.fourierspctrm(p:ntap:end,cmbindx(:,2),:,:,:); crsspctrm = crsspctrm + tmpdat1.*conj(tmpdat2); end crsspctrm = crsspctrm./ntap; else for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:); tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:); crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p); end end data.crsspctrm = crsspctrm; data.labelcmb = labelcmb; end data.powspctrm = powspctrm; data = rmfield(data, 'fourierspctrm'); if ntim>1, data.dimord = 'chan_freq_time'; else data.dimord = 'chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end if flag, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end elseif strcmp(current, 'fourier') && strcmp(desired, 'sparse') if isempty(channelcmb), error('no channel combinations are specified'); end dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt,1); flag = 0; else nrpt = 1; flag = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end ncmb = size(channelcmb,1); cmbindx = zeros(ncmb,2); labelcmb = cell(ncmb,2); for k = 1:ncmb ch1 = find(strcmp(data.label, channelcmb(k,1))); ch2 = find(strcmp(data.label, channelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(k,:) = [ch1 ch2]; labelcmb(k,:) = data.label([ch1 ch2])'; end end sumtapcnt = [0;cumsum(data.cumtapcnt(:))]; fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1)); if fastflag && nrpt>1 ntap = data.cumtapcnt(1); % compute running sum across tapers siz = [size(data.fourierspctrm) 1]; for p = 1:ntap indx = p:ntap:nrpt*ntap; if p==1. tmpc = zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)) + ... 1i.*zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)); end for k = 1:size(cmbindx,1) tmpc(:,k,:,:) = data.fourierspctrm(indx,cmbindx(k,1),:,:).* ... conj(data.fourierspctrm(indx,cmbindx(k,2),:,:)); end if p==1 crsspctrm = tmpc; else crsspctrm = tmpc + crsspctrm; end end crsspctrm = crsspctrm./ntap; else crsspctrm = zeros(nrpt, ncmb, nfrq, ntim); for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:); tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:); crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p); end end data.crsspctrm = crsspctrm; data.labelcmb = labelcmb; data = rmfield(data, 'fourierspctrm'); data = rmfield(data, 'label'); if ntim>1, data.dimord = 'chan_freq_time'; else data.dimord = 'chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end if flag, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end elseif strcmp(current, 'fourier') && strcmp(desired, 'full') % this is how it is currently and the desired functionality of prepare_freq_matrices dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt, 1); flag = 0; else nrpt = 1; flag = 1; end if ~isempty(strmatch('rpttap',dimtok)), nrpt=size(data.cumtapcnt, 1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end if any(data.cumtapcnt(1,:) ~= data.cumtapcnt(1,1)), error('this only works when all frequencies have the same number of tapers'); end nchan = length(data.label); crsspctrm = zeros(nrpt,nchan,nchan,nfrq,ntim); sumtapcnt = [0;cumsum(data.cumtapcnt(:,1))]; for k = 1:ntim for m = 1:nfrq for p = 1:nrpt %FIXME speed this up in the case that all trials have equal number of tapers indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat = transpose(data.fourierspctrm(indx,:,m,k)); crsspctrm(p,:,:,m,k) = (tmpdat*tmpdat')./data.cumtapcnt(p); clear tmpdat; end end end data.crsspctrm = crsspctrm; data = rmfield(data, 'fourierspctrm'); if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end % remove first singleton dimension if flag || nrpt==1, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end elseif strcmp(current, 'fourier') && strcmp(desired, 'fullfast'), dimtok = tokenize(data.dimord, '_'); nrpt = size(data.fourierspctrm, 1); nchn = numel(data.label); nfrq = numel(data.freq); if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end data.fourierspctrm = reshape(data.fourierspctrm, [nrpt nchn nfrq*ntim]); data.fourierspctrm(~isfinite(data.fourierspctrm)) = 0; crsspctrm = complex(zeros(nchn,nchn,nfrq*ntim)); for k = 1:nfrq*ntim tmp = transpose(data.fourierspctrm(:,:,k)); n = sum(tmp~=0,2); crsspctrm(:,:,k) = tmp*tmp'./n(1); end data = rmfield(data, 'fourierspctrm'); data.crsspctrm = reshape(crsspctrm, [nchn nchn nfrq ntim]); if isfield(data, 'time'), data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if isfield(data, 'trialinfo'), data = rmfield(data, 'trialinfo'); end; if isfield(data, 'sampleinfo'), data = rmfield(data, 'sampleinfo'); end; if isfield(data, 'cumsumcnt'), data = rmfield(data, 'cumsumcnt'); end; if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end; end % convert to the requested bivariate representation % from one bivariate representation to another if isequal(current, desired) % nothing to do elseif (strcmp(current, 'full') && strcmp(desired, 'fourier')) || ... (strcmp(current, 'sparse') && strcmp(desired, 'fourier')) || ... (strcmp(current, 'sparsewithpow') && strcmp(desired, 'fourier')) % this is not possible error('converting the cross-spectrum into a Fourier representation is not possible'); elseif strcmp(current, 'full') && strcmp(desired, 'sparsewithpow') error('not yet implemented'); elseif strcmp(current, 'sparse') && strcmp(desired, 'sparsewithpow') % convert back to crsspctrm/powspctrm representation: useful for plotting functions etc indx = labelcmb2indx(data.labelcmb); autoindx = indx(indx(:,1)==indx(:,2), 1); cmbindx = setdiff([1:size(indx,1)]', autoindx); if strcmp(data.dimord(1:3), 'rpt') data.powspctrm = data.crsspctrm(:, autoindx, :, :); data.crsspctrm = data.crsspctrm(:, cmbindx, :, :); else data.powspctrm = data.crsspctrm(autoindx, :, :); data.crsspctrm = data.crsspctrm(cmbindx, :, :); end data.label = data.labelcmb(autoindx,1); data.labelcmb = data.labelcmb(cmbindx, :); if isempty(cmbindx) data = rmfield(data, 'crsspctrm'); data = rmfield(data, 'labelcmb'); end elseif strcmp(current, 'full') && strcmp(desired, 'sparse') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end nchan = length(data.label); ncmb = nchan*nchan; labelcmb = cell(ncmb, 2); cmbindx = zeros(nchan, nchan); k = 1; for j=1:nchan for m=1:nchan labelcmb{k, 1} = data.label{m}; labelcmb{k, 2} = data.label{j}; cmbindx(m,j) = k; k = k+1; end end % reshape all possible fields fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt>1, data.(fn{ii}) = reshape(data.(fn{ii}), nrpt, ncmb, nfrq, ntim); else data.(fn{ii}) = reshape(data.(fn{ii}), ncmb, nfrq, ntim); end end end % remove obsolete fields data = rmfield(data, 'label'); try, data = rmfield(data, 'dof'); end % replace updated fields data.labelcmb = labelcmb; if ntim>1, data.dimord = 'chancmb_freq_time'; else data.dimord = 'chancmb_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'sparse') % this representation for sparse data contains autospectra % as e.g. {'A' 'A'} in labelcmb if isfield(data, 'crsspctrm'), dimtok = tokenize(data.dimord, '_'); catdim = match_str(dimtok, {'chan' 'chancmb'}); data.crsspctrm = cat(catdim, data.powspctrm, data.crsspctrm); data.labelcmb = [data.label(:) data.label(:); data.labelcmb]; data = rmfield(data, 'powspctrm'); else data.crsspctrm = data.powspctrm; data.labelcmb = [data.label(:) data.label(:)]; data = rmfield(data, 'powspctrm'); end data = rmfield(data, 'label'); elseif strcmp(current, 'sparse') && strcmp(desired, 'full') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end if ~isfield(data, 'label') % ensure that the bivariate spectral factorization results can be % processed. FIXME this is experimental and will not work if the user % did something weird before for k = 1:numel(data.labelcmb) tmp = tokenize(data.labelcmb{k}, '['); data.labelcmb{k} = tmp{1}; end data.label = unique(data.labelcmb(:)); end nchan = length(data.label); ncmb = size(data.labelcmb,1); cmbindx = zeros(nchan,nchan); for k = 1:size(data.labelcmb,1) ch1 = find(strcmp(data.label, data.labelcmb(k,1))); ch2 = find(strcmp(data.label, data.labelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(ch1,ch2) = k; end end complete = all(cmbindx(:)~=0); fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt==1, data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]); end tmpall = nan(nrpt,nchan,nchan,nfrq,ntim); for j = 1:nrpt for k = 1:ntim for m = 1:nfrq tmpdat = nan(nchan,nchan); indx = find(cmbindx); if ~complete % this realizes the missing combinations to be represented as the % conjugate of the corresponding combination across the diagonal tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]); tmpdat = ctranspose(tmpdat); end tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]); tmpall(j,:,:,m,k) = tmpdat; end % for m end % for k end % for j % replace the data in the old representation with the new representation if nrpt>1, data.(fn{ii}) = tmpall; else data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]); end end % if numel end % for ii % remove obsolete fields try, data = rmfield(data, 'powspctrm'); end try, data = rmfield(data, 'labelcmb'); end try, data = rmfield(data, 'dof'); end if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end elseif strcmp(current, 'sparse') && strcmp(desired, 'fullfast') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end if ~isfield(data, 'label') data.label = unique(data.labelcmb(:)); end nchan = length(data.label); ncmb = size(data.labelcmb,1); cmbindx = zeros(nchan,nchan); for k = 1:size(data.labelcmb,1) ch1 = find(strcmp(data.label, data.labelcmb(k,1))); ch2 = find(strcmp(data.label, data.labelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(ch1,ch2) = k; end end complete = all(cmbindx(:)~=0); fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt==1, data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]); end tmpall = nan(nchan,nchan,nfrq,ntim); for k = 1:ntim for m = 1:nfrq tmpdat = nan(nchan,nchan); indx = find(cmbindx); if ~complete % this realizes the missing combinations to be represented as the % conjugate of the corresponding combination across the diagonal tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]); tmpdat = ctranspose(tmpdat); end tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]); tmpall(:,:,m,k) = tmpdat; end % for m end % for k % replace the data in the old representation with the new representation if nrpt>1, data.(fn{ii}) = tmpall; else data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]); end end % if numel end % for ii % remove obsolete fields try, data = rmfield(data, 'powspctrm'); end try, data = rmfield(data, 'labelcmb'); end try, data = rmfield(data, 'dof'); end if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'full') % this is how is currently done in prepare_freq_matrices data = ft_checkdata(data, 'cmbrepresentation', 'sparse'); data = ft_checkdata(data, 'cmbrepresentation', 'full'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert to new source representation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [output] = fixsource(input, varargin) % FIXSOURCE converts old style source structures into new style source structures and the % other way around % % Use as: % fixsource(input, type) % where input is a source structure, % % Typically, old style source structures contain % avg.XXX or trial.XXX fields % % The new style source structure contains: % source.pos % source.dim (optional, if the list of positions describes a 3D volume % source.XXX the old style subfields in avg/trial % source.XXXdimord string how to interpret the respective XXX field: % e.g. source.leadfield = cell(1,Npos), source.leadfielddimord = '{pos}_chan_ori' % source.mom = cell(1,Npos), source.momdimord = '{pos}_ori_rpttap' type = keyval('type', varargin); haspow = keyval('haspow', varargin); if isempty(type), type = 'old'; end if isempty(haspow), haspow = 'no'; end fnames = fieldnames(input); tmp = cell2mat(strfind(fnames, 'dimord')); %get dimord like fields if any(tmp>1), current = 'new'; elseif any(tmp==1), %don't know what to do yet data is JM's own invention current = 'old'; else current = 'old'; end if strcmp(current, type), %do nothing output = input; %return elseif strcmp(current, 'old') && strcmp(type, 'new'), %go from old to new if isfield(input, 'avg'), stuff = getfield(input, 'avg'); output = rmfield(input, 'avg'); elseif isfield(input, 'trial'), stuff = getfield(input, 'trial'); output = rmfield(input, 'trial'); else %this could occur later in the pipeline, e.g. when doing group statistics using individual subject %descriptive statistics error('the input does not contain an avg or trial field'); end %------------------------------------------------- %remove and rename the specified fields if present removefields = {'xgrid';'ygrid';'zgrid';'method'}; renamefields = {'frequency' 'freq'; 'csdlabel' 'orilabel'}; fnames = fieldnames(output); for k = 1:numel(fnames) ix = strmatch(fnames{k}, removefields); if ~isempty(ix), output = rmfield(output, fnames{k}); end ix = strmatch(fnames{k}, renamefields(:,1), 'exact'); if ~isempty(ix), output = setfield(output, renamefields{ix,2}, ... getfield(output, renamefields{ix,1})); output = rmfield(output, fnames{k}); end end %---------------------------------------------------------------------- %put the stuff originally in avg or trial one level up in the structure fnames = fieldnames(stuff(1)); npos = size(input.pos,1); nrpt = numel(stuff); for k = 1:numel(fnames) if nrpt>1, %multiple trials %(or subjects FIXME not yet implemented, nor tested) tmp = getfield(stuff(1), fnames{k}); siz = size(tmp); if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom') %pcc based mom is orixrpttap %tranpose to keep manageable for kk = 1:numel(input.inside) indx = input.inside(kk); tmp{indx} = permute(tmp{indx}, [2 1 3]); end nrpttap = sum(input.cumtapcnt); sizvox = [size(tmp{input.inside(1)}) 1]; sizvox = [nrpttap sizvox(2:end)]; elseif strcmp(fnames{k}, 'mom'), %this is then probably not a frequency based mom nrpttap = numel(stuff); sizvox = [size(tmp{input.inside(1)}) 1]; sizvox = [nrpttap sizvox]; elseif iscell(tmp) nrpttap = numel(stuff); sizvox = [size(tmp{input.inside(1)}) 1]; sizvox = [nrpttap sizvox]; end if siz(1) ~= npos && siz(2) ==npos, tmp = transpose(tmp); end if iscell(tmp) %allocate memory for cell-array tmpall = cell(npos,1); for n = 1:numel(input.inside) tmpall{input.inside(n)} = zeros(sizvox); end else %allocate memory for matrix tmpall = zeros([npos nrpt siz(2:end)]); end cnt = 0; for m = 1:nrpt tmp = getfield(stuff(m), fnames{k}); siz = size(tmp); if siz(1) ~= npos && siz(2) ==npos, tmp = transpose(tmp); end if ~iscell(tmp), tmpall(:,m,:,:,:) = tmp; else for n = 1:numel(input.inside) indx = input.inside(n); tmpdat = tmp{indx}; if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom'), if n==1, siz1 = size(tmpdat,2); end else if n==1, siz1 = 1; end end tmpall{indx}(cnt+[1:siz1],:,:,:,:) = tmpdat; if n==numel(input.inside), cnt = cnt + siz1; end end end end output = setfield(output, fnames{k}, tmpall); newdimord = createdimord(output, fnames{k}, 1); if ~isempty(newdimord) output = setfield(output, [fnames{k},'dimord'], newdimord); end else tmp = getfield(stuff, fnames{k}); siz = size(tmp); if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom') %pcc based mom is orixrpttap %tranpose to keep manageable for kk = 1:numel(input.inside) indx = input.inside(kk); tmp{indx} = permute(tmp{indx}, [2 1 3]); end end if siz(1) ~= npos && siz(2) ==npos, tmp = transpose(tmp); end output = setfield(output, fnames{k}, tmp); newdimord = createdimord(output, fnames{k}); if ~isempty(newdimord) output = setfield(output, [fnames{k},'dimord'], newdimord); end end end if isfield(output, 'csdlabel') output = setfield(output, 'orilabel', getfield(output, 'csdlabel')); output = rmfield(output, 'csdlabel'); end if isfield(output, 'leadfield') % add dimord to leadfield as well. since the leadfield is not in % the original .avg or .trial field it has not yet been taken care of output.leadfielddimord = createdimord(output, 'leadfield'); end if isfield(output, 'ori') % convert cell-array ori into matrix ori = zeros(3,npos) + nan; try, ori(:,output.inside) = cat(2, output.ori{output.inside}); catch %when oris are in wrong orientation (row rather than column) for k = 1:numel(output.inside) ori(:,output.inside(k)) = output.ori{output.inside(k)}'; end end output.ori = ori; end current = 'new'; elseif strcmp(current, 'new') && strcmp(type, 'old') %go from new to old error('not implemented yet'); end if strcmp(current, 'new') && strcmp(haspow, 'yes'), %---------------------------------------------- %convert mom into pow if requested and possible convert = 0; if isfield(output, 'mom') && size(output.mom{output.inside(1)},2)==1, convert = 1; else warning('conversion from mom to pow is not possible, either because there is no mom in the data, or because the dimension of mom>1. in that case call ft_sourcedescriptives first with cfg.projectmom'); end if isfield(output, 'cumtapcnt') convert = 1 & convert; else warning('conversion from mom to pow will not be done, because cumtapcnt is missing'); end if convert, npos = size(output.pos,1); nrpt = size(output.cumtapcnt,1); tmpmom = cat(2,output.mom{output.inside}); tmppow = zeros(npos, nrpt); tapcnt = [0;cumsum(output.cumtapcnt(:))]; for k = 1:nrpt ntap = tapcnt(k+1)-tapcnt(k); tmppow(output.inside,k) = sum(abs(tmpmom((tapcnt(k)+1):tapcnt(k+1),:)).^2,1)./ntap; end output.pow = tmppow; output.powdimord = ['pos_rpt_freq']; end elseif strcmp(current, 'old') && strcmp(haspow, 'yes') warning('construction of single trial power estimates is not implemented here using old style source representation'); end %-------------------------------------------------------- function [dimord] = createdimord(output, fname, rptflag); if nargin==2, rptflag = 0; end tmp = getfield(output, fname); dimord = ''; dimnum = 1; hasori = isfield(output, 'ori'); %if not, this is probably singleton and not relevant at the end if iscell(tmp) && (size(output.pos,1)==size(tmp,dimnum) || size(output.pos,1)==size(tmp,2)) dimord = [dimord,'{pos}']; dimnum = dimnum + 1; elseif ~iscell(tmp) && size(output.pos,1)==size(tmp,dimnum) dimord = [dimord,'pos']; dimnum = dimnum + 1; end switch fname case 'cov' if hasori, dimord = [dimord,'_ori_ori']; end; case 'csd' if hasori, dimord = [dimord,'_ori_ori']; end; case 'csdlabel' dimord = dimord; case 'filter' dimord = [dimord,'_ori_chan']; case 'leadfield' %if hasori, dimord = [dimord,'_chan_ori']; %else % dimord = [dimord,'_chan']; %end case 'mom' if isfield(output, 'cumtapcnt') && sum(output.cumtapcnt)==size(tmp{output.inside(1)},1) if hasori, dimord = [dimord,'_rpttap_ori']; else dimord = [dimord,'_rpttap']; end elseif isfield(output, 'time') if rptflag, dimord = [dimord,'_rpt']; dimnum = dimnum + 1; end if numel(output.time)==size(tmp{output.inside(1)},dimnum) dimord = [dimord,'_ori_time']; end end if isfield(output, 'freq') && numel(output.freq)>1, dimord = [dimord,'_freq']; end case 'nai' if isfield(output, 'freq') && numel(output.freq)==size(tmp,dimnum) dimord = [dimord,'_freq']; end case 'noise' if isfield(output, 'freq') && numel(output.freq)==size(tmp,dimnum) dimord = [dimord,'_freq']; end case 'noisecsd' if hasori, dimord = [dimord,'_ori_ori']; end case 'ori' dimord = ''; case 'pow' if isfield(output, 'cumtapcnt') && size(output.cumtapcnt,1)==size(tmp,dimnum) dimord = [dimord,'_rpt']; dimnum = dimnum + 1; end if isfield(output, 'freq') && numel(output.freq)>1 && numel(output.freq)==size(tmp,dimnum) dimord = [dimord,'_freq']; dimnum = dimnum+1; end if isfield(output, 'time') && numel(output.time)>1 && numel(output.time)==size(tmp,dimnum) dimord = [dimord,'_time']; dimnum = dimnum+1; end otherwise warning('skipping unknown fieldname %s', fname); %error(sprintf('unknown fieldname %s', fname)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = comp2raw(data) % just remove the component topographies data = rmfield(data, 'topo'); data = rmfield(data, 'topolabel'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = volume2source(data) if isfield(data, 'dimord') % it is a modern source description else % it is an old-fashioned source description xgrid = 1:data.dim(1); ygrid = 1:data.dim(2); zgrid = 1:data.dim(3); [x y z] = ndgrid(xgrid, ygrid, zgrid); data.pos = warp_apply(data.transform, [x(:) y(:) z(:)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = source2volume(data) if isfield(data, 'dimord') % it is a modern source description %this part depends on the assumption that the list of positions is describing a full 3D volume in %an ordered way which allows for the extraction of a transformation matrix %i.e. slice by slice try, if isfield(data, 'dim'), data.dim = pos2dim(data.pos, data.dim); else data.dim = pos2dim(data); end catch end end if isfield(data, 'dim') && length(data.dim)>=3, % it is an old-fashioned source description, or the source describes a regular 3D volume in pos xgrid = 1:data.dim(1); ygrid = 1:data.dim(2); zgrid = 1:data.dim(3); [x y z] = ndgrid(xgrid, ygrid, zgrid); ind = [x(:) y(:) z(:)]; % these are the positions expressed in voxel indices along each of the three axes pos = data.pos; % these are the positions expressed in head coordinates % represent the positions in a manner that is compatible with the homogeneous matrix multiplication, % i.e. pos = H * ind ind = ind'; ind(4,:) = 1; pos = pos'; pos(4,:) = 1; % recompute the homogeneous transformation matrix data.transform = pos / ind; end % remove the unwanted fields if isfield(data, 'pos'), data = rmfield(data, 'pos'); end if isfield(data, 'xgrid'), data = rmfield(data, 'xgrid'); end if isfield(data, 'ygrid'), data = rmfield(data, 'ygrid'); end if isfield(data, 'zgrid'), data = rmfield(data, 'zgrid'); end % make inside a volume data = fixinside(data, 'logical'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = freq2raw(freq) if strcmp(freq.dimord, 'rpt_chan_freq_time') dat = freq.powspctrm; elseif strcmp(freq.dimord, 'rpttap_chan_freq_time') warning('converting fourier representation into raw data format. this is experimental code'); dat = freq.fourierspctrm; else error('this only works for dimord=''rpt_chan_freq_time'''); end nrpt = size(dat,1); nchan = size(dat,2); nfreq = size(dat,3); ntime = size(dat,4); data = []; % create the channel labels like "MLP11@12Hz"" k = 0; for i=1:nfreq for j=1:nchan k = k+1; data.label{k} = sprintf('%s@%dHz', freq.label{j}, freq.freq(i)); end end % reshape and copy the data as if it were timecourses only for i=1:nrpt data.time{i} = freq.time; data.trial{i} = reshape(dat(i,:,:,:), nchan*nfreq, ntime); if any(isnan(data.trial{i}(1,:))), tmp = data.trial{i}(1,:); begsmp = find(isfinite(tmp),1, 'first'); endsmp = find(isfinite(tmp),1, 'last' ); data.trial{i} = data.trial{i}(:, begsmp:endsmp); data.time{i} = data.time{i}(begsmp:endsmp); end end nsmp = cellfun('size',data.time,2); seln = find(nsmp>1,1, 'first'); data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1)); if isfield(freq, 'trialinfo'), data.trialinfo = freq.trialinfo; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = raw2timelock(data) nsmp = cellfun('size',data.time,2); data = ft_checkdata(data, 'hassampleinfo', 'yes'); ntrial = numel(data.trial); nchan = numel(data.label); if ntrial==1 data.time = data.time{1}; data.avg = data.trial{1}; data = rmfield(data, 'trial'); data.dimord = 'chan_time'; else % determine the location of the trials relative to the resulting combined time axis begtime = cellfun(@min, data.time); endtime = cellfun(@max, data.time); begsmp = round((begtime - min(begtime)) * data.fsample) + 1; endsmp = round((endtime - min(begtime)) * data.fsample) + 1; % create a combined time axis and concatenate all trials tmptime = min(begtime):(1/data.fsample):max(endtime); tmptrial = zeros(ntrial, nchan, length(tmptime)) + nan; for i=1:ntrial tmptrial(i,:,begsmp(i):endsmp(i)) = data.trial{i}; end % update the sampleinfo begpad = begsmp - min(begsmp); endpad = max(endsmp) - endsmp; if isfield(data, 'sampleinfo') data.sampleinfo = data.sampleinfo + [-begpad(:) endpad(:)]; end % construct the output timelocked data % data.avg = reshape(nanmean(tmptrial, 1), nchan, length(tmptime)); % data.var = reshape(nanvar (tmptrial, [], 1), nchan, length(tmptime)) % data.dof = reshape(sum(~isnan(tmptrial), 1), nchan, length(tmptime)); data.trial = tmptrial; data.time = tmptime; data.dimord = 'rpt_chan_time'; data = rmfield(data, 'fsample'); % fsample in timelock data is obsolete end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = timelock2raw(data) try nsmp = cellfun('size',data.time,2); catch nsmp = size(data.time,2); end switch data.dimord case 'chan_time' data.trial{1} = data.avg; data.time = {data.time}; data = rmfield(data, 'avg'); seln = find(nsmp>1,1, 'first'); data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1)); case 'rpt_chan_time' tmptrial = {}; tmptime = {}; ntrial = size(data.trial,1); nchan = size(data.trial,2); ntime = size(data.trial,3); for i=1:ntrial tmptrial{i} = reshape(data.trial(i,:,:), [nchan, ntime]); tmptime{i} = data.time; end data = rmfield(data, 'trial'); data.trial = tmptrial; data.time = tmptime; seln = find(nsmp>1,1, 'first'); data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1)); case 'subj_chan_time' tmptrial = {}; tmptime = {}; ntrial = size(data.individual,1); nchan = size(data.individual,2); ntime = size(data.individual,3); for i=1:ntrial tmptrial{i} = reshape(data.individual(i,:,:), [nchan, ntime]); tmptime{i} = data.time; end data = rmfield(data, 'individual'); data.trial = tmptrial; data.time = tmptime; seln = find(nsmp>1,1, 'first'); data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1)); otherwise error('unsupported dimord'); end % remove the unwanted fields if isfield(data, 'avg'), data = rmfield(data, 'avg'); end if isfield(data, 'var'), data = rmfield(data, 'var'); end if isfield(data, 'cov'), data = rmfield(data, 'cov'); end if isfield(data, 'dimord'), data = rmfield(data, 'dimord'); end if isfield(data, 'numsamples'), data = rmfield(data, 'numsamples'); end if isfield(data, 'dof'), data = rmfield(data, 'dof'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = chan2freq(data) data.dimord = [data.dimord '_freq']; data.freq = nan; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = chan2timelock(data) data.dimord = [data.dimord '_time']; data.time = nan;
github
philippboehmsturm/antx-master
nearest.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/nearest.m
2,220
utf_8
2bb829a5040b8b57693d43dee7d42f08
function [i] = nearest(array, val) % NEAREST return the index of an array nearest to a scalar % % [indx] = nearest(array, val) % Copyright (C) 2002, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: nearest.m 2865 2011-02-12 19:24:57Z roboos $ mbreal(array); mbreal(val); mbvector(array); mbscalar(val); % ensure that it is a column vector array = array(:); if isnan(val) error('incorrect value') end if val>max(array) % return the last occurence of the nearest number [dum, i] = max(flipud(array)); i = length(array) + 1 - i; else % return the first occurence of the nearest number [mindist, i] = min(abs(array(:) - val)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function mbreal(a) if ~isreal(a) error('Argument to mbreal must be real'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function mbscalar(a) if ~all(size(a)==1) error('Argument to mbscalar must be scalar'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function mbvector(a) if ndims(a) > 2 | (size(a, 1) > 1 & size(a, 2) > 1) error('Argument to mbvector must be a vector'); end
github
philippboehmsturm/antx-master
ft_checkopt.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_checkopt.m
2,880
utf_8
e5dcf5f9eda8bcdbe4e14c446ec47697
function opt = ft_checkopt(opt, key, allowedtype, allowedval) % FT_CHECKOPT does a validity test on the types and values of a configuration % structure or cell-array with key-value pairs. % % Use as % opt = ft_checkopt(opt, key, allowedtype, allowedval) % % For allowedtype you can specify a string or a cell-array with multiple % strings. All the default MATLAB types can be specified, for example % 'double' % 'logical' % 'char' % 'single' % 'float' % 'int16' % 'cell' % 'struct' % 'function_handle' % Furthermore, the following custom types can be specified % 'doublescalar' % 'doublevector' % 'doublematrix' % 'charcell' % % For allowedval you can specify a single value or a cell-array % with multiple values. % % This function will give an error or it returns the input configuration % structure or cell-array without modifications. Any match on allowedtype and % any match on allowedval is sufficient to let this function pass. % % See also FT_GETOPT, FT_SETOPT % Copyright (C) 2011, Robert Oostenveld % % $Id: ft_checkopt.m 2922 2011-02-21 21:47:27Z roboos $ if nargin<3 allowedtype = {}; end if ~iscell(allowedtype) allowedtype = {allowedtype}; end if nargin<4 allowedval = {}; end if ~iscell(allowedval) allowedval = {allowedval}; end % get the value that belongs to this key val = ft_getopt(opt, key); % check that the type of the option is allowed ok = isempty(allowedtype); for i=1:length(allowedtype) switch allowedtype{i} case 'empty' ok = isempty(val); case 'doublescalar' ok = isa(val, 'double') && all(size(val)==1); case 'doublevector' ok = isa(val, 'double') && sum(size(val)>1)==1; case 'doublematrix' ok = isa(val, 'double') && sum(size(val)>1)>1; case 'charcell' ok = isa(val, 'cell') && all(cellfun(@ischar, val(:))); otherwise ok = isa(val, allowedtype{i}); end if ok % no reason to do additional checks break end end % for allowedtype if ~ok if length(allowedtype)==1 error('the type of the option "%s" is invalid, it should be "%s" instead of "%s"', key, allowedtype{1}, class(val)); else error('the type of the option "%s" is invalid, it should be any of %s instead of "%s"', key, printcell(allowedtype), class(val)); end end % check that the type of the option is allowed ok = isempty(allowedval); for i=1:length(allowedval) ok = isequal(val, allowedval{i}); if ok % no reason to do additional checks break end end % for allowedtype if ~ok error('the value of the option "%s" is invalid', key); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = printcell(c) if ~isempty(c) s = sprintf('%s, ', c{:}); s = sprintf('{%s}', s(1:end-2)); else s = '{}'; end
github
philippboehmsturm/antx-master
ft_struct2double.m
.m
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_struct2double.m
2,907
utf_8
80254f0d01f62d7443be4f8c21f36ded
function [x] = ft_struct2double(x, maxdepth); % FT_STRUCT2DOUBLE converts all single precision numeric data in a structure % into double precision. It will also convert plain matrices and % cell-arrays. % % Use as % x = ft_struct2double(x); % % Starting from Matlab 7.0, you can use single precision data in your % computations, i.e. you do not have to convert back to double precision. % % Matlab version 6.5 and older only support single precision for storing % data in memory or on disk, but do not allow computations on single % precision data. Therefore you should converted your data from single to % double precision after reading from file. % % See also FT_STRUCT2SINGLE % Copyright (C) 2005, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_struct2double.m 3213 2011-03-24 22:37:01Z jansch $ if nargin<2 maxdepth = inf; end % convert the data, work recursively through the complete structure x = convert(x, 0, maxdepth); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this subfunction does the actual work %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a] = convert(a, depth, maxdepth); if depth>maxdepth error('recursive depth exceeded'); end switch class(a) case 'struct' % process all fields of the structure recursively fna = fieldnames(a); % process all elements of the array for j=1:length(a(:)) % warning, this is a recursive call to traverse nested structures for i=1:length(fna) fn = fna{i}; ra = getfield(a(j), fn); ra = convert(ra, depth+1, maxdepth); a(j) = setfield(a(j), fn, ra); end end case 'cell' % process all elements of the cell-array recursively % warning, this is a recursive call to traverse nested structures for i=1:length(a(:)) a{i} = convert(a{i}, depth+1, maxdepth); end case {'single' 'int32' 'uint32' 'int16' 'uint16'} % convert the values to double precision a = double(a); case 'double' % keep as it is otherwise warning_once(sprintf('not converting class %s', class(a))); % do nothing end