plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
philippboehmsturm/antx-master
|
printstruct.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/printstruct.m
| 4,418 |
utf_8
|
565d732cbf17defe563a87964b4f1ecb
|
function str = printstruct(name, val)
% PRINTSTRUCT converts a Matlab structure to text which can be
% interpreted by Matlab, resulting in the original structure.
% Copyright (C) 2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: printstruct.m 951 2010-04-21 18:24:01Z roboos $
str = [];
if isstruct(val)
if numel(val)>1
% this function cannot print struct arrays with multiple elements
str = sprintf('%s = ''FIXME'';', name);
return
else
% print it as a named structure
fn = fieldnames(val);
for i=1:length(fn)
fv = getfield(val, fn{i});
switch class(fv)
case 'char'
% line = sprintf('%s = ''%s'';\n', fn{i}, fv);
% line = [name '.' line];
line = printstr([name '.' fn{i}], fv);
str = [str line];
case {'single' 'double'}
line = printmat([name '.' fn{i}], fv);
str = [str line];
case {'int8' 'int16' 'int32' 'int64' 'uint8' 'uint16' 'uint32' 'uint64'}
line = printmat([name '.' fn{i}], fv);
str = [str line];
case 'cell'
line = printcell([name '.' fn{i}], fv);
str = [str line];
case 'struct'
line = printstruct([name '.' fn{i}], fv);
str = [str line];
otherwise
error('unsupported');
end
end
end
elseif ~isstruct(val)
% print it as a named variable
switch class(val)
case 'char'
str = printstr(name, val);
case 'double'
str = printmat(name, val);
case {'int8' 'int16' 'int32' 'int64' 'uint8' 'uint16' 'uint32' 'uint64'}
str = printmat(name, val);
case 'cell'
str = printcell(name, val);
otherwise
error('unsupported');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printcell(name, val)
str = [];
siz = size(val);
if isempty(val)
str = sprintf('%s = {};\n', name);
return;
end
for i=1:prod(siz)
typ{i} = class(val{i});
end
for i=2:prod(siz)
if ~strcmp(typ{i}, typ{1})
warning('different elements in cell array');
return
end
end
if all(size(val)==1)
str = sprintf('%s = { %s };\n', name, printval(val{1}));
else
str = sprintf('%s = {\n', name);
for i=1:siz(1)
dum = '';
for j=1:siz(2)
dum = [dum ' ' printval(val{i,j})];
end
str = sprintf('%s%s\n', str, dum);
end
str = sprintf('%s};\n', str);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printmat(name, val)
str = [];
siz = size(val);
if any(size(val)==0)
str = sprintf('%s = [];\n', name);
elseif all(size(val)==1)
str = sprintf('%s = %s;\n', name, printval(val));
elseif size(val,1)==1
dum = sprintf('%g ', str, val(:));
str = sprintf('%s = [%s];\n', name, dum);
else
str = sprintf('%s = [\n', name);
for i=1:siz(1)
dum = sprintf('%g ', val(i,:));
str = sprintf('%s %s\n', str, dum);
end
str = sprintf('%s];\n', str);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printstr(name, val)
str = [];
siz = size(val);
if siz(1)~=1
str = sprintf('%s = \n', name);
for i=1:siz(1)
str = [str sprintf(' %s\n', printval(val(i,:)))];
end
else
str = sprintf('%s = %s;\n', name, printval(val));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = printval(val)
str = [];
switch class(val)
case 'char'
str = sprintf('''%s''', val);
case 'double'
str = sprintf('%g', val);
case {'int8' 'int16' 'int32' 'int64' 'uint8' 'uint16' 'uint32' 'uint64'}
str = sprintf('%d', val);
case 'struct'
str = '''FIXME''';
end
|
github
|
philippboehmsturm/antx-master
|
ft_transform_geometry.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/ft_transform_geometry.m
| 3,850 |
utf_8
|
0810eea6fb2c18145ce615b7f950718a
|
function [output] = ft_transform_geometry(transform, input)
% FT_TRANSFORM_GEOMETRY applies a homogeneous coordinate transformation to
% a structure with geometric information. These objects include:
% - volume conductor geometry, consisting of a mesh, a set of meshes, a
% single sphere, or multiple spheres.
% - gradiometer of electrode structure containing sensor positions and
% coil orientations (for MEG).
% - headshape description containing positions in 3D space.
% - sourcemodel description containing positions and optional orientations
% in 3D space.
%
% The units in which the transformation matrix is expressed are assumed to
% be the same units as the units in which the geometric object is
% expressed. Depending on the input object, the homogeneous transformation
% matrix should be limited to a rigid-body translation plus rotation
% (MEG-gradiometer array), or to a rigid-body translation plus rotation
% plus a global rescaling (volume conductor geometry).
%
% Use as
% output = ft_transform_geometry(transform, input)
% Copyright (C) 2011, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_transform_geometry.m$
checkrotation = ~strcmp(ft_voltype(input), 'unknown') || ft_senstype(input, 'meg');
checkscaling = ~strcmp(ft_voltype(input), 'unknown');
% determine the rotation matrix
rotation = eye(4);
rotation(1:3,1:3) = transform(1:3,1:3);
if any(abs(transform(4,:)-[0 0 0 1])>100*eps)
error('invalid transformation matrix');
end
if checkrotation
% allow for some numerical imprecision
if abs(det(rotation)-1)>100*eps
error('only a rigid body transformation without rescaling is allowed');
end
end
if checkscaling
% FIXME build in a check for uniform rescaling probably do svd or so
% FIXME insert check for nonuniform scaling, should give an error
end
tfields = {'pos' 'pnt' 'o'}; % apply rotation plus translation
rfields = {'ori' 'nrm'}; % only apply rotation
mfields = {'transform'}; % plain matrix multiplication
recfields = {'fid' 'bnd'}; % recurse into these fields
% the field 'r' is not included here, because it applies to a volume
% conductor model, and scaling is not allowed, so r will not change.
fnames = fieldnames(input);
for k = 1:numel(fnames)
if any(strcmp(fnames{k}, tfields))
input.(fnames{k}) = apply(transform, input.(fnames{k}));
elseif any(strcmp(fnames{k}, rfields))
input.(fnames{k}) = apply(rotation, input.(fnames{k}));
elseif any(strcmp(fnames{k}, mfields))
input.(fnames{k}) = transform*input.(fnames{k});
elseif any(strcmp(fnames{k}, recfields))
for j = 1:numel(input.(fnames{k}))
input.(fnames{k})(j) = ft_transform_geometry(transform, input.(fnames{k})(j));
end
else
% do nothing
end
end
output = input;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that applies the homogeneous transformation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [new] = apply(transform, old)
old(:,4) = 1;
new = old * transform';
new = new(:,1:3);
|
github
|
philippboehmsturm/antx-master
|
warning_once.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/private/warning_once.m
| 3,060 |
utf_8
|
f046009e4f6ffe5745af9c5e527614e8
|
function [ws warned] = warning_once(varargin)
%
% Use as
% warning_once(string)
% or
% warning_once(string, timeout)
% or
% warning_once(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again. The default timeout value is 60 seconds.
%
% Can be used instead of the MATLAB built-in function WARNING, thus as
% s = warning_once(...)
% or
% warning_once(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information.
% In other words, warning_once accepts as an input the same structure it
% returns as an output. This returns or restores the states of warnings to
% their previous values.
%
% Can also be used as
% [s w] = warning_once(...)
% where w is a boolean that indicates whether a warning as been
% thrown or not.
persistent stopwatch previous
if nargin < 1
error('You need to specify at least a warning message');
end
warned = false;
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if nargin==3
msgid = varargin{1};
msgstr = varargin{2};
timeout = varargin{3};
elseif nargin==2
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = varargin{2};
elseif nargin==1
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = 60; % default timeout in seconds
end
if isempty(timeout)
error('Timeout ill-specified');
end
if isempty(stopwatch)
stopwatch = tic;
end
if isempty(previous)
previous = struct;
end
now = toc(stopwatch); % measure time since first function call
fname = fixname([msgid '_' msgstr]); % make a nice string that is allowed as structure fieldname, copy the subfunction from ft_hastoolbox
fname = decomma(fname);
if length(fname) > 63 % MATLAB max name
fname = fname(1:63);
end
if isfield(previous, fname) && now>previous.(fname).timeout
% it has timed out, give the warning again
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
elseif ~isfield(previous, fname)
% the warning has not been issued before
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = previous.(fname).ws;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = fixname(toolbox)
out = lower(toolbox);
out(out=='-') = '_'; % fix dashes
out(out==' ') = '_'; % fix spaces
out(out=='/') = '_'; % fix forward slashes
out(out=='\') = '_'; % fix backward slashes
while(out(1) == '_'), out = out(2:end); end; % remove preceding underscore
while(out(end) == '_'), out = out(1:end-1); end; % remove subsequent underscore
end
function nameout = decomma(name)
nameout = name;
indx = findstr(name,',');
nameout(indx)=[];
end
|
github
|
philippboehmsturm/antx-master
|
nanmean.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/utilities/private/nanmean.m
| 2,121 |
utf_8
|
7e0ebd9ca56f2cd79f89031bbccebb9a
|
% nanmean() - Average, not considering NaN values
%
% Usage: same as mean()
% Author: Arnaud Delorme, CNL / Salk Institute, 16 Oct 2002
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nanmean.m 2885 2011-02-16 09:41:58Z roboos $
function out = nanmean(in, dim)
if nargin < 1
help nanmean;
return;
end;
if nargin < 2
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end;
end;
tmpin = in;
tmpin(find(isnan(in(:)))) = 0;
out = sum(tmpin, dim) ./ sum(~isnan(in),dim);
|
github
|
philippboehmsturm/antx-master
|
ft_plot_slice.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/plotting/ft_plot_slice.m
| 6,993 |
utf_8
|
226f857d7fa8bca676385baa261dd08e
|
function [h, T2] = ft_plot_slice(dat, varargin)
% FT_PLOT_SLICE cuts a 2-D slice from a 3-D volume and interpolates
% if necessary
%
% Use as
% ft_plot_slice(dat, ...)
%
% Additional options should be specified in key-value pairs and can be
% 'transform' a 4x4 homogeneous transformation matrix specifying the mapping from
% voxel space to the coordinate system in which the data are plotted.
% 'location' a 1x3 vector specifying a point on the plane which will be plotted
% the coordinates are expressed in the coordinate system in which the
% data will be plotted. location defines the origin of the plane
% 'orientation' a 1x3 vector specifying the direction orthogonal through the plane
% which will be plotted.
% 'datmask' a 3D-matrix with the same size as the matrix dat, serving as opacitymap
% 'interpmethod' a string specifying the method for the interpolation, default = 'nearest'
% see INTERPN
% 'colormap'
% 'style' 'flat' or '3D'
%
% 'interplim'
% Copyrights (C) 2010, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_plot_slice.m 2968 2011-02-26 13:46:32Z jansch $
persistent previous_dim X Y Z;
transform = keyval('transform', varargin);
loc = keyval('location', varargin);
ori = keyval('orientation', varargin); if isempty(ori), ori = [0 0 1]; end;
resolution = keyval('resolution', varargin); if isempty(resolution), resolution = 1; end;
mask = keyval('datmask', varargin);
interpmethod = keyval('interpmethod', varargin); if isempty(interpmethod), interpmethod = 'nearest'; end
cmap = keyval('colormap', varargin);
if ~strcmp(class(dat), 'double'),
dat = cast(dat, 'double');
end
% norm normalise the ori vector
ori = ori./sqrt(sum(ori.^2));
% dimensionality of the input data
dim = size(dat);
if isempty(previous_dim),
previous_dim = [0 0 0];
end
% set the location if empty
if isempty(loc) && (isempty(transform) || all(all(transform-eye(4)==0)==1))
loc = dim./2;
elseif isempty(loc)
loc = [0 0 0];
end
% set the transformation matrix if empty
if isempty(transform)
transform = eye(4);
end
% check whether mask is ok
domask = ~isempty(mask);
if domask,
if ~all(dim==size(mask)),
error('the mask data should have the same dimensionality as the functional data');
end
end
% determine whether interpolation is needed
dointerp = false;
if ~dointerp && sum(sum(transform-eye(4)))~=0, dointerp = true; end
if ~dointerp && ~all(round(loc)==loc), dointerp = true; end
if ~dointerp && sum(ori)~=1, dointerp = true; end
if ~dointerp && ~(resolution==round(resolution)), dointerp = true; end
% determine the caller function and toggle dointerp to true, if
% ft_plot_slice has been called from ft_plot_montage
% this is necessary for the correct allocation of the persistent variables
st = dbstack;
if ~dointerp && strcmp(st(2).name, 'ft_plot_montage'), dointerp = true; end
if dointerp
%--------cut a slice using interpn
% get voxel indices
if all(dim==previous_dim)
% for speeding up the plotting on subsequent calls
% use persistent variables X Y Z
else
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
end
% define 'x' and 'y' axis in projection plane.
% this is more or less arbitrary
[x, y] = projplane(ori);
m = max(dim)./1;
xplane = -m:resolution:m;
yplane = -m:resolution:m;
zplane = 0;
[X2,Y2,Z2] = ndgrid(xplane, yplane, zplane); %2D cartesian grid of projection plane in plane voxels
siz = size(squeeze(X2));
pos = [X2(:) Y2(:) Z2(:)]; clear X2 Y2 Z2;
% get the transformation matrix from plotting space to voxel space
T1 = inv(transform);
% get the transformation matrix from to get the projection plane at the right location and orientation into plotting space.
T2 = [x(:) y(:) ori(:) loc(:); 0 0 0 1];
% get the transformation matrix from projection plane to voxel space
M = T1*T2;
pos = warp_apply(M, pos); % gives the positions of the required plane in voxel space
Xi = reshape(pos(:,1), siz);
Yi = reshape(pos(:,2), siz);
Zi = reshape(pos(:,3), siz);
V = interpn(X,Y,Z,dat,Xi,Yi,Zi,interpmethod);
[V,Xi,Yi,Zi] = tight(V,Xi,Yi,Zi);
siz = size(Xi);
if domask,
Vmask = tight(interpn(X,Y,Z,mask,Xi,Yi,Zi,interpmethod));
end
else
%-------cut a slice without interpolation
[x, y] = projplane(ori);
T2 = [x(:) y(:) ori(:) loc(:); 0 0 0 1];
if all(ori==[1 0 0]), xplane = loc(1); yplane = 1:dim(2); zplane = 1:dim(3); end
if all(ori==[0 1 0]), xplane = 1:dim(1); yplane = loc(2); zplane = 1:dim(3); end
if all(ori==[0 0 1]), xplane = 1:dim(1); yplane = 1:dim(2); zplane = loc(3); end
[Xi,Yi,Zi] = ndgrid(xplane, yplane, zplane);
siz = size(squeeze(Xi));
Xi = reshape(Xi, siz);
Yi = reshape(Yi, siz);
Zi = reshape(Zi, siz);
V = reshape(dat(xplane, yplane, zplane), siz);
if domask,
Vmask = mask(xplane, yplane, zplane);
end
end
% get positions of the plane in plotting space
posh = warp_apply(transform, [Xi(:) Yi(:) Zi(:)], 'homogeneous', 1e-8);
Xh = reshape(posh(:,1), siz);
Yh = reshape(posh(:,2), siz);
Zh = reshape(posh(:,3), siz);
if isempty(cmap),
%treat as gray value: scale and convert to rgb
dmin = min(dat(:));
dmax = max(dat(:));
V = (V-dmin)./(dmax-dmin);
V(isnan(V)) = 0;
clear dmin dmax;
% convert anatomy into RGB values
V = cat(3, V, V, V);
end
h = surface(Xh, Yh, Zh, V);
set(h, 'linestyle', 'none');
if domask,
set(h, 'FaceAlpha', 'flat');
set(h, 'AlphaDataMapping', 'scaled');
set(h, 'AlphaData', Vmask);
end
if ~isempty(cmap)
colormap(cmap);
end
% store for future reference
previous_dim = dim;
function [x, y] = projplane(z)
[u,s,v] = svd([eye(3) z(:)]);
x = u(:,2)';
y = u(:,3)';
function [V,Xi,Yi,Zi] = tight(V,Xi,Yi,Zi)
% cut off the nans at the edges
x = sum(~isfinite(V),1)<size(V,1);
y = sum(~isfinite(V),2)<size(V,2);
V = V(y,x);
if nargin>1, Xi = Xi(y,x); end
if nargin>2, Yi = Yi(y,x); end
if nargin>3, Zi = Zi(y,x); end
|
github
|
philippboehmsturm/antx-master
|
ft_select_range.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/plotting/ft_select_range.m
| 8,056 |
utf_8
|
9c9b96f6d9fa1e6df6e589bb084c51e8
|
function ft_select_range(handle, eventdata, varargin)
% FT_SELECT_RANGE is a helper function that can be used as callback function
% in a figure. It allows the user to select a horizontal or a vertical
% range, or one or multiple boxes.
%
% Example
% x = randn(10,1);
% y = randn(10,1);
% figure; plot(x, y, '.');
%
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonUpFcn'});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonMotionFcn'});
%
% set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', false, 'xrange', false, 'yrange', false, 'callback', @disp, 'event', 'WindowButtonDownFcn'});
% set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', false, 'xrange', false, 'yrange', false, 'callback', @disp, 'event', 'WindowButtonUpFcn'});
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', false, 'xrange', false, 'yrange', false, 'callback', @disp, 'event', 'WindowButtonMotionFcn'});
% Copyright (C) 2009, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_select_range.m 3389 2011-04-26 13:58:48Z vlalit $
% get the optional arguments
event = keyval('event', varargin);
callback = keyval('callback', varargin);
multiple = keyval('multiple', varargin); if isempty(multiple), multiple = false; end
xrange = keyval('xrange', varargin); if isempty(xrange), xrange = true; end
yrange = keyval('yrange', varargin); if isempty(yrange), yrange = true; end
clear = keyval('clear', varargin); if isempty(clear), clear = false; end
contextmenu = keyval('contextmenu', varargin); % this will be displayed following a right mouse click
% convert 'yes/no' string to boolean value
multiple = istrue(multiple);
xrange = istrue(xrange);
yrange = istrue(yrange);
p = handle;
while ~isequal(p, 0)
handle = p;
p = get(handle, 'parent');
end
if ishandle(handle)
userData = getappdata(handle, 'select_range_m');
else
userData = [];
end
if isempty(userData)
userData.range = []; % this is a Nx4 matrix with the selection range
userData.box = []; % this is a Nx1 vector with the line handle
end
p = get(gca, 'CurrentPoint');
p = p(1,1:2);
abc = axis;
xLim = abc(1:2);
yLim = abc(3:4);
% limit cursor coordinates
if p(1)<xLim(1), p(1)=xLim(1); end;
if p(1)>xLim(2), p(1)=xLim(2); end;
if p(2)<yLim(1), p(2)=yLim(1); end;
if p(2)>yLim(2), p(2)=yLim(2); end;
% determine whether the user is currently making a selection
selecting = numel(userData.range)>0 && any(isnan(userData.range(end,:)));
pointonly = ~xrange && ~yrange;
if pointonly && multiple
warning('multiple selections are not possible for a point');
multiple = false;
end
switch lower(event)
case lower('WindowButtonDownFcn')
if inSelection(p, userData.range)
% the user has clicked in one of the existing selections
evalCallback(callback, userData.range);
if clear
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
set(handle, 'Pointer', 'crosshair');
end
else
if ~multiple
% start with a new selection
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
end
% add a new selection range
userData.range(end+1,1:4) = nan;
userData.range(end,1) = p(1);
userData.range(end,3) = p(2);
% add a new selection box
xData = [nan nan nan nan nan];
yData = [nan nan nan nan nan];
userData.box(end+1) = line(xData, yData);
end
case lower('WindowButtonUpFcn')
if selecting
% select the other corner of the box
userData.range(end,2) = p(1);
userData.range(end,4) = p(2);
end
if multiple && ~isempty(userData.range) && ~diff(userData.range(end,1:2)) && ~diff(userData.range(end,3:4))
% start with a new selection
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
end
if ~isempty(userData.range)
% ensure that the selection is sane
if diff(userData.range(end,1:2))<0
userData.range(end,1:2) = userData.range(end,[2 1]);
end
if diff(userData.range(end,3:4))<0
userData.range(end,3:4) = userData.range(end,[4 3]);
end
if pointonly
% only select a single point
userData.range(end,2) = userData.range(end,1);
userData.range(end,4) = userData.range(end,3);
elseif ~xrange
% only select along the y-axis
userData.range(end,1:2) = [-inf inf];
elseif ~yrange
% only select along the x-axis
userData.range(end,3:4) = [-inf inf];
end
end
if pointonly && ~multiple
evalCallback(callback, userData.range);
if clear
delete(userData.box(ishandle(userData.box)));
userData.range = [];
userData.box = [];
set(handle, 'Pointer', 'crosshair');
end
end
case lower('WindowButtonMotionFcn')
if selecting && ~pointonly
% update the selection box
if xrange
x1 = userData.range(end,1);
x2 = p(1);
else
x1 = xLim(1);
x2 = xLim(2);
end
if yrange
y1 = userData.range(end,3);
y2 = p(2);
else
y1 = yLim(1);
y2 = yLim(2);
end
xData = [x1 x2 x2 x1 x1];
yData = [y1 y1 y2 y2 y1];
set(userData.box(end), 'xData', xData);
set(userData.box(end), 'yData', yData);
set(userData.box(end), 'Color', [0 0 0]);
set(userData.box(end), 'EraseMode', 'xor');
set(userData.box(end), 'LineStyle', '--');
set(userData.box(end), 'LineWidth', 1.5);
set(userData.box(end), 'Visible', 'on');
else
% update the cursor
if inSelection(p, userData.range)
set(handle, 'Pointer', 'hand');
else
set(handle, 'Pointer', 'crosshair');
end
end
otherwise
error('unexpected event "%s"', event);
end % switch event
% put the modified selections back into the figure
if ishandle(handle)
setappdata(handle, 'select_range_m', userData);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function retval = inSelection(p, range)
if isempty(range)
retval = false;
else
retval = (p(1)>=range(:,1) & p(1)<=range(:,2) & p(2)>=range(:,3) & p(2)<=range(:,4));
retval = any(retval);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function evalCallback(callback, val)
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
feval(funhandle, val, funargs{:});
else
% the callback only specifies a function
funhandle = callback;
feval(funhandle, val);
end
end
|
github
|
philippboehmsturm/antx-master
|
ft_select_channel.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/plotting/ft_select_channel.m
| 5,797 |
utf_8
|
4c90523b87dbe7921b8e5e96364644e2
|
function ft_select_channel(handle, eventdata, varargin)
% FT_SELECT_CHANNEL is a helper function that can be used as callback function
% in a figure. It allows the user to select a channel. The channel labels
% are returned.
%
% Use as
% label = ft_select_channel(h, eventdata, ...)
% The first two arguments are automatically passed by Matlab to any
% callback function.
%
% Additional options should be specified in key-value pairs and can be
% 'callback' = function handle to be executed after channels have been selected
%
% You can pass additional arguments to the callback function in a cell-array
% like {@function_handle,arg1,arg2}
%
% Example
% % create a figure
% lay = ft_prepare_layout([])
% ft_plot_lay(lay)
%
% % add the required guidata
% info = guidata(gcf)
% info.x = lay.pos(:,1);
% info.y = lay.pos(:,2);
% info.label = lay.label
% guidata(gcf, info)
%
% % add this function as the callback to make a single selection
% set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'callback', @disp})
%
% % or to make multiple selections
% set(gcf, 'WindowButtonDownFcn', {@ft_select_channel, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'})
% set(gcf, 'WindowButtonUpFcn', {@ft_select_channel, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'})
% set(gcf, 'WindowButtonMotionFcn', {@ft_select_channel, 'multiple', true, 'callback', @disp, 'event', 'WindowButtonDownFcn'})
%
% Subsequently you can click in the figure and you'll see that the disp
% function is executed as callback and that it displays the selected
% channels.
% Copyright (C) 2009, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_select_channel.m 3866 2011-07-18 15:31:48Z craric $
% get optional input arguments
multiple = keyval('multiple', varargin); if isempty(multiple), multiple = false; end
callback = keyval('callback', varargin);
% convert 'yes/no' string to boolean value
multiple = istrue(multiple);
if multiple
% the selection is done using select_range, which will subsequently call select_channel_multiple
set(gcf, 'WindowButtonDownFcn', {@ft_select_range, 'multiple', true, 'callback', {@select_channel_multiple, callback}, 'event', 'WindowButtonDownFcn'});
set(gcf, 'WindowButtonUpFcn', {@ft_select_range, 'multiple', true, 'callback', {@select_channel_multiple, callback}, 'event', 'WindowButtonUpFcn'});
set(gcf, 'WindowButtonMotionFcn', {@ft_select_range, 'multiple', true, 'callback', {@select_channel_multiple, callback}, 'event', 'WindowButtonMotionFcn'});
else
% the selection is done using select_channel_single
pos = get(gca, 'CurrentPoint');
pos = pos(1,1:2);
select_channel_single(pos, callback)
end % if multiple
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to assist in the selection of a single channel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_channel_single(pos, callback)
info = guidata(gcf);
x = info.x;
y = info.y;
label = info.label;
% compute a tolerance measure
distance = sqrt(abs(sum([x y]'.*[x y]',1)));
distance = triu(distance, 1);
distance = distance(:);
distance = distance(distance>0);
distance = median(distance);
tolerance = 0.3*distance;
% compute the distance between the clicked point and all channels
dx = x - pos(1);
dy = y - pos(2);
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<tolerance
label = label{i};
fprintf('channel "%s" selected\n', label);
else
label = {};
fprintf('no channel selected\n');
end
% execute the original callback with the selected channel as input argument
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
feval(funhandle, label, funargs{:});
else
% the callback only specifies a function
funhandle = callback;
feval(funhandle, label);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to assist in the selection of multiple channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function select_channel_multiple(range, callback)
info = guidata(gcf);
x = info.x(:);
y = info.y(:);
label = info.label(:);
% determine which channels ly in the selected range
select = false(size(label));
for i=1:size(range,1)
select = select | (x>=range(i, 1) & x<=range(i, 2) & y>=range(i, 3) & y<=range(i, 4));
end
label = label(select);
% execute the original callback with the selected channels as input argument
if any(select)
if ~isempty(callback)
if isa(callback, 'cell')
% the callback specifies a function and additional arguments
funhandle = callback{1};
funargs = callback(2:end);
feval(funhandle, label, funargs{:});
else
% the callback only specifies a function
funhandle = callback;
feval(funhandle, label);
end
end
end
|
github
|
philippboehmsturm/antx-master
|
ft_apply_montage.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/plotting/private/ft_apply_montage.m
| 9,812 |
utf_8
|
c30fdecc34ab9678cc26828eea0538c1
|
function [sens] = ft_apply_montage(sens, montage, varargin)
% FT_APPLY_MONTAGE changes the montage of an electrode or gradiometer array. A
% montage can be used for EEG rereferencing, MEG synthetic gradients, MEG
% planar gradients or unmixing using ICA. This function applies the montage
% to the sensor array. The sensor array can subsequently be used for
% forward computation and source reconstruction of the data.
%
% Use as
% [sens] = ft_apply_montage(sens, montage, ...)
% [data] = ft_apply_montage(data, montage, ...)
% [montage] = ft_apply_montage(montage1, montage2, ...)
% where the input is a FieldTrip sensor definition as obtained from FT_READ_SENS
% or a FieldTrip raw data structure as obtained from FT_PREPROCESSING.
%
% A montage is specified as a structure with the fields
% montage.tra = MxN matrix
% montage.labelnew = Mx1 cell-array
% montage.labelorg = Nx1 cell-array
%
% Additional options should be specified in key-value pairs and can be
% 'keepunused' string, 'yes' or 'no' (default = 'no')
% 'inverse' string, 'yes' or 'no' (default = 'no')
%
% If the first input is a montage, then the second input montage will be
% applied to the first. In effect the resulting montage will first do
% montage1, then montage2.
%
% See also FT_READ_SENS, FT_TRANSFORM_SENS
% Copyright (C) 2008, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_apply_montage.m 3392 2011-04-27 10:26:53Z jansch $
% get optional input arguments
keepunused = keyval('keepunused', varargin); if isempty(keepunused), keepunused = 'no'; end
inverse = keyval('inverse', varargin); if isempty(inverse), inverse = 'no'; end
feedback = keyval('feedback', varargin); if isempty(feedback), feedback = 'text'; end
bname = keyval('balancename', varargin); if isempty(bname), bname = ''; end
% check the consistency of the input sensor array or data
if isfield(sens, 'labelorg') && isfield(sens, 'labelnew')
% the input data structure is also a montage, i.e. apply the montages sequentially
sens.label = sens.labelnew;
end
% check the consistency of the montage
if size(montage.tra,1)~=length(montage.labelnew)
error('the number of channels in the montage is inconsistent');
elseif size(montage.tra,2)~=length(montage.labelorg)
error('the number of channels in the montage is inconsistent');
end
if strcmp(inverse, 'yes')
% apply the inverse montage, i.e. undo a previously applied montage
tmp.labelnew = montage.labelorg; % swap around
tmp.labelorg = montage.labelnew; % swap around
tmp.tra = full(montage.tra);
if rank(tmp.tra) < length(tmp.tra)
warning('the linear projection for the montage is not full-rank, the resulting data will have reduced dimensionality');
tmp.tra = pinv(tmp.tra);
else
tmp.tra = inv(tmp.tra);
end
montage = tmp;
end
% use default transfer from sensors to channels if not specified
if isfield(sens, 'pnt') && ~isfield(sens, 'tra')
nchan = size(sens.pnt,1);
sens.tra = sparse(eye(nchan));
end
% select and keep the columns that are non-empty, i.e. remove the empty columns
selcol = find(~all(montage.tra==0, 1));
montage.tra = montage.tra(:,selcol);
montage.labelorg = montage.labelorg(selcol);
clear selcol
% select and remove the columns corresponding to channels that are not present in the original data
remove = setdiff(montage.labelorg, intersect(montage.labelorg, sens.label));
selcol = match_str(montage.labelorg, remove);
% we cannot just remove the colums, all rows that depend on it should also be removed
selrow = false(length(montage.labelnew),1);
for i=1:length(selcol)
selrow = selrow & (montage.tra(:,selcol(i))~=0);
end
% convert from indices to logical vector
selcol = indx2logical(selcol, length(montage.labelorg));
% remove rows and columns
montage.labelorg = montage.labelorg(~selcol);
montage.labelnew = montage.labelnew(~selrow);
montage.tra = montage.tra(~selrow, ~selcol);
clear remove selcol selrow i
% add columns for the channels that are present in the data but not involved in the montage, and stick to the original order in the data
[add, ix] = setdiff(sens.label, montage.labelorg);
add = sens.label(sort(ix));
m = size(montage.tra,1);
n = size(montage.tra,2);
k = length(add);
if strcmp(keepunused, 'yes')
% add the channels that are not rereferenced to the input and output
montage.tra((m+(1:k)),(n+(1:k))) = eye(k);
montage.labelorg = cat(1, montage.labelorg(:), add(:));
montage.labelnew = cat(1, montage.labelnew(:), add(:));
else
% add the channels that are not rereferenced to the input montage only
montage.tra(:,(n+(1:k))) = zeros(m,k);
montage.labelorg = cat(1, montage.labelorg(:), add(:));
end
clear add m n k
% determine whether all channels are unique
m = size(montage.tra,1);
n = size(montage.tra,2);
if length(unique(montage.labelnew))~=m
error('not all output channels of the montage are unique');
end
if length(unique(montage.labelorg))~=n
error('not all input channels of the montage are unique');
end
% determine whether all channels that have to be rereferenced are available
if length(intersect(sens.label, montage.labelorg))~=length(montage.labelorg)
error('not all channels that are required in the montage are available in the data');
end
% reorder the columns of the montage matrix
[selsens, selmont] = match_str(sens.label, montage.labelorg);
montage.tra = double(sparse(montage.tra(:,selmont)));
montage.labelorg = montage.labelorg(selmont);
if isfield(sens, 'labelorg') && isfield(sens, 'labelnew')
% apply the montage on top of the other montage
sens = rmfield(sens, 'label');
if isa(sens.tra, 'single')
sens.tra = full(montage.tra) * sens.tra;
else
sens.tra = montage.tra * sens.tra;
end
sens.labelnew = montage.labelnew;
elseif isfield(sens, 'tra')
% apply the montage to the sensor array
if isa(sens.tra, 'single')
sens.tra = full(montage.tra) * sens.tra;
else
sens.tra = montage.tra * sens.tra;
end
sens.label = montage.labelnew;
% keep track of the order of the balancing and which one is the current
% one
if strcmp(inverse, 'yes')
if isfield(sens, 'balance')% && isfield(sens.balance, 'previous')
if isfield(sens.balance, 'previous') && numel(sens.balance.previous)>=1
sens.balance.current = sens.balance.previous{1};
sens.balance.previous = sens.balance.previous(2:end);
elseif isfield(sens.balance, 'previous')
sens.balance.current = 'none';
sens.balance = rmfield(sens.balance, 'previous');
else
sens.balance.current = 'none';
end
end
elseif ~strcmp(inverse, 'yes') && ~isempty(bname)
if isfield(sens, 'balance') && isfield(sens.balance, 'current')
if ~isfield(sens.balance, 'previous')
sens.balance.previous = {};
end
sens.balance.previous = [{sens.balance.current} sens.balance.previous];
sens.balance.current = bname;
sens.balance.(bname) = montage;
end
end
elseif isfield(sens, 'trial')
% apply the montage to the raw data that was preprocessed using fieldtrip
data = sens;
clear sens
Ntrials = numel(data.trial);
ft_progress('init', feedback, 'processing trials');
for i=1:Ntrials
ft_progress(i/Ntrials, 'processing trial %d from %d\n', i, Ntrials);
if isa(data.trial{i}, 'single')
% sparse matrices and single precision do not match
data.trial{i} = full(montage.tra) * data.trial{i};
else
data.trial{i} = montage.tra * data.trial{i};
end
end
ft_progress('close');
data.label = montage.labelnew;
% rename the output variable
sens = data;
clear data
elseif isfield(sens, 'fourierspctrm')
% apply the montage to the spectrally decomposed data
freq = sens;
clear sens
if strcmp(freq.dimord, 'rpttap_chan_freq')
siz = size(freq.fourierspctrm);
nrpt = siz(1);
nchan = siz(2);
nfreq = siz(3);
output = zeros(nrpt, size(montage.tra,1), nfreq);
for foilop=1:nfreq
output(:,:,foilop) = freq.fourierspctrm(:,:,foilop) * montage.tra';
end
elseif strcmp(freq.dimord, 'rpttap_chan_freq_time')
siz = size(freq.fourierspctrm);
nrpt = siz(1);
nchan = siz(2);
nfreq = siz(3);
ntime = siz(4);
output = zeros(nrpt, size(montage.tra,1), nfreq, ntime);
for foilop=1:nfreq
for toilop = 1:ntime
output(:,:,foilop,toilop) = freq.fourierspctrm(:,:,foilop,toilop) * montage.tra';
end
end
else
error('unsupported dimord in frequency data (%s)', freq.dimord);
end
% replace the Fourier spectrum
freq.fourierspctrm = output;
freq.label = montage.labelnew;
% rename the output variable
sens = freq;
clear freq
else
error('unrecognized input');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = indx2logical(x, n)
y = false(1,n);
y(x) = true;
|
github
|
philippboehmsturm/antx-master
|
select3dtool.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/plotting/private/select3dtool.m
| 2,713 |
utf_8
|
fdf7d572638e6ebd059c63f233d26704
|
function select3dtool(arg)
%SELECT3DTOOL A simple tool for interactively obtaining 3-D coordinates
%
% SELECT3DTOOL(FIG) Specify figure handle
%
% Example:
% surf(peaks);
% select3dtool;
% % click on surface
if nargin<1
arg = gcf;
end
if ~ishandle(arg)
feval(arg);
return;
end
%% initialize gui %%
fig = arg;
figure(fig);
uistate = uiclearmode(fig);
[tool, htext] = createUI;
hmarker1 = line('marker','o','markersize',10,'markerfacecolor','k','erasemode','xor','visible','off');
hmarker2 = line('marker','o','markersize',10,'markerfacecolor','r','erasemode','xor','visible','off');
state.uistate = uistate;
state.text = htext;
state.tool = tool;
state.fig = fig;
state.marker1 = hmarker1;
state.marker2 = hmarker2;
setappdata(fig,'select3dtool',state);
setappdata(state.tool,'select3dhost',fig);
set(fig,'windowbuttondownfcn','select3dtool(''click'')');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function off
state = getappdata(gcbf,'select3dtool');
if ~isempty(state)
delete(state.tool);
end
fig = getappdata(gcbf,'select3dhost');
if ~isempty(fig) & ishandle(fig)
state = getappdata(fig,'select3dtool');
uirestore(state.uistate);
delete(state.marker1);
delete(state.marker2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function click
[p v vi] = select3d;
state = getappdata(gcbf,'select3dtool');
if ~ishandle(state.text)
state.text = createUI;
end
if ~ishandle(state.marker1)
state.marker1 = [];
end
if ~ishandle(state.marker2)
state.marker2 = [];
end
setappdata(state.fig,'select3dtool',state);
if isempty(v)
v = [nan nan nan];
vi = nan;
set(state.marker2,'visible','off');
else
set(state.marker2,'visible','on','xdata',v(1),'ydata',v(2),'zdata',v(3));
end
if isempty(p)
p = [nan nan nan];
set(state.marker1,'visible','off');
else
set(state.marker1,'visible','on','xdata',p(1),'ydata',p(2),'zdata',p(3));
end
% Update tool and markers
set(state.text,'string',createString(p(1),p(2),p(3),v(1),v(2),v(3),vi));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fig, h] = createUI
pos = [200 200 200 200];
% Create selection tool %
fig = figure('handlevisibility','off','menubar','none','resize','off',...
'numbertitle','off','name','Select 3-D Tool','position',pos,'deletefcn','select3dtool(''off'')');
h = uicontrol('style','text','parent',fig,'string',createString(0,0,0,0,0,0,0),...
'units','norm','position',[0 0 1 1],'horizontalalignment','left');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [str] = createString(px,py,pz,vx,vy,vz,vi)
str = sprintf(' Position:\n X %f\n Y: %f\n Z: %f \n\n Vertex:\n X: %f\n Y: %f\n Z: %f \n\n Vertex Index:\n %d',px,py,pz,vx,vy,vz,vi);
|
github
|
philippboehmsturm/antx-master
|
inside_contour.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/plotting/private/inside_contour.m
| 1,106 |
utf_8
|
37d10e5d9a05c79551aac24c328e34aa
|
function bool = inside_contour(pos, contour);
npos = size(pos,1);
ncnt = size(contour,1);
x = pos(:,1);
y = pos(:,2);
minx = min(x);
miny = min(y);
maxx = max(x);
maxy = max(y);
bool = true(npos,1);
bool(x<minx) = false;
bool(y<miny) = false;
bool(x>maxx) = false;
bool(y>maxy) = false;
% the summed angle over the contour is zero if the point is outside, and 2*pi if the point is inside the contour
% leave some room for inaccurate f
critval = 0.1;
% the remaining points have to be investigated with more attention
sel = find(bool);
for i=1:length(sel)
contourx = contour(:,1) - pos(sel(i),1);
contoury = contour(:,2) - pos(sel(i),2);
angle = atan2(contoury, contourx);
% angle = unwrap(angle);
angle = my_unwrap(angle);
total = sum(diff(angle));
bool(sel(i)) = (abs(total)>critval);
end
function x = my_unwrap(x)
% this is a faster implementation of the MATLAB unwrap function
% with hopefully the same functionality
d = diff(x);
indx = find(abs(d)>pi);
for i=indx(:)'
if d(i)>0
x((i+1):end) = x((i+1):end) - 2*pi;
else
x((i+1):end) = x((i+1):end) + 2*pi;
end
end
|
github
|
philippboehmsturm/antx-master
|
ft_specest_mtmconvol.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/ft_specest_mtmconvol.m
| 17,419 |
utf_8
|
c6cfb36cc212009ed5bc834211e299aa
|
function [spectrum,ntaper,freqoi,timeoi] = ft_specest_mtmconvol(dat, time, varargin)
% SPECEST_MTMCONVOL performs wavelet convolution in the time domain
% by multiplication in the frequency domain
%
% Use as
% [spectrum,freqoi,timeoi] = specest_mtmconvol(dat,time,...)
% where
% dat = matrix of chan*sample
% time = vector, containing time in seconds for each sample
% spectrum = matrix of ntaper*chan*freqoi*timeoi of fourier coefficients
% ntaper = vector containing the number of tapers per freqoi
% freqoi = vector of frequencies in spectrum
% timeoi = vector of timebins in spectrum
%
% Optional arguments should be specified in key-value pairs and can include:
% taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')
% pad = number, indicating time-length of data to be padded out to in seconds
% timeoi = vector, containing time points of interest (in seconds)
% timwin = vector, containing length of time windows (in seconds)
% freqoi = vector, containing frequencies (in Hz)
% tapsmofrq = number, the amount of spectral smoothing through multi-tapering. Note: 4 Hz smoothing means plus-minus 4 Hz, i.e. a 8 Hz smoothing box
% dimord = 'tap_chan_freq_time' (default) or 'chan_time_freqtap' for
% memory efficiency
% verbose = output progress to console (0 or 1, default 1)
%
% See also SPECEST_MTMFFT, SPECEST_CONVOL, SPECEST_HILBERT, SPECEST_WAVELET
% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour
%
% $Log$
% get the optional input arguments
keyvalcheck(varargin, 'optional', {'taper','pad','timeoi','timwin','freqoi','tapsmofrq','dimord','feedback','verbose','polyremoval'});
taper = keyval('taper', varargin); if isempty(taper), taper = 'dpss'; end
pad = keyval('pad', varargin);
timeoi = keyval('timeoi', varargin); if isempty(timeoi), timeoi = 'all'; end
timwin = keyval('timwin', varargin);
freqoi = keyval('freqoi', varargin); if isempty(freqoi), freqoi = 'all'; end
tapsmofrq = keyval('tapsmofrq', varargin);
dimord = keyval('dimord', varargin); if isempty(dimord), dimord = 'tap_chan_freq_time'; end
fbopt = keyval('feedback', varargin);
verbose = keyval('verbose', varargin); if isempty(verbose), verbose = 1; end
polyorder = keyval('polyremoval', varargin); if isempty(polyorder), polyorder = 1; end
if isempty(fbopt),
fbopt.i = 1;
fbopt.n = 1;
end
% throw errors for required input
if isempty(tapsmofrq) && strcmp(taper, 'dpss')
error('you need to specify tapsmofrq when using dpss tapers')
end
if isempty(timwin)
error('you need to specify timwin')
elseif (length(timwin) ~= length(freqoi) && ~strcmp(freqoi,'all'))
error('timwin should be of equal length as freqoi')
end
% Set n's
[nchan,ndatsample] = size(dat);
% Remove polynomial fit from the data -> default is demeaning
if polyorder >= 0
dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);
end
% Determine fsample and set total time-length of data
fsample = 1/(time(2)-time(1));
dattime = ndatsample / fsample; % total time in seconds of input data
% Zero padding
if round(pad * fsample) < ndatsample
error('the padding that you specified is shorter than the data');
end
if isempty(pad) % if no padding is specified padding is equal to current data length
pad = dattime;
end
postpad = zeros(1,round((pad - dattime) * fsample));
endnsample = round(pad * fsample); % total number of samples of padded data
endtime = pad; % total time in seconds of padded data
% Set freqboi and freqoi
if isnumeric(freqoi) % if input is a vector
freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1;
freqboi = unique(freqboi);
freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output
elseif strcmp(freqoi,'all')
freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;
freqboi = freqboilim(1):1:freqboilim(2);
freqoi = (freqboi-1) ./ endtime;
end
% check for freqoi = 0 and remove it, there is no wavelet for freqoi = 0
if freqoi(1)==0
freqoi(1) = [];
freqboi(1) = [];
if length(timwin) == (length(freqoi) + 1)
timwin(1) = [];
end
end
nfreqboi = length(freqboi);
nfreqoi = length(freqoi);
% Set timeboi and timeoi
offset = round(time(1)*fsample);
if isnumeric(timeoi) % if input is a vector
timeboi = round(timeoi .* fsample - offset) + 1;
ntimeboi = length(timeboi);
timeoi = round(timeoi .* fsample) ./ fsample;
elseif strcmp(timeoi,'all') % if input was 'all'
timeboi = 1:length(time);
ntimeboi = length(timeboi);
timeoi = time;
end
% set number of samples per time-window (timwin is in seconds)
timwinsample = round(timwin .* fsample);
% Compute tapers per frequency, multiply with wavelets and compute their fft
wltspctrm = cell(nfreqoi,1);
ntaper = zeros(nfreqoi,1);
for ifreqoi = 1:nfreqoi
switch taper
case 'dpss'
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
tap = double_dpss(timwinsample(ifreqoi), timwinsample(ifreqoi) .* (tapsmofrq(ifreqoi) ./ fsample))';
% remove the last taper because the last slepian taper is always messy
tap = tap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(tap)
error('%.3f Hz: datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), timwinsample(ifreqoi)/fsample,tapsmofrq(ifreqoi),fsample/timwinsample(ifreqoi));
elseif size(tap,1) == 1
disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])
end
case 'sine'
% create and remove the last taper
tap = sine_taper(timwinsample(ifreqoi), timwinsample(ifreqoi) .* (tapsmofrq(ifreqoi) ./ fsample))';
tap = tap(1:(end-1), :);
case 'sine_old'
% to provide compatibility with the tapers being scaled (which was default
% behavior prior to 29apr2011) yet this gave different magnitude of power
% when comparing with slepian multi tapers
tap = sine_taper_scaled(timwinsample(ifreqoi), timwinsample(ifreqoi) .* (tapsmofrq(ifreqoi) ./ fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'alpha'
tap = alpha_taper(timwinsample(ifreqoi), freqoi(ifreqoi)./ fsample)';
tap = tap./norm(tap)';
case 'hanning'
tap = hanning(timwinsample(ifreqoi))';
tap = tap./norm(tap, 'fro');
otherwise
% create a single taper according to the window specification as a replacement for the DPSS (Slepian) sequence
tap = window(taper, timwinsample(ifreqoi))';
tap = tap ./ norm(tap,'fro'); % make it explicit that the frobenius norm is being used
end
% set number of tapers
ntaper(ifreqoi) = size(tap,1);
% Wavelet construction
tappad = ceil(endnsample ./ 2) - floor(timwinsample(ifreqoi) ./ 2);
prezero = zeros(1,tappad);
postzero = zeros(1,round(endnsample) - ((tappad-1) + timwinsample(ifreqoi))-1);
% phase consistency: cos must always be 1 and sin must always be centered in upgoing flank, so the centre of the wavelet (untapered) has angle = 0
anglein = (-(timwinsample(ifreqoi)-1)/2 : (timwinsample(ifreqoi)-1)/2)' .* ((2.*pi./fsample) .* freqoi(ifreqoi));
wltspctrm{ifreqoi} = complex(zeros(size(tap,1),round(endnsample)));
for itap = 1:ntaper(ifreqoi)
try % this try loop tries to fit the wavelet into wltspctrm, when its length is smaller than ndatsample, the rest is 'filled' with zeros because of above code
% if a wavelet is longer than ndatsample, it doesn't fit and it is kept at zeros, which is translated to NaN's in the output
% construct the complex wavelet
coswav = horzcat(prezero, tap(itap,:) .* cos(anglein)', postzero);
sinwav = horzcat(prezero, tap(itap,:) .* sin(anglein)', postzero);
wavelet = complex(coswav, sinwav);
% store the fft of the complex wavelet
wltspctrm{ifreqoi}(itap,:) = fft(wavelet,[],2);
% % debug plotting
% figure('name',['taper #' num2str(itap) ' @ ' num2str(freqoi(ifreqoi)) 'Hz' ],'NumberTitle','off');
% subplot(2,1,1);
% hold on;
% plot(real(wavelet));
% plot(imag(wavelet),'color','r');
% legend('real','imag');
% tline = length(wavelet)/2;
% if mod(tline,2)==0
% line([tline tline],[-max(abs(wavelet)) max(abs(wavelet))],'color','g','linestyle','--')
% else
% line([ceil(tline) ceil(tline)],[-max(abs(wavelet)) max(abs(wavelet))],'color','g','linestyle','--');
% line([floor(tline) floor(tline)],[-max(abs(wavelet)) max(abs(wavelet))],'color','g','linestyle','--');
% end;
% subplot(2,1,2);
% plot(angle(wavelet),'color','g');
% if mod(tline,2)==0,
% line([tline tline],[-pi pi],'color','r','linestyle','--')
% else
% line([ceil(tline) ceil(tline)],[-pi pi],'color','r','linestyle','--')
% line([floor(tline) floor(tline)],[-pi pi],'color','r','linestyle','--')
% end
end
end
end
% Switch between memory efficient representation or intuitive default representation
switch dimord
case 'tap_chan_freq_time' % default
% compute fft, major speed increases are possible here, depending on which matlab is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
datspectrum = transpose(fft(transpose([dat repmat(postpad,[nchan, 1])]))); % double explicit transpose to speedup fft
spectrum = cell(max(ntaper), nfreqoi);
for ifreqoi = 1:nfreqoi
str = sprintf('frequency %d (%.2f Hz), %d tapers', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:max(ntaper)
% compute indices that will be used to extracted the requested fft output
nsamplefreqoi = timwin(ifreqoi) .* fsample;
reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < ndatsample - (nsamplefreqoi ./2)));
reqtimeboi = timeboi(reqtimeboiind);
% compute datspectrum*wavelet, if there are reqtimeboi's that have data
% create a matrix of NaNs if there is no taper for this current frequency-taper-number
if itap > ntaper(ifreqoi)
spectrum{itap,ifreqoi} = complex(nan(nchan,ntimeboi));
else
dum = fftshift(transpose(ifft(transpose(datspectrum .* repmat(wltspctrm{ifreqoi}(itap,:),[nchan 1])))),2); % double explicit transpose to speedup fft
tmp = complex(nan(nchan,ntimeboi));
tmp(:,reqtimeboiind) = dum(:,reqtimeboi);
tmp = tmp .* sqrt(2 ./ timwinsample(ifreqoi));
spectrum{itap,ifreqoi} = tmp;
end
end
end
spectrum = reshape(vertcat(spectrum{:}),[nchan max(ntaper) nfreqoi ntimeboi]); % collecting in a cell-array and later reshaping provides significant speedups
spectrum = permute(spectrum, [2 1 3 4]);
case 'chan_time_freqtap' % memory efficient representation
% create tapfreqind
freqtapind = [];
tempntaper = [0; cumsum(ntaper(:))];
for ifreqoi = 1:nfreqoi
freqtapind{ifreqoi} = tempntaper(ifreqoi)+1:tempntaper(ifreqoi+1);
end
% start fft'ing
datspectrum = transpose(fft(transpose([dat repmat(postpad,[nchan, 1])]))); % double explicit transpose to speedup fft
spectrum = complex(zeros([nchan ntimeboi sum(ntaper)]));
for ifreqoi = 1:nfreqoi
str = sprintf('frequency %d (%.2f Hz), %d tapers', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose
% specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['trial %d, ',str,'\n'], fbopt.i);
elseif verbose
fprintf([str, '\n']);
end
for itap = 1:ntaper(ifreqoi)
% compute indices that will be used to extracted the requested fft output
nsamplefreqoi = timwin(ifreqoi) .* fsample;
reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < (ndatsample - (nsamplefreqoi ./2))));
reqtimeboi = timeboi(reqtimeboiind);
% compute datspectrum*wavelet, if there are reqtimeboi's that have data
dum = fftshift(transpose(ifft(transpose(datspectrum .* repmat(wltspctrm{ifreqoi}(itap,:),[nchan 1])))),2); % double explicit transpose to speedup fft
tmp = complex(nan(nchan,ntimeboi),nan(nchan,ntimeboi));
tmp(:,reqtimeboiind) = dum(:,reqtimeboi);
tmp = tmp .* sqrt(2 ./ timwinsample(ifreqoi));
spectrum(:,:,freqtapind{ifreqoi}(itap)) = tmp;
end
end % for nfreqoi
end % switch dimord
% % below code does the exact same as above, but without the trick of converting to cell-arrays for speed increases. however, when there is a huge variability in number of tapers per freqoi
% % than this approach can benefit from the fact that the array can be precreated containing nans
% % compute fft, major speed increases are possible here, depending on which matlab is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
% datspectrum = transpose(fft(transpose([dat repmat(postpad,[nchan, 1])]))); % double explicit transpose to speedup fft
% spectrum = complex(nan([max(ntaper) nchan nfreqoi ntimeboi]),nan([max(ntaper) nchan nfreqoi ntimeboi])); % assumes fixed number of tapers
% for ifreqoi = 1:nfreqoi
% fprintf('processing frequency %d (%.2f Hz), %d tapers\n', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
% for itap = 1:max(ntaper)
% % compute indices that will be used to extracted the requested fft output
% nsamplefreqoi = timwin(ifreqoi) .* fsample;
% reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < ndatsample - (nsamplefreqoi ./2)));
% reqtimeboi = timeboi(reqtimeboiind);
%
% % compute datspectrum*wavelet, if there are reqtimeboi's that have data
% % create a matrix of NaNs if there is no taper for this current frequency-taper-number
% if itap <= ntaper(ifreqoi)
% dum = fftshift(transpose(ifft(transpose(datspectrum .* repmat(wltspctrm{ifreqoi}(itap,:),[nchan 1])))),2); % double explicit transpose to speedup fft
% tmp = complex(nan(nchan,ntimeboi));
% tmp(:,reqtimeboiind) = dum(:,reqtimeboi);
% tmp = tmp .* sqrt(2 ./ timwinsample(ifreqoi));
% spectrum(itap,:,ifreqoi,:) = tmp;
% else
% break
% end
% end
% end
% Below the code used to implement variable amount of tapers in a different way, kept here for testing, please do not remove
% % build tapfreq vector
% tapfreq = [];
% for ifreqoi = 1:nfreqoi
% tapfreq = [tapfreq ones(1,ntaper(ifreqoi)) * ifreqoi];
% end
% tapfreq = tapfreq(:);
%
% % compute fft, major speed increases are possible here, depending on which matlab is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
% %spectrum = complex(nan([numel(tapfreq),nchan,ntimeboi]));
% datspectrum = fft([dat repmat(postpad,[nchan, 1])],[],2);
% spectrum = cell(numel(tapfreq), nchan, ntimeboi);
% for ifreqoi = 1:nfreqoi
% fprintf('processing frequency %d (%.2f Hz), %d tapers\n', ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));
% for itap = 1:ntaper(ifreqoi)
% tapfreqind = sum(ntaper(1:ifreqoi-1)) + itap;
% for ichan = 1:nchan
% % compute indices that will be used to extracted the requested fft output
% nsamplefreqoi = timwin(ifreqoi) .* fsample;
% reqtimeboiind = find((timeboi >= (nsamplefreqoi ./ 2)) & (timeboi < ndatsample - (nsamplefreqoi ./2)));
% reqtimeboi = timeboi(reqtimeboiind);
%
% % compute datspectrum*wavelet, if there are reqtimeboi's that have data
% if ~isempty(reqtimeboi)
% dum = fftshift(ifft(datspectrum(ichan,:) .* wltspctrm{ifreqoi}(itap,:),[],2)); % fftshift is necessary because of post zero-padding, not necessary when pre-padding
% %spectrum(tapfreqind,ichan,reqtimeboiind) = dum(reqtimeboi);
% tmp = complex(nan(1,ntimeboi));
% tmp(reqtimeboiind) = dum(reqtimeboi);
% spectrum{tapfreqind,ichan} = tmp;
% end
% end
% end
% end
% spectrum = reshape(vertcat(spectrum{:}),[numel(tapfreq) nchan ntimeboi]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION ensure that the first two input arguments are of double
% precision this prevents an instability (bug) in the computation of the
% tapers for Matlab 6.5 and 7.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tap] = double_dpss(a, b, varargin)
tap = dpss(double(a), double(b), varargin{:});
|
github
|
philippboehmsturm/antx-master
|
ft_specest_convol.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/ft_specest_convol.m
| 7,359 |
utf_8
|
ac22d33e4455715f0e05fecaf3d8b412
|
function [spectrum, freqoi, timeoi] = ft_specest_convol(dat, time, varargin)
% SPECEST_CONVOL performs wavelet convolution in the time domain by
% convolution with Morlet's wavelets.
%
% Use as
% [spectrum,freqoi,timeoi] = specest_convol(dat,time,...)
% where
% dat = matrix of chan*sample
% time = vector, containing time in seconds for each sample
% spectrum = matrix of chan*freqoi*timeoi of fourier coefficients
% freqoi = vector of frequencies in spectrum
% timeoi = vector of timebins in spectrum
%
% Optional arguments should be specified in key-value pairs and can include:
% timeoi = vector, containing time points of interest (in seconds, analysis window will be centered around these time points)
% freqoi = vector, containing frequencies (in Hz)
% waveletwidth = number, 'width' of wavelets expressed in cycles (default = 7)
%
% OPTION DOWNSAMPLE: this looks like something that would fit in better in the (freqanalysis) wrapper I think
% OPTION LATENCY, WHAT TO DO WITH THIS?
% HOW TO MAKE CONSISTENT freqoi'S OVER TRIALS (e.g. multiple runs of this function)? ZERO-PADDING NOT AN OPTION... YET WE SHOULD STILL ONLY HAVE freqoi'S THAT ACTUALLY MATCH THE FREQUENCIES IN OUTPUT
%
% See also SPECEST_MTMFFT, SPECEST_MTMCONVOL, SPECEST_HILBERT, SPECEST_NANFFT, SPECEST_MVAR, SPECEST_WAVELET
% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour
%
% $Log$
% get the optional input arguments
keyvalcheck(varargin, 'optional', {'waveletwidth','pad','timeoi','freqoi','polyremoval'});
timeoi = keyval('timeoi', varargin); if isempty(timeoi), timeoi = 'all'; end
freqoi = keyval('freqoi', varargin); if isempty(freqoi), freqoi = 'all'; end
waveletwidth = keyval('waveletwidth', varargin); if isempty(waveletwidth), waveletwidth = 7; end
polyorder = keyval('polyremoval', varargin); if isempty(polyorder), polyorder = 1; end
% Set n's
[nchan,ndatsample] = size(dat);
% Remove polynomial fit from the data -> default is demeaning
if polyorder >= 0
dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);
end
% Determine fsample and set total time-length of data
fsample = 1/(time(2)-time(1));
dattime = ndatsample / fsample; % total time in seconds of input data
endnsample = ndatsample; % for consistency with mtmconvol and mtmfft
endtime = dattime; % for consistency with mtmconvol and mtmfft
% Set freqboi and freqoi
if isnumeric(freqoi) % if input is a vector
freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1;
freqboi = unique(freqboi);
freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output
elseif strcmp(freqoi,'all')
freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;
freqboi = freqboilim(1):1:freqboilim(2);
freqoi = (freqboi-1) ./ endtime;
end
nfreqboi = length(freqboi);
nfreqoi = length(freqoi);
% Set timeboi and timeoi
offset = round(time(1)*fsample);
if isnumeric(timeoi) % if input is a vector
timeboi = round(timeoi .* fsample - offset) + 1;
ntimeboi = length(timeboi);
timeoi = round(timeoi .* fsample) ./ fsample;
elseif strcmp(timeoi,'all') % if input was 'all'
timeboi = 1:length(time);
ntimeboi = length(timeboi);
timeoi = time;
end
% compute wavelet family
wavfam = waveletfam(freqoi,fsample,waveletwidth);
% compute spectrum by convolving the wavelets with the data
spectrum = zeros(nchan, nfreqoi, nsample);
for ifreqoi = 1:nfreqoi
wavelet = wavfam{ifreqoi};
for ichan = 1:nchan
spectrum(ichan,ifreqoi,:) = conv(dat(ichan,:), wavelet, 'same');
end
% pad the edges with nans to indicate that the wavelet was not fully immersed in the data THERE ARE NO NANS ADDED IN FREQANALYSIS_TFR?
nanpad = ceil(length(wavfam{ifreqoi})/2);
% the padding should not be longer than the actual data
nanpad = min(nanpad, nsample);
begnanpad = 1:nanpad;
endnanpad = (nsample-nanpad+1):nsample;
spectrum(:,ifreqoi,begnanpad) = nan;
spectrum(:,ifreqoi,endnanpad) = nan;
end
% select the samples for the output
spectrum = spectrum(:,:,timeboi);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for waveletanalysis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = waveletfam(foi,fsample,waveletwidth)
dt = 1/fsample;
for k=1:length(foi)
sf = foi(k)/waveletwidth;
st = 1/(2*pi*sf);
toi = -3.5*st:dt:3.5*st;
A = 1/sqrt(st*sqrt(pi));
M{k}= A*exp(-toi.^2/(2*st^2)).*exp(i*2*pi*foi(k).*toi);
end
% state = keyval('state', varargin);
% waveletwidth = keyval('waveletwidth', varargin); if isempty(waveletwidth), waveletwidth = 7; end
% downsample = keyval('downsample', varargin);
% time = keyval('time', varargin);
% toi = keyval('toi', varargin);
%
% % FIXME add width
%
% if ~isempty(downsample) && ~isempty(toi)
% error('the downsample and toi options are mutually exclusive');
% end
%
% nchans = size(dat,1);
% nsamples = size(dat,2);
%
% if isempty(time)
% if ~isempty(toi)
% error('specification of toi without time is not permitted');
% end
% time = (0:(nsamples-1))/fsample;
% end
%
% if ~isempty(state) && isequal(state.fsample, fsample) && isequal(state.foi, foi) && isequal(state.waveletwidth, waveletwidth)
% % reuse the wavelet family from the previous state
% disp('using previous state');
% M = state.M;
% else
% if ~isempty(state)
% state = [];
% warning('recomputing the state');
% end
% % recompute the wavelet family
% M = waveletfam(foi,fsample,waveletwidth);
% end
%
% % compute freq by convolving the wavelets with the data
% nfreq = length(foi);
% spectrum = zeros(nchans, nsamples, nfreq);
%
% for f=1:nfreq
% wavelet = M{f};
% for c=1:nchans
% spectrum(c,:,f) = conv(dat(c,:), wavelet, 'same');
% end
% % pad the edges with nans to indicate that the wavelet was not fully immersed in the data
% pad = ceil(length(M{f})/2);
% % the padding should not be longer than the actual data
% pad = min(pad, nsamples);
% begpad = 1:pad;
% endpad = (nsamples-pad+1):nsamples;
% spectrum(:,begpad,f) = nan;
% spectrum(:,endpad,f) = nan;
% end
%
% if ~isempty(downsample)
% % this would be done in case of downsample
% tbin = 1:downsample:nsamples;
% elseif ~isempty(toi)
% % this would be done in case of toi/time specification
% tbin = zeros(size(toi));
% for i=1:length(tbin)
% tbin = nearest(time, toi(i));
% end
% else
% tbin = 1:nsamples;
% end
%
% % select the samples for the output
% spectrum = spectrum(:,tbin,:);
%
% % remember the wavelets so that they can be reused in a subsequent call
% state.fsample = fsample;
% state.foi = foi;
% state.waveletwidth = waveletwidth;
% state.M = M;
%
% % %convolves data in chan by time matrix (from one trial) with 1 wavelet for
% % %each specified frequency of interest
% % spectrum = zeros(size(data,1),length(foi), size(data,2));
% % for k=1:size(data,1) %nchans
% % for j=1:length(foi)
% % cTmp = conv(data(k,:),M{j});
% % cTmp = 2*(abs(cTmp).^2)/fsample;
% % cTmp = cTmp(ceil(length(M{j})/2):length(cTmp)-floor(length(M{j})/2));
% % spectrum(k,j,:) = cTmp;
% % end
% %
% % end
%
% %output should be chan by freq by time
|
github
|
philippboehmsturm/antx-master
|
ft_specest_mtmfft.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/ft_specest_mtmfft.m
| 7,105 |
utf_8
|
90574c21677d7ac87f08ed43d83b4e2a
|
function [spectrum,ntaper,freqoi] = ft_specest_mtmfft(dat, time, varargin)
% SPECEST_MTMFFT computes a fast Fourier transform using multitapering with
% the DPSS sequence or using a variety of single tapers
%
% Use as
% [spectrum,freqoi] = specest_mtmfft(dat,time...)
% where
% dat = matrix of chan*sample
% time = vector, containing time in seconds for each sample
% spectrum = matrix of taper*chan*freqoi of fourier coefficients
% ntaper = vector containing number of tapers per element of freqoi
% freqoi = vector of frequencies in spectrum
%
% Optional arguments should be specified in key-value pairs and can include:
% taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')
% pad = number, total length of data after zero padding (in seconds)
% freqoi = vector, containing frequencies of interest
% tapsmofrq = the amount of spectral smoothing through multi-tapering. Note: 4 Hz smoothing means plus-minus 4 Hz, i.e. a 8 Hz smoothing box
%
% See also SPECEST_MTMCONVOL, SPECEST_CONVOL, SPECEST_HILBERT, SPECEST_WAVELET
% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour
%
% $Log$
% get the optional input arguments
keyvalcheck(varargin, 'optional', {'taper','pad','freqoi','tapsmofrq','feedback','polyremoval'});
taper = keyval('taper', varargin); if isempty(taper), error('You must specify a taper'); end
pad = keyval('pad', varargin);
freqoi = keyval('freqoi', varargin); if isempty(freqoi), freqoi = 'all'; end
tapsmofrq = keyval('tapsmofrq', varargin);
fbopt = keyval('feedback', varargin);
polyorder = keyval('polyremoval', varargin); if isempty(polyorder), polyorder = 1; end
if isempty(fbopt),
fbopt.i = 1;
fbopt.n = 1;
end
% throw errors for required input
if isempty(tapsmofrq) && strcmp(taper, 'dpss')
error('you need to specify tapsmofrq when using dpss tapers')
end
% Set n's
[nchan,ndatsample] = size(dat);
% Remove polynomial fit from the data -> default is demeaning
if polyorder >= 0
dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);
end
% Determine fsample and set total time-length of data
fsample = 1/(time(2)-time(1));
dattime = ndatsample / fsample; % total time in seconds of input data
% Zero padding
if round(pad * fsample) < ndatsample
error('the padding that you specified is shorter than the data');
end
if isempty(pad) % if no padding is specified padding is equal to current data length
pad = dattime;
end
postpad = zeros(1,ceil((pad - dattime) * fsample));
endnsample = round(pad * fsample); % total number of samples of padded data
endtime = pad; % total time in seconds of padded data
% Set freqboi and freqoi
if isnumeric(freqoi) % if input is a vector
freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1;
freqboi = unique(freqboi);
freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output
elseif strcmp(freqoi,'all') % if input was 'all'
freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;
freqboi = freqboilim(1):1:freqboilim(2);
freqoi = (freqboi-1) ./ endtime;
end
nfreqboi = length(freqboi);
nfreqoi = length(freqoi);
% create tapers
switch taper
case 'dpss'
% create a sequence of DPSS tapers, ensure that the input arguments are double precision
tap = double_dpss(ndatsample,ndatsample*(tapsmofrq./fsample))';
% remove the last taper because the last slepian taper is always messy
tap = tap(1:(end-1), :);
% give error/warning about number of tapers
if isempty(tap)
error('datalength to short for specified smoothing\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',ndatsample/fsample,tapsmofrq,fsample/ndatsample);
elseif size(tap,1) == 1
warning_once('using only one taper for specified smoothing');
end
case 'sine'
tap = sine_taper(ndatsample, ndatsample*(tapsmofrq./fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'sine_old'
% to provide compatibility with the tapers being scaled (which was default
% behavior prior to 29apr2011) yet this gave different magnitude of power
% when comparing with slepian multi tapers
tap = sine_taper_scaled(ndatsample, ndatsample*(tapsmofrq./fsample))';
tap = tap(1:(end-1), :); % remove the last taper
case 'alpha'
error('not yet implemented');
case 'hanning'
tap = hanning(ndatsample)';
tap = tap./norm(tap, 'fro');
otherwise
% create the taper and ensure that it is normalized
tap = window(taper, ndatsample)';
tap = tap ./ norm(tap,'fro');
end % switch taper
ntaper = repmat(size(tap,1),nfreqoi,1);
str = sprintf('nfft: %d samples, datalength: %d samples, %d tapers',endnsample,ndatsample,ntaper(1));
[st, cws] = dbstack;
if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis')
% specest_mtmfft has been called by ft_freqanalysis, meaning that ft_progress has been initialised
ft_progress(fbopt.i./fbopt.n, ['processing trial %d/%d ',str,'\n'], fbopt.i, fbopt.n);
else
fprintf([str, '\n']);
end
% determine phase-shift so that for all frequencies angle(t=0) = 0
timedelay = time(1);
if timedelay ~= 0
angletransform = complex(zeros(1,nfreqoi));
for ifreqoi = 1:nfreqoi
missedsamples = round(timedelay * fsample);
% determine angle of freqoi if oscillation started at 0
% the angle of wavelet(cos,sin) = 0 at the first point of a cycle, with sine being in upgoing flank, which is the same convention as in mtmconvol
anglein = (missedsamples) .* ((2.*pi./fsample) .* freqoi(ifreqoi));
coswav = cos(anglein);
sinwav = sin(anglein);
angletransform(ifreqoi) = angle(complex(coswav,sinwav));
end
angletransform = repmat(angletransform,[nchan,1]);
end
% compute fft, major speed increases are possible here, depending on which matlab is being used whether or not it helps, which mainly focuses on orientation of the to be fft'd matrix
spectrum = cell(ntaper(1),1);
for itap = 1:ntaper(1)
dum = transpose(fft(transpose([dat .* repmat(tap(itap,:),[nchan, 1]) repmat(postpad,[nchan, 1])]))); % double explicit transpose to speedup fft
dum = dum(:,freqboi);
% phase-shift according to above angles
if timedelay ~= 0
dum = dum .* exp(-1i*angletransform);
end
dum = dum .* sqrt(2 ./ endnsample);
spectrum{itap} = dum;
end
spectrum = reshape(vertcat(spectrum{:}),[nchan ntaper(1) nfreqboi]);% collecting in a cell-array and later reshaping provides significant speedups
spectrum = permute(spectrum, [2 1 3]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION ensure that the first two input arguments are of double
% precision this prevents an instability (bug) in the computation of the
% tapers for Matlab 6.5 and 7.0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tap] = double_dpss(a, b, varargin)
tap = dpss(double(a), double(b), varargin{:});
|
github
|
philippboehmsturm/antx-master
|
postpad.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/postpad.m
| 2,013 |
utf_8
|
2c9539d77ff0f85c9f89108f4dc811e0
|
% Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2005,
% 2006, 2007, 2008, 2009 John W. Eaton
%
% This file is part of Octave.
%
% Octave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or (at
% your option) any later version.
%
% Octave is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Octave; see the file COPYING. If not, see
% <http://www.gnu.org/licenses/>.
% -*- texinfo -*-
% @deftypefn {Function File} {} postpad (@var{x}, @var{l}, @var{c})
% @deftypefnx {Function File} {} postpad (@var{x}, @var{l}, @var{c}, @var{dim})
% @seealso{prepad, resize}
% @end deftypefn
% Author: Tony Richardson <[email protected]>
% Created: June 1994
function y = postpad (x, l, c, dim)
if nargin < 2 || nargin > 4
%print_usage ();
error('wrong number of input arguments, should be between 2 and 4');
end
if nargin < 3 || isempty(c)
c = 0;
else
if ~isscalar(c)
error ('postpad: third argument must be empty or a scalar');
end
end
nd = ndims(x);
sz = size(x);
if nargin < 4
% Find the first non-singleton dimension
dim = 1;
while dim < nd+1 && sz(dim)==1
dim = dim + 1;
end
if dim > nd
dim = 1;
elseif ~(isscalar(dim) && dim == round(dim)) && dim > 0 && dim< nd+1
error('postpad: dim must be an integer and valid dimension');
end
end
if ~isscalar(l) || l<0
error ('second argument must be a positive scalar');
end
if dim > nd
sz(nd+1:dim) = 1;
end
d = sz(dim);
if d >= l
idx = cell(1,nd);
for i = 1:nd
idx{i} = 1:sz(i);
end
idx{dim} = 1:l;
y = x(idx{:});
else
sz(dim) = l-d;
y = cat(dim, x, c * ones(sz));
end
|
github
|
philippboehmsturm/antx-master
|
sftrans.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/sftrans.m
| 7,947 |
utf_8
|
f64cb2e7d19bcdc6232b39d8a6d70e7c
|
% Copyright (C) 1999 Paul Kienzle
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)
%
% Transform band edges of a generic lowpass filter (cutoff at W=1)
% represented in splane zero-pole-gain form. W is the edge of the
% target filter (or edges if band pass or band stop). Stop is true for
% high pass and band stop filters or false for low pass and band pass
% filters. Filter edges are specified in radians, from 0 to pi (the
% nyquist frequency).
%
% Theory: Given a low pass filter represented by poles and zeros in the
% splane, you can convert it to a low pass, high pass, band pass or
% band stop by transforming each of the poles and zeros individually.
% The following table summarizes the transformation:
%
% Transform Zero at x Pole at x
% ---------------- ------------------------- ------------------------
% Low Pass zero: Fc x/C pole: Fc x/C
% S -> C S/Fc gain: C/Fc gain: Fc/C
% ---------------- ------------------------- ------------------------
% High Pass zero: Fc C/x pole: Fc C/x
% S -> C Fc/S pole: 0 zero: 0
% gain: -x gain: -1/x
% ---------------- ------------------------- ------------------------
% Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S^2+FhFl pole: 0 zero: 0
% S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
% S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
% Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl)
% S -> C -------- gain: -x gain: -1/x
% S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
% Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
% 2 z-1 pole: -1 zero: -1
% S -> - --- gain: (2-xT)/T gain: (2-xT)/T
% T z+1
% ---------------- ------------------------- ------------------------
%
% where C is the cutoff frequency of the initial lowpass filter, Fc is
% the edge of the target low/high pass filter and [Fl,Fh] are the edges
% of the target band pass/stop filter. With abundant tedious algebra,
% you can derive the above formulae yourself by substituting the
% transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a
% pole at x, and converting the result into the form:
%
% H(S)=g prod(S-Xi)/prod(S-Xj)
%
% The transforms are from the references. The actual pole-zero-gain
% changes I derived myself.
%
% Please note that a pole and a zero at the same place exactly cancel.
% This is significant for High Pass, Band Pass and Band Stop filters
% which create numerous extra poles and zeros, most of which cancel.
% Those which do not cancel have a 'fill-in' effect, extending the
% shorter of the sets to have the same number of as the longer of the
% sets of poles and zeros (or at least split the difference in the case
% of the band pass filter). There may be other opportunistic
% cancellations but I will not check for them.
%
% Also note that any pole on the unit circle or beyond will result in
% an unstable filter. Because of cancellation, this will only happen
% if the number of poles is smaller than the number of zeros and the
% filter is high pass or band pass. The analytic design methods all
% yield more poles than zeros, so this will not be a problem.
%
% References:
%
% Proakis & Manolakis (1992). Digital Signal Processing. New York:
% Macmillan Publishing Company.
% Author: Paul Kienzle <[email protected]>
% 2000-03-01 [email protected]
% leave transformed Sg as a complex value since cheby2 blows up
% otherwise (but only for odd-order low-pass filters). bilinear
% will return Zg as real, so there is no visible change to the
% user of the IIR filter design functions.
% 2001-03-09 [email protected]
% return real Sg; don't know what to do for imaginary filters
function [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)
if (nargin ~= 5)
usage('[Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)');
end;
C = 1;
p = length(Sp);
z = length(Sz);
if z > p || p == 0
error('sftrans: must have at least as many poles as zeros in s-plane');
end
if length(W)==2
Fl = W(1);
Fh = W(2);
if stop
% ---------------- ------------------------- ------------------------
% Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl)
% S -> C -------- gain: -x gain: -1/x
% S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
if (isempty(Sz))
Sg = Sg * real (1./ prod(-Sp));
elseif (isempty(Sp))
Sg = Sg * real(prod(-Sz));
else
Sg = Sg * real(prod(-Sz)/prod(-Sp));
end
b = (C*(Fh-Fl)/2)./Sp;
Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)];
if isempty(Sz)
Sz = [extend(1+rem([1:2*p],2))];
else
b = (C*(Fh-Fl)/2)./Sz;
Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if (p > z)
Sz = [Sz, extend(1+rem([1:2*(p-z)],2))];
end
end
else
% ---------------- ------------------------- ------------------------
% Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S^2+FhFl pole: 0 zero: 0
% S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
% S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
Sg = Sg * (C/(Fh-Fl))^(z-p);
b = Sp*((Fh-Fl)/(2*C));
Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if isempty(Sz)
Sz = zeros(1,p);
else
b = Sz*((Fh-Fl)/(2*C));
Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if (p>z)
Sz = [Sz, zeros(1, (p-z))];
end
end
end
else
Fc = W;
if stop
% ---------------- ------------------------- ------------------------
% High Pass zero: Fc C/x pole: Fc C/x
% S -> C Fc/S pole: 0 zero: 0
% gain: -x gain: -1/x
% ---------------- ------------------------- ------------------------
if (isempty(Sz))
Sg = Sg * real (1./ prod(-Sp));
elseif (isempty(Sp))
Sg = Sg * real(prod(-Sz));
else
Sg = Sg * real(prod(-Sz)/prod(-Sp));
end
Sp = C * Fc ./ Sp;
if isempty(Sz)
Sz = zeros(1,p);
else
Sz = [C * Fc ./ Sz];
if (p > z)
Sz = [Sz, zeros(1,p-z)];
end
end
else
% ---------------- ------------------------- ------------------------
% Low Pass zero: Fc x/C pole: Fc x/C
% S -> C S/Fc gain: C/Fc gain: Fc/C
% ---------------- ------------------------- ------------------------
Sg = Sg * (C/Fc)^(z-p);
Sp = Fc * Sp / C;
Sz = Fc * Sz / C;
end
end
|
github
|
philippboehmsturm/antx-master
|
hanning.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/hanning.m
| 2,015 |
utf_8
|
cac22a4ad0f0b038d6f17439d97dfc36
|
function [tap] = hanning(n, str)
%HANNING Hanning window.
% HANNING(N) returns the N-point symmetric Hanning window in a column
% vector. Note that the first and last zero-weighted window samples
% are not included.
%
% HANNING(N,'symmetric') returns the same result as HANNING(N).
%
% HANNING(N,'periodic') returns the N-point periodic Hanning window,
% and includes the first zero-weighted window sample.
%
% NOTE: Use the HANN function to get a Hanning window which has the
% first and last zero-weighted samples.
%
% See also BARTLETT, BLACKMAN, BOXCAR, CHEBWIN, HAMMING, HANN, KAISER
% and TRIANG.
%
% This is a drop-in replacement to bypass the signal processing toolbox
% Copyright (c) 2010, Jan-Mathijs Schoffelen, DCCN Nijmegen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: hanning.m 2212 2010-11-27 11:55:07Z roboos $
if nargin==1,
str = 'symmetric';
end
switch str,
case 'periodic'
% Includes the first zero sample
tap = [0; hanningX(n-1)];
case 'symmetric'
% Does not include the first and last zero sample
tap = hanningX(n);
end
function tap = hanningX(n)
% compute taper
N = n+1;
tap = 0.5*(1-cos((2*pi*(1:n))./N))';
% make symmetric
halfn = floor(n/2);
tap( (n+1-halfn):n ) = flipud(tap(1:halfn));
|
github
|
philippboehmsturm/antx-master
|
filtfilt.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/filtfilt.m
| 3,297 |
iso_8859_1
|
d01a26a827bc3379f05bbc57f46ac0a9
|
% Copyright (C) 1999 Paul Kienzle
% Copyright (C) 2007 Francesco Potortì
% Copyright (C) 2008 Luca Citi
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: y = filtfilt(b, a, x)
%
% Forward and reverse filter the signal. This corrects for phase
% distortion introduced by a one-pass filter, though it does square the
% magnitude response in the process. That's the theory at least. In
% practice the phase correction is not perfect, and magnitude response
% is distorted, particularly in the stop band.
%%
% Example
% [b, a]=butter(3, 0.1); % 10 Hz low-pass filter
% t = 0:0.01:1.0; % 1 second sample
% x=sin(2*pi*t*2.3)+0.25*randn(size(t)); % 2.3 Hz sinusoid+noise
% y = filtfilt(b,a,x); z = filter(b,a,x); % apply filter
% plot(t,x,';data;',t,y,';filtfilt;',t,z,';filter;')
% Changelog:
% 2000 02 [email protected]
% - pad with zeros to load up the state vector on filter reverse.
% - add example
% 2007 12 [email protected]
% - use filtic to compute initial and final states
% - work for multiple columns as well
% 2008 12 [email protected]
% - fixed instability issues with IIR filters and noisy inputs
% - initial states computed according to Likhterov & Kopeika, 2003
% - use of a "reflection method" to reduce end effects
% - added some basic tests
% TODO: (pkienzle) My version seems to have similar quality to matlab,
% but both are pretty bad. They do remove gross lag errors, though.
function y = filtfilt(b, a, x)
if (nargin ~= 3)
usage('y=filtfilt(b,a,x)');
end
rotate = (size(x, 1)==1);
if rotate % a row vector
x = x(:); % make it a column vector
end
lx = size(x,1);
a = a(:).';
b = b(:).';
lb = length(b);
la = length(a);
n = max(lb, la);
lrefl = 3 * (n - 1);
if la < n, a(n) = 0; end
if lb < n, b(n) = 0; end
% Compute a the initial state taking inspiration from
% Likhterov & Kopeika, 2003. "Hardware-efficient technique for
% minimizing startup transients in Direct Form II digital filters"
kdc = sum(b) / sum(a);
if (abs(kdc) < inf) % neither NaN nor +/- Inf
si = fliplr(cumsum(fliplr(b - kdc * a)));
else
si = zeros(size(a)); % fall back to zero initialization
end
si(1) = [];
y = zeros(size(x));
for c = 1:size(x, 2) % filter all columns, one by one
v = [2*x(1,c)-x((lrefl+1):-1:2,c); x(:,c);
2*x(end,c)-x((end-1):-1:end-lrefl,c)]; % a column vector
% Do forward and reverse filtering
v = filter(b,a,v,si*v(1)); % forward filter
v = flipud(filter(b,a,flipud(v),si*v(end))); % reverse filter
y(:,c) = v((lrefl+1):(lx+lrefl));
end
if (rotate) % x was a row vector
y = rot90(y); % rotate it back
end
|
github
|
philippboehmsturm/antx-master
|
bilinear.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/bilinear.m
| 4,339 |
utf_8
|
17250db27826cad87fa3384823e1242f
|
% Copyright (C) 1999 Paul Kienzle
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T)
% [Zb, Za] = bilinear(Sb, Sa, T)
%
% Transform a s-plane filter specification into a z-plane
% specification. Filters can be specified in either zero-pole-gain or
% transfer function form. The input form does not have to match the
% output form. 1/T is the sampling frequency represented in the z plane.
%
% Note: this differs from the bilinear function in the signal processing
% toolbox, which uses 1/T rather than T.
%
% Theory: Given a piecewise flat filter design, you can transform it
% from the s-plane to the z-plane while maintaining the band edges by
% means of the bilinear transform. This maps the left hand side of the
% s-plane into the interior of the unit circle. The mapping is highly
% non-linear, so you must design your filter with band edges in the
% s-plane positioned at 2/T tan(w*T/2) so that they will be positioned
% at w after the bilinear transform is complete.
%
% The following table summarizes the transformation:
%
% +---------------+-----------------------+----------------------+
% | Transform | Zero at x | Pole at x |
% | H(S) | H(S) = S-x | H(S)=1/(S-x) |
% +---------------+-----------------------+----------------------+
% | 2 z-1 | zero: (2+xT)/(2-xT) | zero: -1 |
% | S -> - --- | pole: -1 | pole: (2+xT)/(2-xT) |
% | T z+1 | gain: (2-xT)/T | gain: (2-xT)/T |
% +---------------+-----------------------+----------------------+
%
% With tedious algebra, you can derive the above formulae yourself by
% substituting the transform for S into H(S)=S-x for a zero at x or
% H(S)=1/(S-x) for a pole at x, and converting the result into the
% form:
%
% H(Z)=g prod(Z-Xi)/prod(Z-Xj)
%
% Please note that a pole and a zero at the same place exactly cancel.
% This is significant since the bilinear transform creates numerous
% extra poles and zeros, most of which cancel. Those which do not
% cancel have a 'fill-in' effect, extending the shorter of the sets to
% have the same number of as the longer of the sets of poles and zeros
% (or at least split the difference in the case of the band pass
% filter). There may be other opportunistic cancellations but I will
% not check for them.
%
% Also note that any pole on the unit circle or beyond will result in
% an unstable filter. Because of cancellation, this will only happen
% if the number of poles is smaller than the number of zeros. The
% analytic design methods all yield more poles than zeros, so this will
% not be a problem.
%
% References:
%
% Proakis & Manolakis (1992). Digital Signal Processing. New York:
% Macmillan Publishing Company.
% Author: Paul Kienzle <[email protected]>
function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T)
if nargin==3
T = Sg;
[Sz, Sp, Sg] = tf2zp(Sz, Sp);
elseif nargin~=4
usage('[Zz, Zp, Zg]=bilinear(Sz,Sp,Sg,T) or [Zb, Za]=blinear(Sb,Sa,T)');
end;
p = length(Sp);
z = length(Sz);
if z > p || p==0
error('bilinear: must have at least as many poles as zeros in s-plane');
end
% ---------------- ------------------------- ------------------------
% Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
% 2 z-1 pole: -1 zero: -1
% S -> - --- gain: (2-xT)/T gain: (2-xT)/T
% T z+1
% ---------------- ------------------------- ------------------------
Zg = real(Sg * prod((2-Sz*T)/T) / prod((2-Sp*T)/T));
Zp = (2+Sp*T)./(2-Sp*T);
if isempty(Sz)
Zz = -ones(size(Zp));
else
Zz = [(2+Sz*T)./(2-Sz*T)];
Zz = postpad(Zz, p, -1);
end
if nargout==2, [Zz, Zp] = zp2tf(Zz, Zp, Zg); end
|
github
|
philippboehmsturm/antx-master
|
warning_once.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/warning_once.m
| 3,060 |
utf_8
|
f046009e4f6ffe5745af9c5e527614e8
|
function [ws warned] = warning_once(varargin)
%
% Use as
% warning_once(string)
% or
% warning_once(string, timeout)
% or
% warning_once(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again. The default timeout value is 60 seconds.
%
% Can be used instead of the MATLAB built-in function WARNING, thus as
% s = warning_once(...)
% or
% warning_once(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information.
% In other words, warning_once accepts as an input the same structure it
% returns as an output. This returns or restores the states of warnings to
% their previous values.
%
% Can also be used as
% [s w] = warning_once(...)
% where w is a boolean that indicates whether a warning as been
% thrown or not.
persistent stopwatch previous
if nargin < 1
error('You need to specify at least a warning message');
end
warned = false;
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if nargin==3
msgid = varargin{1};
msgstr = varargin{2};
timeout = varargin{3};
elseif nargin==2
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = varargin{2};
elseif nargin==1
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = 60; % default timeout in seconds
end
if isempty(timeout)
error('Timeout ill-specified');
end
if isempty(stopwatch)
stopwatch = tic;
end
if isempty(previous)
previous = struct;
end
now = toc(stopwatch); % measure time since first function call
fname = fixname([msgid '_' msgstr]); % make a nice string that is allowed as structure fieldname, copy the subfunction from ft_hastoolbox
fname = decomma(fname);
if length(fname) > 63 % MATLAB max name
fname = fname(1:63);
end
if isfield(previous, fname) && now>previous.(fname).timeout
% it has timed out, give the warning again
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
elseif ~isfield(previous, fname)
% the warning has not been issued before
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = previous.(fname).ws;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = fixname(toolbox)
out = lower(toolbox);
out(out=='-') = '_'; % fix dashes
out(out==' ') = '_'; % fix spaces
out(out=='/') = '_'; % fix forward slashes
out(out=='\') = '_'; % fix backward slashes
while(out(1) == '_'), out = out(2:end); end; % remove preceding underscore
while(out(end) == '_'), out = out(1:end-1); end; % remove subsequent underscore
end
function nameout = decomma(name)
nameout = name;
indx = findstr(name,',');
nameout(indx)=[];
end
|
github
|
philippboehmsturm/antx-master
|
butter.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/specest/private/butter.m
| 3,559 |
utf_8
|
ad82b4c04911a5ea11fd6bd2cc5fd590
|
% Copyright (C) 1999 Paul Kienzle
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% Generate a butterworth filter.
% Default is a discrete space (Z) filter.
%
% [b,a] = butter(n, Wc)
% low pass filter with cutoff pi*Wc radians
%
% [b,a] = butter(n, Wc, 'high')
% high pass filter with cutoff pi*Wc radians
%
% [b,a] = butter(n, [Wl, Wh])
% band pass filter with edges pi*Wl and pi*Wh radians
%
% [b,a] = butter(n, [Wl, Wh], 'stop')
% band reject filter with edges pi*Wl and pi*Wh radians
%
% [z,p,g] = butter(...)
% return filter as zero-pole-gain rather than coefficients of the
% numerator and denominator polynomials.
%
% [...] = butter(...,'s')
% return a Laplace space filter, W can be larger than 1.
%
% [a,b,c,d] = butter(...)
% return state-space matrices
%
% References:
%
% Proakis & Manolakis (1992). Digital Signal Processing. New York:
% Macmillan Publishing Company.
% Author: Paul Kienzle <[email protected]>
% Modified by: Doug Stewart <[email protected]> Feb, 2003
function [a, b, c, d] = butter (n, W, varargin)
if (nargin>4 || nargin<2) || (nargout>4 || nargout<2)
usage ('[b, a] or [z, p, g] or [a,b,c,d] = butter (n, W [, "ftype"][,"s"])');
end
% interpret the input parameters
if (~(length(n)==1 && n == round(n) && n > 0))
error ('butter: filter order n must be a positive integer');
end
stop = 0;
digital = 1;
for i=1:length(varargin)
switch varargin{i}
case 's', digital = 0;
case 'z', digital = 1;
case { 'high', 'stop' }, stop = 1;
case { 'low', 'pass' }, stop = 0;
otherwise, error ('butter: expected [high|stop] or [s|z]');
end
end
[r, c]=size(W);
if (~(length(W)<=2 && (r==1 || c==1)))
error ('butter: frequency must be given as w0 or [w0, w1]');
elseif (~(length(W)==1 || length(W) == 2))
error ('butter: only one filter band allowed');
elseif (length(W)==2 && ~(W(1) < W(2)))
error ('butter: first band edge must be smaller than second');
end
if ( digital && ~all(W >= 0 & W <= 1))
error ('butter: critical frequencies must be in (0 1)');
elseif ( ~digital && ~all(W >= 0 ))
error ('butter: critical frequencies must be in (0 inf)');
end
% Prewarp to the band edges to s plane
if digital
T = 2; % sampling frequency of 2 Hz
W = 2/T*tan(pi*W/T);
end
% Generate splane poles for the prototype butterworth filter
% source: Kuc
C = 1; % default cutoff frequency
pole = C*exp(1i*pi*(2*[1:n] + n - 1)/(2*n));
if mod(n,2) == 1, pole((n+1)/2) = -1; end % pure real value at exp(i*pi)
zero = [];
gain = C^n;
% splane frequency transform
[zero, pole, gain] = sftrans(zero, pole, gain, W, stop);
% Use bilinear transform to convert poles to the z plane
if digital
[zero, pole, gain] = bilinear(zero, pole, gain, T);
end
% convert to the correct output form
if nargout==2,
a = real(gain*poly(zero));
b = real(poly(pole));
elseif nargout==3,
a = zero;
b = pole;
c = gain;
else
% output ss results
[a, b, c, d] = zp2ss (zero, pole, gain);
end
|
github
|
philippboehmsturm/antx-master
|
nan_sum.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nan_sum.m
| 1,345 |
utf_8
|
ddf503cdb0cfbf8060276a3304a2c60e
|
% nan_sum() - Take the sum, not considering NaN values
%
% Usage: same as sum()
% Author: Arnaud Delorme, CNL / Salk Institute, 16 Oct 2002
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function out = nan_sum(in, dim)
if nargin < 1
help nan_sum;
return;
end;
if nargin < 2
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end;
end;
tmpin = in;
tmpin(find(isnan(in(:)))) = 0;
out = sum(tmpin, dim);
|
github
|
philippboehmsturm/antx-master
|
avw_hdr_make.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/avw_hdr_make.m
| 4,182 |
utf_8
|
8ca7457260adb412763652b40d1495c4
|
function [ avw ] = avw_hdr_make
% AVW_HDR_MAKE - Create Analyze format data header (avw.hdr)
%
% [ avw ] = avw_hdr_make
%
% avw.hdr - a struct, all fields returned from the header.
% For details, find a good description on the web
% or see the Analyze File Format pdf in the
% mri_toolbox doc folder or see avw_hdr_read.m
%
% See also, AVW_HDR_READ AVW_HDR_WRITE
% AVW_IMG_READ AVW_IMG_WRITE
%
% $Revision: 2885 $ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 06/2002, [email protected]
% 02/2003, [email protected]
% date/time bug at lines 97-98
% identified by [email protected]
%
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
version = '[$Revision: 2885 $]';
fprintf('\nAVW_HDR_MAKE [v%s]\n',version(12:16)); tic;
% Comments
% The header format is flexible and can be extended for new
% user-defined data types. The essential structures of the header
% are the header_key and the image_dimension. See avw_hdr_read
% for more detail of the header structure
avw.hdr = make_header;
t=toc; fprintf('...done (%5.2f sec).\n',t);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ hdr ] = make_header
hdr.hk = header_key;
hdr.dime = image_dimension;
hdr.hist = data_history;
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hk] = header_key
hk.sizeof_hdr = int32(348); % must be 348!
hk.data_type(1:10) = sprintf('%10s','');
hk.db_name(1:18) = sprintf('%18s','');
hk.extents = int32(16384);
hk.session_error = int16(0);
hk.regular = sprintf('%1s','r'); % might be uint8
hk.hkey_un0 = uint8(0);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ dime ] = image_dimension
dime.dim(1:8) = int16([4 256 256 256 1 0 0 0]);
dime.vox_units(1:4) = sprintf('%4s','mm');
dime.cal_units(1:8) = sprintf('%8s','');
dime.unused1 = int16(0);
dime.datatype = int16(2);
dime.bitpix = int16(8);
dime.dim_un0 = int16(0);
dime.pixdim(1:8) = single([0 1 1 1 1000 0 0 0]);
dime.vox_offset = single(0);
dime.funused1 = single(0);
dime.funused2 = single(0);
% Set default 8bit intensity scale (from MRIcro), otherwise funused3
dime.roi_scale = single(1);
dime.cal_max = single(0);
dime.cal_min = single(0);
dime.compressed = int32(0);
dime.verified = int32(0);
dime.glmax = int32(255);
dime.glmin = int32(0);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ hist ] = data_history
datime = clock;
hist.descrip(1:80) = sprintf('%-80s','mri_toolbox @ http://eeg.sf.net/');
hist.aux_file(1:24) = sprintf('%-24s','');
hist.orient = uint8(0); % sprintf( '%1s',''); % see notes in avw_hdr_read
hist.originator(1:10) = sprintf('%-10s','');
hist.generated(1:10) = sprintf('%-10s','mri_toolbx');
hist.scannum(1:10) = sprintf('%-10s','');
hist.patient_id(1:10) = sprintf('%-10s','');
hist.exp_date(1:10) = sprintf('%02d-%02d-%04d',datime(3),datime(2),datime(1));
hist.exp_time(1:10) = sprintf('%02d-%02d-%04.1f',datime(4),datime(5),datime(6));
hist.hist_un0(1:3) = sprintf( '%-3s','');
hist.views = int32(0);
hist.vols_added = int32(0);
hist.start_field = int32(0);
hist.field_skip = int32(0);
hist.omax = int32(0);
hist.omin = int32(0);
hist.smax = int32(0);
hist.smin = int32(0);
return
|
github
|
philippboehmsturm/antx-master
|
normals.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/normals.m
| 2,391 |
utf_8
|
62a8e5ee7314da0eadbc13fa82ab95c1
|
function [nrm] = normals(pnt, dhk, opt);
% NORMALS compute the surface normals of a triangular mesh
% for each triangle or for each vertex
%
% [nrm] = normals(pnt, dhk, opt)
% where opt is either 'vertex' or 'triangle'
% Copyright (C) 2002-2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: normals.m 2885 2011-02-16 09:41:58Z roboos $
if nargin<3
opt='vertex';
elseif (opt(1)=='v' | opt(1)=='V')
opt='vertex';
elseif (opt(1)=='t' | opt(1)=='T')
opt='triangle';
else
error('invalid optional argument');
end
npnt = size(pnt,1);
ndhk = size(dhk,1);
% shift to center
pnt(:,1) = pnt(:,1)-mean(pnt(:,1),1);
pnt(:,2) = pnt(:,2)-mean(pnt(:,2),1);
pnt(:,3) = pnt(:,3)-mean(pnt(:,3),1);
% compute triangle normals
nrm_dhk = zeros(ndhk, 3);
for i=1:ndhk
v2 = pnt(dhk(i,2),:) - pnt(dhk(i,1),:);
v3 = pnt(dhk(i,3),:) - pnt(dhk(i,1),:);
nrm_dhk(i,:) = cross(v2, v3);
end
if strcmp(opt, 'vertex')
% compute vertex normals
nrm_pnt = zeros(npnt, 3);
for i=1:ndhk
nrm_pnt(dhk(i,1),:) = nrm_pnt(dhk(i,1),:) + nrm_dhk(i,:);
nrm_pnt(dhk(i,2),:) = nrm_pnt(dhk(i,2),:) + nrm_dhk(i,:);
nrm_pnt(dhk(i,3),:) = nrm_pnt(dhk(i,3),:) + nrm_dhk(i,:);
end
% normalise the direction vectors to have length one
nrm = nrm_pnt ./ (sqrt(sum(nrm_pnt.^2, 2)) * ones(1,3));
else
% normalise the direction vectors to have length one
nrm = nrm_dhk ./ (sqrt(sum(nrm_dhk.^2, 2)) * ones(1,3));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fast cross product to replace the Matlab standard version
function [c] = cross(a,b)
c = [a(2)*b(3)-a(3)*b(2) a(3)*b(1)-a(1)*b(3) a(1)*b(2)-a(2)*b(1)];
|
github
|
philippboehmsturm/antx-master
|
rejectvisual_trial.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/rejectvisual_trial.m
| 9,119 |
utf_8
|
945cc5cc5b3b80e76833663a16adfc5f
|
function [chansel, trlsel, cfg] = rejectvisual_trial(cfg, data);
% SUBFUNCTION for ft_rejectvisual
% determine the initial selection of trials and channels
nchan = length(data.label);
ntrl = length(data.trial);
cfg.channel = ft_channelselection(cfg.channel, data.label);
trlsel = true(1,ntrl);
chansel = false(1,nchan);
chansel(match_str(data.label, cfg.channel)) = 1;
% compute the sampling frequency from the first two timepoints
fsample = 1/(data.time{1}(2) - data.time{1}(1));
% compute the offset from the time axes
offset = zeros(ntrl,1);
for i=1:ntrl
offset(i) = time2offset(data.time{i}, fsample);
end
ft_progress('init', cfg.feedback, 'filtering data');
for i=1:ntrl
ft_progress(i/ntrl, 'filtering data in trial %d of %d\n', i, ntrl);
[data.trial{i}, label, time, cfg.preproc] = preproc(data.trial{i}, data.label, fsample, cfg.preproc, offset(i));
end
ft_progress('close');
% select the specified latency window from the data
% this is done AFTER the filtering to prevent edge artifacts
for i=1:ntrl
begsample = nearest(data.time{i}, cfg.latency(1));
endsample = nearest(data.time{i}, cfg.latency(2));
data.time{i} = data.time{i}(begsample:endsample);
data.trial{i} = data.trial{i}(:,begsample:endsample);
end
h = figure;
axis([0 1 0 1]);
axis off
% the info structure will be attached to the figure
% and passed around between the callback functions
if strcmp(cfg.plotlayout,'1col') % hidden config option for plotting trials differently
info = [];
info.ncols = 1;
info.nrows = nchan;
info.chanlop = 1;
info.trlop = 1;
info.ltrlop = 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.nchan
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
end
end
info.label = info.data.label;
elseif strcmp(cfg.plotlayout,'square')
info = [];
info.ncols = ceil(sqrt(nchan));
info.nrows = ceil(sqrt(nchan));
info.chanlop = 1;
info.trlop = 1;
info.ltrlop = 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.nchan
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
end
end
info.label = info.data.label;
end
info.ui.quit = uicontrol(h,'units','pixels','position',[ 5 5 40 18],'String','quit','Callback',@stop);
info.ui.prev = uicontrol(h,'units','pixels','position',[ 50 5 25 18],'String','<','Callback',@prev);
info.ui.next = uicontrol(h,'units','pixels','position',[ 75 5 25 18],'String','>','Callback',@next);
info.ui.prev10 = uicontrol(h,'units','pixels','position',[105 5 25 18],'String','<<','Callback',@prev10);
info.ui.next10 = uicontrol(h,'units','pixels','position',[130 5 25 18],'String','>>','Callback',@next10);
info.ui.bad = uicontrol(h,'units','pixels','position',[160 5 50 18],'String','bad','Callback',@markbad);
info.ui.good = uicontrol(h,'units','pixels','position',[210 5 50 18],'String','good','Callback',@markgood);
info.ui.badnext = uicontrol(h,'units','pixels','position',[270 5 50 18],'String','bad>','Callback',@markbad_next);
info.ui.goodnext = uicontrol(h,'units','pixels','position',[320 5 50 18],'String','good>','Callback',@markgood_next);
set(gcf, 'WindowButtonUpFcn', @button);
set(gcf, 'KeyPressFcn', @key);
guidata(h,info);
interactive = 1;
while interactive && ishandle(h)
redraw(h);
info = guidata(h);
if info.quit == 0,
uiwait;
else
chansel = info.chansel;
trlsel = info.trlsel;
delete(h);
break
end
end % while interactive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = markbad_next(varargin)
markbad(varargin{:});
next(varargin{:});
function varargout = markgood_next(varargin)
markgood(varargin{:});
next(varargin{:});
function varargout = next(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop < info.ntrl,
info.trlop = info.trlop + 1;
end;
guidata(h,info);
uiresume;
function varargout = prev(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop > 1,
info.trlop = info.trlop - 1;
end;
guidata(h,info);
uiresume;
function varargout = next10(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop < info.ntrl - 10,
info.trlop = info.trlop + 10;
else
info.trlop = info.ntrl;
end;
guidata(h,info);
uiresume;
function varargout = prev10(h, eventdata, handles, varargin)
info = guidata(h);
info.ltrlop = info.trlop;
if info.trlop > 10,
info.trlop = info.trlop - 10;
else
info.trlop = 1;
end;
guidata(h,info);
uiresume;
function varargout = markgood(h, eventdata, handles, varargin)
info = guidata(h);
info.trlsel(info.trlop) = 1;
fprintf(description_trial(info));
title(description_trial(info));
guidata(h,info);
% uiresume;
function varargout = markbad(h, eventdata, handles, varargin)
info = guidata(h);
info.trlsel(info.trlop) = 0;
fprintf(description_trial(info));
title(description_trial(info));
guidata(h,info);
% uiresume;
function varargout = key(h, eventdata, handles, varargin)
info = guidata(h);
switch lower(eventdata.Key)
case 'rightarrow'
if info.trlop ~= info.ntrl
next(h);
else
fprintf('at last trial\n');
end
case 'leftarrow'
if info.trlop ~= 1
prev(h);
else
fprintf('at first trial\n');
end
case 'g'
markgood(h);
case 'b'
markbad(h);
case 'q'
stop(h);
otherwise
fprintf('unknown key pressed\n');
end
function varargout = button(h, eventdata, handles, varargin)
pos = get(gca, 'CurrentPoint');
x = pos(1,1);
y = pos(1,2);
info = guidata(h);
dx = info.x - x;
dy = info.y - y;
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<0.5/max(info.nrows, info.ncols) && i<=info.nchan
info.chansel(i) = ~info.chansel(i); % toggle
info.chanlop = i;
fprintf(description_channel(info));
guidata(h,info);
uiresume;
else
fprintf('button clicked\n');
return
end
function varargout = stop(h, eventdata, handles, varargin)
info = guidata(h);
info.quit = 1;
guidata(h,info);
uiresume;
function str = description_channel(info);
if info.chansel(info.chanlop)
str = sprintf('channel %s marked as GOOD\n', info.data.label{info.chanlop});
else
str = sprintf('channel %s marked as BAD\n', info.data.label{info.chanlop});
end
function str = description_trial(info);
if info.trlsel(info.trlop)
str = sprintf('trial %d marked as GOOD\n', info.trlop);
else
str = sprintf('trial %d marked as BAD\n', info.trlop);
end
function redraw(h)
if ~ishandle(h)
return
end
info = guidata(h);
fprintf(description_trial(info));
cla;
title('');
drawnow
hold on
dat = info.data.trial{info.trlop};
time = info.data.time{info.trlop};
if ~isempty(info.cfg.alim)
% use fixed amplitude limits for amplitude scaling
amax = info.cfg.alim;
else
% use automatic amplitude limits for scaling, these are different for each trial
amax = max(max(abs(dat(info.chansel,:))));
end
tmin = time(1);
tmax = time(end);
% scale the time values between 0.1 and 0.9
time = 0.1 + 0.8*(time-tmin)/(tmax-tmin);
% scale the amplitude values between -0.5 and 0.5, offset should not be removed
dat = dat ./ (2*amax);
for row=1:info.nrows
for col=1:info.ncols
chanindx = (row-1)*info.ncols + col;
if chanindx>info.nchan || ~info.chansel(chanindx)
continue
end
% scale the time values for this subplot
tim = (col-1)/info.ncols + time/info.ncols;
% scale the amplitude values for this subplot
amp = dat(chanindx,:)./info.nrows + 1 - row/(info.nrows+1);
plot(tim, amp, 'k')
end
end
% enable or disable buttons as appropriate
if info.trlop == 1
set(info.ui.prev, 'Enable', 'off');
set(info.ui.prev10, 'Enable', 'off');
else
set(info.ui.prev, 'Enable', 'on');
set(info.ui.prev10, 'Enable', 'on');
end
if info.trlop == info.ntrl
set(info.ui.next, 'Enable', 'off');
set(info.ui.next10, 'Enable', 'off');
else
set(info.ui.next, 'Enable', 'on');
set(info.ui.next10, 'Enable', 'on');
end
if info.ltrlop == info.trlop && info.trlop == info.ntrl
set(info.ui.badnext,'Enable', 'off');
set(info.ui.goodnext,'Enable', 'off');
else
set(info.ui.badnext,'Enable', 'on');
set(info.ui.goodnext,'Enable', 'on');
end
text(info.x, info.y, info.label);
title(description_trial(info));
hold off
|
github
|
philippboehmsturm/antx-master
|
wizard_base.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/wizard_base.m
| 11,678 |
utf_8
|
98f06b96b2740061c19fde46d418bc51
|
function h = wizard_gui(filename)
% This is the low level wizard function. It evaluates the matlab content
% in the workspace of the calling function. To prevent overwriting
% variables in the BASE workspace, this function should be called from a
% wrapper function. The wrapper function whoudl pause execution untill the
% wizard figure is deleted.
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: wizard_base.m 952 2010-04-21 18:29:51Z roboos $
% create a new figure
h = figure('Name','Wizard',...
'NumberTitle','off',...
'MenuBar','none',...
'KeyPressFcn', @cb_keyboard,...
'resizeFcn', @cb_resize,...
'closeRequestFcn', @cb_cancel);
% movegui(h,'center');
% set(h, 'ToolBar', 'figure');
if nargin>0
filename = which(filename);
[p, f, x] = fileparts(filename);
data = [];
data.path = p;
data.file = f;
data.ext = x;
data.current = 0;
data.script = script_parse(filename);
guidata(h, data); % attach the data to the GUI figure
else
data = [];
data.path = [];
data.file = [];
data.ext = [];
data.current = 0;
data.script = script_parse([]);
guidata(h, data); % attach the data to the GUI figure
cb_load(h);
end
cb_show(h); % show the GUI figure
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_keyboard(h, eventdata)
h = parentfig(h);
dbstack
if isequal(eventdata.Key, 'o') && isequal(eventdata.Modifier, {'control'})
cb_load(h);
elseif isequal(eventdata.Key, 's') && isequal(eventdata.Modifier, {'control'})
cb_save(h);
elseif isequal(eventdata.Key, 'e') && isequal(eventdata.Modifier, {'control'})
cb_edit(h);
elseif isequal(eventdata.Key, 'p') && isequal(eventdata.Modifier, {'control'})
cb_prev(h);
elseif isequal(eventdata.Key, 'n') && isequal(eventdata.Modifier, {'control'})
cb_next(h);
elseif isequal(eventdata.Key, 'q') && isequal(eventdata.Modifier, {'control'})
cb_cancel(h);
elseif isequal(eventdata.Key, 'x') && isequal(eventdata.Modifier, {'control'})
% FIXME this does not work
cb_done(h);
elseif isequal(eventdata.Key, 'n') && any(strcmp(eventdata.Modifier, 'shift')) && any(strcmp(eventdata.Modifier, 'control'))
% FIXME this does not always work correctly
cb_skip(h);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_show(h, eventdata)
h = parentfig(h);
data = guidata(h);
clf(h);
if data.current<1
% introduction, construct the GUI elements
ui_next = uicontrol(h, 'tag', 'ui_next', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', 'next >', 'callback', @cb_next);
ui_help = uicontrol(h, 'tag', 'ui_help', 'KeyPressFcn', @cb_keyboard, 'style', 'text', 'max', 10, 'horizontalAlignment', 'left', 'FontName', '', 'backgroundColor', get(h, 'color'));
% display the introduction text
title = cat(2, data.file, ' - introduction');
tmp = {data.script.title};
help = sprintf('%s\n', tmp{:});
help = sprintf('This wizard will help you through the following steps:\n\n%s', help);
set(ui_help, 'string', help);
set(h, 'Name', title);
elseif data.current>length(data.script)
% finalization, construct the GUI elements
ui_prev = uicontrol(h, 'tag', 'ui_prev', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', '< prev', 'callback', @cb_prev);
ui_next = uicontrol(h, 'tag', 'ui_next', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', 'finish', 'callback', @cb_done);
ui_help = uicontrol(h, 'tag', 'ui_help', 'KeyPressFcn', @cb_keyboard, 'style', 'text', 'max', 10, 'horizontalAlignment', 'left', 'FontName', '', 'backgroundColor', get(h, 'color'));
% display the finalization text
title = cat(2, data.file, ' - finish');
help = sprintf('If you click finish, the variables created by the script will be exported to the Matlab workspace\n');
set(ui_help, 'string', help);
set(h, 'Name', title);
else
% normal wizard step, construct the GUI elements
ui_prev = uicontrol(h, 'tag', 'ui_prev', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', '< prev', 'callback', @cb_prev);
ui_next = uicontrol(h, 'tag', 'ui_next', 'KeyPressFcn', @cb_keyboard, 'style', 'pushbutton', 'string', 'next >', 'callback', @cb_next);
ui_help = uicontrol(h, 'tag', 'ui_help', 'KeyPressFcn', @cb_keyboard, 'style', 'text', 'max', 10, 'horizontalAlignment', 'left', 'FontName', '', 'backgroundColor', get(h, 'color'));
ui_code = uicontrol(h, 'tag', 'ui_code', 'KeyPressFcn', @cb_keyboard, 'style', 'edit', 'max', 10, 'horizontalAlignment', 'left', 'FontName', 'Courier', 'backgroundColor', 'white');
% display the current wizard content
help = data.script(data.current).help;
code = data.script(data.current).code;
title = cat(2, data.file, ' - ', data.script(data.current).title);
set(ui_help, 'string', help);
set(ui_code, 'string', code);
set(h, 'Name', title);
end
cb_resize(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_resize(h, eventdata)
h = parentfig(h);
ui_prev = findobj(h, 'tag', 'ui_prev');
ui_next = findobj(h, 'tag', 'ui_next');
ui_help = findobj(h, 'tag', 'ui_help');
ui_code = findobj(h, 'tag', 'ui_code');
siz = get(h, 'position');
x = siz(3);
y = siz(4);
w = (y-40-20)/2;
if ~isempty(ui_prev)
set(ui_prev, 'position', [x-150 10 60 20]);
end
if ~isempty(ui_next)
set(ui_next, 'position', [x-080 10 60 20]);
end
if ~isempty(ui_code) && ~isempty(ui_help)
set(ui_code, 'position', [10 40 x-20 w]);
set(ui_help, 'position', [10 50+w x-20 w]);
else
set(ui_help, 'position', [10 40 x-20 y-50]);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_prev(h, eventdata)
h = parentfig(h);
cb_disable(h);
data = guidata(h);
if data.current>0
data.current = data.current - 1;
end
guidata(h, data);
cb_show(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_next(h, eventdata)
h = parentfig(h);
cb_disable(h);
data = guidata(h);
if data.current>0
title = cat(2, data.file, ' - busy');
set(h, 'Name', title);
ui_code = findobj(h, 'tag', 'ui_code');
code = get(ui_code, 'string');
try
for i=1:size(code,1)
evalin('caller', code(i,:));
end
catch
lasterr;
end
data.script(data.current).code = code;
end
data.current = data.current+1;
guidata(h, data);
cb_show(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_skip(h, eventdata)
h = parentfig(h);
cb_disable(h);
data = guidata(h);
data.current = data.current+1;
guidata(h, data);
cb_show(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_disable(h, eventdata)
h = parentfig(h);
ui_prev = findobj(h, 'tag', 'ui_prev');
ui_next = findobj(h, 'tag', 'ui_next');
ui_help = findobj(h, 'tag', 'ui_help');
ui_code = findobj(h, 'tag', 'ui_code');
set(ui_prev, 'Enable', 'off');
set(ui_next, 'Enable', 'off');
set(ui_help, 'Enable', 'off');
set(ui_code, 'Enable', 'off');
drawnow
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_enable(h, eventdata)
h = parentfig(h);
ui_prev = findobj(h, 'tag', 'ui_prev');
ui_next = findobj(h, 'tag', 'ui_next');
ui_help = findobj(h, 'tag', 'ui_help');
ui_code = findobj(h, 'tag', 'ui_code');
set(ui_prev, 'Enable', 'on');
set(ui_next, 'Enable', 'on');
set(ui_help, 'Enable', 'on');
set(ui_code, 'Enable', 'on');
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_edit(h, eventdata)
h = parentfig(h);
data = guidata(h);
filename = fullfile(data.path, [data.file data.ext]);
edit(filename);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_load(h, eventdata)
h = parentfig(h);
cb_disable(h);
[f, p] = uigetfile('*.m', 'Load script from an M-file');
if ~isequal(f,0)
data = guidata(h);
filename = fullfile(p, f);
[p, f, x] = fileparts(filename);
str = script_parse(filename);
data.script = str;
data.current = 0;
data.path = p;
data.file = f;
data.ext = x;
guidata(h, data);
cb_show(h);
end
cb_enable(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_save(h, eventdata)
cb_disable(h);
data = guidata(h);
filename = fullfile(data.path, [data.file data.ext]);
[f, p] = uiputfile('*.m', 'Save script to an M-file', filename);
if ~isequal(f,0)
filename = fullfile(p, f);
[p, f, x] = fileparts(filename);
fid = fopen(filename, 'wt');
script = data.script;
for k=1:length(script)
fprintf(fid, '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n');
for i=1:size(script(k).help, 1)
fprintf(fid, '%% %s\n', deblank(script(k).help(i,:)));
end
for i=1:size(script(k).code, 1)
fprintf(fid, '%s\n', deblank(script(k).code(i,:)));
end
end
fclose(fid);
data.path = p;
data.file = f;
data.ext = x;
guidata(h, data);
cb_show(h);
end
cb_enable(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_done(h, eventdata)
h = parentfig(h);
cb_disable(h);
assignin('caller', 'wizard_ok', 1);
delete(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function cb_cancel(h, eventdata)
h = parentfig(h);
cb_disable(h);
assignin('caller', 'wizard_ok', 0);
delete(h);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function script = script_parse(filename)
if isempty(filename)
script.title = '';
script.help = '';
script.code = '';
return
end
fid = fopen(filename);
str = {};
while ~feof(fid)
str{end+1} = fgetl(fid);
end
str = str(:);
fclose(fid);
i = 1; % line number
k = 1; % block number
script = [];
while i<=length(str)
script(k).title = {};
script(k).help = {};
script(k).code = {};
while i<=length(str) && ~isempty(regexp(str{i}, '^%%%%', 'once'))
% skip the seperator lines
i = i+1;
end
while i<=length(str) && ~isempty(regexp(str{i}, '^%', 'once'))
script(k).help{end+1} = str{i}(2:end);
i = i+1;
end
while i<=length(str) && isempty(regexp(str{i}, '^%%%%', 'once'))
script(k).code{end+1} = str{i};
i = i+1;
end
k = k+1;
end
sel = false(size(script));
for k=1:length(script)
sel(k) = isempty(script(k).help) && isempty(script(k).code);
if length(script(k).help)>0
script(k).title = char(script(k).help{1});
else
script(k).title = '<unknown>';
end
script(k).help = char(script(k).help(:));
script(k).code = char(script(k).code(:));
end
script(sel) = [];
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function h = parentfig(h)
while get(h, 'parent')
h = get(h, 'parent');
end
return
|
github
|
philippboehmsturm/antx-master
|
spikesort.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/spikesort.m
| 5,888 |
utf_8
|
5c6df4c516e14b804e816e99bc002149
|
function [numA, numB, indA, indB] = spikesort(numA, numB, varargin);
% SPIKESORT uses a variation on the cocktail sort algorithm in combination
% with a city block distance to achieve N-D trial pairing between spike
% counts. The sorting is not guaranteed to result in the optimal pairing. A
% linear pre-sorting algorithm is used to create good initial starting
% positions.
%
% The goal of this function is to achieve optimal trial-pairing prior to
% stratifying the spike numbers in two datasets by random removal of some
% spikes in the trial and channel with the largest numnber of spikes.
% Pre-sorting based on the city-block distance between the spike count
% ensures that as few spikes as possible are lost.
%
% Use as
% [srtA, srtB, indA, indB] = spikesort(numA, numB, ...)
%
% Optional arguments should be specified as key-value pairs and can include
% 'presort' number representing the column, 'rowwise' or 'global'
%
% Example
% numA = reshape(randperm(100*3), 100, 3);
% numB = reshape(randperm(100*3), 100, 3);
% [srtA, srtB, indA, indB] = spikesort(numA, numB);
% % check that the order is correct, the following should be zero
% numA(indA,:) - srtA
% numB(indB,:) - srtB
%
% See also COCKTAILSORT
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: spikesort.m 952 2010-04-21 18:29:51Z roboos $
% use global flag for debugging
global fb
if isempty(fb)
fb = 0;
end
% get the options
presort = keyval('presort', varargin);
if any(size(numA)~=size(numB))
error('input dimensions should be the same');
end
bottom = 1;
top = size(numA,1);
swapped = true;
dist = zeros(1,top); % this will hold the distance between the trials in each pair
distswap = zeros(1,2); % this will hold the distance for two trials after swapping
% this is to keep track of the row-ordering during sorting
sel = 1:size(numA,2);
numA(:,end+1) = 1:top;
numB(:,end+1) = 1:top;
% compute the initial distance between the trial pairs using city block distance metric
for i=1:top
dist(i) = sum(abs(numA(i,sel)-numB(i,sel)));
end
if fb
fprintf('initial cost = %d\n', sum(dist));
end
if isnumeric(presort)
% start by pre-sorting on the first column only
[dum, indA] = sort(numA(:,presort));
[dum, indB] = sort(numB(:,presort));
numA = numA(indA,:);
numB = numB(indB,:);
elseif strcmp(presort, 'rowwise')
full = cityblock(numA(:,sel), numB(:,sel));
link = zeros(1,top);
for i=1:top
d = full(i,:);
d(link(1:(i-1))) = inf;
[m, ind] = min(d);
link(i) = ind;
end
indA = 1:top;
indB = link;
numB = numB(link,:);
elseif strcmp(presort, 'global')
full = cityblock(numA(:,sel), numB(:,sel));
link = zeros(1,top);
while ~all(link)
[m, i] = min(full(:));
[j, k] = ind2sub(size(full), i);
full(j,:) = inf;
full(:,k) = inf;
link(j) = k;
end
indA = 1:top;
indB = link;
numB = numB(link,:);
end
% compute the initial distance between the trial pairs
% using city block distance metric
for i=1:top
dist(i) = sum(abs(numA(i,sel)-numB(i,sel)));
end
if fb
fprintf('cost after pre-sort = %d\n', sum(dist));
end
while swapped
swapped = false;
for i=bottom:(top-1)
% compute the distances between the trials after swapping
% using city block distance metric
distswap(1) = sum(abs(numA(i,sel)-numB(i+1,sel)));
distswap(2) = sum(abs(numA(i+1,sel)-numB(i,sel)));
costNow = sum(dist([i i+1]));
costSwp = sum(distswap);
if costNow>costSwp % test whether the two elements are in the correct order
numB([i i+1], :) = numB([i+1 i], :); % let the two elements change places
dist([i i+1]) = distswap; % update the distance vector
swapped = true;
end
end
% decreases `top` because the element with the largest value in the unsorted
% part of the list is now on the position top
top = top - 1;
for i=top:-1:(bottom+1)
% compute the distances between the trials after swapping
% using city block distance metric
distswap(1) = sum(abs(numA(i,sel)-numB(i-1,sel)));
distswap(2) = sum(abs(numA(i-1,sel)-numB(i,sel)));
costNow = sum(dist([i i-1]));
costSwp = sum(distswap);
if costNow>costSwp
numB([i i-1], :) = numB([i-1 i], :); % let the two elements change places
dist([i i-1]) = distswap; % update the distance vector
swapped = true;
end
end
% increases `bottom` because the element with the smallest value in the unsorted
% part of the list is now on the position bottom
bottom = bottom + 1;
end % while swapped
if fb
fprintf('final cost = %d\n', sum(dist));
end
indA = numA(:,end);
numA = numA(:,sel);
indB = numB(:,end);
numB = numB(:,sel);
end % function spikesort
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function d = cityblock(a, b)
d = zeros(size(a,1), size(b,1));
for i=1:size(a,1)
for j=1:size(b,1)
d(i,j) = sum(abs(a(i,:)-b(j,:)));
end
end
end % function cityblock
|
github
|
philippboehmsturm/antx-master
|
nansum.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nansum.m
| 2,076 |
utf_8
|
d6579c8dc9f4712aa24dfce348a7bd56
|
% nansum() - Take the sum, not considering NaN values
%
% Usage: same as sum()
% Author: Arnaud Delorme, CNL / Salk Institute, 16 Oct 2002
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nansum.m 2885 2011-02-16 09:41:58Z roboos $
function out = nansum(in, dim)
if nargin < 1
help nansum;
return;
end;
if nargin < 2
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end;
end;
tmpin = in;
tmpin(find(isnan(in(:)))) = 0;
out = sum(tmpin, dim);
|
github
|
philippboehmsturm/antx-master
|
shiftpredict.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/shiftpredict.m
| 8,737 |
utf_8
|
e5898e2a69f8ec80039bf23508a498bc
|
function [prb, cohobs, mcohrnd] = shiftpredict(cfg, dat, datindx, refindx, trltapcnt);
% SHIFTPREDICT implements a shift-predictor for testing significance
% of coherence within a single condition. This function is a subfunction
% for SOURCESTATISTICS_SHIFTPREDICT and FREQSTATISTICS_SHIFTPREDICT.
%
% cfg.method
% cfg.numrandomization
% cfg.method
% cfg.method
% cfg.loopdim
% cfg.feedback
% cfg.method
% cfg.loopdim
% cfg.correctm
% cfg.tail
% TODO this function should be reimplemented as statfun_shiftpredict for the general statistics framework
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: shiftpredict.m 952 2010-04-21 18:29:51Z roboos $
nsgn = size(dat,1);
ntap = size(dat,2); % total number of tapers over all trials
nfrq = size(dat,3);
if nargin<4
% assume that each trial consists of a single taper only
ntrl = size(dat,2);
trltapcnt = ones(1,ntrl);
fprintf('assuming one taper per trial\n');
else
% each trial contains multiple tapers
ntrl = length(trltapcnt);
trltapcnt = trltapcnt(:)';
fprintf('number of tapers varies from %d to %d\n', min(trltapcnt), max(trltapcnt));
end
% allocate memory to hold the probabilities
if version('-release')>=14
prb_pos = zeros(length(refindx),length(datindx),nfrq, 'single');
prb_neg = zeros(length(refindx),length(datindx),nfrq, 'single');
else
prb_pos = zeros(length(refindx),length(datindx),nfrq);
prb_neg = zeros(length(refindx),length(datindx),nfrq);
end
% compute the power per taper, per trial, and in total
pow_tap = (abs(dat).^2);
pow_trl = zeros(nsgn,ntrl,nfrq);
for i=1:ntrl
% this is the taper selection if the number of tapers per trial is different
tapbeg = 1 + sum([0 trltapcnt(1:(i-1))]);
tapend = sum([0 trltapcnt(1:(i ))]);
% this would be the taper selection if the number of tapers per trial is identical
% tapbeg = 1 + (i-1)*ntap;
% tapend = (i )*ntap;
% average the power per trial over the tapers in that trial
pow_trl(:,i,:) = mean(pow_tap(:,tapbeg:tapend,:),2);
end
pow_tot = reshape(mean(pow_trl,2), nsgn, nfrq);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% normalise the data, also see the COMPUTECOH subfunction
switch cfg.method
case {'abscoh', 'imagcoh', 'absimagcoh', 'atanh', 'atanh_randphase'}
% normalise, so that the complex conjugate multiplication immediately results in coherence
if ~all(trltapcnt==trltapcnt(1))
error('all trials should have the same number of tapers');
end
for i=1:nsgn
for k=1:nfrq
dat(i,:,k) = dat(i,:,k) ./ sqrt(pow_tot(i,k)*ntrl*trltapcnt(1));
end
end
case {'amplcorr', 'absamplcorr'}
% normalize so that the multiplication immediately results in correlation
% this uses the amplitude, which is the sqrt of the power per trial
dat = sqrt(pow_trl);
% each signal should have zero mean
fa = reshape(mean(dat,2), nsgn, nfrq); % mean over trials
for i=1:ntrl
dat(:,i,:) = (dat(:,i,:) - fa);
end
% each signal should have unit variance
fs = reshape(sqrt(sum(dat.^2,2)/ntrl), nsgn, nfrq); % standard deviation over trials
for i=1:ntrl
dat(:,i,:) = dat(:,i,:)./fs;
end
% also normalize for the number of trials
dat = dat./sqrt(ntrl);
otherwise
error('unknown method for shift-predictor')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the random shuffling index vectors
nrnd = cfg.numrandomization;
randsel = [];
switch cfg.method
case {'abscoh', 'imagcoh', 'absimagcoh', 'atanh'}
for i=1:nrnd
% the number of tapers is identical for each trial
randsel(i,:) = randblockshift(1:sum(trltapcnt), trltapcnt(1));
end
case {'amplcorr', 'absamplcorr'}
for i=1:nrnd
randsel(i,:) = randperm(ntrl);
end
case {'atanh_randphase'},
for i=1:nrnd
rndphs = exp(j.*2.*pi.*rand(length(unique(cfg.origtrl))));
randsel(i,:) = rndphs(cfg.origtrl);
end
end
% select the subset of reference signals
if all(refindx(:)'==1:size(dat,1))
% only make a shallow copy to save memory
datref = dat;
else
% make a deep copy of the selected data
datref = dat(refindx,:,:);
end
% select the subset of target signals
if all(datindx(:)'==1:size(dat,1))
% only make a shallow copy to save memory
dat = dat;
else
% make a deep copy of the selected data
dat = dat(datindx,:,:);
end
% compute the observed coherence
cohobs = computecoh(datref, dat, cfg.method, cfg.loopdim);
mcohrnd = zeros(size(cohobs));
progress('init', cfg.feedback, 'Computing shift-predicted coherence');
for i=1:nrnd
progress(i/nrnd, 'Computing shift-predicted coherence %d/%d\n', i, nrnd);
% randomize the reference signal and re-compute coherence
if all(isreal(randsel(i,:))),
datrnd = datref(:,randsel(i,:),:);
else
datrnd = datref.*conj(repmat(randsel(i,:), [size(datref,1) 1 size(datref,3)]));
end
cohrnd = computecoh(datrnd, dat, cfg.method, cfg.loopdim);
mcohrnd = cohrnd + mcohrnd;
% compare the observed coherence with the randomized one
if strcmp(cfg.correctm, 'yes')
prb_pos = prb_pos + (cohobs<max(cohrnd(:)));
prb_neg = prb_neg + (cohobs>min(cohrnd(:)));
else
prb_pos = prb_pos + (cohobs<cohrnd);
prb_neg = prb_neg + (cohobs>cohrnd);
end
end
progress('close');
mcohrnd = mcohrnd./nrnd;
if cfg.tail==1
clear prb_neg % not needed any more, free some memory
prb = prb_pos./nrnd;
elseif cfg.tail==-1
clear prb_pos % not needed any more, free some memory
prb = prb_neg./nrnd;
else
prb_neg = prb_neg./nrnd;
prb_pos = prb_pos./nrnd;
% for each observation select the tail that corresponds with the lowest probability
prb = min(prb_neg, prb_pos);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% this assumes that the data is properly normalised
% and assumes that all trials have the same number of tapers
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function coh = computecoh(datref, dat, method, loopdim)
nref = size(datref,1);
nsgn = size(dat,1);
nfrq = size(dat,3);
coh = zeros(nref,nsgn,nfrq);
switch loopdim
case 3
% for each frequency, simultaneously compute coherence between all reference and target signals
for i=1:nfrq
switch method
case 'abscoh'
coh(:,:,i) = abs( datref(:,:,i) * dat(:,:,i)');
case 'imagcoh'
coh(:,:,i) = imag(datref(:,:,i) * dat(:,:,i)');
case 'absimagcoh'
coh(:,:,i) = abs(imag(datref(:,:,i) * dat(:,:,i)'));
case {'atanh' 'atanh_randphase'}
coh(:,:,i) = atanh(abs(datref(:,:,i)* dat(:,:,i)'));
case 'amplcorr'
coh(:,:,i) = datref(:,:,i) * dat(:,:,i)';
case 'absamplcorr'
coh(:,:,i) = abs( datref(:,:,i) * dat(:,:,i)');
otherwise
error('unsupported method');
end
end
case 1
% for each reference and target signal, simultaneously compute coherence over all frequencies
for i=1:nref
for k=1:nsgn
switch method
case 'abscoh'
coh(i,k,:) = abs( sum(datref(i,:,:) .* conj(dat(k,:,:)), 2));
case 'imagcoh'
coh(i,k,:) = imag(sum(datref(i,:,:) .* conj(dat(k,:,:)), 2));
case 'absimagcoh'
coh(i,k,:) = abs(imag(sum(datref(i,:,:) .* conj(dat(k,:,:)), 2)));
case {'atanh' 'atanh_randphase'}
coh(i,k,:) = atanh(abs(sum(datref(i,:,:).* conj(dat(k,:,:)), 2)));
case 'amplcorr'
coh(i,k,:) = sum(datref(i,:,:) .* conj(dat(k,:,:)), 2);
case 'absamplcorr'
coh(i,k,:) = abs( sum(datref(i,:,:) .* conj(dat(k,:,:)), 2));
otherwise
error('unsupported method');
end
end
end
otherwise
error('unsupported loopdim');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that shuffles in blocks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [out] = randblockshift(n, k);
n = n(:);
nbin = length(n)/k;
n = reshape(n, [k nbin]);
n = n(:,randperm(nbin));
out = n(:);
|
github
|
philippboehmsturm/antx-master
|
postpad.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/postpad.m
| 2,013 |
utf_8
|
2c9539d77ff0f85c9f89108f4dc811e0
|
% Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2005,
% 2006, 2007, 2008, 2009 John W. Eaton
%
% This file is part of Octave.
%
% Octave is free software; you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 3 of the License, or (at
% your option) any later version.
%
% Octave is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Octave; see the file COPYING. If not, see
% <http://www.gnu.org/licenses/>.
% -*- texinfo -*-
% @deftypefn {Function File} {} postpad (@var{x}, @var{l}, @var{c})
% @deftypefnx {Function File} {} postpad (@var{x}, @var{l}, @var{c}, @var{dim})
% @seealso{prepad, resize}
% @end deftypefn
% Author: Tony Richardson <[email protected]>
% Created: June 1994
function y = postpad (x, l, c, dim)
if nargin < 2 || nargin > 4
%print_usage ();
error('wrong number of input arguments, should be between 2 and 4');
end
if nargin < 3 || isempty(c)
c = 0;
else
if ~isscalar(c)
error ('postpad: third argument must be empty or a scalar');
end
end
nd = ndims(x);
sz = size(x);
if nargin < 4
% Find the first non-singleton dimension
dim = 1;
while dim < nd+1 && sz(dim)==1
dim = dim + 1;
end
if dim > nd
dim = 1;
elseif ~(isscalar(dim) && dim == round(dim)) && dim > 0 && dim< nd+1
error('postpad: dim must be an integer and valid dimension');
end
end
if ~isscalar(l) || l<0
error ('second argument must be a positive scalar');
end
if dim > nd
sz(nd+1:dim) = 1;
end
d = sz(dim);
if d >= l
idx = cell(1,nd);
for i = 1:nd
idx{i} = 1:sz(i);
end
idx{dim} = 1:l;
y = x(idx{:});
else
sz(dim) = l-d;
y = cat(dim, x, c * ones(sz));
end
|
github
|
philippboehmsturm/antx-master
|
statistics_wrapper.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/statistics_wrapper.m
| 23,511 |
utf_8
|
dcc5a9eab9191a3b0e10008f11254e8d
|
function [stat, cfg] = statistics_wrapper(cfg, varargin)
% STATISTICS_WRAPPER performs the selection of the biological data for
% timelock, frequency or source data and sets up the design vector or
% matrix.
%
% The specific configuration options for selecting timelock, frequency
% of source data are described in TIMELOCKSTATISTICS, FREQSTATISTICS and
% SOURCESTATISTICS, respectively.
%
% After selecting the data, control is passed on to a data-independent
% statistical subfunction that computes test statistics plus their associated
% significance probabilities and critical values under some null-hypothesis. The statistical
% subfunction that is called is STATISTICS_xxx, where cfg.method='xxx'. At
% this moment, we have implemented two statistical subfunctions:
% STATISTICS_ANALYTIC, which calculates analytic significance probabilities and critical
% values (exact or asymptotic), and STATISTICS_MONTECARLO, which calculates
% Monte-Carlo approximations of the significance probabilities and critical values.
%
% The specific configuration options for the statistical test are
% described in STATISTICS_xxx.
% This function depends on PREPARE_TIMEFREQ_DATA which has the following options:
% cfg.avgoverchan
% cfg.avgoverfreq
% cfg.avgovertime
% cfg.channel
% cfg.channelcmb
% cfg.datarepresentation (set in STATISTICS_WRAPPER cfg.datarepresentation = 'concatenated')
% cfg.frequency
% cfg.latency
% cfg.precision
% cfg.previous (set in STATISTICS_WRAPPER cfg.previous = [])
% cfg.version (id and name set in STATISTICS_WRAPPER)
% Copyright (C) 2005-2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: statistics_wrapper.m 3834 2011-07-12 10:03:54Z jorhor $
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'approach', 'method'});
cfg = ft_checkconfig(cfg, 'required', {'method'});
cfg = ft_checkconfig(cfg, 'forbidden', {'transform'});
% set the defaults
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if ~isfield(cfg, 'latency'), cfg.latency = 'all'; end
if ~isfield(cfg, 'frequency'), cfg.frequency = 'all'; end
if ~isfield(cfg, 'roi'), cfg.roi = []; end
if ~isfield(cfg, 'avgoverchan'), cfg.avgoverchan = 'no'; end
if ~isfield(cfg, 'avgovertime'), cfg.avgovertime = 'no'; end
if ~isfield(cfg, 'avgoverfreq'), cfg.avgoverfreq = 'no'; end
if ~isfield(cfg, 'avgoverroi'), cfg.avgoverroi = 'no'; end
% determine the type of the input and hence the output data
if ~exist('OCTAVE_VERSION')
[s, i] = dbstack;
if length(s)>1
[caller_path, caller_name, caller_ext] = fileparts(s(2).name);
else
caller_path = '';
caller_name = '';
caller_ext = '';
end
% evalin('caller', 'mfilename') does not work for Matlab 6.1 and 6.5
istimelock = strcmp(caller_name,'ft_timelockstatistics');
isfreq = strcmp(caller_name,'ft_freqstatistics');
issource = strcmp(caller_name,'ft_sourcestatistics');
else
% cannot determine the calling function in Octave, try looking at the
% data instead
istimelock = isfield(varargin{1},'time') && ~isfield(varargin{1},'freq') && isfield(varargin{1},'avg');
isfreq = isfield(varargin{1},'time') && isfield(varargin{1},'freq');
issource = isfield(varargin{1},'pos') || isfield(varargin{1},'transform');
end
if (istimelock+isfreq+issource)~=1
error('Could not determine the type of the input data');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect the biological data (the dependent parameter)
% and the experimental design (the independent parameter)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if issource
% test that all source inputs have the same dimensions and are spatially aligned
for i=2:length(varargin)
if isfield(varargin{1}, 'dim') && (length(varargin{i}.dim)~=length(varargin{1}.dim) || ~all(varargin{i}.dim==varargin{1}.dim))
error('dimensions of the source reconstructions do not match, use NORMALISEVOLUME first');
end
if isfield(varargin{1}, 'pos') && (length(varargin{i}.pos(:))~=length(varargin{1}.pos(:)) || ~all(varargin{i}.pos(:)==varargin{1}.pos(:)))
error('grid locations of the source reconstructions do not match, use NORMALISEVOLUME first');
end
if isfield(varargin{1}, 'transform') && ~all(varargin{i}.transform(:)==varargin{1}.transform(:))
error('spatial coordinates of the source reconstructions do not match, use NORMALISEVOLUME first');
end
end
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
if ~isempty(cfg.roi)
if ischar(cfg.roi)
cfg.roi = {cfg.roi};
end
% the source representation should specify the position of each voxel in MNI coordinates
x = varargin{1}.pos(:,1); % this is from left (negative) to right (positive)
% determine the mask to restrict the subsequent analysis
% process each of the ROIs, and optionally also left and/or right seperately
roimask = {};
roilabel = {};
for i=1:length(cfg.roi)
tmpcfg.roi = cfg.roi{i};
tmpcfg.inputcoord = cfg.inputcoord;
tmpcfg.atlas = cfg.atlas;
tmp = volumelookup(tmpcfg, varargin{1});
if strcmp(cfg.avgoverroi, 'no') && ~isfield(cfg, 'hemisphere')
% no reason to deal with seperated left/right hemispheres
cfg.hemisphere = 'combined';
end
if strcmp(cfg.hemisphere, 'left')
tmp(x>=0) = 0; % exclude the right hemisphere
roimask{end+1} = tmp;
roilabel{end+1} = ['Left ' cfg.roi{i}];
elseif strcmp(cfg.hemisphere, 'right')
tmp(x<=0) = 0; % exclude the right hemisphere
roimask{end+1} = tmp;
roilabel{end+1} = ['Right ' cfg.roi{i}];
elseif strcmp(cfg.hemisphere, 'both')
% deal seperately with the voxels on the left and right side of the brain
tmpL = tmp; tmpL(x>=0) = 0; % exclude the right hemisphere
tmpR = tmp; tmpR(x<=0) = 0; % exclude the left hemisphere
roimask{end+1} = tmpL;
roimask{end+1} = tmpR;
roilabel{end+1} = ['Left ' cfg.roi{i}];
roilabel{end+1} = ['Right ' cfg.roi{i}];
clear tmpL tmpR
elseif strcmp(cfg.hemisphere, 'combined')
% all voxels of the ROI can be combined
roimask{end+1} = tmp;
roilabel{end+1} = cfg.roi{i};
else
error('incorrect specification of cfg.hemisphere');
end
clear tmp
end % for each roi
% note that avgoverroi=yes is implemented differently at a later stage
% avgoverroi=no is implemented using the inside/outside mask
if strcmp(cfg.avgoverroi, 'no')
for i=2:length(roimask)
% combine them all in the first mask
roimask{1} = roimask{1} | roimask{i};
end
roimask = roimask{1}; % only keep the combined mask
% the source representation should have an inside and outside vector containing indices
sel = find(~roimask);
varargin{1}.inside = setdiff(varargin{1}.inside, sel);
varargin{1}.outside = union(varargin{1}.outside, sel);
clear roimask roilabel
end % if avgoverroi=no
end
% get the source parameter on which the statistic should be evaluated
if strcmp(cfg.parameter, 'mom') && isfield(varargin{1}, 'avg') && isfield(varargin{1}.avg, 'csdlabel') && isfield(varargin{1}, 'cumtapcnt')
[dat, cfg] = get_source_pcc_mom(cfg, varargin{:});
elseif strcmp(cfg.parameter, 'mom') && isfield(varargin{1}, 'avg') && ~isfield(varargin{1}.avg, 'csdlabel')
[dat, cfg] = get_source_lcmv_mom(cfg, varargin{:});
elseif isfield(varargin{1}, 'trial')
[dat, cfg] = get_source_trial(cfg, varargin{:});
else
[dat, cfg] = get_source_avg(cfg, varargin{:});
end
cfg.dimord = 'voxel';
% note that avgoverroi=no is implemented differently at an earlier stage
if strcmp(cfg.avgoverroi, 'yes')
tmp = zeros(length(roimask), size(dat,2));
for i=1:length(roimask)
% the data only reflects those points that are inside the brain,
% the atlas-based mask reflects points inside and outside the brain
roi = roimask{i}(varargin{1}.inside);
tmp(i,:) = mean(dat(roi,:), 1);
end
% replace the original data with the average over each ROI
dat = tmp;
clear tmp roi roimask
% remember the ROIs
cfg.dimord = 'roi';
end
elseif isfreq || istimelock
% get the ERF/TFR data by means of PREPARE_TIMEFREQ_DATA
cfg.datarepresentation = 'concatenated';
[cfg, data] = prepare_timefreq_data(cfg, varargin{:});
cfg = rmfield(cfg, 'datarepresentation');
dim = size(data.biol);
if length(dim)<3
% seems to be singleton frequency and time dimension
dim(3)=1;
dim(4)=1;
elseif length(dim)<4
% seems to be singleton time dimension
dim(4)=1;
end
cfg.dimord = 'chan_freq_time';
% the dimension of the original data (excluding the replication dimension) has to be known for clustering
cfg.dim = dim(2:end);
% all dimensions have to be concatenated except the replication dimension and the data has to be transposed
dat = transpose(reshape(data.biol, dim(1), prod(dim(2:end))));
% remove to save some memory
data.biol = [];
% add gradiometer/electrode information to the configuration
if ~isfield(cfg,'neighbours') && isfield(cfg, 'correctm') && strcmp(cfg.correctm, 'cluster')
error('You need to specify a neighbourstructure');
%cfg.neighbours = ft_neighbourselection(cfg,varargin{1});
end
end
% get the design from the information in cfg and data.
if ~isfield(cfg,'design')
warning('Please think about how you would create cfg.design. Soon the call to prepare_design will be deprecated')
cfg.design = data.design;
[cfg] = prepare_design(cfg);
end
if size(cfg.design,2)~=size(dat,2)
cfg.design = transpose(cfg.design);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute the statistic, using the data-independent statistical subfunction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% determine the function handle to the intermediate-level statistics function
if exist(['statistics_' cfg.method])
statmethod = str2func(['statistics_' cfg.method]);
else
error(sprintf('could not find the corresponding function for cfg.method="%s"\n', cfg.method));
end
fprintf('using "%s" for the statistical testing\n', func2str(statmethod));
% check that the design completely describes the data
if size(dat,2) ~= size(cfg.design,2)
error('the size of the design matrix does not match the number of observations in the data');
end
% determine the number of output arguments
try
% the nargout function in Matlab 6.5 and older does not work on function handles
num = nargout(statmethod);
catch
num = 1;
end
design=cfg.design;
cfg=rmfield(cfg,'design'); % to not confuse lower level functions with both cfg.design and design input
% perform the statistical test
if strcmp(func2str(statmethod),'statistics_montecarlo') % because statistics_montecarlo (or to be precise, clusterstat) requires to know whether it is getting source data,
% the following (ugly) work around is necessary
if num>1
[stat, cfg] = statmethod(cfg, dat, design, 'issource',issource);
else
[stat] = statmethod(cfg, dat, design, 'issource', issource);
end
else
if num>1
[stat, cfg] = statmethod(cfg, dat, design);
else
[stat] = statmethod(cfg, dat, design);
end
end
if isstruct(stat)
% the statistical output contains multiple elements, e.g. F-value, beta-weights and probability
statfield = fieldnames(stat);
else
% only the probability was returned as a single matrix, reformat into a structure
dum = stat; stat = []; % this prevents a Matlab warning that appears from release 7.0.4 onwards
stat.prob = dum;
statfield = fieldnames(stat);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% add descriptive information to the output and rehape into the input format
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if issource
if ~isfield(varargin{1},'dim') % FIX ME; this is added temporarily (20110427) to cope with ft_sourceanalysis output not having a dim field since r3273
varargin{1}.dim = [Nvoxel 1];
end
if isempty(cfg.roi) || strcmp(cfg.avgoverroi, 'no')
% remember the definition of the volume, assume that they are identical for all input arguments
try stat.dim = varargin{1}.dim; end
try stat.xgrid = varargin{1}.xgrid; end
try stat.ygrid = varargin{1}.ygrid; end
try stat.zgrid = varargin{1}.zgrid; end
try stat.inside = varargin{1}.inside; end
try stat.outside = varargin{1}.outside; end
try stat.pos = varargin{1}.pos; end
try stat.transform = varargin{1}.transform; end
else
stat.inside = 1:length(roilabel);
stat.outside = [];
stat.label = roilabel(:);
end
for i=1:length(statfield)
tmp = getsubfield(stat, statfield{i});
if isfield(varargin{1}, 'inside') && numel(tmp)==length(varargin{1}.inside)
% the statistic was only computed on voxels that are inside the brain
% sort the inside and outside voxels back into their original place
if islogical(tmp)
tmp(varargin{1}.inside) = tmp;
tmp(varargin{1}.outside) = false;
else
tmp(varargin{1}.inside) = tmp;
tmp(varargin{1}.outside) = nan;
end
end
if numel(tmp)==prod(varargin{1}.dim)
% reshape the statistical volumes into the original format
stat = setsubfield(stat, statfield{i}, reshape(tmp, varargin{1}.dim));
end
end
else
haschan = isfield(data, 'label'); % this one remains relevant, even after averaging over channels
haschancmb = isfield(data, 'labelcmb'); % this one remains relevant, even after averaging over channels
hasfreq = strcmp(cfg.avgoverfreq, 'no') && ~any(isnan(data.freq));
hastime = strcmp(cfg.avgovertime, 'no') && ~any(isnan(data.time));
stat.dimord = '';
if haschan
stat.dimord = [stat.dimord 'chan_'];
stat.label = data.label;
chandim = dim(2);
elseif haschancmb
stat.dimord = [stat.dimord 'chancmb_'];
stat.labelcmb = data.labelcmb;
chandim = dim(2);
end
if hasfreq
stat.dimord = [stat.dimord 'freq_'];
stat.freq = data.freq;
freqdim = dim(3);
end
if hastime
stat.dimord = [stat.dimord 'time_'];
stat.time = data.time;
timedim = dim(4);
end
if ~isempty(stat.dimord)
% remove the last '_'
stat.dimord = stat.dimord(1:(end-1));
end
for i=1:length(statfield)
try
% reshape the fields that have the same dimension as the input data
if strcmp(stat.dimord, 'chan')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim 1]));
elseif strcmp(stat.dimord, 'chan_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim timedim]));
elseif strcmp(stat.dimord, 'chan_freq')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim]));
elseif strcmp(stat.dimord, 'chan_freq_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim timedim]));
elseif strcmp(stat.dimord, 'chancmb_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim timedim]));
elseif strcmp(stat.dimord, 'chancmb_freq')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim]));
elseif strcmp(stat.dimord, 'chancmb_freq_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [chandim freqdim timedim]));
elseif strcmp(stat.dimord, 'time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [1 timedim]));
elseif strcmp(stat.dimord, 'freq')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [1 freqdim]));
elseif strcmp(stat.dimord, 'freq_time')
stat = setfield(stat, statfield{i}, reshape(getfield(stat, statfield{i}), [freqdim timedim]));
end
end
end
end
return % statistics_wrapper main()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% data resemples PCC beamed source reconstruction, multiple trials are coded in mom
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_pcc_mom(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
Ninside = length(varargin{1}.inside);
dim = varargin{1}.dim;
for i=1:Nsource
dipsel = find(strcmp(varargin{i}.avg.csdlabel, 'scandip'));
ntrltap = sum(varargin{i}.cumtapcnt);
dat{i} = zeros(Ninside, ntrltap);
for j=1:Ninside
k = varargin{1}.inside(j);
dat{i}(j,:) = reshape(varargin{i}.avg.mom{k}(dipsel,:), 1, ntrltap);
end
end
% concatenate the data matrices of the individual input arguments
dat = cat(2, dat{:});
% remember the dimension of the source data
cfg.dim = dim;
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% data resemples LCMV beamed source reconstruction, mom contains timecourse
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_lcmv_mom(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
Ntime = length(varargin{1}.avg.mom{varargin{1}.inside(1)});
Ninside = length(varargin{1}.inside);
dim = [varargin{1}.dim Ntime];
dat = zeros(Ninside*Ntime, Nsource);
for i=1:Nsource
% collect the 4D data of this input argument
tmp = nan*zeros(Ninside, Ntime);
for j=1:Ninside
k = varargin{1}.inside(j);
tmp(j,:) = reshape(varargin{i}.avg.mom{k}, 1, dim(4));
end
dat(:,i) = tmp(:);
end
% remember the dimension of the source data
cfg.dim = dim;
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% data contains single-trial or single-subject source reconstructions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_trial(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
for i=1:Nsource
Ntrial(i) = length(varargin{i}.trial);
end
k = 1;
for i=1:Nsource
for j=1:Ntrial(i)
tmp = getsubfield(varargin{i}.trial(j), cfg.parameter);
if ~iscell(tmp),
%dim = size(tmp);
dim = [Nvoxel 1];
else
dim = [Nvoxel size(tmp{varargin{i}.inside(1)})];
end
if i==1 && j==1 && numel(tmp)~=Nvoxel,
warning('the input-data contains more entries than the number of voxels in the volume, the data will be concatenated');
dat = zeros(prod(dim), sum(Ntrial)); %FIXME this is old code should be removed
elseif i==1 && j==1 && iscell(tmp),
warning('the input-data contains more entries than the number of voxels in the volume, the data will be concatenated');
dat = zeros(Nvoxel*numel(tmp{varargin{i}.inside(1)}), sum(Ntrial));
elseif i==1 && j==1,
dat = zeros(Nvoxel, sum(Ntrial));
end
if ~iscell(tmp),
dat(:,k) = tmp(:);
else
Ninside = length(varargin{i}.inside);
%tmpvec = (varargin{i}.inside-1)*prod(size(tmp{varargin{i}.inside(1)}));
tmpvec = varargin{i}.inside;
insidevec = [];
for m = 1:numel(tmp{varargin{i}.inside(1)})
insidevec = [insidevec; tmpvec(:)+(m-1)*Nvoxel];
end
insidevec = insidevec(:)';
tmpdat = reshape(permute(cat(3,tmp{varargin{1}.inside}), [3 1 2]), [Ninside numel(tmp{varargin{1}.inside(1)})]);
dat(insidevec, k) = tmpdat(:);
end
% add original dimensionality of the data to the configuration, is required for clustering
%FIXME: this was obviously wrong, because often trial-data is one-dimensional, so no dimensional information is present
%cfg.dim = dim(2:end);
k = k+1;
end
end
if isfield(varargin{1}, 'inside')
fprintf('only selecting voxels inside the brain for statistics (%.1f%%)\n', 100*length(varargin{1}.inside)/prod(dim));
for j=prod(dim(2:end)):-1:1
dat((j-1).*dim(1) + varargin{1}.outside, :) = [];
end
end
% remember the dimension of the source data
if ~isfield(cfg, 'dim')
warning('for clustering on trial-based data you explicitly have to specify cfg.dim');
end
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for extracting the data of interest
% get the average source reconstructions, the repetitions are in multiple input arguments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat, cfg] = get_source_avg(cfg, varargin)
Nsource = length(varargin);
Nvoxel = length(varargin{1}.inside) + length(varargin{1}.outside);
dim = varargin{1}.dim;
dat = zeros(Nvoxel, Nsource);
for i=1:Nsource
tmp = getsubfield(varargin{i}, cfg.parameter);
dat(:,i) = tmp(:);
end
if isfield(varargin{1}, 'inside')
fprintf('only selecting voxels inside the brain for statistics (%.1f%%)\n', 100*length(varargin{1}.inside)/prod(varargin{1}.dim));
dat = dat(varargin{1}.inside,:);
end
% remember the dimension of the source data
cfg.dim = dim;
% remember which voxels are inside the brain
cfg.inside = varargin{1}.inside;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for creating a design matrix
% should be called in the code above, or in prepare_design
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [cfg] = get_source_design_pcc_mom(cfg, varargin)
% should be implemented
function [cfg] = get_source_design_lcmv_mom(cfg, varargin)
% should be implemented
function [cfg] = get_source_design_trial(cfg, varargin)
% should be implemented
function [cfg] = get_source_design_avg(cfg, varargin)
% should be implemented
|
github
|
philippboehmsturm/antx-master
|
arrow.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/arrow.m
| 58,199 |
utf_8
|
84edd90f9c83830a3a85aec7c3bbbc47
|
function [h,yy,zz] = arrow(varargin)
% ARROW Draw a line with an arrowhead.
%
% ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points
% should be vectors of length 2 or 3, or matrices with 2 or 3
% columns), and returns the graphics handle of the arrow(s).
%
% ARROW uses the mouse (click-drag) to create an arrow.
%
% ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW.
%
% ARROW may be called with a normal argument list or a property-based list.
% ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is
% the full normal argument list, where all but the Start and Stop
% points are optional. If you need to specify a later argument (e.g.,
% Page) but want default values of earlier ones (e.g., TipAngle),
% pass an empty matrix for the earlier ones (e.g., TipAngle=[]).
%
% ARROW('Property1',PropVal1,'Property2',PropVal2,...) creates arrows with the
% given properties, using default values for any unspecified or given as
% 'default' or NaN. Some properties used for line and patch objects are
% used in a modified fashion, others are passed directly to LINE, PATCH,
% or SET. For a detailed properties explanation, call ARROW PROPERTIES.
%
% Start The starting points. B
% Stop The end points. /|\ ^
% Length Length of the arrowhead in pixels. /|||\ |
% BaseAngle Base angle in degrees (ADE). //|||\\ L|
% TipAngle Tip angle in degrees (ABC). ///|||\\\ e|
% Width Width of the base in pixels. ////|||\\\\ n|
% Page Use hardcopy proportions. /////|D|\\\\\ g|
% CrossDir Vector || to arrowhead plane. //// ||| \\\\ t|
% NormalDir Vector out of arrowhead plane. /// ||| \\\ h|
% Ends Which end has an arrowhead. //<----->|| \\ |
% ObjectHandles Vector of handles to update. / base ||| \ V
% E angle||<-------->C
% ARROW(H,'Prop1',PropVal1,...), where H is a |||tipangle
% vector of handles to previously-created arrows |||
% and/or line objects, will update the previously- |||
% created arrows according to the current view -->|A|<-- width
% and any specified properties, and will convert
% two-point line objects to corresponding arrows. ARROW(H) will update
% the arrows if the current view has changed. Root, figure, or axes
% handles included in H are replaced by all descendant Arrow objects.
%
% A property list can follow any specified normal argument list, e.g.,
% ARROW([1 2 3],[0 0 0],36,'BaseAngle',60) creates an arrow from (1,2,3) to
% the origin, with an arrowhead of length 36 pixels and 60-degree base angle.
%
% The basic arguments or properties can generally be vectorized to create
% multiple arrows with the same call. This is done by passing a property
% with one row per arrow, or, if all arrows are to have the same property
% value, just one row may be specified.
%
% You may want to execute AXIS(AXIS) before calling ARROW so it doesn't change
% the axes on you; ARROW determines the sizes of arrow components BEFORE the
% arrow is plotted, so if ARROW changes axis limits, arrows may be malformed.
%
% This version of ARROW uses features of MATLAB 5 and is incompatible with
% earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately);
% some problems with perspective plots still exist.
% Copyright (c)1995-2002, Dr. Erik A. Johnson <[email protected]>, 11/15/02
% Revision history:
% 11/15/02 EAJ Accomodate how MATLAB 6.5 handles NaN and logicals
% 7/28/02 EAJ Tried (but failed) work-around for MATLAB 6.x / OpenGL bug
% if zero 'Width' or not double-ended
% 11/10/99 EAJ Add logical() to eliminate zero index problem in MATLAB 5.3.
% 11/10/99 EAJ Corrected warning if axis limits changed on multiple axes.
% 11/10/99 EAJ Update e-mail address.
% 2/10/99 EAJ Some documentation updating.
% 2/24/98 EAJ Fixed bug if Start~=Stop but both colinear with viewpoint.
% 8/14/97 EAJ Added workaround for MATLAB 5.1 scalar logical transpose bug.
% 7/21/97 EAJ Fixed a few misc bugs.
% 7/14/97 EAJ Make arrow([],'Prop',...) do nothing (no old handles)
% 6/23/97 EAJ MATLAB 5 compatible version, release.
% 5/27/97 EAJ Added Line Arrows back in. Corrected a few bugs.
% 5/26/97 EAJ Changed missing Start/Stop to mouse-selected arrows.
% 5/19/97 EAJ MATLAB 5 compatible version, beta.
% 4/13/97 EAJ MATLAB 5 compatible version, alpha.
% 1/31/97 EAJ Fixed bug with multiple arrows and unspecified Z coords.
% 12/05/96 EAJ Fixed one more bug with log plots and NormalDir specified
% 10/24/96 EAJ Fixed bug with log plots and NormalDir specified
% 11/13/95 EAJ Corrected handling for 'reverse' axis directions
% 10/06/95 EAJ Corrected occasional conflict with SUBPLOT
% 4/24/95 EAJ A major rewrite.
% Fall 94 EAJ Original code.
% Things to be done:
% - segment parsing, computing, and plotting into separate subfunctions
% - change computing from Xform to Camera paradigms
% + this will help especially with 3-D perspective plots
% + if the WarpToFill section works right, remove warning code
% + when perpsective works properly, remove perspective warning code
% - add cell property values and struct property name/values (like get/set)
% - get rid of NaN as the "default" data label
% + perhaps change userdata to a struct and don't include (or leave
% empty) the values specified as default; or use a cell containing
% an empty matrix for a default value
% - add functionality of GET to retrieve current values of ARROW properties
% Many thanks to Keith Rogers <[email protected]> for his many excellent
% suggestions and beta testing. Check out his shareware package MATDRAW
% (at ftp://ftp.mathworks.com/pub/contrib/v5/graphics/matdraw/) -- he has
% permission to distribute ARROW with MATDRAW.
% Permission is granted to distribute ARROW with the toolboxes for the book
% "Solving Solid Mechanics Problems with MATLAB 5", by F. Golnaraghi et al.
% (Prentice Hall, 1999).
% global variable initialization
global ARROW_PERSP_WARN ARROW_STRETCH_WARN ARROW_AXLIMITS
if isempty(ARROW_PERSP_WARN ), ARROW_PERSP_WARN =1; end;
if isempty(ARROW_STRETCH_WARN), ARROW_STRETCH_WARN=1; end;
% Handle callbacks
if (nargin>0 & ischar(varargin{1}) & strcmp(lower(varargin{1}),'callback')),
arrow_callback(varargin{2:end}); return;
end;
% Are we doing the demo?
c = sprintf('\n');
if (nargin==1 & ischar(varargin{1})),
arg1 = lower(varargin{1});
if strncmp(arg1,'prop',4), arrow_props;
elseif strncmp(arg1,'demo',4)
clf reset
demo_info = arrow_demo;
if ~strncmp(arg1,'demo2',5),
hh=arrow_demo3(demo_info);
else,
hh=arrow_demo2(demo_info);
end;
if (nargout>=1), h=hh; end;
elseif strncmp(arg1,'fixlimits',3),
arrow_fixlimits(ARROW_AXLIMITS);
ARROW_AXLIMITS=[];
elseif strncmp(arg1,'help',4),
disp(help(mfilename));
else,
error([upper(mfilename) ' got an unknown single-argument string ''' deblank(arg1) '''.']);
end;
return;
end;
% Check # of arguments
if (nargout>3), error([upper(mfilename) ' produces at most 3 output arguments.']); end;
% find first property number
firstprop = nargin+1;
for k=1:length(varargin), if ~isnumeric(varargin{k}), firstprop=k; break; end; end;
lastnumeric = firstprop-1;
% check property list
if (firstprop<=nargin),
for k=firstprop:2:nargin,
curarg = varargin{k};
if ~ischar(curarg) | sum(size(curarg)>1)>1,
error([upper(mfilename) ' requires that a property name be a single string.']);
end;
end;
if (rem(nargin-firstprop,2)~=1),
error([upper(mfilename) ' requires that the property ''' ...
varargin{nargin} ''' be paired with a property value.']);
end;
end;
% default output
if (nargout>0), h=[]; end;
if (nargout>1), yy=[]; end;
if (nargout>2), zz=[]; end;
% set values to empty matrices
start = [];
stop = [];
len = [];
baseangle = [];
tipangle = [];
wid = [];
page = [];
crossdir = [];
ends = [];
ax = [];
oldh = [];
ispatch = [];
defstart = [NaN NaN NaN];
defstop = [NaN NaN NaN];
deflen = 16;
defbaseangle = 90;
deftipangle = 16;
defwid = 0;
defpage = 0;
defcrossdir = [NaN NaN NaN];
defends = 1;
defoldh = [];
defispatch = 1;
% The 'Tag' we'll put on our arrows
ArrowTag = 'Arrow';
% check for oldstyle arguments
if (firstprop==2),
% assume arg1 is a set of handles
oldh = varargin{1}(:);
if isempty(oldh), return; end;
elseif (firstprop>9),
error([upper(mfilename) ' takes at most 8 non-property arguments.']);
elseif (firstprop>2),
s = str2mat('start','stop','len','baseangle','tipangle','wid','page','crossdir');
for k=1:firstprop-1, eval([deblank(s(k,:)) '=varargin{k};']); end;
end;
% parse property pairs
extraprops={};
for k=firstprop:2:nargin,
prop = varargin{k};
val = varargin{k+1};
prop = [lower(prop(:)') ' '];
if strncmp(prop,'start' ,5), start = val;
elseif strncmp(prop,'stop' ,4), stop = val;
elseif strncmp(prop,'len' ,3), len = val(:);
elseif strncmp(prop,'base' ,4), baseangle = val(:);
elseif strncmp(prop,'tip' ,3), tipangle = val(:);
elseif strncmp(prop,'wid' ,3), wid = val(:);
elseif strncmp(prop,'page' ,4), page = val;
elseif strncmp(prop,'cross' ,5), crossdir = val;
elseif strncmp(prop,'norm' ,4), if (ischar(val)), crossdir=val; else, crossdir=val*sqrt(-1); end;
elseif strncmp(prop,'end' ,3), ends = val;
elseif strncmp(prop,'object',6), oldh = val(:);
elseif strncmp(prop,'handle',6), oldh = val(:);
elseif strncmp(prop,'type' ,4), ispatch = val;
elseif strncmp(prop,'userd' ,5), %ignore it
else,
% make sure it is a valid patch or line property
eval('get(0,[''DefaultPatch'' varargin{k}]);err=0;','err=1;'); errstr=lasterr;
if (err), eval('get(0,[''DefaultLine'' varargin{k}]);err=0;','err=1;'); end;
if (err),
errstr(1:max(find(errstr==setstr(13)|errstr==setstr(10)))) = '';
error([upper(mfilename) ' got ' errstr]);
end;
extraprops={extraprops{:},varargin{k},val};
end;
end;
% Check if we got 'default' values
start = arrow_defcheck(start ,defstart ,'Start' );
stop = arrow_defcheck(stop ,defstop ,'Stop' );
len = arrow_defcheck(len ,deflen ,'Length' );
baseangle = arrow_defcheck(baseangle,defbaseangle,'BaseAngle' );
tipangle = arrow_defcheck(tipangle ,deftipangle ,'TipAngle' );
wid = arrow_defcheck(wid ,defwid ,'Width' );
crossdir = arrow_defcheck(crossdir ,defcrossdir ,'CrossDir' );
page = arrow_defcheck(page ,defpage ,'Page' );
ends = arrow_defcheck(ends ,defends ,'' );
oldh = arrow_defcheck(oldh ,[] ,'ObjectHandles');
ispatch = arrow_defcheck(ispatch ,defispatch ,'' );
% check transpose on arguments
[m,n]=size(start ); if any(m==[2 3])&(n==1|n>3), start = start'; end;
[m,n]=size(stop ); if any(m==[2 3])&(n==1|n>3), stop = stop'; end;
[m,n]=size(crossdir); if any(m==[2 3])&(n==1|n>3), crossdir = crossdir'; end;
% convert strings to numbers
if ~isempty(ends) & ischar(ends),
endsorig = ends;
[m,n] = size(ends);
col = lower([ends(:,1:min(3,n)) ones(m,max(0,3-n))*' ']);
ends = NaN*ones(m,1);
oo = ones(1,m);
ii=find(all(col'==['non']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*0; end;
ii=find(all(col'==['sto']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*1; end;
ii=find(all(col'==['sta']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*2; end;
ii=find(all(col'==['bot']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*3; end;
if any(isnan(ends)),
ii = min(find(isnan(ends)));
error([upper(mfilename) ' does not recognize ''' deblank(endsorig(ii,:)) ''' as a valid ''Ends'' value.']);
end;
else,
ends = ends(:);
end;
if ~isempty(ispatch) & ischar(ispatch),
col = lower(ispatch(:,1));
patchchar='p'; linechar='l'; defchar=' ';
mask = col~=patchchar & col~=linechar & col~=defchar;
if any(mask),
error([upper(mfilename) ' does not recognize ''' deblank(ispatch(min(find(mask)),:)) ''' as a valid ''Type'' value.']);
end;
ispatch = (col==patchchar)*1 + (col==linechar)*0 + (col==defchar)*defispatch;
else,
ispatch = ispatch(:);
end;
oldh = oldh(:);
% check object handles
if ~all(ishandle(oldh)), error([upper(mfilename) ' got invalid object handles.']); end;
% expand root, figure, and axes handles
if ~isempty(oldh),
ohtype = get(oldh,'Type');
mask = strcmp(ohtype,'root') | strcmp(ohtype,'figure') | strcmp(ohtype,'axes');
if any(mask),
oldh = num2cell(oldh);
for ii=find(mask)',
oldh(ii) = {findobj(oldh{ii},'Tag',ArrowTag)};
end;
oldh = cat(1,oldh{:});
if isempty(oldh), return; end; % no arrows to modify, so just leave
end;
end;
% largest argument length
[mstart,junk]=size(start); [mstop,junk]=size(stop); [mcrossdir,junk]=size(crossdir);
argsizes = [length(oldh) mstart mstop ...
length(len) length(baseangle) length(tipangle) ...
length(wid) length(page) mcrossdir length(ends) ];
args=['length(ObjectHandle) '; ...
'#rows(Start) '; ...
'#rows(Stop) '; ...
'length(Length) '; ...
'length(BaseAngle) '; ...
'length(TipAngle) '; ...
'length(Width) '; ...
'length(Page) '; ...
'#rows(CrossDir) '; ...
'#rows(Ends) '];
if (any(imag(crossdir(:))~=0)),
args(9,:) = '#rows(NormalDir) ';
end;
if isempty(oldh),
narrows = max(argsizes);
else,
narrows = length(oldh);
end;
if (narrows<=0), narrows=1; end;
% Check size of arguments
ii = find((argsizes~=0)&(argsizes~=1)&(argsizes~=narrows));
if ~isempty(ii),
s = args(ii',:);
while ((size(s,2)>1)&((abs(s(:,size(s,2)))==0)|(abs(s(:,size(s,2)))==abs(' ')))),
s = s(:,1:size(s,2)-1);
end;
s = [ones(length(ii),1)*[upper(mfilename) ' requires that '] s ...
ones(length(ii),1)*[' equal the # of arrows (' num2str(narrows) ').' c]];
s = s';
s = s(:)';
s = s(1:length(s)-1);
error(setstr(s));
end;
% check element length in Start, Stop, and CrossDir
if ~isempty(start),
[m,n] = size(start);
if (n==2),
start = [start NaN*ones(m,1)];
elseif (n~=3),
error([upper(mfilename) ' requires 2- or 3-element Start points.']);
end;
end;
if ~isempty(stop),
[m,n] = size(stop);
if (n==2),
stop = [stop NaN*ones(m,1)];
elseif (n~=3),
error([upper(mfilename) ' requires 2- or 3-element Stop points.']);
end;
end;
if ~isempty(crossdir),
[m,n] = size(crossdir);
if (n<3),
crossdir = [crossdir NaN*ones(m,3-n)];
elseif (n~=3),
if (all(imag(crossdir(:))==0)),
error([upper(mfilename) ' requires 2- or 3-element CrossDir vectors.']);
else,
error([upper(mfilename) ' requires 2- or 3-element NormalDir vectors.']);
end;
end;
end;
% fill empty arguments
if isempty(start ), start = [Inf Inf Inf]; end;
if isempty(stop ), stop = [Inf Inf Inf]; end;
if isempty(len ), len = Inf; end;
if isempty(baseangle ), baseangle = Inf; end;
if isempty(tipangle ), tipangle = Inf; end;
if isempty(wid ), wid = Inf; end;
if isempty(page ), page = Inf; end;
if isempty(crossdir ), crossdir = [Inf Inf Inf]; end;
if isempty(ends ), ends = Inf; end;
if isempty(ispatch ), ispatch = Inf; end;
% expand single-column arguments
o = ones(narrows,1);
if (size(start ,1)==1), start = o * start ; end;
if (size(stop ,1)==1), stop = o * stop ; end;
if (length(len )==1), len = o * len ; end;
if (length(baseangle )==1), baseangle = o * baseangle ; end;
if (length(tipangle )==1), tipangle = o * tipangle ; end;
if (length(wid )==1), wid = o * wid ; end;
if (length(page )==1), page = o * page ; end;
if (size(crossdir ,1)==1), crossdir = o * crossdir ; end;
if (length(ends )==1), ends = o * ends ; end;
if (length(ispatch )==1), ispatch = o * ispatch ; end;
ax = o * gca;
% if we've got handles, get the defaults from the handles
if ~isempty(oldh),
for k=1:narrows,
oh = oldh(k);
ud = get(oh,'UserData');
ax(k) = get(oh,'Parent');
ohtype = get(oh,'Type');
if strcmp(get(oh,'Tag'),ArrowTag), % if it's an arrow already
if isinf(ispatch(k)), ispatch(k)=strcmp(ohtype,'patch'); end;
% arrow UserData format: [start' stop' len base tip wid page crossdir' ends]
start0 = ud(1:3);
stop0 = ud(4:6);
if (isinf(len(k))), len(k) = ud( 7); end;
if (isinf(baseangle(k))), baseangle(k) = ud( 8); end;
if (isinf(tipangle(k))), tipangle(k) = ud( 9); end;
if (isinf(wid(k))), wid(k) = ud(10); end;
if (isinf(page(k))), page(k) = ud(11); end;
if (isinf(crossdir(k,1))), crossdir(k,1) = ud(12); end;
if (isinf(crossdir(k,2))), crossdir(k,2) = ud(13); end;
if (isinf(crossdir(k,3))), crossdir(k,3) = ud(14); end;
if (isinf(ends(k))), ends(k) = ud(15); end;
elseif strcmp(ohtype,'line')|strcmp(ohtype,'patch'), % it's a non-arrow line or patch
convLineToPatch = 1; %set to make arrow patches when converting from lines.
if isinf(ispatch(k)), ispatch(k)=convLineToPatch|strcmp(ohtype,'patch'); end;
x=get(oh,'XData'); x=x(~isnan(x(:))); if isempty(x), x=NaN; end;
y=get(oh,'YData'); y=y(~isnan(y(:))); if isempty(y), y=NaN; end;
z=get(oh,'ZData'); z=z(~isnan(z(:))); if isempty(z), z=NaN; end;
start0 = [x(1) y(1) z(1) ];
stop0 = [x(end) y(end) z(end)];
else,
error([upper(mfilename) ' cannot convert ' ohtype ' objects.']);
end;
ii=find(isinf(start(k,:))); if ~isempty(ii), start(k,ii)=start0(ii); end;
ii=find(isinf(stop( k,:))); if ~isempty(ii), stop( k,ii)=stop0( ii); end;
end;
end;
% convert Inf's to NaN's
start( isinf(start )) = NaN;
stop( isinf(stop )) = NaN;
len( isinf(len )) = NaN;
baseangle( isinf(baseangle)) = NaN;
tipangle( isinf(tipangle )) = NaN;
wid( isinf(wid )) = NaN;
page( isinf(page )) = NaN;
crossdir( isinf(crossdir )) = NaN;
ends( isinf(ends )) = NaN;
ispatch( isinf(ispatch )) = NaN;
% set up the UserData data (here so not corrupted by log10's and such)
ud = [start stop len baseangle tipangle wid page crossdir ends];
% Set Page defaults
page = ~isnan(page) & trueornan(page);
% Get axes limits, range, min; correct for aspect ratio and log scale
axm = zeros(3,narrows);
axr = zeros(3,narrows);
axrev = zeros(3,narrows);
ap = zeros(2,narrows);
xyzlog = zeros(3,narrows);
limmin = zeros(2,narrows);
limrange = zeros(2,narrows);
oldaxlims = zeros(narrows,7);
oneax = all(ax==ax(1));
if (oneax),
T = zeros(4,4);
invT = zeros(4,4);
else,
T = zeros(16,narrows);
invT = zeros(16,narrows);
end;
axnotdone = logical(ones(size(ax)));
while (any(axnotdone)),
ii = min(find(axnotdone));
curax = ax(ii);
curpage = page(ii);
% get axes limits and aspect ratio
axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')];
oldaxlims(min(find(oldaxlims(:,1)==0)),:) = [curax reshape(axl',1,6)];
% get axes size in pixels (points)
u = get(curax,'Units');
axposoldunits = get(curax,'Position');
really_curpage = curpage & strcmp(u,'normalized');
if (really_curpage),
curfig = get(curax,'Parent');
pu = get(curfig,'PaperUnits');
set(curfig,'PaperUnits','points');
pp = get(curfig,'PaperPosition');
set(curfig,'PaperUnits',pu);
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
set(curax,'Units','normalized');
curap = pp.*get(curax,'Position');
else,
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
curap = curapscreen;
end;
set(curax,'Units',u);
set(curax,'Position',axposoldunits);
% handle non-stretched axes position
str_stretch = { 'DataAspectRatioMode' ; ...
'PlotBoxAspectRatioMode' ; ...
'CameraViewAngleMode' };
str_camera = { 'CameraPositionMode' ; ...
'CameraTargetMode' ; ...
'CameraViewAngleMode' ; ...
'CameraUpVectorMode' };
notstretched = strcmp(get(curax,str_stretch),'manual');
manualcamera = strcmp(get(curax,str_camera),'manual');
if ~arrow_WarpToFill(notstretched,manualcamera,curax),
% give a warning that this has not been thoroughly tested
if 0 & ARROW_STRETCH_WARN,
ARROW_STRETCH_WARN = 0;
strs = {str_stretch{1:2},str_camera{:}};
strs = [char(ones(length(strs),1)*sprintf('\n ')) char(strs)]';
warning([upper(mfilename) ' may not yet work quite right ' ...
'if any of the following are ''manual'':' strs(:).']);
end;
% find the true pixel size of the actual axes
texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ...
axl(2,[1 1 2 2 1 1 2 2]), ...
axl(3,[1 1 1 1 2 2 2 2]),'');
set(texttmp,'Units','points');
textpos = get(texttmp,'Position');
delete(texttmp);
textpos = cat(1,textpos{:});
textpos = max(textpos(:,1:2)) - min(textpos(:,1:2));
% adjust the axes position
if (really_curpage),
% adjust to printed size
textpos = textpos * min(curap(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
else,
% adjust for pixel roundoff
textpos = textpos * min(curapscreen(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
end;
end;
if ARROW_PERSP_WARN & ~strcmp(get(curax,'Projection'),'orthographic'),
ARROW_PERSP_WARN = 0;
warning([upper(mfilename) ' does not yet work right for 3-D perspective projection.']);
end;
% adjust limits for log scale on axes
curxyzlog = [strcmp(get(curax,'XScale'),'log'); ...
strcmp(get(curax,'YScale'),'log'); ...
strcmp(get(curax,'ZScale'),'log')];
if (any(curxyzlog)),
ii = find([curxyzlog;curxyzlog]);
if (any(axl(ii)<=0)),
error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']);
else,
axl(ii) = log10(axl(ii));
end;
end;
% correct for 'reverse' direction on axes;
curreverse = [strcmp(get(curax,'XDir'),'reverse'); ...
strcmp(get(curax,'YDir'),'reverse'); ...
strcmp(get(curax,'ZDir'),'reverse')];
ii = find(curreverse);
if ~isempty(ii),
axl(ii,[1 2])=-axl(ii,[2 1]);
end;
% compute the range of 2-D values
curT = get(curax,'Xform');
lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1];
lim = lim(1:2,:)./([1;1]*lim(4,:));
curlimmin = min(lim')';
curlimrange = max(lim')' - curlimmin;
curinvT = inv(curT);
if (~oneax),
curT = curT.';
curinvT = curinvT.';
curT = curT(:);
curinvT = curinvT(:);
end;
% check which arrows to which cur corresponds
ii = find((ax==curax)&(page==curpage));
oo = ones(1,length(ii));
axr(:,ii) = diff(axl')' * oo;
axm(:,ii) = axl(:,1) * oo;
axrev(:,ii) = curreverse * oo;
ap(:,ii) = curap(3:4)' * oo;
xyzlog(:,ii) = curxyzlog * oo;
limmin(:,ii) = curlimmin * oo;
limrange(:,ii) = curlimrange * oo;
if (oneax),
T = curT;
invT = curinvT;
else,
T(:,ii) = curT * oo;
invT(:,ii) = curinvT * oo;
end;
axnotdone(ii) = zeros(1,length(ii));
end;
oldaxlims(oldaxlims(:,1)==0,:)=[];
% correct for log scales
curxyzlog = xyzlog.';
ii = find(curxyzlog(:));
if ~isempty(ii),
start( ii) = real(log10(start( ii)));
stop( ii) = real(log10(stop( ii)));
if (all(imag(crossdir)==0)), % pulled (ii) subscript on crossdir, 12/5/96 eaj
crossdir(ii) = real(log10(crossdir(ii)));
end;
end;
% correct for reverse directions
ii = find(axrev.');
if ~isempty(ii),
start( ii) = -start( ii);
stop( ii) = -stop( ii);
crossdir(ii) = -crossdir(ii);
end;
% transpose start/stop values
start = start.';
stop = stop.';
% take care of defaults, page was done above
ii=find(isnan(start(:) )); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end;
ii=find(isnan(stop(:) )); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end;
ii=find(isnan(crossdir(:) )); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end;
ii=find(isnan(len )); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end;
ii=find(isnan(baseangle )); if ~isempty(ii), baseangle(ii) = ones(length(ii),1)*defbaseangle; end;
ii=find(isnan(tipangle )); if ~isempty(ii), tipangle(ii) = ones(length(ii),1)*deftipangle; end;
ii=find(isnan(wid )); if ~isempty(ii), wid(ii) = ones(length(ii),1)*defwid; end;
ii=find(isnan(ends )); if ~isempty(ii), ends(ii) = ones(length(ii),1)*defends; end;
% transpose rest of values
len = len.';
baseangle = baseangle.';
tipangle = tipangle.';
wid = wid.';
page = page.';
crossdir = crossdir.';
ends = ends.';
ax = ax.';
% given x, a 3xN matrix of points in 3-space;
% want to convert to X, the corresponding 4xN 2-space matrix
%
% tmp1=[(x-axm)./axr; ones(1,size(x,1))];
% if (oneax), X=T*tmp1;
% else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
% tmp2=zeros(4,4*N); tmp2(:)=tmp1(:);
% X=zeros(4,N); X(:)=sum(tmp2)'; end;
% X = X ./ (ones(4,1)*X(4,:));
% for all points with start==stop, start=stop-(verysmallvalue)*(up-direction);
ii = find(all(start==stop));
if ~isempty(ii),
% find an arrowdir vertical on screen and perpendicular to viewer
% transform to 2-D
tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))];
if (oneax), twoD=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)'; end;
twoD=twoD./(ones(4,1)*twoD(4,:));
% move the start point down just slightly
tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii));
% transform back to 3-D
if (oneax), threeD=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)'; end;
start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii);
end;
% compute along-arrow points
% transform Start points
tmp1=[(start-axm)./axr;ones(1,narrows)];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
X0=zeros(4,narrows); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% transform Stop points
tmp1=[(stop-axm)./axr;ones(1,narrows)];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
Xf=zeros(4,narrows); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute pixel distance between points
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2));
D = D + (D==0); %eaj new 2/24/98
% compute and modify along-arrow distances
len1 = len;
len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi);
slen0 = zeros(1,narrows);
slen1 = len1 .* ((ends==2)|(ends==3));
slen2 = len2 .* ((ends==2)|(ends==3));
len0 = zeros(1,narrows);
len1 = len1 .* ((ends==1)|(ends==3));
len2 = len2 .* ((ends==1)|(ends==3));
% for no start arrowhead
ii=find((ends==1)&(D<len2));
if ~isempty(ii),
slen0(ii) = D(ii)-len2(ii);
end;
% for no end arrowhead
ii=find((ends==2)&(D<slen2));
if ~isempty(ii),
len0(ii) = D(ii)-slen2(ii);
end;
len1 = len1 + len0;
len2 = len2 + len0;
slen1 = slen1 + slen0;
slen2 = slen2 + slen0;
% note: the division by D below will probably not be accurate if both
% of the following are true:
% 1. the ratio of the line length to the arrowhead
% length is large
% 2. the view is highly perspective.
% compute stoppoints
tmp1=X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute tippoints
tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute basepoints
tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute startpoints
tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute stippoints
tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute sbasepoints
tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute cross-arrow directions for arrows with NormalDir specified
if (any(imag(crossdir(:))~=0)),
ii = find(any(imag(crossdir)~=0));
crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ...
imag(crossdir(:,ii))).*axr(:,ii);
end;
% compute cross-arrow directions
basecross = crossdir + basepoint;
tipcross = crossdir + tippoint;
sbasecross = crossdir + sbasepoint;
stipcross = crossdir + stippoint;
ii = find(all(crossdir==0)|any(isnan(crossdir)));
if ~isempty(ii),
numii = length(ii);
% transform start points
tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)];
tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]);
tmp1 = [tmp1; ones(1,4*numii)];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
X0=zeros(4,4*numii); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% transform stop points
tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)];
tmp1 = [tmp1 tmp1 tmp1 tmp1];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute perpendicular directions
pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2;
pixfact = [pixfact pixfact pixfact pixfact];
pixfact = [pixfact;1./pixfact];
[dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:)));
jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj);
jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj));
jj3 = jj1(1:2,:);
Xf(jj1)=Xf(jj1)+(Xf(jj1)-X0(jj1)==0); %eaj new 2/24/98
Xp = X0;
Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1);
Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3);
% inverse transform the cross points
if (oneax), Xp=invT*Xp;
else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end;
Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]);
basecross(:,ii) = Xp(:,0*numii+(1:numii));
tipcross(:,ii) = Xp(:,1*numii+(1:numii));
sbasecross(:,ii) = Xp(:,2*numii+(1:numii));
stipcross(:,ii) = Xp(:,3*numii+(1:numii));
end;
% compute all points
% compute start points
axm11 = [axm axm axm axm axm axm axm axm axm axm axm];
axr11 = [axr axr axr axr axr axr axr axr axr axr axr];
st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint];
tmp1 = (st - axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
X0=zeros(4,11*narrows); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% compute stop points
tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ...
- axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
Xf=zeros(4,11*narrows); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute lengths
len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi);
slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi);
le = [zeros(1,narrows) len0 wid/2 wid/2 slen0 zeros(1,narrows) -slen0 -wid/2 -wid/2 -len0 zeros(1,narrows)];
aprange = ap./limrange;
aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange];
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2));
Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end; %should fix DivideByZero warnings
tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D));
% inverse transform
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,11*narrows); tmp3(:)=sum(tmp2)'; end;
pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11;
% correct for ones where the crossdir was specified
ii = find(~(all(crossdir==0)|any(isnan(crossdir))));
if ~isempty(ii),
D1 = [pts(:,1*narrows+ii)-pts(:,9*narrows+ii) ...
pts(:,2*narrows+ii)-pts(:,8*narrows+ii) ...
pts(:,3*narrows+ii)-pts(:,7*narrows+ii) ...
pts(:,4*narrows+ii)-pts(:,6*narrows+ii) ...
pts(:,6*narrows+ii)-pts(:,4*narrows+ii) ...
pts(:,7*narrows+ii)-pts(:,3*narrows+ii) ...
pts(:,8*narrows+ii)-pts(:,2*narrows+ii) ...
pts(:,9*narrows+ii)-pts(:,1*narrows+ii)]/2;
ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]*narrows;
ii = ii(:)';
pts(:,ii) = st(:,ii) + D1;
end;
% readjust for reverse directions
iicols=(1:narrows)'; iicols=iicols(:,ones(1,11)); iicols=iicols(:).';
tmp1=axrev(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end;
% readjust for log scale on axes
tmp1=xyzlog(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end;
% compute the x,y,z coordinates of the patches;
ii = narrows*(0:10)'*ones(1,narrows) + ones(11,1)*(1:narrows);
ii = ii(:)';
x = zeros(11,narrows);
y = zeros(11,narrows);
z = zeros(11,narrows);
x(:) = pts(1,ii)';
y(:) = pts(2,ii)';
z(:) = pts(3,ii)';
% do the output
if (nargout<=1),
% % create or modify the patches
newpatch = trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'patch'));
newline = ~trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'line'));
if isempty(oldh), H=zeros(narrows,1); else, H=oldh; end;
% % make or modify the arrows
for k=1:narrows,
if all(isnan(ud(k,[3 6])))&arrow_is2DXY(ax(k)), zz=[]; else, zz=z(:,k); end;
% work around a MATLAB 6.x OpenGL bug -- 7/28/02
xx=x(:,k); yy=y(:,k);
mask=any([ones(1,2+size(zz,2));diff([xx yy zz],[],1)],2);
xx=xx(mask); yy=yy(mask); if ~isempty(zz), zz=zz(mask); end;
% plot the patch or line
xyz = {'XData',xx,'YData',yy,'ZData',zz,'Tag',ArrowTag};
if newpatch(k)|newline(k),
if newpatch(k),
H(k) = patch(xyz{:});
else,
H(k) = line(xyz{:});
end;
if ~isempty(oldh), arrow_copyprops(oldh(k),H(k)); end;
else,
if ispatch(k), xyz={xyz{:},'CData',[]}; end;
set(H(k),xyz{:});
end;
end;
if ~isempty(oldh), delete(oldh(oldh~=H)); end;
% % additional properties
set(H,'Clipping','off');
set(H,{'UserData'},num2cell(ud,2));
if (length(extraprops)>0), set(H,extraprops{:}); end;
% handle choosing arrow Start and/or Stop locations if unspecified
[H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims);
if ~isempty(errstr), error([upper(mfilename) ' got ' errstr]); end;
% set the output
if (nargout>0), h=H; end;
% make sure the axis limits did not change
if isempty(oldaxlims),
ARROW_AXLIMITS = [];
else,
lims = get(oldaxlims(:,1),{'XLim','YLim','ZLim'})';
lims = reshape(cat(2,lims{:}),6,size(lims,2));
mask = arrow_is2DXY(oldaxlims(:,1));
oldaxlims(mask,6:7) = lims(5:6,mask)';
ARROW_AXLIMITS = oldaxlims(find(any(oldaxlims(:,2:7)'~=lims)),:);
if ~isempty(ARROW_AXLIMITS),
warning(arrow_warnlimits(ARROW_AXLIMITS,narrows));
end;
end;
else,
% don't create the patch, just return the data
h=x;
yy=y;
zz=z;
end;
function out = arrow_defcheck(in,def,prop)
% check if we got 'default' values
out = in;
if ~ischar(in), return; end;
if size(in,1)==1 & strncmp(lower(in),'def',3),
out = def;
elseif ~isempty(prop),
error([upper(mfilename) ' does not recognize ''' in(:)' ''' as a valid ''' prop ''' string.']);
end;
function [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims)
% handle choosing arrow Start and/or Stop locations if necessary
errstr = '';
if isempty(H)|isempty(ud)|isempty(x), return; end;
% determine which (if any) need Start and/or Stop
needStart = all(isnan(ud(:,1:3)'))';
needStop = all(isnan(ud(:,4:6)'))';
mask = any(needStart|needStop);
if ~any(mask), return; end;
ud(~mask,:)=[]; ax(:,~mask)=[];
x(:,~mask)=[]; y(:,~mask)=[]; z(:,~mask)=[];
% make them invisible for the time being
set(H,'Visible','off');
% save the current axes and limits modes; set to manual for the time being
oldAx = gca;
limModes=get(ax(:),{'XLimMode','YLimMode','ZLimMode'});
set(ax(:),{'XLimMode','YLimMode','ZLimMode'},{'manual','manual','manual'});
% loop over each arrow that requires attention
jj = find(mask);
for ii=1:length(jj),
h = H(jj(ii));
axes(ax(ii));
% figure out correct call
if needStart(ii), prop='Start'; else, prop='Stop'; end;
[wasInterrupted,errstr] = arrow_click(needStart(ii)&needStop(ii),h,prop,ax(ii));
% handle errors and control-C
if wasInterrupted,
delete(H(jj(ii:end)));
H(jj(ii:end))=[];
oldaxlims(jj(ii:end),:)=[];
break;
end;
end;
% restore the axes and limit modes
axes(oldAx);
set(ax(:),{'XLimMode','YLimMode','ZLimMode'},limModes);
function [wasInterrupted,errstr] = arrow_click(lockStart,H,prop,ax)
% handle the clicks for one arrow
fig = get(ax,'Parent');
% save some things
oldFigProps = {'Pointer','WindowButtonMotionFcn','WindowButtonUpFcn'};
oldFigValue = get(fig,oldFigProps);
oldArrowProps = {'EraseMode'};
oldArrowValue = get(H,oldArrowProps);
set(H,'EraseMode','background'); %because 'xor' makes shaft invisible unless Width>1
global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z
ARROW_CLICK_H=H; ARROW_CLICK_PROP=prop; ARROW_CLICK_AX=ax;
ARROW_CLICK_USE_Z=~arrow_is2DXY(ax)|~arrow_planarkids(ax);
set(fig,'Pointer','crosshair');
% set up the WindowButtonMotion so we can see the arrow while moving around
set(fig,'WindowButtonUpFcn','set(gcf,''WindowButtonUpFcn'','''')', ...
'WindowButtonMotionFcn','');
if ~lockStart,
set(H,'Visible','on');
set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']);
end;
% wait for the button to be pressed
[wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig);
% if we wanted to click-drag, set the Start point
if lockStart & ~wasInterrupted,
pt = arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z);
feval(mfilename,H,'Start',pt,'Stop',pt);
set(H,'Visible','on');
ARROW_CLICK_PROP='Stop';
set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']);
% wait for the mouse button to be released
eval('waitfor(fig,''WindowButtonUpFcn'','''');','wasInterrupted=1;');
if wasInterrupted, errstr=lasterr; end;
end;
if ~wasInterrupted, feval(mfilename,'callback','motion'); end;
% restore some things
set(gcf,oldFigProps,oldFigValue);
set(H,oldArrowProps,oldArrowValue);
function arrow_callback(varargin)
% handle redrawing callbacks
if nargin==0, return; end;
str = varargin{1};
if ~ischar(str), error([upper(mfilename) ' got an invalid Callback command.']); end;
s = lower(str);
if strcmp(s,'motion'),
% motion callback
global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z
feval(mfilename,ARROW_CLICK_H,ARROW_CLICK_PROP,arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z));
drawnow;
else,
error([upper(mfilename) ' does not recognize ''' str(:).' ''' as a valid Callback option.']);
end;
function out = arrow_point(ax,use_z)
% return the point on the given axes
if nargin==0, ax=gca; end;
if nargin<2, use_z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); end;
out = get(ax,'CurrentPoint');
out = out(1,:);
if ~use_z, out=out(1:2); end;
function [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig)
% wait for button down ignoring object ButtonDownFcn's
if nargin==0, fig=gcf; end;
errstr = '';
% save ButtonDownFcn values
objs = findobj(fig);
buttonDownFcns = get(objs,'ButtonDownFcn');
mask=~strcmp(buttonDownFcns,''); objs=objs(mask); buttonDownFcns=buttonDownFcns(mask);
set(objs,'ButtonDownFcn','');
% save other figure values
figProps = {'KeyPressFcn','WindowButtonDownFcn'};
figValue = get(fig,figProps);
% do the real work
set(fig,'KeyPressFcn','set(gcf,''KeyPressFcn'','''',''WindowButtonDownFcn'','''');', ...
'WindowButtonDownFcn','set(gcf,''WindowButtonDownFcn'','''')');
lasterr('');
wasInterrupted=0; eval('waitfor(fig,''WindowButtonDownFcn'','''');','wasInterrupted=1;');
wasKeyPress = ~wasInterrupted & strcmp(get(fig,'KeyPressFcn'),'');
if wasInterrupted, errstr=lasterr; end;
% restore ButtonDownFcn and other figure values
set(objs,'ButtonDownFcn',buttonDownFcns);
set(fig,figProps,figValue);
function [out,is2D] = arrow_is2DXY(ax)
% check if axes are 2-D X-Y plots
% may not work for modified camera angles, etc.
out = logical(zeros(size(ax))); % 2-D X-Y plots
is2D = out; % any 2-D plots
views = get(ax(:),{'View'});
views = cat(1,views{:});
out(:) = abs(views(:,2))==90;
is2D(:) = out(:) | all(rem(views',90)==0)';
function out = arrow_planarkids(ax)
% check if axes descendents all have empty ZData (lines,patches,surfaces)
out = logical(ones(size(ax)));
allkids = get(ax(:),{'Children'});
for k=1:length(allkids),
kids = get([findobj(allkids{k},'flat','Type','line')
findobj(allkids{k},'flat','Type','patch')
findobj(allkids{k},'flat','Type','surface')],{'ZData'});
for j=1:length(kids),
if ~isempty(kids{j}), out(k)=logical(0); break; end;
end;
end;
function arrow_fixlimits(axlimits)
% reset the axis limits as necessary
if isempty(axlimits), disp([upper(mfilename) ' does not remember any axis limits to reset.']); end;
for k=1:size(axlimits,1),
if any(get(axlimits(k,1),'XLim')~=axlimits(k,2:3)), set(axlimits(k,1),'XLim',axlimits(k,2:3)); end;
if any(get(axlimits(k,1),'YLim')~=axlimits(k,4:5)), set(axlimits(k,1),'YLim',axlimits(k,4:5)); end;
if any(get(axlimits(k,1),'ZLim')~=axlimits(k,6:7)), set(axlimits(k,1),'ZLim',axlimits(k,6:7)); end;
end;
function out = arrow_WarpToFill(notstretched,manualcamera,curax)
% check if we are in "WarpToFill" mode.
out = strcmp(get(curax,'WarpToFill'),'on');
% 'WarpToFill' is undocumented, so may need to replace this by
% out = ~( any(notstretched) & any(manualcamera) );
function out = arrow_warnlimits(axlimits,narrows)
% create a warning message if we've changed the axis limits
msg = '';
switch (size(axlimits,1))
case 1, msg='';
case 2, msg='on two axes ';
otherwise, msg='on several axes ';
end;
msg = [upper(mfilename) ' changed the axis limits ' msg ...
'when adding the arrow'];
if (narrows>1), msg=[msg 's']; end;
out = [msg '.' sprintf('\n') ' Call ' upper(mfilename) ...
' FIXLIMITS to reset them now.'];
function arrow_copyprops(fm,to)
% copy line properties to patches
props = {'EraseMode','LineStyle','LineWidth','Marker','MarkerSize',...
'MarkerEdgeColor','MarkerFaceColor','ButtonDownFcn', ...
'Clipping','DeleteFcn','BusyAction','HandleVisibility', ...
'Selected','SelectionHighlight','Visible'};
lineprops = {'Color', props{:}};
patchprops = {'EdgeColor',props{:}};
patch2props = {'FaceColor',patchprops{:}};
fmpatch = strcmp(get(fm,'Type'),'patch');
topatch = strcmp(get(to,'Type'),'patch');
set(to( fmpatch& topatch),patch2props,get(fm( fmpatch& topatch),patch2props)); %p->p
set(to(~fmpatch&~topatch),lineprops, get(fm(~fmpatch&~topatch),lineprops )); %l->l
set(to( fmpatch&~topatch),lineprops, get(fm( fmpatch&~topatch),patchprops )); %p->l
set(to(~fmpatch& topatch),patchprops, get(fm(~fmpatch& topatch),lineprops) ,'FaceColor','none'); %l->p
function arrow_props
% display further help info about ARROW properties
c = sprintf('\n');
disp([c ...
'ARROW Properties: Default values are given in [square brackets], and other' c ...
' acceptable equivalent property names are in (parenthesis).' c c ...
' Start The starting points. For N arrows, B' c ...
' this should be a Nx2 or Nx3 matrix. /|\ ^' c ...
' Stop The end points. For N arrows, this /|||\ |' c ...
' should be a Nx2 or Nx3 matrix. //|||\\ L|' c ...
' Length Length of the arrowhead (in pixels on ///|||\\\ e|' c ...
' screen, points on a page). [16] (Len) ////|||\\\\ n|' c ...
' BaseAngle Angle (degrees) of the base angle /////|D|\\\\\ g|' c ...
' ADE. For a simple stick arrow, use //// ||| \\\\ t|' c ...
' BaseAngle=TipAngle. [90] (Base) /// ||| \\\ h|' c ...
' TipAngle Angle (degrees) of tip angle ABC. //<----->|| \\ |' c ...
' [16] (Tip) / base ||| \ V' c ...
' Width Width of the base in pixels. Not E angle ||<-------->C' c ...
' the ''LineWidth'' prop. [0] (Wid) |||tipangle' c ...
' Page If provided, non-empty, and not NaN, |||' c ...
' this causes ARROW to use hardcopy |||' c ...
' rather than onscreen proportions. A' c ...
' This is important if screen aspect --> <-- width' c ...
' ratio and hardcopy aspect ratio are ----CrossDir---->' c ...
' vastly different. []' c...
' CrossDir A vector giving the direction towards which the fletches' c ...
' on the arrow should go. [computed such that it is perpen-' c ...
' dicular to both the arrow direction and the view direction' c ...
' (i.e., as if it was pasted on a normal 2-D graph)] (Note' c ...
' that CrossDir is a vector. Also note that if an axis is' c ...
' plotted on a log scale, then the corresponding component' c ...
' of CrossDir must also be set appropriately, i.e., to 1 for' c ...
' no change in that direction, >1 for a positive change, >0' c ...
' and <1 for negative change.)' c ...
' NormalDir A vector normal to the fletch direction (CrossDir is then' c ...
' computed by the vector cross product [Line]x[NormalDir]). []' c ...
' (Note that NormalDir is a vector. Unlike CrossDir,' c ...
' NormalDir is used as is regardless of log-scaled axes.)' c ...
' Ends Set which end has an arrowhead. Valid values are ''none'',' c ...
' ''stop'', ''start'', and ''both''. [''stop''] (End)' c...
' ObjectHandles Vector of handles to previously-created arrows to be' c ...
' updated or line objects to be converted to arrows.' c ...
' [] (Object,Handle)' c ]);
function out = arrow_demo
% demo
% create the data
[x,y,z] = peaks;
[ddd,out.iii]=max(z(:));
out.axlim = [min(x(:)) max(x(:)) min(y(:)) max(y(:)) min(z(:)) max(z(:))];
% modify it by inserting some NaN's
[m,n] = size(z);
m = floor(m/2);
n = floor(n/2);
z(1:m,1:n) = NaN*ones(m,n);
% graph it
clf('reset');
out.hs=surf(x,y,z);
out.x=x; out.y=y; out.z=z;
xlabel('x'); ylabel('y');
function h = arrow_demo3(in)
% set the view
axlim = in.axlim;
axis(axlim);
zlabel('z');
%set(in.hs,'FaceColor','interp');
view(viewmtx(-37.5,30,20));
title(['Demo of the capabilities of the ARROW function in 3-D']);
% Normal blue arrow
h1 = feval(mfilename,[axlim(1) axlim(4) 4],[-.8 1.2 4], ...
'EdgeColor','b','FaceColor','b');
% Normal white arrow, clipped by the surface
h2 = feval(mfilename,axlim([1 4 6]),[0 2 4]);
t=text(-2.4,2.7,7.7,'arrow clipped by surf');
% Baseangle<90
h3 = feval(mfilename,[3 .125 3.5],[1.375 0.125 3.5],30,50);
t2=text(3.1,.125,3.5,'local maximum');
% Baseangle<90, fill and edge colors different
h4 = feval(mfilename,axlim(1:2:5)*.5,[0 0 0],36,60,25, ...
'EdgeColor','b','FaceColor','c');
t3=text(axlim(1)*.5,axlim(3)*.5,axlim(5)*.5-.75,'origin');
set(t3,'HorizontalAlignment','center');
% Baseangle>90, black fill
h5 = feval(mfilename,[-2.9 2.9 3],[-1.3 .4 3.2],30,120,[],6, ...
'EdgeColor','r','FaceColor','k','LineWidth',2);
% Baseangle>90, no fill
h6 = feval(mfilename,[-2.9 2.9 1.3],[-1.3 .4 1.5],30,120,[],6, ...
'EdgeColor','r','FaceColor','none','LineWidth',2);
% Stick arrow
h7 = feval(mfilename,[-1.6 -1.65 -6.5],[0 -1.65 -6.5],[],16,16);
t4=text(-1.5,-1.65,-7.25,'global mininum');
set(t4,'HorizontalAlignment','center');
% Normal, black fill
h8 = feval(mfilename,[-1.4 0 -7.2],[-1.4 0 -3],'FaceColor','k');
t5=text(-1.5,0,-7.75,'local minimum');
set(t5,'HorizontalAlignment','center');
% Gray fill, crossdir specified, 'LineStyle' --
h9 = feval(mfilename,[-3 2.2 -6],[-3 2.2 -.05],36,[],27,6,[],[0 -1 0], ...
'EdgeColor','k','FaceColor',.75*[1 1 1],'LineStyle','--');
% a series of normal arrows, linearly spaced, crossdir specified
h10y=(0:4)'/3;
h10 = feval(mfilename,[-3*ones(size(h10y)) h10y -6.5*ones(size(h10y))], ...
[-3*ones(size(h10y)) h10y -.05*ones(size(h10y))], ...
12,[],[],[],[],[0 -1 0]);
% a series of normal arrows, linearly spaced
h11x=(1:.33:2.8)';
h11 = feval(mfilename,[h11x -3*ones(size(h11x)) 6.5*ones(size(h11x))], ...
[h11x -3*ones(size(h11x)) -.05*ones(size(h11x))]);
% series of magenta arrows, radially oriented, crossdir specified
h12x=2; h12y=-3; h12z=axlim(5)/2; h12xr=1; h12zr=h12z; ir=.15;or=.81;
h12t=(0:11)'/6*pi;
h12 = feval(mfilename, ...
[h12x+h12xr*cos(h12t)*ir h12y*ones(size(h12t)) ...
h12z+h12zr*sin(h12t)*ir],[h12x+h12xr*cos(h12t)*or ...
h12y*ones(size(h12t)) h12z+h12zr*sin(h12t)*or], ...
10,[],[],[],[], ...
[-h12xr*sin(h12t) zeros(size(h12t)) h12zr*cos(h12t)],...
'FaceColor','none','EdgeColor','m');
% series of normal arrows, tangentially oriented, crossdir specified
or13=.91; h13t=(0:.5:12)'/6*pi;
locs = [h12x+h12xr*cos(h13t)*or13 h12y*ones(size(h13t)) h12z+h12zr*sin(h13t)*or13];
h13 = feval(mfilename,locs(1:end-1,:),locs(2:end,:),6);
% arrow with no line ==> oriented downwards
h14 = feval(mfilename,[3 3 .100001],[3 3 .1],30);
t6=text(3,3,3.6,'no line'); set(t6,'HorizontalAlignment','center');
% arrow with arrowheads at both ends
h15 = feval(mfilename,[-.5 -3 -3],[1 -3 -3],'Ends','both','FaceColor','g', ...
'Length',20,'Width',3,'CrossDir',[0 0 1],'TipAngle',25);
h=[h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15];
function h = arrow_demo2(in)
axlim = in.axlim;
dolog = 1;
if (dolog), set(in.hs,'YData',10.^get(in.hs,'YData')); end;
shading('interp');
view(2);
title(['Demo of the capabilities of the ARROW function in 2-D']);
hold on; [C,H]=contour(in.x,in.y,in.z,20,'-'); hold off;
for k=H',
set(k,'ZData',(axlim(6)+1)*ones(size(get(k,'XData'))),'Color','k');
if (dolog), set(k,'YData',10.^get(k,'YData')); end;
end;
if (dolog), axis([axlim(1:2) 10.^axlim(3:4)]); set(gca,'YScale','log');
else, axis(axlim(1:4)); end;
% Normal blue arrow
start = [axlim(1) axlim(4) axlim(6)+2];
stop = [in.x(in.iii) in.y(in.iii) axlim(6)+2];
if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end;
h1 = feval(mfilename,start,stop,'EdgeColor','b','FaceColor','b');
% three arrows with varying fill, width, and baseangle
start = [-3 -3 10; -3 -1.5 10; -1.5 -3 10];
stop = [-.03 -.03 10; -.03 -1.5 10; -1.5 -.03 10];
if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end;
h2 = feval(mfilename,start,stop,24,[90;60;120],[],[0;0;4],'Ends',str2mat('both','stop','stop'));
set(h2(2),'EdgeColor',[0 .35 0],'FaceColor',[0 .85 .85]);
set(h2(3),'EdgeColor','r','FaceColor',[1 .5 1]);
h=[h1;h2];
function out = trueornan(x)
if isempty(x),
out=x;
else,
out = isnan(x);
out(~out) = x(~out);
end;
|
github
|
philippboehmsturm/antx-master
|
read_besa_src.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/read_besa_src.m
| 2,719 |
utf_8
|
6a82938b50944385d04a571d87fb8cf8
|
function [src] = read_besa_src(filename);
% READ_BESA_SRC reads a beamformer source reconstruction from a BESA file
%
% Use as
% [src] = read_besa_src(filename)
%
% The output structure contains a minimal representation of the contents
% of the file.
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_besa_src.m 2885 2011-02-16 09:41:58Z roboos $
src = [];
fid = fopen(filename, 'rt');
% read the header information
line = fgetl(fid);
while isempty(strmatch('BESA_SA_IMAGE', line)), line = fgetl(fid); check_feof(fid, filename); end
% while isempty(strmatch('sd' , line)), line = fgetl(fid); check_feof(fid, filename); end % this line contains condition information
while isempty(strmatch('Grid dimen' , line)), line = fgetl(fid); check_feof(fid, filename); end
while isempty(strmatch('X:' , line)), line = fgetl(fid); check_feof(fid, filename); end; linex = line;
while isempty(strmatch('Y:' , line)), line = fgetl(fid); check_feof(fid, filename); end; liney = line;
while isempty(strmatch('Z:' , line)), line = fgetl(fid); check_feof(fid, filename); end; linez = line;
tok = tokenize(linex, ' ');
src.X = [str2num(tok{2}) str2num(tok{3}) str2num(tok{4})];
tok = tokenize(liney, ' ');
src.Y = [str2num(tok{2}) str2num(tok{3}) str2num(tok{4})];
tok = tokenize(linez, ' ');
src.Z = [str2num(tok{2}) str2num(tok{3}) str2num(tok{4})];
nx = src.X(3);
ny = src.Y(3);
nz = src.Z(3);
src.vol = zeros(nx, ny, nz);
for i=1:nz
% search up to the next slice
while isempty(strmatch(sprintf('Z: %d', i-1), line)), line = fgetl(fid); check_feof(fid, filename); end;
% read all the values for this slice
buf = fscanf(fid, '%f', [nx ny]);
src.vol(:,:,i) = buf;
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function check_feof(fid, filename)
if feof(fid)
error(sprintf('could not read all information from file ''%s''', filename));
end
|
github
|
philippboehmsturm/antx-master
|
csd2transfer.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/csd2transfer.m
| 25,912 |
utf_8
|
514b6387ff408463962d6332c65322a2
|
function [output] = csd2transfer(freq, varargin)
% CSD2TRANSFER computes the transfer-function from frequency domain data
% using the Wilson-Burg algorithm. The transfer function can be used for
% the computation of directional measures of connectivity, such as granger
% causality, partial directed coherence, or directed transfer functions
%
% Use as
% [output] = csd2transfer(freq, varargin)
%
% Where freq is a data structure containing frequency domain data containing
% the cross-spectral density computed between all pairs of channels, thus
% containing a 'dimord' of 'chan_chan_freq(_time)'.
%
% Configurable options come in key-value pairs:
%
% numiteration = scalar value (default: 100) the number of iterations
% channelcmb = Nx2 cell-array listing the channel pairs for the spectral
% factorization. If not defined or empty (default), a
% full multivariate factorization is performed, otherwise
% a multiple pairwise factorization is done.
% tol = scalar value (default: 1e-18) tolerance limit truncating
% the iterations
%
% The code for the Wilson-Burg algorithm has been very generously provided by
% Dr. Mukesh Dhamala, and Prof. Mingzhou Ding and his group.
%
% If you use this code for studying directed interactions, please cite from
% the following references:
% -M.Dhamala, R.Rangarajan, M.Ding, Physical Review Letters 100, 018701 (2008)
% -M.Dhamala, R.rangarajan, M.Ding, Neuroimage 41, 354 (2008)
% Undocumented options:
%
% block
% blockindx
% svd
%
% Copyright (C) 2009-2011, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: csd2transfer $
numiteration = ft_getopt(varargin, 'numiteration', 100);
channelcmb = ft_getopt(varargin, 'channelcmb', {});
block = ft_getopt(varargin, 'block', {});
blockindx = ft_getopt(varargin, 'blockindx', cell(0,2));
tol = ft_getopt(varargin, 'tol', 1e-18);
fb = ft_getopt(varargin, 'feedback', 'textbar');
sfmethod = ft_getopt(varargin, 'sfmethod', 'multivariate');
dosvd = ft_getopt(varargin, 'svd', 'no');
dosvd = istrue(dosvd);
% check whether input data is valid
freq = ft_checkdata(freq, 'datatype', 'freq');
if ~isfield(freq, 'crsspctrm') || ~isfield(freq, 'label')
error('the input data does not contain cross-spectral density data in the supported format');
end
hasrpt = ~isempty(strfind(freq.dimord, 'rpt'));
if hasrpt,
nrpt = numel(freq.cumtapcnt);
else
nrpt = 1;
end
% if bivariate is requested without channelcmb, do all versus all pairwise
if isempty(channelcmb) && strcmp(sfmethod, 'bivariate')
channelcmb = {'all' 'all'};
end
if ~isempty(channelcmb)
channelcmb = ft_channelcombination(channelcmb, freq.label);
end
if ~isempty(block)
% sanity check 1
if ~iscell(block)
error('block should be a cell-array containing 3 cells');
end
% sanity check 2
if strcmp(sfmethod, 'bivariate')
error('when block is specified, it is not OK to do bivariate decomposition');
end
end
%fsample = findcfg(freq.cfg, 'fsample');
fsample = 0;
if isfield(freq, 'time'),
ntim = numel(freq.time);
else
ntim = 1;
end
siz = size(freq.crsspctrm);
if ntim==1,
siz = [siz 1]; %add dummy dimensionality for time axis
end
if strcmp(sfmethod, 'bivariate')
fprintf('computing pairwise non-parametric spectral factorization on %d channel pairs\n', size(channelcmb,1) - numel(unique(channelcmb(:))));
elseif strcmp(sfmethod, 'multivariate')
fprintf('computing multivariate non-parametric spectral factorization on %d channels\n', numel(freq.label));
else
error('unknown sfmethod %s', sfmethod);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the actual computations start here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(sfmethod, 'multivariate') && isempty(block) && nrpt>1,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% multiple repetitions, loop over repetitions
% multivariate decomposition
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
H = zeros(siz) + 1i.*zeros(siz);
S = zeros(siz) + 1i.*zeros(siz);
Z = zeros([siz(1:3) siz(end)]);
for k = 1:nrpt
for m = 1:ntim
tmp = reshape(freq.crsspctrm(k,:,:,:,m), siz(2:end-1));
[Htmp, Ztmp, Stmp] = sfactorization_wilson(tmp, fsample, freq.freq, ...
numiteration, tol, fb);
H(k,:,:,:,m) = Htmp;
Z(k,:,:,m) = Ztmp;
S(k,:,:,:,m) = Stmp;
end
end
elseif strcmp(sfmethod, 'multivariate') && isempty(block),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% standard code
% multivariate decomposition
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
H = zeros(siz) + 1i.*zeros(siz);
S = zeros(siz) + 1i.*zeros(siz);
Z = zeros([siz(1:2) siz(end)]);
% only do decomposition once
for m = 1:ntim
tmp = freq.crsspctrm(:,:,:,m);
% do SVD to avoid zigzags due to numerical issues
if dosvd
dat = sum(tmp,3);
[u,s,v] = svd(real(dat));
for k = 1:size(tmp,3)
tmp(:,:,k) = u'*tmp(:,:,k)*u;
end
end
if any(isnan(tmp(:))),
Htmp = nan;
Ztmp = nan;
Stmp = nan;
else
[Htmp, Ztmp, Stmp] = sfactorization_wilson(tmp, fsample, freq.freq, ...
numiteration, tol, fb);
end
% undo SVD
if dosvd
for k = 1:size(tmp,3)
Htmp(:,:,k) = u*Htmp(:,:,k)*u';
Stmp(:,:,k) = u*Stmp(:,:,k)*u';
end
Ztmp = u*Ztmp*u';
end
H(:,:,:,m) = Htmp;
Z(:,:,m) = Ztmp;
S(:,:,:,m) = Stmp;
end
elseif strcmp(sfmethod, 'bivariate') && nrpt>1,
% error
error('single trial estimates and linear combination indexing is not implemented');
elseif nrpt>1 && ~isempty(block),
% error
error('single trial estimates and blockwise factorisation is not yet implemented');
elseif strcmp(sfmethod, 'bivariate')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% pairwise factorization resulting in linearly indexed transfer functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%convert list of channel labels into indices
cmbindx = zeros(size(channelcmb));
ok = true(size(cmbindx,1), 1);
for k = 1:size(cmbindx,1)
[tmp, cmbindx(k,:)] = match_str(channelcmb(k,:)', freq.label);
if ~isempty(intersect(cmbindx(1:(k-1),:), cmbindx(k,:), 'rows'))
ok(k) = false;
elseif cmbindx(k,1)==cmbindx(k,2)
ok(k) = false;
end
end
%remove auto-combinations and double occurrences
cmbindx = cmbindx(ok,:);
channelcmb = channelcmb(ok,:);
%do multiple 2x2 factorization efficiently
if ntim>1,
for kk = 1:ntim
[Htmp, Ztmp, Stmp] = sfactorization_wilson2x2(freq.crsspctrm(:,:,:,kk), fsample, ...
freq.freq, numiteration, tol, cmbindx, fb);
if kk==1,
H = Htmp;
Z = Ztmp;
S = Stmp;
H(:,:,2:ntim) = nan;
Z(:,:,2:ntim) = nan;
S(:,:,2:ntim) = nan;
else
H(:,:,kk) = Htmp;
Z(:,:,kk) = Ztmp;
S(:,:,kk) = Stmp;
end
end
else
% if the number of pairs becomes too big, it seems to slow down quite a
% bit. try to chunk
if size(cmbindx,1)>1000
begchunk = 1:1000:size(cmbindx,1);
endchunk = [1000:1000:size(cmbindx,1) size(cmbindx,1)];
H = zeros(4*size(cmbindx,1), numel(freq.freq));
S = zeros(4*size(cmbindx,1), numel(freq.freq));
Z = zeros(4*size(cmbindx,1), 1);
for k = 1:numel(begchunk)
fprintf('computing factorization of chunck %d/%d\n', k, numel(begchunk));
[Htmp, Ztmp, Stmp] = sfactorization_wilson2x2(freq.crsspctrm, fsample, freq.freq, ...
numiteration, tol, cmbindx(begchunk(k):endchunk(k),:), fb);
begix = (k-1)*4000+1;
endix = min(k*4000, size(cmbindx,1)*4);
H(begix:endix, :) = Htmp;
S(begix:endix, :) = Stmp;
Z(begix:endix, :) = Ztmp;
end
else
[H, Z, S] = sfactorization_wilson2x2(freq.crsspctrm, fsample, freq.freq, ...
numiteration, tol, cmbindx, fb);
end
end
%convert crsspctrm accordingly
siz = [size(H) 1];
tmpcrsspctrm = complex(zeros([2 2 siz(1)/4 siz(2:end)]));
for k = 1:size(cmbindx,1)
tmpcrsspctrm(:,:,k,:,:) = freq.crsspctrm(cmbindx(k,:),cmbindx(k,:),:,:);
end
freq.crsspctrm = reshape(tmpcrsspctrm, siz);
labelcmb = cell(size(cmbindx,1)*4, 2);
for k = 1:size(cmbindx,1)
indx = (k-1)*4 + (1:4);
labelcmb{indx(1),1} = [channelcmb{k,1},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(1),2} = [channelcmb{k,1},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(2),1} = [channelcmb{k,2},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(2),2} = [channelcmb{k,1},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(3),1} = [channelcmb{k,1},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(3),2} = [channelcmb{k,2},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(4),1} = [channelcmb{k,2},'[',channelcmb{k,1},channelcmb{k,2},']'];
labelcmb{indx(4),2} = [channelcmb{k,2},'[',channelcmb{k,1},channelcmb{k,2},']'];
end
elseif ~isempty(block)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% blockwise multivariate stuff
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ntim>1,
error('blockwise factorization of tfrs is not yet possible');
end
%reorder the channel order such that the blocks are ordered
nblocks = unique(blockindx{2});
for k = 1:numel(nblocks)
%b{k} = cfg.blockindx{2}(find(cfg.blockindx{2}==nblocks(k)));
b{k} = find(blockindx{2}==nblocks(k));
end
indx = cat(1,b{:});
freq.crsspctrm = freq.crsspctrm(indx, indx, :);
freq.label = freq.label(indx);
bindx = blockindx{2}(indx);
for k = 1:numel(block)
sel = find(ismember(bindx, block{k}));
Stmp = freq.crsspctrm(sel,sel,:);
% do PCA to avoid zigzags due to numerical issues
dopca = 1;
if dopca
dat = sum(Stmp,3);
[u,s,v] = svd(real(dat));
for m = 1:size(Stmp,3)
Stmp(:,:,m) = u'*Stmp(:,:,m)*u;
end
end
[Htmp, Ztmp, Stmp] = sfactorization_wilson(Stmp, fsample, freq.freq, ...
numiteration, tol, fb);
% undo PCA
if dopca
for m = 1:size(Stmp,3)
Htmp(:,:,m) = u*Htmp(:,:,m)*u';
Stmp(:,:,m) = u*Stmp(:,:,m)*u';
end
Ztmp = u*Ztmp*u';
end
siz = [size(Htmp) 1]; siz = [siz(1)*siz(2) siz(3:end)];
Htmp = reshape(Htmp, siz);
siz = [size(Ztmp) 1]; siz = [siz(1)*siz(2) siz(3:end)];
Ztmp = reshape(Ztmp, siz);
siz = [size(Stmp) 1]; siz = [siz(1)*siz(2) siz(3:end)];
Stmp = reshape(Stmp, siz);
tmpindx = [];
cmbtmp = cell(siz(1), 2);
[tmpindx(:,1), tmpindx(:,2)] = ind2sub(sqrt(siz(1))*[1 1],1:siz(1));
for kk = 1:size(cmbtmp,1)
cmbtmp{kk,1} = [freq.label{sel(tmpindx(kk,1))},'[',cat(2,freq.label{sel}),']'];
cmbtmp{kk,2} = [freq.label{sel(tmpindx(kk,2))},'[',cat(2,freq.label{sel}),']'];
end
%concatenate
if k == 1,
H = Htmp;
Z = Ztmp;
S = Stmp;
labelcmb = cmbtmp;
else
H = cat(1,H,Htmp);
Z = cat(1,Z,Ztmp);
S = cat(1,S,Stmp);
labelcmb = cat(1,labelcmb,cmbtmp);
end
end
if strcmp(freq.dimord(1:9), 'chan_chan'),
freq.dimord = ['chancmb_',freq.dimord(10:end)];
end
end
% create output
output = [];
if strcmp(sfmethod, 'multivariate')
output.dimord = freq.dimord;
else
ix = strfind(freq.dimord, 'chan_chan');
newdimord = [freq.dimord(1:(ix+3)),'cmb',freq.dimord(ix+9:end)];
%dimtok = tokenize(freq.dimord, '_');
%chdim = 0;
%newdimord = '';
%for k = 1:numel(dimtok)
% if strcmp(dimtok{k}, 'chan'), chdim = chdim+1; end
% if chdim==1,
% newdimord = [newdimord,'_chancmb'];
% elseif chdim
% newdimord = [newdimord, '_', dimtok{k}];
% end
%end
output.dimord = newdimord;
end
output.label = freq.label;
output.freq = freq.freq;
output.crsspctrm = S;
output.transfer = H;
output.noisecov = Z;
try
output.time = freq.time;
catch
end
try
output.cumtapcnt = freq.cumtapcnt;
catch
end
try
output.cumsumcnt = freq.cumsumcnt;
catch
end
if exist('labelcmb', 'var') && ~isempty(labelcmb)
output.labelcmb = labelcmb;
output = rmfield(output, 'label');
end
%-------------------------------------------------------------------
function [H, Z, S, psi] = sfactorization_wilson(S,fs,freq,Niterations,tol,fb)
% Usage : [H, Z, S, psi] = sfactorization_wilson(S,fs,freq);
% Inputs : S (1-sided, 3D-spectral matrix in the form of Channel x Channel x frequency)
% : fs (sampling frequency in Hz)
% : freq (a vector of frequencies) at which S is given
% Outputs: H (transfer function)
% : Z (noise covariance)
% : psi (left spectral factor)
% This function is an implemention of Wilson's algorithm (Eq. 3.1)
% for spectral matrix factorization
% Ref: G.T. Wilson,"The Factorization of Matricial Spectral Densities,"
% SIAM J. Appl. Math.23,420-426(1972).
% Written by M. Dhamala & G. Rangarajan, UF, Aug 3-4, 2006.
% Email addresses: [email protected], [email protected]
% number of channels
m = size(S,1);
N = length(freq)-1;
N2 = 2*N;
% preallocate memory for efficiency
Sarr = zeros(m,m,N2) + 1i.*zeros(m,m,N2);
gam = zeros(m,m,N2);
gamtmp = zeros(m,m,N2);
psi = zeros(m,m,N2);
I = eye(m); % Defining m x m identity matrix
%Step 1: Forming 2-sided spectral densities for ifft routine in matlab
f_ind = 0;
for f = freq
f_ind = f_ind+1;
Sarr(:,:,f_ind) = S(:,:,f_ind);
if(f_ind>1)
Sarr(:,:,2*N+2-f_ind) = S(:,:,f_ind).';
end
end
%Step 2: Computing covariance matrices
for k1 = 1:m
for k2 = 1:m
%gam(k1,k2,:) = real(ifft(squeeze(Sarr(k1,k2,:)))*fs); %FIXME think about this
gam(k1,k2,:) = real(ifft(squeeze(Sarr(k1,k2,:))));
end
end
%Step 3: Initializing for iterations
gam0 = gam(:,:,1);
[h, dum] = chol(gam0);
if dum
warning('initialization for iterations did not work well, using arbitrary starting condition');
h = rand(m,m); h = triu(h); %arbitrary initial condition
end
for ind = 1:N2
psi(:,:,ind) = h;
end
%Step 4: Iterating to get spectral factors
ft_progress('init', fb, 'computing spectral factorization');
for iter = 1:Niterations
ft_progress(iter./Niterations, 'computing iteration %d/%d\n', iter, Niterations);
for ind = 1:N2
invpsi = inv(psi(:,:,ind));% + I*eps(psi(:,:,ind)));
g(:,:,ind) = invpsi*Sarr(:,:,ind)*invpsi'+I;%Eq 3.1
end
gp = PlusOperator(g,m,N+1); %gp constitutes positive and half of zero lags
psi_old = psi;
for k = 1:N2
psi(:,:,k) = psi(:,:,k)*gp(:,:,k);
psierr(k) = norm(psi(:,:,k)-psi_old(:,:,k),1);
end
psierrf = mean(psierr);
if(psierrf<tol),
fprintf('reaching convergence at iteration %d\n',iter);
break;
end; % checking convergence
end
ft_progress('close');
%Step 5: Getting covariance matrix from spectral factors
for k1 = 1:m
for k2 = 1:m
gamtmp(k1,k2,:) = real(ifft(squeeze(psi(k1,k2,:))));
end
end
%Step 6: Getting noise covariance & transfer function (see Example pp. 424)
A0 = gamtmp(:,:,1);
A0inv = inv(A0);
%Z = A0*A0.'*fs; %Noise covariance matrix
Z = A0*A0.'; %Noise covariance matrix not multiplied by sampling frequency
%FIXME check this; at least not multiplying it removes the need to correct later on
%this also makes it more equivalent to the noisecov estimated by biosig's mvar-function
H = zeros(m,m,N+1) + 1i*zeros(m,m,N+1);
for k = 1:N+1
H(:,:,k) = psi(:,:,k)*A0inv; %Transfer function
S(:,:,k) = psi(:,:,k)*psi(:,:,k)'; %Updated cross-spectral density
end
%------------------------------------------------------------------------------
function [H, Z, S, psi] = sfactorization_wilson2x2(S,fs,freq,Niterations,tol,cmbindx,fb)
% Usage : [H, Z, psi] = sfactorization_wilson(S,fs,freq);
% Inputs : S (1-sided, 3D-spectral matrix in the form of Channel x Channel x frequency)
% : fs (sampling frequency in Hz)
% : freq (a vector of frequencies) at which S is given
% Outputs: H (transfer function)
% : Z (noise covariance)
% : S (cross-spectral density 1-sided)
% : psi (left spectral factor)
% This function is an implemention of Wilson's algorithm (Eq. 3.1)
% for spectral matrix factorization
% Ref: G.T. Wilson,"The Factorization of Matricial Spectral Densities,"
% SIAM J. Appl. Math.23,420-426(1972).
% Written by M. Dhamala & G. Rangarajan, UF, Aug 3-4, 2006.
% Email addresses: [email protected], [email protected]
m = size(cmbindx,1);
N = length(freq)-1;
N2 = 2*N;
% preallocate memory for efficiency
Sarr = zeros(2,2,m,N2) + 1i.*zeros(2,2,m,N2);
I = repmat(eye(2),[1 1 m N2]); % Defining 2 x 2 identity matrix
%Step 1: Forming 2-sided spectral densities for ifft routine in matlab
for c = 1:m
f_ind = 0;
Stmp = S(cmbindx(c,:),cmbindx(c,:),:);
for f = freq
f_ind = f_ind+1;
Sarr(:,:,c,f_ind) = Stmp(:,:,f_ind);
if(f_ind>1)
Sarr(:,:,c,2*N+2-f_ind) = Stmp(:,:,f_ind).';
end
end
end
%Step 2: Computing covariance matrices
gam = real(reshape(ifft(reshape(Sarr, [4*m N2]), [], 2),[2 2 m N2]));
%Step 3: Initializing for iterations
gam0 = gam(:,:,:,1);
h = complex(zeros(size(gam0)));
for k = 1:m
[tmp, dum] = chol(gam0(:,:,k));
if dum
warning('initialization for iterations did not work well, using arbitrary starting condition');
tmp = rand(2,2); h(:,:,k) = triu(tmp); %arbitrary initial condition
else
h(:,:,k) = tmp;
end
%h(:,:,k) = chol(gam0(:,:,k));
end
psi = repmat(h, [1 1 1 N2]);
%Step 4: Iterating to get spectral factors
ft_progress('init', fb, 'computing spectral factorization');
for iter = 1:Niterations
ft_progress(iter./Niterations, 'computing iteration %d/%d\n', iter, Niterations);
invpsi = inv2x2(psi);
g = sandwich2x2(invpsi, Sarr) + I;
gp = PlusOperator2x2(g,m,N+1); %gp constitutes positive and half of zero lags
psi_old = psi;
psi = mtimes2x2(psi, gp);
psierr = max(sum(abs(psi-psi_old)));
psierrf = mean(psierr(:));
if(psierrf<tol),
fprintf('reaching convergence at iteration %d\n',iter);
break;
end; % checking convergence
end
ft_progress('close');
%Step 5: Getting covariance matrix from spectral factors
gamtmp = reshape(real(ifft(transpose(reshape(psi, [4*m N2]))))', [2 2 m N2]);
%Step 6: Getting noise covariance & transfer function (see Example pp. 424)
A0 = gamtmp(:,:,:,1);
A0inv = inv2x2(A0);
Z = zeros(2,2,m);
for k = 1:m
%Z = A0*A0.'*fs; %Noise covariance matrix
Z(:,:,k) = A0(:,:,k)*A0(:,:,k).'; %Noise covariance matrix not multiplied by sampling frequency
%FIXME check this; at least not multiplying it removes the need to correct later on
%this also makes it more equivalent to the noisecov estimated by biosig's mvar-function
end
H = complex(zeros(2,2,m,N+1));
S = complex(zeros(2,2,m,N+1));
for k = 1:(N+1)
for kk = 1:m
H(:,:,kk,k) = psi(:,:,kk,k)*A0inv(:,:,kk); % Transfer function
S(:,:,kk,k) = psi(:,:,kk,k)*psi(:,:,kk,k)'; % Cross-spectral density
end
end
siz = [size(H) 1 1];
H = reshape(H, [4*siz(3) siz(4:end)]);
siz = [size(S) 1 1];
S = reshape(S, [4*siz(3) siz(4:end)]);
siz = [size(Z) 1 1];
Z = reshape(Z, [4*siz(3) siz(4:end)]);
siz = [size(psi) 1 1];
psi = reshape(psi, [4*siz(3) siz(4:end)]);
%---------------------------------------------------------------------
function gp = PlusOperator(g,nchan,nfreq)
% This function is for [ ]+operation:
% to take the positive lags & half of the zero lag and reconstitute
% M. Dhamala, UF, August 2006
g = transpose(reshape(g, [nchan^2 2*(nfreq-1)]));
gam = ifft(g);
% taking only the positive lags and half of the zero lag
gamp = gam;
beta0 = 0.5*gam(1,:);
gamp(1, :) = reshape(triu(reshape(beta0, [nchan nchan])),[1 nchan^2]);
gamp(nfreq+1:end,:) = 0;
% reconstituting
gp = fft(gamp);
gp = reshape(transpose(gp), [nchan nchan 2*(nfreq-1)]);
%---------------------------------------------------------------------
function gp = PlusOperator2x2(g,ncmb,nfreq)
% This function is for [ ]+operation:
% to take the positive lags & half of the zero lag and reconstitute
% M. Dhamala, UF, August 2006
g = transpose(reshape(g, [4*ncmb 2*(nfreq-1)]));
gam = ifft(g);
% taking only the positive lags and half of the zero lag
gamp = gam;
beta0 = 0.5*gam(1,:);
for k = 1:ncmb
gamp(1,(k-1)*4+1:k*4) = reshape(triu(reshape(beta0(1,(k-1)*4+1:k*4),[2 2])),[1 4]);
end
gamp(nfreq+1:end,:) = 0;
% reconstituting
gp = fft(gamp);
gp = reshape(transpose(gp), [2 2 ncmb 2*(nfreq-1)]);
%------------------------------------------------------
%this is the original code; above is vectorized version
%which is assumed to be faster with many channels present
%for k1 = 1:nchan
% for k2 = 1:nchan
% gam(k1,k2,:) = ifft(squeeze(g(k1,k2,:)));
% end
%end
%
%% taking only the positive lags and half of the zero lag
%gamp = gam;
%beta0 = 0.5*gam(:,:,1);
%gamp(:,:,1) = triu(beta0); %this is Stau
%gamp(:,:,nfreq+1:end) = 0;
%
%% reconstituting
%for k1 = 1:nchan
% for k2 = 1:nchan
% gp(k1,k2,:) = fft(squeeze(gamp(k1,k2,:)));
% end
%end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%subfunctions for the 2x2 functionality
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%determinant of a 2x2 matrix
function [d] = det2x2(x)
%computes determinant of matrix x, using explicit analytic definition if
%size(x,1) < 4, otherwise use matlab det-function
siz = size(x);
if all(siz(1:2)==2),
d = x(1,1,:,:).*x(2,2,:,:) - x(1,2,:,:).*x(2,1,:,:);
elseif all(siz(1:2)==3),
d = x(1,1,:,:).*x(2,2,:,:).*x(3,3,:,:) - ...
x(1,1,:,:).*x(2,3,:,:).*x(3,2,:,:) - ...
x(1,2,:,:).*x(2,1,:,:).*x(3,3,:,:) + ...
x(1,2,:,:).*x(2,3,:,:).*x(3,1,:,:) + ...
x(1,3,:,:).*x(2,1,:,:).*x(3,2,:,:) - ...
x(1,3,:,:).*x(2,2,:,:).*x(3,1,:,:);
elseif numel(siz)==2,
d = det(x);
else
%error
%write for loop
%for
%end
end
%%%%%%%%%%%%%%%%%%%%%%%%%
% inverse of a 2x2 matrix
function [d] = inv2x2(x)
%computes inverse of matrix x, using explicit analytic definition if
%size(x,1) < 4, otherwise use matlab inv-function
siz = size(x);
if all(siz(1:2)==2),
adjx = [x(2,2,:,:) -x(1,2,:,:); -x(2,1,:,:) x(1,1,:,:)];
denom = det2x2(x);
d = adjx./denom([1 1],[1 1],:,:);
elseif all(siz(1:2)==3),
adjx = [ det2x2(x([2 3],[2 3],:,:)) -det2x2(x([1 3],[2 3],:,:)) det2x2(x([1 2],[2 3],:,:)); ...
-det2x2(x([2 3],[1 3],:,:)) det2x2(x([1 3],[1 3],:,:)) -det2x2(x([1 2],[1 3],:,:)); ...
det2x2(x([2 3],[1 2],:,:)) -det2x2(x([1 3],[1 2],:,:)) det2x2(x([1 2],[1 2],:,:))];
denom = det2x2(x);
d = adjx./denom([1 1 1],[1 1 1],:,:);
elseif numel(siz)==2,
d = inv(x);
else
error('cannot compute slicewise inverse');
%write for loop for the higher dimensions, using normal inv
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% matrix multiplication 2x2
function [z] = mtimes2x2(x, y)
% compute x*y
% and dimensionatity is 2x2xN
z = complex(zeros(size(x)));
xconj = conj(x);
z(1,1,:,:) = x(1,1,:,:).*y(1,1,:,:) + x(1,2,:,:).*y(2,1,:,:);
z(1,2,:,:) = x(1,1,:,:).*y(1,2,:,:) + x(1,2,:,:).*y(2,2,:,:);
z(2,1,:,:) = x(2,1,:,:).*y(1,1,:,:) + x(2,2,:,:).*y(2,1,:,:);
z(2,2,:,:) = x(2,1,:,:).*y(1,2,:,:) + x(2,2,:,:).*y(2,2,:,:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% quadratic multiplication 2x2 matrix, sandwiched matrix assumed hermitian
function [z] = sandwich2x2(x, y)
% compute x*y*x' provided y = hermitian
% and dimensionatity is 2x2xN
%FIXME build in check for hermitianity
z = complex(zeros(size(x)));
xconj = conj(x);
xabs2 = abs(x).^2;
z(1,1,:,:) = xabs2(1,1,:,:) .* y(1,1,:,:) + ...
xabs2(1,2,:,:) .* y(2,2,:,:) + ...
2.*real(y(2,1,:,:).*xconj(1,1,:,:).*x(1,2,:,:));
z(2,1,:,:) = y(1,1,:,:).*xconj(1,1,:,:).*x(2,1,:,:) + ...
y(2,1,:,:).*xconj(1,1,:,:).*x(2,2,:,:) + ...
y(1,2,:,:).*xconj(1,2,:,:).*x(2,1,:,:) + ...
y(2,2,:,:).*xconj(1,2,:,:).*x(2,2,:,:);
z(1,2,:,:) = conj(z(2,1,:,:));
z(2,2,:,:) = xabs2(2,1,:,:) .* y(1,1,:,:) + ...
xabs2(2,2,:,:) .* y(2,2,:,:) + ...
2.*real(y(1,2,:,:).*xconj(2,2,:,:).*x(2,1,:,:));
%b1 b2 a1 a2' b1' b3'
%b3 b4 a2 a3 b2' b4'
%
%b1*a1+b2*a2 b1*a2'+b2*a3 b1' b3'
%b3*a1+b4*a2 b3*a2'+b4*a3 b2' b4'
%
%b1*a1*b1'+b2*a2*b1'+b1*a2'*b2'+b2*a3*b2' b1*a1*b3'+b2*a2*b3'+b1*a2'*b4'+b2*a3*b4'
%b3*a1*b1'+b4*a2*b1'+b3*a2'*b2'+b4*a3*b2' b3*a1*b3'+b4*a2*b3'+b3*a2'*b4'+b4*a3*b4'
%
%a1*abs(b1)^2 + a2*(b1'*b2) + a2'*(b1*b2') + a3*abs(b2)^2 a1*b1*b3' + a2*b2*b3' + a2'*b1*b4' + a3*b2*b4'
%a1*b1'*b3 + a2*b1'*b4 + a2'*b2'*b3 + a3*b2'*b4 a1*abs(b3)^2 + a2*(b3'*b4) + a2'*(b3*b4') + a3*abs(b4)^2
|
github
|
philippboehmsturm/antx-master
|
splint.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/splint.m
| 6,073 |
utf_8
|
effb3e13a62ccd8d4c5ce226d6e17a2c
|
function [V2, L2, L1] = splint(elc1, V1, elc2)
% SPLINT computes the spherical spline interpolation and the surface laplacian
% of an EEG potential distribution
%
% Use as
% [V2, L2, L1] = splint(elc1, V1, elc2)
% where
% elc1 electrode positions where potential is known
% elc2 electrode positions where potential is not known
% V1 known potential
% and
% V2 potential at electrode locations in elc2
% L2 laplacian of potential at electrode locations in elc2
% L1 laplacian of potential at electrode locations in elc1
%
% See also LAPINT, LAPINTMAT, LAPCAL
% This implements
% F. Perrin, J. Pernier, O. Bertrand, and J. F. Echallier.
% Spherical splines for scalp potential and curernt density mapping.
% Electroencephalogr Clin Neurophysiol, 72:184-187, 1989.
% including their corrections in
% F. Perrin, J. Pernier, O. Bertrand, and J. F. Echallier.
% Corrigenda: EEG 02274, Electroencephalography and Clinical
% Neurophysiology 76:565.
% Copyright (C) 2003, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: splint.m 952 2010-04-21 18:29:51Z roboos $
N = size(elc1,1); % number of known electrodes
M = size(elc2,1); % number of unknown electrodes
T = size(V1,2); % number of timepoints in the potential
Z = V1; % potential on known electrodes, can be matrix
% remember the actual size of the sphere
sphere1_scale = mean(sqrt(sum(elc1.^2,2)));
sphere2_scale = mean(sqrt(sum(elc2.^2,2)));
% scale all electrodes towards a unit sphere
elc1 = elc1 ./ repmat(sqrt(sum(elc1.^2,2)), 1, 3);
elc2 = elc2 ./ repmat(sqrt(sum(elc2.^2,2)), 1, 3);
% compute cosine of angle between all known electrodes
CosEii = zeros(N, N);
for i=1:N
for j=1:N
CosEii(i,j) = 1 - sum((elc1(i,:) - elc1(j,:)).^2)/2;
end
end
% compute matrix G of Perrin 1989
[gx, hx] = gh(CosEii);
G = gx;
% Note that the two simultaneous equations (2) of Perrin
% G*C + T*c0 = Z
% T'*C = 0
% with C = [c1 c2 c3 ...] can be rewritten into a single linear system
% H * [c0 c1 c2 ... cN]' = [0 z1 z2 ... zN]'
% with
% H = [ 0 1 1 1 1 1 1 . ]
% [ 1 g11 g12 . . . . . ]
% [ 1 g21 g22 . . . . . ]
% [ 1 g31 g32 . . . . . ]
% [ 1 g41 g42 . . . . . ]
% [ . . . . . . . . ]
% that subsequently can be solved using a singular value decomposition
% or another linear solver
% rewrite the linear system according to the comment above and solve it for C
% different from Perrin, this solution for C includes the c0 term
H = ones(N+1,N+1); H(1,1) = 0; H(2:end,2:end) = G;
% C = pinv(H)*[zeros(1,T); Z]; % solve with SVD
C = H \ [zeros(1,T); Z]; % solve by Gaussian elimination
% compute surface laplacian on all known electrodes by matrix multiplication
L1 = hx * C(2:end, :);
% undo the initial scaling of the sphere to get back to real units for the laplacian
L1 = L1 / (sphere1_scale^2);
if all(size(elc1)==size(elc2)) & all(elc1(:)==elc2(:))
warning('using shortcut for splint');
% do not recompute gx and hx
else
% compute cosine of angle between all known and unknown electrodes
CosEji = zeros(M, N);
for j=1:M
for i=1:N
CosEji(j,i) = 1 - sum((elc2(j,:) - elc1(i,:)).^2)/2;
end
end
[gx, hx] = gh(CosEji);
end
% compute interpolated potential on all unknown electrodes by matrix multiplication
V2 = [ones(M,1) gx] * C;
% compute surface laplacian on all unknown electrodes by matrix multiplication
L2 = hx * C(2:end, :);
% undo the initial scaling of the sphere to get back to real units for the laplacian
L2 = L2 / (sphere2_scale^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this subfunction implements equations (3) and (5b) of Perrin 1989
% for simultaneous computation of multiple values
% also implemented as MEX file, but without the adaptive N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [gx, hx] = gh(x)
M = 4; % constant in denominator
% N is the number of terms for series expansion
% N=9 works fine for 32 electrodes, but for 128 electrodes it should be larger
if max(size(x))<=32
N = 9;
elseif max(size(x))<=64
N = 14;
elseif max(size(x))<=128
N = 20;
else
N = 32;
end
p = zeros(1,N);
gx = zeros(size(x));
hx = zeros(size(x));
x(find(x>1)) = 1; % to avoid rounding off errors
x(find(x<-1)) = -1; % to avoid rounding off errors
% using Matlab function to compute legendre polynomials
% P = zeros(size(x,1), size(x,2), N);
% for k=1:N
% tmp = legendre(k,x);
% P(:,:,k) = squeeze(tmp(1,:,:));
% end
if (size(x,1)==size(x,2)) & all(all(x==x'))
issymmetric = 1;
else
issymmetric = 0;
end
for i=1:size(x,1)
if issymmetric
jloop = i:size(x,2);
else
jloop = 1:size(x,2);
end
for j=jloop
% using faster "Numerical Recipies in C" plgndr function (mex file)
for k=1:N
p(k) = plgndr(k,0,x(i,j));
end
% p = squeeze(P(i, j ,:))';
gx(i,j) = sum((2*(1:N)+1) ./ ((1:N).*((1:N)+1)).^M .* p) / (4*pi);
hx(i,j) = -sum((2*(1:N)+1) ./ ((1:N).*((1:N)+1)).^(M-1) .* p) / (4*pi);
if issymmetric
gx(j,i) = gx(i,j);
hx(j,i) = hx(i,j);
end
% fprintf('computing laplacian %f%% done\n', 100*(((i-1)*size(x,2)+j) / prod(size(x))));
end
end
|
github
|
philippboehmsturm/antx-master
|
find_nearest.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/find_nearest.m
| 5,969 |
utf_8
|
e1ece21f9a10e0702c7af8f405936b51
|
function [nearest, distance] = find_nearest(pnt1, pnt2, npart, gridflag)
% FIND_NEAREST finds the nearest vertex in a cloud of points and
% does this efficiently for many target vertices at once (by means
% of partitioning).
%
% Use as
% [nearest, distance] = find_nearest(pnt1, pnt2, npart)
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: find_nearest.m 2952 2011-02-25 11:05:36Z jansch $
global fb;
if isempty(fb)
fb = 0;
end
if nargin<4
gridflag = 0;
end
npnt1 = size(pnt1,1);
npnt2 = size(pnt2,1);
if ~gridflag
% check whether pnt2 is gridded
if all(pnt2(1,:)==1)
% it might be gridded, test in more detail
dim = max(pnt2, [], 1);
[X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3));
gridflag = all(pnt2(:)==[X(:);Y(:);Z(:)]);
end
end
if gridflag
% it is gridded, that can be treated much faster
if fb, fprintf('pnt2 is gridded\n'); end
sub = round(pnt1);
sub(sub(:)<1) = 1;
sub(sub(:,1)>dim(1),1) = dim(1);
sub(sub(:,2)>dim(2),2) = dim(2);
sub(sub(:,3)>dim(3),3) = dim(3);
ind = sub2ind(dim, sub(:,1), sub(:,2), sub(:,3));
nearest = ind(:);
distance = sqrt(sum((pnt1-pnt2(ind,:)).^2, 2));
return
end
if npart<1
npart = 1;
end
nearest = ones(size(pnt1,1),1) * -1;
distance = ones(size(pnt1,1),1) * inf;
sel = find(nearest<0);
while ~isempty(sel)
if fb, fprintf('nsel = %d, npart = %d\n', length(sel), npart); end
[pnear, pdist] = find_nearest_partition(pnt1(sel,:), pnt2, npart);
better = pdist<=distance(sel);
nearest(sel(better)) = pnear(better);
distance(sel(better)) = distance(better);
sel = find(nearest<0);
npart = floor(npart/2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nearest, distance] = find_nearest_partition(pnt1, pnt2, npart)
global fb;
if isempty(fb)
fb = 0;
end
npnt1 = size(pnt1,1);
npnt2 = size(pnt2,1);
% this will contain the output
nearest = zeros(npnt1, 1);
distance = zeros(npnt1, 1);
if npnt1==0
return
end
minpnt1 = min(pnt1,1);
minpnt2 = min(pnt2,1);
maxpnt1 = max(pnt1,1);
maxpnt2 = max(pnt2,1);
pmin = min([minpnt1; minpnt2]) - eps;
pmax = max([maxpnt1; maxpnt2]) + eps;
dx = (pmax(1)-pmin(1))/npart;
dy = (pmax(2)-pmin(2))/npart;
dz = (pmax(3)-pmin(3))/npart;
% determine the lower boundaries of each partition along the x, y, and z-axis
limx = pmin(1) + (0:(npart-1)) * dx;
limy = pmin(2) + (0:(npart-1)) * dy;
limz = pmin(3) + (0:(npart-1)) * dz;
% determine the lower boundaries of each of the N^3 partitions
[X, Y, Z] = ndgrid(limx, limy, limz);
partlim = [X(:) Y(:) Z(:)];
% determine for each vertex to which partition it belongs
binx = ceil((pnt1(:,1)- pmin(1))/dx);
biny = ceil((pnt1(:,2)- pmin(2))/dy);
binz = ceil((pnt1(:,3)- pmin(3))/dz);
ind1 = (binx-1)*npart^0 + (biny-1)*npart^1 +(binz-1)*npart^2 + 1;
binx = ceil((pnt2(:,1)- pmin(1))/dx);
biny = ceil((pnt2(:,2)- pmin(2))/dy);
binz = ceil((pnt2(:,3)- pmin(3))/dz);
ind2 = (binx-1)*npart^0 + (biny-1)*npart^1 +(binz-1)*npart^2 + 1;
% use the brute force approach within each partition
for p=1:(npart^3)
sel1 = (ind1==p);
sel2 = (ind2==p);
nsel1 = sum(sel1);
nsel2 = sum(sel2);
if nsel1==0 || nsel2==0
continue
end
pnt1s = pnt1(sel1, :);
pnt2s = pnt2(sel2, :);
[pnear, pdist] = find_nearest_brute_force(pnt1s, pnt2s);
% determine the points that are sufficiently far from the partition edge
seln = true(nsel1, 1);
if npart>1
if partlim(p,1)>pmin(1), seln = seln & (pdist < (pnt1s(:,1) - partlim(p,1))); end
if partlim(p,1)>pmin(2), seln = seln & (pdist < (pnt1s(:,2) - partlim(p,2))); end
if partlim(p,1)>pmin(3), seln = seln & (pdist < (pnt1s(:,3) - partlim(p,3))); end
if partlim(p,1)<pmin(1), seln = seln & (pdist < (partlim(p,1)) + dx - pnt1s(:,1)); end
if partlim(p,2)<pmin(2), seln = seln & (pdist < (partlim(p,2)) + dx - pnt1s(:,2)); end
if partlim(p,3)<pmin(3), seln = seln & (pdist < (partlim(p,3)) + dx - pnt1s(:,3)); end
end
% the results have to be re-indexed
dum1 = find(sel1);
dum2 = find(sel2);
nearest(dum1( seln)) = dum2(pnear( seln));
nearest(dum1(~seln)) = -dum2(pnear(~seln)); % negative means that it is not certain
distance(dum1) = pdist;
end
% handle the points that ly in empty target partitions
sel = (nearest==0);
if any(sel)
if fb, fprintf('%d points in empty target partition\n', sum(sel)); end
pnt1s = pnt1(sel, :);
[pnear, pdist] = find_nearest_brute_force(pnt1s, pnt2);
nearest(sel) = pnear;
distance(sel) = pdist;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [nearest, distance] = find_nearest_brute_force(pnt1, pnt2)
% implementation 1 -- brute force
npnt1 = size(pnt1,1);
npnt2 = size(pnt2,1);
nearest = zeros(npnt1, 1);
distance = zeros(npnt1, 1);
if npnt1==0 || npnt2==0
return
end
for i=1:npnt1
% compute squared distance
tmp = (pnt2(:,1) - pnt1(i,1)).^2 + (pnt2(:,2) - pnt1(i,2)).^2 + (pnt2(:,3) - pnt1(i,3)).^2;
[distance(i), nearest(i)] = min(tmp);
end
distance = sqrt(distance);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotpnt(pnt, varargin)
x = pnt(:,1);
y = pnt(:,2);
z = pnt(:,3);
plot3(x, y, z, varargin{:});
|
github
|
philippboehmsturm/antx-master
|
inifile.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/inifile.m
| 23,578 |
utf_8
|
f647125ffa71c22e44a119c27e73d460
|
function readsett = inifile(fileName,operation,keys,style)
%readsett = INIFILE(fileName,operation,keys,style)
% Creates, reads, or writes data from/to ini (ascii) file.
%
% - fileName: ini file name
% - operation: can be one of the following:
% 'new' (rewrites an existing or creates a new, empty file),
% 'deletekeys'(deletes keys and their values - if they exist),
% 'read' (reads values as strings),
% 'write' (writes values given as strings),
% - keys: cell array of STRINGS; max 5 columns, min
% 3 columns. Each row has the same number of columns. The columns are:
% 'section': section name string (the root is considered if empty or not given)
% 'subsection': subsection name string (the root is considered if empty or not given)
% 'key': name of the field to write/read from (given as a string).
% 'value': (optional) string-value to write to the ini file in case of 'write' operation
% 'defaultValue': (optional) value that is returned when the key is not found when reading ('read' operation)
% - style: 'tabbed' writes sections, subsections and keys in a tabbed style
% to get a more readable file. The 'plain' style is the
% default style. This only affects the keys that will be written/rewritten.
%
% - readsett: read setting in the case of the 'read' operation. If
% the keys are not found, the default values are returned
% as strings (if given in the 5-th column).
%
% EXAMPLE:
% Suppose we want a new ini file, test1.ini with 3 fields.
% We can write them into the file using:
%
% inifile('test1.ini','new');
% writeKeys = {'measurement','person','name','Primoz Cermelj';...
% 'measurement','protocol','id','1';...
% 'application','','description','some...'};
% inifile('test1.ini','write',writeKeys,'plain');
%
% Later, you can read them out. Additionally, if any of them won't
% exist, a default value will be returned (if the 5-th column is given as below).
%
% readKeys = {'measurement','person','name','','John Doe';...
% 'measurement','protocol','id','','0';...
% 'application','','description','','none'};
% readSett = inifile('test1.ini','read',readKeys);
%
%
% NOTES: When the operation is 'new', only the first 2 parameters are
% required. If the operation is 'write' and the file is empty or does not exist,
% a new file is created. When writing and if any of the section or subsection or key does not exist,
% it creates (adds) a new one.
% Everything but value is NOT case sensitive. Given keys and values
% will be trimmed (leading and trailing spaces will be removed).
% Any duplicates (section, subsection, and keys) are ignored. Empty section and/or
% subsection can be given as an empty string, '', but NOT as an empty matrix, [].
%
% This function was tested on the win32 platform only but it should
% also work on Unix/Linux platforms. Since some short-circuit operators
% are used, at least Matlab 6.5 should be used.
%
% FREE SOFTWARE - please refer the source
% Copyright (c) 2003 by Primoz Cermelj
% First release on 29.01.2003
% Primoz Cermelj, Slovenia
% Contact: [email protected]
% Download location: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=2976&objectType=file
%
% Version: 1.1.0
% Last revision: 04.02.2004
%
% Bug reports, questions, etc. can be sent to the e-mail given above.
%
% This programme is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or any later version.
%
% This programme is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%--------------------------------------------------------------------------
%----------------
% INIFILE history
%----------------
%
% [v.1.1.0] 04.02.2004
% - FIX: 'writetext' option removed (there was a bug previously)
%
% [v.1.01b] 19.12.2003
% - NEW: A new concept - multiple keys can now be read, written, or deleted
% ALL AT ONCE which makes this function much faster. For example, to
% write 1000 keys, using previous versions it took 157 seconds on a
% 1.5 GHz machine, with this new version it took only 1.83 seconds.
% In general, the speed improvement is greater when larger number of
% read/written keys are considered.
% - NEW: The format of the input parameters has changed. See above.
%
% [v.0.97] 19.11.2003
% - NEW: Additional m-function, strtrim, is no longer needed
%
% [v.0.96] 16.10.2003
% - FIX: Detects empty keys
%
% [v.0.95] 04.07.2003
% - NEW: 'deletekey' option/operation added
% - FIX: A major file refinement to obtain a more compact utility -> additional operations can "easily" be implemented
%
% [v.0.91-0.94]
% - FIX: Some minor refinements
%
% [v.0.90] 29.01.2003
% - NEW: First release of this tool
%
%----------------
global NL_CHAR;
% Checks the input arguments
if nargin < 2
error('Not enough input arguments');
end
if (strcmpi(operation,'read')) | (strcmpi(operation,'deletekeys'))
if nargin < 3
error('Not enough input arguments.');
end
if ~exist(fileName)
error(['File ' fileName ' does not exist.']);
end
[m,n] = size(keys);
if n > 5
error('Keys argument has too many columns');
end
for ii=1:m
if isempty(keys(ii,3)) | ~ischar(keys{ii,3})
error('Empty or non-char keys are not allowed.');
end
end
elseif (strcmpi(operation,'write')) | (strcmpi(operation,'writetext'))
if nargin < 3
error('Not enough input arguments');
end
[m,n] = size(keys);
for ii=1:m
if isempty(keys(ii,3)) | ~ischar(keys{ii,3})
error('Empty or non-char keys are not allowed.');
end
end
elseif (~strcmpi(operation,'new'))
error(['Unknown inifile operation: ''' operation '''']);
end
if nargin >= 3
for ii=1:m
for jj=1:n
if ~ischar(keys{ii,jj})
error('All cells from keys must be given as strings, even the empty ones.');
end
end
end
end
if nargin < 4 || isempty(style)
style = 'plain';
else
if ~(strcmpi(style,'plain') | strcmpi(style,'tabbed')) | ~ischar(style)
error('Unsupported style given or style not given as a string');
end
end
% Sets new-line character (string)
if ispc
NL_CHAR = '\r\n';
else
NL_CHAR = '\n';
end
%----------------------------
% CREATES a new, empty file (rewrites an existing one)
%----------------------------
if strcmpi(operation,'new')
fh = fopen(fileName,'w');
if fh == -1
error(['File: ''' fileName ''' can not be (re)created']);
end
fclose(fh);
return
%----------------------------
% READS key-value pairs out
%----------------------------
elseif (strcmpi(operation,'read'))
if n < 5
defaultValues = cellstrings(m,1);
else
defaultValues = keys(:,5);
end
readsett = defaultValues;
keysIn = keys(:,1:3);
[secsExist,subsecsExist,keysExist,readValues,so,eo] = findkeys(fileName,keysIn);
ind = find(keysExist);
if ~isempty(ind)
readsett(ind) = readValues(ind);
end
return
%----------------------------
% WRITES key-value pairs to an existing or non-existing
% file (file can even be empty)
%----------------------------
elseif (strcmpi(operation,'write'))
if m < 1
error('At least one key is needed when writing keys');
end
if ~exist(fileName)
inifile(fileName,'new');
end
writekeys(fileName,keys,style);
return
%----------------------------
% DELETES key-value pairs out
%----------------------------
elseif (strcmpi(operation,'deletekeys'))
deletekeys(fileName,keys);
else
error('Unknown operation for INIFILE.');
end
%--------------------------------------------------
%%%%%%%%%%%%% SUBFUNCTIONS SECTION %%%%%%%%%%%%%%%%
%--------------------------------------------------
%------------------------------------
function [secsExist,subSecsExist,keysExist,values,startOffsets,endOffsets] = findkeys(fileName,keysIn)
% This function parses ini file for keys as given by keysIn. keysIn is a cell
% array of strings having 3 columns; section, subsection and key in each row.
% section and/or subsection can be empty (root section or root subsection)
% but the key can not be empty. The startOffsets and endOffsets are start and
% end bytes that each key occuppies, respectively. If any of the keys doesn't exist,
% startOffset and endOffset for this key are the same. A special case is
% when the key that doesn't exist also corresponds to a non-existing
% section and non-existing subsection. In such a case, the startOffset and
% endOffset have values of -1.
nKeys = size(keysIn,1); % number of keys
nKeysLocated = 0; % number of keys located
secsExist = zeros(nKeys,1); % if section exists (and is non-empty)
subSecsExist = zeros(nKeys,1); % if subsection...
keysExist = zeros(nKeys,1); % if key that we are looking for exists
keysLocated = keysExist; % if the key's position (existing or non-existing) is LOCATED
values = cellstrings(nKeys,1); % read values of keys (strings)
startOffsets = -ones(nKeys,1); % start byte-position of the keys
endOffsets = -ones(nKeys,1); % end byte-position of the keys
keyInd = find(strcmpi(keysIn(:,1),'')); % key indices having [] section (root section)
line = [];
currSection = '';
currSubSection = '';
fh = fopen(fileName,'r');
if fh == -1
error(['File: ''' fileName ''' does not exist or can not be opened.']);
end
try
%--- Searching for the keys - their values and start and end locations in bytes
while 1
pos1 = ftell(fh);
line = fgetl(fh);
if line == -1 % end of file, exit
line = [];
break
end
[status,readValue,readKey] = processiniline(line);
if (status == 1) % (new) section found
% Keys that were found as belonging to any previous section
% are now assumed as located (because another
% section is found here which could even be a repeated one)
keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) );
if length(keyInd)
keysLocated(keyInd) = 1;
nKeysLocated = nKeysLocated + length(keyInd);
end
currSection = readValue;
currSubSection = '';
% Indices to non-located keys belonging to current section
keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) );
if ~isempty(keyInd)
secsExist(keyInd) = 1;
end
pos2 = ftell(fh);
startOffsets(keyInd) = pos2+1;
endOffsets(keyInd) = pos2+1;
elseif (status == 2) % (new) subsection found
% Keys that were found as belonging to any PREVIOUS section
% and/or subsection are now assumed as located (because another
% subsection is found here which could even be a repeated one)
keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) & ~keysLocated & strcmpi(keysIn(:,2),currSubSection));
if length(keyInd)
keysLocated(keyInd) = 1;
nKeysLocated = nKeysLocated + length(keyInd);
end
currSubSection = readValue;
% Indices to non-located keys belonging to current section and subsection at the same time
keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) & ~keysLocated & strcmpi(keysIn(:,2),currSubSection));
if ~isempty(keyInd)
subSecsExist(keyInd) = 1;
end
pos2 = ftell(fh);
startOffsets(keyInd) = pos2+1;
endOffsets(keyInd) = pos2+1;
elseif (status == 3) % key found
if isempty(keyInd)
continue % no keys from 'keys' - from section-subsection par currently in
end
currKey = readValue;
pos2 = ftell(fh); % the last-byte position of the read key - the total sum of chars read so far
for ii=1:length(keyInd)
if strcmpi( keysIn(keyInd(ii),3),readKey ) & ~keysLocated(keyInd(ii))
keysExist(keyInd(ii)) = 1;
startOffsets(keyInd(ii)) = pos1+1;
endOffsets(keyInd(ii)) = pos2;
values{keyInd(ii)} = currKey;
keysLocated(keyInd(ii)) = 1;
nKeysLocated = nKeysLocated + 1;
else
if ~keysLocated(keyInd(ii))
startOffsets(keyInd(ii)) = pos2+1;
endOffsets(keyInd(ii)) = pos2+1;
end
end
end
if nKeysLocated >= nKeys % if all the keys are located
break
end
else
% general text found (even empty line(s))
end
%--- End searching
end
fclose(fh);
catch
fclose(fh);
error(['Error parsing the file for keys: ' fileName ': ' lasterr]);
end
%------------------------------------
%------------------------------------
function writekeys(fileName,keys,style)
% Writes keys to the section and subsection pair
% If any of the keys doesn't exist, a new key is added to
% the end of the section-subsection pair otherwise the key is updated (changed).
% Keys is a 4-column cell array of strings.
global NL_CHAR;
RETURN = sprintf('\r');
NEWLINE = sprintf('\n');
[m,n] = size(keys);
if n < 4
error('Keys to be written are given in an invalid format.');
end
% Get keys position first using findkeys
keysIn = keys;
[secsExist,subSecsExist,keysExist,readValues,so,eo] = findkeys(fileName,keys(:,1:3));
% Read the whole file's contents out
fh = fopen(fileName,'r');
if fh == -1
error(['File: ''' fileName ''' does not exist or can not be opened.']);
end
try
dataout = fscanf(fh,'%c');
catch
fclose(fh);
error(lasterr);
end
fclose(fh);
%--- Rewriting the file -> writing the refined contents
fh = fopen(fileName,'w');
if fh == -1
error(['File: ''' fileName ''' does not exist or can not be opened.']);
end
try
tab1 = [];
if strcmpi(style,'tabbed')
tab1 = sprintf('\t');
end
% Proper sorting of keys is cruical at this point in order to avoid
% inproper key-writing.
% Find keys with -1 offsets - keys with non-existing section AND
% subsection - keys that will be added to the end of the file
fs = length(dataout); % file size in bytes
nAddedKeys = 0;
ind = find(so==-1);
if ~isempty(ind)
so(ind) = (fs+10); % make sure these keys will come to the end when sorting
eo(ind) = (fs+10);
nAddedKeys = length(ind);
end
% Sort keys according to start- and end-offsets
[dummy,ind] = sort(so,1);
so = so(ind);
eo = eo(ind);
keysIn = keysIn(ind,:);
keysExist = keysExist(ind);
secsExist = secsExist(ind);
subSecsExist = subSecsExist(ind);
readValues = readValues(ind);
values = keysIn(:,4);
% Find keys with equal start offset (so) and additionally sort them
% (locally). These are non-existing keys, including the ones whose
% section and subsection will also be added.
nKeys = size(so,1);
fullInd = 1:nKeys;
ii = 1;
while ii < nKeys
ind = find(so==so(ii));
if ~isempty(ind) && length(ind) > 1
n = length(ind);
from = ind(1);
to = ind(end);
tmpKeys = keysIn( ind,: );
[tmpKeys,ind2] = sortrows( lower(tmpKeys) );
fullInd(from:to) = ind(ind2);
ii = ii + n;
else
ii = ii + 1;
end
end
% Final (re)sorting
so = so(fullInd);
eo = eo(fullInd);
keysIn = keysIn(fullInd,:);
keysExist = keysExist(fullInd);
secsExist = secsExist(fullInd);
subSecsExist = subSecsExist(fullInd);
readValues = readValues(fullInd);
values = keysIn(:,4);
% Refined data - datain
datain = [];
for ii=1:nKeys % go through all the keys, existing and non-existing ones
if ii==1
from = 1; % from byte-offset of original data (dataout)
else
from = eo(ii-1);
if keysExist(ii-1)
from = from + 1;
end
end
to = min(so(ii)-1,fs); % to byte-offset of original data (dataout)
if ~isempty(dataout)
datain = [datain dataout(from:to)]; % the lines before the key
end
if length(datain) & (~(datain(end)==RETURN | datain(end)==NEWLINE))
datain = [datain, sprintf(NL_CHAR)];
end
tab = [];
if ~keysExist(ii)
if ~secsExist(ii) && ~isempty(keysIn(ii,1))
if ~isempty(keysIn{ii,1})
datain = [datain sprintf(['%s' NL_CHAR],['[' keysIn{ii,1} ']'])];
end
% Key-indices with the same section as this, ii-th key (even empty sections are considered)
ind = find( strcmpi( keysIn(:,1), keysIn(ii,1)) );
% This section exists at all keys corresponding to the same section from know on (even the empty ones)
secsExist(ind) = 1;
end
if ~subSecsExist(ii) && ~isempty(keysIn(ii,2))
if ~isempty( keysIn{ii,2})
if secsExist(ii); tab = tab1; end;
datain = [datain sprintf(['%s' NL_CHAR],[tab '{' keysIn{ii,2} '}'])];
end
% Key-indices with the same section AND subsection as this, ii-th key (even empty sections and subsections are considered)
ind = find( strcmpi( keysIn(:,1), keysIn(ii,1)) & strcmpi( keysIn(:,2), keysIn(ii,2)) );
% This subsection exists at all keys corresponding to the same section and subsection from know on (even the empty ones)
subSecsExist(ind) = 1;
end
end
if secsExist(ii) & (~isempty(keysIn{ii,1})); tab = tab1; end;
if subSecsExist(ii) & (~isempty(keysIn{ii,2})); tab = [tab tab1]; end;
datain = [datain sprintf(['%s' NL_CHAR],[tab keysIn{ii,3} ' = ' values{ii}])];
end
from = eo(ii);
if keysExist(ii)
from = from + 1;
end
to = length(dataout);
if from < to
datain = [datain dataout(from:to)];
end
fprintf(fh,'%c',datain);
catch
fclose(fh);
error(['Error writing keys to file: ''' fileName ''' : ' lasterr]);
end
fclose(fh);
%------------------------------------
%------------------------------------
function deletekeys(fileName,keys)
% Deletes keys and their values out; keys must have at least 3 columns:
% section, subsection, and key
[m,n] = size(keys);
if n < 3
error('Keys to be deleted are given in an invalid format.');
end
% Get keys position first
keysIn = keys;
[secsExist,subSecsExist,keysExist,readValues,so,eo] = findkeys(fileName,keys(:,1:3));
% Read the whole file's contents out
fh = fopen(fileName,'r');
if fh == -1
error(['File: ''' fileName ''' does not exist or can not be opened.']);
end
try
dataout = fscanf(fh,'%c');
catch
fclose(fh);
error(lasterr);
end
fclose(fh);
%--- Rewriting the file -> writing the refined contents
fh = fopen(fileName,'w');
if fh == -1
error(['File: ''' fileName ''' does not exist or can not be opened.']);
end
try
ind = find(keysExist);
nExistingKeys = length(ind);
datain = dataout;
if nExistingKeys
% Filtering - retain only the existing keys...
fs = length(dataout); % file size in bytes
so = so(ind);
eo = eo(ind);
keysIn = keysIn(ind,:);
% ...and sorting
[so,ind] = sort(so);
eo = eo(ind);
keysIn = keysIn(ind,:);
% Refined data - datain
datain = [];
for ii=1:nExistingKeys % go through all the existing keys
if ii==1
from = 1; % from byte-offset of original data (dataout)
else
from = eo(ii-1)+1;
end
to = so(ii)-1; % to byte-offset of original data (dataout)
if ~isempty(dataout)
datain = [datain dataout(from:to)]; % the lines before the key
end
end
from = eo(ii)+1;
to = length(dataout);
if from < to
datain = [datain dataout(from:to)];
end
end
fprintf(fh,'%c',datain);
catch
fclose(fh);
error(['Error deleting keys from file: ''' fileName ''' : ' lasterr]);
end
fclose(fh);
%------------------------------------
%------------------------------------
function [status,value,key] = processiniline(line)
% Processes a line read from the ini file and
% returns the following values:
% - status: 0 => empty line or unknown string
% 1 => section found
% 2 => subsection found
% 3 => key-value pair found
% - value: value-string of a key, section, or subsection
% - key: key-string
status = 0;
value = [];
key = [];
line = strim(line); % removes any leading and trailing spaces
if isempty(line) % empty line
return
end
if (line(1) == '[') & (line(end) == ']')... % section found
& (length(line) >= 3)
value = lower(line(2:end-1));
status = 1;
elseif (line(1) == '{') &... % subsection found
(line(end) == '}') & (length(line) >= 3)
value = lower(line(2:end-1));
status = 2;
else
pos = findstr(line,'=');
if ~isempty(pos) % key-value pair found
status = 3;
key = lower(line(1:pos-1));
value = line(pos+1:end);
key = strim(key); % removes any leading and trailing spaces
value = strim(value); % removes any leading and trailing spaces
if isempty(key) % empty keys are not allowed
status = 0;
key = [];
value = [];
end
end
end
%------------------------------------
%------------------------------------
function outstr = strim(str)
% Removes leading and trailing spaces (spaces, tabs, endlines,...)
% from the str string.
if isnumeric(str);
outstr = str;
return
end
ind = find( ~isspace(str) ); % indices of the non-space characters in the str
if isempty(ind)
outstr = [];
else
outstr = str( ind(1):ind(end) );
end
%------------------------------------
function cs = cellstrings(m,n)
% Creates a m x n cell array of empty strings - ''
cs = cell(m,n);
for ii=1:m
for jj=1:n
cs{ii,jj} = '';
end
end
|
github
|
philippboehmsturm/antx-master
|
read_besa_avr.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/read_besa_avr.m
| 3,929 |
utf_8
|
9e36880bf3e6eb7d211a5dea7ce2d885
|
function [avr] = read_besa_avr(filename)
% READ_BESA_AVR reads average EEG data in BESA format
%
% Use as
% [avr] = read_besa_avr(filename)
%
% This will return a structure with the header information in
% avr.npnt
% avr.tsb
% avr.di
% avr.sb
% avr.sc
% avr.Nchan (optional)
% avr.label (optional)
% and the ERP data is contained in the Nchan X Nsamples matrix
% avr.data
% Copyright (C) 2003-2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_besa_avr.m 2885 2011-02-16 09:41:58Z roboos $
fid = fopen(filename, 'rt');
% the first line contains header information
headstr = fgetl(fid);
ok = 0;
if ~ok
try
buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f SegmentName= %s\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
avr.Nchan = buf(6);
avr.SegmentName = buf(7);
ok = 1;
catch
ok = 0;
end
end
if ~ok
try
buf = fscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
avr.Nchan = buf(6);
ok = 1;
catch
ok = 0;
end
end
if ~ok
try
buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
ok = 1;
catch
ok = 0;
end
end
if ~ok
error('Could not interpret the header information.');
end
% rewind to the beginning of the file, skip the header line
fseek(fid, 0, 'bof');
fgetl(fid);
% the second line may contain channel names
chanstr = fgetl(fid);
chanstr = deblank(fliplr(deblank(fliplr(chanstr))));
if (chanstr(1)>='A' && chanstr(1)<='Z') || (chanstr(1)>='a' && chanstr(1)<='z')
haschan = 1;
avr.label = str2cell(strrep(deblank(chanstr), '''', ''))';
else
[root, name] = fileparts(filename);
haschan = 0;
elpfile = fullfile(root, [name '.elp']);
elafile = fullfile(root, [name '.ela']);
if exist(elpfile, 'file')
% read the channel names from the accompanying ELP file
lbl = importdata(elpfile);
avr.label = strrep(lbl.textdata(:,2) ,'''', '');
elseif exist(elafile, 'file')
% read the channel names from the accompanying ELA file
lbl = importdata(elafile);
lbl = strrep(lbl ,'MEG ', ''); % remove the channel type
lbl = strrep(lbl ,'EEG ', ''); % remove the channel type
avr.label = lbl;
else
warning('Could not create channels labels.');
end
end
% seek to the beginning of the data
fseek(fid, 0, 'bof');
fgetl(fid); % skip the header line
if haschan
fgetl(fid); % skip the channel name line
end
buf = fscanf(fid, '%f');
nchan = length(buf)/avr.npnt;
avr.data = reshape(buf, avr.npnt, nchan)';
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to cut a string into pieces at the spaces
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = str2cell(s)
c = {};
[t, r] = strtok(s, ' ');
while ~isempty(t)
c{end+1} = t;
[t, r] = strtok(r, ' ');
end
|
github
|
philippboehmsturm/antx-master
|
sftrans.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/sftrans.m
| 7,947 |
utf_8
|
f64cb2e7d19bcdc6232b39d8a6d70e7c
|
% Copyright (C) 1999 Paul Kienzle
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)
%
% Transform band edges of a generic lowpass filter (cutoff at W=1)
% represented in splane zero-pole-gain form. W is the edge of the
% target filter (or edges if band pass or band stop). Stop is true for
% high pass and band stop filters or false for low pass and band pass
% filters. Filter edges are specified in radians, from 0 to pi (the
% nyquist frequency).
%
% Theory: Given a low pass filter represented by poles and zeros in the
% splane, you can convert it to a low pass, high pass, band pass or
% band stop by transforming each of the poles and zeros individually.
% The following table summarizes the transformation:
%
% Transform Zero at x Pole at x
% ---------------- ------------------------- ------------------------
% Low Pass zero: Fc x/C pole: Fc x/C
% S -> C S/Fc gain: C/Fc gain: Fc/C
% ---------------- ------------------------- ------------------------
% High Pass zero: Fc C/x pole: Fc C/x
% S -> C Fc/S pole: 0 zero: 0
% gain: -x gain: -1/x
% ---------------- ------------------------- ------------------------
% Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S^2+FhFl pole: 0 zero: 0
% S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
% S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
% Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl)
% S -> C -------- gain: -x gain: -1/x
% S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
% Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
% 2 z-1 pole: -1 zero: -1
% S -> - --- gain: (2-xT)/T gain: (2-xT)/T
% T z+1
% ---------------- ------------------------- ------------------------
%
% where C is the cutoff frequency of the initial lowpass filter, Fc is
% the edge of the target low/high pass filter and [Fl,Fh] are the edges
% of the target band pass/stop filter. With abundant tedious algebra,
% you can derive the above formulae yourself by substituting the
% transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a
% pole at x, and converting the result into the form:
%
% H(S)=g prod(S-Xi)/prod(S-Xj)
%
% The transforms are from the references. The actual pole-zero-gain
% changes I derived myself.
%
% Please note that a pole and a zero at the same place exactly cancel.
% This is significant for High Pass, Band Pass and Band Stop filters
% which create numerous extra poles and zeros, most of which cancel.
% Those which do not cancel have a 'fill-in' effect, extending the
% shorter of the sets to have the same number of as the longer of the
% sets of poles and zeros (or at least split the difference in the case
% of the band pass filter). There may be other opportunistic
% cancellations but I will not check for them.
%
% Also note that any pole on the unit circle or beyond will result in
% an unstable filter. Because of cancellation, this will only happen
% if the number of poles is smaller than the number of zeros and the
% filter is high pass or band pass. The analytic design methods all
% yield more poles than zeros, so this will not be a problem.
%
% References:
%
% Proakis & Manolakis (1992). Digital Signal Processing. New York:
% Macmillan Publishing Company.
% Author: Paul Kienzle <[email protected]>
% 2000-03-01 [email protected]
% leave transformed Sg as a complex value since cheby2 blows up
% otherwise (but only for odd-order low-pass filters). bilinear
% will return Zg as real, so there is no visible change to the
% user of the IIR filter design functions.
% 2001-03-09 [email protected]
% return real Sg; don't know what to do for imaginary filters
function [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)
if (nargin ~= 5)
usage('[Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)');
end;
C = 1;
p = length(Sp);
z = length(Sz);
if z > p || p == 0
error('sftrans: must have at least as many poles as zeros in s-plane');
end
if length(W)==2
Fl = W(1);
Fh = W(2);
if stop
% ---------------- ------------------------- ------------------------
% Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl)
% S -> C -------- gain: -x gain: -1/x
% S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
if (isempty(Sz))
Sg = Sg * real (1./ prod(-Sp));
elseif (isempty(Sp))
Sg = Sg * real(prod(-Sz));
else
Sg = Sg * real(prod(-Sz)/prod(-Sp));
end
b = (C*(Fh-Fl)/2)./Sp;
Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)];
if isempty(Sz)
Sz = [extend(1+rem([1:2*p],2))];
else
b = (C*(Fh-Fl)/2)./Sz;
Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if (p > z)
Sz = [Sz, extend(1+rem([1:2*(p-z)],2))];
end
end
else
% ---------------- ------------------------- ------------------------
% Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl)
% S^2+FhFl pole: 0 zero: 0
% S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C
% S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2
% ---------------- ------------------------- ------------------------
Sg = Sg * (C/(Fh-Fl))^(z-p);
b = Sp*((Fh-Fl)/(2*C));
Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if isempty(Sz)
Sz = zeros(1,p);
else
b = Sz*((Fh-Fl)/(2*C));
Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)];
if (p>z)
Sz = [Sz, zeros(1, (p-z))];
end
end
end
else
Fc = W;
if stop
% ---------------- ------------------------- ------------------------
% High Pass zero: Fc C/x pole: Fc C/x
% S -> C Fc/S pole: 0 zero: 0
% gain: -x gain: -1/x
% ---------------- ------------------------- ------------------------
if (isempty(Sz))
Sg = Sg * real (1./ prod(-Sp));
elseif (isempty(Sp))
Sg = Sg * real(prod(-Sz));
else
Sg = Sg * real(prod(-Sz)/prod(-Sp));
end
Sp = C * Fc ./ Sp;
if isempty(Sz)
Sz = zeros(1,p);
else
Sz = [C * Fc ./ Sz];
if (p > z)
Sz = [Sz, zeros(1,p-z)];
end
end
else
% ---------------- ------------------------- ------------------------
% Low Pass zero: Fc x/C pole: Fc x/C
% S -> C S/Fc gain: C/Fc gain: Fc/C
% ---------------- ------------------------- ------------------------
Sg = Sg * (C/Fc)^(z-p);
Sp = Fc * Sp / C;
Sz = Fc * Sz / C;
end
end
|
github
|
philippboehmsturm/antx-master
|
filtfilt.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/filtfilt.m
| 3,297 |
iso_8859_1
|
d01a26a827bc3379f05bbc57f46ac0a9
|
% Copyright (C) 1999 Paul Kienzle
% Copyright (C) 2007 Francesco Potortì
% Copyright (C) 2008 Luca Citi
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: y = filtfilt(b, a, x)
%
% Forward and reverse filter the signal. This corrects for phase
% distortion introduced by a one-pass filter, though it does square the
% magnitude response in the process. That's the theory at least. In
% practice the phase correction is not perfect, and magnitude response
% is distorted, particularly in the stop band.
%%
% Example
% [b, a]=butter(3, 0.1); % 10 Hz low-pass filter
% t = 0:0.01:1.0; % 1 second sample
% x=sin(2*pi*t*2.3)+0.25*randn(size(t)); % 2.3 Hz sinusoid+noise
% y = filtfilt(b,a,x); z = filter(b,a,x); % apply filter
% plot(t,x,';data;',t,y,';filtfilt;',t,z,';filter;')
% Changelog:
% 2000 02 [email protected]
% - pad with zeros to load up the state vector on filter reverse.
% - add example
% 2007 12 [email protected]
% - use filtic to compute initial and final states
% - work for multiple columns as well
% 2008 12 [email protected]
% - fixed instability issues with IIR filters and noisy inputs
% - initial states computed according to Likhterov & Kopeika, 2003
% - use of a "reflection method" to reduce end effects
% - added some basic tests
% TODO: (pkienzle) My version seems to have similar quality to matlab,
% but both are pretty bad. They do remove gross lag errors, though.
function y = filtfilt(b, a, x)
if (nargin ~= 3)
usage('y=filtfilt(b,a,x)');
end
rotate = (size(x, 1)==1);
if rotate % a row vector
x = x(:); % make it a column vector
end
lx = size(x,1);
a = a(:).';
b = b(:).';
lb = length(b);
la = length(a);
n = max(lb, la);
lrefl = 3 * (n - 1);
if la < n, a(n) = 0; end
if lb < n, b(n) = 0; end
% Compute a the initial state taking inspiration from
% Likhterov & Kopeika, 2003. "Hardware-efficient technique for
% minimizing startup transients in Direct Form II digital filters"
kdc = sum(b) / sum(a);
if (abs(kdc) < inf) % neither NaN nor +/- Inf
si = fliplr(cumsum(fliplr(b - kdc * a)));
else
si = zeros(size(a)); % fall back to zero initialization
end
si(1) = [];
y = zeros(size(x));
for c = 1:size(x, 2) % filter all columns, one by one
v = [2*x(1,c)-x((lrefl+1):-1:2,c); x(:,c);
2*x(end,c)-x((end-1):-1:end-lrefl,c)]; % a column vector
% Do forward and reverse filtering
v = filter(b,a,v,si*v(1)); % forward filter
v = flipud(filter(b,a,flipud(v),si*v(end))); % reverse filter
y(:,c) = v((lrefl+1):(lx+lrefl));
end
if (rotate) % x was a row vector
y = rot90(y); % rotate it back
end
|
github
|
philippboehmsturm/antx-master
|
nanstd.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nanstd.m
| 2,445 |
utf_8
|
5bfd7c73ce6d67e3163bdc51d464b590
|
% nanstd() - std, not considering NaN values
%
% Usage: same as std()
% Author: Arnaud Delorme, CNL / Salk Institute, Sept 2003
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nanstd.m 2885 2011-02-16 09:41:58Z roboos $
function out = nanstd(in, varargin)
if nargin < 1
help nanstd;
return;
end
if nargin == 1, flag = 0; end
if nargin < 3,
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end
end
if nargin == 2, flag = varargin{1}; end
if nargin == 3,
flag = varargin{1};
dim = varargin{2};
end
if isempty(flag), flag = 0; end
nans = find(isnan(in));
in(nans) = 0;
nonnans = ones(size(in));
nonnans(nans) = 0;
nonnans = sum(nonnans, dim);
nononnans = find(nonnans==0);
nonnans(nononnans) = 1;
out = sqrt((sum(in.^2, dim)-sum(in, dim).^2./nonnans)./(nonnans-abs(flag-1)));
out(nononnans) = NaN;
|
github
|
philippboehmsturm/antx-master
|
avw_img_write.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/avw_img_write.m
| 14,014 |
utf_8
|
a7cdce842fad1e63e84c6e80be83dbcd
|
function avw_img_write(avw, fileprefix, IMGorient, machine, verbose)
% avw_img_write - write Analyze image files (*.img)
%
% avw_img_write(avw,fileprefix,[IMGorient],[machine],[verbose])
%
% avw.img - a 3D matrix of image data (double precision).
% avw.hdr - a struct with image data parameters. If
% not empty, this function calls avw_hdr_write.
%
% fileprefix - a string, the filename without the .img
% extension. If empty, may use avw.fileprefix
%
% IMGorient - optional int, force writing of specified
% orientation, with values:
%
% [], if empty, will use avw.hdr.hist.orient field
% 0, transverse/axial unflipped (default, radiological)
% 1, coronal unflipped
% 2, sagittal unflipped
% 3, transverse/axial flipped, left to right
% 4, coronal flipped, anterior to posterior
% 5, sagittal flipped, superior to inferior
%
% This function will set avw.hdr.hist.orient and write the
% image data in a corresponding order. This function is
% in alpha development, so it has not been exhaustively
% tested (07/2003). See avw_img_read for more information
% and documentation on the orientation option.
% Orientations 3-5 are NOT recommended! They are part
% of the Analyze format, but only used in Analyze
% for faster raster graphics during movies.
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le'.
%
% verbose - the default is to output processing information to the command
% window. If verbose = 0, this will not happen.
%
% Tip: to change the data type, set avw.hdr.dime.datatype to:
%
% 1 Binary ( 1 bit per voxel)
% 2 Unsigned character ( 8 bits per voxel)
% 4 Signed short ( 16 bits per voxel)
% 8 Signed integer ( 32 bits per voxel)
% 16 Floating point ( 32 bits per voxel)
% 32 Complex, 2 floats ( 64 bits per voxel), not supported
% 64 Double precision ( 64 bits per voxel)
% 128 Red-Green-Blue (128 bits per voxel), not supported
%
% See also: avw_write, avw_hdr_write,
% avw_read, avw_hdr_read, avw_img_read, avw_view
%
% $Revision: 2885 $ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------------------
% Check inputs
if ~exist('avw','var'),
doc avw_img_write;
error('...no input avw.');
elseif isempty(avw),
error('...empty input avw.');
elseif ~isfield(avw,'img'),
error('...empty input avw.img');
end
if ~exist('fileprefix','var'),
if isfield(avw,'fileprefix'),
if ~isempty(avw.fileprefix),
fileprefix = avw.fileprefix;
else
fileprefix = [];
end
else
fileprefix = [];
end
end
if isempty(fileprefix),
[fileprefix, pathname, filterindex] = uiputfile('*.hdr','Specify an output Analyze .hdr file');
if pathname, cd(pathname); end
if ~fileprefix,
doc avw_img_write;
error('no output .hdr file specified');
end
end
if findstr('.hdr',fileprefix),
% fprintf('AVW_IMG_WRITE: Removing .hdr extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.hdr','');
end
if findstr('.img',fileprefix),
% fprintf('AVW_IMG_WRITE: Removing .img extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.img','');
end
if ~exist('IMGorient','var'), IMGorient = ''; end
if ~exist('machine','var'), machine = 'ieee-le'; end
if ~exist('verbose','var'), verbose = 1; end
if isempty(IMGorient), IMGorient = ''; end
if isempty(machine), machine = 'ieee-le'; end
if isempty(verbose), verbose = 1; end
%------------------------------------------------------------------------
% MAIN
if verbose,
version = '[$Revision: 2885 $]';
fprintf('\nAVW_IMG_WRITE [v%s]\n',version(12:16)); tic;
end
fid = fopen(sprintf('%s.img',fileprefix),'w',machine);
if fid < 0,
msg = sprintf('Cannot open file %s.img\n',fileprefix);
error(msg);
else
avw = write_image(fid,avw,fileprefix,IMGorient,machine,verbose);
end
if verbose,
t=toc; fprintf('...done (%5.2f sec).\n\n',t);
end
% MUST write header after the image, to ensure any
% orientation changes during image write are saved
% in the header
avw_hdr_write(avw,fileprefix,machine,verbose);
return
%-----------------------------------------------------------------------------------
function avw = write_image(fid,avw,fileprefix,IMGorient,machine,verbose)
% short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */
% short int datatype /* Datatype for this image set */
% /*Acceptable values for datatype are*/
% #define DT_NONE 0
% #define DT_UNKNOWN 0 /*Unknown data type*/
% #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/
% #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/
% #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/
% #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/
% #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/
% #define DT_COMPLEX 32 /*Complex,2 floats (64 bits per voxel)/*
% #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/
% #define DT_RGB 128 /*A Red-Green-Blue datatype*/
% #define DT_ALL 255 /*Undocumented*/
switch double(avw.hdr.dime.datatype),
case 1,
avw.hdr.dime.bitpix = int16( 1); precision = 'bit1';
case 2,
avw.hdr.dime.bitpix = int16( 8); precision = 'uchar';
case 4,
avw.hdr.dime.bitpix = int16(16); precision = 'int16';
case 8,
avw.hdr.dime.bitpix = int16(32); precision = 'int32';
case 16,
avw.hdr.dime.bitpix = int16(32); precision = 'single';
case 32,
error('...complex datatype not yet supported.\n');
case 64,
avw.hdr.dime.bitpix = int16(64); precision = 'double';
case 128,
error('...RGB datatype not yet supported.\n');
otherwise
warning('...unknown datatype, using type 16 (32 bit floats).\n');
avw.hdr.dime.datatype = int16(16);
avw.hdr.dime.bitpix = int16(32); precision = 'single';
end
% write the .img file, depending on the .img orientation
if verbose,
fprintf('...writing %s precision Analyze image (%s).\n',precision,machine);
end
fseek(fid,0,'bof');
% The standard image orientation is axial unflipped
if isempty(avw.hdr.hist.orient),
msg = [ '...avw.hdr.hist.orient ~= 0.\n',...
' This function assumes the input avw.img is\n',...
' in axial unflipped orientation in memory. This is\n',...
' created by the avw_img_read function, which converts\n',...
' any input file image to axial unflipped in memory.\n'];
warning(msg)
end
if isempty(IMGorient),
if verbose,
fprintf('...no IMGorient specified, using avw.hdr.hist.orient value.\n');
end
IMGorient = double(avw.hdr.hist.orient);
end
if ~isfinite(IMGorient),
if verbose,
fprintf('...IMGorient is not finite!\n');
end
IMGorient = 99;
end
switch IMGorient,
case 0, % transverse/axial unflipped
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
if verbose, fprintf('...writing axial unflipped\n'); end
avw.hdr.hist.orient = uint8(0);
SliceDim = double(avw.hdr.dime.dim(4)); % z
RowDim = double(avw.hdr.dime.dim(3)); % y
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(4));
RowSz = double(avw.hdr.dime.pixdim(3));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for z = 1:SliceDim,
for y = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 1, % coronal unflipped
% For the 'coronal unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient posterior to anterior
if verbose, fprintf('...writing coronal unflipped\n'); end
avw.hdr.hist.orient = uint8(1);
SliceDim = double(avw.hdr.dime.dim(3)); % y
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(3));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for y = 1:SliceDim,
for z = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 2, % sagittal unflipped
% For the 'sagittal unflipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'x' axis - from patient right to left
if verbose, fprintf('...writing sagittal unflipped\n'); end
avw.hdr.hist.orient = uint8(2);
SliceDim = double(avw.hdr.dime.dim(2)); % x
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(3)); % y
SliceSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(3));
y = 1:PixelDim;
for x = 1:SliceDim,
for z = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 3, % transverse/axial flipped
% For the 'transverse flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient anterior to posterior*
% Slices in 'z' axis - from patient inferior to superior
if verbose,
fprintf('...writing axial flipped (+Y from Anterior to Posterior)\n');
end
avw.hdr.hist.orient = uint8(3);
SliceDim = double(avw.hdr.dime.dim(4)); % z
RowDim = double(avw.hdr.dime.dim(3)); % y
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(4));
RowSz = double(avw.hdr.dime.pixdim(3));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for z = 1:SliceDim,
for y = RowDim:-1:1, % flipped in Y
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 4, % coronal flipped
% For the 'coronal flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient anterior to posterior
if verbose,
fprintf('...writing coronal flipped (+Z from Superior to Inferior)\n');
end
avw.hdr.hist.orient = uint8(4);
SliceDim = double(avw.hdr.dime.dim(3)); % y
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(3));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for y = 1:SliceDim,
for z = RowDim:-1:1,
fwrite(fid,avw.img(x,y,z),precision);
end
end
case 5, % sagittal flipped
% For the 'sagittal flipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient superior to inferior
% Slices in 'x' axis - from patient right to left
if verbose,
fprintf('...writing sagittal flipped (+Z from Superior to Inferior)\n');
end
avw.hdr.hist.orient = uint8(5);
SliceDim = double(avw.hdr.dime.dim(2)); % x
RowDim = double(avw.hdr.dime.dim(4)); % z
PixelDim = double(avw.hdr.dime.dim(3)); % y
SliceSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(4));
PixelSz = double(avw.hdr.dime.pixdim(3));
y = 1:PixelDim;
for x = 1:SliceDim,
for z = RowDim:-1:1, % superior to inferior
fwrite(fid,avw.img(x,y,z),precision);
end
end
otherwise, % transverse/axial unflipped
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
if verbose,
fprintf('...unknown orientation specified, assuming default axial unflipped\n');
end
avw.hdr.hist.orient = uint8(0);
SliceDim = double(avw.hdr.dime.dim(4)); % z
RowDim = double(avw.hdr.dime.dim(3)); % y
PixelDim = double(avw.hdr.dime.dim(2)); % x
SliceSz = double(avw.hdr.dime.pixdim(4));
RowSz = double(avw.hdr.dime.pixdim(3));
PixelSz = double(avw.hdr.dime.pixdim(2));
x = 1:PixelDim;
for z = 1:SliceDim,
for y = 1:RowDim,
fwrite(fid,avw.img(x,y,z),precision);
end
end
end
fclose(fid);
% Update the header
avw.hdr.dime.dim(2:4) = int16([PixelDim,RowDim,SliceDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,RowSz,SliceSz]);
return
|
github
|
philippboehmsturm/antx-master
|
bilinear.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/bilinear.m
| 4,339 |
utf_8
|
17250db27826cad87fa3384823e1242f
|
% Copyright (C) 1999 Paul Kienzle
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% usage: [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T)
% [Zb, Za] = bilinear(Sb, Sa, T)
%
% Transform a s-plane filter specification into a z-plane
% specification. Filters can be specified in either zero-pole-gain or
% transfer function form. The input form does not have to match the
% output form. 1/T is the sampling frequency represented in the z plane.
%
% Note: this differs from the bilinear function in the signal processing
% toolbox, which uses 1/T rather than T.
%
% Theory: Given a piecewise flat filter design, you can transform it
% from the s-plane to the z-plane while maintaining the band edges by
% means of the bilinear transform. This maps the left hand side of the
% s-plane into the interior of the unit circle. The mapping is highly
% non-linear, so you must design your filter with band edges in the
% s-plane positioned at 2/T tan(w*T/2) so that they will be positioned
% at w after the bilinear transform is complete.
%
% The following table summarizes the transformation:
%
% +---------------+-----------------------+----------------------+
% | Transform | Zero at x | Pole at x |
% | H(S) | H(S) = S-x | H(S)=1/(S-x) |
% +---------------+-----------------------+----------------------+
% | 2 z-1 | zero: (2+xT)/(2-xT) | zero: -1 |
% | S -> - --- | pole: -1 | pole: (2+xT)/(2-xT) |
% | T z+1 | gain: (2-xT)/T | gain: (2-xT)/T |
% +---------------+-----------------------+----------------------+
%
% With tedious algebra, you can derive the above formulae yourself by
% substituting the transform for S into H(S)=S-x for a zero at x or
% H(S)=1/(S-x) for a pole at x, and converting the result into the
% form:
%
% H(Z)=g prod(Z-Xi)/prod(Z-Xj)
%
% Please note that a pole and a zero at the same place exactly cancel.
% This is significant since the bilinear transform creates numerous
% extra poles and zeros, most of which cancel. Those which do not
% cancel have a 'fill-in' effect, extending the shorter of the sets to
% have the same number of as the longer of the sets of poles and zeros
% (or at least split the difference in the case of the band pass
% filter). There may be other opportunistic cancellations but I will
% not check for them.
%
% Also note that any pole on the unit circle or beyond will result in
% an unstable filter. Because of cancellation, this will only happen
% if the number of poles is smaller than the number of zeros. The
% analytic design methods all yield more poles than zeros, so this will
% not be a problem.
%
% References:
%
% Proakis & Manolakis (1992). Digital Signal Processing. New York:
% Macmillan Publishing Company.
% Author: Paul Kienzle <[email protected]>
function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T)
if nargin==3
T = Sg;
[Sz, Sp, Sg] = tf2zp(Sz, Sp);
elseif nargin~=4
usage('[Zz, Zp, Zg]=bilinear(Sz,Sp,Sg,T) or [Zb, Za]=blinear(Sb,Sa,T)');
end;
p = length(Sp);
z = length(Sz);
if z > p || p==0
error('bilinear: must have at least as many poles as zeros in s-plane');
end
% ---------------- ------------------------- ------------------------
% Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT)
% 2 z-1 pole: -1 zero: -1
% S -> - --- gain: (2-xT)/T gain: (2-xT)/T
% T z+1
% ---------------- ------------------------- ------------------------
Zg = real(Sg * prod((2-Sz*T)/T) / prod((2-Sp*T)/T));
Zp = (2+Sp*T)./(2-Sp*T);
if isempty(Sz)
Zz = -ones(size(Zp));
else
Zz = [(2+Sz*T)./(2-Sz*T)];
Zz = postpad(Zz, p, -1);
end
if nargout==2, [Zz, Zp] = zp2tf(Zz, Zp, Zg); end
|
github
|
philippboehmsturm/antx-master
|
select_channel_list.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/select_channel_list.m
| 5,910 |
utf_8
|
809c334eb560bace022f65305426b3a5
|
function [select] = select_channel_list(label, select, titlestr);
% SELECT_CHANNEL_LIST presents a dialog for selecting multiple elements
% from a cell array with strings, such as the labels of EEG channels.
% The dialog presents two columns with an add and remove mechanism.
%
% select = select_channel_list(label, initial, titlestr)
%
% with
% initial indices of channels that are initially selected
% label cell array with channel labels (strings)
% titlestr title for dialog (optional)
% and
% select indices of selected channels
%
% If the user presses cancel, the initial selection will be returned.
% Copyright (C) 2003, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: select_channel_list.m 2885 2011-02-16 09:41:58Z roboos $
if nargin<3
titlestr = 'Select';
end
pos = get(0,'DefaultFigurePosition');
pos(3:4) = [290 300];
dlg = dialog('Name', titlestr, 'Position', pos);
select = select(:)'; % ensure that it is a row array
userdata.label = label;
userdata.select = select;
userdata.unselect = setdiff(1:length(label), select);
set(dlg, 'userdata', userdata);
uicontrol(dlg, 'style', 'text', 'position', [ 10 240+20 80 20], 'string', 'unselected');
uicontrol(dlg, 'style', 'text', 'position', [200 240+20 80 20], 'string', 'selected ');
uicontrol(dlg, 'style', 'listbox', 'position', [ 10 40+20 80 200], 'min', 0, 'max', 2, 'tag', 'lbunsel')
uicontrol(dlg, 'style', 'listbox', 'position', [200 40+20 80 200], 'min', 0, 'max', 2, 'tag', 'lbsel')
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 175+20 80 20], 'string', 'add all >' , 'callback', @label_addall);
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 145+20 80 20], 'string', 'add >' , 'callback', @label_add);
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 115+20 80 20], 'string', '< remove' , 'callback', @label_remove);
uicontrol(dlg, 'style', 'pushbutton', 'position', [105 85+20 80 20], 'string', '< remove all', 'callback', @label_removeall);
uicontrol(dlg, 'style', 'pushbutton', 'position', [ 55 10 80 20], 'string', 'Cancel', 'callback', 'close');
uicontrol(dlg, 'style', 'pushbutton', 'position', [155 10 80 20], 'string', 'OK', 'callback', 'uiresume');
label_redraw(dlg);
% wait untill the dialog is closed or the user presses OK/Cancel
uiwait(dlg);
if ishandle(dlg)
% the user pressed OK, return the selection from the dialog
userdata = get(dlg, 'userdata');
select = userdata.select;
close(dlg);
return
else
% the user pressed Cancel or closed the dialog, return the initial selection
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_redraw(h);
userdata = get(h, 'userdata');
set(findobj(h, 'tag', 'lbsel' ), 'string', userdata.label(userdata.select));
set(findobj(h, 'tag', 'lbunsel'), 'string', userdata.label(userdata.unselect));
% set the active element in the select listbox, based on the previous active element
tmp = min(get(findobj(h, 'tag', 'lbsel'), 'value'));
tmp = min(tmp, length(get(findobj(h, 'tag', 'lbsel'), 'string')));
if isempty(tmp) | tmp==0
tmp = 1;
end
set(findobj(h, 'tag', 'lbsel' ), 'value', tmp);
% set the active element in the unselect listbox, based on the previous active element
tmp = min(get(findobj(h, 'tag', 'lbunsel'), 'value'));
tmp = min(tmp, length(get(findobj(h, 'tag', 'lbunsel'), 'string')));
if isempty(tmp) | tmp==0
tmp = 1;
end
set(findobj(h, 'tag', 'lbunsel' ), 'value', tmp);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_addall(h, eventdata, handles, varargin);
h = get(h, 'parent');
userdata = get(h, 'userdata');
userdata.select = 1:length(userdata.label);
userdata.unselect = [];
set(findobj(h, 'tag', 'lbunsel' ), 'value', 1);
set(h, 'userdata', userdata);
label_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_removeall(h, eventdata, handles, varargin);
h = get(h, 'parent');
userdata = get(h, 'userdata');
userdata.unselect = 1:length(userdata.label);
userdata.select = [];
set(findobj(h, 'tag', 'lbsel' ), 'value', 1);
set(h, 'userdata', userdata);
label_redraw(h);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_add(h, eventdata, handles, varargin);
h = get(h, 'parent');
userdata = get(h, 'userdata');
if ~isempty(userdata.unselect)
add = userdata.unselect(get(findobj(h, 'tag', 'lbunsel' ), 'value'));
userdata.select = sort([userdata.select add]);
userdata.unselect = sort(setdiff(userdata.unselect, add));
set(h, 'userdata', userdata);
label_redraw(h);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label_remove(h, eventdata, handles, varargin);
h = get(h, 'parent');
userdata = get(h, 'userdata');
if ~isempty(userdata.select)
remove = userdata.select(get(findobj(h, 'tag', 'lbsel' ), 'value'));
userdata.select = sort(setdiff(userdata.select, remove));
userdata.unselect = sort([userdata.unselect remove]);
set(h, 'userdata', userdata);
label_redraw(h);
end
|
github
|
philippboehmsturm/antx-master
|
artifact_viewer.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/artifact_viewer.m
| 6,725 |
utf_8
|
291cb59d64c23a5d4b2eb22de3ac3896
|
function artifact_viewer(cfg, artcfg, zval, artval, zindx, inputdata);
% ARTIFACT_VIEWER is a subfunction that reads a segment of data
% (one channel only) and displays it together with the cummulated
% z-value
% Copyright (C) 2004-2006, Jan-Mathijs Schoffelen & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: artifact_viewer.m 3323 2011-04-09 14:36:20Z crimic $
dat.cfg = cfg;
dat.artcfg = artcfg;
if nargin == 5
% no data is given
dat.hdr = ft_read_header(cfg.headerfile);
elseif nargin == 6
% data is given
dat.hdr = ft_fetch_header(inputdata); % used name inputdata iso data, because data is already used later in this function
dat.inputdata = inputdata; % to be able to get inputdata into h (by guidata)
end
dat.trlop = 1;
dat.zval = zval;
dat.artval = artval;
dat.zindx = zindx;
dat.stop = 0;
dat.numtrl = size(cfg.trl,1);
dat.trialok = zeros(1,dat.numtrl);
for trlop=1:dat.numtrl
dat.trialok(trlop) = ~any(artval{trlop});
end
h = gcf;
guidata(h,dat);
uicontrol(gcf,'units','pixels','position',[5 5 40 18],'String','stop','Callback',@stop);
uicontrol(gcf,'units','pixels','position',[50 5 25 18],'String','<','Callback',@prevtrial);
uicontrol(gcf,'units','pixels','position',[75 5 25 18],'String','>','Callback',@nexttrial);
uicontrol(gcf,'units','pixels','position',[105 5 25 18],'String','<<','Callback',@prev10trial);
uicontrol(gcf,'units','pixels','position',[130 5 25 18],'String','>>','Callback',@next10trial);
uicontrol(gcf,'units','pixels','position',[160 5 50 18],'String','<artfct','Callback',@prevartfct);
uicontrol(gcf,'units','pixels','position',[210 5 50 18],'String','artfct>','Callback',@nextartfct);
while ishandle(h),
dat = guidata(h);
if dat.stop == 0,
read_and_plot(h);
uiwait;
else
break
end
end
if ishandle(h)
close(h);
end
%------------
%subfunctions
%------------
function read_and_plot(h)
vlinecolor = [0 0 0];
dat = guidata(h);
% make a local copy of the relevant variables
trlop = dat.trlop;
zval = dat.zval{trlop};
artval = dat.artval{trlop};
zindx = dat.zindx{trlop};
cfg = dat.cfg;
artcfg = dat.artcfg;
hdr = dat.hdr;
trl = dat.artcfg.trl;
trlpadsmp = round(artcfg.trlpadding*hdr.Fs);
% determine the channel with the highest z-value
[dum, indx] = max(zval);
sgnind = zindx(indx);
iscontinuous = 1;
if isfield(dat, 'inputdata')
data = ft_fetch_data(dat.inputdata, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
else
data = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', sgnind, 'checkboundary', strcmp(cfg.continuous,'no'));
end
% data = preproc(data, channel, hdr.Fs, artfctdef, [], fltpadding, fltpadding);
str = sprintf('trial %3d, channel %s', dat.trlop, hdr.label{sgnind});
fprintf('showing %s\n', str);
% plot z-values in lower subplot
subplot(2,1,2);
cla
hold on
xval = trl(trlop,1):trl(trlop,2);
if trlpadsmp
sel = 1:trlpadsmp;
h = plot(xval(sel), zval(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
sel = trlpadsmp:(length(data)-trlpadsmp);
plot(xval(sel), zval(sel), 'b');
sel = (length(data)-trlpadsmp):length(data);
h = plot(xval(sel), zval(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
vline(xval( 1)+trlpadsmp, 'color', vlinecolor);
vline(xval(end)-trlpadsmp, 'color', vlinecolor);
else
plot(xval, zval, 'b');
end
% draw a line at the threshold level
hline(artcfg.cutoff, 'color', 'r', 'linestyle', ':');
% make the artefact part red
zval(~artval) = nan;
plot(xval, zval, 'r-');
hold off
xlabel('samples');
ylabel('zscore');
% plot data of most aberrant channel in upper subplot
subplot(2,1,1);
cla
hold on
if trlpadsmp
sel = 1:trlpadsmp;
h = plot(xval(sel), data(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
sel = trlpadsmp:(length(data)-trlpadsmp);
plot(xval(sel), data(sel), 'b');
sel = (length(data)-trlpadsmp):length(data);
h = plot(xval(sel), data(sel)); set(h, 'color', [0.5 0.5 1]); % plot the trialpadding in another color
vline(xval( 1)+trlpadsmp, 'color', vlinecolor);
vline(xval(end)-trlpadsmp, 'color', vlinecolor);
else
plot(xval, data, 'b');
end
data(~artval) = nan;
plot(xval, data, 'r-');
hold off
xlabel('samples');
ylabel('uV or Tesla');
title(str);
function varargout = nexttrial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop < dat.numtrl,
dat.trlop = dat.trlop + 1;
end;
guidata(h,dat);
uiresume;
function varargout = next10trial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop < dat.numtrl - 10,
dat.trlop = dat.trlop + 10;
else dat.trlop = dat.numtrl;
end;
guidata(h,dat);
uiresume;
function varargout = prevtrial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop > 1,
dat.trlop = dat.trlop - 1;
else dat.trlop = 1;
end;
guidata(h,dat);
uiresume;
function varargout = prev10trial(h, eventdata, handles, varargin)
dat = guidata(h);
if dat.trlop > 10,
dat.trlop = dat.trlop - 10;
else dat.trlop = 1;
end;
guidata(h,dat);
uiresume;
function varargout = nextartfct(h, eventdata, handles, varargin)
dat = guidata(h);
artfctindx = find(dat.trialok == 0);
sel = find(artfctindx > dat.trlop);
if ~isempty(sel)
dat.trlop = artfctindx(sel(1));
else
dat.trlop = dat.trlop;
end
guidata(h,dat);
uiresume;
function varargout = prevartfct(h, eventdata, handles, varargin)
dat = guidata(h);
artfctindx = find(dat.trialok == 0);
sel = find(artfctindx < dat.trlop);
if ~isempty(sel)
dat.trlop = artfctindx(sel(end));
else
dat.trlop = dat.trlop;
end
guidata(h,dat);
uiresume;
function varargout = stop(h, eventdata, handles, varargin)
dat = guidata(h);
dat.stop = 1;
guidata(h,dat);
uiresume;
function vsquare(x1, x2, c)
abc = axis;
y1 = abc(3);
y2 = abc(4);
x = [x1 x2 x2 x1 x1];
y = [y1 y1 y2 y2 y1];
z = [-1 -1 -1 -1 -1];
h = patch(x, y, z, c);
set(h, 'edgecolor', c)
|
github
|
philippboehmsturm/antx-master
|
rejectvisual_summary.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/rejectvisual_summary.m
| 17,414 |
utf_8
|
2918f7fe9ab915b102683960eeabd968
|
function [chansel, trlsel, cfg] = rejectvisual_summary(cfg, data)
% REJECTVISUAL_SUMMARY: subfunction for ft_rejectvisual
% determine the initial selection of trials and channels
nchan = length(data.label);
ntrl = length(data.trial);
cfg.channel = ft_channelselection(cfg.channel, data.label);
trlsel = true(1,ntrl);
chansel = false(1,nchan);
chansel(match_str(data.label, cfg.channel)) = 1;
% compute the sampling frequency from the first two timepoints
fsample = 1/(data.time{1}(2) - data.time{1}(1));
% select the specified latency window from the data
% here it is done BEFORE filtering and metric computation
for i=1:ntrl
begsample = nearest(data.time{i}, cfg.latency(1));
endsample = nearest(data.time{i}, cfg.latency(2));
data.time{i} = data.time{i}(begsample:endsample);
data.trial{i} = data.trial{i}(:,begsample:endsample);
end
% compute the offset from the time axes
offset = zeros(ntrl,1);
for i=1:ntrl
offset(i) = time2offset(data.time{i}, fsample);
end
% set up guidata info
h = figure();
info = [];
info.data = data;
info.cfg = cfg;
info.metric = cfg.metric;
info.ntrl = ntrl;
info.nchan = nchan;
info.trlsel = trlsel;
info.chansel = chansel;
info.fsample = fsample;
info.offset = offset;
info.quit = 0;
guidata(h,info);
% set up display
interactive = 1;
info = guidata(h);
% make the figure large enough to hold stuff
set(h,'Position',[50 350 800 500]);
% define three plots
info.axes(1) = axes('position',[0.100 0.650 0.375 0.300]); % summary plot
info.axes(2) = axes('position',[0.575 0.650 0.375 0.300]); % channels
info.axes(3) = axes('position',[0.100 0.250 0.375 0.300]); % trials
% callback function (for toggling trials/channels) is set later, so that
% the user cannot try to toggle trials while nothing is present on the
% plots
% set up radio buttons for choosing metric
g = uibuttongroup('Position',[0.525 0.275 0.375 0.250 ],'bordertype','none','backgroundcolor',get(h,'color'));
r(1) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 7/7 0.40 0.15 ],'Style','radio','string','var','HandleVisibility','off');
r(2) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 6/7 0.40 0.15 ],'Style','radio','String','min','HandleVisibility','off');
r(3) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 5/7 0.40 0.15 ],'Style','Radio','String','max','HandleVisibility','off');
r(4) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 4/7 0.40 0.15 ],'Style','Radio','String','maxabs','HandleVisibility','off');
r(5) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 3/7 0.40 0.15 ],'Style','Radio','String','range','HandleVisibility','off');
r(6) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 2/7 0.40 0.15 ],'Style','Radio','String','kurtosis','HandleVisibility','off');
r(7) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 1/7 0.40 0.15 ],'Style','Radio','String','1/var','HandleVisibility','off');
r(8) = uicontrol('Units','normalized','parent',g,'position',[ 0.0 0/7 0.40 0.15 ],'Style','Radio','String','zvalue','HandleVisibility','off');
% pre-select appropriate metric, if defined
set(g,'SelectionChangeFcn',@change_metric);
for i=1:length(r)
if strcmp(get(r(i),'string'), cfg.metric)
set(g,'SelectedObject',r(i));
end
end
% editboxes for manually specifying which channels/trials to turn off
uicontrol(h,'Units','normalized','position',[0.64 0.44 0.14 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'),'string','Toggle trial #:');
uicontrol(h,'Units','normalized','position',[0.64 0.40 0.12 0.05],'Style','edit','HorizontalAlignment','left','backgroundcolor',[1 1 1],'callback',@toggle_trials);
uicontrol(h,'Units','normalized','position',[0.64 0.31 0.14 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'),'string','Toggle channel:');
uicontrol(h,'Units','normalized','position',[0.64 0.27 0.12 0.05],'Style','edit','HorizontalAlignment','left','backgroundcolor',[1 1 1],'callback',@toggle_channels);
%uicontrol(h,'Units','normalized','position',[0.65 0.34 0.20 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'),'string','Plot trial #:');
%uicontrol(h,'Units','normalized','position',[0.65 0.30 0.15 0.05],'Style','edit','HorizontalAlignment','left','backgroundcolor',[1 1 1],'callback',@display_trial);
info.badtrllbl = uicontrol(h,'Units','normalized','position',[0.795 0.44 0.195 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'),'string',sprintf('Rejected trials: %i/%i',sum(info.trlsel==0),info.ntrl));
info.badtrltxt = uicontrol(h,'Units','normalized','position',[0.795 0.3975 0.23 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'));
info.badchanlbl = uicontrol(h,'Units','normalized','position',[0.795 0.31 0.195 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'),'string',sprintf('Rejected channels: %i/%i',sum(info.chansel==0),info.nchan));
info.badchantxt = uicontrol(h,'Units','normalized','position',[0.795 0.2625 0.23 0.05],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'));
% instructions
instructions = sprintf('Drag the mouse over the channels/trials you wish to reject.');
uicontrol(h,'Units','normalized','position',[0.625 0.50 0.35 0.065],'Style','text','HorizontalAlignment','left','backgroundcolor',get(h,'color'),'string',instructions,'FontWeight','bold','ForegroundColor','b');
% "show rejected" button
% ui_tog = uicontrol(h,'Units','normalized','position',[0.55 0.200 0.25 0.05],'Style','checkbox','backgroundcolor',get(h,'color'),'string','Show rejected?','callback',@toggle_rejected);
% if strcmp(cfg.viewmode, 'toggle')
% set(ui_tog,'value',1);
% end
% logbox
info.output_box = uicontrol(h,'Units','normalized','position',[0.00 0.00 1.00 0.15],'Style','edit','HorizontalAlignment','left','Max',3,'Min',1,'Enable','inactive','FontName',get(0,'FixedWidthFontName'),'FontSize',9,'ForegroundColor',[0 0 0],'BackgroundColor',[1 1 1]);
% quit button
uicontrol(h,'Units','normalized','position',[0.80 0.175 0.10 0.05],'string','quit','callback',@quit);
guidata(h, info);
% Compute initial metric...
compute_metric(h);
while interactive && ishandle(h)
redraw(h);
info = guidata(h);
if info.quit == 0
uiwait(h);
else
chansel = info.chansel;
trlsel = info.trlsel;
cfg = info.cfg;
delete(h);
break;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function compute_metric(h)
info = guidata(h);
update_log(info.output_box,'Computing metric...');
ft_progress('init', info.cfg.feedback, 'computing metric');
level = zeros(info.nchan, info.ntrl);
if strcmp(info.metric,'zvalue')
% cellmean and cellstd (see ft_denoise_pca) would work instead of for-loops,
% but they were too memory-intensive
runsum=zeros(info.nchan, 1);
runnum=0;
for i=1:info.ntrl
[dat] = preproc(info.data.trial{i}, info.data.label, info.fsample, info.cfg.preproc, info.offset(i));
dat(info.chansel==0,:) = nan;
runsum=runsum+sum(dat,2);
runnum=runnum+size(dat,2);
end
mval=runsum/runnum;
runss=zeros(info.nchan,1);
for i=1:info.ntrl
[dat] = preproc(info.data.trial{i}, info.data.label, info.fsample, info.cfg.preproc, info.offset(i));
dat(info.chansel==0,:) = nan;
dat=dat-repmat(mval,1,size(dat,2));
runss=runss+sum(dat.^2,2);
end
sd=sqrt(runss/runnum);
end
for i=1:info.ntrl
ft_progress(i/info.ntrl, 'computing metric %d of %d\n', i, info.ntrl);
[dat, label, time, info.cfg.preproc] = preproc(info.data.trial{i}, info.data.label, info.fsample, info.cfg.preproc, info.offset(i));
dat(info.chansel==0,:) = nan;
switch info.metric
case 'var'
level(:,i) = std(dat, [], 2).^2;
case 'min'
level(:,i) = min(dat, [], 2);
case 'max'
level(:,i) = max(dat, [], 2);
case 'maxabs'
level(:,i) = max(abs(dat), [], 2);
case 'range'
level(:,i) = max(dat, [], 2) - min(dat, [], 2);
case 'kurtosis'
level(:,i) = kurtosis(dat, [], 2);
case '1/var'
level(:,i) = 1./(std(dat, [], 2).^2);
case 'zvalue'
level(:,i) = mean( ( dat-repmat(mval,1,size(dat,2)) )./repmat(sd,1,size(dat,2)) ,2);
otherwise
error('unsupported method');
end
end
ft_progress('close');
update_log(info.output_box,'Done.');
% if metric calculated with channels off, then turning that channel on
% won't show anything. Because of this, keep track of which channels were
% off when calculated, so know when to recalculate.
info.metric_chansel = info.chansel;
% % reinsert the data for the selected channels
% dum = nan*zeros(info.nchan, info.ntrl);
% dum(info.chansel,:) = level;
% origlevel = dum;
% clear dum
% % store original levels for later
% info.origlevel = origlevel;
info.level = level;
guidata(h,info);
function redraw(h)
info = guidata(h);
% work with a copy of the data
level = info.level;
level(~info.chansel,:) = nan;
level(:,~info.trlsel) = nan;
[maxperchan maxpertrl maxperchan_all maxpertrl_all] = set_maxper(level, info.chansel, info.trlsel);
% make the three figures
if gcf~=h, figure(h); end
%datacursormode on;
set(h,'CurrentAxes',info.axes(1))
cla(info.axes(1));
% imagesc(level(chansel, trlsel));
imagesc(level);
axis xy;
% colorbar;
title(info.cfg.method);
ylabel('channel number');
xlabel('trial number');
set(h,'CurrentAxes',info.axes(2))
cla(info.axes(2));
set(info.axes(2),'ButtonDownFcn',@toggle_visual);
plot(maxperchan(info.chansel==1), find(info.chansel==1), '.');
if strcmp(info.cfg.viewmode, 'toggle') && (sum(info.chansel==0) > 0)
hold on;
plot(maxperchan_all(info.chansel==0), find(info.chansel==0), 'o');
hold off;
end
abc = axis; axis([abc(1:2) 1 info.nchan]);
set(info.axes(2),'ButtonDownFcn',@toggle_visual); % needs to be here; call to axis resets this property
ylabel('channel number');
set(h,'CurrentAxes',info.axes(3))
cla(info.axes(3));
plot(find(info.trlsel==1), maxpertrl(info.trlsel==1), '.');
if strcmp(info.cfg.viewmode, 'toggle') && (sum(info.trlsel==0) > 0)
hold on;
plot(find(info.trlsel==0), maxpertrl_all(info.trlsel==0), 'o');
hold off;
end
abc = axis; axis([1 info.ntrl abc(3:4)]);
set(info.axes(3),'ButtonDownFcn',@toggle_visual); % needs to be here; call to axis resets this property
xlabel('trial number');
% put rejected trials/channels in their respective edit boxes
set(info.badchanlbl,'string',sprintf('Rejected channels: %i/%i',sum(info.chansel==0),info.nchan));
set(info.badtrllbl, 'string',sprintf('Rejected trials: %i/%i',sum(info.trlsel==0), info.ntrl));
if ~isempty(find(info.trlsel==0, 1))
set(info.badtrltxt,'String',num2str(find(info.trlsel==0)),'FontAngle','normal');
else
set(info.badtrltxt,'String','No trials rejected','FontAngle','italic');
end
if ~isempty(find(info.chansel==0, 1))
if isfield(info.data,'label')
chanlabels = info.data.label(info.chansel==0);
badchantxt = chanlabels{1};
if length(chanlabels) > 1
for n=2:length(chanlabels)
badchantxt = [badchantxt ', ' chanlabels{n}];
end
end
set(info.badchantxt,'String',badchantxt,'FontAngle','normal');
else
set(info.badtrltxt,'String',num2str(find(info.chansel==0)),'FontAngle','normal');
end
else
set(info.badchantxt,'String','No channels rejected','FontAngle','italic');
end
function toggle_trials(h, eventdata)
info = guidata(h);
% extract trials from string
rawtrls = get(h,'string');
if ~isempty(rawtrls)
spltrls = regexp(rawtrls,'\s+','split');
trls = [];
for n = 1:length(spltrls)
trls(n) = str2num(cell2mat(spltrls(n)));
end
else
update_log(info.output_box,sprintf('Please enter one or more trials'));
uiresume;
return;
end
toggle = trls;
try
info.trlsel(toggle) = ~info.trlsel(toggle);
catch
update_log(info.output_box,sprintf('ERROR: Trial value too large!'));
end
guidata(h, info);
uiresume;
% process input from the "toggle channels" textbox
function toggle_channels(h, eventdata)
info = guidata(h);
rawchans = get(h,'string');
if ~isempty(rawchans)
splchans = regexp(rawchans,'\s+','split');
chans = zeros(1,length(splchans));
% determine whether identifying channels via number or label
[~,~,~,procchans] = regexp(rawchans,'([A-Za-z]+|[0-9]{4,})');
if isempty(procchans)
% if using channel numbers
for n = 1:length(splchans)
chans(n) = str2num(splchans{n});
end
else
% if using channel labels
for n = 1:length(splchans)
try
chans(n) = find(ismember(info.data.label,splchans(n)));
catch
update_log(info.output_box,sprintf('ERROR: Please ensure the channel name is correct (case-sensitive)!'));
uiresume;
return;
end
end
end
else
update_log(info.output_box,sprintf('Please enter one or more channels'));
uiresume;
return;
end
toggle = chans;
try
info.chansel(toggle) = ~info.chansel(toggle);
catch
update_log(info.output_box,sprintf('ERROR: Channel value too large!'));
end
guidata(h, info);
% if levels data from channel being toggled was calculated from another
% metric, recalculate the metric
if info.metric_chansel(toggle) == 0
compute_metric(h)
end
uiresume;
function toggle_visual(h, eventdata)
% copied from select2d, without waitforbuttonpress command
point1 = get(gca,'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(gca,'CurrentPoint'); % button up detected
point1 = point1(1,1:2); % extract x and y
point2 = point2(1,1:2);
x = sort([point1(1) point2(1)]);
y = sort([point1(2) point2(2)]);
g = get(gca,'Parent');
info = guidata(g);
[maxperchan maxpertrl] = set_maxper(info.level, info.chansel, info.trlsel);
% toggle channels
if gca == info.axes(2)
% if strcmp(info.cfg.viewmode, 'toggle')
chanlabels = 1:info.nchan;
% else
% perchan = max(info.level,[],2);
% maxperchan = perchan(info.chansel==1);
% chanlabels = find(info.chansel==1);
% end
toggle = find( ...
chanlabels >= y(1) & ...
chanlabels <= y(2) & ...
maxperchan(:)' >= x(1) & ...
maxperchan(:)' <= x(2));
info.chansel(toggle) = 0;
% if levels data from channel being toggled was calculated from another
% metric, recalculate the metric
if info.metric_chansel(toggle) == 0
compute_metric(h)
end
% toggle trials
elseif gca == info.axes(3)
% if strcmp(info.cfg.viewmode, 'toggle')
trllabels = 1:info.ntrl;
% else
% pertrl = max(info.level,[],1);
% maxpertrl = pertrl(info.trlsel==1);
% trllabels = find(info.trlsel==1);
% end
toggle = find( ...
trllabels >= x(1) & ...
trllabels <= x(2) & ...
maxpertrl(:)' >= y(1) & ...
maxpertrl(:)' <= y(2));
info.trlsel(toggle) = 0;
end
guidata(h, info);
uiresume;
% function display_trial(h, eventdata)
% info = guidata(h);
% rawtrls = get(h,'string');
% if ~isempty(rawtrls)
% spltrls = regexp(rawtrls,' ','split');
% trls = [];
% for n = 1:length(spltrls)
% trls(n) = str2num(cell2mat(spltrls(n)));
% end
% else
% update_log(info.output_box,sprintf('Please enter one or more trials'));
% uiresume;
% return;
% end
% if all(trls==0)
% % use visual selection
% update_log(info.output_box,sprintf('make visual selection of trials to be plotted seperately...'));
% [x, y] = select2d;
% maxpertrl = max(info.origlevel,[],1);
% toggle = find(1:ntrl>=x(1) & ...
% 1:ntrl<=x(2) & ...
% maxpertrl(:)'>=y(1) & ...
% maxpertrl(:)'<=y(2));
% else
% toggle = trls;
% end
% for i=1:length(trls)
% figure
% % the data being displayed here is NOT filtered
% %plot(data.time{toggle(i)}, data.trial{toggle(i)}(chansel,:));
% tmp = info.data.trial{toggle(i)}(info.chansel,:);
% tmp = tmp - repmat(mean(tmp,2), [1 size(tmp,2)]);
% plot(info.data.time{toggle(i)}, tmp);
% title(sprintf('trial %d', toggle(i)));
% end
function quit(h, eventdata)
info = guidata(h);
info.quit = 1;
guidata(h, info);
uiresume;
function change_metric(h, eventdata)
info = guidata(h);
info.metric = get(eventdata.NewValue, 'string');
guidata(h, info);
compute_metric(h);
uiresume;
function toggle_rejected(h, eventdata)
info = guidata(h);
toggle = get(h,'value');
if toggle == 0
info.cfg.viewmode = 'remove';
else
info.cfg.viewmode = 'toggle';
end
guidata(h, info);
uiresume;
function update_log(h, new_text)
new_text = [datestr(now,13) '# ' new_text];
curr_text = get(h, 'string');
size_curr_text = size(curr_text,2);
size_new_text = size(new_text,2);
if size_curr_text > size_new_text
new_text = [new_text blanks(size_curr_text-size_new_text)];
else
curr_text = [curr_text repmat(blanks(size_new_text-size_curr_text), size(curr_text,1), 1)];
end
set(h, 'String', [new_text; curr_text]);
drawnow;
function [maxperchan,maxpertrl,varargout] = set_maxper(level,chansel,trlsel)
level_all = level;
% determine the maximum value
level(~chansel,:) = nan;
level(:,~trlsel) = nan;
maxperchan = max(level,[],2);
maxpertrl = max(level,[],1);
maxperchan_all = max(level_all,[],2);
maxpertrl_all = max(level_all,[],1);
varargout(1) = {maxperchan_all};
varargout(2) = {maxpertrl_all};
|
github
|
philippboehmsturm/antx-master
|
warning_once.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/warning_once.m
| 3,060 |
utf_8
|
f046009e4f6ffe5745af9c5e527614e8
|
function [ws warned] = warning_once(varargin)
%
% Use as
% warning_once(string)
% or
% warning_once(string, timeout)
% or
% warning_once(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again. The default timeout value is 60 seconds.
%
% Can be used instead of the MATLAB built-in function WARNING, thus as
% s = warning_once(...)
% or
% warning_once(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information.
% In other words, warning_once accepts as an input the same structure it
% returns as an output. This returns or restores the states of warnings to
% their previous values.
%
% Can also be used as
% [s w] = warning_once(...)
% where w is a boolean that indicates whether a warning as been
% thrown or not.
persistent stopwatch previous
if nargin < 1
error('You need to specify at least a warning message');
end
warned = false;
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if nargin==3
msgid = varargin{1};
msgstr = varargin{2};
timeout = varargin{3};
elseif nargin==2
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = varargin{2};
elseif nargin==1
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = 60; % default timeout in seconds
end
if isempty(timeout)
error('Timeout ill-specified');
end
if isempty(stopwatch)
stopwatch = tic;
end
if isempty(previous)
previous = struct;
end
now = toc(stopwatch); % measure time since first function call
fname = fixname([msgid '_' msgstr]); % make a nice string that is allowed as structure fieldname, copy the subfunction from ft_hastoolbox
fname = decomma(fname);
if length(fname) > 63 % MATLAB max name
fname = fname(1:63);
end
if isfield(previous, fname) && now>previous.(fname).timeout
% it has timed out, give the warning again
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
elseif ~isfield(previous, fname)
% the warning has not been issued before
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = previous.(fname).ws;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = fixname(toolbox)
out = lower(toolbox);
out(out=='-') = '_'; % fix dashes
out(out==' ') = '_'; % fix spaces
out(out=='/') = '_'; % fix forward slashes
out(out=='\') = '_'; % fix backward slashes
while(out(1) == '_'), out = out(2:end); end; % remove preceding underscore
while(out(end) == '_'), out = out(1:end-1); end; % remove subsequent underscore
end
function nameout = decomma(name)
nameout = name;
indx = findstr(name,',');
nameout(indx)=[];
end
|
github
|
philippboehmsturm/antx-master
|
rejectvisual_channel.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/rejectvisual_channel.m
| 10,295 |
utf_8
|
527466de7509f457ae5f6c892713f235
|
function [chansel, trlsel, cfg] = rejectvisual_channel(cfg, data);
% SUBFUNCTION for rejectvisual
% Copyright (C) 2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: rejectvisual_channel.m 3771 2011-07-04 13:38:23Z eelspa $
% determine the initial selection of trials and channels
nchan = length(data.label);
ntrl = length(data.trial);
cfg.channel = ft_channelselection(cfg.channel, data.label);
trlsel = logical(ones(1,ntrl));
chansel = logical(zeros(1,nchan));
chansel(match_str(data.label, cfg.channel)) = 1;
% compute the sampling frequency from the first two timepoints
fsample = 1/(data.time{1}(2) - data.time{1}(1));
% compute the offset from the time axes
offset = zeros(ntrl,1);
for i=1:ntrl
offset(i) = time2offset(data.time{i}, fsample);
end
ft_progress('init', cfg.feedback, 'filtering data');
for i=1:ntrl
ft_progress(i/ntrl, 'filtering data in trial %d of %d\n', i, ntrl);
[data.trial{i}, label, time, cfg.preproc] = preproc(data.trial{i}, data.label, fsample, cfg.preproc, offset(i));
end
ft_progress('close');
% select the specified latency window from the data
% this is done AFTER the filtering to prevent edge artifacts
for i=1:ntrl
begsample = nearest(data.time{i}, cfg.latency(1));
endsample = nearest(data.time{i}, cfg.latency(2));
data.time{i} = data.time{i}(begsample:endsample);
data.trial{i} = data.trial{i}(:,begsample:endsample);
end
h = figure;
axis([0 1 0 1]);
axis off
% the info structure will be attached to the figure
% and passed around between the callback functions
if strcmp(cfg.plotlayout,'1col') % hidden config option for plotting trials differently
info = [];
info.ncols = 1;
info.nrows = ntrl;
info.trlop = 1;
info.chanlop = 1;
info.lchanlop= 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.ntrl
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
info.label{indx} = sprintf('trial %03d', indx);
end
end
elseif strcmp(cfg.plotlayout,'square')
info = [];
info.ncols = ceil(sqrt(ntrl));
info.nrows = ceil(sqrt(ntrl));
info.trlop = 1;
info.chanlop = 1;
info.lchanlop= 0;
info.quit = 0;
info.ntrl = ntrl;
info.nchan = nchan;
info.data = data;
info.cfg = cfg;
info.offset = offset;
info.chansel = chansel;
info.trlsel = trlsel;
% determine the position of each subplot within the axis
for row=1:info.nrows
for col=1:info.ncols
indx = (row-1)*info.ncols + col;
if indx>info.ntrl
continue
end
info.x(indx) = (col-0.9)/info.ncols;
info.y(indx) = 1 - (row-0.45)/(info.nrows+1);
info.label{indx} = sprintf('trial %03d', indx);
end
end
end
info.ui.quit = uicontrol(h,'units','pixels','position',[ 5 5 40 18],'String','quit','Callback',@stop);
info.ui.prev = uicontrol(h,'units','pixels','position',[ 50 5 25 18],'String','<','Callback',@prev);
info.ui.next = uicontrol(h,'units','pixels','position',[ 75 5 25 18],'String','>','Callback',@next);
info.ui.prev10 = uicontrol(h,'units','pixels','position',[105 5 25 18],'String','<<','Callback',@prev10);
info.ui.next10 = uicontrol(h,'units','pixels','position',[130 5 25 18],'String','>>','Callback',@next10);
info.ui.bad = uicontrol(h,'units','pixels','position',[160 5 50 18],'String','bad','Callback',@markbad);
info.ui.good = uicontrol(h,'units','pixels','position',[210 5 50 18],'String','good','Callback',@markgood);
info.ui.badnext = uicontrol(h,'units','pixels','position',[270 5 50 18],'String','bad>','Callback',@markbad_next);
info.ui.goodnext = uicontrol(h,'units','pixels','position',[320 5 50 18],'String','good>','Callback',@markgood_next);
set(gcf, 'WindowButtonUpFcn', @button);
set(gcf, 'KeyPressFcn', @key);
guidata(h,info);
interactive = 1;
while interactive && ishandle(h)
redraw(h);
info = guidata(h);
if info.quit == 0,
uiwait;
else
chansel = info.chansel;
trlsel = info.trlsel;
delete(h);
break
end
end % while interactive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = markbad_next(varargin)
markbad(varargin{:});
next(varargin{:});
function varargout = markgood_next(varargin)
markgood(varargin{:});
next(varargin{:});
function varargout = next(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop < info.nchan,
info.chanlop = info.chanlop + 1;
end;
guidata(h,info);
uiresume;
function varargout = prev(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop > 1,
info.chanlop = info.chanlop - 1;
end;
guidata(h,info);
uiresume;
function varargout = next10(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop < info.nchan - 10,
info.chanlop = info.chanlop + 10;
else
info.chanlop = info.nchan;
end;
guidata(h,info);
uiresume;
function varargout = prev10(h, eventdata, handles, varargin)
info = guidata(h);
info.lchanlop = info.chanlop;
if info.chanlop > 10,
info.chanlop = info.chanlop - 10;
else
info.chanlop = 1;
end;
guidata(h,info);
uiresume;
function varargout = markgood(h, eventdata, handles, varargin)
info = guidata(h);
info.chansel(info.chanlop) = 1;
fprintf(description_channel(info));
title(description_channel(info));
guidata(h,info);
% uiresume;
function varargout = markbad(h, eventdata, handles, varargin)
info = guidata(h);
info.chansel(info.chanlop) = 0;
fprintf(description_channel(info));
title(description_channel(info));
guidata(h,info);
% uiresume;
function varargout = key(h, eventdata, handles, varargin)
info = guidata(h);
switch lower(eventdata.Key)
case 'rightarrow'
if info.chanlop ~= info.nchan
next(h);
else
fprintf('at last channel\n');
end
case 'leftarrow'
if info.chanlop ~= 1
prev(h);
else
fprintf('at last channel\n');
end
case 'g'
markgood(h);
case 'b'
markbad(h);
case 'q'
stop(h);
otherwise
fprintf('unknown key pressed\n');
end
function varargout = button(h, eventdata, handles, varargin)
pos = get(gca, 'CurrentPoint');
x = pos(1,1);
y = pos(1,2);
info = guidata(h);
dx = info.x - x;
dy = info.y - y;
dd = sqrt(dx.^2 + dy.^2);
[d, i] = min(dd);
if d<0.5/max(info.nrows, info.ncols) && i<=info.ntrl
info.trlsel(i) = ~info.trlsel(i); % toggle
info.trlop = i;
fprintf(description_trial(info));
guidata(h,info);
uiresume;
else
fprintf('button clicked\n');
return
end
function varargout = stop(h, eventdata, handles, varargin)
info = guidata(h);
info.quit = 1;
guidata(h,info);
uiresume;
function str = description_channel(info);
if info.chansel(info.chanlop)
str = sprintf('channel %s marked as GOOD\n', info.data.label{info.chanlop});
else
str = sprintf('channel %s marked as BAD\n', info.data.label{info.chanlop});
end
function str = description_trial(info);
if info.trlsel(info.trlop)
str = sprintf('trial %d marked as GOOD\n', info.trlop);
else
str = sprintf('trial %d marked as BAD\n', info.trlop);
end
function redraw(h)
if ~ishandle(h)
return
end
info = guidata(h);
fprintf(description_channel(info));
cla;
title('');
drawnow
hold on
% determine the maximum value for this channel over all trials
amax = -inf;
tmin = inf;
tmax = -inf;
for trlindx=find(info.trlsel)
tmin = min(info.data.time{trlindx}(1) , tmin);
tmax = max(info.data.time{trlindx}(end), tmax);
amax = max(max(abs(info.data.trial{trlindx}(info.chanlop,:))), amax);
end
if ~isempty(info.cfg.alim)
% use fixed amplitude limits for the amplitude scaling
amax = info.cfg.alim;
end
for row=1:info.nrows
for col=1:info.ncols
trlindx = (row-1)*info.ncols + col;
if trlindx>info.ntrl || ~info.trlsel(trlindx)
continue
end
% scale the time values between 0.1 and 0.9
time = info.data.time{trlindx};
time = 0.1 + 0.8*(time-tmin)/(tmax-tmin);
% scale the amplitude values between -0.5 and 0.5, offset should not be removed
dat = info.data.trial{trlindx}(info.chanlop,:);
dat = dat ./ (2*amax);
% scale the time values for this subplot
tim = (col-1)/info.ncols + time/info.ncols;
% scale the amplitude values for this subplot
amp = dat./info.nrows + 1 - row/(info.nrows+1);
plot(tim, amp, 'k')
end
end
% enable or disable buttons as appropriate
if info.chanlop == 1
set(info.ui.prev, 'Enable', 'off');
set(info.ui.prev10, 'Enable', 'off');
else
set(info.ui.prev, 'Enable', 'on');
set(info.ui.prev10, 'Enable', 'on');
end
if info.chanlop == info.nchan
set(info.ui.next, 'Enable', 'off');
set(info.ui.next10, 'Enable', 'off');
else
set(info.ui.next, 'Enable', 'on');
set(info.ui.next10, 'Enable', 'on');
end
if info.lchanlop == info.chanlop && info.chanlop == info.nchan
set(info.ui.badnext,'Enable', 'off');
set(info.ui.goodnext,'Enable', 'off');
else
set(info.ui.badnext,'Enable', 'on');
set(info.ui.goodnext,'Enable', 'on');
end
text(info.x, info.y, info.label);
title(description_channel(info));
hold off
|
github
|
philippboehmsturm/antx-master
|
triangulate_seg.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/triangulate_seg.m
| 2,957 |
utf_8
|
f0ab0107b15b5d5dfd2c08dee874cb1a
|
function [pnt, tri] = triangulate_seg(seg, npnt, ori);
% TRIANGULATE_SEG constructs a triangulation of the outer surface of a
% segmented volume. It starts at the center of the volume and projects the
% vertices of an evenly triangulated sphere onto the outer surface. The
% resulting surface is star-shaped from the center of the volume.
%
% Use as
% [pnt, tri] = triangulate_seg(seg, npnt)
%
% See also KSPHERE
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: triangulate_seg.m 952 2010-04-21 18:29:51Z roboos $
seg = (seg~=0);
dim = size(seg);
len = ceil(sqrt(sum(dim.^2))/2);
if nargin<3
ori(1) = dim(1)/2;
ori(2) = dim(2)/2;
ori(3) = dim(3)/2;
end
% start with a unit sphere with evenly distributed vertices
[pnt, tri] = ksphere(npnt);
for i=1:npnt
% construct a sampled line from the center of the volume outward into the direction of the vertex
lin = (0:0.5:len)' * pnt(i,:);
lin(:,1) = lin(:,1) + ori(1);
lin(:,2) = lin(:,2) + ori(2);
lin(:,3) = lin(:,3) + ori(3);
% round the sampled line towards the nearest voxel indices, which allows
% a quick nearest-neighbour interpolation/lookup
lin = round(lin);
% exclude indices that do not ly within the volume
sel = lin(:,1)<1 | lin(:,1)>dim(1) | ...
lin(:,2)<1 | lin(:,2)>dim(2) | ...
lin(:,3)<1 | lin(:,3)>dim(3);
lin = lin(~sel,:);
sel = sub2ind(dim, lin(:,1), lin(:,2), lin(:,3));
% interpolate the segmented volume along the sampled line
int = seg(sel);
% find the last sample along the line that is part of the segmentation
try
% for matlab 7 and higher
sel = find(int, 1, 'last');
catch
% for older matlab versions
sel = find(int);
sel = sel(end);
end
% this is a problem if sel is empty. If so, use the edge of the volume
if ~isempty(sel),
pnt(i,:) = lin(sel,:);
else
pnt(i,:) = lin(end,:);
end
end
% undo the shift of the origin from where the projection is done
% pnt(:,1) = pnt(:,1) - ori(1);
% pnt(:,2) = pnt(:,2) - ori(2);
% pnt(:,3) = pnt(:,3) - ori(3);
% fast unconditional re-implementation of the standard Matlab function
function [s] = sub2ind(dim, i, j, k)
s = i + (j-1)*dim(1) + (k-1)*dim(1)*dim(2);
|
github
|
philippboehmsturm/antx-master
|
prepare_mesh_manual.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/prepare_mesh_manual.m
| 29,475 |
utf_8
|
92ba87f74299ab16b25a279092863d83
|
function bnd = prepare_mesh_manual(cfg, mri)
% PREPARE_MESH_MANUAL is called by PREPARE_MESH and opens a GUI to manually
% select points/polygons in an mri dataset.
%
% It allows:
% Visualization of 3d data in 3 different projections
% Adjustment of brightness for every slice
% Storage of the data points in an external .mat file
% Retrieval of previously saved data points
% Slice fast scrolling with keyboard arrows
% Polygons or points selection/deselection
%
% See also PREPARE_MESH_SEGMENTATION, PREPARE_MESH_HEADSHAPE
% Copyrights (C) 2009, Cristiano Micheli & Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: prepare_mesh_manual.m 1431 2010-07-20 07:47:55Z roboos $
% FIXME: control slice's cmap referred to abs values
% FIXME: clean structure slicedata
% FIXME: check function assign3dpoints
global obj
bnd.pnt = [];
bnd.tri = [];
hasheadshape = isfield(cfg, 'headshape');
hasbnd = isfield(cfg, 'bnd'); % FIXME why is this in cfg?
hasmri = nargin>1;
% check the consistency of the input arguments
if hasheadshape && hasbnd
error('you should not specify cfg.headshape and cfg.bnd simultaneously');
end
% check the consistency of the input arguments
if ~hasmri
% FIXME give a warning or so?
mri.anatomy = [];
mri.transform = eye(4);
else
% ensure that it is double precision
mri.anatomy = double(mri.anatomy);
end
if hasheadshape
if ~isempty(cfg.headshape)
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pnt = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = read_headshape(cfg.headshape);
else
headshape = [];
end
if ~isfield(headshape, 'tri')
for i=1:length(headshape)
% generate a closed triangulation from the surface points
headshape(i).pnt = unique(headshape(i).pnt, 'rows');
headshape(i).tri = projecttri(headshape(i).pnt);
end
end
% start with the headshape
bnd = headshape;
end
elseif hasbnd
if ~isempty(cfg.bnd)
% start with the prespecified boundaries
bnd = cfg.bnd;
end
else
% start with an empty boundary if not specified
bnd.pnt = [];
bnd.tri = [];
end
% creating the GUI
fig = figure;
% initialize some values
slicedata = []; points = bnd.pnt;
axs = floor(size(mri.anatomy,1)/2);
% initialize properties
set(fig, 'KeyPressFcn',@keypress);
set(fig, 'CloseRequestFcn', @cb_close);
setappdata(fig,'data',mri.anatomy);
setappdata(fig,'prop',{1,axs,0,[]});
setappdata(fig,'slicedata',slicedata);
setappdata(fig,'points',points);
setappdata(fig,'box',[]);
% add GUI elements
cb_creategui(gca);
cb_redraw(gca);
waitfor(fig);
% close sequence
global pnt
try
tmp = pnt;
clear global pnt
pnt = tmp;
clear tmp
[tri] = projecttri(pnt);
bnd.pnt = pnt;
bnd.tri = tri;
catch
bnd.pnt = [];
bnd.tri = [];
end
function cb_redraw(hObject, eventdata, handles);
fig = get(hObject, 'parent');
prop = getappdata(fig,'prop');
data = getappdata(fig,'data');
slicedata = getappdata(fig,'slicedata');
points = getappdata(fig,'points');
% draw image
try
cla
% i,j,k axes
if (prop{1}==1) %jk
imh=imagesc(squeeze(data(prop{2},:,:)));
xlabel('k');
ylabel('j');
colormap bone
elseif (prop{1}==2) %ik
imh=imagesc(squeeze(data(:,prop{2},:)));
xlabel('k');
ylabel('i');
colormap bone
elseif (prop{1}==3) %ij
imh=imagesc(squeeze(data(:,:,prop{2})));
xlabel('j');
ylabel('i');
colormap bone
end
axis equal; axis tight
brighten(prop{3});
title([ 'slice ' num2str(prop{2}) ])
catch
end
if ~ishold,hold on,end
% draw points and lines
for zz = 1:length(slicedata)
if(slicedata(zz).proj==prop{1})
if(slicedata(zz).slice==prop{2})
polygon = slicedata(zz).polygon;
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys]=deal(polygon{kk}(:,1),polygon{kk}(:,2));
plot(xs, ys, 'g.-');
end
end
end
end
end % end for
% draw other slices points
points = getappdata(fig,'points');
pnts = round(points);
if ~isempty(pnts)
% exclude polygons inside the same slice
indx = find(points(:,prop{1})==prop{2});
tmp = ones(1,size(points,1));
tmp(indx) = 0;
pnts = points(find(tmp),:);
% calculate indexes of other proj falling in current slice
indx2 = find(round(pnts(:,prop{1}))==prop{2});
rest = setdiff([1 2 3],prop{1});
% plot the points
for jj=1:length(indx2)
[x,y] = deal(pnts(indx2(jj),rest(1)),pnts(indx2(jj),rest(2)));
plot(y,x,'g*')
end
end
% add blue cross markers in case of box selection
box = getappdata(fig,'box');
point2mark = getappdata(fig,'point2mark');
if ~isempty(point2mark)
plot(point2mark.x,point2mark.y,'marker','+')
end
if ~isempty(box)
for kk=1:size(box,1)
proj = box(kk,1);
slice = box(kk,2);
rowmin = box(kk,3);
rowmax = box(kk,4);
colmin = box(kk,5);
colmax = box(kk,6);
aaa = get(findobj(fig, 'color', 'g'));
for ii=1:length(aaa)
if ispolygon(aaa(ii))
L = length(aaa(ii).YData);
for jj=1:L
cond = lt(aaa(ii).YData(jj),rowmax).*gt(aaa(ii).YData(jj),rowmin).* ...
lt(aaa(ii).XData(jj),colmax).*gt(aaa(ii).XData(jj),colmin);
if cond
plot(aaa(ii).XData(jj),aaa(ii).YData(jj),'marker','+')
end
end
elseif ispoint(aaa(ii))
cond = lt(aaa(ii).YData,rowmax).*gt(aaa(ii).YData,rowmin).* ...
lt(aaa(ii).XData,colmax).*gt(aaa(ii).XData,colmin);
% the test after cond takes care the box doesnt propagate in 3D
if (cond && (proj == prop{1}) && (slice == prop{2}))
plot(aaa(ii).XData,aaa(ii).YData,'marker','+')
end
end
end
end
end
if get(findobj(fig, 'tag', 'toggle axes'), 'value')
axis on
else
axis off
end
function cb_creategui(hObject, eventdata, handles)
fig = get(hObject, 'parent');
% define the position of each GUI element
position = {
[1] % view radio
[1 1] % del ins
[1] % label slice
[1 1] % slice
[1] % brightness
[1 1] % brightness
[1] % axis visible
[1 1] % view ij
[1 1] % jk ik
[1] % label mesh
[1 1] % view open mesh
[1 1] % save exit buttons
};
% define the style of each GUI element
style = {
{'radiobutton'}
{'radiobutton' 'radiobutton'}
{'text' }
{'pushbutton' 'pushbutton'}
{'text'}
{'pushbutton' 'pushbutton'}
{'checkbox'}
{'text' 'radiobutton'}
{'radiobutton' 'radiobutton'}
{'text' }
{'pushbutton' 'pushbutton'}
{'pushbutton' 'pushbutton'}
};
% define the descriptive string of each GUI element
string = {
{'View'}
{'Ins' 'Del'}
{'slice'}
{'<' '>'}
{'brightness'}
{'+' '-'}
{'axes'}
{'plane' 'jk'}
{'ik' 'ij'}
{'mesh'}
{'smooth' 'view'}
{'Cancel' 'OK'}
};
% define the value of each GUI element
prop = getappdata(fig,'prop');
value = {
{1}
{0 0}
{[]}
{[] []}
{[]}
{[] []}
{0}
{[] 1}
{0 0}
{[]}
{1 1}
{1 1}
};
% define a tag for each GUI element
tag = {
{'view'}
{'ins' 'del' }
{'slice'}
{'min' 'max'}
{'brightness'}
{'plus' 'minus'}
{'toggle axes'}
{'plane' 'one'}
{'two' 'three'}
{'mesh'}
{'smoothm' 'viewm'}
{'cancel' 'OK'}
};
% define the callback function of each GUI element
callback = {
{@which_task1}
{@which_task2 @which_task3}
{[]}
{@cb_btn @cb_btn}
{[]}
{@cb_btn @cb_btn}
{@cb_redraw}
{[] @cb_btnp1}
{@cb_btnp2 @cb_btnp3}
{[]}
{@smooth_mesh @view_mesh}
{@cancel_mesh @cb_btn}
};
visible = {
{'on'}
{'on' 'on'}
{'on'}
{'on' 'on'}
{'on'}
{'on' 'on'}
{'on'}
{'on' 'on'}
{'on' 'on'}
{'on'}
{'on' 'on'}
{'on' 'on'}
};
layoutgui(fig, [0.77 0.10 0.20 0.85], position, style, string, value, tag, callback,visible);
function h = layoutgui(fig, geometry, position, style, string, value, tag, callback,visible);
horipos = geometry(1); % lower left corner of the GUI part in the figure
vertpos = geometry(2); % lower left corner of the GUI part in the figure
width = geometry(3); % width of the GUI part in the figure
height = geometry(4); % height of the GUI part in the figure
horidist = 0.05;
vertdist = 0.05;
options = {'units', 'normalized', 'HorizontalAlignment', 'center'}; % 'VerticalAlignment', 'middle'
Nrow = size(position,1);
h = cell(Nrow,1);
for i=1:Nrow
if isempty(position{i})
continue;
end
position{i} = position{i} ./ sum(position{i});
Ncol = size(position{i},2);
ybeg = (Nrow-i )/Nrow + vertdist/2;
yend = (Nrow-i+1)/Nrow - vertdist/2;
for j=1:Ncol
xbeg = sum(position{i}(1:(j-1))) + horidist/2;
xend = sum(position{i}(1:(j ))) - horidist/2;
pos(1) = xbeg*width + horipos;
pos(2) = ybeg*height + vertpos;
pos(3) = (xend-xbeg)*width;
pos(4) = (yend-ybeg)*height;
h{i}{j} = uicontrol(fig, ...
options{:}, ...
'position', pos, ...
'style', style{i}{j}, ...
'string', string{i}{j}, ...
'tag', tag{i}{j}, ...
'value', value{i}{j}, ...
'callback', callback{i}{j}, ...
'visible', visible{i}{j} ...
);
end
end
function cb_btn(hObject, eventdata, handles)
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
slice = prop{2};
br = prop{3};
datdim = size(getappdata(fig,'data'));
% p1 = [];p2 = [];p3 = [];
p1 = get(findobj('string','jk'),'value');
p2 = get(findobj('string','ik'),'value');
p3 = get(findobj('string','ij'),'value');
set(findobj('string','-'),'Value',prop{3});
set(findobj('string','+'),'Value',prop{3});
beta = get(findobj('string','-'),'Value');
if (p1) %jk
setappdata(fig,'prop',{1,round(datdim(1)/2),br,prop{4}});
cb_redraw(gca);
elseif (p2) %ik
setappdata(fig,'prop',{2,round(datdim(2)/2),br,prop{4}});
cb_redraw(gca);
elseif (p3) %ij
setappdata(fig,'prop',{3,round(datdim(3)/2),br,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'-')
beta=beta-0.05;
set(findobj('string','-'),'Value',beta);
set(findobj('string','+'),'Value',beta);
setappdata(fig,'prop',{prop{1},prop{2},beta,prop{4}});
cb_redraw(gca);
elseif strcmp(get(hObject,'string'),'+')
beta=beta+0.05;
set(findobj('string','+'),'Value',beta);
setappdata(fig,'prop',{prop{1},prop{2},beta,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'<')
setappdata(fig,'prop',{prop{1},slice-1,0,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'>')
setappdata(fig,'prop',{prop{1},slice+1,0,prop{4}});
cb_redraw(gca);
end
if strcmp(get(hObject,'string'),'OK')
close(fig)
end
function keypress(h, eventdata, handles, varargin)
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
dat = guidata(gcbf);
key = get(gcbf, 'CurrentCharacter');
slice = prop{2};
if key
switch key
case 28
setappdata(fig,'prop',{prop{1},slice-1,0,prop{4}});
cb_redraw(gca);
case 29
setappdata(fig,'prop',{prop{1},slice+1,0,prop{4}});
cb_redraw(gca);
otherwise
end
end
uiresume(h)
function build_polygon
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
data = getappdata(fig,'data');
ss = size(data);
proj = prop{1};
slice = prop{2};
thispolygon =1;
polygon{thispolygon} = zeros(0,2);
maskhelp = [ ...
'------------------------------------------------------------------------\n' ...
'specify polygons for masking the topographic interpolation\n' ...
'press the right mouse button to add another point to the current polygon\n' ...
'press backspace on the keyboard to remove the last point\n' ...
'press "c" on the keyboard to close this polygon and start with another\n' ...
'press "q" or ESC on the keyboard to continue\n' ...
];
again = 1;
if ~ishold,hold,end
fprintf(maskhelp);
fprintf('\n');
while again
for i=1:length(polygon)
fprintf('polygon %d has %d points\n', i, size(polygon{i},1));
end
[x, y, k] = ginput(1);
okflag = 0;
% check points do not fall out of image boundaries
if get(findobj('string','Ins'),'value')
if (proj == 1 && y<ss(2) && x<ss(3) && x>1 && y>1)
okflag = 1;
elseif (proj == 2 && y<ss(1) && x<ss(3) && x>1 && y>1)
okflag = 1;
elseif (proj == 3 && y<ss(1) && x<ss(2) && x>1 && y>1)
okflag = 1;
else
okflag = 0;
end
end
if okflag
switch lower(k)
case 1
polygon{thispolygon} = cat(1, polygon{thispolygon}, [x y]);
% add the last line segment to the figure
if size(polygon{thispolygon},1)>1
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
end
plot(x, y, 'g.-');
case 8 % backspace
if size(polygon{thispolygon},1)>0
% redraw existing polygons
cb_redraw(gca);
% remove the last point of current polygon
polygon{thispolygon} = polygon{thispolygon}(1:end-1,:);
for i=1:length(polygon)
x = polygon{i}(:,1);
y = polygon{i}(:,2);
if i~=thispolygon
% close the polygon in the figure
x(end) = x(1);
y(end) = y(1);
end
set(gca,'nextplot','new')
plot(x, y, 'g.-');
end
end
case 'c'
if size(polygon{thispolygon},1)>0
% close the polygon
polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:);
% close the polygon in the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'g.-');
% switch to the next polygon
thispolygon = thispolygon + 1;
polygon{thispolygon} = zeros(0,2);
slicedata = getappdata(fig,'slicedata');
m = length(slicedata);
slicedata(m+1).proj = prop{1};
slicedata(m+1).slice = prop{2};
slicedata(m+1).polygon = polygon;
setappdata(fig,'slicedata',slicedata);
end
case {'q', 27}
if size(polygon{thispolygon},1)>0
% close the polygon
polygon{thispolygon}(end+1,:) = polygon{thispolygon}(1,:);
% close the polygon in the figure
x = polygon{i}([end-1 end],1);
y = polygon{i}([end-1 end],2);
plot(x, y, 'g.-');
end
again = 0;
%set(gcf,'WindowButtonDownFcn','');
slicedata = getappdata(fig,'slicedata');
m = length(slicedata);
if ~isempty(polygon{thispolygon})
slicedata(m+1).proj = prop{1};
slicedata(m+1).slice = prop{2};
slicedata(m+1).polygon = polygon;
setappdata(fig,'slicedata',slicedata);
end
otherwise
warning('invalid button (%d)', k);
end
end
assign_points3d
end
function cb_btn_dwn(hObject, eventdata, handles)
build_polygon
uiresume
function cb_btn_dwn2(hObject, eventdata, handles)
global obj
erase_points2d(obj)
uiresume
function erase_points2d (obj)
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
slicedata = getappdata(fig,'slicedata');
pntsslice = [];
% 2d slice selected box boundaries
if strcmp(get(obj,'string'),'box')
[x, y] = ft_select_box;
rowmin = min(y); rowmax = max(y);
colmin = min(x); colmax = max(x);
box = getappdata(fig,'box');
box = [box; prop{1} prop{2} rowmin rowmax colmin colmax];
setappdata(fig,'box',box);
else
% converts lines to points
pos = slicedata2pnts(prop{1},prop{2});
tmp = ft_select_point(pos);
point2mark.x = tmp(1); point2mark.y = tmp(2);
setappdata(fig,'point2mark',point2mark);
end
maskhelp = [ ...
'------------------------------------------------------------------------\n' ...
'Delete points:\n' ...
'press "c" on the keyboard to undo all selections\n' ...
'press "d" or DEL on the keyboard to delete all selections\n' ...
];
fprintf(maskhelp);
fprintf('\n');
again = 1;
if ~ishold,hold,end
cb_redraw(gca);
% waits for a key press
while again
[junk1, junk2, k] = ginput(1);
switch lower(k)
case 'c'
if strcmp(get(obj,'string'),'box')
% undoes all the selections, but only in the current slice
ind = [];
for ii=1:size(box,1)
if box(ii,1)==prop{1} && box(ii,2)==prop{2}
ind = [ind,ii];
end
end
box(ind,:) = [];
setappdata(fig,'box',box);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
else
setappdata(fig,'point2mark',[]);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
end
case {'d', 127}
if strcmp(get(obj,'string'),'box')
update_slicedata
% deletes only the points selected in the current slice
ind = [];
for ii=1:size(box,1)
if box(ii,1)==prop{1} && box(ii,2)==prop{2}
ind = [ind,ii];
end
end
box(ind,:) = [];
setappdata(fig,'box',box);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
else
update_slicedata
setappdata(fig,'point2mark',[]);
cb_redraw(gca);
again = 0;
set(gcf,'WindowButtonDownFcn','');
end
otherwise
end
end
assign_points3d
function assign_points3d
fig = get(gca, 'parent');
slicedata = getappdata(fig,'slicedata');
points = [];
for zz = 1:length(slicedata)
slice = slicedata(zz).slice;
proj = slicedata(zz).proj;
polygon = slicedata(zz).polygon;
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys]=deal(polygon{kk}(:,1),polygon{kk}(:,2));
if (proj==1) %jk
tmp = [ slice*ones(length(xs),1),ys(:),xs(:) ];
points = [points; unique(tmp,'rows')];
elseif (proj==2) %ik
tmp = [ ys(:),slice*ones(length(xs),1),xs(:) ];
points = [points; unique(tmp,'rows')];
elseif (proj==3) %ij
tmp = [ ys(:),xs(:),slice*ones(length(xs),1) ];
points = [points; unique(tmp,'rows')];
end
end
end
end
setappdata(fig,'points',points);
function update_slicedata
fig = get(gca, 'parent');
prop = getappdata(fig,'prop');
slicedata = getappdata(fig,'slicedata');
box = getappdata(fig,'box');
point2mark = getappdata(fig,'point2mark');
% case of box selection
if ~isempty(box) && ~isempty(slicedata)
for zz = 1:length(slicedata)
slice = slicedata(zz).slice;
proj = slicedata(zz).proj;
polygon = slicedata(zz).polygon;
for uu=1:size(box,1)
if (box(uu,1)==proj) && (box(uu,2)==slice)
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys] = deal(polygon{kk}(:,1),polygon{kk}(:,2));
tmpind = lt(ys,ones(length(xs),1)*box(uu,4)).*gt(ys,ones(length(xs),1)*box(uu,3)).* ...
lt(xs,ones(length(xs),1)*box(uu,6)).*gt(xs,ones(length(xs),1)*box(uu,5));
slicedata(zz).polygon{kk} = [ xs(find(~tmpind)),ys(find(~tmpind)) ];
end
end
end
end
end
% case of point selection
else
if ~isempty(slicedata)
for zz = 1:length(slicedata)
slice = slicedata(zz).slice;
proj = slicedata(zz).proj;
polygon = slicedata(zz).polygon;
for kk=1:length(polygon)
if ~isempty(polygon{kk})
[xs,ys] = deal(polygon{kk}(:,1),polygon{kk}(:,2));
tmpind = eq(xs,point2mark.x).*eq(ys,point2mark.y);
slicedata(zz).polygon{kk} = [ xs(find(~tmpind)),ys(find(~tmpind)) ];
end
end
end
end
end
setappdata(fig,'slicedata',slicedata)
% FIXME: obsolete: replaced by headshape at the beginning
function smooth_mesh(hObject, eventdata, handles)
fig = get(gca,'parent');
disp('not yet implemented')
% FIXME: make it work for pre-loaded meshes
function view_mesh(hObject, eventdata, handles)
fig = get(gca, 'parent');
assign_points3d
pnt = getappdata(fig,'points');
pnt_ = pnt;
if ~isempty(pnt)
tri = projecttri(pnt);
bnd.pnt = pnt_;
bnd.tri = tri;
slicedata = getappdata(fig,'slicedata');
figure
ft_plot_mesh(bnd,'vertexcolor','k');
end
function cancel_mesh(hObject, eventdata, handles)
fig = get(gca, 'parent');
close(fig)
function cb_close(hObject, eventdata, handles)
% get the points from the figure
fig = hObject;
global pnt
pnt = getappdata(fig, 'points');
set(fig, 'CloseRequestFcn', @delete);
delete(fig);
function cb_btnp1(hObject, eventdata, handles)
set(findobj('string','jk'),'value',1);
set(findobj('string','ik'),'value',0);
set(findobj('string','ij'),'value',0);
cb_btn(hObject);
function cb_btnp2(hObject, eventdata, handles)
set(findobj('string','jk'),'value',0);
set(findobj('string','ik'),'value',1);
set(findobj('string','ij'),'value',0);
cb_btn(hObject);
function cb_btnp3(hObject, eventdata, handles)
set(findobj('string','jk'),'value',0);
set(findobj('string','ik'),'value',0);
set(findobj('string','ij'),'value',1);
cb_btn(hObject);
function which_task1(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
set(findobj('string','View'),'value',1);
set(findobj('string','Ins'), 'value',0);
set(findobj('string','Del'), 'value',0);
set(gcf,'WindowButtonDownFcn','');
change_panel
function which_task2(hObject, eventdata, handles)
set(findobj('string','View'),'value',0);
set(findobj('string','Ins'), 'value',1);
set(findobj('string','Del'), 'value',0);
set(gcf,'WindowButtonDownFcn',@cb_btn_dwn);
change_panel
function which_task3(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
set(findobj('string','View'),'value',0);
set(findobj('string','Ins'), 'value',0);
set(findobj('string','Del'), 'value',1);
change_panel
function change_panel
% affect panel visualization
w1 = get(findobj('string','View'),'value');
w2 = get(findobj('string','Ins'), 'value');
w3 = get(findobj('string','Del'), 'value');
if w1
set(findobj('tag','slice'),'string','slice');
set(findobj('tag','min'),'string','<');
set(findobj('tag','max'),'string','>');
set(findobj('tag','min'),'style','pushbutton');
set(findobj('tag','max'),'style','pushbutton');
set(findobj('tag','min'),'callback',@cb_btn);
set(findobj('tag','max'),'callback',@cb_btn);
set(findobj('tag','mesh'),'visible','on');
set(findobj('tag','openm'),'visible','on');
set(findobj('tag','viewm'),'visible','on');
set(findobj('tag','brightness'),'visible','on');
set(findobj('tag','plus'),'visible','on');
set(findobj('tag','minus'),'visible','on');
set(findobj('tag','toggle axes'),'visible','on');
set(findobj('tag','plane'),'visible','on');
set(findobj('tag','one'),'visible','on');
set(findobj('tag','two'),'visible','on');
set(findobj('tag','three'),'visible','on');
elseif w2
set(findobj('tag','slice'),'string','select points');
set(findobj('tag','min'),'string','close');
set(findobj('tag','max'),'string','next');
set(findobj('tag','min'),'style','pushbutton');
set(findobj('tag','max'),'style','pushbutton');
set(findobj('tag','min'),'callback',@tins_close);
set(findobj('tag','max'),'callback',@tins_next);
set(findobj('tag','mesh'),'visible','off');
set(findobj('tag','openm'),'visible','off');
set(findobj('tag','viewm'),'visible','off');
set(findobj('tag','brightness'),'visible','off');
set(findobj('tag','plus'),'visible','off');
set(findobj('tag','minus'),'visible','off');
set(findobj('tag','toggle axes'),'visible','off');
set(findobj('tag','plane'),'visible','off');
set(findobj('tag','one'),'visible','off');
set(findobj('tag','two'),'visible','off');
set(findobj('tag','three'),'visible','off');
elseif w3
set(findobj('tag','slice'),'string','select points');
set(findobj('tag','min'),'string','box');
set(findobj('tag','max'),'string','point');
set(findobj('tag','min'),'style','pushbutton');
set(findobj('tag','max'),'style','pushbutton');
set(findobj('tag','min'),'callback',@tdel_box);
set(findobj('tag','max'),'callback',@tdel_single);
set(findobj('tag','mesh'),'visible','off');
set(findobj('tag','openm'),'visible','off');
set(findobj('tag','viewm'),'visible','off');
set(findobj('tag','brightness'),'visible','off');
set(findobj('tag','plus'),'visible','off');
set(findobj('tag','minus'),'visible','off');
set(findobj('tag','toggle axes'),'visible','off');
set(findobj('tag','plane'),'visible','off');
set(findobj('tag','one'),'visible','off');
set(findobj('tag','two'),'visible','off');
set(findobj('tag','three'),'visible','off');
end
function tins_close(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
function tins_next(hObject, eventdata, handles)
set(gcf,'WindowButtonDownFcn','');
function tdel_box(hObject, eventdata, handles)
global obj
obj = gco;
set(gcf,'WindowButtonDownFcn',@cb_btn_dwn2);
function tdel_single(hObject, eventdata, handles)
global obj
obj = gco;
set(gcf,'WindowButtonDownFcn',@cb_btn_dwn2);
% accessory functions:
function [pnts] = slicedata2pnts(proj,slice)
fig = get(gca, 'parent');
slicedata = getappdata(fig,'slicedata');
pnts = [];
for i=1:length(slicedata)
if slicedata(i).slice==slice && slicedata(i).proj == proj
for j=1:length(slicedata(i).polygon)
if ~isempty(slicedata(i).polygon{j})
tmp = slicedata(i).polygon{j};
xs = tmp(:,1); ys = tmp(:,2);
pnts = [pnts;[unique([xs,ys],'rows')]];
end
end
end
end
function h = ispolygon(x)
h = length(x.XData)>1;
function h = ispoint(x)
h = length(x.XData)==1;
function [T,P] = points2param(pnt)
x = pnt(:,1); y = pnt(:,2); z = pnt(:,3);
[phi,theta,R] = cart2sph(x,y,z);
theta = theta + pi/2;
phi = phi + pi;
T = theta(:);
P = phi(:);
function [bnd2,a,Or] = spherical_harmonic_mesh(bnd, nl)
% SPHERICAL_HARMONIC_MESH realizes the smoothed version of a mesh contained in the first
% argument bnd. The boundary argument (bnd) contains typically 2 fields
% called .pnt and .tri referring to vertices and triangulation of a mesh.
% The degree of smoothing is given by the order in the second input: nl
%
% Use as
% bnd2 = spherical_harmonic_mesh(bnd, nl);
% nl = 12; % from van 't Ent paper
bnd2 = [];
% calculate midpoint
Or = mean(bnd.pnt);
% rescale all points
x = bnd.pnt(:,1) - Or(1);
y = bnd.pnt(:,2) - Or(2);
z = bnd.pnt(:,3) - Or(3);
X = [x(:), y(:), z(:)];
% convert points to parameters
[T,P] = points2param(X);
% basis function
B = shlib_B(nl, T, P);
Y = B'*X;
% solve the linear system
a = pinv(B'*B)*Y;
% build the surface
Xs = zeros(size(X));
for l = 0:nl-1
for m = -l:l
if m<0
Yml = shlib_Yml(l, abs(m), T, P);
Yml = (-1)^m*conj(Yml);
else
Yml = shlib_Yml(l, m, T, P);
end
indx = l^2 + l + m+1;
Xs = Xs + Yml*a(indx,:);
end
fprintf('%d of %d\n', l, nl);
end
% Just take the real part
Xs = real(Xs);
% reconstruct the matrices for plotting.
xs = reshape(Xs(:,1), size(x,1), size(x,2));
ys = reshape(Xs(:,2), size(x,1), size(x,2));
zs = reshape(Xs(:,3), size(x,1), size(x,2));
bnd2.pnt = [xs(:)+Or(1) ys(:)+Or(2) zs(:)+Or(3)];
[bnd2.tri] = projecttri(bnd.pnt);
function B = shlib_B(nl, theta, phi)
% function B = shlib_B(nl, theta, phi)
%
% Constructs the matrix of basis functions
% where b(i,l^2 + l + m) = Yml(theta, phi)
%
% See also: shlib_Yml.m, shlib_decomp.m, shlib_gen_shfnc.m
%
% Dr. A. I. Hanna (2006).
B = zeros(length(theta), nl^2+2*nl+1);
for l = 0:nl-1
for m = -l:l
if m<0
Yml = shlib_Yml(l, abs(m), theta, phi);
Yml = (-1)^m*conj(Yml);
else
Yml = shlib_Yml(l, m, theta, phi);
end
indx = l^2 + l + m+1;
B(:, indx) = Yml;
end
end
return;
function Yml = shlib_Yml(l, m, theta, phi)
% function Yml = shlib_Yml(l, m, theta, phi)
%
% A matlab function that takes a given order and degree, and the matrix of
% theta and phi and constructs a spherical harmonic from these. The
% analogue in the 1D case would be to give a particular frequency.
%
% Inputs:
% m - order of the spherical harmonic
% l - degree of the spherical harmonic
% theta - matrix of polar coordinates \theta \in [0, \pi]
% phi - matrix of azimuthal cooridinates \phi \in [0, 2\pi)
%
% Example:
%
% [x, y] = meshgrid(-1:.1:1);
% z = x.^2 + y.^2;
% [phi,theta,R] = cart2sph(x,y,z);
% Yml = spharm_aih(2,2, theta(:), phi(:));
%
% See also: shlib_B.m, shlib_decomp.m, shlib_gen_shfnc.m
%
% Dr. A. I. Hanna (2006)
Pml=legendre(l,cos(theta));
if l~=0
Pml=squeeze(Pml(m+1,:,:));
end
Pml = Pml(:);
% Yml = sqrt(((2*l+1)/4).*(factorial(l-m)/factorial(l+m))).*Pml.*exp(sqrt(-1).*m.*phi);
% new:
Yml = sqrt(((2*l+1)/(4*pi)).*(factorial(l-m)/factorial(l+m))).*Pml.*exp(sqrt(-1).*m.*phi);
return;
|
github
|
philippboehmsturm/antx-master
|
nan_mean.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nan_mean.m
| 2,258 |
utf_8
|
6b8f442f6a16b560230335ac6d8c97e6
|
% nan_mean() - Average, not considering NaN values
%
% Usage: same as mean()
% Author: Arnaud Delorme, CNL / Salk Institute, 16 Oct 2002
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nan_mean.m 2622 2011-01-20 15:32:41Z jorhor $
function out = nan_mean(in, dim)
if nargin < 1
help nan_mean;
return;
end;
if nargin < 2
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end;
end;
tmpin = in;
tmpin(find(isnan(in(:)))) = 0;
ws = warning('off', 'MATLAB:divideByZero');
out = sum(tmpin, dim) ./ sum(~isnan(in),dim);
warning(ws);
|
github
|
philippboehmsturm/antx-master
|
matlabversion.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/matlabversion.m
| 3,375 |
utf_8
|
420300c3dc97894d63a198aa0d304dac
|
function [inInterval] = matlabversion(min, max)
% MATLABVERSION checks if the current matlab version is within the interval
% specified by min and max.
%
% Use, e.g., as:
% if matlabversion(7.0, 7.9)
% % do something
% end
%
% Both strings and numbers, as well as infinities, are supported, eg.:
% matlabversion(7.1, 7.9) % is version between 7.1 and 7.9?
% matlabversion(-Inf, 7.6) % is version <= 7.6?
% matlabversion(6, '7.10') % between 6 and 7.10? (note: '7.10', not 7.10)
% matlabversion('2008b', '2010a')
% matlabversion('2008b', Inf)
% matlabversion('2009b', '2009b') % exactly 2009b
% etc.
%
% See also VERSION, VER
% Copyright (C) 2006, Robert Oostenveld; 2010, Eelke Spaak
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: matlabversion.m 2885 2011-02-16 09:41:58Z roboos $
curVer = version();
if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max))))
% perform comparison with respect to release string
ind = strfind(curVer, '(R');
[year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1)));
[minY, minAb] = parseMatlabRelease(min);
[maxY, maxAb] = parseMatlabRelease(max);
inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab);
else % perform comparison with respect to version number
[major, minor] = parseMatlabVersion(curVer);
[minMajor, minMinor] = parseMatlabVersion(min);
[maxMajor, maxMinor] = parseMatlabVersion(max);
inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor);
end
function [year, ab] = parseMatlabRelease(str)
if (str == Inf)
year = Inf; ab = Inf;
elseif (str == -Inf)
year = -Inf; ab = -Inf;
else
year = str2num(str(1:4));
ab = str(5);
end
end
function [major, minor] = parseMatlabVersion(ver)
if (ver == Inf)
major = Inf; minor = Inf;
elseif (ver == -Inf)
major = -Inf; minor = -Inf;
elseif (isnumeric(ver))
major = floor(ver);
minor = int8((ver - floor(ver)) * 10);
else % ver is string (e.g. '7.10'), parse accordingly
[major, rest] = strtok(ver, '.');
major = str2num(major);
minor = str2num(strtok(rest, '.'));
end
end
% checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB).
function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB)
if (testA < lowerA || testA > upperA)
inInterval = false;
else
inInterval = true;
if (testA == lowerA)
inInterval = inInterval && (testB >= lowerB);
end
if (testA == upperA)
inInterval = inInterval && (testB <= upperB);
end
end
end
end
|
github
|
philippboehmsturm/antx-master
|
nanmean.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nanmean.m
| 2,121 |
utf_8
|
7e0ebd9ca56f2cd79f89031bbccebb9a
|
% nanmean() - Average, not considering NaN values
%
% Usage: same as mean()
% Author: Arnaud Delorme, CNL / Salk Institute, 16 Oct 2002
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nanmean.m 2885 2011-02-16 09:41:58Z roboos $
function out = nanmean(in, dim)
if nargin < 1
help nanmean;
return;
end;
if nargin < 2
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end;
end;
tmpin = in;
tmpin(find(isnan(in(:)))) = 0;
out = sum(tmpin, dim) ./ sum(~isnan(in),dim);
|
github
|
philippboehmsturm/antx-master
|
nanvar.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nanvar.m
| 2,439 |
utf_8
|
201826aeefbd74374df411fca75bb78f
|
% nanvar() - var, not considering NaN values
%
% Usage: same as var()
% Author: Arnaud Delorme, CNL / Salk Institute, Sept 2003
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nanvar.m 2885 2011-02-16 09:41:58Z roboos $
function out = nanvar(in, varargin)
if nargin < 1
help nanvar;
return;
end
if nargin == 1, flag = 0; end
if nargin < 3,
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end
end
if nargin == 2, flag = varargin{1}; end
if nargin == 3,
flag = varargin{1};
dim = varargin{2};
end
if isempty(flag), flag = 0; end
nans = find(isnan(in));
in(nans) = 0;
nonnans = ones(size(in));
nonnans(nans) = 0;
nonnans = sum(nonnans, dim);
nononnans = find(nonnans==0);
nonnans(nononnans) = 1;
out = (sum(in.^2, dim)-sum(in, dim).^2./nonnans)./(nonnans-abs(flag-1));
out(nononnans) = NaN;
|
github
|
philippboehmsturm/antx-master
|
tinv.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/tinv.m
| 7,634 |
utf_8
|
8fe66ec125f91e1a7ac5f8d3cb2ac51a
|
function x = tinv(p,v);
% TINV Inverse of Student's T cumulative distribution function (cdf).
% X=TINV(P,V) returns the inverse of Student's T cdf with V degrees
% of freedom, at the values in P.
%
% The size of X is the common size of P and V. A scalar input
% functions as a constant matrix of the same size as the other input.
%
% This is an open source function that was assembled by Eric Maris using
% open source subfunctions found on the web.
% Subversion does not use the Log keyword, use 'svn log <filename>' or 'svn -v log | less' to get detailled information
if nargin < 2,
error('Requires two input arguments.');
end
[errorcode p v] = distchck(2,p,v);
if errorcode > 0
error('Requires non-scalar arguments to match in size.');
end
% Initialize X to zero.
x=zeros(size(p));
k = find(v < 0 | v ~= round(v));
if any(k)
tmp = NaN;
x(k) = tmp(ones(size(k)));
end
k = find(v == 1);
if any(k)
x(k) = tan(pi * (p(k) - 0.5));
end
% The inverse cdf of 0 is -Inf, and the inverse cdf of 1 is Inf.
k0 = find(p == 0);
if any(k0)
tmp = Inf;
x(k0) = -tmp(ones(size(k0)));
end
k1 = find(p ==1);
if any(k1)
tmp = Inf;
x(k1) = tmp(ones(size(k1)));
end
k = find(p >= 0.5 & p < 1);
if any(k)
z = betainv(2*(1-p(k)),v(k)/2,0.5);
x(k) = sqrt(v(k) ./ z - v(k));
end
k = find(p < 0.5 & p > 0);
if any(k)
z = betainv(2*(p(k)),v(k)/2,0.5);
x(k) = -sqrt(v(k) ./ z - v(k));
end
%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION distchck
%%%%%%%%%%%%%%%%%%%%%%%%%
function [errorcode,varargout] = distchck(nparms,varargin)
%DISTCHCK Checks the argument list for the probability functions.
errorcode = 0;
varargout = varargin;
if nparms == 1
return;
end
% Get size of each input, check for scalars, copy to output
isscalar = (cellfun('prodofsize',varargin) == 1);
% Done if all inputs are scalars. Otherwise fetch their common size.
if (all(isscalar)), return; end
n = nparms;
for j=1:n
sz{j} = size(varargin{j});
end
t = sz(~isscalar);
size1 = t{1};
% Scalars receive this size. Other arrays must have the proper size.
for j=1:n
sizej = sz{j};
if (isscalar(j))
t = zeros(size1);
t(:) = varargin{j};
varargout{j} = t;
elseif (~isequal(sizej,size1))
errorcode = 1;
return;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION betainv
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = betainv(p,a,b);
%BETAINV Inverse of the beta cumulative distribution function (cdf).
% X = BETAINV(P,A,B) returns the inverse of the beta cdf with
% parameters A and B at the values in P.
%
% The size of X is the common size of the input arguments. A scalar input
% functions as a constant matrix of the same size as the other inputs.
%
% BETAINV uses Newton's method to converge to the solution.
% Reference:
% [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
% Functions", Government Printing Office, 1964.
% B.A. Jones 1-12-93
if nargin < 3,
error('Requires three input arguments.');
end
[errorcode p a b] = distchck(3,p,a,b);
if errorcode > 0
error('Requires non-scalar arguments to match in size.');
end
% Initialize x to zero.
x = zeros(size(p));
% Return NaN if the arguments are outside their respective limits.
k = find(p < 0 | p > 1 | a <= 0 | b <= 0);
if any(k),
tmp = NaN;
x(k) = tmp(ones(size(k)));
end
% The inverse cdf of 0 is 0, and the inverse cdf of 1 is 1.
k0 = find(p == 0 & a > 0 & b > 0);
if any(k0),
x(k0) = zeros(size(k0));
end
k1 = find(p==1);
if any(k1),
x(k1) = ones(size(k1));
end
% Newton's Method.
% Permit no more than count_limit interations.
count_limit = 100;
count = 0;
k = find(p > 0 & p < 1 & a > 0 & b > 0);
pk = p(k);
% Use the mean as a starting guess.
xk = a(k) ./ (a(k) + b(k));
% Move starting values away from the boundaries.
if xk == 0,
xk = sqrt(eps);
end
if xk == 1,
xk = 1 - sqrt(eps);
end
h = ones(size(pk));
crit = sqrt(eps);
% Break out of the iteration loop for the following:
% 1) The last update is very small (compared to x).
% 2) The last update is very small (compared to 100*eps).
% 3) There are more than 100 iterations. This should NEVER happen.
while(any(abs(h) > crit * abs(xk)) & max(abs(h)) > crit ...
& count < count_limit),
count = count+1;
h = (betacdf(xk,a(k),b(k)) - pk) ./ betapdf(xk,a(k),b(k));
xnew = xk - h;
% Make sure that the values stay inside the bounds.
% Initially, Newton's Method may take big steps.
ksmall = find(xnew < 0);
klarge = find(xnew > 1);
if any(ksmall) | any(klarge)
xnew(ksmall) = xk(ksmall) /10;
xnew(klarge) = 1 - (1 - xk(klarge))/10;
end
xk = xnew;
end
% Return the converged value(s).
x(k) = xk;
if count==count_limit,
fprintf('\nWarning: BETAINV did not converge.\n');
str = 'The last step was: ';
outstr = sprintf([str,'%13.8f'],h);
fprintf(outstr);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION betapdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = betapdf(x,a,b)
%BETAPDF Beta probability density function.
% Y = BETAPDF(X,A,B) returns the beta probability density
% function with parameters A and B at the values in X.
%
% The size of Y is the common size of the input arguments. A scalar input
% functions as a constant matrix of the same size as the other inputs.
% References:
% [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
% Functions", Government Printing Office, 1964, 26.1.33.
if nargin < 3,
error('Requires three input arguments.');
end
[errorcode x a b] = distchck(3,x,a,b);
if errorcode > 0
error('Requires non-scalar arguments to match in size.');
end
% Initialize Y to zero.
y = zeros(size(x));
% Return NaN for parameter values outside their respective limits.
k1 = find(a <= 0 | b <= 0 | x < 0 | x > 1);
if any(k1)
tmp = NaN;
y(k1) = tmp(ones(size(k1)));
end
% Return Inf for x = 0 and a < 1 or x = 1 and b < 1.
% Required for non-IEEE machines.
k2 = find((x == 0 & a < 1) | (x == 1 & b < 1));
if any(k2)
tmp = Inf;
y(k2) = tmp(ones(size(k2)));
end
% Return the beta density function for valid parameters.
k = find(~(a <= 0 | b <= 0 | x <= 0 | x >= 1));
if any(k)
y(k) = x(k) .^ (a(k) - 1) .* (1 - x(k)) .^ (b(k) - 1) ./ beta(a(k),b(k));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION betacdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function p = betacdf(x,a,b);
%BETACDF Beta cumulative distribution function.
% P = BETACDF(X,A,B) returns the beta cumulative distribution
% function with parameters A and B at the values in X.
%
% The size of P is the common size of the input arguments. A scalar input
% functions as a constant matrix of the same size as the other inputs.
%
% BETAINC does the computational work.
% Reference:
% [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
% Functions", Government Printing Office, 1964, 26.5.
if nargin < 3,
error('Requires three input arguments.');
end
[errorcode x a b] = distchck(3,x,a,b);
if errorcode > 0
error('Requires non-scalar arguments to match in size.');
end
% Initialize P to 0.
p = zeros(size(x));
k1 = find(a<=0 | b<=0);
if any(k1)
tmp = NaN;
p(k1) = tmp(ones(size(k1)));
end
% If is X >= 1 the cdf of X is 1.
k2 = find(x >= 1);
if any(k2)
p(k2) = ones(size(k2));
end
k = find(x > 0 & x < 1 & a > 0 & b > 0);
if any(k)
p(k) = betainc(x(k),a(k),b(k));
end
% Make sure that round-off errors never make P greater than 1.
k = find(p > 1);
p(k) = ones(size(k));
|
github
|
philippboehmsturm/antx-master
|
prepare_timefreq_data.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/prepare_timefreq_data.m
| 23,749 |
utf_8
|
3ad7647541444236bdea168c9c52ffc5
|
function [cfg, data] = prepare_timefreq_data(cfg, varargin);
% PREPARE_TIMEFREQ_DATA collects the overlapping data from multiple ERPs
% or ERFs according to the channel/time/freq-selection in the configuration
% and returns it with a dimord of 'repl_chan_freq_time'.
%
% Supported input data is from TIMELOCKANALYSIS, TIMELOCKGRANDAVERAGE,
% FREQANALYSIS or FREQDESCRIPTIVES.
%
% Use as
% [cfg, data] = prepare_timefreq_data(cfg, varargin)
% where the configuration can contain
% cfg.channel = cell-array of size Nx1, see CHANNELSELECTION, or
% cfg.channelcmb = cell-array of size Nx2, see CHANNELCOMBINATION
% cfg.latency = [begin end], can be 'all' (default)
% cfg.frequency = [begin end], can be 'all' (default)
% cfg.avgoverchan = 'yes' or 'no' (default)
% cfg.avgovertime = 'yes' or 'no' (default)
% cfg.avgoverfreq = 'yes' or 'no' (default)
% cfg.datarepresentation = 'cell-array' or 'concatenated'
% cfg.precision = 'single' or 'double' (default)
%
% If the data contains both power- and cross-spectra, they will be concatenated
% and treated together. In that case you should specify cfg.channelcmb instead
% of cfg.channel.
%
% This function can serve as a subfunction for TIMEFREQRANDOMIZATION,
% TIMEFREQCLUSTER and other statistical functions, so that those functions
% do not have to do the bookkeeping themselves.
% KNOWN BUGS AND LIMITATIONS
% copying of data is not memory efficient for cell-array output
% cfg.precision is not used for cell-array output
% Copyright (C) 2004, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: prepare_timefreq_data.m 2097 2010-11-10 09:20:18Z roboos $
% set the defaults
if ~isfield(cfg, 'channel'), cfg.channel = 'all'; end
if ~isfield(cfg, 'channelcmb'), cfg.channelcmb = []; end
if ~isfield(cfg, 'latency'), cfg.latency = 'all'; end
if ~isfield(cfg, 'frequency'), cfg.frequency = 'all'; end
if ~isfield(cfg, 'avgoverchan'), cfg.avgoverchan = 'no'; end
if ~isfield(cfg, 'avgovertime'), cfg.avgovertime = 'no'; end
if ~isfield(cfg, 'avgoverfreq'), cfg.avgoverfreq = 'no'; end
if ~isfield(cfg, 'datarepresentation'), cfg.datarepresentation = 'cell-array'; end
if ~isfield(cfg, 'precision'), cfg.precision = 'double'; end
% initialize
containsdof = false;
% count the number of input datasets
Nvarargin = length(varargin);
remember = {};
% initialize
swapmemfile;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect information over all data sets required for a consistent selection
% this is the first time that the data will be swapped from file into memory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for c=1:Nvarargin
% swap the data into memory
varargin{c} = swapmemfile(varargin{c});
% for backward compatibility with old data structures
varargin{c} = fixdimord(varargin{c});
% reformat the data, and combine cross and power spectra
[remember{c}, hascrsspctrm] = forcedimord(varargin{c});
% keep a small part of the data in memory
if hascrsspctrm
remember{c} = rmfield(remember{c}, 'dat');
remember{c} = rmfield(remember{c}, 'crs');
else
remember{c} = rmfield(remember{c}, 'dat');
end
% swap the data out of memory
varargin{c} = swapmemfile(varargin{c});
end
if hascrsspctrm
% by default this should be empty
cfg.channel = [];
if isempty(cfg.channelcmb)
% default is to copy the channelcombinations from the first dataset
% and these have been concatenated by forcedimord -> tear them apart
cfg.channelcmb = label2cmb(remember{1}.label);
end
% instead of matching channelcombinations, we will match channels that
% consist of the concatenated labels of the channelcombinations
cfg.channel = cmb2label(cfg.channelcmb);
cfg.channelcmb = []; % this will be reconstructed at the end
else
% by default this should be empty
cfg.channelcmb = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% adjust the selection of channels, latency and frequency so that it
% matches with all datasets
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for c=1:Nvarargin
% match the channel selection with this dataset
cfg.channel = ft_channelselection(cfg.channel, remember{c}.label);
% match the selected latency with this dataset
if isempty(findstr(remember{c}.dimord, 'time')) || all(isnan(remember{c}.time))
cfg.latency = [];
elseif ischar(cfg.latency) && strcmp(cfg.latency, 'all')
cfg.latency = [];
cfg.latency(1) = min(remember{c}.time);
cfg.latency(2) = max(remember{c}.time);
else
cfg.latency(1) = max(cfg.latency(1), min(remember{c}.time));
cfg.latency(2) = min(cfg.latency(2), max(remember{c}.time));
end
% match the selected frequency with this dataset
if isempty(findstr(remember{c}.dimord, 'freq')) || all(isnan(remember{c}.freq))
cfg.frequency = [];
elseif ischar(cfg.frequency) && strcmp(cfg.frequency, 'all')
cfg.frequency = [];
cfg.frequency(1) = min(remember{c}.freq);
cfg.frequency(2) = max(remember{c}.freq);
else
cfg.frequency(1) = max(cfg.frequency(1), min(remember{c}.freq));
cfg.frequency(2) = min(cfg.frequency(2), max(remember{c}.freq));
end
% keep track of the number of replications
Nrepl(c) = length(remember{c}.repl);
end
% count the number of channels, time bins and frequency bins
dimord = remember{c}.dimord;
if ~isempty(cfg.latency) && ~all(isnan(cfg.latency))
timesel = nearest(remember{1}.time, cfg.latency(1)):nearest(remember{1}.time, cfg.latency(2));
else
timesel = 1;
end
if ~isempty(cfg.frequency) && ~all(isnan(cfg.frequency))
freqsel = nearest(remember{1}.freq, cfg.frequency(1)):nearest(remember{1}.freq, cfg.frequency(2));
else
freqsel = 1;
end
Nchan = length(cfg.channel);
Ntime = length(timesel);
Nfreq = length(freqsel);
if ~hascrsspctrm
% print the information for channels
if Nchan<1
error('channel selection is empty')
elseif strcmp(cfg.avgoverchan, 'yes')
fprintf('averaging over %d channels\n', Nchan);
Nchan = 1; % after averaging
else
fprintf('selected %d channels\n', Nchan);
end
else
% print the (same) information for channelcombinations
if Nchan<1
error('channelcombination selection is empty')
elseif strcmp(cfg.avgoverchan, 'yes')
fprintf('averaging over %d channelcombinations\n', Nchan);
Nchan = 1; % after averaging
else
fprintf('selected %d channelcombinations\n', Nchan);
end
end
if Ntime<1
error('latency selection is empty')
elseif strcmp(cfg.avgovertime, 'yes')
fprintf('averaging over %d time bins\n', Ntime);
Ntime = 1; % after averaging
else
fprintf('selected %d time bins\n', Ntime);
end
if Nfreq<1
error('latency selection is empty')
elseif strcmp(cfg.avgoverfreq, 'yes')
fprintf('averaging over %d frequency bins\n', Nfreq);
Nfreq = 1; % after averaging
else
fprintf('selected %d frequency bins\n', Nfreq);
end
% determine whether, and over which dimensions the data should be averaged
tok = tokenize(dimord, '_');
chandim = find(strcmp(tok, 'chan'));
timedim = find(strcmp(tok, 'time'));
freqdim = find(strcmp(tok, 'freq'));
avgdim = [];
if strcmp(cfg.avgoverchan, 'yes') && ~isempty(chandim)
avgdim = [avgdim chandim];
end
if strcmp(cfg.avgovertime, 'yes') && ~isempty(timedim)
avgdim = [avgdim timedim];
end
if strcmp(cfg.avgoverfreq, 'yes') && ~isempty(freqdim)
avgdim = [avgdim freqdim];
end
% this will hold the output data
if strcmp(cfg.datarepresentation, 'cell-array')
dat = {};
dof = {};
elseif strcmp(cfg.datarepresentation, 'concatenated')
% preallocate memory to hold all the data
if hascrsspctrm
if str2num(version('-release'))>=14
dat = complex(zeros(sum(Nrepl), Nchan, Nfreq, Ntime, cfg.precision));
else
% use double precision for default and Matlab versions prior to release 14
if ~strcmp(cfg.precision, 'double')
warning('Matlab versions prior to release 14 only support double precision');
end
dat = complex(zeros(sum(Nrepl), Nchan, Nfreq, Ntime));
end
else
if str2num(version('-release'))>=14
dat = zeros(sum(Nrepl), Nchan, Nfreq, Ntime, cfg.precision);
else
% use double precision for default and Matlab versions prior to release 14
if ~strcmp(cfg.precision, 'double')
warning('Matlab versions prior to release 14 only support double precision');
end
dat = zeros(sum(Nrepl), Nchan, Nfreq, Ntime);
end
end
if isempty(avgdim)
dof = zeros(sum(Nrepl), Nfreq, Ntime);
end;
else
error('unsupported output data representation');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select the desired channels, latency and frequency bins from each dataset
% this is the second time that the data will be swapped from file into memory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for c=1:Nvarargin
% swap the data into memory
varargin{c} = swapmemfile(varargin{c});
% reformat the data, and combine cross and power spectra
[varargin{c}, hascrsspctrm] = forcedimord(varargin{c});
% select the channels, sorted according to the order in the configuration
[dum, chansel] = match_str(cfg.channel, varargin{c}.label);
if ~isempty(cfg.latency)
timesel = nearest(varargin{c}.time, cfg.latency(1)):nearest(varargin{c}.time, cfg.latency(2));
end
if ~isempty(cfg.frequency)
freqsel = nearest(varargin{c}.freq, cfg.frequency(1)):nearest(varargin{c}.freq, cfg.frequency(2));
end
if hascrsspctrm
Nfreq = size(varargin{c}.crs, 3);
Ntime = size(varargin{c}.crs, 4);
% separate selection for the auto-spectra and cross-spectra
Ndat = size(varargin{c}.dat, 2); % count the total number of auto-spectra
Ncrs = size(varargin{c}.crs, 2); % count the total number of cross-spectra
[dum, chansel_dat] = ismember(chansel, 1:Ndat); % selection of auto-spectra
chansel_dat=chansel_dat(chansel_dat~=0)';
[dum, chansel_crs] = ismember(chansel, (1:Ncrs)+Ndat); % selection of cross-spectra
chansel_crs=chansel_crs(chansel_crs~=0)';
Ndatsel = length(chansel_dat); % count the number of selected auto-spectra
Ncrssel = length(chansel_crs); % count the number of selected cross-spectra
else
Nfreq = size(varargin{c}.dat, 3);
Ntime = size(varargin{c}.dat, 4);
end
% collect the data, average if required
if strcmp(cfg.datarepresentation, 'cell-array')
if hascrsspctrm
dat{c} = cat(2, avgoverdim(varargin{c}.dat(:, chansel_dat, freqsel, timesel), avgdim), avgoverdim(varargin{c}.crs(:, chansel_crs, freqsel, timesel), avgdim));
else
dat{c} = avgoverdim(varargin{c}.dat(:, chansel, freqsel, timesel), avgdim);
end
if isfield(varargin{c},'dof')
containsdof = isempty(avgdim);
if containsdof
dof{c} = varargin{c}.dof(:,freqsel,timesel);
else
warning('Degrees of freedom cannot be calculated if averaging over channels, frequencies, or time bins is requested.');
end;
end;
elseif strcmp(cfg.datarepresentation, 'concatenated')
if c==1
trialsel = 1:Nrepl(1);
else
trialsel = (1+sum(Nrepl(1:(c-1)))):sum(Nrepl(1:c));
end
% THIS IS IMPLEMENTED WITH STRICT MEMORY CONSIDERATIONS
% handle cross-spectrum and auto-spectrum separately
% first copy complex part (crs) then real part (pow), otherwise dat first will be made real and then complex again
% copy selection of "all" as complete matrix and not as selection
% copy selection with for loops (not yet implemented below)
if isempty(avgdim) && hascrsspctrm
if length(chansel_crs)==Ncrs && length(freqsel)==Nfreq && length(timesel)==Ntime && all(chansel_crs==(1:Ncrs)) && all(freqsel==(1:Nfreq)) && all(timesel==(1:Ntime))
% copy everything into the output data array
% this is more memory efficient than selecting everything
dat(trialsel,(1:Ncrssel)+Ndatsel,:,:) = varargin{c}.crs;
else
% copy only a selection into the output data array
% this could be made more memory efficient using for-loops
dat(trialsel,(1:Ncrssel)+Ndatsel,:,:) = varargin{c}.crs(:, chansel_crs, freqsel, timesel);
end
dat(trialsel,1:Ndatsel,:,:) = varargin{c}.dat(:, chansel_dat, freqsel, timesel);
elseif ~isempty(avgdim) && hascrsspctrm
if length(chansel_crs)==Ncrs && length(freqsel)==Nfreq && length(timesel)==Ntime && all(chansel_crs==(1:Ncrs)) && all(freqsel==(1:Nfreq)) && all(timesel==(1:Ntime))
% copy everything into the output data array
% this is more memory efficient than selecting everything
dat(trialsel,(1:Ncrssel)+Ndatsel,:,:) = avgoverdim(varargin{c}.crs, avgdim);
else
% copy only a selection into the output data array
% this could be made more memory efficient using for-loops
dat(trialsel,(1:Ncrssel)+Ndatsel,:,:) = avgoverdim(varargin{c}.crs(:, chansel_crs, freqsel, timesel), avgdim);
end
dat(trialsel,1:Ndatsel,:,:) = avgoverdim(varargin{c}.dat(:, chansel_dat, freqsel, timesel), avgdim);
elseif isempty(avgdim) && ~hascrsspctrm
dat(trialsel,:,:,:) = varargin{c}.dat(:, chansel, freqsel, timesel);
elseif ~isempty(avgdim) && ~hascrsspctrm
dat(trialsel,:,:,:) = avgoverdim(varargin{c}.dat(:, chansel, freqsel, timesel), avgdim);
end
if isfield(varargin{c},'dof')
containsdof = isempty(avgdim);
if containsdof
dof(trialsel,:,:) = varargin{c}.dof(:,freqsel,timesel);
else
warning('Degrees of freedom cannot be calculated if averaging over channels, frequencies, or time bins is requested.');
end;
end;
end
% swap the data out of memory
varargin{c} = swapmemfile(varargin{c});
end
% collect the output data
data.biol = dat;
data.dimord = dimord;
if containsdof
data.dof = dof;
end;
if strcmp(cfg.datarepresentation, 'concatenated')
% all trials are combined together, construct a design matrix to ensure
% that they can be identified afterwards
data.design(:,1) = 1:sum(Nrepl);
for c=1:Nvarargin
if c==1
trialsel = 1:Nrepl(1);
else
trialsel = (1+sum(Nrepl(1:(c-1)))):sum(Nrepl(1:c));
end
data.design(trialsel,2) = 1:length(trialsel);
data.design(trialsel,3) = c;
end
end
if ~hascrsspctrm
if strcmp(cfg.avgoverchan, 'yes')
concatlabel = sprintf('%s+', remember{end}.label{chansel}); % concatenate the labels with a '+' in between
concatlabel(end) = []; % remove the last '+'
data.label = {concatlabel}; % this should be a cell-array
else
data.label = remember{end}.label(chansel);
end
else
% specify the correct dimord and channelcombinations
labelcmb = label2cmb(remember{end}.label(chansel));
if strcmp(cfg.avgoverchan, 'yes')
% the cross-spectra have been averaged, therefore there is only one combination left
str1 = sprintf('%s+', labelcmb{:,1}); str1(end) = [];
str2 = sprintf('%s+', labelcmb{:,2}); str2(end) = [];
data.labelcmb = {str1, str2};
else
data.labelcmb = labelcmb;
end
% the dimord should specify chancmb instead of chan
s = strfind(dimord, 'chan');
data.dimord = [data.dimord(1:(s-1)) 'chancmb' data.dimord((s+4):end)];
end
if ~all(isnan(cfg.latency))
if strcmp(cfg.avgovertime, 'yes')
data.time = mean(remember{end}.time(timesel));
else
data.time = remember{end}.time(timesel);
end
else
% the output data contains a time dimension, but the input data did not contain a time axis
data.time = nan;
cfg.latency = [];
end
if ~all(isnan(cfg.frequency))
if strcmp(cfg.avgoverfreq, 'yes')
data.freq = mean(remember{end}.freq(freqsel));
else
data.freq = remember{end}.freq(freqsel);
end
else
% the output data contains a freq dimension, but the input data did not contain a freq axis
data.freq = nan;
cfg.frequency = [];
end
% add version information to the configuration
cfg.version.name = mfilename('fullpath');
cfg.version.id = '$Id: prepare_timefreq_data.m 2097 2010-11-10 09:20:18Z roboos $';
cfg.previous = [];
% remember the configuration details from the input data
for c=1:Nvarargin
try, cfg.previous{c} = remember{c}.cfg; end
end
% remember the full configuration details
data.cfg = cfg;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to help with the averaging over multiple dimensions at the
% same time. Furthermore, the output data will have the same NUMBER of
% dimensions as the input data (i.e. no squeezing)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dat] = avgoverdim(dat, dim);
siz = size(dat);
siz((end+1):4) = 1; % this should work at least up to 4 dimensions, also if not present in the data
for i=dim
siz(i) = 1;
dat = mean(dat, i); % compute the mean over this dimension
dat = reshape(dat, siz); % ensure that the number of dimenstions remains the same
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that reformats the data into a consistent struct with a fixed
% dimord and that combines power and cross-spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output, hascrsspctrm] = forcedimord(input);
% for backward compatibility with old timelockanalysis data that does not contain a dimord
if ~isfield(input, 'dimord') && isfield(input, 'avg') && isfield(input, 'var') && isfield(input, 'trial')
input.dimord = 'repl_chan_time';
elseif ~isfield(input, 'dimord') && isfield(input, 'avg') && isfield(input, 'var') && ~isfield(input, 'trial')
input.dimord = 'chan_time';
end
outputdim = tokenize('repl_chan_freq_time', '_');
inputdim = tokenize(input.dimord, '_');
% ensure consistent names of the dimensions
try, inputdim{strcmp(inputdim, 'rpt')} = 'repl'; end;
try, inputdim{strcmp(inputdim, 'rpttap')} = 'repl'; end;
try, inputdim{strcmp(inputdim, 'trial')} = 'repl'; end;
try, inputdim{strcmp(inputdim, 'subj')} = 'repl'; end;
try, inputdim{strcmp(inputdim, 'sgncmb')} = 'chan'; end;
try, inputdim{strcmp(inputdim, 'sgn')} = 'chan'; end;
try, inputdim{strcmp(inputdim, 'frq')} = 'freq'; end;
try, inputdim{strcmp(inputdim, 'tim')} = 'time'; end;
try, output.cfg = input.cfg; end; % general
try, output.time = input.time; end; % for ERPs and TFRs
try, output.freq = input.freq; end; % for frequency data
if isfield(input, 'powspctrm') && isfield(input, 'crsspctrm')
hascrsspctrm = 1;
chandim = find(strcmp(inputdim, 'chan'));
% concatenate powspctrm and crsspctrm
% output.dat = cat(chandim, input.powspctrm, input.crsspctrm);
% seperate output for auto and cross-spectra
output.dat = input.powspctrm;
output.crs = input.crsspctrm;
% concatenate the labels of the channelcombinations into one Nx1 cell-array
output.label = cmb2label([[input.label(:) input.label(:)]; input.labelcmb]);
elseif isfield(input, 'powspctrm')
hascrsspctrm = 0;
% output only power spectrum
output.dat = input.powspctrm;
output.label = input.label;
elseif isfield(input, 'fourierspctrm')
hascrsspctrm = 0;
% output only fourier spectrum
output.dat = input.fourierspctrm;
output.label = input.label;
else
hascrsspctrm = 0;
try, output.dat = input.avg; end; % for average ERP
try, output.dat = input.trial; end; % for average ERP with keeptrial
try, output.dat = input.individual; end; % for grandaverage ERP with keepsubject
output.label = input.label;
end
% determine the size of each dimension
repldim = find(strcmp(inputdim, 'repl'));
chandim = find(strcmp(inputdim, 'chan'));
freqdim = find(strcmp(inputdim, 'freq'));
timedim = find(strcmp(inputdim, 'time'));
if isempty(repldim)
Nrepl = 1;
else
Nrepl = size(output.dat, repldim);
end
if isempty(chandim)
error('data must contain channels');
else
if hascrsspctrm
Nchan = size(output.dat, chandim) + size(output.crs, chandim);
Ncrs = size(output.crs, chandim);
else
Nchan = size(output.dat, chandim);
end
end
if isempty(freqdim)
Nfreq = 1;
else
Nfreq = size(output.dat, freqdim);
end
if isempty(timedim)
Ntime = 1;
else
Ntime = size(output.dat, timedim);
end
% find the overlapping dimensions in the input and output
[dum, inputorder, outputorder] = intersect(inputdim, outputdim);
% sort them according to the specified output dimensions
[outputorder, indx] = sort(outputorder);
inputorder = inputorder(indx);
% rearrange the input dimensions in the same order as the desired output
if ~all(inputorder==sort(inputorder))
if hascrsspctrm
output.dat = permute(output.dat, inputorder);
output.crs = permute(output.crs, inputorder);
else
output.dat = permute(output.dat, inputorder);
end
end
% reshape the data so that it contains the (optional) singleton dimensions
if ~(size(output.dat,1)==Nrepl && size(output.dat,2)==Nchan && size(output.dat,3)==Nfreq && size(output.dat,4)==Ntime)
if hascrsspctrm
output.dat = reshape(output.dat, Nrepl, Nchan-Ncrs, Nfreq, Ntime);
output.crs = reshape(output.crs, Nrepl, Ncrs , Nfreq, Ntime);
else
output.dat = reshape(output.dat, Nrepl, Nchan, Nfreq, Ntime);
end
end
if isfield(input,'dof') && numel(input.dof)==Nrepl*Nfreq*Ntime
output.dof=reshape(input.dof, Nrepl, Nfreq, Ntime);
end;
% add the fields that describe the axes of the data
if ~isfield(output, 'time')
output.time = nan;
end
if ~isfield(output, 'freq')
output.freq = nan;
end
% create replication axis, analogous to time and frequency axis
output.repl = 1:Nrepl;
output.dimord = 'repl_chan_freq_time';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION convert Nx2 cell array with channel combinations into Nx1 cell array with labels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label = cmb2label(labelcmb);
label = {};
for i=1:size(labelcmb)
label{i,1} = [labelcmb{i,1} '&' labelcmb{i,2}];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION convert Nx1 cell array with labels into N2x cell array with channel combinations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function labelcmb = label2cmb(label);
labelcmb = {};
for i=1:length(label)
labelcmb(i,1:2) = tokenize(label{i}, '&');
end
|
github
|
philippboehmsturm/antx-master
|
nan_std.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/nan_std.m
| 2,136 |
utf_8
|
52c60ccd6100ec10ad7c0acccd93c4d7
|
% nan_std() - std, not considering NaN values
%
% Usage: std across the first dimension
% Author: Arnaud Delorme, CNL / Salk Institute, Sept 2003
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nan_std.m 952 2010-04-21 18:29:51Z roboos $
function out = nan_std(in)
nans = find(isnan(in));
in(nans) = 0;
nonnans = ones(size(in));
nonnans(nans) = 0;
nonnans = sum(nonnans);
nononnans = find(nonnans==0);
nonnans(nononnans) = 1;
out = sqrt((sum(in.^2)-sum(in).^2./nonnans)./(nonnans-1));
out(nononnans) = NaN;
|
github
|
philippboehmsturm/antx-master
|
inside_contour.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/inside_contour.m
| 1,106 |
utf_8
|
37d10e5d9a05c79551aac24c328e34aa
|
function bool = inside_contour(pos, contour);
npos = size(pos,1);
ncnt = size(contour,1);
x = pos(:,1);
y = pos(:,2);
minx = min(x);
miny = min(y);
maxx = max(x);
maxy = max(y);
bool = true(npos,1);
bool(x<minx) = false;
bool(y<miny) = false;
bool(x>maxx) = false;
bool(y>maxy) = false;
% the summed angle over the contour is zero if the point is outside, and 2*pi if the point is inside the contour
% leave some room for inaccurate f
critval = 0.1;
% the remaining points have to be investigated with more attention
sel = find(bool);
for i=1:length(sel)
contourx = contour(:,1) - pos(sel(i),1);
contoury = contour(:,2) - pos(sel(i),2);
angle = atan2(contoury, contourx);
% angle = unwrap(angle);
angle = my_unwrap(angle);
total = sum(diff(angle));
bool(sel(i)) = (abs(total)>critval);
end
function x = my_unwrap(x)
% this is a faster implementation of the MATLAB unwrap function
% with hopefully the same functionality
d = diff(x);
indx = find(abs(d)>pi);
for i=indx(:)'
if d(i)>0
x((i+1):end) = x((i+1):end) - 2*pi;
else
x((i+1):end) = x((i+1):end) + 2*pi;
end
end
|
github
|
philippboehmsturm/antx-master
|
smudge.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/smudge.m
| 1,813 |
utf_8
|
1849e7e0cc093f5c7572cfa9de7fa8c8
|
function [datout, S] = smudge(datin, tri, niter)
% SMUDGE(DATIN, TRI) computes a smudged version of the input data datain,
% given a triangulation tri. The algorithm is according to what is in
% MNE-Suite, documented in chapter 8.3
if nargin<3,
niter = 1;
end
for k = 1:niter
[tmp, Stmp] = do_smudge(datin, tri);
if k==1,
S = Stmp;
else
S = Stmp*S;
end
datout = tmp;
datin = tmp;
end
function [datout, S] = do_smudge(datin, tri)
% number of points
npnt = numel(datin);
% non-zero points
nz = find(datin);
% triangles containing non-zero points
nzt = ismember(tri, nz);
tnz = sum(nzt, 2)>0 & sum(nzt,2)<3;
% points with non-zero neighbours
nzn = tri(tnz, :);
nzt = nzt(tnz, :);
vec1 = zeros(size(nzn,1)*2,1);
vec2 = zeros(size(nzn,1)*2,1);
for k = 1:size(nzn,1)
indx0 = (k-1)*2+(1:2);
indx1 = nzn(k, nzt(k,:));
indx2 = nzn(k,~nzt(k,:));
vec1(indx0) = indx1;
vec2(indx0) = indx2;
end
vecx = sortrows([vec1 vec2]);
vecy = sortrows([vec2 vec1]);
clear vec1 vec2;
% in a closed surface the edges occur in doubles
vecx = vecx(1:2:end,:);
vecy = vecy(1:2:end,:);
tmp = diff([0;vecx(:,1)])>0;
begix = find([tmp;1]==1);
uvecy = unique(vecy(:,1));
tmp = diff([0;vecy(:,1)])>0;
nix = diff(find([tmp;1]==1));
nix(end+1:numel(uvecy)) = 1;
tmpval = zeros(npnt,1);
for k = 1:numel(uvecy)
tmpval(uvecy(k)) = nix(k);
end
val = zeros(size(vecx,1),1);
for k = 1:numel(val)
val(k) = 1./tmpval(vecx(k,2));
end
% allocate memory
S = spalloc(npnt, npnt, numel(val)+numel(nz));
for k = 1:numel(begix)-1
indx1 = vecx(begix(k),1);
indx2 = begix(k):(begix(k+1)-1);
indx3 = vecx(indx2, 2);
S(indx3, indx1) = val(indx2);
%FIXME this can be speeded up by using the sparse command
end
S = S + spdiags(datin(:)>0, 0, npnt, npnt);
datout = S*datin(:);
|
github
|
philippboehmsturm/antx-master
|
butter.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/butter.m
| 3,559 |
utf_8
|
ad82b4c04911a5ea11fd6bd2cc5fd590
|
% Copyright (C) 1999 Paul Kienzle
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; If not, see <http://www.gnu.org/licenses/>.
% Generate a butterworth filter.
% Default is a discrete space (Z) filter.
%
% [b,a] = butter(n, Wc)
% low pass filter with cutoff pi*Wc radians
%
% [b,a] = butter(n, Wc, 'high')
% high pass filter with cutoff pi*Wc radians
%
% [b,a] = butter(n, [Wl, Wh])
% band pass filter with edges pi*Wl and pi*Wh radians
%
% [b,a] = butter(n, [Wl, Wh], 'stop')
% band reject filter with edges pi*Wl and pi*Wh radians
%
% [z,p,g] = butter(...)
% return filter as zero-pole-gain rather than coefficients of the
% numerator and denominator polynomials.
%
% [...] = butter(...,'s')
% return a Laplace space filter, W can be larger than 1.
%
% [a,b,c,d] = butter(...)
% return state-space matrices
%
% References:
%
% Proakis & Manolakis (1992). Digital Signal Processing. New York:
% Macmillan Publishing Company.
% Author: Paul Kienzle <[email protected]>
% Modified by: Doug Stewart <[email protected]> Feb, 2003
function [a, b, c, d] = butter (n, W, varargin)
if (nargin>4 || nargin<2) || (nargout>4 || nargout<2)
usage ('[b, a] or [z, p, g] or [a,b,c,d] = butter (n, W [, "ftype"][,"s"])');
end
% interpret the input parameters
if (~(length(n)==1 && n == round(n) && n > 0))
error ('butter: filter order n must be a positive integer');
end
stop = 0;
digital = 1;
for i=1:length(varargin)
switch varargin{i}
case 's', digital = 0;
case 'z', digital = 1;
case { 'high', 'stop' }, stop = 1;
case { 'low', 'pass' }, stop = 0;
otherwise, error ('butter: expected [high|stop] or [s|z]');
end
end
[r, c]=size(W);
if (~(length(W)<=2 && (r==1 || c==1)))
error ('butter: frequency must be given as w0 or [w0, w1]');
elseif (~(length(W)==1 || length(W) == 2))
error ('butter: only one filter band allowed');
elseif (length(W)==2 && ~(W(1) < W(2)))
error ('butter: first band edge must be smaller than second');
end
if ( digital && ~all(W >= 0 & W <= 1))
error ('butter: critical frequencies must be in (0 1)');
elseif ( ~digital && ~all(W >= 0 ))
error ('butter: critical frequencies must be in (0 inf)');
end
% Prewarp to the band edges to s plane
if digital
T = 2; % sampling frequency of 2 Hz
W = 2/T*tan(pi*W/T);
end
% Generate splane poles for the prototype butterworth filter
% source: Kuc
C = 1; % default cutoff frequency
pole = C*exp(1i*pi*(2*[1:n] + n - 1)/(2*n));
if mod(n,2) == 1, pole((n+1)/2) = -1; end % pure real value at exp(i*pi)
zero = [];
gain = C^n;
% splane frequency transform
[zero, pole, gain] = sftrans(zero, pole, gain, W, stop);
% Use bilinear transform to convert poles to the z plane
if digital
[zero, pole, gain] = bilinear(zero, pole, gain, T);
end
% convert to the correct output form
if nargout==2,
a = real(gain*poly(zero));
b = real(poly(pole));
elseif nargout==3,
a = zero;
b = pole;
c = gain;
else
% output ss results
[a, b, c, d] = zp2ss (zero, pole, gain);
end
|
github
|
philippboehmsturm/antx-master
|
convert_event.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/convert_event.m
| 7,799 |
utf_8
|
085ea530f797f7d529ce94b743fd110a
|
function [obj] = convert_event(obj, target, varargin)
% CONVERT_EVENT converts between the different representations of events,
% which can be
% 1) event structure, see FT_READ_EVENT
% 2) matrix representation as in trl (Nx3), see FT_DEFINETRIAL
% 3) matrix representation as in artifact (Nx2), see FT_ARTIFACT_xxx
% 4) boolean vector representation with 1 for samples containing trial/artifact
%
% Use as
% [object] = convert_event(object, target, ....)
%
% Possible input objects types are
% event structure
% Nx3 trl matrix, or cell array of multiple trl definitions
% Nx2 artifact matrix, or cell array of multiple artifact definitions
% boolean vector, or matrix with multiple vectors as rows
%
% Possible targets are 'event', 'trl', 'artifact', 'boolvec'
%
% Additional options should be specified in key-value pairs and can be
% 'endsample' =
% 'typenames' =
%
% See READ_EVENT, DEFINETRIAL, REJECTARTIFACT, ARTIFACT_xxx
% Copyright (C) 2009, Ingrid Nieuwenhuis
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: convert_event.m 3659 2011-06-09 12:57:09Z roboos $
% Check if target is specified correctly
if sum(strcmp(target, {'event', 'trl', 'artifact', 'boolvec'})) < 1
error('target has to be ''event'', ''trl'', ''artifact'', or ''boolvec''.')
end
% Get the options
endsample = keyval('endsample', varargin);
typenames = keyval('typenames', varargin);
% Determine what the input object is
if isempty(obj)
input_obj = 'empty';
elseif isstruct(obj)
input_obj = 'event';
elseif iscell(obj)
if isempty(obj{1})
input_obj = 'empty';
elseif size(obj{1},2) == 3
input_obj = 'trl';
elseif size(obj{1},2) == 2
input_obj = 'artifact';
elseif size(obj{1},2) > 3
% could be a strange trl-matrix with multiple columns
input_obj = 'trl';
for i = 1:length(obj)
obj{i} = obj{i}(:,1:3);
end
else
error('incorrect input object, see help for what is allowed.')
end
elseif islogical(obj)
input_obj = 'boolvec';
elseif size(obj,2) == 3
input_obj = 'trl';
elseif size(obj,2) == 2
input_obj = 'artifact';
elseif size(obj,2) > 3
tmp = unique(obj);
if isempty(find(tmp>2, 1))
input_obj = 'boolvec';
obj = logical(obj);
else
%it is at least not boolean but could be a strange
%trl-matrix with multiple columns
input_obj = 'trl';
obj = obj(:,1:3);
end
else
error('incorrect input object, see help for what is allowed.')
end
% do conversion
if (strcmp(input_obj, 'trl') || strcmp(input_obj, 'artifact') || strcmp(input_obj, 'empty')) && strcmp(target, 'boolvec')
if ~isempty(endsample)
obj = artifact2artvec(obj,endsample);
else
obj = artifact2artvec(obj);
end
elseif strcmp(input_obj, 'boolvec') && strcmp(target,'artifact' )
obj = artvec2artifact(obj);
elseif strcmp(input_obj, 'boolvec') && strcmp(target,'trl' )
obj = artvec2artifact(obj);
if iscell(obj)
for i=1:length(obj)
obj{i}(:,3) = 0;
end
else
obj(:,3) = 0;
end
elseif (strcmp(input_obj, 'trl') || strcmp(input_obj, 'artifact')) && strcmp(target, 'event')
obj = artifact2event(obj, typenames);
elseif strcmp(input_obj, 'artifact') && strcmp(target,'trl')
if iscell(obj)
for i=1:length(obj)
obj{i}(:,3) = 0;
end
else
obj(:,3) = 0;
end
elseif strcmp(input_obj, 'trl') && strcmp(target,'artifact')
if iscell(obj)
for i=1:length(obj)
obj{i}(:,3:end) = [];
end
else
obj(:,3:end) = [];
end
elseif strcmp(input_obj, 'empty')
obj = [];
else
warning('conversion not supported yet') %FIXME
end
%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function artvec = artifact2artvec(varargin)
% ARTIFACT2ARTVEC makes boolian vector (or matrix when artifact is
% cell array of multiple artifact definitions) with 0 for artifact free
% sample and 1 for sample containing an artifact according to artifact
% specification. Length of vector is (from sample 1) last sample as
% defined in the artifact definition, or when datendsample is speciefied
% vector is length datendsample.
artifact = varargin{1};
if length(varargin) == 1
if ~iscell(artifact) % assume only one artifact is given
if isempty(artifact)
error('When input object is empty ''endsample'' must be specified to convert into boolvec')
else
endsample = max(artifact(:,2));
end
elseif length(artifact) == 1
if isempty(artifact{1})
error('When input object is empty ''endsample'' must be specified to convert into boolvec')
else
endsample = max(artifact{1}(:,2));
end
else
error('when giving multiple artifact definitions, endsample should be specified to assure all output vectors are of the same length')
end
elseif length(varargin) == 2
endsample = varargin{2};
elseif length(varargin) > 2
error('too many input arguments')
end
if ~iscell(artifact)
artifact = {artifact};
end
% make artvec
artvec = zeros(length(artifact), endsample);
breakflag = 0;
for i=1:length(artifact)
for j=1:size(artifact{i},1)
artbegsample = artifact{i}(j,1);
artendsample = artifact{i}(j,2);
if artbegsample > endsample
warning('artifact definition contains later samples than endsample, these samples are ignored')
break
elseif artendsample > endsample
warning('artifact definition contains later samples than endsample, these samples are ignored')
artendsample = endsample;
breakflag = 1;
end
artvec(i, artbegsample:artendsample) = 1;
if breakflag
break
end
end
end
%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function artifact = artvec2artifact(artvec)
% ARTVEC2ARTIFACT makes artifact definition (or cell array of artifact
% definitions) from boolian vector (or matrix) with [artbegsample
% artendsample]. Assumed is that the artvec starts with sample 1.
for i=1:size(artvec,1)
tmp = diff([0 artvec(i,:) 0]);
artbeg = find(tmp==+1);
artend = find(tmp==-1) - 1;
artifact{i} = [artbeg' artend'];
end
if length(artifact) == 1
artifact = artifact{1};
end
%%%%%%%%%%%%%%% SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function event = artifact2event(artifact, typenames)
% ARTIFACT2EVENT makes event structure from artifact definition (or cell
% array of artifact definitions). event.type is always 'artifact', but
% incase of cellarays of artifacts is is also possible to hand 'typenames'
% with length(artifact)
if ~iscell(artifact)
artifact = {artifact};
end
if ~isempty(typenames)
if length(artifact) ~= length(typenames)
error('length typenames should be the same as length artifact')
end
end
event = [];
for i=1:length(artifact)
for j=1:size(artifact{i},1)
event(end+1).sample = artifact{i}(j,1);
event(end ).duration = artifact{i}(j,2)-artifact{i}(j,1)+1;
if ~isempty(typenames)
event(end).type = typenames{i};
elseif size(artifact{i},2) == 2
event(end).type = 'artifact';
elseif size(artifact{i},2) == 3
event(end).type = 'trial';
end
event(end ).value = [];
event(end ).offset = [];
end
end
|
github
|
philippboehmsturm/antx-master
|
fdr.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/fdr.m
| 1,986 |
utf_8
|
31fd6bf82e890dc9f35f19d8b7e7e216
|
function [h] = fdr(p, q);
% FDR false discovery rate
%
% Use as
% h = fdr(p, q)
%
% This implements
% Genovese CR, Lazar NA, Nichols T.
% Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
% Neuroimage. 2002 Apr;15(4):870-8.
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: fdr.m 952 2010-04-21 18:29:51Z roboos $
% convert the input into a row vector
dim = size(p);
p = reshape(p, 1, numel(p));
% sort the observed uncorrected probabilities
[ps, indx] = sort(p);
% count the number of voxels
V = length(p);
% compute the threshold probability for each voxel
pi = ((1:V)/V) * q / c(V);
h = (ps<=pi);
% undo the sorting
[dum, unsort] = sort(indx);
h = h(unsort);
% convert the output back into the original format
h = reshape(h, dim);
function s = c(V)
% See Genovese, Lazar and Holmes (2002) page 872, second column, first paragraph
if V<1000
% compute it exactly
s = sum(1./(1:V));
else
% approximate it
s = log(V) + 0.57721566490153286060651209008240243104215933593992359880576723488486772677766467093694706329174674951463144724980708248096050401448654283622417399764492353625350033374293733773767394279259525824709491600873520394816567;
end
|
github
|
philippboehmsturm/antx-master
|
sensortype.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/sensortype.m
| 6,228 |
utf_8
|
57b1d940539a84b81ad94d5a1f07a8d7
|
function [type] = sensortype(grad)
% SENSORTYPE returns a string that describes the type of sensors (EEG or MEG)
% and the manufacturer of the MEG system. The heuristic approach is to test
% the input sensor definition on a few features (like number of channels,
% number of coils, etc.) and score points for each of them. The system that
% is most "similar" wins.
%
% Use as
% [str] = sensortype(sens)
% where the input is a electrode or gradiometer structure, or
% [str] = sensortype(data)
% where the input data structure should contain either a data.grad
% or a data.elec field.
%
% The output will be a string
% 'electrode'
% 'ctf151'
% 'ctf275'
% 'ctf151_planar'
% 'ctf275_planar'
% 'neuromag122'
% 'neuromag306'
% 'magnetometer'
% 'bti148'
% 'yokogawa160'
% Copyright (C) 2004-2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: sensortype.m 952 2010-04-21 18:29:51Z roboos $
% the input may be a data structure which then contains a grad/elec structure
if isfield(grad, 'grad')
grad = grad.grad;
elseif isfield(grad, 'elec')
grad = grad.elec;
end
if isfield(grad, 'label') && isfield(grad, 'pnt') && ~isfield(grad, 'ori')
% the input looks like an electrode system
type = 'electrode';
return;
end
% detect the different MEG sensor types
description = {
'ctf151' % 1
'ctf275' % 2
'ctf151_planar' % 3
'ctf275_planar' % 4
'neuromag122' % 5
'neuromag306' % 6
'magnetometer' % 7
'bti148' % 8
'yokogawa160' % 9
};
% start with an empty counter for each system
similar = zeros(size(description));
% look at the number of channels
Nchan = length(grad.label);
similar(1) = similar(1) + (abs(Nchan-151) < 20);
similar(2) = similar(2) + (abs(Nchan-275) < 20);
similar(3) = similar(3) + (abs(Nchan-151*2) < 20);
similar(4) = similar(4) + (abs(Nchan-275*2) < 20);
similar(5) = similar(5) + (abs(Nchan-122) < 20);
similar(6) = similar(6) + (abs(Nchan-306) < 20);
similar(8) = similar(8) + (abs(Nchan-148) < 20);
similar(9) = similar(9) + (abs(Nchan-160) < 20);
similar(1) = similar(1) + (abs(Nchan-151) <= abs(Nchan-275));
similar(2) = similar(2) + (abs(Nchan-275) <= abs(Nchan-151));
similar(3) = similar(3) + (abs(Nchan-151*2) <= abs(Nchan-2*275));
similar(4) = similar(4) + (abs(Nchan-275*2) <= abs(Nchan-2*151));
similar(5) = similar(5) + (abs(Nchan-122) <= abs(Nchan-306));
similar(6) = similar(6) + (abs(Nchan-306) <= abs(Nchan-122));
% look at the beginning of BTi channel names
similar(8) = similar(8) + length(find(strmatch('A', grad.label)));
similar(8) = similar(8) - length(find(~strmatch('A', grad.label))); % penalty
% look at the beginning of Neuromag channel names
similar(5) = similar(5) + length(find(strmatch('MEG', grad.label)));
similar(6) = similar(6) + length(find(strmatch('MEG', grad.label)));
similar(7) = similar(7) + length(find(strmatch('MEG', grad.label)));
similar(5) = similar(5) - length(find(~strmatch('MEG', grad.label))); % penalty
similar(6) = similar(6) - length(find(~strmatch('MEG', grad.label))); % penalty
similar(7) = similar(7) - length(find(~strmatch('MEG', grad.label))); % penalty
% look at the beginning of CTF channel names
similar(1) = similar(1) + length(find(strmatch('MZ', grad.label)));
similar(2) = similar(2) + length(find(strmatch('MZ', grad.label)));
similar(3) = similar(3) + length(find(strmatch('MZ', grad.label)));
similar(4) = similar(4) + length(find(strmatch('MZ', grad.label)));
similar(5) = similar(5) - length(find(strmatch('MZ', grad.label))); % penalty
similar(6) = similar(6) - length(find(strmatch('MZ', grad.label))); % penalty
similar(7) = similar(7) - length(find(strmatch('MZ', grad.label))); % penalty
similar(8) = similar(8) - length(find(strmatch('MZ', grad.label))); % penalty
% look at whether the names contain _dH and _dV
similar(3) = similar(3) + length(find(a_strmatch('_dH', grad.label)));
similar(3) = similar(3) + length(find(a_strmatch('_dV', grad.label)));
similar(4) = similar(4) + length(find(a_strmatch('_dH', grad.label)));
similar(4) = similar(4) + length(find(a_strmatch('_dV', grad.label)));
% if they do not contain any _dH or _dV, the planar CTF systems is less likely that their axial counterpart
similar(3) = similar(3) - (length(find(a_strmatch('_dH', grad.label)))==0);
similar(3) = similar(3) - (length(find(a_strmatch('_dV', grad.label)))==0);
similar(4) = similar(4) - (length(find(a_strmatch('_dH', grad.label)))==0);
similar(4) = similar(4) - (length(find(a_strmatch('_dV', grad.label)))==0);
try
% a magnetometer or a BTi system must have the same number of coils as labels
similar(7) = similar(7) * (length(grad.label)==length(grad.pnt));
similar(8) = similar(8) * (length(grad.label)==length(grad.pnt));
end
% determine to which MEG ssytem the input data is the most similar
[m, i] = max(similar);
if m==0 || length(find(similar==m))>1
warning('could not determine the type of MEG system');
type = 'unknown';
else
type = description{i};
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION search for substring in each element of a cell-array
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function a = a_strmatch(str, strs)
a = zeros(length(strs),1);
for i=1:length(strs)
a(i) = ~isempty(strfind(strs{i}, str));
end
a = find(a);
|
github
|
philippboehmsturm/antx-master
|
read_labview_dtlg.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/read_labview_dtlg.m
| 5,153 |
utf_8
|
2e41342bc1812c6740bf980c358c923b
|
function [dat] = read_labview_dtlg(filename, datatype);
% READ_LABVIEW_DTLG
%
% Use as
% dat = read_labview_dtlg(filename, datatype)
% where datatype can be 'int32' or 'int16'
%
% The output of this function is a structure.
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_labview_dtlg.m 2885 2011-02-16 09:41:58Z roboos $
fid = fopen(filename, 'r', 'ieee-be');
header = fread(fid, 4, 'uint8=>char')';
if ~strcmp(header, 'DTLG')
error('unsupported file, header should start with DTLG');
end
version = fread(fid, 4, 'char')'; % clear version
nd = fread(fid, 1, 'int32');
p = fread(fid, 1, 'int32');
% the following seems to work for files with version [7 0 128 0]
% but in files files with version [8 0 128 0] the length of the descriptor is not correct
ld = fread(fid, 1, 'int16');
descriptor = fread(fid, ld, 'uint8=>char')';
% ROBOOS: the descriptor should ideally be decoded, since it contains the variable
% name, type and size
% The first offset block always starts immediately after the data descriptor (at offset p, which should ideally be equal to 16+ld)
if nd<=128
% The first offset block contains the offsets for all data sets.
% In this case P points to the start of the offset block.
fseek(fid, p, 'bof');
offset = fread(fid, 128, 'uint32')';
else
% The first offset block contains the offsets for the first 128 data sets.
% The entries for the remaining data sets are stored in additional offset blocks.
% The locations of those blocks are contained in a block table starting at P.
offset = [];
fseek(fid, p, 'bof');
additional = fread(fid, 128, 'uint32');
for i=1:sum(additional>0)
fseek(fid, additional(i), 'bof');
tmp = fread(fid, 128, 'uint32')';
offset = cat(2, offset, tmp);
end
clear additional i tmp
end
% ROBOOS: remove the zeros in the offset array for non-existing datasets
offset = offset(1:nd);
% ROBOOS: how to determine the data datatype?
switch datatype
case 'uint32'
datasize = 4;
case 'int32'
datasize = 4;
case 'uint16'
datasize = 2;
case 'int16'
datasize = 2;
otherwise
error('unsupported datatype');
end
% If the data sets are n-dimensional arrays, the first n u32 longwords in each data
% set contain the array dimensions, imediately followed by the data values.
% ROBOOS: how to determine whether they are n-dimensional arrays?
% determine the number of dimensions by looking at the first array
% assume that all subsequent arrays have the same number of dimensions
if nd>1
estimate = (offset(2)-offset(1)); % initial estimate for the number of datasize in the array
fseek(fid, offset(1), 'bof');
n = fread(fid, 1, 'int32');
while mod(estimate-4*length(n), (datasize*prod(n)))~=0
% determine the number and size of additional array dimensions
n = cat(1, n, fread(fid, 1, 'int32'));
if datasize*prod(n)>estimate
error('could not determine array size');
end
end
ndim = length(n);
clear estimate n
else
estimate = filesize(fid)-offset;
fseek(fid, offset(1), 'bof');
n = fread(fid, 1, 'int32');
while mod(estimate-4*length(n), (datasize*prod(n)))~=0
% determine the number and size of additional array dimensions
n = cat(1, n, fread(fid, 1, 'int32'));
if datasize*prod(n)>estimate
error('could not determine array size');
end
end
ndim = length(n);
clear estimate n
end
% read the dimensions and the data from each array
for i=1:nd
fseek(fid, offset(i), 'bof');
n = fread(fid, ndim, 'int32')';
% Labview uses the C-convention for storing data, and Matlab uses the Fortran convention
n = fliplr(n);
data{i} = fread(fid, n, datatype);
end
clear i n ndim
fclose(fid);
% put all local variables into a structure, this is a bit unusual programming style
% the output structure is messy, but contains all relevant information
tmp = whos;
dat = [];
for i=1:length(tmp)
if isempty(strmatch(tmp(i).name, {'tmp', 'fid', 'ans', 'handles'}))
dat = setfield(dat, tmp(i).name, eval(tmp(i).name));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% local helper function to determine the size of the file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function siz = filesize(fid)
fp = ftell(fid);
fseek(fid, 0, 'eof');
siz = ftell(fid);
fseek(fid, fp, 'bof');
|
github
|
philippboehmsturm/antx-master
|
clusterstat.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/private/clusterstat.m
| 34,032 |
utf_8
|
2b7ff73fc26dcb327eb4fe0c3863fc0f
|
function [stat, cfg] = clusterstat(cfg, statrnd, statobs, varargin)
% SUBFUNCTION for computing cluster statistic for N-D volumetric source data
% or for channel-freq-time data
%
% This function uses
% cfg.dim
% cfg.inside (only for source data)
% cfg.tail = -1, 0, 1
% cfg.multivariate = no, yes
% cfg.orderedstats = no, yes
% cfg.clusterstatistic = max, maxsize, maxsum, wcm
% cfg.clusterthreshold = parametric, nonparametric_individual, nonparametric_common
% cfg.clusteralpha
% cfg.clustercritval
% cfg.wcm_weight
% cfg.feedback
% Copyright (C) 2005-2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: clusterstat.m 3876 2011-07-20 08:04:29Z jorhor $
% set the defaults
if ~isfield(cfg,'orderedstats'), cfg.orderedstats = 'no'; end
if ~isfield(cfg,'multivariate'), cfg.multivariate = 'no'; end
if ~isfield(cfg,'minnbchan'), cfg.minnbchan=0; end
% if ~isfield(cfg,'channeighbstructmat'), cfg.channeighbstructmat=[]; end
% if ~isfield(cfg,'chancmbneighbstructmat'), cfg.chancmbneighbstructmat=[]; end
% if ~isfield(cfg,'chancmbneighbselmat'), cfg.chancmbneighbselmat=[]; end
% get issource from varargin, to determine source-data-specific options and allow the proper usage of cfg.neighbours
% (cfg.neighbours was previously used in determining wheter source-data was source data or not) set to zero by default
% note, this may cause problems when functions call clusterstat without giving issource, as issource was previously
% set in clusterstat.m but has now been transfered to the function that calls clusterstat.m (but only implemented in statistics_montecarlo)
issource = keyval('issource', varargin); if isempty(issource), issource = 0; end
if cfg.tail~=cfg.clustertail
error('cfg.tail and cfg.clustertail should be identical')
end
% create neighbour structure (but only when not using source data)
if isfield(cfg, 'neighbours') && ~issource
channeighbstructmat = makechanneighbstructmat(cfg);
end
% perform fixinside fix if input data is source data
if issource
% cfg contains dim and inside that are needed for reshaping the data to a volume, and inside should behave as a index vector
cfg = fixinside(cfg, 'index');
end
needpos = cfg.tail==0 || cfg.tail== 1;
needneg = cfg.tail==0 || cfg.tail==-1;
Nsample = size(statrnd,1);
Nrand = size(statrnd,2);
prb_pos = ones(Nsample, 1);
prb_neg = ones(Nsample, 1);
postailobs = false(Nsample, 1); % this holds the thresholded values
negtailobs = false(Nsample, 1); % this holds the thresholded values
postailrnd = false(Nsample,Nrand); % this holds the thresholded values
negtailrnd = false(Nsample,Nrand); % this holds the thresholded values
Nobspos = 0; % number of positive clusters in observed data
Nobsneg = 0; % number of negative clusters in observed data
if strcmp(cfg.clusterthreshold, 'parametric')
% threshold based on the critical value from parametric distribution
siz = size(cfg.clustercritval);
if all(siz==1) && cfg.clustertail==0
% it only specifies one critical value, assume that the left and right tail are symmetric around zero
negtailcritval = -cfg.clustercritval;
postailcritval = cfg.clustercritval;
elseif all(siz==1) && cfg.clustertail==-1
% it only specifies one critical value corresponding to the left tail
negtailcritval = cfg.clustercritval;
postailcritval = +inf * ones(size(negtailcritval));
elseif all(siz==1) && cfg.clustertail==1
% it only specifies one critical value corresponding to the right tail
postailcritval = cfg.clustercritval;
negtailcritval = -inf * ones(size(postailcritval));
elseif siz(1)==Nsample && siz(2)==1 && cfg.clustertail==0
% it specifies a single critical value for each sample, assume that the left and right tail are symmetric around zero
negtailcritval = -cfg.clustercritval;
postailcritval = cfg.clustercritval;
elseif siz(1)==Nsample && siz(2)==1 && cfg.clustertail==-1
% it specifies a critical value for the left tail
% which is different for each sample (samples have a different df)
negtailcritval = cfg.clustercritval;
postailcritval = +inf * ones(size(negtailcritval));
elseif siz(1)==Nsample && siz(2)==1 && cfg.clustertail==1
% it specifies a critical value for the right tail
% which is different for each sample (samples have a different df)
postailcritval = cfg.clustercritval;
negtailcritval = +inf * ones(size(postailcritval));
elseif siz(1)==Nsample && siz(2)==2 && cfg.clustertail==0
% it specifies a critical value for the left and for the right tail of the distribution
% which is different for each sample (samples have a different df)
negtailcritval = cfg.clustercritval(:,1);
postailcritval = cfg.clustercritval(:,2);
elseif prod(siz)==2 && cfg.clustertail==0
% it specifies a critical value for the left and for the right tail of the distribution
% which is the same for each sample (samples have the same df)
negtailcritval = cfg.clustercritval(1);
postailcritval = cfg.clustercritval(2);
else
error('cannot make sense out of the specified parametric critical values');
end
elseif strcmp(cfg.clusterthreshold, 'nonparametric_individual')
% threshold based on bootstrap using all other randomizations
% each voxel will get an individual threshold
[srt, ind] = sort(statrnd,2);
if cfg.clustertail==0
% both tails are needed
negtailcritval = srt(:,round(( cfg.clusteralpha/2)*size(statrnd,2)));
postailcritval = srt(:,round((1-cfg.clusteralpha/2)*size(statrnd,2)));
elseif cfg.clustertail==1
% only positive tail is needed
postailcritval = srt(:,round((1-cfg.clusteralpha)*size(statrnd,2)));
negtailcritval = -inf * ones(size(postailcritval));
elseif cfg.clustertail==1
% only negative tail is needed
negtailcritval = srt(:,round(( cfg.clusteralpha)*size(statrnd,2)));
postailcritval = +inf * ones(size(negtailcritval));
end
elseif strcmp(cfg.clusterthreshold, 'nonparametric_common')
% threshold based on bootstrap using all other randomizations
% all voxels will get a common threshold
[srt, ind] = sort(statrnd(:));
if cfg.clustertail==0
% both tails are needed
negtailcritval = srt(round(( cfg.clusteralpha/2)*prod(size(statrnd))));
postailcritval = srt(round((1-cfg.clusteralpha/2)*prod(size(statrnd))));
elseif cfg.clustertail==1
% only positive tail is needed
postailcritval = srt(round((1-cfg.clusteralpha)*prod(size(statrnd))));
negtailcritval = -inf * ones(size(postailcritval));
elseif cfg.clustertail==1
% only negative tail is needed
negtailcritval = srt(round(( cfg.clusteralpha)*prod(size(statrnd))));
postailcritval = +inf * ones(size(negtailcritval));
end
else
error('no valid threshold for clustering was given')
end % determine clusterthreshold
% these should be scalars or column vectors
negtailcritval = negtailcritval(:);
postailcritval = postailcritval(:);
% remember the critical values
cfg.clustercritval = [negtailcritval postailcritval];
% test whether the observed and the random statistics exceed the threshold
postailobs = (statobs >= postailcritval);
negtailobs = (statobs <= negtailcritval);
for i=1:Nrand
postailrnd(:,i) = (statrnd(:,i) >= postailcritval);
negtailrnd(:,i) = (statrnd(:,i) <= negtailcritval);
end
% first do the clustering on the observed data
if needpos,
if issource
if isfield(cfg, 'origdim'), cfg.dim = cfg.origdim; end %this snippet is to support correct clustering of N-dimensional data, not fully tested yet
tmp = zeros(cfg.dim);
tmp(cfg.inside) = postailobs;
if length(cfg.dim) == 3 % if source data (3D)
ft_hastoolbox('spm8',1);
[posclusobs, posnum] = spm_bwlabel(tmp, 6); % use spm_bwlabel for source data to avoid usage of image toolbox
else
posclusobs = bwlabeln(tmp, conndef(length(cfg.dim),'min')); % spm_bwlabel yet (feb 2011) supports only up to 3-D data
end
posclusobs = posclusobs(cfg.inside);
else
if 0
posclusobs = findcluster(reshape(postailobs, [cfg.dim,1]),cfg.chancmbneighbstructmat,cfg.chancmbneighbselmat,cfg.minnbchan);
else
posclusobs = findcluster(reshape(postailobs, [cfg.dim,1]),channeighbstructmat,cfg.minnbchan);
end
posclusobs = posclusobs(:);
end
Nobspos = max(posclusobs); % number of clusters exceeding the threshold
fprintf('found %d positive clusters in observed data\n', Nobspos);
end
if needneg,
if issource
tmp = zeros(cfg.dim);
tmp(cfg.inside) = negtailobs;
if length(cfg.dim) == 3 % if source data (3D)
ft_hastoolbox('spm8',1);
[negclusobs, negnum] = spm_bwlabel(tmp, 6); % use spm_bwlabel for source data to avoid usage of image toolbox
else
negclusobs = bwlabeln(tmp, conndef(length(cfg.dim),'min')); % spm_bwlabel yet (feb 2011) supports only up to 3D data
end
negclusobs = negclusobs(cfg.inside);
else
if 0
negclusobs = findcluster(reshape(negtailobs, [cfg.dim,1]),cfg.chancmbneighbstructmat,cfg.chancmbneighbselmat,cfg.minnbchan);
else
negclusobs = findcluster(reshape(negtailobs, [cfg.dim,1]),channeighbstructmat,cfg.minnbchan);
end
negclusobs = negclusobs(:);
end
Nobsneg = max(negclusobs);
fprintf('found %d negative clusters in observed data\n', Nobsneg);
end
stat = [];
stat.stat = statobs;
% catch situation where no clustering of the random data is needed
if (Nobspos+Nobsneg)==0
warning('no clusters were found in the observed data');
stat.prob = ones(Nsample, 1);
return
end
% allocate space to hold the randomization distributions of the cluster statistic
if strcmp(cfg.multivariate, 'yes') || strcmp(cfg.orderedstats, 'yes')
fprintf('allocating space for a %d-multivariate distribution of the positive clusters\n', Nobspos);
fprintf('allocating space for a %d-multivariate distribution of the negative clusters\n', Nobsneg);
posdistribution = zeros(Nobspos,Nrand); % this holds the multivariate randomization distribution of the positive cluster statistics
negdistribution = zeros(Nobsneg,Nrand); % this holds the multivariate randomization distribution of the negative cluster statistics
else
posdistribution = zeros(1,Nrand); % this holds the statistic of the largest positive cluster in each randomization
negdistribution = zeros(1,Nrand); % this holds the statistic of the largest negative cluster in each randomization
end
% do the clustering on the randomized data
ft_progress('init', cfg.feedback, 'computing clusters in randomization');
for i=1:Nrand
ft_progress(i/Nrand, 'computing clusters in randomization %d from %d\n', i, Nrand);
if needpos,
if issource
tmp = zeros(cfg.dim);
tmp(cfg.inside) = postailrnd(:,i);
if length(cfg.dim) == 3 % if source data (3D)
[posclusrnd, posrndnum] = spm_bwlabel(tmp, 6); % use spm_bwlabel for source data to avoid usage of image toolbox
else
posclusrnd = bwlabeln(tmp, conndef(length(cfg.dim),'min')); % spm_bwlabel yet (feb 2011) supports only up to 3D data
end
posclusrnd = posclusrnd(cfg.inside);
else
if 0
posclusrnd = findcluster(reshape(postailrnd(:,i), [cfg.dim,1]),cfg.chancmbneighbstructmat,cfg.chancmbneighbselmat,cfg.minnbchan);
else
posclusrnd = findcluster(reshape(postailrnd(:,i), [cfg.dim,1]),channeighbstructmat,cfg.minnbchan);
end
posclusrnd = posclusrnd(:);
end
Nrndpos = max(posclusrnd); % number of clusters exceeding the threshold
stat = zeros(1,Nrndpos); % this will hold the statistic for each cluster
% fprintf('found %d positive clusters in this randomization\n', Nrndpos);
for j = 1:Nrndpos
if strcmp(cfg.clusterstatistic, 'max'),
stat(j) = max(statrnd(find(posclusrnd==j),i));
elseif strcmp(cfg.clusterstatistic, 'maxsize'),
stat(j) = length(find(posclusrnd==j));
elseif strcmp(cfg.clusterstatistic, 'maxsum'),
stat(j) = sum(statrnd(find(posclusrnd==j),i));
elseif strcmp(cfg.clusterstatistic, 'wcm'),
stat(j) = sum((statrnd(find(posclusrnd==j),i)-postailcritval).^cfg.wcm_weight);
else
error('unknown clusterstatistic');
end
end % for 1:Nrdnpos
if strcmp(cfg.multivariate, 'yes') || strcmp(cfg.orderedstats, 'yes')
stat = sort(stat, 'descend'); % sort them from most positive to most negative
if Nrndpos>Nobspos
posdistribution(:,i) = stat(1:Nobspos); % remember the largest N clusters
else
posdistribution(1:Nrndpos,i) = stat; % remember the largest N clusters
end
else
% univariate -> remember the most extreme cluster
if ~isempty(stat), posdistribution(i) = max(stat); end
end
end % needpos
if needneg,
if issource
tmp = zeros(cfg.dim);
tmp(cfg.inside) = negtailrnd(:,i);
if length(cfg.dim) == 3 % if source data (3D)
[negclusrnd, negrndnum] = spm_bwlabel(tmp, 6); % use spm_bwlabel for source data to avoid usage of image toolbox
else
negclusrnd = bwlabeln(tmp, conndef(length(cfg.dim),'min')); % spm_bwlabel yet (feb 2011) supports only up to 3D data
end
negclusrnd = negclusrnd(cfg.inside);
else
if 0
negclusrnd = findcluster(reshape(negtailrnd(:,i), [cfg.dim,1]),cfg.chancmbneighbstructmat,cfg.chancmbneighbselmat,cfg.minnbchan);
else
negclusrnd = findcluster(reshape(negtailrnd(:,i), [cfg.dim,1]),channeighbstructmat,cfg.minnbchan);
end
negclusrnd = negclusrnd(:);
end
Nrndneg = max(negclusrnd); % number of clusters exceeding the threshold
stat = zeros(1,Nrndneg); % this will hold the statistic for each cluster
% fprintf('found %d negative clusters in this randomization\n', Nrndneg);
for j = 1:Nrndneg
if strcmp(cfg.clusterstatistic, 'max'),
stat(j) = min(statrnd(find(negclusrnd==j),i));
elseif strcmp(cfg.clusterstatistic, 'maxsize'),
stat(j) = -length(find(negclusrnd==j)); % encode the size of a negative cluster as a negative value
elseif strcmp(cfg.clusterstatistic, 'maxsum'),
stat(j) = sum(statrnd(find(negclusrnd==j),i));
elseif strcmp(cfg.clusterstatistic, 'wcm'),
stat(j) = -sum((abs(statrnd(find(negclusrnd==j),i)-negtailcritval)).^cfg.wcm_weight); % encoded as a negative value
else
error('unknown clusterstatistic');
end
end % for 1:Nrndneg
if strcmp(cfg.multivariate, 'yes') || strcmp(cfg.orderedstats, 'yes')
stat = sort(stat, 'ascend'); % sort them from most negative to most positive
if Nrndneg>Nobsneg
negdistribution(:,i) = stat(1:Nobsneg); % remember the most extreme clusters, i.e. the most negative
else
negdistribution(1:Nrndneg,i) = stat; % remember the most extreme clusters, i.e. the most negative
end
else
% univariate -> remember the most extreme cluster, which is the most negative
if ~isempty(stat), negdistribution(i) = min(stat); end
end
end % needneg
end % for 1:Nrand
ft_progress('close');
% compare the values for the observed clusters with the randomization distribution
if needpos,
posclusters = [];
stat = zeros(1,Nobspos);
for j = 1:Nobspos
if strcmp(cfg.clusterstatistic, 'max'),
stat(j) = max(statobs(find(posclusobs==j)));
elseif strcmp(cfg.clusterstatistic, 'maxsize'),
stat(j) = length(find(posclusobs==j));
elseif strcmp(cfg.clusterstatistic, 'maxsum'),
stat(j) = sum(statobs(find(posclusobs==j)));
elseif strcmp(cfg.clusterstatistic, 'wcm'),
stat(j) = sum((statobs(find(posclusobs==j))-postailcritval).^cfg.wcm_weight);
else
error('unknown clusterstatistic');
end
end
% sort the clusters based on their statistical value
[stat, indx] = sort(stat,'descend');
% reorder the cluster indices in the data
tmp = zeros(size(posclusobs));
for j=1:Nobspos
tmp(find(posclusobs==indx(j))) = j;
end
posclusobs = tmp;
if strcmp(cfg.multivariate, 'yes')
% estimate the probability of the mutivariate tail, i.e. one p-value for all clusters
prob = 0;
for i=1:Nrand
% compare all clusters simultaneosuly
prob = prob + any(posdistribution(:,i)>stat(:));
end
prob = prob/Nrand;
for j = 1:Nobspos
% collect a summary of the cluster properties
posclusters(j).prob = prob;
posclusters(j).clusterstat = stat(j);
end
% collect the probabilities in one large array
prb_pos(find(posclusobs~=0)) = prob;
elseif strcmp(cfg.orderedstats, 'yes')
% compare the Nth ovbserved cluster against the randomization distribution of the Nth cluster
prob = zeros(1,Nobspos);
for j = 1:Nobspos
prob(j) = sum(posdistribution(j,:)>stat(j))/Nrand;
% collect a summary of the cluster properties
posclusters(j).prob = prob(j);
posclusters(j).clusterstat = stat(j);
% collect the probabilities in one large array
prb_pos(find(posclusobs==j)) = prob(j);
end
else
% univariate -> each cluster has it's own probability
prob = zeros(1,Nobspos);
for j = 1:Nobspos
prob(j) = sum(posdistribution>stat(j))/Nrand;
% collect a summary of the cluster properties
posclusters(j).prob = prob(j);
posclusters(j).clusterstat = stat(j);
% collect the probabilities in one large array
prb_pos(find(posclusobs==j)) = prob(j);
end
end
end
if needneg,
negclusters = [];
stat = zeros(1,Nobsneg);
for j = 1:Nobsneg
if strcmp(cfg.clusterstatistic, 'max'),
stat(j) = min(statobs(find(negclusobs==j)));
elseif strcmp(cfg.clusterstatistic, 'maxsize'),
stat(j) = -length(find(negclusobs==j)); % encode the size of a negative cluster as a negative value
elseif strcmp(cfg.clusterstatistic, 'maxsum'),
stat(j) = sum(statobs(find(negclusobs==j)));
elseif strcmp(cfg.clusterstatistic, 'wcm'),
stat(j) = -sum((abs(statobs(find(negclusobs==j))-negtailcritval)).^cfg.wcm_weight); % encoded as a negative value
else
error('unknown clusterstatistic');
end
end
% sort the clusters based on their statistical value
[stat, indx] = sort(stat,'ascend');
% reorder the cluster indices in the observed data
tmp = zeros(size(negclusobs));
for j=1:Nobsneg
tmp(find(negclusobs==indx(j))) = j;
end
negclusobs = tmp;
if strcmp(cfg.multivariate, 'yes')
% estimate the probability of the mutivariate tail, i.e. one p-value for all clusters
prob = 0;
for i=1:Nrand
% compare all clusters simultaneosuly
prob = prob + any(negdistribution(:,i)<stat(:));
end
prob = prob/Nrand;
for j = 1:Nobsneg
% collect a summary of the cluster properties
negclusters(j).prob = prob;
negclusters(j).clusterstat = stat(j);
end
% collect the probabilities in one large array
prb_neg(find(negclusobs~=0)) = prob;
elseif strcmp(cfg.orderedstats, 'yes')
% compare the Nth ovbserved cluster against the randomization distribution of the Nth cluster
prob = zeros(1,Nobsneg);
for j = 1:Nobsneg
prob(j) = sum(negdistribution(j,:)<stat(j))/Nrand;
% collect a summary of the cluster properties
negclusters(j).prob = prob(j);
negclusters(j).clusterstat = stat(j);
% collect the probabilities in one large array
prb_neg(find(negclusobs==j)) = prob(j);
end
else
% univariate -> each cluster has it's own probability
prob = zeros(1,Nobsneg);
for j = 1:Nobsneg
prob(j) = sum(negdistribution<stat(j))/Nrand;
% collect a summary of the cluster properties
negclusters(j).prob = prob(j);
negclusters(j).clusterstat = stat(j);
% collect the probabilities in one large array
prb_neg(find(negclusobs==j)) = prob(j);
end
end
end
if cfg.tail==0
% consider both tails
prob = min(prb_neg, prb_pos); % this is the probability for the most unlikely tail
elseif cfg.tail==1
% only consider the positive tail
prob = prb_pos;
elseif cfg.tail==-1
% only consider the negative tail
prob = prb_neg;
end
% collect the remaining details in the output structure
stat.prob = prob;
if needpos,
stat.posclusters = posclusters;
stat.posclusterslabelmat = posclusobs;
stat.posdistribution = posdistribution;
end
if needneg,
stat.negclusters = negclusters;
stat.negclusterslabelmat = negclusobs;
stat.negdistribution = negdistribution;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BEGIN SUBFUNCTION MAKECHANNEIGHBSTRUCTMAT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function channeighbstructmat = makechanneighbstructmat(cfg);
% MAKECHANNEIGHBSTRUCTMAT makes the makes the matrix containing the channel
% neighbourhood structure.
% because clusterstat has no access to the actual data (containing data.label), this workaround is required
% cfg.neighbours is cleared here because it is not done where avgoverchan is effectuated (it should actually be changed there)
if strcmp(cfg.avgoverchan, 'no')
nchan=length(cfg.channel);
elseif strcmp(cfg.avgoverchan, 'yes')
nchan = 1;
cfg.neighbours = [];
end
channeighbstructmat = false(nchan,nchan);
for chan=1:length(cfg.neighbours)
[seld] = match_str(cfg.channel, cfg.neighbours(chan).label);
[seln] = match_str(cfg.channel, cfg.neighbours(chan).neighblabel);
if isempty(seld)
% this channel was not present in the data
continue;
else
% add the neighbours of this channel to the matrix
channeighbstructmat(seld, seln) = true;
end
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BEGIN SUBFUNCTION MAKECHANCMBNEIGHBMATS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [chancmbneighbstructmat, chancmbneighbselmat] = makechancmbneighbmats(channeighbstructmat,labelcmb,label,orderedchancmbs,original);
% compute CHANCMBNEIGHBSTRUCTMAT and CHANCMBNEIGHBSELMAT, which will be
% used for clustering channel combinations.
nchan=length(label);
nchansqr=nchan^2;
% Construct an array labelcmbnrs from labelcmb by replacing the label pairs
% in labelcmb by numbers that correspond to the order of the labels in label.
nchancmb = size(labelcmb,1);
labelcmbnrs=zeros(nchancmb,2);
for chanindx=1:nchan
[chansel1] = match_str(labelcmb(:,1),label(chanindx));
labelcmbnrs(chansel1,1)=chanindx;
[chansel2] = match_str(labelcmb(:,2),label(chanindx));
labelcmbnrs(chansel2,2)=chanindx;
end;
% Calculate the row and column indices (which are identical) of the
% channel combinations that are present in the data.
chancmbindcs=zeros(nchancmb,1);
for indx=1:nchancmb
chancmbindcs(indx)=(labelcmbnrs(indx,1)-1)*nchan + labelcmbnrs(indx,2);
end;
% put all elements on the diagonal of CHANNEIGHBSTRUCTMAT equal to one
channeighbstructmat=channeighbstructmat | logical(eye(nchan));
% Compute CHANCMBNEIGHBSTRUCTMAT
% First compute the complete CHANCMBNEIGHBSTRUCTMAT (containing all
% ORDERED channel combinations that can be formed with all channels present in
% the data) and later select and reorder the channel combinations actually
% present in data). In the complete CHANCMBNEIGHBSTRUCTMAT, the row and the
% column pairs are ordered lexicographically.
chancmbneighbstructmat = false(nchansqr);
if original
% two channel pairs are neighbours if their first elements are
% neighbours
chancmbneighbstructmat = logical(kron(channeighbstructmat,ones(nchan)));
% or if their second elements are neighbours
chancmbneighbstructmat = chancmbneighbstructmat | logical(kron(ones(nchan),channeighbstructmat));
else % version that consumes less memory
for chanindx=1:nchan
% two channel pairs are neighbours if their first elements are neighbours
% or if their second elements are neighbours
chancmbneighbstructmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) = ...
logical(kron(channeighbstructmat(:,chanindx),ones(nchan))) | ...
logical(kron(ones(nchan,1),channeighbstructmat));
end;
end;
if ~orderedchancmbs
if original
% or if the first element of the row channel pair is a neighbour of the
% second element of the column channel pair
chancmbneighbstructmat = chancmbneighbstructmat | logical(repmat(kron(channeighbstructmat,ones(nchan,1)), [1 nchan]));
% or if the first element of the column channel pair is a neighbour of the
% second element of the row channel pair
chancmbneighbstructmat = chancmbneighbstructmat | logical(repmat(kron(channeighbstructmat,ones(1,nchan)),[nchan 1]));
else
for chanindx=1:nchan
% two channel pairs are neighbours if
% the first element of the row channel pair is a neighbour of the
% second element of the column channel pair
% or if the first element of the column channel pair is a neighbour of the
% second element of the row channel pair
chancmbneighbstructmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) = ...
chancmbneighbstructmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) | ...
logical(kron(channeighbstructmat,ones(nchan,1))) | ...
logical(repmat(kron(channeighbstructmat(:,chanindx),ones(1,nchan)),[nchan 1]));
end;
end;
end;
% reorder and select the entries in chancmbneighbstructmat such that they correspond to labelcmb.
chancmbneighbstructmat = sparse(chancmbneighbstructmat);
chancmbneighbstructmat = chancmbneighbstructmat(chancmbindcs,chancmbindcs);
% compute CHANCMBNEIGHBSELMAT
% CHANCMBNEIGHBSELMAT identifies so-called parallel pairs. A channel pair
% is parallel if (a) all four sensors are different and (b) all elements (of the first
% and the second pair) are neighbours of an element of the other pair.
% if orderedpairs is true, then condition (b) is as follows: the first
% elements of the two pairs are neighbours, and the second elements of the
% two pairs are neighbours.
% put all elements on the diagonal of CHANNEIGHBSTRUCTMAT equal to zero
channeighbstructmat = logical(channeighbstructmat.*(ones(nchan)-diag(ones(nchan,1))));
chancmbneighbselmat = false(nchansqr);
if orderedchancmbs
if original
% if the first element of the row pair is a neighbour of the
% first element of the column pair
chancmbneighbselmat = logical(kron(channeighbstructmat,ones(nchan)));
% and the second element of the row pair is a neighbour of the
% second element of the column pair
chancmbneighbselmat = chancmbneighbselmat & logical(kron(ones(nchan),channeighbstructmat));
else % version that consumes less memory
for chanindx=1:nchan
% if the first element of the row pair is a neighbour of the
% first element of the column pair
% and the second element of the row pair is a neighbour of the
% second element of the column pair
chancmbneighbselmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) = ...
logical(kron(channeighbstructmat(:,chanindx),ones(nchan))) & logical(kron(ones(nchan,1),channeighbstructmat));
end;
end;
else % unordered channel combinations
if original
% if the first element of the row pair is a neighbour of one of the
% two elements of the column pair
chancmbneighbselmat = logical(kron(channeighbstructmat,ones(nchan))) | logical(repmat(kron(channeighbstructmat,ones(nchan,1)), [1 nchan]));
% and the second element of the row pair is a neighbour of one of the
% two elements of the column pair
chancmbneighbselmat = chancmbneighbselmat & (logical(kron(ones(nchan),channeighbstructmat)) | ...
logical(repmat(kron(channeighbstructmat,ones(1,nchan)), [nchan 1])));
else % version that consumes less memory
for chanindx=1:nchan
% if the first element of the row pair is a neighbour of one of the
% two elements of the column pair
% and the second element of the row pair is a neighbour of one of the
% two elements of the column pair
chancmbneighbselmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) = ...
(logical(kron(channeighbstructmat(:,chanindx),ones(nchan))) | logical(kron(channeighbstructmat,ones(nchan,1)))) ...
& (logical(kron(ones(nchan,1),channeighbstructmat)) | ...
logical(repmat(kron(channeighbstructmat(:,chanindx),ones(1,nchan)), [nchan 1])));
end;
end;
end;
if original
% remove all pairs of channel combinations that have one channel in common.
% common channel in the first elements of the two pairs.
chancmbneighbselmat = chancmbneighbselmat & kron(~eye(nchan),ones(nchan));
% common channel in the second elements of the two pairs.
chancmbneighbselmat = chancmbneighbselmat & kron(ones(nchan),~eye(nchan));
% common channel in the first element of the row pair and the second
% element of the column pair.
tempselmat=logical(zeros(nchansqr));
tempselmat(:)= ~repmat([repmat([ones(nchan,1); zeros(nchansqr,1)],[(nchan-1) 1]); ones(nchan,1)],[nchan 1]);
chancmbneighbselmat = chancmbneighbselmat & tempselmat;
% common channel in the second element of the row pair and the first
% element of the column pair.
chancmbneighbselmat = chancmbneighbselmat & tempselmat';
else
noteye=~eye(nchan);
tempselmat=logical(zeros(nchansqr,nchan));
tempselmat(:)= ~[repmat([ones(nchan,1); zeros(nchansqr,1)],[(nchan-1) 1]); ones(nchan,1)];
for chanindx=1:nchan
% remove all pairs of channel combinations that have one channel in common.
% common channel in the first elements of the two pairs.
% common channel in the second elements of the two pairs.
% common channel in the first element of the row pair and the second
% element of the column pair.
chancmbneighbselmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) = ...
chancmbneighbselmat(:,((chanindx-1)*nchan + 1):(chanindx*nchan)) ...
& logical(kron(noteye(:,chanindx),ones(nchan))) ...
& logical(kron(ones(nchan,1),noteye)) ...
& tempselmat;
end;
for chanindx=1:nchan
% remove all pairs of channel combinations that have one
% common channel in the second element of the row pair and the first
% element of the column pair.
chancmbneighbselmat(((chanindx-1)*nchan + 1):(chanindx*nchan),:) = ...
chancmbneighbselmat(((chanindx-1)*nchan + 1):(chanindx*nchan),:) & tempselmat';
end;
end;
% reorder and select the entries in chancmbneighbselmat such that they correspond to labelcmb.
chancmbneighbselmat = sparse(chancmbneighbselmat);
chancmbneighbselmat = chancmbneighbselmat(chancmbindcs,chancmbindcs);
% put all elements below and on the diagonal equal to zero
nchancmbindcs = length(chancmbindcs);
for chancmbindx=1:nchancmbindcs
selvec=[true(chancmbindx-1,1);false(nchancmbindcs-chancmbindx+1,1)];
chancmbneighbstructmat(:,chancmbindx) = chancmbneighbstructmat(:,chancmbindx) & selvec;
chancmbneighbselmat(:,chancmbindx) = chancmbneighbselmat(:,chancmbindx) & selvec;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION convert Nx2 cell array with channel combinations into Nx1 cell array with labels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function label = cmb2label(labelcmb);
label = {};
for i=1:size(labelcmb)
label{i,1} = [labelcmb{i,1} '&' labelcmb{i,2}];
end
|
github
|
philippboehmsturm/antx-master
|
ft_chantype.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/ft_chantype.m
| 16,027 |
utf_8
|
7bceb8d238631a586cda73a2d74ef6c4
|
function type = ft_chantype(input, desired)
% FT_CHANTYPE determines for each channel what type it is, e.g. planar/axial gradiometer or magnetometer
%
% Use as
% type = ft_chantype(hdr)
% type = ft_chantype(sens)
% type = ft_chantype(label)
% or as
% type = ft_chantype(hdr, desired)
% type = ft_chantype(sens, desired)
% type = ft_chantype(label, desired)
% Copyright (C) 2008-2011, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_chantype.m 3530 2011-05-12 14:15:17Z roboos $
% this is to avoid a recursion loop
persistent recursion
if isempty(recursion)
recursion = false;
end
% determine the type of input
isheader = isa(input, 'struct') && isfield(input, 'label') && isfield(input, 'Fs');
isgrad = isa(input, 'struct') && isfield(input, 'pnt') && isfield(input, 'ori');
islabel = isa(input, 'cell') && isa(input{1}, 'char');
hdr = input;
grad = input;
label = input;
if isheader
numchan = length(hdr.label);
if isfield(hdr, 'grad')
grad = hdr.grad;
end
label = hdr.label;
elseif isgrad
label = grad.label;
numchan = length(label);
elseif islabel
numchan = length(label);
else
error('the input that was provided to this function cannot be deciphered');
end
% start with unknown type
type = cell(numchan,1);
for i=1:length(type)
type{i} = 'unknown';
end
if ft_senstype(input, 'neuromag')
% channames-KI is the channel kind, 1=meg, 202=eog, 2=eeg, 3=trigger (I am nut sure, but have inferred this from a single test file)
% chaninfo-TY is the Coil type (0=magnetometer, 1=planar gradiometer)
if isfield(hdr, 'orig') && isfield(hdr.orig, 'channames')
for sel=find(hdr.orig.channames.KI(:)==202)'
type{sel} = 'eog';
end
for sel=find(hdr.orig.channames.KI(:)==2)'
type{sel} = 'eeg';
end
for sel=find(hdr.orig.channames.KI(:)==3)'
type{sel} = 'digital trigger';
end
% determinge the MEG channel subtype
selmeg=find(hdr.orig.channames.KI(:)==1)';
for i=1:length(selmeg)
if hdr.orig.chaninfo.TY(i)==0
type{selmeg(i)} = 'megmag';
elseif hdr.orig.chaninfo.TY(i)==1
type{selmeg(i)} = 'megplanar';
end
end
elseif isfield(hdr, 'orig') && isfield(hdr.orig, 'chs') && isfield(hdr.orig.chs, 'coil_type')
%all the chs.kinds and chs.coil_types are obtained from the MNE
%manual, p.210-211
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==2)' %planar gradiometers
type(sel) = {'megplanar'}; %Neuromag-122 planar gradiometer
end
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==3012)' %planar gradiometers
type(sel) = {'megplanar'}; %Type T1 planar grad
end
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==3013)' %planar gradiometers
type(sel) = {'megplanar'}; %Type T2 planar grad
end
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==3014)' %planar gradiometers
type(sel) = {'megplanar'}; %Type T3 planar grad
end
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==3022)' %magnetometers
type(sel) = {'megmag'}; %Type T1 magenetometer
end
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==3023)' %magnetometers
type(sel) = {'megmag'}; %Type T2 magenetometer
end
for sel=find([hdr.orig.chs.kind]==1 & [hdr.orig.chs.coil_type]==3024)' %magnetometers
type(sel) = {'megmag'}; %Type T3 magenetometer
end
for sel=find([hdr.orig.chs.kind]==301)' %MEG reference channel, located far from head
type(sel) = {'ref'};
end
for sel=find([hdr.orig.chs.kind]==2)' %EEG channels
type(sel) = {'eeg'};
end
for sel=find([hdr.orig.chs.kind]==201)' %MCG channels
type(sel) = {'mcg'};
end
for sel=find([hdr.orig.chs.kind]==3)' %Stim channels
if any([hdr.orig.chs(sel).logno] == 101) %new systems: 101 (and 102, if enabled) are digital;
%low numbers are 'pseudo-analog' (if enabled)
type(sel([hdr.orig.chs(sel).logno] == 101)) = {'digital trigger'};
type(sel([hdr.orig.chs(sel).logno] == 102)) = {'digital trigger'};
type(sel([hdr.orig.chs(sel).logno] <= 32)) = {'analog trigger'};
others = [hdr.orig.chs(sel).logno] > 32 & [hdr.orig.chs(sel).logno] ~= 101 & ...
[hdr.orig.chs(sel).logno] ~= 102;
type(sel(others)) = {'other trigger'};
elseif any([hdr.orig.chs(sel).logno] == 14) %older systems: STI 014/015/016 are digital;
%lower numbers 'pseudo-analog'(if enabled)
type(sel([hdr.orig.chs(sel).logno] == 14)) = {'digital trigger'};
type(sel([hdr.orig.chs(sel).logno] == 15)) = {'digital trigger'};
type(sel([hdr.orig.chs(sel).logno] == 16)) = {'digital trigger'};
type(sel([hdr.orig.chs(sel).logno] <= 13)) = {'analog trigger'};
others = [hdr.orig.chs(sel).logno] > 16;
type(sel(others)) = {'other trigger'};
else
warning('There does not seem to be a suitable trigger channel.');
type(sel) = {'other trigger'};
end
end
for sel=find([hdr.orig.chs.kind]==202)' %EOG
type(sel) = {'eog'};
end
for sel=find([hdr.orig.chs.kind]==302)' %EMG
type(sel) = {'emg'};
end
for sel=find([hdr.orig.chs.kind]==402)' %ECG
type(sel) = {'ecg'};
end
for sel=find([hdr.orig.chs.kind]==502)' %MISC
type(sel) = {'misc'};
end
for sel=find([hdr.orig.chs.kind]==602)' %Resp
type(sel) = {'respiration'};
end
end
elseif ft_senstype(input, 'ctf') && isheader
% meg channels are 5, refmag 0, refgrad 1, adcs 18, trigger 11, eeg 9
if isfield(hdr, 'orig') && isfield(hdr.orig, 'sensType')
origSensType = hdr.orig.sensType;
elseif isfield(hdr, 'orig') && isfield(hdr.orig, 'res4')
origSensType = [hdr.orig.res4.senres.sensorTypeIndex];
else
warning('could not determine channel type from the CTF header');
origSensType = [];
end
for sel=find(origSensType(:)==5)'
type{sel} = 'meggrad';
end
for sel=find(origSensType(:)==0)'
type{sel} = 'refmag';
end
for sel=find(origSensType(:)==1)'
type{sel} = 'refgrad';
end
for sel=find(origSensType(:)==18)'
type{sel} = 'adc';
end
for sel=find(origSensType(:)==11)'
type{sel} = 'trigger';
end
for sel=find(origSensType(:)==9)'
type{sel} = 'eeg';
end
for sel=find(origSensType(:)==29)'
type{sel} = 'reserved'; % these are "reserved for future use", but relate to head localization
end
for sel=find(origSensType(:)==13)'
type{sel} = 'headloc'; % these represent the x, y, z position of the head coils
end
for sel=find(origSensType(:)==28)'
type{sel} = 'headloc_gof'; % these represent the goodness of fit for the head coils
end
% for sel=find(origSensType(:)==23)'
% type{sel} = 'SPLxxxx'; % I have no idea what these are
% end
elseif ft_senstype(input, 'ctf') && isgrad
% in principle it is possible to look at the number of coils, but here the channels are identified based on their name
sel = myregexp('^M[ZLR][A-Z][0-9][0-9]$', grad.label);
type(sel) = {'meggrad'}; % normal gradiometer channels
sel = myregexp('^B[GPR][0-9]$', grad.label);
type(sel) = {'refmag'}; % reference magnetometers
sel = myregexp('^[GPQR][0-9][0-9]$', grad.label);
type(sel) = {'refgrad'}; % reference gradiometers
elseif ft_senstype(input, 'ctf') && islabel
% the channels have to be identified based on their name alone
sel = myregexp('^M[ZLR][A-Z][0-9][0-9]$', label);
type(sel) = {'meggrad'}; % normal gradiometer channels
sel = myregexp('^B[GPR][0-9]$', label);
type(sel) = {'refmag'}; % reference magnetometers
sel = myregexp('^[GPQR][0-9][0-9]$', label);
type(sel) = {'refgrad'}; % reference gradiometers
elseif ft_senstype(input, 'bti')
% all 4D-BTi MEG channels start with "A"
% all 4D-BTi reference channels start with M or G
% all 4D-BTi EEG channels start with E
type(strncmp('A', label, 1)) = {'meg'};
type(strncmp('M', label, 1)) = {'refmag'};
type(strncmp('G', label, 1)) = {'refgrad'};
if isfield(grad, 'tra')
selchan = find(strcmp('mag', type));
for k = 1:length(selchan)
ncoils = length(find(grad.tra(selchan(k),:)==1));
if ncoils==1,
type{selchan(k)} = 'megmag';
elseif ncoils==2,
type{selchan(k)} = 'meggrad';
end
end
end
% This is to allow setting additional channel types based on the names
if isheader && issubfield(hdr, 'orig.channel_data.chan_label')
tmplabel = {hdr.orig.channel_data.chan_label};
tmplabel = tmplabel(:);
else
tmplabel = label; % might work
end
sel = strmatch('unknown', type, 'exact');
if ~isempty(sel)
type(sel)= ft_chantype(tmplabel(sel));
sel = strmatch('unknown', type, 'exact');
if ~isempty(sel)
type(sel(strncmp('E', label(sel), 1))) = {'eeg'};
end
end
elseif ft_senstype(input, 'itab') && isheader
origtype = [input.orig.ch.type];
type(origtype==0) = {'unknown'};
type(origtype==1) = {'ele'};
type(origtype==2) = {'mag'}; % might be magnetometer or gradiometer, look at the number of coils
type(origtype==4) = {'ele ref'};
type(origtype==8) = {'mag ref'};
type(origtype==16) = {'aux'};
type(origtype==32) = {'param'};
type(origtype==64) = {'digit'};
type(origtype==128) = {'flag'};
% these are the channels that are visible to fieldtrip
chansel = 1:input.orig.nchan;
type = type(chansel);
elseif ft_senstype(input, 'yokogawa') && isheader
% This is to recognize Yokogawa channel types from the original header
% This is from the original documentation
NullChannel = 0;
MagnetoMeter = 1;
AxialGradioMeter = 2;
PlannerGradioMeter = 3;
RefferenceChannelMark = hex2dec('0100');
RefferenceMagnetoMeter = bitor( RefferenceChannelMark, MagnetoMeter );
RefferenceAxialGradioMeter = bitor( RefferenceChannelMark, AxialGradioMeter );
RefferencePlannerGradioMeter = bitor( RefferenceChannelMark, PlannerGradioMeter);
TriggerChannel = -1;
EegChannel = -2;
EcgChannel = -3;
EtcChannel = -4;
sel = (hdr.orig.channel_info(:, 2) == NullChannel);
type(sel) = {'null'};
sel = (hdr.orig.channel_info(:, 2) == MagnetoMeter);
type(sel) = {'megmag'};
sel = (hdr.orig.channel_info(:, 2) == AxialGradioMeter);
type(sel) = {'meggrad'};
sel = (hdr.orig.channel_info(:, 2) == PlannerGradioMeter);
type(sel) = {'megplanar'};
sel = (hdr.orig.channel_info(:, 2) == RefferenceMagnetoMeter);
type(sel) = {'refmag'};
sel = (hdr.orig.channel_info(:, 2) == RefferenceAxialGradioMeter);
type(sel) = {'refgrad'};
sel = (hdr.orig.channel_info(:, 2) == RefferencePlannerGradioMeter);
type(sel) = {'refplanar'};
sel = (hdr.orig.channel_info(:, 2) == TriggerChannel);
type(sel) = {'trigger'};
sel = (hdr.orig.channel_info(:, 2) == EegChannel);
type(sel) = {'eeg'};
sel = (hdr.orig.channel_info(:, 2) == EcgChannel);
type(sel) = {'ecg'};
sel = (hdr.orig.channel_info(:, 2) == EtcChannel);
type(sel) = {'etc'};
elseif ft_senstype(input, 'yokogawa') && isgrad
% all channels in the gradiometer definition are meg
type(1:end) = {'meg'};
elseif ft_senstype(input, 'yokogawa') && islabel
% the yokogawa channel labels are a mess, so autodetection is not possible
type(1:end) = {'meg'};
elseif ft_senstype(input, 'itab') && isheader
sel = ([hdr.orig.ch.type]==0);
type(sel) = {'unknown'};
sel = ([hdr.orig.ch.type]==1);
type(sel) = {'unknown'};
sel = ([hdr.orig.ch.type]==2);
type(sel) = {'megmag'};
sel = ([hdr.orig.ch.type]==8);
type(sel) = {'megref'};
sel = ([hdr.orig.ch.type]==16);
type(sel) = {'aux'};
sel = ([hdr.orig.ch.type]==64);
type(sel) = {'digital'};
% not all channels are actually processed by fieldtrip, so only return
% the types fopr the ones that read_header and read_data return
type = type(hdr.orig.chansel);
elseif ft_senstype(input, 'itab') && isgrad
% the channels have to be identified based on their name alone
sel = myregexp('^MAG_[0-9][0-9][0-9]$', label);
type(sel) = {'megmag'};
sel = myregexp('^REF_[0-9][0-9][0-9]$', label);
type(sel) = {'megref'};
sel = myregexp('^AUX.*$', label);
type(sel) = {'aux'};
elseif ft_senstype(input, 'itab') && islabel
% the channels have to be identified based on their name alone
sel = myregexp('^MAG_[0-9][0-9][0-9]$', label);
type(sel) = {'megmag'};
sel = myregexp('^REF_[0-9][0-9][0-9]$', label);
type(sel) = {'megref'};
sel = myregexp('^AUX.*$', label);
type(sel) = {'aux'};
elseif ft_senstype(input, 'eeg') && islabel
% use an external helper function to define the list with EEG channel names
type(match_str(label, ft_senslabel(ft_senstype(label)))) = {'eeg'};
elseif ft_senstype(input, 'eeg') && isheader
% use an external helper function to define the list with EEG channel names
type(match_str(hdr.label, ft_senslabel(ft_senstype(hdr)))) = {'eeg'};
elseif ft_senstype(input, 'plexon') && isheader
% this is a complete header that was read from a Plexon *.nex file using read_plexon_nex
for i=1:numchan
switch hdr.orig.VarHeader(i).Type
case 0
type{i} = 'spike';
case 1
type{i} = 'event';
case 2
type{i} = 'interval'; % Interval variables?
case 3
type{i} = 'waveform';
case 4
type{i} = 'population'; % Population variables ?
case 5
type{i} = 'analog';
otherwise
% keep the default 'unknown' type
end
end
end % ft_senstype
% if possible, set additional types based on channel labels
label2type = {
{'ecg', 'ekg'};
{'emg'};
{'eog', 'heog', 'veog'};
{'lfp'};
{'eeg'};
};
for i = 1:numel(label2type)
for j = 1:numel(label2type{i})
type(intersect(strmatch(label2type{i}{j}, lower(label)),...
strmatch('unknown', type, 'exact'))) = label2type{i}(1);
end
end
if all(strcmp(type, 'unknown')) && ~recursion
% try whether only lowercase channel labels makes a difference
if islabel
recursion = true;
type = ft_chantype(lower(input));
recursion = false;
elseif isfield(input, 'label')
input.label = lower(input.label);
recursion = true;
type = ft_chantype(input);
recursion = false;
end
end
if all(strcmp(type, 'unknown')) && ~recursion
% try whether only uppercase channel labels makes a difference
if islabel
recursion = true;
type = ft_chantype(upper(input));
recursion = false;
elseif isfield(input, 'label')
input.label = upper(input.label);
recursion = true;
type = ft_chantype(input);
recursion = false;
end
end
if nargin>1
% return a boolean vector
if isequal(desired, 'meg') || isequal(desired, 'ref')
type = strncmp(desired, type, 3);
else
type = strcmp(desired, type);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function match = myregexp(pat, list)
match = false(size(list));
for i=1:numel(list)
match(i) = ~isempty(regexp(list{i}, pat, 'once'));
end
|
github
|
philippboehmsturm/antx-master
|
ft_read_event.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/ft_read_event.m
| 61,782 |
utf_8
|
b0442e5476b7f5a3d4674ab9a1d61929
|
function [event] = ft_read_event(filename, varargin)
% FT_READ_EVENT reads all events from an EEG/MEG dataset and returns
% them in a well defined structure. It is a wrapper around different
% EEG/MEG file importers, directly supported formats are CTF, Neuromag,
% EEP, BrainVision, Neuroscan and Neuralynx.
%
% Use as
% [event] = ft_read_event(filename, ...)
%
% Additional options should be specified in key-value pairs and can be
% 'dataformat' string
% 'headerformat' string
% 'eventformat' string
% 'header' structure, see FT_READ_HEADER
% 'detectflank' string, can be 'up', 'down', 'both' or 'auto' (default is system specific)
% 'trigshift' integer, number of samples to shift from flank to detect trigger value (default = 0)
% 'trigindx' list with channel numbers for the trigger detection, only for Yokogawa (default is automatic)
% 'threshold' threshold for analog trigger channels (default is system specific)
% 'blocking' wait for the selected number of events (default = 'no')
% 'timeout' amount of time in seconds to wait when blocking (default = 5)
%
% Furthermore, you can specify optional arguments as key-value pairs
% for filtering the events, e.g. to select only events of a specific
% type, of a specific value, or events between a specific begin and
% end sample. This event filtering is especially usefull for real-time
% processing. See FT_FILTER_EVENT for more details.
%
% Some data formats have trigger channels that are sampled continuously with
% the same rate as the electrophysiological data. The default is to detect
% only the up-going TTL flanks. The trigger events will correspond with the
% first sample where the TTL value is up. This behaviour can be changed
% using the 'detectflank' option, which also allows for detecting the
% down-going flank or both. In case of detecting the down-going flank, the
% sample number of the event will correspond with the first sample at which
% the TTF went down, and the value will correspond to the TTL value just
% prior to going down.
%
% This function returns an event structure with the following fields
% event.type = string
% event.sample = expressed in samples, the first sample of a recording is 1
% event.value = number or string
% event.offset = expressed in samples
% event.duration = expressed in samples
% event.timestamp = expressed in timestamp units, which vary over systems (optional)
%
% The event type and sample fields are always defined, other fields can be empty,
% depending on the type of event file. Events are sorted by the sample on
% which they occur. After reading the event structure, you can use the
% following tricks to extract information about those events in which you
% are interested.
%
% Determine the different event types
% unique({event.type})
%
% Get the index of all trial events
% find(strcmp('trial', {event.type}))
%
% Make a vector with all triggers that occurred on the backpanel
% [event(find(strcmp('backpanel trigger', {event.type}))).value]
%
% Find the events that occurred in trial 26
% t=26; samples_trials = [event(find(strcmp('trial', {event.type}))).sample];
% find([event.sample]>samples_trials(t) & [event.sample]<samples_trials(t+1))
%
% See also:
% FT_READ_HEADER, FT_READ_DATA, FT_WRITE_DATA, FT_WRITE_EVENT, FT_FILTER_EVENT
% Copyright (C) 2004-2010 Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_read_event.m 3709 2011-06-16 12:07:11Z roboos $
global event_queue % for fcdc_global
persistent sock % for fcdc_tcp
persistent db_blob % for fcdc_mysql
if isempty(db_blob)
db_blob = 0;
end
if iscell(filename)
% use recursion to read from multiple event sources
event = [];
for i=1:numel(filename)
tmp = ft_read_event(filename{i}, varargin{:});
event = appendevent(event(:), tmp(:));
end
return
end
% get the options
eventformat = ft_getopt(varargin, 'eventformat');
hdr = ft_getopt(varargin, 'header');
detectflank = ft_getopt(varargin, 'detectflank'); % up, down or both
trigshift = ft_getopt(varargin, 'trigshift'); % default is assigned in subfunction
trigindx = ft_getopt(varargin, 'trigindx'); % this allows to override the automatic trigger channel detection and is useful for Yokogawa
headerformat = ft_getopt(varargin, 'headerformat');
dataformat = ft_getopt(varargin, 'dataformat');
threshold = ft_getopt(varargin, 'threshold'); % this is used for analog channels
% this allows to read only events in a certain range, supported for selected data formats only
flt_type = ft_getopt(varargin, 'type');
flt_value = ft_getopt(varargin, 'value');
flt_minsample = ft_getopt(varargin, 'minsample');
flt_maxsample = ft_getopt(varargin, 'maxsample');
flt_mintimestamp = ft_getopt(varargin, 'mintimestamp');
flt_maxtimestamp = ft_getopt(varargin, 'maxtimestamp');
flt_minnumber = ft_getopt(varargin, 'minnumber');
flt_maxnumber = ft_getopt(varargin, 'maxnumber');
% thie allows blocking reads to avoid having to poll many times for online processing
blocking = ft_getopt(varargin, 'blocking', false); % true or false
timeout = ft_getopt(varargin, 'timeout', 5); % seconds
% convert from 'yes'/'no' into boolean
blocking = istrue(blocking);
% determine the filetype
if isempty(eventformat)
eventformat = ft_filetype(filename);
end
% default is to search only for rising or up-going flanks
if isempty(detectflank)
detectflank = 'up';
end
if any(strcmp(eventformat, {'brainvision_eeg', 'brainvision_dat'}))
[p, f] = fileparts(filename);
filename = fullfile(p, [f '.vhdr']);
eventformat = 'brainvision_vhdr';
end
if strcmp(eventformat, 'brainvision_vhdr')
% read the headerfile belonging to the dataset and try to determine the corresponding markerfile
eventformat = 'brainvision_vmrk';
hdr = read_brainvision_vhdr(filename);
% replace the filename with the filename of the markerfile
if ~isfield(hdr, 'MarkerFile') || isempty(hdr.MarkerFile)
filename = [];
else
[p, f] = fileparts(filename);
filename = fullfile(p, hdr.MarkerFile);
end
end
% start with an empty event structure
event = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the events with the low-level reading function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch eventformat
case 'fcdc_global'
event = event_queue;
case {'4d' '4d_pdf', '4d_m4d', '4d_xyz'}
if isempty(hdr)
hdr = ft_read_header(filename, 'headerformat', eventformat);
end
% read the trigger channel and do flank detection
trgindx = match_str(hdr.label, 'TRIGGER');
if isfield(hdr, 'orig') && isfield(hdr.orig, 'config_data') && strcmp(hdr.orig.config_data.site_name, 'Glasgow'),
trigger = read_trigger(filename, 'header', hdr, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', trgindx, 'detectflank', detectflank, 'trigshift', trigshift,'fix4dglasgow',1, 'dataformat', '4d');
else
trigger = read_trigger(filename, 'header', hdr, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', trgindx, 'detectflank', detectflank, 'trigshift', trigshift,'fix4dglasgow',0, 'dataformat', '4d');
end
event = appendevent(event, trigger);
respindx = match_str(hdr.label, 'RESPONSE');
if ~isempty(respindx)
response = read_trigger(filename, 'header', hdr, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', respindx, 'detectflank', detectflank, 'trigshift', trigshift, 'dataformat', '4d');
event = appendevent(event, response);
end
case 'bci2000_dat'
% this requires the load_bcidat mex file to be present on the path
ft_hastoolbox('BCI2000', 1);
if isempty(hdr)
hdr = ft_read_header(filename);
end
if isfield(hdr.orig, 'signal') && isfield(hdr.orig, 'states')
% assume that the complete data is stored in the header, this speeds up subsequent read operations
signal = hdr.orig.signal;
states = hdr.orig.states;
parameters = hdr.orig.parameters;
total_samples = hdr.orig.total_samples;
else
[signal, states, parameters, total_samples] = load_bcidat(filename);
end
list = fieldnames(states);
% loop over all states and detect the flanks, the following code was taken from read_trigger
for i=1:length(list)
channel = list{i};
trig = double(getfield(states, channel));
pad = trig(1);
trigshift = 0;
begsample = 1;
switch detectflank
case 'up'
% convert the trigger into an event with a value at a specific sample
for j=find(diff([pad trig(:)'])>0)
event(end+1).type = channel;
event(end ).sample = j + begsample - 1; % assign the sample at which the trigger has gone down
event(end ).value = trig(j+trigshift); % assign the trigger value just _after_ going up
end
case 'down'
% convert the trigger into an event with a value at a specific sample
for j=find(diff([pad trig(:)'])<0)
event(end+1).type = channel;
event(end ).sample = j + begsample - 1; % assign the sample at which the trigger has gone down
event(end ).value = trig(j-1-trigshift); % assign the trigger value just _before_ going down
end
case 'both'
% convert the trigger into an event with a value at a specific sample
for j=find(diff([pad trig(:)'])>0)
event(end+1).type = [channel '_up']; % distinguish between up and down flank
event(end ).sample = j + begsample - 1; % assign the sample at which the trigger has gone down
event(end ).value = trig(j+trigshift); % assign the trigger value just _after_ going up
end
% convert the trigger into an event with a value at a specific sample
for j=find(diff([pad trig(:)'])<0)
event(end+1).type = [channel '_down']; % distinguish between up and down flank
event(end ).sample = j + begsample - 1; % assign the sample at which the trigger has gone down
event(end ).value = trig(j-1-trigshift); % assign the trigger value just _before_ going down
end
otherwise
error('incorrect specification of ''detectflank''');
end
end
case {'besa_avr', 'besa_swf'}
if isempty(hdr)
hdr = ft_read_header(filename);
end
event(end+1).type = 'average';
event(end ).sample = 1;
event(end ).duration = hdr.nSamples;
event(end ).offset = -hdr.nSamplesPre;
event(end ).value = [];
case {'biosemi_bdf', 'bham_bdf'}
% read the header, required to determine the stimulus channels and trial specification
if isempty(hdr)
hdr = ft_read_header(filename);
end
% specify the range to search for triggers, default is the complete file
if ~isempty(flt_minsample)
begsample = flt_minsample;
else
begsample = 1;
end
if ~isempty(flt_maxsample)
endsample = flt_maxsample;
else
endsample = hdr.nSamples*hdr.nTrials;
end
if ~strcmp(detectflank, 'up')
if strcmp(detectflank, 'both')
warning('only up-going flanks are supported for Biosemi');
detectflank = 'up';
else
error('only up-going flanks are supported for Biosemi');
% FIXME the next section on trigger detection should be merged with the
% READ_CTF_TRIGGER (which also does masking with bit-patterns) into the
% READ_TRIGGER function
end
end
% find the STATUS channel and read the values from it
schan = find(strcmpi(hdr.label,'STATUS'));
sdata = ft_read_data(filename, 'header', hdr, 'dataformat', dataformat, 'begsample', begsample, 'endsample', endsample, 'chanindx', schan);
% find indices of negative numbers
bit24i = find(sdata < 0);
% make number positive and preserve bits 0-22
sdata(bit24i) = bitcmp(abs(sdata(bit24i))-1,24);
% re-insert the sign bit on its original location, i.e. bit24
sdata(bit24i) = sdata(bit24i)+(2^(24-1));
% typecast the data to ensure that the status channel is represented in 32 bits
sdata = uint32(sdata);
byte1 = 2^8 - 1;
byte2 = 2^16 - 1 - byte1;
byte3 = 2^24 - 1 - byte1 - byte2;
% get the respective status and trigger bits
trigger = bitand(sdata, bitor(byte1, byte2)); % contained in the lower two bytes
epoch = int8(bitget(sdata, 16+1));
cmrange = int8(bitget(sdata, 20+1));
battery = int8(bitget(sdata, 22+1));
% determine when the respective status bits go up or down
flank_trigger = diff([0 trigger]);
flank_epoch = diff([0 epoch ]);
flank_cmrange = diff([0 cmrange]);
flank_battery = diff([0 battery]);
for i=find(flank_trigger>0)
event(end+1).type = 'STATUS';
event(end ).sample = i + begsample - 1;
event(end ).value = double(trigger(i));
end
for i=find(flank_epoch==1)
event(end+1).type = 'Epoch';
event(end ).sample = i;
end
for i=find(flank_cmrange==1)
event(end+1).type = 'CM_in_range';
event(end ).sample = i;
end
for i=find(flank_cmrange==-1)
event(end+1).type = 'CM_out_of_range';
event(end ).sample = i;
end
for i=find(flank_battery==1)
event(end+1).type = 'Battery_low';
event(end ).sample = i;
end
for i=find(flank_battery==-1)
event(end+1).type = 'Battery_ok';
event(end ).sample = i;
end
case {'biosig', 'gdf'}
% FIXME it would be nice to figure out how sopen/sread return events
% for all possible fileformats that can be processed with biosig
if isempty(hdr)
hdr = ft_read_header(filename);
end
% the following applies to Biosemi data that is stored in the gdf format
statusindx = find(strcmp(hdr.label, 'STATUS'));
if length(statusindx)==1
% represent the rising flanks in the STATUS channel as events
event = read_trigger(filename, 'header', hdr, 'chanindx', statusindx, 'detectflank', 'up', 'fixbiosemi', true);
else
warning('BIOSIG does not have a consistent event representation, skipping events')
event = [];
end
case 'brainvision_vmrk'
fid=fopen(filename,'rt');
if fid==-1,
error('cannot open BrainVision marker file')
end
line = [];
while ischar(line) || isempty(line)
line = fgetl(fid);
if ~isempty(line) && ~(isnumeric(line) && line==-1)
if strncmpi(line, 'Mk', 2)
% this line contains a marker
tok = tokenize(line, '=', 0); % do not squeeze repetitions of the seperator
if length(tok)~=2
warning('skipping unexpected formatted line in BrainVision marker file');
else
% the line looks like "MkXXX=YYY", which is ok
% the interesting part now is in the YYY, i.e. the second token
tok = tokenize(tok{2}, ',', 0); % do not squeeze repetitions of the seperator
if isempty(tok{1})
tok{1} = [];
end
if isempty(tok{2})
tok{2} = [];
end
event(end+1).type = tok{1};
event(end ).value = tok{2};
event(end ).sample = str2num(tok{3});
event(end ).duration = str2num(tok{4});
end
end
end
end
fclose(fid);
case 'ced_son'
% check that the required low-level toolbox is available
ft_hastoolbox('neuroshare', 1);
orig = read_ced_son(filename,'readevents','yes');
event = struct('type', {orig.events.type},...
'sample', {orig.events.sample},...
'value', {orig.events.value},...
'offset', {orig.events.offset},...
'duration', {orig.events.duration});
case 'ced_spike6mat'
if isempty(hdr)
hdr = ft_read_header(filename);
end
chanindx = [];
for i = 1:numel(hdr.orig)
if ~any(isfield(hdr.orig{i}, {'units', 'scale'}))
chanindx = [chanindx i];
end
end
if ~isempty(chanindx)
trigger = read_trigger(filename, 'header', hdr, 'dataformat', dataformat, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', chanindx, 'detectflank', detectflank);
event = appendevent(event, trigger);
end
case {'ctf_ds', 'ctf_meg4', 'ctf_res4', 'ctf_old'}
% obtain the dataset name
if ft_filetype(filename, 'ctf_meg4') || ft_filetype(filename, 'ctf_res4')
filename = fileparts(filename);
end
[path, name, ext] = fileparts(filename);
headerfile = fullfile(path, [name ext], [name '.res4']);
datafile = fullfile(path, [name ext], [name '.meg4']);
classfile = fullfile(path, [name ext], 'ClassFile.cls');
markerfile = fullfile(path, [name ext], 'MarkerFile.mrk');
% in case ctf_old was specified as eventformat, the other reading functions should also know about that
if strcmp(eventformat, 'ctf_old')
dataformat = 'ctf_old';
headerformat = 'ctf_old';
end
% read the header, required to determine the stimulus channels and trial specification
if isempty(hdr)
hdr = ft_read_header(headerfile, 'headerformat', headerformat);
end
try
% read the trigger codes from the STIM channel, usefull for (pseudo) continuous data
% this splits the trigger channel into the lowers and highest 16 bits,
% corresponding with the front and back panel of the electronics cabinet at the Donders Centre
[backpanel, frontpanel] = read_ctf_trigger(filename);
for i=find(backpanel(:)')
event(end+1).type = 'backpanel trigger';
event(end ).sample = i;
event(end ).value = backpanel(i);
end
for i=find(frontpanel(:)')
event(end+1).type = 'frontpanel trigger';
event(end ).sample = i;
event(end ).value = frontpanel(i);
end
end
% determine the trigger channels from the header
if isfield(hdr, 'orig') && isfield(hdr.orig, 'sensType')
origSensType = hdr.orig.sensType;
elseif isfield(hdr, 'orig') && isfield(hdr.orig, 'res4')
origSensType = [hdr.orig.res4.senres.sensorTypeIndex];
else
origSensType = [];
end
% meg channels are 5, refmag 0, refgrad 1, adcs 18, trigger 11, eeg 9
trigchanindx = find(origSensType==11);
if ~isempty(trigchanindx)
% read the trigger channel and do flank detection
trigger = read_trigger(filename, 'header', hdr, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', trigchanindx, 'dataformat', dataformat, 'detectflank', detectflank, 'trigshift', trigshift, 'fixctf', 1);
event = appendevent(event, trigger);
end
% read the classification file and make an event for each classified trial
[condNumbers,condLabels] = read_ctf_cls(classfile);
if ~isempty(condNumbers)
Ncond = length(condLabels);
for i=1:Ncond
for j=1:length(condNumbers{i})
event(end+1).type = 'classification';
event(end ).value = condLabels{i};
event(end ).sample = (condNumbers{i}(j)-1)*hdr.nSamples + 1;
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
end
end
end
if exist(markerfile,'file')
% read the marker file and make an event for each marker
% this depends on the readmarkerfile function that I got from Tom Holroyd
% I have not tested this myself extensively, since at the FCDC we
% don't use the marker files
mrk = readmarkerfile(filename);
for i=1:mrk.number_markers
for j=1:mrk.number_samples(i)
% determine the location of the marker, expressed in samples
trialnum = mrk.trial_times{i}(j,1);
synctime = mrk.trial_times{i}(j,2);
begsample = (trialnum-1)*hdr.nSamples + 1; % of the trial, relative to the start of the datafile
endsample = (trialnum )*hdr.nSamples; % of the trial, relative to the start of the datafile
offset = round(synctime*hdr.Fs); % this is the offset (in samples) relative to time t=0 for this trial
offset = offset + hdr.nSamplesPre; % and time t=0 corrsponds with the nSamplesPre'th sample
% store this marker as an event
event(end+1).type = mrk.marker_names{i};
event(end ).value = [];
event(end ).sample = begsample + offset;
event(end ).duration = 0;
event(end ).offset = offset;
end
end
end
case 'ctf_shm'
% contact Robert Oostenveld if you are interested in real-time acquisition on the CTF system
% read the events from shared memory
event = read_shm_event(filename, varargin{:});
case 'edf'
% EDF itself does not contain events, but EDF+ does define an annotation channel
if isempty(hdr)
hdr = ft_read_header(filename);
end
if issubfield(hdr, 'orig.annotation') && ~isempty(hdr.orig.annotation)
% read the data of the annotation channel as 16 bit
evt = read_edf(filename, hdr);
% undo the faulty calibration
evt = (evt - hdr.orig.Off(hdr.orig.annotation)) ./ hdr.orig.Cal(hdr.orig.annotation);
% convert the 16 bit format into the seperate bytes
evt = typecast(int16(evt), 'uint8');
% construct the Time-stamped Annotations Lists (TAL)
tal = tokenize(evt, char(0), true);
event = [];
for i=1:length(tal)
tok = tokenize(tal{i}, char(20));
time = str2double(char(tok{1}));
% there can be multiple annotations per time, the last cell is always empty
for j=2:length(tok)-1
anot = char(tok{j});
% represent the annotation as event
event(end+1).type = 'annotation';
event(end ).value = anot;
event(end ).sample = round(time*hdr.Fs) + 1;
event(end ).duration = 0;
event(end ).offset = 0;
end
end
else
event = [];
end
case 'eeglab_set'
if isempty(hdr)
hdr = ft_read_header(filename);
end
event = read_eeglabevent(filename, 'header', hdr);
case 'spmeeg_mat'
if isempty(hdr)
hdr = ft_read_header(filename);
end
event = read_spmeeg_event(filename, 'header', hdr);
case 'eep_avr'
% check that the required low-level toolbox is available
ft_hastoolbox('eeprobe', 1);
% the headerfile and datafile are the same
if isempty(hdr)
hdr = ft_read_header(filename);
end
event(end+1).type = 'average';
event(end ).sample = 1;
event(end ).duration = hdr.nSamples;
event(end ).offset = -hdr.nSamplesPre;
event(end ).value = [];
case 'eep_cnt'
% check that the required low-level toolbox is available
ft_hastoolbox('eeprobe', 1);
% try to read external trigger file in EEP format
trgfile = [filename(1:(end-3)), 'trg'];
if exist(trgfile, 'file')
if isempty(hdr)
hdr = ft_read_header(filename);
end
tmp = read_eep_trg(trgfile);
% translate the EEProbe trigger codes to events
for i=1:length(tmp)
event(i).type = 'trigger';
event(i).sample = round((tmp(i).time/1000) * hdr.Fs) + 1; % convert from ms to samples
event(i).value = tmp(i).code;
event(i).offset = 0;
event(i).duration = 0;
end
else
warning('no triggerfile was found');
end
case 'egi_egis'
if isempty(hdr)
hdr = ft_read_header(filename);
end
fhdr = hdr.orig.fhdr;
chdr = hdr.orig.chdr;
ename = hdr.orig.ename;
cnames = hdr.orig.cnames;
fcom = hdr.orig.fcom;
ftext = hdr.orig.ftext;
eventCount=0;
for cel=1:fhdr(18)
for trial=1:chdr(cel,2)
eventCount=eventCount+1;
event(eventCount).type = 'trial';
event(eventCount).sample = (eventCount-1)*hdr.nSamples + 1;
event(eventCount).offset = -hdr.nSamplesPre;
event(eventCount).duration = hdr.nSamples;
event(eventCount).value = cnames{cel};
end
end
case 'egi_egia'
if isempty(hdr)
hdr = ft_read_header(filename);
end
fhdr = hdr.orig.fhdr;
chdr = hdr.orig.chdr;
ename = hdr.orig.ename;
cnames = hdr.orig.cnames;
fcom = hdr.orig.fcom;
ftext = hdr.orig.ftext;
eventCount=0;
for cel=1:fhdr(18)
for subject=1:chdr(cel,2)
eventCount=eventCount+1;
event(eventCount).type = 'trial';
event(eventCount).sample = (eventCount-1)*hdr.nSamples + 1;
event(eventCount).offset = -hdr.nSamplesPre;
event(eventCount).duration = hdr.nSamples;
event(eventCount).value = ['Sub' sprintf('%03d',subject) cnames{cel}];
end
end
case 'egi_sbin'
if ~exist('segHdr','var')
[EventCodes, segHdr, eventData] = read_sbin_events(filename);
end
if ~exist('header_array','var')
[header_array, CateNames, CatLengths, preBaseline] = read_sbin_header(filename);
end
if isempty(hdr)
hdr = ft_read_header(filename,'headerformat','egi_sbin');
end
version = header_array(1);
unsegmented = ~mod(version, 2);
eventCount=0;
if unsegmented
[evType,sampNum] = find(eventData);
for k = 1:length(evType)
event(k).sample = sampNum(k);
event(k).offset = [];
event(k).duration = 0;
event(k).type = 'trigger';
event(k).value = char(EventCodes(evType(k),:));
end
else
for theEvent=1:size(eventData,1)
for segment=1:hdr.nTrials
if any(eventData(theEvent,((segment-1)*hdr.nSamples +1):segment*hdr.nSamples))
eventCount=eventCount+1;
event(eventCount).sample = min(find(eventData(theEvent,((segment-1)*hdr.nSamples +1):segment*hdr.nSamples))) +(segment-1)*hdr.nSamples;
event(eventCount).offset = -hdr.nSamplesPre;
event(eventCount).duration = length(find(eventData(theEvent,((segment-1)*hdr.nSamples +1):segment*hdr.nSamples )>0))-1;
event(eventCount).type = 'trigger';
event(eventCount).value = char(EventCodes(theEvent,:));
end
end
end
end
if ~unsegmented
for segment=1:hdr.nTrials % cell information
eventCount=eventCount+1;
event(eventCount).type = 'trial';
event(eventCount).sample = (segment-1)*hdr.nSamples + 1;
event(eventCount).offset = -hdr.nSamplesPre;
event(eventCount).duration = hdr.nSamples;
event(eventCount).value = char([CateNames{segHdr(segment,1)}(1:CatLengths(segHdr(segment,1)))]);
end
end;
case 'egi_mff'
if isempty(hdr)
hdr = ft_read_header(filename);
end
% get event info from xml files
ft_hastoolbox('XML4MAT', 1, 0);
warning('off', 'MATLAB:REGEXP:deprecated') % due to some small code xml2struct
xmlfiles = dir( fullfile(filename, '*.xml'));
disp('reading xml files to obtain event info... This might take a while if many events/triggers are present')
for i = 1:numel(xmlfiles)
if strcmpi(xmlfiles(i).name(1:6), 'Events')
fieldname = xmlfiles(i).name(1:end-4);
filename_xml = fullfile(filename, xmlfiles(i).name);
xml.(fieldname) = xml2struct(filename_xml);
end
end
warning('on', 'MATLAB:REGEXP:deprecated')
% construct info needed for FieldTrip Event
eventNames = fieldnames(xml);
begTime = hdr.orig.xml.info.recordTime;
begTime(11) = ' '; begTime(end-5:end) = [];
begSDV = datenum(begTime);
% find out if there are epochs in this dataset
if isfield(hdr.orig.xml,'epoch') && length(hdr.orig.xml.epoch) > 1
Msamp2offset = zeros(2,size(hdr.orig.epochdef,1),1+max(hdr.orig.epochdef(:,2)-hdr.orig.epochdef(:,1)));
Msamp2offset(:) = NaN;
for iEpoch = 1:size(hdr.orig.epochdef,1)
nSampEpoch = hdr.orig.epochdef(iEpoch,2)-hdr.orig.epochdef(iEpoch,1)+1;
Msamp2offset(1,iEpoch,1:nSampEpoch) = hdr.orig.epochdef(iEpoch,1):hdr.orig.epochdef(iEpoch,2); %sample number in samples
Msamp2offset(2,iEpoch,1:nSampEpoch) = hdr.orig.epochdef(iEpoch,3):hdr.orig.epochdef(iEpoch,3)+nSampEpoch-1; %offset in samples
end
end
% construct event according to FieldTrip rules
eventCount = 0;
for iXml = 1:length(eventNames)
for iEvent = 1:length(xml.(eventNames{iXml}))
eventTime = xml.(eventNames{iXml})(iEvent).event.beginTime;
eventTime(11) = ' '; eventTime(end-5:end) = [];
if strcmp('-',eventTime(21))
% event out of range (before recording started): do nothing.
else
eventSDV = datenum(eventTime);
eventOffset = round((eventSDV - begSDV)*24*60*60*hdr.Fs); %in samples, relative to start of recording
if eventOffset < 0
% event out of range (before recording started): do nothing
else
eventCount = eventCount+1;
% calculate eventSample, relative to start of epoch
if isfield(hdr.orig.xml,'epoch') && length(hdr.orig.xml.epoch) > 1
for iEpoch = 1:size(hdr.orig.epochdef,1)
[dum,dum2] = intersect(squeeze(Msamp2offset(2,iEpoch,:)), eventOffset);
if ~isempty(dum2)
EpochNum = iEpoch;
SampIndex = dum2;
end
end
eventSample = Msamp2offset(1,EpochNum,SampIndex);
else
eventSample = eventOffset+1;
end
event(eventCount).type = eventNames{iXml}(8:end);
event(eventCount).sample = eventSample;
event(eventCount).offset = 0;
event(eventCount).duration = str2double(xml.(eventNames{iXml})(iEvent).event.duration)./1000000000*hdr.Fs;
event(eventCount).value = xml.(eventNames{iXml})(iEvent).event.code;
end %if that takes care of non "-" events that are still out of range
end %if that takes care of "-" events, which are out of range
end %iEvent
end
case 'eyelink_asc'
if isempty(hdr)
hdr = ft_read_header(filename);
end
if isfield(hdr.orig, 'input')
% this is inefficient, since it keeps the complete data in memory
% but it does speed up subsequent read operations without the user
% having to care about it
asc = hdr.orig;
else
asc = read_eyelink_asc(filename);
end
timestamp = [asc.input(:).timestamp];
value = [asc.input(:).value];
% note that in this dataformat the first input trigger can be before
% the start of the data acquisition
for i=1:length(timestamp)
event(end+1).type = 'INPUT';
event(end ).sample = (timestamp(i)-hdr.FirstTimeStamp)/hdr.TimeStampPerSample + 1;
event(end ).timestamp = timestamp(i);
event(end ).value = value(i);
event(end ).duration = 1;
event(end ).offset = 0;
end
case 'fcdc_buffer'
% read from a networked buffer for realtime analysis
[host, port] = filetype_check_uri(filename);
% SK: the following was intended to speed up, but does not work
% the buffer server will try to return exact indices, even
% if the intend here is to filter based on a maximum range.
% We could change the definition of GET_EVT to comply
% with filtering, but that might break other existing code.
%if isempty(flt_minnumber) && isempty(flt_maxnumber)
% evtsel = [];
%else
% evtsel = [0 2^32-1];
% if ~isempty(flt_minnumber)
% evtsel(1) = flt_minnumber-1;
% end
% if ~isempty(flt_maxnumber)
% evtsel(2) = flt_maxnumber-1;
% end
%end
if blocking && isempty(flt_minnumber) && isempty(flt_maxnumber)
warning('disabling blocking because no selection was specified');
blocking = false;
end
if blocking
nsamples = -1; % disable waiting for samples
if isempty(flt_minnumber)
nevents = flt_maxnumber;
elseif isempty(flt_maxnumber)
nevents = flt_minnumber;
else
nevents = max(flt_minnumber, flt_maxnumber);
end
available = buffer_wait_dat([nsamples nevents timeout*1000], host, port);
if available.nevents<nevents
error('buffer timed out while waiting for %d events', nevents);
end
end
try
event = buffer('get_evt', [], host, port);
catch
if strfind(lasterr, 'the buffer returned an error')
% this happens if the buffer contains no events
% which in itself is not a problem and should not result in an error
event = [];
else
rethrow(lasterr);
end
end
case 'fcdc_buffer_offline'
[path, file, ext] = fileparts(filename);
if isempty(hdr)
headerfile = fullfile(path, [file '/header']);
hdr = read_buffer_offline_header(headerfile);
end
eventfile = fullfile(path, [file '/events']);
event = read_buffer_offline_events(eventfile, hdr);
case 'fcdc_matbin'
% this is multiplexed data in a *.bin file, accompanied by a matlab file containing the header and event
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file '.mat']);
% read the events from the Matlab file
tmp = load(filename, 'event');
event = tmp.event;
case 'fcdc_fifo'
fifo = filetype_check_uri(filename);
if ~exist(fifo,'file')
warning('the FIFO %s does not exist; attempting to create it', fifo);
system(sprintf('mkfifo -m 0666 %s',fifo));
end
fid = fopen(fifo, 'r');
msg = fread(fid, inf, 'uint8');
fclose(fid);
try
event = mxDeserialize(uint8(msg));
catch
warning(lasterr);
end
case 'fcdc_tcp'
% requires tcp/udp/ip-toolbox
ft_hastoolbox('TCP_UDP_IP', 1);
[host, port] = filetype_check_uri(filename);
if isempty(sock)
sock=pnet('tcpsocket',port);
end
con = pnet(sock, 'tcplisten');
if con~=-1
try
pnet(con,'setreadtimeout',10);
% read packet
msg=pnet(con,'readline'); %,1000,'uint8','network');
if ~isempty(msg)
event = mxDeserialize(uint8(str2num(msg)));
end
% catch
% warning(lasterr);
end
pnet(con,'close');
end
con = [];
case 'fcdc_udp'
% requires tcp/udp/ip-toolbox
ft_hastoolbox('TCP_UDP_IP', 1);
[host, port] = filetype_check_uri(filename);
try
% read from localhost
udp=pnet('udpsocket',port);
% Wait/Read udp packet to read buffer
len=pnet(udp,'readpacket');
if len>0,
% if packet larger then 1 byte then read maximum of 1000 doubles in network byte order
msg=pnet(udp,'read',1000,'uint8');
if ~isempty(msg)
event = mxDeserialize(uint8(msg));
end
end
catch
warning(lasterr);
end
% On break or error close connection
pnet(udp,'close');
case 'fcdc_serial'
% this code is moved to a seperate file
event = read_serial_event(filename);
case 'fcdc_mysql'
% read from a MySQL server listening somewhere else on the network
db_open(filename);
if db_blob
event = db_select_blob('fieldtrip.event', 'msg');
else
event = db_select('fieldtrip.event', {'type', 'value', 'sample', 'offset', 'duration'});
end
case {'itab_raw' 'itab_mhd'}
if isempty(hdr)
hdr = ft_read_header(filename);
end
for i=1:hdr.orig.nsmpl
event(end+1).type = 'trigger';
event(end ).value = hdr.orig.smpl(i).type;
event(end ).sample = hdr.orig.smpl(i).start + 1;
event(end ).duration = hdr.orig.smpl(i).ntptot;
event(end ).offset = -hdr.orig.smpl(i).ntppre; % number of samples prior to the trigger
end
if isempty(event)
warning('no events found in the event table, reading the trigger channel(s)');
trigsel = find(ft_chantype(hdr, 'flag'));
trigger = read_trigger(filename, 'header', hdr, 'dataformat', dataformat, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', trigsel, 'detectflank', detectflank, 'trigshift', trigshift);
event = appendevent(event, trigger);
end
case 'matlab'
% read the events from a normal Matlab file
tmp = load(filename, 'event');
event = tmp.event;
case {'mpi_ds', 'mpi_dap'}
if isempty(hdr)
hdr = ft_read_header(filename);
end
% determine the DAP files that compromise this dataset
if isdir(filename)
ls = dir(filename);
dapfile = {};
for i=1:length(ls)
if ~isempty(regexp(ls(i).name, '.dap$', 'once' ))
dapfile{end+1} = fullfile(filename, ls(i).name);
end
end
dapfile = sort(dapfile);
elseif iscell(filename)
dapfile = filename;
else
dapfile = {filename};
end
% assume that each DAP file is accompanied by a dat file
% read the trigger values from the separate dat files
trg = [];
for i=1:length(dapfile)
datfile = [dapfile{i}(1:(end-4)) '.dat'];
trg = cat(1, trg, textread(datfile, '', 'headerlines', 1));
end
% construct a event structure, one 'trialcode' event per trial
for i=1:length(trg)
event(i).type = 'trialcode'; % string
event(i).sample = (i-1)*hdr.nSamples + 1; % expressed in samples, first sample of file is 1
event(i).value = trg(i); % number or string
event(i).offset = 0; % expressed in samples
event(i).duration = hdr.nSamples; % expressed in samples
end
case {'neuromag_fif' 'neuromag_mne' 'neuromag_mex'}
if strcmp(eventformat, 'neuromag_fif')
% the default is to use the MNE reader for fif files
eventformat = 'neuromag_mne';
end
if strcmp(eventformat, 'neuromag_mex')
% check that the required low-level toolbox is available
ft_hastoolbox('meg-pd', 1);
if isempty(headerformat), headerformat = eventformat; end
if isempty(dataformat), dataformat = eventformat; end
elseif strcmp(eventformat, 'neuromag_mne')
% check that the required low-level toolbox is available
ft_hastoolbox('mne', 1);
if isempty(headerformat), headerformat = eventformat; end
if isempty(dataformat), dataformat = eventformat; end
end
if isempty(hdr)
hdr = ft_read_header(filename, 'headerformat', headerformat);
end
% note below we've had to include some chunks of code that are only
% called if the file is an averaged file, or if the file is continuous.
% These are defined in hdr by read_header for neuromag_mne, but do not
% exist for neuromag_fif, hence we run the code anyway if the fields do
% not exist (this is what happened previously anyway).
if strcmp(eventformat, 'neuromag_mex')
iscontinuous = 1;
isaverage = 0;
isepoched = 0;
elseif strcmp(eventformat, 'neuromag_mne')
iscontinuous = hdr.orig.iscontinuous;
isaverage = hdr.orig.isaverage;
isepoched = hdr.orig.isepoched;
end
if iscontinuous
analogindx = find(strcmp(ft_chantype(hdr), 'analog trigger'));
binaryindx = find(strcmp(ft_chantype(hdr), 'digital trigger'));
if isempty(binaryindx)&&isempty(analogindx)
% included in case of problems with older systems and MNE reader:
% use a predefined set of channel names
binary = {'STI 014', 'STI 015', 'STI 016'};
binaryindx = match_str(hdr.label, binary);
end
if ~isempty(binaryindx)
trigger = read_trigger(filename, 'header', hdr, 'dataformat', dataformat, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', binaryindx, 'detectflank', detectflank, 'trigshift', trigshift, 'fixneuromag', 0);
event = appendevent(event, trigger);
end
if ~isempty(analogindx)
% add the triggers to the event structure based on trigger channels with the name "STI xxx"
% there are some issues with noise on these analog trigger
% channels, on older systems only
% read the trigger channel and do flank detection
trigger = read_trigger(filename, 'header', hdr, 'dataformat', dataformat, 'begsample', flt_minsample, 'endsample', flt_maxsample, 'chanindx', analogindx, 'detectflank', detectflank, 'trigshift', trigshift, 'fixneuromag', 1);
event = appendevent(event, trigger);
end
elseif isaverage
% the length of each average can be variable
nsamples = zeros(1, length(hdr.orig.evoked));
for i=1:length(hdr.orig.evoked)
nsamples(i) = size(hdr.orig.evoked(i).epochs, 2);
end
begsample = cumsum([1 nsamples]);
for i=1:length(hdr.orig.evoked)
event(end+1).type = 'average';
event(end ).sample = begsample(i);
event(end ).value = hdr.orig.evoked(i).comment; % this is a descriptive string
event(end ).offset = hdr.orig.evoked(i).first;
event(end ).duration = hdr.orig.evoked(i).last - hdr.orig.evoked(i).first + 1;
end
elseif isepoched
error('Support for epoched *.fif data is not yet implemented.')
end
case {'neuralynx_ttl' 'neuralynx_bin' 'neuralynx_dma' 'neuralynx_sdma'}
if isempty(hdr)
hdr = ft_read_header(filename);
end
% specify the range to search for triggers, default is the complete file
if ~isempty(flt_minsample)
begsample = flt_minsample;
else
begsample = 1;
end
if ~isempty(flt_maxsample)
endsample = flt_maxsample;
else
endsample = hdr.nSamples*hdr.nTrials;
end
if strcmp(eventformat, 'neuralynx_dma')
% read the Parallel_in channel from the DMA log file
ttl = read_neuralynx_dma(filename, begsample, endsample, 'ttl');
elseif strcmp(eventformat, 'neuralynx_sdma')
% determine the seperate files with the trigger and timestamp information
[p, f, x] = fileparts(filename);
ttlfile = fullfile(filename, [f '.ttl.bin']);
tslfile = fullfile(filename, [f '.tsl.bin']);
tshfile = fullfile(filename, [f '.tsh.bin']);
if ~exist(ttlfile) && ~exist(tslfile) && ~exist(tshfile)
% perhaps it is an old splitted dma dataset?
ttlfile = fullfile(filename, [f '.ttl']);
tslfile = fullfile(filename, [f '.tsl']);
tshfile = fullfile(filename, [f '.tsh']);
end
if ~exist(ttlfile) && ~exist(tslfile) && ~exist(tshfile)
% these files must be present in a splitted dma dataset
error('could not locate the individual ttl, tsl and tsh files');
end
% read the trigger values from the seperate file
ttl = read_neuralynx_bin(ttlfile, begsample, endsample);
elseif strcmp(eventformat, 'neuralynx_ttl')
% determine the optional files with timestamp information
tslfile = [filename(1:(end-4)) '.tsl'];
tshfile = [filename(1:(end-4)) '.tsh'];
% read the triggers from a seperate *.ttl file
ttl = read_neuralynx_ttl(filename, begsample, endsample);
elseif strcmp(eventformat, 'neuralynx_bin')
% determine the optional files with timestamp information
tslfile = [filename(1:(end-8)) '.tsl.bin'];
tshfile = [filename(1:(end-8)) '.tsh.bin'];
% read the triggers from a seperate *.ttl.bin file
ttl = read_neuralynx_bin(filename, begsample, endsample);
end
ttl = int32(ttl / (2^16)); % parallel port provides int32, but word resolution is int16. Shift the bits and typecast to signed integer.
d1 = (diff(ttl)~=0); % determine the flanks, which can be multiple samples long (this looses one sample)
d2 = (diff(d1)==1); % determine the onset of the flanks (this looses one sample)
smp = find(d2)+2; % find the onset of the flanks, add the two samples again
val = ttl(smp+5); % look some samples further for the trigger value, to avoid the flank
clear d1 d2 ttl
ind = find(val~=0); % look for triggers tith a non-zero value, this avoids downgoing flanks going to zero
smp = smp(ind); % discard triggers with a value of zero
val = val(ind); % discard triggers with a value of zero
if ~isempty(smp)
% try reading the timestamps
if strcmp(eventformat, 'neuralynx_dma')
tsl = read_neuralynx_dma(filename, 1, max(smp), 'tsl');
tsl = typecast(tsl(smp), 'uint32');
tsh = read_neuralynx_dma(filename, 1, max(smp), 'tsh');
tsh = typecast(tsh(smp), 'uint32');
ts = timestamp_neuralynx(tsl, tsh);
elseif exist(tslfile) && exist(tshfile)
tsl = read_neuralynx_bin(tslfile, 1, max(smp));
tsl = tsl(smp);
tsh = read_neuralynx_bin(tshfile, 1, max(smp));
tsh = tsh(smp);
ts = timestamp_neuralynx(tsl, tsh);
else
ts = [];
end
% reformat the values as cell array, since the struct function can work with those
type = repmat({'trigger'},size(smp));
value = num2cell(val);
sample = num2cell(smp + begsample - 1);
duration = repmat({[]},size(smp));
offset = repmat({[]},size(smp));
if ~isempty(ts)
timestamp = reshape(num2cell(ts),size(smp));
else
timestamp = repmat({[]},size(smp));
end
% convert it into a structure array, this can be done in one go
event = struct('type', type, 'value', value, 'sample', sample, 'timestamp', timestamp, 'offset', offset, 'duration', duration);
clear type value sample timestamp offset duration
end
if (strcmp(eventformat, 'neuralynx_bin') || strcmp(eventformat, 'neuralynx_ttl')) && isfield(hdr, 'FirstTimeStamp')
% the header was obtained from an external dataset which could be at a different sampling rate
% use the timestamps to redetermine the sample numbers
fprintf('using sample number of the downsampled file to reposition the TTL events\n');
% convert the timestamps into samples, keeping in mind the FirstTimeStamp and TimeStampPerSample
smp = round(double(ts - uint64(hdr.FirstTimeStamp))./hdr.TimeStampPerSample + 1);
for i=1:length(event)
% update the sample number
event(i).sample = smp(i);
end
end
case 'neuralynx_ds'
% read the header of the dataset
if isempty(hdr)
hdr = ft_read_header(filename);
end
% the event file is contained in the dataset directory
if exist(fullfile(filename, 'Events.Nev'))
filename = fullfile(filename, 'Events.Nev');
elseif exist(fullfile(filename, 'Events.nev'))
filename = fullfile(filename, 'Events.nev');
elseif exist(fullfile(filename, 'events.Nev'))
filename = fullfile(filename, 'events.Nev');
elseif exist(fullfile(filename, 'events.nev'))
filename = fullfile(filename, 'events.nev');
end
% read the events, apply filter is applicable
nev = read_neuralynx_nev(filename, 'type', flt_type, 'value', flt_value, 'mintimestamp', flt_mintimestamp, 'maxtimestamp', flt_maxtimestamp, 'minnumber', flt_minnumber, 'maxnumber', flt_maxnumber);
% the following code should only be executed if there are events,
% otherwise there will be an error subtracting an uint64 from an []
if ~isempty(nev)
% now get the values as cell array, since the struct function can work with those
value = {nev.TTLValue};
timestamp = {nev.TimeStamp};
number = {nev.EventNumber};
type = repmat({'trigger'},size(value));
duration = repmat({[]},size(value));
offset = repmat({[]},size(value));
sample = num2cell(round(double(cell2mat(timestamp) - hdr.FirstTimeStamp)/hdr.TimeStampPerSample + 1));
% convert it into a structure array
event = struct('type', type, 'value', value, 'sample', sample, 'timestamp', timestamp, 'duration', duration, 'offset', offset, 'number', number);
end
case 'neuralynx_cds'
% this is a combined Neuralynx dataset with seperate subdirectories for the LFP, MUA and spike channels
dirlist = dir(filename);
%haslfp = any(filetype_check_extension({dirlist.name}, 'lfp'));
%hasmua = any(filetype_check_extension({dirlist.name}, 'mua'));
%hasspike = any(filetype_check_extension({dirlist.name}, 'spike'));
%hastsl = any(filetype_check_extension({dirlist.name}, 'tsl')); % seperate file with original TimeStampLow
%hastsh = any(filetype_check_extension({dirlist.name}, 'tsh')); % seperate file with original TimeStampHi
hasttl = any(filetype_check_extension({dirlist.name}, 'ttl')); % seperate file with original Parallel_in
hasnev = any(filetype_check_extension({dirlist.name}, 'nev')); % original Events.Nev file
hasmat = 0;
if hasttl
eventfile = fullfile(filename, dirlist(find(filetype_check_extension({dirlist.name}, 'ttl'))).name);
% read the header from the combined dataset
if isempty(hdr)
hdr = ft_read_header(filename);
end
% read the events from the *.ttl file
event = ft_read_event(eventfile);
% convert the sample numbers from the dma or ttl file to the downsampled dataset
% assume that the *.ttl file is sampled at 32556Hz and is aligned with the rest of the data
for i=1:length(event)
event(i).sample = round((event(i).sample-1) * hdr.Fs/32556 + 1);
end
% elseif hasnev
% FIXME, do something here
% elseif hasmat
% FIXME, do something here
else
error('no event file found');
end
% The sample number is missingin the code below, since it is not available
% without looking in the continuously sampled data files. Therefore
% sorting the events (later in this function) based on the sample number
% fails and no events can be returned.
%
% case 'neuralynx_nev'
% [nev] = read_neuralynx_nev(filename);
% % select only the events with a TTL value
% ttl = [nev.TTLValue];
% sel = find(ttl~=0);
% % now get the values as cell array, since teh struct function can work with those
% value = {nev(sel).TTLValue};
% timestamp = {nev(sel).TimeStamp};
% event = struct('value', value, 'timestamp', timestamp);
% for i=1:length(event)
% % assign the other fixed elements
% event(i).type = 'trigger';
% event(i).offset = [];
% event(i).duration = [];
% event(i).sample = [];
% end
case {'neuroprax_eeg', 'neuroprax_mrk'}
tmp = np_readmarker (filename, 0, inf, 'samples');
event = [];
for i = 1:numel(tmp.marker)
if isempty(tmp.marker{i})
break;
end
event = [event struct('type', tmp.markernames(i),...
'sample', num2cell(tmp.marker{i}),...
'value', {tmp.markertyp(i)})];
end
case 'nexstim_nxe'
event = read_nexstim_event(filename);
case 'nimh_cortex'
if isempty(hdr)
hdr = ft_read_header(filename);
end
cortex = hdr.orig.trial;
for i=1:length(cortex)
% add one 'trial' event for every trial and add the trigger events
event(end+1).type = 'trial';
event(end ).sample = nan;
event(end ).duration = nan;
event(end ).offset = nan;
event(end ).value = i; % use the trial number as value
for j=1:length(cortex(i).event)
event(end+1).type = 'trigger';
event(end ).sample = nan;
event(end ).duration = nan;
event(end ).offset = nan;
event(end ).value = cortex(i).event(j);
end
end
case 'ns_avg'
if isempty(hdr)
hdr = ft_read_header(filename);
end
event(end+1).type = 'average';
event(end ).sample = 1;
event(end ).duration = hdr.nSamples;
event(end ).offset = -hdr.nSamplesPre;
event(end ).value = [];
case {'ns_cnt', 'ns_cnt16', 'ns_cnt32'}
% read the header, the original header includes the event table
if isempty(hdr)
hdr = ft_read_header(filename, 'headerformat', eventformat);
end
% translate the event table into known FieldTrip event types
for i=1:numel(hdr.orig.event)
event(end+1).type = 'trigger';
event(end ).sample = hdr.orig.event(i).offset + 1; % +1 was in EEGLAB pop_loadcnt
event(end ).value = hdr.orig.event(i).stimtype;
event(end ).offset = 0;
event(end ).duration = 0;
% the code above assumes that all events are stimulus triggers
% howevere, there are also interesting events possible, such as responses
if hdr.orig.event(i).stimtype~=0
event(end+1).type = 'stimtype';
event(end ).sample = hdr.orig.event(i).offset + 1; % +1 was in EEGLAB pop_loadcnt
event(end ).value = hdr.orig.event(i).stimtype;
event(end ).offset = 0;
event(end ).duration = 0;
elseif hdr.orig.event(i).keypad_accept~=0
event(end+1).type = 'keypad_accept';
event(end ).sample = hdr.orig.event(i).offset + 1; % +1 was in EEGLAB pop_loadcnt
event(end ).value = hdr.orig.event(i).keypad_accept;
event(end ).offset = 0;
event(end ).duration = 0;
end
end
case 'ns_eeg'
if isempty(hdr)
hdr = ft_read_header(filename);
end
for i=1:hdr.nTrials
% the *.eeg file has a fixed trigger value for each trial
% furthermore each trial has additional fields like accept, correct, response and rt
tmp = read_ns_eeg(filename, i);
% create an event with the trigger value
event(end+1).type = 'trial';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).value = tmp.sweep.type; % trigger value
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
% create an event with the boolean accept/reject code
event(end+1).type = 'accept';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).value = tmp.sweep.accept; % boolean value indicating accept/reject
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
% create an event with the boolean accept/reject code
event(end+1).type = 'correct';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).value = tmp.sweep.correct; % boolean value
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
% create an event with the boolean accept/reject code
event(end+1).type = 'response';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).value = tmp.sweep.response; % probably a boolean value
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
% create an event with the boolean accept/reject code
event(end+1).type = 'rt';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).value = tmp.sweep.rt; % time in seconds
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
end
case 'plexon_nex'
event = read_nex_event(filename);
case {'yokogawa_ave', 'yokogawa_con', 'yokogawa_raw'}
% check that the required low-level toolbox is available
ft_hastoolbox('yokogawa', 1);
% the user should be able to specify the analog threshold
% the user should be able to specify the trigger channels
% the user should be able to specify the flank, but the code falls back to 'auto' as default
if isempty(detectflank)
detectflank = 'auto';
end
event = read_yokogawa_event(filename, 'detectflank', detectflank, 'trigindx', trigindx, 'threshold', threshold);
case 'nmc_archive_k'
event = read_nmc_archive_k_event(filename);
case 'neuroshare' % NOTE: still under development
% check that the required neuroshare toolbox is available
ft_hastoolbox('neuroshare', 1);
tmp = read_neuroshare(filename, 'readevent', 'yes');
for i=1:length(tmp.hdr.eventinfo)
event(i).type = tmp.hdr.eventinfo(i).EventType;
event(i).value = tmp.event.data(i);
event(i).timestamp = tmp.event.timestamp(i);
event(i).sample = tmp.event.sample(i);
end
case 'dataq_wdq'
if isempty(hdr)
hdr = ft_read_header(filename, 'headerformat', 'dataq_wdq');
end
trigger = read_wdq_data(filename, hdr.orig, 'lowbits');
[ix, iy] = find(trigger>1); %it seems as if the value of 1 is meaningless
for i=1:numel(ix)
event(i).type = num2str(ix(i));
event(i).value = trigger(ix(i),iy(i));
event(i).sample = iy(i);
end
otherwise
error('unsupported event format (%s)', eventformat);
end
if ~isempty(hdr) && hdr.nTrials>1 && (isempty(event) || ~any(strcmp({event.type}, 'trial')))
% the data suggests multiple trials and trial events have not yet been defined
% make an event for each trial according to the file header
for i=1:hdr.nTrials
event(end+1).type = 'trial';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
event(end ).value = [];
end
end
if ~isempty(event)
% make sure that all required elements are present
if ~isfield(event, 'type'), error('type field not defined for each event'); end
if ~isfield(event, 'sample'), error('sample field not defined for each event'); end
if ~isfield(event, 'value'), for i=1:length(event), event(i).value = []; end; end
if ~isfield(event, 'offset'), for i=1:length(event), event(i).offset = []; end; end
if ~isfield(event, 'duration'), for i=1:length(event), event(i).duration = []; end; end
end
% make sure that all numeric values are double
if ~isempty(event)
for i=1:length(event)
if isnumeric(event(i).value)
event(i).value = double(event(i).value);
end
event(i).sample = double(event(i).sample);
event(i).offset = double(event(i).offset);
event(i).duration = double(event(i).duration);
end
end
if ~isempty(event)
% sort the events on the sample on which they occur
% this has the side effect that events without a sample number are discarded
[dum, indx] = sort([event.sample]);
event = event(indx);
% else
% warning('no events found in %s', filename);
end
% apply the optional filters
event = ft_filter_event(event, varargin{:});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% poll implementation for backwards compatibility with ft buffer version 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function available = buffer_wait_dat(selection, host, port)
% selection(1) nsamples
% selection(2) nevents
% selection(3) timeout in msec
% check if backwards compatibilty mode is required
try
% the WAIT_DAT request waits until it has more samples or events
selection(1) = selection(1)-1;
selection(2) = selection(2)-1;
% the following should work for buffer version 2
available = buffer('WAIT_DAT', selection, host, port);
catch
% the error means that the buffer is version 1, which does not support the WAIT_DAT request
% the wait_dat can be implemented by polling the buffer
nsamples = selection(1);
nevents = selection(2);
timeout = selection(3)/1000; % in seconds
stopwatch = tic;
% results are retrieved in the order written to the buffer
orig = buffer('GET_HDR', [], host, port);
if timeout > 0
% wait maximal timeout seconds until more than nsamples samples or nevents events have been received
while toc(stopwatch)<timeout
if nsamples == -1 && nevents == -1, break, end
if nsamples ~= -1 && orig.nsamples >= nsamples, break, end
if nevents ~= -1 && orig.nevents >= nevents, break, end
orig = buffer('GET_HDR', [], host, port);
pause(0.001);
end
else
% no reason to wait
end
available.nsamples = orig.nsamples;
available.nevents = orig.nevents;
end % try buffer v1 or v2
|
github
|
philippboehmsturm/antx-master
|
ft_read_header.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/ft_read_header.m
| 61,504 |
utf_8
|
d1cf4542f365c1add40b70a2846ce4ec
|
function [hdr] = ft_read_header(filename, varargin)
% FT_READ_HEADER reads header information from a variety of EEG, MEG and LFP
% files and represents the header information in a common data-independent
% format. The supported formats are listed below.
%
% Use as
% hdr = ft_read_header(filename, ...)
%
% Additional options should be specified in key-value pairs and can be
% 'headerformat' string
% 'fallback' can be empty or 'biosig' (default = [])
%
% This returns a header structure with the following elements
% hdr.Fs sampling frequency
% hdr.nChans number of channels
% hdr.nSamples number of samples per trial
% hdr.nSamplesPre number of pre-trigger samples in each trial
% hdr.nTrials number of trials
% hdr.label cell-array with labels of each channel
% hdr.FirstTimeStamp integer, only available for some subformats (mainly animal electrophisiology systems)
% hdr.TimeStampPerSample integer, only available for some subformats (mainly animal electrophisiology systems)
%
% For continuous data, nSamplesPre=0 and nTrials=1.
%
% Depending on the file format, additional header information can be
% returned in the hdr.orig subfield.
%
% The following MEG dataformats are supported
% CTF - VSM MedTech (*.ds, *.res4, *.meg4)
% Neuromag - Elekta (*.fif)
% BTi - 4D Neuroimaging (*.m4d, *.pdf, *.xyz)
% Yokogawa (*.ave, *.con, *.raw)
%
% The following EEG dataformats are supported
% ANT - Advanced Neuro Technology, EEProbe (*.avr, *.eeg, *.cnt)
% Biosemi (*.bdf)
% CED - Cambridge Electronic Design (*. smr)
% Electrical Geodesics, Inc. (*.egis, *.ave, *.gave, *.ses, *.raw, *.sbin, MFF fileformat)
% Megis/BESA (*.avr, *.swf)
% NeuroScan (*.eeg, *.cnt, *.avg)
% Nexstim (*.nxe)
% BrainVision (*.eeg, *.seg, *.dat, *.vhdr, *.vmrk)
%
% The following spike and LFP dataformats are supported (with some limitations)
% Plextor (*.nex, *.plx, *.ddt)
% Neuralynx (*.ncs, *.nse, *.nts, *.nev, DMA log files)
% CED - Cambridge Electronic Design (*.smr)
% MPI - Max Planck Institute (*.dap)
%
% See also FT_READ_DATA, FT_READ_EVENT, FT_WRITE_DATA, FT_WRITE_EVENT
% Copyright (C) 2003-2010 Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_read_header.m 3461 2011-05-06 21:35:40Z ingnie $
% TODO channel renaming should be made a general option (see bham_bdf)
persistent cacheheader % for caching
persistent db_blob % for fcdc_mysql
persistent fakechannelwarning % this warning should be given only once
if isempty(db_blob)
db_blob = 0;
end
% test whether the file or directory exists
if ~exist(filename, 'file') && ~strcmp(ft_filetype(filename), 'ctf_shm') && ~strcmp(ft_filetype(filename), 'fcdc_mysql') && ~strcmp(ft_filetype(filename), 'fcdc_buffer')
error('FILEIO:InvalidFileName', 'file or directory ''%s'' does not exist', filename);
end
% get the options
headerformat = keyval('headerformat', varargin);
fallback = keyval('fallback', varargin);
cache = keyval('cache', varargin);
retry = keyval('retry', varargin); if isempty(retry), retry = false; end % for fcdc_buffer
% SK: I added this as a temporary fix to prevent 1000000 voxel names
% to be checked for uniqueness. fMRI users will probably never use
% channel names for anything.
checkUniqueLabels = true;
% determine the filetype
if isempty(headerformat)
headerformat = ft_filetype(filename);
end
if isempty(cache),
if strcmp(headerformat, 'bci2000_dat') || strcmp(headerformat, 'eyelink_asc')
cache = true;
else
cache = false;
end
end
% start with an empty header
hdr = [];
% ensure that the headerfile and datafile are defined, which are sometimes different than the name of the dataset
[filename, headerfile, datafile] = dataset2files(filename, headerformat);
if ~strcmp(filename, headerfile) && ~ft_filetype(filename, 'ctf_ds') && ~ft_filetype(filename, 'fcdc_buffer_offline')
filename = headerfile; % this function will read the header
headerformat = ft_filetype(filename); % update the filetype
end
% implement the caching in a data-format independent way
if cache && exist(headerfile, 'file') && ~isempty(cacheheader)
% try to get the header from cache
details = dir(headerfile);
if isequal(details, cacheheader.details)
% the header file has not been updated, fetch it from the cache
% fprintf('got header from cache\n');
hdr = rmfield(cacheheader, 'details');
switch ft_filetype(datafile)
case {'ctf_ds' 'ctf_meg4' 'ctf_old' 'read_ctf_res4'}
% for realtime analysis EOF chasing the res4 does not correctly
% estimate the number of samples, so we compute it on the fly
sz = 0;
files = dir([filename '/*.*meg4']);
for j=1:numel(files)
sz = sz + files(j).bytes;
end
hdr.nTrials = floor((sz - 8) / (hdr.nChans*4) / hdr.nSamples);
end
return;
end % if the details correspond
end % if cache
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the data with the low-level reading function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
switch headerformat
case '4d'
orig = read_4d_hdr(datafile);
hdr.Fs = orig.header_data.SampleFrequency;
hdr.nChans = orig.header_data.TotalChannels;
hdr.nSamples = orig.header_data.SlicesPerEpoch;
hdr.nSamplesPre = round(orig.header_data.FirstLatency*orig.header_data.SampleFrequency);
hdr.nTrials = orig.header_data.TotalEpochs;
%hdr.label = {orig.channel_data(:).chan_label}';
hdr.label = orig.Channel;
hdr.grad = bti2grad(orig);
% remember original header details
hdr.orig = orig;
case {'4d_pdf', '4d_m4d', '4d_xyz'}
orig = read_bti_m4d(filename);
hdr.Fs = orig.SampleFrequency;
hdr.nChans = orig.TotalChannels;
hdr.nSamples = orig.SlicesPerEpoch;
hdr.nSamplesPre = round(orig.FirstLatency*orig.SampleFrequency);
hdr.nTrials = orig.TotalEpochs;
hdr.label = orig.ChannelOrder(:);
hdr.grad = bti2grad(orig);
% remember original header details
hdr.orig = orig;
case 'bci2000_dat'
% this requires the load_bcidat mex file to be present on the path
ft_hastoolbox('BCI2000', 1);
% this is inefficient, since it reads the complete data
[signal, states, parameters, total_samples] = load_bcidat(filename);
% convert into a FieldTrip-like header
hdr = [];
hdr.nChans = size(signal,2);
hdr.nSamples = total_samples;
hdr.nSamplesPre = 0; % it is continuous
hdr.nTrials = 1; % it is continuous
hdr.Fs = parameters.SamplingRate.NumericValue;
% there are some differences in the fields that are present in the
% *.dat files, probably due to different BCI2000 versions
if isfield(parameters, 'ChannelNames') && isfield(parameters.ChannelNames, 'Value') && ~isempty(parameters.ChannelNames.Value)
hdr.label = parameters.ChannelNames.Value;
elseif isfield(parameters, 'ChannelNames') && isfield(parameters.ChannelNames, 'Values') && ~isempty(parameters.ChannelNames.Values)
hdr.label = parameters.ChannelNames.Values;
else
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
end
% remember the original header details
hdr.orig.parameters = parameters;
% also remember the complete data upon request
if cache
hdr.orig.signal = signal;
hdr.orig.states = states;
hdr.orig.total_samples = total_samples;
end
case 'besa_avr'
orig = read_besa_avr(filename);
hdr.Fs = 1000/orig.di;
hdr.nChans = size(orig.data,1);
hdr.nSamples = size(orig.data,2);
hdr.nSamplesPre = -(hdr.Fs * orig.tsb/1000); % convert from ms to samples
hdr.nTrials = 1;
if isfield(orig, 'label') && iscell(orig.label)
hdr.label = orig.label;
elseif isfield(orig, 'label') && ischar(orig.label)
hdr.label = tokenize(orig.label, ' ');
else
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
end
case 'besa_swf'
orig = read_besa_swf(filename);
hdr.Fs = 1000/orig.di;
hdr.nChans = size(orig.data,1);
hdr.nSamples = size(orig.data,2);
hdr.nSamplesPre = -(hdr.Fs * orig.tsb/1000); % convert from ms to samples
hdr.nTrials = 1;
hdr.label = orig.label;
case {'biosig' 'gdf'}
% use the biosig toolbox if available
ft_hastoolbox('BIOSIG', 1);
hdr = read_biosig_header(filename);
% gdf always represents continuous data
hdr.nSamples = hdr.nSamples*hdr.nTrials;
hdr.nTrials = 1;
hdr.nSamplesPre = 0;
case {'biosemi_bdf', 'bham_bdf'}
hdr = read_biosemi_bdf(filename);
if any(diff(hdr.orig.SampleRate))
error('channels with different sampling rate not supported');
end
if ft_filetype(filename, 'bham_bdf')
% TODO channel renaming should be made a general option
% this is for the Biosemi system used at the University of Birmingham
labelold = { 'A1' 'A2' 'A3' 'A4' 'A5' 'A6' 'A7' 'A8' 'A9' 'A10' 'A11' 'A12' 'A13' 'A14' 'A15' 'A16' 'A17' 'A18' 'A19' 'A20' 'A21' 'A22' 'A23' 'A24' 'A25' 'A26' 'A27' 'A28' 'A29' 'A30' 'A31' 'A32' 'B1' 'B2' 'B3' 'B4' 'B5' 'B6' 'B7' 'B8' 'B9' 'B10' 'B11' 'B12' 'B13' 'B14' 'B15' 'B16' 'B17' 'B18' 'B19' 'B20' 'B21' 'B22' 'B23' 'B24' 'B25' 'B26' 'B27' 'B28' 'B29' 'B30' 'B31' 'B32' 'C1' 'C2' 'C3' 'C4' 'C5' 'C6' 'C7' 'C8' 'C9' 'C10' 'C11' 'C12' 'C13' 'C14' 'C15' 'C16' 'C17' 'C18' 'C19' 'C20' 'C21' 'C22' 'C23' 'C24' 'C25' 'C26' 'C27' 'C28' 'C29' 'C30' 'C31' 'C32' 'D1' 'D2' 'D3' 'D4' 'D5' 'D6' 'D7' 'D8' 'D9' 'D10' 'D11' 'D12' 'D13' 'D14' 'D15' 'D16' 'D17' 'D18' 'D19' 'D20' 'D21' 'D22' 'D23' 'D24' 'D25' 'D26' 'D27' 'D28' 'D29' 'D30' 'D31' 'D32' 'EXG1' 'EXG2' 'EXG3' 'EXG4' 'EXG5' 'EXG6' 'EXG7' 'EXG8' 'Status'};
labelnew = { 'P9' 'PPO9h' 'PO7' 'PPO5h' 'PPO3h' 'PO5h' 'POO9h' 'PO9' 'I1' 'OI1h' 'O1' 'POO1' 'PO3h' 'PPO1h' 'PPO2h' 'POz' 'Oz' 'Iz' 'I2' 'OI2h' 'O2' 'POO2' 'PO4h' 'PPO4h' 'PO6h' 'POO10h' 'PO10' 'PO8' 'PPO6h' 'PPO10h' 'P10' 'P8' 'TPP9h' 'TP7' 'TTP7h' 'CP5' 'TPP7h' 'P7' 'P5' 'CPP5h' 'CCP5h' 'CP3' 'P3' 'CPP3h' 'CCP3h' 'CP1' 'P1' 'Pz' 'CPP1h' 'CPz' 'CPP2h' 'P2' 'CPP4h' 'CP2' 'CCP4h' 'CP4' 'P4' 'P6' 'CPP6h' 'CCP6h' 'CP6' 'TPP8h' 'TP8' 'TPP10h' 'T7' 'FTT7h' 'FT7' 'FC5' 'FCC5h' 'C5' 'C3' 'FCC3h' 'FC3' 'FC1' 'C1' 'CCP1h' 'Cz' 'FCC1h' 'FCz' 'FFC1h' 'Fz' 'FFC2h' 'FC2' 'FCC2h' 'CCP2h' 'C2' 'C4' 'FCC4h' 'FC4' 'FC6' 'FCC6h' 'C6' 'TTP8h' 'T8' 'FTT8h' 'FT8' 'FT9' 'FFT9h' 'F7' 'FFT7h' 'FFC5h' 'F5' 'AFF7h' 'AF7' 'AF5h' 'AFF5h' 'F3' 'FFC3h' 'F1' 'AF3h' 'Fp1' 'Fpz' 'Fp2' 'AFz' 'AF4h' 'F2' 'FFC4h' 'F4' 'AFF6h' 'AF6h' 'AF8' 'AFF8h' 'F6' 'FFC6h' 'FFT8h' 'F8' 'FFT10h' 'FT10'};
% rename the channel labels
for i=1:length(labelnew)
chan = strcmp(labelold(i), hdr.label);
hdr.label(chan) = labelnew(chan);
end
end
case {'biosemi_old'}
% this uses the openbdf and readbdf functions that I copied from the EEGLAB toolbox
orig = openbdf(filename);
if any(orig.Head.SampleRate~=orig.Head.SampleRate(1))
error('channels with different sampling rate not supported');
end
hdr.Fs = orig.Head.SampleRate(1);
hdr.nChans = orig.Head.NS;
hdr.label = cellstr(orig.Head.Label);
% it is continuous data, therefore append all records in one trial
hdr.nSamples = orig.Head.NRec * orig.Head.Dur * orig.Head.SampleRate(1);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.orig = orig;
% close the file between seperate read operations
fclose(orig.Head.FILE.FID);
case {'brainvision_vhdr', 'brainvision_seg', 'brainvision_eeg', 'brainvision_dat'}
orig = read_brainvision_vhdr(filename);
hdr.Fs = orig.Fs;
hdr.nChans = orig.NumberOfChannels;
hdr.label = orig.label;
hdr.nSamples = orig.nSamples;
hdr.nSamplesPre = orig.nSamplesPre;
hdr.nTrials = orig.nTrials;
hdr.orig = orig;
case 'ced_son'
% check that the required low-level toolbox is available
ft_hastoolbox('neuroshare', 1);
% use the reading function supplied by Gijs van Elswijk
orig = read_ced_son(filename,'readevents','no','readdata','no');
orig = orig.header;
% In Spike2, channels can have different sampling rates, units, length
% etc. etc. Here, channels need to have to same properties.
if length(unique([orig.samplerate]))>1,
error('channels with different sampling rates are not supported');
else
hdr.Fs = orig(1).samplerate;
end;
hdr.nChans = length(orig);
% nsamples of the channel with least samples
hdr.nSamples = min([orig.nsamples]);
hdr.nSamplesPre = 0;
% only continuous data supported
if sum(strcmpi({orig.mode},'continuous')) < hdr.nChans,
error('not all channels contain continuous data');
else
hdr.nTrials = 1;
end;
hdr.label = {orig.label};
case 'combined_ds'
hdr = read_combined_ds(filename);
case {'ctf_ds', 'ctf_meg4', 'ctf_res4'}
% check the presence of the required low-level toolbox
ft_hastoolbox('ctf', 1);
orig = readCTFds(filename);
hdr.Fs = orig.res4.sample_rate;
hdr.nChans = orig.res4.no_channels;
hdr.nSamples = orig.res4.no_samples;
hdr.nSamplesPre = orig.res4.preTrigPts;
hdr.nTrials = orig.res4.no_trials;
hdr.label = cellstr(orig.res4.chanNames);
for i=1:numel(hdr.label)
% remove the site-specific numbers from each channel name, e.g. 'MZC01-1706' becomes 'MZC01'
hdr.label{i} = strtok(hdr.label{i}, '-');
end
% read the balance coefficients, these are used to compute the synthetic gradients
coeftype = cellstr(char(orig.res4.scrr(:).coefType));
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'NONE', 'T');
orig.BalanceCoefs.none.alphaMEG = alphaMEG;
orig.BalanceCoefs.none.MEGlist = MEGlist;
orig.BalanceCoefs.none.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for NONE');
end
if any(~cellfun(@isempty,strfind(coeftype, 'G1BR')))
% try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'G1BR', 'T');
orig.BalanceCoefs.G1BR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G1BR.MEGlist = MEGlist;
orig.BalanceCoefs.G1BR.Refindex = Refindex;
% catch
% warning('cannot read balancing coefficients for G1BR');
% end
end
if any(~cellfun(@isempty,strfind(coeftype, 'G2BR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'G2BR', 'T');
orig.BalanceCoefs.G2BR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G2BR.MEGlist = MEGlist;
orig.BalanceCoefs.G2BR.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for G2BR');
end
end
if any(~cellfun(@isempty,strfind(coeftype, 'G3BR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'G3BR', 'T');
orig.BalanceCoefs.G3BR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G3BR.MEGlist = MEGlist;
orig.BalanceCoefs.G3BR.Refindex = Refindex;
catch
warning('cannot read balancing coefficients for G3BR');
end
end
if any(~cellfun(@isempty,strfind(coeftype, 'G1AR')))
try
[alphaMEG,MEGlist,Refindex] = getCTFBalanceCoefs(orig,'G3AR', 'T');
orig.BalanceCoefs.G3AR.alphaMEG = alphaMEG;
orig.BalanceCoefs.G3AR.MEGlist = MEGlist;
orig.BalanceCoefs.G3AR.Refindex = Refindex;
catch
% May not want a warning here if these are not commonly used.
% Already get a (fprintf) warning from getCTFBalanceCoefs.m
% warning('cannot read balancing coefficients for G3AR');
end
end
% add a gradiometer structure for forward and inverse modelling
try
hdr.grad = ctf2grad(orig);
catch
% this fails if the res4 file is not correctly closed, e.g. during realtime processing
tmp = lasterror;
disp(tmp.message);
warning('could not construct gradiometer definition from the header');
end
% for realtime analysis EOF chasing the res4 does not correctly
% estimate the number of samples, so we compute it on the fly from the
% meg4 file sizes.
sz = 0;
files = dir([filename '/*.*meg4']);
for j=1:numel(files)
sz = sz + files(j).bytes;
end
hdr.nTrials = floor((sz - 8) / (hdr.nChans*4) / hdr.nSamples);
% add the original header details
hdr.orig = orig;
case {'ctf_old', 'read_ctf_res4'}
% read it using the open-source matlab code that originates from CTF and that was modified by the FCDC
orig = read_ctf_res4(headerfile);
hdr.Fs = orig.Fs;
hdr.nChans = orig.nChans;
hdr.nSamples = orig.nSamples;
hdr.nSamplesPre = orig.nSamplesPre;
hdr.nTrials = orig.nTrials;
hdr.label = orig.label;
% add a gradiometer structure for forward and inverse modelling
try
hdr.grad = ctf2grad(orig);
catch
% this fails if the res4 file is not correctly closed, e.g. during realtime processing
tmp = lasterror;
disp(tmp.message);
warning('could not construct gradiometer definition from the header');
end
% add the original header details
hdr.orig = orig;
case 'ctf_read_res4'
% check that the required low-level toolbos ix available
ft_hastoolbox('eegsf', 1);
% read it using the CTF importer from the NIH and Daren Weber
orig = ctf_read_res4(filename, 0);
% convert the header into a structure that FieldTrip understands
hdr = [];
hdr.Fs = orig.setup.sample_rate;
hdr.nChans = length(orig.sensor.info);
hdr.nSamples = orig.setup.number_samples;
hdr.nSamplesPre = orig.setup.pretrigger_samples;
hdr.nTrials = orig.setup.number_trials;
for i=1:length(orig.sensor.info)
hdr.label{i} = orig.sensor.info(i).label;
end
hdr.label = hdr.label(:);
% add a gradiometer structure for forward and inverse modelling
try
hdr.grad = ctf2grad(orig);
catch
% this fails if the res4 file is not correctly closed, e.g. during realtime processing
tmp = lasterror;
disp(tmp.message);
warning('could not construct gradiometer definition from the header');
end
% add the original header details
hdr.orig = orig;
case 'ctf_shm'
% contact Robert Oostenveld if you are interested in real-time acquisition on the CTF system
% read the header information from shared memory
hdr = read_shm_header(filename);
case 'dataq_wdq'
orig = read_wdq_header(filename);
hdr = [];
hdr.Fs = orig.fsample;
hdr.nChans = orig.nchan;
hdr.nSamples = orig.nbytesdat/(2*hdr.nChans);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
for k = 1:hdr.nChans
if isfield(orig.chanhdr(k), 'annot') && ~isempty(orig.chanhdr(k).annot)
hdr.label{k,1} = orig.chanhdr(k).annot;
else
hdr.label{k,1} = orig.chanhdr(k).label;
end
end
% add the original header details
hdr.orig = orig;
case 'edf'
% this reader is largely similar to the bdf reader
hdr = read_edf(filename);
case 'eep_avr'
% check that the required low-level toolbox is available
ft_hastoolbox('eeprobe', 1);
% read the whole average and keep only header info (it is a bit silly, but the easiest to do here)
hdr = read_eep_avr(filename);
hdr.Fs = hdr.rate;
hdr.nChans = size(hdr.data,1);
hdr.nSamples = size(hdr.data,2);
hdr.nSamplesPre = hdr.xmin*hdr.rate/1000;
hdr.nTrials = 1; % it can always be interpreted as continuous data
% remove the data and variance if present
hdr = rmfield(hdr, 'data');
try, hdr = rmfield(hdr, 'variance'); end
case 'eeglab_set'
hdr = read_eeglabheader(filename);
case 'eyelink_asc'
asc = read_eyelink_asc(filename);
hdr.nChans = size(asc.dat,1);
hdr.nSamples = size(asc.dat,2);
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.Fs = 1000/median(diff(asc.dat(1,:))); % these timestamps are in miliseconds
hdr.FirstTimeStamp = asc.dat(1,1);
hdr.TimeStampPerSample = median(diff(asc.dat(1,:)));
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
% remember the original header details
hdr.orig.header = asc.header;
% remember all header and data details upon request
if cache
hdr.orig = asc;
end
case 'spmeeg_mat'
hdr = read_spmeeg_header(filename);
case 'ced_spike6mat'
hdr = read_spike6mat_header(filename);
case 'eep_cnt'
% check that the required low-level toolbox is available
ft_hastoolbox('eeprobe', 1);
% read the first sample from the continous data, which will also return the header
hdr = read_eep_cnt(filename, 1, 1);
hdr.Fs = hdr.rate;
hdr.nSamples = hdr.nsample;
hdr.nSamplesPre = 0;
hdr.nChans = hdr.nchan;
hdr.nTrials = 1; % it can always be interpreted as continuous data
case 'egi_egia'
[fhdr,chdr,ename,cnames,fcom,ftext] = read_egis_header(filename);
[p, f, x] = fileparts(filename);
if any(chdr(:,4)-chdr(1,4))
error('Sample rate not the same for all cells.');
end;
hdr.Fs = chdr(1,4); %making assumption that sample rate is same for all cells
hdr.nChans = fhdr(19);
for i = 1:hdr.nChans
% this should be consistent with ft_senslabel
hdr.label{i,1} = ['E' num2str(i)];
end;
%since NetStation does not properly set the fhdr(11) field, use the number of subjects from the chdr instead
hdr.nTrials = chdr(1,2)*fhdr(18); %number of trials is numSubjects * numCells
hdr.nSamplesPre = ceil(fhdr(14)/(1000/hdr.Fs));
if any(chdr(:,3)-chdr(1,3))
error('Number of samples not the same for all cells.');
end;
hdr.nSamples = chdr(1,3); %making assumption that number of samples is same for all cells
% remember the original header details
hdr.orig.fhdr = fhdr;
hdr.orig.chdr = chdr;
hdr.orig.ename = ename;
hdr.orig.cnames = cnames;
hdr.orig.fcom = fcom;
hdr.orig.ftext = ftext;
case 'egi_egis'
[fhdr,chdr,ename,cnames,fcom,ftext] = read_egis_header(filename);
[p, f, x] = fileparts(filename);
if any(chdr(:,4)-chdr(1,4))
error('Sample rate not the same for all cells.');
end;
hdr.Fs = chdr(1,4); %making assumption that sample rate is same for all cells
hdr.nChans = fhdr(19);
for i = 1:hdr.nChans
% this should be consistent with ft_senslabel
hdr.label{i,1} = ['E' num2str(i)];
end;
hdr.nTrials = sum(chdr(:,2));
hdr.nSamplesPre = ceil(fhdr(14)/(1000/hdr.Fs));
% assuming that a utility was used to insert the correct baseline
% duration into the header since it is normally absent. This slot is
% actually allocated to the age of the subject, although NetStation
% does not use it when generating an EGIS session file.
if any(chdr(:,3)-chdr(1,3))
error('Number of samples not the same for all cells.');
end;
hdr.nSamples = chdr(1,3); %making assumption that number of samples is same for all cells
% remember the original header details
hdr.orig.fhdr = fhdr;
hdr.orig.chdr = chdr;
hdr.orig.ename = ename;
hdr.orig.cnames = cnames;
hdr.orig.fcom = fcom;
hdr.orig.ftext = ftext;
case 'egi_sbin'
% segmented type only
[header_array, CateNames, CatLengths, preBaseline] = read_sbin_header(filename);
[p, f, x] = fileparts(filename);
hdr.Fs = header_array(9);
hdr.nChans = header_array(10);
for i = 1:hdr.nChans
% this should be consistent with ft_senslabel
hdr.label{i,1} = ['E' num2str(i)];
end;
hdr.nTrials = header_array(15);
hdr.nSamplesPre = preBaseline;
hdr.nSamples = header_array(16); % making assumption that number of samples is same for all cells
% remember the original header details
hdr.orig.header_array = header_array;
hdr.orig.CateNames = CateNames;
hdr.orig.CatLengths = CatLengths;
case 'egi_mff'
orig = [];
% get header info from .bin files
binfiles = dir(fullfile(filename, 'signal*.bin'));
if isempty(binfiles)
error('could not find any signal.bin in mff directory')
end
for iSig = 1:length(binfiles)
signalname = binfiles(iSig).name;
fullsignalname = fullfile(filename, signalname);
orig.signal(iSig).blockhdr = read_mff_bin(fullsignalname);
end
% get hdr info from xml files
ft_hastoolbox('XML4MAT', 1, 0);
warning('off', 'MATLAB:REGEXP:deprecated') % due to some small code xml2struct
xmlfiles = dir( fullfile(filename, '*.xml'));
disp('reading xml files to obtain header info...')
for i = 1:numel(xmlfiles)
if strcmpi(xmlfiles(i).name(1:2), '._') % Mac sometimes creates this useless files, don't use them
elseif strcmpi(xmlfiles(i).name(1:6), 'Events') % don't read in events here, can take a lot of time, and we can do that in ft_read_event
else
fieldname = xmlfiles(i).name(1:end-4);
filename_xml = fullfile(filename, xmlfiles(i).name);
orig.xml.(fieldname) = xml2struct(filename_xml);
end
end
warning('on', 'MATLAB:REGEXP:deprecated')
%make hdr according to FieldTrip rules
hdr = [];
Fs = zeros(length(orig.signal),1);
nChans = zeros(length(orig.signal),1);
nSamples = zeros(length(orig.signal),1);
for iSig = 1:length(orig.signal)
Fs(iSig) = orig.signal(iSig).blockhdr(1).fsample(1);
nChans(iSig) = orig.signal(iSig).blockhdr(1).nsignals;
% the number of samples per block can be different
nSamples_Block = zeros(length(orig.signal(iSig).blockhdr),1);
for iBlock = 1:length(orig.signal(iSig).blockhdr)
nSamples_Block(iBlock) = orig.signal(iSig).blockhdr(iBlock).nsamples(1);
end
nSamples(iSig) = sum(nSamples_Block);
end
if length(unique(Fs)) > 1 || length(unique(nSamples)) > 1
error('Fs and nSamples should be the same in all signals')
end
hdr.Fs = Fs(1);
hdr.nChans = sum(nChans);
hdr.nSamplesPre = 0;
hdr.nSamples = nSamples(1);
hdr.nTrials = 1;
%-get channel labels, otherwise create them
if isfield(orig.xml, 'sensorLayout') % asuming that signal1 is hdEEG sensornet, and channels are in xml file sensorLayout
for iSens = 1:numel(orig.xml.sensorLayout.sensors)
if strcmp(orig.xml.sensorLayout.sensors(iSens).sensor.type, '0') %EEG chans
% this should be consistent with ft_senslabel
hdr.label{iSens} = ['E' num2str(orig.xml.sensorLayout.sensors(iSens).sensor.number)];
elseif strcmp(orig.xml.sensorLayout.sensors(iSens).sensor.type, '1') %REF;
hdr.label{iSens} = ['E' num2str(iSens)]; % to be consistent with other egi formats
else
%non interesting channels like place holders and COM
end
end
%check if the amount of lables corresponds with nChannels in signal 1
if length(hdr.label) == orig.signal(1).blockhdr(1).nsignals
%good
elseif length(hdr.label) > orig.signal(1).blockhdr(1).nsignals
warning('found more lables in xml.sensorLayout than channels in signal 1, thus can not use info in sensorLayout, creating labels on the fly')
for iSens = 1:orig.signal(1).blockhdr(1).nsignals
% this should be consistent with ft_senslabel
hdr.label{iSens} = ['E' num2str(iSens)];
end
else warning('found less lables in xml.sensorLayout than channels in signal 1, thus can not use info in sensorLayout, creating labels on the fly')
for iSens = 1:orig.signal(1).blockhdr(1).nsignals
% this should be consistent with ft_senslabel
hdr.label{iSens} = ['E' num2str(iSens)];
end
end
% get lables for other signals
if length(orig.signal) == 2
if isfield(orig.xml, 'pnsSet') % signal2 is PIB box, and lables are in xml file pnsSet
nbEEGchan = length(hdr.label);
for iSens = 1:numel(orig.xml.pnsSet.sensors)
hdr.label{nbEEGchan+iSens} = num2str(orig.xml.pnsSet.sensors(iSens).sensor.name);
end
if length(hdr.label) == orig.signal(2).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
%good
elseif length(hdr.label) < orig.signal(1).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
warning('found less lables in xml.pnsSet than channels in signal 2, labeling with s2_unknownN instead')
for iSens = length(hdr.label)+1 : orig.signal(1).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
hdr.label{iSens} = ['s2_unknown', num2str(iSens)];
end
else warning('found more lables in xml.pnsSet than channels in signal 2, thus can not use info in pnsSet, and labeling with s2_eN instead')
for iSens = orig.signal(1).blockhdr(1).nsignals+1 : orig.signal(1).blockhdr(1).nsignals + orig.signal(2).blockhdr(1).nsignals
hdr.label{iSens} = ['s2_E', num2str(iSens)];
end
end
else % signal2 is not PIBbox
warning('creating channel labels for signal 2 on the fly')
for iSens = 1:orig.signal(2).blockhdr(1).nsignals
hdr.label{end+1} = ['s2_E', num2str(iSens)];
end
end
elseif length(orig.signal) > 2
% loop over signals and label channels accordingly
warning('creating channel labels for signal 2 to signal N on the fly')
for iSig = 2:length(orig.signal)
for iSens = 1:orig.signal(iSig).blockhdr(1).nsignals
if iSig == 1 && iSens == 1
hdr.label{1} = ['s',num2str(iSig),'_E', num2str(iSens)];
else
hdr.label{end+1} = ['s',num2str(iSig),'_E', num2str(iSens)];
end
end
end
end
else %no xml.sensorLayout present
warning('no sensorLayout found in xml files, creating channel labels on the fly')
for iSig = 1:length(orig.signal)
for iSens = 1:orig.signal(iSig).blockhdr(1).nsignals
if iSig == 1 && iSens == 1
hdr.label{1} = ['s',num2str(iSig),'_E', num2str(iSens)];
else
hdr.label{end+1} = ['s',num2str(iSig),'_E', num2str(iSens)];
end
end
end
end
% check if multiple epochs are present
if isfield(orig.xml,'epoch') && length(orig.xml.epoch) > 1
% add info to header about which sample correspond to which epochs, becasue this is quite hard for user to get...
epochdef = zeros(length(orig.xml.epoch),3);
for iEpoch = 1:length(orig.xml.epoch)
if iEpoch == 1
epochdef(iEpoch,1) = round(str2double(orig.xml.epoch(iEpoch).epoch.beginTime)./1000./hdr.Fs)+1;
epochdef(iEpoch,2) = round(str2double(orig.xml.epoch(iEpoch).epoch.endTime)./1000./hdr.Fs);
epochdef(iEpoch,3) = round(str2double(orig.xml.epoch(iEpoch).epoch.beginTime)./1000./hdr.Fs); %offset corresponds to timing
else
NbSampEpoch = round(str2double(orig.xml.epoch(iEpoch).epoch.endTime)./1000./hdr.Fs - str2double(orig.xml.epoch(iEpoch).epoch.beginTime)./1000./hdr.Fs);
epochdef(iEpoch,1) = epochdef(iEpoch-1,2) + 1;
epochdef(iEpoch,2) = epochdef(iEpoch-1,2) + NbSampEpoch;
epochdef(iEpoch,3) = round(str2double(orig.xml.epoch(iEpoch).epoch.beginTime)./1000./hdr.Fs); %offset corresponds to timing
end
end
warning('the data contains multiple epochs with possibly discontinuous boundaries. Added ''epochdef'' to hdr.orig defining begin and end sample of each epoch. See hdr.orig.xml.epoch for epoch details, use ft_read_header to obtain header or look in data.dhr.')
% sanity check
if epochdef(end,2) ~= hdr.nSamples
error('number of samples in all epochs do not add up to total number of samples')
end
orig.epochdef = epochdef;
end
hdr.orig = orig;
case 'fcdc_buffer'
% read from a networked buffer for realtime analysis
[host, port] = filetype_check_uri(filename);
if retry
orig = [];
while isempty(orig)
try
% try reading the header, catch the error and retry
orig = buffer('get_hdr', [], host, port);
catch
warning('could not read header from %s, retrying in 1 second', filename);
pause(1);
end
end % while
else
% try reading the header only once, give error if it fails
orig = buffer('get_hdr', [], host, port);
end % if retry
hdr.Fs = orig.fsample;
hdr.nChans = orig.nchans;
hdr.nSamples = orig.nsamples;
hdr.nSamplesPre = 0; % since continuous
hdr.nTrials = 1; % since continuous
hdr.orig = []; % add chunks if present
% add the contents of attached .res4 file to the .orig field similar to offline data
if isfield(orig, 'ctf_res4')
if 0
% using READ_CTF_RES4 -- this does not produce a proper .grad structure
% TODO: remove this code, and possibly read_ctf_res4 as well
tmp_name = tempname;
F = fopen(tmp_name, 'wb');
fwrite(F, orig.ctf_res4, 'uint8');
fclose(F);
R4F = read_ctf_res4(tmp_name);
delete(tmp_name);
else
% using FT_READ_HEADER recursively, and then readCTFds in the second call
% this will also call ctf2grad and yield correct gradiometer information
tmp_name = tempname;
[dirname, fname] = fileparts(tmp_name);
res4fn = [tmp_name '.ds/' fname '.res4'];
meg4fn = [tmp_name '.ds/' fname '.meg4'];
dsname = [tmp_name '.ds'];
mkdir(dsname);
F = fopen(res4fn, 'wb');
fwrite(F, orig.ctf_res4, 'uint8');
fclose(F);
F = fopen(meg4fn, 'wb');
fwrite(F, 'MEG42CP');
fclose(F);
%R4F = read_ctf_res4(tmp_name);
R4F = ft_read_header(dsname);
delete(res4fn);
delete(meg4fn);
rmdir(dsname);
end
% copy over the labels
hdr.label = R4F.label;
% copy over the 'original' header
hdr.orig = R4F;
if isfield(R4F,'grad')
hdr.grad = R4F.grad;
end
% add the raw chunk as well
hdr.orig.ctf_res4 = orig.ctf_res4;
end
% add the contents of attached NIFTI-1 chunk after decoding to Matlab structure
if isfield(orig, 'nifti_1')
hdr.nifti_1 = decode_nifti1(orig.nifti_1);
% add the raw chunk as well
hdr.orig.nifti_1 = orig.nifti_1;
end
% add the contents of attached SiemensAP chunk after decoding to Matlab structure
if isfield(orig, 'siemensap') && exist('sap2matlab')==3 % only run this if MEX file is present
hdr.siemensap = sap2matlab(orig.siemensap);
% add the raw chunk as well
hdr.orig.siemensap = orig.siemensap;
end
if ~isfield(hdr, 'label')
% prevent overwriting the labels that we might have gotten from a RES4 chunk
if isfield(orig, 'channel_names')
hdr.label = orig.channel_names;
else
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
hdr.label = cell(hdr.nChans,1);
if hdr.nChans < 2000 % don't do this for fMRI etc.
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
else
checkUniqueLabels = false;
end
end
end
hdr.orig.bufsize = orig.bufsize;
case 'fcdc_buffer_offline'
[hdr, nameFlag] = read_buffer_offline_header(headerfile);
switch nameFlag
case 0
% no labels generated (fMRI etc)
checkUniqueLabels = false; % no need to check these
case 1
% hase generated fake channels
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
checkUniqueLabels = false; % no need to check these
case 2
% got labels from chunk, check those
checkUniqueLabels = true;
end
case 'fcdc_matbin'
% this is multiplexed data in a *.bin file, accompanied by a matlab file containing the header
load(headerfile, 'hdr');
case 'fcdc_mysql'
% read from a MySQL server listening somewhere else on the network
db_open(filename);
if db_blob
hdr = db_select_blob('fieldtrip.header', 'msg', 1);
else
hdr = db_select('fieldtrip.header', {'nChans', 'nSamples', 'nSamplesPre', 'Fs', 'label'}, 1);
hdr.label = mxDeserialize(hdr.label);
end
case {'itab_raw' 'itab_mhd'}
% read the full header information frtom the binary header structure
header_info = read_itab_mhd(headerfile);
% these are the channels that are visible to fieldtrip
chansel = 1:header_info.nchan;
% convert the header information into a fieldtrip compatible format
hdr.nChans = length(chansel);
hdr.label = {header_info.ch(chansel).label};
hdr.label = hdr.label(:); % should be column vector
hdr.Fs = header_info.smpfq;
% it will always be continuous data
hdr.nSamples = header_info.ntpdata;
hdr.nSamplesPre = 0; % it is a single continuous trial
hdr.nTrials = 1; % it is a single continuous trial
% keep the original details AND the list of channels as used by fieldtrip
hdr.orig = header_info;
hdr.orig.chansel = chansel;
% add the gradiometer definition
hdr.grad = itab2grad(header_info);
case 'micromed_trc'
orig = read_micromed_trc(filename);
hdr = [];
hdr.Fs = orig.Rate_Min; % FIXME is this correct?
hdr.nChans = orig.Num_Chan;
hdr.nSamples = orig.Num_Samples;
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
hdr.label = cell(1,hdr.nChans);
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
for i=1:hdr.nChans
hdr.label{i} = sprintf('%3d', i);
end
% this should be a column vector
hdr.label = hdr.label(:);
% remember the original header details
hdr.orig = orig;
case {'mpi_ds', 'mpi_dap'}
hdr = read_mpi_ds(filename);
case 'neuralynx_dma'
hdr = read_neuralynx_dma(filename);
case 'neuralynx_sdma'
hdr = read_neuralynx_sdma(filename);
case 'neuralynx_ncs'
ncs = read_neuralynx_ncs(filename, 1, 0);
[p, f, x] = fileparts(filename);
hdr.Fs = ncs.hdr.SamplingFrequency;
hdr.label = {f};
hdr.nChans = 1;
hdr.nTrials = 1;
hdr.nSamplesPre = 0;
hdr.nSamples = ncs.NRecords * 512;
hdr.orig = ncs.hdr;
FirstTimeStamp = ncs.hdr.FirstTimeStamp; % this is the first timestamp of the first block
LastTimeStamp = ncs.hdr.LastTimeStamp; % this is the first timestamp of the last block, i.e. not the timestamp of the last sample
hdr.TimeStampPerSample = double(LastTimeStamp - FirstTimeStamp) ./ ((ncs.NRecords-1)*512);
hdr.FirstTimeStamp = FirstTimeStamp;
case 'neuralynx_nse'
nse = read_neuralynx_nse(filename, 1, 0);
[p, f, x] = fileparts(filename);
hdr.Fs = nse.hdr.SamplingFrequency;
hdr.label = {f};
hdr.nChans = 1;
hdr.nTrials = nse.NRecords; % each record contains one waveform
hdr.nSamples = 32; % there are 32 samples in each waveform
hdr.nSamplesPre = 0;
hdr.orig = nse.hdr;
% FIXME add hdr.FirstTimeStamp and hdr.TimeStampPerSample
case {'neuralynx_ttl', 'neuralynx_tsl', 'neuralynx_tsh'}
% these are hardcoded, they contain an 8-byte header and int32 values for a single channel
% FIXME this should be done similar as neuralynx_bin, i.e. move the hdr into the function
hdr = [];
hdr.Fs = 32556;
hdr.nChans = 1;
hdr.nSamples = (filesize(filename)-8)/4;
hdr.nSamplesPre = 1;
hdr.nTrials = 1;
hdr.label = {headerformat((end-3):end)};
case 'neuralynx_bin'
hdr = read_neuralynx_bin(filename);
case 'neuralynx_ds'
hdr = read_neuralynx_ds(filename);
case 'neuralynx_cds'
hdr = read_neuralynx_cds(filename);
case 'nexstim_nxe'
hdr = read_nexstim_nxe(filename);
case {'neuromag_fif' 'neuromag_mne'}
% check that the required low-level toolbox is available
ft_hastoolbox('mne', 1);
orig = fiff_read_meas_info(filename);
% convert to fieldtrip format header
hdr.label = orig.ch_names(:);
hdr.nChans = orig.nchan;
hdr.Fs = orig.sfreq;
% add a gradiometer structure for forward and inverse modelling
try
[hdr.grad, elec] = mne2grad(orig);
if ~isempty(elec)
hdr.elec = elec;
end
catch
disp(lasterr);
end
for i = 1:hdr.nChans % make a cell array of units for each channel
switch orig.chs(i).unit
case 201 % defined as constants by MNE, see p. 217 of MNE manual
hdr.unit{i} = 'T/m';
case 112
hdr.unit{i} = 'T';
case 107
hdr.unit{i} = 'V';
case 202
hdr.unit{i} = 'Am';
otherwise
hdr.unit{i} = 'unknown';
end
end
iscontinuous = 0;
isaverage = 0;
isepoched = 0; % FIXME don't know how to determine this, or whether epoched .fif data exists!
if isempty(fiff_find_evoked(filename)) % true if file contains no evoked responses
iscontinuous = 1;
else
isaverage = 1;
end
if iscontinuous
try
% we only use 1 input argument here to allow backward
% compatibility up to MNE 2.6.x:
raw = fiff_setup_read_raw(filename);
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
% there is an error - we try to use MNE 2.7.x (if present) to
% determine if the cause is maxshielding:
try
allow_maxshield = true;
raw = fiff_setup_read_raw(filename,allow_maxshield);
catch
%unknown problem, or MNE version 2.6.x or less:
rethrow(me);
end
% no error message from fiff_setup_read_raw? Then maxshield
% was applied, but maxfilter wasn't, so return this error:
error(['Maxshield data has not had maxfilter applied to it - cannot be read by fieldtrip. ' ...
'Apply Neuromag maxfilter before converting to fieldtrip format.']);
end
hdr.nSamples = raw.last_samp - raw.first_samp + 1; % number of samples per trial
hdr.nSamplesPre = 0;
% otherwise conflicts will occur in read_data
hdr.nTrials = 1;
orig.raw = raw; % keep all the details
elseif isaverage
evoked_data = fiff_read_evoked_all(filename);
vartriallength = any(diff([evoked_data.evoked.first])) || any(diff([evoked_data.evoked.last]));
if vartriallength
% there are trials averages with variable durations in the file
warning('EVOKED FILE with VARIABLE TRIAL LENGTH! - check data have been processed accurately');
hdr.nSamples = 0;
for i=1:length(evoked_data.evoked)
hdr.nSamples = hdr.nSamples + size(evoked_data.evoked(i).epochs, 2);
end
% represent it as a continuous file with a single trial
% all trial average details will be available through read_event
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
orig.evoked = evoked_data.evoked; % this is used by read_data to get the actual data, i.e. to prevent re-reading
orig.info = evoked_data.info; % keep all the details
orig.vartriallength = 1;
else
% represent it as a file with multiple trials, each trial has the same length
% all trial average details will be available through read_event
hdr.nSamples = evoked_data.evoked(1).last - evoked_data.evoked(1).first + 1;
hdr.nSamplesPre = -evoked_data.evoked(1).first; % represented as negative number in fif file
hdr.nTrials = length(evoked_data.evoked);
orig.evoked = evoked_data.evoked; % this is used by read_data to get the actual data, i.e. to prevent re-reading
orig.info = evoked_data.info; % keep all the details
orig.vartriallength = 0;
end
elseif isepoched
error('Support for epoched *.fif data is not yet implemented.')
end
% remember the original header details
hdr.orig = orig;
% these are useful to know in read_event
hdr.orig.isaverage = isaverage;
hdr.orig.iscontinuous = iscontinuous;
hdr.orig.isepoched = isepoched;
case 'neuromag_mex'
% check that the required low-level toolbox is available
ft_hastoolbox('meg-pd', 1);
rawdata('any',filename);
rawdata('goto', 0);
megmodel('head',[0 0 0],filename);
% get the available information from the fif file
[orig.rawdata.range,orig.rawdata.calib] = rawdata('range');
[orig.rawdata.sf] = rawdata('sf');
[orig.rawdata.samples] = rawdata('samples');
[orig.chaninfo.N,orig.chaninfo.S,orig.chaninfo.T] = chaninfo; % Numbers, names & places
[orig.chaninfo.TY,orig.chaninfo.NA] = chaninfo('type'); % Coil type
[orig.chaninfo.NO] = chaninfo('noise'); % Default noise level
[orig.channames.NA,orig.channames.KI,orig.channames.NU] = channames(filename); % names, kind, logical numbers
% read a single trial to determine the data size
[buf, status] = rawdata('next');
rawdata('close');
% This is to solve a problem reported by Doug Davidson: The problem
% is that rawdata('samples') is not returning the number of samples
% correctly. It appears that the example script rawchannels in meg-pd
% might work, however, so I want to use rawchannels to read in one
% channel of data in order to get the number of samples in the file:
if orig.rawdata.samples<0
tmpchannel = 1;
tmpvar = rawchannels(filename,tmpchannel);
[orig.rawdata.samples] = size(tmpvar,2);
clear tmpvar tmpchannel;
end
% convert to fieldtrip format header
hdr.label = orig.channames.NA;
hdr.Fs = orig.rawdata.sf;
hdr.nSamplesPre = 0; % I don't know how to get this out of the file
hdr.nChans = size(buf,1);
hdr.nSamples = size(buf,2); % number of samples per trial
hdr.nTrials = orig.rawdata.samples ./ hdr.nSamples;
% add a gradiometer structure for forward and inverse modelling
hdr.grad = fif2grad(filename);
% remember the original header details
hdr.orig = orig;
case 'neuroprax_eeg'
orig = np_readfileinfo(filename);
hdr.Fs = orig.fa;
hdr.nChans = orig.K;
hdr.nSamples = orig.N;
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
hdr.label = orig.channels(:);
hdr.unit = orig.units(:);
% remember the original header details
hdr.orig = orig;
case 'nimh_cortex'
cortex = read_nimh_cortex(filename, 'epp', 'no', 'eog', 'no');
% look at the first trial to determine whether it contains data in the EPP and EOG channels
trial1 = read_nimh_cortex(filename, 'epp', 'yes', 'eog', 'yes', 'begtrial', 1, 'endtrial', 1);
hasepp = ~isempty(trial1.epp);
haseog = ~isempty(trial1.eog);
if hasepp
warning('EPP channels are not yet supported');
end
% at the moment only the EOG channels are supported here
if haseog
hdr.label = {'EOGx' 'EOGy'};
hdr.nChans = 2;
else
hdr.label = {};
hdr.nChans = 0;
end
hdr.nTrials = length(cortex);
hdr.nSamples = inf;
hdr.nSamplesPre = 0;
hdr.orig.trial = cortex;
hdr.orig.hasepp = hasepp;
hdr.orig.haseog = haseog;
case 'ns_avg'
orig = read_ns_hdr(filename);
% do some reformatting/renaming of the header items
hdr.Fs = orig.rate;
hdr.nSamples = orig.npnt;
hdr.nSamplesPre = round(-orig.rate*orig.xmin/1000);
hdr.nChans = orig.nchan;
hdr.label = orig.label(:);
hdr.nTrials = 1; % the number of trials in this datafile is only one, i.e. the average
% remember the original header details
hdr.orig = orig;
case {'ns_cnt' 'ns_cnt16', 'ns_cnt32'}
if strcmp(headerformat, 'ns_cnt')
orig = loadcnt(filename, 'ldnsamples', 1);
elseif strcmp(headerformat, 'ns_cnt16')
orig = loadcnt(filename, 'ldnsamples', 1, 'dataformat', 'int16');
elseif strcmp(headerformat, 'ns_cnt32')
orig = loadcnt(filename, 'ldnsamples', 1, 'dataformat', 'int32');
end
orig = rmfield(orig, {'data', 'ldnsamples'});
% do some reformatting/renaming of the header items
hdr.Fs = orig.header.rate;
hdr.nChans = orig.header.nchannels;
hdr.nSamples = orig.header.nums;
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
for i=1:hdr.nChans
hdr.label{i} = deblank(orig.electloc(i).lab);
end
% remember the original header details
hdr.orig = orig;
case 'ns_eeg'
orig = read_ns_hdr(filename);
% do some reformatting/renaming of the header items
hdr.label = orig.label;
hdr.Fs = orig.rate;
hdr.nSamples = orig.npnt;
hdr.nSamplesPre = round(-orig.rate*orig.xmin/1000);
hdr.nChans = orig.nchan;
hdr.nTrials = orig.nsweeps;
% remember the original header details
hdr.orig = orig;
case 'plexon_ds'
hdr = read_plexon_ds(filename);
case 'plexon_ddt'
orig = read_plexon_ddt(filename);
hdr.nChans = orig.NChannels;
hdr.Fs = orig.Freq;
hdr.nSamples = orig.NSamples;
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
hdr.label = cell(1,hdr.nChans);
if isempty(fakechannelwarning) || ~fakechannelwarning
% give this warning only once
warning('creating fake channel names');
fakechannelwarning = true;
end
for i=1:hdr.nChans
hdr.label{i} = sprintf('%d', i);
end
% also remember the original header
hdr.orig = orig;
case {'read_nex_data'} % this is an alternative reader for nex files
orig = read_nex_header(filename);
% assign the obligatory items to the output FCDC header
numsmp = cell2mat({orig.varheader.numsmp});
adindx = find(cell2mat({orig.varheader.typ})==5);
if isempty(adindx)
error('file does not contain continuous channels');
end
hdr.nChans = length(orig.varheader);
hdr.Fs = orig.varheader(adindx(1)).wfrequency; % take the sampling frequency from the first A/D channel
hdr.nSamples = max(numsmp(adindx)); % take the number of samples from the longest A/D channel
hdr.nTrials = 1; % it can always be interpreted as continuous data
hdr.nSamplesPre = 0; % and therefore it is not trial based
for i=1:hdr.nChans
hdr.label{i} = deblank(char(orig.varheader(i).nam));
end
hdr.label = hdr.label(:);
% also remember the original header details
hdr.orig = orig;
case {'read_plexon_nex' 'plexon_nex'} % this is the default reader for nex files
orig = read_plexon_nex(filename);
numsmp = cell2mat({orig.VarHeader.NPointsWave});
adindx = find(cell2mat({orig.VarHeader.Type})==5);
if isempty(adindx)
error('file does not contain continuous channels');
end
hdr.nChans = length(orig.VarHeader);
hdr.Fs = orig.VarHeader(adindx(1)).WFrequency; % take the sampling frequency from the first A/D channel
hdr.nSamples = max(numsmp(adindx)); % take the number of samples from the longest A/D channel
hdr.nTrials = 1; % it can always be interpreted as continuous data
hdr.nSamplesPre = 0; % and therefore it is not trial based
for i=1:hdr.nChans
hdr.label{i} = deblank(char(orig.VarHeader(i).Name));
end
hdr.label = hdr.label(:);
hdr.FirstTimeStamp = orig.FileHeader.Beg;
hdr.TimeStampPerSample = orig.FileHeader.Frequency ./ hdr.Fs;
% also remember the original header details
hdr.orig = orig;
case 'plexon_plx'
orig = read_plexon_plx(filename);
if orig.NumSlowChannels==0
error('file does not contain continuous channels');
end
fsample = [orig.SlowChannelHeader.ADFreq];
if any(fsample~=fsample(1))
error('different sampling rates in continuous data not supported');
end
for i=1:length(orig.SlowChannelHeader)
label{i} = deblank(orig.SlowChannelHeader(i).Name);
end
% continuous channels don't always contain data, remove the empty ones
sel = [orig.DataBlockHeader.Type]==5; % continuous
chan = [orig.DataBlockHeader.Channel];
for i=1:length(label)
chansel(i) = any(chan(sel)==orig.SlowChannelHeader(i).Channel);
end
chansel = find(chansel); % this is required for timestamp selection
label = label(chansel);
% only the continuous channels are returned as visible
hdr.nChans = length(label);
hdr.Fs = fsample(1);
hdr.label = label;
% also remember the original header
hdr.orig = orig;
% select the first continuous channel that has data
sel = ([orig.DataBlockHeader.Type]==5 & [orig.DataBlockHeader.Channel]==orig.SlowChannelHeader(chansel(1)).Channel);
% get the timestamps that correspond with the continuous data
tsl = [orig.DataBlockHeader(sel).TimeStamp]';
tsh = [orig.DataBlockHeader(sel).UpperByteOf5ByteTimestamp]';
ts = timestamp_plexon(tsl, tsh); % use helper function, this returns an uint64 array
% determine the number of samples in the continuous channels
num = [orig.DataBlockHeader(sel).NumberOfWordsInWaveform];
hdr.nSamples = sum(num);
hdr.nSamplesPre = 0; % continuous
hdr.nTrials = 1; % continuous
% the timestamps indicate the beginning of each block, hence the timestamp of the last block corresponds with the end of the previous block
hdr.TimeStampPerSample = double(ts(end)-ts(1))/sum(num(1:(end-1)));
hdr.FirstTimeStamp = ts(1); % the timestamp of the first continuous sample
% also make the spike channels visible
for i=1:length(orig.ChannelHeader)
hdr.label{end+1} = deblank(orig.ChannelHeader(i).Name);
end
hdr.label = hdr.label(:);
hdr.nChans = length(hdr.label);
case {'tdt_tsq', 'tdt_tev'}
tsq = read_tdt_tsq(headerfile);
k = 0;
chan = unique([tsq.channel]);
% loop over the physical channels
for i=1:length(chan)
chansel = [tsq.channel]==chan(i);
code = unique([tsq(chansel).code]);
% loop over the logical channels
for j=1:length(code)
codesel = [tsq.code]==code(j);
% find the first instance of this logical channel
this = find(chansel & codesel, 1);
% add it to the list of channels
k = k + 1;
frequency(k) = tsq(this).frequency;
label{k} = [char(typecast(tsq(this).code, 'uint8')) num2str(tsq(this).channel)];
tsqorig(k) = tsq(this);
end
end
% the above code is not complete
error('not yet implemented');
case {'yokogawa_ave', 'yokogawa_con', 'yokogawa_raw', 'yokogawa_mrk'}
% chek that the required low-level toolbox is available
ft_hastoolbox('yokogawa', 1);
hdr = read_yokogawa_header(filename);
% add a gradiometer structure for forward and inverse modelling
hdr.grad = yokogawa2grad(hdr);
case 'nmc_archive_k'
hdr = read_nmc_archive_k_hdr(filename);
case 'neuroshare' % NOTE: still under development
% check that the required neuroshare toolbox is available
ft_hastoolbox('neuroshare', 1);
tmp = read_neuroshare(filename);
hdr.Fs = tmp.hdr.seginfo(1).SampleRate; % take the sampling freq from the first channel (assuming this is the same for all chans)
hdr.nChans = tmp.hdr.fileinfo.EntityCount;
hdr.nSamples = max([tmp.hdr.entityinfo.ItemCount]); % take the number of samples from the longest channel
hdr.nSamplesPre = 0; % continuous data
hdr.nTrials = 1; % continuous data
hdr.label = {tmp.hdr.entityinfo.EntityLabel}; %%% contains non-unique chans
hdr.orig = tmp; % remember the original header
otherwise
if strcmp(fallback, 'biosig') && ft_hastoolbox('BIOSIG', 1)
hdr = read_biosig_header(filename);
else
error('unsupported header format (%s)', headerformat);
end
end
if checkUniqueLabels
if length(hdr.label)~=length(unique(hdr.label))
% all channels must have unique names
warning('all channels must have unique labels, creating unique labels');
for i=1:hdr.nChans
sel = find(strcmp(hdr.label{i}, hdr.label));
if length(sel)>1
for j=1:length(sel)
hdr.label{sel(j)} = sprintf('%s-%d', hdr.label{sel(j)}, j);
end
end
end
end
end
% ensure that these are double precision and not integers, otherwise
% subsequent computations that depend on these might be messed up
hdr.Fs = double(hdr.Fs);
hdr.nSamples = double(hdr.nSamples);
hdr.nSamplesPre = double(hdr.nSamplesPre);
hdr.nTrials = double(hdr.nTrials);
hdr.nChans = double(hdr.nChans);
if cache && exist(headerfile, 'file')
% put the header in the cache
cacheheader = hdr;
% update the header details (including time stampp, size and name)
cacheheader.details = dir(headerfile);
% fprintf('added header to cache\n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the file size in bytes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [siz] = filesize(filename)
l = dir(filename);
if l.isdir
error(sprintf('"%s" is not a file', filename));
end
siz = l.bytes;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the file size in bytes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hdr] = recursive_read_header(filename)
[p, f, x] = fileparts(filename);
ls = dir(filename);
ls = ls(~strcmp({ls.name}, '.')); % exclude this directory
ls = ls(~strcmp({ls.name}, '..')); % exclude parent directory
for i=1:length(ls)
% make sure that the directory listing includes the complete path
ls(i).name = fullfile(filename, ls(i).name);
end
lst = {ls.name};
hdr = cell(size(lst));
sel = zeros(size(lst));
for i=1:length(lst)
% read the header of each individual file
try
thishdr = ft_read_header(lst{i});
if isstruct(thishdr)
thishdr.filename = lst{i};
end
catch
thishdr = [];
warning(lasterr);
fprintf('while reading %s\n\n', lst{i});
end
if ~isempty(thishdr)
hdr{i} = thishdr;
sel(i) = true;
else
sel(i) = false;
end
end
sel = logical(sel(:));
hdr = hdr(sel);
tmp = {};
for i=1:length(hdr)
if isstruct(hdr{i})
tmp = cat(1, tmp, hdr(i));
elseif iscell(hdr{i})
tmp = cat(1, tmp, hdr{i}{:});
end
end
hdr = tmp;
|
github
|
philippboehmsturm/antx-master
|
ft_filetype.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/ft_filetype.m
| 45,872 |
utf_8
|
c37debc76f5f54e82527bde5fea74be6
|
function [type] = ft_filetype(filename, desired, varargin)
% FT_FILETYPE determines the filetype of many EEG/MEG/MRI data files by
% looking at the name, extension and optionally (part of) its contents.
% It tries to determine the global type of file (which usually
% corresponds to the manufacturer, the recording system or to the
% software used to create the file) and the particular subtype (e.g.
% continuous, average).
%
% Use as
% type = ft_filetype(filename)
% type = ft_filetype(dirname)
%
% This gives you a descriptive string with the data type, and can be
% used in a switch-statement. The descriptive string that is returned
% usually is something like 'XXX_YYY'/ where XXX refers to the
% manufacturer and YYY to the type of the data.
%
% Alternatively, use as
% flag = ft_filetype(filename, type)
% flag = ft_filetype(dirname, type)
% This gives you a boolean flag (0 or 1) indicating whether the file
% is of the desired type, and can be used to check whether the
% user-supplied file is what your subsequent code expects.
%
% Alternatively, use as
% flag = ft_filetype(dirlist, type)
% where the dirlist contains a list of files contained within one
% directory. This gives you a boolean vector indicating for each file
% whether it is of the desired type.
%
% Most filetypes of the following manufacturers and/or software programs are recognized
% - 4D/BTi
% - AFNI
% - ASA
% - Analyse
% - Analyze/SPM
% - BESA
% - BrainVision
% - Curry
% - Dataq
% - EDF
% - EEProbe
% - Elektra/Neuromag
% - LORETA
% - FreeSurfer
% - MINC
% - Neuralynx
% - Neuroscan
% - Plexon
% - SR Research Eyelink
% - Tucker Davis Technology
% - VSM-Medtech/CTF
% - Yokogawa
% - nifti, gifti
% Copyright (C) 2003-2011 Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_filetype.m 4143 2011-09-11 17:07:31Z crimic $
% these are for remembering the type on subsequent calls with the same input arguments
persistent previous_argin previous_argout previous_pwd
if nargin<2
% ensure that all input arguments are defined
desired = [];
end
current_argin = {filename, desired, varargin{:}};
current_pwd = pwd;
if isequal(current_argin, previous_argin) && isequal(current_pwd, previous_pwd)
% don't do the detection again, but return the previous value from cache
type = previous_argout{1};
return
end
if strcmp(class(filename), 'memmapfile'),
filename = filename.Filename;
end
% % get the optional arguments
% checkheader = keyval('checkheader', varargin); if isempty(checkheader), checkheader=1; end
%
% if ~checkheader
% % assume that the header is always ok, e.g when the file does not yet exist
% % this replaces the normal function with a function that always returns true
% filetype_check_header = @filetype_true;
% end
if iscell(filename)
if ~isempty(desired)
% perform the test for each filename, return a boolean vector
type = false(size(filename));
else
% return a string with the type for each filename
type = cell(size(filename));
end
for i=1:length(filename)
if strcmp(filename{i}(end), '.')
% do not recurse into this directory or the parent directory
continue
else
if iscell(type)
type{i} = ft_filetype(filename{i}, desired);
else
type(i) = ft_filetype(filename{i}, desired);
end
end
end
return
end
% start with unknown values
type = 'unknown';
manufacturer = 'unknown';
content = 'unknown';
if isempty(filename)
if isempty(desired)
% return the "unknown" outputs
return
else
% return that it is a non-match
type = false;
return
end
end
[p, f, x] = fileparts(filename);
% prevent this test if the filename resembles an URI, i.e. like "scheme://"
if isempty(strfind(filename , '://')) && isdir(filename)
% the directory listing is needed below
ls = dir(filename);
% remove the parent directory and the directory itself from the list
ls = ls(~strcmp({ls.name}, '.'));
ls = ls(~strcmp({ls.name}, '..'));
for i=1:length(ls)
% make sure that the directory listing includes the complete path
ls(i).name = fullfile(filename, ls(i).name);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start determining the filetype
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% these are some streams for asynchronous BCI
if filetype_check_uri(filename, 'fifo')
type = 'fcdc_fifo';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'buffer')
type = 'fcdc_buffer';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'mysql')
type = 'fcdc_mysql';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'tcp')
type = 'fcdc_tcp';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'udp')
type = 'fcdc_udp';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'rfb')
type = 'fcdc_rfb';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'serial')
type = 'fcdc_serial';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'stream';
elseif filetype_check_uri(filename, 'global')
type = 'fcdc_global';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'global variable';
elseif filetype_check_uri(filename, 'shm')
type = 'ctf_shm';
manufacturer = 'CTF';
content = 'real-time shared memory buffer';
elseif filetype_check_uri(filename, 'empty')
type = 'empty';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = '/dev/null';
% known CTF file types
elseif isdir(filename) && filetype_check_extension(filename, '.ds') && exist(fullfile(filename, [f '.res4']))
type = 'ctf_ds';
manufacturer = 'CTF';
content = 'MEG dataset';
elseif isdir(filename) && ~isempty(dir(fullfile(filename, '*.res4'))) && ~isempty(dir(fullfile(filename, '*.meg4')))
type = 'ctf_ds';
manufacturer = 'CTF';
content = 'MEG dataset';
elseif filetype_check_extension(filename, '.res4') && (filetype_check_header(filename, 'MEG41RS') || filetype_check_header(filename, 'MEG42RS') || filetype_check_header(filename, 'MEG4RES'))
type = 'ctf_res4';
manufacturer = 'CTF';
content = 'MEG/EEG header information';
elseif filetype_check_extension(filename, '.meg4') && filetype_check_header(filename, 'MEG41CP')
type = 'ctf_meg4';
manufacturer = 'CTF';
content = 'MEG/EEG';
elseif strcmp(f, 'MarkerFile') && filetype_check_extension(filename, '.mrk') && filetype_check_header(filename, 'PATH OF DATASET:')
type = 'ctf_mrk';
manufacturer = 'CTF';
content = 'marker file';
elseif filetype_check_extension(filename, '.mri') && filetype_check_header(filename, 'CTF_MRI_FORMAT VER 2.2')
type = 'ctf_mri';
manufacturer = 'CTF';
content = 'MRI';
elseif filetype_check_extension(filename, '.mri') && filetype_check_header(filename, 'CTF_MRI_FORMAT VER 4', 31)
type = 'ctf_mri4';
manufacturer = 'CTF';
content = 'MRI';
elseif filetype_check_extension(filename, '.hdm')
type = 'ctf_hdm';
manufacturer = 'CTF';
content = 'volume conduction model';
elseif filetype_check_extension(filename, '.hc')
type = 'ctf_hc';
manufacturer = 'CTF';
content = 'headcoil locations';
elseif filetype_check_extension(filename, '.shape')
type = 'ctf_shape';
manufacturer = 'CTF';
content = 'headshape points';
elseif filetype_check_extension(filename, '.shape_info')
type = 'ctf_shapeinfo';
manufacturer = 'CTF';
content = 'headshape information';
elseif filetype_check_extension(filename, '.wts')
type = 'ctf_wts';
manufacturer = 'CTF';
content = 'SAM coefficients, i.e. spatial filter weights';
elseif filetype_check_extension(filename, '.svl')
type = 'ctf_svl';
manufacturer = 'CTF';
content = 'SAM (pseudo-)statistic volumes';
% known Micromed file types
elseif filetype_check_extension(filename, '.trc') && filetype_check_header(filename, '* MICROMED')
type = 'micromed_trc';
manufacturer = 'Micromed';
content = 'Electrophysiological data';
% known Neuromag file types
elseif filetype_check_extension(filename, '.fif')
type = 'neuromag_fif';
manufacturer = 'Neuromag';
content = 'MEG header and data';
elseif filetype_check_extension(filename, '.bdip')
type = 'neuromag_bdip';
manufacturer = 'Neuromag';
content = 'dipole model';
% known Yokogawa file types
elseif filetype_check_extension(filename, '.ave') || filetype_check_extension(filename, '.sqd')
type = 'yokogawa_ave';
manufacturer = 'Yokogawa';
content = 'averaged MEG data';
elseif filetype_check_extension(filename, '.con')
type = 'yokogawa_con';
manufacturer = 'Yokogawa';
content = 'continuous MEG data';
elseif filetype_check_extension(filename, '.raw') && filetype_check_header(filename, char([0 0 0 0])) % FIXME, this detection should possibly be improved
type = 'yokogawa_raw';
manufacturer = 'Yokogawa';
content = 'evoked/trialbased MEG data';
elseif filetype_check_extension(filename, '.mrk') && filetype_check_header(filename, char([0 0 0 0])) % FIXME, this detection should possibly be improved
type = 'yokogawa_mrk';
manufacturer = 'Yokogawa';
content = 'headcoil locations';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-coregis')) == 1
type = 'yokogawa_coregis';
manufacturer = 'Yokogawa';
content = 'exported fiducials';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-calib')) == 1
type = 'yokogawa_calib';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-channel')) == 1
type = 'yokogawa_channel';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-property')) == 1
type = 'yokogawa_property';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-TextData')) == 1
type = 'yokogawa_textdata';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.txt') && numel(strfind(filename,'-FLL')) == 1
type = 'yokogawa_fll';
manufacturer = 'Yokogawa';
elseif filetype_check_extension(filename, '.hsp')
type = 'yokogawa_hsp';
manufacturer = 'Yokogawa';
% known 4D/BTI file types
elseif filetype_check_extension(filename, '.pdf') && filetype_check_header(filename, 'E|lk') % I am not sure whether this header always applies
type = '4d_pdf';
manufacturer = '4D/BTI';
content = 'raw MEG data (processed data file)';
elseif exist([filename '.m4d'], 'file') && exist([filename '.xyz'], 'file') % these two ascii header files accompany the raw data
type = '4d_pdf';
manufacturer = '4D/BTI';
content = 'raw MEG data (processed data file)';
elseif filetype_check_extension(filename, '.m4d') && exist([filename(1:(end-3)) 'xyz'], 'file') % these come in pairs
type = '4d_m4d';
manufacturer = '4D/BTI';
content = 'MEG header information';
elseif filetype_check_extension(filename, '.xyz') && exist([filename(1:(end-3)) 'm4d'], 'file') % these come in pairs
type = '4d_xyz';
manufacturer = '4D/BTI';
content = 'MEG sensor positions';
elseif isequal(f, 'hs_file') % the filename is "hs_file"
type = '4d_hs';
manufacturer = '4D/BTI';
content = 'head shape';
elseif length(filename)>=4 && ~isempty(strfind(filename,',rf'))
type = '4d';
manufacturer = '4D/BTi';
content = '';
elseif length(filename)<=4 && exist(fullfile(p,'config'), 'file') %&& exist(fullfile(p,'hs_file'), 'file')
% this could be a 4D file with non-standard/processed name
type = '4d';
manufacturer = '4D/BTi';
content = '';
% known EEProbe file types
elseif filetype_check_extension(filename, '.cnt') && filetype_check_header(filename, 'RIFF')
type = 'eep_cnt';
manufacturer = 'EEProbe';
content = 'EEG';
elseif filetype_check_extension(filename, '.avr') && filetype_check_header(filename, char([38 0 16 0]))
type = 'eep_avr';
manufacturer = 'EEProbe';
content = 'ERP';
elseif filetype_check_extension(filename, '.trg')
type = 'eep_trg';
manufacturer = 'EEProbe';
content = 'trigger information';
elseif filetype_check_extension(filename, '.rej')
type = 'eep_rej';
manufacturer = 'EEProbe';
content = 'rejection marks';
% the yokogawa_mri has to be checked prior to asa_mri, because this one is more strict
elseif filetype_check_extension(filename, '.mri') && filetype_check_header(filename, char(0)) % FIXME, this detection should possibly be improved
type = 'yokogawa_mri';
manufacturer = 'Yokogawa';
content = 'anatomical MRI';
% known ASA file types
elseif filetype_check_extension(filename, '.elc')
type = 'asa_elc';
manufacturer = 'ASA';
content = 'electrode positions';
elseif filetype_check_extension(filename, '.vol')
type = 'asa_vol';
manufacturer = 'ASA';
content = 'volume conduction model';
elseif filetype_check_extension(filename, '.bnd')
type = 'asa_bnd';
manufacturer = 'ASA';
content = 'boundary element model details';
elseif filetype_check_extension(filename, '.msm')
type = 'asa_msm';
manufacturer = 'ASA';
content = 'ERP';
elseif filetype_check_extension(filename, '.msr')
type = 'asa_msr';
manufacturer = 'ASA';
content = 'ERP';
elseif filetype_check_extension(filename, '.dip')
% FIXME, can also be CTF dipole file
type = 'asa_dip';
manufacturer = 'ASA';
elseif filetype_check_extension(filename, '.mri')
% FIXME, can also be CTF mri file
type = 'asa_mri';
manufacturer = 'ASA';
content = 'MRI image header';
elseif filetype_check_extension(filename, '.iso')
type = 'asa_iso';
manufacturer = 'ASA';
content = 'MRI image data';
% known BCI2000 file types
elseif filetype_check_extension(filename, '.dat') && (filetype_check_header(filename, 'BCI2000') || filetype_check_header(filename, 'HeaderLen='))
type = 'bci2000_dat';
manufacturer = 'BCI2000';
content = 'continuous EEG';
% known Neuroscan file types
elseif filetype_check_extension(filename, '.avg') && filetype_check_header(filename, 'Version 3.0')
type = 'ns_avg';
manufacturer = 'Neuroscan';
content = 'averaged EEG';
elseif filetype_check_extension(filename, '.cnt') && filetype_check_header(filename, 'Version 3.0')
type = 'ns_cnt';
manufacturer = 'Neuroscan';
content = 'continuous EEG';
elseif filetype_check_extension(filename, '.eeg') && filetype_check_header(filename, 'Version 3.0')
type = 'ns_eeg';
manufacturer = 'Neuroscan';
content = 'epoched EEG';
elseif filetype_check_extension(filename, '.eeg') && filetype_check_header(filename, 'V3.0')
type = 'neuroprax_eeg';
manufacturer = 'eldith GmbH';
content = 'continuous EEG';
elseif filetype_check_extension(filename, '.ee_')
type = 'neuroprax_mrk';
manufacturer = 'eldith GmbH';
content = 'EEG markers';
% known Analyze & SPM file types
elseif filetype_check_extension(filename, '.hdr')
type = 'analyze_hdr';
manufacturer = 'Mayo Analyze';
content = 'PET/MRI image header';
elseif filetype_check_extension(filename, '.img')
type = 'analyze_img';
manufacturer = 'Mayo Analyze';
content = 'PET/MRI image data';
elseif filetype_check_extension(filename, '.mnc')
type = 'minc';
content = 'MRI image data';
elseif filetype_check_extension(filename, '.nii')
type = 'nifti';
content = 'MRI image data';
% known LORETA file types
elseif filetype_check_extension(filename, '.lorb')
type = 'loreta_lorb';
manufacturer = 'old LORETA';
content = 'source reconstruction';
elseif filetype_check_extension(filename, '.slor')
type = 'loreta_slor';
manufacturer = 'sLORETA';
content = 'source reconstruction';
% known AFNI file types
elseif filetype_check_extension(filename, '.brik') || filetype_check_extension(filename, '.BRIK')
type = 'afni_brik';
content = 'MRI image data';
elseif filetype_check_extension(filename, '.head') || filetype_check_extension(filename, '.HEAD')
type = 'afni_head';
content = 'MRI header data';
% known BrainVison file types
elseif filetype_check_extension(filename, '.vhdr')
type = 'brainvision_vhdr';
manufacturer = 'BrainProducts';
content = 'EEG header';
elseif filetype_check_extension(filename, '.vmrk')
type = 'brainvision_vmrk';
manufacturer = 'BrainProducts';
content = 'EEG markers';
elseif filetype_check_extension(filename, '.vabs')
type = 'brainvision_vabs';
manufacturer = 'BrainProducts';
content = 'Brain Vison Analyzer macro';
elseif filetype_check_extension(filename, '.eeg') && exist(fullfile(p, [f '.vhdr']), 'file')
type = 'brainvision_eeg';
manufacturer = 'BrainProducts';
content = 'continuous EEG data';
elseif filetype_check_extension(filename, '.seg')
type = 'brainvision_seg';
manufacturer = 'BrainProducts';
content = 'segmented EEG data';
elseif filetype_check_extension(filename, '.dat') && exist(fullfile(p, [f '.vhdr']), 'file') &&...
~filetype_check_header(filename, 'HeaderLen=') && ~filetype_check_header(filename, 'BESA_SA_IMAGE') &&...
~(exist(fullfile(p, [f '.gen']), 'file') || exist(fullfile(p, [f '.generic']), 'file'))
% WARNING this is a very general name, it could be exported BrainVision
% data but also a BESA beamformer source reconstruction or BCI2000
type = 'brainvision_dat';
manufacturer = 'BrainProducts';
content = 'exported EEG data';
elseif filetype_check_extension(filename, '.marker')
type = 'brainvision_marker';
manufacturer = 'BrainProducts';
content = 'rejection markers';
% known Polhemus file types
elseif filetype_check_extension(filename, '.pos')
type = 'polhemus_pos';
manufacturer = 'BrainProducts/CTF/Polhemus?'; % actually I don't know whose software it is
content = 'electrode positions';
% known Neuralynx file types
elseif filetype_check_extension(filename, '.nev') || filetype_check_extension(filename, '.Nev')
type = 'neuralynx_nev';
manufacturer = 'Neuralynx';
content = 'event information';
elseif filetype_check_extension(filename, '.ncs') && filetype_check_header(filename, '####')
type = 'neuralynx_ncs';
manufacturer = 'Neuralynx';
content = 'continuous single channel recordings';
elseif filetype_check_extension(filename, '.nse') && filetype_check_header(filename, '####')
type = 'neuralynx_nse';
manufacturer = 'Neuralynx';
content = 'spike waveforms';
elseif filetype_check_extension(filename, '.nts') && filetype_check_header(filename, '####')
type = 'neuralynx_nts';
manufacturer = 'Neuralynx';
content = 'timestamps only';
elseif filetype_check_extension(filename, '.nvt')
type = 'neuralynx_nvt';
manufacturer = 'Neuralynx';
content = 'video tracker';
elseif filetype_check_extension(filename, '.nst')
type = 'neuralynx_nst';
manufacturer = 'Neuralynx';
content = 'continuous stereotrode recordings';
elseif filetype_check_extension(filename, '.ntt')
type = 'neuralynx_ntt';
manufacturer = 'Neuralynx';
content = 'continuous tetrode recordings';
elseif strcmpi(f, 'logfile') && strcmpi(x, '.txt') % case insensitive
type = 'neuralynx_log';
manufacturer = 'Neuralynx';
content = 'log information in ASCII format';
elseif ~isempty(strfind(lower(f), 'dma')) && strcmpi(x, '.log') % this is not a very strong detection
type = 'neuralynx_dma';
manufacturer = 'Neuralynx';
content = 'raw aplifier data directly from DMA';
elseif filetype_check_extension(filename, '.nrd') % see also above, since Cheetah 5.x the file extension has changed
type = 'neuralynx_dma';
manufacturer = 'Neuralynx';
content = 'raw aplifier data directly from DMA';
elseif isdir(filename) && (any(filetype_check_extension({ls.name}, '.nev')) || any(filetype_check_extension({ls.name}, '.Nev')))
% a regular Neuralynx dataset directory that contains an event file
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'dataset';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.ncs'))
% a directory containing continuously sampled channels in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'continuously sampled channels';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.nse'))
% a directory containing spike waveforms in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'spike waveforms';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.nte'))
% a directory containing spike timestamps in Neuralynx format
type = 'neuralynx_ds';
manufacturer = 'Neuralynx';
content = 'spike timestamps';
elseif isdir(filename) && exist(fullfile(filename, 'header'), 'file') && exist(fullfile(filename, 'events'), 'file')
type = 'fcdc_buffer_offline';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'FieldTrip buffer offline dataset';
elseif isdir(filename) && exist(fullfile(filename, 'info.xml'), 'file') && exist(fullfile(filename, 'signal1.bin'), 'file')
% this is a directory representing a dataset: it contains multiple xml files and one or more signalN.bin files
type = 'egi_mff';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'raw EEG data';
% these are formally not Neuralynx file formats, but at the FCDC we use them together with Neuralynx
elseif isdir(filename) && any(ft_filetype({ls.name}, 'neuralynx_ds'))
% a downsampled Neuralynx DMA file can be split into three seperate lfp/mua/spike directories
% treat them as one combined dataset
type = 'neuralynx_cds';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'dataset containing seperate lfp/mua/spike directories';
elseif filetype_check_extension(filename, '.tsl') && filetype_check_header(filename, 'tsl')
type = 'neuralynx_tsl';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'timestamps from DMA log file';
elseif filetype_check_extension(filename, '.tsh') && filetype_check_header(filename, 'tsh')
type = 'neuralynx_tsh';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'timestamps from DMA log file';
elseif filetype_check_extension(filename, '.ttl') && filetype_check_header(filename, 'ttl')
type = 'neuralynx_ttl';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'Parallel_in from DMA log file';
elseif filetype_check_extension(filename, '.bin') && filetype_check_header(filename, {'uint8', 'uint16', 'uint32', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'})
type = 'neuralynx_bin';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'single channel continuous data';
elseif isdir(filename) && any(filetype_check_extension({ls.name}, '.ttl')) && any(filetype_check_extension({ls.name}, '.tsl')) && any(filetype_check_extension({ls.name}, '.tsh'))
% a directory containing the split channels from a DMA logfile
type = 'neuralynx_sdma';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'split DMA log file';
elseif isdir(filename) && filetype_check_extension(filename, '.sdma')
% a directory containing the split channels from a DMA logfile
type = 'neuralynx_sdma';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'split DMA log file';
% known Plexon file types
elseif filetype_check_extension(filename, '.nex') && filetype_check_header(filename, 'NEX1')
type = 'plexon_nex';
manufacturer = 'Plexon';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.plx') && filetype_check_header(filename, 'PLEX')
type = 'plexon_plx';
manufacturer = 'Plexon';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.ddt')
type = 'plexon_ddt';
manufacturer = 'Plexon';
elseif isdir(filename) && most(filetype_check_extension({ls.name}, '.nex')) && most(filetype_check_header({ls.name}, 'NEX1'))
% a directory containing multiple plexon NEX files
type = 'plexon_ds';
manufacturer = 'Plexon';
content = 'electrophysiological data';
% known Cambridge Electronic Design file types
elseif filetype_check_extension(filename, '.smr')
type = 'ced_son';
manufacturer = 'Cambridge Electronic Design';
content = 'Spike2 SON filing system';
% known BESA file types
elseif filetype_check_extension(filename, '.avr') && strcmp(type, 'unknown')
type = 'besa_avr'; % FIXME, can also be EEProbe average EEG
manufacturer = 'BESA';
content = 'average EEG';
elseif filetype_check_extension(filename, '.elp')
type = 'besa_elp';
manufacturer = 'BESA';
content = 'electrode positions';
elseif filetype_check_extension(filename, '.eps')
type = 'besa_eps';
manufacturer = 'BESA';
content = 'digitizer information';
elseif filetype_check_extension(filename, '.sfp')
type = 'besa_sfp';
manufacturer = 'BESA';
content = 'sensor positions';
elseif filetype_check_extension(filename, '.ela')
type = 'besa_ela';
manufacturer = 'BESA';
content = 'sensor information';
elseif filetype_check_extension(filename, '.pdg')
type = 'besa_pdg';
manufacturer = 'BESA';
content = 'paradigm file';
elseif filetype_check_extension(filename, '.tfc')
type = 'besa_tfc';
manufacturer = 'BESA';
content = 'time frequency coherence';
elseif filetype_check_extension(filename, '.mul')
type = 'besa_mul';
manufacturer = 'BESA';
content = 'multiplexed ascii format';
elseif filetype_check_extension(filename, '.dat') && filetype_check_header(filename, 'BESA_SA') % header can start with BESA_SA_IMAGE or BESA_SA_MN_IMAGE
type = 'besa_src';
manufacturer = 'BESA';
content = 'beamformer source reconstruction';
elseif filetype_check_extension(filename, '.swf') && filetype_check_header(filename, 'Npts=')
type = 'besa_swf';
manufacturer = 'BESA';
content = 'beamformer source waveform';
elseif filetype_check_extension(filename, '.bsa')
type = 'besa_bsa';
manufacturer = 'BESA';
content = 'beamformer source locations and orientations';
elseif exist(fullfile(p, [f '.dat']), 'file') && (exist(fullfile(p, [f '.gen']), 'file') || exist(fullfile(p, [f '.generic']), 'file'))
type = 'besa_sb';
manufacturer = 'BESA';
content = 'simple binary channel data with a seperate generic ascii header';
% known Dataq file formats
elseif filetype_check_extension(upper(filename), '.WDQ')
type = 'dataq_wdq';
manufacturer = 'dataq instruments';
content = 'electrophysiological data';
% old files from Pascal Fries' PhD research at the MPI
elseif filetype_check_extension(filename, '.dap') && filetype_check_header(filename, char(1))
type = 'mpi_dap';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif isdir(filename) && ~isempty(cell2mat(regexp({ls.name}, '.dap$')))
type = 'mpi_ds';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
% Frankfurt SPASS format, which uses the Labview Datalog (DTLG) format
elseif filetype_check_extension(filename, '.ana') && filetype_check_header(filename, 'DTLG')
type = 'spass_ana';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.swa') && filetype_check_header(filename, 'DTLG')
type = 'spass_swa';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.spi') && filetype_check_header(filename, 'DTLG')
type = 'spass_spi';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.stm') && filetype_check_header(filename, 'DTLG')
type = 'spass_stm';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.bhv') && filetype_check_header(filename, 'DTLG')
type = 'spass_bhv';
manufacturer = 'MPI Frankfurt';
content = 'electrophysiological data';
% known Chieti ITAB file types
elseif filetype_check_extension(filename, '.raw') && (filetype_check_header(filename, 'FORMAT: ATB-BIOMAGDATA') || filetype_check_header(filename, '[HeaderType]'))
type = 'itab_raw';
manufacturer = 'Chieti ITAB';
content = 'MEG data, including sensor positions';
elseif filetype_check_extension(filename, '.raw.mhd')
type = 'itab_mhd';
manufacturer = 'Chieti ITAB';
content = 'MEG header data, including sensor positions';
elseif filetype_check_extension(filename, '.asc')
type = 'itab_asc';
manufacturer = 'Chieti ITAB';
content = 'headshape digitization file';
% known Nexstim file types
elseif filetype_check_extension(filename, '.nxe')
type = 'nexstim_nxe';
manufacturer = 'Nexstim';
content = 'electrophysiological data';
% known Tucker-Davis-Technology file types
elseif filetype_check_extension(filename, '.tbk')
type = 'tdt_tbk';
manufacturer = 'Tucker-Davis-Technology';
content = 'database/tank meta-information';
elseif filetype_check_extension(filename, '.tdx')
type = 'tdt_tdx';
manufacturer = 'Tucker-Davis-Technology';
content = 'database/tank meta-information';
elseif filetype_check_extension(filename, '.tsq')
type = 'tdt_tsq';
manufacturer = 'Tucker-Davis-Technology';
content = 'block header information';
elseif filetype_check_extension(filename, '.tev')
type = 'tdt_tev';
manufacturer = 'Tucker-Davis-Technology';
content = 'electrophysiological data';
% known Curry V4 file types
elseif filetype_check_extension(filename, '.dap')
type = 'curry_dap'; % FIXME, can also be MPI Frankfurt electrophysiological data
manufacturer = 'Curry';
content = 'data parameter file';
elseif filetype_check_extension(filename, '.dat')
type = 'curry_dat';
manufacturer = 'Curry';
content = 'raw data file';
elseif filetype_check_extension(filename, '.rs4')
type = 'curry_rs4';
manufacturer = 'Curry';
content = 'sensor geometry file';
elseif filetype_check_extension(filename, '.par')
type = 'curry_par';
manufacturer = 'Curry';
content = 'data or image parameter file';
elseif filetype_check_extension(filename, '.bd0') || filetype_check_extension(filename, '.bd1') || filetype_check_extension(filename, '.bd2') || filetype_check_extension(filename, '.bd3') || filetype_check_extension(filename, '.bd4') || filetype_check_extension(filename, '.bd5') || filetype_check_extension(filename, '.bd6') || filetype_check_extension(filename, '.bd7') || filetype_check_extension(filename, '.bd8') || filetype_check_extension(filename, '.bd9')
type = 'curry_bd';
manufacturer = 'Curry';
content = 'BEM description file';
elseif filetype_check_extension(filename, '.bt0') || filetype_check_extension(filename, '.bt1') || filetype_check_extension(filename, '.bt2') || filetype_check_extension(filename, '.bt3') || filetype_check_extension(filename, '.bt4') || filetype_check_extension(filename, '.bt5') || filetype_check_extension(filename, '.bt6') || filetype_check_extension(filename, '.bt7') || filetype_check_extension(filename, '.bt8') || filetype_check_extension(filename, '.bt9')
type = 'curry_bt';
manufacturer = 'Curry';
content = 'BEM transfer matrix file';
elseif filetype_check_extension(filename, '.bm0') || filetype_check_extension(filename, '.bm1') || filetype_check_extension(filename, '.bm2') || filetype_check_extension(filename, '.bm3') || filetype_check_extension(filename, '.bm4') || filetype_check_extension(filename, '.bm5') || filetype_check_extension(filename, '.bm6') || filetype_check_extension(filename, '.bm7') || filetype_check_extension(filename, '.bm8') || filetype_check_extension(filename, '.bm9')
type = 'curry_bm';
manufacturer = 'Curry';
content = 'BEM full matrix file';
elseif filetype_check_extension(filename, '.dig')
type = 'curry_dig';
manufacturer = 'Curry';
content = 'digitizer file';
% known SR Research eyelink file formats
elseif filetype_check_extension(filename, '.asc') && filetype_check_header(filename, '**')
type = 'eyelink_asc';
manufacturer = 'SR Research (ascii)';
content = 'eyetracker data';
elseif filetype_check_extension(filename, '.edf') && filetype_check_header(filename, 'SR_RESEARCH')
type = 'eyelink_edf';
manufacturer = 'SR Research';
content = 'eyetracker data (binary)';
% known Curry V2 file types
elseif filetype_check_extension(filename, '.sp0') || filetype_check_extension(filename, '.sp1') || filetype_check_extension(filename, '.sp2') || filetype_check_extension(filename, '.sp3') || filetype_check_extension(filename, '.sp4') || filetype_check_extension(filename, '.sp5') || filetype_check_extension(filename, '.sp6') || filetype_check_extension(filename, '.sp7') || filetype_check_extension(filename, '.sp8') || filetype_check_extension(filename, '.sp9')
type = 'curry_sp';
manufacturer = 'Curry';
content = 'point list';
elseif filetype_check_extension(filename, '.s10') || filetype_check_extension(filename, '.s11') || filetype_check_extension(filename, '.s12') || filetype_check_extension(filename, '.s13') || filetype_check_extension(filename, '.s14') || filetype_check_extension(filename, '.s15') || filetype_check_extension(filename, '.s16') || filetype_check_extension(filename, '.s17') || filetype_check_extension(filename, '.s18') || filetype_check_extension(filename, '.s19') || filetype_check_extension(filename, '.s20') || filetype_check_extension(filename, '.s21') || filetype_check_extension(filename, '.s22') || filetype_check_extension(filename, '.s23') || filetype_check_extension(filename, '.s24') || filetype_check_extension(filename, '.s25') || filetype_check_extension(filename, '.s26') || filetype_check_extension(filename, '.s27') || filetype_check_extension(filename, '.s28') || filetype_check_extension(filename, '.s29') || filetype_check_extension(filename, '.s30') || filetype_check_extension(filename, '.s31') || filetype_check_extension(filename, '.s32') || filetype_check_extension(filename, '.s33') || filetype_check_extension(filename, '.s34') || filetype_check_extension(filename, '.s35') || filetype_check_extension(filename, '.s36') || filetype_check_extension(filename, '.s37') || filetype_check_extension(filename, '.s38') || filetype_check_extension(filename, '.s39')
type = 'curry_s';
manufacturer = 'Curry';
content = 'triangle or tetraedra list';
elseif filetype_check_extension(filename, '.pom')
type = 'curry_pom';
manufacturer = 'Curry';
content = 'anatomical localization file';
elseif filetype_check_extension(filename, '.res')
type = 'curry_res';
manufacturer = 'Curry';
content = 'functional localization file';
% known MBFYS file types
elseif filetype_check_extension(filename, '.tri')
type = 'mbfys_tri';
manufacturer = 'MBFYS';
content = 'triangulated surface';
elseif filetype_check_extension(filename, '.ama') && filetype_check_header(filename, [10 0 0 0])
type = 'mbfys_ama';
manufacturer = 'MBFYS';
content = 'BEM volume conduction model';
% Electrical Geodesics Incorporated formats
% the egi_mff format is checked earlier
elseif (filetype_check_extension(filename, '.egis') || filetype_check_extension(filename, '.ave') || filetype_check_extension(filename, '.gave') || filetype_check_extension(filename, '.raw')) && (filetype_check_header(filename, [char(1) char(2) char(3) char(4) char(255) char(255)]) || filetype_check_header(filename, [char(3) char(4) char(1) char(2) char(255) char(255)]))
type = 'egi_egia';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'averaged EEG data';
elseif (filetype_check_extension(filename, '.egis') || filetype_check_extension(filename, '.ses') || filetype_check_extension(filename, '.raw')) && (filetype_check_header(filename, [char(1) char(2) char(3) char(4) char(0) char(3)]) || filetype_check_header(filename, [char(3) char(4) char(1) char(2) char(0) char(3)]))
type = 'egi_egis';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'raw EEG data';
elseif (filetype_check_extension(filename, '.sbin') || filetype_check_extension(filename, '.raw'))
% note that the Chieti MEG data format also has the extension *.raw
% but that can be detected by looking at the file header
type = 'egi_sbin';
manufacturer = 'Electrical Geodesics Incorporated';
content = 'averaged EEG data';
% FreeSurfer file formats, see also http://www.grahamwideman.com/gw/brain/fs/surfacefileformats.htm
elseif filetype_check_extension(filename, '.mgz')
type = 'freesurfer_mgz';
manufacturer = 'FreeSurfer';
content = 'anatomical MRI';
elseif filetype_check_header(filename, [255 255 254])
% FreeSurfer Triangle Surface Binary Format
type = 'freesurfer_triangle_binary'; % there is also an ascii triangle format
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_header(filename, [255 255 255])
% Quadrangle File
type = 'freesurfer_quadrangle'; % there is no ascii quadrangle format
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_header(filename, [255 255 253]) && ~exist([filename(1:(end-4)) '.mat'], 'file')
% "New" Quadrangle File
type = 'freesurfer_quadrangle_new';
manufacturer = 'FreeSurfer';
content = 'surface description';
elseif filetype_check_extension(filename, '.curv') && filetype_check_header(filename, [255 255 255])
% "New" Curv File
type = 'freesurfer_curv_new';
manufacturer = 'FreeSurfer';
content = 'surface description';
% some other known file types
elseif length(filename)>4 && exist([filename(1:(end-4)) '.mat'], 'file') && exist([filename(1:(end-4)) '.bin'], 'file')
% this is a self-defined FCDC data format, consisting of two files
% there is a matlab V6 file with the header and a binary file with the data (multiplexed, ieee-le, double)
type = 'fcdc_matbin';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'multiplexed electrophysiology data';
elseif filetype_check_extension(filename, '.lay')
type = 'layout';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'layout of channels for plotting';
elseif filetype_check_extension(filename, '.stl')
type = 'stl';
manufacturer = 'various';
content = 'stereo litography file';
elseif filetype_check_extension(filename, '.dcm') || filetype_check_extension(filename, '.ima') || filetype_check_header(filename, 'DICM', 128)
type = 'dicom';
manufacturer = 'Dicom';
content = 'image data';
elseif filetype_check_extension(filename, '.trl')
type = 'fcdc_trl';
manufacturer = 'Donders Centre for Cognitive Neuroimaging';
content = 'trial definitions';
elseif filetype_check_extension(filename, '.bdf') && filetype_check_header(filename, [255 'BIOSEMI'])
type = 'biosemi_bdf';
manufacturer = 'Biosemi Data Format';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.edf')
type = 'edf';
manufacturer = 'European Data Format';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.gdf') && filetype_check_header(filename, 'GDF')
type = 'gdf';
manufacturer = 'BIOSIG - Alois Schloegl';
content = 'biosignals';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB') && filetype_check_spmeeg_mat(filename)
type = 'spmeeg_mat';
manufacturer = 'Wellcome Trust Centre for Neuroimaging, UCL, UK';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB') && filetype_check_gtec_mat(filename)
type = 'gtec_mat';
manufacturer = 'Guger Technologies, http://www.gtec.at';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB') && filetype_check_ced_spike6mat(filename)
type = 'ced_spike6mat';
manufacturer = 'Cambridge Electronic Design Limited';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.mat') && filetype_check_header(filename, 'MATLAB')
type = 'matlab';
manufacturer = 'Matlab';
content = 'Matlab binary data';
elseif filetype_check_header(filename, 'RIFF', 0) && filetype_check_header(filename, 'WAVE', 8)
type = 'riff_wave';
manufacturer = 'Microsoft';
content = 'audio';
elseif filetype_check_extension(filename, '.txt')
type = 'ascii_txt';
manufacturer = '';
content = '';
elseif filetype_check_extension(filename, '.pol')
type = 'polhemus_fil';
manufacturer = 'Functional Imaging Lab, London, UK';
content = 'headshape points';
elseif filetype_check_extension(filename, '.set')
type = 'eeglab_set';
manufacturer = 'Swartz Center for Computational Neuroscience, San Diego, USA';
content = 'electrophysiological data';
elseif filetype_check_extension(filename, '.t') && filetype_check_header(filename, '%%BEGINHEADER')
type = 'mclust_t';
manufacturer = 'MClust';
content = 'sorted spikes';
elseif filetype_check_header(filename, 26)
type = 'nimh_cortex';
manufacturer = 'NIMH Laboratory of Neuropsychology, http://www.cortex.salk.edu';
content = 'events and eye channels';
elseif filetype_check_extension(filename, '.gii') && filetype_check_header(filename, '<?xml')
type = 'gifti';
manufacturer = 'Neuroimaging Informatics Technology Initiative';
content = 'tesselated surface description';
elseif filetype_check_extension(filename, '.v')
type = 'vista';
manufacturer = 'University of British Columbia, Canada, http://www.cs.ubc.ca/nest/lci/vista/vista.html';
content = 'A format for computer vision research, contains meshes or volumes';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% finished determining the filetype
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmp(type, 'unknown')
warning('could not determine filetype of %s', filename);
end
if ~isempty(desired)
% return a boolean value instead of a descriptive string
type = strcmp(type, desired);
end
% remember the current input and output arguments, so that they can be
% reused on a subsequent call in case the same input argument is given
current_argout = {type};
if isempty(previous_argin) && ~strcmp(type, 'unknown')
previous_argin = current_argin;
previous_argout = current_argout;
previous_pwd = current_pwd;
else
% don't remember in case unknown
previous_argin = [];
previous_argout = [];
previous_pwd = [];
end
return % filetype main()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that helps in deciding whether a directory with files should
% be treated as a "dataset". This function returns a logical 1 (TRUE) if more
% than half of the element of a vector are nonzero number or are 1 or TRUE.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = most(x)
x = x(~isnan(x(:)));
y = sum(x==0)<ceil(length(x)/2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that always returns a true value
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = filetype_true(varargin)
y = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks for CED spike6 mat file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_ced_spike6mat(filename)
res = 1;
var = whos('-file', filename);
% Check whether all the variables in the file are structs (representing channels)
if ~all(strcmp('struct', unique({var(:).class})) == 1)
res = 0;
return;
end
var = load(filename, var(1).name);
var = struct2cell(var);
% Check whether the fields of the first struct have some particular names
fnames = {
'title'
'comment'
'interval'
'scale'
'offset'
'units'
'start'
'length'
'values'
'times'
};
res = (numel(intersect(fieldnames(var{1}), fnames)) >= 5);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks for a SPM eeg/meg mat file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_spmeeg_mat(filename)
% check for the accompanying *.dat file
res = exist([filename(1:(end-4)) '.dat'], 'file');
if ~res, return; end
% check the content of the *.mat file
var = whos('-file', filename);
res = res && numel(var)==1;
res = res && strcmp('D', getfield(var, {1}, 'name'));
res = res && strcmp('struct', getfield(var, {1}, 'class'));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that checks for a GTEC mat file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = filetype_check_gtec_mat(filename)
% check the content of the *.mat file
var = whos('-file', filename);
res = length(intersect({'log', 'names'}, {var.name}))==2;
|
github
|
philippboehmsturm/antx-master
|
read_mff_bin.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_mff_bin.m
| 4,095 |
utf_8
|
14e1df31f92faf2b6f02cfe4a32060c9
|
function [output] = read_mff_bin(filename, begblock, endblock, chanindx)
% READ_MFF_BIN
%
% Use as
% [hdr] = read_mff_bin(filename)
% or
% [dat] = read_mff_bin(filename, begblock, endblock);
fid = fopen(filename,'r');
if fid == -1
error('wrong filename') % could not find signal(n)
end
needhdr = (nargin==1);
needdat = (nargin==4);
if needhdr
hdr = read_mff_block(fid, [], [], 'skip');
prevhdr = hdr(end);
for i=2:hdr.opthdr.nblocks
hdr(i) = read_mff_block(fid, prevhdr, [], 'skip');
prevhdr = hdr(end);
end
% assign the output variable
output = hdr;
elseif needdat
prevhdr = [];
dat = {};
block = 0;
while true
block = block+1;
if block<begblock
[hdr] = read_mff_block(fid, prevhdr, chanindx, 'skip');
prevhdr = hdr;
continue % with the next block
end
if block==begblock
[hdr, dat] = read_mff_block(fid, prevhdr, chanindx, 'read');
prevhdr = hdr;
continue % with the next block
end
if block<=endblock
[hdr, dat(:,end+1)] = read_mff_block(fid, prevhdr, chanindx, 'read');
prevhdr = hdr;
continue % with the next block
end
break % out of the while loop
end % while
% assign the output variable
output = dat;
end % need header or data
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hdr, dat] = read_mff_block(fid, prevhdr, chanindx, action)
if nargin<3
prevhdr = [];
end
if nargin<4
action = 'none';
end
%-Endianness
endian = 'ieee-le';
% General information
hdr.version = fread(fid, 1, 'int32', endian);
if hdr.version==0
% the header did not change compared to the previous one
% no additional information is present in the file
% the file continues with the actual data
hdr = prevhdr;
hdr.version = 0;
else
hdr.headersize = fread(fid, 1, 'int32', endian);
hdr.datasize = fread(fid, 1, 'int32', endian); % the documentation specified that this includes the data, but that seems not to be the case
hdr.nsignals = fread(fid, 1, 'int32', endian);
% channel-specific information
hdr.offset = fread(fid, hdr.nsignals, 'int32', endian);
% signal depth and frequency for each channel
for i = 1:hdr.nsignals
hdr.depth(i) = fread(fid, 1, 'int8', endian);
hdr.fsample(i) = fread(fid, 1, 'bit24', endian); %ingnie: is bit24 the same as int24?
end
%-Optional header length
hdr.optlength = fread(fid, 1, 'int32', endian);
if hdr.optlength
hdr.opthdr.EGItype = fread(fid, 1, 'int32', endian);
hdr.opthdr.nblocks = fread(fid, 1, 'int64', endian);
hdr.opthdr.nsamples = fread(fid, 1, 'int64', endian);
hdr.opthdr.nsignals = fread(fid, 1, 'int32', endian);
else
hdr.opthdr = [];
end
% determine the number of samples for each channel
hdr.nsamples = diff(hdr.offset);
% the last one has to be determined by looking at the total data block length
hdr.nsamples(end+1) = hdr.datasize - hdr.offset(end);
% divide by the number of bytes in each channel
hdr.nsamples = hdr.nsamples(:) ./ (hdr.depth(:)./8);
end % reading the rest of the header
switch action
case 'read'
dat = cell(length(chanindx), 1);
currchan = 1;
for i = 1:hdr.nsignals
switch hdr.depth(i) % length in bit
case 16
slen = 2; % sample length, for fseek
datatype = 'int16';
case 32
slen = 4; % sample length, for fseek
datatype = 'single';
case 64
slen = 8; % sample length, for fseek
datatype = 'double';
end % case
tmp = fread(fid, [1 hdr.nsamples(i)], datatype);
if ~isempty(intersect(chanindx,i)) %only keep channels that are requested
dat{currchan} = tmp;
currchan = currchan + 1;
end
end % for
case 'skip'
dat = {};
fseek(fid, hdr.datasize, 'cof');
case 'none'
dat = {};
return;
end % switch action
|
github
|
philippboehmsturm/antx-master
|
avw_img_read.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/avw_img_read.m
| 29,199 |
utf_8
|
95b0159897c31a2026a67ee3e54787a7
|
function [ avw, machine ] = avw_img_read(fileprefix,IMGorient,machine,verbose)
% avw_img_read - read Analyze format data image (*.img)
%
% [ avw, machine ] = avw_img_read(fileprefix,[orient],[machine],[verbose])
%
% fileprefix - a string, the filename without the .img extension
%
% orient - read a specified orientation, integer values:
%
% '', use header history orient field
% 0, transverse unflipped (LAS*)
% 1, coronal unflipped (LA*S)
% 2, sagittal unflipped (L*AS)
% 3, transverse flipped (LPS*)
% 4, coronal flipped (LA*I)
% 5, sagittal flipped (L*AI)
%
% where * follows the slice dimension and letters indicate +XYZ
% orientations (L left, R right, A anterior, P posterior,
% I inferior, & S superior).
%
% Some files may contain data in the 3-5 orientations, but this
% is unlikely. For more information about orientation, see the
% documentation at the end of this .m file. See also the
% AVW_FLIP function for orthogonal reorientation.
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le' but the routine
% will automatically switch between little and big
% endian to read any such Analyze header. It
% reports the appropriate machine format and can
% return the machine value.
%
% verbose - the default is to output processing information to the command
% window. If verbose = 0, this will not happen.
%
% Returned values:
%
% avw.hdr - a struct with image data parameters.
% avw.img - a 3D matrix of image data (double precision).
%
% A returned 3D matrix will correspond with the
% default ANALYZE coordinate system, which
% is Left-handed:
%
% X-Y plane is Transverse
% X-Z plane is Coronal
% Y-Z plane is Sagittal
%
% X axis runs from patient right (low X) to patient Left (high X)
% Y axis runs from posterior (low Y) to Anterior (high Y)
% Z axis runs from inferior (low Z) to Superior (high Z)
%
% The function can read a 4D Analyze volume, but only if it is in the
% axial unflipped orientation.
%
% See also: avw_hdr_read (called by this function),
% avw_view, avw_write, avw_img_write, avw_flip
%
% $Revision: 3197 $ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% The Analyze format is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
% 01/2003, [email protected]
% - adapted for matlab v5
% - revised all orientation information and handling
% after seeking further advice from AnalyzeDirect.com
% 03/2003, [email protected]
% - adapted for -ve pixdim values (non standard Analyze)
% 07/2004, [email protected], added ability to
% read volumes with dimensionality greather than 3.
% a >3D volume cannot be flipped. and error is thrown if a volume of
% greater than 3D (ie, avw.hdr.dime.dim(1) > 3) requests a data flip
% (ie, avw.hdr.hist.orient ~= 0 ). i pulled the transfer of read-in
% data (tmp) to avw.img out of any looping mechanism. looping is not
% necessary as the data is already in its correct orientation. using
% 'reshape' rather than looping should be faster but, more importantly,
% it allows the reading in of N-D volumes. See lines 270-280.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('IMGorient','var'), IMGorient = ''; end
if ~exist('machine','var'), machine = 'ieee-le'; end
if ~exist('verbose','var'), verbose = 1; end
if isempty(IMGorient), IMGorient = ''; end
if isempty(machine), machine = 'ieee-le'; end
if isempty(verbose), verbose = 1; end
if ~exist('fileprefix','var'),
msg = sprintf('...no input fileprefix - see help avw_img_read\n\n');
error(msg);
end
if findstr('.hdr',fileprefix),
fileprefix = strrep(fileprefix,'.hdr','');
end
if findstr('.img',fileprefix),
fileprefix = strrep(fileprefix,'.img','');
end
% MAIN
% Read the file header
[ avw, machine ] = avw_hdr_read(fileprefix,machine,verbose);
avw = read_image(avw,IMGorient,machine,verbose);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ avw ] = read_image(avw,IMGorient,machine,verbose)
fid = fopen(sprintf('%s.img',avw.fileprefix),'r',machine);
if fid < 0,
msg = sprintf('...cannot open file %s.img\n\n',avw.fileprefix);
error(msg);
end
if verbose,
ver = '[$Revision: 3197 $]';
fprintf('\nAVW_IMG_READ [v%s]\n',ver(12:16)); tic;
end
% short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */
% short int datatype /* Datatype for this image set */
% /*Acceptable values for datatype are*/
% #define DT_NONE 0
% #define DT_UNKNOWN 0 /*Unknown data type*/
% #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/
% #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/
% #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/
% #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/
% #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/
% #define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 floating point numbers)/*
% #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/
% #define DT_RGB 128 /*A Red-Green-Blue datatype*/
% #define DT_ALL 255 /*Undocumented*/
switch double(avw.hdr.dime.bitpix),
case 1, precision = 'bit1';
case 8, precision = 'uchar';
case 16, precision = 'int16';
case 32,
if isequal(avw.hdr.dime.datatype, 8), precision = 'int32';
else precision = 'single';
end
case 64, precision = 'double';
otherwise,
precision = 'uchar';
if verbose, fprintf('...precision undefined in header, using ''uchar''\n'); end
end
% read the whole .img file into matlab (faster)
if verbose,
fprintf('...reading %s Analyze %s image format.\n',machine,precision);
end
fseek(fid,0,'bof');
% adjust for matlab version
ver = version;
ver = str2num(ver(1));
if ver < 6,
tmp = fread(fid,inf,sprintf('%s',precision));
else,
tmp = fread(fid,inf,sprintf('%s=>double',precision));
end
fclose(fid);
% Update the global min and max values
avw.hdr.dime.glmax = max(double(tmp));
avw.hdr.dime.glmin = min(double(tmp));
%---------------------------------------------------------------
% Now partition the img data into xyz
% --- first figure out the size of the image
% short int dim[ ]; /* Array of the image dimensions */
%
% dim[0] Number of dimensions in database; usually 4.
% dim[1] Image X dimension; number of pixels in an image row.
% dim[2] Image Y dimension; number of pixel rows in slice.
% dim[3] Volume Z dimension; number of slices in a volume.
% dim[4] Time points; number of volumes in database.
PixelDim = double(avw.hdr.dime.dim(2));
RowDim = double(avw.hdr.dime.dim(3));
SliceDim = double(avw.hdr.dime.dim(4));
TimeDim = double(avw.hdr.dime.dim(5));
PixelSz = double(avw.hdr.dime.pixdim(2));
RowSz = double(avw.hdr.dime.pixdim(3));
SliceSz = double(avw.hdr.dime.pixdim(4));
TimeSz = double(avw.hdr.dime.pixdim(5));
% ---- NON STANDARD ANALYZE...
% Some Analyze files have been found to set -ve pixdim values, eg
% the MNI template avg152T1_brain in the FSL etc/standard folder,
% perhaps to indicate flipped orientation? If so, this code below
% will NOT handle the flip correctly!
if PixelSz < 0,
warning('X pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(2))');
PixelSz = abs(PixelSz);
avw.hdr.dime.pixdim(2) = single(PixelSz);
end
if RowSz < 0,
warning('Y pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(3))');
RowSz = abs(RowSz);
avw.hdr.dime.pixdim(3) = single(RowSz);
end
if SliceSz < 0,
warning('Z pixdim < 0 !!! resetting to abs(avw.hdr.dime.pixdim(4))');
SliceSz = abs(SliceSz);
avw.hdr.dime.pixdim(4) = single(SliceSz);
end
% ---- END OF NON STANDARD ANALYZE
% --- check the orientation specification and arrange img accordingly
if ~isempty(IMGorient),
if ischar(IMGorient),
avw.hdr.hist.orient = uint8(str2num(IMGorient));
else
avw.hdr.hist.orient = uint8(IMGorient);
end
end,
if isempty(avw.hdr.hist.orient),
msg = [ '...unspecified avw.hdr.hist.orient, using default 0\n',...
' (check image and try explicit IMGorient option).\n'];
fprintf(msg);
avw.hdr.hist.orient = uint8(0);
end
% --- check if the orientation is to be flipped for a volume with more
% --- than 3 dimensions. this logic is currently unsupported so throw
% --- an error. volumes of any dimensionality may be read in *only* as
% --- unflipped, ie, avw.hdr.hist.orient == 0
if ( TimeDim > 1 ) && (avw.hdr.hist.orient ~= 0 ),
msg = [ 'ERROR: This volume has more than 3 dimensions *and* ', ...
'requires flipping the data. Flipping is not supported ', ...
'for volumes with dimensionality greater than 3. Set ', ...
'avw.hdr.hist.orient = 0 and flip your volume after ', ...
'calling this function' ];
msg = sprintf( '%s (%s).', msg, mfilename );
error( msg );
end
switch double(avw.hdr.hist.orient),
case 0, % transverse unflipped
% orient = 0: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the posterior-anterior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
% For the 'transverse unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'y' axis - from patient posterior to anterior
% Slices in 'z' axis - from patient inferior to superior
if verbose, fprintf('...reading axial unflipped orientation\n'); end
% -- This code will handle nD files
dims = double( avw.hdr.dime.dim(2:end) );
% replace dimensions of 0 with 1 to be used in reshape
idx = find( dims == 0 );
dims( idx ) = 1;
avw.img = reshape( tmp, dims );
% -- The code above replaces this
% avw.img = zeros(PixelDim,RowDim,SliceDim);
%
% n = 1;
% x = 1:PixelDim;
% for z = 1:SliceDim,
% for y = 1:RowDim,
% % load Y row of X values into Z slice avw.img
% avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
% n = n + PixelDim;
% end
% end
% no need to rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
case 1, % coronal unflipped
% orient = 1: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the inferior-superior extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
% For the 'coronal unflipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to left
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'y' axis - from patient posterior to anterior
if verbose, fprintf('...reading coronal unflipped orientation\n'); end
avw.img = zeros(PixelDim,SliceDim,RowDim);
n = 1;
x = 1:PixelDim;
for y = 1:SliceDim,
for z = 1:RowDim,
% load Z row of X values into Y slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([PixelDim,SliceDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,SliceSz,RowSz]);
case 2, % sagittal unflipped
% orient = 2: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the inferior-superior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
% For the 'sagittal unflipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to anterior
% Rows in 'z' axis - from patient inferior to superior
% Slices in 'x' axis - from patient right to left
if verbose, fprintf('...reading sagittal unflipped orientation\n'); end
avw.img = zeros(SliceDim,PixelDim,RowDim);
n = 1;
y = 1:PixelDim; % posterior to anterior (fastest)
for x = 1:SliceDim, % right to left (slowest)
for z = 1:RowDim, % inferior to superior
% load Z row of Y values into X slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([SliceDim,PixelDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([SliceSz,PixelSz,RowSz]);
%--------------------------------------------------------------------------------
% Orient values 3-5 have the second index reversed in order, essentially
% 'flipping' the images relative to what would most likely become the vertical
% axis of the displayed image.
%--------------------------------------------------------------------------------
case 3, % transverse/axial flipped
% orient = 3: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the *anterior-posterior* extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
% For the 'transverse flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to Left
% Rows in 'y' axis - from patient anterior to Posterior *
% Slices in 'z' axis - from patient inferior to Superior
if verbose, fprintf('...reading axial flipped (+Y from Anterior to Posterior)\n'); end
avw.img = zeros(PixelDim,RowDim,SliceDim);
n = 1;
x = 1:PixelDim;
for z = 1:SliceDim,
for y = RowDim:-1:1, % flip in Y, read A2P file into P2A 3D matrix
% load a flipped Y row of X values into Z slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% no need to rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
case 4, % coronal flipped
% orient = 4: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the *superior-inferior* extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
% For the 'coronal flipped' type, the voxels are stored with
% Pixels in 'x' axis (varies fastest) - from patient right to Left
% Rows in 'z' axis - from patient superior to Inferior*
% Slices in 'y' axis - from patient posterior to Anterior
if verbose, fprintf('...reading coronal flipped (+Z from Superior to Inferior)\n'); end
avw.img = zeros(PixelDim,SliceDim,RowDim);
n = 1;
x = 1:PixelDim;
for y = 1:SliceDim,
for z = RowDim:-1:1, % flip in Z, read S2I file into I2S 3D matrix
% load a flipped Z row of X values into Y slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([PixelDim,SliceDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([PixelSz,SliceSz,RowSz]);
case 5, % sagittal flipped
% orient = 5: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the *superior-inferior* extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
% For the 'sagittal flipped' type, the voxels are stored with
% Pixels in 'y' axis (varies fastest) - from patient posterior to Anterior
% Rows in 'z' axis - from patient superior to Inferior*
% Slices in 'x' axis - from patient right to Left
if verbose, fprintf('...reading sagittal flipped (+Z from Superior to Inferior)\n'); end
avw.img = zeros(SliceDim,PixelDim,RowDim);
n = 1;
y = 1:PixelDim;
for x = 1:SliceDim,
for z = RowDim:-1:1, % flip in Z, read S2I file into I2S 3D matrix
% load a flipped Z row of Y values into X slice avw.img
avw.img(x,y,z) = tmp(n:n+(PixelDim-1));
n = n + PixelDim;
end
end
% rearrange avw.hdr.dime.dim or avw.hdr.dime.pixdim
avw.hdr.dime.dim(2:4) = int16([SliceDim,PixelDim,RowDim]);
avw.hdr.dime.pixdim(2:4) = single([SliceSz,PixelSz,RowSz]);
otherwise
error('unknown value in avw.hdr.hist.orient, try explicit IMGorient option.');
end
if verbose, t=toc; fprintf('...done (%5.2f sec).\n\n',t); end
return
% This function attempts to read the orientation of the
% Analyze file according to the hdr.hist.orient field of the
% header. Unfortunately, this field is optional and not
% all programs will set it correctly, so there is no guarantee,
% that the data loaded will be correctly oriented. If necessary,
% experiment with the 'orient' option to read the .img
% data into the 3D matrix of avw.img as preferred.
%
% (Conventions gathered from e-mail with [email protected])
%
% 0 transverse unflipped
% X direction first, progressing from patient right to left,
% Y direction second, progressing from patient posterior to anterior,
% Z direction third, progressing from patient inferior to superior.
% 1 coronal unflipped
% X direction first, progressing from patient right to left,
% Z direction second, progressing from patient inferior to superior,
% Y direction third, progressing from patient posterior to anterior.
% 2 sagittal unflipped
% Y direction first, progressing from patient posterior to anterior,
% Z direction second, progressing from patient inferior to superior,
% X direction third, progressing from patient right to left.
% 3 transverse flipped
% X direction first, progressing from patient right to left,
% Y direction second, progressing from patient anterior to posterior,
% Z direction third, progressing from patient inferior to superior.
% 4 coronal flipped
% X direction first, progressing from patient right to left,
% Z direction second, progressing from patient superior to inferior,
% Y direction third, progressing from patient posterior to anterior.
% 5 sagittal flipped
% Y direction first, progressing from patient posterior to anterior,
% Z direction second, progressing from patient superior to inferior,
% X direction third, progressing from patient right to left.
%----------------------------------------------------------------------------
% From ANALYZE documentation...
%
% The ANALYZE coordinate system has an origin in the lower left
% corner. That is, with the subject lying supine, the coordinate
% origin is on the right side of the body (x), at the back (y),
% and at the feet (z). This means that:
%
% +X increases from right (R) to left (L)
% +Y increases from the back (posterior,P) to the front (anterior, A)
% +Z increases from the feet (inferior,I) to the head (superior, S)
%
% The LAS orientation is the radiological convention, where patient
% left is on the image right. The alternative neurological
% convention is RAS (also Talairach convention).
%
% A major advantage of the Analzye origin convention is that the
% coordinate origin of each orthogonal orientation (transverse,
% coronal, and sagittal) lies in the lower left corner of the
% slice as it is displayed.
%
% Orthogonal slices are numbered from one to the number of slices
% in that orientation. For example, a volume (x, y, z) dimensioned
% 128, 256, 48 has:
%
% 128 sagittal slices numbered 1 through 128 (X)
% 256 coronal slices numbered 1 through 256 (Y)
% 48 transverse slices numbered 1 through 48 (Z)
%
% Pixel coordinates are made with reference to the slice numbers from
% which the pixels come. Thus, the first pixel in the volume is
% referenced p(1,1,1) and not at p(0,0,0).
%
% Transverse slices are in the XY plane (also known as axial slices).
% Sagittal slices are in the ZY plane.
% Coronal slices are in the ZX plane.
%
%----------------------------------------------------------------------------
%----------------------------------------------------------------------------
% E-mail from [email protected]
%
% The 'orient' field in the data_history structure specifies the primary
% orientation of the data as it is stored in the file on disk. This usually
% corresponds to the orientation in the plane of acquisition, given that this
% would correspond to the order in which the data is written to disk by the
% scanner or other software application. As you know, this field will contain
% the values:
%
% orient = 0 transverse unflipped
% 1 coronal unflipped
% 2 sagittal unflipped
% 3 transverse flipped
% 4 coronal flipped
% 5 sagittal flipped
%
% It would be vary rare that you would ever encounter any old Analyze 7.5
% files that contain values of 'orient' which indicate that the data has been
% 'flipped'. The 'flipped flag' values were really only used internal to
% Analyze to precondition data for fast display in the Movie module, where the
% images were actually flipped vertically in order to accommodate the raster
% paint order on older graphics devices. The only cases you will encounter
% will have values of 0, 1, or 2.
%
% As mentioned, the 'orient' flag only specifies the primary orientation of
% data as stored in the disk file itself. It has nothing to do with the
% representation of the data in the 3D Analyze coordinate system, which always
% has a fixed representation to the data. The meaning of the 'orient' values
% should be interpreted as follows:
%
% orient = 0: The primary orientation of the data on disk is in the
% transverse plane relative to the object scanned. Most commonly, the fastest
% moving index through the voxels that are part of this transverse image would
% span the right-left extent of the structure imaged, with the next fastest
% moving index spanning the posterior-anterior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the X-Y plane of the 3D Analyze Coordinate System, with the Z dimension
% being the slice direction.
%
% orient = 1: The primary orientation of the data on disk is in the coronal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this coronal image would span the
% right-left extent of the structure imaged, with the next fastest moving
% index spanning the inferior-superior extent of the structure. This 'orient'
% flag would indicate to Analyze that this data should be placed in the X-Z
% plane of the 3D Analyze Coordinate System, with the Y dimension being the
% slice direction.
%
% orient = 2: The primary orientation of the data on disk is in the sagittal
% plane relative to the object scanned. Most commonly, the fastest moving
% index through the voxels that are part of this sagittal image would span the
% posterior-anterior extent of the structure imaged, with the next fastest
% moving index spanning the inferior-superior extent of the structure. This
% 'orient' flag would indicate to Analyze that this data should be placed in
% the Y-Z plane of the 3D Analyze Coordinate System, with the X dimension
% being the slice direction.
%
% Orient values 3-5 have the second index reversed in order, essentially
% 'flipping' the images relative to what would most likely become the vertical
% axis of the displayed image.
%
% Hopefully you understand the difference between the indication this 'orient'
% flag has relative to data stored on disk and the full 3D Analyze Coordinate
% System for data that is managed as a volume image. As mentioned previously,
% the orientation of patient anatomy in the 3D Analyze Coordinate System has a
% fixed orientation relative to each of the orthogonal axes. This orientation
% is completely described in the information that is attached, but the basics
% are:
%
% Left-handed coordinate system
%
% X-Y plane is Transverse
% X-Z plane is Coronal
% Y-Z plane is Sagittal
%
% X axis runs from patient right (low X) to patient left (high X)
% Y axis runs from posterior (low Y) to anterior (high Y)
% Z axis runs from inferior (low Z) to superior (high Z)
%
%----------------------------------------------------------------------------
%----------------------------------------------------------------------------
% SPM2 NOTES from spm2 webpage: One thing to watch out for is the image
% orientation. The proper Analyze format uses a left-handed co-ordinate
% system, whereas Talairach uses a right-handed one. In SPM99, images were
% flipped at the spatial normalisation stage (from one co-ordinate system
% to the other). In SPM2b, a different approach is used, so that either a
% left- or right-handed co-ordinate system is used throughout. The SPM2b
% program is told about the handedness that the images are stored with by
% the spm_flip_analyze_images.m function and the defaults.analyze.flip
% parameter that is specified in the spm_defaults.m file. These files are
% intended to be customised for each site. If you previously used SPM99
% and your images were flipped during spatial normalisation, then set
% defaults.analyze.flip=1. If no flipping took place, then set
% defaults.analyze.flip=0. Check that when using the Display facility
% (possibly after specifying some rigid-body rotations) that:
%
% The top-left image is coronal with the top (superior) of the head displayed
% at the top and the left shown on the left. This is as if the subject is viewed
% from behind.
%
% The bottom-left image is axial with the front (anterior) of the head at the
% top and the left shown on the left. This is as if the subject is viewed from above.
%
% The top-right image is sagittal with the front (anterior) of the head at the
% left and the top of the head shown at the top. This is as if the subject is
% viewed from the left.
%----------------------------------------------------------------------------
|
github
|
philippboehmsturm/antx-master
|
read_yokogawa_event.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_yokogawa_event.m
| 5,370 |
utf_8
|
55b961f29b8780d52b938417cfb5064b
|
function [event] = read_yokogawa_event(filename, varargin)
% READ_YOKOGAWA_EVENT reads event information from continuous,
% epoched or averaged MEG data that has been generated by the Yokogawa
% MEG system and software and allows those events to be used in
% combination with FieldTrip.
%
% Use as
% [event] = read_yokogawa_event(filename)
%
% See also READ_YOKOGAWA_HEADER, READ_YOKOGAWA_DATA
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_yokogawa_event.m 3376 2011-04-22 12:45:14Z roboos $
% ensure that the required toolbox is on the path
ft_hastoolbox('yokogawa', 1);
event = [];
handles = definehandles;
% get the options, the default is set below
trigindx = keyval('trigindx', varargin);
threshold = keyval('threshold', varargin);
detectflank = keyval('detectflank', varargin);
% read the dataset header
hdr = read_yokogawa_header(filename);
% determine the trigger channels (if not specified by the user)
if isempty(trigindx)
trigindx = find(hdr.orig.channel_info(:,2)==handles.TriggerChannel);
end
if hdr.orig.acq_type==handles.AcqTypeEvokedRaw
% read the trigger id from all trials
fid = fopen(filename, 'r');
value = GetMeg160TriggerEventM(fid);
fclose(fid);
% use the standard FieldTrip header for trial events
% make an event for each trial as defined in the header
for i=1:hdr.nTrials
event(end+1).type = 'trial';
event(end ).sample = (i-1)*hdr.nSamples + 1;
event(end ).offset = -hdr.nSamplesPre;
event(end ).duration = hdr.nSamples;
if ~isempty(value)
event(end ).value = value(i);
end
end
elseif hdr.orig.acq_type==handles.AcqTypeEvokedAve
% make an event for the average
event(1).type = 'average';
event(1).sample = 1;
event(1).offset = -hdr.nSamplesPre;
event(1).duration = hdr.nSamples;
elseif hdr.orig.acq_type==handles.AcqTypeContinuousRaw
% the data structure does not contain events, but flank detection on the trigger channel might reveal them
% this is done below for all formats
end
% read the trigger channels and detect the flanks
if ~isempty(trigindx)
trigger = read_trigger(filename, 'header', hdr, 'denoise', false, 'chanindx', trigindx, 'detectflank', detectflank, 'threshold', threshold);
% combine the triggers and the other events
event = appendevent(event, trigger);
end
if isempty(event)
warning('no triggers were detected, please specify the "trigindx" option');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this defines some usefull constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function handles = definehandles;
handles.output = [];
handles.sqd_load_flag = false;
handles.mri_load_flag = false;
handles.NullChannel = 0;
handles.MagnetoMeter = 1;
handles.AxialGradioMeter = 2;
handles.PlannerGradioMeter = 3;
handles.RefferenceChannelMark = hex2dec('0100');
handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter );
handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter );
handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter );
handles.TriggerChannel = -1;
handles.EegChannel = -2;
handles.EcgChannel = -3;
handles.EtcChannel = -4;
handles.NonMegChannelNameLength = 32;
handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length
handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter
handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length
handles.AcqTypeContinuousRaw = 1;
handles.AcqTypeEvokedAve = 2;
handles.AcqTypeEvokedRaw = 3;
handles.sqd = [];
handles.sqd.selected_start = [];
handles.sqd.selected_end = [];
handles.sqd.axialgradiometer_ch_no = [];
handles.sqd.axialgradiometer_ch_info = [];
handles.sqd.axialgradiometer_data = [];
handles.sqd.plannergradiometer_ch_no = [];
handles.sqd.plannergradiometer_ch_info = [];
handles.sqd.plannergradiometer_data = [];
handles.sqd.eegchannel_ch_no = [];
handles.sqd.eegchannel_data = [];
handles.sqd.nullchannel_ch_no = [];
handles.sqd.nullchannel_data = [];
handles.sqd.selected_time = [];
handles.sqd.sample_rate = [];
handles.sqd.sample_count = [];
handles.sqd.pretrigger_length = [];
handles.sqd.matching_info = [];
handles.sqd.source_info = [];
handles.sqd.mri_info = [];
handles.mri = [];
|
github
|
philippboehmsturm/antx-master
|
read_4d_hdr.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_4d_hdr.m
| 24,610 |
utf_8
|
cad6b4858a59c73cbe1a5187692d794d
|
function [header] = read_4d_hdr(datafile, configfile)
% hdr=READ_4D_HDR(datafile, configfile)
% Collects the required Fieldtrip header data from the data file 'filename'
% and the associated 'config' file for that data.
%
% Adapted from the MSI>>Matlab code written by Eugene Kronberg
% Copyright (C) 2008-2009, Centre for Cognitive Neuroimaging, Glasgow, Gavin Paterson & J.M.Schoffelen
% Copyright (C) 2010-2011, Donders Institute for Brain, Cognition and Behavior, J.M.Schoffelen
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_4d_hdr.m 3328 2011-04-11 11:56:57Z jansch $
%read header
if nargin ~= 2
[path, file, ext] = fileparts(datafile);
configfile = fullfile(path, 'config');
end
if ~isempty(datafile),
%always big endian
fid = fopen(datafile, 'r', 'b');
if fid == -1
error('Cannot open file %s', datafile);
end
fseek(fid, 0, 'eof');
header_end = ftell(fid);
%last 8 bytes of the pdf is header offset
fseek(fid, -8, 'eof');
header_offset = fread(fid,1,'uint64');
%first byte of the header
fseek(fid, header_offset, 'bof');
% read header data
align_file_pointer(fid)
header.header_data.FileType = fread(fid, 1, 'uint16=>uint16');
file_type = char(fread(fid, 5, 'uchar'))';
header.header_data.file_type = file_type(file_type>0);
fseek(fid, 1, 'cof');
format = fread(fid, 1, 'int16=>int16');
switch format
case 1
header.header_data.Format = 'SHORT';
case 2
header.header_data.Format = 'LONG';
case 3
header.header_data.Format = 'FLOAT';
case 4
header.header_data.Format ='DOUBLE';
end
header.header_data.acq_mode = fread(fid, 1, 'uint16=>uint16');
header.header_data.TotalEpochs = fread(fid, 1, 'uint32=>double');
header.header_data.input_epochs = fread(fid, 1, 'uint32=>uint32');
header.header_data.TotalEvents = fread(fid, 1, 'uint32=>uint32');
header.header_data.total_fixed_events = fread(fid, 1, 'uint32=>uint32');
header.header_data.SamplePeriod = fread(fid, 1, 'float32=>float64');
header.header_data.SampleFrequency = 1/header.header_data.SamplePeriod;
xaxis_label = char(fread(fid, 16, 'uchar'))';
header.header_data.xaxis_label = xaxis_label(xaxis_label>0);
header.header_data.total_processes = fread(fid, 1, 'uint32=>uint32');
header.header_data.TotalChannels = fread(fid, 1, 'uint16=>double');
fseek(fid, 2, 'cof');
header.header_data.checksum = fread(fid, 1, 'int32=>int32');
header.header_data.total_ed_classes = fread(fid, 1, 'uint32=>uint32');
header.header_data.total_associated_files = fread(fid, 1, 'uint16=>uint16');
header.header_data.last_file_index = fread(fid, 1, 'uint16=>uint16');
header.header_data.timestamp = fread(fid, 1, 'uint32=>uint32');
header.header_data.reserved = fread(fid, 20, 'uchar')';
fseek(fid, 4, 'cof');
%read epoch_data
for epoch = 1:header.header_data.TotalEpochs;
align_file_pointer(fid)
header.epoch_data(epoch).pts_in_epoch = fread(fid, 1, 'uint32=>uint32');
header.epoch_data(epoch).epoch_duration = fread(fid, 1, 'float32=>float32');
header.epoch_data(epoch).expected_iti = fread(fid, 1, 'float32=>float32');
header.epoch_data(epoch).actual_iti = fread(fid, 1, 'float32=>float32');
header.epoch_data(epoch).total_var_events = fread(fid, 1, 'uint32=>uint32');
header.epoch_data(epoch).checksum = fread(fid, 1, 'int32=>int32');
header.epoch_data(epoch).epoch_timestamp = fread(fid, 1, 'int32=>int32');
header.epoch_data(epoch).reserved = fread(fid, 28, 'uchar')';
header.header_data.SlicesPerEpoch = double(header.epoch_data(1).pts_in_epoch);
%read event data (var_events)
for event = 1:header.epoch_data(epoch).total_var_events
align_file_pointer(fid)
event_name = char(fread(fid, 16, 'uchar'))';
header.epoch_data(epoch).var_event{event}.event_name = event_name(event_name>0);
header.epoch_data(epoch).var_event{event}.start_lat = fread(fid, 1, 'float32=>float32');
header.epoch_data(epoch).var_event{event}.end_lat = fread(fid, 1, 'float32=>float32');
header.epoch_data(epoch).var_event{event}.step_size = fread(fid, 1, 'float32=>float32');
header.epoch_data(epoch).var_event{event}.fixed_event = fread(fid, 1, 'uint16=>uint16');
fseek(fid, 2, 'cof');
header.epoch_data(epoch).var_event{event}.checksum = fread(fid, 1, 'int32=>int32');
header.epoch_data(epoch).var_event{event}.reserved = fread(fid, 32, 'uchar')';
fseek(fid, 4, 'cof');
end
end
%read channel ref data
for channel = 1:header.header_data.TotalChannels
align_file_pointer(fid)
chan_label = (fread(fid, 16, 'uint8=>char'))';
header.channel_data(channel).chan_label = chan_label(chan_label>0);
header.channel_data(channel).chan_no = fread(fid, 1, 'uint16=>uint16');
header.channel_data(channel).attributes = fread(fid, 1, 'uint16=>uint16');
header.channel_data(channel).scale = fread(fid, 1, 'float32=>float32');
yaxis_label = char(fread(fid, 16, 'uint8=>char'))';
header.channel_data(channel).yaxis_label = yaxis_label(yaxis_label>0);
header.channel_data(channel).valid_min_max = fread(fid, 1, 'uint16=>uint16');
fseek(fid, 6, 'cof');
header.channel_data(channel).ymin = fread(fid, 1, 'float64');
header.channel_data(channel).ymax = fread(fid, 1, 'float64');
header.channel_data(channel).index = fread(fid, 1, 'uint32=>uint32');
header.channel_data(channel).checksum = fread(fid, 1, 'int32=>int32');
header.channel_data(channel).whatisit = char(fread(fid, 4, 'uint8=>char'))';
header.channel_data(channel).reserved = fread(fid, 28, 'uint8')';
end
%read event data
for event = 1:header.header_data.total_fixed_events
align_file_pointer(fid)
event_name = char(fread(fid, 16, 'uchar'))';
header.event_data(event).event_name = event_name(event_name>0);
header.event_data(event).start_lat = fread(fid, 1, 'float32=>float32');
header.event_data(event).end_lat = fread(fid, 1, 'float32=>float32');
header.event_data(event).step_size = fread(fid, 1, 'float32=>float32');
header.event_data(event).fixed_event = fread(fid, 1, 'uint16=>uint16');
fseek(fid, 2, 'cof');
header.event_data(event).checksum = fread(fid, 1, 'int32=>int32');
header.event_data(event).reserved = fread(fid, 32, 'uchar')';
fseek(fid, 4, 'cof');
end
header.header_data.FirstLatency = double(header.event_data(1).start_lat);
%experimental: read process information
for np = 1:header.header_data.total_processes
align_file_pointer(fid)
nbytes = fread(fid, 1, 'uint32=>uint32');
fp = ftell(fid);
header.process(np).hdr.nbytes = nbytes;
type = char(fread(fid, 20, 'uchar'))';
header.process(np).hdr.type = type(type>0);
header.process(np).hdr.checksum = fread(fid, 1, 'int32=>int32');
user = char(fread(fid, 32, 'uchar'))';
header.process(np).user = user(user>0);
header.process(np).timestamp = fread(fid, 1, 'uint32=>uint32');
fname = char(fread(fid, 32, 'uchar'))';
header.process(np).filename = fname(fname>0);
fseek(fid, 28*8, 'cof'); %dont know
header.process(np).totalsteps = fread(fid, 1, 'uint32=>uint32');
header.process(np).checksum = fread(fid, 1, 'int32=>int32');
header.process(np).reserved = fread(fid, 32, 'uchar')';
for ns = 1:header.process(np).totalsteps
align_file_pointer(fid)
nbytes2 = fread(fid, 1, 'uint32=>uint32');
header.process(np).step(ns).hdr.nbytes = nbytes2;
type = char(fread(fid, 20, 'uchar'))';
header.process(np).step(ns).hdr.type = type(type>0); %dont know how to interpret the first two
header.process(np).step(ns).hdr.checksum = fread(fid, 1, 'int32=>int32');
userblocksize = fread(fid, 1, 'int32=>int32'); %we are at 32 bytes here
header.process(np).step(ns).userblocksize = userblocksize;
fseek(fid, nbytes2 - 32, 'cof');
if strcmp(header.process(np).step(ns).hdr.type, 'PDF_Weight_Table'),
warning('reading in weight table: no warranty that this is correct. it seems to work for the Glasgow 248-magnetometer system. if you have some code yourself, and/or would like to test it on your own data, please contact Jan-Mathijs');
tmpfp = ftell(fid);
tmp = fread(fid, 1, 'uint8');
Nchan = fread(fid, 1, 'uint32');
Nref = fread(fid, 1, 'uint32');
for k = 1:Nref
name = fread(fid, 17, 'uchar'); %strange number, but seems to be true
header.process(np).step(ns).RefChan{k,1} = char(name(name>0))';
end
fseek(fid, 152, 'cof');
for k = 1:Nchan
name = fread(fid, 17, 'uchar');
header.process(np).step(ns).Chan{k,1} = char(name(name>0))';
end
%fseek(fid, 20, 'cof');
%fseek(fid, 4216, 'cof');
header.process(np).step(ns).stuff1 = fread(fid, 4236, 'uint8');
name = fread(fid, 16, 'uchar');
header.process(np).step(ns).Creator = char(name(name>0))';
%some stuff I don't understand yet
%fseek(fid, 136, 'cof');
header.process(np).step(ns).stuff2 = fread(fid, 136, 'uint8');
%now something strange is going to happen: the weights are probably little-endian encoded.
%here we go: check whether this applies to the whole PDF weight table
fp = ftell(fid);
fclose(fid);
fid = fopen(datafile, 'r', 'l');
fseek(fid, fp, 'bof');
for k = 1:Nchan
header.process(np).step(ns).Weights(k,:) = fread(fid, 23, 'float32=>float32')';
fseek(fid, 36, 'cof');
end
else
if userblocksize < 1e6,
%for one reason or another userblocksize can assume strangely high values
fseek(fid, userblocksize, 'cof');
end
end
end
end
fclose(fid);
end
%end read header
%read config file
fid = fopen(configfile, 'r', 'b');
if fid == -1
error('Cannot open config file');
end
header.config_data.version = fread(fid, 1, 'uint16=>uint16');
site_name = char(fread(fid, 32, 'uchar'))';
header.config_data.site_name = site_name(site_name>0);
dap_hostname = char(fread(fid, 16, 'uchar'))';
header.config_data.dap_hostname = dap_hostname(dap_hostname>0);
header.config_data.sys_type = fread(fid, 1, 'uint16=>uint16');
header.config_data.sys_options = fread(fid, 1, 'uint32=>uint32');
header.config_data.supply_freq = fread(fid, 1, 'uint16=>uint16');
header.config_data.total_chans = fread(fid, 1, 'uint16=>uint16');
header.config_data.system_fixed_gain = fread(fid, 1, 'float32=>float32');
header.config_data.volts_per_bit = fread(fid, 1, 'float32=>float32');
header.config_data.total_sensors = fread(fid, 1, 'uint16=>uint16');
header.config_data.total_user_blocks = fread(fid, 1, 'uint16=>uint16');
header.config_data.next_derived_channel_number = fread(fid, 1, 'uint16=>uint16');
fseek(fid, 2, 'cof');
header.config_data.checksum = fread(fid, 1, 'int32=>int32');
header.config_data.reserved = fread(fid, 32, 'uchar=>uchar')';
header.config.Xfm = fread(fid, [4 4], 'double');
%user blocks
for ub = 1:header.config_data.total_user_blocks
align_file_pointer(fid)
header.user_block_data{ub}.hdr.nbytes = fread(fid, 1, 'uint32=>uint32');
type = char(fread(fid, 20, 'uchar'))';
header.user_block_data{ub}.hdr.type = type(type>0);
header.user_block_data{ub}.hdr.checksum = fread(fid, 1, 'int32=>int32');
user = char(fread(fid, 32, 'uchar'))';
header.user_block_data{ub}.user = user(user>0);
header.user_block_data{ub}.timestamp = fread(fid, 1, 'uint32=>uint32');
header.user_block_data{ub}.user_space_size = fread(fid, 1, 'uint32=>uint32');
header.user_block_data{ub}.reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
user_space_size = double(header.user_block_data{ub}.user_space_size);
if strcmp(type(type>0), 'B_weights_used'),
%warning('reading in weight table: no warranty that this is correct. it seems to work for the Glasgow 248-magnetometer system. if you have some code yourself, and/or would like to test it on your own data, please contact Jan-Mathijs');
tmpfp = ftell(fid);
%read user_block_data weights
%there is information in the 4th and 8th byte, these might be related to the settings?
version = fread(fid, 1, 'uint32');
header.user_block_data{ub}.version = version;
if version==1,
Nbytes = fread(fid,1,'uint32');
Nchan = fread(fid,1,'uint32');
Position = fread(fid, 32, 'uchar');
header.user_block_data{ub}.position = char(Position(Position>0))';
fseek(fid,tmpfp+user_space_size - Nbytes*Nchan, 'bof');
Ndigital = floor((Nbytes - 4*2) / 4);
Nanalog = 3; %lucky guess?
% how to know number of analog weights vs digital weights???
for ch = 1:Nchan
% for Konstanz -- comment for others?
header.user_block_data{ub}.aweights(ch,:) = fread(fid, [1 Nanalog], 'int16')';
fseek(fid,2,'cof'); % alignment
header.user_block_data{ub}.dweights(ch,:) = fread(fid, [1 Ndigital], 'single=>double')';
end
fseek(fid, tmpfp, 'bof');
%there is no information with respect to the channels here.
%the best guess would be to assume the order identical to the order in header.config.channel_data
%for the digital weights it would be the order of the references in that list
%for the analog weights I would not know
elseif version==2,
unknown2 = fread(fid, 1, 'uint32');
Nchan = fread(fid, 1, 'uint32');
Position = fread(fid, 32, 'uchar');
header.user_block_data{ub}.position = char(Position(Position>0))';
fseek(fid, tmpfp+124, 'bof');
Nanalog = fread(fid, 1, 'uint32');
Ndigital = fread(fid, 1, 'uint32');
fseek(fid, tmpfp+204, 'bof');
for k = 1:Nchan
Name = fread(fid, 16, 'uchar');
header.user_block_data{ub}.channames{k,1} = char(Name(Name>0))';
end
for k = 1:Nanalog
Name = fread(fid, 16, 'uchar');
header.user_block_data{ub}.arefnames{k,1} = char(Name(Name>0))';
end
for k = 1:Ndigital
Name = fread(fid, 16, 'uchar');
header.user_block_data{ub}.drefnames{k,1} = char(Name(Name>0))';
end
header.user_block_data{ub}.dweights = fread(fid, [Ndigital Nchan], 'single=>double')';
header.user_block_data{ub}.aweights = fread(fid, [Nanalog Nchan], 'int16')';
fseek(fid, tmpfp, 'bof');
end
elseif strcmp(type(type>0), 'B_E_table_used'),
%warning('reading in weight table: no warranty that this is correct');
%tmpfp = ftell(fid);
%fseek(fid, 4, 'cof'); %there's info here dont know how to interpret
%Nx = fread(fid, 1, 'uint32');
%Nchan = fread(fid, 1, 'uint32');
%type = fread(fid, 32, 'uchar'); %don't know whether correct
%header.user_block_data{ub}.type = char(type(type>0))';
%fseek(fid, 16, 'cof');
%for k = 1:Nchan
% name = fread(fid, 16, 'uchar');
% header.user_block_data{ub}.name{k,1} = char(name(name>0))';
%end
elseif strcmp(type(type>0), 'B_COH_Points'),
tmpfp = ftell(fid);
Ncoil = fread(fid, 1, 'uint32');
N = fread(fid, 1, 'uint32');
coils = fread(fid, [7 Ncoil], 'double');
header.user_block_data{ub}.pnt = coils(1:3,:)';
header.user_block_data{ub}.ori = coils(4:6,:)';
header.user_block_data{ub}.Ncoil = Ncoil;
header.user_block_data{ub}.N = N;
tmp = fread(fid, (904-288)/8, 'double');
header.user_block_data{ub}.tmp = tmp; %FIXME try to find out what these bytes mean
fseek(fid, tmpfp, 'bof');
elseif strcmp(type(type>0), 'b_ccp_xfm_block'),
tmpfp = ftell(fid);
tmp1 = fread(fid, 1, 'uint32');
%tmp = fread(fid, [4 4], 'double');
%tmp = fread(fid, [4 4], 'double');
%the next part seems to be in little endian format (at least when I tried)
tmp = fread(fid, 128, 'uint8');
tmp = uint8(reshape(tmp, [8 16])');
xfm = zeros(4,4);
for k = 1:size(tmp,1)
xfm(k) = typecast(tmp(k,:), 'double');
if abs(xfm(k))<1e-10 | abs(xfm(k))>1e10, xfm(k) = typecast(fliplr(tmp(k,:)), 'double');end
end
fseek(fid, tmpfp, 'bof'); %FIXME try to find out why this looks so strange
elseif strcmp(type(type>0), 'b_eeg_elec_locs'),
%this block contains the digitized coil positions
tmpfp = ftell(fid);
Npoints = user_space_size./40;
for k = 1:Npoints
tmp = fread(fid, 16, 'uchar');
tmplabel = char(tmp(tmp>0)');
if strmatch('Coil', tmplabel),
label{k} = tmplabel(1:5);
elseif ismember(tmplabel(1), {'L' 'R' 'C' 'N' 'I'}),
label{k} = tmplabel(1);
else
label{k} = '';
end
tmp = fread(fid, 3, 'double');
pnt(k,:) = tmp(:)';
end
header.user_block_data{ub}.label = label(:);
header.user_block_data{ub}.pnt = pnt;
fseek(fid, tmpfp, 'bof');
end
fseek(fid, user_space_size, 'cof');
end
%channels
for ch = 1:header.config_data.total_chans
align_file_pointer(fid)
name = char(fread(fid, 16, 'uchar'))';
header.config.channel_data(ch).name = name(name>0);
%FIXME this is a very dirty fix to get the reading in of continuous headlocalization
%correct. At the moment, the numbering of the hmt related channels seems to start with 1000
%which I don't understand, but seems rather nonsensical.
chan_no = fread(fid, 1, 'uint16=>uint16');
if chan_no > header.config_data.total_chans,
%FIXME fix the number in header.channel_data as well
sel = find([header.channel_data.chan_no]== chan_no);
if ~isempty(sel),
chan_no = ch;
header.channel_data(sel).chan_no = chan_no;
header.channel_data(sel).chan_label = header.config.channel_data(ch).name;
else
%does not matter
end
end
header.config.channel_data(ch).chan_no = chan_no;
header.config.channel_data(ch).type = fread(fid, 1, 'uint16=>uint16');
header.config.channel_data(ch).sensor_no = fread(fid, 1, 'int16=>int16');
fseek(fid, 2, 'cof');
header.config.channel_data(ch).gain = fread(fid, 1, 'float32=>float32');
header.config.channel_data(ch).units_per_bit = fread(fid, 1, 'float32=>float32');
yaxis_label = char(fread(fid, 16, 'uchar'))';
header.config.channel_data(ch).yaxis_label = yaxis_label(yaxis_label>0);
header.config.channel_data(ch).aar_val = fread(fid, 1, 'double');
header.config.channel_data(ch).checksum = fread(fid, 1, 'int32=>int32');
header.config.channel_data(ch).reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
align_file_pointer(fid)
header.config.channel_data(ch).device_data.hdr.size = fread(fid, 1, 'uint32=>uint32');
header.config.channel_data(ch).device_data.hdr.checksum = fread(fid, 1, 'int32=>int32');
header.config.channel_data(ch).device_data.hdr.reserved = fread(fid, 32, 'uchar=>uchar')';
switch header.config.channel_data(ch).type
case {1, 3}%meg/ref
header.config.channel_data(ch).device_data.inductance = fread(fid, 1, 'float32=>float32');
fseek(fid, 4, 'cof');
header.config.channel_data(ch).device_data.Xfm = fread(fid, [4 4], 'double');
header.config.channel_data(ch).device_data.xform_flag = fread(fid, 1, 'uint16=>uint16');
header.config.channel_data(ch).device_data.total_loops = fread(fid, 1, 'uint16=>uint16');
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
for loop = 1:header.config.channel_data(ch).device_data.total_loops
align_file_pointer(fid)
header.config.channel_data(ch).device_data.loop_data(loop).position = fread(fid, 3, 'double');
header.config.channel_data(ch).device_data.loop_data(loop).direction = fread(fid, 3, 'double');
header.config.channel_data(ch).device_data.loop_data(loop).radius = fread(fid, 1, 'double');
header.config.channel_data(ch).device_data.loop_data(loop).wire_radius = fread(fid, 1, 'double');
header.config.channel_data(ch).device_data.loop_data(loop).turns = fread(fid, 1, 'uint16=>uint16');
fseek(fid, 2, 'cof');
header.config.channel_data(ch).device_data.loop_data(loop).checksum = fread(fid, 1, 'int32=>int32');
header.config.channel_data(ch).device_data.loop_data(loop).reserved = fread(fid, 32, 'uchar=>uchar')';
end
case 2%eeg
header.config.channel_data(ch).device_data.impedance = fread(fid, 1, 'float32=>float32');
fseek(fid, 4, 'cof');
header.config.channel_data(ch).device_data.Xfm = fread(fid, [4 4], 'double');
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
case 4%external
header.config.channel_data(ch).device_data.user_space_size = fread(fid, 1, 'uint32=>uint32');
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
case 5%TRIGGER
header.config.channel_data(ch).device_data.user_space_size = fread(fid, 1, 'uint32=>uint32');
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
case 6%utility
header.config.channel_data(ch).device_data.user_space_size = fread(fid, 1, 'uint32=>uint32');
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
case 7%derived
header.config.channel_data(ch).device_data.user_space_size = fread(fid, 1, 'uint32=>uint32');
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
fseek(fid, 4, 'cof');
case 8%shorted
header.config.channel_data(ch).device_data.reserved = fread(fid, 32, 'uchar=>uchar')';
otherwise
error('Unknown device type: %d\n', header.config.channel_data(ch).type);
end
end
fclose(fid);
%end read config file
header.header_data.FileDescriptor = 0; %no obvious field to take this from
header.header_data.Events = 1;%no obvious field to take this from
header.header_data.EventCodes = 0;%no obvious field to take this from
if isfield(header, 'channel_data'),
header.ChannelGain = double([header.config.channel_data([header.channel_data.chan_no]).gain]');
header.ChannelUnitsPerBit = double([header.config.channel_data([header.channel_data.chan_no]).units_per_bit]');
header.Channel = {header.config.channel_data([header.channel_data.chan_no]).name}';
header.Format = header.header_data.Format;
end
function align_file_pointer(fid)
current_position = ftell(fid);
if mod(current_position, 8) ~= 0
offset = 8 - mod(current_position,8);
fseek(fid, offset, 'cof');
end
|
github
|
philippboehmsturm/antx-master
|
decode_nifti1.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/decode_nifti1.m
| 2,915 |
utf_8
|
32b6ac0b0549062ef13624ad21eb55e2
|
function H = decode_nifti1(blob)
% function H = decode_nifti1(blob)
%
% Decodes a NIFTI-1 header given as raw 348 bytes (uint8) into a Matlab structure
% that matches the C struct defined in nifti1.h, with the only difference that the
% variable length arrays "dim" and "pixdim" are cut off to the right size, e.g., the
% "dim" entry will only contain the relevant elements:
% dim[0..7]={3,64,64,18,x,x,x,x} in C would become dim=[64,64,18] in Matlab.
%
% WARNING: This function currently ignores endianness !!!
% (C) 2010 S.Klanke
if class(blob)~='uint8'
error 'Bad type for blob'
end
if length(blob)~=348
error 'Blob must be exactly 348 bytes long'
end
% see nift1.h for information on structure
H = [];
magic = char(blob(345:347));
if blob(348)~=0 | magic~='ni1' & magic~='n+1'
error 'Not a NIFTI-1 header!';
end
H.sizeof_hdr = typecast(blob(1:4),'int32');
H.data_type = cstr2matlab(blob(5:14));
H.db_name = cstr2matlab(blob(15:32));
H.extents = typecast(blob(33:36),'int32');
H.session_error = typecast(blob(37:38),'int16');
H.regular = blob(39);
H.dim_info = blob(40);
dim = typecast(blob(41:56),'int16');
H.dim = dim(2:dim(1)+1);
H.intent_p1 = typecast(blob(57:60),'single');
H.intent_p2 = typecast(blob(61:64),'single');
H.intent_p3 = typecast(blob(65:68),'single');
H.intent_code = typecast(blob(69:70),'int16');
H.datatype = typecast(blob(71:72),'int16');
H.bitpix = typecast(blob(73:74),'int16');
H.slice_start = typecast(blob(75:76),'int16');
pixdim = typecast(blob(77:108),'single');
H.qfac = pixdim(1);
H.pixdim = pixdim(2:dim(1)+1);
H.vox_offset = typecast(blob(109:112),'single');
H.scl_scope = typecast(blob(113:116),'single');
H.scl_inter = typecast(blob(117:120),'single');
H.slice_end = typecast(blob(121:122),'int16');
H.slice_code = blob(123);
H.xyzt_units = blob(124);
H.cal_max = typecast(blob(125:128),'single');
H.cal_min = typecast(blob(129:132),'single');
H.slice_duration = typecast(blob(133:136),'single');
H.toffset = typecast(blob(137:140),'single');
H.glmax = typecast(blob(141:144),'int32');
H.glmin = typecast(blob(145:148),'int32');
H.descrip = cstr2matlab(blob(149:228));
H.aux_file = cstr2matlab(blob(229:252));
H.qform_code = typecast(blob(253:254),'int16');
H.sform_code = typecast(blob(255:256),'int16');
quats = typecast(blob(257:280),'single');
H.quatern_b = quats(1);
H.quatern_c = quats(2);
H.quatern_d = quats(3);
H.quatern_x = quats(4);
H.quatern_y = quats(5);
H.quatern_z = quats(6);
trafo = typecast(blob(281:328),'single');
H.srow_x = trafo(1:4);
H.srow_y = trafo(5:8);
H.srow_z = trafo(9:12);
%H.S = [H.srow_x; H.srow_y; H.srow_z; 0 0 0 1];
H.intent_name = cstr2matlab(blob(329:344));
H.magic = magic;
function ms = cstr2matlab(cs)
if cs(1)==0
ms = '';
else
ind = find(cs==0);
if isempty(ind)
ms = char(cs)';
else
ms = char(cs(1:ind(1)-1))';
end
end
|
github
|
philippboehmsturm/antx-master
|
read_edf.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_edf.m
| 14,984 |
utf_8
|
fb40441970f49fe560181defe88145de
|
function [dat] = read_edf(filename, hdr, begsample, endsample, chanindx)
% READ_EDF reads specified samples from an EDF continous datafile
% It neglects all trial boundaries as if the data was acquired in
% non-continous mode.
%
% Use as
% [hdr] = read_edf(filename);
% where
% filename name of the datafile, including the .bdf extension
% This returns a header structure with the following elements
% hdr.Fs sampling frequency
% hdr.nChans number of channels
% hdr.nSamples number of samples per trial
% hdr.nSamplesPre number of pre-trigger samples in each trial
% hdr.nTrials number of trials
% hdr.label cell-array with labels of each channel
% hdr.orig detailled EDF header information
%
% Or use as
% [dat] = read_edf(filename, hdr, begsample, endsample, chanindx);
% where
% filename name of the datafile, including the .bdf extension
% hdr header structure, see above
% begsample index of the first sample to read
% endsample index of the last sample to read
% chanindx index of channels to read (optional, default is all)
% This returns a Nchans X Nsamples data matrix
% Copyright (C) 2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_edf.m 2076 2010-11-05 12:05:19Z roboos $
needhdr = (nargin==1);
needevt = (nargin==2);
needdat = (nargin>3);
if needhdr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the header, this code is from EEGLAB's openbdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FILENAME = filename;
% defines Seperator for Subdirectories
SLASH='/';
BSLASH=char(92);
cname=computer;
if cname(1:2)=='PC' SLASH=BSLASH; end;
fid=fopen(FILENAME,'r','ieee-le');
if fid<0
fprintf(2,['Error LOADEDF: File ' FILENAME ' not found\n']);
return;
end;
EDF.FILE.FID=fid;
EDF.FILE.OPEN = 1;
EDF.FileName = FILENAME;
PPos=min([max(find(FILENAME=='.')) length(FILENAME)+1]);
SPos=max([0 find((FILENAME=='/') | (FILENAME==BSLASH))]);
EDF.FILE.Ext = FILENAME(PPos+1:length(FILENAME));
EDF.FILE.Name = FILENAME(SPos+1:PPos-1);
if SPos==0
EDF.FILE.Path = pwd;
else
EDF.FILE.Path = FILENAME(1:SPos-1);
end;
EDF.FileName = [EDF.FILE.Path SLASH EDF.FILE.Name '.' EDF.FILE.Ext];
H1=char(fread(EDF.FILE.FID,256,'char')'); %
EDF.VERSION=H1(1:8); % 8 Byte Versionsnummer
%if 0 fprintf(2,'LOADEDF: WARNING Version EDF Format %i',ver); end;
EDF.PID = deblank(H1(9:88)); % 80 Byte local patient identification
EDF.RID = deblank(H1(89:168)); % 80 Byte local recording identification
%EDF.H.StartDate = H1(169:176); % 8 Byte
%EDF.H.StartTime = H1(177:184); % 8 Byte
EDF.T0=[str2num(H1(168+[7 8])) str2num(H1(168+[4 5])) str2num(H1(168+[1 2])) str2num(H1(168+[9 10])) str2num(H1(168+[12 13])) str2num(H1(168+[15 16])) ];
% Y2K compatibility until year 2090
if EDF.VERSION(1)=='0'
if EDF.T0(1) < 91
EDF.T0(1)=2000+EDF.T0(1);
else
EDF.T0(1)=1900+EDF.T0(1);
end;
else ;
% in a future version, this is hopefully not needed
end;
EDF.HeadLen = str2num(H1(185:192)); % 8 Byte Length of Header
% reserved = H1(193:236); % 44 Byte
EDF.NRec = str2num(H1(237:244)); % 8 Byte # of data records
EDF.Dur = str2num(H1(245:252)); % 8 Byte # duration of data record in sec
EDF.NS = str2num(H1(253:256)); % 8 Byte # of signals
EDF.Label = char(fread(EDF.FILE.FID,[16,EDF.NS],'char')');
EDF.Transducer = char(fread(EDF.FILE.FID,[80,EDF.NS],'char')');
EDF.PhysDim = char(fread(EDF.FILE.FID,[8,EDF.NS],'char')');
EDF.PhysMin= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
EDF.PhysMax= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
EDF.DigMin = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
EDF.DigMax = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
% check validity of DigMin and DigMax
if (length(EDF.DigMin) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Digital Minimum\n');
EDF.DigMin = -(2^15)*ones(EDF.NS,1);
end
if (length(EDF.DigMax) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Digital Maximum\n');
EDF.DigMax = (2^15-1)*ones(EDF.NS,1);
end
if (any(EDF.DigMin >= EDF.DigMax))
fprintf(2,'Warning OPENEDF: Digital Minimum larger than Maximum\n');
end
% check validity of PhysMin and PhysMax
if (length(EDF.PhysMin) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Physical Minimum\n');
EDF.PhysMin = EDF.DigMin;
end
if (length(EDF.PhysMax) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Physical Maximum\n');
EDF.PhysMax = EDF.DigMax;
end
if (any(EDF.PhysMin >= EDF.PhysMax))
fprintf(2,'Warning OPENEDF: Physical Minimum larger than Maximum\n');
EDF.PhysMin = EDF.DigMin;
EDF.PhysMax = EDF.DigMax;
end
EDF.PreFilt= char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); %
tmp = fread(EDF.FILE.FID,[8,EDF.NS],'char')'; % samples per data record
EDF.SPR = str2num(char(tmp)); % samples per data record
fseek(EDF.FILE.FID,32*EDF.NS,0);
EDF.Cal = (EDF.PhysMax-EDF.PhysMin)./(EDF.DigMax-EDF.DigMin);
EDF.Off = EDF.PhysMin - EDF.Cal .* EDF.DigMin;
tmp = find(EDF.Cal < 0);
EDF.Cal(tmp) = ones(size(tmp));
EDF.Off(tmp) = zeros(size(tmp));
EDF.Calib=[EDF.Off';(diag(EDF.Cal))];
%EDF.Calib=sparse(diag([1; EDF.Cal]));
%EDF.Calib(1,2:EDF.NS+1)=EDF.Off';
EDF.SampleRate = EDF.SPR / EDF.Dur;
EDF.FILE.POS = ftell(EDF.FILE.FID);
if EDF.NRec == -1 % unknown record size, determine correct NRec
fseek(EDF.FILE.FID, 0, 'eof');
endpos = ftell(EDF.FILE.FID);
EDF.NRec = floor((endpos - EDF.FILE.POS) / (sum(EDF.SPR) * 2));
fseek(EDF.FILE.FID, EDF.FILE.POS, 'bof');
H1(237:244)=sprintf('%-8i',EDF.NRec); % write number of records
end;
EDF.Chan_Select=(EDF.SPR==max(EDF.SPR));
for k=1:EDF.NS
if EDF.Chan_Select(k)
EDF.ChanTyp(k)='N';
else
EDF.ChanTyp(k)=' ';
end;
if findstr(upper(EDF.Label(k,:)),'ECG')
EDF.ChanTyp(k)='C';
elseif findstr(upper(EDF.Label(k,:)),'EKG')
EDF.ChanTyp(k)='C';
elseif findstr(upper(EDF.Label(k,:)),'EEG')
EDF.ChanTyp(k)='E';
elseif findstr(upper(EDF.Label(k,:)),'EOG')
EDF.ChanTyp(k)='O';
elseif findstr(upper(EDF.Label(k,:)),'EMG')
EDF.ChanTyp(k)='M';
end;
end;
EDF.AS.spb = sum(EDF.SPR); % Samples per Block
bi=[0;cumsum(EDF.SPR)];
idx=[];idx2=[];
for k=1:EDF.NS,
idx2=[idx2, (k-1)*max(EDF.SPR)+(1:EDF.SPR(k))];
end;
maxspr=max(EDF.SPR);
idx3=zeros(EDF.NS*maxspr,1);
for k=1:EDF.NS, idx3(maxspr*(k-1)+(1:maxspr))=bi(k)+ceil((1:maxspr)'/maxspr*EDF.SPR(k));end;
%EDF.AS.bi=bi;
EDF.AS.IDX2=idx2;
%EDF.AS.IDX3=idx3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert the header to Fieldtrip-style
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if all(EDF.SampleRate==EDF.SampleRate(1))
hdr.Fs = EDF.SampleRate(1);
hdr.nChans = EDF.NS;
hdr.label = cellstr(EDF.Label);
% it is continuous data, therefore append all records in one trial
hdr.nSamples = EDF.Dur * EDF.SampleRate(1);
hdr.nSamplesPre = 0;
hdr.nTrials = EDF.NRec;
hdr.orig = EDF;
elseif all(EDF.SampleRate(1:end-1)==EDF.SampleRate(1))
% only the last channel has a deviant sampling frequency
% this is the case for EGI recorded datasets that have been converted
% to EDF+, in which case the annotation channel is the last
chansel = find(EDF.SampleRate==EDF.SampleRate(1));
% continue with the subset of channels that has a consistent sampling frequency
hdr.Fs = EDF.SampleRate(chansel(1));
hdr.nChans = length(chansel);
warning('Skipping "%s" as continuous data channel because of inconsistent sampling frequency (%g Hz)', deblank(EDF.Label(end,:)), EDF.SampleRate(end));
hdr.label = cellstr(EDF.Label);
hdr.label = hdr.label(chansel);
% it is continuous data, therefore append all records in one trial
hdr.nSamples = EDF.Dur * EDF.SampleRate(chansel(1));
hdr.nSamplesPre = 0;
hdr.nTrials = EDF.NRec;
hdr.orig = EDF;
% this will be used on subsequent reading of data
hdr.orig.chansel = chansel;
hdr.orig.annotation = find(strcmp(cellstr(hdr.orig.Label), 'EDF Annotations'));
else
% select the sampling rate that results in the most channels
[a, b, c] = unique(EDF.SampleRate);
for i=1:length(a)
chancount(i) = sum(c==i);
end
[dum, indx] = max(chancount);
chansel = find(EDF.SampleRate == a(indx));
% continue with the subset of channels that has a consistent sampling frequency
hdr.Fs = EDF.SampleRate(chansel(1));
hdr.nChans = length(chansel);
hdr.label = cellstr(EDF.Label);
hdr.label = hdr.label(chansel);
% it is continuous data, therefore append all records in one trial
hdr.nSamples = EDF.Dur * EDF.SampleRate(chansel(1));
hdr.nSamplesPre = 0;
hdr.nTrials = EDF.NRec;
hdr.orig = EDF;
% this will be used on subsequent reading of data
hdr.orig.chansel = chansel;
hdr.orig.annotation = find(strcmp(cellstr(hdr.orig.Label), 'EDF Annotations'));
warning('channels with different sampling rate not supported, using a subselection of %d channels at %f Hz', length(hdr.label), hdr.Fs);
end
% return the header
dat = hdr;
elseif needdat || needevt
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% retrieve the original header
EDF = hdr.orig;
% determine whether a subset of channels should be used
% which is the case if channels have a variable sampling frequency
variableFs = isfield(EDF, 'chansel');
if variableFs && needevt
% read the annotation channel, not the data channels
EDF.chansel = EDF.annotation;
begsample = 1;
endsample = EDF.SampleRate(end)*EDF.NRec*EDF.Dur;
end
if variableFs
epochlength = EDF.Dur * EDF.SampleRate(EDF.chansel(1)); % in samples for the selected channel
blocksize = sum(EDF.Dur * EDF.SampleRate); % in samples for all channels
chanoffset = EDF.Dur * EDF.SampleRate;
chanoffset = cumsum([0; chanoffset(1:end-1)]);
% use a subset of channels
nchans = length(EDF.chansel);
else
epochlength = EDF.Dur * EDF.SampleRate(1); % in samples for a single channel
blocksize = sum(EDF.Dur * EDF.SampleRate); % in samples for all channels
% use all channels
nchans = EDF.NS;
end
% determine the trial containing the begin and end sample
begepoch = floor((begsample-1)/epochlength) + 1;
endepoch = floor((endsample-1)/epochlength) + 1;
nepochs = endepoch - begepoch + 1;
if nargin<5
chanindx = 1:nchans;
end
% allocate memory to hold the data
dat = zeros(length(chanindx),nepochs*epochlength);
% read and concatenate all required data epochs
for i=begepoch:endepoch
if variableFs
% only a subset of channels with consistent sampling frequency is read
offset = EDF.HeadLen + (i-1)*blocksize*2; % in bytes
% read the complete data block
buf = readLowLevel(filename, offset, blocksize); % see below in subfunction
for j=1:length(chanindx)
% cut out the part that corresponds with a single channel
dat(j,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf((1:epochlength) + chanoffset(EDF.chansel(chanindx(j))));
end
elseif length(chanindx)==1
% this is more efficient if only one channel has to be read, e.g. the status channel
offset = EDF.HeadLen + (i-1)*blocksize*2; % in bytes
offset = offset + (chanindx-1)*epochlength*2;
% read the data for a single channel
buf = readLowLevel(filename, offset, epochlength); % see below in subfunction
dat(:,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf;
else
% read the data from all channels, subsequently select the desired channels
offset = EDF.HeadLen + (i-1)*blocksize*2; % in bytes
% read the complete data block
buf = readLowLevel(filename, offset, blocksize); % see below in subfunction
buf = reshape(buf, epochlength, nchans);
dat(:,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf(:,chanindx)';
end
end
% select the desired samples
begsample = begsample - (begepoch-1)*epochlength; % correct for the number of bytes that were skipped
endsample = endsample - (begepoch-1)*epochlength; % correct for the number of bytes that were skipped
dat = dat(:, begsample:endsample);
% Calibrate the data
if variableFs
% using a sparse matrix speeds up the multiplication
calib = sparse(diag(EDF.Cal(EDF.chansel(chanindx))));
dat = full(calib * dat);
elseif length(chanindx)==1
% in case of one channel the calibration would result in a sparse array
calib = EDF.Cal(chanindx);
dat = calib * dat;
else
% using a sparse matrix speeds up the multiplication
calib = sparse(diag(EDF.Cal(chanindx)));
dat = calib * dat;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for reading the 16 bit values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function buf = readLowLevel(filename, offset, numwords)
if offset < 2*1024^2
% use the external mex file, only works for <2GB
buf = read_16bit(filename, offset, numwords);
else
% use plain matlab, thanks to Philip van der Broek
fp = fopen(filename,'r','ieee-le');
status = fseek(fp, offset, 'bof');
if status
error(['failed seeking ' filename]);
end
[buf,num] = fread(fp,numwords,'bit16=>double');
fclose(fp);
if (num<numwords)
error(['failed reading ' filename]);
return
end
end
|
github
|
philippboehmsturm/antx-master
|
yokogawa2grad.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/yokogawa2grad.m
| 7,091 |
utf_8
|
2eb35dae79944c725b9f16079738501e
|
function grad = yokogawa2grad(hdr)
% YOKOGAWA2GRAD converts the position and weights of all coils that
% compromise a gradiometer system into a structure that can be used
% by FieldTrip.
%
% See also FT_READ_HEADER, CTF2GRAD, BTI2GRAD, FIF2GRAD
% Copyright (C) 2005-2008, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: yokogawa2grad.m 3802 2011-07-07 15:57:28Z roboos $
if ~ft_hastoolbox('yokogawa')
error('cannot determine whether Yokogawa toolbox is present');
end
if isfield(hdr, 'label')
label = hdr.label; % keep for later use
end
if isfield(hdr, 'orig')
hdr = hdr.orig; % use the original header, not the FieldTrip header
end
% The "channel_info" contains
% 1 channel number, zero offset
% 2 channel type, type of gradiometer
% 3 position x (in m)
% 4 position y (in m)
% 5 position z (in m)
% 6 orientation of first coil (theta in deg)
% 7 orientation of first coil (phi in deg)
% 8 orientation from the 1st to 2nd coil for gradiometer (theta in deg)
% 9 orientation from the 1st to 2nd coil for gradiometer (phi in deg)
% 10 coil size (in m)
% 11 baseline (in m)
handles = definehandles;
isgrad = (hdr.channel_info(:,2)==handles.AxialGradioMeter | ...
hdr.channel_info(:,2)==handles.PlannerGradioMeter | hdr.channel_info(:,2)==handles.MagnetoMeter | ...
hdr.channel_info(:,2)==handles.RefferenceAxialGradioMeter | hdr.channel_info(:,2)==handles.RefferencePlannerGradioMeter | ...
hdr.channel_info(:,2)==handles.RefferenceMagnetoMeter);
isgrad_handles = hdr.channel_info(isgrad,2);
ismag = (isgrad_handles(:)==handles.MagnetoMeter | isgrad_handles(:)==handles.RefferenceMagnetoMeter);
grad.pnt = hdr.channel_info(isgrad,3:5)*100; % cm
% Get orientation of the 1st coil
ori_1st = hdr.channel_info(find(isgrad),[6 7]);
% polar to x,y,z coordinates
ori_1st = ...
[sin(ori_1st(:,1)/180*pi).*cos(ori_1st(:,2)/180*pi) ...
sin(ori_1st(:,1)/180*pi).*sin(ori_1st(:,2)/180*pi) ...
cos(ori_1st(:,1)/180*pi)];
grad.ori = ori_1st;
% Get orientation from the 1st to 2nd coil for gradiometer
ori_1st_to_2nd = hdr.channel_info(find(isgrad),[8 9]);
% polar to x,y,z coordinates
ori_1st_to_2nd = ...
[sin(ori_1st_to_2nd(:,1)/180*pi).*cos(ori_1st_to_2nd(:,2)/180*pi) ...
sin(ori_1st_to_2nd(:,1)/180*pi).*sin(ori_1st_to_2nd(:,2)/180*pi) ...
cos(ori_1st_to_2nd(:,1)/180*pi)];
% Get baseline
baseline = hdr.channel_info(isgrad,size(hdr.channel_info,2));
% Define the location and orientation of 2nd coil
info = hdr.channel_info(isgrad,2);
for i=1:sum(isgrad)
if (info(i) == handles.AxialGradioMeter || info(i) == handles.RefferenceAxialGradioMeter )
grad.pnt(i+sum(isgrad),:) = [grad.pnt(i,:)+ori_1st(i,:)*baseline(i)*100];
grad.ori(i+sum(isgrad),:) = -ori_1st(i,:);
elseif (info(i) == handles.PlannerGradioMeter || info(i) == handles.RefferencePlannerGradioMeter)
grad.pnt(i+sum(isgrad),:) = [grad.pnt(i,:)+ori_1st_to_2nd(i,:)*baseline(i)*100];
grad.ori(i+sum(isgrad),:) = -ori_1st(i,:);
else
grad.pnt(i+sum(isgrad),:) = [0 0 0];
grad.ori(i+sum(isgrad),:) = [0 0 0];
end
end
% Define the pair of 1st and 2nd coils for each gradiometer
grad.tra = repmat(diag(ones(1,size(grad.pnt,1)/2),0),1,2);
% for mangetometers change tra as there is no second coil
if any(ismag)
sz_pnt = size(grad.pnt,1)/2;
% create logical variable
not_2nd_coil = ([diag(zeros(sz_pnt),0)' ismag']~=0);
grad.tra(ismag,not_2nd_coil) = 0;
end
% Make the matrix sparse to speed up the multiplication in the forward
% computation with the coil-leadfield matrix to get the channel leadfield
grad.tra = sparse(grad.tra);
% the gradiometer labels should be consistent with the channel labels in
% read_yokogawa_header, the predefined list of channel names in ft_senslabel
% and with ft_channelselection
% ONLY consistent with read_yokogawa_header as NO FIXED relation between
% channel index and type of channel exists for Yokogawa systems. Therefore
% all have individual label sequences: No useful support in ft_senslabel possible
if ~isempty(label)
grad.label = label(isgrad);
else
% this is only backup, if something goes wrong above.
label = cell(size(isgrad));
for i=1:length(label)
label{i} = sprintf('AG%03d', i);
end
grad.label = label(isgrad);
end
grad.unit = 'cm';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this defines some usefull constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function handles = definehandles;
handles.output = [];
handles.sqd_load_flag = false;
handles.mri_load_flag = false;
handles.NullChannel = 0;
handles.MagnetoMeter = 1;
handles.AxialGradioMeter = 2;
handles.PlannerGradioMeter = 3;
handles.RefferenceChannelMark = hex2dec('0100');
handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter );
handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter );
handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter );
handles.TriggerChannel = -1;
handles.EegChannel = -2;
handles.EcgChannel = -3;
handles.EtcChannel = -4;
handles.NonMegChannelNameLength = 32;
handles.DefaultMagnetometerSize = (4.0/1000.0); % ????4.0mm???????`
handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % ???a15.5mm???~??
handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % ????12.0mm???????`
handles.AcqTypeContinuousRaw = 1;
handles.AcqTypeEvokedAve = 2;
handles.AcqTypeEvokedRaw = 3;
handles.sqd = [];
handles.sqd.selected_start = [];
handles.sqd.selected_end = [];
handles.sqd.axialgradiometer_ch_no = [];
handles.sqd.axialgradiometer_ch_info = [];
handles.sqd.axialgradiometer_data = [];
handles.sqd.plannergradiometer_ch_no = [];
handles.sqd.plannergradiometer_ch_info = [];
handles.sqd.plannergradiometer_data = [];
handles.sqd.nullchannel_ch_no = [];
handles.sqd.nullchannel_data = [];
handles.sqd.selected_time = [];
handles.sqd.sample_rate = [];
handles.sqd.sample_count = [];
handles.sqd.pretrigger_length = [];
handles.sqd.matching_info = [];
handles.sqd.source_info = [];
handles.sqd.mri_info = [];
handles.mri = [];
|
github
|
philippboehmsturm/antx-master
|
write_plexon_nex.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/write_plexon_nex.m
| 9,540 |
utf_8
|
8fa4e7bd71496152f676bff2c34faaa4
|
function write_plexon_nex(filename, nex)
% WRITE_PLEXON_NEX writes a Plexon *.nex file, which is a file
% containing action-potential (spike) timestamps and waveforms (spike
% channels), event timestamps (event channels), and continuous variable
% data (continuous A/D channels).
%
% Use as
% write_plexon_nex(filename, nex);
%
% The data structure should contain
% nex.hdr.FileHeader.Frequency = TimeStampFreq
% nex.hdr.VarHeader.Type = type, 5 for continuous
% nex.hdr.VarHeader.Name = label, padded to length 64
% nex.hdr.VarHeader.WFrequency = sampling rate of continuous channel
% nex.var.dat = data
% nex.var.ts = timestamps
%
% See also READ_PLEXON_NEX, READ_PLEXON_PLX, READ_PLEXON_DDT
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: write_plexon_nex.m 2885 2011-02-16 09:41:58Z roboos $
% get the optional arguments, these are all required
% FirstTimeStamp = keyval('FirstTimeStamp', varargin);
% TimeStampFreq = keyval('TimeStampFreq', varargin);
hdr = nex.hdr;
UVtoMV = 1/1000;
switch hdr.VarHeader.Type
case 5
dat = nex.var.dat; % this is in microVolt
buf = zeros(size(dat), 'int16');
nchans = size(dat,1);
nsamples = size(dat,2);
nwaves = 1; % only one continuous datasegment is supported
if length(hdr.VarHeader)~=nchans
error('incorrect number of channels');
end
% convert the data from floating point into int16 values
% each channel gets its own optimal calibration factor
for varlop=1:nchans
ADMaxValue = double(intmax('int16'));
ADMaxUV = max(abs(dat(varlop,:))); % this is in microVolt
ADMaxMV = ADMaxUV/1000; % this is in miliVolt
if isa(dat, 'int16')
% do not rescale data that is already 16 bit
MVtoAD = 1;
elseif ADMaxMV==0
% do not rescale the data if the data is zero
MVtoAD = 1;
elseif ADMaxMV>0
% rescale the data so that it fits into the 16 bits with as little loss as possible
MVtoAD = ADMaxValue / ADMaxMV;
end
buf(varlop,:) = int16(double(dat) * UVtoMV * MVtoAD);
% remember the calibration value, it should be stored in the variable header
ADtoMV(varlop) = 1/MVtoAD;
end
dat = buf;
clear buf;
case 3
dat = nex.var.dat; % this is in microVolt
nchans = 1; % only one channel is supported
nsamples = size(dat,1);
nwaves = size(dat,2);
if length(hdr.VarHeader)~=nchans
error('incorrect number of channels');
end
% convert the data from floating point into int16 values
ADMaxValue = double(intmax('int16'));
ADMaxUV = max(abs(dat(:))); % this is in microVolt
ADMaxMV = ADMaxUV/1000; % this is in miliVolt
if isa(dat, 'int16')
% do not rescale data that is already 16 bit
MVtoAD = 1;
elseif ADMaxMV==0
% do not rescale the data if the data is zero
MVtoAD = 1;
elseif ADMaxMV>0
% rescale the data so that it fits into the 16 bits with as little loss as possible
MVtoAD = ADMaxValue / ADMaxMV;
end
dat = int16(double(dat) * UVtoMV * MVtoAD);
% remember the calibration value, it should be stored in the variable header
ADtoMV = 1/MVtoAD;
otherwise
error('unsupported data type')
end % switch type
% determine the first and last timestamp
ts = nex.var.ts;
ts_beg = min(ts);
ts_end = 0; % FIXME
fid = fopen(filename, 'wb', 'ieee-le');
% write the file header
write_NexFileHeader;
% write the variable headers
for varlop=1:nchans
write_NexVarHeader;
end
% write the variable data
for varlop=1:nchans
write_NexVarData;
end
fclose(fid);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nested function for writing the details
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function write_NexFileHeader
% prepare the two char buffers
buf1 = padstr('$Id: write_plexon_nex.m 2885 2011-02-16 09:41:58Z roboos $', 256);
buf2 = char(zeros(1, 256));
% write the stuff to the file
fwrite(fid, 'NEX1' , 'char'); % NexFileHeader = string NEX1
fwrite(fid, 100 , 'int32'); % Version = version
fwrite(fid, buf1 , 'char'); % Comment = comment, 256 bytes
fwrite(fid, hdr.FileHeader.Frequency, 'double'); % Frequency = timestamped freq. - tics per second
fwrite(fid, ts_beg, 'int32'); % Beg = usually 0, minimum of all the timestamps in the file
fwrite(fid, ts_end, 'int32'); % End = maximum timestamp + 1
fwrite(fid, nchans, 'int32'); % NumVars = number of variables in the first batch
fwrite(fid, 0 , 'int32'); % NextFileHeader = position of the next file header in the file, not implemented yet
fwrite(fid, buf2 , 'char'); % Padding = future expansion
end % of the nested function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nested function for writing the details
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function write_NexVarHeader
filheadersize = 544;
varheadersize = 208;
offset = filheadersize + nchans*varheadersize + (varlop-1)*nsamples;
calib = ADtoMV(varlop);
% prepare the two char buffers
buf1 = padstr(hdr.VarHeader(varlop).Name, 64);
buf2 = char(zeros(1, 68));
% write the continuous variable to the file
fwrite(fid, hdr.VarHeader.Type, 'int32'); % Type = 0 - neuron, 1 event, 2- interval, 3 - waveform, 4 - pop. vector, 5 - continuously recorded
fwrite(fid, 100, 'int32'); % Version = 100
fwrite(fid, buf1, 'char'); % Name = variable name, 1x64 char
fwrite(fid, offset, 'int32'); % DataOffset = where the data array for this variable is located in the file
fwrite(fid, nwaves, 'int32'); % Count = number of events, intervals, waveforms or weights
fwrite(fid, 0, 'int32'); % WireNumber = neuron only, not used now
fwrite(fid, 0, 'int32'); % UnitNumber = neuron only, not used now
fwrite(fid, 0, 'int32'); % Gain = neuron only, not used now
fwrite(fid, 0, 'int32'); % Filter = neuron only, not used now
fwrite(fid, 0, 'double'); % XPos = neuron only, electrode position in (0,100) range, used in 3D
fwrite(fid, 0, 'double'); % YPos = neuron only, electrode position in (0,100) range, used in 3D
fwrite(fid, hdr.VarHeader.WFrequency, 'double'); % WFrequency = waveform and continuous vars only, w/f sampling frequency
fwrite(fid, calib, 'double'); % ADtoMV = waveform continuous vars only, coeff. to convert from A/D values to Millivolts
fwrite(fid, nsamples, 'int32'); % NPointsWave = waveform only, number of points in each wave
fwrite(fid, 0, 'int32'); % NMarkers = how many values are associated with each marker
fwrite(fid, 0, 'int32'); % MarkerLength = how many characters are in each marker value
fwrite(fid, buf2, 'char'); % Padding, 1x68 char
end % of the nested function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% nested function for writing the details
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function write_NexVarData
switch hdr.VarHeader.Type
case 5
% this code only supports one continuous segment
index = 0;
fwrite(fid, ts , 'int32'); % timestamps, one for each continuous segment
fwrite(fid, index , 'int32'); % where to cut the segments, zero offset
fwrite(fid, dat(varlop,:) , 'int16'); % data
case 3
fwrite(fid, ts , 'int32'); % timestamps, one for each spike
fwrite(fid, dat , 'int16'); % waveforms, one for each spike
otherwise
error('unsupported data type');
end % switch
end % of the nested function
end % of the primary function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunction for zero padding a char array to fixed length
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function str = padstr(str, num);
if length(str)>num
str = str(1:num);
else
str((end+1):num) = 0;
end
end % of the padstr subfunction
|
github
|
philippboehmsturm/antx-master
|
ft_convert_units.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/ft_convert_units.m
| 6,309 |
utf_8
|
0405af834cc33a98947a95647175b8d5
|
function [obj] = ft_convert_units(obj, target)
% FT_CONVERT_UNITS changes the geometrical dimension to the specified SI unit.
% The units of the input object is determined from the structure field
% object.unit, or is estimated based on the spatial extend of the structure,
% e.g. a volume conduction model of the head should be approximately 20 cm large.
%
% Use as
% [object] = ft_convert_units(object, target)
%
% The following input objects are supported
% simple dipole position
% electrode definition
% gradiometer array definition
% volume conductor definition
% dipole grid definition
% anatomical mri
%
% Possible target units are 'm', 'dm', 'cm ' or 'mm'.
%
% See FT_READ_VOL, FT_READ_SENS
% Copyright (C) 2005-2008, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_convert_units.m 3886 2011-07-20 13:58:47Z jansch $
% This function consists of three parts:
% 1) determine the input units
% 2) determine the requested scaling factor to obtain the output units
% 3) try to apply the scaling to the known geometrical elements in the input object
% determine the unit-of-dimension of the input object
if isfield(obj, 'unit') && ~isempty(obj.unit)
% use the units specified in the object
unit = obj.unit;
else
% try to estimate the units from the object
type = ft_voltype(obj);
if ~strcmp(type, 'unknown')
switch type
case 'infinite'
% there is nothing to do to convert the units
unit = target;
case 'singlesphere'
size = obj.r;
case 'multisphere'
size = median(obj.r);
case 'concentric'
size = max(obj.r);
case 'nolte'
size = norm(range(obj.bnd.pnt));
case {'bem' 'dipoli' 'bemcp' 'asa' 'avo'}
size = norm(range(obj.bnd(1).pnt));
otherwise
error('cannot determine geometrical units of volume conduction model');
end % switch
% determine the units by looking at the size
unit = ft_estimate_units(size);
elseif ft_senstype(obj, 'meg')
size = norm(range(obj.pnt));
unit = ft_estimate_units(size);
elseif ft_senstype(obj, 'eeg')
size = norm(range(obj.pnt));
unit = ft_estimate_units(size);
elseif isfield(obj, 'pnt') && ~isempty(obj.pnt)
size = norm(range(obj.pnt));
unit = ft_estimate_units(size);
elseif isfield(obj, 'pos') && ~isempty(obj.pos)
size = norm(range(obj.pos));
unit = ft_estimate_units(size);
elseif isfield(obj, 'transform') && ~isempty(obj.transform)
% construct the corner points of the voxel grid in head coordinates
xi = 1:obj.dim(1);
yi = 1:obj.dim(2);
zi = 1:obj.dim(3);
pos = [
xi( 1) yi( 1) zi( 1)
xi( 1) yi( 1) zi(end)
xi( 1) yi(end) zi( 1)
xi( 1) yi(end) zi(end)
xi(end) yi( 1) zi( 1)
xi(end) yi( 1) zi(end)
xi(end) yi(end) zi( 1)
xi(end) yi(end) zi(end)
];
pos = warp_apply(obj.transform, pos);
size = norm(range(pos));
unit = ft_estimate_units(size);
elseif isfield(obj, 'fid') && isfield(obj.fid, 'pnt') && ~isempty(obj.fid.pnt)
size = norm(range(obj.fid.pnt));
unit = ft_estimate_units(size);
else
error('cannot determine geometrical units');
end % recognized type of volume conduction model or sensor array
end % determine input units
if nargin<2
% just remember the units in the output and return
obj.unit = unit;
return
elseif strcmp(unit, target)
% no conversion is needed
obj.unit = unit;
return
end
% give some information about the conversion
fprintf('converting units from ''%s'' to ''%s''\n', unit, target)
if strcmp(unit, 'm')
unit2meter = 1;
elseif strcmp(unit, 'dm')
unit2meter = 0.1;
elseif strcmp(unit, 'cm')
unit2meter = 0.01;
elseif strcmp(unit, 'mm')
unit2meter = 0.001;
end
% determine the unit-of-dimension of the output object
if strcmp(target, 'm')
meter2target = 1;
elseif strcmp(target, 'dm')
meter2target = 10;
elseif strcmp(target, 'cm')
meter2target = 100;
elseif strcmp(target, 'mm')
meter2target = 1000;
end
% combine the units into one scaling factor
scale = unit2meter * meter2target;
% volume conductor model
if isfield(obj, 'r'), obj.r = scale * obj.r; end
if isfield(obj, 'o'), obj.o = scale * obj.o; end
if isfield(obj, 'bnd'), for i=1:length(obj.bnd), obj.bnd(i).pnt = scale * obj.bnd(i).pnt; end, end
% gradiometer array
if isfield(obj, 'pnt1'), obj.pnt1 = scale * obj.pnt1; end
if isfield(obj, 'pnt2'), obj.pnt2 = scale * obj.pnt2; end
if isfield(obj, 'prj'), obj.prj = scale * obj.prj; end
% gradiometer array, electrode array, head shape or dipole grid
if isfield(obj, 'pnt'), obj.pnt = scale * obj.pnt; end
% fiducials
if isfield(obj, 'fid') && isfield(obj.fid, 'pnt'), obj.fid.pnt = scale * obj.fid.pnt; end
% dipole grid
if isfield(obj, 'pos'), obj.pos = scale * obj.pos; end
% anatomical MRI or functional volume
if isfield(obj, 'transform'),
H = diag([scale scale scale 1]);
obj.transform = H * obj.transform;
end
if isfield(obj, 'transformorig'),
H = diag([scale scale scale 1]);
obj.transformorig = H * obj.transformorig;
end
% remember the unit
obj.unit = target;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
% Use as
% r = range(x)
% or you can also specify the dimension along which to look by
% r = range(x, dim)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function r = range(x, dim)
if nargin==1
r = max(x) - min(x);
else
r = max(x, [], dim) - min(x, [], dim);
end
|
github
|
philippboehmsturm/antx-master
|
ft_apply_montage.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/ft_apply_montage.m
| 9,812 |
utf_8
|
c30fdecc34ab9678cc26828eea0538c1
|
function [sens] = ft_apply_montage(sens, montage, varargin)
% FT_APPLY_MONTAGE changes the montage of an electrode or gradiometer array. A
% montage can be used for EEG rereferencing, MEG synthetic gradients, MEG
% planar gradients or unmixing using ICA. This function applies the montage
% to the sensor array. The sensor array can subsequently be used for
% forward computation and source reconstruction of the data.
%
% Use as
% [sens] = ft_apply_montage(sens, montage, ...)
% [data] = ft_apply_montage(data, montage, ...)
% [montage] = ft_apply_montage(montage1, montage2, ...)
% where the input is a FieldTrip sensor definition as obtained from FT_READ_SENS
% or a FieldTrip raw data structure as obtained from FT_PREPROCESSING.
%
% A montage is specified as a structure with the fields
% montage.tra = MxN matrix
% montage.labelnew = Mx1 cell-array
% montage.labelorg = Nx1 cell-array
%
% Additional options should be specified in key-value pairs and can be
% 'keepunused' string, 'yes' or 'no' (default = 'no')
% 'inverse' string, 'yes' or 'no' (default = 'no')
%
% If the first input is a montage, then the second input montage will be
% applied to the first. In effect the resulting montage will first do
% montage1, then montage2.
%
% See also FT_READ_SENS, FT_TRANSFORM_SENS
% Copyright (C) 2008, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_apply_montage.m 3392 2011-04-27 10:26:53Z jansch $
% get optional input arguments
keepunused = keyval('keepunused', varargin); if isempty(keepunused), keepunused = 'no'; end
inverse = keyval('inverse', varargin); if isempty(inverse), inverse = 'no'; end
feedback = keyval('feedback', varargin); if isempty(feedback), feedback = 'text'; end
bname = keyval('balancename', varargin); if isempty(bname), bname = ''; end
% check the consistency of the input sensor array or data
if isfield(sens, 'labelorg') && isfield(sens, 'labelnew')
% the input data structure is also a montage, i.e. apply the montages sequentially
sens.label = sens.labelnew;
end
% check the consistency of the montage
if size(montage.tra,1)~=length(montage.labelnew)
error('the number of channels in the montage is inconsistent');
elseif size(montage.tra,2)~=length(montage.labelorg)
error('the number of channels in the montage is inconsistent');
end
if strcmp(inverse, 'yes')
% apply the inverse montage, i.e. undo a previously applied montage
tmp.labelnew = montage.labelorg; % swap around
tmp.labelorg = montage.labelnew; % swap around
tmp.tra = full(montage.tra);
if rank(tmp.tra) < length(tmp.tra)
warning('the linear projection for the montage is not full-rank, the resulting data will have reduced dimensionality');
tmp.tra = pinv(tmp.tra);
else
tmp.tra = inv(tmp.tra);
end
montage = tmp;
end
% use default transfer from sensors to channels if not specified
if isfield(sens, 'pnt') && ~isfield(sens, 'tra')
nchan = size(sens.pnt,1);
sens.tra = sparse(eye(nchan));
end
% select and keep the columns that are non-empty, i.e. remove the empty columns
selcol = find(~all(montage.tra==0, 1));
montage.tra = montage.tra(:,selcol);
montage.labelorg = montage.labelorg(selcol);
clear selcol
% select and remove the columns corresponding to channels that are not present in the original data
remove = setdiff(montage.labelorg, intersect(montage.labelorg, sens.label));
selcol = match_str(montage.labelorg, remove);
% we cannot just remove the colums, all rows that depend on it should also be removed
selrow = false(length(montage.labelnew),1);
for i=1:length(selcol)
selrow = selrow & (montage.tra(:,selcol(i))~=0);
end
% convert from indices to logical vector
selcol = indx2logical(selcol, length(montage.labelorg));
% remove rows and columns
montage.labelorg = montage.labelorg(~selcol);
montage.labelnew = montage.labelnew(~selrow);
montage.tra = montage.tra(~selrow, ~selcol);
clear remove selcol selrow i
% add columns for the channels that are present in the data but not involved in the montage, and stick to the original order in the data
[add, ix] = setdiff(sens.label, montage.labelorg);
add = sens.label(sort(ix));
m = size(montage.tra,1);
n = size(montage.tra,2);
k = length(add);
if strcmp(keepunused, 'yes')
% add the channels that are not rereferenced to the input and output
montage.tra((m+(1:k)),(n+(1:k))) = eye(k);
montage.labelorg = cat(1, montage.labelorg(:), add(:));
montage.labelnew = cat(1, montage.labelnew(:), add(:));
else
% add the channels that are not rereferenced to the input montage only
montage.tra(:,(n+(1:k))) = zeros(m,k);
montage.labelorg = cat(1, montage.labelorg(:), add(:));
end
clear add m n k
% determine whether all channels are unique
m = size(montage.tra,1);
n = size(montage.tra,2);
if length(unique(montage.labelnew))~=m
error('not all output channels of the montage are unique');
end
if length(unique(montage.labelorg))~=n
error('not all input channels of the montage are unique');
end
% determine whether all channels that have to be rereferenced are available
if length(intersect(sens.label, montage.labelorg))~=length(montage.labelorg)
error('not all channels that are required in the montage are available in the data');
end
% reorder the columns of the montage matrix
[selsens, selmont] = match_str(sens.label, montage.labelorg);
montage.tra = double(sparse(montage.tra(:,selmont)));
montage.labelorg = montage.labelorg(selmont);
if isfield(sens, 'labelorg') && isfield(sens, 'labelnew')
% apply the montage on top of the other montage
sens = rmfield(sens, 'label');
if isa(sens.tra, 'single')
sens.tra = full(montage.tra) * sens.tra;
else
sens.tra = montage.tra * sens.tra;
end
sens.labelnew = montage.labelnew;
elseif isfield(sens, 'tra')
% apply the montage to the sensor array
if isa(sens.tra, 'single')
sens.tra = full(montage.tra) * sens.tra;
else
sens.tra = montage.tra * sens.tra;
end
sens.label = montage.labelnew;
% keep track of the order of the balancing and which one is the current
% one
if strcmp(inverse, 'yes')
if isfield(sens, 'balance')% && isfield(sens.balance, 'previous')
if isfield(sens.balance, 'previous') && numel(sens.balance.previous)>=1
sens.balance.current = sens.balance.previous{1};
sens.balance.previous = sens.balance.previous(2:end);
elseif isfield(sens.balance, 'previous')
sens.balance.current = 'none';
sens.balance = rmfield(sens.balance, 'previous');
else
sens.balance.current = 'none';
end
end
elseif ~strcmp(inverse, 'yes') && ~isempty(bname)
if isfield(sens, 'balance') && isfield(sens.balance, 'current')
if ~isfield(sens.balance, 'previous')
sens.balance.previous = {};
end
sens.balance.previous = [{sens.balance.current} sens.balance.previous];
sens.balance.current = bname;
sens.balance.(bname) = montage;
end
end
elseif isfield(sens, 'trial')
% apply the montage to the raw data that was preprocessed using fieldtrip
data = sens;
clear sens
Ntrials = numel(data.trial);
ft_progress('init', feedback, 'processing trials');
for i=1:Ntrials
ft_progress(i/Ntrials, 'processing trial %d from %d\n', i, Ntrials);
if isa(data.trial{i}, 'single')
% sparse matrices and single precision do not match
data.trial{i} = full(montage.tra) * data.trial{i};
else
data.trial{i} = montage.tra * data.trial{i};
end
end
ft_progress('close');
data.label = montage.labelnew;
% rename the output variable
sens = data;
clear data
elseif isfield(sens, 'fourierspctrm')
% apply the montage to the spectrally decomposed data
freq = sens;
clear sens
if strcmp(freq.dimord, 'rpttap_chan_freq')
siz = size(freq.fourierspctrm);
nrpt = siz(1);
nchan = siz(2);
nfreq = siz(3);
output = zeros(nrpt, size(montage.tra,1), nfreq);
for foilop=1:nfreq
output(:,:,foilop) = freq.fourierspctrm(:,:,foilop) * montage.tra';
end
elseif strcmp(freq.dimord, 'rpttap_chan_freq_time')
siz = size(freq.fourierspctrm);
nrpt = siz(1);
nchan = siz(2);
nfreq = siz(3);
ntime = siz(4);
output = zeros(nrpt, size(montage.tra,1), nfreq, ntime);
for foilop=1:nfreq
for toilop = 1:ntime
output(:,:,foilop,toilop) = freq.fourierspctrm(:,:,foilop,toilop) * montage.tra';
end
end
else
error('unsupported dimord in frequency data (%s)', freq.dimord);
end
% replace the Fourier spectrum
freq.fourierspctrm = output;
freq.label = montage.labelnew;
% rename the output variable
sens = freq;
clear freq
else
error('unrecognized input');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% HELPER FUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y = indx2logical(x, n)
y = false(1,n);
y(x) = true;
|
github
|
philippboehmsturm/antx-master
|
read_biosemi_bdf.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_biosemi_bdf.m
| 10,860 |
utf_8
|
ddbde2abde4535318e1c0fb21c9218bd
|
function dat = read_biosemi_bdf(filename, hdr, begsample, endsample, chanindx);
% READ_BIOSEMI_BDF reads specified samples from a BDF continous datafile
% It neglects all trial boundaries as if the data was acquired in
% non-continous mode.
%
% Use as
% [hdr] = read_biosemi_bdf(filename);
% where
% filename name of the datafile, including the .bdf extension
% This returns a header structure with the following elements
% hdr.Fs sampling frequency
% hdr.nChans number of channels
% hdr.nSamples number of samples per trial
% hdr.nSamplesPre number of pre-trigger samples in each trial
% hdr.nTrials number of trials
% hdr.label cell-array with labels of each channel
% hdr.orig detailled EDF header information
%
% Or use as
% [dat] = read_biosemi_bdf(filename, hdr, begsample, endsample, chanindx);
% where
% filename name of the datafile, including the .bdf extension
% hdr header structure, see above
% begsample index of the first sample to read
% endsample index of the last sample to read
% chanindx index of channels to read (optional, default is all)
% This returns a Nchans X Nsamples data matrix
% Copyright (C) 2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_biosemi_bdf.m 945 2010-04-21 17:41:20Z roboos $
if nargin==1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the header, this code is from EEGLAB's openbdf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FILENAME = filename;
% defines Seperator for Subdirectories
SLASH='/';
BSLASH=char(92);
cname=computer;
if cname(1:2)=='PC' SLASH=BSLASH; end;
fid=fopen(FILENAME,'r','ieee-le');
if fid<0
fprintf(2,['Error LOADEDF: File ' FILENAME ' not found\n']);
return;
end;
EDF.FILE.FID=fid;
EDF.FILE.OPEN = 1;
EDF.FileName = FILENAME;
PPos=min([max(find(FILENAME=='.')) length(FILENAME)+1]);
SPos=max([0 find((FILENAME=='/') | (FILENAME==BSLASH))]);
EDF.FILE.Ext = FILENAME(PPos+1:length(FILENAME));
EDF.FILE.Name = FILENAME(SPos+1:PPos-1);
if SPos==0
EDF.FILE.Path = pwd;
else
EDF.FILE.Path = FILENAME(1:SPos-1);
end;
EDF.FileName = [EDF.FILE.Path SLASH EDF.FILE.Name '.' EDF.FILE.Ext];
H1=char(fread(EDF.FILE.FID,256,'char')'); %
EDF.VERSION=H1(1:8); % 8 Byte Versionsnummer
%if 0 fprintf(2,'LOADEDF: WARNING Version EDF Format %i',ver); end;
EDF.PID = deblank(H1(9:88)); % 80 Byte local patient identification
EDF.RID = deblank(H1(89:168)); % 80 Byte local recording identification
%EDF.H.StartDate = H1(169:176); % 8 Byte
%EDF.H.StartTime = H1(177:184); % 8 Byte
EDF.T0=[str2num(H1(168+[7 8])) str2num(H1(168+[4 5])) str2num(H1(168+[1 2])) str2num(H1(168+[9 10])) str2num(H1(168+[12 13])) str2num(H1(168+[15 16])) ];
% Y2K compatibility until year 2090
if EDF.VERSION(1)=='0'
if EDF.T0(1) < 91
EDF.T0(1)=2000+EDF.T0(1);
else
EDF.T0(1)=1900+EDF.T0(1);
end;
else ;
% in a future version, this is hopefully not needed
end;
EDF.HeadLen = str2num(H1(185:192)); % 8 Byte Length of Header
% reserved = H1(193:236); % 44 Byte
EDF.NRec = str2num(H1(237:244)); % 8 Byte # of data records
EDF.Dur = str2num(H1(245:252)); % 8 Byte # duration of data record in sec
EDF.NS = str2num(H1(253:256)); % 8 Byte # of signals
EDF.Label = char(fread(EDF.FILE.FID,[16,EDF.NS],'char')');
EDF.Transducer = char(fread(EDF.FILE.FID,[80,EDF.NS],'char')');
EDF.PhysDim = char(fread(EDF.FILE.FID,[8,EDF.NS],'char')');
EDF.PhysMin= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
EDF.PhysMax= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
EDF.DigMin = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
EDF.DigMax = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'));
% check validity of DigMin and DigMax
if (length(EDF.DigMin) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Digital Minimum\n');
EDF.DigMin = -(2^15)*ones(EDF.NS,1);
end
if (length(EDF.DigMax) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Digital Maximum\n');
EDF.DigMax = (2^15-1)*ones(EDF.NS,1);
end
if (any(EDF.DigMin >= EDF.DigMax))
fprintf(2,'Warning OPENEDF: Digital Minimum larger than Maximum\n');
end
% check validity of PhysMin and PhysMax
if (length(EDF.PhysMin) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Physical Minimum\n');
EDF.PhysMin = EDF.DigMin;
end
if (length(EDF.PhysMax) ~= EDF.NS)
fprintf(2,'Warning OPENEDF: Failing Physical Maximum\n');
EDF.PhysMax = EDF.DigMax;
end
if (any(EDF.PhysMin >= EDF.PhysMax))
fprintf(2,'Warning OPENEDF: Physical Minimum larger than Maximum\n');
EDF.PhysMin = EDF.DigMin;
EDF.PhysMax = EDF.DigMax;
end
EDF.PreFilt= char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); %
tmp = fread(EDF.FILE.FID,[8,EDF.NS],'char')'; % samples per data record
EDF.SPR = str2num(char(tmp)); % samples per data record
fseek(EDF.FILE.FID,32*EDF.NS,0);
EDF.Cal = (EDF.PhysMax-EDF.PhysMin)./(EDF.DigMax-EDF.DigMin);
EDF.Off = EDF.PhysMin - EDF.Cal .* EDF.DigMin;
tmp = find(EDF.Cal < 0);
EDF.Cal(tmp) = ones(size(tmp));
EDF.Off(tmp) = zeros(size(tmp));
EDF.Calib=[EDF.Off';(diag(EDF.Cal))];
%EDF.Calib=sparse(diag([1; EDF.Cal]));
%EDF.Calib(1,2:EDF.NS+1)=EDF.Off';
EDF.SampleRate = EDF.SPR / EDF.Dur;
EDF.FILE.POS = ftell(EDF.FILE.FID);
if EDF.NRec == -1 % unknown record size, determine correct NRec
fseek(EDF.FILE.FID, 0, 'eof');
endpos = ftell(EDF.FILE.FID);
EDF.NRec = floor((endpos - EDF.FILE.POS) / (sum(EDF.SPR) * 2));
fseek(EDF.FILE.FID, EDF.FILE.POS, 'bof');
H1(237:244)=sprintf('%-8i',EDF.NRec); % write number of records
end;
EDF.Chan_Select=(EDF.SPR==max(EDF.SPR));
for k=1:EDF.NS
if EDF.Chan_Select(k)
EDF.ChanTyp(k)='N';
else
EDF.ChanTyp(k)=' ';
end;
if findstr(upper(EDF.Label(k,:)),'ECG')
EDF.ChanTyp(k)='C';
elseif findstr(upper(EDF.Label(k,:)),'EKG')
EDF.ChanTyp(k)='C';
elseif findstr(upper(EDF.Label(k,:)),'EEG')
EDF.ChanTyp(k)='E';
elseif findstr(upper(EDF.Label(k,:)),'EOG')
EDF.ChanTyp(k)='O';
elseif findstr(upper(EDF.Label(k,:)),'EMG')
EDF.ChanTyp(k)='M';
end;
end;
EDF.AS.spb = sum(EDF.SPR); % Samples per Block
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert the header to Fieldtrip-style
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if any(EDF.SampleRate~=EDF.SampleRate(1))
error('channels with different sampling rate not supported');
end
hdr.Fs = EDF.SampleRate(1);
hdr.nChans = EDF.NS;
hdr.label = cellstr(EDF.Label);
% it is continuous data, therefore append all records in one trial
hdr.nTrials = 1;
hdr.nSamples = EDF.NRec * EDF.Dur * EDF.SampleRate(1);
hdr.nSamplesPre = 0;
hdr.orig = EDF;
% return the header
dat = hdr;
else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% read the data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% retrieve the original header
EDF = hdr.orig;
% determine the trial containing the begin and end sample
epochlength = EDF.Dur * EDF.SampleRate(1);
begepoch = floor((begsample-1)/epochlength) + 1;
endepoch = floor((endsample-1)/epochlength) + 1;
nepochs = endepoch - begepoch + 1;
nchans = EDF.NS;
if nargin<5
chanindx = 1:nchans;
end
% allocate memory to hold the data
dat = zeros(length(chanindx),nepochs*epochlength);
% read and concatenate all required data epochs
for i=begepoch:endepoch
offset = EDF.HeadLen + (i-1)*epochlength*nchans*3;
if length(chanindx)==1
% this is more efficient if only one channel has to be read, e.g. the status channel
offset = offset + (chanindx-1)*epochlength*3;
buf = readLowLevel(filename, offset, epochlength); % see below in subfunction
dat(:,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf;
else
% read the data from all channels and then select the desired channels
buf = readLowLevel(filename, offset, epochlength*nchans); % see below in subfunction
buf = reshape(buf, epochlength, nchans);
dat(:,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf(:,chanindx)';
end
end
% select the desired samples
begsample = begsample - (begepoch-1)*epochlength; % correct for the number of bytes that were skipped
endsample = endsample - (begepoch-1)*epochlength; % correct for the number of bytes that were skipped
dat = dat(:, begsample:endsample);
% Calibrate the data
if length(chanindx)>1
% using a sparse matrix speeds up the multiplication
calib = sparse(diag(EDF.Cal(chanindx,:)));
dat = calib * dat;
else
% in case of one channel the calibration would result in a sparse array
calib = diag(EDF.Cal(chanindx,:));
dat = calib * dat;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION for reading the 24 bit values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function buf = readLowLevel(filename, offset, numwords);
if offset < 2*1024^3
% use the external mex file, only works for <2GB
buf = read_24bit(filename, offset, numwords);
% this would be the only difference between the bdf and edf implementation
% buf = read_16bit(filename, offset, numwords);
else
% use plain matlab, thanks to Philip van der Broek
fp = fopen(filename,'r','ieee-le');
status = fseek(fp, offset, 'bof');
if status
error(['failed seeking ' filename]);
end
[buf,num] = fread(fp,numwords,'bit24=>double');
fclose(fp);
if (num<numwords)
error(['failed opening ' filename]);
return
end
end
|
github
|
philippboehmsturm/antx-master
|
read_ctf_ascii.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_ctf_ascii.m
| 3,218 |
utf_8
|
47e7379c0ed92058f4f1d9cca84b2030
|
function [file] = read_ctf_ascii(filename);
% READ_CTF_ASCII reads general data from an CTF configuration file
%
% The file should be formatted like
% Group
% {
% item1 : value1a value1b value1c
% item2 : value2a value2b value2c
% item3 : value3a value3b value3c
% item4 : value4a value4b value4c
% }
%
% This fileformat structure is used in
% params.avg
% default.hdm
% multiSphere.hdm
% processing.cfg
% and maybe for other files as well.
% Copyright (C) 2003, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_ctf_ascii.m 1362 2010-07-06 09:04:24Z roboos $
fid = fopen(filename, 'r');
if fid==-1
error(sprintf('could not open file %s', filename));
end
line = '';
while ischar(line)
line = cleanline(fgetl(fid));
if isempty(line) || (length(line)==1 && all(line==-1))
continue
end
% the line is not empty, which means that we have encountered a chunck of information
subline = cleanline(fgetl(fid)); % read the {
subline = cleanline(fgetl(fid)); % read the first item
while isempty(findstr(subline, '}'))
if ~isempty(subline)
[item, value] = strtok(subline, ':');
value(1) = ' '; % remove the :
value = strtrim(value);
item = strtrim(item);
% turn warnings off
ws = warning('off');
% the item name should be a real string, otherwise I cannot put it into the structure
if strcmp(sprintf('%d', str2num(deblank(item))), deblank(item))
% add something to the start of the string to distinguish it from a number
item = ['item_' item];
end
% the value can be either a number or a string, and is put into the structure accordingly
if isempty(str2num(value))
% the value appears to be a string
eval(sprintf('file.%s.%s = [ ''%s'' ];', line, item, value));
else
% the value appears to be a number or a list of numbers
eval(sprintf('file.%s.%s = [ %s ];', line, item, value));
end
% revert to previous warning state
warning(ws);
end
subline = cleanline(fgetl(fid)); % read the first item
end
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function line = cleanline(line)
if isempty(line) || (length(line)==1 && all(line==-1))
return
end
comment = findstr(line, '//');
if ~isempty(comment)
line(min(comment):end) = ' ';
end
line = strtrim(line);
|
github
|
philippboehmsturm/antx-master
|
read_mpi_dap.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_mpi_dap.m
| 7,084 |
utf_8
|
84049987cc6e97d585788c8400c1b1da
|
function [dap] = read_mpi_dap(filename)
% READ_MPI_DAP read the analog channels from a DAP file
% and returns the values in microvolt (uV)
%
% Use as
% [dap] = read_mpi_dap(filename)
% Copyright (C) 2005-2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_mpi_dap.m 945 2010-04-21 17:41:20Z roboos $
fid = fopen(filename, 'rb', 'ieee-le');
% read the file header
filehdr = readheader(fid);
analog = {};
analoghdr = {};
analogsweephdr = {};
spike = {};
spikehdr = {};
spikesweephdr = {};
W = filehdr.nexps;
S = filehdr.nsweeps;
for w=1:filehdr.nexps
% read the experiment header
exphdr{w} = readheader(fid);
if filehdr.nanalog
if filehdr.analogmode==-1
% record mode
for s=1:filehdr.nsweeps
% read the analogsweepheader
analogsweephdr{s} = readheader(fid);
for j=1:filehdr.nanalog
% read the analog header
analoghdr{w,s,j} = readheader(fid);
% read the analog data
analog{w,s,j} = fread(fid, analoghdr{w,s,j}.datasize, 'int16');
% calibrate the analog data
analog{w,s,j} = analog{w,s,j} * 2.5/2048;
end
end % for s=1:S
elseif filehdr.analogmode==0
% average mode
s = 1;
for j=1:filehdr.nanalog
% read the analog header
analoghdr{w,s,j} = readheader(fid);
% read the analog data
analog{w,s,j} = fread(fid, analoghdr{w,s,j}.datasize, 'int16');
% calibrate the analog data
analog{w,s,j} = analog{w,s,j} * 2.5/2048;
end
else
error('unknown analog mode');
end
end
if filehdr.nspike
for s=1:filehdr.nsweeps
spikesweephdr{s} = readheader(fid);
for j=1:filehdr.nspike
% read the spike header
spikehdr{w,s,j} = readheader(fid);
% read the spike data
spike{w,s,j} = fread(fid, spikehdr{w,s,j}.datasize, 'int16');
end
end % for s=1:S
end
end % for w=1:W
dap.filehdr = filehdr;
dap.exphdr = exphdr;
dap.analogsweephdr = analogsweephdr;
dap.analoghdr = analoghdr;
dap.analog = analog;
dap.spikesweephdr = spikesweephdr;
dap.spikehdr = spikehdr;
dap.spike = spike;
fclose(fid);
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function hdr = readheader(fid);
% determine the header type, header size and data size
hdr.headertype = fread(fid, 1, 'uchar');
dummy = fread(fid, 1, 'uchar');
hdr.headersize = fread(fid, 1, 'int16') + 1; % expressed in words, not bytes
hdr.datasize = fread(fid, 1, 'int16'); % expressed in words, not bytes
% read the header details
switch hdr.headertype
case 1 % fileheader
% fprintf('fileheader at %d\n' ,ftell(fid)-6);
dummy = fread(fid, 1, 'uchar')'; % 6
hdr.nexps = fread(fid, 1, 'uchar')'; % 7
hdr.progname = fread(fid, 7, 'uchar')'; % 8-14
hdr.version = fread(fid, 1, 'uchar')'; % 15
hdr.progversion = fread(fid, 2, 'uchar')'; % 16-17
hdr.fileversion = fread(fid, 2, 'uchar')'; % 18-19
hdr.date = fread(fid, 1, 'int16'); % 20-21
hdr.time = fread(fid, 1, 'int16'); % 22-23
hdr.nanalog = fread(fid, 1, 'uint8'); % 24
hdr.nspike = fread(fid, 1, 'uint8'); % 25
hdr.nbins = fread(fid, 1, 'int16'); % 26-27
hdr.binwidth = fread(fid, 1, 'int16'); % 28-29
dummy = fread(fid, 1, 'int16'); % 30-31
hdr.nsweeps = fread(fid, 1, 'int16'); % 32-33
hdr.analogmode = fread(fid, 1, 'uchar')'; % 34 "0 for average, -1 for record"
dummy = fread(fid, 1, 'uchar')'; % 35
dummy = fread(fid, 1, 'int16'); % 36-37
dummy = fread(fid, 1, 'int16'); % 38-39
dummy = fread(fid, 1, 'int16'); % 40-41
case 65 % expheader
% fprintf('expheader at %d\n' ,ftell(fid)-6);
hdr.time = fread(fid, 1, 'int16'); % 6-7
hdr.parallel = fread(fid, 1, 'int16'); % 8-9
hdr.id = fread(fid, 1, 'int16'); % 10-11
dummy = fread(fid, 1, 'int16'); % 12-13
dummy = fread(fid, 1, 'int16'); % 14-15
dummy = fread(fid, 1, 'int16'); % 16-17
case 129 % analogchannelheader
% fprintf('analogchannelheader at %d\n' ,ftell(fid)-6);
dummy = fread(fid, 1, 'int16'); % 6-7
hdr.channum = fread(fid, 1, 'uchar'); % 8
dummy = fread(fid, 1, 'uchar'); % 9
dummy = fread(fid, 1, 'int16'); % 10-11
dummy = fread(fid, 1, 'int16'); % 12-13
dummy = fread(fid, 1, 'int16'); % 14-15
dummy = fread(fid, 1, 'int16'); % 16-17
case 161 % spikechannelheader
% fprintf('spikechannelheader at %d\n' ,ftell(fid)-6);
dummy = fread(fid, 1, 'int16'); % 6-7
hdr.channum = fread(fid, 1, 'uchar'); % 8
dummy = fread(fid, 1, 'uchar'); % 9
dummy = fread(fid, 1, 'int16'); % 10-11
dummy = fread(fid, 1, 'int16'); % 12-13
dummy = fread(fid, 1, 'int16'); % 14-15
dummy = fread(fid, 1, 'int16'); % 16-17
case 137 % analogsweepheader
% fprintf('analogsweepheader at %d\n' ,ftell(fid)-6);
hdr.sweepnum = fread(fid, 1, 'int16'); % 6-7
hdr.parallel = fread(fid, 1, 'int16'); % 8-9
dummy = fread(fid, 1, 'int16'); % 10-11
dummy = fread(fid, 1, 'int16'); % 12-13
dummy = fread(fid, 1, 'int16'); % 14-15
dummy = fread(fid, 1, 'int16'); % 16-17
case 169 % spikesweepheader
% fprintf('spikesweepheader at %d\n' ,ftell(fid)-6);
hdr.sweepnum = fread(fid, 1, 'int16'); % 6-7
hdr.parallel = fread(fid, 1, 'int16'); % 8-9
dummy = fread(fid, 1, 'int16'); % 10-11
dummy = fread(fid, 1, 'int16'); % 12-13
dummy = fread(fid, 1, 'int16'); % 14-15
dummy = fread(fid, 1, 'int16'); % 16-17
otherwise
error(sprintf('unsupported format for header (%d)', hdr.headertype));
end
|
github
|
philippboehmsturm/antx-master
|
read_neuralynx_bin.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_neuralynx_bin.m
| 6,705 |
utf_8
|
a3589b0e825871f801d479e38ea63033
|
function [dat] = read_neuralynx_bin(filename, begsample, endsample);
% READ_NEURALYNX_BIN
%
% Use as
% hdr = read_neuralynx_bin(filename)
% or
% dat = read_neuralynx_bin(filename, begsample, endsample)
%
% This is not a formal Neuralynx file format, but at the
% F.C. Donders Centre we use it in conjunction with Neuralynx,
% SPIKESPLITTING and SPIKEDOWNSAMPLE.
%
% The first version of this file format contained in the first 8 bytes the
% channel label as string. Subsequently it contained 32 bit integer values.
%
% The second version of this file format starts with 8 bytes describing (as
% a space-padded string) the data type. The channel label is contained in
% the filename as dataset.chanlabel.bin.
%
% The third version of this file format starts with 7 bytes describing (as
% a zero-padded string) the data type, followed by the 8th byte which
% describes the downscaling for the 8 and 16 bit integer representations.
% The downscaling itself is represented as uint8 and should be interpreted as
% the number of bits to shift. The channel label is contained in the
% filename as dataset.chanlabel.bin.
% Copyright (C) 2007-2008, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_neuralynx_bin.m 2885 2011-02-16 09:41:58Z roboos $
needhdr = (nargin==1);
needdat = (nargin>=2);
% this is used for backward compatibility
oldformat = false;
% the first 8 bytes contain the header
fid = fopen(filename, 'rb', 'ieee-le');
magic = fread(fid, 8, 'uint8=>char')';
% the header describes the format of the subsequent samples
subtype = [];
if strncmp(magic, 'uint8', length('uint8'))
format = 'uint8';
samplesize = 1;
elseif strncmp(magic, 'int8', length('int8'))
format = 'int8';
samplesize = 1;
elseif strncmp(magic, 'uint16', length('uint16'))
format = 'uint16';
samplesize = 2;
elseif strncmp(magic, 'int16', length('int16'))
format = 'int16';
samplesize = 2;
elseif strncmp(magic, 'uint32', length('uint32'))
format = 'uint32';
samplesize = 4;
elseif strncmp(magic, 'int32', length('int32'))
format = 'int32';
samplesize = 4;
elseif strncmp(magic, 'uint64', length('uint64'))
format = 'uint64';
samplesize = 8;
elseif strncmp(magic, 'int64', length('int64'))
format = 'int64';
samplesize = 8;
elseif strncmp(magic, 'float32', length('float32'))
format = 'float32';
samplesize = 4;
elseif strncmp(magic, 'float64', length('float64'))
format = 'float64';
samplesize = 8;
else
warning('could not detect sample format, assuming file format subtype 1 with ''int32''');
subtype = 1; % the file format is version 1
format = 'int32';
samplesize = 4;
end
% determine whether the file format is version 2 or 3
if isempty(subtype)
if all(magic((length(format)+1):end)==' ')
subtype = 2;
else
subtype = 3;
end
end
% determine the channel name
switch subtype
case 1
% the first 8 bytes of the file contain the channel label (padded with spaces)
label = strtrim(magic);
case {2, 3}
% the filename is formatted like "dataset.chanlabel.bin"
[p, f, x1] = fileparts(filename);
[p, f, x2] = fileparts(f);
if isempty(x2)
warning('could not determine channel label');
label = 'unknown';
else
label = x2(2:end);
end
clear p f x1 x2
otherwise
error('unknown file format subtype');
end
% determine the downscale factor, i.e. the number of bits that the integer representation has to be shifted back to the left
switch subtype
case 1
% these never contained a multiplication factor but always corresponded
% to the lowest N bits of the original 32 bit integer
downscale = 0;
case 2
% these might contain a multiplication factor but that factor cannot be retrieved from the file
warning('downscale factor is unknown for ''%s'', assuming that no downscaling was applied', filename);
downscale = 0;
case 3
downscale = double(magic(8));
otherwise
error('unknown file format subtype');
end
[p1, f1, x1] = fileparts(filename);
[p2, f2, x2] = fileparts(f1);
headerfile = fullfile(p1, [f2, '.txt']);
if exist(headerfile, 'file')
orig = neuralynx_getheader(headerfile);
% construct the header from the accompanying text file
hdr = [];
hdr.Fs = orig.SamplingFrequency;
hdr.nChans = 1;
hdr.nSamples = (filesize(filename)-8)/samplesize;
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.label = {label};
else
% construct the header from the hard-coded defaults
hdr = [];
hdr.Fs = 32556;
hdr.nChans = 1;
hdr.nSamples = (filesize(filename)-8)/samplesize;
hdr.nSamplesPre = 0;
hdr.nTrials = 1;
hdr.label = {label};
end
if ~needdat
% also return the file details
hdr.orig.subtype = subtype;
hdr.orig.magic = magic;
hdr.orig.format = format;
hdr.orig.downscale = downscale;
% return only the header details
dat = hdr;
else
% read and return the data
if begsample<1
begsample = 1;
end
if isinf(endsample)
endsample = hdr.nSamples;
end
fseek(fid, 8+(begsample-1)*samplesize, 'bof'); % skip to the beginning of the interesting data
format = sprintf('%s=>%s', format, format);
dat = fread(fid, [1 endsample-begsample+1], format);
if downscale>1
% the data was downscaled with 2^N, i.e. shifted N bits to the right in case of integer representations
% now it should be upscaled again with the same amount
dat = dat.*(2^downscale);
end
if length(dat)<(endsample-begsample+1)
error('could not read the requested data');
end
end % needdat
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to determine the file size in bytes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [siz] = filesize(filename)
l = dir(filename);
if l.isdir
error(sprintf('"%s" is not a file', filename));
end
siz = l.bytes;
|
github
|
philippboehmsturm/antx-master
|
read_besa_avr.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_besa_avr.m
| 3,929 |
utf_8
|
9e36880bf3e6eb7d211a5dea7ce2d885
|
function [avr] = read_besa_avr(filename)
% READ_BESA_AVR reads average EEG data in BESA format
%
% Use as
% [avr] = read_besa_avr(filename)
%
% This will return a structure with the header information in
% avr.npnt
% avr.tsb
% avr.di
% avr.sb
% avr.sc
% avr.Nchan (optional)
% avr.label (optional)
% and the ERP data is contained in the Nchan X Nsamples matrix
% avr.data
% Copyright (C) 2003-2006, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_besa_avr.m 2885 2011-02-16 09:41:58Z roboos $
fid = fopen(filename, 'rt');
% the first line contains header information
headstr = fgetl(fid);
ok = 0;
if ~ok
try
buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f SegmentName= %s\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
avr.Nchan = buf(6);
avr.SegmentName = buf(7);
ok = 1;
catch
ok = 0;
end
end
if ~ok
try
buf = fscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
avr.Nchan = buf(6);
ok = 1;
catch
ok = 0;
end
end
if ~ok
try
buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f\n');
avr.npnt = buf(1);
avr.tsb = buf(2);
avr.di = buf(3);
avr.sb = buf(4);
avr.sc = buf(5);
ok = 1;
catch
ok = 0;
end
end
if ~ok
error('Could not interpret the header information.');
end
% rewind to the beginning of the file, skip the header line
fseek(fid, 0, 'bof');
fgetl(fid);
% the second line may contain channel names
chanstr = fgetl(fid);
chanstr = deblank(fliplr(deblank(fliplr(chanstr))));
if (chanstr(1)>='A' && chanstr(1)<='Z') || (chanstr(1)>='a' && chanstr(1)<='z')
haschan = 1;
avr.label = str2cell(strrep(deblank(chanstr), '''', ''))';
else
[root, name] = fileparts(filename);
haschan = 0;
elpfile = fullfile(root, [name '.elp']);
elafile = fullfile(root, [name '.ela']);
if exist(elpfile, 'file')
% read the channel names from the accompanying ELP file
lbl = importdata(elpfile);
avr.label = strrep(lbl.textdata(:,2) ,'''', '');
elseif exist(elafile, 'file')
% read the channel names from the accompanying ELA file
lbl = importdata(elafile);
lbl = strrep(lbl ,'MEG ', ''); % remove the channel type
lbl = strrep(lbl ,'EEG ', ''); % remove the channel type
avr.label = lbl;
else
warning('Could not create channels labels.');
end
end
% seek to the beginning of the data
fseek(fid, 0, 'bof');
fgetl(fid); % skip the header line
if haschan
fgetl(fid); % skip the channel name line
end
buf = fscanf(fid, '%f');
nchan = length(buf)/avr.npnt;
avr.data = reshape(buf, avr.npnt, nchan)';
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to cut a string into pieces at the spaces
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function c = str2cell(s)
c = {};
[t, r] = strtok(s, ' ');
while ~isempty(t)
c{end+1} = t;
[t, r] = strtok(r, ' ');
end
|
github
|
philippboehmsturm/antx-master
|
read_eeglabdata.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_eeglabdata.m
| 3,188 |
utf_8
|
8feab64154efa64494ff73501c82e253
|
% read_eeglabdata() - import EEGLAB dataset files
%
% Usage:
% >> dat = read_eeglabdata(filename);
%
% Inputs:
% filename - [string] file name
%
% Optional inputs:
% 'begtrial' - [integer] first trial to read
% 'endtrial' - [integer] last trial to read
% 'chanindx' - [integer] list with channel indices to read
% 'header' - FILEIO structure header
%
% Outputs:
% dat - data over the specified range
%
% Author: Arnaud Delorme, SCCN, INC, UCSD, 2008-
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function dat = read_eeglabdata(filename, varargin);
if nargin < 1
help read_eeglabdata;
return;
end;
header = keyval('header', varargin);
begsample = keyval('begsample', varargin);
endsample = keyval('endsample', varargin);
begtrial = keyval('begtrial', varargin);
endtrial = keyval('endtrial', varargin);
chanindx = keyval('chanindx', varargin);
if isempty(header)
header = read_eeglabheader(filename);
end;
if ischar(header.orig.data)
if strcmpi(header.orig.data(end-2:end), 'set'),
header.ori = load('-mat', filename);
else
% assuming that the data file is in the current directory
fid = fopen(header.orig.data);
% assuming the .dat and .set files are located in the same directory
if fid == -1
pathstr = fileparts(filename);
fid = fopen(fullfile(pathstr, header.orig.data));
end
if fid == -1
fid = fopen(fullfile(header.orig.filepath, header.orig.data)); %
end
if fid == -1, error(['Cannot not find data file: ' header.orig.data]); end;
% only read the desired trials
if strcmpi(header.orig.data(end-2:end), 'dat')
dat = fread(fid,[header.nSamples*header.nTrials header.nChans],'float32')';
else
dat = fread(fid,[header.nChans header.nSamples*header.nTrials],'float32');
end;
dat = reshape(dat, header.nChans, header.nSamples, header.nTrials);
fclose(fid);
end;
else
dat = header.orig.data;
dat = reshape(dat, header.nChans, header.nSamples, header.nTrials);
end;
if isempty(begtrial), begtrial = 1; end;
if isempty(endtrial), endtrial = header.nTrials; end;
if isempty(begsample), begsample = 1; end;
if isempty(endsample), endsample = header.nSamples; end;
dat = dat(:,begsample:endsample,begtrial:endtrial);
if ~isempty(chanindx)
% select the desired channels
dat = dat(chanindx,:,:);
end
|
github
|
philippboehmsturm/antx-master
|
readbdf.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/readbdf.m
| 3,638 |
utf_8
|
f5fc9fc5e8344dcc1d315c4c56c75b28
|
% readbdf() - Loads selected Records of an EDF or BDF File (European Data Format
% for Biosignals) into MATLAB
% Usage:
% >> [DAT,signal] = readedf(EDF_Struct,Records,Mode);
% Notes:
% Records - List of Records for Loading
% Mode - 0 Default
% 1 No AutoCalib
% 2 Concatenated (channels with lower sampling rate
% if more than 1 record is loaded)
% Output:
% DAT - EDF data structure
% signal - output signal
%
% Author: Alois Schloegl, 03.02.1998, updated T.S. Lorig Sept 6, 2002 for BDF read
%
% See also: openbdf(), sdfopen(), sdfread(), eeglab()
% Version 2.11
% 03.02.1998
% Copyright (c) 1997,98 by Alois Schloegl
% [email protected]
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program has been modified from the original version for .EDF files
% The modifications are to the number of bytes read on line 53 (from 2 to
% 3) and to the type of data read - line 54 (from int16 to bit24). Finally the name
% was changed from readedf to readbdf
% T.S. Lorig Sept 6, 2002
%
% Header modified for eeglab() compatibility - Arnaud Delorme 12/02
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [DAT,S]=readbdf(DAT,Records,Mode)
if nargin<3 Mode=0; end;
EDF=DAT.Head;
RecLen=max(EDF.SPR);
S=NaN*zeros(RecLen,EDF.NS);
DAT.Record=zeros(length(Records)*RecLen,EDF.NS);
DAT.Valid=uint8(zeros(1,length(Records)*RecLen));
DAT.Idx=Records(:)';
for nrec=1:length(Records),
NREC=(DAT.Idx(nrec)-1);
if NREC<0 fprintf(2,'Warning READEDF: invalid Record Number %i \n',NREC);end;
fseek(EDF.FILE.FID,(EDF.HeadLen+NREC*EDF.AS.spb*3),'bof');
[s, count]=fread(EDF.FILE.FID,EDF.AS.spb,'bit24');
try,
S(EDF.AS.IDX2)=s;
catch,
error('File is incomplete (try reading begining of file)');
end;
%%%%% Test on Over- (Under-) Flow
% V=sum([(S'==EDF.DigMax(:,ones(RecLen,1))) + (S'==EDF.DigMin(:,ones(RecLen,1)))])==0;
V=sum([(S(:,EDF.Chan_Select)'>=EDF.DigMax(EDF.Chan_Select,ones(RecLen,1))) + ...
(S(:,EDF.Chan_Select)'<=EDF.DigMin(EDF.Chan_Select,ones(RecLen,1)))])==0;
EDF.ERROR.DigMinMax_Warning(find(sum([(S'>EDF.DigMax(:,ones(RecLen,1))) + (S'<EDF.DigMin(:,ones(RecLen,1)))]')>0))=1;
% invalid=[invalid; find(V==0)+l*k];
if floor(Mode/2)==1
for k=1:EDF.NS,
DAT.Record(nrec*EDF.SPR(k)+(1-EDF.SPR(k):0),k)=S(1:EDF.SPR(k),k);
end;
else
DAT.Record(nrec*RecLen+(1-RecLen:0),:)=S;
end;
DAT.Valid(nrec*RecLen+(1-RecLen:0))=V;
end;
if rem(Mode,2)==0 % Autocalib
DAT.Record=[ones(RecLen*length(Records),1) DAT.Record]*EDF.Calib;
end;
DAT.Record=DAT.Record';
return;
|
github
|
philippboehmsturm/antx-master
|
warning_once.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/warning_once.m
| 3,060 |
utf_8
|
f046009e4f6ffe5745af9c5e527614e8
|
function [ws warned] = warning_once(varargin)
%
% Use as
% warning_once(string)
% or
% warning_once(string, timeout)
% or
% warning_once(id, string, timeout)
% where timeout should be inf if you don't want to see the warning ever
% again. The default timeout value is 60 seconds.
%
% Can be used instead of the MATLAB built-in function WARNING, thus as
% s = warning_once(...)
% or
% warning_once(s)
% where s is a structure with fields 'identifier' and 'state', storing the
% state information.
% In other words, warning_once accepts as an input the same structure it
% returns as an output. This returns or restores the states of warnings to
% their previous values.
%
% Can also be used as
% [s w] = warning_once(...)
% where w is a boolean that indicates whether a warning as been
% thrown or not.
persistent stopwatch previous
if nargin < 1
error('You need to specify at least a warning message');
end
warned = false;
if isstruct(varargin{1})
warning(varargin{1});
return;
end
if nargin==3
msgid = varargin{1};
msgstr = varargin{2};
timeout = varargin{3};
elseif nargin==2
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = varargin{2};
elseif nargin==1
msgstr= ''; % this becomes irrelevant
msgid = varargin{1}; % this becomes the real msgstr
timeout = 60; % default timeout in seconds
end
if isempty(timeout)
error('Timeout ill-specified');
end
if isempty(stopwatch)
stopwatch = tic;
end
if isempty(previous)
previous = struct;
end
now = toc(stopwatch); % measure time since first function call
fname = fixname([msgid '_' msgstr]); % make a nice string that is allowed as structure fieldname, copy the subfunction from ft_hastoolbox
fname = decomma(fname);
if length(fname) > 63 % MATLAB max name
fname = fname(1:63);
end
if isfield(previous, fname) && now>previous.(fname).timeout
% it has timed out, give the warning again
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
elseif ~isfield(previous, fname)
% the warning has not been issued before
ws = warning(msgid, msgstr);
previous.(fname).timeout = now+timeout;
previous.(fname).ws = ws;
warned = true;
else
% the warning has been issued before, but has not timed out yet
ws = previous.(fname).ws;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = fixname(toolbox)
out = lower(toolbox);
out(out=='-') = '_'; % fix dashes
out(out==' ') = '_'; % fix spaces
out(out=='/') = '_'; % fix forward slashes
out(out=='\') = '_'; % fix backward slashes
while(out(1) == '_'), out = out(2:end); end; % remove preceding underscore
while(out(end) == '_'), out = out(1:end-1); end; % remove subsequent underscore
end
function nameout = decomma(name)
nameout = name;
indx = findstr(name,',');
nameout(indx)=[];
end
|
github
|
philippboehmsturm/antx-master
|
ft_hastoolbox.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/ft_hastoolbox.m
| 15,262 |
utf_8
|
c0b501e52231cc82315936a092af6214
|
function [status] = ft_hastoolbox(toolbox, autoadd, silent)
% FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally
% it will try to determine the path to the toolbox and install it
% automatically.
%
% Use as
% [status] = ft_hastoolbox(toolbox, autoadd, silent)
%
% autoadd = 0 means that it will not be added
% autoadd = 1 means that give an error if it cannot be added
% autoadd = 2 means that give a warning if it cannot be added
% autoadd = 3 means that it remains silent if it cannot be added
%
% silent = 0 means that it will give some feedback about adding the toolbox
% silent = 1 means that it will not give feedback
% Copyright (C) 2005-2010, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_hastoolbox.m 3873 2011-07-19 14:23:16Z tilsan $
% this function is called many times in FieldTrip and associated toolboxes
% use efficient handling if the same toolbox has been investigated before
persistent previous previouspath
if ~isequal(previouspath, path)
previous = [];
end
if isempty(previous)
previous = struct;
elseif isfield(previous, fixname(toolbox))
status = previous.(fixname(toolbox));
return
end
% this points the user to the website where he/she can download the toolbox
url = {
'AFNI' 'see http://afni.nimh.nih.gov'
'DSS' 'see http://www.cis.hut.fi/projects/dss'
'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab'
'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox'
'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm'
'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm'
'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd'
'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com'
'BIOSIG' 'see http://biosig.sourceforge.net'
'EEG' 'see http://eeg.sourceforge.net'
'EEGSF' 'see http://eeg.sourceforge.net' % alternative name
'MRI' 'see http://eeg.sourceforge.net' % alternative name
'NEUROSHARE' 'see http://www.neuroshare.org'
'BESA' 'see http://www.megis.de, or contact Karsten Hoechstetter'
'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde'
'YOKOGAWA' 'see http://www.yokogawa.co.jp, or contact Nobuhiko Takahashi'
'YOKOGAWA_MEG_READER' 'contact Masayuki dot Mochiduki at jp.yokogawa.com'
'BEOWULF' 'see http://oostenveld.net, or contact Robert Oostenveld'
'MENTAT' 'see http://oostenveld.net, or contact Robert Oostenveld'
'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth'
'4D-VERSION' 'contact Christian Wienbruch'
'SIGNAL' 'see http://www.mathworks.com/products/signal'
'OPTIM' 'see http://www.mathworks.com/products/optim'
'IMAGE' 'see http://www.mathworks.com/products/image'
'SPLINES' 'see http://www.mathworks.com/products/splines'
'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica'
'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm'
'FILEIO' 'see http://www.ru.nl/neuroimaging/fieldtrip'
'FORWINV' 'see http://www.ru.nl/neuroimaging/fieldtrip'
'PLOTTING' 'see http://www.ru.nl/neuroimaging/fieldtrip'
'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne'
'BCI2000' 'see http://bci2000.org'
'NLXNETCOM' 'see http://www.neuralynx.com'
'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external'
'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php'
'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydes?ter'
'BEMCP' 'contact Christophe Phillips'
'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435'
'PRTOOLS' 'see http://www.prtools.org'
'ITAB' 'contact Stefania Della Penna'
'BSMART' 'see http://www.brain-smart.org'
'PEER' 'see http://fieldtrip.fcdonders.nl/development/peer'
'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki'
'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page'
'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS'
'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti'
'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0'
'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab'
'BCT' 'see http://www.brain-connectivity-toolbox.net/'
};
if nargin<2
% default is not to add the path automatically
autoadd = 0;
end
if nargin<3
% default is not to be silent
silent = 0;
end
% determine whether the toolbox is installed
toolbox = upper(toolbox);
switch toolbox
case 'AFNI'
status = (exist('BrikLoad') && exist('BrikInfo'));
case 'DSS'
status = exist('denss', 'file') && exist('dss_create_state', 'file');
case 'EEGLAB'
status = exist('runica', 'file');
case 'NWAY'
status = exist('parafac', 'file');
case 'SPM'
status = exist('spm.m'); % any version of SPM is fine
case 'SPM99'
status = exist('spm.m') && strcmp(spm('ver'),'SPM99');
case 'SPM2'
status = exist('spm.m') && strcmp(spm('ver'),'SPM2');
case 'SPM5'
status = exist('spm.m') && strcmp(spm('ver'),'SPM5');
case 'SPM8'
status = exist('spm.m') && strncmp(spm('ver'),'SPM8', 4);
case 'MEG-PD'
status = (exist('rawdata') && exist('channames'));
case 'MEG-CALC'
status = (exist('megmodel') && exist('megfield') && exist('megtrans'));
case 'BIOSIG'
status = (exist('sopen') && exist('sread'));
case 'EEG'
status = (exist('ctf_read_res4') && exist('ctf_read_meg4'));
case 'EEGSF' % alternative name
status = (exist('ctf_read_res4') && exist('ctf_read_meg4'));
case 'MRI' % other functions in the mri section
status = (exist('avw_hdr_read') && exist('avw_img_read'));
case 'NEUROSHARE'
status = (exist('ns_OpenFile') && exist('ns_SetLibrary') && exist('ns_GetAnalogData'));
case 'BESA'
status = (exist('readBESAtfc') && exist('readBESAswf'));
case 'EEPROBE'
status = (exist('read_eep_avr') && exist('read_eep_cnt'));
case 'YOKOGAWA'
status = (exist('hasyokogawa') && hasyokogawa('16bitBeta6'));
case 'YOKOGAWA16BITBETA3'
status = (exist('hasyokogawa') && hasyokogawa('16bitBeta3'));
case 'YOKOGAWA16BITBETA6'
status = (exist('hasyokogawa') && hasyokogawa('16bitBeta6'));
case 'YOKOGAWA_MEG_READER'
status = (exist('hasyokogawa') && hasyokogawa('1.4'));
case 'BEOWULF'
status = (exist('evalwulf') && exist('evalwulf') && exist('evalwulf'));
case 'MENTAT'
status = (exist('pcompile') && exist('pfor') && exist('peval'));
case 'SON2'
status = (exist('SONFileHeader') && exist('SONChanList') && exist('SONGetChannel'));
case '4D-VERSION'
status = (exist('read4d') && exist('read4dhdr'));
case {'STATS', 'STATISTICS'}
status = license('checkout', 'statistics_toolbox'); % also check the availability of a toolbox license
case {'OPTIM', 'OPTIMIZATION'}
status = license('checkout', 'optimization_toolbox'); % also check the availability of a toolbox license
case {'SPLINES', 'CURVE_FITTING'}
status = license('checkout', 'curve_fitting_toolbox'); % also check the availability of a toolbox license
case 'SIGNAL'
status = license('checkout', 'signal_toolbox'); % also check the availability of a toolbox license
case 'IMAGE'
status = license('checkout', 'image_toolbox'); % also check the availability of a toolbox license
case 'DCT'
status = license('checkout', 'distrib_computing_toolbox'); % also check the availability of a toolbox license
case 'FASTICA'
status = exist('fastica', 'file');
case 'BRAINSTORM'
status = exist('bem_xfer');
case 'FILEIO'
status = (exist('ft_read_header') && exist('ft_read_data') && exist('ft_read_event') && exist('ft_read_sens'));
case 'FORMWARD'
status = (exist('ft_compute_leadfield') && exist('ft_prepare_vol_sens'));
case 'DENOISE'
status = (exist('tsr') && exist('sns'));
case 'CTF'
status = (exist('getCTFBalanceCoefs') && exist('getCTFdata'));
case 'BCI2000'
status = exist('load_bcidat');
case 'NLXNETCOM'
status = (exist('MatlabNetComClient') && exist('NlxConnectToServer') && exist('NlxGetNewCSCData'));
case 'DIPOLI'
status = exist('dipoli.m', 'file');
case 'MNE'
status = (exist('fiff_read_meas_info', 'file') && exist('fiff_setup_read_raw', 'file'));
case 'TCP_UDP_IP'
status = (exist('pnet', 'file') && exist('pnet_getvar', 'file') && exist('pnet_putvar', 'file'));
case 'BEMCP'
status = (exist('bem_Cij_cog', 'file') && exist('bem_Cij_lin', 'file') && exist('bem_Cij_cst', 'file'));
case 'OPENMEEG'
status = exist('openmeeg.m', 'file');
case 'PLOTTING'
status = (exist('ft_plot_topo', 'file') && exist('ft_plot_mesh', 'file') && exist('ft_plot_matrix', 'file'));
case 'PRTOOLS'
status = (exist('prversion', 'file') && exist('dataset', 'file') && exist('svc', 'file'));
case 'ITAB'
status = (exist('lcReadHeader', 'file') && exist('lcReadData', 'file'));
case 'BSMART'
status = exist('bsmart');
case 'PEER'
status = exist('peerslave', 'file') && exist('peermaster', 'file');
case 'CONNECTIVITY'
status = exist('ft_connectivity_corr', 'file') && exist('ft_connectivity_granger', 'file');
case 'FREESURFER'
status = exist('MRIread', 'file') && exist('vox2ras_0to1', 'file');
case 'FNS'
status = exist('elecsfwd', 'file') && exist('img_get_gray', 'file');
case 'SIMBIO'
status = exist('ipm_linux_opt_Venant', 'file');
case 'GIFTI'
status = exist('gifti', 'file');
case 'XML4MAT'
status = exist('xml2struct.m', 'file') && exist('xml2whos.m', 'file');
case 'SQDPROJECT'
status = exist('sqdread.m', 'file') && exist('sqdwrite.m', 'file');
case 'BCT'
status = exist('macaque71.mat', 'file') && exist('motif4funct_wei.m', 'file');
otherwise
if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end
status = 0;
end
% it should be a boolean value
status = (status~=0);
% try to determine the path of the requested toolbox
if autoadd>0 && ~status
% for core fieldtrip modules
prefix = fileparts(which('ft_defaults'));
if ~status
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
% for external fieldtrip modules
prefix = fullfile(fileparts(which('ft_defaults')), 'external');
if ~status
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
licensefile = [lower(toolbox) '_license'];
if status && exist(licensefile, 'file')
% this will execute openmeeg_license and mne_license
% which display the license on screen for three seconds
feval(licensefile);
end
end
% for linux computers in the F.C. Donders Centre
prefix = '/home/common/matlab';
if ~status && (strcmp(computer, 'GLNX86') || strcmp(computer, 'GLNXA64'))
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
% for windows computers in the F.C. Donders Centre
prefix = 'h:\common\matlab';
if ~status && (strcmp(computer, 'PCWIN') || strcmp(computer, 'PCWIN64'))
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
% use the matlab subdirectory in your homedirectory, this works on unix and mac
prefix = [getenv('HOME') '/matlab'];
if ~status
status = myaddpath(fullfile(prefix, lower(toolbox)), silent);
end
if ~status
% the toolbox is not on the path and cannot be added
sel = find(strcmp(url(:,1), toolbox));
if ~isempty(sel)
msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2});
else
msg = sprintf('the %s toolbox is not installed', toolbox);
end
if autoadd==1
error(msg);
elseif autoadd==2
warning(msg);
else
% fail silently
end
end
end
% this function is called many times in FieldTrip and associated toolboxes
% use efficient handling if the same toolbox has been investigated before
if status
previous.(fixname(toolbox)) = status;
end
% remember the previous path, allows us to determine on the next call
% whether the path has been modified outise of this function
previouspath = path;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = myaddpath(toolbox, silent)
if exist(toolbox, 'dir')
if ~silent,
ws = warning('backtrace', 'off');
warning('adding %s toolbox to your Matlab path', toolbox);
warning(ws); % return to the previous warning level
end
addpath(toolbox);
status = 1;
else
status = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function out = fixname(toolbox)
out = lower(toolbox);
out(out=='-') = '_'; % fix dashes
out(out==' ') = '_'; % fix spaces
out(out=='/') = '_'; % fix forward slashes
out(out=='\') = '_'; % fix backward slashes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% helper function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status = hasfunction(funname, toolbox)
try
% call the function without any input arguments, which probably is inapropriate
feval(funname);
% it might be that the function without any input already works fine
status = true;
catch
% either the function returned an error, or the function is not available
% availability is influenced by the function being present and by having a
% license for the function, i.e. in a concurrent licensing setting it might
% be that all toolbox licenses are in use
m = lasterror;
if strcmp(m.identifier, 'MATLAB:license:checkouterror')
if nargin>1
warning('the %s toolbox is available, but you don''t have a license for it', toolbox);
else
warning('the function ''%s'' is available, but you don''t have a license for it', funname);
end
status = false;
elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction')
status = false;
else
% the function seems to be available and it gave an unknown error,
% which is to be expected with inappropriate input arguments
status = true;
end
end
|
github
|
philippboehmsturm/antx-master
|
read_plexon_nex.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_plexon_nex.m
| 7,770 |
utf_8
|
ddd5e1bafbd237ca874db87ef640f25f
|
function [varargout] = read_plexon_nex(filename, varargin)
% READ_PLEXON_NEX reads header or data from a Plexon *.nex file, which
% is a file containing action-potential (spike) timestamps and waveforms
% (spike channels), event timestamps (event channels), and continuous
% variable data (continuous A/D channels).
%
% LFP and spike waveform data that is returned by this function is
% expressed in microVolt.
%
% Use as
% [hdr] = read_plexon_nex(filename)
% [dat] = read_plexon_nex(filename, ...)
% [dat1, dat2, dat3, hdr] = read_plexon_nex(filename, ...)
%
% Optional arguments should be specified in key-value pairs and can be
% header structure with header information
% feedback 0 or 1
% tsonly 0 or 1, read only the timestamps and not the waveforms
% channel number, or list of numbers (that will result in multiple outputs)
% begsample number (for continuous only)
% endsample number (for continuous only)
%
% See also READ_PLEXON_PLX, READ_PLEXON_DDT
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_plexon_nex.m 945 2010-04-21 17:41:20Z roboos $
% parse the optional input arguments
hdr = keyval('header', varargin);
channel = keyval('channel', varargin);
feedback = keyval('feedback', varargin);
tsonly = keyval('tsonly', varargin);
begsample = keyval('begsample', varargin);
endsample = keyval('endsample', varargin);
% set the defaults
if isempty(feedback)
feedback=0;
end
if isempty(tsonly)
tsonly=0;
end
if isempty(begsample)
begsample=1;
end
if isempty(endsample)
endsample=Inf;
end
% start with empty return values and empty data
varargout = {};
% read header info from file, use Matlabs for automatic byte-ordering
fid = fopen(filename, 'r', 'ieee-le');
fseek(fid, 0, 'eof');
siz = ftell(fid);
fseek(fid, 0, 'bof');
if isempty(hdr)
if feedback, fprintf('reading header from %s\n', filename); end
% a NEX file consists of a file header, followed by a number of variable headers
% sizeof(NexFileHeader) = 544
% sizeof(NexVarHeader) = 208
hdr.FileHeader = NexFileHeader(fid);
if hdr.FileHeader.NumVars<1
error('no channels present in file');
end
hdr.VarHeader = NexVarHeader(fid, hdr.FileHeader.NumVars);
end
for i=1:length(channel)
chan = channel(i);
vh = hdr.VarHeader(chan);
clear buf
fseek(fid, vh.DataOffset, 'bof');
switch vh.Type
case 0
% Neurons, only timestamps
buf.ts = fread(fid, [1 vh.Count], 'int32=>int32');
case 1
% Events, only timestamps
buf.ts = fread(fid, [1 vh.Count], 'int32=>int32');
case 2
% Interval variables
buf.begs = fread(fid, [1 vh.Count], 'int32=>int32');
buf.ends = fread(fid, [1 vh.Count], 'int32=>int32');
case 3
% Waveform variables
buf.ts = fread(fid, [1 vh.Count], 'int32=>int32');
if ~tsonly
buf.dat = fread(fid, [vh.NPointsWave vh.Count], 'int16');
% convert the AD values to miliVolt, subsequently convert from miliVolt to microVolt
buf.dat = buf.dat * (vh.ADtoMV * 1000);
end
case 4
% Population vector
error('population vectors are not supported');
case 5
% Continuously recorded variables
buf.ts = fread(fid, [1 vh.Count], 'int32=>int32');
buf.indx = fread(fid, [1 vh.Count], 'int32=>int32');
if vh.Count>1 && (begsample~=1 || endsample~=inf)
error('reading selected samples from multiple AD segments is not supported');
end
if ~tsonly
numsample = min(endsample - begsample + 1, vh.NPointsWave);
fseek(fid, (begsample-1)*2, 'cof');
buf.dat = fread(fid, [1 numsample], 'int16');
% convert the AD values to miliVolt, subsequently convert from miliVolt to microVolt
buf.dat = buf.dat * (vh.ADtoMV * 1000);
end
case 6
% Markers
ts = fread(fid, [1 vh.Count], 'int32=>int32');
for j=1:vh.NMarkers
buf.MarkerNames{j,1} = fread(fid, [1 64], 'uint8=>char');
for k=1:vh.Count
buf.MarkerValues{j,k} = fread(fid, [1 vh.MarkerLength], 'uint8=>char');
end
end
otherwise
error('incorrect channel type');
end % switch channel type
% return the data of this channel
varargout{i} = buf;
end % for channel
% always return the header as last
varargout{end+1} = hdr;
fclose(fid);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function hdr = NexFileHeader(fid);
hdr.NexFileHeader = fread(fid,4,'uint8=>char')'; % string NEX1
hdr.Version = fread(fid,1,'int32');
hdr.Comment = fread(fid,256,'uint8=>char')';
hdr.Frequency = fread(fid,1,'double'); % timestamped freq. - tics per second
hdr.Beg = fread(fid,1,'int32'); % usually 0
hdr.End = fread(fid,1,'int32'); % maximum timestamp + 1
hdr.NumVars = fread(fid,1,'int32'); % number of variables in the first batch
hdr.NextFileHeader = fread(fid,1,'int32'); % position of the next file header in the file, not implemented yet
Padding = fread(fid,256,'uint8=>char')'; % future expansion
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function hdr = NexVarHeader(fid, numvar);
for varlop=1:numvar
hdr(varlop).Type = fread(fid,1,'int32'); % 0 - neuron, 1 event, 2- interval, 3 - waveform, 4 - pop. vector, 5 - continuously recorded
hdr(varlop).Version = fread(fid,1,'int32'); % 100
hdr(varlop).Name = fread(fid,64,'uint8=>char')'; % variable name
hdr(varlop).DataOffset = fread(fid,1,'int32'); % where the data array for this variable is located in the file
hdr(varlop).Count = fread(fid,1,'int32'); % number of events, intervals, waveforms or weights
hdr(varlop).WireNumber = fread(fid,1,'int32'); % neuron only, not used now
hdr(varlop).UnitNumber = fread(fid,1,'int32'); % neuron only, not used now
hdr(varlop).Gain = fread(fid,1,'int32'); % neuron only, not used now
hdr(varlop).Filter = fread(fid,1,'int32'); % neuron only, not used now
hdr(varlop).XPos = fread(fid,1,'double'); % neuron only, electrode position in (0,100) range, used in 3D
hdr(varlop).YPos = fread(fid,1,'double'); % neuron only, electrode position in (0,100) range, used in 3D
hdr(varlop).WFrequency = fread(fid,1,'double'); % waveform and continuous vars only, w/f sampling frequency
hdr(varlop).ADtoMV = fread(fid,1,'double'); % waveform continuous vars only, coeff. to convert from A/D values to Millivolts
hdr(varlop).NPointsWave = fread(fid,1,'int32'); % waveform only, number of points in each wave
hdr(varlop).NMarkers = fread(fid,1,'int32'); % how many values are associated with each marker
hdr(varlop).MarkerLength = fread(fid,1,'int32'); % how many characters are in each marker value
Padding = fread(fid,68,'uint8=>char')';
end
|
github
|
philippboehmsturm/antx-master
|
read_bti_m4d.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_bti_m4d.m
| 5,358 |
utf_8
|
efc8ff42ca99052f99b09ebb86c10e54
|
function [msi] = read_bti_m4d(filename);
% READ_BTI_M4D
%
% Use as
% msi = read_bti_m4d(filename)
% Copyright (C) 2007, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_bti_m4d.m 945 2010-04-21 17:41:20Z roboos $
[p, f, x] = fileparts(filename);
if ~strcmp(x, '.m4d')
% add the extension of the header
filename = [filename '.m4d'];
end
fid = fopen(filename, 'r');
if fid==-1
error(sprintf('could not open file %s', filename));
end
% start with an empty header structure
msi = struct;
% these header elements contain strings and should be converted in a cell-array
strlist = {
'MSI.ChannelOrder'
};
% these header elements contain numbers and should be converted in a numeric array
% 'MSI.ChannelScale'
% 'MSI.ChannelGain'
% 'MSI.FileType'
% 'MSI.TotalChannels'
% 'MSI.TotalEpochs'
% 'MSI.SamplePeriod'
% 'MSI.SampleFrequency'
% 'MSI.FirstLatency'
% 'MSI.SlicesPerEpoch'
% the conversion to numeric arrays is implemented in a general fashion
% and all the fields above are automatically converted
numlist = {};
line = '';
msi.grad.label = {};
msi.grad.pnt = zeros(0,3);
msi.grad.ori = zeros(0,3);
while ischar(line)
line = cleanline(fgetl(fid));
if isempty(line) || (length(line)==1 && all(line==-1))
continue
end
sep = strfind(line, ':');
if length(sep)==1
key = line(1:(sep-1));
val = line((sep+1):end);
elseif length(sep)>1
% assume that the first separator is the relevant one, and that the
% next ones are part of the value string (e.g. a channel with a ':' in
% its name
sep = sep(1);
key = line(1:(sep-1));
val = line((sep+1):end);
elseif length(sep)<1
% this is not what I would expect
error('unexpected content in m4d file');
end
if ~isempty(strfind(line, 'Begin'))
sep = strfind(key, '.');
sep = sep(end);
key = key(1:(sep-1));
% if the key ends with begin and there is no value, then there is a block
% of numbers following that relates to the magnetometer/gradiometer information.
% All lines in that Begin-End block should be treated seperately
val = {};
lab = {};
num = {};
ind = 0;
while isempty(strfind(line, 'End'))
line = cleanline(fgetl(fid));
if isempty(line) || (length(line)==1 && all(line==-1)) || ~isempty(strfind(line, 'End'))
continue
end
ind = ind+1;
% remember the line itself, and also cut it into pieces
val{ind} = line;
% the line is tab-separated and looks like this
% A68 0.0873437 -0.075789 0.0891512 0.471135 -0.815532 0.336098
sep = find(line==9); % the ascii value of a tab is 9
sep = sep(1);
lab{ind} = line(1:(sep-1));
num{ind} = str2num(line((sep+1):end));
end % parsing Begin-End block
val = val(:);
lab = lab(:);
num = num(:);
num = cell2mat(num);
% the following is FieldTrip specific
if size(num,2)==6
msi.grad.label = [msi.grad.label; lab(:)];
% the numbers represent position and orientation of each magnetometer coil
msi.grad.pnt = [msi.grad.pnt; num(:,1:3)];
msi.grad.ori = [msi.grad.ori; num(:,4:6)];
else
error('unknown gradiometer design')
end
end
% the key looks like 'MSI.fieldname.subfieldname'
fieldname = key(5:end);
% remove spaces from the begin and end of the string
val = strtrim(val);
% try to convert the value string into something more usefull
if ~iscell(val)
% the value can contain a variety of elements, only some of which are decoded here
if ~isempty(strfind(key, 'Index')) || ~isempty(strfind(key, 'Count')) || any(strcmp(key, numlist))
% this contains a single number or a comma-separated list of numbers
val = str2num(val);
elseif ~isempty(strfind(key, 'Names')) || any(strcmp(key, strlist))
% this contains a comma-separated list of strings
val = tokenize(val, ',');
else
tmp = str2num(val);
if ~isempty(tmp)
val = tmp;
end
end
end
% assign this header element to the structure
msi = setsubfield(msi, fieldname, val);
end % while ischar(line)
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to remove spaces from the begin and end
% and to remove comments from the lines
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function line = cleanline(line)
if isempty(line) || (length(line)==1 && all(line==-1))
return
end
comment = findstr(line, '//');
if ~isempty(comment)
line(min(comment):end) = ' ';
end
line = strtrim(line);
|
github
|
philippboehmsturm/antx-master
|
read_asa.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_asa.m
| 3,776 |
utf_8
|
22d131a6d78524f6b898995dcb17b54d
|
function [val] = read_asa(filename, elem, format, number, token)
% READ_ASA reads a specified element from an ASA file
%
% val = read_asa(filename, element, type, number)
%
% where the element is a string such as
% NumberSlices
% NumberPositions
% Rows
% Columns
% etc.
%
% and format specifies the datatype according to
% %d (integer value)
% %f (floating point value)
% %s (string)
%
% number is optional to specify how many lines of data should be read
% The default is 1 for strings and Inf for numbers.
%
% token is optional to specifiy a character that separates the values from
% anything not wanted.
% Copyright (C) 2002, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_asa.m 945 2010-04-21 17:41:20Z roboos $
fid = fopen(filename, 'rt');
if fid==-1
error(sprintf('could not open file %s', filename));
end
if nargin<4
if strcmp(format, '%s')
number = 1;
else
number = Inf;
end
end
if nargin<5
token = '';
end
val = [];
elem = strtrim(lower(elem));
while (1)
line = fgetl(fid);
if ~isempty(line) && isequal(line, -1)
% prematurely reached end of file
fclose(fid);
return
end
line = strtrim(line);
lower_line = lower(line);
if strmatch(elem, lower_line)
data = line((length(elem)+1):end);
break
end
end
while isempty(data)
line = fgetl(fid);
if isequal(line, -1)
% prematurely reached end of file
fclose(fid);
return
end
data = strtrim(line);
end
if strcmp(format, '%s')
if number==1
% interpret the data as a single string, create char-array
val = detoken(strtrim(data), token);
fclose(fid);
return
end
% interpret the data as a single string, create cell-array
val{1} = detoken(strtrim(data), token);
count = 1;
% read the remaining strings
while count<number
line = fgetl(fid);
if ~isempty(line) && isequal(line, -1)
fclose(fid);
return
end
tmp = sscanf(line, format);
if isempty(tmp)
fclose(fid);
return
else
count = count + 1;
val{count} = detoken(strtrim(line), token);
end
end
else
% interpret the data as numeric, create numeric array
count = 1;
data = sscanf(detoken(data, token), format)';
if isempty(data),
fclose(fid);
return
else
val(count,:) = data;
end
% read remaining numeric data
while count<number
line = fgetl(fid);
if ~isempty(line) && isequal(line, -1)
fclose(fid);
return
end
data = sscanf(detoken(line, token), format)';
if isempty(data)
fclose(fid);
return
else
count = count+1;
val(count,:) = data;
end
end
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [out] = detoken(in, token)
if isempty(token)
out = in;
return;
end
[tok rem] = strtok(in, token);
if isempty(rem)
out = in;
return;
else
out = strtok(rem, token);
return
end
|
github
|
philippboehmsturm/antx-master
|
nanmean.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/nanmean.m
| 2,121 |
utf_8
|
7e0ebd9ca56f2cd79f89031bbccebb9a
|
% nanmean() - Average, not considering NaN values
%
% Usage: same as mean()
% Author: Arnaud Delorme, CNL / Salk Institute, 16 Oct 2002
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: nanmean.m 2885 2011-02-16 09:41:58Z roboos $
function out = nanmean(in, dim)
if nargin < 1
help nanmean;
return;
end;
if nargin < 2
if size(in,1) ~= 1
dim = 1;
elseif size(in,2) ~= 1
dim = 2;
else
dim = 3;
end;
end;
tmpin = in;
tmpin(find(isnan(in(:)))) = 0;
out = sum(tmpin, dim) ./ sum(~isnan(in),dim);
|
github
|
philippboehmsturm/antx-master
|
ft_checkdata.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/ft_checkdata.m
| 58,801 |
utf_8
|
ebc65e88732dfae50505a780bebeb965
|
function [data] = ft_checkdata(data, varargin)
% FT_CHECKDATA checks the input data of the main FieldTrip functions, e.g. whether
% the type of data strucure corresponds with the required data. If neccessary
% and possible, this function will adjust the data structure to the input
% requirements (e.g. change dimord, average over trials, convert inside from
% index into logical).
%
% If the input data does NOT correspond to the requirements, this function
% is supposed to give a elaborate warning message and if applicable point
% the user to external documentation (link to website).
%
% Use as
% [data] = ft_checkdata(data, ...)
%
% Optional input arguments should be specified as key-value pairs and can include
% feedback = yes, no
% datatype = raw, freq, timelock, comp, spike, source, volume, dip
% dimord = any combination of time, freq, chan, refchan, rpt, subj, chancmb, rpttap, pos
% senstype = ctf151, ctf275, ctf151_planar, ctf275_planar, neuromag122, neuromag306, bti148, bti248, bti248_planar, magnetometer, electrode
% inside = logical, index
% ismeg = yes, no
% hastrials = yes, no
% hasunits = yes, no
% hassampleinfo = yes, no, ifmakessense
% hascumtapcnt = yes, no (only applies to freq data)
% hasdim = yes, no
% hasdof = yes, no
% cmbrepresentation = sparse, full (applies to covariance and cross-spectral density)
%
% For some options you can specify multiple values, e.g.
% [data] = ft_checkdata(data, 'senstype', {'ctf151', 'ctf275'}), e.g. in megrealign
% [data] = ft_checkdata(data, 'datatype', {'timelock', 'freq'}), e.g. in sourceanalysis
% Copyright (C) 2007-2009, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Publhasoffsetic License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: ft_checkdata.m 3881 2011-07-20 09:39:41Z jansch $
% in case of an error this function could use dbstack for more detailled
% user feedback
%
% this function should replace/encapsulate
% fixdimord
% fixinside
% fixprecision
% fixvolume
% data2raw
% raw2data
% grid2transform
% transform2grid
% fourier2crsspctrm
% freq2cumtapcnt
% sensortype
% time2offset
% offset2time
%
% other potential uses for this function:
% time -> offset in freqanalysis
% average over trials
% csd as matrix
% get the optional input arguments
feedback = keyval('feedback', varargin); if isempty(feedback), feedback = 'no'; end
dtype = keyval('datatype', varargin); % should not conflict with the ft_datatype function
dimord = keyval('dimord', varargin);
stype = keyval('senstype', varargin); % senstype is a function name which should not be masked
ismeg = keyval('ismeg', varargin);
inside = keyval('inside', varargin); % can be logical or index
hastrials = keyval('hastrials', varargin);
hasunits = keyval('hasunits', varargin);
hassampleinfo = keyval('hassampleinfo', varargin); if isempty(hassampleinfo), hassampleinfo = 'no'; end
hasdimord = keyval('hasdimord', varargin); if isempty(hasdimord), hasdimord = 'no'; end
hasdim = keyval('hasdim', varargin);
hascumtapcnt = keyval('hascumtapcnt', varargin);
hasdof = keyval('hasdof', varargin); if isempty(hasdof), hasdof = 'no'; end
haspow = keyval('haspow', varargin); if isempty(haspow), haspow = 'no'; end
cmbrepresentation = keyval('cmbrepresentation', varargin);
channelcmb = keyval('channelcmb', varargin);
sourcedimord = keyval('sourcedimord', varargin);
sourcerepresentation = keyval('sourcerepresentation', varargin);
% check whether people are using deprecated stuff
depHastrialdef = keyval('hastrialdef', varargin);
if (~isempty(depHastrialdef))
warning_once('ft_checkdata option ''hastrialdef'' is deprecated; use ''hassampleinfo'' instead');
hassampleinfo = depHastrialdef;
end
if (~isempty(keyval('hasoffset', varargin)))
warning_once('ft_checkdata option ''hasoffset'' has been removed and will be ignored');
end
% determine the type of input data
% this can be raw, freq, timelock, comp, spike, source, volume, dip
israw = ft_datatype(data, 'raw');
isfreq = ft_datatype(data, 'freq');
istimelock = ft_datatype(data, 'timelock');
iscomp = ft_datatype(data, 'comp');
isspike = ft_datatype(data, 'spike');
isvolume = ft_datatype(data, 'volume');
issource = ft_datatype(data, 'source');
isdip = ft_datatype(data, 'dip');
ismvar = ft_datatype(data, 'mvar');
isfreqmvar = ft_datatype(data, 'freqmvar');
ischan = ft_datatype(data, 'chan');
% FIXME use the istrue function on ismeg and hasxxx options
if ~isequal(feedback, 'no')
if israw
nchan = length(data.label);
ntrial = length(data.trial);
fprintf('the input is raw data with %d channels and %d trials\n', nchan, ntrial);
elseif isfreq
nchan = length(data.label);
nfreq = length(data.freq);
if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end
fprintf('the input is freq data with %d channels, %d frequencybins and %s timebins\n', nchan, nfreq, ntime);
elseif istimelock
nchan = length(data.label);
ntime = length(data.time);
fprintf('the input is timelock data with %d channels and %d timebins\n', nchan, ntime);
elseif iscomp
ncomp = length(data.label);
nchan = length(data.topolabel);
fprintf('the input is component data with %d components and %d original channels\n', ncomp, nchan);
elseif isspike
nchan = length(data.label);
fprintf('the input is spike data\n');
elseif isvolume
fprintf('the input is volume data with dimensions [%d %d %d]\n', data.dim(1), data.dim(2), data.dim(3));
elseif issource
nsource = size(data.pos, 1);
fprintf('the input is source data with %d positions\n', nsource);
elseif isdip
fprintf('the input is dipole data\n');
elseif ismvar
fprintf('the input is mvar data\n');
elseif isfreqmvar
fprintf('the input is freqmvar data\n');
end
end % give feedback
if issource && isvolume
% it should be either one or the other: the choice here is to
% represent it as volume description since that is simpler to handle
% the conversion is done by remove the grid positions
data = rmfield(data, 'pos');
issource = false;
end
% the ft_datatype_XXX functions ensures the consistency of the XXX datatype
% and provides a detailled description of the dataformat and its history
if israw
data = ft_datatype_raw(data);
elseif isfreq
data = ft_datatype_freq(data);
elseif istimelock
data = ft_datatype_timelock(data);
elseif iscomp
data = ft_datatype_comp(data);
elseif isspike
data = ft_datatype_spike(data);
elseif isvolume
data = ft_datatype_volume(data);
elseif issource
data = ft_datatype_source(data);
elseif isdip
data = ft_datatype_dip(data);
elseif ismvar || isfreqmvar
data = ft_datatype_mvar(data);
end
if ~isempty(dtype)
if ~isa(dtype, 'cell')
dtype = {dtype};
end
okflag = 0;
for i=1:length(dtype)
% check that the data matches with one or more of the required ft_datatypes
switch dtype{i}
case 'raw'
okflag = okflag + israw;
case 'freq'
okflag = okflag + isfreq;
case 'timelock'
okflag = okflag + istimelock;
case 'comp'
okflag = okflag + iscomp;
case 'spike'
okflag = okflag + isspike;
case 'volume'
okflag = okflag + isvolume;
case 'source'
okflag = okflag + issource;
case 'dip'
okflag = okflag + isdip;
case 'mvar'
okflag = okflag + ismvar;
case 'freqmvar'
okflag = okflag + isfreqmvar;
end % switch dtype
end % for dtype
if ~okflag
% try to convert the data
for iCell = 1:length(dtype)
if isequal(dtype(iCell), {'source'}) && isvolume
data = volume2source(data);
isvolume = 0;
issource = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'volume'}) && issource
data = source2volume(data);
isvolume = 1;
issource = 0;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && issource
data = data2raw(data);
issource = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && istimelock
data = timelock2raw(data);
istimelock = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'timelock'}) && israw
data = raw2timelock(data);
israw = 0;
istimelock = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && isfreq
data = freq2raw(data);
isfreq = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'raw'}) && iscomp
data = comp2raw(data);
iscomp = 0;
israw = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'timelock'}) && iscomp
data = comp2raw(data);
data = raw2timelock(data);
iscomp = 0;
istimelock = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'timelock'}) && ischan
data = chan2timelock(data);
ischan = 0;
istimelock = 1;
okflag = 1;
elseif isequal(dtype(iCell), {'freq'}) && ischan
data = chan2freq(data);
ischan = 0;
isfreq = 1;
okflag = 1;
end
end % for iCell
end % if okflag
if ~okflag
% construct an error message
if length(dtype)>1
str = sprintf('%s, ', dtype{1:(end-2)});
str = sprintf('%s%s or %s', str, dtype{end-1}, dtype{end});
else
str = dtype{1};
end
str = sprintf('This function requires %s data as input.', str);
error(str);
end % if okflag
end
if ~isempty(dimord)
if ~isa(dimord, 'cell')
dimord = {dimord};
end
if isfield(data, 'dimord')
okflag = any(strcmp(data.dimord, dimord));
else
okflag = 0;
end
if ~okflag
% construct an error message
if length(dimord)>1
str = sprintf('%s, ', dimord{1:(end-2)});
str = sprintf('%s%s or %s', str, dimord{end-1}, dimord{end});
else
str = dimord{1};
end
str = sprintf('This function requires data with a dimord of %s.', str);
error(str);
end % if okflag
end
if ~isempty(stype)
if ~isa(stype, 'cell')
stype = {stype};
end
if isfield(data, 'grad') || isfield(data, 'elec')
if any(strcmp(ft_senstype(data), stype));
okflag = 1;
else
okflag = 0;
end
else
okflag = 0;
end
if ~okflag
% construct an error message
if length(stype)>1
str = sprintf('%s, ', stype{1:(end-2)});
str = sprintf('%s%s or %s', str, stype{end-1}, stype{end});
else
str = stype{1};
end
str = sprintf('This function requires %s data as input, but you are giving %s data.', str, ft_senstype(data));
error(str);
end % if okflag
end
if ~isempty(ismeg)
if isequal(ismeg, 'yes')
okflag = isfield(data, 'grad');
elseif isequal(ismeg, 'no')
okflag = ~isfield(data, 'grad');
end
if ~okflag && isequal(ismeg, 'yes')
error('This function requires MEG data with a ''grad'' field');
elseif ~okflag && isequal(ismeg, 'no')
error('This function should not be given MEG data with a ''grad'' field');
end % if okflag
end
if ~isempty(inside)
% TODO absorb the fixinside function into this code
data = fixinside(data, inside);
okflag = isfield(data, 'inside');
if ~okflag
% construct an error message
error('This function requires data with an ''inside'' field.');
end % if okflag
end
%if isvolume
% % ensure consistent dimensions of the volumetric data
% % reshape each of the volumes that is found into a 3D array
% param = parameterselection('all', data);
% dim = data.dim;
% for i=1:length(param)
% tmp = getsubfield(data, param{i});
% tmp = reshape(tmp, dim);
% data = setsubfield(data, param{i}, tmp);
% end
%end
if isequal(hasunits, 'yes') && ~isfield(data, 'units')
% calling convert_units with only the input data adds the units without converting
data = ft_convert_units(data);
end
if issource || isvolume,
% the following section is to make a dimord-consistent representation of
% volume and source data, taking trials, time and frequency into account
if isequal(hasdimord, 'yes') && (~isfield(data, 'dimord') || ~strcmp(data.dimord,sourcedimord))
% determine the size of the data
if isfield(data, 'dimord'),
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('time', dimtok)), Ntime = length(data.time); else Ntime = 1; end
if ~isempty(strmatch('freq', dimtok)), Nfreq = length(data.freq); else Nfreq = 1; end
else
Nfreq = 1;
Ntime = 1;
end
%convert old style source representation into new style
if isfield(data, 'avg') && isfield(data.avg, 'mom') && (isfield(data, 'freq') || isfield(data, 'frequency')) && strcmp(sourcedimord, 'rpt_pos'),
%frequency domain source representation convert to single trial power
Npos = size(data.pos,1);
Nrpt = size(data.cumtapcnt,1);
tmpmom = zeros(Npos, size(data.avg.mom{data.inside(1)},2));
tmpmom(data.inside,:) = cat(1,data.avg.mom{data.inside});
tmppow = zeros(Npos, Nrpt);
tapcnt = [0;cumsum(data.cumtapcnt)];
for k = 1:Nrpt
Ntap = tapcnt(k+1)-tapcnt(k);
tmppow(data.inside,k) = sum(abs(tmpmom(data.inside,(tapcnt(k)+1):tapcnt(k+1))).^2,2)./Ntap;
end
data.pow = tmppow';
data = rmfield(data, 'avg');
if strcmp(inside, 'logical'),
data = fixinside(data, 'logical');
data.inside = repmat(data.inside(:)',[Nrpt 1]);
end
elseif isfield(data, 'avg') && isfield(data.avg, 'mom') && (isfield(data, 'freq') || isfield(data, 'frequency')) && strcmp(sourcedimord, 'rpttap_pos'),
%frequency domain source representation convert to single taper fourier coefficients
Npos = size(data.pos,1);
Nrpt = sum(data.cumtapcnt);
data.fourierspctrm = complex(zeros(Nrpt, Npos), zeros(Nrpt, Npos));
data.fourierspctrm(:, data.inside) = transpose(cat(1, data.avg.mom{data.inside}));
data = rmfield(data, 'avg');
elseif isfield(data, 'avg') && isfield(data.avg, 'mom') && isfield(data, 'time') && strcmp(sourcedimord, 'pos_time'),
Npos = size(data.pos,1);
Nrpt = 1;
tmpmom = zeros(Npos, size(data.avg.mom{data.inside(1)},2));
tmpmom(data.inside,:) = cat(1,data.avg.mom{data.inside});
data.mom = tmpmom;
if isfield(data.avg, 'noise'),
tmpnoise = data.avg.noise(:);
data.noise = tmpnoise(:,ones(1,size(tmpmom,2)));
end
data = rmfield(data, 'avg');
Ntime = length(data.time);
elseif isfield(data, 'trial') && isfield(data.trial(1), 'mom') && isfield(data, 'time') && strcmp(sourcedimord, 'rpt_pos_time'),
Npos = size(data.pos,1);
Nrpt = length(data.trial);
Ntime = length(data.time);
tmpmom = zeros(Nrpt, Npos, Ntime);
for k = 1:Nrpt
tmpmom(k,data.inside,:) = cat(1,data.trial(k).mom{data.inside});
end
data = rmfield(data, 'trial');
data.mom = tmpmom;
elseif isfield(data, 'trial') && isstruct(data.trial)
Nrpt = length(data.trial);
else
Nrpt = 1;
end
% start with an initial specification of the dimord and dim
if (~isfield(data, 'dim') || ~isfield(data, 'dimord'))
if issource
% at least it should have a Nx3 pos
data.dim = size(data.pos, 1);
data.dimord = 'pos';
elseif isvolume
% at least it should have a 1x3 dim
data.dim = data.dim;
data.dimord = 'dim1_dim2_dim3';
end
end
% add the additional dimensions
if Nfreq>1
data.dimord = [data.dimord '_freq'];
data.dim = [data.dim Nfreq];
end
if Ntime>1
data.dimord = [data.dimord '_time'];
data.dim = [data.dim Ntime];
end
if Nrpt>1 && strcmp(sourcedimord, 'rpt_pos'),
data.dimord = ['rpt_' data.dimord];
data.dim = [Nrpt data.dim ];
elseif Nrpt>1 && strcmp(sourcedimord, 'rpttap_pos'),
data.dimord = ['rpttap_' data.dimord];
data.dim = [Nrpt data.dim ];
end
% the nested trial structure is not compatible with dimord
if isfield(data, 'trial') && isstruct(data.trial)
param = fieldnames(data.trial);
for i=1:length(param)
if isa(data.trial(1).(param{i}), 'cell')
concat = cell(data.dim(1), prod(data.dim(2:end)));
else
concat = zeros(data.dim(1), prod(data.dim(2:end)));
end
for j=1:length(data.trial)
tmp = data.trial(j).(param{i});
concat(j,:) = tmp(:);
end % for each trial
data.trial = rmfield(data.trial, param{i});
data.(param{i}) = reshape(concat, data.dim);
end % for each param
data = rmfield(data, 'trial');
end
end
% ensure consistent dimensions of the source reconstructed data
% reshape each of the source reconstructed parameters
if issource && isfield(data, 'dim') && prod(data.dim)==size(data.pos,1)
dim = [prod(data.dim) 1];
elseif issource && any(~cellfun('isempty',strfind(fieldnames(data), 'dimord')))
dim = [size(data.pos,1) 1]; %sparsely represented source structure new style
elseif isfield(data, 'dim'),
dim = [data.dim 1];
elseif issource
dim = [size(data.pos,1) 1];
elseif isfield(data, 'dimord'),
%HACK
dimtok = tokenize(data.dimord, '_');
for i=1:length(dimtok)
if strcmp(dimtok(i), 'pos')
dim(1,i) = size(getsubfield(data,dimtok{i}),1);
elseif strcmp(dimtok(i), 'rpt')
dim(1,i) = nan;
else
dim(1,i) = length(getsubfield(data,dimtok{i}));
end
end
i = find(isnan(dim));
if ~isempty(i)
n = fieldnames(data);
for ii=1:length(n)
numels(1,ii) = numel(getfield(data,n{ii}));
end
nrpt = numels./prod(dim(setdiff(1:length(dim),i)));
nrpt = nrpt(nrpt==round(nrpt));
dim(i) = max(nrpt);
end
if numel(dim)==1, dim(1,2) = 1; end;
end
% these fields should not be reshaped
exclude = {'cfg' 'fwhm' 'leadfield' 'q' 'rough'};
if ~strcmp(inside, 'logical')
% also exclude the inside/outside from being reshaped
exclude = cat(2, exclude, {'inside' 'outside'});
end
param = setdiff(parameterselection('all', data), exclude);
for i=1:length(param)
if any(param{i}=='.')
% the parameter is nested in a substructure, which can have multiple elements (e.g. source.trial(1).pow, source.trial(2).pow, ...)
% loop over the substructure array and reshape for every element
tok = tokenize(param{i}, '.');
sub1 = tok{1}; % i.e. this would be 'trial'
sub2 = tok{2}; % i.e. this would be 'pow'
tmp1 = getfield(data, sub1);
for j=1:numel(tmp1)
tmp2 = getfield(tmp1(j), sub2);
tmp2 = reshape(tmp2, dim);
tmp1(j) = setfield(tmp1(j), sub2, tmp2);
end
data = setfield(data, sub1, tmp1);
else
tmp = getfield(data, param{i});
tmp = reshape(tmp, dim);
data = setfield(data, param{i}, tmp);
end
end
end
if isequal(hastrials, 'yes')
okflag = isfield(data, 'trial');
if ~okflag
error('This function requires data with a ''trial'' field');
end % if okflag
end
if isequal(hassampleinfo, 'yes') || isequal(hassampleinfo, 'ifmakessense')
data = fixsampleinfo(data);
end
if isequal(hasdim, 'yes') && ~isfield(data, 'dim')
data.dim = pos2dim(data.pos);
elseif isequal(hasdim, 'no') && isfield(data, 'dim')
data = rmfield(data, 'dim');
end % if hasdim
if isequal(hascumtapcnt, 'yes') && ~isfield(data, 'cumtapcnt')
error('This function requires data with a ''cumtapcnt'' field');
elseif isequal(hascumtapcnt, 'no') && isfield(data, 'cumtapcnt')
data = rmfield(data, 'cumtapcnt');
end % if hascumtapcnt
if isequal(hasdof, 'yes') && ~isfield(data, 'hasdof')
error('This function requires data with a ''dof'' field');
elseif isequal(hasdof, 'no') && isfield(data, 'hasdof')
data = rmfield(data, 'cumtapcnt');
end % if hasdof
if ~isempty(cmbrepresentation)
if istimelock
data = fixcov(data, cmbrepresentation);
elseif isfreq
data = fixcsd(data, cmbrepresentation, channelcmb);
elseif isfreqmvar
data = fixcsd(data, cmbrepresentation, channelcmb);
else
error('This function requires data with a covariance, coherence or cross-spectrum');
end
end % cmbrepresentation
if issource && ~isempty(sourcerepresentation)
data = fixsource(data, 'type', sourcerepresentation);
end
if issource && ~strcmp(haspow, 'no')
data = fixsource(data, 'type', sourcerepresentation, 'haspow', haspow);
end
if isfield(data, 'grad')
% ensure that the gradiometer balancing is specified
if ~isfield(data.grad, 'balance') || ~isfield(data.grad.balance, 'current')
data.grad.balance.current = 'none';
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% represent the covariance matrix in a particular manner
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = fixcov(data, desired)
if isfield(data, 'cov') && ~isfield(data, 'labelcmb')
current = 'full';
elseif isfield(data, 'cov') && isfield(data, 'labelcmb')
current = 'sparse';
else
error('Could not determine the current representation of the covariance matrix');
end
if isequal(current, desired)
% nothing to do
elseif strcmp(current, 'full') && strcmp(desired, 'sparse')
% FIXME should be implemented
error('not yet implemented');
elseif strcmp(current, 'sparse') && strcmp(desired, 'full')
% FIXME should be implemented
error('not yet implemented');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% represent the cross-spectral density matrix in a particular manner
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = fixcsd(data, desired, channelcmb)
% FIXCSD converts univariate frequency domain data (fourierspctrm) into a bivariate
% representation (crsspctrm), or changes the representation of bivariate frequency
% domain data (sparse/full/sparsewithpow, sparsewithpow only works for crsspctrm or
% fourierspctrm)
% Copyright (C) 2010, Jan-Mathijs Schoffelen, Robert Oostenveld
if isfield(data, 'crsspctrm') && isfield(data, 'powspctrm')
current = 'sparsewithpow';
elseif isfield(data, 'powspctrm')
current = 'sparsewithpow';
elseif isfield(data, 'fourierspctrm') && ~isfield(data, 'labelcmb')
current = 'fourier';
elseif ~isfield(data, 'labelcmb')
current = 'full';
elseif isfield(data, 'labelcmb')
current = 'sparse';
else
error('Could not determine the current representation of the %s matrix', param);
end
% first go from univariate fourier to the required bivariate representation
if strcmp(current, 'fourier') && strcmp(desired, 'fourier')
% nothing to do
elseif strcmp(current, 'fourier') && strcmp(desired, 'sparsewithpow')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpttap', dimtok)),
nrpt = size(data.cumtapcnt,1);
flag = 0;
else
nrpt = 1;
flag = 1;
end
if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end
fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1));
%create auto-spectra
nchan = length(data.label);
if fastflag
% all trials have the same amount of tapers
powspctrm = zeros(nrpt,nchan,nfrq,ntim);
ntap = data.cumtapcnt(1);
for p = 1:ntap
powspctrm = powspctrm + abs(data.fourierspctrm(p:ntap:end,:,:,:,:)).^2;
end
powspctrm = powspctrm./ntap;
else
% different amount of tapers
powspctrm = zeros(nrpt,nchan,nfrq,ntim)+i.*zeros(nrpt,nchan,nfrq,ntim);
sumtapcnt = [0;cumsum(data.cumtapcnt(:))];
for p = 1:nrpt
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat = data.fourierspctrm(indx,:,:,:);
powspctrm(p,:,:,:) = (sum(tmpdat.*conj(tmpdat),1))./data.cumtapcnt(p);
end
end
%create cross-spectra
if ~isempty(channelcmb),
ncmb = size(channelcmb,1);
cmbindx = zeros(ncmb,2);
labelcmb = cell(ncmb,2);
for k = 1:ncmb
ch1 = find(strcmp(data.label, channelcmb(k,1)));
ch2 = find(strcmp(data.label, channelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(k,:) = [ch1 ch2];
labelcmb(k,:) = data.label([ch1 ch2])';
end
end
crsspctrm = zeros(nrpt,ncmb,nfrq,ntim)+i.*zeros(nrpt,ncmb,nfrq,ntim);
if fastflag
for p = 1:ntap
tmpdat1 = data.fourierspctrm(p:ntap:end,cmbindx(:,1),:,:,:);
tmpdat2 = data.fourierspctrm(p:ntap:end,cmbindx(:,2),:,:,:);
crsspctrm = crsspctrm + tmpdat1.*conj(tmpdat2);
end
crsspctrm = crsspctrm./ntap;
else
for p = 1:nrpt
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:);
tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:);
crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p);
end
end
data.crsspctrm = crsspctrm;
data.labelcmb = labelcmb;
end
data.powspctrm = powspctrm;
data = rmfield(data, 'fourierspctrm');
if ntim>1,
data.dimord = 'chan_freq_time';
else
data.dimord = 'chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
if flag, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end
elseif strcmp(current, 'fourier') && strcmp(desired, 'sparse')
if isempty(channelcmb), error('no channel combinations are specified'); end
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpttap', dimtok)),
nrpt = size(data.cumtapcnt,1);
flag = 0;
else
nrpt = 1;
flag = 1;
end
if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end
ncmb = size(channelcmb,1);
cmbindx = zeros(ncmb,2);
labelcmb = cell(ncmb,2);
for k = 1:ncmb
ch1 = find(strcmp(data.label, channelcmb(k,1)));
ch2 = find(strcmp(data.label, channelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(k,:) = [ch1 ch2];
labelcmb(k,:) = data.label([ch1 ch2])';
end
end
sumtapcnt = [0;cumsum(data.cumtapcnt(:))];
fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1));
if fastflag && nrpt>1
ntap = data.cumtapcnt(1);
% compute running sum across tapers
siz = [size(data.fourierspctrm) 1];
for p = 1:ntap
indx = p:ntap:nrpt*ntap;
if p==1.
tmpc = zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)) + ...
1i.*zeros(numel(indx), size(cmbindx,1), siz(3), siz(4));
end
for k = 1:size(cmbindx,1)
tmpc(:,k,:,:) = data.fourierspctrm(indx,cmbindx(k,1),:,:).* ...
conj(data.fourierspctrm(indx,cmbindx(k,2),:,:));
end
if p==1
crsspctrm = tmpc;
else
crsspctrm = tmpc + crsspctrm;
end
end
crsspctrm = crsspctrm./ntap;
else
crsspctrm = zeros(nrpt, ncmb, nfrq, ntim);
for p = 1:nrpt
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:);
tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:);
crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p);
end
end
data.crsspctrm = crsspctrm;
data.labelcmb = labelcmb;
data = rmfield(data, 'fourierspctrm');
data = rmfield(data, 'label');
if ntim>1,
data.dimord = 'chan_freq_time';
else
data.dimord = 'chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
if flag, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end
elseif strcmp(current, 'fourier') && strcmp(desired, 'full')
% this is how it is currently and the desired functionality of prepare_freq_matrices
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpttap', dimtok)),
nrpt = size(data.cumtapcnt, 1);
flag = 0;
else
nrpt = 1;
flag = 1;
end
if ~isempty(strmatch('rpttap',dimtok)), nrpt=size(data.cumtapcnt, 1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end
if any(data.cumtapcnt(1,:) ~= data.cumtapcnt(1,1)), error('this only works when all frequencies have the same number of tapers'); end
nchan = length(data.label);
crsspctrm = zeros(nrpt,nchan,nchan,nfrq,ntim);
sumtapcnt = [0;cumsum(data.cumtapcnt(:,1))];
for k = 1:ntim
for m = 1:nfrq
for p = 1:nrpt
%FIXME speed this up in the case that all trials have equal number of tapers
indx = (sumtapcnt(p)+1):sumtapcnt(p+1);
tmpdat = transpose(data.fourierspctrm(indx,:,m,k));
crsspctrm(p,:,:,m,k) = (tmpdat*tmpdat')./data.cumtapcnt(p);
clear tmpdat;
end
end
end
data.crsspctrm = crsspctrm;
data = rmfield(data, 'fourierspctrm');
if ntim>1,
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
% remove first singleton dimension
if flag || nrpt==1, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end
elseif strcmp(current, 'fourier') && strcmp(desired, 'fullfast'),
dimtok = tokenize(data.dimord, '_');
nrpt = size(data.fourierspctrm, 1);
nchn = numel(data.label);
nfrq = numel(data.freq);
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
data.fourierspctrm = reshape(data.fourierspctrm, [nrpt nchn nfrq*ntim]);
data.fourierspctrm(~isfinite(data.fourierspctrm)) = 0;
crsspctrm = complex(zeros(nchn,nchn,nfrq*ntim));
for k = 1:nfrq*ntim
tmp = transpose(data.fourierspctrm(:,:,k));
n = sum(tmp~=0,2);
crsspctrm(:,:,k) = tmp*tmp'./n(1);
end
data = rmfield(data, 'fourierspctrm');
data.crsspctrm = reshape(crsspctrm, [nchn nchn nfrq ntim]);
if isfield(data, 'time'),
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
if isfield(data, 'trialinfo'), data = rmfield(data, 'trialinfo'); end;
if isfield(data, 'sampleinfo'), data = rmfield(data, 'sampleinfo'); end;
if isfield(data, 'cumsumcnt'), data = rmfield(data, 'cumsumcnt'); end;
if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end;
end % convert to the requested bivariate representation
% from one bivariate representation to another
if isequal(current, desired)
% nothing to do
elseif (strcmp(current, 'full') && strcmp(desired, 'fourier')) || ...
(strcmp(current, 'sparse') && strcmp(desired, 'fourier')) || ...
(strcmp(current, 'sparsewithpow') && strcmp(desired, 'fourier'))
% this is not possible
error('converting the cross-spectrum into a Fourier representation is not possible');
elseif strcmp(current, 'full') && strcmp(desired, 'sparsewithpow')
error('not yet implemented');
elseif strcmp(current, 'sparse') && strcmp(desired, 'sparsewithpow')
% convert back to crsspctrm/powspctrm representation: useful for plotting functions etc
indx = labelcmb2indx(data.labelcmb);
autoindx = indx(indx(:,1)==indx(:,2), 1);
cmbindx = setdiff([1:size(indx,1)]', autoindx);
if strcmp(data.dimord(1:3), 'rpt')
data.powspctrm = data.crsspctrm(:, autoindx, :, :);
data.crsspctrm = data.crsspctrm(:, cmbindx, :, :);
else
data.powspctrm = data.crsspctrm(autoindx, :, :);
data.crsspctrm = data.crsspctrm(cmbindx, :, :);
end
data.label = data.labelcmb(autoindx,1);
data.labelcmb = data.labelcmb(cmbindx, :);
if isempty(cmbindx)
data = rmfield(data, 'crsspctrm');
data = rmfield(data, 'labelcmb');
end
elseif strcmp(current, 'full') && strcmp(desired, 'sparse')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
nchan = length(data.label);
ncmb = nchan*nchan;
labelcmb = cell(ncmb, 2);
cmbindx = zeros(nchan, nchan);
k = 1;
for j=1:nchan
for m=1:nchan
labelcmb{k, 1} = data.label{m};
labelcmb{k, 2} = data.label{j};
cmbindx(m,j) = k;
k = k+1;
end
end
% reshape all possible fields
fn = fieldnames(data);
for ii=1:numel(fn)
if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim;
if nrpt>1,
data.(fn{ii}) = reshape(data.(fn{ii}), nrpt, ncmb, nfrq, ntim);
else
data.(fn{ii}) = reshape(data.(fn{ii}), ncmb, nfrq, ntim);
end
end
end
% remove obsolete fields
data = rmfield(data, 'label');
try, data = rmfield(data, 'dof'); end
% replace updated fields
data.labelcmb = labelcmb;
if ntim>1,
data.dimord = 'chancmb_freq_time';
else
data.dimord = 'chancmb_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'sparse')
% this representation for sparse data contains autospectra
% as e.g. {'A' 'A'} in labelcmb
if isfield(data, 'crsspctrm'),
dimtok = tokenize(data.dimord, '_');
catdim = match_str(dimtok, {'chan' 'chancmb'});
data.crsspctrm = cat(catdim, data.powspctrm, data.crsspctrm);
data.labelcmb = [data.label(:) data.label(:); data.labelcmb];
data = rmfield(data, 'powspctrm');
else
data.crsspctrm = data.powspctrm;
data.labelcmb = [data.label(:) data.label(:)];
data = rmfield(data, 'powspctrm');
end
data = rmfield(data, 'label');
elseif strcmp(current, 'sparse') && strcmp(desired, 'full')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
if ~isfield(data, 'label')
% ensure that the bivariate spectral factorization results can be
% processed. FIXME this is experimental and will not work if the user
% did something weird before
for k = 1:numel(data.labelcmb)
tmp = tokenize(data.labelcmb{k}, '[');
data.labelcmb{k} = tmp{1};
end
data.label = unique(data.labelcmb(:));
end
nchan = length(data.label);
ncmb = size(data.labelcmb,1);
cmbindx = zeros(nchan,nchan);
for k = 1:size(data.labelcmb,1)
ch1 = find(strcmp(data.label, data.labelcmb(k,1)));
ch2 = find(strcmp(data.label, data.labelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(ch1,ch2) = k;
end
end
complete = all(cmbindx(:)~=0);
fn = fieldnames(data);
for ii=1:numel(fn)
if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim;
if nrpt==1,
data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]);
end
tmpall = nan(nrpt,nchan,nchan,nfrq,ntim);
for j = 1:nrpt
for k = 1:ntim
for m = 1:nfrq
tmpdat = nan(nchan,nchan);
indx = find(cmbindx);
if ~complete
% this realizes the missing combinations to be represented as the
% conjugate of the corresponding combination across the diagonal
tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]);
tmpdat = ctranspose(tmpdat);
end
tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]);
tmpall(j,:,:,m,k) = tmpdat;
end % for m
end % for k
end % for j
% replace the data in the old representation with the new representation
if nrpt>1,
data.(fn{ii}) = tmpall;
else
data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]);
end
end % if numel
end % for ii
% remove obsolete fields
try, data = rmfield(data, 'powspctrm'); end
try, data = rmfield(data, 'labelcmb'); end
try, data = rmfield(data, 'dof'); end
if ntim>1,
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
if nrpt>1,
data.dimord = ['rpt_',data.dimord];
end
elseif strcmp(current, 'sparse') && strcmp(desired, 'fullfast')
dimtok = tokenize(data.dimord, '_');
if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end
if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end
if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end
if ~isfield(data, 'label')
data.label = unique(data.labelcmb(:));
end
nchan = length(data.label);
ncmb = size(data.labelcmb,1);
cmbindx = zeros(nchan,nchan);
for k = 1:size(data.labelcmb,1)
ch1 = find(strcmp(data.label, data.labelcmb(k,1)));
ch2 = find(strcmp(data.label, data.labelcmb(k,2)));
if ~isempty(ch1) && ~isempty(ch2),
cmbindx(ch1,ch2) = k;
end
end
complete = all(cmbindx(:)~=0);
fn = fieldnames(data);
for ii=1:numel(fn)
if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim;
if nrpt==1,
data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]);
end
tmpall = nan(nchan,nchan,nfrq,ntim);
for k = 1:ntim
for m = 1:nfrq
tmpdat = nan(nchan,nchan);
indx = find(cmbindx);
if ~complete
% this realizes the missing combinations to be represented as the
% conjugate of the corresponding combination across the diagonal
tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]);
tmpdat = ctranspose(tmpdat);
end
tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]);
tmpall(:,:,m,k) = tmpdat;
end % for m
end % for k
% replace the data in the old representation with the new representation
if nrpt>1,
data.(fn{ii}) = tmpall;
else
data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]);
end
end % if numel
end % for ii
% remove obsolete fields
try, data = rmfield(data, 'powspctrm'); end
try, data = rmfield(data, 'labelcmb'); end
try, data = rmfield(data, 'dof'); end
if ntim>1,
data.dimord = 'chan_chan_freq_time';
else
data.dimord = 'chan_chan_freq';
end
elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'full')
% this is how is currently done in prepare_freq_matrices
data = ft_checkdata(data, 'cmbrepresentation', 'sparse');
data = ft_checkdata(data, 'cmbrepresentation', 'full');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert to new source representation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output] = fixsource(input, varargin)
% FIXSOURCE converts old style source structures into new style source structures and the
% other way around
%
% Use as:
% fixsource(input, type)
% where input is a source structure,
%
% Typically, old style source structures contain
% avg.XXX or trial.XXX fields
%
% The new style source structure contains:
% source.pos
% source.dim (optional, if the list of positions describes a 3D volume
% source.XXX the old style subfields in avg/trial
% source.XXXdimord string how to interpret the respective XXX field:
% e.g. source.leadfield = cell(1,Npos), source.leadfielddimord = '{pos}_chan_ori'
% source.mom = cell(1,Npos), source.momdimord = '{pos}_ori_rpttap'
type = keyval('type', varargin);
haspow = keyval('haspow', varargin);
if isempty(type), type = 'old'; end
if isempty(haspow), haspow = 'no'; end
fnames = fieldnames(input);
tmp = cell2mat(strfind(fnames, 'dimord')); %get dimord like fields
if any(tmp>1),
current = 'new';
elseif any(tmp==1),
%don't know what to do yet data is JM's own invention
current = 'old';
else
current = 'old';
end
if strcmp(current, type),
%do nothing
output = input;
%return
elseif strcmp(current, 'old') && strcmp(type, 'new'),
%go from old to new
if isfield(input, 'avg'),
stuff = getfield(input, 'avg');
output = rmfield(input, 'avg');
elseif isfield(input, 'trial'),
stuff = getfield(input, 'trial');
output = rmfield(input, 'trial');
else
%this could occur later in the pipeline, e.g. when doing group statistics using individual subject
%descriptive statistics
error('the input does not contain an avg or trial field');
end
%-------------------------------------------------
%remove and rename the specified fields if present
removefields = {'xgrid';'ygrid';'zgrid';'method'};
renamefields = {'frequency' 'freq'; 'csdlabel' 'orilabel'};
fnames = fieldnames(output);
for k = 1:numel(fnames)
ix = strmatch(fnames{k}, removefields);
if ~isempty(ix),
output = rmfield(output, fnames{k});
end
ix = strmatch(fnames{k}, renamefields(:,1), 'exact');
if ~isempty(ix),
output = setfield(output, renamefields{ix,2}, ...
getfield(output, renamefields{ix,1}));
output = rmfield(output, fnames{k});
end
end
%----------------------------------------------------------------------
%put the stuff originally in avg or trial one level up in the structure
fnames = fieldnames(stuff(1));
npos = size(input.pos,1);
nrpt = numel(stuff);
for k = 1:numel(fnames)
if nrpt>1,
%multiple trials
%(or subjects FIXME not yet implemented, nor tested)
tmp = getfield(stuff(1), fnames{k});
siz = size(tmp);
if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom')
%pcc based mom is orixrpttap
%tranpose to keep manageable
for kk = 1:numel(input.inside)
indx = input.inside(kk);
tmp{indx} = permute(tmp{indx}, [2 1 3]);
end
nrpttap = sum(input.cumtapcnt);
sizvox = [size(tmp{input.inside(1)}) 1];
sizvox = [nrpttap sizvox(2:end)];
elseif strcmp(fnames{k}, 'mom'),
%this is then probably not a frequency based mom
nrpttap = numel(stuff);
sizvox = [size(tmp{input.inside(1)}) 1];
sizvox = [nrpttap sizvox];
elseif iscell(tmp)
nrpttap = numel(stuff);
sizvox = [size(tmp{input.inside(1)}) 1];
sizvox = [nrpttap sizvox];
end
if siz(1) ~= npos && siz(2) ==npos,
tmp = transpose(tmp);
end
if iscell(tmp)
%allocate memory for cell-array
tmpall = cell(npos,1);
for n = 1:numel(input.inside)
tmpall{input.inside(n)} = zeros(sizvox);
end
else
%allocate memory for matrix
tmpall = zeros([npos nrpt siz(2:end)]);
end
cnt = 0;
for m = 1:nrpt
tmp = getfield(stuff(m), fnames{k});
siz = size(tmp);
if siz(1) ~= npos && siz(2) ==npos,
tmp = transpose(tmp);
end
if ~iscell(tmp),
tmpall(:,m,:,:,:) = tmp;
else
for n = 1:numel(input.inside)
indx = input.inside(n);
tmpdat = tmp{indx};
if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom'),
if n==1, siz1 = size(tmpdat,2); end
else
if n==1, siz1 = 1; end
end
tmpall{indx}(cnt+[1:siz1],:,:,:,:) = tmpdat;
if n==numel(input.inside), cnt = cnt + siz1; end
end
end
end
output = setfield(output, fnames{k}, tmpall);
newdimord = createdimord(output, fnames{k}, 1);
if ~isempty(newdimord)
output = setfield(output, [fnames{k},'dimord'], newdimord);
end
else
tmp = getfield(stuff, fnames{k});
siz = size(tmp);
if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom')
%pcc based mom is orixrpttap
%tranpose to keep manageable
for kk = 1:numel(input.inside)
indx = input.inside(kk);
tmp{indx} = permute(tmp{indx}, [2 1 3]);
end
end
if siz(1) ~= npos && siz(2) ==npos,
tmp = transpose(tmp);
end
output = setfield(output, fnames{k}, tmp);
newdimord = createdimord(output, fnames{k});
if ~isempty(newdimord)
output = setfield(output, [fnames{k},'dimord'], newdimord);
end
end
end
if isfield(output, 'csdlabel')
output = setfield(output, 'orilabel', getfield(output, 'csdlabel'));
output = rmfield(output, 'csdlabel');
end
if isfield(output, 'leadfield')
% add dimord to leadfield as well. since the leadfield is not in
% the original .avg or .trial field it has not yet been taken care of
output.leadfielddimord = createdimord(output, 'leadfield');
end
if isfield(output, 'ori')
% convert cell-array ori into matrix
ori = zeros(3,npos) + nan;
try,
ori(:,output.inside) = cat(2, output.ori{output.inside});
catch
%when oris are in wrong orientation (row rather than column)
for k = 1:numel(output.inside)
ori(:,output.inside(k)) = output.ori{output.inside(k)}';
end
end
output.ori = ori;
end
current = 'new';
elseif strcmp(current, 'new') && strcmp(type, 'old')
%go from new to old
error('not implemented yet');
end
if strcmp(current, 'new') && strcmp(haspow, 'yes'),
%----------------------------------------------
%convert mom into pow if requested and possible
convert = 0;
if isfield(output, 'mom') && size(output.mom{output.inside(1)},2)==1,
convert = 1;
else
warning('conversion from mom to pow is not possible, either because there is no mom in the data, or because the dimension of mom>1. in that case call ft_sourcedescriptives first with cfg.projectmom');
end
if isfield(output, 'cumtapcnt')
convert = 1 & convert;
else
warning('conversion from mom to pow will not be done, because cumtapcnt is missing');
end
if convert,
npos = size(output.pos,1);
nrpt = size(output.cumtapcnt,1);
tmpmom = cat(2,output.mom{output.inside});
tmppow = zeros(npos, nrpt);
tapcnt = [0;cumsum(output.cumtapcnt(:))];
for k = 1:nrpt
ntap = tapcnt(k+1)-tapcnt(k);
tmppow(output.inside,k) = sum(abs(tmpmom((tapcnt(k)+1):tapcnt(k+1),:)).^2,1)./ntap;
end
output.pow = tmppow;
output.powdimord = ['pos_rpt_freq'];
end
elseif strcmp(current, 'old') && strcmp(haspow, 'yes')
warning('construction of single trial power estimates is not implemented here using old style source representation');
end
%--------------------------------------------------------
function [dimord] = createdimord(output, fname, rptflag);
if nargin==2, rptflag = 0; end
tmp = getfield(output, fname);
dimord = '';
dimnum = 1;
hasori = isfield(output, 'ori'); %if not, this is probably singleton and not relevant at the end
if iscell(tmp) && (size(output.pos,1)==size(tmp,dimnum) || size(output.pos,1)==size(tmp,2))
dimord = [dimord,'{pos}'];
dimnum = dimnum + 1;
elseif ~iscell(tmp) && size(output.pos,1)==size(tmp,dimnum)
dimord = [dimord,'pos'];
dimnum = dimnum + 1;
end
switch fname
case 'cov'
if hasori, dimord = [dimord,'_ori_ori']; end;
case 'csd'
if hasori, dimord = [dimord,'_ori_ori']; end;
case 'csdlabel'
dimord = dimord;
case 'filter'
dimord = [dimord,'_ori_chan'];
case 'leadfield'
%if hasori,
dimord = [dimord,'_chan_ori'];
%else
% dimord = [dimord,'_chan'];
%end
case 'mom'
if isfield(output, 'cumtapcnt') && sum(output.cumtapcnt)==size(tmp{output.inside(1)},1)
if hasori,
dimord = [dimord,'_rpttap_ori'];
else
dimord = [dimord,'_rpttap'];
end
elseif isfield(output, 'time')
if rptflag,
dimord = [dimord,'_rpt'];
dimnum = dimnum + 1;
end
if numel(output.time)==size(tmp{output.inside(1)},dimnum)
dimord = [dimord,'_ori_time'];
end
end
if isfield(output, 'freq') && numel(output.freq)>1,
dimord = [dimord,'_freq'];
end
case 'nai'
if isfield(output, 'freq') && numel(output.freq)==size(tmp,dimnum)
dimord = [dimord,'_freq'];
end
case 'noise'
if isfield(output, 'freq') && numel(output.freq)==size(tmp,dimnum)
dimord = [dimord,'_freq'];
end
case 'noisecsd'
if hasori, dimord = [dimord,'_ori_ori']; end
case 'ori'
dimord = '';
case 'pow'
if isfield(output, 'cumtapcnt') && size(output.cumtapcnt,1)==size(tmp,dimnum)
dimord = [dimord,'_rpt'];
dimnum = dimnum + 1;
end
if isfield(output, 'freq') && numel(output.freq)>1 && numel(output.freq)==size(tmp,dimnum)
dimord = [dimord,'_freq'];
dimnum = dimnum+1;
end
if isfield(output, 'time') && numel(output.time)>1 && numel(output.time)==size(tmp,dimnum)
dimord = [dimord,'_time'];
dimnum = dimnum+1;
end
otherwise
warning('skipping unknown fieldname %s', fname);
%error(sprintf('unknown fieldname %s', fname));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = comp2raw(data)
% just remove the component topographies
data = rmfield(data, 'topo');
data = rmfield(data, 'topolabel');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = volume2source(data)
if isfield(data, 'dimord')
% it is a modern source description
else
% it is an old-fashioned source description
xgrid = 1:data.dim(1);
ygrid = 1:data.dim(2);
zgrid = 1:data.dim(3);
[x y z] = ndgrid(xgrid, ygrid, zgrid);
data.pos = warp_apply(data.transform, [x(:) y(:) z(:)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = source2volume(data)
if isfield(data, 'dimord')
% it is a modern source description
%this part depends on the assumption that the list of positions is describing a full 3D volume in
%an ordered way which allows for the extraction of a transformation matrix
%i.e. slice by slice
try,
if isfield(data, 'dim'),
data.dim = pos2dim(data.pos, data.dim);
else
data.dim = pos2dim(data);
end
catch
end
end
if isfield(data, 'dim') && length(data.dim)>=3,
% it is an old-fashioned source description, or the source describes a regular 3D volume in pos
xgrid = 1:data.dim(1);
ygrid = 1:data.dim(2);
zgrid = 1:data.dim(3);
[x y z] = ndgrid(xgrid, ygrid, zgrid);
ind = [x(:) y(:) z(:)]; % these are the positions expressed in voxel indices along each of the three axes
pos = data.pos; % these are the positions expressed in head coordinates
% represent the positions in a manner that is compatible with the homogeneous matrix multiplication,
% i.e. pos = H * ind
ind = ind'; ind(4,:) = 1;
pos = pos'; pos(4,:) = 1;
% recompute the homogeneous transformation matrix
data.transform = pos / ind;
end
% remove the unwanted fields
if isfield(data, 'pos'), data = rmfield(data, 'pos'); end
if isfield(data, 'xgrid'), data = rmfield(data, 'xgrid'); end
if isfield(data, 'ygrid'), data = rmfield(data, 'ygrid'); end
if isfield(data, 'zgrid'), data = rmfield(data, 'zgrid'); end
% make inside a volume
data = fixinside(data, 'logical');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function data = freq2raw(freq)
if strcmp(freq.dimord, 'rpt_chan_freq_time')
dat = freq.powspctrm;
elseif strcmp(freq.dimord, 'rpttap_chan_freq_time')
warning('converting fourier representation into raw data format. this is experimental code');
dat = freq.fourierspctrm;
else
error('this only works for dimord=''rpt_chan_freq_time''');
end
nrpt = size(dat,1);
nchan = size(dat,2);
nfreq = size(dat,3);
ntime = size(dat,4);
data = [];
% create the channel labels like "MLP11@12Hz""
k = 0;
for i=1:nfreq
for j=1:nchan
k = k+1;
data.label{k} = sprintf('%s@%dHz', freq.label{j}, freq.freq(i));
end
end
% reshape and copy the data as if it were timecourses only
for i=1:nrpt
data.time{i} = freq.time;
data.trial{i} = reshape(dat(i,:,:,:), nchan*nfreq, ntime);
if any(isnan(data.trial{i}(1,:))),
tmp = data.trial{i}(1,:);
begsmp = find(isfinite(tmp),1, 'first');
endsmp = find(isfinite(tmp),1, 'last' );
data.trial{i} = data.trial{i}(:, begsmp:endsmp);
data.time{i} = data.time{i}(begsmp:endsmp);
end
end
nsmp = cellfun('size',data.time,2);
seln = find(nsmp>1,1, 'first');
data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1));
if isfield(freq, 'trialinfo'), data.trialinfo = freq.trialinfo; end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = raw2timelock(data)
nsmp = cellfun('size',data.time,2);
data = ft_checkdata(data, 'hassampleinfo', 'yes');
ntrial = numel(data.trial);
nchan = numel(data.label);
if ntrial==1
data.time = data.time{1};
data.avg = data.trial{1};
data = rmfield(data, 'trial');
data.dimord = 'chan_time';
else
% determine the location of the trials relative to the resulting combined time axis
begtime = cellfun(@min, data.time);
endtime = cellfun(@max, data.time);
begsmp = round((begtime - min(begtime)) * data.fsample) + 1;
endsmp = round((endtime - min(begtime)) * data.fsample) + 1;
% create a combined time axis and concatenate all trials
tmptime = min(begtime):(1/data.fsample):max(endtime);
tmptrial = zeros(ntrial, nchan, length(tmptime)) + nan;
for i=1:ntrial
tmptrial(i,:,begsmp(i):endsmp(i)) = data.trial{i};
end
% update the sampleinfo
begpad = begsmp - min(begsmp);
endpad = max(endsmp) - endsmp;
if isfield(data, 'sampleinfo')
data.sampleinfo = data.sampleinfo + [-begpad(:) endpad(:)];
end
% construct the output timelocked data
% data.avg = reshape(nanmean(tmptrial, 1), nchan, length(tmptime));
% data.var = reshape(nanvar (tmptrial, [], 1), nchan, length(tmptime))
% data.dof = reshape(sum(~isnan(tmptrial), 1), nchan, length(tmptime));
data.trial = tmptrial;
data.time = tmptime;
data.dimord = 'rpt_chan_time';
data = rmfield(data, 'fsample'); % fsample in timelock data is obsolete
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = timelock2raw(data)
try
nsmp = cellfun('size',data.time,2);
catch
nsmp = size(data.time,2);
end
switch data.dimord
case 'chan_time'
data.trial{1} = data.avg;
data.time = {data.time};
data = rmfield(data, 'avg');
seln = find(nsmp>1,1, 'first');
data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1));
case 'rpt_chan_time'
tmptrial = {};
tmptime = {};
ntrial = size(data.trial,1);
nchan = size(data.trial,2);
ntime = size(data.trial,3);
for i=1:ntrial
tmptrial{i} = reshape(data.trial(i,:,:), [nchan, ntime]);
tmptime{i} = data.time;
end
data = rmfield(data, 'trial');
data.trial = tmptrial;
data.time = tmptime;
seln = find(nsmp>1,1, 'first');
data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1));
case 'subj_chan_time'
tmptrial = {};
tmptime = {};
ntrial = size(data.individual,1);
nchan = size(data.individual,2);
ntime = size(data.individual,3);
for i=1:ntrial
tmptrial{i} = reshape(data.individual(i,:,:), [nchan, ntime]);
tmptime{i} = data.time;
end
data = rmfield(data, 'individual');
data.trial = tmptrial;
data.time = tmptime;
seln = find(nsmp>1,1, 'first');
data.fsample = 1/(data.time{seln}(2)-data.time{seln}(1));
otherwise
error('unsupported dimord');
end
% remove the unwanted fields
if isfield(data, 'avg'), data = rmfield(data, 'avg'); end
if isfield(data, 'var'), data = rmfield(data, 'var'); end
if isfield(data, 'cov'), data = rmfield(data, 'cov'); end
if isfield(data, 'dimord'), data = rmfield(data, 'dimord'); end
if isfield(data, 'numsamples'), data = rmfield(data, 'numsamples'); end
if isfield(data, 'dof'), data = rmfield(data, 'dof'); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = chan2freq(data)
data.dimord = [data.dimord '_freq'];
data.freq = nan;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% convert between datatypes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [data] = chan2timelock(data)
data.dimord = [data.dimord '_time'];
data.time = nan;
|
github
|
philippboehmsturm/antx-master
|
read_yokogawa_data.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_yokogawa_data.m
| 11,038 |
utf_8
|
74c9636ae61942d31441ba41eab36d6f
|
function [dat] = read_yokogawa_data(filename, hdr, begsample, endsample, chanindx)
% READ_YOKAGAWA_DATA reads continuous, epoched or averaged MEG data
% that has been generated by the Yokogawa MEG system and software
% and allows that data to be used in combination with FieldTrip.
%
% Use as
% [dat] = read_yokogawa_data(filename, hdr, begsample, endsample, chanindx)
%
% This is a wrapper function around the functions
% GetMeg160ContinuousRawDataM
% GetMeg160EvokedAverageDataM
% GetMeg160EvokedRawDataM
%
% See also READ_YOKOGAWA_HEADER, READ_YOKOGAWA_EVENT
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_yokogawa_data.m 2617 2011-01-20 15:19:35Z jorhor $
if ~ft_hastoolbox('yokogawa')
error('cannot determine whether Yokogawa toolbox is present');
end
% hdr = read_yokogawa_header(filename);
hdr = hdr.orig; % use the original Yokogawa header, not the FieldTrip header
% default is to select all channels
if nargin<5
chanindx = 1:hdr.channel_count;
end
handles = definehandles;
fid = fopen(filename, 'rb', 'ieee-le');
switch hdr.acq_type
case handles.AcqTypeEvokedAve
% Data is returned by double.
start_sample = begsample - 1; % samples start at 0
sample_length = endsample - begsample + 1;
epoch_count = 1;
start_epoch = 0;
dat = double(GetMeg160EvokedAverageDataM( fid, start_sample, sample_length ));
% the first extra sample is the channel number
channum = dat(:,1);
dat = dat(:,2:end);
case handles.AcqTypeContinuousRaw
% Data is returned by int16.
start_sample = begsample - 1; % samples start at 0
sample_length = endsample - begsample + 1;
epoch_count = 1;
start_epoch = 0;
dat = double(GetMeg160ContinuousRawDataM( fid, start_sample, sample_length ));
% the first extra sample is the channel number
channum = dat(:,1);
dat = dat(:,2:end);
case handles.AcqTypeEvokedRaw
% Data is returned by int16.
begtrial = ceil(begsample/hdr.sample_count);
endtrial = ceil(endsample/hdr.sample_count);
if begtrial<1
error('cannot read before the begin of the file');
elseif endtrial>hdr.actual_epoch_count
error('cannot read beyond the end of the file');
end
epoch_count = endtrial-begtrial+1;
start_epoch = begtrial-1;
% read all the neccessary trials that contain the desired samples
dat = double(GetMeg160EvokedRawDataM( fid, start_epoch, epoch_count ));
% the first extra sample is the channel number
channum = dat(:,1);
dat = dat(:,2:end);
if size(dat,2)~=epoch_count*hdr.sample_count
error('could not read all epochs');
end
rawbegsample = begsample - (begtrial-1)*hdr.sample_count;
rawendsample = endsample - (begtrial-1)*hdr.sample_count;
sample_length = rawendsample - rawbegsample + 1;
% select the desired samples from the complete trials
dat = dat(:,rawbegsample:rawendsample);
otherwise
error('unknown data type');
end
fclose(fid);
if size(dat,1)~=hdr.channel_count
error('could not read all channels');
elseif size(dat,2)~=(endsample-begsample+1)
error('could not read all samples');
end
% Count of AxialGradioMeter
ch_type = hdr.channel_info(:,2);
index = find(ch_type==[handles.AxialGradioMeter]);
axialgradiometer_index_tmp = index;
axialgradiometer_ch_count = length(index);
% Count of PlannerGradioMeter
ch_type = hdr.channel_info(:,2);
index = find(ch_type==[handles.PlannerGradioMeter]);
plannergradiometer_index_tmp = index;
plannergradiometer_ch_count = length(index);
% Count of EegChannel
ch_type = hdr.channel_info(:,2);
index = find(ch_type==[handles.EegChannel]);
eegchannel_index_tmp = index;
eegchannel_ch_count = length(index);
% Count of NullChannel
ch_type = hdr.channel_info(:,2);
index = find(ch_type==[handles.NullChannel]);
nullchannel_index_tmp = index;
nullchannel_ch_count = length(index);
%%% Pulling out AxialGradioMeter and value conversion to physical units.
if ~isempty(axialgradiometer_index_tmp)
% Acquisition of channel information
axialgradiometer_index = axialgradiometer_index_tmp;
ch_info = hdr.channel_info;
axialgradiometer_ch_info = ch_info(axialgradiometer_index, :);
% Value conversion
% B = ( ADValue * VoltRange / ADRange - Offset ) * Sensitivity / FLLGain
calib = hdr.calib_info;
amp_gain = hdr.amp_gain(1);
tmp_ch_no = channum(axialgradiometer_index, 1);
tmp_data = dat(axialgradiometer_index, 1:sample_length);
tmp_offset = calib(axialgradiometer_index, 3) * ones(1,sample_length);
ad_range = 5/2^(hdr.ad_bit-1);
tmp_data = ( tmp_data * ad_range - tmp_offset );
clear tmp_offset;
tmp_gain = calib(axialgradiometer_index, 2) * ones(1,sample_length);
tmp_data = tmp_data .* tmp_gain / amp_gain;
dat(axialgradiometer_index, 1:sample_length) = tmp_data;
clear tmp_gain;
% Deletion of Inf row
index = find(axialgradiometer_ch_info(1,:) == Inf);
axialgradiometer_ch_info(:,index) = [];
% Deletion of channel_type row
axialgradiometer_ch_info(:,2) = [];
% Outputs to the global variable
handles.sqd.axialgradiometer_ch_info = axialgradiometer_ch_info;
handles.sqd.axialgradiometer_ch_no = tmp_ch_no;
handles.sqd.axialgradiometer_data = [ tmp_ch_no tmp_data];
clear tmp_data;
end
%%% Pulling out PlannerGradioMeter and value conversion to physical units.
if ~isempty(plannergradiometer_index_tmp)
% Acquisition of channel information
plannergradiometer_index = plannergradiometer_index_tmp;
ch_info = hdr.channel_info;
plannergradiometer_ch_info = ch_info(plannergradiometer_index, :);
% Value conversion
% B = ( ADValue * VoltRange / ADRange - Offset ) * Sensitivity / FLLGain
calib = hdr.calib_info;
amp_gain = hdr.amp_gain(1);
tmp_ch_no = channum(plannergradiometer_index, 1);
tmp_data = dat(plannergradiometer_index, 1:sample_length);
tmp_offset = calib(plannergradiometer_index, 3) * ones(1,sample_length);
ad_range = 5/2^(hdr.ad_bit-1);
tmp_data = ( tmp_data * ad_range - tmp_offset );
clear tmp_offset;
tmp_gain = calib(plannergradiometer_index, 2) * ones(1,sample_length);
tmp_data = tmp_data .* tmp_gain / amp_gain;
dat(plannergradiometer_index, 1:sample_length) = tmp_data;
clear tmp_gain;
% Deletion of Inf row
index = find(plannergradiometer_ch_info(1,:) == Inf);
plannergradiometer_ch_info(:,index) = [];
% Deletion of channel_type row
plannergradiometer_ch_info(:,2) = [];
% Outputs to the global variable
handles.sqd.plannergradiometer_ch_info = plannergradiometer_ch_info;
handles.sqd.plannergradiometer_ch_no = tmp_ch_no;
handles.sqd.plannergradiometer_data = [ tmp_ch_no tmp_data];
clear tmp_data;
end
%%% Pulling out EegChannel Channel and value conversion to Volt units.
if ~isempty(eegchannel_index_tmp)
% Acquisition of channel information
eegchannel_index = eegchannel_index_tmp;
% Value conversion
% B = ADValue * VoltRange / ADRange
tmp_ch_no = channum(eegchannel_index, 1);
tmp_data = dat(eegchannel_index, 1:sample_length);
ad_range = 5/2^(hdr.ad_bit-1);
tmp_data = tmp_data * ad_range;
dat(eegchannel_index, 1:sample_length) = tmp_data;
% Outputs to the global variable
handles.sqd.eegchannel_ch_no = tmp_ch_no;
handles.sqd.eegchannel_data = [ tmp_ch_no tmp_data];
clear tmp_data;
end
%%% Pulling out Null Channel and value conversion to Volt units.
if ~isempty(nullchannel_index_tmp)
% Acquisition of channel information
nullchannel_index = nullchannel_index_tmp;
% Value conversion
% B = ADValue * VoltRange / ADRange
tmp_ch_no = channum(nullchannel_index, 1);
tmp_data = dat(nullchannel_index, 1:sample_length);
ad_range = 5/2^(hdr.ad_bit-1);
tmp_data = tmp_data * ad_range;
dat(nullchannel_index, 1:sample_length) = tmp_data;
% Outputs to the global variable
handles.sqd.nullchannel_ch_no = tmp_ch_no;
handles.sqd.nullchannel_data = [ tmp_ch_no tmp_data];
clear tmp_data;
end
% select only the desired channels
dat = dat(chanindx,:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this defines some usefull constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function handles = definehandles
handles.output = [];
handles.sqd_load_flag = false;
handles.mri_load_flag = false;
handles.NullChannel = 0;
handles.MagnetoMeter = 1;
handles.AxialGradioMeter = 2;
handles.PlannerGradioMeter = 3;
handles.RefferenceChannelMark = hex2dec('0100');
handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter );
handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter );
handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter );
handles.TriggerChannel = -1;
handles.EegChannel = -2;
handles.EcgChannel = -3;
handles.EtcChannel = -4;
handles.NonMegChannelNameLength = 32;
handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length
handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter
handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length
handles.AcqTypeContinuousRaw = 1;
handles.AcqTypeEvokedAve = 2;
handles.AcqTypeEvokedRaw = 3;
handles.sqd = [];
handles.sqd.selected_start = [];
handles.sqd.selected_end = [];
handles.sqd.axialgradiometer_ch_no = [];
handles.sqd.axialgradiometer_ch_info = [];
handles.sqd.axialgradiometer_data = [];
handles.sqd.plannergradiometer_ch_no = [];
handles.sqd.plannergradiometer_ch_info = [];
handles.sqd.plannergradiometer_data = [];
handles.sqd.eegchannel_ch_no = [];
handles.sqd.eegchannel_data = [];
handles.sqd.nullchannel_ch_no = [];
handles.sqd.nullchannel_data = [];
handles.sqd.selected_time = [];
handles.sqd.sample_rate = [];
handles.sqd.sample_count = [];
handles.sqd.pretrigger_length = [];
handles.sqd.matching_info = [];
handles.sqd.source_info = [];
handles.sqd.mri_info = [];
handles.mri = [];
|
github
|
philippboehmsturm/antx-master
|
read_biff.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_biff.m
| 5,856 |
utf_8
|
0a2dd51be5783d5f256831f0a6d9e6ae
|
function [this] = read_biff(filename, opt)
% READ_BIFF reads data and header information from a BIFF file
%
% This is a attemt for a reference implementation to read the BIFF
% file format as defined by the Clinical Neurophysiology department of
% the University Medical Centre, Nijmegen.
%
% read all data and information
% [data] = read_biff(filename)
% or read a selected top-level chunk
% [chunk] = read_biff(filename, chunkID)
%
% known top-level chunk id's are
% data : measured data (matrix)
% dati : information on data (struct)
% expi : information on experiment (struct)
% pati : information on patient (struct)
% evnt : event markers (struct)
% Copyright (C) 2000, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_biff.m 945 2010-04-21 17:41:20Z roboos $
define_biff;
this = [];
fid = fopen(filename, 'r');
fseek(fid,0,'eof');
eof = ftell(fid);
fseek(fid,0,'bof');
[id, siz] = chunk_header(fid);
switch id
case 'SEMG'
child = subtree(BIFF, id);
this = read_biff_chunk(fid, id, siz, child);
case 'LIST'
fprintf('skipping unimplemented chunk id="%s" size=%4d\n', id, siz);
case 'CAT '
fprintf('skipping unimplemented chunk id="%s" size=%4d\n', id, siz);
otherwise
fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz);
fseek(fid, siz, 'cof');
end % switch
fclose(fid); % close file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION read_biff_chunk
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function this = read_biff_chunk(fid, id, siz, chunk);
% start with empty structure
this = [];
if strcmp(id, 'null') % this is an empty chunk
fprintf('skipping empty chunk id="%s" size=%4d\n', id, siz);
assert(~feof(fid));
fseek(fid, siz, 'cof');
elseif isempty(chunk) % this is an unrecognized chunk
fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz);
assert(~feof(fid));
fseek(fid, siz, 'cof');
else
eoc = ftell(fid) + siz;
name = char(chunk.desc(2));
type = char(chunk.desc(3));
fprintf('reading chunk id= "%s" size=%4d name="%s"\n', id, siz, name);
switch type
case 'group'
while ~feof(fid) & ftell(fid)<eoc
% read all subchunks
[id, siz] = chunk_header(fid);
child = subtree(chunk, id);
if ~isempty(child)
% read data and add subchunk data to chunk structure
name = char(child.desc(2));
val = read_biff_chunk(fid, id, siz, child);
this = setfield(this, name, val);
else
fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz);
fseek(fid, siz, 'cof');
end
end % while
case 'string'
this = char(fread(fid, siz, 'uchar')');
case {'char', 'uchar', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'float32', 'float64'}
this = fread(fid, 1, type);
case {'char', 'uchar', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'float32', 'float64'}
this = fread(fid, 1, type);
case {'int8vec', 'int16vec', 'int32vec', 'int64vec', 'uint8vec', 'uint16vec', 'uint32vec', 'float32vec', 'float64vec'}
ncol = fread(fid, 1, 'uint32');
this = fread(fid, ncol, type(1:(length(type)-3)));
case {'int8mat', 'int16mat', 'int32mat', 'int64mat', 'uint8mat', 'uint16mat', 'uint32mat', 'float32mat', 'float64mat'}
nrow = fread(fid, 1, 'uint32');
ncol = fread(fid, 1, 'uint32');
this = fread(fid, [nrow, ncol], type(1:(length(type)-3)));
otherwise
fseek(fid, siz, 'cof'); % skip this chunk
sprintf('unimplemented data type "%s" in chunk "%s"', type, id);
% warning(ans);
end % switch chunk type
end % else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION subtree
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function child = subtree(parent, id);
blank = findstr(id, ' ');
while ~isempty(blank)
id(blank) = '_';
blank = findstr(id, ' ');
end
elem = fieldnames(parent); % list of all subitems
num = find(strcmp(elem, id)); % number in parent tree
if size(num) == [1,1]
child = getfield(parent, char(elem(num))); % child subtree
else
child = [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION chunk_header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [id, siz] = chunk_header(fid);
id = char(fread(fid, 4, 'uchar')'); % read chunk ID
siz = fread(fid, 1, 'uint32'); % read chunk size
if strcmp(id, 'GRP ') | strcmp(id, 'BIFF')
id = char(fread(fid, 4, 'uchar')'); % read real chunk ID
siz = siz - 4; % reduce size by 4
end
|
github
|
philippboehmsturm/antx-master
|
read_eeglabheader.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_eeglabheader.m
| 2,255 |
utf_8
|
fe4446f32b250441d57acff9ebe691a2
|
% read_eeglabheader() - import EEGLAB dataset files
%
% Usage:
% >> header = read_eeglabheader(filename);
%
% Inputs:
% filename - [string] file name
%
% Outputs:
% header - FILEIO toolbox type structure
%
% Author: Arnaud Delorme, SCCN, INC, UCSD, 2008-
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
function header = read_eeglabheader(filename)
if nargin < 1
help read_eeglabheader;
return;
end;
if ~isstruct(filename)
load('-mat', filename);
else
EEG = filename;
end;
header.Fs = EEG.srate;
header.nChans = EEG.nbchan;
header.nSamples = EEG.pnts;
header.nSamplesPre = -EEG.xmin*EEG.srate;
header.nTrials = EEG.trials;
try
header.label = { EEG.chanlocs.labels }';
catch
warning('creating default channel names');
for i=1:header.nChans
header.label{i} = sprintf('chan%03d', i);
end
end
ind = 1;
for i = 1:length( EEG.chanlocs )
if isfield(EEG.chanlocs(i), 'X') && ~isempty(EEG.chanlocs(i).X)
header.elec.label{ind, 1} = EEG.chanlocs(i).labels;
% this channel has a position
header.elec.pnt(ind,1) = EEG.chanlocs(i).X;
header.elec.pnt(ind,2) = EEG.chanlocs(i).Y;
header.elec.pnt(ind,3) = EEG.chanlocs(i).Z;
ind = ind+1;
end;
end;
% remove data
% -----------
%if isfield(EEG, 'datfile')
% if ~isempty(EEG.datfile)
% EEG.data = EEG.datfile;
% end;
%else
% EEG.data = 'in set file';
%end;
EEG.icaact = [];
header.orig = EEG;
|
github
|
philippboehmsturm/antx-master
|
read_ctf_svl.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_ctf_svl.m
| 3,812 |
utf_8
|
d3442d0a013cf5e0a8d4277d99e45206
|
% [data, hdr] = opensvl(filename)
%
% Reads a CTF SAM (.svl) file.
function [data, hdr] = read_ctf_svl(filename)
fid = fopen(filename, 'rb', 'ieee-be', 'ISO-8859-1');
if fid <= 0
error('Could not open SAM file: %s\n', filename);
end
% ----------------------------------------------------------------------
% Read header.
hdr.identity = fread(fid, 8, '*char')'; % 'SAMIMAGE'
hdr.version = fread(fid, 1, 'int32'); % SAM file version.
hdr.setName = fread(fid, 256, '*char')'; % Dataset name.
hdr.numChans = fread(fid, 1, 'int32');
hdr.numWeights = fread(fid, 1, 'int32'); % 0 for static image.
if(hdr.numWeights ~= 0)
warning('hdr.numWeights ~= 0');
end
fread(fid,1,'int32'); % Padding to next 8 byte boundary.
hdr.xmin = fread(fid, 1, 'double'); % Bounding box coordinates (m).
hdr.xmax = fread(fid, 1, 'double');
hdr.ymin = fread(fid, 1, 'double');
hdr.ymax = fread(fid, 1, 'double');
hdr.zmin = fread(fid, 1, 'double');
hdr.zmax = fread(fid, 1, 'double');
hdr.stepSize = fread(fid, 1, 'double'); % m
hdr.hpFreq = fread(fid, 1, 'double'); % High pass filtering frequency (Hz).
hdr.lpFreq = fread(fid, 1, 'double'); % Low pass.
hdr.bwFreq = fread(fid, 1, 'double'); % Bandwidth
hdr.meanNoise = fread(fid, 1, 'double'); % Sensor noise (T).
hdr.mriName = fread(fid, 256, '*char')';
hdr.fiducial.mri.nas = fread(fid, 3, 'int32'); % CTF MRI voxel coordinates?
hdr.fiducial.mri.rpa = fread(fid, 3, 'int32');
hdr.fiducial.mri.lpa = fread(fid, 3, 'int32');
hdr.SAMType = fread(fid, 1, 'int32'); % 0: image, 1: weights array, 2: weights list.
hdr.SAMUnit = fread(fid, 1, 'int32');
% Possible values: 0 coefficients Am/T, 1 moment Am, 2 power (Am)^2, 3 Z,
% 4 F, 5 T, 6 probability, 7 MUSIC.
fread(fid, 1, 'int32'); % Padding to next 8 byte boundary.
if hdr.version > 1
% Version 2 has extra fields.
hdr.fiducial.head.nas = fread(fid, 3, 'double'); % CTF head coordinates?
hdr.fiducial.head.rpa = fread(fid, 3, 'double');
hdr.fiducial.head.lpa = fread(fid, 3, 'double');
hdr.SAMUnitName = fread(fid, 32, '*char')';
% Possible values: 'Am/T' SAM coefficients, 'Am' source strength,
% '(Am)^2' source power, ('Z', 'F', 'T') statistics, 'P' probability.
end
% ----------------------------------------------------------------------
% Read image data.
data = fread(fid, inf, 'double');
fclose(fid);
% Raw image data is ordered as a C array with indices: [x][y][z], meaning
% z changes fastest and x slowest. These x, y, z axes point to ALS
% (anterior, left, superior) respectively in real world coordinates,
% which means the voxels are in SLA order.
% ----------------------------------------------------------------------
% Post processing.
% Change from m to mm.
hdr.xmin = hdr.xmin * 1000;
hdr.ymin = hdr.ymin * 1000;
hdr.zmin = hdr.zmin * 1000;
hdr.xmax = hdr.xmax * 1000;
hdr.ymax = hdr.ymax * 1000;
hdr.zmax = hdr.zmax * 1000;
hdr.stepSize = hdr.stepSize * 1000;
% Number of voxels in each dimension.
hdr.dim = [round((hdr.xmax - hdr.xmin)/hdr.stepSize) + 1, ...
round((hdr.ymax - hdr.ymin)/hdr.stepSize) + 1, ...
round((hdr.zmax - hdr.zmin)/hdr.stepSize) + 1];
data = reshape(data, hdr.dim([3, 2, 1]));
% Build transformation matrix from raw voxel coordinates (indexed from 1)
% to head coordinates in mm. Note that the bounding box is given in
% these coordinates (in m, but converted above).
% Apply scaling.
hdr.transform = diag([hdr.stepSize * ones(1, 3), 1]);
% Reorder directions.
hdr.transform = hdr.transform(:, [3, 2, 1, 4]);
% Apply translation.
hdr.transform(1:3, 4) = [hdr.xmin; hdr.ymin; hdr.zmin] - hdr.stepSize;
% -step is needed since voxels are indexed from 1.
end
|
github
|
philippboehmsturm/antx-master
|
loadcnt.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/loadcnt.m
| 22,223 |
utf_8
|
5b218c963fe0c618bc663fc79c2fd844
|
% loadcnt() - Load a Neuroscan continuous signal file.
%
% Usage:
% >> cnt = loadcnt(file, varargin)
%
% Inputs:
% filename - name of the file with extension
%
% Optional inputs:
% 't1' - start at time t1, default 0
% 'sample1' - start at sample1, default 0, overrides t1
% 'lddur' - duration of segment to load, default = whole file
% 'ldnsamples' - number of samples to load, default = whole file,
% overrides lddur
% 'scale' - ['on'|'off'] scale data to microvolt (default:'on')
% 'dataformat' - ['int16'|'int32'] default is 'int16' for 16-bit data.
% Use 'int32' for 32-bit data.
% 'blockread' - [integer] by default it is automatically determined
% from the file header, though sometimes it finds an
% incorect value, so you may want to enter a value manually
% here (1 is the most standard value).
% 'memmapfile' - ['memmapfile_name'] use this option if the .cnt file
% is too large to read in conventially. The suffix of
% the memmapfile_name must be .fdt. The memmapfile
% functions process files based on their suffix, and an
% error will occur if you use a different suffix.
%
% Outputs:
% cnt - structure with the continuous data and other informations
% cnt.header
% cnt.electloc
% cnt.data
% cnt.tag
%
% Authors: Sean Fitzgibbon, Arnaud Delorme, 2000-
%
% Note: function original name was load_scan41.m
%
% Known limitations:
% For more see http://www.cnl.salk.edu/~arno/cntload/index.html
%123456789012345678901234567890123456789012345678901234567890123456789012
% Copyright (C) 2000 Sean Fitzgibbon, <[email protected]>
% Copyright (C) 2003 Arnaud Delorme, Salk Institute, [email protected]
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
%
function [f,lab,ev2p] = loadcnt(filename,varargin)
if ~isempty(varargin)
r=struct(varargin{:});
else r = [];
end;
try, r.t1; catch, r.t1=0; end
try, r.sample1; catch, r.sample1=[]; end
try, r.lddur; catch, r.lddur=[]; end
try, r.ldnsamples; catch, r.ldnsamples=[]; end
try, r.scale; catch, r.scale='on'; end
try, r.blockread; catch, r.blockread = []; end
try, r.dataformat; catch, r.dataformat = 'int16'; end
try, r.memmapfile; catch, r.memmapfile = ''; end
sizeEvent1 = 8 ; %%% 8 bytes for Event1
sizeEvent2 = 19 ; %%% 19 bytes for Event2
sizeEvent3 = 19 ; %%% 19 bytes for Event3
type='cnt';
if nargin ==1
scan=0;
end
fid = fopen(filename,'r', 'l');
disp(['Loading file ' filename ' ...'])
h.rev = fread(fid,12,'char');
h.nextfile = fread(fid,1,'long');
h.prevfile = fread(fid,1,'ulong');
h.type = fread(fid,1,'char');
h.id = fread(fid,20,'char');
h.oper = fread(fid,20,'char');
h.doctor = fread(fid,20,'char');
h.referral = fread(fid,20,'char');
h.hospital = fread(fid,20,'char');
h.patient = fread(fid,20,'char');
h.age = fread(fid,1,'short');
h.sex = fread(fid,1,'char');
h.hand = fread(fid,1,'char');
h.med = fread(fid,20, 'char');
h.category = fread(fid,20, 'char');
h.state = fread(fid,20, 'char');
h.label = fread(fid,20, 'char');
h.date = fread(fid,10, 'char');
h.time = fread(fid,12, 'char');
h.mean_age = fread(fid,1,'float');
h.stdev = fread(fid,1,'float');
h.n = fread(fid,1,'short');
h.compfile = fread(fid,38,'char');
h.spectwincomp = fread(fid,1,'float');
h.meanaccuracy = fread(fid,1,'float');
h.meanlatency = fread(fid,1,'float');
h.sortfile = fread(fid,46,'char');
h.numevents = fread(fid,1,'int');
h.compoper = fread(fid,1,'char');
h.avgmode = fread(fid,1,'char');
h.review = fread(fid,1,'char');
h.nsweeps = fread(fid,1,'ushort');
h.compsweeps = fread(fid,1,'ushort');
h.acceptcnt = fread(fid,1,'ushort');
h.rejectcnt = fread(fid,1,'ushort');
h.pnts = fread(fid,1,'ushort');
h.nchannels = fread(fid,1,'ushort');
h.avgupdate = fread(fid,1,'ushort');
h.domain = fread(fid,1,'char');
h.variance = fread(fid,1,'char');
h.rate = fread(fid,1,'ushort'); % A USER CLAIMS THAT SAMPLING RATE CAN BE
h.scale = fread(fid,1,'double'); % FRACTIONAL IN NEUROSCAN WHICH IS
h.veogcorrect = fread(fid,1,'char'); % OBVIOUSLY NOT POSSIBLE HERE (BUG 606)
h.heogcorrect = fread(fid,1,'char');
h.aux1correct = fread(fid,1,'char');
h.aux2correct = fread(fid,1,'char');
h.veogtrig = fread(fid,1,'float');
h.heogtrig = fread(fid,1,'float');
h.aux1trig = fread(fid,1,'float');
h.aux2trig = fread(fid,1,'float');
h.heogchnl = fread(fid,1,'short');
h.veogchnl = fread(fid,1,'short');
h.aux1chnl = fread(fid,1,'short');
h.aux2chnl = fread(fid,1,'short');
h.veogdir = fread(fid,1,'char');
h.heogdir = fread(fid,1,'char');
h.aux1dir = fread(fid,1,'char');
h.aux2dir = fread(fid,1,'char');
h.veog_n = fread(fid,1,'short');
h.heog_n = fread(fid,1,'short');
h.aux1_n = fread(fid,1,'short');
h.aux2_n = fread(fid,1,'short');
h.veogmaxcnt = fread(fid,1,'short');
h.heogmaxcnt = fread(fid,1,'short');
h.aux1maxcnt = fread(fid,1,'short');
h.aux2maxcnt = fread(fid,1,'short');
h.veogmethod = fread(fid,1,'char');
h.heogmethod = fread(fid,1,'char');
h.aux1method = fread(fid,1,'char');
h.aux2method = fread(fid,1,'char');
h.ampsensitivity = fread(fid,1,'float');
h.lowpass = fread(fid,1,'char');
h.highpass = fread(fid,1,'char');
h.notch = fread(fid,1,'char');
h.autoclipadd = fread(fid,1,'char');
h.baseline = fread(fid,1,'char');
h.offstart = fread(fid,1,'float');
h.offstop = fread(fid,1,'float');
h.reject = fread(fid,1,'char');
h.rejstart = fread(fid,1,'float');
h.rejstop = fread(fid,1,'float');
h.rejmin = fread(fid,1,'float');
h.rejmax = fread(fid,1,'float');
h.trigtype = fread(fid,1,'char');
h.trigval = fread(fid,1,'float');
h.trigchnl = fread(fid,1,'char');
h.trigmask = fread(fid,1,'short');
h.trigisi = fread(fid,1,'float');
h.trigmin = fread(fid,1,'float');
h.trigmax = fread(fid,1,'float');
h.trigdir = fread(fid,1,'char');
h.autoscale = fread(fid,1,'char');
h.n2 = fread(fid,1,'short');
h.dir = fread(fid,1,'char');
h.dispmin = fread(fid,1,'float');
h.dispmax = fread(fid,1,'float');
h.xmin = fread(fid,1,'float');
h.xmax = fread(fid,1,'float');
h.automin = fread(fid,1,'float');
h.automax = fread(fid,1,'float');
h.zmin = fread(fid,1,'float');
h.zmax = fread(fid,1,'float');
h.lowcut = fread(fid,1,'float');
h.highcut = fread(fid,1,'float');
h.common = fread(fid,1,'char');
h.savemode = fread(fid,1,'char');
h.manmode = fread(fid,1,'char');
h.ref = fread(fid,10,'char');
h.rectify = fread(fid,1,'char');
h.displayxmin = fread(fid,1,'float');
h.displayxmax = fread(fid,1,'float');
h.phase = fread(fid,1,'char');
h.screen = fread(fid,16,'char');
h.calmode = fread(fid,1,'short');
h.calmethod = fread(fid,1,'short');
h.calupdate = fread(fid,1,'short');
h.calbaseline = fread(fid,1,'short');
h.calsweeps = fread(fid,1,'short');
h.calattenuator = fread(fid,1,'float');
h.calpulsevolt = fread(fid,1,'float');
h.calpulsestart = fread(fid,1,'float');
h.calpulsestop = fread(fid,1,'float');
h.calfreq = fread(fid,1,'float');
h.taskfile = fread(fid,34,'char');
h.seqfile = fread(fid,34,'char');
h.spectmethod = fread(fid,1,'char');
h.spectscaling = fread(fid,1,'char');
h.spectwindow = fread(fid,1,'char');
h.spectwinlength = fread(fid,1,'float');
h.spectorder = fread(fid,1,'char');
h.notchfilter = fread(fid,1,'char');
h.headgain = fread(fid,1,'short');
h.additionalfiles = fread(fid,1,'int');
h.unused = fread(fid,5,'char');
h.fspstopmethod = fread(fid,1,'short');
h.fspstopmode = fread(fid,1,'short');
h.fspfvalue = fread(fid,1,'float');
h.fsppoint = fread(fid,1,'short');
h.fspblocksize = fread(fid,1,'short');
h.fspp1 = fread(fid,1,'ushort');
h.fspp2 = fread(fid,1,'ushort');
h.fspalpha = fread(fid,1,'float');
h.fspnoise = fread(fid,1,'float');
h.fspv1 = fread(fid,1,'short');
h.montage = fread(fid,40,'char');
h.eventfile = fread(fid,40,'char');
h.fratio = fread(fid,1,'float');
h.minor_rev = fread(fid,1,'char');
h.eegupdate = fread(fid,1,'short');
h.compressed = fread(fid,1,'char');
h.xscale = fread(fid,1,'float');
h.yscale = fread(fid,1,'float');
h.xsize = fread(fid,1,'float');
h.ysize = fread(fid,1,'float');
h.acmode = fread(fid,1,'char');
h.commonchnl = fread(fid,1,'uchar');
h.xtics = fread(fid,1,'char');
h.xrange = fread(fid,1,'char');
h.ytics = fread(fid,1,'char');
h.yrange = fread(fid,1,'char');
h.xscalevalue = fread(fid,1,'float');
h.xscaleinterval = fread(fid,1,'float');
h.yscalevalue = fread(fid,1,'float');
h.yscaleinterval = fread(fid,1,'float');
h.scaletoolx1 = fread(fid,1,'float');
h.scaletooly1 = fread(fid,1,'float');
h.scaletoolx2 = fread(fid,1,'float');
h.scaletooly2 = fread(fid,1,'float');
h.port = fread(fid,1,'short');
h.numsamples = fread(fid,1,'ulong');
h.filterflag = fread(fid,1,'char');
h.lowcutoff = fread(fid,1,'float');
h.lowpoles = fread(fid,1,'short');
h.highcutoff = fread(fid,1,'float');
h.highpoles = fread(fid,1,'short');
h.filtertype = fread(fid,1,'char');
h.filterdomain = fread(fid,1,'char');
h.snrflag = fread(fid,1,'char');
h.coherenceflag = fread(fid,1,'char');
h.continuoustype = fread(fid,1,'char');
h.eventtablepos = fread(fid,1,'ulong');
h.continuousseconds = fread(fid,1,'float');
h.channeloffset = fread(fid,1,'long');
h.autocorrectflag = fread(fid,1,'char');
h.dcthreshold = fread(fid,1,'uchar');
for n = 1:h.nchannels
e(n).lab = deblank(char(fread(fid,10,'char')'));
e(n).reference = fread(fid,1,'char');
e(n).skip = fread(fid,1,'char');
e(n).reject = fread(fid,1,'char');
e(n).display = fread(fid,1,'char');
e(n).bad = fread(fid,1,'char');
e(n).n = fread(fid,1,'ushort');
e(n).avg_reference = fread(fid,1,'char');
e(n).clipadd = fread(fid,1,'char');
e(n).x_coord = fread(fid,1,'float');
e(n).y_coord = fread(fid,1,'float');
e(n).veog_wt = fread(fid,1,'float');
e(n).veog_std = fread(fid,1,'float');
e(n).snr = fread(fid,1,'float');
e(n).heog_wt = fread(fid,1,'float');
e(n).heog_std = fread(fid,1,'float');
e(n).baseline = fread(fid,1,'short');
e(n).filtered = fread(fid,1,'char');
e(n).fsp = fread(fid,1,'char');
e(n).aux1_wt = fread(fid,1,'float');
e(n).aux1_std = fread(fid,1,'float');
e(n).senstivity = fread(fid,1,'float');
e(n).gain = fread(fid,1,'char');
e(n).hipass = fread(fid,1,'char');
e(n).lopass = fread(fid,1,'char');
e(n).page = fread(fid,1,'uchar');
e(n).size = fread(fid,1,'uchar');
e(n).impedance = fread(fid,1,'uchar');
e(n).physicalchnl = fread(fid,1,'uchar');
e(n).rectify = fread(fid,1,'char');
e(n).calib = fread(fid,1,'float');
end
% finding if 32-bits of 16-bits file
% ----------------------------------
begdata = ftell(fid);
enddata = h.eventtablepos; % after data
if strcmpi(r.dataformat, 'int16')
nums = (enddata-begdata)/h.nchannels/2;
else nums = (enddata-begdata)/h.nchannels/4;
end;
% number of sample to read
% ------------------------
if ~isempty(r.sample1)
r.t1 = r.sample1/h.rate;
else
r.sample1 = r.t1*h.rate;
end;
if strcmpi(r.dataformat, 'int16')
startpos = round(r.t1*h.rate*2*h.nchannels);
else startpos = round(r.t1*h.rate*4*h.nchannels);
end;
if isempty(r.ldnsamples)
if ~isempty(r.lddur)
r.ldnsamples = round(r.lddur*h.rate);
else r.ldnsamples = nums;
end;
end;
% VL modification 1 =========================
h.nums = nums;
% channel offset
% --------------
if ~isempty(r.blockread)
h.channeloffset = r.blockread;
end;
if h.channeloffset > 1
fprintf('WARNING: reading data in blocks of %d, if this fails, try using option "''blockread'', 1"\n', ...
h.channeloffset);
end;
disp('Reading data .....')
if type == 'cnt'
% while (ftell(fid) +1 < h.eventtablepos)
%d(:,i)=fread(fid,h.nchannels,'int16');
%end
if fseek(fid, startpos, 'cof')<0
fclose(fid);
error('fseek failed');
end
% **** This marks the beginning of the code modified for reading
% large .cnt files
% Switched to r.memmapfile for continuity. Check to see if the
% variable exists. If it does, then the user has indicated the
% file is too large to be processed in memory. If the variable
% is blank, the file is processed in memory.
if (~isempty(r.memmapfile))
% open a file for writing
foutid = fopen(r.memmapfile, 'w') ;
% This portion of the routine reads in a section of the EEG file
% and then writes it out to the harddisk.
samples_left = h.nchannels * r.ldnsamples ;
% the size of the data block to be read is limited to 4M
% samples. This equates to 16MB and 32MB of memory for
% 16 and 32 bit files, respectively.
data_block = 4000000 ;
max_rows = data_block / h.nchannels ;
ws = warning('off');
max_written = h.nchannels * uint32(max_rows) ;
warning(ws);
% This while look tracks the remaining samples. The
% data is processed in chunks rather than put into
% memory whole.
while (samples_left > 0)
% Check to see if the remaining data is smaller than
% the general processing block by looking at the
% remaining number of rows.
to_read = max_rows ;
if (data_block > samples_left)
to_read = samples_left / h.nchannels ;
end ;
% Read data in a relatively small chunk
temp_dat = fread(fid, [h.nchannels to_read], r.dataformat) ;
% The data is then scaled using the original routine.
% In the original routine, the entire data set was scaled
% after being read in. For this version, scaling occurs
% after every chunk is read.
if strcmpi(r.scale, 'on')
disp('Scaling data .....')
%%% scaling to microvolts
for i=1:h.nchannels
bas=e(i).baseline;sen=e(i).senstivity;cal=e(i).calib;
mf=sen*(cal/204.8);
temp_dat(i,:)=(temp_dat(i,:)-bas).*mf;
end
end
% Write out data in float32 form to the file name
% supplied by the user.
written = fwrite (foutid, temp_dat, 'float32') ;
if (written ~= max_written)
samples_left = 0 ;
else
samples_left = samples_left - written ;
end ;
end ;
fclose (foutid) ;
% Set the dat variable. This gets used later by other
% EEGLAB functions.
dat = r.memmapfile ;
% This variable tracks how the data should be read.
bReadIntoMemory = false ;
else
% The memmapfile variable is empty, read into memory.
bReadIntoMemory = true ;
end
% This ends the modifications made to read large files.
% Everything contained within the following if statement is the
% original code.
if (bReadIntoMemory == true)
if h.channeloffset <= 1
dat=fread(fid, [h.nchannels r.ldnsamples], r.dataformat);
else
h.channeloffset = h.channeloffset/2;
% reading data in blocks
dat = zeros( h.nchannels, r.ldnsamples);
dat(:, 1:h.channeloffset) = fread(fid, [h.channeloffset h.nchannels], r.dataformat)';
counter = 1;
while counter*h.channeloffset < r.ldnsamples
dat(:, counter*h.channeloffset+1:counter*h.channeloffset+h.channeloffset) = ...
fread(fid, [h.channeloffset h.nchannels], r.dataformat)';
counter = counter + 1;
end;
end ;
% ftell(fid)
if strcmpi(r.scale, 'on')
disp('Scaling data .....')
%%% scaling to microvolts
for i=1:h.nchannels
bas=e(i).baseline;sen=e(i).senstivity;cal=e(i).calib;
mf=sen*(cal/204.8);
dat(i,:)=(dat(i,:)-bas).*mf;
end % end for i=1:h.nchannels
end; % end if (strcmpi(r.scale, 'on')
end ;
ET_offset = (double(h.prevfile) * (2^32)) + double(h.eventtablepos); % prevfile contains high order bits of event table offset, eventtablepos contains the low order bits
if fseek(fid, ET_offset, 'bof')<0
error('fseek failed');
end
disp('Reading Event Table...')
eT.teeg = fread(fid,1,'uchar');
eT.size = fread(fid,1,'ulong');
eT.offset = fread(fid,1,'ulong');
if eT.teeg==2
nevents=eT.size/sizeEvent2;
if nevents > 0
ev2(nevents).stimtype = [];
for i=1:nevents
ev2(i).stimtype = fread(fid,1,'ushort');
ev2(i).keyboard = fread(fid,1,'char');
temp = fread(fid,1,'uint8');
ev2(i).keypad_accept = bitand(15,temp);
ev2(i).accept_ev1 = bitshift(temp,-4);
ev2(i).offset = fread(fid,1,'long');
ev2(i).type = fread(fid,1,'short');
ev2(i).code = fread(fid,1,'short');
ev2(i).latency = fread(fid,1,'float');
ev2(i).epochevent = fread(fid,1,'char');
ev2(i).accept = fread(fid,1,'char');
ev2(i).accuracy = fread(fid,1,'char');
end
else
ev2 = [];
end;
elseif eT.teeg==3 % type 3 is similar to type 2 except the offset field encodes the global sample frame
nevents=eT.size/sizeEvent3;
if nevents > 0
ev2(nevents).stimtype = [];
if r.dataformat == 'int32'
bytes_per_samp = 4; % I only have 32 bit data, unable to check whether this is necessary,
else % perhaps there is no type 3 file with 16 bit data
bytes_per_samp = 2;
end
for i=1:nevents
ev2(i).stimtype = fread(fid,1,'ushort');
ev2(i).keyboard = fread(fid,1,'char');
temp = fread(fid,1,'uint8');
ev2(i).keypad_accept = bitand(15,temp);
ev2(i).accept_ev1 = bitshift(temp,-4);
os = fread(fid,1,'ulong');
ev2(i).offset = os * bytes_per_samp * h.nchannels;
ev2(i).type = fread(fid,1,'short');
ev2(i).code = fread(fid,1,'short');
ev2(i).latency = fread(fid,1,'float');
ev2(i).epochevent = fread(fid,1,'char');
ev2(i).accept = fread(fid,1,'char');
ev2(i).accuracy = fread(fid,1,'char');
end
else
ev2 = [];
end;
elseif eT.teeg==1
nevents=eT.size/sizeEvent1;
if nevents > 0
ev2(nevents).stimtype = [];
for i=1:nevents
ev2(i).stimtype = fread(fid,1,'ushort');
ev2(i).keyboard = fread(fid,1,'char');
% modified by Andreas Widmann 2005/05/12 14:15:00
%ev2(i).keypad_accept = fread(fid,1,'char');
temp = fread(fid,1,'uint8');
ev2(i).keypad_accept = bitand(15,temp);
ev2(i).accept_ev1 = bitshift(temp,-4);
% end modification
ev2(i).offset = fread(fid,1,'long');
end;
else
ev2 = [];
end;
else
disp('Skipping event table (tag != 1,2,3 ; theoritically impossible)');
ev2 = [];
end
fseek(fid, -1, 'eof');
t = fread(fid,'char');
f.header = h;
f.electloc = e;
f.data = dat;
f.Teeg = eT;
f.event = ev2;
f.tag=t;
% Surgical addition of number of samples
f.ldnsamples = r.ldnsamples ;
%%%% channels labels
for i=1:h.nchannels
plab=sprintf('%c',f.electloc(i).lab);
if i>1
lab=str2mat(lab,plab);
else
lab=plab;
end
end
%%%% to change offest in bytes to points
if ~isempty(ev2)
if r.sample1 ~= 0
% VL modification 2 =========================
% fprintf(2,'Warning: events imported with a time shift might be innacurate (bug 661)\n');
end;
ev2p=ev2;
ioff=900+(h.nchannels*75); %% initial offset : header + electordes desc
if strcmpi(r.dataformat, 'int16')
for i=1:nevents
ev2p(i).offset=(ev2p(i).offset-ioff)/(2*h.nchannels) - r.sample1; %% 2 short int end
end
else % 32 bits
for i=1:nevents
ev2p(i).offset=(ev2p(i).offset-ioff)/(4*h.nchannels) - r.sample1; %% 4 short int end
end
end;
f.event = ev2p;
end;
fclose(fid);
end
|
github
|
philippboehmsturm/antx-master
|
read_yokogawa_header.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/read_yokogawa_header.m
| 8,340 |
utf_8
|
32f28f1896d6e12abd4e5d44024649bf
|
function hdr = read_yokogawa_header(filename)
% READ_YOKOGAWA_HEADER reads the header information from continuous,
% epoched or averaged MEG data that has been generated by the Yokogawa
% MEG system and software and allows that data to be used in combination
% with FieldTrip.
%
% Use as
% [hdr] = read_yokogawa_header(filename)
%
% This is a wrapper function around the functions
% GetMeg160SystemInfoM
% GetMeg160ChannelCountM
% GetMeg160ChannelInfoM
% GetMeg160CalibInfoM
% GetMeg160AmpGainM
% GetMeg160DataAcqTypeM
% GetMeg160ContinuousAcqCondM
% GetMeg160EvokedAcqCondM
%
% See also READ_YOKOGAWA_DATA, READ_YOKOGAWA_EVENT
% this function also calls
% GetMeg160MriInfoM
% GetMeg160MatchingInfoM
% GetMeg160SourceInfoM
% but I don't know whether to use the information provided by those
% Copyright (C) 2005, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id: read_yokogawa_header.m 2617 2011-01-20 15:19:35Z jorhor $
% FIXED
% txt -> m
% fopen iee-le
if ~ft_hastoolbox('yokogawa')
error('cannot determine whether Yokogawa toolbox is present');
end
handles = definehandles;
fid = fopen(filename, 'rb', 'ieee-le');
% these are always present
[id ver rev sys_name] = GetMeg160SystemInfoM(fid);
channel_count = GetMeg160ChannelCountM(fid);
channel_info = GetMeg160ChannelInfoM(fid);
calib_info = GetMeg160CalibInfoM(fid);
amp_gain = GetMeg160AmpGainM(fid);
acq_type = GetMeg160DataAcqTypeM(fid);
ad_bit = GetMeg160ADbitInfoM(fid);
% these depend on the data type
sample_rate = [];
sample_count = [];
pretrigger_length = [];
averaged_count = [];
actual_epoch_count = [];
switch acq_type
case handles.AcqTypeContinuousRaw
[sample_rate, sample_count] = GetMeg160ContinuousAcqCondM(fid);
if isempty(sample_rate) | isempty(sample_count)
fclose(fid);
return;
end
pretrigger_length = 0;
averaged_count = 1;
case handles.AcqTypeEvokedAve
[sample_rate, sample_count, pretrigger_length, averaged_count] = GetMeg160EvokedAcqCondM( fid );
if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(averaged_count)
fclose(fid);
return;
end
case handles.AcqTypeEvokedRaw
[sample_rate, sample_count, pretrigger_length, actual_epoch_count] = GetMeg160EvokedAcqCondM( fid );
if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(actual_epoch_count)
fclose(fid);
return;
end
otherwise
error('unknown data type');
end
% these are always present
mri_info = GetMeg160MriInfoM(fid);
matching_info = GetMeg160MatchingInfoM(fid);
source_info = GetMeg160SourceInfoM(fid);
fclose(fid);
% put all local variables into a structure, this is a bit unusual matlab programming style
tmp = whos;
orig = [];
for i=1:length(tmp)
if isempty(strmatch(tmp(i).name, {'tmp', 'fid', 'ans', 'handles'}))
orig = setfield(orig, tmp(i).name, eval(tmp(i).name));
end
end
% convert the original header information into something that FieldTrip understands
hdr = [];
hdr.orig = orig; % also store the original full header information
hdr.Fs = orig.sample_rate; % sampling frequency
hdr.nChans = orig.channel_count; % number of channels
hdr.nSamples = []; % number of samples per trial
hdr.nSamplesPre = []; % number of pre-trigger samples in each trial
hdr.nTrials = []; % number of trials
switch orig.acq_type
case handles.AcqTypeEvokedAve
hdr.nSamples = orig.sample_count;
hdr.nSamplesPre = orig.pretrigger_length;
hdr.nTrials = 1; % only the average, which can be considered as a single trial
case handles.AcqTypeContinuousRaw
hdr.nSamples = orig.sample_count;
hdr.nSamplesPre = 0; % there is no fixed relation between triggers and data
hdr.nTrials = 1; % the continuous data can be considered as a single very long trial
case handles.AcqTypeEvokedRaw
hdr.nSamples = orig.sample_count;
hdr.nSamplesPre = orig.pretrigger_length;
hdr.nTrials = orig.actual_epoch_count;
otherwise
error('unknown acquisition type');
end
% construct a cell-array with labels of each channel
for i=1:hdr.nChans
% this should be consistent with the predefined list in ft_senslabel,
% with yokogawa2grad and with ft_channelselection
if hdr.orig.channel_info(i, 2) == handles.NullChannel
prefix = '';
elseif hdr.orig.channel_info(i, 2) == handles.MagnetoMeter
prefix = 'M';
elseif hdr.orig.channel_info(i, 2) == handles.AxialGradioMeter
prefix = 'AG';
elseif hdr.orig.channel_info(i, 2) == handles.PlannerGradioMeter
prefix = 'PG';
elseif hdr.orig.channel_info(i, 2) == handles.RefferenceMagnetoMeter
prefix = 'RM';
elseif hdr.orig.channel_info(i, 2) == handles.RefferenceAxialGradioMeter
prefix = 'RAG';
elseif hdr.orig.channel_info(i, 2) == handles.RefferencePlannerGradioMeter
prefix = 'RPG';
elseif hdr.orig.channel_info(i, 2) == handles.TriggerChannel
prefix = 'TRIG';
elseif hdr.orig.channel_info(i, 2) == handles.EegChannel
prefix = 'EEG';
elseif hdr.orig.channel_info(i, 2) == handles.EcgChannel
prefix = 'ECG';
elseif hdr.orig.channel_info(i, 2) == handles.EtcChannel
prefix = 'ETC';
end
hdr.label{i} = sprintf('%s%03d', prefix, i);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% this defines some usefull constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function handles = definehandles;
handles.output = [];
handles.sqd_load_flag = false;
handles.mri_load_flag = false;
handles.NullChannel = 0;
handles.MagnetoMeter = 1;
handles.AxialGradioMeter = 2;
handles.PlannerGradioMeter = 3;
handles.RefferenceChannelMark = hex2dec('0100');
handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter );
handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter );
handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter );
handles.TriggerChannel = -1;
handles.EegChannel = -2;
handles.EcgChannel = -3;
handles.EtcChannel = -4;
handles.NonMegChannelNameLength = 32;
handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length
handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter
handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length
handles.AcqTypeContinuousRaw = 1;
handles.AcqTypeEvokedAve = 2;
handles.AcqTypeEvokedRaw = 3;
handles.sqd = [];
handles.sqd.selected_start = [];
handles.sqd.selected_end = [];
handles.sqd.axialgradiometer_ch_no = [];
handles.sqd.axialgradiometer_ch_info = [];
handles.sqd.axialgradiometer_data = [];
handles.sqd.plannergradiometer_ch_no = [];
handles.sqd.plannergradiometer_ch_info = [];
handles.sqd.plannergradiometer_data = [];
handles.sqd.eegchannel_ch_no = [];
handles.sqd.eegchannel_data = [];
handles.sqd.nullchannel_ch_no = [];
handles.sqd.nullchannel_data = [];
handles.sqd.selected_time = [];
handles.sqd.sample_rate = [];
handles.sqd.sample_count = [];
handles.sqd.pretrigger_length = [];
handles.sqd.matching_info = [];
handles.sqd.source_info = [];
handles.sqd.mri_info = [];
handles.mri = [];
|
github
|
philippboehmsturm/antx-master
|
encode_nifti1.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/encode_nifti1.m
| 4,870 |
utf_8
|
9cf92a03587c511a5cec2c8c76a3c2c3
|
function blob = encode_nifti1(H)
%function blob = encode_nifti1(H)
%
% Encodes a NIFTI-1 header (=> raw 348 bytes (uint8)) from a Matlab structure
% that matches the C struct defined in nifti1.h.
%
% WARNING: This function currently ignores endianness !!!
% (C) 2010 S.Klanke
blob = uint8(zeros(1,348));
if ~isstruct(H)
error 'Input must be a structure';
end
% see nift1.h for information on structure
sizeof_hdr = int32(348);
blob(1:4) = typecast(sizeof_hdr, 'uint8');
blob = setString(blob, 5, 14, H, 'data_type');
blob = setString(blob, 15, 32, H, 'db_name');
blob = setInt32( blob, 33, 36, H, 'extents');
blob = setInt16( blob, 37, 38, H, 'session_error');
blob = setInt8( blob, 39, 39, H, 'regular');
blob = setInt8( blob, 40, 40, H, 'dim_info');
dim = int16(H.dim(:)');
ndim = numel(dim);
if ndim<1 || ndim>7
error 'Field "dim" must have 1..7 elements';
end
dim = [int16(ndim) dim];
blob(41:(42+2*ndim)) = typecast(dim,'uint8');
blob = setSingle(blob, 57, 60, H, 'intent_p1');
blob = setSingle(blob, 61, 64, H, 'intent_p2');
blob = setSingle(blob, 65, 68, H, 'intent_p3');
blob = setInt16( blob, 69, 70, H, 'intent_code');
blob = setInt16( blob, 71, 72, H, 'datatype');
blob = setInt16( blob, 73, 74, H, 'bitpix');
blob = setInt16( blob, 75, 76, H, 'slice_start');
blob = setSingle(blob, 77, 80, H, 'qfac');
if isfield(H,'pixdim')
pixdim = single(H.pixdim(:)');
ndim = numel(pixdim);
if ndim<1 || ndim>7
error 'Field "pixdim" must have 1..7 elements';
end
blob(81:(80+4*ndim)) = typecast(pixdim,'uint8');
end
blob = setSingle(blob, 109, 112, H, 'vox_offset');
blob = setSingle(blob, 113, 116, H, 'scl_scope');
blob = setSingle(blob, 117, 120, H, 'scl_inter');
blob = setInt16( blob, 121, 122, H, 'slice_end');
blob = setInt8( blob, 123, 123, H, 'slice_code');
blob = setInt8( blob, 124, 124, H, 'xyzt_units');
blob = setSingle(blob, 125, 128, H, 'cal_max');
blob = setSingle(blob, 129, 132, H, 'cal_min');
blob = setSingle(blob, 133, 136, H, 'slice_duration');
blob = setSingle(blob, 137, 140, H, 'toffset');
blob = setInt32( blob, 141, 144, H, 'glmax');
blob = setInt32( blob, 145, 148, H, 'glmin');
blob = setString(blob, 149, 228, H, 'descrip');
blob = setString(blob, 229, 252, H, 'aux_file');
blob = setInt16( blob, 253, 254, H, 'qform_code');
blob = setInt16( blob, 255, 256, H, 'sform_code');
blob = setSingle(blob, 257, 260, H, 'quatern_b');
blob = setSingle(blob, 261, 264, H, 'quatern_c');
blob = setSingle(blob, 265, 268, H, 'quatern_d');
blob = setSingle(blob, 269, 272, H, 'quatern_x');
blob = setSingle(blob, 273, 276, H, 'quatern_y');
blob = setSingle(blob, 277, 280, H, 'quatern_z');
blob = setSingle(blob, 281, 296, H, 'srow_x');
blob = setSingle(blob, 297, 312, H, 'srow_y');
blob = setSingle(blob, 313, 328, H, 'srow_z');
blob = setString(blob, 329, 344, H, 'intent_name');
if ~isfield(H,'magic')
blob(345:347) = uint8('ni1');
else
blob = setString(blob, 345, 347, H, 'magic');
end
function blob = setString(blob, begidx, endidx, H, fieldname)
if ~isfield(H,fieldname)
return
end
F = getfield(H, fieldname);
ne = numel(F);
mx = endidx - begidx +1;
if ne > 0
if ~ischar(F) || ne > mx
errmsg = sprintf('Field "data_type" must be a string of maximally %i characters.', mx);
error(errmsg);
end
blob(begidx:(begidx+ne-1)) = uint8(F(:)');
end
% set 32-bit integers (check #elements)
function blob = setInt32(blob, begidx, endidx, H, fieldname)
if ~isfield(H,fieldname)
return
end
F = int32(getfield(H, fieldname));
ne = numel(F);
sp = (endidx - begidx +1) / 4;
if ne~=sp
errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp);
error(errmsg);
end
blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8');
% set 16-bit integers (check #elements)
function blob = setInt16(blob, begidx, endidx, H, fieldname)
if ~isfield(H,fieldname)
return
end
F = int16(getfield(H, fieldname));
ne = numel(F);
sp = (endidx - begidx +1) / 2;
if ne~=sp
errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp);
error(errmsg);
end
blob(begidx:(begidx+2*ne-1)) = typecast(F(:)', 'uint8');
% just 8-bit integers (check #elements)
function blob = setInt8(blob, begidx, endidx, H, fieldname)
if ~isfield(H,fieldname)
return
end
F = int8(getfield(H, fieldname));
ne = numel(F);
sp = (endidx - begidx +1);
if ne~=sp
errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp);
error(errmsg);
end
blob(begidx:(begidx+ne-1)) = typecast(F(:)', 'uint8');
% single precision floats
function blob = setSingle(blob, begidx, endidx, H, fieldname)
if ~isfield(H,fieldname)
return
end
F = single(getfield(H, fieldname));
ne = numel(F);
sp = (endidx - begidx +1) / 4;
if ne~=sp
errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp);
error(errmsg);
end
blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8');
|
github
|
philippboehmsturm/antx-master
|
avw_hdr_read.m
|
.m
|
antx-master/freiburgLight/matlab/spm8/external/fieldtrip/fileio/private/avw_hdr_read.m
| 16,668 |
utf_8
|
48271159722bc225bff6496756cf9f5d
|
function [ avw, machine ] = avw_hdr_read(fileprefix, machine, verbose)
% avw_hdr_read - read Analyze format data header (*.hdr)
%
% [ avw, machine ] = avw_hdr_read(fileprefix, [machine], [verbose])
%
% fileprefix - string filename (without .hdr); the file name
% can be given as a full path or relative to the
% current directory.
%
% machine - a string, see machineformat in fread for details.
% The default here is 'ieee-le' but the routine
% will automatically switch between little and big
% endian to read any such Analyze header. It
% reports the appropriate machine format and can
% return the machine value.
%
% avw.hdr - a struct, all fields returned from the header.
% For details, find a good description on the web
% or see the Analyze File Format pdf in the
% mri_toolbox doc folder or read this .m file.
%
% verbose - the default is to output processing information to the command
% window. If verbose = 0, this will not happen.
%
% This function is called by avw_img_read
%
% See also avw_hdr_write, avw_hdr_make, avw_view_hdr, avw_view
%
% $Revision: 2885 $ $Date: 2009/01/14 09:24:45 $
% Licence: GNU GPL, no express or implied warranties
% History: 05/2002, [email protected]
% The Analyze format and c code below is copyright
% (c) Copyright, 1986-1995
% Biomedical Imaging Resource, Mayo Foundation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('verbose','var'), verbose = 1; end
if verbose,
version = '[$Revision: 2885 $]';
fprintf('\nAVW_HDR_READ [v%s]\n',version(12:16)); tic;
end
if ~exist('fileprefix','var'),
msg = sprintf('...no input fileprefix - see help avw_hdr_read\n\n');
error(msg);
end
if ~exist('machine','var'), machine = 'ieee-le'; end
if findstr('.hdr',fileprefix),
% fprintf('...removing .hdr extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.hdr','');
end
if findstr('.img',fileprefix),
% fprintf('...removing .img extension from ''%s''\n',fileprefix);
fileprefix = strrep(fileprefix,'.img','');
end
file = sprintf('%s.hdr',fileprefix);
if exist(file),
if verbose,
fprintf('...reading %s Analyze format',machine);
end
fid = fopen(file,'r',machine);
avw.hdr = read_header(fid,verbose);
avw.fileprefix = fileprefix;
fclose(fid);
if ~isequal(avw.hdr.hk.sizeof_hdr,348),
if verbose, fprintf('...failed.\n'); end
% first try reading the opposite endian to 'machine'
switch machine,
case 'ieee-le', machine = 'ieee-be';
case 'ieee-be', machine = 'ieee-le';
end
if verbose, fprintf('...reading %s Analyze format',machine); end
fid = fopen(file,'r',machine);
avw.hdr = read_header(fid,verbose);
avw.fileprefix = fileprefix;
fclose(fid);
end
if ~isequal(avw.hdr.hk.sizeof_hdr,348),
% Now throw an error
if verbose, fprintf('...failed.\n'); end
msg = sprintf('...size of header not equal to 348 bytes!\n\n');
error(msg);
end
else
msg = sprintf('...cannot find file %s.hdr\n\n',file);
error(msg);
end
if verbose,
t=toc; fprintf('...done (%5.2f sec).\n',t);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ dsr ] = read_header(fid,verbose)
% Original header structures - ANALYZE 7.5
%struct dsr
% {
% struct header_key hk; /* 0 + 40 */
% struct image_dimension dime; /* 40 + 108 */
% struct data_history hist; /* 148 + 200 */
% }; /* total= 348 bytes*/
dsr.hk = header_key(fid);
dsr.dime = image_dimension(fid,verbose);
dsr.hist = data_history(fid);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [hk] = header_key(fid)
% The required elements in the header_key substructure are:
%
% int sizeof_header Must indicate the byte size of the header file.
% int extents Should be 16384, the image file is created as
% contiguous with a minimum extent size.
% char regular Must be 'r' to indicate that all images and
% volumes are the same size.
% Original header structures - ANALYZE 7.5
% struct header_key /* header key */
% { /* off + size */
% int sizeof_hdr /* 0 + 4 */
% char data_type[10]; /* 4 + 10 */
% char db_name[18]; /* 14 + 18 */
% int extents; /* 32 + 4 */
% short int session_error; /* 36 + 2 */
% char regular; /* 38 + 1 */
% char hkey_un0; /* 39 + 1 */
% }; /* total=40 bytes */
fseek(fid,0,'bof');
hk.sizeof_hdr = fread(fid, 1,'*int32'); % should be 348!
hk.data_type = fread(fid,10,'*char')';
hk.db_name = fread(fid,18,'*char')';
hk.extents = fread(fid, 1,'*int32');
hk.session_error = fread(fid, 1,'*int16');
hk.regular = fread(fid, 1,'*char')'; % might be uint8
hk.hkey_un0 = fread(fid, 1,'*uint8')';
% check if this value was a char zero
if hk.hkey_un0 == 48,
hk.hkey_un0 = 0;
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ dime ] = image_dimension(fid,verbose)
%struct image_dimension
% { /* off + size */
% short int dim[8]; /* 0 + 16 */
% /*
% dim[0] Number of dimensions in database; usually 4.
% dim[1] Image X dimension; number of *pixels* in an image row.
% dim[2] Image Y dimension; number of *pixel rows* in slice.
% dim[3] Volume Z dimension; number of *slices* in a volume.
% dim[4] Time points; number of volumes in database
% */
% char vox_units[4]; /* 16 + 4 */
% char cal_units[8]; /* 20 + 8 */
% short int unused1; /* 28 + 2 */
% short int datatype; /* 30 + 2 */
% short int bitpix; /* 32 + 2 */
% short int dim_un0; /* 34 + 2 */
% float pixdim[8]; /* 36 + 32 */
% /*
% pixdim[] specifies the voxel dimensions:
% pixdim[1] - voxel width, mm
% pixdim[2] - voxel height, mm
% pixdim[3] - slice thickness, mm
% pixdim[4] - volume timing, in msec
% ..etc
% */
% float vox_offset; /* 68 + 4 */
% float roi_scale; /* 72 + 4 */
% float funused1; /* 76 + 4 */
% float funused2; /* 80 + 4 */
% float cal_max; /* 84 + 4 */
% float cal_min; /* 88 + 4 */
% int compressed; /* 92 + 4 */
% int verified; /* 96 + 4 */
% int glmax; /* 100 + 4 */
% int glmin; /* 104 + 4 */
% }; /* total=108 bytes */
dime.dim = fread(fid,8,'*int16')';
dime.vox_units = fread(fid,4,'*char')';
dime.cal_units = fread(fid,8,'*char')';
dime.unused1 = fread(fid,1,'*int16');
dime.datatype = fread(fid,1,'*int16');
dime.bitpix = fread(fid,1,'*int16');
dime.dim_un0 = fread(fid,1,'*int16');
dime.pixdim = fread(fid,8,'*float')';
dime.vox_offset = fread(fid,1,'*float');
dime.roi_scale = fread(fid,1,'*float');
dime.funused1 = fread(fid,1,'*float');
dime.funused2 = fread(fid,1,'*float');
dime.cal_max = fread(fid,1,'*float');
dime.cal_min = fread(fid,1,'*float');
dime.compressed = fread(fid,1,'*int32');
dime.verified = fread(fid,1,'*int32');
dime.glmax = fread(fid,1,'*int32');
dime.glmin = fread(fid,1,'*int32');
if dime.dim(1) < 4, % Number of dimensions in database; usually 4.
if verbose,
fprintf('...ensuring 4 dimensions in avw.hdr.dime.dim\n');
end
dime.dim(1) = int16(4);
end
if dime.dim(5) < 1, % Time points; number of volumes in database
if verbose,
fprintf('...ensuring at least 1 volume in avw.hdr.dime.dim(5)\n');
end
dime.dim(5) = int16(1);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ hist ] = data_history(fid)
% Original header structures - ANALYZE 7.5
%struct data_history
% { /* off + size */
% char descrip[80]; /* 0 + 80 */
% char aux_file[24]; /* 80 + 24 */
% char orient; /* 104 + 1 */
% char originator[10]; /* 105 + 10 */
% char generated[10]; /* 115 + 10 */
% char scannum[10]; /* 125 + 10 */
% char patient_id[10]; /* 135 + 10 */
% char exp_date[10]; /* 145 + 10 */
% char exp_time[10]; /* 155 + 10 */
% char hist_un0[3]; /* 165 + 3 */
% int views /* 168 + 4 */
% int vols_added; /* 172 + 4 */
% int start_field; /* 176 + 4 */
% int field_skip; /* 180 + 4 */
% int omax; /* 184 + 4 */
% int omin; /* 188 + 4 */
% int smax; /* 192 + 4 */
% int smin; /* 196 + 4 */
% }; /* total=200 bytes */
hist.descrip = fread(fid,80,'*char')';
hist.aux_file = fread(fid,24,'*char')';
hist.orient = fread(fid, 1,'*uint8'); % see note below on char
hist.originator = fread(fid,10,'*char')';
hist.generated = fread(fid,10,'*char')';
hist.scannum = fread(fid,10,'*char')';
hist.patient_id = fread(fid,10,'*char')';
hist.exp_date = fread(fid,10,'*char')';
hist.exp_time = fread(fid,10,'*char')';
hist.hist_un0 = fread(fid, 3,'*char')';
hist.views = fread(fid, 1,'*int32');
hist.vols_added = fread(fid, 1,'*int32');
hist.start_field = fread(fid, 1,'*int32');
hist.field_skip = fread(fid, 1,'*int32');
hist.omax = fread(fid, 1,'*int32');
hist.omin = fread(fid, 1,'*int32');
hist.smax = fread(fid, 1,'*int32');
hist.smin = fread(fid, 1,'*int32');
% check if hist.orient was saved as ascii char value
switch hist.orient,
case 48, hist.orient = uint8(0);
case 49, hist.orient = uint8(1);
case 50, hist.orient = uint8(2);
case 51, hist.orient = uint8(3);
case 52, hist.orient = uint8(4);
case 53, hist.orient = uint8(5);
end
return
% Note on using char:
% The 'char orient' field in the header is intended to
% hold simply an 8-bit unsigned integer value, not the ASCII representation
% of the character for that value. A single 'char' byte is often used to
% represent an integer value in Analyze if the known value range doesn't
% go beyond 0-255 - saves a byte over a short int, which may not mean
% much in today's computing environments, but given that this format
% has been around since the early 1980's, saving bytes here and there on
% older systems was important! In this case, 'char' simply provides the
% byte of storage - not an indicator of the format for what is stored in
% this byte. Generally speaking, anytime a single 'char' is used, it is
% probably meant to hold an 8-bit integer value, whereas if this has
% been dimensioned as an array, then it is intended to hold an ASCII
% character string, even if that was only a single character.
% Denny <[email protected]>
% Comments
% The header format is flexible and can be extended for new
% user-defined data types. The essential structures of the header
% are the header_key and the image_dimension.
%
% The required elements in the header_key substructure are:
%
% int sizeof_header Must indicate the byte size of the header file.
% int extents Should be 16384, the image file is created as
% contiguous with a minimum extent size.
% char regular Must be 'r' to indicate that all images and
% volumes are the same size.
%
% The image_dimension substructure describes the organization and
% size of the images. These elements enable the database to reference
% images by volume and slice number. Explanation of each element follows:
%
% short int dim[ ]; /* Array of the image dimensions */
%
% dim[0] Number of dimensions in database; usually 4.
% dim[1] Image X dimension; number of pixels in an image row.
% dim[2] Image Y dimension; number of pixel rows in slice.
% dim[3] Volume Z dimension; number of slices in a volume.
% dim[4] Time points; number of volumes in database.
% dim[5] Undocumented.
% dim[6] Undocumented.
% dim[7] Undocumented.
%
% char vox_units[4] Specifies the spatial units of measure for a voxel.
% char cal_units[8] Specifies the name of the calibration unit.
% short int unused1 /* Unused */
% short int datatype /* Datatype for this image set */
% /*Acceptable values for datatype are*/
% #define DT_NONE 0
% #define DT_UNKNOWN 0 /*Unknown data type*/
% #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/
% #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/
% #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/
% #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/
% #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/
% #define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 floating point numbers)/*
% #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/
% #define DT_RGB 128 /*A Red-Green-Blue datatype*/
% #define DT_ALL 255 /*Undocumented*/
%
% short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */
% short int dim_un0; /* Unused */
%
% float pixdim[]; Parallel array to dim[], giving real world measurements in mm and ms.
% pixdim[0]; Pixel dimensions?
% pixdim[1]; Voxel width in mm.
% pixdim[2]; Voxel height in mm.
% pixdim[3]; Slice thickness in mm.
% pixdim[4]; timeslice in ms (ie, TR in fMRI).
% pixdim[5]; Undocumented.
% pixdim[6]; Undocumented.
% pixdim[7]; Undocumented.
%
% float vox_offset; Byte offset in the .img file at which voxels start. This value can be
% negative to specify that the absolute value is applied for every image
% in the file.
%
% float roi_scale; Specifies the Region Of Interest scale?
% float funused1; Undocumented.
% float funused2; Undocumented.
%
% float cal_max; Specifies the upper bound of the range of calibration values.
% float cal_min; Specifies the lower bound of the range of calibration values.
%
% int compressed; Undocumented.
% int verified; Undocumented.
%
% int glmax; The maximum pixel value for the entire database.
% int glmin; The minimum pixel value for the entire database.
%
%
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.