plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github | bsxfan/meta-embeddings-master | rocch.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/det/rocch.m | 2,725 | utf_8 | 68aaac9f8a1f40d0d5eac901abc533d5 | function [pmiss,pfa] = rocch(tar_scores,nontar_scores)
% ROCCH: ROC Convex Hull.
% Usage: [pmiss,pfa] = rocch(tar_scores,nontar_scores)
% (This function has the same interface as compute_roc.)
%
% Note: pmiss and pfa contain the coordinates of the vertices of the
% ROC Convex Hull.
%
% For a demonstration that plots ROCCH against ROC for a few cases, just
% type 'rocch' at the MATLAB command line.
%
% Inputs:
% tar_scores: scores for target trials
% nontar_scores: scores for non-target trials
if nargin==0
test_this();
return
end
assert(nargin==2)
assert(isvector(tar_scores))
assert(isvector(nontar_scores))
Nt = length(tar_scores);
Nn = length(nontar_scores);
N = Nt+Nn;
scores = [tar_scores(:)',nontar_scores(:)'];
Pideal = [ones(1,Nt),zeros(1,Nn)]; %ideal, but non-monotonic posterior
%It is important here that scores that are the same (i.e. already in order) should NOT be swapped.
%MATLAB's sort algorithm has this property.
[scores,perturb] = sort(scores);
Pideal = Pideal(perturb);
[Popt,width] = pavx(Pideal);
nbins = length(width);
pmiss = zeros(1,nbins+1);
pfa = zeros(1,nbins+1);
%threshold leftmost: accept eveything, miss nothing
left = 0; %0 scores to left of threshold
fa = Nn;
miss = 0;
for i=1:nbins
pmiss(i) = miss/Nt;
pfa(i) = fa/Nn;
left = left + width(i);
miss = sum(Pideal(1:left));
fa = N - left - sum(Pideal(left+1:end));
end
pmiss(nbins+1) = miss/Nt;
pfa(nbins+1) = fa/Nn;
end
function test_this()
figure();
subplot(2,3,1);
tar = [1]; non = [0];
[pmiss,pfa] = rocch(tar,non);
[pm,pf] = compute_roc(tar,non);
plot(pfa,pmiss,'r-^',pf,pm,'g--v');
axis('square');grid;legend('ROCCH','ROC');
title('2 scores: non < tar');
subplot(2,3,2);
tar = [0]; non = [1];
[pmiss,pfa] = rocch(tar,non);
[pm,pf] = compute_roc(tar,non);
plot(pfa,pmiss,'r-^',pf,pm,'g-v');
axis('square');grid;
title('2 scores: tar < non');
subplot(2,3,3);
tar = [0]; non = [-1,1];
[pmiss,pfa] = rocch(tar,non);
[pm,pf] = compute_roc(tar,non);
plot(pfa,pmiss,'r-^',pf,pm,'g--v');
axis('square');grid;
title('3 scores: non < tar < non');
subplot(2,3,4);
tar = [-1,1]; non = [0];
[pmiss,pfa] = rocch(tar,non);
[pm,pf] = compute_roc(tar,non);
plot(pfa,pmiss,'r-^',pf,pm,'g--v');
axis('square');grid;
title('3 scores: tar < non < tar');
xlabel('P_{fa}');
ylabel('P_{miss}');
subplot(2,3,5);
tar = randn(1,100)+1; non = randn(1,100);
[pmiss,pfa] = rocch(tar,non);
[pm,pf] = compute_roc(tar,non);
plot(pfa,pmiss,'r-^',pf,pm,'g');
axis('square');grid;
title('45^{\circ} DET');
subplot(2,3,6);
tar = randn(1,100)*2+1; non = randn(1,100);
[pmiss,pfa] = rocch(tar,non);
[pm,pf] = compute_roc(tar,non);
plot(pfa,pmiss,'r-^',pf,pm,'g');
axis('square');grid;
title('flatter DET');
end
|
github | bsxfan/meta-embeddings-master | compute_roc.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/det/compute_roc.m | 1,956 | utf_8 | 16907ef9816ee330ac64b4eeb708366b | function [Pmiss, Pfa] = compute_roc(true_scores, false_scores)
% compute_roc computes the (observed) miss/false_alarm probabilities
% for a set of detection output scores.
%
% true_scores (false_scores) are detection output scores for a set of
% detection trials, given that the target hypothesis is true (false).
% (By convention, the more positive the score,
% the more likely is the target hypothesis.)
%
% this code is matlab-tized for speed.
% speedup: Old routine 54 secs -> new routine 5.71 secs.
% for 109776 points.
%-------------------------
%Compute the miss/false_alarm error probabilities
assert(nargin==2)
assert(isvector(true_scores))
assert(isvector(false_scores))
num_true = length(true_scores);
num_false = length(false_scores);
assert(num_true>0)
assert(num_false>0)
total=num_true+num_false;
Pmiss = zeros(num_true+num_false+1, 1); %preallocate for speed
Pfa = zeros(num_true+num_false+1, 1); %preallocate for speed
scores(1:num_false,1) = false_scores;
scores(1:num_false,2) = 0;
scores(num_false+1:total,1) = true_scores;
scores(num_false+1:total,2) = 1;
scores=DETsort(scores);
sumtrue=cumsum(scores(:,2),1);
sumfalse=num_false - ([1:total]'-sumtrue);
Pmiss(1) = 0;
Pfa(1) = 1.0;
Pmiss(2:total+1) = sumtrue ./ num_true;
Pfa(2:total+1) = sumfalse ./ num_false;
end
function [y,ndx] = DETsort(x,col)
% DETsort Sort rows, the first in ascending, the remaining in decending
% thereby postponing the false alarms on like scores.
% based on SORTROWS
if nargin<1, error('Not enough input arguments.'); end
if ndims(x)>2, error('X must be a 2-D matrix.'); end
if nargin<2, col = 1:size(x,2); end
if isempty(x), y = x; ndx = []; return, end
ndx = (1:size(x,1))';
% sort 2nd column ascending
[v,ind] = sort(x(ndx,2));
ndx = ndx(ind);
% reverse to decending order
ndx(1:size(x,1)) = ndx(size(x,1):-1:1);
% now sort first column ascending
[v,ind] = sort(x(ndx,1));
ndx = ndx(ind);
y = x(ndx,:);
end
|
github | bsxfan/meta-embeddings-master | rocchdet.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/det/rocchdet.m | 5,471 | utf_8 | 2452dd1f98aad313c79879d410214cb2 | function [x,y,eer,mindcf] = rocchdet(tar,non,dcfweights,pfa_min,pfa_max,pmiss_min,pmiss_max,dps)
% ROCCHDET: Computes ROC Convex Hull and then maps that to the DET axes.
%
% (For demo, type 'rocchdet' on command line.)
%
% Inputs:
%
% tar: vector of target scores
% non: vector of non-target scores
%
% dcfweights: 2-vector, such that: DCF = [pmiss,pfa]*dcfweights(:).
% (Optional, provide only if mindcf is desired, otherwise
% omit or use [].)
%
% pfa_min,pfa_max,pmiss_min,pmiss_max: limits of DET-curve rectangle.
% The DET-curve is infinite, non-trivial limits (away from 0 and 1)
% are mandatory.
% (Uses min = 0.0005 and max = 0.5 if omitted.)
%
% dps: number of returned (x,y) dots (arranged in a curve) in DET space,
% for every straight line-segment (edge) of the ROC Convex Hull.
% (Uses dps = 100 if omitted.)
%
% Outputs:
%
% x: probit(Pfa)
% y: probit(Pmiss)
% eer: ROCCH EER = max_p mindcf(dcfweights=[p,1-p]), which is also
% equal to the intersection of the ROCCH with the line pfa = pmiss.
%
% mindcf: Identical to result using traditional ROC, but
% computed by mimimizing over the ROCCH vertices, rather than
% over all the ROC points.
if nargin==0
test_this();
return
end
assert(isvector(tar))
assert(isvector(non))
if ~exist('pmiss_max','var') || isempty(pmiss_max)
pfa_min = 0.0005;
pfa_max = 0.5;
pmiss_min = 0.0005;
pmiss_max = 0.5;
end
if ~exist('dps','var') || isempty(dps)
dps = 100;
end
assert(pfa_min>0 && pfa_max<1 && pmiss_min>0 && pmiss_max<1,'limits must be strictly inside (0,1)');
assert(pfa_min<pfa_max && pmiss_min < pmiss_max);
[pmiss,pfa] = rocch(tar,non);
if nargout>3
dcf = dcfweights(:)'*[pmiss(:)';pfa(:)'];
mindcf = min(dcf);
end
%pfa is decreasing
%pmiss is increasing
box.left = pfa_min;
box.right = pfa_max;
box.top = pmiss_max;
box.bottom = pmiss_min;
x = [];
y = [];
eer = 0;
for i=1:length(pfa)-1
xx = pfa(i:i+1);
yy = pmiss(i:i+1);
[xdots,ydots,eerseg] = plotseg(xx,yy,box,dps);
x = [x,xdots];
y = [y,ydots];
eer = max(eer,eerseg);
end
end
function [x,y,eer] = plotseg(xx,yy,box,dps)
%xx and yy should be sorted:
assert(xx(2)<=xx(1)&&yy(1)<=yy(2));
XY = [xx(:),yy(:)];
dd = [1,-1]*XY;
if min(abs(dd))==0
eer = 0;
else
%find line coefficieents seg s.t. seg'[xx(i);yy(i)] = 1,
%when xx(i),yy(i) is on the line.
seg = XY\[1;1];
eer = 1/(sum(seg)); %candidate for EER, eer is highest candidate
end
%segment completely outside of box
if xx(1)<box.left || xx(2)>box.right || yy(2)<box.bottom || yy(1)>box.top
x = [];
y = [];
return
end
if xx(2)<box.left
xx(2) = box.left;
yy(2) = (1-seg(1)*box.left)/seg(2);
end
if xx(1)>box.right
xx(1) = box.right;
yy(1) = (1-seg(1)*box.right)/seg(2);
end
if yy(1)<box.bottom
yy(1) = box.bottom;
xx(1) = (1-seg(2)*box.bottom)/seg(1);
end
if yy(2)>box.top
yy(2) = box.top;
xx(2) = (1-seg(2)*box.top)/seg(1);
end
dx = xx(2)-xx(1);
xdots = xx(1)+dx*(0:dps)/dps;
ydots = (1-seg(1)*xdots)/seg(2);
x = probit(xdots);
y = probit(ydots);
end
function test_this
subplot(2,3,1);
hold on;
make_det_axes();
tar = randn(1,100)+2;
non = randn(1,100);
[x,y,eer] = rocchdet(tar,non);
[pmiss,pfa] = compute_roc(tar,non);
plot(x,y,'g',probit(pfa),probit(pmiss),'r');
legend(sprintf('ROCCH-DET (EER = %3.1f%%)',eer*100),'classical DET',...
'Location','SouthWest');
title('EER read off ROCCH-DET');
subplot(2,3,2);
show_eer(pmiss,pfa,eer);
subplot(2,3,3);
[pmiss,pfa] = rocch(tar,non);
show_eer(pmiss,pfa,eer);
subplot(2,3,4);
hold on;
make_det_axes();
tar = randn(1,100)*2+3;
non = randn(1,100);
[x,y,eer] = rocchdet(tar,non);
[pmiss,pfa] = compute_roc(tar,non);
plot(x,y,'b',probit(pfa),probit(pmiss),'k');
legend(sprintf('ROCCH-DET (EER = %3.1f%%)',eer*100),'classical DET',...
'Location','SouthWest');
title('EER read off ROCCH-DET');
subplot(2,3,5);
show_eer(pmiss,pfa,eer);
subplot(2,3,6);
[pmiss,pfa] = rocch(tar,non);
show_eer(pmiss,pfa,eer);
end
function show_eer(pmiss,pfa,eer)
p = 0:0.001:1;
x = p;
y = zeros(size(p));
for i=1:length(p);
%y(i) = mincdet @ ptar = p(i), cmiss = cfa = 1
y(i) = min(p(i)*pmiss+(1-p(i))*pfa);
end
plot([min(x),max(x)],[eer,eer],x,y);
grid;
legend('EER','minDCF(P_{tar},C_{miss}=C_{fa}=1)','Location','South');
xlabel('P_{tar}');
title('EER via minDCF on classical DET');
end
function make_det_axes()
% make_det_axes creates a plot for displaying detection performance
% with the axes scaled and labeled so that a normal Gaussian
% distribution will plot as a straight line.
%
% The y axis represents the miss probability.
% The x axis represents the false alarm probability.
%
% Creates a new figure, switches hold on, embellishes and returns handle.
pROC_limits = [0.0005 0.5];
pticks = [0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.4];
ticklabels = ['0.1';'0.2';'0.5';' 1 ';' 2 ';' 5 ';'10 ';'20 ';'30 ';'40 '];
axis('square');
set (gca, 'xlim', probit(pROC_limits));
set (gca, 'xtick', probit(pticks));
set (gca, 'xticklabel', ticklabels);
set (gca, 'xgrid', 'on');
xlabel ('False Alarm probability (in %)');
set (gca, 'ylim', probit(pROC_limits));
set (gca, 'ytick', probit(pticks));
set (gca, 'yticklabel', ticklabels);
set (gca, 'ygrid', 'on')
ylabel ('Miss probability (in %)')
end
|
github | bsxfan/meta-embeddings-master | map_mod_names.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/manip/map_mod_names.m | 3,127 | utf_8 | 6aa97cdf9b5df6095e803bd14f612e52 | function ndx = map_mod_names(ndx,src_map,dst_map)
% Changes the model names in an index using two maps. The one map
% lists the training segment for each model name and the other map
% lists the new model name for each training segment. Existing
% model names are replaced by new model names that are mapped to
% the same training segment. If a model name is not present in the
% src_map, it is left unchanged in the output ndx. If a train seg
% is not present in the dst_map, the source model is dropped from
% the output ndx (along with all its trials).
% Inputs:
% ndx: the Key or Ndx for which the model names must be changed
% scr_map: the map from current model names to trn seg names
% dst_map: the map from trn seg names to new model names
% Outputs:
% ndx: the Key or Ndx with a modified modelset field
if nargin == 0
test_this()
return
end
assert(nargin==3)
assert(isa(ndx,'Ndx')||isa(ndx,'Key'))
assert(isstruct(src_map))
assert(isstruct(dst_map))
assert(isfield(src_map,'keySet'))
assert(isfield(dst_map,'keySet'))
assert(isfield(src_map,'values'))
assert(isfield(dst_map,'values'))
[trnsegs,is_present1] = maplookup(src_map,ndx.modelset);
num_unchanged = length(is_present1) - sum(is_present1);
if num_unchanged ~= 0
log_warning('Keeping %d model name(s) unchanged.\n',num_unchanged);
end
[newnames,is_present2] = maplookup(dst_map,trnsegs);
num_dropped = length(is_present2) - sum(is_present2);
if num_dropped ~= 0
log_warning('Discarding %d row(s) in score matrix.\n',num_dropped);
end
keepndxs = true(length(ndx.modelset),1);
keepndxs(is_present1) = is_present2;
newmodnames = cell(length(is_present2),1);
newmodnames(is_present2) = newnames;
ndx.modelset(is_present1) = newmodnames;
ndx.modelset = ndx.modelset(keepndxs);
if isa(ndx,'Ndx')
ndx.trialmask = ndx.trialmask(keepndxs,:);
else
ndx.tar = ndx.tar(keepndxs,:);
ndx.non = ndx.non(keepndxs,:);
end
function test_this()
src_map.keySet = {'mod1','mod2','mod3','mod4','mod8'};
src_map.values = {'seg1','seg2','seg3','seg5','seg8'};
dst_map.keySet = {'seg1','seg2','seg3','seg4','seg5','seg6'};
dst_map.values = {'new1','new2','new3','new4','new5','new6'};
ndx = Ndx();
fprintf('Test1\n');
ndx.modelset = {'mod2','mod3','mod4'};
ndx.trialmask = true(3,4);
fprintf('Input:\n');
disp(ndx.modelset)
fprintf('Output should be:\n');
out = {'new2','new3','new5'};
disp(out)
fprintf('Output is:\n');
newndx = map_mod_names(ndx,src_map,dst_map);
disp(newndx.modelset)
fprintf('Test2\n');
ndx.modelset = {'mod2','mod3','mod10','mod4','mod6'};
ndx.trialmask = true(5,4);
fprintf('Input:\n');
disp(ndx.modelset)
fprintf('Output should be:\n');
out = {'new2','new3','mod10','new5','mod6'};
disp(out)
fprintf('Output is:\n');
newndx = map_mod_names(ndx,src_map,dst_map);
disp(newndx.modelset)
fprintf('Test3\n');
ndx.modelset = {'mod2','mod3','mod10','mod4','mod8','mod6'};
ndx.trialmask = true(6,4);
fprintf('Input:\n');
disp(ndx.modelset)
fprintf('Output should be:\n');
out = {'new2','new3','mod10','new5','mod6'};
disp(out)
fprintf('Output is:\n');
newndx = map_mod_names(ndx,src_map,dst_map);
disp(newndx.modelset)
|
github | bsxfan/meta-embeddings-master | maplookup.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/manip/maplookup.m | 3,084 | utf_8 | 9e8a55e6a2201b6a0e975469dfe9c299 | function [values,is_present] = maplookup(map,keys)
% Does a map lookup, to map mutliple keys to multiple values in one call.
% The parameter 'map' represents a function, where each key maps to a
% unique value. Each value may be mapped to by one or more keys.
%
% Inputs:
% map.keySet: a one-dimensional cell array;
% or one-dimensional numeric array;
% or a two dimensional char array, where each row is an
% element.
% The elements should be unique. If there are repeated elements,
% the last one of each will be used.
%
% map.values: The values that each member of keySet maps to, in the same
% order.
%
% keys: The array of keys to look up in the map. The class should agree
% with map.keySet.
%
% Outputs:
% values: a one-dimensional cell array; or one dimensional numeric array;
% or a two dimensional char array, where rows are string values.
% Each value corresponds to one of the elements in keys.
%
% is_present: logical array of same size as keys, indicating which keys
% are in map.keySet.
% Optional: if not asked, then maplookup crashes if one or
% more keys are not in the map. If is_present is asked,
% then maplookup does not crash for missing keys. The keys
% that are in the map are: keys(is_present).
if nargin==0
test_this();
return;
end
assert(nargin==2)
assert(isstruct(map))
assert(isfield(map,'keySet'))
assert(isfield(map,'values'))
if ischar(map.keySet)
keySetSize = size(map.keySet,1);
else
keySetSize = length(map.keySet);
end
if ischar(map.values)
valueSize = size(map.values,1);
else
valueSize = length(map.keySet);
end
if ~valueSize==keySetSize
error('bad map: sizes of keySet and values are different')
end
if ~strcmp(class(map.keySet),class(keys))
error('class(keys) = ''%s'', should be class(map.keySet) = ''%s''',class(keys),class(map.keySet));
end
if ischar(keys)
[is_present,at] = ismember(keys,map.keySet,'rows');
else
[is_present,at] = ismember(keys,map.keySet);
end
missing = length(is_present) - sum(is_present);
if missing>0
if nargout<2
error('%i of keys not in map',missing);
else
if ischar(map.values)
values = map.values(at(is_present),:);
else
values = map.values(at(is_present));
end
end
else
if ischar(map.values)
values = map.values(at,:);
else
values = map.values(at);
end
end
end
function test_this()
map.keySet = ['one ';'two ';'three'];
map.values = ['a';'b';'c'];
maplookup(map,['one ';'one ';'three'])
map.keySet = {'one','two','three'};
map.values = [1,2,3];
maplookup(map,{'one','one','three'})
map.values = {'a','b','c'};
maplookup(map,{'one','one','three'})
map.keySet = [1 2 3];
maplookup(map,[1 1 3])
%maplookup(map,{1 2 3})
[values,is_present] = maplookup(map,[1 1 3 4 5])
fprintf('Now testing error message:\n');
maplookup(map,[1 1 3 4 5])
end
|
github | bsxfan/meta-embeddings-master | test_binary_classifier.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/test_binary_classifier.m | 1,332 | utf_8 | 9683ce2757d7eb67c8a8ec37954cbab4 | function obj_val = test_binary_classifier(objective_function,classf, ...
prior,system,input_data)
% Returns the result of the objective function evaluated on the
% scores.
%
% Inputs:
% objective_function: a function handle to the objective function
% to feed the scores into
% classf: length T vector where T is the number of trials with entries +1 for target scores; -1
% for non-target scores
% prior: the prior (given to the system that produced the scores)
% system: a function handle to the system to be run
% input_data: the data to run the system on (to produce scores)
%
% Outputs
% obj_val: the value returned by the objective function
if nargin==0
test_this();
return;
end
scores = system(input_data);
obj_val = evaluate_objective(objective_function,scores,classf,prior);
end
function test_this()
num_trials = 100;
input_data = randn(20,num_trials);
prior = 0.5;
maxiters = 1000;
classf = [ones(1,num_trials/2),-ones(1,num_trials/2)];
tar = input_data(:,1:num_trials/2);
non = input_data(:,num_trials/2+1:end);
[sys,run_sys,w0] = linear_fusion_factory(tar,non);
w = train_binary_classifier(@cllr_obj,classf,sys,[],w0,[],maxiters,[],prior,[],true);
system = @(data) run_sys(w,data);
test_binary_classifier(@cllr_obj,classf,prior,system,input_data)
end
|
github | bsxfan/meta-embeddings-master | evaluate_objective.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/evaluate_objective.m | 1,417 | utf_8 | 70262971965caac5629612bd125dd0a2 | function obj_val = evaluate_objective(objective_function,scores,classf, ...
prior)
% Returns the result of the objective function evaluated on the
% scores.
%
% Inputs:
% objective_function: a function handle to the objective function
% to feed the scores into
% scores: length T vector of scores to be evaluated where T is
% the number of trials
% classf: length T vector with entries +1 for target scores; -1
% for non-target scores
% prior: the prior (given to the system that produced the scores)
%
% Outputs
% obj_val: the value returned by the objective function
if nargin==0
test_this();
return;
end
if ~exist('objective_function','var') || isempty(objective_function)
objective_function = @(w,T,weights,logit_prior) cllr_obj(w,T,weights,logit_prior);
end
logit_prior = logit(prior);
prior_entropy = objective_function([0;0],[1,-1],[prior,1-prior],logit_prior);
ntar = length(find(classf>0));
nnon = length(find(classf<0));
N = nnon+ntar;
weights = zeros(1,N);
weights(classf>0) = prior/(ntar*prior_entropy);
weights(classf<0) = (1-prior)/(nnon*prior_entropy);
obj_val = objective_function(scores,classf,weights,logit_prior);
end
function test_this()
num_trials = 20;
scores = randn(1,num_trials);
classf = [ones(1,num_trials/2),-ones(1,num_trials/2)];
prior = 0.5;
res = evaluate_objective(@cllr_obj,scores,classf,prior)
end
|
github | bsxfan/meta-embeddings-master | train_binary_classifier.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/train_binary_classifier.m | 3,938 | utf_8 | de96b98d88aa8e3d0c36785a2f9a3a94 | function [w,cxe,w_pen,optimizerState,converged] = ...
train_binary_classifier(classifier,classf,w0,objective_function,prior,...
penalizer,lambda,maxiters,maxCG,optimizerState,...
quiet,cstepHessian)
%
% Supervised training of a regularized fusion.
%
%
% Inputs:
%
% classifier: MV2DF function handle that maps parameters to llr-scores.
% Note: The training data is already wrapped in this handle.
%
% classf: 1-by-N row of class labels:
% -1 for non_target,
% +1 for target,
% 0 for ignore
%
% w0: initial parameters. This is NOT optional.
%
% objective_function: A function handle to an Mv2DF function that
% maps the output (llr-scores) of classifier, to
% the to-be-minimized objective (called cxe).
% optional, use [] to invoke 'cllr_obj'.
%
% prior: a prior probability for target to set the 'operating point'
% of the objective function.
% optional: use [] to invoke default of 0.5
%
% penalizer: MV2DF function handle that maps parameters to a positive
% regularization penalty.
%
% lambda: a weighting for the penalizer
%
% maxiters: the maximum number of Newton Trust Region optimization
% iterations to perform. Note, the user can make maxiters
% small, examine the solution and then continue training:
% -- see w0 and optimizerState.
%
%
%
% optimizerState: In this implementation, it is the trust region radius.
% optional:
% omit or use []
% If not supplied when resuming iteration,
% this may cost some extra iterations.
% Resume further iteration thus:
% [w1,...,optimizerState] = train_binary_classifier(...);
% ... examine solution w1 ...
% [w2,...,optimizerState] = train_binary_classifier(...,w1,...,optimizerState);
%
%
% quiet: if false, outputs more info during training
%
%
% Outputs:
% w: the solution.
% cxe: normalized multiclass cross-entropy of the solution.
% The range is 0 (good) to 1(useless).
%
% optimizerState: see above, can be used to resume iteration.
%
if nargin==0
test_this();
return;
end
if ~exist('maxCG','var') || isempty(maxCG)
maxCG = 100;
end
if ~exist('optimizerState','var')
optimizerState=[];
end
if ~exist('prior','var') || isempty(prior)
prior = 0.5;
end
if ~exist('objective_function','var') || isempty(objective_function)
objective_function = @(w,T,weights,logit_prior) cllr_obj(w,T,weights,logit_prior);
end
%prior_entropy = -prior*log(prior)-(1-prior)*log(1-prior);
prior_entropy = objective_function([0;0],[1,-1],[prior,1-prior],logit(prior));
classf = classf(:)';
ntar = length(find(classf>0));
nnon = length(find(classf<0));
N = nnon+ntar;
weights = zeros(size(classf));
weights(classf>0) = prior/(ntar*prior_entropy);
weights(classf<0) = (1-prior)/(nnon*prior_entropy);
%weights remain 0, where classf==0
w=[];
if exist('penalizer','var') && ~isempty(penalizer)
obj1 = objective_function(classifier,classf,weights,logit(prior));
obj2 = penalizer(w);
obj = sum_of_functions(w,[1,lambda],obj1,obj2);
else
obj = objective_function(classifier,classf,weights,logit(prior));
end
w0 = w0(:);
if exist('cstepHessian','var') &&~ isempty(cstepHessian)
obj = replace_hessian([],obj,cstepHessian);
end
[w,y,optimizerState,converged] = trustregion_newton_cg(obj,w0,maxiters,maxCG,optimizerState,[],1,quiet);
if exist('penalizer','var') && ~isempty(penalizer)
w_pen = lambda*obj2(w);
else
w_pen = 0;
end
cxe = y-w_pen;
if ~quiet
fprintf('cxe = %g, pen = %g\n',cxe,w_pen);
end
function test_this()
%invoke test for linear_fuser, which calls train_binary_classifier
linear_fuser();
|
github | bsxfan/meta-embeddings-master | qfuser_v5.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v5.m | 921 | utf_8 | f82cbe0c178dae2a667496466b612770 | function [fusion,w0] = qfuser_v5(w,scores,wfuse)
if nargin==0
test_this();
return;
end
% block 1
f1 = linear_fuser([],scores.scores);
w1 = wfuse;
[whead,wtail] = splitvec_fh(length(w1));
f1 = f1(whead);
% block 2
modelQ = scores.modelQ;
[q,n1] = size(modelQ);
modelQ = [modelQ;ones(1,n1)];
segQ = scores.segQ;
[q2,n2] = size(segQ);
segQ = [segQ;ones(1,n2)];
assert(q==q2);
q = q + 1;
wq = q*(q+1)/2;
f2 = AWB_fh(modelQ',segQ,tril_to_symm_fh(q,wtail));
w2 = zeros(wq,1);
% assemble
fusion = sum_of_functions(w,[1,1],f1,f2);
w0 = [w1;w2];
end
function test_this()
m = 5;
k = 2;
n1 = 4;
n2 = 5;
scores.sindx = [1,2,3];
scores.qindx = [4,5];
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
wfuse = [1,2,3,4]';
[fusion,w0] = qfuser_v4([],scores,wfuse);
%test_MV2DF(fusion,w0);
[fusion(w0),linear_fuser(wfuse,scores.scores(scores.sindx,:))]
%fusion(w0)
end
|
github | bsxfan/meta-embeddings-master | qfuser_v2.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v2.m | 1,166 | utf_8 | e10bf159cbd2dacaf85be8d4a90554f6 | function [fusion,params] = qfuser_v2(w,scores)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% quality_input: K-by-T matrix of quality measures
%
% Output:
% fusion: is numeric if w is numeric, or a handle to an MV2DF, representing:
%
% y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta)
%
if nargin==0
test_this();
return;
end
% Create building blocks
[Cal,params1] = parallel_cal_augm([],scores.scores);
m = size(scores.scores,1)+1;
[P,params2] = QQtoP(params1.tail,scores.modelQ,scores.segQ,m);
%params.get_w0 = @(wfuse) [params1.get_w0() ;params2.get_w0()];
params.get_w0 = @(wfuse) [params1.get_w0(wfuse) ;params2.get_w0()];
params.tail = params2.tail;
% Assemble building blocks
% modulate linear fusion with quality
fusion = sumcolumns_fh(m,dottimes_of_functions(w,P,Cal));
end
function test_this()
m = 3;
k = 2;
n1 = 4;
n2 = 5;
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
[fusion,params] = qfuser_v2([],scores);
w0 = params.get_w0();
test_MV2DF(fusion,w0);
fusion(w0)
end
|
github | bsxfan/meta-embeddings-master | linear_fuser.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/linear_fuser.m | 2,654 | utf_8 | 627fab3e121d1d87d9fad2a3234d26f8 | function [fusion,params] = linear_fuser(w,scores)
%
% Does affine fusion of scores: It does a weighted sum of scores and adds
% an offset.
%
% Inputs:
% scores: M-by-N matrix of N scores for each of M input systems.
% w: Optional:
% - when supplied, the output 'fusion' is the vector of fused scores.
% - when w=[], the output 'fusion' is a function handle, to be used
% for training the fuser.
% w is a (K+1)-vector, with one weight per system, followed by the
% offset.
%
% fusion: if w is given, fusion is a vector of N fused scores.
% if w is not given, fusion is a function handle, so that
% fusion(w) = @(w) linear_fusion(scores,w).
% w0: default values for w, to initialize training.
%
% For training use:
% [fuser,params] = linear_fuser(train_scores);
% w0 = get_w0();
% w = train_binary_classifier(fuser,...,w0,...);
%
% For test use:
% fused_scores = linear_fuser(test_scores,w);
%
if nargin==0
test_this();
return;
end
if ~exist('scores','var') || isempty(scores)
fusion = sprintf(['linear fuser:',repmat(' %g',1,length(w))],w);
return;
end
wsz = size(scores,1)+1;
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @() zeros(wsz,1);
%params.get_w0 = @() randn(wsz,1);
params.tail = wtail;
fusion = fusion_mv2df(whead,scores);
end
function test_this()
N = 100;
dim = 2; % number of used systems
% ----------------synthesize training data -------------------
randn('state',0);
means = randn(dim,2)*8; %signal
[tar,non] = make_data(N,means);
% ------------- create system ------------------------------
[fuser,params] = linear_fuser([],[tar,non]);
% ------------- train it ------------------------------
ntar = size(tar,2);
nnon = size(non,2);
classf = [ones(1,ntar),-ones(1,nnon)];
prior = 0.1;
maxiters = 50;
quiet = true;
objfun = [];
w0 = params.get_w0();
[w,cxe] = train_binary_classifier(fuser,classf,w0,objfun,prior,[],0,maxiters,[],[],quiet);
fprintf('train Cxe = %g\n',cxe);
% ------------- test it ------------------------------
[tar,non] = make_data(N,means);
scores = [tar,non];
tail = [1;2;3];
wbig = [w;tail];
[fused_scores,params] = linear_fuser(wbig,scores);
check_tails = [tail,params.tail],
cxe = evaluate_objective(objfun,fused_scores,classf,prior);
fprintf('test Cxe = %g\n',cxe);
plot(fused_scores);
end
function [tar,non] = make_data(N,means)
[dim,K] = size(means);
X = 5*randn(dim,K*N); % noise
ii = 1:N;
for k=1:K
X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii));
ii = ii+N;
end
N = K*N;
tar = X(:,1:N/2);
non = X(:,N/2+(1:N/2));
end
|
github | bsxfan/meta-embeddings-master | qfuser_v3.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v3.m | 1,290 | utf_8 | a2245f6284afa9f203096fc932e8cf07 | function [fusion,params] = qfuser_v3(w,scores)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% quality_input: K-by-T matrix of quality measures
%
% Output:
% fusion: is numeric if w is numeric, or a handle to an MV2DF, representing:
%
% y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta)
%
if nargin==0
test_this();
return;
end
% Create building blocks
[Cal,params1] = parallel_cal([],scores.scores);
m = size(scores.scores,1);
[LLH,params2] = QQtoLLH(params1.tail,scores.modelQ,scores.segQ,m);
P = LLH;
%P = exp_mv2df(logsoftmax_trunc_mv2df(LLH,m));
W = reshape(params2.get_w0(),[],m);
W(:) = 0;
W(end,:) = 0.5/(m+1);
%params.get_w0 = @(wfuse) [params1.get_w0(wfuse) ;params2.get_w0()];
params.get_w0 = @(wfuse) [params1.get_w0(wfuse) ;W(:)];
params.tail = params2.tail;
% Assemble building blocks
% modulate linear fusion with quality
fusion = sumcolumns_fh(m,dottimes_of_functions(w,P,Cal));
end
function test_this()
m = 3;
k = 2;
n1 = 4;
n2 = 5;
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
[fusion,params] = qfuser_v3([],scores);
w0 = params.get_w0([1 2 3 4]');
test_MV2DF(fusion,w0);
fusion(w0)
end
|
github | bsxfan/meta-embeddings-master | qfuser_v6.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v6.m | 1,013 | utf_8 | 0bcb6e5fbd79494afd1c1c36eff1e95c | function [fusion,w0] = qfuser_v6(w,scores,wfuse)
if nargin==0
test_this();
return;
end
% block 1
f1 = linear_fuser([],scores.scores);
w1 = wfuse;
[whead,wtail] = splitvec_fh(length(w1));
f1 = f1(whead);
% block 2
modelQ = scores.modelQ;
[q,n1] = size(modelQ);
modelQ = [modelQ;ones(1,n1)];
segQ = scores.segQ;
[q2,n2] = size(segQ);
segQ = [segQ;ones(1,n2)];
assert(q==q2);
q = q + 1;
wq = q*(q+1)/2;
r = AWB_fh(modelQ',segQ,tril_to_symm_fh(q));
[whead,wtail] = splitvec_fh(wq,wtail);
r = r(whead);
w2 = zeros(wq,1);w2(end) = -5;
% block 3
s = AWB_fh(modelQ',segQ,tril_to_symm_fh(q,wtail));
w3 = w2;
% assemble
rs = stack([],r,s);
fusion = scalibration_fh(stack(w,f1,rs));
w0 = [w1;w2;w3];
end
function test_this()
m = 3;
k = 2;
n1 = 4;
n2 = 5;
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
wfuse = [1,2,3,4]';
[fusion,w0] = qfuser_v6([],scores,wfuse);
test_MV2DF(fusion,w0);
[fusion(w0),linear_fuser(wfuse,scores.scores)]
%fusion(w0)
end
|
github | bsxfan/meta-embeddings-master | qfuser_v1.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v1.m | 1,137 | utf_8 | 8dcda09e63d0f7e6a3f1fc2298b84d7e | function [fusion,params] = qfuser_v1(w,scores)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% quality_input: K-by-T matrix of quality measures
%
% Output:
% fusion: is numeric if w is numeric, or a handle to an MV2DF, representing:
%
% y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta)
%
if nargin==0
test_this();
return;
end
% Create building blocks
[linfusion,params1] = linear_fuser([],scores.scores);
[Q,params2] = outerprod_of_sigmoids(params1.tail,scores.modelQ,scores.segQ);
params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat)];
params.tail = params2.tail;
% Assemble building blocks
% modulate linear fusion with quality
fusion = dottimes_of_functions([],Q,linfusion);
if ~isempty(w)
fusion = fusion(w);
end
end
function test_this()
m = 3;
k = 2;
n1 = 4;
n2 = 5;
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
ssat = 0.99;
[fusion,params] = qfuser_v1([],scores);
w0 = params.get_w0(ssat);
test_MV2DF(fusion,w0);
fusion(w0)
end
|
github | bsxfan/meta-embeddings-master | qfuser_v7.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v7.m | 1,107 | utf_8 | 8d156ad2d97a7aa1b90d702cb2f0a195 | function [fusion,w0] = qfuser_v7(w,scores,wfuse)
if nargin==0
test_this();
return;
end
% block 1
f1 = linear_fuser([],scores.scores);
w1 = wfuse;
[whead,wtail] = splitvec_fh(length(w1));
f1 = f1(whead);
% block 2
modelQ = scores.modelQ;
[q,n1] = size(modelQ);
modelQ = [modelQ;ones(1,n1)];
segQ = scores.segQ;
[q2,n2] = size(segQ);
segQ = [segQ;ones(1,n2)];
assert(q==q2);
q = q + 1;
wq = q*(q+1)/2;
f2 = AWB_fh(modelQ',segQ,tril_to_symm_fh(q));
w2 = zeros(wq,1);
[whead,rs] = splitvec_fh(wq,wtail);
f2 = f2(whead);
% block 3
n = size(scores.scores,2);
map = @(rs) repmat(rs,n,1);
transmap =@(RS) sum(reshape(RS,2,[]),2);
RS = linTrans(rs,map,transmap);
w3 = [-10;-10];
% assemble
f12 = sum_of_functions([],[1,1],f1,f2);
XRS = stack(w,f12,RS);
fusion = scalibration_fh(XRS);
w0 = [w1;w2;w3];
end
function test_this()
m = 3;
k = 2;
n1 = 4;
n2 = 5;
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
wfuse = [1,2,3,4]';
[fusion,w0] = qfuser_v7([],scores,wfuse);
test_MV2DF(fusion,w0);
[fusion(w0),linear_fuser(wfuse,scores.scores)]
end
|
github | bsxfan/meta-embeddings-master | qfuser_v4.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/qfuser_v4.m | 1,388 | utf_8 | cd65aea99057c92c142fc7e024dc1d53 | function [fusion,w0] = qfuser_v4(w,scores,wfuse)
% qindx: index set for rows of scores.scores which are per-trial quality
% measures.
%
% sindx: index set for rows of scores.scores which are normal discriminative
% scores.
if nargin==0
test_this();
return;
end
sindx = scores.sindx;
qindx = scores.qindx;
m =length(sindx);
% Create building blocks
[Cal,w1] = parallel_cal([],scores.scores(sindx,:),wfuse);
[whead,wtail] = splitvec_fh(length(w1));
Cal = Cal(whead);
[LLH1,w2] = QQtoLLH([],scores.modelQ,scores.segQ,m);
[whead,wtail] = splitvec_fh(length(w2),wtail);
LLH1 = LLH1(whead);
W2 = reshape(w2,[],m);
W2(:) = 0;
W2(end,:) = 0.5/(m+1);
w2 = W2(:);
[LLH2,w3] = QtoLLH([],scores.scores(qindx,:),m);
LLH2 = LLH2(wtail);
LLH = sum_of_functions([],[1,1],LLH1,LLH2);
%LLH = LLH1;
P = LLH;
%P = exp_mv2df(logsoftmax_trunc_mv2df(LLH,m));
w0 = [w1;w2;w3];
% Assemble building blocks
% modulate linear fusion with quality
fusion = sumcolumns_fh(m,dottimes_of_functions(w,P,Cal));
end
function test_this()
m = 5;
k = 2;
n1 = 4;
n2 = 5;
scores.sindx = [1,2,3];
scores.qindx = [4,5];
scores.scores = randn(m,n1*n2);
scores.modelQ = randn(k,n1);
scores.segQ = randn(k,n2);
wfuse = [1,2,3,4]';
[fusion,w0] = qfuser_v4([],scores,wfuse);
%test_MV2DF(fusion,w0);
[fusion(w0),linear_fuser(wfuse,scores.scores(scores.sindx,:))]
%fusion(w0)
end
|
github | bsxfan/meta-embeddings-master | scal_fuser.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scal_fuser.m | 2,918 | utf_8 | 7e49185b74a064be721d9c243a08c07f | function [fusion,params] = scal_fuser(w,scores)
%
% Does scal calibration
%
% Inputs:
% scores: M-by-N matrix of N scores for each of M input systems.
% w: Optional:
% - when supplied, the output 'fusion' is the vector of fused scores.
% - when w=[], the output 'fusion' is a function handle, to be used
% for training the fuser.
% w is a (K+1)-vector, with one weight per system, followed by the
% offset.
%
% fusion: if w is given, fusion is a vector of N fused scores.
% if w is not given, fusion is a function handle, so that
% fusion(w) = @(w) linear_fusion(scores,w).
% w0: default values for w, to initialize training.
%
% For training use:
% [fuser,params] = scal_fuser(train_scores);
% w0 = params.get_w0();
% w = train_binary_classifier(fuser,...,w0,...);
%
% For test use:
% fused_scores = scal_fuser(test_scores,w);
%
if nargin==0
test_this();
return;
end
if ~exist('scores','var') || isempty(scores)
fusion = sprintf(['scal fuser:',repmat(' %g',1,length(w))],w);
return;
end
[m,n] = size(scores);
wsz = size(scores,1)+1;
[wlin,wtail] = splitvec_fh(wsz);
[rs,wtail] = splitvec_fh(2,wtail);
x = fusion_mv2df(wlin,scores);
xrs = stack([],x,rs);
fusion = scal_simple_fh(xrs);
if ~isempty(w)
fusion = fusion(w);
wtail = wtail(w);
end
params.get_w0 = @() [zeros(wsz,1);-10;-10];
params.tail = wtail;
end
function test_this()
N = 10;
dim = 2; % number of used systems
% ----------------synthesize training data -------------------
randn('state',0);
means = randn(dim,2)*8; %signal
[tar,non] = make_data(N,means);
tar = [tar,[min(non(1,:));min(non(2,:))]];
non = [non,[max(tar(1,:));max(tar(2,:))]];
% ------------- create system ------------------------------
[fuser,params] = scal_fuser([],[tar,non]);
w0 = params.get_w0();
test_mv2df(fuser,w0);
return;
% ------------- train it ------------------------------
ntar = size(tar,2);
nnon = size(non,2);
classf = [ones(1,ntar),-ones(1,nnon)];
prior = 0.1;
maxiters = 50;
quiet = false;
objfun = [];
w0 = params.get_w0();
[w,cxe] = train_binary_classifier(fuser,classf,w0,objfun,prior,[],0,maxiters,[],[],quiet);
fprintf('train Cxe = %g\n',cxe);
% ------------- test it ------------------------------
[tar,non] = make_data(N,means);
ntar = size(tar,2);
nnon = size(non,2);
classf = [ones(1,ntar),-ones(1,nnon)];
scores = [tar,non];
tail = [1;2;3];
wbig = [w;tail];
[fused_scores,params] = scal_fuser(wbig,scores);
check_tails = [tail,params.tail],
cxe = evaluate_objective(objfun,fused_scores,classf,prior);
fprintf('test Cxe = %g\n',cxe);
plot(fused_scores);
end
function [tar,non] = make_data(N,means)
[dim,K] = size(means);
X = 5*randn(dim,K*N); % noise
ii = 1:N;
for k=1:K
X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii));
ii = ii+N;
end
N = K*N;
tar = X(:,1:N/2);
non = X(:,N/2+(1:N/2));
end
|
github | bsxfan/meta-embeddings-master | scal_fuser_slow.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scal_fuser_slow.m | 2,972 | utf_8 | abc2a78dc2b6cf08cfdd508f4dabdb71 | function [fusion,params] = scal_fuser_slow(w,scores)
%
% Does scal calibration
%
% Inputs:
% scores: M-by-N matrix of N scores for each of M input systems.
% w: Optional:
% - when supplied, the output 'fusion' is the vector of fused scores.
% - when w=[], the output 'fusion' is a function handle, to be used
% for training the fuser.
% w is a (K+1)-vector, with one weight per system, followed by the
% offset.
%
% fusion: if w is given, fusion is a vector of N fused scores.
% if w is not given, fusion is a function handle, so that
% fusion(w) = @(w) linear_fusion(scores,w).
% w0: default values for w, to initialize training.
%
% For training use:
% [fuser,params] = scal_fuser(train_scores);
% w0 = params.get_w0();
% w = train_binary_classifier(fuser,...,w0,...);
%
% For test use:
% fused_scores = scal_fuser(test_scores,w);
%
if nargin==0
test_this();
return;
end
if ~exist('scores','var') || isempty(scores)
fusion = sprintf(['scal fuser:',repmat(' %g',1,length(w))],w);
return;
end
[m,n] = size(scores);
wsz = size(scores,1)+1;
[wlin,wtail] = splitvec_fh(wsz);
[rs,wtail] = splitvec_fh(2,wtail);
map = @(rs) repmat(rs,n,1);
transmap =@(RS) sum(reshape(RS,2,[]),2);
RS = linTrans(rs,map,transmap);
X = fusion_mv2df(wlin,scores);
XRS = stack([],X,RS);
fusion = scalibration_fh(XRS);
if ~isempty(w)
fusion = fusion(w);
wtail = wtail(w);
end
params.get_w0 = @() [zeros(wsz,1);-5;-5];
params.tail = wtail;
end
function test_this()
N = 1000;
dim = 2; % number of used systems
% ----------------synthesize training data -------------------
randn('state',0);
means = randn(dim,2)*8; %signal
[tar,non] = make_data(N,means);
tar = [tar,[min(non(1,:));min(non(2,:))]];
non = [non,[max(tar(1,:));max(tar(2,:))]];
% ------------- create system ------------------------------
[fuser,params] = scal_fuser([],[tar,non]);
% ------------- train it ------------------------------
ntar = size(tar,2);
nnon = size(non,2);
classf = [ones(1,ntar),-ones(1,nnon)];
prior = 0.1;
maxiters = 50;
quiet = false;
objfun = [];
w0 = params.get_w0();
[w,cxe] = train_binary_classifier(fuser,classf,w0,objfun,prior,[],0,maxiters,[],[],quiet);
fprintf('train Cxe = %g\n',cxe);
% ------------- test it ------------------------------
[tar,non] = make_data(N,means);
ntar = size(tar,2);
nnon = size(non,2);
classf = [ones(1,ntar),-ones(1,nnon)];
scores = [tar,non];
tail = [1;2;3];
wbig = [w;tail];
[fused_scores,params] = scal_fuser(wbig,scores);
check_tails = [tail,params.tail],
cxe = evaluate_objective(objfun,fused_scores,classf,prior);
fprintf('test Cxe = %g\n',cxe);
plot(fused_scores);
end
function [tar,non] = make_data(N,means)
[dim,K] = size(means);
X = 5*randn(dim,K*N); % noise
ii = 1:N;
for k=1:K
X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii));
ii = ii+N;
end
N = K*N;
tar = X(:,1:N/2);
non = X(:,N/2+(1:N/2));
end
|
github | bsxfan/meta-embeddings-master | logsumexp_special.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/logsumexp_special.m | 1,102 | utf_8 | a15ffa60b181fdc8b0a1e3fb4bcfd403 | function [y,deriv] = logsumexp_special(w)
% This is a MV2DF. See MV2DF_API_DEFINITION.readme.
%
% If w = [x;r], where r is scalar and x vector, then
% y = log(exp(x)+exp(r))
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)logsumexp_special(w);
return;
end
if isa(w,'function_handle')
outer = logsumexp_special([]);
y = compose_mv(outer,w,[]);
return;
end
[r,x] = get_rx(w);
rmax = (r>x);
rnotmax = ~rmax;
y = zeros(size(x));
y(rmax) = log(exp(x(rmax)-r)+1)+r;
y(rnotmax) = log(exp(r-x(rnotmax))+1)+x(rnotmax);
if nargout>1
deriv = @(Dy) deriv_this(Dy,r,x,y);
end
end
function [r,x] = get_rx(w)
w = w(:);
r = w(end);
x = w(1:end-1);
end
function [g,hess,linear] = deriv_this(dy,r,x,y)
gr = exp(r-y);
gx = exp(x-y);
g = [gx.*dy(:);gr.'*dy(:)];
linear = false;
hess = @(dw) hess_this(dw,dy,gr,gx);
end
function [h,Jv] = hess_this(dw,dy,gr,gx)
[dr,dx] = get_rx(dw);
p = gr.*gx.*dy;
h = [p.*(dx-dr);dr*sum(p)-dx.'*p];
if nargout>1
Jv = gx.*dx+dr*gr;
end
end
function test_this()
f = logsumexp_special([]);
test_MV2DF(f,randn(5,1));
end
|
github | bsxfan/meta-embeddings-master | scalibration_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scalibration_fh.m | 1,735 | utf_8 | b9918a8e2a9fa07dfcef33933013931b | function f = scalibration_fh(w)
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the s-calibration function. The whole mapping works like
% this, in MATLAB-style pseudocode:
%
% If y = f([x;r;s]), where x,r,s are column vectors of size m, then y
% is a column vector of size m and
%
% y = log( exp(x) + exp(r) ) + log( exp(-s) + 1 )
% - log( exp(x) + exp(-s) ) - log( exp(r) + 1 )
%
% Viewed as a data-dependent calibration transform from x to y, with
% parameters r and s, then:
%
% r: is the log-odds that x is a typical non-target score, given that
% there really is a target.
%
% s: is the log-odds that x is a typical target score, given that
% there really is a non-target.
%
% Ideally r and s should be large negative, in which case this is almost
% an identity transform from x to y, but with saturation at large
% positive and negative values. Increasing r increases the lower
% saturation level. Increasing s decreases the upper saturation level.
if nargin==0
test_this();
return;
end
x = columnJofN_fh(1,3);
r = columnJofN_fh(2,3);
s = columnJofN_fh(3,3);
neg = @(x)-x;
negr = linTrans(r,neg,neg);
negs = linTrans(s,neg,neg);
num1 = logsumexp_fh(2,2,stack([],x,r));
num2 = neglogsigmoid_fh(s);
den1 = neglogsigmoid_fh(negr);
den2 = logsumexp_fh(2,2,stack([],x,negs));
f = sum_of_functions([],[1 1],num1,num2);
f = sum_of_functions([],[1 -1],f,den1);
f = sum_of_functions([],[1 -1],f,den2);
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function test_this()
n = 3;
x = randn(n,1);
r = randn(n,1);
s = randn(n,1);
X = [x;r;s];
f = scalibration_fh([]);
test_MV2DF(f,X(:));
end
|
github | bsxfan/meta-embeddings-master | scalibration_fragile_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scalibration_fragile_fh.m | 2,389 | utf_8 | 8eec3ccf6bcd5f130a3d399194acd676 | function f = scalibration_fragile_fh(direction,w)
%
% Don't use this function, it is just for reference. It will break for
% large argument values.
%
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the logsumexp function. The whole mapping works like
% this, in MATLAB-style psuedocode:
%
% F: R^(m*n) --> R^n, where y = F(x) is computed thus:
%
% n = length(x)/m
% If direction=1, X = reshape(x,m,n), or
% if direction=1, X = reshape(x,n,m).
% y = log(sum(exp(X),direction))
%
% Inputs:
% m: the number of inputs to each individual logsumexp calculation.
% direction: 1 sums down columns, or 2 sums accross rows.
% w: optional, if ssupplied
%
% Outputs:
% f: a function handle to the MV2DF described above.
%
% see: MV2DF_API_DEFINITION.readme
if nargin==0
test_this();
return;
end
f = vectorized_function([],@(X)F0(X,direction),3,direction);
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function [y,f1] = F0(X,dr)
if dr==1
x = X(1,:);
p = X(2,:);
q = X(3,:);
else
x = X(:,1);
p = X(:,2);
q = X(:,3);
end
expx = exp(x);
num = (expx-1).*p+1;
den = (expx-1).*q+1;
y = log(num)-log(den);
f1 = @() F1(expx,p,q,num,den,dr);
end
function [J,f2,linear] = F1(expx,p,q,num,den,dr)
linear = false;
if dr==1
J = [expx.*(p-q)./(num.*den);(expx-1)./num;-(expx-1)./den];
else
J = [expx.*(p-q)./(num.*den),(expx-1)./num,-(expx-1)./den];
end
f2 = @(dX) F2(dX,expx,p,q,num,den,dr);
end
function H = F2(dX,expx,p,q,num,den,dr)
d2dx2 = -expx.*(p-q).*(p+q+p.*q.*(expx.^2-1)-1)./(num.^2.*den.^2);
d2dxdp = expx./num.^2;
d2dxdq = -expx./den.^2;
d2dp2 = -(expx-1).^2./num.^2;
d2dq2 = (expx-1).^2./den.^2;
if dr==1
dx = dX(1,:);
dp = dX(2,:);
dq = dX(3,:);
H = [
dx.*d2dx2+dp.*d2dxdp+dq.*d2dxdq; ...
dx.*d2dxdp+dp.*d2dp2; ...
dx.*d2dxdq+dq.*d2dq2...
];
else
dx = dX(:,1);
dp = dX(:,2);
dq = dX(:,3);
H = [
dx.*d2dx2+dp.*d2dxdp+dq.*d2dxdq, ...
dx.*d2dxdp+dp.*d2dp2, ...
dx.*d2dxdq+dq.*d2dq2...
];
end
end
function test_this()
n = 10;
x = randn(1,n);
p = rand(1,n);
q = rand(1,n);
X = [x;p;q];
fprintf('testing dir==1:\n');
f = scalibration_fragile_fh(1);
test_MV2DF(f,X(:));
fprintf('\n\n\ntesting dir==2:\n');
f = scalibration_fragile_fh(2);
X = X';
test_MV2DF(f,X(:));
end
|
github | bsxfan/meta-embeddings-master | scal_simple_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/scalibration/scal_simple_fh.m | 1,903 | utf_8 | b6e3992c13b4424d2129302a3c51424c | function f = scal_simple_fh(w)
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the s-calibration function. The whole mapping works like
% this, in MATLAB-style pseudocode:
%
% If y = f([x;r;s]), where r,s are scalar, x is column vector of size m,
% then y is a column vector of size m and
%
% y_i = log( exp(x_i) + exp(r) ) + log( exp(-s) + 1 )
% - log( exp(x_i) + exp(-s) ) - log( exp(r) + 1 )
%
% Viewed as a data-dependent calibration transform from x to y, with
% parameters r and s, then:
%
% r: is the log-odds that x is a typical non-target score, given that
% there really is a target.
%
% s: is the log-odds that x is a typical target score, given that
% there really is a non-target.
%
% Ideally r and s should be large negative, in which case this is almost
% an identity transform from x to y, but with saturation at large
% positive and negative values. Increasing r increases the lower
% saturation level. Increasing s decreases the upper saturation level.
if nargin==0
test_this();
return;
end
[x,rs] = splitvec_fh(-2);
[r,s] = splitvec_fh(-1,rs);
neg = @(t)-t;
negr = linTrans(r,neg,neg);
negs = linTrans(s,neg,neg);
linmap = linTrans([],@(x)map(x),@(y)transmap(y)); %add last element to others
num1 = logsumexp_special(stack([],x,r));
num2 = neglogsigmoid_fh(s);
num = linmap(stack([],num1,num2));
den1 = neglogsigmoid_fh(negr);
den2 = logsumexp_special(stack([],x,negs));
den = linmap(stack([],den2,den1));
f = sum_of_functions([],[1 -1],num,den);
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function y = map(x)
y = x(1:end-1)+x(end);
end
function x = transmap(y)
x = [y(:);sum(y)];
end
function test_this()
n = 3;
x = randn(n,1);
r = randn(1,1);
s = randn(1,1);
X = [x;r;s];
f = scal_simple_fh([]);
test_MV2DF(f,X(:));
end
|
github | bsxfan/meta-embeddings-master | quality_fuser_v3.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/aside/quality_fuser_v3.m | 1,843 | utf_8 | 1be42594eb854e9b0b4d89daa27c0759 | function [fusion,params] = quality_fuser_v3(w,scores,train_vecs,test_vecs,train_ndx,test_ndx,ddim)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% train_vecs: K1-by-M matrix, one column-vector for each of M training
% segemnts
%
% test_vecs: K2-by-N matrix, one column-vector for each of N training
% segemnts
%
% train_ndx: 1-by-T index where train_ndx(t) is the index into train_vecs
% for trial t.
%
% test_ndx: 1-by-T index where test_ndx(t) is the index into test_vecs
% for trial t.
% ddim: dimension of subspace for quality distandce calculation,
% where ddim <= min(K1,K2)
%
% Outputs:
%
if nargin==0
test_this();
return;
end
% Check data dimensions
[K1,M] = size(train_vecs);
[K2,N] = size(test_vecs);
assert(ddim<min(K1,K2));
[D,T] = size(scores);
assert(T == length(train_ndx));
assert(T == length(test_ndx));
assert(max(train_ndx)<=M);
assert(max(test_ndx)<=N);
% Create building blocks
[linfusion,params1] = linear_fuser([],scores);
[quality,params2] = sigmoid_log_sumsqdist(params1.tail,train_vecs,test_vecs,train_ndx,test_ndx,ddim);
params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat)];
params.tail = params2.tail;
% Assemble building blocks
% modulate linear fusion with quality
fusion = dottimes_of_functions([],quality,linfusion);
if ~isempty(w)
fusion = fusion(w);
end
end
function test_this()
D = 2;
N = 5;
T = 3;
Q = 4;
ndx = ceil(T.*rand(1,N));
scores = randn(D,N);
train = randn(Q,T);
test = randn(Q,T);
ddim = 2;
ssat = 0.99;
[fusion,params] = quality_fuser_v3([],scores,train,test,ndx,ndx,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(fusion,w0);
quality_fuser_v3(w0,scores,train,test,ndx,ndx,ddim),
end
|
github | bsxfan/meta-embeddings-master | quality_fuser_v1.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/aside/quality_fuser_v1.m | 2,225 | utf_8 | 64802a2f8ee68bcd9f60a31166e64fdb | function [fusion,params] = quality_fuser_v1(w,scores,train_vecs,test_vecs,train_ndx,test_ndx,ddim)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% train_vecs: K1-by-M matrix, one column-vector for each of M training
% segments
%
% test_vecs: K2-by-N matrix, one column-vector for each of N training
% segemnts
%
% train_ndx: 1-by-T index where train_ndx(t) is the index into train_vecs
% for trial t.
%
% test_ndx: 1-by-T index where test_ndx(t) is the index into test_vecs
% for trial t.
% ddim: dimension of subspace for quality distandce calculation,
% where ddim <= min(K1,K2)
if nargin==0
test_this();
return;
end
% Check data dimensions
[K1,M] = size(train_vecs);
[K2,N] = size(test_vecs);
assert(ddim<min(K1,K2));
[D,T] = size(scores);
assert(T == length(train_ndx));
assert(T == length(test_ndx));
assert(max(train_ndx)<=M);
assert(max(test_ndx)<=N);
% Create building blocks
[linfusion,params1] = linear_fuser([],scores);
[train_quality,params2] = sigmoid_logdistance(params1.tail,train_vecs,ddim);
train_distributor = duplicator_fh(train_ndx,size(train_vecs,2));
train_quality = train_distributor(train_quality);
[test_quality,params3] = sigmoid_logdistance(params2.tail,test_vecs,ddim);
test_distributor = duplicator_fh(test_ndx,size(test_vecs,2));
test_quality = test_distributor(test_quality);
params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat); params3.get_w0(ssat)];
params.tail = params3.tail;
% Assemble building blocks
% combine train and test quality
quality = dottimes_of_functions([],train_quality,test_quality);
% modulate linear fusion with quality
fusion = dottimes_of_functions([],quality,linfusion);
if ~isempty(w)
fusion = fusion(w);
end
end
function test_this()
D = 2;
N = 5;
T = 3;
Q = 4;
ndx = ceil(T.*rand(1,N));
scores = randn(D,N);
train = randn(Q,T);
test = randn(Q,T);
ddim = 2;
ssat = 0.999;
[fusion,params] = quality_fuser_v1([],scores,train,test,ndx,ndx,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(fusion,w0);
quality_fuser_v1(w0,scores,train,test,ndx,ndx,ddim),
end
|
github | bsxfan/meta-embeddings-master | quality_fuser_v2.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/aside/quality_fuser_v2.m | 1,827 | utf_8 | 702d7721d2e75e4164bd1fc9b7ba4c57 | function [fusion,params] = quality_fuser_v2(w,scores,train_vecs,test_vecs,train_ndx,test_ndx,ddim)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% train_vecs: K1-by-M matrix, one column-vector for each of M training
% segemnts
%
% test_vecs: K2-by-N matrix, one column-vector for each of N training
% segemnts
%
% train_ndx: 1-by-T index where train_ndx(t) is the index into train_vecs
% for trial t.
%
% test_ndx: 1-by-T index where test_ndx(t) is the index into test_vecs
% for trial t.
% ddim: dimension of subspace for quality distandce calculation,
% where ddim <= min(K1,K2)
if nargin==0
test_this();
return;
end
% Check data dimensions
[K1,M] = size(train_vecs);
[K2,N] = size(test_vecs);
assert(ddim<min(K1,K2));
[D,T] = size(scores);
assert(T == length(train_ndx));
assert(T == length(test_ndx));
assert(max(train_ndx)<=M);
assert(max(test_ndx)<=N);
% Create building blocks
[linfusion,params1] = linear_fuser([],scores);
[quality,params2] = prod_sigmoid_logdist(params1.tail,train_vecs,test_vecs,train_ndx,test_ndx,ddim);
params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat)];
params.tail = params2.tail;
% Assemble building blocks
% modulate linear fusion with quality
fusion = dottimes_of_functions([],quality,linfusion);
if ~isempty(w)
fusion = fusion(w);
end
end
function test_this()
D = 2;
N = 5;
T = 3;
Q = 4;
ndx = ceil(T.*rand(1,N));
scores = randn(D,N);
train = randn(Q,T);
test = randn(Q,T);
ddim = 2;
ssat = 0.99;
[fusion,params] = quality_fuser_v2([],scores,train,test,ndx,ndx,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(fusion,w0);
quality_fuser_v2(w0,scores,train,test,ndx,ndx,ddim),
end
|
github | bsxfan/meta-embeddings-master | quality_fuser_v4.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/systems/aside/quality_fuser_v4.m | 1,217 | utf_8 | d5315c3a78ba4e1277f9493c119d0cc8 | function [fusion,params] = quality_fuser_v4(w,scores,quality_inputs)
%
% Inputs:
%
% scores: the primary detection scores, for training
% D-by-T matrix of T scores for D input systems
%
% quality_input: K-by-T matrix of quality measures
%
% Output:
% fusion: is numeric if w is numeric, or a handle to an MV2DF, representing:
%
% y= (alpha'*scores+beta) * sigmoid( gamma'*quality_inputs + delta)
%
if nargin==0
test_this();
return;
end
% Check data dimensions
[D,T] = size(scores);
[K,T2] = size(quality_inputs);
assert(T==T2);
% Create building blocks
[linfusion,params1] = linear_fuser([],scores);
[quality,params2] = fused_sigmoid(params1.tail,quality_inputs);
params.get_w0 = @(ssat) [params1.get_w0(); params2.get_w0(ssat)];
params.tail = params2.tail;
% Assemble building blocks
% modulate linear fusion with quality
fusion = dottimes_of_functions([],quality,linfusion);
if ~isempty(w)
fusion = fusion(w);
end
end
function test_this()
D = 4;
T = 5;
K = 3;
scores = randn(D,T);
Q = randn(K,T);
ssat = 0.99;
[fusion,params] = quality_fuser_v4([],scores,Q);
w0 = params.get_w0(ssat);
test_MV2DF(fusion,w0);
w0(D+1)=1;
quality_fuser_v4(w0,scores,Q),
end
|
github | bsxfan/meta-embeddings-master | sigmoid_logdistance.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/sigmoid_logdistance.m | 1,561 | utf_8 | b124d29ef74e835d894f8dd7de72c760 | function [sld,params] = sigmoid_logdistance(w,input_data,ddim)
%
% Algorithm: sld = sigmoid(
% log(
% sum(bsxfun(@minus,M*input_data,c).^2,1)
% ))
%
%
% Inputs:
% w: is vec([M,c]), where M is ddim-by-D and c is ddim-by-1
% Use w=[] to let output sld be an MV2DF function handle.
%
% input_data: D-by-T matrix
%
% ddim: the first dimension of the W matrix given as the first
% parameter to run_sys
%
% Outputs:
% sld: function handle (if w=[]), or numeric
% params.get_w0(ssat): returns w0 for optimization initialization,
% 0<ssat<1 is required average sigmoid output.
% params.tail: is tail of parameter w, which is not consumed by this
% function.
if nargin==0
test_this();
return;
end
datadim = size(input_data,1);
wsz = ddim*(datadim+1);
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat);
params.tail = wtail;
dist = square_distance_mv2df(whead,input_data,ddim);
sld = one_over_one_plus_w_mv2df(dist);
function w0 = init_w0(ssat)
W0 = randn(ddim,datadim+1);
W0(:,end) = 0; % centroid from which distances are computed
d0 = (1-ssat)/ssat;
d = square_distance_mv2df(W0(:),input_data,ddim);
W0 = sqrt(d0/median(d))*W0;
w0 = W0(:);
end
end
function test_this()
K = 5;
N = 10;
data = randn(N,K);
ddim = 3;
ssat = 0.99;
[sys,params] = sigmoid_logdistance([],data,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
dist = sigmoid_logdistance(w0,data,ddim),
end
|
github | bsxfan/meta-embeddings-master | QtoLLH.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/QtoLLH.m | 612 | utf_8 | e0bc4e7d0bfd4082fc37fb474bc44c8c | function [LLH,w0] = QtoLLH(w,Q,n)
%
if nargin==0
test_this();
return;
end
if ~exist('Q','var') || isempty(Q)
LLH = sprintf(['QtoLLH:',repmat(' %g',1,length(w))],w);
return;
end
[m,k] = size(Q);
wsz = m*n;
if nargout>1, w0 = zeros(wsz,1); end
LLH = linTrans(w,@(w)map_this(w),@(w)transmap_this(w));
function y = map_this(w)
w = reshape(w,n,m);
y = w*Q;
end
function w = transmap_this(y)
y = reshape(y,n,k);
w = y*Q.';
end
end
function test_this()
Q = randn(2,10);
[sys,w0] = QtoLLH([],Q,3);
test_MV2DF(sys,w0);
end
|
github | bsxfan/meta-embeddings-master | fused_sigmoid.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/fused_sigmoid.m | 1,293 | utf_8 | 1f35e45a3c945008307dd1222a281bb8 | function [ps,params] = fused_sigmoid(w,input_data)
%
% Algorithm: ps = sigmoid( alpha'*input_data +beta)
%
%
% Inputs:
% w: is [alpha; beta], where alpha is D-by-1 and beta is scalar.
% Use w=[] to let output ps be an MV2DF function handle.
% If w is a function handle to an MV2DF then ps is the function handle
% to the composition of w and this function.
%
% input_data: D-by-T matrix
%
%
% Outputs:
% ps: function handle (if w=[], or w is handle), or numeric T-by-1
% params.get_w0(ssat): returns w0 for optimization initialization,
% 0<ssat<1 is required average sigmoid output.
% params.tail: is tail of parameter w, which is not consumed by this
% function.
if nargin==0
test_this();
return;
end
[dim,n] = size(input_data);
wsz = dim+1;
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat,dim);
params.tail = wtail;
y = fusion_mv2df(whead,input_data);
ps = sigmoid_mv2df(y);
function w0 = init_w0(ssat,dim)
alpha = zeros(dim,1);
beta = logit(ssat);
w0 = [alpha;beta];
end
end
function test_this()
K = 5;
T = 10;
data = randn(K,T);
ssat = 0.99;
[sys,params] = fused_sigmoid([],data);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
ps = fused_sigmoid(w0,data),
end
|
github | bsxfan/meta-embeddings-master | sigmoid_log_sumsqdist.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/sigmoid_log_sumsqdist.m | 1,638 | utf_8 | 0b9f81df4bc93fe52ac7dbaa98594160 | function [sig,params] = sigmoid_log_sumsqdist(w,data1,data2,ndx1,ndx2,ddim)
%
% Similar to prod_sigmoid_logdist, but adds square distances from two sides
% before doing sigmoid(log()).
%
if nargin==0
test_this();
return;
end
datadim = size(data1,1);
assert(datadim==size(data2,1),'data1 and data2 must have same number of rows');
assert(length(ndx1)==length(ndx2));
assert(max(ndx1)<=size(data1,2));
assert(max(ndx2)<=size(data2,2));
wsz = ddim*(datadim+1);
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat);
params.tail = wtail;
sqd1 = square_distance_mv2df([],data1,ddim); %Don't put whead in here,
sqd2 = square_distance_mv2df([],data2,ddim); %or here. Will cause whead to be called twice.
% distribute over trials
distrib = duplicator_fh(ndx1,size(data1,2));
sqd1 = distrib(sqd1);
distrib = duplicator_fh(ndx2,size(data2,2));
sqd2 = distrib(sqd2);
sumsq_dist = sum_of_functions([],[1,1],sqd1,sqd2);
sig = one_over_one_plus_w_mv2df(sumsq_dist);
sig = sig(whead); %Finally plug whead in here.
function w0 = init_w0(ssat)
W0 = randn(ddim,datadim+1); %subspace projector
W0(:,end) = 0; % centroid from which distances are computed
d0 = (1-ssat)/ssat;
d = sumsq_dist(W0(:));
W0 = sqrt(d0/median(d))*W0;
w0 = W0(:);
end
end
function test_this()
K = 5;
N1 = 10;
N2 = 2*N1;
data1 = randn(K,N1);
data2 = randn(K,N2);
ndx1 = [1:N1,1:N1];
ndx2 = 1:N2;
ddim = 3;
ssat = 0.99;
[sys,params] = sigmoid_log_sumsqdist([],data1,data2,ndx1,ndx2,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
dist = sigmoid_log_sumsqdist(w0,data1,data2,ndx1,ndx2,ddim),
end
|
github | bsxfan/meta-embeddings-master | prmtrzd_sig_log_dist.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/prmtrzd_sig_log_dist.m | 1,767 | utf_8 | edf7387841000e5933bda732bca5b79b | function [ps,params] = prmtrzd_sig_log_dist(w,input_data,ddim)
%
% Algorithm: ps = sigmoid(
% offs+scal*log(
% sum(bsxfun(@minus,M*input_data,c).^2,1)
% ))
%
%
% Inputs:
% w: is [ vec(M); c; scal; offs], where M is ddim-by-D; c is ddim-by-1;
% and scal and offs are scalar.
% Use w=[] to let output ps be an MV2DF function handle.
% If w is a function handle to an MV2DF then ps is the function handle
% to the composition of w and this function.
%
% input_data: D-by-T matrix
%
% ddim: the first dimension of the M matrix
%
% Outputs:
% ps: function handle (if w=[], or w is handle), or numeric T-by-1
% params.get_w0(ssat): returns w0 for optimization initialization,
% 0<ssat<1 is required average sigmoid output.
% params.tail: is tail of parameter w, which is not consumed by this
% function.
if nargin==0
test_this();
return;
end
[datadim,n] = size(input_data);
Mc_sz = ddim*(datadim+1);
wsz = Mc_sz + 2;
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat);
params.tail = wtail;
[M_c,scal_offs] = splitvec_fh(Mc_sz,w);
ld = log_distance_mv2df(M_c,input_data,ddim);
tld = scale_and_translate(w,ld,scal_offs,1,n);
ps = sigmoid_mv2df(tld);
function w0 = init_w0(ssat)
M = randn(ddim,datadim);
c = zeros(ddim,1);
scal = 1;
offs = 0;
w0 = [M(:);c;scal;offs];
x = ld(w0);
y = logit(ssat);
scal = y/median(x);
w0(end-1) = scal;
end
end
function test_this()
K = 5;
N = 10;
data = randn(N,K);
ddim = 3;
ssat = 0.99;
[sys,params] = prmtrzd_sig_log_dist([],data,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
ps = prmtrzd_sig_log_dist(w0,data,ddim),
end
|
github | bsxfan/meta-embeddings-master | QQtoLLH.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/QQtoLLH.m | 623 | utf_8 | 73d37a5922aafaa7dd4dd6e5a2cfbe51 | function [LLH,w0] = QQtoLLH(w,qleft,qright,n)
%
if nargin==0
test_this();
return;
end
qleft = [qleft;ones(1,size(qleft,2))];
qright = [qright;ones(1,size(qright,2))];
qdim = size(qleft,1);
qdim2 = size(qright,1);
assert(qdim==qdim2);
q2 = qdim*(qdim+1)/2;
wsz = n*q2;
if nargout>1, w0 = zeros(wsz,1); end
lh = cell(1,n);
tail = w;
for i=1:n
[wi,tail] = splitvec_fh(q2,tail);
lh{i} = AWB_fh(qleft',qright,tril_to_symm_fh(qdim,wi));
end
LLH = interleave(w,lh);
end
function test_this()
qleft = randn(3,3);
qright = randn(3,2);
[sys,w0] = QQtoLLH([],qleft,qright,2);
test_MV2DF(sys,w0);
end
|
github | bsxfan/meta-embeddings-master | QQtoP.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/QQtoP.m | 771 | utf_8 | 0a940f8a8a56510a32ad6a45accddc02 | function [P,params] = QQtoP(w,qleft,qright,n)
%
if nargin==0
test_this();
return;
end
qleft = [qleft;ones(1,size(qleft,2))];
qright = [qright;ones(1,size(qright,2))];
[qdim,nleft] = size(qleft);
[qdim2,nright] = size(qright);
assert(qdim==qdim2);
q2 = qdim*(qdim+1)/2;
wsz = n*q2;
[whead,wtail] = splitvec_fh(wsz);
params.get_w0 = @() zeros(wsz,1);
params.tail = wtail;
lh = cell(1,n);
for i=1:n
[wi,whead] = splitvec_fh(q2,whead);
lh{i} = AWB_fh(qleft',qright,tril_to_symm_fh(qdim,wi));
end
P = exp_mv2df(logsoftmax_mv2df(interleave(w,lh),n));
%P = interleave(w,lh);
end
function test_this()
qleft = randn(3,3);
qright = randn(3,2);
[sys,params] = QQtoP([],qleft,qright,2);
w0 = params.get_w0();
test_MV2DF(sys,w0);
P = sys(w0),
end
|
github | bsxfan/meta-embeddings-master | prod_sigmoid_logdist.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/prod_sigmoid_logdist.m | 2,506 | utf_8 | f31a256c5434fca4b6c0641d23a2ebc1 | function [sig,params] = prod_sigmoid_logdist(w,data1,data2,ndx1,ndx2,ddim)
%
% Algorithm: sig = distribute(ndx1,sigmoid(
% log(
% sum(bsxfun(@minus,M*data_1,c).^2,1)
% )))
% *
% distribute(ndx2,sigmoid(
% log(
% sum(bsxfun(@minus,M*data_2,c).^2,1)
% )))
%
%
% Inputs:
% w: is vec([M,c]), where M is ddim-by-D and c is ddim-by-1
% Use w=[] to let output sld be an MV2DF function handle.
%
% data_1: D-by-T1 matrix
% data_2: D-by-T2 matrix
% ndx1,ndx2: indices of size 1 by T to distribute T1 and T2 segs over T
% trials
%
% ddim: the first dimension of the M matrix
%
% Outputs:
% sig: function handle (if w=[]), or numeric
% params.get_w0(ssat): returns w0 for optimization initialization,
% 0<ssat<1 is required average sigmoid output.
% params.tail: is tail of parameter w, which is not consumed by this
% function.
if nargin==0
test_this();
return;
end
datadim = size(data1,1);
assert(datadim==size(data2,1),'data1 and data2 must have same number of rows');
assert(length(ndx1)==length(ndx2));
assert(max(ndx1)<=size(data1,2));
assert(max(ndx2)<=size(data2,2));
wsz = ddim*(datadim+1);
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat);
params.tail = wtail;
sqd1 = square_distance_mv2df([],data1,ddim); %Don't put whead in here,
sqd2 = square_distance_mv2df([],data2,ddim); %or here. Will cause whead to be called twice.
sig1 = one_over_one_plus_w_mv2df(sqd1);
sig2 = one_over_one_plus_w_mv2df(sqd2);
% distribute over trials
distrib = duplicator_fh(ndx1,size(data1,2));
sig1 = distrib(sig1);
distrib = duplicator_fh(ndx2,size(data2,2));
sig2 = distrib(sig2);
sigh = dottimes_of_functions([],sig1,sig2);
sig = sigh(whead);
function w0 = init_w0(ssat)
W0 = randn(ddim,datadim+1); %subspace projector
W0(:,end) = 0; % centroid from which distances are computed
d0 = (1-ssat)/ssat;
s = sigh(W0(:));
d = (1-s)./s;
W0 = sqrt(d0/median(d))*W0;
w0 = W0(:);
end
end
function test_this()
K = 5;
N1 = 10;
N2 = 2*N1;
data1 = randn(K,N1);
data2 = randn(K,N2);
ndx1 = [1:N1,1:N1];
ndx2 = 1:N2;
ddim = 3;
ssat = 0.01;
[sys,params] = prod_sigmoid_logdist([],data1,data2,ndx1,ndx2,ddim);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
sig = prod_sigmoid_logdist(w0,data1,data2,ndx1,ndx2,ddim),
end
|
github | bsxfan/meta-embeddings-master | outerprod_of_sigmoids.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/outerprod_of_sigmoids.m | 1,033 | utf_8 | 2577209cada6747a9615d0ce3b375b7f | function [Q,params] = outerprod_of_sigmoids(w,qleft,qright)
%
if nargin==0
test_this();
return;
end
[qdim,nleft] = size(qleft);
[qdim2,nright] = size(qright);
assert(qdim==qdim2);
wsz = qdim+1;
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat);
params.tail = wtail;
% fleft = sigmoid_mv2df(fusion_mv2df([],qleft)); %Don't put whead in here,
% fright = sigmoid_mv2df(fusion_mv2df([],qright)); %or here. Will cause whead to be called twice.
fleft = fusion_mv2df([],qleft); %Don't put whead in here,
fright = fusion_mv2df([],qright); %or here. Will cause whead to be called twice.
Q = outerprod_of_functions(whead,fleft,fright,nleft,nright);
function w0 = init_w0(ssat)
w0 = zeros(wsz,1);
offs = logit(ssat);
w0(end) = offs;
end
end
function test_this()
qleft = randn(3,10);
qright = randn(3,20);
ssat = 0.99;
[sys,params] = outerprod_of_sigmoids([],qleft,qright);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
sig = outerprod_of_sigmoids(w0,qleft,qright),
end
|
github | bsxfan/meta-embeddings-master | parallel_cal.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/parallel_cal.m | 983 | utf_8 | 252822b934d5469fc96448f80d2f3e90 | function [calscores,w0] = parallel_cal(w,scores,wfuse)
%
if nargin==0
test_this();
return;
end
if ~exist('scores','var') || isempty(scores)
calscores = sprintf(['parallel calibration:',repmat(' %g',1,length(w))],w);
return;
end
[m,n] = size(scores);
if nargout>1, w0 = init_w0(wfuse); end
calscores = linTrans(w,@(w)map_this(w),@(w)transmap_this(w));
function w0 = init_w0(wfuse)
assert(length(wfuse)-1==m);
scal = wfuse(1:end-1);
offs = wfuse(end);
W = [scal*(m+1);((m+1)/m)*offs*ones(m,1)];
w0 = W(:);
end
function y = map_this(w)
w = reshape(w,m,2);
y = bsxfun(@times,scores,w(:,1));
y = bsxfun(@plus,y,w(:,2));
end
function w = transmap_this(y)
y = reshape(y,m,n);
w = [sum(y.*scores,2),sum(y,2)];
end
end
function test_this()
scores = randn(4,10);
[sys,w0] = parallel_cal([],scores,(1:5)');
test_MV2DF(sys,w0);
end
|
github | bsxfan/meta-embeddings-master | parallel_cal_augm.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/parallel_cal_augm.m | 1,115 | utf_8 | f5a8bba6d164ab5577c8429ce5835305 | function [calscores,params] = parallel_cal_augm(w,scores)
%
if nargin==0
test_this();
return;
end
if ~exist('scores','var') || isempty(scores)
calscores = sprintf(['parallel calibration:',repmat(' %g',1,length(w))],w);
return;
end
[m,n] = size(scores);
scores = [scores;zeros(1,n)];
wsz = 2*m;
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(wfuse) init_w0(wfuse);
params.tail = wtail;
waugm = augmentmatrix_fh(m,0,whead);
calscores = linTrans(waugm,@(w)map_this(w),@(w)transmap_this(w));
function w0 = init_w0(wfuse)
scal = wfuse(1:end-1);
offs = wfuse(end);
W = [scal*(m+1);((m+1)/m)*offs*ones(m,1)];
w0 = W(:);
end
function y = map_this(w)
w = reshape(w,m+1,2);
y = bsxfun(@times,scores,w(:,1));
y = bsxfun(@plus,y,w(:,2));
end
function w = transmap_this(y)
y = reshape(y,m+1,n);
w = [sum(y.*scores,2),sum(y,2)];
end
end
function test_this()
scores = randn(4,10);
[sys,params] = parallel_cal_augm([],scores);
w0 = params.get_w0();
test_MV2DF(sys,w0);
end
|
github | bsxfan/meta-embeddings-master | prod_of_prmtrzd_sigmoids.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/prod_of_prmtrzd_sigmoids.m | 1,537 | utf_8 | 6c18de0879f128ada38d483ace60b57f | function [ps,params] = prod_of_prmtrzd_sigmoids(w,input_data)
%
% Algorithm: ps = prod_i sigmoid( alpha_i*input_data(i,:) + beta_i)
%
%
% Inputs:
% w: is vec([alpha; beta]), where alpha and beta are 1-by-D.
% Use w=[] to let output ps be an MV2DF function handle.
% If w is a function handle to an MV2DF then ps is the function handle
% to the composition of w and this function.
%
% input_data: D-by-T matrix
%
%
% Outputs:
% ps: function handle (if w=[], or w is handle), or numeric T-by-1
% params.get_w0(ssat): returns w0 for optimization initialization,
% 0<ssat<1 is required average sigmoid output.
% params.tail: is tail of parameter w, which is not consumed by this
% function.
if nargin==0
test_this();
return;
end
m = size(input_data,1);
prms = cell(1,m);
[ps,prms{1}] = prmtrzd_sigmoid([],input_data(1,:));
for i=2:m
[ps2,prms{i}] = prmtrzd_sigmoid(prms{i-1}.tail,input_data(i,:));
ps = dottimes_of_functions([],ps,ps2);
end
if ~isempty(w)
ps = ps(w);
end
params.get_w0 = @(ssat) init_w0(ssat,m);
params.tail = prms{m}.tail;
function w0 = init_w0(ssat,m)
ssat = ssat^(1/m);
w0 = zeros(m*2,1);
at = 1;
for j=1:m
w0(at:at+1) = prms{j}.get_w0(ssat);
at = at + 2;
end
end
end
function test_this()
K = 3;
T = 10;
data = randn(K,T);
ssat = 0.99;
[sys,params] = prod_of_prmtrzd_sigmoids([],data);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
ps = prod_of_prmtrzd_sigmoids(w0,data),
end
|
github | bsxfan/meta-embeddings-master | prmtrzd_sigmoid.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/quality_modules/prmtrzd_sigmoid.m | 1,312 | utf_8 | 616d28e7f84f188fcd7759c98a9c3c66 | function [ps,params] = prmtrzd_sigmoid(w,input_data)
%
% Algorithm: ps = sigmoid( w0+w1'*input_data ), where
% w = [w1;w0]; w0 is scalar; and w1 is vector
%
%
% Inputs:
% w = [w1;w0]; w0 is scalar; and w1 is vector.
% Use w=[] to let output ps be an MV2DF function handle.
% If w is a function handle to an MV2DF then ps is the function handle
% to the composition of w and this function.
%
% input_data: D-by-T matrix
%
%
% Outputs:
% ps: function handle (if w=[], or w is handle), or numeric T-by-1
% params.get_w0(ssat): returns w0 for optimization initialization,
% 0<ssat<1 is required average sigmoid output.
% params.tail: is tail of parameter w, which is not consumed by this
% function.
if nargin==0
test_this();
return;
end
m = size(input_data,1);
wsz = m+1;
[whead,wtail] = splitvec_fh(wsz,w);
params.get_w0 = @(ssat) init_w0(ssat);
params.tail = wtail;
y = fusion_mv2df(whead,input_data);
ps = sigmoid_mv2df(y);
function w0 = init_w0(ssat)
w0 = zeros(wsz,1);
offs = logit(ssat);
w0(end) = offs;
end
end
function test_this()
D = 3;
K = 5;
data = randn(D,K);
ssat = 0.99;
[sys,params] = prmtrzd_sigmoid([],data);
w0 = params.get_w0(ssat);
test_MV2DF(sys,w0);
ps = prmtrzd_sigmoid(w0,data),
end
|
github | bsxfan/meta-embeddings-master | augmentmatrix_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/augmentmatrix_fh.m | 826 | utf_8 | d2182cb06b78c3d43519f09b297ddad2 | function fh = augmentmatrix_fh(m,value,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
%
% Algorithm: y = [reshape(w,m,n);ones(1,n)](:)
if nargin==0
test_this();
return;
end
function y = map_this(w)
n = length(w)/m;
y = [reshape(w,m,n);value*ones(1,n)];
end
function y = linmap_this(w)
n = length(w)/m;
y = [reshape(w,m,n);zeros(1,n)];
end
function w = transmap_this(y)
y = reshape(y,m+1,[]);
w = y(1:m,:);
end
map = @(w) map_this(w);
linmap = @(w) linmap_this(w);
transmap = @(y) transmap_this(y);
fh = affineTrans([],map,linmap,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function test_this()
m = 3;
f = augmentmatrix_fh(m,1);
test_MV2DF(f,randn(m*4,1));
end
|
github | bsxfan/meta-embeddings-master | bsx_col_plus_row.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/bsx_col_plus_row.m | 912 | utf_8 | 59d5f6f7ea9d75509fbc6bf64b63b465 | function fh = bsx_col_plus_row(m,n,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
%
% Algorithm: col = w(1:m)
% row = w(m+1:end)
% y = bsxfun(@plus,col(:),row(:)'),
%
if nargin==0
test_this();
return;
end
function y = map_this(w)
if isempty(m), m = length(w)-n; end
col = w(1:m);
row = w(m+1:end);
y = bsxfun(@plus,col(:),row(:).');
end
function w = transmap_this(y,sz)
if isempty(m), m = sz-n; end
y = reshape(y,m,[]);
w=zeros(sz,1);
w(1:m) = sum(y,2);
w(m+1:end) = sum(y,1).';
end
map = @(w) map_this(w);
transmap = @(y,sz) transmap_this(y,sz);
fh = linTrans_adaptive([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function test_this()
m = 2;
n = 3;
w = randn(m+n,1);
f = bsx_col_plus_row(m,n);
test_MV2DF(f,w);
end
|
github | bsxfan/meta-embeddings-master | duplicator_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/duplicator_fh.m | 805 | utf_8 | 890c37f077bde2305a0f1c545b71c36a | function f = duplicator_fh(duplication_indices,xdim,w)
%
% This factory creates a function handle to an MV2DF, which represents the
% function:
%
% y = x(duplication_indices)
%
if nargin==0
test_this();
return;
end
map = @(x) x(duplication_indices);
%xdim = max(duplication_indices);
ydim = length(duplication_indices);
c = zeros(1,ydim);
r = zeros(1,ydim);
at = 1;
for i=1:xdim
ci = find(duplication_indices==i);
n = length(ci);
r(at:at+n-1) = i;
c(at:at+n-1) = ci;
at = at + n;
end
reverse = sparse(r,c,1,xdim,ydim);
transmap = @(y) reverse*y;
f = @(w) linTrans(w,map,transmap);
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function test_this()
dup = [ 1 3 1 3];
x = [ 1 2 3 4];
f = duplicator_fh(dup,length(x));
y = f(x),
test_MV2DF(f,x);
end
|
github | bsxfan/meta-embeddings-master | splitvec_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/splitvec_fh.m | 1,343 | utf_8 | aff993bc1037dc1d6673762983fd5497 | function [head,tail] = splitvec_fh(head_size,w)
%
%
% If head_size <0 then tail_size = - head_size
if nargin==0
test_this();
return;
end
tail_size = - head_size;
function w = transmap_head(y,sz)
w=zeros(sz,1);
w(1:head_size)=y;
end
function w = transmap_tail(y,sz)
w=zeros(sz,1);
w(head_size+1:end)=y;
end
function w = transmap_head2(y,sz)
w=zeros(sz,1);
w(1:end-tail_size) = y;
end
function w = transmap_tail2(y,sz)
w=zeros(sz,1);
w(1+end-tail_size:end) = y;
end
if head_size>0
map_head = @(w) w(1:head_size);
map_tail = @(w) w(head_size+1:end);
head = linTrans_adaptive([],map_head,@(y,sz)transmap_head(y,sz));
tail = linTrans_adaptive([],map_tail,@(y,sz)transmap_tail(y,sz));
elseif head_size<0
map_head = @(w) w(1:end-tail_size);
map_tail = @(w) w(1+end-tail_size:end);
head = linTrans_adaptive([],map_head,@(y,sz)transmap_head2(y,sz));
tail = linTrans_adaptive([],map_tail,@(y,sz)transmap_tail2(y,sz));
else
error('head size cannot be 0')
end
if exist('w','var') && ~isempty(w)
head = head(w);
tail = tail(w);
end
end
function test_this()
[head,tail] = splitvec_fh(2);
fprintf('testing head:\n');
test_MV2DF(head,[1 2 3 4 5]);
fprintf('\n\n\ntesting tail:\n');
test_MV2DF(tail,[1 2 3 4 5]);
end
|
github | bsxfan/meta-embeddings-master | log_distance_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/log_distance_mv2df.m | 1,968 | utf_8 | ab190182251a8ee9a8cce755c6615e99 | function [y,deriv] = log_distance_mv2df(w,input_data,new_dim)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% The function projects each column of input_data to a subspace and then
% computes log distance from a centroid. The input_data is fixed, but
% the projection and centroid parameters are variable.
%
% W = reshape(w);
% y.' = log sum((W(:,1:end-1).'*input_data - W(:,end)).^2,1)
%
% W is the augmented matrix [M c] where M maps an input vector
% to a lower dimensional space and c is the centroid in
% the lower dimensional space.
%
% Parameters:
% w: the vectorized version of the W matrix
% input_data: is an K-by-T matrix of input vectors of length K, for
% each of T trials.
% new_dim: the dimension of vectors in the lower dimensional space.
%
if nargin==0
test_this();
return;
end
if isempty(w)
[dim, num_trials] = size(input_data);
map = @(w) map_this(w,input_data,dim,new_dim);
transmap = @(w) transmap_this(w,input_data,num_trials,new_dim);
delta = linTrans(w,map,transmap);
y = logsumsquares_fh(new_dim,1,delta);
return;
end
if isa(w,'function_handle')
f = log_distance_mv2df([],input_data,new_dim);
y = compose_mv(f,w,[]);
return;
end
f = log_distance_mv2df([],input_data,new_dim);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w,input_data,dim,new_dim)
% V = [input_data; ones(1,num_trials)];
W = reshape(w,new_dim,dim+1);
y = bsxfun(@minus,W(:,1:end-1)*input_data,W(:,end));
y = y(:);
function dx = transmap_this(dy,input_data,num_trials,new_dim)
dY = reshape(dy,new_dim,num_trials);
% V = [input_data; ones(1,num_trials)];
% Vt = V.';
% dX = dY*Vt;
dYt = dY.';
dYtSum = sum(dYt,1);
dX = [input_data*dYt;-dYtSum].';
dx = dX(:);
function test_this()
K = 5;
N = 10;
P = 3;
M = randn(P,N);
c = randn(P,1);
W = [M c];
w = W(:);
input_data = randn(N,K);
f = log_distance_mv2df([],input_data,P);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | AWB_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/AWB_fh.m | 675 | utf_8 | 3ab5ec4ad82fe2f901f95abf30fb3193 | function fh = AWB_fh(A,B,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
%
% Algorithm: Y = A*reshape(w,..)*B
if nargin==0
test_this();
return;
end
[m,n] = size(A);
[r,s] = size(B);
function y = map_this(w)
w = reshape(w,n,r);
y = A*w*B;
end
function w = transmap_this(y)
y = reshape(y,m,s);
w = A.'*y*B.';
end
map = @(y) map_this(y);
transmap = @(y) transmap_this(y);
fh = linTrans([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function test_this()
A = randn(2,3);
B = randn(4,5);
f = AWB_fh(A,B);
test_MV2DF(f,randn(3*4,1));
end
|
github | bsxfan/meta-embeddings-master | xoverxplusalpha.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/xoverxplusalpha.m | 792 | utf_8 | 9fbd612d42a50cee70f2b05dce2bf16c | function [y,deriv] = xoverxplusalpha(w,x)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% alpha --> x./(x+alpha)
%
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)xoverxplusalpha(w,x);
return;
end
if isa(w,'function_handle')
f = xoverxplusalpha([],x);
y = compose_mv(f,w,[]);
return;
end
x = x(:);
assert(numel(w)==1);
y = x./(x+w);
deriv = @(Dy) deriv_this(Dy,x,w);
end
function [g,hess,linear] = deriv_this(Dy,x,w)
g0 = -x./(x+w).^2;
g = Dy.'*g0;
linear = false;
hess = @(Dw) hess_this(Dw,Dy,x,w,g0);
end
function [h,Jv] = hess_this(Dw,Dy,x,w,g0)
h = 2*Dw * Dy.'*(x./(x+w).^3);
if nargin>1
Jv = Dw*g0;
end
end
function test_this()
x = randn(1,100);
w = randn(1);
f = xoverxplusalpha([],x);
test_MV2DF(f,w);
end
|
github | bsxfan/meta-embeddings-master | tril_to_symm_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/tril_to_symm_fh.m | 786 | utf_8 | 9ea53a1f6c15720e67c1c446d7dfad43 | function fh = tril_to_symm_fh(m,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
%
% Algorithm: w is vector of sizem*(m+1)/2
% w -> m-by-m lower triangular matrix Y
% Y -> Y + Y'
if nargin==0
test_this();
return;
end
indx = tril(true(m));
function y = map_this(w)
y = zeros(m);
y(indx(:)) = w;
y = y + y.';
end
function w = transmap_this(y)
y = reshape(y,m,m);
y = y + y.';
w = y(indx(:));
end
map = @(w) map_this(w);
transmap = @(y) transmap_this(y);
fh = linTrans([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function test_this()
m=3;
n = m*(m+1)/2;
f = tril_to_symm_fh(m);
test_MV2DF(f,randn(n,1));
end
|
github | bsxfan/meta-embeddings-master | square_distance_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/square_distance_mv2df.m | 1,835 | utf_8 | a5d544c6956f70a3c3afdec634a2c891 | function [y,deriv] = square_distance_mv2df(w,input_data,new_dim)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% The function computes the square distance of the vectors for each trial.
% y.' = sum((W(:,1:end-1).'*input_data + W(:,end)).^2,1)
%
% W is the augmented matrix [M c] where M maps a score vector
% to a lower dimensional space and c is an offset vector in
% the lower dimensional space.
%
% Parameters:
% w: the vectorized version of the W matrix
% input_data: is an M-by-T matrix of input vectors of length M, for each of T
% trials.
% new_dim: the dimension of vectors in the lower dimensional space.
%
if nargin==0
test_this();
return;
end
if isempty(w)
[dim, num_trials] = size(input_data);
map = @(w) map_this(w,input_data,dim,new_dim);
transmap = @(w) transmap_this(w,input_data,num_trials,new_dim);
delta = linTrans(w,map,transmap);
y = sums_of_squares(delta,new_dim);
return;
end
if isa(w,'function_handle')
f = square_distance_mv2df([],input_data,new_dim);
y = compose_mv(f,w,[]);
return;
end
f = square_distance_mv2df([],input_data,new_dim);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w,input_data,dim,new_dim)
% V = [input_data; ones(1,num_trials)];
W = reshape(w,new_dim,dim+1);
y = bsxfun(@minus,W(:,1:end-1)*input_data,W(:,end));
y = y(:);
function dx = transmap_this(dy,input_data,num_trials,new_dim)
dY = reshape(dy,new_dim,num_trials);
% V = [input_data; ones(1,num_trials)];
% Vt = V.';
% dX = dY*Vt;
dYt = dY.';
dYtSum = sum(dYt,1);
dX = [input_data*dYt;-dYtSum].';
dx = dX(:);
function test_this()
K = 5;
N = 10;
P = 3;
M = randn(P,N);
c = randn(P,1);
W = [M c];
w = W(:);
input_data = randn(N,K);
f = square_distance_mv2df([],input_data,P);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | addtotranspose_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/addtotranspose_fh.m | 493 | utf_8 | c009e482a302e2825fb3f59940bcc79e | function fh = addtotranspose_fh(m,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
if nargin==0
test_this();
return;
end
function y = map_this(w)
w = reshape(w,m,m);
y = w+w.';
end
map = @(y) map_this(y);
transmap = @(y) map_this(y);
fh = linTrans([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function test_this()
m=3;
f = addtotranspose_fh(3);
test_MV2DF(f,randn(m*m,1));
end
|
github | bsxfan/meta-embeddings-master | subvec_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/subvec_fh.m | 544 | utf_8 | a8942d310965ca178a123eb3f4a78f21 | function fh = subvec_fh(first,len,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
if nargin==0
test_this();
return;
end
map = @(w) w(first:first+len-1);
function w = transmap_this(y,sz)
w=zeros(sz,1);
w(first:first+len-1)=y;
end
transmap = @(y,sz) transmap_this(y,sz);
fh = linTrans_adaptive([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function test_this()
first = 2;
len = 3;
f = subvec_fh(first,len);
test_MV2DF(f,randn(5,1));
end
|
github | bsxfan/meta-embeddings-master | linTrans_adaptive.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/templates/linTrans_adaptive.m | 1,173 | utf_8 | 66276c8cd337da71a4e14efc67112765 | function [y,deriv] = linTrans_adaptive(w,map,transmap)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Applies linear transform y = map(w). It needs the transpose of map,
% transmap for computing the gradient. map and transmap are function
% handles.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)linTrans_adaptive(w,map,transmap);
return;
end
if isa(w,'function_handle')
outer = linTrans_adaptive([],map,transmap);
y = compose_mv(outer,w,[]);
return;
end
y = map(w);
y = y(:);
deriv = @(g2) deriv_this(g2,map,transmap,numel(w));
end
function [g,hess,linear] = deriv_this(g2,map,transmap,wlen)
g = transmap(g2,wlen);
g = g(:);
%linear = false; % use this to test linearity of map, if in doubt
linear = true;
hess = @(d) hess_this(map,d);
end
function [h,Jd] = hess_this(map,d)
h = [];
if nargout>1
Jd = map(d);
Jd = Jd(:);
end
end
function test_this()
first = 2;
len = 3;
map = @(w) w(first:first+len-1);
function w = transmap_test(y,sz)
w=zeros(sz,1);
w(first:first+len-1)=y;
end
transmap = @(y,sz) transmap_test(y,sz);
f = linTrans_adaptive([],map,transmap);
test_MV2DF(f,randn(5,1));
end
|
github | bsxfan/meta-embeddings-master | logsumexp_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/logsumexp_fh.m | 1,287 | utf_8 | 764511ba624a62ac12e572a26a5e7aa2 | function f = logsumexp_fh(m,direction,w)
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the logsumexp function. The whole mapping works like
% this, in MATLAB-style psuedocode:
%
% F: R^(m*n) --> R^n, where y = F(x) is computed thus:
%
% n = length(x)/m
% If direction=1, X = reshape(x,m,n), or
% if direction=1, X = reshape(x,n,m).
% y = log(sum(exp(X),direction))
%
% Inputs:
% m: the number of inputs to each individual logsumexp calculation.
% direction: 1 sums down columns, or 2 sums accross rows.
% w: optional, if ssupplied
%
% Outputs:
% f: a function handle to the MV2DF described above.
%
% see: MV2DF_API_DEFINITION.readme
if nargin==0
test_this();
return;
end
f = vectorized_function([],@(X)F0(X,direction),m,direction);
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function [y,f1] = F0(X,dr)
M = max(X,[],dr);
y = log(sum(exp(bsxfun(@minus,X,M)),dr))+M;
f1 = @() F1(X,y,dr);
end
function [J,f2,linear] = F1(X,y,dr)
linear = false;
J = exp(bsxfun(@minus,X,y));
f2 = @(dX) F2(dX,J,dr);
end
function H = F2(dX,J,dr)
H = J.*bsxfun(@minus,dX,sum(dX.*J,dr));
end
function test_this()
m = 4;n = 10;
f = logsumexp_fh(m,1);
X = randn(n,m);
test_MV2DF(f,X(:));
end
|
github | bsxfan/meta-embeddings-master | one_over_one_plus_w_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/one_over_one_plus_w_mv2df.m | 717 | utf_8 | d735233c52193c323d03cdb85d0948f5 | function [y,deriv] = one_over_one_plus_w_mv2df(w)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% y = 1 ./ (1 + w)
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)one_over_one_plus_w_mv2df(w);
return;
end
if isa(w,'function_handle')
outer = one_over_one_plus_w_mv2df([]);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
y = 1 ./ (1 + w);
deriv = @(dy) deriv_this(dy,y);
function [g,hess,linear] = deriv_this(dy,y)
linear = false;
g = -dy.*(y.^2);
hess = @(d) hess_this(d,dy,y);
function [h,Jv] = hess_this(d,dy,y)
h = 2*dy.*d.*(y.^3);
if nargout>1
Jv = -d.*(y.^2);
end
function test_this()
f = one_over_one_plus_w_mv2df([]);
test_MV2DF(f,randn(3,1));
|
github | bsxfan/meta-embeddings-master | sigmoid_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/sigmoid_mv2df.m | 758 | utf_8 | e0591c88d68032fcf2a300fe7f2e8df0 | function [y,deriv] = sigmoid_mv2df(w)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% y = sigmoid(w) = 1./(1+exp(-w)), vectorized as MATLAB usually does.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)sigmoid_mv2df(w);
return;
end
if isa(w,'function_handle')
outer = sigmoid_mv2df([]);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
y = sigmoid(w);
y1 = sigmoid(-w);
deriv = @(dy) deriv_this(dy,y,y1);
function [g,hess,linear] = deriv_this(dy,y,y1)
linear = false;
g = dy.*y.*y1;
hess = @(d) hess_this(d,dy,y,y1);
function [h,Jv] = hess_this(d,dy,y,y1)
h = dy.*d.*(y.*y1.^2 - y.^2.*y1);
if nargout>1
Jv = d.*y.*y1;
end
function test_this()
f = sigmoid_mv2df([]);
test_MV2DF(f,randn(3,1));
|
github | bsxfan/meta-embeddings-master | neglogsigmoid_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/neglogsigmoid_fh.m | 1,075 | utf_8 | dc180d133fc039197aa99a5e4186c6a7 | function f = neglogsigmoid_fh(w)
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the logsigmoid function. The mapping is, in
% MATLAB-style code:
%
% y = log(sigmoid(w)) = log(1./1+exp(-w)) = -log(1+exp(-w))
%
% Inputs:
% m: the number of inputs to each individual logsumexp calculation.
% direction: 1 sums down columns, or 2 sums accross rows.
% w: optional, if ssupplied
%
% Outputs:
% f: a function handle to the MV2DF described above.
%
% see: MV2DF_API_DEFINITION.readme
if nargin==0
test_this();
return;
end
f = vectorized_function([],@(x)F0(x));
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function [y,f1] = F0(x)
logp1 = -neglogsigmoid(x);
logp2 = -neglogsigmoid(-x);
y = -logp1;
f1 = @() F1(logp1,logp2);
end
function [J,f2,linear] = F1(logp1,logp2)
linear = false;
J = -exp(logp2);
f2 = @(dx) F2(dx,logp1,logp2);
end
function h = F2(dx,logp1,logp2)
h = dx.*exp(logp1+logp2);
end
function test_this()
n = 10;
f = neglogsigmoid_fh([]);
x = randn(n,1);
test_MV2DF(f,x);
end
|
github | bsxfan/meta-embeddings-master | logsumsquares_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/logsumsquares_fh.m | 1,275 | utf_8 | c1e543f6680e7257b1f55ff61d967598 | function f = logsumsquares_fh(m,direction,w)
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the logsumsquares function. The whole mapping works like
% this, in MATLAB-style psuedocode:
%
% F: R^(m*n) --> R^n, where y = F(x) is computed thus:
%
% n = length(x)/m
% If direction=1, X = reshape(x,m,n), or
% if direction=1, X = reshape(x,n,m).
% y = log(sum(X.^2,direction))
%
% Inputs:
% m: the number of inputs to each individual logsumexp calculation.
% direction: 1 sums down columns, or 2 sums accross rows.
%
%
% Outputs:
% f: a function handle to the MV2DF described above.
%
% see: MV2DF_API_DEFINITION.readme
if nargin==0
test_this();
return;
end
f = vectorized_function([],@(X)F0(X,direction),m,direction);
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function [y,f1] = F0(X,dr)
ssq = sum(X.^2,dr);
y = log(ssq);
f1 = @() F1(X,ssq,dr);
end
function [J,f2,linear] = F1(X,s,dr)
linear = false;
J = bsxfun(@times,X,2./s);
f2 = @(dX) F2(dX,X,s,dr);
end
function H = F2(dX,X,s,dr)
H = bsxfun(@times,dX,2./s) - bsxfun(@times,X,4*sum(X.*dX,dr)./(s.^2));
end
function test_this()
m = 4;n = 10;
f = logsumsquares_fh(m,1);
X = randn(n,m);
test_MV2DF(f,X(:));
end
|
github | bsxfan/meta-embeddings-master | expneg_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/expneg_mv2df.m | 675 | utf_8 | f12485f16e7f66d9deb530df461bdcdc | function [y,deriv] = expneg_mv2df(w)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% y = exp(-w), vectorized as MATLAB usually does.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)expneg_mv2df(w);
return;
end
if isa(w,'function_handle')
outer = expneg_mv2df([]);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
y = exp(-w);
deriv = @(dy) deriv_this(dy,y);
function [g,hess,linear] = deriv_this(dy,y)
linear = false;
g = -dy.*y;
hess = @(d) hess_this(d,dy,y);
function [h,Jv] = hess_this(d,dy,y)
h = dy.*y.*d;
if nargout>1
Jv = -d.*y;
end
function test_this()
f = expneg_mv2df([]);
test_MV2DF(f,randn(3,1));
|
github | bsxfan/meta-embeddings-master | square_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/square_mv2df.m | 634 | utf_8 | f7604570a85ea6be67d98ae414127642 | function [y,deriv] = square_mv2df(w)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% y = w.^2
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)square_mv2df(w);
return;
end
if isa(w,'function_handle')
outer = square_mv2df([]);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
y = w.^2;
deriv = @(dy) deriv_this(dy,w);
function [g,hess,linear] = deriv_this(dy,w)
linear = false;
g = 2*dy.*w;
hess = @(d) hess_this(d,dy,w);
function [h,Jv] = hess_this(d,dy,w)
h = 2*dy.*d;
if nargout>1
Jv = 2*w.*d;
end
function test_this()
f = square_mv2df([]);
test_MV2DF(f,randn(3,1));
|
github | bsxfan/meta-embeddings-master | logsigmoid_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/logsigmoid_fh.m | 1,068 | utf_8 | 65bf6e2f03af50449d9492d02f7e3c98 | function f = logsigmoid_fh(w)
% This is a factory for a function handle to an MV2DF, which represents
% the vectorization of the logsigmoid function. The mapping is, in
% MATLAB-style code:
%
% y = log(sigmoid(w)) = log(1./1+exp(-w)) = -log(1+exp(-w))
%
% Inputs:
% m: the number of inputs to each individual logsumexp calculation.
% direction: 1 sums down columns, or 2 sums accross rows.
% w: optional, if ssupplied
%
% Outputs:
% f: a function handle to the MV2DF described above.
%
% see: MV2DF_API_DEFINITION.readme
if nargin==0
test_this();
return;
end
f = vectorized_function([],@(x)F0(x));
if exist('w','var') && ~isempty(w)
f = f(w);
end
end
function [y,f1] = F0(x)
logp1 = -neglogsigmoid(x);
logp2 = -neglogsigmoid(-x);
y = logp1;
f1 = @() F1(logp1,logp2);
end
function [J,f2,linear] = F1(logp1,logp2)
linear = false;
J = exp(logp2);
f2 = @(dx) F2(dx,logp1,logp2);
end
function h = F2(dx,logp1,logp2)
h = -dx.*exp(logp1+logp2);
end
function test_this()
n = 10;
f = logsigmoid_fh([]);
x = randn(n,1);
test_MV2DF(f,x);
end
|
github | bsxfan/meta-embeddings-master | exp_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/exp_mv2df.m | 659 | utf_8 | 410b48565ed23cbda996866e44dfb2fa | function [y,deriv] = exp_mv2df(w)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% y = exp(w), vectorized as MATLAB usually does.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)exp_mv2df(w);
return;
end
if isa(w,'function_handle')
outer = exp_mv2df([]);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
y = exp(w);
deriv = @(dy) deriv_this(dy,y);
function [g,hess,linear] = deriv_this(dy,y)
linear = false;
g = dy.*y;
hess = @(d) hess_this(d,dy,y);
function [h,Jv] = hess_this(d,dy,y)
h = dy.*y.*d;
if nargout>1
Jv = d.*y;
end
function test_this()
f = exp_mv2df([]);
test_MV2DF(f,randn(3,1));
|
github | bsxfan/meta-embeddings-master | vectorized_function.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/vector/templates/vectorized_function.m | 4,600 | utf_8 | 9c5431b821aa6587c3849945d31dd1fd | function [y,deriv] = vectorized_function(w,f,m,direction)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% This template vectorizes the given function F: R^m -> R as follows:
% k = length(w)/m;
% If direction=1, X = reshape(w,m,k), y(j) = F(X(:,j)), or
% if direction=2, X = reshape(w,k,m), y(i) = F(X(i,:)),
% so that length(y) = k.
%
% Input parameters:
% w: As with every MV2DF, w can be [], a vector, or a function handle to
% another MV2DF.
% f: is a function handle to an m-file that represents the function
% F: R^m -> R, as well as its first and second derivatives.
%
% m: The input dimension to F.
% (optional, default m = 1)
%
% direction: is used as explained above to determine whether columns,
% or rows of X are processed by F.
% (optional, default direction = 2)
%
% Function f works as follows:
% (Note that f, f1 and f2 have to know the required direction, it is
% not passed to them.)
% [y,f1] = f(X), where X and y are as defined above.
%
% Function f1 works as follows:
% [J,f2] = f1(), where size(J) = size(X).
% Column/row i of J is the gradient of y(i) w.r.t.
% column/row i of W.
% f2 is a function handle to 2nd order derivatives.
% If 2nd order derivatives are 0, then f2 should be [].
%
% Function f2 works as follows:
% H = f2(dX), where size(dX) = size(X).
% If direction=1, H(:,j) = H_i * dX(:,j), or
% if direction=2, H(i,:) = dX(i,:)* H_i, where
% H_i is Hessian of y(i), w.r.t. colum/row i of X.
%
%
if nargin==0
test_this();
return;
end
if ~exist('m','var')
m = 1;
direction = 2;
end
if isempty(w)
y = @(w)vectorized_function(w,f,m,direction);
return;
end
if isa(w,'function_handle')
outer = vectorized_function([],f,m,direction);
y = compose_mv(outer,w,[]);
return;
end
if direction==1
W = reshape(w,m,[]);
elseif direction==2
W = reshape(w,[],m);
else
error('illegal direction %i',direction);
end
if nargout==1
y = f(W);
else
[y,f1] = f(W);
deriv = @(dy) deriv_this(dy,f1,direction);
end
y = y(:);
end
function [g,hess,linear] = deriv_this(dy,f1,direction)
if direction==1
dy = dy(:).';
else
dy = dy(:);
end
if nargout==1
J = f1();
g = reshape(bsxfun(@times,J,dy),[],1);
else
[J,f2] = f1();
linear = isempty(f2);
g = reshape(bsxfun(@times,J,dy),[],1);
hess = @(d) hess_this(d,f2,J,dy,direction);
end
end
function [h,Jv] = hess_this(dx,f2,J,dy,direction)
dX = reshape(dx,size(J));
if isempty(f2)
h = [];
else
h = reshape(bsxfun(@times,dy,f2(dX)),[],1);
end
if nargout>1
Jv = sum(dX.*J,direction);
Jv = Jv(:);
end
end
%%%%%%%%%%%%%%%%%%%% Example function: z = x^2 + y^3 %%%%%%%%%%%%%%%%%%%%
% example function: z = x^2 + y^3
function [z,f1] = x2y3(X,direction)
if direction==1
x = X(1,:);
y = X(2,:);
else
x = X(:,1);
y = X(:,2);
end
z = x.^2+y.^3;
f1 = @() f1_x2y3(x,y,direction);
end
% example function 1st derivative: z = x^2 + y^2
function [J,f2] = f1_x2y3(x,y,direction)
if direction==1
J = [2*x;3*y.^2];
else
J = [2*x,3*y.^2];
end
f2 = @(dxy) f2_x2y3(dxy,y,direction);
end
% example function 2nd derivative: z = x^2 + y^2
function H = f2_x2y3(dxy,y,direction)
if direction==1
H = dxy.*[2*ones(size(y));6*y];
else
H = dxy.*[2*ones(size(y)),6*y];
end
end
%%%%%%%%%%%%%%%%%%%% Example function: z = x*y^2 %%%%%%%%%%%%%%%%%%%%
% example function: z = x*y^2
function [z,f1] = xy2(X,direction)
if direction==1
x = X(1,:);
y = X(2,:);
else
x = X(:,1);
y = X(:,2);
end
y2 = y.^2;
z = x.*+y2;
f1 = @() f1_xy2(x,y,y2,direction);
end
% example function 1st derivative: z = x*y^2
function [J,f2] = f1_xy2(x,y,y2,direction)
if direction==1
J = [y2;2*x.*y];
else
J = [y2,2*x.*y];
end
f2 = @(dxy) f2_xy2(dxy,x,y,direction);
end
% example function 2nd derivative: z = x*y^2
function H = f2_xy2(dxy,x,y,direction)
if direction==1
dx = dxy(1,:);
dy = dxy(2,:);
H = [2*y.*dy;2*y.*dx+2*x.*dy];
else
dx = dxy(:,1);
dy = dxy(:,2);
H = [2*y.*dy,2*y.*dx+2*x.*dy];
end
end
function test_this()
k = 5;
m = 2;
dr = 1;
fprintf('Testing x^2+y^2 in direction %i:\n\n',dr);
f = vectorized_function([],@(X)x2y3(X,dr),2,dr);
test_MV2DF(f,randn(k*m,1));
dr = 2;
fprintf('\n\n\n\nTesting x*y^2 in direction %i:\n\n',dr);
f = vectorized_function([],@(X)xy2(X,dr),2,dr);
test_MV2DF(f,randn(k*m,1));
end
|
github | bsxfan/meta-embeddings-master | logdet_chol.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/logdet_chol.m | 1,185 | utf_8 | 706e5c1e5b5b660da50408bd221522a0 | function [y,deriv] = logdet_chol(w)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% y = log(det(W)), where W is positive definite and W = reshape(w,...)
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)logdet_chol(w);
return;
end
if isa(w,'function_handle')
outer = logdet_chol([]);
y = compose_mv(outer,w,[]);
return;
end
dim = sqrt(length(w));
W = reshape(w,dim,dim);
if nargout>1
%[inv_map,bi_inv_map,logdet,iW] = invchol2(W);
[inv_map,bi_inv_map,logdet,iW] = invchol_or_lu(W);
y = logdet;
deriv = @(dy) deriv_this(dy,bi_inv_map,iW);
else
%[inv_map,bi_inv_map,logdet] = invchol2(W);
[inv_map,bi_inv_map,logdet] = invchol_or_lu(W);
y = logdet;
end
function [g,hess,linear] = deriv_this(dy,bi_inv_map,iW)
G = iW.';
grad = G(:);
g = dy*grad;
linear = false;
hess = @(d) hess_this(grad,bi_inv_map,dy,d);
function [h,Jd] = hess_this(grad,bi_inv_map,dy,d)
dim = sqrt(length(d));
D = reshape(d,dim,dim);
H = - dy*bi_inv_map(D).';
h = H(:);
if nargout>1
Jd = grad.'*d(:);
end
function test_this()
m = 3;
n = 10;
w = [];
A = UtU(w,n,m);
f = logdet_chol(A);
w = randn(m*n,1);
test_MV2DF(f,w,true);
|
github | bsxfan/meta-embeddings-master | sumsquares_penalty.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/sumsquares_penalty.m | 916 | utf_8 | 8f40fb9f94c7424808c89e165ec9960c | function [y,deriv] = sumsquares_penalty(w,lambda)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% See code for details.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)sumsquares_penalty(w,lambda);
return;
end
if isa(w,'function_handle')
outer = sumsquares_penalty([],lambda);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
if isscalar(lambda)
lambda = lambda*ones(size(w));
else
lambda = lambda(:);
end
y = 0.5*w.'*(lambda.*w);
deriv = @(dy) deriv_this(dy,lambda,lambda.*w);
function [g,hess,linear] = deriv_this(dy,lambda,lambda_w)
linear = false;
g = dy*lambda_w;
hess = @(d) hess_this(d,dy,lambda,lambda_w);
function [h,Jv] = hess_this(d,dy,lambda,lambda_w)
h = dy*lambda.*d;
if nargout>1
Jv = d(:).'*lambda_w;
end
function test_this()
lambda = randn(10,1);
f = sumsquares_penalty([],lambda);
test_MV2DF(f,randn(size(lambda)));
|
github | bsxfan/meta-embeddings-master | wmlr_obj.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/wmlr_obj.m | 2,299 | utf_8 | f450d5fdd89f4854a123b7d7947d32c3 | function [y,deriv] = wmlr_obj(w,X,T,weights,logprior);
% This is a SCAL2DF. See SCAL2DF_API_DEFINITION.readme.
% Weighted multiclass linear logistic regression objective function.
% w is vectorized D-by-K parameter matrix W (to be optimized)
% X is D-by-N data matrix, for N trials
% T is K-by-N, 0/1 class label matrix, with exactly one 1 per column.
% weights is N-vector of objective function weights, one per trial.
% logprior is logarithm of prior,
%
% The K-by-N log-likelihood matrix is
% bsxfun(@plus,W'*X,logprior(:));
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)wmlr_obj(w,X,T,weights,logprior);
return;
end
if isa(w,'function_handle')
outer = wmlr_obj([],X,T,weights,logprior);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
[K,N] = size(T);
[dim,N2] = size(X);
if N ~=N2
error('sizes of X and T incompatible');
end
W = reshape(w,dim,K); % dim*K
% make W double so that it works if X is sparse
scores = double(W.')*X; % K*N
scores = bsxfun(@plus,scores,logprior(:));
lsm = logsoftmax(scores); % K*N
y = -sum(lsm.*T)*weights(:);
deriv = @(dy) deriv_this(dy,lsm,X,T,weights);
function [g,hess,linear] = deriv_this(dy,lsm,X,T,weights)
sigma = exp(lsm); %posterior % K*N
g0 = gradient(sigma,X,T,weights);
g = g0*dy;
hess = @(d) hess_this(d,dy,g0,sigma,X,weights);
linear = false;
function g = gradient(sigma,X,T,weights)
E = sigma-T; %K*N
G = X*double(bsxfun(@times,weights(:),E.')); %dim*K
g = G(:);
function [h,Jv] = hess_this(d,dy,g,sigma,X,weights)
K = size(sigma,1);
dim = length(d)/K;
D = reshape(d,dim,K);
P = double(D.')*X; % K*N
sigmaP = sigma.*P;
ssP = sum(sigmaP,1); % 1*N
sssP = bsxfun(@times,sigma,ssP); %K*N
h = X*double(bsxfun(@times,weights(:),(sigmaP-sssP).')); % dim*K
h = dy*h(:);
if nargout>1
Jv = d(:).'*g;
end
if nargin==0
test_this();
return;
end
function test_this()
K = 3;
N = 100;
dim = 2;
randn('state',0);
means = randn(dim,K)*10; %signal
X0 = randn(dim,K*N); % noise
classf = zeros(1,K*N);
ii = 1:N;
T = zeros(K,N*K);
for k=1:K
X0(:,ii) = bsxfun(@plus,means(:,k),X0(:,ii));
classf(ii) = k;
T(k,ii) = 1;
ii = ii+N;
end
N = K*N;
X = [X0;ones(1,N)];
weights = rand(1,N);
obj = wmlr_obj([],X,T,weights,2);
test_MV2DF(obj,randn((dim+1)*K,1));
|
github | bsxfan/meta-embeddings-master | boost_obj.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/boost_obj.m | 1,556 | utf_8 | eaa722fa0cd7b1b492401c4e6adf807b | function [y,deriv] = boost_obj(w,T,weights,logit_prior)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Weighted binary classifier cross-entropy objective, based on 'boosting'
% proper scoring rule. This rule places more emphasis on extreme scores,
% than the logariothmic scoring rule.
%
% Differentiable inputs:
% w: is vector of N detection scores (in log-likelihood-ratio format)
%
% Fixed parameters:
% T: is vector of N labels: 1 for target and -1 for non-target.
% weights: is N-vector of objective function weights, one per trial.
% logit_prior: is logit(prior), this controls the region of interest
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)boost_obj(w,T,weights,logit_prior);
return;
end
if isa(w,'function_handle')
outer = boost_obj([],T,weights,logit_prior);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
scores = w.';
arg = bsxfun(@plus,scores,logit_prior).*T;
wobj = exp(-arg/2).*weights; % 1*N
y = sum(wobj);
if nargout>1
deriv = @(dy) deriv_this(dy,wobj(:),T);
end
function [g,hess,linear] = deriv_this(dy,wobj,T)
g0 = -0.5*wobj.*T(:);
g = dy*g0;
linear = false;
hess = @(d) hessianprod(d,dy,g0,wobj);
function [h,Jv] = hessianprod(d,dy,g0,wobj)
h = dy*(0.25*wobj(:).*d(:));
if nargout>1
Jv = d.'*g0;
end
function test_this()
N = 30;
T = [ones(1,N/3),-ones(1,N/3),zeros(1,N/3)];
scores = randn(1,N);
weights = [rand(1,2*N/3),zeros(1,N/3)];
f = @(w) brier_obj(w,T,weights,-2.23);
f = @(w) boost_obj(w,T,weights,-2.23);
test_MV2DF(f,scores(:));
|
github | bsxfan/meta-embeddings-master | neg_gaussll_taylor.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/neg_gaussll_taylor.m | 1,332 | utf_8 | 4efafbe09f47ca5947e223ca80f063c6 | function [y,deriv] = neg_gaussll_taylor(w,x)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% This function represents the part of log N(x|0,W) that is dependent on
% W = reshape(w,...), where w is variable and x is given.
%
% y = -0.5*x'*inv(W)*x - 0.5*log(det(W)), where W is positive definite and W = reshape(w,...)
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)neg_gaussll_taylor(w,x);
return;
end
if isa(w,'function_handle')
outer = neg_gaussll_taylor([],x);
y = compose_mv(outer,w,[]);
return;
end
dim = length(x);
W = reshape(w,dim,dim);
[inv_map,logdet] = invchol_taylor(W);
z = inv_map(x);
y = 0.5*x'*z + 0.5*logdet;
deriv = @(dy) deriv_this(dy,z,inv_map);
end
function [g,hess,linear] = deriv_this(dy,z,inv_map)
G1 = z*z.';
G2 = inv_map(eye(length(z)));
grad = 0.5*(G2(:)-G1(:));
g = dy*grad;
linear = false;
hess = @(d) hess_this(grad,z,inv_map,dy,d);
end
function [h,Jd] = hess_this(grad,z,inv_map,dy,d)
dim = sqrt(length(d));
D = reshape(d,dim,dim);
H1 = inv_map(D*z)*z' + z*inv_map(D'*z)';
H2 = inv_map(inv_map(D)');
h = 0.5*dy*(H1(:)-H2(:));
if nargout>1
Jd = grad.'*d(:);
end
end
function test_this()
m = 3;
n = 10;
w = [];
A = UtU(w,n,m); %A is m-by-m
x = randn(m,1);
f = neg_gaussll_taylor(A,x);
w = randn(m*n,1);
test_MV2DF(f,w,true);
end
|
github | bsxfan/meta-embeddings-master | brier_obj.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/brier_obj.m | 1,722 | utf_8 | f68fae1776aa1a970b6f329e4c0d1027 | function [y,deriv] = brier_obj(w,T,weights,logit_prior)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Weighted binary classifier cross-entropy objective, based on 'Brier'
% quadratic proper scoring rule. This rule places less emphasis on extreme scores,
% than the logariothmic scoring rule.
%
% Differentiable inputs:
% w: is vector of N detection scores (in log-likelihood-ratio format)
%
% Fixed parameters:
% T: is vector of N labels: 1 for target and -1 for non-target.
% weights: is N-vector of objective function weights, one per trial.
% logit_prior: is logit(prior), this controls the region of interest
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)brier_obj(w,T,weights,logit_prior);
return;
end
if isa(w,'function_handle')
outer = brier_obj([],T,weights,logit_prior);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
scores = w.';
arg = bsxfun(@plus,scores,logit_prior).*T;
logp2 = -neglogsigmoid(-arg);
wobj = 0.5*exp(2*logp2).*weights; % 1*N
y = sum(wobj);
if nargout>1
logp1 = -neglogsigmoid(arg);
deriv = @(dy) deriv_this(dy,weights(:),T(:),logp1(:),logp2(:));
end
function [g,hess,linear] = deriv_this(dy,weights,T,logp1,logp2)
g0 = -exp(logp1+2*logp2).*weights.*T;
g = dy*g0;
linear = false;
hess = @(d) hessianprod(d,dy,g0,weights,logp1,logp2);
function [h,Jv] = hessianprod(d,dy,g0,weights,logp1,logp2)
ddx = -exp(logp1+2*logp2);
h = dy*(ddx.*(1-3*exp(logp1))).*weights.*d(:);
if nargout>1
Jv = d.'*g0;
end
function test_this()
N = 30;
T = [ones(1,N/3),-ones(1,N/3),zeros(1,N/3)];
scores = randn(1,N);
weights = [rand(1,2*N/3),zeros(1,N/3)];
f = @(w) brier_obj(w,T,weights,-2.23);
test_MV2DF(f,scores(:));
|
github | bsxfan/meta-embeddings-master | gauss_ll.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/gauss_ll.m | 1,461 | utf_8 | 76707fbe20f1dae43305e2542e9644ce | function [y,deriv] = gauss_ll(w,x)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
% This function represents the part of log N(x|0,W) that is dependent on
% W = reshape(w,...), where w is variable and x is given.
%
% y = -0.5*x'*inv(W)*x - 0.5*log(det(W)), where W is positive definite and W = reshape(w,...)
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)gauss_ll(w,x);
return;
end
if isa(w,'function_handle')
outer = gauss_ll([],x);
y = compose_mv(outer,w,[]);
return;
end
dim = length(x);
W = reshape(w,dim,dim);
if nargout>1
[inv_map,bi_inv_map,logdet,iW] = invchol_or_lu(W);
z = inv_map(x);
y = -0.5*x'*z - 0.5*logdet;
deriv = @(dy) deriv_this(dy,z,inv_map,bi_inv_map,iW);
else
[inv_map,bi_inv_map,logdet] = invchol_or_lu(W);
z = inv_map(x);
y = -0.5*x'*z - 0.5*logdet;
end
function [g,hess,linear] = deriv_this(dy,z,inv_map,bi_inv_map,iW)
G1 = z*z.';
G2 = iW.';
grad = 0.5*(G1(:)-G2(:));
g = dy*grad;
linear = false;
hess = @(d) hess_this(grad,z,inv_map,bi_inv_map,dy,d);
function [h,Jd] = hess_this(grad,z,inv_map,bi_inv_map,dy,d)
dim = sqrt(length(d));
D = reshape(d,dim,dim);
H1 = inv_map(D*z)*z.' + z*inv_map(D.'*z).';
H2 = bi_inv_map(D).';
h = -0.5*dy*(H1(:)-H2(:));
if nargout>1
Jd = grad.'*d(:);
end
function test_this()
m = 3;
n = 10;
w = [];
A = UtU(w,n,m); %A is m-by-m
x = randn(m,1);
f = gauss_ll(A,x);
w = randn(m*n,1);
test_MV2DF(f,w,true);
|
github | bsxfan/meta-embeddings-master | cllr_obj.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/cllr_obj.m | 1,611 | utf_8 | 374952d66aa4641a000a48cc12baebad | function [y,deriv] = cllr_obj(w,T,weights,logit_prior)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Weighted binary classifier cross-entropy objective, based on logarithmic
% cost function.
%
% Differentiable inputs:
% w: is vector of N detection scores (in log-likelihood-ratio format)
%
% Fixed parameters:
% T: is vector of N labels: 1 for target and -1 for non-target.
% weights: is N-vector of objective function weights, one per trial.
% logit_prior: is logit(prior), this controls the region of interest
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)cllr_obj(w,T,weights,logit_prior);
return;
end
if isa(w,'function_handle')
outer = cllr_obj([],T,weights,logit_prior);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
scores = w.';
arg = bsxfun(@plus,scores,logit_prior).*T;
neglogp1 = neglogsigmoid(arg); % 1*N p1 = p(tar)
y = neglogp1*weights(:);
if nargout>1
neglogp2 = neglogsigmoid(-arg); % 1*N p2 = 1-p1 = p(non)
deriv = @(dy) deriv_this(dy,-neglogp1(:),-neglogp2(:),T(:),weights(:));
end
function [g,hess,linear] = deriv_this(dy,logp1,logp2,T,weights)
g0 = -exp(logp2).*weights.*T;
g = dy*g0;
linear = false;
hess = @(d) hessianprod(d,dy,g0,logp1,logp2,weights);
function [h,Jv] = hessianprod(d,dy,g0,logp1,logp2,weights)
h = dy*(exp(logp1+logp2).*weights(:).*d(:));
if nargout>1
Jv = d.'*g0;
end
function test_this()
N = 30;
T = [ones(1,N/3),-ones(1,N/3),zeros(1,N/3)];
W = randn(1,N);
weights = [rand(1,2*N/3),zeros(1,N/3)];
f = @(w) cllr_obj(w,T,weights,-2.23);
test_MV2DF(f,W(:));
|
github | bsxfan/meta-embeddings-master | mce_obj.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/mce_obj.m | 1,711 | utf_8 | 93cfa59b8a57d279ebbdb02376bd696c | function [y,deriv] = mce_obj(w,T,weights,logprior)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Weighted multiclass cross-entropy objective.
% w is vectorized K-by-N score matrix W (to be optimized)
% T is K-by-N, 0/1 class label matrix, with exactly one 1 per column.
% weights is N-vector of objective function weights, one per trial.
% logprior is logarithm of prior,
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)mce_obj(w,T,weights,logprior);
return;
end
if isa(w,'function_handle')
outer = mce_obj([],T,weights,logprior);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
[K,N] = size(T);
scores = reshape(w,K,N);
scores = bsxfun(@plus,scores,logprior(:));
lsm = logsoftmax(scores); % K*N
y = -sum(lsm.*T)*weights(:);
deriv = @(dy) deriv_this(dy,lsm,T,weights);
function [g,hess,linear] = deriv_this(dy,lsm,T,weights)
sigma = exp(lsm); %posterior % K*N
g0 = gradient(sigma,T,weights);
g = dy*g0;
linear = false;
hess = @(d) hessianprod(d,dy,g0,sigma,weights);
function g = gradient(sigma,T,weights)
E = sigma-T; %K*N
G = bsxfun(@times,E,weights(:).'); %dim*K
g = G(:);
function [h,Jv] = hessianprod(d,dy,g0,sigma,weights)
K = size(sigma,1);
dim = length(d)/K;
P = reshape(d,K,dim);
sigmaP = sigma.*P;
ssP = sum(sigmaP,1); % 1*N
sssP = bsxfun(@times,sigma,ssP); %K*N
h = bsxfun(@times,(sigmaP-sssP),weights(:).'); % dim*K
h = dy*h(:);
if nargout>1
Jv = d.'*g0;
end
function test_this()
K = 3;
N = 30;
%T = [repmat([1;0;0],1,10),repmat([0;1;0],1,10),repmat([0;0;1],1,10)];
T = rand(K,N); T = bsxfun(@times,T,1./sum(T,1));
W = randn(K,N);
weights = rand(1,N);
f = @(w) mce_obj(w,T,weights,-1);
test_MV2DF(f,W(:));
|
github | bsxfan/meta-embeddings-master | sum_ai_f_of_w_i.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/scalar/templates/sum_ai_f_of_w_i.m | 1,367 | utf_8 | af9137c86c4b6c7456dbd1688c9ba0bb | function [y,deriv] = sum_ai_f_of_w_i(w,a,f,b)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Does y = sum_i a_i f(w_i) + b, where f is non-linear.
%
%Notes:
%
% f is a function handle, with behaviour as demonstrated in the test code
% of this function.
%
% b is optional, defaults to 0 if omitted
if nargin==0
test_this();
return;
end
if ~exist('b','var')
b = 0;
end
if isempty(w)
y = @(w)sum_ai_f_of_w_i(w,a,f,b);
return;
end
if isa(w,'function_handle')
outer = sum_ai_f_of_w_i([],a,f,b);
y = compose_mv(outer,w,[]);
return;
end
ntot = length(a);
nz = find(a~=0);
a = a(nz);
if nargin==1
y = f(w(nz));
else
[y,dfdw,f2] = f(w(nz));
deriv = @(Dy) deriv_this(Dy,dfdw.*a,f2,a,nz,ntot);
end
y = y(:);
y = a.'*y + b;
function [g,hess,linear] = deriv_this(Dy,g0,f2,a,nz,ntot)
g = zeros(ntot,1);
g(nz) = Dy*g0(:);
hess = @(d) hess_this(d,g0,f2,Dy,a,nz,ntot);
linear = false;
function [h,Jd] = hess_this(d,g0,f2,Dy,a,nz,ntot)
d = d(nz);
hnz = f2();
hnz = hnz(:).*d(:);
h = zeros(ntot,1);
h(nz) = Dy*(hnz.*a);
if nargout>1
Jd = g0.'*d(:);
end
function [y,ddx,f2] = test_f(x)
y = log(x);
if nargout>1
ddx = 1./x;
f2 = @() -1./(x.^2);
end
function test_this()
n = 10;
a = randn(n,1);
a = bsxfun(@max,a,0);
b = 5;
f = sum_ai_f_of_w_i([],a,@(x)test_f(x),b);
w = 1+rand(n,1);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | KtimesW.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/KtimesW.m | 726 | utf_8 | d53d40345ce7668d43a1efa9eb621335 | function [y,deriv] = KtimesW(w,K)
% This is an MV2DF . See MV2DF_API_DEFINITION.readme.
%
%
%
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) map_this(w,K);
transmap = @(y) transmap_this(y,K);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = KtimesW([],K);
y = compose_mv(f,w,[]);
return;
end
f = KtimesW([],K);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w,K)
[m,n] = size(K);
y = K*reshape(w,n,[]);
y = y(:);
function w = transmap_this(y,K)
[m,n] = size(K);
w = K.'*reshape(y,m,[]);
function test_this()
m = 3;
n = 4;
K = randn(m,n);
r = 2;
W = randn(n,r);
f = KtimesW([],K);
test_MV2DF(f,W(:));
|
github | bsxfan/meta-embeddings-master | scaleRows.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/scaleRows.m | 798 | utf_8 | c848225d200f35d733b8bb76c2495127 | function [y,deriv] = scaleRows(w,scales)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% w --> bsxfun(@times,reshape(w,m,[]),scales(:))
%
% where m = length(scales);
%
% Note: this is a symmetric linear transform.
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w)map_this(w,scales);
y = linTrans(w,map,map);
return;
end
if isa(w,'function_handle')
f = scaleRows([],scales);
y = compose_mv(f,w,[]);
return;
end
f = scaleRows([],scales);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function w = map_this(w,scales)
n = length(scales);
w = reshape(w,[],n);
w = bsxfun(@times,w,scales(:)');
function test_this()
K = 5;
N = 10;
M = randn(K,N);
scales = randn(1,N);
f = scaleRows([],scales);
test_MV2DF(f,M(:));
|
github | bsxfan/meta-embeddings-master | sumcolumns_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/sumcolumns_fh.m | 602 | utf_8 | 7a2cd01c3b7076cda20fa6a96cae0069 | function fh = sumcolumns_fh(m,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
%
% w -> W = reshape(w,m,[]) -> sum(W,1)'
if nargin==0
test_this();
return;
end
map = @(w) map_this(w,m);
transmap = @(y) transmap_this(y,m);
fh = linTrans([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function w = transmap_this(y,m)
w = repmat(y(:).',m,1);
end
function s = map_this(w,m)
W = reshape(w,m,[]);
s = sum(W,1);
end
function test_this()
m = 3;
n = 4;
f = sumcolumns_fh(m);
W = randn(m,n);
test_MV2DF(f,W(:));
end
|
github | bsxfan/meta-embeddings-master | columnJofN_fh.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/columnJofN_fh.m | 634 | utf_8 | 23448c0cc436ac53b95d5e4ec48c7b35 | function fh = columnJofN_fh(j,n,w)
% This is almost an MV2DF, but it does not return derivatives on numeric
% input, w.
%
% w -> W = reshape(w,[],n) -> W(:,j)
if nargin==0
test_this();
return;
end
map = @(w) map_this(w,j,n);
transmap = @(y) transmap_this(y,j,n);
fh = linTrans([],map,transmap);
if exist('w','var') && ~isempty(w)
fh = fh(w);
end
end
function w = transmap_this(y,j,n)
W = zeros(length(y),n);
W(:,j) = y;
w = W(:);
end
function col = map_this(w,j,n)
W = reshape(w,[],n);
col = W(:,j);
end
function test_this()
m = 3;
n = 4;
f = columnJofN_fh(2,4);
W = randn(m,n);
test_MV2DF(f,W(:));
end
|
github | bsxfan/meta-embeddings-master | scaleColumns.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/scaleColumns.m | 811 | utf_8 | cacb0b80cb3f3871595674e741382d26 | function [y,deriv] = scaleColumns(w,scales)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% w --> bsxfun(@times,reshape(w,[],n),scales(:)')
%
% where n = length(scales);
%
% Note: this is a symmetric linear transform.
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w)map_this(w,scales);
y = linTrans(w,map,map);
return;
end
if isa(w,'function_handle')
f = scaleColumns([],scales);
y = compose_mv(f,w,[]);
return;
end
f = scaleColumns([],scales);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function w = map_this(w,scales)
n = length(scales);
w = reshape(w,[],n);
w = bsxfun(@times,w,scales(:)');
function test_this()
K = 5;
N = 10;
M = randn(K,N);
scales = randn(1,N);
f = scaleColumns([],scales);
test_MV2DF(f,M(:));
|
github | bsxfan/meta-embeddings-master | subvec.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/subvec.m | 733 | utf_8 | ed189df10ecad63eca1130710c559631 | function [y,deriv] = subvec(w,size,first,length)
% This is an MV2DF . See MV2DF_API_DEFINITION.readme.
%
% w --> w(first:first+length-1)
%
if nargin==0
test_this();
return;
end
last = first+length-1;
if isempty(w)
map = @(w) w(first:last);
transmap = @(w) transmap_this(w,size,first,last);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = subvec([],size,first,length);
y = compose_mv(f,w,[]);
return;
end
f = subvec([],size,first,length);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function g = transmap_this(w,size,first,last)
g = zeros(size,1);
g(first:last) = w;
function test_this()
f = subvec([],10,2,4);
test_MV2DF(f,randn(10,1));
|
github | bsxfan/meta-embeddings-master | identity_trans.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/identity_trans.m | 495 | utf_8 | aec19df7ff1e1fa5079b22973d9122fc | function [y,deriv] = identity_trans(w)
% This is an MV2DF . See MV2DF_API_DEFINITION.readme.
%
% w --> w
%
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) w;
y = linTrans(w,map,map);
return;
end
if isa(w,'function_handle')
f = identity_trans([]);
y = compose_mv(f,w,[]);
return;
end
f = identity_trans([]);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function test_this()
f = identity_trans([]);
test_MV2DF(f,randn(5,1));
|
github | bsxfan/meta-embeddings-master | WtimesK.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/WtimesK.m | 726 | utf_8 | 20d6a4715d3fb8e2c51fc17f1a45e865 | function [y,deriv] = WtimesK(w,K)
% This is an MV2DF . See MV2DF_API_DEFINITION.readme.
%
%
%
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) map_this(w,K);
transmap = @(y) transmap_this(y,K);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = WtimesK([],K);
y = compose_mv(f,w,[]);
return;
end
f = WtimesK([],K);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w,K)
[m,n] = size(K);
y = reshape(w,[],m)*K;
y = y(:);
function w = transmap_this(y,K)
[m,n] = size(K);
w = reshape(y,[],n)*K.';
function test_this()
m = 3;
n = 4;
K = randn(m,n);
r = 2;
W = randn(r,m);
f = WtimesK([],K);
test_MV2DF(f,W(:));
|
github | bsxfan/meta-embeddings-master | transpose_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/transpose_mv2df.m | 700 | utf_8 | 58016f72134e4ccf6256f2ea1f952a43 | function [y,deriv] = transpose_mv2df(w,M,N)
% This is an MV2DF . See MV2DF_API_DEFINITION.readme.
%
% vec(A) --> vec(A'),
%
% where A is M by N
%
% Note: this is an orthogonal linear transform.
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) reshape(reshape(w,M,N).',[],1);
transmap = @(w) reshape(reshape(w,N,M).',[],1);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = transpose_mv2df([],M,N);
y = compose_mv(f,w,[]);
return;
end
f = transpose_mv2df([],M,N);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function test_this()
M = 4;
N = 5;
f = transpose_mv2df([],M,N);
test_MV2DF(f,randn(M*N,1));
|
github | bsxfan/meta-embeddings-master | fusion_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/fusion_mv2df.m | 1,182 | utf_8 | df0b186cde5dcc42aea6490f13d6d479 | function [y,deriv] = fusion_mv2df(w,scores)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% The function is a 'score fusion' computed thus:
% y.' = w(1:end-1).'*scores + w(end)
%
% Here w is the vector of fusion weights, one weight per system and
% an offset.
%
% Parameters:
% scores: is an M-by-T matrix of scores from M systems, for each of T
% trials.
%
% Note (even though the fusion is affine from input scores to output
% scores) this MV2DF is a linear transform from w to y.
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) map_this(w,scores);
transmap = @(w) transmap_this(w,scores);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = fusion_mv2df([],scores);
y = compose_mv(f,w,[]);
return;
end
f = fusion_mv2df([],scores);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w,scores)
y = w(1:end-1).'*scores + w(end);
y = y(:);
function y = transmap_this(x,scores)
y = [scores*x;sum(x)];
function test_this()
K = 5;
N = 10;
w = randn(N+1,1);
scores = randn(N,K);
f = fusion_mv2df([],scores);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | addSigmaI.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/addSigmaI.m | 771 | utf_8 | 78b1a5b40a699c613a11ce64085abe6e | function [y,deriv] = addSigmaI(w)
% This is an MV2DF . See MV2DF_API_DEFINITION.readme.
%
%
%
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) map_this(w);
transmap = @(w) transmap_this(w);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = addSigmaI([]);
y = compose_mv(f,w,[]);
return;
end
f = addSigmaI([]);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w)
w = w(:);
y = w(1:end-1);
sigma = w(end);
dim = sqrt(length(y));
ii = 1:dim+1:dim*dim;
y(ii) = w(ii)+sigma;
function w = transmap_this(y)
dim = sqrt(length(y));
ii = 1:dim+1:dim*dim;
w = [y;sum(y(ii))];
function test_this()
dim = 5;
f = addSigmaI([]);
test_MV2DF(f,randn(dim*dim+1,1));
|
github | bsxfan/meta-embeddings-master | addOffset.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/addOffset.m | 1,057 | utf_8 | 38390e8a3f92c5a6b760571e3ba340e3 | function [y,deriv] = addOffset(w,K,N)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% w = [vec(A);b] --> vec(bsxfun(@plus,A,b))
%
% This function retrieves a K by N matrix as well as a K-vector from w,
% adds the K-vector to every column of the matrix
% and outputs the vectorized result.
% Note this is a linear transform.
if nargin==0
test_this();
return;
end
if isempty(w)
map = @(w) map_this(w,K,N);
transmap = @(w) transmap_this(w,K,N);
y = linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
f = addOffset([],K,N);
y = compose_mv(f,w,[]);
return;
end
f = addOffset([],K,N);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function y = map_this(w,K,N)
y = w(1:K*N);
y = reshape(y,K,N);
offs = w((K*N+1):end);
y = bsxfun(@plus,y,offs(:));
y = y(:);
function y = transmap_this(x,K,N)
M = reshape(x,K,N);
y = [x(1:K*N);sum(M,2)];
function test_this()
K = 5;
N = 10;
M = randn(K,N);
offs = randn(K,1);
w = [M(:);offs];
f = addOffset([],K,N);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | const_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/templates/const_mv2df.m | 856 | utf_8 | 541e86c2041370727a8705935c4d575e | function [y,deriv] = const_mv2df(w,const)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% y = const(:);
%
% This wraps the given constant into an MV2DF. The output, y, is
% independent of input w. The derivatives are sparse zero vectors of the
% appropriate size.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)const_mv2df(w,const);
return;
end
if isa(w,'function_handle')
outer = const_mv2df([],const);
y = compose_mv(outer,w,[]);
return;
end
w = w(:);
y = const(:);
deriv = @(g2) deriv_this(length(w),length(y));
function [g,hess,linear] = deriv_this(wsz,ysz)
g = sparse(wsz,1);
linear = true;
hess = @(d) hess_this(ysz);
function [h,Jd] = hess_this(ysz)
h = [];
if nargout>1
Jd = sparse(ysz,1);
end
function test_this()
A = randn(4,5);
f = const_mv2df([],A);
test_MV2DF(f,randn(5,1));
|
github | bsxfan/meta-embeddings-master | linTrans.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/templates/linTrans.m | 1,012 | utf_8 | 5c26cd329441fa971c05127c464dfae5 | function [y,deriv] = linTrans(w,map,transmap)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Applies linear transform y = map(w). It needs the transpose of map,
% transmap for computing the gradient. map and transmap are function
% handles.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)linTrans(w,map,transmap);
return;
end
if isa(w,'function_handle')
outer = linTrans([],map,transmap);
y = compose_mv(outer,w,[]);
return;
end
y = map(w);
y = y(:);
deriv = @(g2) deriv_this(g2,map,transmap);
function [g,hess,linear] = deriv_this(g2,map,transmap)
g = transmap(g2);
g = g(:);
%linear = false; % use this to test linearity of map, if in doubt
linear = true;
hess = @(d) hess_this(map,d);
function [h,Jd] = hess_this(map,d)
h = [];
if nargout>1
Jd = map(d);
Jd = Jd(:);
end
function test_this()
A = randn(4,5);
map = @(w) A*w;
transmap = @(y) (y.'*A).'; % faster than A'*y, if A is big
f = linTrans([],map,transmap);
test_MV2DF(f,randn(5,1));
|
github | bsxfan/meta-embeddings-master | affineTrans.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/templates/affineTrans.m | 1,378 | utf_8 | f1c4abd92c1dca63db5b0ccf3915a631 | function [y,deriv] = affineTrans(w,affineMap,linMap,transMap)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Applies affine transform y = affineMap(w). It needs also needs
% linMap, the linear part of the mapping, as well as transMap, the
% transpose of linMap. All of affineMap, linMap and transMap are function
% handles.
%
% Note, linMap(x) = J*x where J is the Jacobian of affineMap; and
% transMap(y) = J'y.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)affineTrans(w,affineMap,linMap,transMap);
return;
end
if isa(w,'function_handle')
outer = affineTrans([],affineMap,linMap,transMap);
y = compose_mv(outer,w,[]);
return;
end
y = affineMap(w);
y = y(:);
deriv = @(g2) deriv_this(g2,linMap,transMap);
function [g,hess,linear] = deriv_this(g2,linMap,transMap)
g = transMap(g2);
g = g(:);
%linear = false; % use this to test linearity of affineMap, if in doubt
linear = true;
hess = @(d) hess_this(linMap,d);
function [h,Jd] = hess_this(linMap,d)
%h=zeros(size(d)); % use this to test linearity of affineMap, if in doubt
h = [];
if nargout>1
Jd = linMap(d);
Jd = Jd(:);
end
function test_this()
A = randn(4,5);
k = randn(4,1);
affineMap = @(w) A*w+k;
linMap = @(w) A*w;
transMap = @(y) (y.'*A).'; % faster than A'*y, if A is big
f = affineTrans([],affineMap,linMap,transMap);
test_MV2DF(f,randn(5,1));
|
github | bsxfan/meta-embeddings-master | logsoftmax_trunc_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/logsoftmax_trunc_mv2df.m | 1,380 | utf_8 | 7933852f24348cedbc4c8750142e51de | function [y,deriv] = logsoftmax_trunc_mv2df(w,m)
% This is a MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Does:
% (i) Reshapes w to m-by-n.
% (ii) effectively (not physically) append a bottom row of zeros
% (iii) Computes logsoftmax of each of n columns.
% (iv) Omits last row (effectively)
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)logsoftmax_trunc_mv2df(w,m);
return;
end
if isa(w,'function_handle')
outer = logsoftmax_trunc_mv2df([],m);
y = compose_mv(outer,w,[]);
return;
end
w = reshape(w,m,[]);
y = logsoftmax_trunc(w);
if nargout>1
deriv = @(Dy) deriv_this(Dy,exp(y));
end
y = y(:);
function [g,hess,linear] = deriv_this(Dy,smax)
[m,n] = size(smax);
Dy = reshape(Dy,m,n);
sumDy = sum(Dy,1);
g = Dy - bsxfun(@times,smax,sumDy);
g = g(:);
linear = false;
hess = @(v) hess_this(v,sumDy,smax);
function [h,Jv] = hess_this(V,sumDy,smax)
[m,n] = size(smax);
V = reshape(V,m,n);
Vsmax = V.*smax;
sumVsmax = sum(Vsmax,1);
h = bsxfun(@times,smax,sumVsmax) - Vsmax;
h = bsxfun(@times,h,sumDy);
h = h(:);
if nargout>1
Jv = bsxfun(@minus,V,sumVsmax);
Jv = Jv(:);
end
function test_this()
m = 10;
n = 3;
%A = randn(m);
%map = @(x) reshape(A*reshape(x,m,[]),[],1);
%transmap = @(y) reshape(A'*reshape(y,m,[]),[],1);
%f = linTrans([],map,transmap);
f = logsoftmax_trunc_mv2df([],m);
test_MV2DF(f,randn(m*n,1));
|
github | bsxfan/meta-embeddings-master | mm_special.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/mm_special.m | 1,465 | utf_8 | 735b9c605bad33588197fcc0c0d59eb5 | function [prod,deriv] = mm_special(w,extractA,extractB)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% [vec(A);vec(B)] --> vec(A*B)
%
% where
% A is extractA(w)
% B is extractB(w)
if nargin==0
test_this();
return;
end
if isempty(w)
prod = @(w)mm_special(w,extractA,extractB);
return;
end
if isa(w,'function_handle')
outer = mm_special([],extractA,extractB);
prod = compose_mv(outer,w,[]);
return;
end
w = w(:);
A = extractA(w);
[m,k] = size(A);
B = extractB(w);
[k2,n] = size(B);
assert(k==k2,'inner matrix dimensions must agree');
M = A*B;
prod = M(:);
deriv = @(g2) deriv_this(g2);
function [g,hess,linear] = deriv_this(g2)
g = vJ_this(g2,A,B);
linear = false;
hess = @(w) hess_this(g2,w);
end
function [h,Jv] = hess_this(g2,w)
h = vJ_this(g2,extractA(w),extractB(w));
if nargout>=2
Jv = Jv_this(w);
end
end
function prod = Jv_this(w)
Aw = extractA(w);
Bw = extractB(w);
M = Aw*B + A*Bw;
prod = M(:);
end
function w = vJ_this(prod,A,B)
M = reshape(prod,m,n);
Bp = A.'*M;
Ap = M*B.';
w = [Ap(:);Bp(:)];
end
end
function A = extractA_this(w,m,k)
A = w(1:m*k);
A = reshape(A,m,k);
end
function B = extractB_this(w,m,k,n)
B = w(m*k+(1:k*n));
B = reshape(B,k,n);
end
function test_this()
m = 4;
k = 5;
n = 6;
A = randn(m,k);
B = randn(k,n);
w = [A(:);B(:)];
extractA = @(w) extractA_this(w,m,k);
extractB = @(w) extractB_this(w,m,k,n);
f = mm_special([],extractA,extractB);
test_MV2DF(f,w);
end
|
github | bsxfan/meta-embeddings-master | sums_of_squares.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/sums_of_squares.m | 898 | utf_8 | 1fa8d45eea9355807d8ef47606407b36 | function [y,deriv] = sums_of_squares(w,m)
% This is a MV2DF. See MV2DF_API_DEFINITION.readme.
% Does:
% (i) Reshapes w to m-by-n.
% (ii) Computes sum of squares of each of n columns.
% (iii) Transposes to output n-vector.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)sums_of_squares(w,m);
return;
end
if isa(w,'function_handle')
outer = sums_of_squares([],m);
y = compose_mv(outer,w,[]);
return;
end
M = reshape(w,m,[]);
y = sum(M.^2,1);
y = y(:);
deriv = @(g2) deriv_this(g2,M);
function [g,hess,linear] = deriv_this(g2,M)
g = 2*bsxfun(@times,M,g2.');
g = g(:);
linear = false;
hess = @(d) hess_this(d,g2,M);
function [h,Jv] = hess_this(d,g2,M)
h = deriv_this(g2,reshape(d,size(M)));
if nargout>1
Jv = 2*sum(reshape(d,size(M)).*M,1);
Jv = Jv(:);
end
function test_this()
f = sums_of_squares([],10);
test_MV2DF(f,randn(10*4,1));
|
github | bsxfan/meta-embeddings-master | gemm.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/gemm.m | 1,283 | utf_8 | b9245303ab8248f450ad033cde69bf29 | function [prod,deriv] = gemm(w,m,k,n)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% [vec(A);vec(B)] --> vec(A*B)
%
% where
% A is m-by-k
% B is k-by-n
if nargin==0
test_this();
return;
end
if isempty(w)
prod = @(w)gemm(w,m,k,n);
return;
end
if isa(w,'function_handle')
outer = gemm([],m,k,n);
prod = compose_mv(outer,w,[]);
return;
end
w = w(:);
A = extractA(w,m,k);
B = extractB(w,m,k,n);
M = A*B;
prod = M(:);
deriv = @(g2) deriv_this(g2,A,B,m,k,n);
function [g,hess,linear] = deriv_this(g2,A,B,m,k,n)
g = vJ_this(g2,A,B,m,n);
linear = false;
hess = @(w) hess_this(m,k,n,g2,A,B,w);
function [h,Jv] = hess_this(m,k,n,g2,A,B,w)
h = vJ_this(g2,...
extractA(w,m,k),...
extractB(w,m,k,n),...
m,n);
if nargout>=2
Jv = Jv_this(w,A,B,m,k,n);
end
function prod = Jv_this(w,A,B,m,k,n)
Aw = extractA(w,m,k);
Bw = extractB(w,m,k,n);
M = Aw*B + A*Bw;
prod = M(:);
function w = vJ_this(prod,A,B,m,n)
M = reshape(prod,m,n);
Bp = A.'*M;
Ap = M*B.';
w = [Ap(:);Bp(:)];
function A = extractA(w,m,k)
A = w(1:m*k);
A = reshape(A,m,k);
function B = extractB(w,m,k,n)
B = w(m*k+(1:k*n));
B = reshape(B,k,n);
function test_this()
A = randn(4,5);
B = randn(5,4);
w = [A(:);B(:)];
f = gemm([],4,5,4);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | XtKX.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/XtKX.m | 849 | utf_8 | 0298041dbd9ce1171c7cf66e0edb8a09 | function [y,deriv] = XtKX(w,K)
%This is an MV2DF.
%
% vec(X) --> vec(X'KX)
%
if nargin==0
test_this();
return;
end
m = size(K,1);
if isempty(w)
y = @(w) XtKX(w,K);
return;
end
if isa(w,'function_handle')
outer = XtKX([],K);
y = compose_mv(outer,w,[]);
return;
end
X = reshape(w,m,[]);
n = size(X,2);
y = X.'*K*X;
y = y(:);
deriv = @(dy) deriv_this(dy,K,X,n);
function [g,hess,linear] = deriv_this(DY,K,X,n)
linear = false;
DY = reshape(DY,n,n).';
g = DY.'*X.'*K.' + DY*X.'*K;
g = g.';
g = g(:);
hess = @(dx) hess_this(dx,K,X,DY);
function [h,Jv] = hess_this(DX,K,X,DY)
m = size(K,1);
DX = reshape(DX,m,[]);
h = K*DX*DY + K.'*DX*DY.';
h = h(:);
if nargin<2
return;
end
Jv = DX.'*K*X + X.'*K*DX;
Jv = Jv(:);
function test_this()
K = randn(4);
X = randn(4,3);
f = XtKX([],K);
test_MV2DF(f,X(:));
|
github | bsxfan/meta-embeddings-master | UtU.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/UtU.m | 945 | utf_8 | 086256cb24f7c7b69d69614ceff1519b | function [prod,deriv] = UtU(w,m,n)
% This is a MV2DF. See MV2DF_API_DEFINITION.readme.
% U = reshape(w,m,n), M = U'*U, prod = M(:).
if nargin==0
test_this();
return;
end
if isempty(w)
prod = @(w)UtU(w,m,n);
return;
end
if isa(w,'function_handle')
outer = UtU([],m,n);
prod = compose_mv(outer,w,[]);
return;
end
w = w(:);
U = reshape(w,m,n);
M = U.'*U;
prod = M(:);
deriv = @(g2) deriv_this(g2,U,m,n);
function [g,hess,linear] = deriv_this(g2,U,m,n)
g = vJ_this(g2,U,n);
linear = false;
hess = @(w) hess_this(w,g2,U,m,n);
function [h,Jv] = hess_this(w,g2,U,m,n)
h = vJ_this(g2,reshape(w,m,n),n);
if nargout>=2
Jv = Jv_this(w,U,m,n);
end
function dy = Jv_this(dw,U,m,n)
dU = reshape(dw,m,n);
dM = U.'*dU;
dM = dM+dM.';
dy = dM(:);
function w = vJ_this(dy,U,n)
dY = reshape(dy,n,n);
dU = U*(dY+dY.');
w = dU(:);
function test_this()
m = 5;
n = 3;
f = UtU([],m,n);
U = randn(m,n);
test_MV2DF(f,U(:));
|
github | bsxfan/meta-embeddings-master | bsxtimes.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/bsxtimes.m | 1,144 | utf_8 | 599b65f85120f5dec9d1a62d06393c35 | function [y,deriv] = bsxtimes(w,m,n)
% This is an MV2DF
%
% w = [vec(A); vec(b) ] --> vec(bsxfun(@times,A,b)),
%
% where A is an m-by-n matrix and
% b is a 1-by-n row.
%
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w) bsxtimes(w,m,n);
return;
end
if isa(w,'function_handle')
f = bsxtimes([],m,n);
y = compose_mv(f,w,[]);
return;
end
[A,b] = extract(w,m,n);
y = bsxfun(@times,A,b);
y = y(:);
deriv = @(Dy) deriv_this(Dy,A,b);
function [g,hess,linear] = deriv_this(Dy,A,b)
g = gradient(Dy,A,b);
linear = false;
hess = @(v) hess_this(v,Dy,A,b);
function [h,Jv] = hess_this(v,Dy,A,b)
[m,n] = size(A);
[vA,vb] = extract(v,m,n);
h = gradient(Dy,vA,vb);
if nargout>1
Jv = bsxfun(@times,vA,b);
Jv = Jv + bsxfun(@times,A,vb);
Jv = Jv(:);
end
function [A,b] = extract(w,m,n)
A = reshape(w(1:m*n),m,n);
b = w(m*n+1:end).';
function g = gradient(Dy,A,b)
Dy = reshape(Dy,size(A));
gA = bsxfun(@times,Dy,b);
gb = sum(Dy.*A,1);
g = [gA(:);gb(:)];
function test_this()
m = 5;
n = 10;
A = randn(m,n);
b = randn(1,n);
w = [A(:);b(:)];
f = bsxtimes([],m,n);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | calibrateScores.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/calibrateScores.m | 1,095 | utf_8 | 36a554ff63a06324896dbea86ca33308 | function [y,deriv] = calibrateScores(w,m,n)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% [vec(A);scal;offs] --> vec(bsxfun(@plus,scal*A,b))
%
% This function retrieves from w:
% (i) an m-by-n matrix, 'scores'
% (ii) a scalar 'scal', and
% (iii) an m-vector, 'offset'
%
% Then it scales the scores and adds the offset vector to every column.
if nargin==0
test_this();
return;
end
if isempty(w)
scoreSz = m*n;
wSz = scoreSz+m+1;
at = 1;
scores = subvec(w,wSz,at,scoreSz);
at = at + scoreSz;
scal = subvec(w,wSz,at,1);
at = at + 1;
offs = subvec(w,wSz,at,m);
scores = gemm(stack(w,scores,scal),scoreSz,1,1);
scores = addOffset(stack(w,scores,offs),m,n);
y = scores;
return;
end
if isa(w,'function_handle')
f = calibrateScores([],m,n);
y = compose_mv(f,w,[]);
return;
end
f = calibrateScores([],m,n);
[y,deriv] = f(w);
function test_this()
m = 5;
n = 10;
scores = randn(m,n);
offs = randn(m,1);
scal = 3;
f = calibrateScores([],m,n);
test_MV2DF(f,[scores(:);scal;offs]);
|
github | bsxfan/meta-embeddings-master | solve_AXeqB.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/solve_AXeqB.m | 1,054 | utf_8 | cff7830e92caa23fabdd038a4e53750d | function [y,deriv] = solve_AXeqB(w,m)
% This is an MV2DF.
%
% [A(:);B(:)] --> inv(A) * B
%
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)solve_AXeqB(w,m);
return;
end
if isa(w,'function_handle')
outer = solve_AXeqB([],m);
y = compose_mv(outer,w,[]);
return;
end
[A,B,n] = extract(w,m);
y = A\B;
deriv = @(dy) deriv_this(dy,m,n,A,A.',y);
y = y(:);
function [g,hess,linear] = deriv_this(dy,m,n,A,At,X)
DXt = reshape(dy,m,n);
DBt = At\DXt;
DAt = -DBt*X.';
g = [DAt(:);DBt(:)];
linear = false;
hess = @(dw) hess_this(dw,m,A,At,X,DBt);
function [h,Jv] = hess_this(dw,m,A,At,X,DBt)
[dA,dB] = extract(dw,m);
D_DBt = -(At\dA.')*DBt;
DX = A\(dB-dA*X);
D_DAt = -(D_DBt*X.'+DBt*DX.');
h = [D_DAt(:);D_DBt(:)];
if nargout>1
Jv = A\(dB-dA*X);
Jv = Jv(:);
end
function [A,B,n] = extract(w,m)
mm = m^2;
A = w(1:mm);
A = reshape(A,m,m);
B = w(mm+1:end);
B = reshape(B,m,[]);
n = size(B,2);
function test_this()
A = randn(5);
B = randn(5,1);
f = solve_AXeqB([],5);
test_MV2DF(f,[A(:);B(:)]);
|
github | bsxfan/meta-embeddings-master | logsoftmax_mv2df.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/logsoftmax_mv2df.m | 1,248 | utf_8 | 1c29a9da21772e72c800bb7be4025fe6 | function [y,deriv] = logsoftmax_mv2df(w,m)
% This is a MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Does:
% (i) Reshapes w to m-by-n.
% (ii) Computes logsoftmax of each of n columns.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)logsoftmax_mv2df(w,m);
return;
end
if isa(w,'function_handle')
outer = logsoftmax_mv2df([],m);
y = compose_mv(outer,w,[]);
return;
end
w = reshape(w,m,[]);
y = logsoftmax(w);
if nargout>1
deriv = @(Dy) deriv_this(Dy,exp(y));
end
y = y(:);
function [g,hess,linear] = deriv_this(Dy,smax)
[m,n] = size(smax);
Dy = reshape(Dy,m,n);
sumDy = sum(Dy,1);
g = Dy - bsxfun(@times,smax,sumDy);
g = g(:);
linear = false;
hess = @(v) hess_this(v,sumDy,smax);
function [h,Jv] = hess_this(V,sumDy,smax)
[m,n] = size(smax);
V = reshape(V,m,n);
Vsmax = V.*smax;
sumVsmax = sum(Vsmax,1);
h = bsxfun(@times,smax,sumVsmax) - Vsmax;
h = bsxfun(@times,h,sumDy);
h = h(:);
if nargout>1
Jv = bsxfun(@minus,V,sumVsmax);
Jv = Jv(:);
end
function test_this()
m = 10;
n = 3;
%A = randn(m);
%map = @(x) reshape(A*reshape(x,m,[]),[],1);
%transmap = @(y) reshape(A'*reshape(y,m,[]),[],1);
%f = linTrans([],map,transmap);
f = logsoftmax_mv2df([],m);
test_MV2DF(f,randn(m*n,1));
|
github | bsxfan/meta-embeddings-master | sqdist.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/sqdist.m | 1,170 | utf_8 | bfa9c639ce948848c20501fec93af59c | function [y,deriv] = sqdist(w,dim)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% If W = reshape(w,dim,n), then Y = vec of symmetric n-by-n matrix of
% 1/2 squared euclidian distances between all columns of W.
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)sqdist(w,dim);
return;
end
if isa(w,'function_handle')
outer = sqdist([],dim);
y = compose_mv(outer,w,[]);
return;
end
X = reshape(w,dim,[]);
N = size(X,2);
XX = 0.5*sum(X.^2,1);
y = bsxfun(@minus,XX.',X.'*X);
y = bsxfun(@plus,y,XX);
y = y(:);
deriv = @(dy) deriv_this(dy,X,N);
function [G,hess,linear] = deriv_this(DY,X,N)
DY = reshape(DY,N,N);
sumDY = sum(DY,1)+sum(DY,2).';
DYDY = DY+DY.';
G = bsxfun(@times,X,sumDY)-X*DYDY;
G = G(:);
linear = false;
hess = @(d) hess_this(d,DYDY,sumDY,X);
function [H,Jv] = hess_this(D,DYDY,sumDY,X)
D = reshape(D,size(X));
H = bsxfun(@times,D,sumDY)-D*DYDY;
H = H(:);
if nargout>=2
DtX = D.'*X;
xd = sum(X.*D,1);
Jv = bsxfun(@minus,xd,DtX + DtX.');
Jv = bsxfun(@plus,Jv,xd.');
Jv = Jv(:);
end
function test_this()
dim = 4;
X = randn(dim,5);
w = X(:);
f = sqdist([],dim);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | dottimes.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/dottimes.m | 884 | utf_8 | 7e8e3dedc670c1f93364db61f3d2b41d | function [y,deriv] = dottimes(w)
% This is an MV2DF
%
% [a; b ] --> a.*b
%
% where length(a) == length(b)
%
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w) dottimes(w);
return;
end
if isa(w,'function_handle')
f = dottimes([]);
y = compose_mv(f,w,[]);
return;
end
w = w(:);
[a,b] = extract(w);
y = a.*b;
deriv = @(Dy) deriv_this(Dy,a,b);
function [g,hess,linear] = deriv_this(Dy,a,b)
g = gradient(Dy,a,b);
linear = false;
hess = @(v) hess_this(v,Dy,a,b);
function [h,Jv] = hess_this(v,Dy,a,b)
[va,vb] = extract(v);
h = gradient(Dy,va,vb);
if nargout>1
Jv = va.*b + a.*vb;
end
function [a,b] = extract(w)
h = length(w)/2;
a = w(1:h);
b = w(h+1:end);
function g = gradient(Dy,a,b)
g = [Dy.*b;Dy.*a];
function test_this()
n = 10;
a = randn(1,n);
b = randn(1,n);
w = [a(:);b(:)];
f = dottimes([]);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | solveChol_AXeqB.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/multivariate/solveChol_AXeqB.m | 1,391 | utf_8 | f2ded36f846a5e9904fd8299ba4a5ed1 | function [y,deriv] = solveChol_AXeqB(w,m)
% This is an MV2DF.
%
% [A(:);B(:)] --> inv(A) * B
%
% We assume A is positive definite and we solve using Choleski
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)solveChol_AXeqB(w,m);
return;
end
if isa(w,'function_handle')
outer = solveChol_AXeqB([],m);
y = compose_mv(outer,w,[]);
return;
end
[A,B,n] = extract(w,m);
if isreal(A)
R = chol(A);
solve = @(B) R\(R.'\B);
else %complex
solve = @(B) A\B;
end
y = solve(B);
deriv = @(dy) deriv_this(dy,m,n,solve,y);
y = y(:);
function [g,hess,linear] = deriv_this(dy,m,n,solve,X)
DXt = reshape(dy,m,n);
DBt = solve(DXt);
DAt = -DBt*X.';
g = [DAt(:);DBt(:)];
linear = false;
hess = @(dw) hess_this(dw,m,solve,X,DBt);
function [h,Jv] = hess_this(dw,m,solve,X,DBt)
[dA,dB] = extract(dw,m);
D_DBt = -solve(dA.'*DBt);
DX = solve(dB-dA*X);
D_DAt = -(D_DBt*X.'+DBt*DX.');
h = [D_DAt(:);D_DBt(:)];
if nargout>1
Jv = solve(dB-dA*X);
Jv = Jv(:);
end
function [A,B,n] = extract(w,m)
mm = m^2;
A = w(1:mm);
A = reshape(A,m,m);
B = w(mm+1:end);
B = reshape(B,m,[]);
n = size(B,2);
function test_this()
m = 3;
n = 10;
k = 8;
Usz = m*n;
Bsz = m*k;
Wsz = Usz+Bsz;
w = [];
U = subvec(w,Wsz,1,Usz);
B = subvec(w,Wsz,Usz+1,Bsz);
A = UtU(U,n,m);
AB = stack(w,A,B);
f = solveChol_AXeqB(AB,m);
w = randn(Wsz,1);
test_MV2DF(f,w,true);
|
github | bsxfan/meta-embeddings-master | test_MV2DF.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/test/test_MV2DF.m | 2,104 | utf_8 | 1f7eea1823322c4c0741c86792fc73c4 | function test_MV2DF(f,x0,do_cstep)
%id_in = identity_trans([]);
%id_out = identity_trans([]);
%f = f(id_in);
%f = id_out(f);
x0 = x0(:);
if ~exist('do_cstep','var')
do_cstep = 1;
end
if do_cstep
Jc = cstepJacobian(f,x0);
end
Jr = rstepJacobian(f,x0);
[y0,deriv] = f(x0);
m = length(y0);
n = length(x0);
J2 = zeros(size(Jr));
for i=1:m;
y = zeros(m,1);
y(i) = 1;
J2(i,:) = deriv(y)';
end
if do_cstep
c_err = max(max(abs(Jc-J2)));
else
c_err = nan;
end
r_err = max(max(abs(Jr-J2)));
fprintf('test gradient : cstep err = %g, rstep err = %g\n',c_err,r_err);
g2 = randn(m,1);
[dummy,hess,linear] = deriv(g2);
if true %~linear
rHess = @(dx) rstep_approxHess(dx,g2,f,x0);
if do_cstep
cHess = @(dx) cstep_approxHess(dx,g2,f,x0);
else
cHess = @(dx) nan(size(dx));
end
end
J1 = zeros(size(Jr));
if true %~linear
H1 = zeros(n,n);
H2 = zeros(n,n);
Hr = zeros(n,n);
Hc = zeros(n,n);
end
for j=1:n;
x = zeros(n,1);
x(j) = 1;
[h1,jx] = hess(x);
h2 = hess(x);
J1(:,j) = jx;
if ~linear
H1(:,j) = h1;
H2(:,j) = h2;
end
Hr(:,j) = rHess(x);
Hc(:,j) = cHess(x);
end
if do_cstep
c_err = max(max(abs(Jc-J1)));
else
c_err = nan;
end
r_err = max(max(abs(Jr-J1)));
fprintf('test Jacobian : cstep err = %g, rstep err = %g\n',c_err,r_err);
fprintf('test Jacobian-gradient'': %g\n',max(max(abs(J1-J2))));
if false %linear
fprintf('function claims to be linear, not testing Hessians\n');
return;
end
r_err = max(max(abs(H1-Hr)));
c_err = max(max(abs(H1-Hc)));
rc_err = max(max(abs(Hr-Hc)));
fprintf('test Hess prod: cstep err = %g, rstep err = %g, cstep-rstep = %g\n',c_err,r_err,rc_err);
fprintf('test H1-H2: %g\n',max(max(abs(H1-H2))));
function x = rstep_approxHess(dx,dy,f,x0)
alpha = sqrt(eps);
x2 = x0 + alpha*dx;
[dummy,deriv2] = f(x2);
x1 = x0 - alpha*dx;
[dummy,deriv1] = f(x1);
g2 = deriv2(dy);
g1 = deriv1(dy);
x = (g2-g1)/(2*alpha);
function p = cstep_approxHess(dx,dy,f,x0)
x = x0 + 1e-20i*dx;
[dummy,deriv] = f(x);
g = deriv(dy);
p = 1e20*imag(g);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.