plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github | bsxfan/meta-embeddings-master | tracer.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/test/tracer.m | 1,081 | utf_8 | 5e8d7ea9aefc9d1c1cc8161546bd9483 | function [w,deriv] = tracer(w,vstring,gstring,jstring)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
% Applies linear transform y = map(w). It needs the transpose of map,
% transmap for computing the gradient. map and transmap are function
% handles.
if nargin==0
test_this();
return;
end
if nargin<2
vstring=[];
end
if nargin<3
gstring=[];
end
if nargin<4
jstring=[];
end
if isempty(w)
w = @(x)tracer(x,vstring,gstring,jstring);
return;
end
if isa(w,'function_handle')
outer = tracer([],vstring,gstring,jstring);
w = compose_mv(outer,w,[]);
return;
end
if ~isempty(vstring)
fprintf('%s\n',vstring);
end
deriv = @(g2) deriv_this(g2,gstring,jstring);
function [g,hess,linear] = deriv_this(g,gstring,jstring)
if ~isempty(gstring)
fprintf('%s\n',gstring);
end
linear = true;
hess = @(d) hess_this(d,jstring);
function [h,Jd] = hess_this(Jd,jstring)
h = [];
if nargout>1
if ~isempty(jstring)
fprintf('%s\n',jstring);
end
end
function test_this()
f = tracer([],'V','G','J');
test_MV2DF(f,randn(5,1));
|
github | bsxfan/meta-embeddings-master | test_MV2DF_noHess.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/test/test_MV2DF_noHess.m | 1,125 | utf_8 | 2af48174c2441c011dffbf316b93612d | function test_MV2DF_noHess(f,x0)
%id_in = identity_trans([]);
%id_out = identity_trans([]);
%f = f(id_in);
%f = id_out(f);
x0 = x0(:);
Jc = cstepJacobian(f,x0);
Jr = rstepJacobian(f,x0);
[y0,deriv] = f(x0);
m = length(y0);
n = length(x0);
J2 = zeros(size(Jr));
for i=1:m;
y = zeros(m,1);
y(i) = 1;
J2(i,:) = deriv(y)';
end
c_err = max(max(abs(Jc-J2)));
r_err = max(max(abs(Jr-J2)));
fprintf('test gradient : cstep err = %g, rstep err = %g\n',c_err,r_err);
g2 = randn(m,1);
rHess = @(dx) rstep_approxHess(dx,g2,f,x0);
cHess = @(dx) cstep_approxHess(dx,g2,f,x0);
Hr = zeros(n,n);
Hc = zeros(n,n);
for j=1:n;
x = zeros(n,1);
x(j) = 1;
Hr(:,j) = rHess(x);
Hc(:,j) = cHess(x);
end
rc_err = max(max(abs(Hr-Hc)));
fprintf('test Hess prod: cstep-rstep = %g\n',rc_err);
function x = rstep_approxHess(dx,dy,f,x0)
alpha = sqrt(eps);
x2 = x0 + alpha*dx;
[dummy,deriv2] = f(x2);
x1 = x0 - alpha*dx;
[dummy,deriv1] = f(x1);
g2 = deriv2(dy);
g1 = deriv1(dy);
x = (g2-g1)/(2*alpha);
function p = cstep_approxHess(dx,dy,f,x0)
x = x0 + 1e-20i*dx;
[dummy,deriv] = f(x);
g = deriv(dy);
p = 1e20*imag(g);
|
github | bsxfan/meta-embeddings-master | inv_lu2.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/utils/inv_lu2.m | 1,044 | utf_8 | 8fa16d13c5b1ad8e681b3f2ba0f9b2c9 | function [inv_map,bi_inv_map,logdet,invA] = inv_lu2(A)
% INV_LU2
% Does a LU decomposition on A and returns logdet, inverse and
% two function handles that respectively map X to A\X and A\X/A.
%
if nargin==0
test_this();
return;
end
[L,T,p] = lu(A,'vector');
P = sparse(p,1:length(p),1);
% P*A = L*U
% L is lower triangular, with unit diagonal and unit determinant
% T is upper triangular, det(T) = prod(diag(T), may have negative values on diagonal
% P is a permuation matrix: P' = inv(P) and det(P) is +1 or -1
%
inv_map = @(X) T\(L\(P*X));
% inv(A)*X*inv(A)
bi_inv_map = @(X) ((inv_map(X)/T)/L)*P;
if nargout>2
logdet = sum(log(diag(T)))-log(det(P));
if nargout>3
invA = T\(L\P);
end
end
function test_this()
dim = 3;
A = randn(dim)+sqrt(-1)*randn(dim);
[inv_map,bi_inv_map,logdet,iA] = inv_lu2(A);
[logdet,log(det(A))]
X = randn(dim,3);
Y1 = A\X,
Y2 = inv_map(X)
Z1 = (A\X)/A
Z2 = bi_inv_map(X)
iA,
inv(A)
|
github | bsxfan/meta-embeddings-master | invchol2.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/utils/invchol2.m | 968 | utf_8 | 936256e3c3a28ed65ad0c15d9fbb04cd | function [inv_map,bi_inv_map,logdet,invA] = invchol2(A)
% INVCHOL2
% Does a Cholesky decomposition on A and returns logdet, inverse and
% two function handles that respectively map X to A\X and A\X/A.
%
if nargin==0
test_this();
return;
end
if isreal(A)
R = chol(A); %R'*R = A
inv_map = @(X) R\(R'\X);
% inv(A)*X*inv(A)
bi_inv_map = @(X) (inv_map(X)/R)/(R');
if nargout>2
logdet = 2*sum(log(diag(R)));
if nargout>3
invA = inv_map(eye(size(A)));
end
end
else
inv_map = @(X) A\X;
% inv(A)*X*inv(A)
bi_inv_map = @(X) (A\X)/A;
if nargout>2
logdet = log(det(A));
if nargout>3
invA = inv_map(eye(size(A)));
end
end
end
function test_this()
dim = 3;
r = randn(dim,2*dim);
A = r*r';
[inv_map,bi_inv_map,logdet,iA] = invchol2(A);
[logdet,log(det(A))]
X = randn(dim,3);
Y1 = A\X,
Y2 = inv_map(X)
Z1 = (A\X)/A
Z2 = bi_inv_map(X)
iA,
inv(A)
|
github | bsxfan/meta-embeddings-master | invchol_or_lu.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/utils/invchol_or_lu.m | 1,418 | utf_8 | 468d08dd52dd54bb77a471a5e2d0a856 | function [inv_map,bi_inv_map,logdet,invA] = invchol_or_lu(A)
% INVCHOL_OR_LU
% Does a Cholesky decomposition on A and returns logdet, inverse and
% two function handles that respectively map X to A\X and A\X/A.
%
if nargin==0
test_this();
return;
end
if isreal(A)
R = chol(A); %R'*R = A
inv_map = @(X) R\(R'\X);
% inv(A)*X*inv(A)
bi_inv_map = @(X) (inv_map(X)/R)/(R');
if nargout>2
logdet = 2*sum(log(diag(R)));
if nargout>3
invA = inv_map(eye(size(A)));
end
end
else
[L,T,p] = lu(A,'vector');
P = sparse(p,1:length(p),1);
% P*A = L*U
% L is lower triangular, with unit diagonal and unit determinant
% T is upper triangular, det(T) = prod(diag(T), may have negative values on diagonal
% P is a permuation matrix: P' = inv(P) and det(P) is +1 or -1
%
inv_map = @(X) T\(L\(P*X));
% inv(A)*X*inv(A)
bi_inv_map = @(X) ((inv_map(X)/T)/L)*P;
if nargout>2
logdet = sum(log(diag(T)))-log(det(P));
if nargout>3
invA = T\(L\P);
end
end
end
function test_this()
dim = 3;
A = randn(dim)+sqrt(-1)*randn(dim);
[inv_map,bi_inv_map,logdet,iA] = invchol_or_lu(A);
[logdet,log(det(A))]
X = randn(dim,3);
Y1 = A\X,
Y2 = inv_map(X)
Z1 = (A\X)/A
Z2 = bi_inv_map(X)
iA,
inv(A)
|
github | bsxfan/meta-embeddings-master | invchol_taylor.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/utils/invchol_taylor.m | 1,241 | utf_8 | 0f52f57c84dc1ae326e32c031541c496 | function [inv_map,logdet] = invchol_taylor(A)
% Does a Cholesky decomposition on A and returns:
% inv_map: a function handle to solve for X in AX = B
% logdet (of A)
%
% This code is designed to work correctly if A has a small complex
% perturbation, such as used in complex step differentiation, even though
% the complex A is not positive definite.
if nargin==0
test_this();
return;
end
if isreal(A)
R = chol(A); %R'*R = A
inv_map = @(X) R\(R'\X);
if nargout>1
logdet = 2*sum(log(diag(R)));
end
if nargout>2
invA = inv_map(eye(size(A)));
end
else
R = chol(real(A));
rmap = @(X) R\(R'\X);
P = rmap(imag(A));
inv_map = @(X) inv_map_complex(X,rmap,P);
if nargout>1
logdet = 2*sum(log(diag(R))) + i*trace(P);
end
end
end
function Y = inv_map_complex(X,rmap,P)
Z = rmap(X);
Y = Z - i*P*Z;
end
function test_this()
dim = 20;
R = randn(dim,dim+1);
C = R*R';
C = C + 1.0e-20i*randn(dim);
[map,logdet] = invchol_taylor(C);
x = randn(dim,1);
maps = imag([map(x),C\x]),
logdets = imag([logdet,log(det(C))])
maps = real([map(x),C\x]),
logdets = real([logdet,log(det(C))])
end
|
github | bsxfan/meta-embeddings-master | train_system.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/discrim_training/train_system.m | 4,969 | utf_8 | 69b1726b853595599d4a79414b256c8b | function [w,mce,divergence,w_pen,c_pen,optimizerState,converged] = train_system(classf,system,penalizer,W0,lambda,confusion,maxiters,maxCG,prior,optimizerState)
%
% Supervised training of a regularized K-class linear logistic
% regression. Allows regularization via weight penalties and via
% label confusion probabilities.
%
%
% Inputs:
% classf: 1-by-N row of class labels, in the range 1..K
%
% system: MV2DF function handle that maps parameters to score matrix.
% Note: The system input data is already wrapped in this handle.
%
% penalizer: MV2DF function handle that maps parameters to a positive regularization penalty.
%
%
% W0: initial parameters. This is NOT optional.
%
%
% confusion: a scalar or a matrix of label confusion probabilities
% -- if this is a K-by-K matrix, then
% entry_ij denotes P(label_j | class i)
%
% -- if scalar: confusion = q, then
% P(label_i | class_i) = 1-q, and
% P(label_j | class_i) = q/(K-1)
%
% maxiters: the maximum number of Newton Trust Region optimization
% iterations to perform. Note, the user can make maxiters
% small, examine the solution and then continue training:
% -- see W0 and optimizerState.
%
%
% prior: a prior probability distribution over the K classes to
% modify the optimization operating point.
% optional:
% omit or use []
% default is prior = ones(1,K)/K
%
% optimizerState: In this implementation, it is the trust region radius.
% optional:
% omit or use []
% If not supplied when resuming iteration,
% this may cost some extra iterations.
% Resume further iteration thus:
% [W1,...,optimizerState] = train_..._logregr(...);
% ... examine solution W1 ...
% [W2,...,optimizerState] = train_..._logregr(...,W1,...,optimizerState);
%
%
%
%
%
% Outputs:
% W: the solution.
% mce: normalized multiclass cross-entropy of the solution.
% The range is 0 (good) to 1(useless).
%
% optimizerState: see above, can be used to resume iteration.
%
if nargin==0
test_this();
return;
end
classf = classf(:)';
K = max(classf);
N = length(classf);
if ~exist('maxCG','var') || isempty(maxCG)
maxCG = 100;
end
if ~exist('optimizerState','var')
optimizerState=[];
end
if ~exist('prior','var') || isempty(prior)
prior = ones(K,1)/K;
else
prior = prior(:);
end
weights = zeros(1,N);
for k = 1:K
fk = find(classf==k);
count = length(fk);
weights(fk) = prior(k)/(count*log(2));
end
if ~exist('confusion','var') || isempty(confusion)
confusion = 0;
end
if isscalar(confusion)
q = confusion;
confusion = (1-q)*eye(K) + (q/(K-1))*(ones(K)-eye(K));
end
post = bsxfun(@times,confusion,prior(:));
post = bsxfun(@times,post,1./sum(post,1));
logpost = post;
nz = logpost>0;
logpost(nz) = log(post(nz));
confusion_entropy = -mean(sum(post.*logpost,1),2);
prior_entropy = -log(prior)'*prior;
c_pen = confusion_entropy/prior_entropy;
fprintf('normalized confusion entropy = %g\n',c_pen);
T = zeros(K,N);
for i=1:N
T(:,i) = post(:,classf(i));
end
w=[];
obj1 = mce_obj(system,T,weights,log(prior));
obj2 = penalizer(w);
obj = sum_of_functions(w,[1,lambda],obj1,obj2);
w0 = W0(:);
[w,y,optimizerState,converged] = trustregion_newton_cg(obj,w0,maxiters,maxCG,optimizerState,[],1);
w_pen = lambda*obj2(w)/prior_entropy;
mce = y/prior_entropy-w_pen;
divergence = mce-c_pen;
fprintf('mce = %g, divergence = %g, conf entr = %g, weight pen = %g\n',mce,divergence,c_pen,w_pen);
function y = score_map(W,X)
[dim,N] = size(X);
W = reshape(W,[],dim+1);
offs = W(:,end);
W(:,end)=[];
y = bsxfun(@plus,W*X,offs);
y = y(:);
function W = score_transmap(y,X)
[dim,N] = size(X);
y = reshape(y,[],N).';
W = [X*y;sum(y)];
W = W.';
W = W(:);
function test_this()
K = 3;
N = 100;
dim = 2;
% ----------------syntesize data -------------------
randn('state',0);
means = randn(dim,K)*10; %signal
X = randn(dim,K*N); % noise
classf = zeros(1,K*N);
ii = 1:N;
for k=1:K
X(:,ii) = bsxfun(@plus,means(:,k),X(:,ii));
classf(ii) = k;
ii = ii+N;
end
N = K*N;
% ---------------- define system -------------------
w=[];
map = @(W) score_map(W,X);
transmap = @(Y) score_transmap(Y,X);
system = linTrans(w,map,transmap);
penalizer = sumsquares_penalty(w,1);
% ------------- train it ------------------------------
confusion = 0.01;
lambda = 0.01;
W0 = zeros(K,dim+1);
W = train_system(classf,system,penalizer,W0,lambda,confusion,20);
% ------------ plot log posterior on training data --------------------
scores = score_system(W,system,K);
scores = logsoftmax(scores);
subplot(1,2,1);plot(scores');
scores = score_system(W,system,K,true);
scores = [scores;zeros(1,N)];
scores = logsoftmax(scores);
subplot(1,2,2);plot(scores');
|
github | bsxfan/meta-embeddings-master | sum_of_functions.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/sum_of_functions.m | 1,094 | utf_8 | af1885792c3ce587c098ffc61a10cc06 | function [y,deriv] = sum_of_functions(w,weights,f,g)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function, s(w), obtained by summing the
% weighted outputs of the given functions:
% s(w) = sum_i weights(i)*functions{i}(w)
%
% Usage examples:
%
% s = @(w) sum_of_functions(w,[1,-1],f,g)
%
% Here f,g are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
weights = weights(:);
if isempty(w)
s = stack(w,f,g,true);
n = length(weights);
map = @(s) reshape(s,[],n)*weights;
transmap = @(y) reshape(y(:)*weights.',[],1);
y = linTrans(s,map,transmap);
return;
end
if isa(w,'function_handle')
f = sum_of_functions([],weights,f,g);
y = compose_mv(f,w,[]);
return;
end
f = sum_of_functions([],weights,f,g);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function test_this()
A = randn(4,4);
B = randn(4,4);
w = [];
f = gemm(w,4,4,4);
g = transpose_mv2df(f,4,4);
%f = A*B;
%g = B'*A';
s = sum_of_functions(w,[-1,1],f,g);
%s = stack(w,f,g);
test_MV2DF(s,[A(:);B(:)]);
|
github | bsxfan/meta-embeddings-master | scale_function.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/scale_function.m | 856 | utf_8 | fae26a24cbea0fcc7ae35cf1642b18e4 | function [y,deriv] = scale_function(w,scale,f)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function,
%
% g(w) = scale(w)*f(w),
%
% where scale is scalar-valued and f is matrix-valued.
%
%
% Here scale and f are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
if isempty(w)
s = stack(w,f,scale);
y = mm_special(s,@(w)reshape(w(1:end-1),[],1),@(w)w(end));
return;
end
if isa(w,'function_handle')
f = scale_function([],scale,f);
y = compose_mv(f,w,[]);
return;
end
f = scale_function([],scale,f);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function test_this()
m = 5;
n = 10;
data = randn(m,n);
scal = 3;
w = [data(:);scal];
g = subvec([],m*n+1,1,m*n);
scal = subvec([],m*n+1,m*n+1,1);
f = scale_function([],scal,g);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | outerprod_of_functions.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/outerprod_of_functions.m | 1,085 | utf_8 | 731782f761b675bb6d3567ddb560c950 | function [y,deriv] = outerprod_of_functions(w,f,g,m,n)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function,
%
% g(w) = f(w)g(w)'
%
% where f(w) and g(w) are column vectors of sizes m and n respectively.
%
% Here f,g are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
if ~exist('n','var'), n=[]; end
function A = extractA(w)
if isempty(m), m = length(w)-n; end
A = w(1:m);
A = A(:);
end
function B = extractB(w)
if isempty(m), m = length(w)-n; end
B = w(1+m:end);
B = B(:).';
end
if isempty(w)
s = stack(w,f,g);
y = mm_special(s,@(w)extractA(w),@(w)extractB(w));
return;
end
if isa(w,'function_handle')
f = outerprod_of_functions([],f,g,m,n);
y = compose_mv(f,w,[]);
return;
end
f = outerprod_of_functions([],f,g,m,n);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
end
function test_this()
m = 5;
n = 3;
w = randn(m+n,1);
f = subvec([],m+n,1,m);
g = subvec([],m+n,m+1,n);
h = outerprod_of_functions([],f,g,m,n);
test_MV2DF(h,w);
end
|
github | bsxfan/meta-embeddings-master | interleave.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/interleave.m | 2,028 | utf_8 | 0cdd5849311559d9813888914f7530cd | function [y,deriv] = interleave(w,functions)
% interleave is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function, s(w), obtained by interleaving the outputs of
% f() and g() thus:
%
% S(w) = [f(w)';g(w)'];
% s(w) = S(:);
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)interleave(w,functions);
return;
end
if isa(w,'function_handle')
outer = interleave([],functions);
y = compose_mv(outer,w,[]);
return;
end
% if ~isa(f,'function_handle')
% f = const_mv2df([],f);
% end
% if ~isa(g,'function_handle')
% g = const_mv2df([],g);
% end
w = w(:);
m = length(functions);
k = length(w);
if nargout==1
y1 = functions{1}(w);
n = length(y1);
y = zeros(m,n);
y(1,:) = y1;
for i=2:m
y(i,:) = functions{i}(w);
end
y = y(:);
return;
end
deriv = cell(1,m);
[y1,deriv{1}] = functions{1}(w);
n = length(y1);
y = zeros(m,n);
y(1,:) = y1;
for i=2:m
[y(i,:),deriv{i}] = functions{i}(w);
end
y = y(:);
deriv = @(g2) deriv_this(g2,deriv,m,n,k);
function [g,hess,linear] = deriv_this(y,deriv,m,n,k)
y = reshape(y,m,n);
if nargout==1
g = deriv{1}(y(1,:).');
for i=2:m
g = g+ deriv{i}(y(i,:).');
end
return;
end
hess = cell(1,m);
lin = false(1,m);
[g,hess{1},lin(1)] = deriv{1}(y(1,:).');
linear = lin(1);
for i=2:m
[gi,hess{i},lin(i)] = deriv{i}(y(i,:).');
g = g + gi;
linear = linear && lin(i);
end
hess = @(d) hess_this(d,hess,lin,m,n,k);
function [h,Jv] = hess_this(d,hess,lin,m,n,k)
if all(lin)
h = [];
else
h = zeros(k,1);
end
if nargout>1
Jv = zeros(m,n);
for i=1:m
[hi,Jv(i,:)] = hess{i}(d);
if ~lin(i)
h = h + hi;
end
end
Jv = Jv(:);
else
for i=1:m
hi = hess{i}(d);
if ~lin(i)
h = h + hi;
end
end
end
function test_this()
w = [];
f = exp_mv2df(w);
g = square_mv2df(w);
h = identity_trans(w);
s = interleave(w,{f,g,h});
w = randn(5,1);
test_MV2DF(s,w);
|
github | bsxfan/meta-embeddings-master | shift_function.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/shift_function.m | 896 | utf_8 | 82abefaa89d6e02403f0b543a3c69a0b | function [y,deriv] = shift_function(w,shift,f)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function,
%
% g(w) = shift(w)+f(w),
%
% where shift is scalar-valued and f is matrix-valued.
%
%
% Here shift and f are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
if isempty(w)
s = stack(w,shift,f);
map = @(s) s(2:end)+s(1);
transmap = @(y) [sum(y);y];
y = linTrans(s,map,transmap);
return;
end
if isa(w,'function_handle')
f = shift_function([],shift,f);
y = compose_mv(f,w,[]);
return;
end
f = shift_function([],shift,f);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function test_this()
m = 5;
n = 10;
data = randn(m,n);
shift = 3;
w = [data(:);shift];
g = subvec([],m*n+1,1,m*n);
shift = subvec([],m*n+1,m*n+1,1);
f = shift_function([],shift,g);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | dotprod_of_functions.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/dotprod_of_functions.m | 952 | utf_8 | 2999899143500736ecbc06d5afc09df0 | function [y,deriv] = dotprod_of_functions(w,f,g)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function,
%
% g(w) = f(w)'g(w)
%
% where f(w) and g(w) are column vectors of the same size.
%
% Here f,g are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
function A = extractA(w)
A = w(1:length(w)/2);
A = A(:).';
end
function B = extractB(w)
B = w(1+length(w)/2:end);
B = B(:) ;
end
if isempty(w)
s = stack(w,f,g);
y = mm_special(s,@(w)extractA(w),@(w)extractB(w));
return;
end
if isa(w,'function_handle')
f = dotprod_of_functions([],f,g);
y = compose_mv(f,w,[]);
return;
end
f = dotprod_of_functions([],f,g);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
end
function test_this()
m = 5;
w = randn(2*m,1);
f = subvec([],2*m,1,m);
g = subvec([],2*m,m+1,m);
h = dotprod_of_functions([],f,g);
test_MV2DF(h,w);
end
|
github | bsxfan/meta-embeddings-master | dottimes_of_functions.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/dottimes_of_functions.m | 641 | utf_8 | 45195e5dddb789f3431e2f84495b06c7 | function [y,deriv] = dottimes_of_functions(w,A,B)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme)
%
% w --> A(w) .* B(w)
%
% Here A and B are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
if isempty(w)
s = stack(w,A,B);
y = dottimes(s);
return;
end
if isa(w,'function_handle')
f = dottimes_of_functions([],A,B);
y = compose_mv(f,w,[]);
return;
end
f = dottimes_of_functions([],A,B);
[y,deriv] = f(w);
function test_this()
M = 4;
X = [];
Xt = transpose_mv2df(X,M,M);
A = UtU(X,M,M);
B = UtU(Xt,M,M);
f = dottimes_of_functions(X,A,B);
test_MV2DF(f,randn(16,1));
|
github | bsxfan/meta-embeddings-master | replace_hessian.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/replace_hessian.m | 1,399 | utf_8 | 1e948d50795df5102876278fd5022da8 | function [y,deriv] = replace_hessian(w,f,cstep)
% This is an MV2DF. See MV2DF_API_DEFINITION.readme.
%
if nargin==0
test_this();
return;
end
if isempty(w)
y = @(w)replace_hessian(w,f,cstep);
return;
end
if isa(w,'function_handle')
outer = replace_hessian([],f,cstep);
y = compose_mv(outer,w,[]);
return;
end
if nargout==1
y = f(w);
else
[y,derivf] = f(w);
deriv = @(dy) deriv_this(dy,derivf,f,w,cstep);
end
end
function [g,hess,linear] = deriv_this(dy,derivf,f,w,cstep)
g = derivf(dy);
if nargout>1
linear = false;
hess = @(dx) hess_this(dx,dy,f,w,cstep);
end
end
function [h,Jv] = hess_this(dx,dy,f,w,cstep)
if cstep
h = cstep_approxHess(dx,dy,f,w);
else
h = rstep_approxHess(dx,dy,f,w);
end
if nargout>1
error('replace_hessian cannot compute Jv');
%Jv = zeros(size(dy));
end
end
function x = rstep_approxHess(dx,dy,f,x0)
alpha = sqrt(eps);
x2 = x0 + alpha*dx;
[dummy,deriv2] = f(x2);
x1 = x0 - alpha*dx;
[dummy,deriv1] = f(x1);
g2 = deriv2(dy);
g1 = deriv1(dy);
x = (g2-g1)/(2*alpha);
end
function p = cstep_approxHess(dx,dy,f,x0)
x = x0 + 1e-20i*dx;
[dummy,deriv] = f(x);
g = deriv(dy);
p = 1e20*imag(g);
end
function test_this()
A = randn(5);
B = randn(5,1);
map = @(w) 5*w;
h = linTrans([],map,map);
f = solve_AXeqB([],5);
g = replace_hessian([],f,true);
g = g(h);
w = [A(:);B(:)];
test_MV2DF(g,w);
end
|
github | bsxfan/meta-embeddings-master | product_of_functions.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/product_of_functions.m | 745 | utf_8 | ae86bc0a8429bacd6044704a6a8a0e06 | function [y,deriv] = product_of_functions(w,A,B,m,k,n)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme)
%
% w --> vec ( reshape(A(w),m,k) * reshape(B(w),k,n) )
%
% Here A and B are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
if isempty(w)
s = stack(w,A,B);
y = gemm(s,m,k,n);
return;
end
if isa(w,'function_handle')
f = product_of_functions([],A,B,m,k,n);
y = compose_mv(f,w,[]);
return;
end
f = product_of_functions([],A,B,m,k,n);
[y,deriv] = f(w);
function test_this()
M = 4;
N = 4;
X = [];
Xt = transpose_mv2df(X,M,N);
A = UtU(X,M,N);
B = UtU(Xt,N,M);
%A = A(randn(16,1));
%B = B(randn(16,1));
f = product_of_functions(X,A,B,4,4,4);
test_MV2DF(f,randn(16,1));
|
github | bsxfan/meta-embeddings-master | stack.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/stack.m | 3,136 | utf_8 | cbfe5ccd3255b5021692c3eb13e1798f | function [y,deriv] = stack(w,f,g,eqlen)
% STACK is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function, s(w), obtained by stacking the outputs of
% f() and g() thus:
% s(w) = [f(w);g(w)]
if nargin==0
test_this();
return;
end
if ~exist('eqlen','var')
eqlen = false;
end
if isempty(w)
y = @(w)stack(w,f,g,eqlen);
return;
end
if isa(w,'function_handle')
outer = stack([],f,g,eqlen);
y = compose_mv(outer,w,[]);
return;
end
% if ~isa(f,'function_handle')
% f = const_mv2df([],f);
% end
% if ~isa(g,'function_handle')
% g = const_mv2df([],g);
% end
w = w(:);
if nargout==1
y1 = f(w);
y2 = g(w);
n1 = length(y1);
n2 = length(y2);
if eqlen, assert(n1==n2,'length(f(w))=%i must equal length(g(w))=%i.',n1,n2); end
y = [y1;y2];
return;
end
[y1,deriv1] = f(w);
[y2,deriv2] = g(w);
y = [y1;y2];
n1 = length(y1);
n2 = length(y2);
if eqlen, assert(n1==n2,'length(f(w))=%i must equal length(g(w))=%i.',n1,n2); end
deriv = @(g2) deriv_this(g2,deriv1,deriv2,n1);
function [g,hess,linear] = deriv_this(y,deriv1,deriv2,n1)
if nargout==1
g1 = deriv1(y(1:n1));
g2 = deriv2(y(n1+1:end));
g = g1 + g2;
return;
end
[g1,hess1,lin1] = deriv1(y(1:n1));
[g2,hess2,lin2] = deriv2(y(n1+1:end));
g = g1+g2;
linear = lin1 && lin2;
hess = @(d) hess_this(d,hess1,hess2,lin1,lin2);
function [h,Jv] = hess_this(d,hess1,hess2,lin1,lin2)
if nargout>1
[h1,Jv1] = hess1(d);
[h2,Jv2] = hess2(d);
Jv = [Jv1;Jv2];
else
[h1] = hess1(d);
[h2] = hess2(d);
end
if lin1 && lin2
h = [];
elseif ~lin1 && ~lin2
h = h1 + h2;
elseif lin2
h = h1;
else
h = h2;
end
function test_this()
fprintf('-------------- Test 1 ------------------------\n');
fprintf('Stack [f(w);g(w)]: f() is non-linear and g() is non-linear:\n');
A = randn(4,5);
B = randn(5,4);
w = [];
f = gemm(w,4,5,4);
g = gemm(subvec(w,40,1,20),2,5,2);
s = stack(w,f,g);
w = [A(:);B(:)];
test_MV2DF(s,w);
fprintf('--------------------------------------\n\n');
fprintf('-------------- Test 2 ------------------------\n');
fprintf('Stack [f(w);g(w)]: f() is linear and g() is non-linear:\n');
A = randn(4,5);
B = randn(5,4);
w = [A(:);B(:)];
T = randn(40);
f = @(w) linTrans(w,@(x)T*x,@(y)T.'*y);
g = @(w) gemm(w,4,5,4);
s = @(w) stack(w,f,g);
test_MV2DF(s,w);
fprintf('--------------------------------------\n\n');
fprintf('-------------- Test 3 ------------------------\n');
fprintf('Stack [f(w);g(w)]: f() is non-linear and g() is linear:\n');
A = randn(4,5);
B = randn(5,4);
w = [A(:);B(:)];
T = randn(40);
f = @(w) linTrans(w,@(x)T*x,@(y)T.'*y);
g = @(w) gemm(w,4,5,4);
s = @(w) stack(w,g,f);
test_MV2DF(s,w);
fprintf('--------------------------------------\n\n');
fprintf('-------------- Test 4 ------------------------\n');
fprintf('Stack [f(w);g(w)]: f() is linear and g() is linear:\n');
w = randn(10,1);
T1 = randn(11,10);
f = @(w) linTrans(w,@(x)T1*x,@(y)T1.'*y);
T2 = randn(12,10);
g = @(w) linTrans(w,@(x)T2*x,@(y)T2.'*y);
s = @(w) stack(w,g,f);
test_MV2DF(s,w);
fprintf('--------------------------------------\n\n');
|
github | bsxfan/meta-embeddings-master | scale_and_translate.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/scale_and_translate.m | 1,341 | utf_8 | 121b1cd2e23a3d7111f310db8e3b6a05 | function [y,deriv] = scale_and_translate(w,vectors,params,m,n)
% This is an MV2DF (see MV2DF_API_DEFINITION.readme) which
% represents the new function, obtained by scaling and translating the
% column vectors of the output matrix of the function vectors(w). The
% scaling and translation parameters, params(w) is also a function of w.
%
% The output, y is calulated as follows:
%
% V = reshape(vectors(w),m,n);
% [scal;offs] = params(w); where scal is scalar and offs is m-by-1
% y = bsxfun(@plus,scal*V,offs);
% y = y(:);
%
% Usage examples:
%
% s = @(w) sum_of_functions(w,[1,-1],f,g)
%
% Here f,g are function handles to MV2DF's.
if nargin==0
test_this();
return;
end
if isempty(w)
s = stack(w,vectors,params);
y = calibrateScores(s,m,n);
return;
end
if isa(w,'function_handle')
f = scale_and_translate([],vectors,params,m,n);
y = compose_mv(f,w,[]);
return;
end
f = scale_and_translate([],vectors,params,m,n);
if nargout==1
y = f(w);
else
[y,deriv] = f(w);
end
function test_this()
m = 5;
n = 10;
data = randn(m,n);
offs = randn(m,1);
scal = 3;
w = [data(:);scal;offs];
vectors = subvec([],m*n+m+1,1,m*n);
%vectors = randn(size(data));
params = subvec([],m*n+m+1,m*n+1,m+1);
%params = [scal;offs];
f = scale_and_translate([],vectors,params,m,n);
test_MV2DF(f,w);
|
github | bsxfan/meta-embeddings-master | compose_mv.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_combination/compose_mv.m | 2,958 | utf_8 | 108f7eb78b4ff77e907d369fc9ae14db | function [y,deriv] = compose_mv(outer,inner,x)
% COMPOSE_MV is an MV2DF (see MV2DF_API_DEFINITION.readme) which represents
% the combination of two functions. If 'outer' is an MV2DF for a function
% g() and 'inner' for a function f(), then this MV2DF represents g(f(x)).
%feature scopedaccelenablement off
if nargin==0
test_this();
return;
end
if isempty(x)
y = @(w)compose_mv(outer,inner,w);
return;
end
if isa(x,'function_handle')
fh = compose_mv(outer,inner,[]); % fh =@(x) outer(inner(x))
y = compose_mv(fh,x,[]); % y =@(w) outer(inner(x(w)))
return;
end
% if ~isa(outer,'function_handle')
% outer = const_mv2df([],outer);
% end
% if ~isa(inner,'function_handle')
% inner = const_mv2df([],inner);
% end
if nargout==1
y = outer(inner(x));
return;
end
[y1,deriv1] = inner(x);
[y,deriv2] = outer(y1);
deriv = @(g3) deriv_this(deriv1,deriv2,g3);
function [g,hess,linear] = deriv_this(deriv1,deriv2,g3)
if nargout==1
g = deriv1(deriv2(g3));
return;
end
[g2,hess2,lin2] = deriv2(g3);
[g,hess1,lin1] = deriv1(g2);
hess =@(d) hess_this(deriv1,hess1,hess2,lin1,lin2,d);
linear = lin1 && lin2;
function [h,Jv] = hess_this(deriv1,hess1,hess2,lin1,lin2,d)
if nargout==1
if ~lin2
[h1,Jv1] = hess1(d);
h2 = hess2(Jv1);
h2 = deriv1(h2);
elseif ~lin1
h1 = hess1(d);
end
else
[h1,Jv1] = hess1(d);
[h2,Jv] = hess2(Jv1);
if ~lin2
h2 = deriv1(h2);
end
end
if lin1 && lin2
h=[];
elseif (~lin1) && (~lin2)
h = h1+h2;
elseif lin1
h = h2;
else % if lin2
h = h1;
end
function test_this()
fprintf('-------------- Test 1 ------------------------\n');
fprintf('Composition g(f(w)): f() is non-linear and g() is non-linear:\n');
A = randn(4,5);
B = randn(5,4);
w = [A(:);B(:)];
f = @(w) gemm(w,4,5,4);
g1 = gemm(f,2,4,2);
test_MV2DF(g1,w);
fprintf('--------------------------------------\n\n');
fprintf('-------------- Test 2 ------------------------\n');
fprintf('Composition g(f(w)): f() is linear and g() is non-linear:\n');
A = randn(4,5);
B = randn(5,4);
w = [A(:);B(:)];
T = randn(40);
f = @(w) linTrans(w,@(x)T*x,@(y)T.'*y);
g2 = gemm(f,4,5,4);
test_MV2DF(g2,w);
fprintf('--------------------------------------\n\n');
fprintf('-------------- Test 3 ------------------------\n');
fprintf('Composition g(f(w)): f() is non-linear and g() is linear:\n');
A = randn(4,5);
B = randn(5,4);
w = [A(:);B(:)];
f = @(w) gemm(w,4,5,4);
T = randn(16);
g3 = linTrans(f,@(x)T*x,@(y)T.'*y);
test_MV2DF(g3,w);
fprintf('--------------------------------------\n\n');
fprintf('-------------- Test 4 ------------------------\n');
fprintf('Composition g(f(w)): f() is linear and g() is linear:\n');
w = randn(10,1);
T1 = randn(11,10);
f = @(w) linTrans(w,@(x)T1*x,@(y)T1.'*y);
T2 = randn(5,11);
g4 = linTrans(f,@(x)T2*x,@(y)T2.'*y);
test_MV2DF(g4,w);
fprintf('--------------------------------------\n\n');
|
github | bsxfan/meta-embeddings-master | pav_calibration.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/calibration/pav_calibration.m | 2,716 | utf_8 | 2a9298835be5d7757fb4d660a5a2d7b3 | function [pav_trans,score_bounds,llr_bounds] = pav_calibration(tar,non,small_val)
% Creates a calibration transformation function using the PAV algorithm.
% Inputs:
% tar: A vector of target scores.
% non: A vector of non-target scores.
% small_val: An offset to make the transformation function
% invertible. small_val is subtracted from the left-hand side
% of the bin and added to the right-hand side (and the bin
% height is linear between its left and right ends).
% Outputs:
% pav_trans: The transformation function. It takes in scores and
% outputs (calibrated) log-likelihood ratios.
% score_bounds: The left and right ends of the line segments
% that make up the transformation.
% llr_bounds: The lower and upper ends of the line segments that
% make up the transformation.
if nargin==0
test_this()
return
else
assert(nargin==3)
assert(size(tar,1)==1)
assert(size(non,1)==1)
assert(length(tar)>0)
assert(length(non)>0)
end
largeval = 1e6;
scores = [-largeval tar non largeval];
Pideal = [ones(1,length(tar)+1),zeros(1,length(non)+1)];
[scores,perturb] = sort(scores);
Pideal = Pideal(perturb);
[Popt,width,height] = pavx(Pideal);
data_prior = (length(tar)+1)/length(Pideal);
llr = logit(Popt) - logit(data_prior);
bnd_ndx = make_bnd_ndx(width);
score_bounds = scores(bnd_ndx);
llr_bounds = llr(bnd_ndx);
llr_bounds(1:2:end) = llr_bounds(1:2:end) - small_val;
llr_bounds(2:2:end) = llr_bounds(2:2:end) + small_val;
pav_trans = @(s) pav_transform(s,score_bounds,llr_bounds);
end
function scr_out = pav_transform(scr_in,score_bounds,llr_bounds)
scr_out = zeros(1,length(scr_in));
for ii=1:length(scr_in)
x = scr_in(ii);
[x1,x2,v1,v2] = get_line_segment_vals(x,score_bounds,llr_bounds);
scr_out(ii) = (v2 - v1) * (x - x1) / (x2 - x1) + v1;
end
end
function bnd_ndx = make_bnd_ndx(width)
len = length(width)*2;
c = cumsum(width);
bnd_ndx = zeros(1,len);
bnd_ndx(1:2:len) = [1 c(1:end-1)+1];
bnd_ndx(2:2:len) = c;
end
function [x1,x2,v1,v2] = get_line_segment_vals(x,score_bounds,llr_bounds)
p = find(x>=score_bounds,1,'last');
x1 = score_bounds(p);
x2 = score_bounds(p+1);
v1 = llr_bounds(p);
v2 = llr_bounds(p+1);
end
function test_this()
ntar = 10;
nnon = 12;
tar = 2*randn(1,ntar)+2;
non = 2*randn(1,nnon)-2;
tarnon = [tar non];
scores = [-inf tarnon inf];
Pideal = [ones(1,length(tar)+1),zeros(1,length(non)+1)];
[scores,perturb] = sort(scores);
Pideal = Pideal(perturb);
[Popt,width,height] = pavx(Pideal);
data_prior = (length(tar)+1)/length(Pideal);
llr = logit(Popt) - logit(data_prior);
[dummy,pinv] = sort(perturb);
tmp = llr(pinv);
llr = tmp(2:end-1)
pav_trans = pav_calibration(tar,non,0);
pav_trans(tarnon)
end
|
github | bsxfan/meta-embeddings-master | align_with_ndx.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Scores/align_with_ndx.m | 2,628 | utf_8 | 5899b5e5bd43dea8280d84cea8fdf0ec | function aligned_scr = align_with_ndx(scr,ndx)
% The ordering in the output Scores object corresponds to ndx, so
% aligning several Scores objects with the same ndx will result in
% them being comparable with each other.
% Inputs:
% scr: a Scores object
% ndx: a Key or Ndx object
% Outputs:
% aligned_scr: scr resized to size of 'ndx' and reordered
% according to the ordering of modelset and segset in 'ndx'.
if nargin==1
test_this();
return
end
assert(nargin==2)
assert(isa(scr,'Scores'))
assert(isa(ndx,'Key')||isa(ndx,'Ndx'))
assert(scr.validate())
assert(ndx.validate())
aligned_scr = Scores();
aligned_scr.modelset = ndx.modelset;
aligned_scr.segset = ndx.segset;
m = length(ndx.modelset);
n = length(ndx.segset);
[hasmodel,rindx] = ismember(ndx.modelset,scr.modelset);
rindx = rindx(hasmodel);
[hasseg,cindx] = ismember(ndx.segset,scr.segset);
cindx = cindx(hasseg);
aligned_scr.scoremat = zeros(m,n);
aligned_scr.scoremat(hasmodel,hasseg) = double(scr.scoremat(rindx,cindx));
aligned_scr.scoremask = false(m,n);
aligned_scr.scoremask(hasmodel,hasseg) = scr.scoremask(rindx,cindx);
assert(sum(aligned_scr.scoremask(:)) <= sum(hasmodel)*sum(hasseg));
if isa(ndx,'Ndx')
aligned_scr.scoremask = aligned_scr.scoremask & ndx.trialmask;
else
aligned_scr.scoremask = aligned_scr.scoremask & (ndx.tar | ndx.non);
end
if sum(hasmodel)<m
log_warning('models reduced from %i to %i\n',m,sum(hasmodel));
end
if sum(hasseg)<n
log_warning('testsegs reduced from %i to %i\n',n,sum(hasseg));
end
if isa(ndx,'Key') %supervised
tar = ndx.tar & aligned_scr.scoremask;
non = ndx.non & aligned_scr.scoremask;
missing = sum(ndx.tar(:)) - sum(tar(:));
if missing > 0
log_warning('%i of %i targets missing.\n',missing,sum(ndx.tar(:)));
end
missing = sum(ndx.non(:)) - sum(non(:));
if missing > 0
log_warning('%i of %i non-targets missing.\n',missing,sum(ndx.non(:)));
end
else
mask = ndx.trialmask & aligned_scr.scoremask;
missing = sum(ndx.trialmask(:)) - sum(mask(:));
if missing > 0
log_warning('%i of %i trials missing\n',missing,sum(ndx.trialmask(:)));
end
end
assert(all(isfinite(aligned_scr.scoremat(aligned_scr.scoremask(:)))))
assert(aligned_scr.validate())
end
function test_this()
key = Key();
key.modelset = {'1','2','3'};
key.segset = {'a','b','c'};
key.tar = logical(eye(3));
key.non = ~key.tar;
scr = Scores();
scr.scoremat = [1 2 3; 4 5 6; 7 8 9];
scr.scoremask = true(3);
scr.modelset = {'3','2','1'};
scr.segset = {'c','b','a'};
scores = scr.scoremat,
scr = scr.align_with_ndx(key);
scores = scr.scoremat,
end
|
github | bsxfan/meta-embeddings-master | filter.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Scores/filter.m | 2,622 | utf_8 | ebaa2297b42e23384ffa07c12bdcc005 | function outscr = filter(inscr,modlist,seglist,keep)
% Removes some of the information in a Scores object. Useful for
% creating a gender specific score set from a pooled gender score
% set. Depending on the value of 'keep', the two input lists
% indicate the models and test segments (and their associated
% scores) to retain or discard.
% Inputs:
% inscr: A Scores object.
% modlist: A cell array of strings which will be compared with
% the modelset of 'inscr'.
% seglist: A cell array of strings which will be compared with
% the segset of 'inscr'.
% keep: A boolean indicating whether modlist and seglist are the
% models to keep or discard.
% Outputs:
% outscr: A filtered version of 'inscr'.
if nargin == 0
test_this();
return
end
assert(nargin==4)
assert(isa(inscr,'Scores'))
assert(iscell(modlist))
assert(iscell(seglist))
assert(inscr.validate())
if keep
keepmods = modlist;
keepsegs = seglist;
else
keepmods = setdiff(inscr.modelset,modlist);
keepsegs = setdiff(inscr.segset,seglist);
end
keepmodidx = ismember(inscr.modelset,keepmods);
keepsegidx = ismember(inscr.segset,keepsegs);
outscr = Scores();
outscr.modelset = inscr.modelset(keepmodidx);
outscr.segset = inscr.segset(keepsegidx);
outscr.scoremat = inscr.scoremat(keepmodidx,keepsegidx);
outscr.scoremask = inscr.scoremask(keepmodidx,keepsegidx);
assert(outscr.validate())
if length(inscr.modelset) > length(outscr.modelset)
log_info('Number of models reduced from %d to %d.\n',length(inscr.modelset),length(outscr.modelset));
end
if length(inscr.segset) > length(outscr.segset)
log_info('Number of test segments reduced from %d to %d.\n',length(inscr.segset),length(outscr.segset));
end
end
function test_this()
scr = Scores();
scr.modelset = {'aaa','bbb','ccc','ddd'};
scr.segset = {'11','22','33','44','55'};
scr.scoremat = [1,2,3,4,5;6,7,8,9,10;11,12,13,14,15;16,17,18,19,20];
scr.scoremask = true(4,5);
fprintf('scr.modelset\n');
disp(scr.modelset)
fprintf('scr.segset\n');
disp(scr.segset)
fprintf('scr.scoremat\n');
disp(scr.scoremat)
modlist = {'bbb','ddd'}
seglist = {'11','55'}
keep = true
out = Scores.filter(scr,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.scoremat\n');
disp(out.scoremat)
fprintf('out.scoremask\n');
disp(out.scoremask)
keep = false
out = Scores.filter(scr,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.scoremat\n');
disp(out.scoremat)
fprintf('out.scoremask\n');
disp(out.scoremask)
end
|
github | bsxfan/meta-embeddings-master | filter.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Key/filter.m | 3,047 | utf_8 | 9274e13ab0bf80ca9a90fd6f46da8ff0 | function outkey = filter(inkey,modlist,seglist,keep)
% Removes some of the information in a key. Useful for creating a
% gender specific key from a pooled gender key. Depending on the
% value of 'keep', the two input lists indicate the strings to
% retain or the strings to discard.
% Inputs:
% inkey: A Key object.
% modlist: A cell array of strings which will be compared with
% the modelset of 'inkey'.
% seglist: A cell array of strings which will be compared with
% the segset of 'inkey'.
% keep: A boolean indicating whether modlist and seglist are the
% models to keep or discard.
% Outputs:
% outkey: A filtered version of 'inkey'.
if nargin == 0
test_this();
return
else
assert(nargin==4)
end
assert(isa(inkey,'Key'))
assert(iscell(modlist))
assert(iscell(seglist))
assert(inkey.validate())
if keep
keepmods = modlist;
keepsegs = seglist;
else
keepmods = setdiff(inkey.modelset,modlist);
keepsegs = setdiff(inkey.segset,seglist);
end
keepmodidx = ismember(inkey.modelset,keepmods);
keepsegidx = ismember(inkey.segset,keepsegs);
outkey = Key();
outkey.modelset = inkey.modelset(keepmodidx);
outkey.segset = inkey.segset(keepsegidx);
outkey.tar = inkey.tar(keepmodidx,keepsegidx);
outkey.non = inkey.non(keepmodidx,keepsegidx);
assert(outkey.validate())
if length(inkey.modelset) > length(outkey.modelset)
log_info('Number of models reduced from %d to %d.\n',length(inkey.modelset),length(outkey.modelset));
end
if length(inkey.segset) > length(outkey.segset)
log_info('Number of test segments reduced from %d to %d.\n',length(inkey.segset),length(outkey.segset));
end
end
function test_this()
key = Key();
key.modelset = {'aaa','bbb','ccc','ddd'};
key.segset = {'11','22','33','44','55'};
key.tar = logical([1,0,0,1,0;0,1,0,1,1;0,0,0,1,0;1,1,0,0,0]);
key.non = logical([0,1,0,0,0;1,0,0,0,0;1,1,1,0,0;0,0,1,1,1]);
fprintf('key.modelset\n');
disp(key.modelset)
fprintf('key.segset\n');
disp(key.segset)
fprintf('key.tar\n');
disp(key.tar)
fprintf('key.non\n');
disp(key.non)
modlist = {'bbb','ddd'}
seglist = {'11','55'}
keep = true
out = Key.filter(key,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.tar\n');
disp(out.tar)
fprintf('out.non\n');
disp(out.non)
keep = false
out = Key.filter(key,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.tar\n');
disp(out.tar)
fprintf('out.non\n');
disp(out.non)
modlist = {'bbb','ddd','eee'}
seglist = {'11','66','77','55'}
keep = true
out = Key.filter(key,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.tar\n');
disp(out.tar)
fprintf('out.non\n');
disp(out.non)
keep = false
out = Key.filter(key,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.tar\n');
disp(out.tar)
fprintf('out.non\n');
disp(out.non)
end
|
github | bsxfan/meta-embeddings-master | read_hdf5.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Key/read_hdf5.m | 1,196 | utf_8 | 4057278a996259de22fed6ee29c5d3b2 | function key = read_hdf5(infilename)
% Reads a Key object from an hdf5 file.
% Inputs:
% infilename: The name for the hdf5 file to read.
% Outputs:
% key: A Key object created from the information in the hdf5
% file.
assert(nargin==1)
assert(isa(infilename,'char'))
key = Key();
key.modelset = h5strings_to_cell(infilename,'/ID/row_ids');
key.segset = h5strings_to_cell(infilename,'/ID/column_ids');
oldformat = false;
info = hdf5info(infilename);
datasets = info.GroupHierarchy.Datasets;
for ii=1:length(datasets)
if strcmp(datasets(ii).Name,'/target_mask')
oldformat = true;
end
end
if oldformat
key.tar = logical(hdf5read(infilename,'/target_mask','V71Dimensions',true));
key.non = logical(hdf5read(infilename,'/nontarget_mask','V71Dimensions',true));
else
trialmask = hdf5read(infilename,'/trial_mask','V71Dimensions',true);
key.tar = trialmask > 0.5;
key.non = trialmask < -0.5;
end
assert(key.validate())
function cellstrarr = h5strings_to_cell(infilename,attribname)
tmp = hdf5read(infilename,attribname,'V71Dimensions',true);
numentries = length(tmp);
cellstrarr = cell(numentries,1);
for ii=1:numentries
cellstrarr{ii} = tmp(ii).Data;
end
|
github | bsxfan/meta-embeddings-master | filter.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Ndx/filter.m | 2,788 | utf_8 | 6d39760ecafc786f43259d1adb98a810 | function outndx = filter(inndx,modlist,seglist,keep)
% Removes some of the information in an Ndx. Useful for creating a
% gender specific Ndx from a pooled gender Ndx. Depending on the
% value of 'keep', the two input lists indicate the strings to
% retain or the strings to discard.
% Inputs:
% inndx: An Ndx object.
% modlist: A cell array of strings which will be compared with
% the modelset of 'inndx'.
% seglist: A cell array of strings which will be compared with
% the segset of 'inndx'.
% keep: A boolean indicating whether modlist and seglist are the
% models to keep or discard.
% Outputs:
% outndx: A filtered version of 'inndx'.
if nargin == 0
test_this();
return
end
assert(nargin==4)
assert(isa(inndx,'Ndx'))
assert(inndx.validate())
assert(iscell(modlist))
assert(iscell(seglist))
if keep
keepmods = modlist;
keepsegs = seglist;
else
keepmods = setdiff(inndx.modelset,modlist);
keepsegs = setdiff(inndx.segset,seglist);
end
keepmodidx = ismember(inndx.modelset,keepmods);
keepsegidx = ismember(inndx.segset,keepsegs);
outndx = Ndx();
outndx.modelset = inndx.modelset(keepmodidx);
outndx.segset = inndx.segset(keepsegidx);
outndx.trialmask = inndx.trialmask(keepmodidx,keepsegidx);
assert(outndx.validate())
if length(inndx.modelset) > length(outndx.modelset)
log_info('Number of models reduced from %d to %d.\n',length(inndx.modelset),length(outndx.modelset));
end
if length(inndx.segset) > length(outndx.segset)
log_info('Number of test segments reduced from %d to %d.\n',length(inndx.segset),length(outndx.segset));
end
end
function test_this()
ndx = Ndx();
ndx.modelset = {'aaa','bbb','ccc','ddd'};
ndx.segset = {'11','22','33','44','55'};
ndx.trialmask = true(4,5);
fprintf('ndx.modelset\n');
disp(ndx.modelset)
fprintf('ndx.segset\n');
disp(ndx.segset)
fprintf('ndx.trialmask\n');
disp(ndx.trialmask)
modlist = {'bbb','ddd'}
seglist = {'11','55'}
keep = true
out = Ndx.filter(ndx,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.trialmask\n');
disp(out.trialmask)
keep = false
out = Ndx.filter(ndx,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.trialmask\n');
disp(out.trialmask)
modlist = {'bbb','ddd','eee'}
seglist = {'11','66','77','55'}
keep = true
out = Ndx.filter(ndx,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.trialmask\n');
disp(out.trialmask)
keep = false
out = Ndx.filter(ndx,modlist,seglist,keep);
fprintf('out.modelset\n');
disp(out.modelset)
fprintf('out.segset\n');
disp(out.segset)
fprintf('out.trialmask\n');
disp(out.trialmask)
end
|
github | bsxfan/meta-embeddings-master | read_hdf5.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Ndx/read_hdf5.m | 838 | utf_8 | 424ae971c22eb22cf8c27af6130b9698 | function ndx = read_hdf5(infilename)
% Creates an Ndx object from the information in an hdf5 file.
% Inputs:
% infilename: The name of the hdf5 file contain the information
% necessary to construct an Ndx object.
% Outputs:
% ndx: An Ndx object containing the information in the input
% file.
assert(nargin==1)
assert(isa(infilename,'char'))
ndx = Ndx();
ndx.modelset = h5strings_to_cell(infilename,'/ID/row_ids');
ndx.segset = h5strings_to_cell(infilename,'/ID/column_ids');
ndx.trialmask = logical(hdf5read(infilename,'/trial_mask','V71Dimensions',true));
assert(ndx.validate())
function cellstrarr = h5strings_to_cell(infilename,attribname)
tmp = hdf5read(infilename,attribname,'V71Dimensions',true);
numentries = length(tmp);
cellstrarr = cell(numentries,1);
for ii=1:numentries
cellstrarr{ii} = tmp(ii).Data;
end
|
github | bsxfan/meta-embeddings-master | filter_on_right.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Id_Map/filter_on_right.m | 1,885 | utf_8 | deb124220c828ae065475bc93957d53f | function out_idmap = filter_on_right(in_idmap,idlist,keep)
% Removes some of the information in an idmap. Depending on the
% value of 'keep', the idlist indicates the strings to retain or
% the strings to discard.
% Inputs:
% in_idmap: An Id_Map object to be pruned.
% idlist: A cell array of strings which will be compared with
% the rightids of 'in_idmap'.
% keep: A boolean indicating whether idlist contains the ids to
% keep or to discard.
% Outputs:
% out_idmap: A filtered version of 'in_idmap'.
if nargin == 0
test_this();
return
end
assert(nargin==3)
assert(isa(in_idmap,'Id_Map'))
assert(in_idmap.validate())
assert(iscell(idlist))
if keep
keepids = idlist;
else
keepids = setdiff(in_idmap.rightids,idlist);
end
keep_idx = ismember(in_idmap.rightids,keepids);
out_idmap = Id_Map();
out_idmap.leftids = in_idmap.leftids(keep_idx);
out_idmap.rightids = in_idmap.rightids(keep_idx);
assert(out_idmap.validate(false))
end
function test_this()
idmap = Id_Map();
idmap.leftids = {'aaa','bbb','ccc','bbb','ddd','eee'};
idmap.rightids = {'11','22','33','44','55','22'};
fprintf('idmap.leftids\n');
disp(idmap.leftids)
fprintf('idmap.rightids\n');
disp(idmap.rightids)
idlist = {'22','44'}
keep = true
out = Id_Map.filter_on_right(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
keep = false
out = Id_Map.filter_on_right(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
idlist = {'11','33','66'}
keep = true
out = Id_Map.filter_on_right(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
keep = false
out = Id_Map.filter_on_right(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
end
|
github | bsxfan/meta-embeddings-master | read_hdf5.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Id_Map/read_hdf5.m | 777 | utf_8 | 47581f23817e49ffc325aed95a088106 | function idmap = read_hdf5(infilename)
% Creates an Id_Map object from the information in an hdf5 file.
% Inputs:
% infilename: The name of the hdf5 file containing the information
% necessary to construct an Id_Map object.
% Outputs:
% idmap: An Id_Map object containing the information in the input
% file.
assert(nargin==1)
assert(isa(infilename,'char'))
idmap = Id_Map();
idmap.leftids = h5strings_to_cell(infilename,'/left_ids');
idmap.rightids = h5strings_to_cell(infilename,'/right_ids');
assert(idmap.validate())
function cellstrarr = h5strings_to_cell(infilename,attribname)
tmp = hdf5read(infilename,attribname,'V71Dimensions',true);
numentries = length(tmp);
cellstrarr = cell(numentries,1);
for ii=1:numentries
cellstrarr{ii} = tmp(ii).Data;
end
|
github | bsxfan/meta-embeddings-master | filter_on_left.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/bosaris_toolkit/classes/@Id_Map/filter_on_left.m | 1,871 | utf_8 | 27abe0c92b6ff488892e389fee1fb5e9 | function out_idmap = filter_on_left(in_idmap,idlist,keep)
% Removes some of the information in an idmap. Depending on the
% value of 'keep', the idlist indicates the strings to retain or
% the strings to discard.
% Inputs:
% in_idmap: An Id_Map object to be pruned.
% idlist: A cell array of strings which will be compared with
% the leftids of 'in_idmap'.
% keep: A boolean indicating whether idlist contains the ids to
% keep or to discard.
% Outputs:
% out_idmap: A filtered version of 'in_idmap'.
if nargin == 0
test_this();
return
end
assert(nargin==3)
assert(isa(in_idmap,'Id_Map'))
assert(in_idmap.validate())
assert(iscell(idlist))
if keep
keepids = idlist;
else
keepids = setdiff(in_idmap.leftids,idlist);
end
keep_idx = ismember(in_idmap.leftids,keepids);
out_idmap = Id_Map();
out_idmap.leftids = in_idmap.leftids(keep_idx);
out_idmap.rightids = in_idmap.rightids(keep_idx);
assert(out_idmap.validate(false))
end
function test_this()
idmap = Id_Map();
idmap.leftids = {'aaa','bbb','ccc','bbb','ddd'};
idmap.rightids = {'11','22','33','44','55'};
fprintf('idmap.leftids\n');
disp(idmap.leftids)
fprintf('idmap.rightids\n');
disp(idmap.rightids)
idlist = {'bbb','ddd'}
keep = true
out = Id_Map.filter_on_left(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
keep = false
out = Id_Map.filter_on_left(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
idlist = {'bbb','ddd','eee'}
keep = true
out = Id_Map.filter_on_left(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
keep = false
out = Id_Map.filter_on_left(idmap,idlist,keep);
fprintf('out.leftids\n');
disp(out.leftids)
fprintf('out.rightids\n');
disp(out.rightids)
end
|
github | bsxfan/meta-embeddings-master | L_BFGS.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/optimization/L_BFGS.m | 5,021 | utf_8 | ccfcc8e580c4dfa191a42bfcbaf055cb | function [w,y,mem,logs] = L_BFGS(obj,w,maxiters,timeout,mem,stpsz0,callback)
% L-BFGS Quasi-Newton unconstrained optimizer.
% -- This has a small interface change from LBFGS.m --
%
% Inputs:
% obj: optimization objective, with interface: [y,grad] = obj(w),
% where w is the parameter vector, y is the scalar objective value
% and grad is a function handle, so that grad(1) gives the gradient
% (same size as w).
% w: the initial parameter vector
% maxiters: max number of LBFGS iterations (line search iterations do not
% count towards this limit).
% timeout: LBFGS will stop when timeout (in seconds) is reached.
% mem is either: (i) A struct with previously computed LBFGS data, to
% allow resumption of iteration.
% (ii) An integer: the size of the LBFGS memory. A good
% default is 20.
%
%some linesearch magic numbers
maxfev = 20; %max number of function evaluations
stpmin = 1e-15; %same as Poblano default
stpmax = 1e15; %same as Poblano default
ftol = 1e-5; % as recommended by Nocedal (c1 in his book)
gtol = 0.9; % as recommended by Nocedal (c2 in his book)
xtol = 1e-15; %same as Poblano default
quiet = false;
%termination parameters
%stopTol = 1e-5; %same as Poblano
relFuncTol = 1e-6; %same as Poblano
if ~exist('stpsz0','var') || isempty(stpsz0)
stpsz0 = 1;
end
stpsz = stpsz0;
if ~exist('timeout','var') || isempty(timeout)
timeout = 15*60;
fprintf('timeout defaulted to 15 minutes');
end;
if ~exist('callback','var') || isempty(callback)
ncbLogs = 0;
else
ncbLogs = length( callback(w) );
end;
tic;
dim = length(w);
if ~isstruct(mem)
m = mem;
mem = [];
mem.m = m;
mem.sz = 0;
mem.rho = zeros(1,m);
mem.S = zeros(dim,m);
mem.Y = zeros(dim,m);
else
m = mem.m;
end
if ~exist('y','var') || isempty(y)
[y,grad] = obj(w);
g = grad(1);
fprintf('LBFGS 0: obj = %g, ||g||=%g\n',y,sqrt(g'*g));
end
initial_y = y;
logs = zeros(3+ncbLogs, maxiters);
nlogs = 0;
gmag = sqrt(g'*g);
k = 0;
while true
if gmag< eps
fprintf('LBFGS converged with tiny gradient\n');
break;
end
% choose direction
p = -Hprod(g,mem);
assert(g'*p<0,'p is not downhill');
% line search
g0 = g;
y0 = y;
w0 = w;
[w,y,grad,g,alpha,info,nfev] = minpack_cvsrch(obj,w,y,g,p,stpsz,...
ftol,gtol,xtol, ...
stpmin,stpmax,maxfev,quiet);
stpsz = 1;
delta_total = abs(initial_y-y);
delta = abs(y0-y);
if delta_total>eps
relfunc = delta/delta_total;
else
relfunc = delta;
end
gmag = sqrt(g'*g);
if info==1 %Wolfe is happy
sk = w-w0;
yk = g-g0;
dot = sk'*yk;
assert(dot>0);
if mem.sz==m
mem.S(:,1:m-1) = mem.S(:,2:m);
mem.Y(:,1:m-1) = mem.Y(:,2:m);
mem.rho(:,1:m-1) = mem.rho(:,2:m);
else
mem.sz = mem.sz + 1;
end
sz = mem.sz;
mem.S(:,sz) = sk;
mem.Y(:,sz) = yk;
mem.rho(sz) = 1/dot;
fprintf('LBFGS %i: ||g||/n = %g, rel = %g\n',k+1,gmag/length(g),relfunc);
else
fprintf('LBFGS %i: NO UPDATE, info = %i, ||g||/n = %g, rel = %g\n',k+1,info,gmag/length(g),relfunc);
end
time = toc;
nlogs = nlogs+1;
if ncbLogs > 0
logs(:,nlogs) = [time; y; nfev; callback(w)'];
disp(logs(4:end,nlogs)');
else
logs(:,nlogs) = [time;y;nfev];
end
k = k + 1;
if k>=maxiters
fprintf('LBFGS stopped: maxiters exceeded\n');
break;
end
if time>timeout
fprintf('LBFGS stopped: timeout\n');
break;
end
if relfunc < relFuncTol
fprintf('\nTDN: stopped with minimal function change\n');
break;
end
end
logs = logs(:,1:nlogs);
end
function r = Hprod(q,mem)
if mem.sz==0
r = q;
return;
end
sz = mem.sz;
S = mem.S;
Y = mem.Y;
rho = mem.rho;
alpha = zeros(1,sz);
for i=sz:-1:1
alpha(i) = rho(i)*S(:,i)'*q;
q = q - alpha(i)*Y(:,i);
end
yy = sum(Y(:,sz).^2,1);
r = q/(rho(sz)*yy);
for i=1:sz
beta = rho(i)*Y(:,i)'*r;
r = r + S(:,i)*(alpha(i)-beta);
end
end
|
github | bsxfan/meta-embeddings-master | create_PYCRP.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/CRP/create_PYCRP.m | 13,438 | utf_8 | 97417297bf1d08ceaa6be2bbfe82c2bb | function PYCRP = create_PYCRP(alpha,beta,e,n)
% alpha: alpha>=0, concentration
% beta: 0<= beta <=1, discount
if nargin==0
%test_this2();
test_Gibbsmatrix()
return;
end
if nargin==4
PYCRP = create_PYCRP(1,0);
PYCRP.set_expected_number_tables(e,n,alpha,beta);
return;
else
assert(nargin==2);
end
assert(alpha>=0);
assert(beta>=0 && beta<=1);
PYCRP.logprob = @logprob;
PYCRP.logprob3 = @logprob3;
PYCRP.sample = @sample;
PYCRP.expected_number_tables = @expected_number_tables;
PYCRP.set_expected_number_tables = @set_expected_number_tables;
PYCRP.ent = @ent;
PYCRP.getParams = @getParams;
PYCRP.GibbsMatrix = @GibbsMatrix;
PYCRP.slowGibbsMatrix = @slowGibbsMatrix;
PYCRP.merge = @merge;
PYCRP.merge_all_pairs = @merge_all_pairs;
function [concentration,discount] = getParams()
concentration = alpha;
discount = beta;
end
function e = expected_number_tables(n)
e = ent(alpha,beta,n);
end
function e = ent(alpha,beta,n)
if alpha==0 && beta==0
e = 1;
elseif isinf(alpha)
e = n;
elseif alpha>0 && beta>0
A = gammaln(alpha + beta + n) + gammaln(alpha + 1) ...
- log(beta) - gammaln(alpha+n) - gammaln(alpha+beta);
B = alpha/beta;
e = B*expm1(A-log(B)); %exp(A)-B
elseif alpha>0 && beta==0
e = alpha.*( psi(n+alpha) - psi(alpha) );
elseif alpha==0 && beta>0
A = gammaln(beta + n) - log(beta) - gammaln(n) - gammaln(beta);
e = exp(A);
end
end
function [flag,concentration,discount] = set_expected_number_tables(e,n,concentration,discount)
if ~isempty(concentration) && ~isempty(discount)
error('you can''t specify both parameters');
end
if isempty(concentration) && isempty(discount)
error('you must specify one parameter');
end
if e<1 || e>n
error('expectation must be between 1 and %i',n);
end
if isempty(concentration)
assert(discount>=0 && discount<1);
beta = discount;
if beta==0 && e==1
alpha = 0;
concentration = alpha;
flag = 1;
return;
elseif e==n
alpha = inf;
concentration = alpha;
flag = 1;
return;
end
min_e = ent(0,beta,n);
if e < min_e
error('e=%g is impossible at discount=%g, minimum is e=%g',e,beta,min_e);
end
f = @(logalpha) ent(exp(logalpha),beta,n) - e;
[logalpha,~,flag] = fzero(f,0);
alpha = exp(logalpha);
concentration = alpha;
elseif isempty(discount)
assert(concentration>=0);
alpha = concentration;
if alpha==0 && e==1
beta = 0;
discount = beta;
flag = 1;
return;
elseif e==n
beta = 1;
discount = beta;
flag = 1;
return;
end
min_e = ent(alpha,0,n);
if e < min_e
error('e=%g is impossible at concentration=%g, minimum is e=%min_e',e,alpha,min_e);
end
f = @(logitbeta) ent(alpha,sigmoid(logitbeta),n) - e;
[logitbeta,~,flag] = fzero(f,0);
beta = sigmoid(logitbeta);
discount = beta;
end
end
function y = sigmoid(x)
y = 1./(1+exp(-x));
end
function deltalogP = merge(i,j,counts)
if i==j % no merge
deltalogP = 0;
return;
end
if isinf(alpha) || (beta==1) || (alpha==0 && beta==0)
error('degenerate cases not handled');
end
K = length(counts);
T = sum(counts);
if alpha>0 && beta>0
deltalogP = gammaln(counts(i) + counts(j) - beta) ...
- gammaln(counts(i) - beta) - gammaln(counts(j) - beta) ...
- log(beta) + gammaln(1-beta) ...
- log(alpha/beta + K-1);
elseif beta==0 && alpha>0
deltalogP = -log(alpha) + gammaln(counts(i)+counts(j)) ...
- gammaln(counts(i)) - gammaln(counts(j));
elseif alpha==0 && beta>0
deltalogP = -log(beta) -log(K-1) + gammaln(1-beta) ...
- gammaln(counts(i) - beta) - gammaln(counts(j) - beta) ...
+ gammaln(counts(i) + counts(j) - beta);
end
end
function Y = mergeConst(K)
if isinf(alpha) || (beta==1) || (alpha==0 && beta==0)
error('degenerate cases not handled');
end
if alpha>0 && beta>0
%Y = K*log(beta) + gammaln(alpha/beta + K) - K*gammaln(1-beta);
Y = log(beta) + log(alpha/beta + K-1) - gammaln(1-beta);
elseif beta==0 && alpha>0
%Y = K*log(alpha);
Y = log(alpha);
elseif beta>0 && alpha==0
%Y = (K-1)*log(beta) + gammaln(K) - K*gammaln(1-beta);
Y = log(beta) + log(K-1) - gammaln(1-beta);
end
end
%vectorization helps a lot (loopy version below is much slower)
function deltalogP = merge_all_pairs(counts)
K = length(counts);
delta = counts-beta;
gammalndelta = gammaln(delta);
deltaC = mergeConst(K);%-mergeConst(K-1);
oldlogP = bsxfun(@plus,gammalndelta+deltaC,gammalndelta.');
deltalogP = gammaln(bsxfun(@plus,counts-beta,counts.')) - oldlogP;
deltalogP(1:K+1:end) = 0;
end
%loopy version is much, much slower
% function deltalogP = merge_all_pairs2(counts)
% K = length(counts);
% delta = counts-beta;
% gammalndelta = gammaln(delta);
% deltaC = mergeConst(K-1)-mergeConst(K);
% deltalogP = zeros(K,K);
% for i=1:K-1
% for j=i+1:K
% deltalogP(i,j) = deltaC + gammaln(delta(i)+counts(j)) - gammalndelta(i) - gammalndelta(j);
% end
% end
% end
function logP = logprob(counts) %Wikipedia
K = length(counts);
T = sum(counts);
if isinf(alpha) && beta==1 %singleton tables
if all(counts==1)
logP = 0;
else
logP = -inf;
end
return;
end
if alpha==0 && beta==0 %single table
if K==1
logP = 0;
else
logP = -inf;
end
return;
end
if alpha>0 && beta>0 % 2-param Pitman-Yor generalization
logP = gammaln(alpha) - gammaln(alpha+T) + K*log(beta) ...
+ gammaln(alpha/beta + K) - gammaln(alpha/beta) ...
+ sum(gammaln(counts-beta)) ...
- K*gammaln(1-beta);
elseif beta==0 && alpha>0 % classical CRP
logP = gammaln(alpha) + K*log(alpha) - gammaln(alpha+T) + sum(gammaln(counts));
elseif beta>0 && alpha==0
logP = (K-1)*log(beta) + gammaln(K) - gammaln(T) ...
- K*gammaln(1-beta) + sum(gammaln(counts-beta));
end
end
% Seems wrong
% function logP = logprob2(counts) % Goldwater
%
%
%
% K = length(counts);
% T = sum(counts);
% if beta>0 %Pitman-Yor generalization
% logP = gammaln(1+alpha) - gammaln(alpha+T) ...
% + sum(beta*(1:K-1)+alpha) ...
% + sum(gammaln(counts-beta)) ...
% - K*gammaln(1-beta);
% else %1 parameter CRP
% logP = gammaln(1+alpha) + (K-1)*log(alpha) - gammaln(alpha+T) + sum(gammaln(counts));
% end
%
% end
% Agrees with Wikipedia version (faster for small counts)
function logP = logprob3(counts)
logP = 0;
n = 0;
for k=1:length(counts)
% seat first customer at new table
if k>1
logP = logP +log((alpha+(k-1)*beta)/(n+alpha));
end
n = n + 1;
% seat the rest at this table
for i = 2:counts(k)
logP = logP + log((i-1-beta)/(n+alpha));
n = n + 1;
end
end
end
% GibbsMatrix. Computes matrix of conditional log-probabilities
% suitable for Gibbs sampling, or pseudolikelihood calculation.
% Input:
% labels: n-vector, maps each of n customers to a table in 1..m
% Output:
% logP: (m+1)-by-n matrix of **unnormalized** log-probabilities
% logP(i,j) = log P(customer j at table i | seating of all others) + const
% table m+1 is a new table
function [logP,empties] = GibbsMatrix(labels)
m = max(labels);
n = length(labels);
blocks = sparse(labels,1:n,true);
counts = full(sum(blocks,2)); %original table sizes
logP = repmat(log([counts-beta;alpha+m*beta]),1,n); %most common values for every row
%return;
empties = false(1,n); %new empty table when customer j removed
for i=1:m
cmin = counts(i) - 1;
tar = blocks(i,:);
if cmin==0 %table empty
logP(i,tar) = log(alpha + (m-1)*beta);
empties(tar) = true;
else
logP(i,tar) = log(cmin-beta);
end
end
logP(m+1,empties) = -inf;
end
function logP = slowGibbsMatrix(labels)
m = max(labels);
n = length(labels);
blocks = sparse(labels,1:n,true,m+1,n);
counts = full(sum(blocks,2)); %original table sizes
logP = zeros(m+1,n);
for j=1:n
cj = counts;
tj = labels(j);
cj(tj) = cj(tj) - 1;
nz = cj>0;
k = sum(nz);
if k==m
logP(nz,j) = log(cj(nz) - beta);
logP(m+1,j) = log(alpha + m*beta);
else %new empty table
logP(nz,j) = log(cj(nz) - beta);
logP(tj,j) = log(alpha + k*beta);
logP(m+1,j) = -inf;
end
end
end
function [labels,counts] = sample(T)
labels = zeros(1,T);
counts = zeros(1,T);
labels(1) = 1;
K = 1; %number of classes
counts(1) = 1;
for i=2:T
p = zeros(K+1,1);
p(1:K) = counts(1:K) - beta;
p(K+1) = alpha + K*beta;
[~,k] = max(randgumbel(K+1,1) + log(p));
labels(i) = k;
if k>K
K = K + 1;
assert(k==K);
counts(k) = 1;
else
counts(k) = counts(k) + 1;
end
end
counts = counts(1:K);
labels = labels(randperm(T));
end
end
function test_this2()
T = 20;
e = 10;
N = 1000;
crp1 = create_PYCRP(0,[],e,T);
[concentration,discount] = crp1.getParams()
crp2 = create_PYCRP([],0,e,T);
[concentration,discount] = crp2.getParams()
K1 = zeros(1,T);
K2 = zeros(1,T);
for i=1:N
[~,counts] = crp1.sample(T);
K = length(counts);
K1(K) = K1(K) + 1;
[~,counts] = crp2.sample(T);
K = length(counts);
K2(K) = K2(K) + 1;
end
e1 = sum((1:T).*K1)/N
e2 = sum((1:T).*K2)/N
close all;
subplot(2,1,1);bar(1:T,K1);
subplot(2,1,2);bar(1:T,K2);
K1 = K1/sum(K1);
K2 = K2/sum(K2);
%dlmwrite('K1.table',[(1:T)',K1'],' ');
%dlmwrite('K2.table',[(1:T)',K2'],' ');
for i=1:T
fprintf('(%i,%6.4f) ',2*i-1,K1(i))
end
fprintf('\n');
for i=1:T
fprintf('(%i,%6.4f) ',2*i,K2(i))
end
fprintf('\n');
end
function test_Gibbsmatrix()
alpha = randn^2;
beta = rand;
PYCRP = create_PYCRP(alpha,beta);
labels = [1 1 1 2 1 3 4 4]
logP = exp(PYCRP.slowGibbsMatrix(labels))
logP = exp(PYCRP.GibbsMatrix(labels))
end
function test_this()
alpha1 = 0.0;
beta1 = 0.6;
crp1 = create_PYCRP(alpha1,beta1);
alpha2 = 0.1;
beta2 = 0.6;
crp2 = create_PYCRP(alpha2,beta2);
close all;
figure;
hold;
for i=1:100;
L1 = crp1.sample(100);
L2 = crp2.sample(100);
C1=full(sum(int2onehot(L1),2));
C2=full(sum(int2onehot(L2),2));
x11 = crp1.logprob(C1);
x12 = crp2.logprob3(C1);
x22 = crp2.logprob3(C2);
x21 = crp1.logprob(C2);
plot(x11,x12,'.g');
plot(x21,x22,'.b');
end
figure;hold;
crp = crp1;
for i=1:100;
L1 = crp.sample(100);
C1=full(sum(int2onehot(L1),2));
x = crp.logprob(C1);
y = crp.logprob3(C1);
plot(x,y);
end
end
|
github | bsxfan/meta-embeddings-master | rand_fake_Dirichlet.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/language_recognition/synth_data/rand_fake_Dirichlet.m | 810 | utf_8 | 3070cfe2d8487d8ae48c7740fdc24c2d | function R = rand_fake_Dirichlet(alpha,m,n)
% This is no longer Dirichlet. I replaced it with a faster ad-hoc
% distribution.
%
% Generates m-by-n matrix of n samples from m-category Dirichlet, with
% concentration parameter: alpha > 0.
if nargin==0
test_this();
return;
end
%R = reshape(randgamma(alpha,1,m*n),m,n);
R = exp(alpha*randn(m,n).^2);
R = bsxfun(@rdivide,R,sum(R,1));
end
function E = app_exp(X)
XX = X.^2/2;
XXX = XX.*X/3;
XXXX = XXX.*X/4;
E = XXXX+ XXX + XX + X+1;
end
function test_this()
close all;
m = 400;
%alpha = 1/(2*m);
alpha = 2;
n = 5000;
R = rand_fake_Dirichlet(alpha,m,n);
maxR = max(R,[],1);
hist(maxR,100);
% n = 50;
% R = randDirichlet(alpha,m,n);
% hist(R(:),100);
end
|
github | bsxfan/meta-embeddings-master | create_T_backend.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/language_recognition/T_backend/create_T_backend.m | 6,482 | utf_8 | ee013ab7facb848049ba586dfb7b6f33 | function TBE = create_T_backend(nu,dim,K)
% Create a (multivariate) T-distribution generative backend for multiclass classification.
% The classes have different means, but the scatter matrix and degrees of
% freedom are common to all clases.
%
% This object provides a method for supervised ML training (EM algorithm),
% as well as a method for scoring at runtime (class log-likelihoods).
%
% Inputs:
% nu: scalar >0, degrees of freedom
% dim: data dimensionality
% K: number of classes
%
% Typical usage:
% > TBE = create_T-backend(nu,dim,K); %nu is fixed by user and not learnt during training
% > TBE.train(TrainData,L,10); % TrainData: dim-by-N, L: K-by-N, (sparse) one-hot labels
% > LLH = TBE.logLH(TestData)
%
% For EM algorithm, see:
% Geoffrey J. McClachlan and Thriyambakam Krishnan, The EM Algorithm and Extensions,
% 2nd Ed. John Wiley & Sons, 2008. Section 2.6 EXAMPLE 2.6: MULTIVARIATE t-DISTRIBUTION WITH KNOWN
% DEGREES OF FREEDOM
if nargin==0
test_this();
return;
end
assert(nu>0);
Mu = zeros(dim,K);
C = eye(dim);
R = [];
RMu = [];
muWmu = [];
logdetC = 0;
prepare();
TBE.logLH = @logLH;
TBE.getParams = @getParams;
TBE.setParams = @setParams;
TBE.train = @train;
TBE.simulate = @simulate;
TBE.randParams = @randParams;
TBE.test_error_rate = @test_error_rate;
TBE.cross_entropy = @cross_entropy;
function [Mu1,C1] = getParams()
Mu1 = Mu;
C1 = C;
end
function setParams(Mu0,C0)
Mu = Mu0;
C = C0;
prepare();
end
function [obj,XE] = train(X,L,niters)
[d,N] = size(X); assert(d==dim);
[k,n] = size(L); assert(k==K && n==N);
obj = zeros(1,niters+1);
obj_i = EM_objective(X,L);
obj(1) = obj_i;
doXE = nargout>=2;
if doXE
XE = zeros(1,niters+1);
XE_i = cross_entropy(X,L);
XE(1) = XE_i;
fprintf('%i: %g, %g\n',0,obj_i,XE_i);
else
fprintf('%i: %g\n',0,obj_i);
end
for i=1:niters
EM_iteration(X,L);
obj_i = EM_objective(X,L);
obj(i+1) = obj_i;
if doXE
XE_i = cross_entropy(X,L);
XE(i+1) = XE_i;
fprintf('%i: %g, %g\n',i,obj_i,XE_i);
else
fprintf('%i: %g\n',i,obj_i);
end
end
end
%Class log-likelihood scores, with all irrelevant constants omitted
function LLH = logLH(X,df)
%inputs:
% X: dim-by-N, data
% df: [optional default df = nu], scalar, df>0, degrees of freedom parameter
%
%output:
% LLH: K-by-N, class log-likelihoods
if ~exist('df','var') || isempty(df)
df = nu;
else
assert(df>0);
end
Delta = delta(X);
LLH = (-0.5*(df+dim))*log1p(Delta/df);
end
function prepare()
R = chol(C); % R'R = C and W = inv(C) = inv(R)*inv(R')
RMu = R.'\Mu; % dim-dy-K
muWmu = sum(RMu.^2,1); % 1-by-K
logdetC = 2*sum(log(diag(R)));
end
function Delta = delta(X)
%input X: dim-by-N, data
%output Delta: K-by-N, squared Mahalanobis distances between data and means
RX = R.'\X; % dim-by-N
Delta = bsxfun(@minus,sum(RX.^2,1),(2*RMu).'*RX); %K-by-N
Delta = bsxfun(@plus,Delta,muWmu.');
end
function EM_iteration(X,L)
Delta = sum(L.*delta(X),1); %1-by-N
u = (nu+dim)./(nu+Delta); %1-by-N posterior expectations of hiddden precision scaling factors
Lu = bsxfun(@times,L,u); %K-by-N
normLu = bsxfun(@rdivide,Lu,sum(Lu,2));
newMu = X*normLu.'; %dim-by-K
diff = X - newMu*L;
newC = (bsxfun(@times,diff,u)*diff.')/sum(u);
setParams(newMu,newC);
end
function obj = EM_objective(X,L)
% X: dim-by-N, data
% K: K-by-N, one-hot labels
% obj: scalar
LLH = logLH(X);
N = size(X,2);
obj = L(:).'*LLH(:) - (N/2)*logdetC ;
end
function randParams(ncov,muscale)
assert(ncov>=dim);
D = randn(dim,ncov);
C = D*D.';
setParams(zeros(dim,K),C);
Mu = muscale*simulate(K);
setParams(Mu,C);
end
function [X,L] = simulate(N,df,L)
if ~exist('L','var') || isempty(L)
L = sparse(randi(K,1,N),1:N,1,K,N);
end
if ~exist('df','var') || isempty(df)
df = ceil(nu);
end
u = sum(randn(df,N).^2,1)/df; % chi^2 with df dregrees of freedom, scaled so that <u>=1
X = Mu*L + bsxfun(@rdivide,R.'*randn(dim,N),sqrt(u));
end
%assuming flat prior for now
function e = test_error_rate(X,L)
N = size(X,2);
LLH = TBE.logLH(X);
[~,labels] = max(LLH,[],1);
Lhat = sparse(labels,1:N,1,K,N);
e = 1-(L(:).'*Lhat(:))/N;
end
%assuming flat prior for now
function e = cross_entropy(X,L,df)
if ~exist('df','var') || isempty(df)
df = nu;
else
assert(df>0);
end
LLH = TBE.logLH(X,df);
P = exp(bsxfun(@minus,LLH,max(LLH,[],1)));
P = bsxfun(@rdivide,P,sum(P,1));
e = -mean(log(full(sum(L.*P,1))),2)/log(K);
end
end
function test_this()
close all;
dim = 100; % data dimensionality
K = 10; % numer of classes
nu = 3; % degrees of freedom (t-distribition parameter)
N = K*1000;
%create test and train data
TBE0 = create_T_backend(nu,dim,K);
TBE0.randParams(dim,5/sqrt(dim));
[X,L] = TBE0.simulate(N);
[Xtest,Ltest] = TBE0.simulate(N);
TBE = create_T_backend(nu,dim,K);
[obj,XE] = TBE.train(X,L,20);
subplot(1,2,1);plot(obj);title('error-rate');
subplot(1,2,2);plot(XE);title('cross-entropy');
train_error_rate = TBE.test_error_rate(X,L),
test_error_rate = TBE.test_error_rate(Xtest,Ltest),
train_XE = TBE.cross_entropy(X,L),
test_XE = TBE.cross_entropy(Xtest,Ltest),
df = [0.1:0.1:10];
XE = zeros(2,length(df));
for i=1:length(df)
XE(1,i) = TBE.cross_entropy(X,L,df(i));
XE(2,i) = TBE.cross_entropy(Xtest,Ltest,df(i));
end
figure;plot(df,XE(1,:),df,XE(2,:));
grid;xlabel('df');ylabel('XE');
legend('train','test');
end
|
github | bsxfan/meta-embeddings-master | train_TLDIvector.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/language_recognition/TLDIvector/train_TLDIvector.m | 4,374 | utf_8 | 6029b83917586ea3e2977c8fad616093 | function [W,Mu,TT] = train_TLDIvector(stats_or_ivectors,N,T,TT,nu,labels,niters,W,Mu)
% Inputs:
% stats_or_ivectors: can be either F, or ivectors
% F: dm-by-n first-order stats (m: UBM size; d: feature dim; n: no segments)
% ivectors: k-by-n, classical i-vector point-estimates
% N: m-by-n zero order stats
% T: dm-by-k factor loading matrix
% TT: [optional] k^2-by-m, vectorized precomputed T_i'T_i, i=1:m
% nu: scalar, nu>0, degrees of freedom
% labels: 1-by-n, label vector, with label values in 1:L, where L is
% number of languages.
% niters: number of VBEM iterations to do
%
% W: k-by-k within class precision [optional, for initialization]
% Mu: k-by-L language means [optional, for initialization]
%
%
% Outputs:
% W: k-by-k within-class precision estimate
% Mu: k-by-L class mean estimates
if nargin==0
test_this();
return;
end
[A,B,k,n] = getPosteriorNatParams(stats_or_ivectors,N,T,TT);
L = max(labels);
if ~exist('Mu','var') || isempty(Mu)
W = eye(k);
Mu = zeros(k,L);
else
assert(all(size(W)==k));
[k2,L2] = size(Mu);
assert(k2==k && L==L2);
end
for iter=1:niters
WMu = W*Mu;
C = zeros(size(W));
Pmeans = zeros(k,n);
for ell=1:L
tt = find(labels==ell);
% E-step
for t=tt
Pt = W + reshape(B(:,t),k,k); %posterior precision
Pmean = Pt\(WMu(:,ell)+A(:,t)); %posterior mean
Pmeans(:,t) = Pmean;
C = C + inv(Pt);
end
%M-step
D = Pmeans(:,tt);
Mu(:,ell) = mean(D,2);
D = bsxfun(@minus,D,Mu(:,ell));
C = C + D*D.';
end
C = C/n;
W = inv(C),
Mu = Mu,
end
end
function test_this
close all;
%dimensions
d = 10; %feature dimension
m = 10; %no components
k = 3; %ivector dimension
n = 1000; %number of segments
L = 2; %number of languages
mindur = 2;
maxdur = 100;
niters = 3;
T = randn(d*m,k);
W = randn(k,k*2);
W = W*W.'/k;
UBM.logweights = randn(m,1)/5;
UBM.Means = 5*randn(d,m);
Mu = randn(k,L);
[F,N,labels] = make_data(UBM,Mu,W,T,m,d,n,mindur,maxdur);
dur = sum(N,1);
L1 = labels==1;
L2 = labels==2;
TT = precomputeTT(T,d,k,m);
ivectors = stats2ivectors(F,N,T,TT);
LR1 = [1,-1]* score_LDIvector(F,N,T,TT,W,Mu);
%LR2 = [1,-1]* score_LDIvector(ivectors,N,T,TT,W,Mu);
subplot(4,1,1);plot(dur(L1),LR1(L1),'.r',dur(L2),LR1(L2),'.g');
[W2,Mu2] = train_LDIvector(F,N,T,[],labels,niters);
[W3,Mu3] = train_LDIvector(ivectors,N,T,[],labels,niters);
[W4,Mu4,map] = train_standaloneLGBE(ivectors,labels);
LR2 = [1,-1]* score_LDIvector(F,N,T,[],W2,Mu2);
LR3 = [1,-1]* score_CPF(ivectors,N,T,TT,W3,Mu3);
LR4 = [1,-1]*map(ivectors);
subplot(4,1,2);plot(dur(L1),LR2(L1),'.r',dur(L2),LR2(L2),'.g');
subplot(4,1,3);plot(dur(L1),LR3(L1),'.r',dur(L2),LR3(L2),'.g');
subplot(4,1,4);plot(dur(L1),LR4(L1),'.r',dur(L2),LR4(L2),'.g');
end
function [F,N,labels,relConf] = make_data(UBM,Mu,W,T,m,d,n,mindur,maxdur)
[k,L] = size(Mu);
labels = randi(L,1,n);
Labels = sparse(labels,1:n,1,L,n); %L-by-n one-hot class labels
x = Mu*Labels+chol(W)\randn(k,n); %i-vectors
Tx = T*x;
dur = randi(1+maxdur-mindur,1,n) + mindur -1;
dm = d*m;
F = zeros(dm,n);
N = zeros(m,n);
logweights = UBM.logweights;
prior = exp(logweights-max(logweights));
prior = prior/sum(prior);
priorConfusion = exp(-prior.'*log(prior))-1;
relConf = zeros(1,n);
for i=1:n
D = dur(i);
states = randcatgumbel(UBM.logweights,D);
States = sparse(states,1:D,1,m,D);
X = (reshape(Tx(:,i),d,m)+UBM.Means)*States + randn(d,D);
Q = bsxfun(@minus,UBM.Means.'*X,0.5*sum(X.^2,1));
Q = bsxfun(@plus,Q,UBM.logweights-0.5*sum(UBM.Means.^2,1).');
Q = exp(bsxfun(@minus,Q,max(Q,[],1)));
Q = bsxfun(@rdivide,Q,sum(Q,1));
CE = -(States(:).'*log(Q(:)))/D; %cross entropy
relConf(i) = (exp(CE)-1)/priorConfusion;
Ni = sum(Q,2);
Fi = X*Q.';
N(:,i) = Ni;
F(:,i) = Fi(:);
end
end
|
github | bsxfan/meta-embeddings-master | create_diagonalized_C.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/language_recognition/TLDIvector/create_diagonalized_C.m | 4,986 | utf_8 | c1a642f817fa817097bf89b070af4c04 | function C = create_diagonalized_C(B,R,RM,Ra,W,M,a)
% Creates object to represent: C = inv(lambda W + B),
%
% Inputs:
% B: positive definite matrix (i-vector dimension)
% R: chol(W), so that R'R=W (i-vector dimension)
% RM: R*M, where M has language means in columns
% Ra: (R')\a, vector (i-vector dimension)
% W,M,a: optional for verification with slow version
if nargin==0
test_this();
return;
end
dim = length(Ra);
K = (R.'\B)/R;
[V,D] = eig(K); %K = V*D*V'
e = diag(D); %eigenvalues
mWm = sum(RM.^2,1); %vector of m'Wm, for every language
VRM = V.'*RM;
VRa = V.'*Ra;
VRaVRa = VRa.^2;
VRMVRM = VRM.^2;
VRMVRa = bsxfun(@times,VRa,VRM);
C.traceCW = @traceCW;
C.logdetCW = @logdetCW;
C.quad = @quad;
C.slowQuad = @slowQuad;
C.slow_traceCW = @slow_traceCW;
C.slow_logdetCW = @slow_logdetCW;
C.lambda_by_root = @lambda_by_root;
C.lambda_by_min = @lambda_by_min;
C.lambda_by_fixed_point = @lambda_by_fixed_point;
%C.slow_xCWCx = @slow_xCWCx;
%C.xCWCx = @xCWCx;
%C.xCx = @xCx;
%C.slow_xCx = @slow_xCx;
function log_lambda = lambda_by_root(nu,log_lambda,ell)
f = @(log_lambda) log_lambda - log((nu+dim)/(nu+energy(log_lambda,ell)));
log_lambda = fzero(f,log_lambda);
end
function log_lambda = lambda_by_fixed_point(nu,log_lambda,ell,niters)
f = @(log_lambda) log((nu+dim)/(nu+energy(log_lambda,ell)));
for i=1:niters
log_lambda = f(log_lambda);
end
end
function log_lambda = lambda_by_min(nu,log_lambda)
f = @(log_lambda) (log_lambda - log((nu+dim)/(nu+energy(log_lambda))))^2;
log_lambda = fminsearch(f,log_lambda);
end
function y = energy(log_lambda,ell)
lambda = exp(log_lambda);
y = quad(lambda,ell) + traceCW(lambda);
%fprintf('%i: energy = %g\n%',ell,y);
end
function y = quad(lambda,ell)
s = lambda + e;
ss = s.^2;
mWmu = sum(bsxfun(@rdivide, lambda*VRMVRM(:,ell) + VRMVRa(:,ell), s),1);
muWmu = sum(bsxfun(@rdivide,bsxfun(@plus,...
lambda^2*VRMVRM(:,ell) + ...
(2*lambda)*VRMVRa(:,ell), ...
VRaVRa), ss),1);
y = mWm(ell) + muWmu -2*mWmu;
end
function y = slowQuad(lambda)
P = lambda*W + B;
cholP = chol(P);
Mu = cholP\(cholP'\bsxfun(@plus,lambda*W*M,a));
delta = R*(Mu-M);
y = sum(delta.^2,1);
%y = sum(Mu.*(W*M),1);
end
% function y = xCx(lambda,x)
% z = V'*((R.')\x);
% s = lambda + e;
% y = sum(z.^2./s,1);
% end
%
% function y = xCWCx(lambda,x)
% z = V'*((R.')\x);
% s = lambda + e;
% y = sum(z.^2./s.^2,1);
% end
%
% function y = slow_xCx(lambda,x)
% P = lambda*W+B;
% y = x'*(P\x);
% end
%
% function y = slow_xCWCx(lambda,x)
% P = lambda*W+B;
% z = P\x;
% y = z.'*W*z;
% end
function [y,back] = traceCW(lambda)
s = lambda + e;
r = 1./s;
y = sum(r,1);
back = @back_this;
function dlambda = back_this(dy)
dr = dy;
ds = (-dr)*r./s;
dlambda = sum(ds,1);
end
end
function y = slow_traceCW(lambda)
P = lambda*W + B;
cholP = chol(P);
X = cholP.'\R.';
y = X(:).'*X(:);
end
function [y,back] = logdetCW(lambda)
s = log(lambda) + log1p(e/lambda);
y = -sum(s,1);
back = @(dy) (-dy)*sum(1./(lambda+e));
end
function y = slow_logdetCW(lambda)
P = lambda*W + B;
cholP = chol(P);
y = 2*( sum(log(diag(R))) - sum(log(diag(cholP))) );
end
end
function test_this()
dim = 400;
L = 1;
RR = randn(dim,dim);W = RR*RR';
RR = randn(dim,dim);B = RR*RR';
a = randn(dim,1);
M = randn(dim,L);
R = chol(W);
C = create_diagonalized_C(B,R,R*M,(R')\a,W,M,a);
lambda = rand/rand;
%x = randn(dim,1);
%[C.xCx(lambda,x),C.slow_xCx(lambda,x)]
%tic;C.quad(lambda);toc
%tic;C.slowQuad(lambda);toc
%C.quad(lambda)
%C.slowQuad(lambda)
%[C.traceCW(lambda),C.slow_traceCW(lambda)]
%[C.logdetCW(lambda),C.slow_logdetCW(lambda)]
%[C.xCWCx(lambda,x),C.slow_xCWCx(lambda,x)]
C.lambda_by_root(1,1)
C.lambda_by_root(1,10)
C.lambda_by_root(1,0.1)
C.lambda_by_min(1,1)
C.lambda_by_min(1,10)
C.lambda_by_min(1,0.1)
a = a*0;
B = B*0;
C = create_diagonalized_C(B,R,R*M,(R')\a,W,M,a);
C.lambda_by_root(0.1,0.01)
C.lambda_by_root(1,10)
C.lambda_by_root(10,0.1)
C.lambda_by_min(1,10)
end
|
github | bsxfan/meta-embeddings-master | create_augmenting_backend.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/language_recognition/augmentation/create_augmenting_backend.m | 3,599 | utf_8 | 852abc76e3f7dfa8796f7015880bc788 | function ABE = create_augmenting_backend(nu,dim,T,K,L)
% Inputs:
% nu: scalar nu>0, t-distribution degrees of freedom
% dim: ivector dimension
% T: i-vector extr\zctor T-matrix
% K: UBM size
% L: number of languages
if nargin==0
test_this();
return;
end
assert(dim==size(T,2));
TBE = create_T_backend(nu,dim,L);
augment = [];
ABE.train = @train;
ABE.logLH = @logLH;
ABE.test_error_rate = @test_error_rate;
ABE.cross_entropy = @cross_entropy;
function [obj,AX] = train(X,Z,Labels,niters,ntiters)
% X: ivectors
% Z: zero-order stats
% Labels: sparse one-hot label matrix
if ~exist('niters','var') || isempty(niters)
niters = 1;
end
if ~exist('ntiters','var') || isempty(ntiters)
ntiters = 10;
end
assert(size(Labels,1)==L);
assert(size(Labels,2)==size(X,2));
assert(size(Labels,2)==size(Z,2));
assert(size(Z,1)==K);
assert(size(X,1)==dim);
AX = X;
obj = [];
for i=1:niters
obj_i = TBE.train(AX,Labels,ntiters); % starts with parameters from prev. iteration
obj = [obj(:);obj_i(:)];
[Mu,C] = TBE.getParams();
augment = augment_i_vectors(T,K,Mu,C);
if i<niters || nargout>=2
AX = augment(X,Z);
end
end
end
function [LLH,X] = logLH(X,Z)
if exist('Z','var') && ~isempty(Z)
X = augment(X,Z);
end
LLH = TBE.logLH(X);
end
%assuming flat prior for now
function e = test_error_rate(X,Z,Labels)
N = size(X,2);
LLH = logLH(X,Z);
[~,labels] = max(LLH,[],1);
Lhat = sparse(labels,1:N,1,L,N);
e = 1-(Labels(:).'*Lhat(:))/N;
end
%assuming flat prior for now
function e = cross_entropy(X,Z,Labels)
LLH = logLH(X,Z);
P = exp(bsxfun(@minus,LLH,max(LLH,[],1)));
P = bsxfun(@rdivide,P,sum(P,1));
e = -mean(log(full(sum(Labels.*P,1))),2)/log(L);
end
end
function test_this()
big = true;
if big
L = 10; %languages
K = 1024; %UBM size
nu = 2; %df
dim = 400; %ivector dim
fdim = 40; % feature dim
minDur = 3*100; %3 sec
maxDur = 30*100; %30 sec
M = randn(dim,L);
T = randn(K*fdim,dim);
RR = randn(dim,2*dim);W = RR*RR';
Ntrain = 100;
Ntest = 100;
else
L = 3; %languages
K = 10; %UBM size
nu = 2; %df
dim = 40; %ivector dim
fdim = 5; % feature dim
minDur = 3*100; %3 sec
maxDur = 30*100; %30 sec
M = randn(dim,L);
T = randn(K*fdim,dim);
RR = randn(dim,2*dim);W = RR*RR'/100;
Ntrain = 100;
Ntest = 100;
end
fprintf('generating data\n');
[F,trainZ,trainLabels] = rand_ivector(M,nu,W,2,K,T,minDur,maxDur,Ntrain);
[trainX,TT] = stats2ivectors(F,trainZ,T);
[F,testZ,testLabels] = rand_ivector(M,nu,W,2,K,T,minDur,maxDur,Ntest);
testX = stats2ivectors(F,testZ,T,TT);
F = [];
fprintf('training\n');
ABE = create_augmenting_backend(nu,dim,T,K,L);
ABE.train(trainX,trainZ,trainLabels,2);
train_error_rate = ABE.test_error_rate(trainX,trainZ,trainLabels),
test_error_rate = ABE.test_error_rate(testX,testZ,testLabels),
train_XE = ABE.cross_entropy(trainX,trainZ,trainLabels),
test_XE = ABE.cross_entropy(testX,testZ,testLabels),
end
|
github | bsxfan/meta-embeddings-master | testBackprop_rs.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/test/testBackprop_rs.m | 2,198 | utf_8 | 9d88acaf06002d97bf8eb2fdc07bf7b8 | function total = testBackprop_rs(block,X,delta,mask)
%same as testFBblock, but with real step
if ~iscell(X)
X = {X};
end
dX = cellrndn(X);
if exist('mask','var')
assert(length(mask)==length(X));
dX = cellmask(dX,mask);
end
cX1 = cellstep(X,dX,delta);
cX2 = cellstep(X,dX,-delta);
DX = cell(size(X));
[Y,back] = block(X{:});
DY = randn(size(Y));
[DX{:}] = back(DY); %DX = J'*DY
dot1 = celldot(DX,dX); %dX' * J' * DY
cY1 = block(cX1{:});
cY2 = block(cX2{:});
[Y2,dY2] = recover(cY1,cY2,delta); %dY2 = J*dX
dot2 = DY(:).'*dY2(:); %DY' * J* DX
Y_diff = max(abs(Y(:)-Y2(:))),
jacobian_diff = abs(dot1-dot2),
total = Y_diff + jacobian_diff;
if total < 1e-6
fprintf('\ntotal error=%g\n',total);
else
fprintf(2,'\ntotal error=%g\n',total);
end
end
function R = cellrndn(X)
if ~iscell(X)
R = randn(size(X));
else
R = cell(size(X));
for i=1:numel(X)
R{i} = cellrndn(X{i});
end
end
end
function C = cellstep(X,dX,delta)
assert(all(size(X)==size(dX)));
if ~iscell(X)
C = X + delta*dX;
else
C = cell(size(X));
for i=1:numel(X)
C{i} = cellstep(X{i},dX{i},delta);
end
end
end
function [R,D] = recover(cX1,cX2,delta)
assert(all(size(cX1)==size(cX2)));
if ~iscell(cX1)
R = (cX1+cX2)/2;
D = (cX1-cX2)/(2*delta);
else
R = cell(size(cX1));
D = cell(size(cX1));
for i=1:numel(cX1)
[R{i},D{i}] = recover(cX1{i},cX2{i});
end
end
end
function X = cellmask(X,mask)
if ~iscell(X)
assert(length(mask)==1);
X = X*mask;
else
for i=1:numel(X)
X{i} = cellmask(X{i},mask{i});
end
end
end
function dot = celldot(X,Y)
assert(all(size(X)==size(Y)));
if ~iscell(X)
dot = X(:).' * Y(:);
else
dot = 0;
for i=1:numel(X)
dot = dot + celldot(X{i},Y{i});
end
end
end
|
github | bsxfan/meta-embeddings-master | testBackprop_multi.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/test/testBackprop_multi.m | 2,361 | utf_8 | ced4a5b7e925d5c00a2d991fb34d012c | function total = testBackprop_multi(block,nout,X,mask)
% same as testBackprop, but handles multiple outputs
if ~iscell(X)
X = {X};
end
dX = cellrndn(X);
if exist('mask','var')
assert(length(mask)==length(X));
dX = cellmask(dX,mask);
end
cX = cellcomplex(X,dX);
DX = cell(size(X));
Y = cell(1,nout);
[Y{:},back] = block(X{:});
DY = cell(size(Y));
for i=1:numel(DY)
DY{i} = randn(size(Y{i}));
end
[DX{:}] = back(DY{:}); %DX = J'*DY
dot1 = celldot(DX,dX); %dX' * J' * DY
cY = cell(1,nout);
Y2 = cell(1,nout);
dY2 = cell(1,nout);
[cY{:}] = block(cX{:});
for i=1:numel(cY)
[Y2{i},dY2{i}] = recover(cY{i}); %dY2 = J*dX
end
dot2 = celldot(DY,dY2); %DY' * J* DX
Y_diff = 0;
for i=1:nout
Y_diff = Y_diff + max(abs(Y{i}(:)-Y2{i}(:)));
end
Y_diff,
jacobian_diff = abs(dot1-dot2),
total = Y_diff + jacobian_diff;
if total < 1e-6
fprintf('\ntotal error=%g\n',total);
else
fprintf(2,'\ntotal error=%g\n',total);
end
end
function R = cellrndn(X)
if ~iscell(X)
R = randn(size(X));
else
R = cell(size(X));
for i=1:numel(X)
R{i} = cellrndn(X{i});
end
end
end
function X = cellmask(X,mask)
if ~iscell(X)
assert(length(mask)==1);
X = X*mask;
else
for i=1:numel(X)
X{i} = cellmask(X{i},mask{i});
end
end
end
function C = cellcomplex(X,dX)
assert(all(size(X)==size(dX)));
if ~iscell(X)
C = complex(X,1e-20*dX);
else
C = cell(size(X));
for i=1:numel(X)
C{i} = cellcomplex(X{i},dX{i});
end
end
end
function [R,D] = recover(cX)
if ~iscell(cX)
R = real(cX);
D = 1e20*imag(cX);
else
R = cell(size(cX));
D = cell(size(cX));
for i=1:numel(cX)
[R{i},D{i}] = recover(cX{i});
end
end
end
function dot = celldot(X,Y)
assert(all(size(X)==size(Y)));
if ~iscell(X)
dot = X(:).' * Y(:);
else
dot = 0;
for i=1:numel(X)
dot = dot + celldot(X{i},Y{i});
end
end
end
|
github | bsxfan/meta-embeddings-master | testBackprop.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/test/testBackprop.m | 2,015 | utf_8 | fc73fa404f5441c097eb63f249106078 | function total = testBackprop(block,X,mask)
if ~iscell(X)
X = {X};
end
dX = cellrndn(X);
if exist('mask','var')
assert(length(mask)==length(X));
dX = cellmask(dX,mask);
end
cX = cellcomplex(X,dX);
DX = cell(size(X));
[Y,back] = block(X{:});
DY = randn(size(Y));
[DX{:}] = back(DY); %DX = J'*DY
dot1 = celldot(DX,dX); %dX' * J' * DY
cY = block(cX{:});
[Y2,dY2] = recover(cY); %dY2 = J*dX
dot2 = DY(:).'*dY2(:); %DY' * J* DX
Y_diff = max(abs(Y(:)-Y2(:))),
jacobian_diff = abs(dot1-dot2),
total = Y_diff + jacobian_diff;
if total < 1e-6
fprintf('\ntotal error=%g\n',total);
else
fprintf(2,'\ntotal error=%g\n',total);
end
end
function R = cellrndn(X)
if ~iscell(X)
R = randn(size(X));
else
R = cell(size(X));
for i=1:numel(X)
R{i} = cellrndn(X{i});
end
end
end
function X = cellmask(X,mask)
if ~iscell(X)
assert(length(mask)==1);
X = X*mask;
else
for i=1:numel(X)
X{i} = cellmask(X{i},mask{i});
end
end
end
function C = cellcomplex(X,dX)
assert(all(size(X)==size(dX)));
if ~iscell(X)
C = complex(X,1e-20*dX);
else
C = cell(size(X));
for i=1:numel(X)
C{i} = cellcomplex(X{i},dX{i});
end
end
end
function [R,D] = recover(cX)
if ~iscell(cX)
R = real(cX);
D = 1e20*imag(cX);
else
R = cell(size(cX));
D = cell(size(cX));
for i=1:numel(cX)
[R{i},D{i}] = recover(cX{i});
end
end
end
function dot = celldot(X,Y)
assert(all(size(X)==size(Y)));
if ~iscell(X)
dot = X(:).' * Y(:);
else
dot = 0;
for i=1:numel(X)
dot = dot + celldot(X{i},Y{i});
end
end
end
|
github | bsxfan/meta-embeddings-master | create_univariate_Laplace_node.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/create_univariate_Laplace_node.m | 2,432 | utf_8 | 723752e00cd25de77113d0e0c21ac71e | function node = create_univariate_Laplace_node(prior)
if nargin==0
test_this();
return;
end
value = prior.sample();
%posterior stuff
post_mu = []; %approximate posterior mean
post_h = []; %approximate posterior hessian (- precision)
%logpost = []; %unnormalized true log posterior
node.get = @get;
node.sample = @sample;
node.condition_on_child = @condition_on_child;
node.logPosterior_at_mode = @logPosterior_at_mode;
function val = get()
val = value;
end
% samples from prior/posterior
% if n is given, draws n samples and does not change internal value
% if n is not given, draws one sample and does change internal value
function val = sample(n)
if nargin==0
n = 1;
end
if isempty(post_mu)
val = prior.sample(n);
else
val = post_mu + randn(1,n)/sqrt(-post_h);
end
if nargin==0
value = val;
end
end
function [logPost,mode] = logPosterior_at_mode()
if isempty(post_mu)
[logPost,mode] = prior.logPosterior_at_mode();
else
mode = post_mu;
logPost = log(-post_h)/2;
end
end
function [mu,sigma,logpost] = condition_on_child(llh_message)
s0 = value;
f = @(s) - llh_message.llh(s) - prior.logPDF(s);
[mu,fmin,flag] = fminsearch(f,s0);
assert(flag==1,'fminsearch failed');
h = llh_message.Hessian(mu) + prior.Hessian(mu);
post_mu = mu;
post_h = h;
sigma = 1/sqrt(-h);
if nargout>=3
logpost = @(s) fmin - f(s);
end
end
end
function test_this()
close all;
mu = 0;
v = 5;
wsz = 100;
prior = create_uvg_Prior(mu,v);
alpha_node = create_univariate_Laplace_node(prior);
logalpha0 = alpha_node.get();
w_node = create_symmetricDirichlet_node(logalpha0,wsz);
%logw0 = w_node.get();
ncm = w_node.inferParent();
[mu,sigma,logpost] = alpha_node.condition_on_child(ncm);
x = (-1:0.01:1)*4*sigma + mu;
y = exp(logpost(x));
lap = exp((x-mu).^2/(-2*sigma^2));
logalpha = alpha_node.sample();
plot(x,y,'g',x,lap,'r--',logalpha,0,'r*',logalpha0,0,'g*');grid;
legend('posterior','laplace','laplace sample','true value');
end |
github | bsxfan/meta-embeddings-master | create_symmetricDirichlet_node.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/create_symmetricDirichlet_node.m | 5,749 | utf_8 | 29d843a52a81df9405bb868555c339bf | function node = create_symmetricDirichlet_node(logalpha,sz)
% Creates symmetric Dirichlet node (part of a Bayesian network), that is
% equippped to do alternating Gibbs sampling. This node expects a
% non-conjugate (upstream) hyper-prior to supply the Dirichlet parameter
% alpha. It also expects (downstream) one or more categorical
% distributions (conjugate), all parametrized IID by the vector w,
% where w = {w_i} are the category probabilities.
%
% Inputs:
% sz: the number of categories
%
% Output:
% node.sample: function handle to do a Gibbs sampling step, sampling from
% P(w | alpha, counts). The function returns messages to all
% its neighbours:
% log(w): downstream to the conjugate categorical
% children.
% likelhood function for log alpha: log P(w | log alpha)
% to the non-conjugate
% upstream parent.
if nargin==0
test_this();
return;
end
alpha = exp(logalpha);
counts = 0;
w = randg(alpha+counts,sz,1);
w = w/sum(w);
logw = log(w);
node.get = @get;
node.sample = @sample;
node.condition_on_child = @condition_on_child;
node.condition_on_parent = @condition_on_parent;
node.inferParent = @inferParent;
node.logPosterior_at_default = @logPosterior_at_default;
function logP = logPosterior_at_default()
% default: w = 1/sz
alpha_c = alpha + counts;
total = sum(alpha_c);
logP = (sz-total)*log(sz) + gammaln(total) - sum(gammaln(alpha_c));
end
function val = get()
val = logw;
end
function condition_on_parent(logalpha_new)
logalpha = logalpha_new;
alpha = exp(logalpha);
end
function condition_on_child(observed_counts)
counts = observed_counts(:);
end
function val = sample(n)
if nargin==0
n = 1;
end
w = randg(alpha+counts,sz,n);
w = w/sum(w);
val = log(w);
if nargin==0
logw = val;
end
end
% Outputs:
% ncm: non-conjugate-message (likelihood function) sent to hyper-prior for alpha
function ncm = inferParent(givenChild)
if nargin==0 || ~givenChild %infer parent given the current value of this node
sumlogw = sum(logw);
ncm.llh = @(logalpha) llh_this(logalpha,sz,sumlogw);
ncm.Hessian = @(logalpha) llh_Hessian(logalpha,sz,sumlogw);
else %infer parent after collapsing this node
ncm.llh = @(logalpha) llh_collapsed(logalpha,counts);
ncm.Hessian = @(logalpha) collapsed_Hessian(logalpha,counts);
end
end
end
function [y,y1] = llh_collapsed(logalpha,counts)
alpha = exp(logalpha);
sz = length(counts);
sumC = full(sum(counts));
y = gammaln(sz*alpha) - gammaln(sz*alpha+sumC) + ...
sum(gammaln(bsxfun(@plus,alpha,counts)),1) - sz*gammaln(alpha);
if nargout>1
y1 = alpha.*( sz*psi(sz*alpha) - sz*psi(sz*alpha+sumC) + ...
sum(psi(bsxfun(@plus,alpha,counts)),1) - sz*psi(alpha) );
end
end
function h = collapsed_Hessian(logalpha,counts)
alpha = exp(logalpha);
sz = length(counts);
sumC = full(sum(counts));
y1 = alpha.*( sz*psi(sz*alpha) - sz*psi(sz*alpha+sumC) + ...
sum(psi(bsxfun(@plus,alpha,counts)),1) - sz*psi(alpha) );
h = y1 + alpha.^2.*( sz^2*psi(1,sz*alpha) - sz^2*psi(1,sz*alpha+sumC) + ...
sum(psi(1,bsxfun(@plus,alpha,counts)),1) - sz*psi(1,alpha) );
end
function [y,y1] = llh_this(logalpha,sz,sumlogw)
alpha = exp(logalpha);
y = expm1(logalpha)*sumlogw + gammaln(sz*alpha) - sz*gammaln(alpha);
if nargout>1
y1 = alpha.*(sumlogw + sz*psi(sz*alpha) - sz*psi(alpha) );
end
end
function h = llh_Hessian(logalpha,sz,sumlogw)
alpha = exp(logalpha);
y1 = alpha.*(sumlogw + sz*psi(sz*alpha) - sz*psi(alpha) );
h = y1 + alpha.*(sz^2*alpha.*psi(1,sz*alpha) - sz*alpha.*psi(1,alpha) );
end
function test_this()
close all;
sz = 100;
n = 1000;
logalpha0 = 3;
wnode = create_symmetricDirichlet_node(logalpha0,sz);
logw0 = wnode.get();
labelnode = create_Label_node(logw0,n);
counts = labelnode.inferParent();
wnode.condition_on_child(counts);
wnode.sample();
ncm = wnode.inferParent();
logalpha = -5:0.01:5;
[y,y1] = ncm.llh(logalpha);
delta = 1e-3;
[yplus,y1plus] = ncm.llh(logalpha+delta);
[ymin,y1min] = ncm.llh(logalpha-delta);
rstep1 = (yplus-ymin)/(2*delta);
rstep2 = (y1plus-y1min)/(2*delta);
h = ncm.Hessian(logalpha);
subplot(2,2,1);plot(logalpha,y,logalpha,y1,logalpha,rstep1,'--',...
logalpha,h,logalpha,rstep2,'--');legend('y','y1','rstep1','hess','rstep2');grid;
subplot(2,2,3);plot(logalpha,exp(y-max(y)),logalpha0,0,'g*');grid;
ncm = wnode.inferParent(true);
logalpha = -5:0.01:10;
[y,y1] = ncm.llh(logalpha);
delta = 1e-3;
[yplus,y1plus] = ncm.llh(logalpha+delta);
[ymin,y1min] = ncm.llh(logalpha-delta);
rstep1 = (yplus-ymin)/(2*delta);
rstep2 = (y1plus-y1min)/(2*delta);
h = ncm.Hessian(logalpha);
subplot(2,2,2);plot(logalpha,y,logalpha,y1,logalpha,rstep1,'--',...
logalpha,h,logalpha,rstep2,'--');legend('y','y1','rstep1','hess','rstep2');grid;
subplot(2,2,4);plot(logalpha,exp(y-max(y)),logalpha0,0,'g*');grid;
end
|
github | bsxfan/meta-embeddings-master | createDPMM.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/createDPMM.m | 1,065 | utf_8 | 6c6b4270dc5b4c5c841b1f8101fad8d6 | function model = createDPMM(W,B,crp)
if nargin==0
test_this();
return;
end
cholW = chol(W);
cholB = chol(B);
dim = size(W,1);
model.sample = @sample;
function [X,Means,hlabels,counts] = sample(n)
[labels,counts] = crp.sample(n);
m = length(counts);
hlabels = sparse(labels,1:n,true,m,n);
Means = cholB\randn(dim,m);
X = cholW\randn(dim,n) + Means*hlabels;
end
end
function P = sampleP(dim,tame)
R = rand(dim,dim-1)/tame;
P = eye(dim) + R*R.';
end
function test_this()
dim = 2;
tame = 10;
sep = 50;
small = false;
if small
n = 8;
ent = 3;
else
n = 1000;
ent = 10;
end
crp = create_PYCRP([],0,ent,n);
W = sep*sampleP(dim,tame);
B = sampleP(dim,tame);
model = createDPMM(W,B,crp);
[X,Means,hlabels,counts] = model.sample(n);
counts
close all;
plot(X(1,:),X(2,:),'.b',Means(1,:),Means(2,:),'*r');
end |
github | bsxfan/meta-embeddings-master | create_truncGMM.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/create_truncGMM.m | 11,488 | utf_8 | 60dcde7a91887483186b7ebd904866fc | function model = create_truncGMM(W,F,alpha,m)
% This is a truncated version of DP micture model, with a specified maximum number of
% components. The observations are realted to the hidden cluster variables
% like in an SPLDA model. The hidden variable for cluster i is z_i in R^d.
% The observations, x_j are in R^D, where D>= d. The prior for the z_i is
% IID: N(z_i | 0, I). The observations that belong to cluster i are
% conditionally IID: N(x_j | F z_i, W^{-1} ). The SPLDA model parameters
% are:
% F: D-by-d, factor loading matrix
% W: D-by-D, within cluster precision (inverse covariance)
%
% The other parameters are for the symmetric Dirichlet prior on mixture
% weights, which has parameters alpha and m, where m is the maximum number
% of mixture components: weights ~ Dir(alpha,m).
% More generally, alpha may be an m-by-1 vector, for a non-symmetric Dirichlet
% weight prior.
if nargin==0
test_this();
return;
end
cholW = chol(W);
dim = size(W,1);
alpha = alpha(:);
E = F'*W*F; %meta-embedding precision (before diagonalization)
[V,Lambda] = eig(E); %E = V*Lambda*V';
P = V.'*(F.'*W); % projection to extract 1st-order meta-embedding stats
Lambda = diag(Lambda);
% The diagonal Lambda is the meta-embedding precision after
% diagonalization.
% We now have the likelihood, or meta-embedding:
% P(x | z) \propto exp[ z'Px - 1/2 z' Lambda z ], where z is the
% hidden variable after diagonalization.
%
% The (normal) posterior for z, given n observations {x_j} has natural
% parameters:
% sum_j P x_j and I + n Lambda
FV = F*V; %projects from diagonalized Z to cluster means
A = [];
logThresh = log(1e-10);
model.sampleData = @sampleData;
model.sampleWeights = @sampleWeights;
model.sampleZ = @sampleZ;
model.sampleLabels = @sampleLabels;
model.setData = @setData;
model.label_log_posterior = @label_log_posterior;
model.Means_given_labels = @Means_given_labels;
model.fullGibbs_iteration = @fullGibbs_iteration;
model.collapsedGibbs_iteration = @collapsedGibbs_iteration;
model.mfvb_iteration = @mfvb_iteration;
function setData(X)
A = P*X;
end
% function Means = Z2Means(Z)
% Means = FV*Z;
% end
%hlabels: m-by-n
%Mu: D-by-m, posterior means for m cluster centroids
%counts: 1-by-m, cluster occupancy counts (soft if hlabels is soft)
%Q: posterior covariance for cluster i is: F*V*inv(diag(Q(:,i)))*V'*F.'
function [Mu,Q,counts] = Means_given_labels(hlabels)
if ~islogical(hlabels)
[m,n] = size(hlabels);
[~,L] = max(log(hlabels)-log(-log(rand(m,n))),[],1);
hlabels = sparse(L,1:n,true,m,n);
end
counts = full(sum(hlabels,2)); %m-by-1
Q = 1 + Lambda*counts.'; % d-by-m
Zhat = (A*hlabels.') ./ Q; %d-by-m
Mu = FV*Zhat;
end
% hlabels (one hot columns), m-by-n
% A = P*X, d-by-n
function Z = sampleZ(hlabels,counts)
%counts = full(sum(hlabels,2)); %m-by-1
Q = 1 + Lambda*counts.'; % d-by-m
Zhat = (A*hlabels.') ./ Q; %d-by-m
d = size(A,1);
Z = Zhat + randn(d,m) ./ sqrt(Q);
end
function [weights,counts] = sampleWeights(hlabels)
counts = sum(hlabels,2);
weights = randDirichlet(alpha+counts,m,1);
end
% Z: d-by-m
% A: d-by-n
% weights: m-by-1
function hlabels = sampleLabels(Z,weights)
n = size(A,2);
Gumbel = -log(-log(rand(m,n)));
%ZLambdaZ = sum(Z.*bsxfun(@times,Lambda,Z),1); % m-by-1
ZLambdaZ = Lambda.'*Z.^2; % m-by-1
Score = bsxfun(@plus,log(weights)-ZLambdaZ.'/2,Z.'*A); %m-by-n
[~,L] = max(Gumbel+Score,[],1);
hlabels = sparse(L,1:n,true,m,n);
end
function hlabels = fullGibbs_iteration(hlabels)
[weights,counts] = sampleWeights(hlabels);
Z = sampleZ(hlabels,counts);
hlabels = sampleLabels(Z,weights);
end
% hlabels (one hot columns), m-by-n
% A = P*X, d-by-n
function [Zhat,Q] = mfvb_Z(respbilties,counts)
%counts = sum(respbilties,2); %m-by-1
Q = 1 + Lambda*counts.'; % d-by-m
Zhat = (A*respbilties.') ./ Q; %d-by-m
end
function [post_alpha,counts] = mfvb_Weights(respbilties)
counts = sum(respbilties,2);
post_alpha = alpha+counts;
end
% Z: d-by-m
% A: d-by-n
% weights: m-by-1
function respbilties = mfvb_Labels(Zhat,Q,post_alpha)
ZLambdaZ = Lambda.'*Zhat.^2 + sum(bsxfun(@rdivide,Lambda,Q),1); % expected value
log_weights = psi(post_alpha) - psi(sum(post_alpha)); % expected value
R = bsxfun(@plus,log_weights-ZLambdaZ.'/2,Zhat.'*A); %m-by-n
mx = max(R,[],1);
R = bsxfun(@minus,R,mx);
R(R<logThresh) = -inf;
R = exp(R);
R = bsxfun(@rdivide,R,sum(R,1));
respbilties = R;
end
function respbilties = mfvb_iteration(respbilties)
[post_alpha,counts] = mfvb_Weights(respbilties);
[Zhat,Q] = mfvb_Z(respbilties,counts);
respbilties = mfvb_Labels(Zhat,Q,post_alpha);
end
function logPrior = label_log_prior(counts)
% Compute P(labels) by marginalizing over hidden weights. The output is
% in the form of un-normalized log probability. We use the
% candidate's formula:
% P(labels) = P(labels|weights) P(weights) / P(weights | labels)
% where we conveniently set weights = 1/m. We ignore P(weights),
% because we do not compute the normalizer. Since weights are uniform,
% we can also ignore P(labels|weights). We need to compute
% P(weights | labels) = Dir(weights | alpha + counts), with the
% normalizer, which is a function of the counts (and the labels).
logPrior = - logDirichlet(ones(m,1)/m,counts+alpha); % - log P(weights | labels)
end
function [llh,counts] = label_log_likelihood(hlabels)
AL = A*hlabels.'; % d-by-m
counts = sum(hlabels,2); %m-by-1
Q = Lambda*counts.'; % d-by-m
logdetQ = sum(log1p(Q),1);
Q = 1 + Q; %centroid posterior precisions
Mu = AL ./ Q; %centroid posterior means
llh = (Mu(:).'*AL(:) - sum(logdetQ,2))/2;
end
function [logP,counts] = label_log_posterior(hlabels)
if ~islogical(hlabels)
[m,n] = size(hlabels);
[~,L] = max(log(hlabels)-log(-log(rand(m,n))),[],1);
hlabels = sparse(L,1:n,true,m,n);
end
[logP,counts] = label_log_likelihood(hlabels);
logP = logP + label_log_prior(counts);
end
function hlabels = collapsedGibbs_iteration(hlabels)
n = size(A,2);
for j=1:n
hlabels(:,j) = false;
AL0 = A*hlabels.'; % d-by-m
counts0 = sum(hlabels,2); %m-by-1
nB0 = Lambda*counts0.'; % d-by-m
counts1 = counts0+1;
AL1 = bsxfun(@plus,AL0,A(:,j));
nB1 = bsxfun(@plus,nB0,Lambda);
logdetQ0 = sum(log1p(nB0),1);
logdetQ1 = sum(log1p(nB1),1);
K0 = sum(AL0.^2./(1+nB0),1);
K1 = sum(AL1.^2./(1+nB1),1);
llh = (K1 - K0 - logdetQ1 + logdetQ0)/2;
logPrior0 = gammaln(counts0+alpha);
logPrior1 = gammaln(counts1+alpha);
logPost = llh + (logPrior1 - logPrior0).';
[~,c] = max(logPost - log(-log(rand(1,m))),[],2);
hlabels(c,j) = true;
end
end
function hlabels = collapsedGibbs_slow(hlabels)
n = size(A,2);
for j = 1:n
logP = zeros(m,1);
hlabels(:,j) = false;
for i=1:m
hlabels(i,j) = true;
logP(i) = label_log_posterior(hlabels);
hlabels(i,j) = false;
end
[~,c] = max(logP-log(-log(rand(m,1))),[],1);
hlabels(c,j) = true;
end
end
function [X,Means,Z,weights,hlabels] = sampleData(n)
d = size(F,2);
weights = randDirichlet(alpha,m,1);
Z = randn(d,m);
Means = F*Z;
[~,labels] = max(bsxfun(@minus,log(weights(:)),log(-log(rand(m,n)))),[],1);
hlabels = sparse(labels,1:n,true,m,n);
X = cholW\randn(dim,n) + Means*hlabels;
end
end
function P = sampleP(dim,tame)
R = rand(dim,dim-1)/tame;
P = eye(dim) + R*R.';
end
function test_this()
dim = 2;
tame = 10;
sep = 2; %increase to move clusters further apart in simulated data
small = false;
alpha0 = 60; %increase to get more clusters
if small
n = 8;
m = 20;
else
n = 1000;
m = 100;
end
alpha = alpha0/m;
W = sep*sampleP(dim,tame);
B = sampleP(dim,tame);
F = inv(chol(B));
EER = testEER(W,F,1000)
pause(4)
model = create_truncGMM(W,F,alpha,m);
[X,Means,Z,weights,truelabels] = model.sampleData(n);
counts = full(sum(truelabels,2).');
nz = counts>0;
nzcounts = counts(nz)
close all;
cg_labels = sparse(randi(m,1,n),1:n,true,m,n); %random label init
%cg_labels = sparse(ones(1,n),1:n,true,m,n); %single cluster init
bg_labels = cg_labels;
mf_labels = cg_labels;
model.setData(X);
niters = 1000;
cg_delta = zeros(1,niters);
bg_delta = zeros(1,niters);
mf_delta = zeros(1,niters);
mft = 0;
bgt = 0;
cgt = 0;
cg_wct = zeros(1,niters);
bg_wct = zeros(1,niters);
mf_wct = zeros(1,niters);
oracle = model.label_log_posterior(truelabels);
for i=1:niters
tic;
bg_labels = model.fullGibbs_iteration(bg_labels);
bgt = bgt + toc;
bg_wct(i) = bgt;
tic;
cg_labels = model.collapsedGibbs_iteration(cg_labels);
cgt = cgt + toc;
cg_wct(i) = cgt;
tic;
mf_labels = model.mfvb_iteration(mf_labels);
mft = mft + toc;
mf_wct(i) = mft;
cg_delta(i) = model.label_log_posterior(cg_labels) - oracle;
bg_delta(i) = model.label_log_posterior(bg_labels) - oracle;
mf_delta(i) = model.label_log_posterior(mf_labels) - oracle;
[bgMu,~,bg_counts] = model.Means_given_labels(bg_labels);
[cgMu,~,cg_counts] = model.Means_given_labels(cg_labels);
[mfMu,~,mf_counts] = model.Means_given_labels(mf_labels);
bg_nz = bg_counts>0;
cg_nz = cg_counts>0;
mf_nz = mf_counts>0;
subplot(2,2,1);plot(X(1,:),X(2,:),'.b',Means(1,nz),Means(2,nz),'*r',bgMu(1,bg_nz),bgMu(2,bg_nz),'*g');title('full Gibbs');
subplot(2,2,2);plot(X(1,:),X(2,:),'.b',Means(1,nz),Means(2,nz),'*r',cgMu(1,cg_nz),cgMu(2,cg_nz),'*g');title('collapsed Gibbs');
subplot(2,2,3);plot(X(1,:),X(2,:),'.b',Means(1,nz),Means(2,nz),'*r',mfMu(1,mf_nz),mfMu(2,mf_nz),'*g');title('mean field VB');
subplot(2,2,4);semilogx(cg_wct(1:i),cg_delta(1:i),...
bg_wct(1:i),bg_delta(1:i),...
mf_wct(1:i),mf_delta(1:i));
xlabel('wall clock');ylabel('log P(sampled labels) - log P(true labels)')
legend('clpsd Gibbs','full Gibbs','mfVB','Location','SouthEast');
pause(0.1);
end
end |
github | bsxfan/meta-embeddings-master | test_GMM_Gibbs.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/test_GMM_Gibbs.m | 3,062 | utf_8 | 23d78374c004d789decbe42ff4a4e0a9 | function test_GMM_Gibbs()
close all;
dim = 500;
tame = 10;
sep = 0.6e-3; %increase to move clusters further apart in smulated data
%sep = sep*200;
%sep = 1;
alpha0 = 200; %increase to get more clusters
n = 1000;
m = 300;
alpha = alpha0/m;
W = sep*sampleP(dim,tame);
%B = sampleP(dim,tame);
%F = inv(chol(B));
d = 100;
F = randn(dim,d);
EER = testEER(W,F,1000)
pause(4)
model = create_truncGMM(W,F,alpha,m);
[X,Means,Z,weights,truelabels] = model.sampleData(n);
counts = full(sum(truelabels,2).');
nz = counts>0;
nzcounts = counts(nz)
close all;
labels = sparse(randi(m,1,n),1:n,true,m,n); %random label init
%labels = sparse(ones(1,n),1:n,true,m,n); %single cluster init
model.setData(X);
niters = 4000;
delta = zeros(1,niters);
wct = 0;
time = delta;
oracle = model.label_log_posterior(truelabels);
for i=1:niters
tic;labels = model.fullGibbs_iteration(labels);wct = wct+toc;
time(i) = wct;
%labels = model.collapsedGibbs_iteration(labels);
%labels = model.mfvb_iteration(labels);
delta(i) = model.label_log_posterior(labels) - oracle;
counts = full(sum(labels,2).');
fprintf('%i: delta = %g, clusters = %i\n',i,delta(i),sum(counts>0));
end
labels = sparse(randi(m,1,n),1:n,true,m,n); %random label init
niters = 50;
delta2 = zeros(1,niters);
wct = 0;
time2 = delta2;
for i=1:niters
%tic;labels = model.fullGibbs_iteration(labels);wct = wct+toc;
tic;labels = model.collapsedGibbs_iteration(labels);wct = wct+toc;
%labels = model.mfvb_iteration(labels);
time2(i) = wct;
delta2(i) = model.label_log_posterior(labels) - oracle;
counts = full(sum(labels,2).');
fprintf('%i: delta = %g, clusters = %i\n',i,delta2(i),sum(counts>0));
end
plot(time,delta,time2,delta2,'-*');legend('full','collapsed');
title(sprintf('D=%i, d=%i, EER=%g',dim,d,EER));
end
function EER = testEER(W,F,nspk)
[D,d] = size(F);
Z = randn(d,nspk);
Enroll = F*Z + chol(W)\randn(D,nspk);
Tar = F*Z + chol(W)\randn(D,nspk);
Non = F*randn(d,nspk) + chol(W)\randn(D,nspk);
E = F'*W*F; %meta-embedding precision (before diagonalization)
[V,Lambda] = eig(E); %E = V*Lambda*V';
P = V.'*(F.'*W); % projection to extract 1st-order meta-embedding stats
Lambda = diag(Lambda);
Aenroll = P*Enroll;
Atar = P*Tar;
Anon = P*Non;
logMEE = @(A,n) ( sum(bsxfun(@rdivide,A.^2,1+n*Lambda),1) - sum(log1p(n*Lambda),1) ) /2;
score = @(A1,A2) logMEE(A1+A2,2) - logMEE(A1,1) - logMEE(A2,1);
tar = score(Aenroll,Atar);
non = score(Aenroll,Anon);
EER = eer(tar,non);
end
function P = sampleP(dim,tame)
R = rand(dim,dim-1)/tame;
P = eye(dim) + R*R.';
end
|
github | bsxfan/meta-embeddings-master | create_GibbsGMM.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/create_GibbsGMM.m | 11,427 | utf_8 | 39c2d8aee27ef2a790747bef2aae64c2 | function model = create_GibbsGMM(W,F,alphaPrior,m)
% This is a truncated version of DP micture model, with a specified maximum number of
% components. The observations are realted to the hidden cluster variables
% like in an SPLDA model. The hidden variable for cluster i is z_i in R^d.
% The observations, x_j are in R^D, where D>= d. The prior for the z_i is
% IID: N(z_i | 0, I). The observations that belong to cluster i are
% conditionally IID: N(x_j | F z_i, W^{-1} ). The SPLDA model parameters
% are:
% F: D-by-d, factor loading matrix
% W: D-by-D, within cluster precision (inverse covariance)
%
% The other parameters are for the symmetric Dirichlet prior on mixture
% weights, which has parameters alpha and m, where m is the maximum number
% of mixture components: weights ~ Dir(alpha,m).
% More generally, alpha may be an m-by-1 vector, for a non-symmetric Dirichlet
% weight prior.
if nargin==0
test_this();
return;
end
cholW = chol(W);
dim = size(W,1);
alpha = alpha(:);
E = F'*W*F; %meta-embedding precision (before diagonalization)
[V,Lambda] = eig(E); %E = V*Lambda*V';
P = V.'*(F.'*W); % projection to extract 1st-order meta-embedding stats
Lambda = diag(Lambda);
% The diagonal Lambda is the meta-embedding precision after
% diagonalization.
% We now have the likelihood, or meta-embedding:
% P(x | z) \propto exp[ z'Px - 1/2 z' Lambda z ], where z is the
% hidden variable after diagonalization.
%
% The (normal) posterior for z, given n observations {x_j} has natural
% parameters:
% sum_j P x_j and I + n Lambda
FV = F*V; %projects from diagonalized Z to cluster means
A = [];
logThresh = log(1e-10);
model.sampleData = @sampleData;
model.sampleWeights = @sampleWeights;
model.sampleZ = @sampleZ;
model.sampleLabels = @sampleLabels;
model.setData = @setData;
model.label_log_posterior = @label_log_posterior;
model.Means_given_labels = @Means_given_labels;
model.fullGibbs_iteration = @fullGibbs_iteration;
model.collapsedGibbs_iteration = @collapsedGibbs_iteration;
model.mfvb_iteration = @mfvb_iteration;
function setData(X)
A = P*X;
end
% function Means = Z2Means(Z)
% Means = FV*Z;
% end
%hlabels: m-by-n
%Mu: D-by-m, posterior means for m cluster centroids
%counts: 1-by-m, cluster occupancy counts (soft if hlabels is soft)
%Q: posterior covariance for cluster i is: F*V*inv(diag(Q(:,i)))*V'*F.'
function [Mu,Q,counts] = Means_given_labels(hlabels)
if ~islogical(hlabels)
[m,n] = size(hlabels);
[~,L] = max(log(hlabels)-log(-log(rand(m,n))),[],1);
hlabels = sparse(L,1:n,true,m,n);
end
counts = full(sum(hlabels,2)); %m-by-1
Q = 1 + Lambda*counts.'; % d-by-m
Zhat = (A*hlabels.') ./ Q; %d-by-m
Mu = FV*Zhat;
end
% hlabels (one hot columns), m-by-n
% A = P*X, d-by-n
function Z = sampleZ(hlabels,counts)
%counts = full(sum(hlabels,2)); %m-by-1
Q = 1 + Lambda*counts.'; % d-by-m
Zhat = (A*hlabels.') ./ Q; %d-by-m
d = size(A,1);
Z = Zhat + randn(d,m) ./ sqrt(Q);
end
function [weights,counts] = sampleWeights(hlabels)
counts = sum(hlabels,2);
weights = randDirichlet(alpha+counts,m,1);
end
% Z: d-by-m
% A: d-by-n
% weights: m-by-1
function hlabels = sampleLabels(Z,weights)
n = size(A,2);
Gumbel = -log(-log(rand(m,n)));
%ZLambdaZ = sum(Z.*bsxfun(@times,Lambda,Z),1); % m-by-1
ZLambdaZ = Lambda.'*Z.^2; % m-by-1
Score = bsxfun(@plus,log(weights)-ZLambdaZ.'/2,Z.'*A); %m-by-n
[~,L] = max(Gumbel+Score,[],1);
hlabels = sparse(L,1:n,true,m,n);
end
function hlabels = fullGibbs_iteration(hlabels)
[weights,counts] = sampleWeights(hlabels);
Z = sampleZ(hlabels,counts);
hlabels = sampleLabels(Z,weights);
end
% hlabels (one hot columns), m-by-n
% A = P*X, d-by-n
function [Zhat,Q] = mfvb_Z(respbilties,counts)
%counts = sum(respbilties,2); %m-by-1
Q = 1 + Lambda*counts.'; % d-by-m
Zhat = (A*respbilties.') ./ Q; %d-by-m
end
function [post_alpha,counts] = mfvb_Weights(respbilties)
counts = sum(respbilties,2);
post_alpha = alpha+counts;
end
% Z: d-by-m
% A: d-by-n
% weights: m-by-1
function respbilties = mfvb_Labels(Zhat,Q,post_alpha)
ZLambdaZ = Lambda.'*Zhat.^2 + sum(bsxfun(@rdivide,Lambda,Q),1); % expected value
log_weights = psi(post_alpha) - psi(sum(post_alpha)); % expected value
R = bsxfun(@plus,log_weights-ZLambdaZ.'/2,Zhat.'*A); %m-by-n
mx = max(R,[],1);
R = bsxfun(@minus,R,mx);
R(R<logThresh) = -inf;
R = exp(R);
R = bsxfun(@rdivide,R,sum(R,1));
respbilties = R;
end
function respbilties = mfvb_iteration(respbilties)
[post_alpha,counts] = mfvb_Weights(respbilties);
[Zhat,Q] = mfvb_Z(respbilties,counts);
respbilties = mfvb_Labels(Zhat,Q,post_alpha);
end
function logPrior = label_log_prior(counts)
% Compute P(labels) by marginalizing over hidden weights. The output is
% in the form of un-normalized log probability. We use the
% candidate's formula:
% P(labels) = P(labels|weights) P(weights) / P(weights | labels)
% where we conveniently set weights = 1/m. We ignore P(weights),
% because we do not compute the normalizer. Since weights are uniform,
% we can also ignore P(labels|weights). We need to compute
% P(weights | labels) = Dir(weights | alpha + counts), with the
% normalizer, which is a function of the counts (and the labels).
logPrior = - logDirichlet(ones(m,1)/m,counts+alpha); % - log P(weights | labels)
end
function [llh,counts] = label_log_likelihood(hlabels)
AL = A*hlabels.'; % d-by-m
counts = sum(hlabels,2); %m-by-1
Q = Lambda*counts.'; % d-by-m
logdetQ = sum(log1p(Q),1);
Q = 1 + Q; %centroid posterior precisions
Mu = AL ./ Q; %centroid posterior means
llh = (Mu(:).'*AL(:) - sum(logdetQ,2))/2;
end
function [logP,counts] = label_log_posterior(hlabels)
if ~islogical(hlabels)
[m,n] = size(hlabels);
[~,L] = max(log(hlabels)-log(-log(rand(m,n))),[],1);
hlabels = sparse(L,1:n,true,m,n);
end
[logP,counts] = label_log_likelihood(hlabels);
logP = logP + label_log_prior(counts);
end
function hlabels = collapsedGibbs_iteration(hlabels)
n = size(A,2);
for j=1:n
hlabels(:,j) = false;
AL0 = A*hlabels.'; % d-by-m
counts0 = sum(hlabels,2); %m-by-1
nB0 = Lambda*counts0.'; % d-by-m
counts1 = counts0+1;
AL1 = bsxfun(@plus,AL0,A(:,j));
nB1 = bsxfun(@plus,nB0,Lambda);
logdetQ0 = sum(log1p(nB0),1);
logdetQ1 = sum(log1p(nB1),1);
K0 = sum(AL0.^2./(1+nB0),1);
K1 = sum(AL1.^2./(1+nB1),1);
llh = (K1 - K0 - logdetQ1 + logdetQ0)/2;
logPrior0 = gammaln(counts0+alpha);
logPrior1 = gammaln(counts1+alpha);
logPost = llh + (logPrior1 - logPrior0).';
[~,c] = max(logPost - log(-log(rand(1,m))),[],2);
hlabels(c,j) = true;
end
end
function hlabels = collapsedGibbs_slow(hlabels)
n = size(A,2);
for j = 1:n
logP = zeros(m,1);
hlabels(:,j) = false;
for i=1:m
hlabels(i,j) = true;
logP(i) = label_log_posterior(hlabels);
hlabels(i,j) = false;
end
[~,c] = max(logP-log(-log(rand(m,1))),[],1);
hlabels(c,j) = true;
end
end
function [X,Means,Z,weights,hlabels] = sampleData(n)
weights = randDirichlet(alpha,m,1);
Z = randn(dim,m);
Means = F*Z;
[~,labels] = max(bsxfun(@minus,log(weights(:)),log(-log(rand(m,n)))),[],1);
hlabels = sparse(labels,1:n,true,m,n);
X = cholW\randn(dim,n) + Means*hlabels;
end
end
function P = sampleP(dim,tame)
R = rand(dim,dim-1)/tame;
P = eye(dim) + R*R.';
end
function test_this()
dim = 2;
tame = 10;
sep = 500; %increase to move clusters further apart in smulated data
small = false;
alpha0 = 50; %increase to get more clusters
if small
n = 8;
m = 20;
else
n = 1000;
m = 100;
end
alpha = alpha0/m;
W = sep*sampleP(dim,tame);
B = sampleP(dim,tame);
F = inv(chol(B));
model = create_truncGMM(W,F,alpha,m);
[X,Means,Z,weights,truelabels] = model.sampleData(n);
counts = full(sum(truelabels,2).');
nz = counts>0;
nzcounts = counts(nz)
close all;
cg_labels = sparse(randi(m,1,n),1:n,true,m,n); %random label init
%cg_labels = sparse(ones(1,n),1:n,true,m,n); %single cluster init
bg_labels = cg_labels;
mf_labels = cg_labels;
model.setData(X);
niters = 1000;
cg_delta = zeros(1,niters);
bg_delta = zeros(1,niters);
mf_delta = zeros(1,niters);
mft = 0;
bgt = 0;
cgt = 0;
cg_wct = zeros(1,niters);
bg_wct = zeros(1,niters);
mf_wct = zeros(1,niters);
oracle = model.label_log_posterior(truelabels);
for i=1:niters
tic;
bg_labels = model.fullGibbs_iteration(bg_labels);
bgt = bgt + toc;
bg_wct(i) = bgt;
tic;
cg_labels = model.collapsedGibbs_iteration(cg_labels);
cgt = cgt + toc;
cg_wct(i) = cgt;
tic;
mf_labels = model.mfvb_iteration(mf_labels);
mft = mft + toc;
mf_wct(i) = mft;
cg_delta(i) = model.label_log_posterior(cg_labels) - oracle;
bg_delta(i) = model.label_log_posterior(bg_labels) - oracle;
mf_delta(i) = model.label_log_posterior(mf_labels) - oracle;
[bgMu,~,bg_counts] = model.Means_given_labels(bg_labels);
[cgMu,~,cg_counts] = model.Means_given_labels(cg_labels);
[mfMu,~,mf_counts] = model.Means_given_labels(mf_labels);
bg_nz = bg_counts>0;
cg_nz = cg_counts>0;
mf_nz = mf_counts>0;
subplot(2,2,1);plot(X(1,:),X(2,:),'.b',Means(1,nz),Means(2,nz),'*r',bgMu(1,bg_nz),bgMu(2,bg_nz),'*g');title('full Gibbs');
subplot(2,2,2);plot(X(1,:),X(2,:),'.b',Means(1,nz),Means(2,nz),'*r',cgMu(1,cg_nz),cgMu(2,cg_nz),'*g');title('collapsed Gibbs');
subplot(2,2,3);plot(X(1,:),X(2,:),'.b',Means(1,nz),Means(2,nz),'*r',mfMu(1,mf_nz),mfMu(2,mf_nz),'*g');title('mean field VB');
subplot(2,2,4);semilogx(cg_wct(1:i),cg_delta(1:i),...
bg_wct(1:i),bg_delta(1:i),...
mf_wct(1:i),mf_delta(1:i));
xlabel('wall clock');ylabel('log P(sampled labels) - log P(true labels)')
legend('clpsd Gibbs','full Gibbs','mfVB','Location','SouthEast');
pause(0.1);
end
end |
github | bsxfan/meta-embeddings-master | randg.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/randg.m | 2,448 | utf_8 | bf1edfa92d41e108e3e1e2ef55461799 | function G = randg(alpha,m,n)
% Generates an m-by-n matrix of random gamma variates, having scale = 1
% and shape alpha.
% Inputs:
% alpha: scalar, vector or matrix
% m,n: [optional] size of output matrix. If not given, the size is the
% same as that of alpha. If given, then alpha should be m-by-n, or an
% m-vector, or an n-row.
% Output:
% G: m-by-n matrix of gamma variates
%
%
% Uses the method of:
% Marsaglia & Tsang, "A Simple Method for Generating Gamma Variables",
% 2000, ACM Transactions on Mathematical Software. 26(3).
%
% See also:
% https://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-
% distributed_random_variables
%
% The speed is roughly independent of alpha.
if nargin==0
test_this();
return;
end
if exist('m','var')
assert(exist('n','var')>0,'illegal argument combination');
[mm,nn] = size(alpha);
if isscalar(alpha)
alpha = alpha*ones(m,n);
elseif nn==1 && mm==m && n>1
alpha = repmat(alpha,1,n);
elseif mm==1 && nn==n && m>1
alpha = repmat(alpha,m,1);
else
assert(m==mm && n==nn,'illegal argument combination');
end
else
[m,n] = size(alpha);
end
N = m*n;
alpha = reshape(alpha,1,N);
G = zeros(1,N);
req = 1:N;
small = alpha < 1;
if any(small)
ns = sum(small);
sa = alpha(small);
G(small) = randg(1+sa,1,ns).*rand(1,ns).^(1./sa);
req(small)=[];
end
nreq = length(req);
d = alpha(req) - 1/3;
c = 1./sqrt(9*d);
while nreq>0
x = randn(1,nreq);
v = (1+c.*x).^3;
u = rand(1,nreq);
ok = ( v>0 ) & ( log(u) < x.^2/2 + d.*(1 - v + log(v)) );
G(req(ok)) = d(ok).*v(ok);
d(ok) = [];
c(ok) = [];
req(ok) = [];
nreq = length(req);
% This version works nicely, but can be made faster (fewer logs),
% at the cost slightly more complex code---see the paper.
end
G = reshape(G,m,n);
end
function test_this()
alpha = [0.1,1,10];
G = randg(repmat(alpha,10000,1));
mu = mean(G,1);
v = mean(bsxfun(@minus,G,alpha).^2,1);
[alpha;mu;v]
alpha = pi;
G = randg(alpha,10000,1);
mu = mean(G,1);
v = mean(bsxfun(@minus,G,alpha).^2,1);
[alpha;mu;v]
end
|
github | bsxfan/meta-embeddings-master | test_GMM_Gibbs_Balerion.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/test_GMM_Gibbs_Balerion.m | 3,075 | utf_8 | e0afdf1916c50ecfbb2769db53b73d08 | function test_GMM_Gibbs_Balerion()
close all;
dim = 500;
tame = 10;
sep = 0.6e-3; %increase to move clusters further apart in smulated data
%sep = sep*200;
%sep = 1;
alpha0 = 1000; %increase to get more clusters
n = 100000;
m = 2000;
alpha = alpha0/m;
W = sep*sampleP(dim,tame);
%B = sampleP(dim,tame);
%F = inv(chol(B));
d = 100;
F = randn(dim,d);
EER = testEER(W,F,1000)
pause(4)
model = create_truncGMM(W,F,alpha,m);
[X,Means,Z,weights,truelabels] = model.sampleData(n);
counts = full(sum(truelabels,2).');
nz = counts>0;
nzcounts = counts(nz)
close all;
labels = sparse(randi(m,1,n),1:n,true,m,n); %random label init
%labels = sparse(ones(1,n),1:n,true,m,n); %single cluster init
model.setData(X);
niters = 2000;
delta = zeros(1,niters);
wct = 0;
time = delta;
oracle = model.label_log_posterior(truelabels);
for i=1:niters
tic;labels = model.fullGibbs_iteration(labels);wct = wct+toc;
time(i) = wct;
%labels = model.collapsedGibbs_iteration(labels);
%labels = model.mfvb_iteration(labels);
delta(i) = model.label_log_posterior(labels) - oracle;
counts = full(sum(labels,2).');
fprintf('%i: delta = %g, clusters = %i\n',i,delta(i),sum(counts>0));
end
labels = sparse(randi(m,1,n),1:n,true,m,n); %random label init
niters = 50;
delta2 = zeros(1,niters);
wct = 0;
time2 = delta2;
for i=1:niters
%tic;labels = model.fullGibbs_iteration(labels);wct = wct+toc;
tic;labels = model.collapsedGibbs_iteration(labels);wct = wct+toc;
%labels = model.mfvb_iteration(labels);
time2(i) = wct;
delta2(i) = model.label_log_posterior(labels) - oracle;
counts = full(sum(labels,2).');
fprintf('%i: delta = %g, clusters = %i\n',i,delta2(i),sum(counts>0));
end
plot(time,delta,time2,delta2,'-*');legend('full','collapsed');
title(sprintf('D=%i, d=%i, EER=%g',dim,d,EER));
end
function EER = testEER(W,F,nspk)
[D,d] = size(F);
Z = randn(d,nspk);
Enroll = F*Z + chol(W)\randn(D,nspk);
Tar = F*Z + chol(W)\randn(D,nspk);
Non = F*randn(d,nspk) + chol(W)\randn(D,nspk);
E = F'*W*F; %meta-embedding precision (before diagonalization)
[V,Lambda] = eig(E); %E = V*Lambda*V';
P = V.'*(F.'*W); % projection to extract 1st-order meta-embedding stats
Lambda = diag(Lambda);
Aenroll = P*Enroll;
Atar = P*Tar;
Anon = P*Non;
logMEE = @(A,n) ( sum(bsxfun(@rdivide,A.^2,1+n*Lambda),1) - sum(log1p(n*Lambda),1) ) /2;
score = @(A1,A2) logMEE(A1+A2,2) - logMEE(A1,1) - logMEE(A2,1);
tar = score(Aenroll,Atar);
non = score(Aenroll,Anon);
EER = eer(tar,non);
end
function P = sampleP(dim,tame)
R = rand(dim,dim-1)/tame;
P = eye(dim) + R*R.';
end
|
github | bsxfan/meta-embeddings-master | dualAveraging.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/NUTS-matlab-master/dualAveraging.m | 3,700 | utf_8 | 95a22ca6047c33503568b405eb9968ef | function [theta, epsilonbar, epsilon_seq, epsilonbar_seq] = dualAveraging(f, theta0, delta, n_warmup, n_updates)
% function [theta, epsilonbar, epsilon_seq, epsilonbar_seq] = dualAveraging(f, n_warmup, theta0, delta, n_updates)
%
% Adjusts the step-size of NUTS by the dual-averaging (stochastic
% optimization) algorithm of Hoffman and Gelman (2014).
%
% Args:
% f - function handle: returns the log probability of the target and
% its gradient.
% theta0 - column vector: the initial state of the chain
% delta - double in the range [0, 1]: the target "acceptance rate" of NUTS.
% n_warmup - int: the number of NUTS iterations for the dual-averaging
% algorithm.
% n_updates - int: the number of updates to be printed till the completion
% of the step-size adjustment.
%
% Returns:
% theta - last state of the chain after the step-size adjustment, which
% can be used as the initial state for the sampling stage (no need for
% additional 'burn-in' samples
% epsilonbar - step-size corresponding to the target "acceptance rate".
% epsilon_seq, epsilonbar_seq - column vectors: the whole history of the
% attempted and averaged step-size. It can be used to diagnose the
% convergence of the dual-averaging algorithm.
% Default argment values.
if nargin < 3
delta = 0.8;
end
if nargin < 4
n_warmup = 500;
end
if nargin < 5
n_updates = 5;
end
% Calculate the number of iterations per update.
n_itr_per_update = floor(n_warmup / n_updates);
[logp, grad] = f(theta0);
% Parameters for NUTS
max_tree_depth = 12;
% Choose a reasonable first epsilon by a simple heuristic.
[epsilon, nfevals_total] = find_reasonable_epsilon(theta0, grad, logp, f);
% Parameters for the dual averaging algorithm.
gamma = .05;
t0 = 10;
kappa = 0.75;
mu = log(10 * epsilon);
% Initialize dual averaging algorithm.
epsilonbar = 1;
epsilon_seq = zeros(n_warmup, 1);
epsilonbar_seq = zeros(n_warmup, 1);
epsilon_seq(1) = epsilon;
Hbar = 0;
theta = theta0;
for i = 1:n_warmup
[theta, ave_alpha, nfevals, logp, grad] = NUTS(f, epsilon, theta, logp, grad, max_tree_depth);
nfevals_total = nfevals_total + nfevals;
eta = 1 / (i + t0);
Hbar = (1 - eta) * Hbar + eta * (delta - ave_alpha);
epsilon = exp(mu - sqrt(i) / gamma * Hbar);
epsilon_seq(i) = epsilon;
eta = i^-kappa;
epsilonbar = exp((1 - eta) * log(epsilonbar) + eta * log(epsilon));
epsilonbar_seq(i) = epsilonbar;
% Update on the progress of simulation.
if mod(i, n_itr_per_update) == 0
disp(['The ', num2str(i), ' iterations are complete.'])
end
end
fprintf('Each iteration of NUTS required %.1f gradient evaluations during the step-size adjustment.\n', ...
nfevals_total / (n_warmup + 1));
end
function [epsilon, nfevals] = find_reasonable_epsilon(theta0, grad0, logp0, f)
epsilon = 1;
r0 = randn(length(theta0), 1);
% Figure out what direction we should be moving epsilon.
[~, rprime, ~, logpprime] = leapfrog(theta0, r0, grad0, epsilon, f);
nfevals = 1;
acceptprob = exp(logpprime - logp0 - 0.5 * (rprime' * rprime - r0' * r0));
a = 2 * (acceptprob > 0.5) - 1;
% Keep moving epsilon in that direction until acceptprob crosses 0.5.
while (acceptprob^a > 2^(-a))
epsilon = epsilon * 2^a;
[~, rprime, ~, logpprime] = leapfrog(theta0, r0, grad0, epsilon, f);
nfevals = nfevals + 1;
acceptprob = exp(logpprime - logp0 - 0.5 * (rprime' * rprime - r0' * r0));
end
end
function [thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, epsilon, f)
rprime = r + 0.5 * epsilon * grad;
thetaprime = theta + epsilon * rprime;
[logpprime, gradprime] = f(thetaprime);
rprime = rprime + 0.5 * epsilon * gradprime;
end
|
github | bsxfan/meta-embeddings-master | ESS.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/NUTS-matlab-master/ESS.m | 2,793 | utf_8 | 2f52219f2530dd16c3f9b2a395217f66 | function [ess, auto_cor] = ESS(x, mu, sigma_sq)
% function [ess, auto_cor] = ESS(x, mu, sigma_sq)
%
% Returns an estimate of effective sample sizes of a Markov chain 'x(:,i)'
% for each i. The estimates are based on the monotone positive sequence estimator
% of "Practical Markov Chain Monte Carlo" by Geyer (1992). The estimator is
% ONLY VALID for reversible Markov chains. The inputs 'mu' and 'sigma_sq' are optional.
%
% Examples:
% ess_for_mean = ESS(samples);
% ess_for_second_moment = ESS(samples.^2)
%
% Args:
% mu, sigma_sq - column vectors for the mean E(x) and variance Var(x) if the
% analytical (or accurately estimated) value is available. If provided,
% it can stabilize the estimate of auto-correlation of 'x(i,:)' and
% hence its ESS. This is intended for research uses when one wants to
% accurately quantify the asymptotic efficience of a MCMC algorithm.
%
% Returns:
% ess - column vector of length size(x, 1)
% auto_cor - cell array of length size(x, 1): the i-th cell contains the
% auto-correlation estimate of 'x(i,:)' up to the lag at which the
% auto-correlation can be considered insignificant by the monotonicity
% criterion.
if nargin < 2
mu = mean(x,2);
sigma_sq = var(x,[],2);
end
d = size(x, 1);
ess = zeros([d, 1]);
auto_cor = cell(d, 1);
% Difficult to avoid the loop for this estimator of ESS.
for i = 1:d
[ess(i), auto_cor{i}] = ESS_1d(x(i,:), mu(i), sigma_sq(i));
end
end
function [ess, auto_cor] = ESS_1d(x, mu, sigma_sq)
[~, n] = size(x);
auto_cor = [];
lag = 0;
even_auto_cor = computeAutoCorr(x, lag, mu, sigma_sq);
auto_cor(end + 1) = even_auto_cor;
auto_cor_sum = - even_auto_cor;
lag = lag + 1;
odd_auto_cor = computeAutoCorr(x, lag, mu, sigma_sq);
auto_cor(end + 1) = odd_auto_cor;
running_min = even_auto_cor + odd_auto_cor;
while (even_auto_cor + odd_auto_cor > 0) && (lag + 2 < n)
running_min = min(running_min, (even_auto_cor + odd_auto_cor));
auto_cor_sum = auto_cor_sum + 2 * running_min;
lag = lag + 1;
even_auto_cor = computeAutoCorr(x, lag, mu, sigma_sq);
auto_cor(:, end + 1) = even_auto_cor;
lag = lag + 1;
odd_auto_cor = computeAutoCorr(x, lag, mu, sigma_sq);
auto_cor(end + 1) = odd_auto_cor;
end
ess = n ./ auto_cor_sum;
if auto_cor_sum < 0 % Rare, but can happen when 'x' shows strong negative correlations.
ess = Inf;
end
end
function [auto_corr] = computeAutoCorr(x, k, mu, sigma_sq)
% Returns an estimate of the lag 'k' auto-correlation of a time series
% ''. The estimator is biased towards zero due to the factor (n - k) / n.
% See Geyer (1992) Section 3.1 and the reference therein for justification.
n = length(x);
t = 1:(n - k);
auto_corr = (x(t) - mu) .* (x(t + k) - mu);
auto_corr = mean(auto_corr) / sigma_sq * ((n - k) / n);
end
|
github | bsxfan/meta-embeddings-master | NUTS.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/NUTS-matlab-master/NUTS.m | 8,078 | utf_8 | 7703b67677b18bbfd8fbcce670366463 | function [theta, alpha_ave, nfevals, logp, grad] = NUTS(f, epsilon, theta0, logp0, grad0, max_tree_depth)
% function [theta, grad, logp, nfevals, alpha_ave] = NUTS(f, epsilon, theta0, max_tree_depth, logp0, grad0)
%
% Carries out one iteration of No-U-Turn-Sampler.
%
% Args:
% f - function handle: returns the log probability of the target and
% its gradient.
% epsilon - double: step size of leap-frog integrator
% theta0 - column vector: current state of a Markov chain and the
% initial state for the trajectory of Hamiltonian dynamcis.
%
% Optional args:
% logp0 - double: log probability computed at theta0. See the comment on
% 'grad0' for more info.
% grad0 - column vector: gradient of the log probability computed at
% theta0. If both 'grad0' and 'logp0' provided, it will save a bit
% (one evaluation of 'f') of computation. The computational gain is
% rather small when NUTS requires a long trajectory, so this is an
% optional parameter.
% max_tree_depth - int
%
% Returns:
% theta - next state of the chain
% logp - log probability computed at theta
% alpha_ave - average acceptance probability of the states proposed at the
% last doubling step of NUTS. It measures of the accuracy of the
% numerical approximation of Hamiltonian dynamics and is used to find
% an optimal step size value 'epsilon.'
% nfevals - the number of log likelihood and gradient evaluations one
% iteration of NUTS required
% grad - gradient computed at theta (to feed into the next iteration of
% NUTS if desired)
% Copyright (c) 2011, Matthew D. Hoffman
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
%
% Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
% Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
global nfevals;
nfevals = 0;
if nargin < 5
[logp0, grad0] = f(theta0);
nfevals = nfevals + 1;
end
if nargin < 6
max_tree_depth = 10;
end
% Resample momenta.
r0 = randn(size(theta0));
% Joint log-probability of theta and momenta r.
joint = logp0 - 0.5 * (r0' * r0);
% Resample u ~ uniform([0, exp(joint)]).
% Equivalent to (log(u) - joint) ~ exponential(1).
logu = joint - exprnd(1);
% Initialize tree.
thetaminus = theta0;
thetaplus = theta0;
rminus = r0;
rplus = r0;
gradminus = grad0;
gradplus = grad0;
% Initial height dir = 0.
depth = 0;
% If all else fails, the next sample is the previous sample.
theta = theta0;
grad = grad0;
logp = logp0;
% Initially the only valid point is the initial point.
n = 1;
% Main loop---keep going until the stop criterion is met.
stop = false;
while ~stop
% Choose a direction. -1=backwards, 1=forwards.
dir = 2 * (rand() < 0.5) - 1;
% Double the size of the tree.
if (dir == -1)
[thetaminus, rminus, gradminus, ~, ~, ~, thetaprime, gradprime, logpprime, nprime, stopprime, alpha, nalpha] = ...
build_tree(thetaminus, rminus, gradminus, logu, dir, depth, epsilon, f, joint);
else
[~, ~, ~, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, stopprime, alpha, nalpha] = ...
build_tree(thetaplus, rplus, gradplus, logu, dir, depth, epsilon, f, joint);
end
% Use Metropolis-Hastings to decide whether or not to move to a
% point from the half-tree we just generated.
if (~ stopprime && (rand() < nprime/n))
theta = thetaprime;
logp = logpprime;
grad = gradprime;
end
% Update number of valid points we've seen.
n = n + nprime;
% Decide if it's time to stop.
stop = stopprime || stop_criterion(thetaminus, thetaplus, rminus, rplus);
% Increment depth.
depth = depth + 1;
if depth > max_tree_depth
disp('The current NUTS iteration reached the maximum tree depth.')
break
end
end
alpha_ave = alpha / nalpha;
end
function [thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, epsilon, f)
rprime = r + 0.5 * epsilon * grad;
thetaprime = theta + epsilon * rprime;
[logpprime, gradprime] = f(thetaprime);
rprime = rprime + 0.5 * epsilon * gradprime;
global nfevals;
nfevals = nfevals + 1;
end
function criterion = stop_criterion(thetaminus, thetaplus, rminus, rplus)
thetavec = thetaplus - thetaminus;
criterion = (thetavec' * rminus < 0) || (thetavec' * rplus < 0);
end
% The main recursion.
function [thetaminus, rminus, gradminus, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, stopprime, alphaprime, nalphaprime] = ...
build_tree(theta, r, grad, logu, dir, depth, epsilon, f, joint0)
if (depth == 0)
% Base case: Take a single leapfrog step in the direction 'dir'.
[thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, dir*epsilon, f);
joint = logpprime - 0.5 * (rprime' * rprime);
% Is the new point in the slice?
nprime = logu < joint;
% Is the simulation wildly inaccurate?
stopprime = logu - 100 >= joint;
% Set the return values---minus=plus for all things here, since the
% "tree" is of depth 0.
thetaminus = thetaprime;
thetaplus = thetaprime;
rminus = rprime;
rplus = rprime;
gradminus = gradprime;
gradplus = gradprime;
% Compute the acceptance probability.
alphaprime = exp(logpprime - 0.5 * (rprime' * rprime) - joint0);
if isnan(alphaprime)
alphaprime = 0;
else
alphaprime = min(1, alphaprime);
end
nalphaprime = 1;
else
% Recursion: Implicitly build the height depth-1 left and right subtrees.
[thetaminus, rminus, gradminus, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, stopprime, alphaprime, nalphaprime] = ...
build_tree(theta, r, grad, logu, dir, depth-1, epsilon, f, joint0);
% No need to keep going if the stopping criteria were met in the first
% subtree.
if ~stopprime
if (dir == -1)
[thetaminus, rminus, gradminus, ~, ~, ~, thetaprime2, gradprime2, logpprime2, nprime2, stopprime2, alphaprime2, nalphaprime2] = ...
build_tree(thetaminus, rminus, gradminus, logu, dir, depth-1, epsilon, f, joint0);
else
[~, ~, ~, thetaplus, rplus, gradplus, thetaprime2, gradprime2, logpprime2, nprime2, stopprime2, alphaprime2, nalphaprime2] = ...
build_tree(thetaplus, rplus, gradplus, logu, dir, depth-1, epsilon, f, joint0);
end
% Choose which subtree to propagate a sample up from.
if (rand() < nprime2 / (nprime + nprime2))
thetaprime = thetaprime2;
gradprime = gradprime2;
logpprime = logpprime2;
end
% Update the number of valid points.
nprime = nprime + nprime2;
% Update the stopping criterion.
stopprime = stopprime || stopprime2 || stop_criterion(thetaminus, thetaplus, rminus, rplus);
% Update the acceptance probability statistics.
alphaprime = alphaprime + alphaprime2;
nalphaprime = nalphaprime + nalphaprime2;
end
end
end |
github | bsxfan/meta-embeddings-master | ReNUTS.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/NUTS-matlab-master/Recycle/ReNUTS.m | 10,790 | utf_8 | 916dd2121fbfb133e73fe81c36d2961b | function [theta, re_theta, alpha_ave, nfevals, logp, grad] = ...
ReNUTS(f, epsilon, theta0, nsample, logp0, grad0, max_tree_depth)
% function [theta, grad, logp, nfevals, alpha_ave] = ...
% ReNUTS(f, epsilon, theta0, n_recycle, logp0, grad0, max_tree_depth)
%
% Carries out one iteration of Recycled No-U-Turn-Sampler.
% TODO: Update the documentation to reflect the recycling steps.
%
% Args:
% f - function handle: returns the log probability of the target and
% its gradient.
% epsilon - double: step size of leap-frog integrator
% theta0 - column vector: current state of a Markov chain and the
% initial state for the trajectory of Hamiltonian dynamcis.
%
% Optional args:
% logp0 - double: log probability computed at theta0. See the comment on
% 'grad0' for more info.
% grad0 - column vector: gradient of the log probability computed at
% theta0. If both 'grad0' and 'logp0' provided, it will save a bit
% (one evaluation of 'f') of computation. The computational gain is
% rather small when NUTS requires a long trajectory, so this is an
% optional parameter.
% max_tree_depth - int
%
% Returns:
% theta - next state of the chain
% logp - log probability computed at theta
% alpha_ave - average acceptance probability of the states proposed at the
% last doubling step of NUTS. It measures of the accuracy of the
% numerical approximation of Hamiltonian dynamics and is used to find
% an optimal step size value 'epsilon.'
% nfevals - the number of log likelihood and gradient evaluations one
% iteration of NUTS required
% grad - gradient computed at theta (to feed into the next iteration of
% NUTS if desired)
% Copyright (c) 2011, Matthew D. Hoffman
% All rights reserved.
%
% Copyright (c) 2016, Akihiko Nishimrura, for the portions of the code
% relating to the recycling algorithm of Nishimura and Dunson (2015).
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
%
% Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
% Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
global nfevals;
nfevals = 0;
if nargin < 4
nsample = 0;
end
if nargin < 6
[logp0, grad0] = f(theta0);
nfevals = nfevals + 1;
end
if nargin < 7
max_tree_depth = 10;
end
% Resample momenta.
r0 = randn(size(theta0));
% Joint log-probability of theta and momenta r.
joint = logp0 - 0.5 * (r0' * r0);
% Resample u ~ uniform([0, exp(joint)]).
% Equivalent to (log(u) - joint) ~ exponential(1).
logu = joint - exprnd(1);
% Initialize tree.
thetaminus = theta0;
thetaplus = theta0;
rminus = r0;
rplus = r0;
gradminus = grad0;
gradplus = grad0;
% Initial height dir = 0.
depth = 0;
% If all else fails, the next sample is the previous sample.
theta = theta0;
grad = grad0;
logp = logp0;
% Initially the only valid point is the initial point.
n = 1;
% Recyclable samples.
re_theta = theta;
% Main loop---keep going until the stop criterion is met.
stop = false;
while ~stop
% Choose a direction. -1=backwards, 1=forwards.
dir = 2 * (rand() < 0.5) - 1;
% Tell 'build_tree' function to store no more states than those that
% might be used as an output in the end. Just to save some memory.
nsampleprime = ceil(nsample * 2^depth / (n + 2^depth));
% Double the size of the tree.
if (dir == -1)
[thetaminus, rminus, gradminus, ~, ~, ~, thetaprime, gradprime, logpprime, nprime, stopprime, re_thetaprime, alpha, nalpha] = ...
build_tree(thetaminus, rminus, gradminus, logu, dir, depth, epsilon, f, joint, nsampleprime);
else
[~, ~, ~, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, stopprime, re_thetaprime, alpha, nalpha] = ...
build_tree(thetaplus, rplus, gradplus, logu, dir, depth, epsilon, f, joint, nsampleprime);
end
% Use Metropolis-Hastings to decide whether or not to move to a
% point from the half-tree we just generated.
if (~ stopprime && (rand() < nprime / n))
theta = thetaprime;
logp = logpprime;
grad = gradprime;
end
% Update the collection of recyclable states have been generated so far.
if n + nprime <= nsample
re_theta = [re_theta, re_thetaprime];
else
m = nsample * n / (n + nprime);
m = floor(m) + ((m - floor(m)) > rand());
mprime = nsample - m;
re_theta = [ ...
re_theta(:, randperm(size(re_theta, 2), m)), ...
re_thetaprime(:, randperm(size(re_thetaprime, 2), mprime))];
end
% Update number of valid points we've seen.
n = n + nprime;
% Decide if it's time to stop.
stop = stopprime || stop_criterion(thetaminus, thetaplus, rminus, rplus);
% Increment depth.
depth = depth + 1;
if depth > max_tree_depth
disp('The current NUTS iteration reached the maximum tree depth.')
break
end
end
alpha_ave = alpha / nalpha;
% Duplicate recyclable samples if not enough of them were generated.
if size(re_theta, 2) < nsample
nrep = floor(nsample / size(re_theta, 2));
re_theta_extra = re_theta(:, randperm(size(re_theta, 2), nsample - n * nrep));
re_theta = [repmat(re_theta, 1, nrep), re_theta_extra];
end
end
function [thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, epsilon, f)
rprime = r + 0.5 * epsilon * grad;
thetaprime = theta + epsilon * rprime;
[logpprime, gradprime] = f(thetaprime);
rprime = rprime + 0.5 * epsilon * gradprime;
global nfevals;
nfevals = nfevals + 1;
end
function criterion = stop_criterion(thetaminus, thetaplus, rminus, rplus)
thetavec = thetaplus - thetaminus;
criterion = (thetavec' * rminus < 0) || (thetavec' * rplus < 0);
end
% The main recursion.
function [thetaminus, rminus, gradminus, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, stopprime, re_thetaprime, alphaprime, nalphaprime] = ...
build_tree(theta, r, grad, logu, dir, depth, epsilon, f, joint0, nsampleprime)
if (depth == 0)
% Base case: Take a single leapfrog step in the direction 'dir'.
[thetaprime, rprime, gradprime, logpprime] = leapfrog(theta, r, grad, dir*epsilon, f);
joint = logpprime - 0.5 * (rprime' * rprime);
% Is the new point in the slice?
nprime = logu < joint;
if nprime
re_thetaprime = thetaprime;
else
re_thetaprime = [];
end
% Is the simulation wildly inaccurate?
stopprime = logu - 100 >= joint;
% Set the return values---minus=plus for all things here, since the
% "tree" is of depth 0.
thetaminus = thetaprime;
thetaplus = thetaprime;
rminus = rprime;
rplus = rprime;
gradminus = gradprime;
gradplus = gradprime;
% Compute the acceptance probability.
alphaprime = exp(logpprime - 0.5 * (rprime' * rprime) - joint0);
if isnan(alphaprime)
alphaprime = 0;
else
alphaprime = min(1, alphaprime);
end
nalphaprime = 1;
else
% Recursion: Implicitly build the height depth-1 left and right subtrees.
[thetaminus, rminus, gradminus, thetaplus, rplus, gradplus, thetaprime, gradprime, logpprime, nprime, stopprime, re_thetaprime, alphaprime, nalphaprime] = ...
build_tree(theta, r, grad, logu, dir, depth-1, epsilon, f, joint0, nsampleprime);
% No need to keep going if the stopping criteria were met in the first
% subtree, and no sample can be recycled if the stopping criteria were
% met.
if stopprime
re_thetaprime = [];
nprime = 0;
else
nsampleprime2 = ceil(nsampleprime * 2^(depth - 1) / (nprime + 2^(depth - 1))); % The maximum number of states we would potentially recycle from the subtree.
if (dir == -1)
[thetaminus, rminus, gradminus, ~, ~, ~, thetaprime2, gradprime2, logpprime2, nprime2, stopprime2, re_thetaprime2, alphaprime2, nalphaprime2] = ...
build_tree(thetaminus, rminus, gradminus, logu, dir, depth-1, epsilon, f, joint0, nsampleprime2);
else
[~, ~, ~, thetaplus, rplus, gradplus, thetaprime2, gradprime2, logpprime2, nprime2, stopprime2, re_thetaprime2, alphaprime2, nalphaprime2] = ...
build_tree(thetaplus, rplus, gradplus, logu, dir, depth-1, epsilon, f, joint0, nsampleprime2);
end
% Choose which subtree to propagate a sample up from.
if (rand() < nprime2 / (nprime + nprime2))
thetaprime = thetaprime2;
gradprime = gradprime2;
logpprime = logpprime2;
end
% Update the stopping criterion.
stopprime = stopprime || stopprime2 || stop_criterion(thetaminus, thetaplus, rminus, rplus);
% Combine the recyclable samples.
if stopprime
re_thetaprime = [];
nprime = 0;
else
if nprime + nprime2 <= nsampleprime
re_thetaprime = [re_thetaprime, re_thetaprime2];
else
% No need to keep more recyclable states than the number of samples we
% are going to return.
mprime = nsampleprime * nprime / (nprime + nprime2);
mprime = floor(mprime) + ((mprime - floor(mprime)) > rand());
mprime2 = nsampleprime - mprime;
re_thetaprime = [ ...
re_thetaprime(:, randperm(size(re_thetaprime, 2), mprime)), ...
re_thetaprime2(:, randperm(size(re_thetaprime2, 2), mprime2))];
end
% Update the number of valid points.
nprime = nprime + nprime2;
end
% Update the acceptance probability statistics.
alphaprime = alphaprime + alphaprime2;
nalphaprime = nalphaprime + nalphaprime2;
end
end
end |
github | bsxfan/meta-embeddings-master | d2p.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/t-sne/d2p.m | 3,155 | utf_8 | dc48b1dd0688d11671d81af50a0970de | function [P, beta] = d2p(D, u, tol)
%D2P Identifies appropriate sigma's to get kk NNs up to some tolerance
%
% [P, beta] = d2p(D, kk, tol)
%
% Identifies the required precision (= 1 / variance^2) to obtain a Gaussian
% kernel with a certain uncertainty for every datapoint. The desired
% uncertainty can be specified through the perplexity u (default = 15). The
% desired perplexity is obtained up to some tolerance that can be specified
% by tol (default = 1e-4).
% The function returns the final Gaussian kernel in P, as well as the
% employed precisions per instance in beta.
%
%
% (C) Laurens van der Maaten, 2008
% Maastricht University
if ~exist('u', 'var') || isempty(u)
u = 15;
end
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-4;
end
% Initialize some variables
n = size(D, 1); % number of instances
P = zeros(n, n); % empty probability matrix
beta = ones(n, 1); % empty precision vector
logU = log(u); % log of perplexity (= entropy)
% Run over all datapoints
for i=1:n
if ~rem(i, 500)
disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']);
end
% Set minimum and maximum values for precision
betamin = -Inf;
betamax = Inf;
% Compute the Gaussian kernel and entropy for the current precision
[H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i));
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while abs(Hdiff) > tol && tries < 50
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta(i);
if isinf(betamax)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + betamax) / 2;
end
else
betamax = beta(i);
if isinf(betamin)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i));
Hdiff = H - logU;
tries = tries + 1;
end
% Set the final row of P
P(i, [1:i - 1, i + 1:end]) = thisP;
end
disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]);
disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]);
disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]);
end
% Function that computes the Gaussian kernel values given a vector of
% squared Euclidean distances, and the precision of the Gaussian kernel.
% The function also computes the perplexity of the distribution.
function [H, P] = Hbeta(D, beta)
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
% why not: H = exp(-sum(P(P > 1e-5) .* log(P(P > 1e-5)))); ???
P = P / sumP;
end
|
github | bsxfan/meta-embeddings-master | x2p.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/t-sne/x2p.m | 3,297 | utf_8 | e0d6a8b9bcdd6ebd97037e46252fe200 | function [P, beta] = x2p(X, u, tol)
%X2P Identifies appropriate sigma's to get kk NNs up to some tolerance
%
% [P, beta] = x2p(xx, kk, tol)
%
% Identifies the required precision (= 1 / variance^2) to obtain a Gaussian
% kernel with a certain uncertainty for every datapoint. The desired
% uncertainty can be specified through the perplexity u (default = 15). The
% desired perplexity is obtained up to some tolerance that can be specified
% by tol (default = 1e-4).
% The function returns the final Gaussian kernel in P, as well as the
% employed precisions per instance in beta.
%
%
% (C) Laurens van der Maaten, 2008
% Maastricht University
if ~exist('u', 'var') || isempty(u)
u = 15;
end
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-4;
end
% Initialize some variables
n = size(X, 1); % number of instances
P = zeros(n, n); % empty probability matrix
beta = ones(n, 1); % empty precision vector
logU = log(u); % log of perplexity (= entropy)
% Compute pairwise distances
disp('Computing pairwise distances...');
sum_X = sum(X .^ 2, 2);
D = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * X * X'));
% Run over all datapoints
disp('Computing P-values...');
for i=1:n
if ~rem(i, 500)
disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']);
end
% Set minimum and maximum values for precision
betamin = -Inf;
betamax = Inf;
% Compute the Gaussian kernel and entropy for the current precision
Di = D(i, [1:i-1 i+1:end]);
[H, thisP] = Hbeta(Di, beta(i));
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while abs(Hdiff) > tol && tries < 50
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta(i);
if isinf(betamax)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + betamax) / 2;
end
else
betamax = beta(i);
if isinf(betamin)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(Di, beta(i));
Hdiff = H - logU;
tries = tries + 1;
end
% Set the final row of P
P(i, [1:i - 1, i + 1:end]) = thisP;
end
disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]);
disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]);
disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]);
end
% Function that computes the Gaussian kernel values given a vector of
% squared Euclidean distances, and the precision of the Gaussian kernel.
% The function also computes the perplexity of the distribution.
function [H, P] = Hbeta(D, beta)
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
P = P / sumP;
end
|
github | bsxfan/meta-embeddings-master | create_PYCRP.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/CRP/create_PYCRP.m | 13,438 | utf_8 | 97417297bf1d08ceaa6be2bbfe82c2bb | function PYCRP = create_PYCRP(alpha,beta,e,n)
% alpha: alpha>=0, concentration
% beta: 0<= beta <=1, discount
if nargin==0
%test_this2();
test_Gibbsmatrix()
return;
end
if nargin==4
PYCRP = create_PYCRP(1,0);
PYCRP.set_expected_number_tables(e,n,alpha,beta);
return;
else
assert(nargin==2);
end
assert(alpha>=0);
assert(beta>=0 && beta<=1);
PYCRP.logprob = @logprob;
PYCRP.logprob3 = @logprob3;
PYCRP.sample = @sample;
PYCRP.expected_number_tables = @expected_number_tables;
PYCRP.set_expected_number_tables = @set_expected_number_tables;
PYCRP.ent = @ent;
PYCRP.getParams = @getParams;
PYCRP.GibbsMatrix = @GibbsMatrix;
PYCRP.slowGibbsMatrix = @slowGibbsMatrix;
PYCRP.merge = @merge;
PYCRP.merge_all_pairs = @merge_all_pairs;
function [concentration,discount] = getParams()
concentration = alpha;
discount = beta;
end
function e = expected_number_tables(n)
e = ent(alpha,beta,n);
end
function e = ent(alpha,beta,n)
if alpha==0 && beta==0
e = 1;
elseif isinf(alpha)
e = n;
elseif alpha>0 && beta>0
A = gammaln(alpha + beta + n) + gammaln(alpha + 1) ...
- log(beta) - gammaln(alpha+n) - gammaln(alpha+beta);
B = alpha/beta;
e = B*expm1(A-log(B)); %exp(A)-B
elseif alpha>0 && beta==0
e = alpha.*( psi(n+alpha) - psi(alpha) );
elseif alpha==0 && beta>0
A = gammaln(beta + n) - log(beta) - gammaln(n) - gammaln(beta);
e = exp(A);
end
end
function [flag,concentration,discount] = set_expected_number_tables(e,n,concentration,discount)
if ~isempty(concentration) && ~isempty(discount)
error('you can''t specify both parameters');
end
if isempty(concentration) && isempty(discount)
error('you must specify one parameter');
end
if e<1 || e>n
error('expectation must be between 1 and %i',n);
end
if isempty(concentration)
assert(discount>=0 && discount<1);
beta = discount;
if beta==0 && e==1
alpha = 0;
concentration = alpha;
flag = 1;
return;
elseif e==n
alpha = inf;
concentration = alpha;
flag = 1;
return;
end
min_e = ent(0,beta,n);
if e < min_e
error('e=%g is impossible at discount=%g, minimum is e=%g',e,beta,min_e);
end
f = @(logalpha) ent(exp(logalpha),beta,n) - e;
[logalpha,~,flag] = fzero(f,0);
alpha = exp(logalpha);
concentration = alpha;
elseif isempty(discount)
assert(concentration>=0);
alpha = concentration;
if alpha==0 && e==1
beta = 0;
discount = beta;
flag = 1;
return;
elseif e==n
beta = 1;
discount = beta;
flag = 1;
return;
end
min_e = ent(alpha,0,n);
if e < min_e
error('e=%g is impossible at concentration=%g, minimum is e=%min_e',e,alpha,min_e);
end
f = @(logitbeta) ent(alpha,sigmoid(logitbeta),n) - e;
[logitbeta,~,flag] = fzero(f,0);
beta = sigmoid(logitbeta);
discount = beta;
end
end
function y = sigmoid(x)
y = 1./(1+exp(-x));
end
function deltalogP = merge(i,j,counts)
if i==j % no merge
deltalogP = 0;
return;
end
if isinf(alpha) || (beta==1) || (alpha==0 && beta==0)
error('degenerate cases not handled');
end
K = length(counts);
T = sum(counts);
if alpha>0 && beta>0
deltalogP = gammaln(counts(i) + counts(j) - beta) ...
- gammaln(counts(i) - beta) - gammaln(counts(j) - beta) ...
- log(beta) + gammaln(1-beta) ...
- log(alpha/beta + K-1);
elseif beta==0 && alpha>0
deltalogP = -log(alpha) + gammaln(counts(i)+counts(j)) ...
- gammaln(counts(i)) - gammaln(counts(j));
elseif alpha==0 && beta>0
deltalogP = -log(beta) -log(K-1) + gammaln(1-beta) ...
- gammaln(counts(i) - beta) - gammaln(counts(j) - beta) ...
+ gammaln(counts(i) + counts(j) - beta);
end
end
function Y = mergeConst(K)
if isinf(alpha) || (beta==1) || (alpha==0 && beta==0)
error('degenerate cases not handled');
end
if alpha>0 && beta>0
%Y = K*log(beta) + gammaln(alpha/beta + K) - K*gammaln(1-beta);
Y = log(beta) + log(alpha/beta + K-1) - gammaln(1-beta);
elseif beta==0 && alpha>0
%Y = K*log(alpha);
Y = log(alpha);
elseif beta>0 && alpha==0
%Y = (K-1)*log(beta) + gammaln(K) - K*gammaln(1-beta);
Y = log(beta) + log(K-1) - gammaln(1-beta);
end
end
%vectorization helps a lot (loopy version below is much slower)
function deltalogP = merge_all_pairs(counts)
K = length(counts);
delta = counts-beta;
gammalndelta = gammaln(delta);
deltaC = mergeConst(K);%-mergeConst(K-1);
oldlogP = bsxfun(@plus,gammalndelta+deltaC,gammalndelta.');
deltalogP = gammaln(bsxfun(@plus,counts-beta,counts.')) - oldlogP;
deltalogP(1:K+1:end) = 0;
end
%loopy version is much, much slower
% function deltalogP = merge_all_pairs2(counts)
% K = length(counts);
% delta = counts-beta;
% gammalndelta = gammaln(delta);
% deltaC = mergeConst(K-1)-mergeConst(K);
% deltalogP = zeros(K,K);
% for i=1:K-1
% for j=i+1:K
% deltalogP(i,j) = deltaC + gammaln(delta(i)+counts(j)) - gammalndelta(i) - gammalndelta(j);
% end
% end
% end
function logP = logprob(counts) %Wikipedia
K = length(counts);
T = sum(counts);
if isinf(alpha) && beta==1 %singleton tables
if all(counts==1)
logP = 0;
else
logP = -inf;
end
return;
end
if alpha==0 && beta==0 %single table
if K==1
logP = 0;
else
logP = -inf;
end
return;
end
if alpha>0 && beta>0 % 2-param Pitman-Yor generalization
logP = gammaln(alpha) - gammaln(alpha+T) + K*log(beta) ...
+ gammaln(alpha/beta + K) - gammaln(alpha/beta) ...
+ sum(gammaln(counts-beta)) ...
- K*gammaln(1-beta);
elseif beta==0 && alpha>0 % classical CRP
logP = gammaln(alpha) + K*log(alpha) - gammaln(alpha+T) + sum(gammaln(counts));
elseif beta>0 && alpha==0
logP = (K-1)*log(beta) + gammaln(K) - gammaln(T) ...
- K*gammaln(1-beta) + sum(gammaln(counts-beta));
end
end
% Seems wrong
% function logP = logprob2(counts) % Goldwater
%
%
%
% K = length(counts);
% T = sum(counts);
% if beta>0 %Pitman-Yor generalization
% logP = gammaln(1+alpha) - gammaln(alpha+T) ...
% + sum(beta*(1:K-1)+alpha) ...
% + sum(gammaln(counts-beta)) ...
% - K*gammaln(1-beta);
% else %1 parameter CRP
% logP = gammaln(1+alpha) + (K-1)*log(alpha) - gammaln(alpha+T) + sum(gammaln(counts));
% end
%
% end
% Agrees with Wikipedia version (faster for small counts)
function logP = logprob3(counts)
logP = 0;
n = 0;
for k=1:length(counts)
% seat first customer at new table
if k>1
logP = logP +log((alpha+(k-1)*beta)/(n+alpha));
end
n = n + 1;
% seat the rest at this table
for i = 2:counts(k)
logP = logP + log((i-1-beta)/(n+alpha));
n = n + 1;
end
end
end
% GibbsMatrix. Computes matrix of conditional log-probabilities
% suitable for Gibbs sampling, or pseudolikelihood calculation.
% Input:
% labels: n-vector, maps each of n customers to a table in 1..m
% Output:
% logP: (m+1)-by-n matrix of **unnormalized** log-probabilities
% logP(i,j) = log P(customer j at table i | seating of all others) + const
% table m+1 is a new table
function [logP,empties] = GibbsMatrix(labels)
m = max(labels);
n = length(labels);
blocks = sparse(labels,1:n,true);
counts = full(sum(blocks,2)); %original table sizes
logP = repmat(log([counts-beta;alpha+m*beta]),1,n); %most common values for every row
%return;
empties = false(1,n); %new empty table when customer j removed
for i=1:m
cmin = counts(i) - 1;
tar = blocks(i,:);
if cmin==0 %table empty
logP(i,tar) = log(alpha + (m-1)*beta);
empties(tar) = true;
else
logP(i,tar) = log(cmin-beta);
end
end
logP(m+1,empties) = -inf;
end
function logP = slowGibbsMatrix(labels)
m = max(labels);
n = length(labels);
blocks = sparse(labels,1:n,true,m+1,n);
counts = full(sum(blocks,2)); %original table sizes
logP = zeros(m+1,n);
for j=1:n
cj = counts;
tj = labels(j);
cj(tj) = cj(tj) - 1;
nz = cj>0;
k = sum(nz);
if k==m
logP(nz,j) = log(cj(nz) - beta);
logP(m+1,j) = log(alpha + m*beta);
else %new empty table
logP(nz,j) = log(cj(nz) - beta);
logP(tj,j) = log(alpha + k*beta);
logP(m+1,j) = -inf;
end
end
end
function [labels,counts] = sample(T)
labels = zeros(1,T);
counts = zeros(1,T);
labels(1) = 1;
K = 1; %number of classes
counts(1) = 1;
for i=2:T
p = zeros(K+1,1);
p(1:K) = counts(1:K) - beta;
p(K+1) = alpha + K*beta;
[~,k] = max(randgumbel(K+1,1) + log(p));
labels(i) = k;
if k>K
K = K + 1;
assert(k==K);
counts(k) = 1;
else
counts(k) = counts(k) + 1;
end
end
counts = counts(1:K);
labels = labels(randperm(T));
end
end
function test_this2()
T = 20;
e = 10;
N = 1000;
crp1 = create_PYCRP(0,[],e,T);
[concentration,discount] = crp1.getParams()
crp2 = create_PYCRP([],0,e,T);
[concentration,discount] = crp2.getParams()
K1 = zeros(1,T);
K2 = zeros(1,T);
for i=1:N
[~,counts] = crp1.sample(T);
K = length(counts);
K1(K) = K1(K) + 1;
[~,counts] = crp2.sample(T);
K = length(counts);
K2(K) = K2(K) + 1;
end
e1 = sum((1:T).*K1)/N
e2 = sum((1:T).*K2)/N
close all;
subplot(2,1,1);bar(1:T,K1);
subplot(2,1,2);bar(1:T,K2);
K1 = K1/sum(K1);
K2 = K2/sum(K2);
%dlmwrite('K1.table',[(1:T)',K1'],' ');
%dlmwrite('K2.table',[(1:T)',K2'],' ');
for i=1:T
fprintf('(%i,%6.4f) ',2*i-1,K1(i))
end
fprintf('\n');
for i=1:T
fprintf('(%i,%6.4f) ',2*i,K2(i))
end
fprintf('\n');
end
function test_Gibbsmatrix()
alpha = randn^2;
beta = rand;
PYCRP = create_PYCRP(alpha,beta);
labels = [1 1 1 2 1 3 4 4]
logP = exp(PYCRP.slowGibbsMatrix(labels))
logP = exp(PYCRP.GibbsMatrix(labels))
end
function test_this()
alpha1 = 0.0;
beta1 = 0.6;
crp1 = create_PYCRP(alpha1,beta1);
alpha2 = 0.1;
beta2 = 0.6;
crp2 = create_PYCRP(alpha2,beta2);
close all;
figure;
hold;
for i=1:100;
L1 = crp1.sample(100);
L2 = crp2.sample(100);
C1=full(sum(int2onehot(L1),2));
C2=full(sum(int2onehot(L2),2));
x11 = crp1.logprob(C1);
x12 = crp2.logprob3(C1);
x22 = crp2.logprob3(C2);
x21 = crp1.logprob(C2);
plot(x11,x12,'.g');
plot(x21,x22,'.b');
end
figure;hold;
crp = crp1;
for i=1:100;
L1 = crp.sample(100);
C1=full(sum(int2onehot(L1),2));
x = crp.logprob(C1);
y = crp.logprob3(C1);
plot(x,y);
end
end
|
github | bsxfan/meta-embeddings-master | trandn.m | .m | meta-embeddings-master/code/Niko/matlab/fous-y-tout/dpmm/trunc_gaussian/trandn.m | 3,445 | utf_8 | 319949967a84b816a6cc4d0b882c4c98 | function x=trandn(l,u)
%% truncated normal generator
% * efficient generator of a vector of length(l)=length(u)
% from the standard multivariate normal distribution,
% truncated over the region [l,u];
% infinite values for 'u' and 'l' are accepted;
% * Remark:
% If you wish to simulate a random variable
% 'Z' from the non-standard Gaussian N(m,s^2)
% conditional on l<Z<u, then first simulate
% X=trandn((l-m)/s,(u-m)/s) and set Z=m+s*X;
% Reference:
% Botev, Z. I. (2016). "The normal law under linear restrictions:
% simulation and estimation via minimax tilting". Journal of the
% Royal Statistical Society: Series B (Statistical Methodology).
% doi:10.1111/rssb.12162
l=l(:);u=u(:); % make 'l' and 'u' column vectors
if length(l)~=length(u)
error('Truncation limits have to be vectors of the same length')
end
x=nan(size(l));
a=.66; % treshold for switching between methods
% threshold can be tuned for maximum speed for each Matlab version
% three cases to consider:
% case 1: a<l<u
I=l>a;
if any(I)
tl=l(I); tu=u(I); x(I)=ntail(tl,tu);
end
% case 2: l<u<-a
J=u<-a;
if any(J)
tl=-u(J); tu=-l(J); x(J)=-ntail(tl,tu);
end
% case 3: otherwise use inverse transform or accept-reject
I=~(I|J);
if any(I)
tl=l(I); tu=u(I); x(I)=tn(tl,tu);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x=ntail(l,u)
% samples a column vector of length=length(l)=length(u)
% from the standard multivariate normal distribution,
% truncated over the region [l,u], where l>0 and
% l and u are column vectors;
% uses acceptance-rejection from Rayleigh distr.
% similar to Marsaglia (1964);
c=l.^2/2; n=length(l); f=expm1(c-u.^2/2);
x=c-reallog(1+rand(n,1).*f); % sample using Rayleigh
% keep list of rejected
I=find(rand(n,1).^2.*x>c); d=length(I);
while d>0 % while there are rejections
cy=c(I); % find the thresholds of rejected
y=cy-reallog(1+rand(d,1).*f(I));
idx=rand(d,1).^2.*y<cy; % accepted
x(I(idx))=y(idx); % store the accepted
I=I(~idx); % remove accepted from list
d=length(I); % number of rejected
end
x=sqrt(2*x); % this Rayleigh transform can be delayed till the end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x=tn(l,u)
% samples a column vector of length=length(l)=length(u)
% from the standard multivariate normal distribution,
% truncated over the region [l,u], where -a<l<u<a for some
% 'a' and l and u are column vectors;
% uses acceptance rejection and inverse-transform method;
tol=2; % controls switch between methods
% threshold can be tuned for maximum speed for each platform
% case: abs(u-l)>tol, uses accept-reject from randn
I=abs(u-l)>tol; x=l;
if any(I)
tl=l(I); tu=u(I); x(I)=trnd(tl,tu);
end
% case: abs(u-l)<tol, uses inverse-transform
I=~I;
if any(I)
tl=l(I); tu=u(I); pl=erfc(tl/sqrt(2))/2; pu=erfc(tu/sqrt(2))/2;
x(I)=sqrt(2)*erfcinv(2*(pl-(pl-pu).*rand(size(tl))));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x=trnd(l,u)
% uses acceptance rejection to simulate from truncated normal
x=randn(size(l)); % sample normal
% keep list of rejected
I=find(x<l|x>u); d=length(I);
while d>0 % while there are rejections
ly=l(I); % find the thresholds of rejected
uy=u(I);
y=randn(size(ly));
idx=y>ly&y<uy; % accepted
x(I(idx))=y(idx); % store the accepted
I=I(~idx); % remove accepted from list
d=length(I); % number of rejected
end
end
|
github | bsxfan/meta-embeddings-master | VB4HTPLDA_iteration.m | .m | meta-embeddings-master/code/Niko/matlab/clean/VB4HTPLDA/VB4HTPLDA_iteration.m | 4,532 | utf_8 | 3639a9571c692326b5102546e66240c3 | function [F,W,obj] = VB4HTPLDA_iteration(nu,F,W,R,labels,weights)
% Iteration of VB algorithm for HT-PLDA training. See HTPLDA_SGME_train_VB()
% for details. The model parameters F and W are updated.
%
% Inputs:
% nu: scalar, df > 0 (nu=inf is allowed: it signals G-PLDA)
% F: D-by-d factor loading matrix, D > d
% W: within-speaker precision, D-by-D, pos. def,
% R: D-by-N i-vector data matrix (centered)
% labels: M-by-N, one hot columns, labels for M speakers and N i-vectors
% This is a large matrix and it is best represented as a sparse
% logical matrix.
if nargin==0
test_this;
return;
end
scaling_mindiv = true;
Z_mindiv = true;
[D,d] = size(F);
[M,N] = size(labels);
% E-step
P = F.'*W; % d-by-D
B0 = P*F; % d-by-d common precision (up to scaling)
[V,L] = eig(B0); % eigendecomposition B0 = V*L*V'; L is diagonal, V is orthonormal
L = diag(L);
VP = V.'*P;
if isinf(nu)
b = ones(1,N);
else
%G = W - P.'*(B0\P);
G = W - VP.'*bsxfun(@ldivide,L,VP); % inv(B0) = V*inv(L)*V'
q = sum(R.*(G*R),1);
b = (nu+D-d)./(nu+q); %scaling %1-by-N
end
if exist('weights','var') && ~isempty(weights)
b = b.*weights;
end
bR = bsxfun(@times,b,R);
S = bR*R.'; % D-by-D weighted 2nd-order stats
f = bR*labels.'; % D-by-M weighted 1st-order stats
n = b*labels.'; % 1-by-M weighted 0-order stats
tot_n = sum(n);
logLPP = log1p(bsxfun(@times,n,L)); % d-by-M log eigenvalues of posterior precisions
LPC = exp(-logLPP); % d-by-M eigenvalues of posterior covariances
logdetPP = sum(logLPP,1); % logdets of posterior precisions
tracePC = sum(LPC,1); % and the traces
Z = V*(LPC.*(VP*f)); % d-by-M posterior means
T = Z*f.'; % d-by-D
R = bsxfun(@times,n,Z)*Z.' + V*bsxfun(@times,LPC*n(:),V.');
C = ( Z*Z.' + V*bsxfun(@times,sum(LPC,2),V.') ) / M;
logdetW = 2*sum(log(diag(chol(W))));
logLH = (N/2)*logdetW + (D/2)*sum(log(b)) - 0.5*trprod(W,S) ...
+ trprod(T,P) -0.5*trprod(B0,R);
if isinf(nu)
obj = logLH - KLGauss(logdetPP,tracePC,Z);
else
obj = logLH - KLGauss(logdetPP,tracePC,Z) - KLgamma(nu,D,d,b);
end
% M-step
F = T.'/R;
FT = F*T;
if scaling_mindiv && true
W = inv((S - (FT+FT.')/2)/tot_n);
else
W = inv((S - (FT+FT.')/2)/N);
end
CC = chol(C)';
fprintf(' cov(z): trace = %g, logdet = %g\n',trace(C),2*sum(log(diag(CC))));
if Z_mindiv
F = F*CC;
end;
end
function y = trprod(A,B)
y = A(:).'*B(:);
end
function kl = KLGauss(logdets,traces,Means)
d = size(Means,1);
M = length(logdets);
kl = ( sum(traces) - sum(logdets) + trprod(Means,Means) - d*M)/2;
end
function kl = KLgamma(nu,D,d,lambdahat)
% prior has expected value a0/b0 = 1
a0 = nu/2;
b0 = nu/2;
%Posterior
a = (nu + D - d) / 2;
b = a ./ lambdahat;
%This value for a is a thumbsuck: mean-field VB gives instead a =(nu+D)/2,
%while b is chosen to give lambdahat = a/b.
%This gives a larger variance (a/b^2) than the mean-field would, which
%is probbaly a good thing, since mean-field is known to underestimate variances.
kl = sum(gammaln(a0) - gammaln(a) + a0*log(b/b0) + psi(a)*(a-a0) + a*(b0-b)./b);
end
function test_this()
d = 2;
D = 20; %required: xdim > zdim
nu = 3; %required: nu >= 1, integer, DF
fscal = 3; %increase fscal to move speakers apart
F0 = randn(D,d)*fscal;
W0 = randn(D,D+1); W0 = W0*W0.';
% HTPLDA = create_HTPLDA_extractor(F,nu,W);
% [Pg,Hg,dg] = HTPLDA.getPHd();
N = 5000;
em = N/10;
%prior = create_PYCRP(0,[],em,n);
prior = create_PYCRP([],0,em,N);
[R,Z,precisions,labels] = sample_HTPLDA_database(nu,F0,prior,N,W0);
M = max(labels);
labels = sparse(labels,1:N,true,M,N);
F = randn(D,d);
W = eye(D);
niters = 100;
y = zeros(1,niters);
for i=1:niters
[F,W,obj] = VB4HTPLDA_iteration(nu,F,W,R,labels);
fprintf('%i: %g\n',i,obj);
y(i) = obj;
end
plot(y);
end
|
github | bsxfan/meta-embeddings-master | VB4HTPLDA_iteration_2.m | .m | meta-embeddings-master/code/Niko/matlab/clean/VB4HTPLDA/VB4HTPLDA_iteration_2.m | 4,534 | utf_8 | 50e11eb8be6844dbc9c70f60f49c3c23 | function [F,W,obj] = VB4HTPLDA_iteration_2(nu,F,W,R,labels,weights)
% Iteration of VB algorithm for HT-PLDA training. See HTPLDA_SGME_train_VB()
% for details. The model parameters F and W are updated.
%
% Inputs:
% nu: scalar, df > 0 (nu=inf is allowed: it signals G-PLDA)
% F: D-by-d factor loading matrix, D > d
% W: within-speaker precision, D-by-D, pos. def,
% R: D-by-N i-vector data matrix (centered)
% labels: M-by-N, one hot columns, labels for M speakers and N i-vectors
% This is a large matrix and it is best represented as a sparse
% logical matrix.
if nargin==0
test_this;
return;
end
scaling_mindiv = true;
Z_mindiv = true;
[D,d] = size(F);
[M,N] = size(labels);
% E-step
P = F.'*W; % d-by-D
B0 = P*F; % d-by-d common precision (up to scaling)
[V,L] = eig(B0); % eigendecomposition B0 = V*L*V'; L is diagonal, V is orthonormal
L = diag(L);
VP = V.'*P;
if isinf(nu)
b = ones(1,N);
else
%G = W - P.'*(B0\P);
G = W - VP.'*bsxfun(@ldivide,L,VP); % inv(B0) = V*inv(L)*V'
q = sum(R.*(G*R),1);
b = (nu+D-d)./(nu+q); %scaling %1-by-N
end
if exist('weights','var') && ~isempty(weights)
b = b.*weights;
end
bR = bsxfun(@times,b,R);
S = bR*R.'; % D-by-D weighted 2nd-order stats
f = bR*labels.'; % D-by-M weighted 1st-order stats
n = b*labels.'; % 1-by-M weighted 0-order stats
tot_n = sum(n);
logLPP = log1p(bsxfun(@times,n,L)); % d-by-M log eigenvalues of posterior precisions
LPC = exp(-logLPP); % d-by-M eigenvalues of posterior covariances
tracePC = sum(LPC,1); % and the traces
logdetPP = sum(logLPP,1); % logdets of posterior precisions
Z = V*(LPC.*(VP*f)); % d-by-M posterior means
T = Z*f.'; % d-by-D
R = bsxfun(@times,n,Z)*Z.' + V*bsxfun(@times,LPC*n(:),V.');
C = ( Z*Z.' + V*bsxfun(@times,sum(LPC,2),V.') ) / M;
logdetW = 2*sum(log(diag(chol(W))));
logLH = (N/2)*logdetW + (D/2)*sum(log(b)) - 0.5*trprod(W,S) ...
+ trprod(T,P) -0.5*trprod(B0,R);
if isinf(nu)
obj = logLH - KLGauss(logdetPP,tracePC,Z);
else
obj = logLH - KLGauss(logdetPP,tracePC,Z) - KLgamma(nu,D,d,b);
end
% M-step
F = T.'/R;
FT = F*T;
if scaling_mindiv && true
W = inv((S - (FT+FT.')/2)/tot_n);
else
W = inv((S - (FT+FT.')/2)/N);
end
CC = chol(C)';
fprintf(' cov(z): trace = %g, logdet = %g\n',trace(C),2*sum(log(diag(CC))));
if Z_mindiv
F = F*CC;
end;
end
function y = trprod(A,B)
y = A(:).'*B(:);
end
function kl = KLGauss(logdets,traces,Means)
d = size(Means,1);
M = length(logdets);
kl = ( sum(traces) - sum(logdets) + trprod(Means,Means) - d*M)/2;
end
function kl = KLgamma(nu,D,d,lambdahat)
% prior has expected value a0/b0 = 1
a0 = nu/2;
b0 = nu/2;
%Posterior
a = (nu + D - d) / 2;
b = a ./ lambdahat;
%This value for a is a thumbsuck: mean-field VB gives instead a =(nu+D)/2,
%while b is chosen to give lambdahat = a/b.
%This gives a larger variance (a/b^2) than the mean-field would, which
%is probbaly a good thing, since mean-field is known to underestimate variances.
kl = sum(gammaln(a0) - gammaln(a) + a0*log(b/b0) + psi(a)*(a-a0) + a*(b0-b)./b);
end
function test_this()
d = 2;
D = 20; %required: xdim > zdim
nu = 3; %required: nu >= 1, integer, DF
fscal = 3; %increase fscal to move speakers apart
F0 = randn(D,d)*fscal;
W0 = randn(D,D+1); W0 = W0*W0.';
% HTPLDA = create_HTPLDA_extractor(F,nu,W);
% [Pg,Hg,dg] = HTPLDA.getPHd();
N = 5000;
em = N/10;
%prior = create_PYCRP(0,[],em,n);
prior = create_PYCRP([],0,em,N);
[R,Z,precisions,labels] = sample_HTPLDA_database(nu,F0,prior,N,W0);
M = max(labels);
labels = sparse(labels,1:N,true,M,N);
F = randn(D,d);
W = eye(D);
niters = 100;
y = zeros(1,niters);
for i=1:niters
[F,W,obj] = VB4HTPLDA_iteration(nu,F,W,R,labels);
fprintf('%i: %g\n',i,obj);
y(i) = obj;
end
plot(y);
end
|
github | bsxfan/meta-embeddings-master | VB4HTPLDA_demo.m | .m | meta-embeddings-master/code/Niko/matlab/clean/VB4HTPLDA/VB4HTPLDA_demo.m | 7,965 | utf_8 | 52ba6282c157b56dd41335179ade4206 | function VB4HTPLDA_demo
% Demo and test code for VB training and SGME scoring of HT-PLDA model.
%
% Training and evaluation data are (independently) sampled from a model with
% randomly generated data. A VB algorithm is used to estimate the parameters
% of this model from the training data. The accuracy of the trained (VB)
% model is compared (on both train and evaluation data) against the
% (oracle) model that generated the data.
%
% The accuracy is given in terms of the calibration-sensitive binary cross
% entropy (BXE) and (if available) also equal-error-rate EER.
%
% If the BOSARIS Toolkit (https://sites.google.com/site/bosaristoolkit/) is
% available, BXE is shown not only for the 'raw' scores as given by this
% model, but also for PAV-recalibrated scores, to give 'minBXE'. The latter
% is what BXE could have been if calibration had been ideal.
% Assemble model to generate data
big = false;
if ~big
zdim = 2; %speaker identity variable size
rdim = 20; %i-vector size. required: rdim > zdim
nu = 3; %required: nu >= 1, integer, degrees of freedom for heavy-tailed channel noise
fscal = 3; %increase fscal to move speakers apart
else
zdim = 100; %speaker identity variable size
rdim = 512; %i-vector size. required: rdim > zdim
nu = 3; %required: nu >= 1, integer, degrees of freedom for heavy-tailed channel noise
fscal = 1/20; %increase fscal to move speakers apart
end
F = randn(rdim,zdim)*fscal;
W = randn(rdim,2*rdim); W = W*W.';W = (rdim/trace(W))*W;
model1 = create_HTPLDA_SGME_backend(nu,F,W); %oracle model
%Generate synthetic labels
nspeakers = 10000;
recordings_per_speaker = 10;
N = nspeakers*recordings_per_speaker;
ilabels = repmat(1:nspeakers,recordings_per_speaker,1);
ilabels = ilabels(:).'; % integer speaker labels
hlabels = sparse(ilabels,1:N,true,nspeakers,N); %speaker label matrix with one-hot columns
%and some training data
Z = randn(zdim,nspeakers);
Train = F*Z*hlabels + sample_HTnoise(nu,rdim,N,W);
%train
fprintf('*** Training on %i i-vectors of %i speakers ***\n',N,nspeakers);
niters = 50;
% Weights can be used to change relative importance of subsets of the training data
% weights = 1 + rand(1,N); %In practice, obviously not like this! This is just a quick and dirty test.
% [model2,obj] = HTPLDA_SGME_train_VB(Train,hlabels,nu,zdim,niters,[],[],weights);
[model2,obj] = HTPLDA_SGME_train_VB(Train,hlabels,nu,zdim,niters);
close all;
plot(obj);title('VB lower bound');
[model3,obj3] = HTPLDA_SGME_train_VB(Train,hlabels,nu*10,zdim,niters);
[model4,obj4] = HTPLDA_SGME_train_VB(Train,hlabels,nu/10,zdim,niters);
[~,~,oracle_obj] = VB4HTPLDA_iteration(nu,F,W,Train,hlabels);
fprintf('\n\nfinal train objective: %g\n',obj(end));
fprintf('nu*10 train objective: %g\n',obj3(end));
fprintf('nu/10 train objective: %g\n',obj4(end));
fprintf('oracle objective: %g\n',oracle_obj);
fprintf('delta : %g\n',obj(end)-oracle_obj);
%and some new validation data
Zv = randn(zdim,nspeakers);
Validation = F*Zv*hlabels + sample_HTnoise(nu,rdim,N,W);
[~,~,oracle_val_obj] = VB4HTPLDA_iteration(nu,F,W,Validation,hlabels);
[~,F2,W2] = model2.getParams();
[~,~,val_obj] = VB4HTPLDA_iteration(nu,F2,W2,Validation,hlabels);
fprintf('\nvalidation objective: %g\n',val_obj);
fprintf('oracle val. objective: %g\n',oracle_val_obj);
fprintf('delta : %g\n',val_obj-oracle_val_obj);
%Generate independent evaluation data with new speakers
nspeakers = 300;
%Generate target speakers
ntar = nspeakers;
Ztar = randn(zdim,ntar);
%and some single enrollment data for them
Enroll1 = F*Ztar + sample_HTnoise(nu,rdim,ntar,W); %1 enrollment / speaker
%and some double enrollments
ne = 2;
Flags = repmat(1:ntar,ne,1);
Flags = sparse(Flags(:),1:ne*ntar,true,ntar,ne*ntar);
Enroll2 = F*Ztar*Flags + sample_HTnoise(nu,rdim,ne*ntar,W); %2 enrollments / speaker
%and some test data
recordings_per_speaker = 10;
N = nspeakers*recordings_per_speaker;
ilabels = repmat(1:nspeakers,recordings_per_speaker,1);
ilabels = ilabels(:).'; % integer speaker labels
hlabels = sparse(ilabels,1:N,true,nspeakers,N); %speaker label matrix with one-hot columns
Test = F*Ztar*hlabels + sample_HTnoise(nu,rdim,N,W);
fprintf('\n\n*** Evaluation on %i target speakers with single/double enrollments and %i test recordings ***\n',nspeakers,N);
useBOSARIS = exist('opt_loglr','file');
if useBOSARIS
fprintf(' minBXE in brackets\n')
BXE = zeros(2,2);
minBXE = zeros(2,2);
EER = zeros(2,2);
Scores = model1.score_trials(Enroll1,[],Test);
[BXE(1,1),minBXE(1,1),EER(1,1)] = calcBXE(Scores,hlabels);
Scores = model1.score_trials(Enroll2,Flags,Test);
[BXE(1,2),minBXE(1,2),EER(1,2)] = calcBXE(Scores,hlabels);
Scores = model2.score_trials(Enroll1,[],Test);
[BXE(2,1),minBXE(2,1),EER(2,1)] = calcBXE(Scores,hlabels);
Scores = model2.score_trials(Enroll2,Flags,Test);
[BXE(2,2),minBXE(2,2),EER(2,2)] = calcBXE(Scores,hlabels);
fprintf('oracle: single enroll BXE = %g (%g), double enroll BXE = %g (%g)\n',BXE(1,1),minBXE(1,1),BXE(1,2),minBXE(1,2));
fprintf('VB : single enroll BXE = %g (%g), double enroll BXE = %g (%g)\n',BXE(2,1),minBXE(2,1),BXE(2,2),minBXE(2,2));
fprintf('oracle: single enroll EER = %g, double enroll EER = %g\n',EER(1,1),EER(1,2));
fprintf('VB : single enroll EER = %g, double enroll EER = %g\n',EER(2,1),EER(2,2));
else % no BOSARIS
tic
BXE = zeros(2,2);
Scores = model1.score_trials(Enroll1,[],Test);
BXE(1,1) = calcBXE(Scores,hlabels);
Scores = model1.score_trials(Enroll2,Flags,Test);
BXE(1,2) = calcBXE(Scores,hlabels);
Scores = model2.score_trials(Enroll1,[],Test);
BXE(2,1) = calcBXE(Scores,hlabels);
Scores = model2.score_trials(Enroll2,Flags,Test);
BXE(2,2) = calcBXE(Scores,hlabels);
toc
fprintf('oracle: single enroll BXE = %g, double enroll BXE = %g\n',BXE(1,1),BXE(1,2));
fprintf('VB : single enroll BXE = %g, double enroll BXE = %g\n',BXE(2,1),BXE(2,2));
end
end
function [bxe,min_bxe,EER] = calcBXE(Scores,labels)
% Binary cross-entropy, with operating point at target prior at true
% proportion, normalized so that llr = 0 gives bxe = 1.
tar = Scores(labels);
non = Scores(~labels);
%ofs = log(length(tar)) - log(length(non));
%bxe = mean([softplus(-tar - ofs).',softplus(non + ofs).']) / log(2);
bxe = ( mean(softplus(-tar)) + mean(softplus(non)) ) / (2*log(2)); %ofs = 0
if nargout>=2
[tar,non] = opt_loglr(tar.',non.','raw');
tar = tar';
non = non.';
min_bxe = ( mean(softplus(-tar)) + mean(softplus(non)) ) / (2*log(2));
end
if nargout >=3
EER = eer(tar,non);
end
end
function y = softplus(x)
% y = log(1+exp(x));
y = x;
f = find(x<30);
y(f) = log1p(exp(x(f)));
end
function X = sample_HTnoise(nu,dim,n,W)
% Sample n heavy-tailed dim-dimensional variables. (Only for integer nu.)
%
% Inputs:
% nu: integer nu >=1, degrees of freedom of resulting t-distribution
% n: number of samples
% W: precision matrix for T-distribution
%
% Output:
% X: dim-by-n samples
cholW = chol(W);
if isinf(nu)
precisions = ones(1,n);
else
precisions = mean(randn(nu,n).^2,1);
end
std = 1./sqrt(precisions);
X = cholW\bsxfun(@times,std,randn(dim,n));
end
|
github | bsxfan/meta-embeddings-master | MLNDA_MAP_obj.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/MLNDA_MAP_obj.m | 1,526 | utf_8 | c25e0cb0548424de1497aa4331334429 | function [y,back] = MLNDA_MAP_obj(newData,newLabels,oldData,oldLabels,oldWeight,F,W,fi,params,nu)
if nargin==0
test_this();
return;
end
ht = exist('nu','var') && ~isempty(nu) && ~isinf(nu);
[newR,logdetJnew,back1] = fi(params,newData);
[oldR,logdetJold,back3] = fi(params,oldData);
if ht
[newllh,back2] = htplda_llh(newR,newLabels,F,W,nu);
[oldllh,back4] = htplda_llh(oldR,oldLabels,F,W,nu);
else
[newllh,back2] = splda_llh(newR,newLabels,F,W);
[oldllh,back4] = splda_llh(oldR,oldLabels,F,W);
end
y = (logdetJnew - newllh) + oldWeight*(logdetJold - oldllh);
back = @back_this;
function dparams = back_this(dy)
doldR = back4(-oldWeight*dy);
dnewR = back2(-dy);
dparams = back3(doldR,oldWeight*dy) + back1(dnewR,dy);
end
end
function test_this()
[F,W,oldData,oldLabels] = simulateSPLDA(false,5,2);
[~,~,newData,newLabels] = simulateSPLDA(false,5,2);
rank = 3;
dim = size(oldData,1);
[f,fi,paramsz] = create_nice_Trans3(dim,rank);
params = randn(paramsz,1);
oldWeight = 1/pi;
fprintf('test Gaussian PLDA:\n');
obj = @(params) MLNDA_MAP_obj(newData,newLabels,oldData,oldLabels,oldWeight,F,W,fi,params);
testBackprop(obj,params);
fprintf('test HT PLDA:\n');
nu = 2;
obj = @(params) MLNDA_MAP_obj(newData,newLabels,oldData,oldLabels,oldWeight,F,W,fi,params,nu);
testBackprop(obj,params);
end
|
github | bsxfan/meta-embeddings-master | logdetNice.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/logdetNice.m | 864 | utf_8 | 3dbf0e9b2c0ef0c688e5d05ea7956379 | function [logdet,back] = logdetNice(sigma,R,d)
if nargin==0
test_this();
return;
end
RR = R.'*R;
S = RR/sigma + diag(1./d);
[L,U] = lu(S);
dim = size(R,1);
logdet = ( sum(log(diag(U).^2)) + sum(log(d.^2)) + dim*log(sigma^2) ) /2;
back = @back_this;
function [dsigma,dR,dd] = back_this(dlogdet)
dS = dlogdet*(inv(U)/L).';
dd = dlogdet./d;
dsigma = dim*dlogdet/sigma;
dR = R*(dS + dS.')/sigma;
dsigma = dsigma - (RR(:).'*dS(:))/sigma^2;
dd = dd - diag(dS)./d.^2;
end
end
function test_this()
dim = 5;
rank = 2;
sigma = randn;
R = randn(dim,rank);
d = randn(rank,1);
M = sigma*eye(dim) + R*diag(d)*R.';
[log(abs(det(M))),logdetNice(sigma,R,d)]
testBackprop(@logdetNice,{sigma,R,d})
end |
github | bsxfan/meta-embeddings-master | logdetNice4.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/logdetNice4.m | 1,046 | utf_8 | 62f8d2e7cac7cc028322c8d71f81b2e9 | function [logdet,back] = logdetNice4(D,L,R)
if nargin==0
test_this();
return;
end
[~,rank] = size(L);
DL = bsxfun(@ldivide,D,L);
RDL = R.'*DL;
S = RDL + eye(rank);
[Ls,Us] = lu(S);
logdet = ( sum(log(diag(Us).^2)) + sum(log(D.^2)) ) /2;
back = @back_this;
function [dD,dL,dR] = back_this(dlogdet)
%logdet = ( sum(log(diag(Us).^2)) + sum(log(D^2)) ) /2
dS = dlogdet*(inv(Us)/Ls).';
dD = dlogdet./D;
%S = RDL + eye(rank)
dRDL = dS;
%RDL = R.'*DL
dDL = R*dRDL;
dR = DL*dRDL.';
% DL = bsxfun(@ldivide,D,L)
dL = bsxfun(@ldivide,D,dDL);
dD = dD - sum(DL.*dL,2);
end
end
function test_this()
dim = 5;
rank = 2;
D = randn(dim,1);
R = randn(dim,rank);
L = randn(dim,rank);
M = diag(D) + L*R.';
[log(abs(det(M))),logdetNice4(D,L,R)]
testBackprop(@logdetNice4,{D,L,R},{1,1,1})
end |
github | bsxfan/meta-embeddings-master | htplda_llh.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/htplda_llh.m | 2,103 | utf_8 | d1bda1755ab4932ab4a22c90e64c4d1b | function [llh,back] = htplda_llh(R,labels,F,W,nu)
% Inputs:
% R: D-by-N, i-vectors
% labels: sparse, logical K-by-N, one hot columns, K speakers, N recordings
if nargin==0
test_this();
return;
end
[D,d] = size(F);
FW = F.'*W;
FWR = FW*R;
S = FWR*labels.'; %first order natural parameter for speaker factor posterior
%n = full(sum(labels,2)'); %zero order stats (recordings per speaker)
FWF = FW*F;
G = W - FW.'*(FWF\FW);
GR = G*R;
q = sum(R.*(GR),1);
b = (nu + D - d)./(nu + q);
n = b*labels.';
[V,E] = eig(FWF);
E = diag(E);
nE = bsxfun(@times,n,E);
VS = V'*S;
nEVS = (1+nE).\VS;
Mu = V*nEVS; %posterior means
WR = W*R;
RWR = sum(R.*(WR),1);
llh = ( Mu(:).'*S(:) - sum((nu+D)*log1p(RWR/nu),2) ) / 2;
back = @back_this;
function dR = back_this(dllh)
% llh = ( Mu(:).'*S(:) - sum((nu+D)*log1p(RWR/nu),1) ) / 2
dMu = (dllh/2)*S;
dS = (dllh/2)*Mu;
dRWR = (-dllh*(nu+D)/(2*nu))./(1+RWR/nu);
% RWR = sum(R.*(W*R),1)
dR = bsxfun(@times,2*dRWR,WR);
% Mu = V*nEVS
dnEVS = V.'*dMu;
% nEVS = (1+nE).\VS
dVS = (1+nE).\dnEVS;
dnE = -dVS.*nEVS;
% VS = V'*S
dS = dS + V*dVS;
% nE = bsxfun(@times,n,E)
dn = E.'*dnE;
%n = b*labels.'
db = dn*labels;
% b = (nu + D - d)./(nu + q)
dq = (-db.*b)./(nu+q);
% q = sum(R.*(G*R),1)
dR = dR + bsxfun(@times,2*dq,GR);
% S = FWR*labels.'
dFWR = dS*labels;
% FWR = FW*R;
dR = dR + FW.'*dFWR;
end
end
function test_this()
D = 4;
d = 2;
N = 10;
K = 3;
R = randn(D,N);
labels = sparse(randi(K,1,N),1:N,true,K,N);
F = randn(D,d);
W = randn(D,D+1);W=W*W.';
nu = 2;
f = @(R) htplda_llh(R,labels,F,W,nu);
testBackprop(f,{R});
end
|
github | bsxfan/meta-embeddings-master | create_nice_Trans4.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/create_nice_Trans4.m | 2,926 | utf_8 | acc1b16001cab1bbc286b4f1c9d385de | function [f,fi,paramsz,fe] = create_nice_Trans4(dim,rank)
% Creates affine transform, having a matrix: M = D + L*R.', where D is
% diagonal and L and R are of low rank. The forward transform is:
% f(X) = M \ X + offset
if nargin==0
test_this();
return;
end
paramsz = dim + 2*dim*rank + dim;
f = @f_this;
fi = @fi_this;
fe = @expand;
function T = f_this(P,X)
[D,L,R,offset] = expand(P);
M = diag(D) + L*R.';
T = bsxfun(@plus,offset,M\X);
end
function [X,logdetJ,back] = fi_this(P,T)
[D,L,R,offset,back0] = expand(P);
Delta = bsxfun(@minus,T,offset);
RDelta = R.'*Delta;
X = bsxfun(@times,D,Delta) + L*RDelta;
[logdet,back1] = logdetNice4(D,L,R);
n = size(T,2);
logdetJ = -n*logdet;
back = @back_that;
function [dP,dT] = back_that(dX,dlogdetJ)
%[logdetJ,back1] = logdetNice4(D,L,R)
[dD,dL,dR] = back1(-n*dlogdetJ);
% X = bsxfun(@times,D,Delta) + L*RDelta
dD = dD + sum(dX.*Delta,2);
dDelta = bsxfun(@times,D,dX);
dL = dL + dX*RDelta.';
dRDelta = L.'*dX;
% RDelta = R.'*Delta;
dR = dR + Delta*dRDelta.';
dDelta = dDelta + R*dRDelta;
% Delta = bsxfun(@minus,T,offset)
dT = dDelta;
doffset = -sum(dDelta,2);
dP = back0(dD,dL,dR,doffset);
end
end
function [D,L,R,offset,back] = expand(P)
at = 1;
sz = dim;
%logsigma = P(at);
%sigma = exp(logsigma);
%sigma = P(at);
sqrtD = P(at:at+sz-1);
D = sqrtD.^2;
at = at + sz;
sz = dim*rank;
L = reshape(P(at:at+sz-1),dim,rank);
at = at + sz;
sz = dim*rank;
R = reshape(P(at:at+sz-1),dim,rank);
at = at + sz;
sz = dim;
offset = P(at:at+sz-1);
at = at + sz;
assert(at==length(P)+1);
back = @back_this;
function dP = back_this(dD,dL,dR,doffset)
%dlogsigma = sigma*dsigma;
%dP = [dlogsigma;dL(:);dd;doffset];
%dP = [dsigma;dL(:);dd;doffset];
dsqrtD = 2*sqrtD.*dD;
dP = [dsqrtD;dL(:);dR(:);doffset];
end
end
end
function test_this()
dim = 5;
rank = 2;
n = 6;
[f,fi,sz,fe] = create_nice_Trans4(dim,rank);
P = randn(sz,1);
X = randn(dim,n);
T = f(P,X);
Xi = fi(P,T);
test_inverse = max(abs(X(:)-Xi(:))),
testBackprop_multi(fi,2,{P,T});
%testBackprop_multi(fe,4,{P});
end
|
github | bsxfan/meta-embeddings-master | create_nice_Trans.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/create_nice_Trans.m | 3,126 | utf_8 | 564dc31754d76cf3ff3e1b29812bda01 | function [f,fi,paramsz,fe] = create_nice_Trans(dim,rank)
% Creates affine transform, having a matrix: M = sigma I + L*D*L.', where
% L is of low rank and D is diagonal. The forward transform is:
% f(X) = M \ X + offset
if nargin==0
test_this();
return;
end
paramsz = 1 + dim*rank + rank + dim;
f = @f_this;
fi = @fi_this;
fe = @expand;
function T = f_this(P,R)
[sigma,L,d,offset] = expand(P);
M = sigma*eye(dim) + L*diag(d)*L.';
T = bsxfun(@plus,offset,M\R);
end
function [R,logdetJ,back] = fi_this(P,T)
[sigma,L,d,offset,back0] = expand(P);
Delta = bsxfun(@minus,T,offset);
DL = bsxfun(@times,d,L.');
DLDelta = DL*Delta;
R = sigma*Delta + L*DLDelta;
[logdet,back1] = logdetNice(sigma,L,d);
n = size(T,2);
logdetJ = -n*logdet;
back = @back_that;
function [dP,dT] = back_that(dR,dlogdetJ)
%[logdetJ,back1] = logdetNice(sigma,L,d)
[dsigma,dL,dd] = back1(-n*dlogdetJ);
% R = sigma*Delta + L*DLDelta
dsigma = dsigma + dR(:).'*Delta(:);
dDelta = sigma*dR;
dL = dL + dR*DLDelta.';
dDLDelta = L.'*dR;
% DLDelta = DL*Delta;
dDL = dDLDelta*Delta.';
dDelta = dDelta + DL.'*dDLDelta;
% DL = bsxfun(@times,d,L.')
dd = dd + sum(dDL.*L.',2);
dL = dL + bsxfun(@times,dDL.',d');
% Delta = bsxfun(@minus,T,offset)
dT = dDelta;
doffset = -sum(dDelta,2);
dP = back0(dsigma,dL,dd,doffset);
end
end
function [sigma,L,d,offset,back] = expand(P)
at = 1;
sz = 1;
%logsigma = P(at);
%sigma = exp(logsigma);
%sigma = P(at);
sqrtsigma = P(at);
sigma = sqrtsigma^2;
at = at + sz;
sz = dim*rank;
L = reshape(P(at:at+sz-1),dim,rank);
at = at + sz;
sz = rank;
d = P(at:at+sz-1);
at = at + sz;
sz = dim;
offset = P(at:at+sz-1);
at = at + sz;
assert(at==length(P)+1);
back = @back_this;
function dP = back_this(dsigma,dL,dd,doffset)
%dlogsigma = sigma*dsigma;
%dP = [dlogsigma;dL(:);dd;doffset];
%dP = [dsigma;dL(:);dd;doffset];
dsqrtsigma = 2*dsigma*sqrtsigma;
dP = [dsqrtsigma;dL(:);dd;doffset];
end
end
end
function test_this()
dim = 5;
rank = 2;
n = 6;
[f,fi,sz,fe] = create_nice_Trans(dim,rank);
P = randn(sz,1);
R = randn(dim,n);
T = f(P,R);
Ri = fi(P,T);
test_inverse = max(abs(R(:)-Ri(:))),
testBackprop_multi(fi,2,{P,T});
%testBackprop_multi(fe,4,{P});
end
|
github | bsxfan/meta-embeddings-master | logdetNice3.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/logdetNice3.m | 980 | utf_8 | 64ca857b7b319139b15a8c416ff1ac41 | function [logdet,back] = logdetNice3(sigma,L,R)
if nargin==0
test_this();
return;
end
[dim,rank] = size(L);
RL = R.'*L;
S = RL/sigma + eye(rank);
[Ls,Us] = lu(S);
logdet = ( sum(log(diag(Us).^2)) + dim*log(sigma^2) ) /2;
back = @back_this;
function [dsigma,dL,dR] = back_this(dlogdet)
%logdet = ( sum(log(diag(Us).^2)) + dim*log(sigma^2) ) /2;
dS = dlogdet*(inv(Us)/Ls).';
dsigma = dim*dlogdet/sigma;
%S = RL/sigma + eye(rank)
dRL = dS/sigma;
dsigma = dsigma - (RL(:).'*dS(:))/sigma^2;
%RL = R.'*L;
dL = R*dRL;
dR = L*dRL.';
end
end
function test_this()
dim = 5;
rank = 2;
sigma = randn;
R = randn(dim,rank);
L = randn(dim,rank);
M = sigma*eye(dim) + L*R.';
[log(abs(det(M))),logdetNice3(sigma,L,R)]
testBackprop(@logdetNice3,{sigma,L,R})
end |
github | bsxfan/meta-embeddings-master | splda_llh.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/splda_llh.m | 1,253 | utf_8 | 9fa88758bc715c7d0d76209bd1936f6a | function [llh,back] = splda_llh(R,labels,F,W)
% Inputs:
% R: D-by-N, i-vectors
% labels: sparse, logical K-by-N, one hot columns, K speakers, N recordings
if nargin==0
test_this();
return;
end
FW = F.'*W;
FWR = FW*R;
S = FWR*labels.'; %first order natural parameter for speaker factor posterior
n = full(sum(labels,2)'); %zero order stats (recordings per speaker)
FWF = FW*F;
[V,E] = eig(FWF);
E = diag(E);
nE = bsxfun(@times,n,E);
% Mu = V*bsxfun(@ldivide,1+nE,V'*S); %posterior means
Mu = V*( (1+nE).\(V'*S) ); %posterior means
RR = R*R.';
llh = ( Mu(:).'*S(:) - RR(:).'*W(:) ) / 2;
back = @back_this;
function dR = back_this(dllh)
dMu = (dllh/2)*S;
dS = (dllh/2)*Mu;
dRR = (-dllh/2)*W;
dR = (2*dRR)*R;
dS = dS + V*bsxfun(@ldivide,1+nE,V'*dMu);
dFWR = dS*labels;
dR = dR + FW.'*dFWR;
end
end
function test_this()
D = 4;
d = 2;
N = 10;
K = 3;
R = randn(D,N);
labels = sparse(randi(K,1,N),1:N,true,K,N);
F = randn(D,d);
W = randn(D,D+1);W=W*W.';
f = @(R) splda_llh(R,labels,F,W);
testBackprop(f,{R});
end
|
github | bsxfan/meta-embeddings-master | create_nice_Trans3.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/create_nice_Trans3.m | 2,943 | utf_8 | e197b146f2ee6588c45fc36d860a3db9 | function [f,fi,paramsz,fe] = create_nice_Trans3(dim,rank)
% Creates affine transform, having a matrix: M = sigma I + L*R.', where
% L and R are of low rank. The forward transform is:
% f(X) = M \ X + offset
if nargin==0
test_this();
return;
end
paramsz = 1 + 2*dim*rank + dim;
f = @f_this;
fi = @fi_this;
fe = @expand;
function T = f_this(P,X)
[sigma,L,R,offset] = expand(P);
M = sigma*eye(dim) + L*R.';
T = bsxfun(@plus,offset,M\X);
end
function [X,logdetJ,back] = fi_this(P,T)
[sigma,L,R,offset,back0] = expand(P);
Delta = bsxfun(@minus,T,offset);
RDelta = R.'*Delta;
X = sigma*Delta + L*RDelta;
[logdet,back1] = logdetNice3(sigma,L,R);
n = size(T,2);
logdetJ = -n*logdet;
back = @back_that;
function [dP,dT] = back_that(dX,dlogdetJ)
%[logdetJ,back1] = logdetNice3(sigma,L,R)
[dsigma,dL,dR] = back1(-n*dlogdetJ);
% X = sigma*Delta + L*RDelta;
dsigma = dsigma + dX(:).'*Delta(:);
dDelta = sigma*dX;
dL = dL + dX*RDelta.';
dRDelta = L.'*dX;
% RDelta = R.'*Delta;
dR = dR + Delta*dRDelta.';
dDelta = dDelta + R*dRDelta;
% Delta = bsxfun(@minus,T,offset)
dT = dDelta;
doffset = -sum(dDelta,2);
dP = back0(dsigma,dL,dR,doffset);
end
end
function [sigma,L,R,offset,back] = expand(P)
at = 1;
sz = 1;
%logsigma = P(at);
%sigma = exp(logsigma);
%sigma = P(at);
sqrtsigma = P(at);
sigma = sqrtsigma^2;
at = at + sz;
sz = dim*rank;
L = reshape(P(at:at+sz-1),dim,rank);
at = at + sz;
sz = dim*rank;
R = reshape(P(at:at+sz-1),dim,rank);
at = at + sz;
sz = dim;
offset = P(at:at+sz-1);
at = at + sz;
assert(at==length(P)+1);
back = @back_this;
function dP = back_this(dsigma,dL,dR,doffset)
%dlogsigma = sigma*dsigma;
%dP = [dlogsigma;dL(:);dd;doffset];
%dP = [dsigma;dL(:);dd;doffset];
dsqrtsigma = 2*dsigma*sqrtsigma;
dP = [dsqrtsigma;dL(:);dR(:);doffset];
end
end
end
function test_this()
dim = 5;
rank = 2;
n = 6;
[f,fi,sz,fe] = create_nice_Trans3(dim,rank);
P = randn(sz,1);
X = randn(dim,n);
T = f(P,X);
Xi = fi(P,T);
test_inverse = max(abs(X(:)-Xi(:))),
testBackprop_multi(fi,2,{P,T});
%testBackprop_multi(fe,4,{P});
end
|
github | bsxfan/meta-embeddings-master | create_nice_Trans2.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/create_nice_Trans2.m | 2,933 | utf_8 | aba4972b59d6acfb19b6a85c190bb897 | function [f,fi,paramsz,fe] = create_nice_Trans2(dim,rank)
if nargin==0
test_this();
return;
end
paramsz = 1 + dim*rank + rank*rank + dim;
f = @f_this;
fi = @fi_this;
fe = @expand;
function T = f_this(P,R)
[sigma,L,D,offset] = expand(P);
M = sigma*eye(dim) + L*D*L.';
T = bsxfun(@plus,offset,M\R);
end
function [R,logdetJ,back] = fi_this(P,T)
[sigma,L,D,offset,back0] = expand(P);
Delta = bsxfun(@minus,T,offset);
DL = D*L.';
DLDelta = DL*Delta;
R = sigma*Delta + L*DLDelta;
[logdet,back1] = logdetNice2(sigma,L,D);
n = size(T,2);
logdetJ = -n*logdet;
back = @back_that;
function [dP,dT] = back_that(dR,dlogdetJ)
%[logdetJ,back1] = logdetNice(sigma,L,d)
[dsigma,dL,dD] = back1(-n*dlogdetJ);
% R = sigma*Delta + L*DLDelta
dsigma = dsigma + dR(:).'*Delta(:);
dDelta = sigma*dR;
dL = dL + dR*DLDelta.';
dDLDelta = L.'*dR;
% DLDelta = DL*Delta;
dDL = dDLDelta*Delta.';
dDelta = dDelta + DL.'*dDLDelta;
% DL = D*L.'
dD = dD + dDL*L;
dL = dL + dDL.'*D;
% Delta = bsxfun(@minus,T,offset)
dT = dDelta;
doffset = -sum(dDelta,2);
dP = back0(dsigma,dL,dD,doffset);
end
end
function [sigma,L,D,offset,back] = expand(P)
at = 1;
sz = 1;
%logsigma = P(at);
%sigma = exp(logsigma);
%sigma = P(at);
sqrtsigma = P(at);
sigma = sqrtsigma^2;
at = at + sz;
sz = dim*rank;
L = reshape(P(at:at+sz-1),dim,rank);
at = at + sz;
sz = rank*rank;
D = reshape(P(at:at+sz-1),rank,rank);
at = at + sz;
sz = dim;
offset = P(at:at+sz-1);
at = at + sz;
assert(at==length(P)+1);
back = @back_this;
function dP = back_this(dsigma,dL,dD,doffset)
%dlogsigma = sigma*dsigma;
%dP = [dlogsigma;dL(:);dd;doffset];
%dP = [dsigma;dL(:);dd;doffset];
dsqrtsigma = 2*dsigma*sqrtsigma;
dP = [dsqrtsigma;dL(:);dD(:);doffset];
end
end
end
function test_this()
dim = 5;
rank = 2;
n = 6;
[f,fi,sz,fe] = create_nice_Trans2(dim,rank);
P = randn(sz,1);
R = randn(dim,n);
T = f(P,R);
Ri = fi(P,T);
test_inverse = max(abs(R(:)-Ri(:))),
testBackprop_multi(fi,2,{P,T});
%testBackprop_multi(fe,4,{P});
end
|
github | bsxfan/meta-embeddings-master | logdetNice2.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/logdetNice2.m | 929 | utf_8 | 469e8c40a8fb711c201f8fbeaf1c8b32 | function [logdet,back] = logdetNice2(sigma,R,D)
if nargin==0
test_this();
return;
end
RR = R.'*R;
[Ld,Ud] = lu(D);
invD = inv(Ud)/Ld;
S = RR/sigma + invD;
[L,U] = lu(S);
dim = size(R,1);
logdet = ( sum(log(diag(U).^2)) + sum(log(diag(Ud).^2)) + dim*log(sigma^2) ) /2;
back = @back_this;
function [dsigma,dR,dD] = back_this(dlogdet)
dS = dlogdet*(inv(U)/L).';
dD = dlogdet*invD.';
dsigma = dim*dlogdet/sigma;
dR = R*(dS + dS.')/sigma;
dsigma = dsigma - (RR(:).'*dS(:))/sigma^2;
dinvD = dS;
dD = dD - D.'\(dinvD/D.');
end
end
function test_this()
dim = 5;
rank = 2;
sigma = randn;
R = randn(dim,rank);
D = randn(rank);
M = sigma*eye(dim) + R*D*R.';
[log(abs(det(M))),logdetNice2(sigma,R,D)]
testBackprop(@logdetNice2,{sigma,R,D})
end |
github | bsxfan/meta-embeddings-master | LinvSR.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/LinvSR.m | 562 | utf_8 | cc684a75c7911f7d518550620e6b8fc7 | function [Y,back] = LinvSR(L,S,R)
if nargin==0
test_this();
return;
end
Z = S\R;
Y = L*Z;
back = @back_this;
function [dL,dS,dR] = back_this(dY)
% Y = L*Z
dL = dY*Z.';
dZ = L.'*dY;
% Z = S\R;
dR = S.'\dZ;
dS = -dR*Z.';
end
end
function test_this()
m = 3;
n = 4;
L = randn(m,n);
R = randn(n,m);
S = randn(n,n);
fprintf('test slow derivatives:\n');
testBackprop(@LinvSR,{L,S,R});
end
|
github | bsxfan/meta-embeddings-master | splda_adaptation_obj.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/splda_adaptation_obj.m | 1,783 | utf_8 | 6c6dfe6b4fc0b2eedc0ac2e4802de451 | function [y,back] = splda_adaptation_obj(newData,labels,oldF,oldW,params,num_new_Fcols,W_adj_rank,slow)
if nargin==0
test_this();
return;
end
if ~exist('slow','var')
slow = false;
end
[dim,Frank] = size(oldF);
[Fcols,Fscal,Cfac] = unpack_SPLDA_adaptation_params(params,dim,Frank,num_new_Fcols,W_adj_rank);
[newF,newW,back1] = adaptSPLDA(Fcols,Fscal,Cfac,oldF,oldW);
[llh,back2] = splda_llh_full(labels,newF,newW,newData,slow);
y = -llh;
back = @back_this;
function dparams = back_this(dy)
dllh = -dy;
[dnewF,dnewW] = back2(dllh);
[Fcols,Fscal,Cfac] = back1(dnewF,dnewW);
dparams = [Fcols(:);Fscal(:);Cfac(:)];
end
end
function test_this()
dim = 20;
Frank = 5;
num_new_Fcols = 2;
W_adj_rank = 3;
n = 100;
K = 15;
newData = randn(dim,n);
labels = sparse(randi(K,1,n),1:n,true,K,n);
oldF = randn(dim,Frank);
oldW = randn(dim,dim+1);oldW = oldW * oldW.';
Fcols = randn(dim,num_new_Fcols);
Cfac = randn(dim,W_adj_rank);
Fscal = randn(1,Frank);
params = [Fcols(:);Fscal(:);Cfac(:)];
f_slow = @(params) splda_adaptation_obj(newData,labels,oldF,oldW,params,num_new_Fcols,W_adj_rank,true);
f_fast = @(params) splda_adaptation_obj(newData,labels,oldF,oldW,params,num_new_Fcols,W_adj_rank,false);
fprintf('test function value equality:\n');
delta = abs(f_slow(params)-f_fast(params)),
fprintf('test slow derivatives:\n');
testBackprop(f_slow,params);
[~,back] = f_slow(params);
dparams = back(pi);
[~,back] = f_fast(params);
dparams = back(pi);
fprintf('compare fast and slow derivatives:\n');
delta = max(abs(dparams-dparams)),
end |
github | bsxfan/meta-embeddings-master | logdetLU.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/logdetLU.m | 393 | utf_8 | f89f69d0255592e7c1933492e7894c79 | function [y,back] = logdetLU(M)
if nargin==0
test_this();
return;
end
[L,U] = lu(M);
y = sum(log(diag(U).^2))/2;
back = @back_this;
function dM = back_this(dy)
%dM = dy*(inv(U)/L).';
dM = dy*(L.'\inv(U.'));
end
end
function test_this()
dim = 5;
M = randn(dim);
testBackprop(@logdetLU,M);
end |
github | bsxfan/meta-embeddings-master | posteriorNorm2_slow.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/posteriorNorm2_slow.m | 1,855 | utf_8 | c490aa24f95c0ecb840e47f99af01af6 | function [y,back] = posteriorNorm2_slow(A,B,b,priorFac)
% Computes, for every i: log N( 0 | Pi\A(:,i), inv(Pi) ), where
%
% precisions are Pi = I + b(i)*B
%
% This is the slow version, used only to verify correctness of the function
% value and derivatives of the fast version, posteriorNorm_fast().
%
% Inputs:
% A: dim-by-n, natural parameters (precision *mean) for n Gaussians
% B: dim-by-dim, common precision matrix factor (full, positive semi-definite)
% b: 1-by-n, precision scale factors
%
% Outputs:
% y: 1-by-n, log densities, evaluated at zero
% back: backpropagation handle, [dA,dB,db] = back(dy)
if nargin==0
test_this();
return;
end
[dim,n] = size(A);
P = priorFac*priorFac.'; % prior precision
y = zeros(1,n);
S = zeros(dim,n);
for i=1:n
a = A(:,i);
bBI = P+b(i)*B;
s = bBI\a;
S(:,i) = s;
logd = logdet(bBI);
y(i) = (logd - s.'*a)/2;
end
back = @back_this;
function [dA,dB,db] = back_this(dy)
dA = zeros(size(A));
db = zeros(size(b));
dB = zeros(size(B));
for ii=1:n
s = S(:,ii);
a = A(:,ii);
da = -(dy(ii)/2)*s;
ds = -(dy(ii)/2)*a;
dlogd = dy(ii)/2;
bBI = I+b(ii)*B;
dbBI = dlogd*inv(bBI); %#ok<MINV>
da2 = bBI.'\ds;
dA(:,ii) = da + da2;
dbBI = dbBI - (da2)*s.';
dB = dB + b(ii)*dbBI;
db(ii) = dbBI(:).'*B(:);
end
end
end
function y = logdet(M)
[~,U] = lu(M);
y = sum(log(diag(U).^2))/2;
end
function test_this()
m = 3;
n = 5;
A = randn(m,n);
b = rand(1,n);
B = randn(m,m+1); B = B*B.';
testBackprop(@posteriorNorm_slow,{A,B,b},{1,1,1});
end
|
github | bsxfan/meta-embeddings-master | adaptSPLDA.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/adaptSPLDA.m | 1,791 | utf_8 | fce312e9e18adccb87760f2788ced832 | function [Ft,Wt,back] = adaptSPLDA(Fcols,Fscal,Cfac,F,W)
if nargin==0
test_this();
return;
end
Frank = length(Fscal);
Ft = [bsxfun(@times,F,Fscal), Fcols];
% Wt = inv(Ct), Ct = inv(W) + Cfac*Cfac'
% Wt = W - W*Cfac*inv(I + Cfac'*W*Cfac)*Cfac'*W
WCfac = W*Cfac;
S = eye(size(Cfac,2)) + WCfac.'*Cfac;
[Adj,back1] = LinvSR(WCfac,S,WCfac.');
Wt = W - (Adj + Adj.')/2; %numerically symmetrize
back = @back_this;
function [dFcols,dFscal,dCfac,dF,dW] = back_this(dFt,dWt)
% Wt = W - (Adj + Adj.')/2
dAdj = -(dWt+dWt.')/2;
dW = dWt;
% [Wt0,back1] = LinvSR(WCfac,S,WCfac.')
[dL,dS,dR] = back1(dAdj);
dWCfac = dL + dR.';
% S = eye(size(Cfac,2)) + WCfac.'*Cfac;
dWCfac = dWCfac + Cfac*dS.';
dCfac = WCfac*dS;
%WCfac = W*Cfac;
if nargout>=5
dW = dW + dWCfac*Cfac.';
end
dCfac = dCfac + W.'*dWCfac;
% Ft = [bsxfun(@times,F,Fscal), Fcols]
dFcols = dFt(:,Frank+1:end); %OK
dFscal = sum(dFt(:,1:Frank).*F,1); %OK
if nargout>=4
dF = bsxfun(@times,dFt(:,1:Frank),Fscal); %OK
end
end
end
function test_this()
dim = 10;
Frank = 2;
extra = 3;
F = randn(dim,Frank);
Fcols = randn(dim,extra);
Fscal = randn(1,Frank);
W = randn(dim,dim);
Cfac = randn(dim,4);
f1 = @(Fcols,Fscal,Cfac,F,W) adaptSPLDA(Fcols,Fscal,Cfac,F,W);
f2 = @(Fcols,Fscal,Cfac) adaptSPLDA(Fcols,Fscal,Cfac,F,W);
testBackprop_multi(f1,2,{Fcols,Fscal,Cfac,F,W});
testBackprop_multi(f2,2,{Fcols,Fscal,Cfac});
end
|
github | bsxfan/meta-embeddings-master | matinv.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/matinv.m | 345 | utf_8 | 140429773a1c0fb820d3ebe7e4d16619 | function [Y,back] = matinv(S)
if nargin==0
test_this();
return;
end
Y = inv(S);
back = @back_this;
function dS = back_this(dY)
dS = -Y.'*dY*Y.';
end
end
function test_this()
n = 4;
S = randn(n,n);
testBackprop(@matinv,S);
end
|
github | bsxfan/meta-embeddings-master | posteriorNorm_mindiv_slow.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/posteriorNorm_mindiv_slow.m | 1,999 | utf_8 | 3a06a111867c52058d73244d0ba36117 | function [y,Ezz,back] = posteriorNorm_mindiv_slow(A,B,b)
% Computes, for every i: log N( 0 | Pi\A(:,i), inv(Pi) ), where
%
% precisions are Pi = I + b(i)*B
%
% This is the slow version, used only to verify correctness of the function
% value and derivatives of the fast version, posteriorNorm_fast().
%
% Inputs:
% A: dim-by-n, natural parameters (precision *mean) for n Gaussians
% B: dim-by-dim, common precision matrix factor (full, positive semi-definite)
% b: 1-by-n, precision scale factors
%
% Outputs:
% y: 1-by-n, log densities, evaluated at zero
% back: backpropagation handle, [dA,dB,db] = back(dy)
if nargin==0
test_this();
return;
end
[dim,n] = size(A);
I = speye(dim);
y = zeros(1,n);
S = zeros(dim,n);
Ezz = zeros(dim);
for i=1:n
a = A(:,i);
bBI = I+b(i)*B;
s = bBI\a;
S(:,i) = s;
logd = logdet(bBI);
y(i) = (logd - s.'*a)/2;
Ezz = Ezz + inv(bBI) + s*s.';
end
Ezz = Ezz/n;
back = @back_this;
function [dA,dB,db] = back_this(dy,dEzz)
dA = zeros(size(A));
db = zeros(size(b));
dB = zeros(size(B));
for ii=1:n
s = S(:,ii);
a = A(:,ii);
bBI = I+b(i)*B;
ds = (2/n)*(dEzz*s);
da = -(dy(ii)/2)*s;
ds = ds -(dy(ii)/2)*a;
dlogd = dy(ii)/2;
bBI = I+b(ii)*B;
dbBI = dlogd*inv(bBI); %#ok<MINV>
da2 = bBI.'\ds;
dA(:,ii) = da + da2;
dbBI = dbBI - (da2)*s.';
dB = dB + b(ii)*dbBI;
db(ii) = dbBI(:).'*B(:);
end
end
end
function y = logdet(M)
[~,U] = lu(M);
y = sum(log(diag(U).^2))/2;
end
function test_this()
m = 3;
n = 5;
A = randn(m,n);
b = rand(1,n);
B = randn(m,m+1); B = B*B.';
testBackprop(@posteriorNorm_slow,{A,B,b},{1,1,1});
end
|
github | bsxfan/meta-embeddings-master | splda_llh_full.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/splda_llh_full.m | 3,374 | utf_8 | 9f2a6f749c0dfeb7e8f3ae83f26c362e | function [llh,back] = splda_llh_full(labels,F,W,R,slow)
% Like splda_llh(), but backpropagates into all of F,W and R
%
% Inputs:
% R: D-by-N, i-vectors
% labels: sparse, logical K-by-N, one hot columns, K speakers, N recordings
% F,W: SPLA parameters
% slow: [optional, default = false] logical, use slow = true to test derivatives
%
% facW: [optional, default = true] logical:
% true: W = Wfac*Wfac'
% false: W = Wfac
%
% Outputs:
% llh: total log density: log P(R | F,W,labels)
if nargin==0
test_this();
return;
end
if ~exist('slow','var')
slow = false;
end
[nspeakers,ndata] = size(labels);
FW = F.'*W;
FWR = FW*R;
S = FWR*labels.'; %first order natural parameter for speaker factor posterior
n = full(sum(labels,2)).'; %zero order stats (recordings per speaker)
FWF = FW*F;
if slow
[pn,back1] = posteriorNorm_slow(S,FWF,n);
else
[pn,back1] = posteriorNorm_fast(S,FWF,n);
end
RR = R*R.';
% if ~slow
% cholW = chol(W);
% logdetW = 2*sum(log(diag(cholW)));
% else
% [Lw,Uw] = lu(W);
% logdetW = sum(log(diag(Uw).^2))/2;
% end
[logdetW,back2] = logdetLU(W);
llh = ( ndata*logdetW - RR(:).'*W(:) ) / 2 - sum(pn,2);
back = @back_this;
function [dF,dW,dR] = back_this(dllh)
% llh = ( ndata*logdetW - RR(:).'*W(:) ) / 2 - sum(pn,2)
dlogdetW = ndata*dllh/2;
if nargout>=3
dRR = (-dllh/2)*W;
end
dW = (-dllh/2)*RR;
dpn = repmat(-dllh,1,nspeakers);
% [logdetW,back2] = logdetLU(W)
dW = dW + back2(dlogdetW);
% RR = R*R.'
if nargout>=3
dR = (2*dRR)*R;
end
% [pn,back1] = posteriorNorm_fast(S,FWF,n)
[dS,dFWF] = back1(dpn);
% FWF = FW*F
dFW = dFWF*F.';
dF = FW.'*dFWF;
% S = FWR*labels.'
dFWR = dS*labels;
% FWR = FW*R;
dFW = dFW + dFWR*R.';
if nargout >= 3
dR = dR + FW.'*dFWR;
end
% FW = F.'*W;
dW = dW + F*dFW;
dF = dF + W*dFW.';
end
end
function test_this()
D = 4;
d = 2;
N = 10;
K = 3;
R = randn(D,N);
labels = sparse(randi(K,1,N),1:N,true,K,N);
F = randn(D,d);
W = randn(D,D+1);W=W*W.';
slow = true;
f_slow = @(F,W,R) splda_llh_full(labels,F,W,R,slow);
f_fast = @(F,W,R) splda_llh_full(labels,F,W,R);
f0 = @(F,W) splda_llh_full(labels,F,W,R);
fprintf('test function value equality:\n');
delta = abs(f_slow(F,W,R)-f_fast(F,W,R)),
fprintf('test slow derivatives:\n');
testBackprop(f_slow,{F,W,R},{1,1,1});
%return
[~,back] = f_slow(F,W,R);
[dFs,dWs,dRs] = back(pi);
[~,back] = f_fast(F,W,R);
[dFf,dWf,dRf] = back(pi);
[~,back] = f0(F,W);
[dF0,dW0] = back(pi);
fprintf('compare fast and slow derivatives:\n');
deltaF = max(abs(dFs(:)-dFf(:))),
deltaW = max(abs(dWs(:)-dWf(:))),
deltaR = max(abs(dRs(:)-dRf(:))),
deltaF0 = max(abs(dFs(:)-dF0(:))),
deltaW0 = max(abs(dWs(:)-dW0(:))),
end
|
github | bsxfan/meta-embeddings-master | posteriorNorm_slow.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/posteriorNorm_slow.m | 1,815 | utf_8 | a9b32fbd06cb0f91327d57dac2f41bbd | function [y,back] = posteriorNorm_slow(A,B,b)
% Computes, for every i: log N( 0 | Pi\A(:,i), inv(Pi) ), where
%
% precisions are Pi = I + b(i)*B
%
% This is the slow version, used only to verify correctness of the function
% value and derivatives of the fast version, posteriorNorm_fast().
%
% Inputs:
% A: dim-by-n, natural parameters (precision *mean) for n Gaussians
% B: dim-by-dim, common precision matrix factor (full, positive semi-definite)
% b: 1-by-n, precision scale factors
%
% Outputs:
% y: 1-by-n, log densities, evaluated at zero
% back: backpropagation handle, [dA,dB,db] = back(dy)
if nargin==0
test_this();
return;
end
[dim,n] = size(A);
I = speye(dim);
y = zeros(1,n);
S = zeros(dim,n);
for i=1:n
a = A(:,i);
bBI = I+b(i)*B;
s = bBI\a;
S(:,i) = s;
logd = logdet(bBI);
y(i) = (logd - s.'*a)/2;
end
back = @back_this;
function [dA,dB,db] = back_this(dy)
dA = zeros(size(A));
db = zeros(size(b));
dB = zeros(size(B));
for ii=1:n
s = S(:,ii);
a = A(:,ii);
da = -(dy(ii)/2)*s;
ds = -(dy(ii)/2)*a;
dlogd = dy(ii)/2;
bBI = I+b(ii)*B;
dbBI = dlogd*inv(bBI); %#ok<MINV>
da2 = bBI.'\ds;
dA(:,ii) = da + da2;
dbBI = dbBI - (da2)*s.';
dB = dB + b(ii)*dbBI;
db(ii) = dbBI(:).'*B(:);
end
end
end
function y = logdet(M)
[~,U] = lu(M);
y = sum(log(diag(U).^2))/2;
end
function test_this()
m = 3;
n = 5;
A = randn(m,n);
b = rand(1,n);
B = randn(m,m+1); B = B*B.';
testBackprop(@posteriorNorm_slow,{A,B,b},{1,1,1});
end
|
github | bsxfan/meta-embeddings-master | posteriorNorm_fast.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/param_adaptation/posteriorNorm_fast.m | 2,131 | utf_8 | f950d84510798e37996a0f242fd5f9be | function [y,back] = posteriorNorm_fast(A,B,b)
% Computes, for every i: log N( 0 | Pi\A(:,i), inv(Pi) ), where
%
% precisions are Pi = I + b(i)*B
%
% This is the fast version, which simultaneously diagonalizes all the Pi,
% using eigenanalysis of B.
%
% Inputs:
% A: dim-by-n, natural parameters (precision *mean) for n Gaussians
% B: dim-by-dim, common precision matrix factor (full, positive semi-definite)
% b: 1-by-n, precision scale factors
%
% Outputs:
% y: 1-by-n, log densities, evaluated at zero
% back: backpropagation handle, [dA,dB,db] = back(dy)
if nargin==0
test_this();
return;
end
[V,L] = eig(B); %V*L*V' = B
L = diag(L);
bL = bsxfun(@times,b,L);
logdets = sum(log1p(bL),1);
bL1 = 1 + bL;
S = V*bsxfun(@ldivide,bL1,V.'*A);
Q = sum(A.*S,1);
y = (logdets - Q)/2;
back = @back_this;
function [dA,dB,db] = back_this(dy)
hdy = dy/2;
dA = bsxfun(@times,-hdy,S);
dS = bsxfun(@times,-hdy,A);
dlogdets = hdy;
dA2 = V*bsxfun(@ldivide,bL1,V.'*dS);
dA = dA + dA2;
dBlogdet = V*bsxfun(@times,sum(bsxfun(@rdivide,b.*dlogdets,bL1),2),V.');
dBsolve = bsxfun(@times,-b,dA2) * S.';
dB = dBlogdet + (dBsolve+dBsolve.')/2;
if nargout>=3
db = L.'*bsxfun(@ldivide,bL1,dlogdets) - sum(S.*(B*dA2),1);
end
end
end
function test_this()
m = 3;
n = 5;
A = randn(m,n);
b = rand(1,n);
B = randn(m,m+1); B = B*B.';
fprintf('test function values:\n');
err = max(abs(posteriorNorm_fast(A,B,b) - posteriorNorm_slow(A,B,b))),
fprintf('test derivatives:\n');
[y,back] = posteriorNorm_fast(A,B,b);
dy = randn(size(y));
[dAf,dBf,dbf] = back(dy);
[~,back] = posteriorNorm_slow(A,B,b);
[dAs,dBs,dbs] = back(dy);
err_dA = max(abs(dAs(:)-dAf(:))),
err_db = max(abs(dbs(:)-dbf(:))),
err_dB = max(abs(dBs(:)-dBf(:))),
%neither complex, nor real step differentiation seem to work through eig()
end
|
github | bsxfan/meta-embeddings-master | rkhs_inner_prod.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/mmd/rkhs_inner_prod.m | 516 | utf_8 | 8df105a9a35bd9faf72c137fd3d1d6e8 | function y = rkhs_inner_prod(sigma,B1,a1,B2,a2)
dim = length(a1);
I = eye(dim);
Bconv = (I+sigma*B1)\B1; % inv(sigmaI + inv(B1))
aconv = (I+sigma*B1)\a1; % Bconv*(B1\a)
y = gauss_prod_int(aconv,Bconv,a2,B2);
end
function y = log_gauss_norm(B,a)
[logd,mu,back] = logdet_solveLU(B,a);
y = (logd-mu.'*a)/2;
end
function y = gauss_prod_int(a1,B1,a2,B2)
y = exp(log_gauss_norm(B1,a1) + log_gauss_norm(B2,a2) ...
- log_gauss_norm(B1+B2,a1+a2) );
end |
github | bsxfan/meta-embeddings-master | log_gauss_norm.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/mmd/log_gauss_norm.m | 527 | utf_8 | 9dba44b2abd5c0513bb1b75566fab019 | function [y,back] = log_gauss_norm(B,a)
if nargin==0
test_this();
return;
end
[logd,mu,back1] = logdet_solveLU(B,a);
y = (logd -mu.'*a)/2;
back = @back_this;
function [dB,da] = back_this(dy)
dlogd = dy/2;
da = (-dy/2)*mu;
dmu = (-dy/2)*a;
[dB,da1] = back1(dlogd,dmu);
da = da + da1;
end
end
function test_this()
dim = 5;
B = randn(dim);
a = rand(dim,1);
testBackprop(@log_gauss_norm,{B,a},{1,1});
end
|
github | bsxfan/meta-embeddings-master | logdet_solveLU.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/mmd/logdet_solveLU.m | 508 | utf_8 | c3ec88a4a91de8ea84a175ef1857bfa8 | function [y,mu,back] = logdet_solveLU(B,a)
if nargin==0
test_this();
return;
end
[L,U] = lu(B);
y = sum(log(diag(U).^2))/2; %logdet
mu = U\(L\a); %solve
back = @back_this;
function [dB,da] = back_this(dy,dmu)
dB = dy*(L.'\inv(U.'));
da = L.'\(U.'\dmu);
dB = dB - da*mu.';
end
end
function test_this()
dim = 5;
B = randn(dim);
a = randn(dim,1);
testBackprop_multi(@logdet_solveLU,2,{B,a});
end |
github | bsxfan/meta-embeddings-master | rkhs_proj_onto_I0_slow.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/mmd/rkhs_proj_onto_I0_slow.m | 1,766 | utf_8 | d012ab760719343ddc73bd3f4aa42563 | function [y,back] = rkhs_proj_onto_I0_slow(sigma,A,b,B)
% RKHS inner products of multivariate Gaussians onto standard normal. The
% RKHS kernel is K(x,y) = ND(x|y,sigma I). The first order natural
% parameters of the Gaussians are in the columns of A. The precisions are
% proportional to the fixed B, with scaling contants in the vector b.
if nargin==0
test_this();
return;
end
[dim,n] = size(A);
Bconv = eye(dim)/(1+sigma);
aconv = zeros(dim,1 );
lgn1 = log_gauss_norm(Bconv,aconv); % (-dim/2)*log1p(sigma);
lgn2 = zeros(1,n);
lgn12 = zeros(1,n);
for i=1:n
lgn2(i) = log_gauss_norm(b(i)*B,A(:,i));
lgn12(i) = log_gauss_norm(Bconv + b(i)*B,A(:,i));
end
y = exp(lgn1 + lgn2 - lgn12);
back = @back_this;
function [dA,db,dB] = back_this(dy)
dlgn2 = dy.*y;
dlgn12 = -dlgn2;
dA = zeros(dim,n);
db = zeros(1,n);
dB = zeros(size(B));
for ii=1:n
bB = b(ii)*B;
a = A(:,ii);
[~,back1] = log_gauss_norm(bB,a);
[dbB,da] = back1(dlgn2(i));
dA(:,ii) = da;
db(ii) = dbB(:).'*B(:);
dB = dB + b(ii)*dbB;
[~,back2] = log_gauss_norm(Bconv + bB,a);
[dbB,da] = back2(dlgn12(ii));
dA(:,ii) = dA(:,ii) + da;
db(ii) = db(ii) + dbB(:).'*B(:);
dB = dB + b(ii)*dbB;
end
end
end
function test_this()
dim = 4;
n = 3;
A = randn(dim,n);
b = randn(1,n).^2;
B = randn(dim);B=B*B.';
sigma = pi;
f = @(A,b,B) rkhs_proj_onto_I0_slow(sigma,A,b,B);
testBackprop(f,{A,b,B},{0,0,1});
end |
github | bsxfan/meta-embeddings-master | L_BFGS.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/optimization/L_BFGS.m | 5,008 | utf_8 | 8a3bd29f4c568d13b7c0f7e466850904 | function [w,y,mem,logs] = L_BFGS(obj,w,maxiters,timeout,mem,stpsz0,callback)
% L-BFGS Quasi-Newton unconstrained optimizer.
% -- This has a small interface change from LBFGS.m --
%
% Inputs:
% obj: optimization objective, with interface: [y,grad] = obj(w),
% where w is the parameter vector, y is the scalar objective value
% and grad is a function handle, so that grad(1) gives the gradient
% (same size as w).
% w: the initial parameter vector
% maxiters: max number of LBFGS iterations (line search iterations do not
% count towards this limit).
% timeout: LBFGS will stop when timeout (in seconds) is reached.
% mem is either: (i) A struct with previously computed LBFGS data, to
% allow resumption of iteration.
% (ii) An integer: the size of the LBFGS memory. A good
% default is 20.
%
%some linesearch magic numbers
maxfev = 20; %max number of function evaluations
stpmin = 1e-15; %same as Poblano default
stpmax = 1e15; %same as Poblano default
ftol = 1e-5; % as recommended by Nocedal (c1 in his book)
gtol = 0.9; % as recommended by Nocedal (c2 in his book)
xtol = 1e-15; %same as Poblano default
quiet = false;
%termination parameters
% relFuncTol = 1e-6; %same as Poblano
relFuncTol = 1e-8;
if ~exist('stpsz0','var') || isempty(stpsz0)
stpsz0 = 1;
end
stpsz = stpsz0;
if ~exist('timeout','var') || isempty(timeout)
timeout = 15*60;
fprintf('timeout defaulted to 15 minutes');
end;
if ~exist('callback','var') || isempty(callback)
ncbLogs = 0;
else
ncbLogs = length( callback(w) );
end;
tic;
dim = length(w);
if ~isstruct(mem)
m = mem;
mem = [];
mem.m = m;
mem.sz = 0;
mem.rho = zeros(1,m);
mem.S = zeros(dim,m);
mem.Y = zeros(dim,m);
else
m = mem.m;
end
if ~exist('y','var') || isempty(y)
[y,grad] = obj(w);
g = grad(1);
fprintf('LBFGS 0: obj = %g, ||g||=%g\n',y,sqrt(g'*g));
end
initial_y = y;
logs = zeros(3+ncbLogs, maxiters);
nlogs = 0;
gmag = sqrt(g'*g);
k = 0;
while true
if gmag< eps
fprintf('LBFGS converged with tiny gradient\n');
break;
end
% choose direction
p = -Hprod(g,mem);
assert(g'*p<0,'p is not downhill');
% line search
g0 = g;
y0 = y;
w0 = w;
[w,y,grad,g,alpha,info,nfev] = minpack_cvsrch(obj,w,y,g,p,stpsz,...
ftol,gtol,xtol, ...
stpmin,stpmax,maxfev,quiet);
stpsz = 1;
delta_total = abs(initial_y-y);
delta = abs(y0-y);
if delta_total>eps
relfunc = delta/delta_total;
else
relfunc = delta;
end
gmag = sqrt(g'*g);
if info==1 %Wolfe is happy
sk = w-w0;
yk = g-g0;
dot = sk'*yk;
assert(dot>0);
if mem.sz==m
mem.S(:,1:m-1) = mem.S(:,2:m);
mem.Y(:,1:m-1) = mem.Y(:,2:m);
mem.rho(:,1:m-1) = mem.rho(:,2:m);
else
mem.sz = mem.sz + 1;
end
sz = mem.sz;
mem.S(:,sz) = sk;
mem.Y(:,sz) = yk;
mem.rho(sz) = 1/dot;
fprintf('LBFGS %i: ||g||/n = %g, rel = %g\n',k+1,gmag/length(g),relfunc);
else
fprintf('LBFGS %i: NO UPDATE, info = %i, ||g||/n = %g, rel = %g\n',k+1,info,gmag/length(g),relfunc);
end
time = toc;
nlogs = nlogs+1;
if ncbLogs > 0
logs(:,nlogs) = [time; y; nfev; callback(w)'];
disp(logs(4:end,nlogs)');
else
logs(:,nlogs) = [time;y;nfev];
end
k = k + 1;
if k>=maxiters
fprintf('LBFGS stopped: maxiters exceeded\n');
break;
end
if time>timeout
fprintf('LBFGS stopped: timeout\n');
break;
end
if relfunc < relFuncTol
fprintf('\nTDN: stopped with minimal function change\n');
break;
end
end
logs = logs(:,1:nlogs);
end
function r = Hprod(q,mem)
if mem.sz==0
r = q;
return;
end
sz = mem.sz;
S = mem.S;
Y = mem.Y;
rho = mem.rho;
alpha = zeros(1,sz);
for i=sz:-1:1
alpha(i) = rho(i)*S(:,i)'*q;
q = q - alpha(i)*Y(:,i);
end
yy = sum(Y(:,sz).^2,1);
r = q/(rho(sz)*yy);
for i=1:sz
beta = rho(i)*Y(:,i)'*r;
r = r + S(:,i)*(alpha(i)-beta);
end
end
|
github | bsxfan/meta-embeddings-master | testBackprop_rs.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/test/testBackprop_rs.m | 2,198 | utf_8 | 9d88acaf06002d97bf8eb2fdc07bf7b8 | function total = testBackprop_rs(block,X,delta,mask)
%same as testFBblock, but with real step
if ~iscell(X)
X = {X};
end
dX = cellrndn(X);
if exist('mask','var')
assert(length(mask)==length(X));
dX = cellmask(dX,mask);
end
cX1 = cellstep(X,dX,delta);
cX2 = cellstep(X,dX,-delta);
DX = cell(size(X));
[Y,back] = block(X{:});
DY = randn(size(Y));
[DX{:}] = back(DY); %DX = J'*DY
dot1 = celldot(DX,dX); %dX' * J' * DY
cY1 = block(cX1{:});
cY2 = block(cX2{:});
[Y2,dY2] = recover(cY1,cY2,delta); %dY2 = J*dX
dot2 = DY(:).'*dY2(:); %DY' * J* DX
Y_diff = max(abs(Y(:)-Y2(:))),
jacobian_diff = abs(dot1-dot2),
total = Y_diff + jacobian_diff;
if total < 1e-6
fprintf('\ntotal error=%g\n',total);
else
fprintf(2,'\ntotal error=%g\n',total);
end
end
function R = cellrndn(X)
if ~iscell(X)
R = randn(size(X));
else
R = cell(size(X));
for i=1:numel(X)
R{i} = cellrndn(X{i});
end
end
end
function C = cellstep(X,dX,delta)
assert(all(size(X)==size(dX)));
if ~iscell(X)
C = X + delta*dX;
else
C = cell(size(X));
for i=1:numel(X)
C{i} = cellstep(X{i},dX{i},delta);
end
end
end
function [R,D] = recover(cX1,cX2,delta)
assert(all(size(cX1)==size(cX2)));
if ~iscell(cX1)
R = (cX1+cX2)/2;
D = (cX1-cX2)/(2*delta);
else
R = cell(size(cX1));
D = cell(size(cX1));
for i=1:numel(cX1)
[R{i},D{i}] = recover(cX1{i},cX2{i});
end
end
end
function X = cellmask(X,mask)
if ~iscell(X)
assert(length(mask)==1);
X = X*mask;
else
for i=1:numel(X)
X{i} = cellmask(X{i},mask{i});
end
end
end
function dot = celldot(X,Y)
assert(all(size(X)==size(Y)));
if ~iscell(X)
dot = X(:).' * Y(:);
else
dot = 0;
for i=1:numel(X)
dot = dot + celldot(X{i},Y{i});
end
end
end
|
github | bsxfan/meta-embeddings-master | testBackprop_multi.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/test/testBackprop_multi.m | 2,361 | utf_8 | ced4a5b7e925d5c00a2d991fb34d012c | function total = testBackprop_multi(block,nout,X,mask)
% same as testBackprop, but handles multiple outputs
if ~iscell(X)
X = {X};
end
dX = cellrndn(X);
if exist('mask','var')
assert(length(mask)==length(X));
dX = cellmask(dX,mask);
end
cX = cellcomplex(X,dX);
DX = cell(size(X));
Y = cell(1,nout);
[Y{:},back] = block(X{:});
DY = cell(size(Y));
for i=1:numel(DY)
DY{i} = randn(size(Y{i}));
end
[DX{:}] = back(DY{:}); %DX = J'*DY
dot1 = celldot(DX,dX); %dX' * J' * DY
cY = cell(1,nout);
Y2 = cell(1,nout);
dY2 = cell(1,nout);
[cY{:}] = block(cX{:});
for i=1:numel(cY)
[Y2{i},dY2{i}] = recover(cY{i}); %dY2 = J*dX
end
dot2 = celldot(DY,dY2); %DY' * J* DX
Y_diff = 0;
for i=1:nout
Y_diff = Y_diff + max(abs(Y{i}(:)-Y2{i}(:)));
end
Y_diff,
jacobian_diff = abs(dot1-dot2),
total = Y_diff + jacobian_diff;
if total < 1e-6
fprintf('\ntotal error=%g\n',total);
else
fprintf(2,'\ntotal error=%g\n',total);
end
end
function R = cellrndn(X)
if ~iscell(X)
R = randn(size(X));
else
R = cell(size(X));
for i=1:numel(X)
R{i} = cellrndn(X{i});
end
end
end
function X = cellmask(X,mask)
if ~iscell(X)
assert(length(mask)==1);
X = X*mask;
else
for i=1:numel(X)
X{i} = cellmask(X{i},mask{i});
end
end
end
function C = cellcomplex(X,dX)
assert(all(size(X)==size(dX)));
if ~iscell(X)
C = complex(X,1e-20*dX);
else
C = cell(size(X));
for i=1:numel(X)
C{i} = cellcomplex(X{i},dX{i});
end
end
end
function [R,D] = recover(cX)
if ~iscell(cX)
R = real(cX);
D = 1e20*imag(cX);
else
R = cell(size(cX));
D = cell(size(cX));
for i=1:numel(cX)
[R{i},D{i}] = recover(cX{i});
end
end
end
function dot = celldot(X,Y)
assert(all(size(X)==size(Y)));
if ~iscell(X)
dot = X(:).' * Y(:);
else
dot = 0;
for i=1:numel(X)
dot = dot + celldot(X{i},Y{i});
end
end
end
|
github | bsxfan/meta-embeddings-master | testBackprop.m | .m | meta-embeddings-master/code/Niko/matlab/SRE18/MLNDA_SRE18/test/testBackprop.m | 2,015 | utf_8 | fc73fa404f5441c097eb63f249106078 | function total = testBackprop(block,X,mask)
if ~iscell(X)
X = {X};
end
dX = cellrndn(X);
if exist('mask','var')
assert(length(mask)==length(X));
dX = cellmask(dX,mask);
end
cX = cellcomplex(X,dX);
DX = cell(size(X));
[Y,back] = block(X{:});
DY = randn(size(Y));
[DX{:}] = back(DY); %DX = J'*DY
dot1 = celldot(DX,dX); %dX' * J' * DY
cY = block(cX{:});
[Y2,dY2] = recover(cY); %dY2 = J*dX
dot2 = DY(:).'*dY2(:); %DY' * J* DX
Y_diff = max(abs(Y(:)-Y2(:))),
jacobian_diff = abs(dot1-dot2),
total = Y_diff + jacobian_diff;
if total < 1e-6
fprintf('\ntotal error=%g\n',total);
else
fprintf(2,'\ntotal error=%g\n',total);
end
end
function R = cellrndn(X)
if ~iscell(X)
R = randn(size(X));
else
R = cell(size(X));
for i=1:numel(X)
R{i} = cellrndn(X{i});
end
end
end
function X = cellmask(X,mask)
if ~iscell(X)
assert(length(mask)==1);
X = X*mask;
else
for i=1:numel(X)
X{i} = cellmask(X{i},mask{i});
end
end
end
function C = cellcomplex(X,dX)
assert(all(size(X)==size(dX)));
if ~iscell(X)
C = complex(X,1e-20*dX);
else
C = cell(size(X));
for i=1:numel(X)
C{i} = cellcomplex(X{i},dX{i});
end
end
end
function [R,D] = recover(cX)
if ~iscell(cX)
R = real(cX);
D = 1e20*imag(cX);
else
R = cell(size(cX));
D = cell(size(cX));
for i=1:numel(cX)
[R{i},D{i}] = recover(cX{i});
end
end
end
function dot = celldot(X,Y)
assert(all(size(X)==size(Y)));
if ~iscell(X)
dot = X(:).' * Y(:);
else
dot = 0;
for i=1:numel(X)
dot = dot + celldot(X{i},Y{i});
end
end
end
|
github | gaoxifeng/Robust-Hexahedral-Re-Meshing-master | m2p.m | .m | Robust-Hexahedral-Re-Meshing-master/extern/libigl/python/matlab/m2p.m | 786 | utf_8 | 9c36f898544f3e8561f950ac4cc06626 | % Converts a Matlab matrix to a python-wrapped Eigen Matrix
function [ P ] = m2p( M )
if (isa(M, 'double'))
% Convert the matrix to a python 1D array
a = py.array.array('d',reshape(M,1,numel(M)));
% Then convert it to a eigen type
t = py.igl.eigen.MatrixXd(a.tolist());
% Finally reshape it back
P = t.MapMatrix(uint16(size(M,1)),uint16(size(M,2)));
elseif (isa(M, 'integer'))
% Convert the matrix to a python 1D array
a = py.array.array('i',reshape(M,1,numel(M)));
% Then convert it to a eigen type
t = py.igl.eigen.MatrixXi(a.tolist());
% Finally reshape it back
P = t.MapMatrix(uint16(size(M,1)),uint16(size(M,2)));
else
error('Unsupported numerical type.');
end
|
github | gaoxifeng/Robust-Hexahedral-Re-Meshing-master | p2m.m | .m | Robust-Hexahedral-Re-Meshing-master/extern/libigl/python/matlab/p2m.m | 585 | utf_8 | 15f32817630ba8b7a51a95ba7e4d5f2b | % Converts a python-wrapped Eigen Matrix to a Matlab matrix
function [ M ] = p2m( P )
if py.repr(py.type(P)) == '<class ''igl.eigen.MatrixXd''>'
% Convert it to a python array first
t = py.array.array('d',P);
% Reshape it
M = reshape(double(t),P.rows(),P.cols());
elseif py.repr(py.type(P)) == '<class ''igl.eigen.MatrixXi''>'
% Convert it to a python array first
t = py.array.array('i',P);
% Reshape it
M = reshape(int32(t),P.rows(),P.cols());
else
error('Unsupported numerical type.');
end
end
|
github | janhavelka/Stochastic-Finite-Element-Method-master | trisurfc.m | .m | Stochastic-Finite-Element-Method-master/functions/trisurfc.m | 14,500 | utf_8 | 850e8c97d2b3250b7af61ed01af5dd00 | function [cout,hout] = trisurfc(el,xin,yin,zin,N,shift,magnit)
% Contouring and surface function for functions defined on triangular meshes
%
% xin, yin, zin, are arrays of x,y,z values of the points for your surface.
% So [x(1) y(1) z(1)] defines the first point, etc.
%
% The last input N defines the contouring levels. There are several
% options:
%
% N scalar - N number of equally spaced contours will be drawn
% N vector - Draws contours at the levels specified in N
%
% A special call with a two element N where both elements are equal draws a
% single contour at that level.
%
% [C,H] = TRISURFC(...)
%
% This syntax can be used to pass the contour matrix C and the contour
% handels H to clabel by adding clabel(c,h) or clabel(c) after the call to
% TRICSURFC.
%
%
%
% Contour line code by Darren Engwirda - 2005 ([email protected])
% Updated 15/05/2006
% Modified for trisurfc by JK September 2009
% Surface code added by Jack Kohoutek - 2009 ([email protected]
% I/O checking
if nargin~=7
error('Incorrect number of inputs')
end
if nargout>2
error('Incorrect number of outputs')
end
% Error checking
if (size(xin,2)~=1) || (size(yin,2)~=1) || (size(zin,2)~=1)
error('Incorrect input dimensions')
end
if (size(xin,1)~=size(yin,1)) || (size(xin,1)~=size(zin,1)) || (size(yin,1)~=size(zin,1))
error('Lists must have equal lengths.')
end
p=[xin yin];
% el=delaunay(xin,yin);
if (max(el(:))>size(p,1)) || (min(el(:))<=0)
error('Not a valid triangulation.')
end
if (size(N,1)>1) && (size(N,2)>1)
error('N cannot be a matrix')
end
% figure1 = figure('PaperSize',[20.98404194812 29.67743169791]);
% % Create figure
% axes1 = axes('Parent',figure1,'PlotBoxAspectRatio',[1 1 1],'FontSize',20,...
% 'DataAspectRatio',[1 1 1.5],...
% 'CameraViewAngle',10.339584907202,...
% 'CameraUpVector',[0 0 1],...
% 'CameraTarget',[3.61935677548001 -0.524324582796977 -4.25370233938983],...
% 'CameraPosition',[-32.9063289650433 -48.1255250002711 47.7078218876765]);
% grid(axes1,'on');
% hold(axes1,'all');
% figure
trisurf(el,xin,yin,zin,'FaceColor','interp');
% colorbar;
Hn=zin;
zlimits = get(gca,'Zlim');
% contourplotheight=abs(zlimits(1))-abs(zlimits(1)*5);
contourplotheight=-shift;
hold all
set(gca,'DataAspectRatio',[1 1 magnit])
% A=trimesh(el,xin,yin,contourplotheight.*ones(size(xin,1),1),zeros(size(xin,1),1),'LineWidth',0.1);
MeshTri=TriRep(el,xin,yin);
h=triplot(MeshTri,'Color',[0.5 0.5 0.5],'LineWidth',0.2);
set(h,'ZData',contourplotheight + zeros(4,1))
% h2=triplot(MeshTri,'Color',[0.5 0.5 0.5],'LineWidth',0.2);
% MeshTriangul=triangulation(el,xin,yin);
set(gca,'FontSize',20,'XGrid','on','YGrid','on');
%
% % Generate a struct array containing the complete mesh information
% if exist('triangulation','builtin')
% MeshTri=triangulation(el,xin,yin);
% Bound=freeBoundary(MeshTri);
% elseif exist('TriRep','file')
% MeshTri=TriRep(el,xin,yin);
% Bound=freeBoundary(MeshTri);
% else
% warning('Either ''triangulation'' or ''TriRep'' builtin functions were not found!')
% end
%
% % plot3(xin(Bound),yin(Bound),contourplotheight.*ones(size(Bound,1),1),'-k','LineWidth',1.5);
% triplot(MeshTri,'Color','b','LineWidth',1.2)
% Make mesh connectivity data structures (edge based pointers)
[e,eINt,e2t] = mkcon(p,el);
numt = size(el,1); % Num triangles
nume = size(e,1); % Num edges
%==========================================================================
% Quadratic interpolation to centroids
%==========================================================================
% Nodes
t1 = el(:,1); t2 = el(:,2); t3 = el(:,3);
% FORM FEM GRADIENTS
% Evaluate centroidal gradients (piecewise-linear interpolants)
x23 = p(t2,1)-p(t3,1); y23 = p(t2,2)-p(t3,2);
x21 = p(t2,1)-p(t1,1); y21 = p(t2,2)-p(t1,2);
% Centroidal values
Htx = (y23.*Hn(t1) + (y21-y23).*Hn(t2) - y21.*Hn(t3)) ./ (x23.*y21-x21.*y23);
Hty = (x23.*Hn(t1) + (x21-x23).*Hn(t2) - x21.*Hn(t3)) ./ (y23.*x21-y21.*x23);
% Form nodal gradients.
% Take the average of the neighbouring centroidal values
Hnx = 0*Hn; Hny = Hnx; count = Hnx;
for k = 1:numt
% Nodes
n1 = t1(k); n2 = t2(k); n3 = t3(k);
% Current values
Hx = Htx(k); Hy = Hty(k);
% Average to n1
Hnx(n1) = Hnx(n1)+Hx;
Hny(n1) = Hny(n1)+Hy;
count(n1) = count(n1)+1;
% Average to n2
Hnx(n2) = Hnx(n2)+Hx;
Hny(n2) = Hny(n2)+Hy;
count(n2) = count(n2)+1;
% Average to n3
Hnx(n3) = Hnx(n3)+Hx;
Hny(n3) = Hny(n3)+Hy;
count(n3) = count(n3)+1;
end
Hnx = Hnx./count;
Hny = Hny./count;
% Centroids [x,y]
pt = (p(t1,:)+p(t2,:)+p(t3,:))/3;
% Take unweighted average of the linear extrapolation from nodes to centroids
Ht = ( Hn(t1) + (pt(:,1)-p(t1,1)).*Hnx(t1) + (pt(:,2)-p(t1,2)).*Hny(t1) + ...
Hn(t2) + (pt(:,1)-p(t2,1)).*Hnx(t2) + (pt(:,2)-p(t2,2)).*Hny(t2) + ...
Hn(t3) + (pt(:,1)-p(t3,1)).*Hnx(t3) + (pt(:,2)-p(t3,2)).*Hny(t3) )/3;
% DEAL WITH CONTOURING LEVELS
if length(N)==1
lev = linspace(max(Ht),min(Ht),N+1);
num = N;
else
if (length(N)==2) && (N(1)==N(2))
lev = N(1);
num = 1;
else
lev = sort(N);
num = length(N);
lev = lev(num:-1:1);
end
end
% MAIN LOOP
c = [];
h = [];
in = false(numt,1);
vec = 1:numt;
old = in;
for v = 1:num % Loop over contouring levels
% Find centroid values >= current level
i = vec(Ht>=lev(v));
i = i(~old(i)); % Don't need to check triangles from higher levels
in(i) = true;
% Locate boundary edges in group
bnd = [i; i; i]; % Just to alloc
next = 1;
for k = 1:length(i)
ct = i(k);
count = 0;
for q = 1:3 % Loop through edges in ct
ce = eINt(ct,q);
if ~in(e2t(ce,1)) || ((e2t(ce,2)>0)&&~in(e2t(ce,2)))
bnd(next) = ce; % Found bnd edge
next = next+1;
else
count = count+1; % Count number of non-bnd edges in ct
end
end
if count==3 % If 3 non-bnd edges ct must be in middle of group
old(ct) = true; % & doesn't need to be checked for the next level
end
end
numb = next-1; bnd(next:end) = [];
% Skip to next lev if empty
if numb==0
continue
end
% Place nodes approximately on contours by interpolating across bnd
% edges
t1 = e2t(bnd,1);
t2 = e2t(bnd,2);
ok = t2>0;
% Get two points for interpolation. Always use t1 centroid and
% use t2 centroid for internal edges and bnd midpoint for boundary
% edges
% 1st point is always t1 centroid
H1 = Ht(t1); % Centroid value
p1 = ( p(el(t1,1),:)+p(el(t1,2),:)+p(el(t1,3),:) )/3; % Centroid [x,y]
% 2nd point is either t2 centroid or bnd edge midpoint
i1 = t2(ok); % Temp indexing
i2 = bnd(~ok);
H2 = H1;
H2(ok) = Ht(i1); % Centroid values internally
H2(~ok) = ( Hn(e(i2,1))+Hn(e(i2,2)) )/2; % Edge values at boundary
p2 = p1;
p2(ok,:) = ( p(el(i1,1),:)+p(el(i1,2),:)+p(el(i1,3),:) )/3; % Centroid [x,y] internally
p2(~ok,:) = ( p(e(i2,1),:)+p(e(i2,2),:) )/2; % Edge [x,y] at boundary
% Linear interpolation
r = (lev(v)-H1)./(H2-H1);
penew = p1 + [r,r].*(p2-p1);
% Do a temp connection between adjusted node & endpoint nodes in
% ce so that the connectivity between neighbouring adjusted nodes
% can be determined
vecb = (1:numb)';
m = 2*vecb-1;
c1 = 0*m;
c2 = 0*m;
c1(m) = e(bnd,1);
c1(m+1) = e(bnd,2);
c2(m) = vecb;
c2(m+1) = vecb;
% Sort connectivity to place connected edges in sucessive rows
[c1,i] = sort(c1); c2 = c2(i);
% Connect adjacent adjusted nodes
k = 1;
next = 1;
while k<(2*numb)
if c1(k)==c1(k+1)
c1(next) = c2(k);
c2(next) = c2(k+1);
next = next+1;
k = k+2; % Skip over connected edge
else
k = k+1; % Node has only 1 connection - will be picked up above
end
end
ncc = next-1;
c1(next:end) = [];
c2(next:end) = [];
% Plot the contours
% If an output is required, extra sorting of the
% contours is necessary for CLABEL to work.
if nargout>0
% Form connectivity for the contour, connecting
% its edges (rows in cc) with its vertices.
ndx = repmat(1,nume,1);
n2e = 0*penew;
for k = 1:ncc
% Vertices
n1 = c1(k); n2 = c2(k);
% Connectivity
n2e(n1,ndx(n1)) = k; ndx(n1) = ndx(n1)+1;
n2e(n2,ndx(n2)) = k; ndx(n2) = ndx(n2)+1;
end
bndn = n2e(:,2)==0; % Boundary nodes
bnde = bndn(c1)|bndn(c2); % Boundary edges
% Alloc some space
tmpv = repmat(0,1,ncc);
% Loop through the points at the current contour level (lev(v))
% Try to assemble the CS data structure introduced in "contours.m"
% so that clabel will work. Assemble CS by "walking" around each
% subcontour segment contiguously.
ce = 1;
start = ce;
next = 2;
cn = c2(1);
flag = false(ncc,1);
x = tmpv; x(1) = penew(c1(ce),1);
y = tmpv; y(1) = penew(c1(ce),2);
for k = 1:ncc
% Checked this edge
flag(ce) = true;
% Add vertices to patch data
x(next) = penew(cn,1);
y(next) = penew(cn,2);
next = next+1;
% Find edge (that is not ce) joined to cn
if ce==n2e(cn,1)
ce = n2e(cn,2);
else
ce = n2e(cn,1);
end
% Check the new edge
if (ce==0)||(ce==start)||(flag(ce))
% Plot current subcontour as a patch and save handles
x = x(1:next-1);
y = y(1:next-1);
z = repmat(lev(v),1,next);
h = [h; patch('Xdata',[x,NaN],'Ydata',[y,NaN],'Zdata',z, ...
'Cdata',z,'facecolor','none','edgecolor','flat')]; hold on
% Update the CS data structure as per "contours.m"
% so that clabel works
c = horzcat(c,[lev(v), x; next-1, y]);
if all(flag) % No more points at lev(v)
break
else % More points, but need to start a new subcontour
% Find the unflagged edges
edges = find(~flag);
ce = edges(1);
% Try to select a boundary edge so that we are
% not repeatedly running into the boundary
for i = 1:length(edges)
if bnde(edges(i))
ce = edges(i); break
end
end
% Reset counters
start = ce;
next = 2;
% Get the non bnd node in ce
if bndn(c2(ce))
cn = c1(ce);
% New patch vectors
x = tmpv; x(1) = penew(c2(ce),1);
y = tmpv; y(1) = penew(c2(ce),2);
else
cn = c2(ce);
% New patch vectors
x = tmpv; x(1) = penew(c1(ce),1);
y = tmpv; y(1) = penew(c1(ce),2);
end
end
else
% Find node (that is not cn) in ce
if cn==c1(ce)
cn = c2(ce);
else
cn = c1(ce);
end
end
end
else % Just plot the contours as is, this is faster...
z = repmat(lev(v),2,ncc);
z2=contourplotheight.*ones(size(z,1),size(z,2));
patch('Xdata',[penew(c1,1),penew(c2,1)]', ...
'Ydata',[penew(c1,2),penew(c2,2)]', ...
'Zdata',z2,'Cdata',z,'facecolor','none','edgecolor','flat','LineWidth',0.7);
hold on
end
end
% Assign outputs if needed
if nargout>0
cout = c;
hout = h;
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [e,eINt,e2t] = mkcon(p,t)
numt = size(t,1);
vect = 1:numt;
% DETERMINE UNIQUE EDGES IN MESH
e = [t(:,[1,2]); t(:,[2,3]); t(:,[3,1])]; % Edges - not unique
vec = (1:size(e,1))'; % List of edge numbers
[e,j,j] = unique(sort(e,2),'rows'); % Unique edges
vec = vec(j); % Unique edge numbers
eINt = [vec(vect), vec(vect+numt), vec(vect+2*numt)]; % Unique edges in each triangle
% DETERMINE EDGE TO TRIANGLE CONNECTIVITY
% Each row has two entries corresponding to the triangle numbers
% associated with each edge. Boundary edges have one entry = 0.
nume = size(e,1);
e2t = repmat(0,nume,2);
ndx = repmat(1,nume,1);
for k = 1:numt
% Edge in kth triangle
e1 = eINt(k,1); e2 = eINt(k,2); e3 = eINt(k,3);
% Edge 1
e2t(e1,ndx(e1)) = k; ndx(e1) = ndx(e1)+1;
% Edge 2
e2t(e2,ndx(e2)) = k; ndx(e2) = ndx(e2)+1;
% Edge 3
e2t(e3,ndx(e3)) = k; ndx(e3) = ndx(e3)+1;
end
return
|
github | janhavelka/Stochastic-Finite-Element-Method-master | position_figure.m | .m | Stochastic-Finite-Element-Method-master/functions/position_figure.m | 1,958 | utf_8 | f5af9ed0a926dc7aa2830616a6cd90aa | % Similar to subplot(), position_figure() divides the screen into rectangular
% panes to position figures in.
%
% Syntax:
% position_figure(no_rows, no_columns, fig_no)
%
% where
% 'no_rows' is the total number of figure-rows
% 'no_columns' is the total number of figure-columns
% 'fig_no' is the running number of the current figure
% (numbered row-wise)
%
% Example: position_figure(2, 3, 4) divides the screen into 6 rectangles that
% are arranged in 2 rows and 3 columns. The current figure is placed
% in the lower left corner of the screen.
%
% See also SUBPLOT.
%
% Copyright Christoph Feenders, 2012
function position_figure(no_rows, no_columns, fig_no)
% handle absurd parameters
assert(no_rows > 0, 'Number of rows "no_rows" must be a positive integer.')
assert(no_columns > 0, 'Number of colums "no_columns" must be a positive integer.')
% determine figure-position in terms of row and column
[col,row] = ind2sub([no_columns no_rows], mod(fig_no-1, no_rows*no_columns) + 1);
% calculate figure position and dimensions according to screen
scrsz = get(0, 'ScreenSize');
if strcmp(get(gcf, 'MenuBar'), 'figure')
pos = [ 1 + scrsz(3)*( col-1 )/no_columns ... % left
6 + scrsz(4)*(no_rows-row)/no_rows ... % bottom
scrsz(3)/no_columns - 1 ... % width
scrsz(4)/no_rows - 87 ]; % height
else % if plot-icons are switched off
pos = [ 1 + scrsz(3)*( col-1 )/no_columns ... % left
6 + scrsz(4)*(no_rows-row)/no_rows ... % bottom
scrsz(3)/no_columns - 1 ... % width
scrsz(4)/no_rows - 33 ]; % height
end
% reposition and resize current figure
set(gcf, 'Position', pos);
end
|
github | janhavelka/Stochastic-Finite-Element-Method-master | getStiffness.m | .m | Stochastic-Finite-Element-Method-master/functions/mesh_basics/getStiffness.m | 2,024 | utf_8 | 95c79401069289772f0168e518bb5393 |
function K=getStiffness(MESH,lambda)
% Jan Havelka ([email protected])
% Copyright 2016, Czech Technical University in Prague
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
if size(lambda,2)==1
% isotropic case
K=sparse(MESH.R_s,MESH.C_s,MESH.B_c.*lambda(:,ones(1,9))');
elseif size(lambda,2)==3
% anisotropic case
phi=lambda(:,3);
m1=lambda(:,1);
m2=lambda(:,2);
d1=cos(phi./180*pi).^2.*m1+sin(phi./180*pi).^2.*m2;
d2=sin(phi./180*pi).^2.*m1+cos(phi./180*pi).^2.*m2;
d3=cos(phi./180*pi).*sin(phi./180*pi).*m1-cos(phi./180*pi).*sin(phi./180*pi).*m2;
% k_1=MESH.B(1:3,:).*repmat(d1,1,3)'+MESH.B(4:6,:).*repmat(d3,1,3)';
% k_1=MESH.B(1:3,:).*d1(:,[1 1 1])'+MESH.B(4:6,:).*d3(:,[1 1 1])';
k_1=bsxfun(@times,d1',MESH.B(1:3,:))+bsxfun(@times,d3',MESH.B(4:6,:));
% k_2=MESH.B(1:3,:).*repmat(d3,1,3)'+MESH.B(4:6,:).*repmat(d2,1,3)';
% k_2=MESH.B(1:3,:).*d3(:,[1 1 1])'+MESH.B(4:6,:).*d2(:,[1 1 1])';
k_2=bsxfun(@times,d3',MESH.B(1:3,:))+bsxfun(@times,d2',MESH.B(4:6,:));
% val=k_1([1 2 3 1 2 3 1 2 3],:).*MESH.B([1 1 1 2 2 2 3 3 3],:)+k_2([1 2 3 1 2 3 1 2 3],:).*MESH.B([4 4 4 5 5 5 6 6 6],:);
val_dummy=k_1([1 1 1 2 2 3],:).*MESH.B([1 2 3 2 3 3],:)+k_2([1 1 1 2 2 3],:).*MESH.B([4 5 6 5 6 6],:);
val=val_dummy([1 2 3 2 4 5 3 5 6],:);
K=sparse(MESH.R_s,MESH.C_s,val);
end
|
github | janhavelka/Stochastic-Finite-Element-Method-master | nwspgr.m | .m | Stochastic-Finite-Element-Method-master/Stochastic-Collocation/functions/nwspgr.m | 55,365 | utf_8 | d201003f6a079cff4647bd2dda9defda | %*****************************************************************************
%nwSpGr: Nodes and weights for numerical integration on sparse grids (Smolyak)
%(c) 2007 Florian Heiss, Viktor Winschel
%Nov 11, 2007
%*****************************************************************************
%************************************************************************************
%nwspgr(): main function for generating nodes & weights for sparse grids intergration
%Syntax:
% [n w] = nwSpGr(type, dim, k, sym)
%Input:
% type = String for type of 1D integration rule:
% "KPU": Nested rule for unweighted integral over [0,1]
% "KPN": Nested rule for integral with Gaussian weight
% "GQU": Gaussian quadrature for unweighted integral over [0,1] (Gauss-Legendre)
% "GQN": Gaussian quadrature for integral with Gaussian weight (Gauss-Hermite)
% func: any function name. Function must accept level l and
% return nodes n and weights w for univariate quadrature rule with
% polynomial exactness 2l-1 as [n w] = feval(func,level)
% Example: If you have installed the CompEcon Toolbox of Paul Fackler and Mario Miranda
% (http://www4.ncsu.edu/~pfackler/compecon/toolbox.html)
% and you want to integrate with a lognormal weight function, you can use
% nwSpGr('qnwlogn', dim, k)
% dim : dimension of the integration problem
% k : Accuracy level. The rule will be exact for polynomial up to total order 2k-1
% sym : (optional) only used for own 1D quadrature rule (type not "KPU",...). If
% sym is supplied and not=0, the code will run faster but will
% produce incorrect results if 1D quadrature rule is asymmetric
%Output:
% n = matrix of nodes with dim columns
% w = row vector of corresponding weights
%*************************************************************************************
function [nodes, weights] = nwspgr(type, dim, k, sym)
% interpret inputs
if (nargin < 3); error('not enough input arguments')
end
builtinfct = (strcmp(type,'GQU') || strcmp(type,'GQN') || strcmp(type,'KPU') || strcmp(type,'KPN'));
if (nargin == 3)
if builtinfct; sym = true;
else sym = false;
end
else sym = logical(sym);
end
% get 1D nodes & weights
try
n1D = cell(k,1); w1D = cell(k,1); R1D = zeros(1,k);
for level=1:k
[n w] = feval(type,level);
% if user supplied symmetric 1D rule: keep only positive orthant
if ~builtinfct && sym
numnew = rows(n);
[n sortvec] = sortrows(n);
w = w(sortvec);
n = n((floor(numnew/2)+1):numnew,:);
w = w((floor(numnew/2)+1):numnew,:);
end
R1D(level) = length(w);
n1D{level} = n; w1D{level} = w;
end
catch error('Error evaluating the 1D rule');
end
% initialization
minq = max(0,k-dim);
maxq = k-1;
nodes = []; weights = [];
% outer loop over q
for q = minq:maxq
r = length(weights);
bq = (-1)^(maxq-q) * nchoosek(dim-1,dim+q-k);
% matrix of all rowvectors in N^D_{q}
is = SpGrGetSeq(dim,dim+q);
% preallocate new rows for nodes & weights
Rq = prod(R1D(is),2);
sRq = sum(Rq);
nodes = [nodes ; zeros(sRq,dim)];
weights = [weights ; zeros(sRq,1)];
% inner loop collecting product rules
for j=1:size(is,1)
midx = is(j,:);
[newn,neww] = SpGrKronProd(n1D(midx),w1D(midx));
nodes((r+1):(r+Rq(j)),:) = newn;
weights((r+1):(r+Rq(j))) = bq .* neww;
r = r + Rq(j);
end
% collect equal nodes: first sort
[nodes sortvec] = sortrows(nodes);
weights = weights(sortvec);
keep = 1;
lastkeep = 1;
% then make a list of rows to keep and sum weights of equal nodes
for j=2:size(nodes,1)
if nodes(j,:)==nodes(j-1,:)
weights(lastkeep)=weights(lastkeep)+weights(j);
else
lastkeep = j;
keep = [keep ; j ];
end
end
% drop equal rows
nodes = nodes(keep,:);
weights = weights(keep);
end
% If symmetric rule: so far, it's for the positive orthant. Copy to other
% orthants!
if sym
nr = length(weights);
m = n1D{1};
for j=1:dim
keep = zeros(nr,1);
numnew = 0;
for r=1:nr
if nodes(r,j) ~= m
numnew=numnew+1;
keep(numnew)=r;
end
end
if numnew>0
nodes = [nodes ; nodes(keep(1:numnew),:)];
nodes(nr+1:nr+numnew,j) = 2*m - nodes(nr+1:nr+numnew,j);
weights = [weights ; weights(keep(1:numnew))];
nr=nr+numnew;
end
end
% 3. final sorting
[nodes sortvec] = sortrows(nodes);
weights = weights(sortvec);
end
% normalize weights to account for rounding errors
weights = weights / sum(weights);
end
%**************************************************************************************
%SpGrGetSeq(): function for generating matrix of all rowvectors in N^D_{norm}
%Syntax:
% out = nwSpGr(d,norm)
%Input:
% d = dimension, will be #columns in output
% norm = row sum of elements each of the rows has to have
%Output:
% out = matrix with d columns. Each row represents one vector with all elements >=1
% and the sum of elements == norm
%**************************************************************************************
function fs = SpGrGetSeq(d, norm)
seq = zeros(1,d);
a=norm-d;
seq(1)=a;
fs = seq;
c=1;
while seq(d)<a
if (c==d)
for i=(c-1):-1:1
c=i;
if seq(i)~=0, break, end;
end
end
seq(c) = seq(c)-1;
c=c+1;
seq(c) = a - sum(seq(1:(c-1)));
if (c<d)
seq((c+1):d)=zeros(1,d-c);
end
fs = [fs;seq];
end
fs = fs+1;
end
%************************************************************************************
%SpGrKronProd(): function for generating tensor product quadrature rule
%Syntax:
% [nodes,weights] = SpGrKronProd(n1d,w1D)
%Input:
% n1D = cell array of 1D nodes
% w1D = cell array of 1D weights
%Output:
% nodes = matrix of tensor product nodes
% weights = vector of tensor product weights
%*************************************************************************************
function [nodes,weights] = SpGrKronProd(n1D,w1D)
nodes = n1D{1} ; weights = w1D{1};
for j=2:length(n1D)
newnodes = n1D{j};
nodes = [kron(nodes,ones(size(newnodes,1),1)) kron(ones(size(nodes,1),1),newnodes)];
weights = kron(weights,w1D{j});
end
end
function [n w] = GQU(l)
switch l
case 1
n = [5.0000000000000000e-001];
w = [1.0000000000000000e+000];
case 2
n = [7.8867513459481287e-001];
w = [5.0000000000000000e-001];
case 3
n = [5.0000000000000000e-001; 8.8729833462074170e-001];
w = [4.4444444444444570e-001; 2.7777777777777712e-001];
case 4
n = [6.6999052179242813e-001; 9.3056815579702623e-001];
w = [3.2607257743127516e-001; 1.7392742256872484e-001];
case 5
n = [5.0000000000000000e-001; 7.6923465505284150e-001; 9.5308992296933193e-001];
w = [2.8444444444444655e-001; 2.3931433524968501e-001; 1.1846344252809174e-001];
case 6
n = [6.1930959304159849e-001; 8.3060469323313235e-001; 9.6623475710157603e-001];
w = [2.3395696728634746e-001; 1.8038078652407072e-001; 8.5662246189581834e-002];
case 7
n = [5.0000000000000000e-001; 7.0292257568869854e-001; 8.7076559279969723e-001; 9.7455395617137919e-001];
w = [2.0897959183673620e-001; 1.9091502525256090e-001; 1.3985269574463935e-001; 6.4742483084431701e-002];
case 8
n = [5.9171732124782495e-001; 7.6276620495816450e-001; 8.9833323870681348e-001; 9.8014492824876809e-001];
w = [1.8134189168918213e-001; 1.5685332293894469e-001; 1.1119051722668793e-001; 5.0614268145185180e-002];
case 9
n = [5.0000000000000000e-001; 6.6212671170190451e-001; 8.0668571635029518e-001; 9.1801555366331788e-001; 9.8408011975381304e-001];
w = [1.6511967750063075e-001; 1.5617353852000226e-001; 1.3030534820146844e-001; 9.0324080347429253e-002; 4.0637194180784583e-002];
case 10
n = [5.7443716949081558e-001; 7.1669769706462361e-001; 8.3970478414951222e-001; 9.3253168334449232e-001; 9.8695326425858587e-001];
w = [1.4776211235737713e-001; 1.3463335965499873e-001; 1.0954318125799158e-001; 7.4725674575290599e-002; 3.3335672154342001e-002];
case 11
n = [5.0000000000000000e-001; 6.3477157797617245e-001; 7.5954806460340585e-001; 8.6507600278702468e-001; 9.4353129988404771e-001; 9.8911432907302843e-001];
w = [1.3646254338895086e-001; 1.3140227225512388e-001; 1.1659688229599563e-001; 9.3145105463867520e-002; 6.2790184732452625e-002; 2.7834283558084916e-002];
case 12
n = [5.6261670425573451e-001; 6.8391574949909006e-001; 7.9365897714330869e-001; 8.8495133709715235e-001; 9.5205862818523745e-001; 9.9078031712335957e-001];
w = [1.2457352290670189e-001; 1.1674626826917781e-001; 1.0158371336153328e-001; 8.0039164271673444e-002; 5.3469662997659276e-002; 2.3587668193254314e-002];
case 13
n = [5.0000000000000000e-001; 6.1522915797756739e-001; 7.2424637551822335e-001; 8.2117466972017006e-001; 9.0078904536665494e-001; 9.5879919961148907e-001; 9.9209152735929407e-001];
w = [1.1627577661543741e-001; 1.1314159013144903e-001; 1.0390802376844462e-001; 8.9072990380973202e-002; 6.9436755109893875e-002; 4.6060749918864378e-002; 2.0242002382656228e-002];
case 14
n = [5.5402747435367183e-001; 6.5955618446394482e-001; 7.5762431817907705e-001; 8.4364645240584268e-001; 9.1360065753488251e-001; 9.6421744183178681e-001; 9.9314190434840621e-001];
w = [1.0763192673157916e-001; 1.0259923186064811e-001; 9.2769198738969161e-002; 7.8601583579096995e-002; 6.0759285343951711e-002; 4.0079043579880291e-002; 1.7559730165874574e-002];
case 15
n = [5.0000000000000000e-001; 6.0059704699871730e-001; 6.9707567353878175e-001; 7.8548608630426942e-001; 8.6220886568008503e-001; 9.2410329170521366e-001; 9.6863669620035298e-001; 9.9399625901024269e-001];
w = [1.0128912096278091e-001; 9.9215742663556039e-002; 9.3080500007781286e-002; 8.3134602908497196e-002; 6.9785338963077315e-002; 5.3579610233586157e-002; 3.5183023744054159e-002; 1.5376620998057434e-002];
case 16
n = [5.4750625491881877e-001; 6.4080177538962946e-001; 7.2900838882861363e-001; 8.0893812220132189e-001; 8.7770220417750155e-001; 9.3281560119391593e-001; 9.7228751153661630e-001; 9.9470046749582497e-001];
w = [9.4725305227534431e-002; 9.1301707522462000e-002; 8.4578259697501462e-002; 7.4797994408288562e-002; 6.2314485627767105e-002; 4.7579255841246545e-002; 3.1126761969323954e-002; 1.3576229705875955e-002];
case 17
n = [5.0000000000000000e-001; 5.8924209074792389e-001; 6.7561588172693821e-001; 7.5634526854323847e-001; 8.2883557960834531e-001; 8.9075700194840068e-001; 9.4011957686349290e-001; 9.7533776088438384e-001; 9.9528773765720868e-001];
w = [8.9723235178103419e-002; 8.8281352683496447e-002; 8.4002051078225143e-002; 7.7022880538405308e-002; 6.7568184234262890e-002; 5.5941923596702053e-002; 4.2518074158589644e-002; 2.7729764686993612e-002; 1.2074151434273140e-002];
case 18
n = [5.4238750652086765e-001; 6.2594311284575277e-001; 7.0587558073142131e-001; 7.7988541553697377e-001; 8.4584352153017661e-001; 9.0185247948626157e-001; 9.4630123324877791e-001; 9.7791197478569880e-001; 9.9578258421046550e-001];
w = [8.4571191481571939e-002; 8.2138241872916504e-002; 7.7342337563132801e-002; 7.0321457335325452e-002; 6.1277603355739306e-002; 5.0471022053143716e-002; 3.8212865127444665e-002; 2.4857274447484968e-002; 1.0808006763240719e-002];
case 19
n = [5.0000000000000000e-001; 5.8017932282011264e-001; 6.5828204998181494e-001; 7.3228537068798050e-001; 8.0027265233084055e-001; 8.6048308866761469e-001; 9.1135732826857141e-001; 9.5157795180740901e-001; 9.8010407606741501e-001; 9.9620342192179212e-001];
w = [8.0527224924391946e-002; 7.9484421696977337e-002; 7.6383021032929960e-002; 7.1303351086803413e-002; 6.4376981269668232e-002; 5.5783322773667113e-002; 4.5745010811225124e-002; 3.4522271368820669e-002; 2.2407113382849821e-002; 9.7308941148624341e-003];
case 20
n = [5.3826326056674867e-001; 6.1389292557082253e-001; 6.8685304435770977e-001; 7.5543350097541362e-001; 8.1802684036325757e-001; 8.7316595323007540e-001; 9.1955848591110945e-001; 9.5611721412566297e-001; 9.8198596363895696e-001; 9.9656429959254744e-001];
w = [7.6376693565363113e-002; 7.4586493236301996e-002; 7.1048054659191187e-002; 6.5844319224588346e-002; 5.9097265980759248e-002; 5.0965059908620318e-002; 4.1638370788352433e-002; 3.1336024167054569e-002; 2.0300714900193556e-002; 8.8070035695753026e-003];
case 21
n = [5.0000000000000000e-001; 5.7278092708044759e-001; 6.4401065840120053e-001; 7.1217106010371944e-001; 7.7580941794360991e-001; 8.3356940209870611e-001; 8.8421998173783889e-001; 9.2668168229165859e-001; 9.6004966707520034e-001; 9.8361341928315316e-001; 9.9687608531019478e-001];
w = [7.3040566824845346e-002; 7.2262201994985134e-002; 6.9943697395536658e-002; 6.6134469316668845e-002; 6.0915708026864350e-002; 5.4398649583574356e-002; 4.6722211728016994e-002; 3.8050056814189707e-002; 2.8567212713428641e-002; 1.8476894885426285e-002; 8.0086141288864491e-003];
case 22
n = [5.3486963665986109e-001; 6.0393021334411068e-001; 6.7096791044604209e-001; 7.3467791899337853e-001; 7.9382020175345580e-001; 8.4724363159334137e-001; 8.9390840298960406e-001; 9.3290628886015003e-001; 9.6347838609358694e-001; 9.8503024891771429e-001; 9.9714729274119962e-001];
w = [6.9625936427816129e-002; 6.8270749173007697e-002; 6.5586752393531317e-002; 6.1626188405256251e-002; 5.6466148040269712e-002; 5.0207072221440600e-002; 4.2970803108533975e-002; 3.4898234212260300e-002; 2.6146667576341692e-002; 1.6887450792407110e-002; 7.3139976491353280e-003];
case 23
n = [5.0000000000000000e-001; 5.6662841214923310e-001; 6.3206784048517251e-001; 6.9515051901514546e-001; 7.5475073892300371e-001; 8.0980493788182306e-001; 8.5933068156597514e-001; 9.0244420080942001e-001; 9.3837617913522076e-001; 9.6648554341300807e-001; 9.8627123560905761e-001; 9.9738466749877608e-001];
w = [6.6827286093053176e-002; 6.6231019702348404e-002; 6.4452861094041150e-002; 6.1524542153364815e-002; 5.7498320111205814e-002; 5.2446045732270824e-002; 4.6457883030017563e-002; 3.9640705888359551e-002; 3.2116210704262994e-002; 2.4018835865542369e-002; 1.5494002928489686e-002; 6.7059297435702412e-003];
case 24
n = [5.3202844643130276e-001; 5.9555943373680820e-001; 6.5752133984808170e-001; 7.1689675381302254e-001; 7.7271073569441984e-001; 8.2404682596848777e-001; 8.7006209578927718e-001; 9.1000099298695147e-001; 9.4320776350220048e-001; 9.6913727600136634e-001; 9.8736427798565474e-001; 9.9759360999851066e-001];
w = [6.3969097673376246e-002; 6.2918728173414318e-002; 6.0835236463901793e-002; 5.7752834026862883e-002; 5.3722135057982914e-002; 4.8809326052057039e-002; 4.3095080765976693e-002; 3.6673240705540205e-002; 2.9649292457718385e-002; 2.2138719408709880e-002; 1.4265694314466934e-002; 6.1706148999928351e-003];
case 25
n = [5.0000000000000000e-001; 5.6143234630535521e-001; 6.2193344186049426e-001; 6.8058615290469393e-001; 7.3650136572285752e-001; 7.8883146512061142e-001; 8.3678318423673415e-001; 8.7962963151867890e-001; 9.1672131438041693e-001; 9.4749599893913761e-001; 9.7148728561448716e-001; 9.8833196072975871e-001; 9.9777848489524912e-001];
w = [6.1588026863357799e-002; 6.1121221495155122e-002; 5.9727881767892461e-002; 5.7429129572855862e-002; 5.4259812237131867e-002; 5.0267974533525363e-002; 4.5514130991481903e-002; 4.0070350167500532e-002; 3.4019166906178545e-002; 2.7452347987917691e-002; 2.0469578350653148e-002; 1.3177493307516108e-002; 5.6968992505125535e-003];
end
end
function [n w] = GQN(l)
switch l
case 1
n = [0.0000000000000000e+000];
w = [1.0000000000000000e+000];
case 2
n = [1.0000000000000002e+000];
w = [5.0000000000000000e-001];
case 3
n = [0.0000000000000000e+000; 1.7320508075688772e+000];
w = [6.6666666666666663e-001; 1.6666666666666674e-001];
case 4
n = [7.4196378430272591e-001; 2.3344142183389773e+000];
w = [4.5412414523193145e-001; 4.5875854768068498e-002];
case 5
n = [0.0000000000000000e+000; 1.3556261799742659e+000; 2.8569700138728056e+000];
w = [5.3333333333333344e-001; 2.2207592200561263e-001; 1.1257411327720691e-002];
case 6
n = [6.1670659019259422e-001; 1.8891758777537109e+000; 3.3242574335521193e+000];
w = [4.0882846955602919e-001; 8.8615746041914523e-002; 2.5557844020562431e-003];
case 7
n = [0.0000000000000000e+000; 1.1544053947399682e+000; 2.3667594107345415e+000; 3.7504397177257425e+000];
w = [4.5714285714285757e-001; 2.4012317860501250e-001; 3.0757123967586491e-002; 5.4826885597221875e-004];
case 8
n = [5.3907981135137517e-001; 1.6365190424351082e+000; 2.8024858612875416e+000; 4.1445471861258945e+000];
w = [3.7301225767907736e-001; 1.1723990766175897e-001; 9.6352201207882630e-003; 1.1261453837536784e-004];
case 9
n = [0.0000000000000000e+000; 1.0232556637891326e+000; 2.0768479786778302e+000; 3.2054290028564703e+000; 4.5127458633997826e+000];
w = [4.0634920634920685e-001; 2.4409750289493909e-001; 4.9916406765217969e-002; 2.7891413212317675e-003; 2.2345844007746563e-005];
case 10
n = [4.8493570751549764e-001; 1.4659890943911582e+000; 2.4843258416389546e+000; 3.5818234835519269e+000; 4.8594628283323127e+000];
w = [3.4464233493201940e-001; 1.3548370298026730e-001; 1.9111580500770317e-002; 7.5807093431221972e-004; 4.3106526307183106e-006];
case 11
n = [0.0000000000000000e+000; 9.2886899738106388e-001; 1.8760350201548459e+000; 2.8651231606436447e+000; 3.9361666071299775e+000; 5.1880012243748714e+000];
w = [3.6940836940836957e-001; 2.4224029987397003e-001; 6.6138746071057644e-002; 6.7202852355372697e-003; 1.9567193027122324e-004; 8.1218497902149036e-007];
case 12
n = [4.4440300194413901e-001; 1.3403751971516167e+000; 2.2594644510007993e+000; 3.2237098287700974e+000; 4.2718258479322815e+000; 5.5009017044677480e+000];
w = [3.2166436151283007e-001; 1.4696704804532995e-001; 2.9116687912364138e-002; 2.2033806875331849e-003; 4.8371849225906076e-005; 1.4999271676371597e-007];
case 13
n = [0.0000000000000000e+000; 8.5667949351945005e-001; 1.7254183795882394e+000; 2.6206899734322149e+000; 3.5634443802816347e+000; 4.5913984489365207e+000; 5.8001672523865011e+000];
w = [3.4099234099234149e-001; 2.3787152296413588e-001; 7.9168955860450141e-002; 1.1770560505996543e-002; 6.8123635044292619e-004; 1.1526596527333885e-005; 2.7226276428059039e-008];
case 14
n = [4.1259045795460181e-001; 1.2426889554854643e+000; 2.0883447457019444e+000; 2.9630365798386675e+000; 3.8869245750597696e+000; 4.8969363973455646e+000; 6.0874095469012914e+000];
w = [3.0263462681301945e-001; 1.5408333984251366e-001; 3.8650108824253432e-002; 4.4289191069474066e-003; 2.0033955376074381e-004; 2.6609913440676334e-006; 4.8681612577483872e-009];
case 15
n = [0.0000000000000000e+000; 7.9912906832454811e-001; 1.6067100690287301e+000; 2.4324368270097581e+000; 3.2890824243987664e+000; 4.1962077112690155e+000; 5.1900935913047821e+000; 6.3639478888298378e+000];
w = [3.1825951825951820e-001; 2.3246229360973222e-001; 8.9417795399844444e-002; 1.7365774492137616e-002; 1.5673575035499571e-003; 5.6421464051890157e-005; 5.9754195979205961e-007; 8.5896498996331805e-010];
case 16
n = [3.8676060450055738e-001; 1.1638291005549648e+000; 1.9519803457163336e+000; 2.7602450476307019e+000; 3.6008736241715487e+000; 4.4929553025200120e+000; 5.4722257059493433e+000; 6.6308781983931295e+000];
w = [2.8656852123801241e-001; 1.5833837275094925e-001; 4.7284752354014067e-002; 7.2669376011847411e-003; 5.2598492657390979e-004; 1.5300032162487286e-005; 1.3094732162868203e-007; 1.4978147231618314e-010];
case 17
n = [0.0000000000000000e+000; 7.5184260070389630e-001; 1.5098833077967408e+000; 2.2810194402529889e+000; 3.0737971753281941e+000; 3.9000657171980104e+000; 4.7785315896299840e+000; 5.7444600786594071e+000; 6.8891224398953330e+000];
w = [2.9953837012660756e-001; 2.2670630846897877e-001; 9.7406371162718081e-002; 2.3086657025711152e-002; 2.8589460622846499e-003; 1.6849143155133945e-004; 4.0126794479798725e-006; 2.8080161179305783e-008; 2.5843149193749151e-011];
case 18
n = [3.6524575550769767e-001; 1.0983955180915013e+000; 1.8397799215086457e+000; 2.5958336889112403e+000; 3.3747365357780907e+000; 4.1880202316294044e+000; 5.0540726854427405e+000; 6.0077459113595975e+000; 7.1394648491464796e+000];
w = [2.7278323465428789e-001; 1.6068530389351263e-001; 5.4896632480222654e-002; 1.0516517751941352e-002; 1.0654847962916496e-003; 5.1798961441161962e-005; 1.0215523976369816e-006; 5.9054884788365484e-009; 4.4165887693587078e-012];
case 19
n = [0.0000000000000000e+000; 7.1208504404237993e-001; 1.4288766760783731e+000; 2.1555027613169351e+000; 2.8980512765157536e+000; 3.6644165474506383e+000; 4.4658726268310316e+000; 5.3205363773360386e+000; 6.2628911565132519e+000; 7.3825790240304316e+000];
w = [2.8377319275152108e-001; 2.2094171219914366e-001; 1.0360365727614400e-001; 2.8666691030118496e-002; 4.5072354203420355e-003; 3.7850210941426759e-004; 1.5351145954666744e-005; 2.5322200320928681e-007; 1.2203708484474786e-009; 7.4828300540572308e-013];
case 20
n = [3.4696415708135592e-001; 1.0429453488027509e+000; 1.7452473208141270e+000; 2.4586636111723679e+000; 3.1890148165533900e+000; 3.9439673506573163e+000; 4.7345813340460552e+000; 5.5787388058932015e+000; 6.5105901570136551e+000; 7.6190485416797591e+000];
w = [2.6079306344955544e-001; 1.6173933398400026e-001; 6.1506372063976029e-002; 1.3997837447101043e-002; 1.8301031310804918e-003; 1.2882627996192898e-004; 4.4021210902308646e-006; 6.1274902599829597e-008; 2.4820623623151838e-010; 1.2578006724379305e-013];
case 21
n = [0.0000000000000000e+000; 6.7804569244064405e-001; 1.3597658232112304e+000; 2.0491024682571628e+000; 2.7505929810523733e+000; 3.4698466904753764e+000; 4.2143439816884216e+000; 4.9949639447820253e+000; 5.8293820073044706e+000; 6.7514447187174609e+000; 7.8493828951138225e+000];
w = [2.7026018357287707e-001; 2.1533371569505982e-001; 1.0839228562641938e-001; 3.3952729786542839e-002; 6.4396970514087768e-003; 7.0804779548153736e-004; 4.2192347425515866e-005; 1.2253548361482522e-006; 1.4506612844930740e-008; 4.9753686041217464e-011; 2.0989912195656652e-014];
case 22
n = [3.3117931571527381e-001; 9.9516242227121554e-001; 1.6641248391179071e+000; 2.3417599962877080e+000; 3.0324042278316763e+000; 3.7414963502665177e+000; 4.4763619773108685e+000; 5.2477244337144251e+000; 6.0730749511228979e+000; 6.9859804240188152e+000; 8.0740299840217116e+000];
w = [2.5024359658693501e-001; 1.6190629341367538e-001; 6.7196311428889891e-002; 1.7569072880805774e-002; 2.8087610475772107e-003; 2.6228330325596416e-004; 1.3345977126808712e-005; 3.3198537498140043e-007; 3.3665141594582109e-009; 9.8413789823460105e-012; 3.4794606478771428e-015];
case 23
n = [0.0000000000000000e+000; 6.4847115353449580e-001; 1.2998764683039790e+000; 1.9573275529334242e+000; 2.6243236340591820e+000; 3.3050400217529652e+000; 4.0047753217333044e+000; 4.7307241974514733e+000; 5.4934739864717947e+000; 6.3103498544483996e+000; 7.2146594350518622e+000; 8.2933860274173536e+000];
w = [2.5850974080883904e-001; 2.0995966957754261e-001; 1.1207338260262091e-001; 3.8867183703480947e-002; 8.5796783914656640e-003; 1.1676286374978613e-003; 9.3408186090312983e-005; 4.0899772449921549e-006; 8.7750624838617161e-008; 7.6708888623999076e-010; 1.9229353115677913e-012; 5.7323831678020873e-016];
case 24
n = [3.1737009662945231e-001; 9.5342192293210926e-001; 1.5934804298164202e+000; 2.2404678516917524e+000; 2.8977286432233140e+000; 3.5693067640735610e+000; 4.2603836050199053e+000; 4.9780413746391208e+000; 5.7327471752512009e+000; 6.5416750050986341e+000; 7.4378906660216630e+000; 8.5078035191952583e+000];
w = [2.4087011554664056e-001; 1.6145951286700025e-001; 7.2069364017178436e-002; 2.1126344408967029e-002; 3.9766089291813113e-003; 4.6471871877939763e-004; 3.2095005652745989e-005; 1.2176597454425830e-006; 2.2674616734804651e-008; 1.7186649279648690e-010; 3.7149741527624159e-013; 9.3901936890419202e-017];
case 25
n = [0.0000000000000000e+000; 6.2246227918607611e-001; 1.2473119756167892e+000; 1.8770583699478387e+000; 2.5144733039522058e+000; 3.1627756793881927e+000; 3.8259005699724917e+000; 4.5089299229672850e+000; 5.2188480936442794e+000; 5.9660146906067020e+000; 6.7674649638097168e+000; 7.6560379553930762e+000; 8.7175976783995885e+000];
w = [2.4816935117648548e-001; 2.0485102565034041e-001; 1.1488092430395164e-001; 4.3379970167644971e-002; 1.0856755991462316e-002; 1.7578504052637961e-003; 1.7776690692652660e-004; 1.0672194905202536e-005; 3.5301525602454978e-007; 5.7380238688993763e-009; 3.7911500004771871e-011; 7.1021030370039253e-014; 1.5300389979986825e-017];
end
end
function [n w] = KPU(l)
switch l
case 1
n = [5.0000000000000000e-001];
w = [1.0000000000000000e+000];
case 2
n = [5.0000000000000000e-001; 8.8729829999999998e-001];
w = [4.4444440000000002e-001; 2.7777780000000002e-001];
case 3
n = [5.0000000000000000e-001; 8.8729829999999998e-001];
w = [4.4444440000000002e-001; 2.7777780000000002e-001];
case 4
n = [5.0000000000000000e-001; 7.1712189999999998e-001; 8.8729829999999998e-001; 9.8024560000000005e-001];
w = [2.2545832254583223e-001; 2.0069872006987199e-001; 1.3424401342440134e-001; 5.2328105232810521e-002];
case 5
n = [5.0000000000000000e-001; 7.1712189999999998e-001; 8.8729829999999998e-001; 9.8024560000000005e-001];
w = [2.2545832254583223e-001; 2.0069872006987199e-001; 1.3424401342440134e-001; 5.2328105232810521e-002];
case 6
n = [5.0000000000000000e-001; 7.1712189999999998e-001; 8.8729829999999998e-001; 9.8024560000000005e-001];
w = [2.2545832254583223e-001; 2.0069872006987199e-001; 1.3424401342440134e-001; 5.2328105232810521e-002];
case 7
n = [5.0000000000000000e-001; 6.1169330000000000e-001; 7.1712189999999998e-001; 8.1055149999999998e-001; 8.8729829999999998e-001; 9.4422960000000000e-001; 9.8024560000000005e-001; 9.9691600000000002e-001];
w = [1.1275520000000000e-001; 1.0957840000000001e-001; 1.0031430000000000e-001; 8.5755999999999999e-002; 6.7207600000000006e-002; 4.6463600000000001e-002; 2.5801600000000001e-002; 8.5009000000000005e-003];
case 8
n = [5.0000000000000000e-001; 6.1169330000000000e-001; 7.1712189999999998e-001; 8.1055149999999998e-001; 8.8729829999999998e-001; 9.4422960000000000e-001; 9.8024560000000005e-001; 9.9691600000000002e-001];
w = [1.1275520000000000e-001; 1.0957840000000001e-001; 1.0031430000000000e-001; 8.5755999999999999e-002; 6.7207600000000006e-002; 4.6463600000000001e-002; 2.5801600000000001e-002; 8.5009000000000005e-003];
case 9
n = [5.0000000000000000e-001; 6.1169330000000000e-001; 7.1712189999999998e-001; 8.1055149999999998e-001; 8.8729829999999998e-001; 9.4422960000000000e-001; 9.8024560000000005e-001; 9.9691600000000002e-001];
w = [1.1275520000000000e-001; 1.0957840000000001e-001; 1.0031430000000000e-001; 8.5755999999999999e-002; 6.7207600000000006e-002; 4.6463600000000001e-002; 2.5801600000000001e-002; 8.5009000000000005e-003];
case 10
n = [5.0000000000000000e-001; 6.1169330000000000e-001; 7.1712189999999998e-001; 8.1055149999999998e-001; 8.8729829999999998e-001; 9.4422960000000000e-001; 9.8024560000000005e-001; 9.9691600000000002e-001];
w = [1.1275520000000000e-001; 1.0957840000000001e-001; 1.0031430000000000e-001; 8.5755999999999999e-002; 6.7207600000000006e-002; 4.6463600000000001e-002; 2.5801600000000001e-002; 8.5009000000000005e-003];
case 11
n = [5.0000000000000000e-001; 6.1169330000000000e-001; 7.1712189999999998e-001; 8.1055149999999998e-001; 8.8729829999999998e-001; 9.4422960000000000e-001; 9.8024560000000005e-001; 9.9691600000000002e-001];
w = [1.1275520000000000e-001; 1.0957840000000001e-001; 1.0031430000000000e-001; 8.5755999999999999e-002; 6.7207600000000006e-002; 4.6463600000000001e-002; 2.5801600000000001e-002; 8.5009000000000005e-003];
case 12
n = [5.0000000000000000e-001; 6.1169330000000000e-001; 7.1712189999999998e-001; 8.1055149999999998e-001; 8.8729829999999998e-001; 9.4422960000000000e-001; 9.8024560000000005e-001; 9.9691600000000002e-001];
w = [1.1275520000000000e-001; 1.0957840000000001e-001; 1.0031430000000000e-001; 8.5755999999999999e-002; 6.7207600000000006e-002; 4.6463600000000001e-002; 2.5801600000000001e-002; 8.5009000000000005e-003];
case 13
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 14
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 15
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 16
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 17
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 18
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 19
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 20
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 21
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 22
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 23
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 24
n = [5.0000000000000000e-001; 5.5624450000000003e-001; 6.1169330000000000e-001; 6.6556769999999998e-001; 7.1712189999999998e-001; 7.6565989999999995e-001; 8.1055149999999998e-001; 8.5124809999999995e-001; 8.8729829999999998e-001; 9.1836300000000004e-001; 9.4422960000000000e-001; 9.6482740000000000e-001; 9.8024560000000005e-001; 9.9076560000000002e-001; 9.9691600000000002e-001; 9.9954909999999997e-001];
w = [5.6377600000000014e-002; 5.5978400000000011e-002; 5.4789200000000017e-002; 5.2834900000000011e-002; 5.0157100000000017e-002; 4.6813600000000004e-002; 4.2878000000000006e-002; 3.8439800000000010e-002; 3.3603900000000006e-002; 2.8489800000000006e-002; 2.3231400000000003e-002; 1.7978600000000004e-002; 1.2903800000000003e-002; 8.2230000000000011e-003; 4.2173000000000011e-003; 1.2724000000000001e-003];
case 25
n = [5.0000000000000000e-001; 5.2817210000000003e-001; 5.5624450000000003e-001; 5.8411769999999996e-001; 6.1169330000000000e-001; 6.3887490000000002e-001; 6.6556769999999998e-001; 6.9167970000000001e-001; 7.1712189999999998e-001; 7.4180900000000005e-001; 7.6565989999999995e-001; 7.8859789999999996e-001; 8.1055149999999998e-001; 8.3145480000000005e-001; 8.5124809999999995e-001; 8.6987800000000004e-001; 8.8729829999999998e-001; 9.0347029999999995e-001; 9.1836300000000004e-001; 9.3195399999999995e-001; 9.4422960000000000e-001; 9.5518559999999997e-001; 9.6482740000000000e-001; 9.7317140000000002e-001; 9.8024560000000005e-001; 9.8609139999999995e-001; 9.9076560000000002e-001; 9.9434239999999996e-001; 9.9691600000000002e-001; 9.9860309999999997e-001; 9.9954909999999997e-001; 9.9993650000000001e-001];
w = [2.8188799999999993e-002; 2.8138799999999992e-002; 2.7989199999999992e-002; 2.7740699999999993e-002; 2.7394599999999995e-002; 2.6952699999999993e-002; 2.6417499999999993e-002; 2.5791599999999994e-002; 2.5078599999999993e-002; 2.4282199999999993e-002; 2.3406799999999995e-002; 2.2457299999999996e-002; 2.1438999999999996e-002; 2.0357799999999995e-002; 1.9219899999999998e-002; 1.8032199999999998e-002; 1.6801899999999998e-002; 1.5536799999999996e-002; 1.4244899999999996e-002; 1.2934799999999996e-002; 1.1615699999999998e-002; 1.0297099999999998e-002; 8.9892999999999987e-003; 7.7033999999999983e-003; 6.4518999999999983e-003; 5.2490999999999987e-003; 4.1114999999999988e-003; 3.0577999999999990e-003; 2.1087999999999997e-003; 1.2894999999999998e-003; 6.3259999999999987e-004; 1.8159999999999997e-004];
end
end
function [n w] = KPN(l)
switch l
case 1
n = [0.0000000000000000e+000];
w = [1.0000000000000000e+000];
case 2
n = [0.0000000000000000e+000; 1.7320508075688772e+000];
w = [6.6666666666666663e-001; 1.6666666666666666e-001];
case 3
n = [0.0000000000000000e+000; 1.7320508075688772e+000];
w = [6.6666666666666674e-001; 1.6666666666666666e-001];
case 4
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.7320508075688772e+000; 4.1849560176727323e+000];
w = [4.5874486825749189e-001; 1.3137860698313561e-001; 1.3855327472974924e-001; 6.9568415836913987e-004];
case 5
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.7320508075688772e+000; 2.8612795760570582e+000; 4.1849560176727323e+000];
w = [2.5396825396825407e-001; 2.7007432957793776e-001; 9.4850948509485125e-002; 7.9963254708935293e-003; 9.4269457556517470e-005];
case 6
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.7320508075688772e+000; 2.8612795760570582e+000; 4.1849560176727323e+000];
w = [2.5396825396825429e-001; 2.7007432957793776e-001; 9.4850948509485070e-002; 7.9963254708935293e-003; 9.4269457556517551e-005];
case 7
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.7320508075688772e+000; 2.8612795760570582e+000; 4.1849560176727323e+000];
w = [2.5396825396825418e-001; 2.7007432957793781e-001; 9.4850948509485014e-002; 7.9963254708935311e-003; 9.4269457556517592e-005];
case 8
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.7320508075688772e+000; 2.8612795760570582e+000; 4.1849560176727323e+000];
w = [2.5396825396825418e-001; 2.7007432957793781e-001; 9.4850948509485042e-002; 7.9963254708935276e-003; 9.4269457556517375e-005];
case 9
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [2.6692223033505302e-001; 2.5456123204171222e-001; 1.4192654826449365e-002; 8.8681002152028010e-002; 1.9656770938777492e-003; 7.0334802378279075e-003; 1.0563783615416941e-004; -8.2049207541509217e-007; 2.1136499505424257e-008];
case 10
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [3.0346719985420623e-001; 2.0832499164960877e-001; 6.1151730125247716e-002; 6.4096054686807610e-002; 1.8085234254798462e-002; -6.3372247933737571e-003; 2.8848804365067559e-003; 6.0123369459847997e-005; 6.0948087314689840e-007; 8.6296846022298632e-010];
case 11
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [3.0346719985420623e-001; 2.0832499164960872e-001; 6.1151730125247709e-002; 6.4096054686807541e-002; 1.8085234254798459e-002; -6.3372247933737545e-003; 2.8848804365067555e-003; 6.0123369459847922e-005; 6.0948087314689830e-007; 8.6296846022298839e-010];
case 12
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [3.0346719985420623e-001; 2.0832499164960872e-001; 6.1151730125247716e-002; 6.4096054686807624e-002; 1.8085234254798466e-002; -6.3372247933737545e-003; 2.8848804365067559e-003; 6.0123369459847841e-005; 6.0948087314689830e-007; 8.6296846022298963e-010];
case 13
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [3.0346719985420600e-001; 2.0832499164960883e-001; 6.1151730125247730e-002; 6.4096054686807638e-002; 1.8085234254798459e-002; -6.3372247933737580e-003; 2.8848804365067555e-003; 6.0123369459847868e-005; 6.0948087314689830e-007; 8.6296846022298756e-010];
case 14
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [3.0346719985420617e-001; 2.0832499164960874e-001; 6.1151730125247702e-002; 6.4096054686807596e-002; 1.8085234254798459e-002; -6.3372247933737563e-003; 2.8848804365067555e-003; 6.0123369459847936e-005; 6.0948087314689851e-007; 8.6296846022298322e-010];
case 15
n = [0.0000000000000000e+000; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000];
w = [3.0346719985420612e-001; 2.0832499164960874e-001; 6.1151730125247723e-002; 6.4096054686807652e-002; 1.8085234254798459e-002; -6.3372247933737597e-003; 2.8848804365067563e-003; 6.0123369459848091e-005; 6.0948087314689851e-007; 8.6296846022298983e-010];
case 16
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [2.5890005324151566e-001; 2.8128101540033167e-002; 1.9968863511734550e-001; 6.5417392836092561e-002; 6.1718532565867179e-002; 1.7608475581318002e-003; 1.6592492698936010e-002; -5.5610063068358157e-003; 2.7298430467334002e-003; 1.5044205390914219e-005; 5.9474961163931621e-005; 6.1435843232617913e-007; 7.9298267864869338e-010; 5.1158053105504208e-012; -1.4840835740298868e-013; 1.2618464280815118e-015];
case 17
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [1.3911022236338039e-001; 1.0387687125574284e-001; 1.7607598741571459e-001; 7.7443602746299481e-002; 5.4677556143463042e-002; 7.3530110204955076e-003; 1.1529247065398790e-002; -2.7712189007789243e-003; 2.1202259559596325e-003; 8.3236045295766745e-005; 5.5691158981081479e-005; 6.9086261179113738e-007; -1.3486017348542930e-008; 1.5542195992782658e-009; -1.9341305000880955e-011; 2.6640625166231651e-013; -9.9313913286822465e-016];
case 18
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806921377e-004; 1.9176011588804434e-001; 1.4807083115521585e-001; 9.2364726716986353e-002; 4.5273685465150391e-002; 1.5673473751851151e-002; 3.1554462691875513e-003; 2.3113452403522071e-003; 8.1895392750226735e-004; 2.7524214116785131e-004; 3.5729348198975332e-005; 2.7342206801187888e-006; 2.4676421345798140e-007; 2.1394194479561062e-008; 4.6011760348655917e-010; 3.0972223576062995e-012; 5.4500412650638128e-015; 1.0541326582334014e-018];
case 19
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806921377e-004; 1.9176011588804437e-001; 1.4807083115521585e-001; 9.2364726716986353e-002; 4.5273685465150523e-002; 1.5673473751851151e-002; 3.1554462691875604e-003; 2.3113452403522050e-003; 8.1895392750226670e-004; 2.7524214116785131e-004; 3.5729348198975447e-005; 2.7342206801187884e-006; 2.4676421345798140e-007; 2.1394194479561056e-008; 4.6011760348656077e-010; 3.0972223576063011e-012; 5.4500412650637663e-015; 1.0541326582337958e-018];
case 20
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806925551e-004; 1.9176011588804440e-001; 1.4807083115521585e-001; 9.2364726716986298e-002; 4.5273685465150537e-002; 1.5673473751851155e-002; 3.1554462691875573e-003; 2.3113452403522080e-003; 8.1895392750226724e-004; 2.7524214116785137e-004; 3.5729348198975352e-005; 2.7342206801187888e-006; 2.4676421345798124e-007; 2.1394194479561056e-008; 4.6011760348656144e-010; 3.0972223576062963e-012; 5.4500412650638365e-015; 1.0541326582335402e-018];
case 21
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806913744e-004; 1.9176011588804429e-001; 1.4807083115521594e-001; 9.2364726716986312e-002; 4.5273685465150391e-002; 1.5673473751851151e-002; 3.1554462691875565e-003; 2.3113452403522089e-003; 8.1895392750226670e-004; 2.7524214116785142e-004; 3.5729348198975285e-005; 2.7342206801187888e-006; 2.4676421345798119e-007; 2.1394194479561059e-008; 4.6011760348656594e-010; 3.0972223576062950e-012; 5.4500412650638696e-015; 1.0541326582332041e-018];
case 22
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806903368e-004; 1.9176011588804448e-001; 1.4807083115521574e-001; 9.2364726716986423e-002; 4.5273685465150516e-002; 1.5673473751851161e-002; 3.1554462691875543e-003; 2.3113452403522063e-003; 8.1895392750226713e-004; 2.7524214116785164e-004; 3.5729348198975319e-005; 2.7342206801187905e-006; 2.4676421345798151e-007; 2.1394194479561082e-008; 4.6011760348656005e-010; 3.0972223576063043e-012; 5.4500412650637592e-015; 1.0541326582339926e-018];
case 23
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806913755e-004; 1.9176011588804442e-001; 1.4807083115521577e-001; 9.2364726716986381e-002; 4.5273685465150468e-002; 1.5673473751851155e-002; 3.1554462691875560e-003; 2.3113452403522045e-003; 8.1895392750226572e-004; 2.7524214116785158e-004; 3.5729348198975298e-005; 2.7342206801187892e-006; 2.4676421345798129e-007; 2.1394194479561072e-008; 4.6011760348656103e-010; 3.0972223576062963e-012; 5.4500412650638207e-015; 1.0541326582338368e-018];
case 24
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806914438e-004; 1.9176011588804442e-001; 1.4807083115521577e-001; 9.2364726716986340e-002; 4.5273685465150509e-002; 1.5673473751851155e-002; 3.1554462691875586e-003; 2.3113452403522058e-003; 8.1895392750226551e-004; 2.7524214116785142e-004; 3.5729348198975386e-005; 2.7342206801187884e-006; 2.4676421345798082e-007; 2.1394194479561059e-008; 4.6011760348656382e-010; 3.0972223576062942e-012; 5.4500412650638381e-015; 1.0541326582336941e-018];
case 25
n = [0.0000000000000000e+000; 2.4899229757996061e-001; 7.4109534999454085e-001; 1.2304236340273060e+000; 1.7320508075688772e+000; 2.2336260616769419e+000; 2.5960831150492023e+000; 2.8612795760570582e+000; 3.2053337944991944e+000; 3.6353185190372783e+000; 4.1849560176727323e+000; 4.7364330859522967e+000; 5.1870160399136562e+000; 5.6981777684881099e+000; 6.3633944943363696e+000; 7.1221067008046166e+000; 7.9807717985905606e+000; 9.0169397898903032e+000];
w = [5.1489450806919989e-004; 1.9176011588804437e-001; 1.4807083115521580e-001; 9.2364726716986395e-002; 4.5273685465150426e-002; 1.5673473751851158e-002; 3.1554462691875539e-003; 2.3113452403522054e-003; 8.1895392750226681e-004; 2.7524214116785142e-004; 3.5729348198975292e-005; 2.7342206801187884e-006; 2.4676421345798108e-007; 2.1394194479561056e-008; 4.6011760348655901e-010; 3.0972223576062975e-012; 5.4500412650638412e-015; 1.0541326582337527e-018];
end
end
|
github | jlowenz/rrwm-master | makePointMatchingProblem.m | .m | rrwm-master/utils/makePointMatchingProblem.m | 1,904 | utf_8 | d8b1523c4e12502cda5a4a603d756604 | %% Make test problem
function [ problem ] = makePointMatchingProblem( Set )
%% Get values from structure
strNames = fieldnames(Set);
for i = 1:length(strNames), eval([strNames{i} '= Set.' strNames{i} ';']); end
%% Set number of nodes
if bOutBoth, nP1 = nInlier + nOutlier; else nP1 = nInlier; end
nP2 = nInlier + nOutlier;
%% Generate Nodes
switch typeDistribution
case 'normal', P1 = randn(2, nP1); Pout = randn(2,nOutlier); % Points in Domain 1
case 'uniform', P1 = rand(2, nP1); Pout = rand(2,nOutlier); % Points in Domain 1
otherwise, disp(''); error('Insert Point Distribution');
end
% point transformation matrix
Mrot = [cos(transRotate) -sin(transRotate) ; sin(transRotate) cos(transRotate) ];
P2 = Mrot*P1*transScale+deformation*randn(2,nP1); % Points in Domain 2
if bOutBoth, P2(:,(nInlier+1):end) = Pout; else P2 = [P2 Pout]; end
% permute graph sequence (prevent accidental good solution)
if bPermute, seq = randperm(nP2); P2(:,seq) = P2; seq = seq(1:nP1); else seq = 1:nP1; end
%0
P1 = P1'; P2 = P2';
%% 2nd Order Matrix
E12 = ones(nP1,nP2);
n12 = nnz(E12);
[L12(:,1) L12(:,2)] = find(E12);
[group1 group2] = make_group12(L12);
E1 = ones(nP1); E2 = ones(nP2);
[L1(:,1) L1(:,2)] = find(E1);
[L2(:,1) L2(:,2)] = find(E2);
G1 = P1(L1(:,1),:)-P1(L1(:,2),:);
G2 = P2(L2(:,1),:)-P2(L2(:,2),:);
G1 = sqrt(G1(:,1).^2+G1(:,2).^2);
G2 = sqrt(G2(:,1).^2+G2(:,2).^2);
G1 = reshape(G1, [nP1 nP1]);
G2 = reshape(G2, [nP2 nP2]);
M = (repmat(G1, nP2, nP2)-kron(G2,ones(nP1))).^2;
M = exp(-M./scale_2D);
M(1:(n12+1):end)=0;
%% Ground Truth
GT.seq = seq;
GT.matrix = zeros(nP1, nP2);
for i = 1:nP1, GT.matrix(i,seq(i)) = 1; end
GT.bool = GT.matrix(:);
%% Return the value
problem.nP1 = nP1;
problem.nP2 = nP2;
problem.P1 = P1;
problem.P2 = P2;
problem.L12 = L12;
problem.E12 = E12;
problem.affinityMatrix = M;
problem.group1 = group1;
problem.group2 = group2;
problem.GTbool = GT.bool;
end
|
github | jlowenz/rrwm-master | wrapper_GM.m | .m | rrwm-master/utils/wrapper_GM.m | 1,050 | utf_8 | 1576ee070fa2b9ddbae721e3c9b98b1a | %% Makes current problem into Graph Matching form
function [accuracy score time X Xraw] = wrapper_GM(method, cdata)
% Make function evaluation script
str = ['feval(@' func2str(method.fhandle)];
for j = 1:length(method.variable), str = [str ',cdata.' method.variable{j} ]; end
if ~isempty(method.param), for i = 1:length(method.param), str = [str, ',method.param{' num2str(i) '}']; end; end
str = [str, ')'];
% Function evaluation & Excution time Check
tic; Xraw = eval(str); time = toc;
% Discretization by one-to-one mapping constraints
if 1
% Hungarian assignment
X = zeros(size(cdata.E12)); X(find(cdata.E12)) = Xraw;
X = discretisationMatching_hungarian(X,cdata.E12); X = X(find(cdata.E12));
else % Greedy assignment
X = greedyMapping(Xraw, cdata.group1, cdata.group2);
end
% Matching Score
score = X'*cdata.affinityMatrix*X; % objective score function
if length(cdata.GTbool) ~= length(cdata.affinityMatrix)
accuracy = NaN; % Exception for no GT information
else
accuracy = (X(:)'*cdata.GTbool(:))/sum(cdata.GTbool);
end |
github | jlowenz/rrwm-master | RRWM.m | .m | rrwm-master/Methods/RRWM/RRWM.m | 4,758 | utf_8 | ea71ece6a20675bf027025e76e265427 | %% Implementaion of PageRank matching algortihm
function [ X ] = RRWM( M, group1, group2, varargin)
% MATLAB demo code of Reweighted Random Walks Graph Matching of ECCV 2010
%
% Minsu Cho, Jungmin Lee, and Kyoung Mu Lee,
% Reweighted Random Walks for Graph Matching,
% Proc. European Conference on Computer Vision (ECCV), 2010
% http://cv.snu.ac.kr/research/~RRWM/
%
% Please cite our work if you find this code useful in your research.
%
% written by Minsu Cho & Jungmin Lee, 2010, Seoul National University, Korea
% http://cv.snu.ac.kr/~minsucho/
% http://cv.snu.ac.kr/~jungminlee/
%
%
% Date: 31/05/2013
% Version: 1.22
%
% * Update report
% This code is updated to be easily applied to any affinity matrix of candidate matches.
% For image matching demo, combine this with some additional codes and data provided in our site.
% ==================================================================================================
%
% input
% M: affinity matrix
% group1: conflicting match groups in domain 1 (size(M,1) x nGroup1)
% group2: conflicting match groups in domain 2 (size(M,1) x nGroup2)
%
% e.g. find(group1(:,3)) represents the third goup of matches
% sharing the same feature in domain1
%
% output
% X: steady state distribution of RRWM
%% Default Parameters
param = struct( ...
'c', 0.2, ... % prob. for walk or reweighted jump?
'amp_max', 30, ... % maximum value for amplification procedure
'iterMax', 300, ... % maximum value for amplification procedure
'thresConvergence', 1e-25, ... % convergence threshold for random walks
'tolC', 1e-3 ... % convergence threshold for the Sinkhorn method
);
param = parseargs(param, varargin{:});
%% parameter structure -> parameter value
strField = fieldnames(param);
for i = 1:length(strField), eval([strField{i} '=param.' strField{i} ';']); end
% get groups for bistochastic normalization
[idx1 ID1] = make_groups(group1);
[idx2 ID2] = make_groups(group2);
if ID1(end) < ID2(end)
[idx1 ID1 idx2 ID2 dumVal dumSize] = make_groups_slack(idx1, ID1, idx2, ID2);
dumDim = 1;
elseif ID1(end) > ID2(end)
[idx2 ID2 idx1 ID1 dumVal dumSize] = make_groups_slack(idx2, ID2, idx1, ID1);
dumDim = 2;
else
dumDim = 0; dumVal = 0; dumSize = 0;
end
idx1 = idx1-1; idx2 = idx2-1;
% eliminate conflicting elements to prevent conflicting walks
M = M.*~full(getConflictMatrix(group1, group2));
% note that this matrix is column-wise stochastic
d = sum(M, 1); % degree : col sum
maxD = max(d);
Mo = M ./ maxD; % nomalize by the max degree
% initialize answer
nMatch = length(M);
prev_score = ones(nMatch,1)/nMatch; % buffer for the previous score
prev_score2 = prev_score; % buffer for the two iteration ahead
prev_assign = ones(nMatch,1)/nMatch; % buffer for Sinkhorn result of prev_score
bCont = 1; iter_i = 0;
% for convergence check of power iteration
thresConvergence2 = length(prev_score)*norm(M,1)*eps;
la = prev_score'*M*prev_score;
%% start main iteration
while bCont && iter_i < iterMax
iter_i = iter_i + 1;
%% random walking with reweighted jumps
cur_score = Mo * ( c*prev_score + (1-c)*prev_assign );
sumCurScore = sum(cur_score); % normalization of sum 1
if sumCurScore>0, cur_score = cur_score./sumCurScore; end
%% update reweighted jumps
cur_assign = cur_score;
% attenuate small values and amplify large values
amp_value = amp_max/ max(cur_assign); % compute amplification factor
cur_assign = exp( amp_value*cur_assign ); % amplification
% Sinkhorn method of iterative bistocastic normalizations
X_slack = [cur_assign; dumVal*ones(dumSize,1)];
X_slack = mexBistocNormalize_match_slack(X_slack, int32(idx1), int32(ID1), int32(idx2), int32(ID2), tolC, dumDim, dumVal, int32(1000));
cur_assign = X_slack(1:nMatch);
sumCurAssign = sum(cur_assign); % normalization of sum 1
if sumCurAssign>0, cur_assign = cur_assign./sumCurAssign; end
%% Check the convergence of random walks
if 1
diff1 = sum((cur_score-prev_score).^2);
diff2 = sum((cur_score-prev_score2).^2); % to prevent oscillations
diff_min = min(diff1, diff2);
if diff_min < thresConvergence
bCont = 0;
end
else
normed_cur_score = cur_score/norm(cur_score);
if norm(M*normed_cur_score - la*normed_cur_score,1) < thresConvergence2
bCont = 0;
end
la = normed_cur_score'*M*normed_cur_score;
end
prev_score2 = prev_score;
prev_score = cur_score;
prev_assign = cur_assign;
end % end of main iteration
X = cur_score;
end |
github | qingsongma/blend-master | make.m | .m | blend-master/tools/libsvm-3.22/matlab/make.m | 888 | utf_8 | 4a2ad69e765736f8cca8e3b721fb7ebd | % This make.m is for MATLAB and OCTAVE under Windows, Mac, and Unix
function make()
try
% This part is for OCTAVE
if (exist ('OCTAVE_VERSION', 'builtin'))
mex libsvmread.c
mex libsvmwrite.c
mex -I.. svmtrain.c ../svm.cpp svm_model_matlab.c
mex -I.. svmpredict.c ../svm.cpp svm_model_matlab.c
% This part is for MATLAB
% Add -largeArrayDims on 64-bit machines of MATLAB
else
mex CFLAGS="\$CFLAGS -std=c99" -largeArrayDims libsvmread.c
mex CFLAGS="\$CFLAGS -std=c99" -largeArrayDims libsvmwrite.c
mex CFLAGS="\$CFLAGS -std=c99" -I.. -largeArrayDims svmtrain.c ../svm.cpp svm_model_matlab.c
mex CFLAGS="\$CFLAGS -std=c99" -I.. -largeArrayDims svmpredict.c ../svm.cpp svm_model_matlab.c
end
catch err
fprintf('Error: %s failed (line %d)\n', err.stack(1).file, err.stack(1).line);
disp(err.message);
fprintf('=> Please check README for detailed instructions.\n');
end
|
github | kertansul/caffe-segnet-cudnn5-master | classification_demo.m | .m | caffe-segnet-cudnn5-master/matlab/demo/classification_demo.m | 5,412 | utf_8 | 8f46deabe6cde287c4759f3bc8b7f819 | function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github | ncohn/Windsurf-master | Windsurf_Run_Batch.m | .m | Windsurf-master/Windsurf_Run_Batch.m | 261 | utf_8 | 55529be4c74bf42a0cc4951e09301793 | %Windsurf_Run_Batch.m - Code which allows to run multiple simulations at once via parfor loop
%Created By: N. Cohn, Oregon State University
function XBCDM_Run_Batch(Directory)
load([Directory, filesep, 'windsurf_setup.mat']);
Windsurf_Run;
end
|
github | ncohn/Windsurf-master | Windsurf_BeachNourishment.m | .m | Windsurf-master/Windsurf_BeachNourishment.m | 3,484 | utf_8 | 13189e5a9562fdfceaee5f6b8627766e | %Windsurf_BeachNourishment
%Code for modifying the beach profile based on volume (type 1), contour (type 2), or fixed time (type 3) changes at some
%fixed time intervals based on specified user inputs
%
%Created By: N. Cohn, Oregon State University
if project.flag.nourishment ~= 0 && run_number > 1
%type 1 = volume consideration
if project.flag.nourishment == 1 %nourish based on a volume lost threshold [NOT YET TESTED]
%find volume in between specified contours
ivol = find(run.z>=nourishment.vol.cont1 & run.z<= nourishment.vol.cont2);
zvol = run.z - nourishment.vol.cont1;
diffX = diff(grids.XGrid);
diffX = [diffX diffX(end)];
zvol = zvol.* diffX;
zvol = sum(zvol(ivol));
if run_number <= 2
init_vol = zvol;
end
volchange = zvol-init_vol;
if volchange< nourishment.vol.threshold
%should track nourishment time schedule
nourishment_time_series(run_number) = 1;
%only nourish if beyond the time scale needed
iuse = [run_number-nourishment.delay]:run_number;
iuse = iuse(find(iuse>0));
if nansum(nourishment_time_series(iuse)) > nourishment.delay
nourishment_time_series(iuse) = NaN;
run.z = nourish(run, grids, nourishment);
end
end
elseif project.flag.nourishment == 2 %nourish based on a contour retreat threshold [NOT YET TESTED]
initialX = interp1(XZfinal(:,2), XZfinal(:,1), nourishment.cont.elev);
currentX = interp1(run.z, XZfinal(:,1), nourishment.cont.elev);
if [initialX-currentX]<-nourishment.cont.maxretreat
%only nourish if beyond the time scale needed
iuse = [run_number-nourishment.delay]:run_number;
iuse = iuse(find(iuse>0));
if nansum(nourishment_time_series(iuse)) > nourishment.delay
nourishment_time_series(iuse) = NaN;
run.z = nourish(run, grids, nourishment);
end
end
elseif project.flag.nourishment == 3 %nourish at fixed times
go_nourish = find(nourishment.times == run_number);
if numel(go_nourish) == 1
run.z = nourish(run, grids, nourishment);
end
clear go_nourish
end
end
function z_out = nourish(run, grids, nourishment) %provide new morphologic profile based on nourishment guidelines
%define geometry
x = grids.XGrid(:);
z = run.z(:);
iuse = find(z>nourishment.minZ & z<=nourishment.maxZ);
dx = abs(diff(x));
dx = [dx(1); dx(:)];
dx = dx(:);
addVol = nourishment.volume;
%make all the elevations such that it is appeoximately a flat top
addVals = (nourishment.maxZ - z(iuse)).*dx(iuse);
%alternative approach for adding sine wave
%addVals = sin(0:pi/(numel(iuse)-1):pi).dx(iuse)';
%remove mass from seaward most cells so that is not beyond angle of repose
modVals = ones(size(addVals));
entries = round(numel(modVals)/3);
if entries>3
modVals(1:entries) = linspace(0,1,entries);
end
%fix so that the appropriate volume is added
addVals = addVals.*modVals;
addVals = ((addVals./dx(iuse))./nansum(addVals)).*addVol;
%correct the z value
z(iuse) = z(iuse)+addVals;
%output values
z_out = z;
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.