plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadubjson.m
.m
Coursera_MachineLearning_Course-master/Week 5/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
saveubjson.m
.m
Coursera_MachineLearning_Course-master/Week 5/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
durgeshsamariya/Coursera_MachineLearning_Course-master
submit.m
.m
Coursera_MachineLearning_Course-master/Week 3/machine-learning-ex2/ex2/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
submitWithConfiguration.m
.m
Coursera_MachineLearning_Course-master/Week 3/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
savejson.m
.m
Coursera_MachineLearning_Course-master/Week 3/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadjson.m
.m
Coursera_MachineLearning_Course-master/Week 3/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadubjson.m
.m
Coursera_MachineLearning_Course-master/Week 3/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
saveubjson.m
.m
Coursera_MachineLearning_Course-master/Week 3/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
durgeshsamariya/Coursera_MachineLearning_Course-master
submit.m
.m
Coursera_MachineLearning_Course-master/Week 4/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
submitWithConfiguration.m
.m
Coursera_MachineLearning_Course-master/Week 4/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
savejson.m
.m
Coursera_MachineLearning_Course-master/Week 4/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadjson.m
.m
Coursera_MachineLearning_Course-master/Week 4/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadubjson.m
.m
Coursera_MachineLearning_Course-master/Week 4/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
saveubjson.m
.m
Coursera_MachineLearning_Course-master/Week 4/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
durgeshsamariya/Coursera_MachineLearning_Course-master
submit.m
.m
Coursera_MachineLearning_Course-master/Week 9/machine-learning-ex8/ex8/submit.m
2,135
utf_8
eebb8c0a1db5a4df20b4c858603efad6
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
submitWithConfiguration.m
.m
Coursera_MachineLearning_Course-master/Week 9/machine-learning-ex8/ex8/lib/submitWithConfiguration.m
5,569
utf_8
cc10d7a55178eb991c495a2b638947fd
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); partss = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, partss); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(partss, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submission_Url = submissionUrl(); responseBody = getResponse(submission_Url, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submission_Url = submissionUrl() submission_Url = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
savejson.m
.m
Coursera_MachineLearning_Course-master/Week 9/machine-learning-ex8/ex8/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadjson.m
.m
Coursera_MachineLearning_Course-master/Week 9/machine-learning-ex8/ex8/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
loadubjson.m
.m
Coursera_MachineLearning_Course-master/Week 9/machine-learning-ex8/ex8/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
durgeshsamariya/Coursera_MachineLearning_Course-master
saveubjson.m
.m
Coursera_MachineLearning_Course-master/Week 9/machine-learning-ex8/ex8/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
Hannes333/Computer-Aided-Manufacturing-Programm-for-2.5D-Laser-Ablation-Version-2.0-master
F00_stlread.m
.m
Computer-Aided-Manufacturing-Programm-for-2.5D-Laser-Ablation-Version-2.0-master/F00_stlread.m
5,235
utf_8
d6f780ddf573a34879cf3fe24bd1308f
function varargout = stlread(file) % STLREAD imports geometry from an STL file into MATLAB. % FV = STLREAD(FILENAME) imports triangular faces from the ASCII or binary % STL file idicated by FILENAME, and returns the patch struct FV, with fields % 'faces' and 'vertices'. % % [F,V] = STLREAD(FILENAME) returns the faces F and vertices V separately. % % [F,V,N] = STLREAD(FILENAME) also returns the face normal vectors. % % The faces and vertices are arranged in the format used by the PATCH plot % object. if ~exist(file,'file') error(['File ''%s'' not found. If the file is not on MATLAB''s path' ... ', be sure to specify the full path to the file.'], file); end fid = fopen(file,'r'); if ~isempty(ferror(fid)) error(lasterror); %#ok end M = fread(fid,inf,'uint8=>uint8'); fclose(fid); [f,v,n] = stlbinary(M); %if( isbinary(M) ) % This may not be a reliable test % [f,v,n] = stlbinary(M); %else % [f,v,n] = stlascii(M); %end varargout = cell(1,nargout); switch nargout case 2 varargout{1} = f; varargout{2} = v; case 3 varargout{1} = f; varargout{2} = v; varargout{3} = n; otherwise varargout{1} = struct('faces',f,'vertices',v); end end function [F,V,N] = stlbinary(M) F = []; V = []; N = []; if length(M) < 84 error('MATLAB:stlread:incorrectFormat', ... 'Incomplete header information in binary STL file.'); end % Bytes 81-84 are an unsigned 32-bit integer specifying the number of faces % that follow. numFaces = typecast(M(81:84),'uint32'); %numFaces = double(numFaces); if numFaces == 0 warning('MATLAB:stlread:nodata','No data in STL file.'); return end T = M(85:end); F = NaN(numFaces,3); V = NaN(3*numFaces,3); N = NaN(numFaces,3); bar = waitbar(0,'Stl-Datei wird importiert...'); %Ladebalken erstellen numRead = 0; fInd = 0; while numRead < numFaces % Each facet is 50 bytes % - Three single precision values specifying the face normal vector % - Three single precision values specifying the first vertex (XYZ) % - Three single precision values specifying the second vertex (XYZ) % - Three single precision values specifying the third vertex (XYZ) % - Two unused bytes i1 = 50 * numRead + 1; i2 = i1 + 50 - 1; facet = T(i1:i2)'; n = typecast(facet(1:12),'single'); v1 = typecast(facet(13:24),'single'); v2 = typecast(facet(25:36),'single'); v3 = typecast(facet(37:48),'single'); n = double(n); if isequal(n,[0 0 0]) %Eingelesener Normalvektor ist Null (noch nicht bestimmt) %n=cross(v2-v1,v3-v1); %Normalenvektor wird mit Kreuzprodukt berechnet a=v2-v1; b=v3-v1; n=[a(2)*b(3)-a(3)*b(2),a(3)*b(1)-a(1)*b(3),a(1)*b(2)-a(2)*b(1)]; end if n==[0 0 0] %berechneter Normalenvektor ist immer noch Null (also Dreieck fehlerhaft) % STL-Objekt hat fehlerhafte Dreiecke (Zwei Kanten liegen % aufeinander) Solch fehlerhaften Dreiecke werden verworfen warning('Fehlerhaftes Dreieck verworfen'); else % Figure out where to fit these new vertices, and the face, in the % larger F and V collections. fInd = fInd + 1; vInd1 = 3 * (fInd - 1) + 1; vInd2 = vInd1 + 3 - 1; v = double([v1; v2; v3]); V(vInd1:vInd2,:) = v; F(fInd,:) = vInd1:vInd2; n=n/norm(n); %Berechneter Normalenvektor wird normiert N(fInd,:)= n; %Normalenvektor wird im Array N gespeichert end numRead = numRead + 1; if mod(numRead,round(numFaces/50))==0 %Ladebalken nicht bei jedem Schleifendurchlauf aktualisieren (Rechenleistung sparen) waitbar(numRead/double(numFaces)) %Aktualisierung Ladebalken end end %close(bar); %Ladebalken schliessen delete(bar); F(fInd+1:end,:)=[]; %remove unfilled entries N(fInd+1:end,:)=[]; %remove unfilled entries V(fInd*3+1:end,:)=[]; %remove unfilled entries end function [F,V,N] = stlascii(M) warning('MATLAB:stlread:ascii','ASCII STL files currently not supported.'); F = []; V = []; N = []; end % TODO: Change the testing criteria! Some binary STL files still begin with % 'solid'. function tf = isbinary(A) % ISBINARY uses the first line of an STL file to identify its format. if isempty(A) || length(A) < 5 error('MATLAB:stlread:incorrectFormat', ... 'File does not appear to be an ASCII or binary STL file.'); end if strcmpi('solid',char(A(1:5)')) tf = false; % ASCII else tf = true; % Binary end end
github
Hannes333/Computer-Aided-Manufacturing-Programm-for-2.5D-Laser-Ablation-Version-2.0-master
F16_Intersections.m
.m
Computer-Aided-Manufacturing-Programm-for-2.5D-Laser-Ablation-Version-2.0-master/F16_Intersections.m
11,787
utf_8
52d726542cc35a2287fe572fc23a47bc
function [x0,y0,iout,jout] = F16_Intersections(x1,y1,x2,y2,robust) %INTERSECTIONS Intersections of curves. % Computes the (x,y) locations where two curves intersect. The curves % can be broken with NaNs or have vertical segments. % % Example: % [X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST); % % where X1 and Y1 are equal-length vectors of at least two points and % represent curve 1. Similarly, X2 and Y2 represent curve 2. % X0 and Y0 are column vectors containing the points at which the two % curves intersect. % % ROBUST (optional) set to 1 or true means to use a slight variation of the % algorithm that might return duplicates of some intersection points, and % then remove those duplicates. The default is true, but since the % algorithm is slightly slower you can set it to false if you know that % your curves don't intersect at any segment boundaries. Also, the robust % version properly handles parallel and overlapping segments. % % The algorithm can return two additional vectors that indicate which % segment pairs contain intersections and where they are: % % [X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST); % % For each element of the vector I, I(k) = (segment number of (X1,Y1)) + % (how far along this segment the intersection is). For example, if I(k) = % 45.25 then the intersection lies a quarter of the way between the line % segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)). Similarly for % the vector J and the segments in (X2,Y2). % % You can also get intersections of a curve with itself. Simply pass in % only one curve, i.e., % % [X0,Y0] = intersections(X1,Y1,ROBUST); % % where, as before, ROBUST is optional. % Version: 2.0, 25 May 2017 % Author: Douglas M. Schwarz % Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu % Real_email = regexprep(Email,{'=','*'},{'@','.'}) % Theory of operation: % % Given two line segments, L1 and L2, % % L1 endpoints: (x1(1),y1(1)) and (x1(2),y1(2)) % L2 endpoints: (x2(1),y2(1)) and (x2(2),y2(2)) % % we can write four equations with four unknowns and then solve them. The % four unknowns are t1, t2, x0 and y0, where (x0,y0) is the intersection of % L1 and L2, t1 is the distance from the starting point of L1 to the % intersection relative to the length of L1 and t2 is the distance from the % starting point of L2 to the intersection relative to the length of L2. % % So, the four equations are % % (x1(2) - x1(1))*t1 = x0 - x1(1) % (x2(2) - x2(1))*t2 = x0 - x2(1) % (y1(2) - y1(1))*t1 = y0 - y1(1) % (y2(2) - y2(1))*t2 = y0 - y2(1) % % Rearranging and writing in matrix form, % % [x1(2)-x1(1) 0 -1 0; [t1; [-x1(1); % 0 x2(2)-x2(1) -1 0; * t2; = -x2(1); % y1(2)-y1(1) 0 0 -1; x0; -y1(1); % 0 y2(2)-y2(1) 0 -1] y0] -y2(1)] % % Let's call that A*T = B. We can solve for T with T = A\B. % % Once we have our solution we just have to look at t1 and t2 to determine % whether L1 and L2 intersect. If 0 <= t1 < 1 and 0 <= t2 < 1 then the two % line segments cross and we can include (x0,y0) in the output. % % In principle, we have to perform this computation on every pair of line % segments in the input data. This can be quite a large number of pairs so % we will reduce it by doing a simple preliminary check to eliminate line % segment pairs that could not possibly cross. The check is to look at the % smallest enclosing rectangles (with sides parallel to the axes) for each % line segment pair and see if they overlap. If they do then we have to % compute t1 and t2 (via the A\B computation) to see if the line segments % cross, but if they don't then the line segments cannot cross. In a % typical application, this technique will eliminate most of the potential % line segment pairs. % Input checks. if verLessThan('matlab','7.13') error(nargchk(2,5,nargin)) %#ok<NCHKN> else narginchk(2,5) end % Adjustments based on number of arguments. switch nargin case 2 robust = true; x2 = x1; y2 = y1; self_intersect = true; case 3 robust = x2; x2 = x1; y2 = y1; self_intersect = true; case 4 robust = true; self_intersect = false; case 5 self_intersect = false; end % x1 and y1 must be vectors with same number of points (at least 2). if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1 || ... length(x1) ~= length(y1) error('X1 and Y1 must be equal-length vectors of at least 2 points.') end % x2 and y2 must be vectors with same number of points (at least 2). if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1 || ... length(x2) ~= length(y2) error('X2 and Y2 must be equal-length vectors of at least 2 points.') end % Force all inputs to be column vectors. x1 = x1(:); y1 = y1(:); x2 = x2(:); y2 = y2(:); % Compute number of line segments in each curve and some differences we'll % need later. n1 = length(x1) - 1; n2 = length(x2) - 1; xy1 = [x1 y1]; xy2 = [x2 y2]; dxy1 = diff(xy1); dxy2 = diff(xy2); % Determine the combinations of i and j where the rectangle enclosing the % i'th line segment of curve 1 overlaps with the rectangle enclosing the % j'th line segment of curve 2. % Original method that works in old MATLAB versions, but is slower than % using binary singleton expansion (explicit or implicit). % [i,j] = find( ... % repmat(mvmin(x1),1,n2) <= repmat(mvmax(x2).',n1,1) & ... % repmat(mvmax(x1),1,n2) >= repmat(mvmin(x2).',n1,1) & ... % repmat(mvmin(y1),1,n2) <= repmat(mvmax(y2).',n1,1) & ... % repmat(mvmax(y1),1,n2) >= repmat(mvmin(y2).',n1,1)); % Select an algorithm based on MATLAB version and number of line % segments in each curve. We want to avoid forming large matrices for % large numbers of line segments. If the matrices are not too large, % choose the best method available for the MATLAB version. if n1 > 1000 || n2 > 1000 || verLessThan('matlab','7.4') % Determine which curve has the most line segments. if n1 >= n2 % Curve 1 has more segments, loop over segments of curve 2. ijc = cell(1,n2); min_x1 = mvmin(x1); max_x1 = mvmax(x1); min_y1 = mvmin(y1); max_y1 = mvmax(y1); for k = 1:n2 k1 = k + 1; ijc{k} = find( ... min_x1 <= max(x2(k),x2(k1)) & max_x1 >= min(x2(k),x2(k1)) & ... min_y1 <= max(y2(k),y2(k1)) & max_y1 >= min(y2(k),y2(k1))); ijc{k}(:,2) = k; end ij = vertcat(ijc{:}); i = ij(:,1); j = ij(:,2); else % Curve 2 has more segments, loop over segments of curve 1. ijc = cell(1,n1); min_x2 = mvmin(x2); max_x2 = mvmax(x2); min_y2 = mvmin(y2); max_y2 = mvmax(y2); for k = 1:n1 k1 = k + 1; ijc{k}(:,2) = find( ... min_x2 <= max(x1(k),x1(k1)) & max_x2 >= min(x1(k),x1(k1)) & ... min_y2 <= max(y1(k),y1(k1)) & max_y2 >= min(y1(k),y1(k1))); ijc{k}(:,1) = k; end ij = vertcat(ijc{:}); i = ij(:,1); j = ij(:,2); end elseif verLessThan('matlab','9.1') % Use bsxfun. [i,j] = find( ... bsxfun(@le,mvmin(x1),mvmax(x2).') & ... bsxfun(@ge,mvmax(x1),mvmin(x2).') & ... bsxfun(@le,mvmin(y1),mvmax(y2).') & ... bsxfun(@ge,mvmax(y1),mvmin(y2).')); else % Use implicit expansion. [i,j] = find( ... mvmin(x1) <= mvmax(x2).' & mvmax(x1) >= mvmin(x2).' & ... mvmin(y1) <= mvmax(y2).' & mvmax(y1) >= mvmin(y2).'); end % Find segments pairs which have at least one vertex = NaN and remove them. % This line is a fast way of finding such segment pairs. We take % advantage of the fact that NaNs propagate through calculations, in % particular subtraction (in the calculation of dxy1 and dxy2, which we % need anyway) and addition. % At the same time we can remove redundant combinations of i and j in the % case of finding intersections of a line with itself. if self_intersect remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1; else remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)); end i(remove) = []; j(remove) = []; % Initialize matrices. We'll put the T's and B's in matrices and use them % one column at a time. AA is a 3-D extension of A where we'll use one % plane at a time. n = length(i); T = zeros(4,n); AA = zeros(4,4,n); AA([1 2],3,:) = -1; AA([3 4],4,:) = -1; AA([1 3],1,:) = dxy1(i,:).'; AA([2 4],2,:) = dxy2(j,:).'; B = -[x1(i) x2(j) y1(i) y2(j)].'; % Loop through possibilities. Trap singularity warning and then use % lastwarn to see if that plane of AA is near singular. Process any such % segment pairs to determine if they are colinear (overlap) or merely % parallel. That test consists of checking to see if one of the endpoints % of the curve 2 segment lies on the curve 1 segment. This is done by % checking the cross product % % (x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1)). % % If this is close to zero then the segments overlap. % If the robust option is false then we assume no two segment pairs are % parallel and just go ahead and do the computation. If A is ever singular % a warning will appear. This is faster and obviously you should use it % only when you know you will never have overlapping or parallel segment % pairs. if robust overlap = false(n,1); warning_state = warning('off','MATLAB:singularMatrix'); % Use try-catch to guarantee original warning state is restored. try lastwarn('') for k = 1:n T(:,k) = AA(:,:,k)\B(:,k); [unused,last_warn] = lastwarn; %#ok<ASGLU> lastwarn('') if strcmp(last_warn,'MATLAB:singularMatrix') % Force in_range(k) to be false. T(1,k) = NaN; % Determine if these segments overlap or are just parallel. overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps; end end warning(warning_state) catch err warning(warning_state) rethrow(err) end % Find where t1 and t2 are between 0 and 1 and return the corresponding % x0 and y0 values. in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1).'; % For overlapping segment pairs the algorithm will return an % intersection point that is at the center of the overlapping region. if any(overlap) ia = i(overlap); ja = j(overlap); % set x0 and y0 to middle of overlapping region. T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1))) + ... min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2; T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1))) + ... min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2; selected = in_range | overlap; else selected = in_range; end xy0 = T(3:4,selected).'; % Remove duplicate intersection points. [xy0,index] = unique(xy0,'rows'); x0 = xy0(:,1); y0 = xy0(:,2); % Compute how far along each line segment the intersections are. if nargout > 2 sel_index = find(selected); sel = sel_index(index); iout = i(sel) + T(1,sel).'; jout = j(sel) + T(2,sel).'; end else % non-robust option for k = 1:n [L,U] = lu(AA(:,:,k)); T(:,k) = U\(L\B(:,k)); end % Find where t1 and t2 are between 0 and 1 and return the corresponding % x0 and y0 values. in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1).'; x0 = T(3,in_range).'; y0 = T(4,in_range).'; % Compute how far along each line segment the intersections are. if nargout > 2 iout = i(in_range) + T(1,in_range).'; jout = j(in_range) + T(2,in_range).'; end end % Plot the results (useful for debugging). % plot(x1,y1,x2,y2,x0,y0,'ok'); function y = mvmin(x) % Faster implementation of movmin(x,k) when k = 1. y = min(x(1:end-1),x(2:end)); function y = mvmax(x) % Faster implementation of movmax(x,k) when k = 1. y = max(x(1:end-1),x(2:end));
github
mohammadzainabbas/Digital-Communication-master
OFDM_AWGN.m
.m
Digital-Communication-master/Project/MIMO OFDM/OFDM_AWGN.m
14,570
utf_8
4f1deec5c4b46b12bef0fcf0a2e1bb18
function OFDM_AWGN() M = 2; % Modulation alphabet k = log2(M); % Bits/symbol numSC = 128; % Number of OFDM subcarriers cpLen = 32; % OFDM cyclic prefix length maxBitErrors = 100; % Maximum number of bit errors maxNumBits = 1e7; % Maximum number of bits transmitted hQPSKMod = comm.DBPSKModulator; hQPSKDemod = comm.DBPSKDemodulator; hOFDMmod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hOFDMdemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hChan = comm.AWGNChannel('NoiseMethod','Variance', ... 'VarianceSource','Input port'); hError = comm.ErrorRate('ResetInputPort',true); ofdmInfo = info(hOFDMmod) numDC = ofdmInfo.DataInputSize(1) frameSize = [k*numDC 1]; EbNoVec = (0:33)'; snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC); berVec = zeros(length(EbNoVec),3); errorStats = zeros(1,3); for m = 1:length(EbNoVec) snr = snrVec(m); while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits dataIn = randi([0,1],frameSize); % Generate binary data qpskTx = step(hQPSKMod,dataIn); % Apply QPSK modulation txSig = step(hOFDMmod,qpskTx); % Apply OFDM modulation powerDB = 10*log10(var(txSig)); % Calculate Tx signal power noiseVar = 10.^(0.1*(powerDB-snr)); % Calculate the noise variance rxSig = step(hChan,txSig,noiseVar); % Pass the signal through a noisy channel qpskRx = step(hOFDMdemod,rxSig); % Apply OFDM demodulation dataOut = step(hQPSKDemod,qpskRx); % Apply QPSK demodulation errorStats = step(hError,dataIn,dataOut,0); % Collect error statistics end berVec(m,:) = errorStats; % Save BER data errorStats = step(hError,dataIn,dataOut,1); % Reset the error rate calculator end hQPSKMod = comm.BPSKModulator; hQPSKDemod = comm.BPSKDemodulator; hOFDMmod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hOFDMdemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hChan = comm.AWGNChannel('NoiseMethod','Variance', ... 'VarianceSource','Input port'); hError = comm.ErrorRate('ResetInputPort',true); ofdmInfo = info(hOFDMmod) numDC = ofdmInfo.DataInputSize(1) frameSize = [k*numDC 1]; EbNoVec = (0:33)'; snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC); berVec1 = zeros(length(EbNoVec),3); errorStats = zeros(1,3); for m = 1:length(EbNoVec) snr = snrVec(m); while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits dataIn = randi([0,1],frameSize); % Generate binary data qpskTx = step(hQPSKMod,dataIn); % Apply QPSK modulation txSig = step(hOFDMmod,qpskTx); % Apply OFDM modulation powerDB = 10*log10(var(txSig)); % Calculate Tx signal power noiseVar = 10.^(0.1*(powerDB-snr)); % Calculate the noise variance rxSig = step(hChan,txSig,noiseVar); % Pass the signal through a noisy channel qpskRx = step(hOFDMdemod,rxSig); % Apply OFDM demodulation dataOut = step(hQPSKDemod,qpskRx); % Apply QPSK demodulation errorStats = step(hError,dataIn,dataOut,0); % Collect error statistics end berVec1(m,:) = errorStats; % Save BER data errorStats = step(hError,dataIn,dataOut,1); % Reset the error rate calculator end M = 4; % Modulation alphabet k = log2(M); % Bits/symbol numSC = 128; % Number of OFDM subcarriers cpLen = 32; % OFDM cyclic prefix length maxBitErrors = 100; % Maximum number of bit errors maxNumBits = 1e7; % Maximum number of bits transmitted hQPSKMod = comm.QPSKModulator('BitInput',true); hQPSKDemod = comm.QPSKDemodulator('BitOutput',true); hOFDMmod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hOFDMdemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hChan = comm.AWGNChannel('NoiseMethod','Variance', ... 'VarianceSource','Input port'); hError = comm.ErrorRate('ResetInputPort',true); ofdmInfo = info(hOFDMmod) numDC = ofdmInfo.DataInputSize(1) frameSize = [k*numDC 1]; EbNoVec = (0:33)'; snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC); berVec3 = zeros(length(EbNoVec),3); errorStats = zeros(1,3); for m = 1:length(EbNoVec) snr = snrVec(m); while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits dataIn = randi([0,1],frameSize); % Generate binary data qpskTx = step(hQPSKMod,dataIn); % Apply QPSK modulation txSig = step(hOFDMmod,qpskTx); % Apply OFDM modulation powerDB = 10*log10(var(txSig)); % Calculate Tx signal power noiseVar = 10.^(0.1*(powerDB-snr)); % Calculate the noise variance rxSig = step(hChan,txSig,noiseVar); % Pass the signal through a noisy channel qpskRx = step(hOFDMdemod,rxSig); % Apply OFDM demodulation dataOut = step(hQPSKDemod,qpskRx); % Apply QPSK demodulation errorStats = step(hError,dataIn,dataOut,0); % Collect error statistics end berVec3(m,:) = errorStats; % Save BER data errorStats = step(hError,dataIn,dataOut,1); % Reset the error rate calculator end hQPSKMod = comm.DQPSKModulator('BitInput',true); hQPSKDemod = comm.DQPSKDemodulator('BitOutput',true); hOFDMmod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hOFDMdemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hChan = comm.AWGNChannel('NoiseMethod','Variance', ... 'VarianceSource','Input port'); hError = comm.ErrorRate('ResetInputPort',true); ofdmInfo = info(hOFDMmod) numDC = ofdmInfo.DataInputSize(1) frameSize = [k*numDC 1]; EbNoVec = (0:33)'; snrVec5 = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC); berVec5 = zeros(length(EbNoVec),3); errorStats = zeros(1,3); for m = 1:length(EbNoVec) snr = snrVec5(m); while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits dataIn = randi([0,1],frameSize); % Generate binary data qpskTx = step(hQPSKMod,dataIn); % Apply QPSK modulation txSig = step(hOFDMmod,qpskTx); % Apply OFDM modulation powerDB = 10*log10(var(txSig)); % Calculate Tx signal power noiseVar = 10.^(0.1*(powerDB-snr)); % Calculate the noise variance rxSig = step(hChan,txSig,noiseVar); % Pass the signal through a noisy channel qpskRx = step(hOFDMdemod,rxSig); % Apply OFDM demodulation dataOut = step(hQPSKDemod,qpskRx); % Apply QPSK demodulation errorStats = step(hError,dataIn,dataOut,0); % Collect error statistics end berVec5(m,:) = errorStats; % Save BER data errorStats = step(hError,dataIn,dataOut,1); % Reset the error rate calculator end M = 8; % Modulation alphabet k = log2(M); % Bits/symbol numSC = 128; % Number of OFDM subcarriers cpLen = 32; % OFDM cyclic prefix length maxBitErrors = 100; % Maximum number of bit errors maxNumBits = 1e7; % Maximum number of bits transmitted hQPSKMod = comm.PSKModulator('BitInput',true); hQPSKDemod = comm.PSKDemodulator('BitOutput',true); hOFDMmod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hOFDMdemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hChan = comm.AWGNChannel('NoiseMethod','Variance', ... 'VarianceSource','Input port'); hError = comm.ErrorRate('ResetInputPort',true); ofdmInfo = info(hOFDMmod) numDC = ofdmInfo.DataInputSize(1) frameSize = [k*numDC 1]; EbNoVec = (0:33)'; snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC); berVec4 = zeros(length(EbNoVec),3); errorStats = zeros(1,3); for m = 1:length(EbNoVec) snr = snrVec(m); while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits dataIn = randi([0,1],frameSize); % Generate binary data qpskTx = step(hQPSKMod,dataIn); % Apply QPSK modulation txSig = step(hOFDMmod,qpskTx); % Apply OFDM modulation powerDB = 10*log10(var(txSig)); % Calculate Tx signal power noiseVar = 10.^(0.1*(powerDB-snr)); % Calculate the noise variance rxSig = step(hChan,txSig,noiseVar); % Pass the signal through a noisy channel qpskRx = step(hOFDMdemod,rxSig); % Apply OFDM demodulation dataOut = step(hQPSKDemod,qpskRx); % Apply QPSK demodulation errorStats = step(hError,dataIn,dataOut,0); % Collect error statistics end berVec4(m,:) = errorStats; % Save BER data errorStats = step(hError,dataIn,dataOut,1); % Reset the error rate calculator end hQPSKMod = comm.DPSKModulator('BitInput',true); hQPSKDemod = comm.DPSKDemodulator('BitOutput',true); hOFDMmod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hOFDMdemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen); hChan = comm.AWGNChannel('NoiseMethod','Variance', ... 'VarianceSource','Input port'); hError = comm.ErrorRate('ResetInputPort',true); ofdmInfo = info(hOFDMmod) numDC = ofdmInfo.DataInputSize(1) frameSize = [k*numDC 1]; EbNoVec = (0:33)'; snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC); berVec2 = zeros(length(EbNoVec),3); errorStats = zeros(1,3); for m = 1:length(EbNoVec) snr = snrVec(m); while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits dataIn = randi([0,1],frameSize); % Generate binary data qpskTx = step(hQPSKMod,dataIn); % Apply QPSK modulation txSig = step(hOFDMmod,qpskTx); % Apply OFDM modulation powerDB = 10*log10(var(txSig)); % Calculate Tx signal power noiseVar = 10.^(0.1*(powerDB-snr)); % Calculate the noise variance rxSig = step(hChan,txSig,noiseVar); % Pass the signal through a noisy channel qpskRx = step(hOFDMdemod,rxSig); % Apply OFDM demodulation dataOut = step(hQPSKDemod,qpskRx); % Apply QPSK demodulation errorStats = step(hError,dataIn,dataOut,0); % Collect error statistics end berVec2(m,:) = errorStats; % Save BER data errorStats = step(hError,dataIn,dataOut,1); % Reset the error rate calculator end figure semilogy(EbNoVec,berVec1(:,1),'--*') hold on semilogy(EbNoVec,berVec5(:,1),'--*') hold on semilogy(EbNoVec,berVec4(:,1),'--*') hold on semilogy(EbNoVec,berVec(:,1),'--*') hold on semilogy(EbNoVec,berVec3(:,1),'--*') hold on semilogy(EbNoVec,berVec2(:,1),'--*') hold on EsN0dB = [0:33]; % symbol to noise ratio M=16; % 16QAM/64QAM and 256 QAM k = sqrt(1/((2/3)*(M-1))); simSer1(1,:) = compute_symbol_error_rate(EsN0dB, M(1)); semilogy(EsN0dB,simSer1(1,:),'r*'); M=64; k = sqrt(1/((2/3)*(M-1))); simSer2(2,:) = compute_symbol_error_rate(EsN0dB, M); hold on semilogy(EsN0dB,simSer2(2,:),'b*'); M=256; k = sqrt(1/((2/3)*(M-1))); simSer3(3,:) = compute_symbol_error_rate(EsN0dB, M); hold on semilogy(EsN0dB,simSer3(3,:),'g*'); legend('BPSK','QPSK','8-PSK','DBPSK','DQPSK','8-DPSK','16-QAM','64-QAM','256-QAM','Location','SouthWest') title('SNR vs BER for BPSK/QPSK/8-PSK/DBPSK/DQPSK/8-DPSK/16,64,256-QAM MIMO OFDM over AWGN') xlabel('Eb/No (dB)') ylabel('Bit Error Rate') grid on hold off return ; function [simSer] = compute_symbol_error_rate(EsN0dB, M); nFFT = 64; % fft size nDSC = 52; % number of data subcarriers nConstperOFDMsym = 52; % number of bits per OFDM symbol (same as the number of subcarriers for BPSK) nOFDMsym = 10^4; % number of ofdm symbols k = sqrt(1/((2/3)*(M-1))); % normalizing factor m = [1:sqrt(M)/2]; % alphabets alphaMqam = [-(2*m-1) 2*m-1]; EsN0dB_eff = EsN0dB + 10*log10(nDSC/nFFT) + 10*log10(64/80); % accounting for the used subcarriers and cyclic prefix for ii = 1:length(EsN0dB) ipMod = randsrc(1,nConstperOFDMsym*nOFDMsym,alphaMqam) + j*randsrc(1,nConstperOFDMsym*nOFDMsym,alphaMqam); ipMod_norm = k*reshape(ipMod,nConstperOFDMsym,nOFDMsym).'; % grouping into multiple symbolsa xF = [zeros(nOFDMsym,6) ipMod_norm(:,[1:nConstperOFDMsym/2]) zeros(nOFDMsym,1) ipMod_norm(:,[nConstperOFDMsym/2+1:nConstperOFDMsym]) zeros(nOFDMsym,5)] ; xt = (nFFT/sqrt(nDSC))*ifft(fftshift(xF.')).'; xt = [xt(:,[49:64]) xt]; xt = reshape(xt.',1,nOFDMsym*80); nt = 1/sqrt(2)*[randn(1,nOFDMsym*80) + j*randn(1,nOFDMsym*80)]; % Adding noise, the term sqrt(80/64) is to account for the wasted energy due to cyclic prefix yt = sqrt(80/64)*xt + 10^(-EsN0dB_eff(ii)/20)*nt; yt = reshape(yt.',80,nOFDMsym).'; % formatting the received vector into symbols yt = yt(:,[17:80]); % removing cyclic prefix yF = (sqrt(nDSC)/nFFT)*fftshift(fft(yt.')).'; yMod = sqrt(64/80)*yF(:,[6+[1:nConstperOFDMsym/2] 7+[nConstperOFDMsym/2+1:nConstperOFDMsym] ]); y_re = real(yMod)/k; y_im = imag(yMod)/k; ipHat_re = 2*floor(y_re/2)+1; ipHat_re(find(ipHat_re>max(alphaMqam))) = max(alphaMqam); ipHat_re(find(ipHat_re<min(alphaMqam))) = min(alphaMqam); ipHat_im = 2*floor(y_im/2)+1; ipHat_im(find(ipHat_im>max(alphaMqam))) = max(alphaMqam); ipHat_im(find(ipHat_im<min(alphaMqam))) = min(alphaMqam); ipHat = ipHat_re + j*ipHat_im; % converting to vector ipHat_v = reshape(ipHat.',nConstperOFDMsym*nOFDMsym,1).'; % counting the errors nErr(ii) = size(find(ipMod - ipHat_v ),2); end simSer = nErr/(nOFDMsym*nConstperOFDMsym); return;
github
mohammadzainabbas/Digital-Communication-master
playing_with_OFDM.m
.m
Digital-Communication-master/Project/Animated OFDM/playing_with_OFDM.m
40,142
utf_8
71e051b3bd99fb915fe298f8ab87a662
function varargout = playing_with_OFDM(varargin) % PLAYING_WITH_OFDM MATLAB code for playing_with_OFDM.fig % PLAYING_WITH_OFDM, by itself, creates a new PLAYING_WITH_OFDM or raises the existing % singleton*. % % H = PLAYING_WITH_OFDM returns the handle to a new PLAYING_WITH_OFDM or the handle to % the existing singleton*. % % PLAYING_WITH_OFDM('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in PLAYING_WITH_OFDM.M with the given input arguments. % % PLAYING_WITH_OFDM('Property','Value',...) creates a new PLAYING_WITH_OFDM or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before playing_with_OFDM_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to playing_with_OFDM_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help playing_with_OFDM % Last Modified by GUIDE v2.5 12-Oct-2016 17:01:44 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @playing_with_OFDM_OpeningFcn, ... 'gui_OutputFcn', @playing_with_OFDM_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before playing_with_OFDM is made visible. function playing_with_OFDM_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to playing_with_OFDM (see VARARGIN) % Choose default command line output for playing_with_OFDM handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes playing_with_OFDM wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = playing_with_OFDM_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) function edit11_Callback(hObject, eventdata, handles) % hObject handle to edit11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit11 as text % str2double(get(hObject,'String')) returns contents of edit11 as a double % --- Executes during object creation, after setting all properties. function edit11_CreateFcn(hObject, eventdata, handles) % hObject handle to edit11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit6_Callback(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit6 as text % str2double(get(hObject,'String')) returns contents of edit6 as a double global snrValNew; try snrValNew = eval(get(hObject,'String')); catch set(handles.text18, 'String','enter a valid SNR'); end % --- Executes during object creation, after setting all properties. function edit6_CreateFcn(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit7_Callback(hObject, eventdata, handles) % hObject handle to edit7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit7 as text % str2double(get(hObject,'String')) returns contents of edit7 as a double global pathGainsNew; try pathGainsNew = eval(get(hObject,'String')); catch set(handles.text18, 'String','enter valid path gains'); end % --- Executes during object creation, after setting all properties. function edit7_CreateFcn(hObject, eventdata, handles) % hObject handle to edit7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit8_Callback(hObject, eventdata, handles) % hObject handle to edit8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit8 as text % str2double(get(hObject,'String')) returns contents of edit8 as a double global fdopNew; try fdopNew = eval(get(hObject,'String')); catch set(handles.text18, 'String','enter a valid doppler frequency'); end % --- Executes during object creation, after setting all properties. function edit8_CreateFcn(hObject, eventdata, handles) % hObject handle to edit8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu2. function popupmenu2_Callback(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu2 % --- Executes during object creation, after setting all properties. function popupmenu2_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double global fsNew; try fsNew = eval(get(hObject,'String')); % sampling frequency catch set(handles.text18, 'String','enter a valid sampling frequency'); end % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit2_Callback(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit2 as text % str2double(get(hObject,'String')) returns contents of edit2 as a double global bwSigNew; try bwSigNew = eval(get(hObject,'String')); % signal bandwidth catch set(handles.text18, 'String','enter a valid bandwidth'); end % --- Executes during object creation, after setting all properties. function edit2_CreateFcn(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit3_Callback(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit3 as text % str2double(get(hObject,'String')) returns contents of edit3 as a double global fsubNew; try fsubNew = eval(get(hObject,'String')); % sub-carrier spacing catch set(handles.text18, 'String','enter a valid sub-carrier spacing'); end % --- Executes during object creation, after setting all properties. function edit3_CreateFcn(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit4_Callback(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit4 as text % str2double(get(hObject,'String')) returns contents of edit4 as a double global symRateNew; % symbol rate try symRateNew = eval(get(hObject,'String')); % symbol rate catch set(handles.text18, 'String','enter a valid OFDM symbol rate'); end % --- Executes during object creation, after setting all properties. function edit4_CreateFcn(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit5_Callback(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit5 as text % str2double(get(hObject,'String')) returns contents of edit5 as a double global NcpNew; % number of CP samples global fsubNew; global bwSigNew; Nsc = round(bwSigNew/fsubNew); try NcpTmp = eval(get(hObject,'String')); % number of CP samples at sampling rate Fs catch set(handles.text18, 'String','enter a valid CP length'); end if NcpTmp >= Nsc set(handles.text18, 'String','choose a smaller CP length'); else NcpNew = NcpTmp; set(handles.text18, 'String',''); end % --- Executes during object creation, after setting all properties. function edit5_CreateFcn(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu1 global modTypeStrNew; contents = cellstr(get(hObject,'String')); modTypeStrNew = contents{get(hObject,'Value')}; % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit9_Callback(hObject, eventdata, handles) % hObject handle to edit9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit9 as text % str2double(get(hObject,'String')) returns contents of edit9 as a double global dpSpeed; dpSpeed = eval(get(hObject,'String')); % --- Executes during object creation, after setting all properties. function edit9_CreateFcn(hObject, eventdata, handles) % hObject handle to edit9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit10_Callback(hObject, eventdata, handles) % hObject handle to edit10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit10 as text % str2double(get(hObject,'String')) returns contents of edit10 as a double global numOfdmSymsOnGridNew; try numOfdmSymsOnGridNew = eval(get(hObject,'String')); catch set(handles.text18, 'String','enter a valid number of OFDM symbols to display'); end % --- Executes during object creation, after setting all properties. function edit10_CreateFcn(hObject, eventdata, handles) % hObject handle to edit10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) dbstop if error; global setDefaultFlag; if isempty(setDefaultFlag) set_default_vals(); end global bwSig; global fs; global fsChan; global fsub; global symRate; global fdop; global modTypeStr; global pathGains; global pathDelays; global Ncp; global numOfdmSymsOnGrid; global viewTimeDomainWaveform; global viewSubCarriers; global pauseSim; global exitButton; global viewChEst3D; global viewChEstMagPhase; global useIdealChEstForEq; global snrVal; global cfoVal; global viewEVM; %% chStruct.doppFilCoeff = get_dopp_filter(fdop, fsChan); chanState = []; sigState = []; awgnDoppLastSamp = []; fdopPrev = fdop; viewSubCarrierOsr = 10; numViewSubCarriers = 10; fsubSymRatioPrev = fsub/symRate; firstTimePlotFlg = 0; fsPrev = fs; NcpPrev = Ncp; bwSigPrev = bwSig; fsubPrev = fsub; %doppFilOpArr = []; pilotSpacing = 3; viewTimeDomainWaveformPrev = 0; viewSubCarriersPrev = 0; viewChEst3DPrev = 0; viewChEstMagPhasePrev = 0; % generate FFT input based on modulation type for loopCnt = 1:10000 try if loopCnt == 1 || ~isequal(fsPrev, fs) || ~isequal(NcpPrev, Ncp) || ~isequal(fsubPrev, fsub) || ~isequal(bwSigPrev, bwSig) Nsc = round(bwSig/fsub); % number of sub-carriers = bandwidth/sub-carrier spacing Nsc = double(mod(Nsc, 2) == 0) * (Nsc-1) + double(mod(Nsc, 2) == 1) * Nsc; fftOpArr = zeros(Nsc, numOfdmSymsOnGrid); % raw received OFDM symbols (Resource Elements) fftOpEqArr = zeros(Nsc, numOfdmSymsOnGrid); % equalized OFDM symbols (Zero-forcing) fftOpEqVec = zeros(1, Nsc*numOfdmSymsOnGrid); chEstInterpArr = zeros(Nsc, numOfdmSymsOnGrid); txSigArr = zeros(1, (Nsc+Ncp) * numOfdmSymsOnGrid); idealChanFreqDomainArr = zeros(Nsc, numOfdmSymsOnGrid); % ideal channel for "numOfdmSymsOnGrid" OFDM symbols fsPrev = fs; NcpPrev = Ncp; fsubPrev = fsub; bwSigPrev = bwSig; cfoValPrev = 0; fsChan = ceil(fs/(Nsc+Ncp)); end if pauseSim == 1 set(handles.pushbutton5,'string','RESUME','enable','on'); if exitButton == 1; close(handles.figure1); return; end pause(1);continue; else set(handles.pushbutton5,'string','PAUSE','enable','on'); end switch modTypeStr case 'BPSK' fftIp = (2*round(rand(1, Nsc))-1); evmConstRef = unique((2*round(rand(1, 1e2))-1)); txPwr = 1; case 'QPSK' fftIp = (2*round(rand(1, Nsc))-1) + 1j*(2*round(rand(1, Nsc)) -1); evmConstRef = unique((2*round(rand(1, 1e2))-1) + 1j*(2*round(rand(1, 1e2))-1)); txPwr = 2; case '16QAM' fftIp = (2*round(3*rand(1, Nsc))-3) + 1j*(2*round(3*rand(1, Nsc)) -3); evmConstRef = unique((2*round(3*rand(1, 1e2))-3) + 1j*(2*round(3*rand(1, 1e2))-3)); txPwr = 10; case '64QAM' fftIp = (2*round(7*rand(1, Nsc))-7) + 1j*(2*round(7*rand(1, Nsc)) -7); evmConstRef = unique((2*round(7*rand(1, 1e3))-7) + 1j*(2*round(7*rand(1, 1e3))-7)); txPwr = 42; case '256QAM' fftIp = (2*round(15*rand(1, Nsc))-15) + 1j*(2*round(15*rand(1, Nsc)) -15); evmConstRef = unique((2*round(15*rand(1, 1e3))-15) + 1j*(2*round(15*rand(1, 1e3))-15)); txPwr = 170; otherwise % DEFAULT is QPSK fftIp = (2*round(rand(1, Nsc))-1) + 1j*(2*round(rand(1, Nsc)) -1); evmConstRef = unique((2*round(rand(1, 1e2))-1) + 1j*(2*round(rand(1, 1e2))-1)); txPwr = 2; end % insert pilot symbols %chEstIdeal = (1+1j)/sqrt(2)*sqrt(txPwr); chEstIdeal = max(real(evmConstRef)) + 1j*max(imag(evmConstRef)); fftIp([1:pilotSpacing:end]) = chEstIdeal; fftIpIntf = fftIp*sinc(1/symRate*([0:fsub:fsub*Nsc-fsub]'*ones(1,Nsc)-ones(Nsc, 1)*[0:1:Nsc-1]*fsub)).'; if fdop ~= fdopPrev chStruct.doppFilCoeff = get_dopp_filter(fdop, fsChan); end fdopPrev = fdop; % insert CP and take IFFT txSig = ifft([fftIpIntf])*sqrt(Nsc);%/Nsc; txSig = [txSig(end-Ncp+1:end) txSig]; txSigArr(1:(Ncp+Nsc)*(numOfdmSymsOnGrid-1)) = txSigArr(Ncp+Nsc+1:end); txSigArr((Ncp+Nsc)*(numOfdmSymsOnGrid-1)+1:end) = txSig; % Apply multipath channel [multipathChanOp, sigState, chanState, idealChan, doppFilResampled, awgnDoppLastSamp] = myrayleighchan(txSig, chStruct, pathGains, pathDelays, fs, fsChan, sigState, chanState, awgnDoppLastSamp); % Apply noise chPwr = sum(10.^(pathGains/10)); noiseVec = sqrt(chPwr*txPwr)*(1/sqrt(2))*(randn(size(multipathChanOp)) + 1j * randn(size(multipathChanOp)))*10^(-snrVal/20); rxSigNoise = multipathChanOp + noiseVec; % Apply CFO and sample offset rxSigNoiseCfo = rxSigNoise.*exp(1j*2*pi*[0:1:Nsc+Ncp-1]*cfoVal/fs + cfoValPrev); cfoValPrev = 1j*2*pi*(Nsc+Ncp-1)*cfoVal/fs + cfoValPrev; % CP removal % FFT fftOp = fft(rxSigNoiseCfo(Ncp+1:end)); chEstRaw = fftOp(1:pilotSpacing:end)/chEstIdeal; pilotIndices = [1:pilotSpacing:ceil(Nsc/pilotSpacing)*pilotSpacing]; try chEstInterp = interp1(pilotIndices,chEstRaw, [1:1:max(pilotIndices)]); catch chEstInterp = chEstRaw; end chEstInterp(max(pilotIndices)+1:Nsc) = chEstInterp(max(pilotIndices)); % ideal channel frequency domain idealChanFreqDomain = fft(idealChan(1:end-Ncp))*sqrt(Nsc); % equalization if useIdealChEstForEq == 1 fftOpEq = fftOp./idealChanFreqDomain; else fftOpEq = fftOp./chEstInterp; end idealChanFreqDomainArr(:, 1:end-1) = idealChanFreqDomainArr(:, 2:end); idealChanFreqDomainArr(:, end) = idealChanFreqDomain.'; fftOpArr(:, 1:end-1) = fftOpArr(:, 2:end); fftOpArr(:, end) = fftOp.'; fftOpEqArr(:, 1:end-1) = fftOpEqArr(:, 2:end); fftOpEqArr(:, end) = fftOpEq.'; fftOpEqVec(1:(numOfdmSymsOnGrid-1)*Nsc) = fftOpEqVec([1:(numOfdmSymsOnGrid-1)*Nsc] + Nsc); fftOpEqVec([1:Nsc]+(numOfdmSymsOnGrid-1)*Nsc) = fftOpEq; chEstInterpArr(:, 1:end-1) = chEstInterpArr(:, 2:end); chEstInterpArr(:, end) = chEstInterp.'; surf(handles.axes1, abs(idealChanFreqDomainArr)); zLimit = max(max(abs(idealChanFreqDomainArr))); xlabel(handles.axes1, 'OFDM symbol');ylabel(handles.axes1, 'sub-carrier');zlabel(handles.axes1, 'Amplitude'); set(handles.axes1, 'zlim', [0 zLimit]); %drawnow(); plot(handles.axes2, fftOpEqVec, 'k*'); xlabel(handles.axes2, 'Real');ylabel(handles.axes2, 'Imaginary'); set(handles.axes2, 'xlim', [-16 16], 'ylim', [-16 16]); drawnow(); if viewEVM == 1 [evmVal] = evm_compute(fftOpEq, evmConstRef); set(handles.edit11,'string',evmVal); else set(handles.edit11,'string','NA'); end % VIEW TIME DOMAIN WAVEFORM if viewTimeDomainWaveform == 1 figure(1);plot([0:1/fs:(Nsc+Ncp)*numOfdmSymsOnGrid/fs-1/fs], abs(txSigArr), 'b');xlabel('time (seconds)');ylabel('Amplitude');title('OFDM time domain waveform (magnitude) at fs'); else if viewTimeDomainWaveform ~= viewTimeDomainWaveformPrev close(figure(1)); end end viewTimeDomainWaveformPrev = viewTimeDomainWaveform; % VIEW SUB-CARRIERS (WIDTH AND SPACING RELATION) if viewSubCarriers == 1 fsubSymRatio = fsub/symRate; if fsubSymRatio ~= fsubSymRatioPrev firstTimePlotFlg = 0; end % the sub-carrier plot does not change for every iteration % it changes only when the symbol rate or the sub-carrier spacing is changed if firstTimePlotFlg == 0 sincMat = sinc(1/symRate*([0:fsub/viewSubCarrierOsr:numViewSubCarriers*fsub-fsub/viewSubCarrierOsr]'*ones(1,numViewSubCarriers)-ones(numViewSubCarriers*viewSubCarrierOsr, 1)*[0:1:numViewSubCarriers-1]*fsub)).'; figure(2);plot([0:1/viewSubCarrierOsr:numViewSubCarriers-1/viewSubCarrierOsr]*fsub, sincMat);xlabel('frequency (Hz)');ylabel('Amplitutde');title('Sub-carrier spacing and symbol rate relation'); drawnow(); firstTimePlotFlg = 1; end fsubSymRatioPrev = fsubSymRatio; else if viewSubCarriersPrev ~= viewSubCarriers close(figure(2)); end firstTimePlotFlg = 0; end viewSubCarriersPrev = viewSubCarriers; % CHANNEL ESTIMATE if viewChEst3D == 1 figure(3); surf(abs(chEstInterpArr)); title('Channel Estimate - 3D view');zLimit = max(max(abs(chEstInterpArr)));xlabel('OFDM symbol');ylabel('sub-carrier');zlabel('Amplitude'); else if viewChEst3D ~= viewChEst3DPrev close(figure(3)); end end viewChEst3DPrev = viewChEst3D; if viewChEstMagPhase == 1 figure(4);subplot(211);title('Channel Estimate for each OFDM symbol'); plot(abs(chEstInterp), 'b-x');hold on;plot(abs(idealChanFreqDomain), 'r-o');hold off;xlabel('sub-carrier number');ylabel('Amplitude');grid on;legend('Estimated channel','Ideal channel'); subplot(212); plot(angle(chEstInterp), 'b-x');hold on;plot(angle(idealChanFreqDomain), 'r-o');hold off;xlabel('sub-carrier number');ylabel('Phase');grid on;legend('Estimated channel','Ideal channel'); else if viewChEstMagPhase ~= viewChEstMagPhasePrev close(figure(4)); end end viewChEstMagPhasePrev = viewChEstMagPhase; if exitButton == 1; close(handles.figure1); return; end catch if exitButton == 1; close(handles.figure1); return; end set(handles.text18, 'String','Something has gone wrong! \n Exit and start over again'); continue; end end function set_default_vals() global bwSig; global fs; global fsChan; global fsub; global symRate; global fdop; global modTypeStr; global pathGains; global pathGainsTmp; global pathDelays; global pathDelaysTmp; global Ncp; global numOfdmSymsOnGrid; global setDefaultFlag; global viewTimeDomainWaveform; global viewSubCarriers; global pauseSim; global exitButton; global viewChEst3D; global viewChEstMagPhase; global useIdealChEstForEq; global snrVal; global cfoVal; global phOffsetVal; global viewEVM; global bwSigNew; global fsNew; global fsChanNew; global fsubNew; global symRateNew; global fdopNew; global modTypeStrNew; global pathGainsNew; global pathDelaysNew; global NcpNew; global numOfdmSymsOnGridNew; global snrValNew; global cfoValNew; global phOffsetValNew; setDefaultFlag = 1; bwSig = 1.4e6; fs = 1.92e6; fsChan = 0.01*fs; fsub = 15e3; symRate = fsub*1; fdop = 300; modTypeStr = 'QPSK'; pathGains = [0 -3 -6 -9]; pathGainsTmp = pathGains; pathDelays = [0 0.4e-6 1e-6 1.5e-6]; % path delays in seconds pathDelaysTmp = pathDelays; Ncp = 20; numOfdmSymsOnGrid = 14; viewTimeDomainWaveform = 0; viewSubCarriers = 0; pauseSim = 0; exitButton = 0; viewChEst3D = 0; viewChEstMagPhase = 0; useIdealChEstForEq = 0; snrVal = 1000; cfoVal = 0; phOffsetVal = 0; viewEVM = 0; bwSigNew = bwSig; fsNew = fs; fsChanNew = fsChan; fsubNew = fsub; symRateNew = symRate; fdopNew = fdop; modTypeStrNew = modTypeStr; pathGainsNew = pathGains; pathDelaysNew = pathDelays; NcpNew = Ncp; numOfdmSymsOnGridNew = numOfdmSymsOnGrid; snrValNew = snrVal; cfoValNew = cfoVal; phOffsetValNew = phOffsetVal; % EVM COMPUTATION function [evmVal] = evm_compute(complexSyms, evmConstRef) M = length(evmConstRef); % find the reference point closest to the complex symbols evmConstRefRepMat = (evmConstRef.'*ones(1, length(complexSyms))); % find euclidean distance and compute EVM [minDisVec, indexVec] = min((abs((ones(M, 1)*complexSyms) - evmConstRefRepMat).^2)); evmVal = sqrt(sum(minDisVec.^2)./sum(abs(evmConstRefRepMat([0:M:length(complexSyms)*M-1]+indexVec)).^2)); evmVal = round(evmVal*1e4)/1e4; function edit12_Callback(hObject, eventdata, handles) % hObject handle to edit12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit12 as text % str2double(get(hObject,'String')) returns contents of edit12 as a double global pathDelaysNew; try pathDelaysNew = eval(get(hObject,'String')); catch set(handles.text18, 'String','enter valid path delays'); end % --- Executes during object creation, after setting all properties. function edit12_CreateFcn(hObject, eventdata, handles) % hObject handle to edit12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in radiobutton1. function radiobutton1_Callback(hObject, eventdata, handles) % hObject handle to radiobutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of radiobutton1 global viewTimeDomainWaveform; viewTimeDomainWaveform = get(hObject,'Value'); % --- Executes on button press in radiobutton2. function radiobutton2_Callback(hObject, eventdata, handles) % hObject handle to radiobutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of radiobutton2 global viewSubCarriers viewSubCarriers = get(hObject,'Value'); % --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, handles) % hObject handle to pushbutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global pauseSim; if pauseSim == 1 pauseSim = 0; else pauseSim = 1; end % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global exitButton; exitButton = 1; function edit14_Callback(hObject, eventdata, handles) % hObject handle to edit14 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit14 as text % str2double(get(hObject,'String')) returns contents of edit14 as a double global cfoValNew; try cfoValNew = eval(get(hObject,'String')); catch set(handles.text18, 'String','enter a valid carrier frequency offset'); end % --- Executes during object creation, after setting all properties. function edit14_CreateFcn(hObject, eventdata, handles) % hObject handle to edit14 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in radiobutton3. function radiobutton3_Callback(hObject, eventdata, handles) % hObject handle to radiobutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of radiobutton3 global viewChEst3D; viewChEst3D = get(hObject,'Value'); % --- Executes on button press in radiobutton4. function radiobutton4_Callback(hObject, eventdata, handles) % hObject handle to radiobutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of radiobutton4 global useIdealChEstForEq; useIdealChEstForEq = get(hObject,'Value'); % --- Executes on button press in radiobutton5. function radiobutton5_Callback(hObject, eventdata, handles) % hObject handle to radiobutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of radiobutton5 global viewChEstMagPhase; viewChEstMagPhase = get(hObject,'Value'); % --- Executes on button press in radiobutton6. function radiobutton6_Callback(hObject, eventdata, handles) % hObject handle to radiobutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of radiobutton6 global viewEVM; viewEVM = get(hObject, 'Value'); % --- Executes on button press in pushbutton7. function pushbutton7_Callback(hObject, eventdata, handles) % hObject handle to pushbutton7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global bwSig; global fs; global fsChan; global fsub; global symRate; global fdop; global modTypeStr; global pathGains; global pathDelays; global Ncp; global numOfdmSymsOnGrid; global snrVal; global cfoVal; global phOffsetVal; global bwSigNew; global fsNew; global fsChanNew; global fsubNew; global symRateNew; global fdopNew; global modTypeStrNew; global pathGainsNew; global pathDelaysNew; global NcpNew; global numOfdmSymsOnGridNew; global snrValNew; global cfoValNew; global phOffsetValNew; fsChan = fsChanNew; modTypeStr = modTypeStrNew; Ncp = NcpNew; numOfdmSymsOnGrid = numOfdmSymsOnGridNew; snrVal = snrValNew; cfoVal = cfoValNew; phOffsetVal = phOffsetValNew; set(handles.text18, 'String',''); if isequal(size(pathGainsNew), size(pathDelaysNew)) if ~isequal(pathGainsNew, pathGains) set(handles.text18, 'String','path gains are updated'); end pathGains = pathGainsNew; pathDelays = pathDelaysNew; else set(handles.text18, 'String','the sizes of path gains and path delays are not compatible - consider revision'); pathGainsStr = sprintf('%0.1f,', round(pathGains*10)/10); pathDelaysStr = sprintf('%0.1f,', round(pathDelays*1e6*10)/10); set(handles.edit7, 'String', ['[' pathGainsStr(1:end-1) ']']); set(handles.edit12, 'String', ['[' pathDelaysStr(1:end-1) ']*1e-6']); pathDelaysNew = pathDelays; pathGainsNew = pathGains; end if fsNew < bwSigNew set(handles.text18, 'String','choose sampling frequency greater than the bandwidth'); set(handles.edit1, 'String', [num2str(fs/1e6) 'e6']); set(handles.edit2, 'String', [num2str(bwSig/1e6) 'e6']); bwSigNew = bwSig; fsNew = fs; else bwSig = bwSigNew; fs = fsNew; end % Caution - DO NOT move the following condition from the current position % bandwidth value needs to be frozen before sub-carrier spacing is determined if fsubNew > (bwSig/4) % 4 is by choice if ~isequal(fsub, fsubNew) set(handles.text18, 'String','choose a smaller sub-carrier spacing'); set(handles.edit3, 'String', [num2str(fsub/1e3) 'e3']); fsubNew = fsub; else set(handles.text18, 'String','bandwidth too low - forcing a higher bandwidth'); set(handles.edit2, 'String', [num2str(fsub*4/1e3) 'e3']); bwSig = fsub*4; bwSigNew = bwSig; end else fsub = fsubNew; end % Caution - DO NOT move the following condition from the current position % bandwidth value needs to be frozen before symbol rate is determined if symRateNew > (bwSig/4) % 4 is by choice set(handles.text18, 'String','choose a smaller OFDM symbol rate'); set(handles.edit4, 'String', [num2str(symRate/1e3) 'e3']); symRateNew = symRate; else symRate = symRateNew; end % Caution - DO NOT move the following condition from the current position % Ncp has to be determined based on bandwidth and sub-carrier spacing - the % order of the code matters if NcpNew > (bwSig/fsub) % number of CP samples should be stricly less than the number of samples per OFDM symbol set(handles.text18, 'String','forcing a smaller cyclic prefix length'); Ncp = floor(bwSig/fsub)-1; if Ncp < 0 Ncp = 0; end set(handles.edit5, 'String', num2str(Ncp));drawnow(); NcpNew = Ncp; else Ncp = NcpNew; end if fdopNew < 5 set(handles.text18, 'String','set doppler to at least 5 Hz'); fdopNew = fdop; else fdop = fdopNew; end if max(round(pathDelays*fs)) > round(bwSigNew/fsubNew) set(handles.text18, 'String','Path delays are too high. Forcing to only LOS path'); pathDelays = 0; pathGains = 0; set(handles.edit7, 'String', [num2str(pathGains)]); set(handles.edit12, 'String', [num2str(pathDelays) '*1e-6']); pathDelaysNew = pathDelays; pathGainsNew = pathGains; end
github
mohammadzainabbas/Digital-Communication-master
main_polar.m
.m
Digital-Communication-master/Lab 05/main_polar.m
1,649
utf_8
08ee30612310411d7c77f65f840814b8
function main_polar() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse_NRZ = polar_NRZ(x, Samples_per_bit_time, Bit_rate); pulse_RZ = polar_RZ(x, Samples_per_bit_time, Bit_rate); subplot(2,1,1) plot(t, pulse_NRZ); subplot(2,1,2) plot(t, pulse_RZ); end function pulse = polar_NRZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = -5; end i = i + 1; end end function pulse = polar_RZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + (Samples_per_bit_time - 1)/2) = 5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; else pulse(k: k + (Samples_per_bit_time - 1)/2) = -5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end
github
mohammadzainabbas/Digital-Communication-master
main_uni_polar.m
.m
Digital-Communication-master/Lab 05/main_uni_polar.m
1,515
utf_8
cc85b26c7c868ea1c2711b547bbacea5
function main_uni_polar() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse_NRZ = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate); pulse_RZ = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate); subplot(2,1,1) plot(t, pulse_NRZ); subplot(2,1,2) plot(t, pulse_RZ); end function pulse = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end function pulse = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + (Samples_per_bit_time - 1)/2) = 5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end
github
mohammadzainabbas/Digital-Communication-master
main.m
.m
Digital-Communication-master/Lab 05/main.m
1,515
utf_8
cc85b26c7c868ea1c2711b547bbacea5
function main_uni_polar() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse_NRZ = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate); pulse_RZ = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate); subplot(2,1,1) plot(t, pulse_NRZ); subplot(2,1,2) plot(t, pulse_RZ); end function pulse = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end function pulse = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + (Samples_per_bit_time - 1)/2) = 5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end
github
mohammadzainabbas/Digital-Communication-master
main.m
.m
Digital-Communication-master/Lab/Lab 6/main.m
1,200
utf_8
298580e6f6d8e6dc468b8e06d85f6c36
function main() Fs = 1000; t = [0:1/Fs:1]; number_of_samples = length(t); %freq = input('Enter your frequency: '); freq = 5; x = sin(2*pi*freq*t); %x = randn(1,100); Nyquist = 2*freq; %At_nyquist = Fs/(Nyquist); % Less_than_nyquist = Fs/(Nyquist/2); More_than_nyquist = Fs/(10*Nyquist); %x = sin(2*pi*max_freq*t); figure subplot(3,1,1) plot(x) %At nyquist x1 = x(2:More_than_nyquist:end); subplot(3,1,2) stem(x1) %Qunatization %partition = [-1:.5:1]; partition = [-1, -.75, -.5, 0 , .5, .75, 1]; codebook = [0,1,2,3,4,5,6,7]; [out,y] = quantiz(x, partition, codebook); bit_stream = dec2bin(y); subplot(3,1,3) stem(y) end function main_polar_NRZ() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = -5; end i = i + 1; end plot(t, pulse); end
github
mohammadzainabbas/Digital-Communication-master
main_polar.m
.m
Digital-Communication-master/Lab/Lab 5/main_polar.m
1,594
utf_8
94cbbd8eadfbfc6992f5e41474602681
function main_polar() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse_NRZ = polar_NRZ(x, Samples_per_bit_time, Bit_rate); pulse_RZ = polar_RZ(x, Samples_per_bit_time, Bit_rate); subplot(2,1,1) plot(t, pulse_NRZ); subplot(2,1,2) plot(t, pulse_RZ); end function pulse = polar_NRZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = -5; end i = i + 1; end end function pulse = polar_RZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + (Samples_per_bit_time - 1)/2) = 5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; else pulse(k: k + (Samples_per_bit_time - 1)/2) = -5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end
github
mohammadzainabbas/Digital-Communication-master
main_uni_polar.m
.m
Digital-Communication-master/Lab/Lab 5/main_uni_polar.m
1,463
utf_8
68110bb38cd2bd6652f48edc0c8bbf56
function main_uni_polar() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse_NRZ = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate); pulse_RZ = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate); subplot(2,1,1) plot(t, pulse_NRZ); subplot(2,1,2) plot(t, pulse_RZ); end function pulse = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end function pulse = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + (Samples_per_bit_time - 1)/2) = 5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end
github
mohammadzainabbas/Digital-Communication-master
main.m
.m
Digital-Communication-master/Lab/Lab 5/main.m
1,463
utf_8
68110bb38cd2bd6652f48edc0c8bbf56
function main_uni_polar() x = [0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0]; Bit_rate = 5; Samples_per_bit_time = 200; Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse_NRZ = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate); pulse_RZ = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate); subplot(2,1,1) plot(t, pulse_NRZ); subplot(2,1,2) plot(t, pulse_RZ); end function pulse = uni_polar_NRZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + Samples_per_bit_time - 1) = 5; else pulse(k: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end function pulse = uni_polar_RZ(x, Samples_per_bit_time, Bit_rate) Total_time = length(x)/Bit_rate; Bit_time = 1/Bit_rate; Tb = Bit_time; t = Tb/Samples_per_bit_time:Tb/Samples_per_bit_time:Total_time; pulse = zeros(1, (length(x)*Samples_per_bit_time)); i = 1; for k = 1:Samples_per_bit_time:length(x)*Samples_per_bit_time if (x(i) == 1) pulse(k: k + (Samples_per_bit_time - 1)/2) = 5; pulse( k + (Samples_per_bit_time - 1)/2: k + Samples_per_bit_time - 1) = 0; end i = i + 1; end end
github
mohammadzainabbas/Digital-Communication-master
Task_1.m
.m
Digital-Communication-master/Lab/Lab 3/Task_1.m
851
utf_8
1a46c0d098a870ec5b50b26e690d2bd7
function Task_1() %To generate random signal x = random_signal(); size = length(x); bins = input('Enter number of bins: '); %Calculate pdf pdf = PDF(x, bins); %Rearranging x-axis of both so that mean appears at 0 x_axis = min(x):(max(x)-min(x))/(bins):max(x) - (max(x)-min(x))/(bins); %x_axis = x_axis(1:size-1); %coz no. of bins = length - 1 % length(x) % length(pdf) %Calculating mean of signal mean = sum((x) .* pdf); %Calculating variance of signal variance = sum(power((x - mean),2)/(length(x))); %To change mean and variance y = (100)*x + 1000; pdf_y = PDF(y, bins); y_axis = x_axis + 1000; %Plot figure subplot(2,1,1) bar(x_axis,pdf) subplot(2,1,2) bar(y_axis,pdf_y) end function x = random_signal() size = input('Enter signal size: '); x = randn(1,size); end function pdf = PDF(x, bins) pdf = hist(x,bins)/(length(x)); end
github
mohammadzainabbas/Digital-Communication-master
main.m
.m
Digital-Communication-master/Lab/Lab 2/main.m
1,420
utf_8
abbeb77204d625588c06f820594aa234
function main() %Task No. 01 %Generate 2 random signal [x1,size1] = random_signal(); [x2,size2] = random_signal(); %Calculate pdfs of both [pdf1, bins1] = PDF(x1); [pdf2, bins2] = PDF(x2); %Rearranging x-axis of both so that mean appears at 0 x1_axis = min(x1):(max(x1)-min(x1))/(bins1):max(x1); x1_axis = x1_axis(1:size1); %coz no. of bins = length - 1 x2_axis = min(x2):(max(x2)-min(x2))/(bins2):max(x2); x2_axis = x2_axis(1:size2); % %plot both signals % figure % subplot(2,1,1) % bar(x1_axis,pdf1); % subplot(2,1,2) % bar(x2_axis,pdf2); %Task No. 02 %We already have both the signals x1 and x2, so don't need to generate them %Calculating mean of both signals mean1 = sum((x1) .* pdf1); mean2 = sum((x2) .* pdf2); %Calculating variance of both signals variance1 = sum(power((x1 - mean1),2)/(length(x1))) variance2 = sum(power((x2 - mean2),2)/(length(x2))) % %Ploting PDFs of both % figure % subplot(2,1,1) % bar(x1_axis,pdf1); % subplot(2,1,2) % bar(x2_axis,pdf2); %Chaning mean of signal x2 from 0 to 300 and -300 new1_x2 = x2 + 300; new2_x2 = x2 - 300; figure subplot(3,1,1) bar(x2_axis,pdf2) subplot(3,1,2) bar(x2_axis,PDF(new1_x2)[1]) subplot(3,1,3) bar(x2_axis,PDF(new2_x2)[1]) end function [x, size] = random_signal() size = input('Enter signal size: '); x = randn(1,size); end function [pdf, bins] = PDF(x) bins = input('Enter number of bins: '); pdf = hist(x,bins)/(length(x)); end
github
mohammadzainabbas/Digital-Communication-master
main.m
.m
Digital-Communication-master/Lab/Lab 8/main.m
2,810
utf_8
667364a1769de5351be54047d2a1476d
function main() %Defining common variables signal_length = 100000; M = 4; m = 2; %Vi = [sqrt(1 + 1) sqrt(1 + 1) sqrt(1 + 1) sqrt(1 + 1)]; %Es = 1/M*sum(abs(Vi)*2) Es = 2; Eb = Es/m; No = 1; %SNR = Eb/No SNR = [1:10]; %SNR_t = 10; %Generate Binary Data Binary_Data1 = round(rand(1,signal_length)); Real_BD = 2*(Binary_Data1 - 0.5); Binary_Data2 = round(rand(1,signal_length)); Imaginary_BD = 2*(Binary_Data2 - 0.5); %Generate complex signal for QPSK Signal = Real_BD + j*Imaginary_BD; for k=1:length(SNR) %Random Noise Generation factor(k) = 1/(sqrt(2*SNR(k))); noise = factor(k)*(randn(1, signal_length) + j*randn(1, signal_length)); %For Rayleigh fading channel Modulated_signal = Signal + noise; %For demodulation Received = Modulated_signal; demodulated_real=[]; demodulated_imaginary =[]; % % for i=1:2:length(Received) % current_part = Received(i); % if i == length(Received) % next_part = Received(i); % else % next_part = Received(i+1); % end % % %real-> +ve and img-> +ve % if (current_part >= 0 && next_part >= 0) % demodulated = [demodulated 1 1]; % %real-> -ve and img-> +ve % else if(current_part <= 0 && next_part >= 0) % demodulated = [demodulated 1 0]; % %real-> +ve and img-> -ve % else if(current_part >= 0 && next_part <= 0) % demodulated = [demodulated 0 1]; % %real-> -ve and img-> -ve % else % demodulated = [demodulated 0 0]; % end % end % end % end for i=1:length(Received) real_part = real(Received(i)); imaginary_part = imag(Received(i)); %real-> +ve and img-> +ve if (real_part >= 0 && imaginary_part >= 0) demodulated_real = [demodulated_real 1]; demodulated_imaginary = [demodulated_imaginary 1]; %real-> -ve and img-> +ve else if(real_part <= 0 && imaginary_part >= 0) demodulated_real = [demodulated_real -1]; demodulated_imaginary = [demodulated_imaginary 1]; %real-> +ve and img-> -ve else if(real_part >= 0 && imaginary_part <= 0) demodulated_real = [demodulated_real 1]; demodulated_imaginary = [demodulated_imaginary -1]; %real-> -ve and img-> -ve else demodulated_real = [demodulated_real -1]; demodulated_imaginary = [demodulated_imaginary -1]; end end end end length(demodulated_real) length(Binary_Data1) length(Signal) %BER - Bit error rate Change_in_real = sum((Real_BD ~=demodulated_real)); Change_in_imaginary = sum((Imaginary_BD ~=demodulated_imaginary)); Total_Different = Change_in_real + Change_in_imaginary; Total_bits = length(Real_BD) + length(Imaginary_BD); BER(k) = Total_Different/Total_bits; end %Plot semilogy(10*log10(SNR),BER); end % function y = BinaryToComplex(x) % j = 1; % for i=1:length(x) % if(x(i)==0 && x(i+1)) % y(j) % end % end % end
github
mohammadzainabbas/Digital-Communication-master
LTE_channels2.m
.m
Digital-Communication-master/FBMC-master/00_FBMC/LTE_channels2.m
1,092
utf_8
dfa01f96b571c56d572b9f530309cf89
% function [ci_imp_out] = LTE_channels (type,bandwidth) function [delay_a pow_a] = LTE_channels2 (type,bandwidth) %LTE channels % % EPA = 0; % % ETU = 1; % % EVA = 0; % % bandw = bandwidth; % 5MHz if type == 'EPA' % Low selectivity ci_imp = zeros(1,127); delay_a = [0 30 70 80 110 190 410]*1e-9; pow_a = [0 -1 -2 -3 -8 -17.2 -20.7]; elseif type == 'EVA' % Moderate selectivity ci_imp = zeros(1,127); delay_a = [0 30 150 310 370 710 1090 1730 2510 ]*1e-9; pow_a = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12-0 -16.9]; elseif type == 'ETU' % High selectivity ci_imp = zeros(1,127); delay_a = [0 50 120 200 230 500 1600 2300 5000]*1e-9; pow_a = [-1 -1.0 -1.0 0 0 0 -3 -5 -7]; else error('Invalid channel profile selection'); end % % pow_a_lin = 10.^(pow_a./10); % % % % %Making the sampled channel % tss = 1./bandw; % pos_a = round(delay_a./tss); % c_imp_sampled = []; % for i = min(pos_a):max(pos_a) % c_imp_sampled(i+1) = sum(pow_a_lin(pos_a==i)); % end % ci_imp_out = sqrt((c_imp_sampled.^2./sum(c_imp_sampled.^2)));
github
mohammadzainabbas/Digital-Communication-master
func_preamble_creation.m
.m
Digital-Communication-master/FBMC-master/00_FBMC/func_preamble_creation.m
3,244
utf_8
fa32e8bcf9b434982533457708d3578c
%% func_preamble_creation: function description function [preamble,length_preamble,est_col] = func_preamble_creation(M, preamble_sel, zero_pads, extra_zero, user_indices, eq_select, fractional) %% func_Analysis_Filter_Bank % % Burak Dayi % % This function will return the preamble. % % Created: 25-02-2015 preamble = NaN; center_preamble = NaN; est_col = 0; length_preamble = 0; % define preambles here switch preamble_sel case 0 center_preamble = repmat([1 -j -1 j].',M/4,1); % IAM-I est_col = 1+zero_pads; % estimation on this column case 1 center_preamble = repmat([1 1 -1 -1].',M/4,1); % IAM-R est_col = 1+zero_pads; % estimation on this column case 2 center_preamble = repmat(repmat([1 -j -1 j].',M/4,1),1,3); % IAM-I with triple repetition. est_col = 2+zero_pads; % estimation on middle column otherwise error('Invalid preamble selection.') end if fractional % now according to equalizer and user indices, % the preamble will be prepared % the unused subchannels will be sieved out. if eq_select == 1 % 1: one tap % we need only those indices over which data is transmitted. if preamble_sel == 2 center_preamble(1:(user_indices(1)-1),:) = 0; for i=1:((length(user_indices)/2)-1) center_preamble((user_indices(2*i)+1):(user_indices(2*i+1)-1),:) = 0; end center_preamble((user_indices(end)+1):end,:) = 0; else center_preamble(1:(user_indices(1)-1)) = 0; for i=1:((length(user_indices)/2)-1) center_preamble((user_indices(2*i)+1):(user_indices(2*i+1)-1)) = 0; end center_preamble((user_indices(end)+1):end) = 0; end elseif (eq_select == 2) | (eq_select == 3) %2: % three taps % when three taps are applied, in order to get a reliable channel estimation % on edge frequencies, we need to extend the covered subchannels by one % from each upper and lower bound if preamble_sel == 2 center_preamble(1:(user_indices(1)-2),:) = 0; for i=1:((length(user_indices)/2)-1) center_preamble((user_indices(2*i)+2):(user_indices(2*i+1)-2),:) = 0; end center_preamble((user_indices(end)+2):end,:) = 0; else center_preamble(1:(user_indices(1)-2)) = 0; for i=1:((length(user_indices)/2)-1) center_preamble((user_indices(2*i)+2):(user_indices(2*i+1)-2)) = 0; end center_preamble((user_indices(end)+2):end) = 0; end elseif eq_select == 4 % no equalizer % we need only those indices over which data is transmitted. ?!?!?!?!?! if preamble_sel == 2 center_preamble(1:(user_indices(1)-1),:) = 0; for i=1:((length(user_indices)/2)-1) center_preamble((user_indices(2*i)+1):(user_indices(2*i+1)-1),:) = 0; end center_preamble((user_indices(end)+1):end,:) = 0; else center_preamble(1:(user_indices(1)-1)) = 0; for i=1:((length(user_indices)/2)-1) center_preamble((user_indices(2*i)+1):(user_indices(2*i+1)-1)) = 0; end center_preamble((user_indices(end)+1):end) = 0; end else error('Unhandled equalizer selection.') end end % construct preamble with zero pads pads = repmat(zeros(M,1),1,zero_pads); early_preamble = [pads center_preamble pads]; if extra_zero preamble = [early_preamble zeros(M,1)]; else preamble = early_preamble; end length_preamble = size(preamble,1)*size(preamble,2);
github
mohammadzainabbas/Digital-Communication-master
LTE_channels.m
.m
Digital-Communication-master/FBMC-master/00_FBMC/LTE_channels.m
1,159
utf_8
6cd1bd3a74ef171521fd74d48d312da8
function [ci_imp_out] = LTE_channels (type,bandwidth) % function [delay_a pow_a] = LTE_channels (type,bandwidth) %LTE channels % % EPA = 0; % % ETU = 1; % % EVA = 0; % % bandw = bandwidth; % 5MHz if type == 'EPA' % Low selectivity % disp('epa') ci_imp = zeros(1,127); delay_a = [0 30 70 80 110 190 410]*1e-9; pow_a = [0 -1 -2 -3 -8 -17.2 -20.7]; elseif type == 'EVA' % Moderate selectivity % disp('eva') ci_imp = zeros(1,127); delay_a = [0 30 150 310 370 710 1090 1730 2510 ]*1e-9; pow_a = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12-0 -16.9]; elseif type == 'ETU' % High selectivity % disp('etu') ci_imp = zeros(1,127); delay_a = [0 50 120 200 230 500 1600 2300 5000]*1e-9; pow_a = [-1 -1.0 -1.0 0 0 0 -3 -5 -7]; else error('Invalid channel profile selection'); end pow_a_lin = 10.^(pow_a./10); % % %Making the sampled channel tss = 1./bandw; pos_a = round(delay_a./tss); c_imp_sampled = []; for i = min(pos_a):max(pos_a) c_imp_sampled(i+1) = sum(pow_a_lin(pos_a==i)); end ci_imp_out = sqrt((c_imp_sampled.^2./sum(c_imp_sampled.^2))); % figure % plot(ci_imp_out);
github
mohammadzainabbas/Digital-Communication-master
showplot.m
.m
Digital-Communication-master/FBMC-master/00_FBMC/showplot.m
25,776
utf_8
150d907ace499d22ace62fa483c60169
function varargout = showplot(varargin) % SHOWPLOT MATLAB code for showplot.fig % SHOWPLOT, by itself, creates a new SHOWPLOT or raises the existing % singleton*. % % H = SHOWPLOT returns the handle to a new SHOWPLOT or the handle to % the existing singleton*. % % SHOWPLOT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SHOWPLOT.M with the given input arguments. % % SHOWPLOT('Property','Value',...) creates a new SHOWPLOT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before showplot_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to showplot_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help showplot % Last Modified by GUIDE v2.5 13-May-2014 14:56:19 % Created: 19-03-2014 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @showplot_OpeningFcn, ... 'gui_OutputFcn', @showplot_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before showplot is made visible. function showplot_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to showplot (see VARARGIN) % Choose default command line output for showplot handles.output = hObject; % obtain BER file [fname, pname] = uigetfile({['BER*.mat;MSE_db*.mat']},'Choose BER/MSE file'); if fname if strcmp(fname(1:3),'BER') try load(strcat(pname, fname)); catch error('BER data could not be loaded.') end try load(strcat(pname,'CONF',fname(4:length(fname)))); catch error('CONF data could not be found.') end handles.file='BER'; handles.BER = BER; elseif strcmp(fname(1:6),'MSE_db') try load(strcat(pname, fname)); catch error('MSE data could not be loaded.') end try load(strcat(pname,'CONF',fname(9:length(fname)))); catch error('CONF data could not be found.') end handles.file=fname(1:8); if strcmp(handles.file,'MSE_db_a') handles.MSE_db = MSE_db_a; elseif strcmp(handles.file,'MSE_db_f') handles.MSE_db = MSE_db_f; elseif strcmp(handles.file,'MSE_db_r') handles.MSE_db = MSE_db_r; end elseif strcmp(fname(1:3),'MSE') %not implemented yet. else error('Invalid file.') end else warning('A BER/MSE file should be selected'); [fname, pname] = uigetfile({'BER*.mat;MSE_db*.mat'},'Choose BER file'); if ~fname error('Could not reach a BER/MSE file'); else if strcmp(fname(1:3),'BER') try load(strcat(pname, fname)); catch error('BER data could not be loaded.') end try load(strcat(pname,'CONF',fname(4:length(fname)))); catch error('CONF data could not be found.') end handles.file='BER'; handles.BER = BER; elseif strcmp(fname(1:6),'MSE_db') try load(strcat(pname, fname)); catch error('MSE data could not be loaded.') end try load(strcat(pname,'CONF',fname(9:length(fname)))); catch error('CONF data could not be found.') end handles.file=fname(1:8); if strcmp(handles.file,'MSE_db_a') handles.MSE_db = MSE_db_a; elseif strcmp(handles.file,'MSE_db_f') handles.MSE_db = MSE_db_f; elseif strcmp(handles.file,'MSE_db_r') handles.MSE_db = MSE_db_r; end elseif strcmp(fname(1:3),'MSE') %not implemented yet. else end end end % new_data_process(hObject,handles,BER,conf,fname); new_data_process(hObject,handles,handles.file,conf,fname); % UIWAIT makes showplot wait for user response (see UIRESUME) % uiwait(handles.figure1); % -------------------------------------------------------------------- function uipushtool2_ClickedCallback(hObject, eventdata, handles) % hObject handle to uipushtool2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % obtain BER file [fname, pname] = uigetfile({'BER*.mat;MSE_db*.mat'},'Choose BER file'); if fname if strcmp(fname(1:3),'BER') try load(strcat(pname, fname)); catch error('BER data could not be loaded.') end try load(strcat(pname,'CONF',fname(4:length(fname)))); catch error('CONF data could not be found.') end handles.file='BER'; handles.BER = BER; elseif strcmp(fname(1:6),'MSE_db') try load(strcat(pname, fname)); catch error('MSE data could not be loaded.') end try load(strcat(pname,'CONF',fname(9:length(fname)))); catch error('CONF data could not be found.') end handles.file=fname(1:8); if strcmp(handles.file,'MSE_db_a') handles.MSE_db = MSE_db_a; elseif strcmp(handles.file,'MSE_db_f') handles.MSE_db = MSE_db_f; elseif strcmp(handles.file,'MSE_db_r') handles.MSE_db = MSE_db_r; end elseif strcmp(fname(1:3),'MSE') %not implemented yet. else error('Invalid file.') end new_data_process(hObject,handles,handles.file,conf,fname); end % --- Outputs from this function are returned to the command line. function varargout = showplot_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in togglebutton1. function togglebutton1_Callback(hObject, eventdata, handles) % hObject handle to togglebutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton1 update_plot(handles) % --- Executes on button press in togglebutton2. function togglebutton2_Callback(hObject, eventdata, handles) % hObject handle to togglebutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton2 update_plot(handles) % --- Executes on button press in togglebutton3. function togglebutton3_Callback(hObject, eventdata, handles) % hObject handle to togglebutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton3 update_plot(handles) % --- Executes on button press in togglebutton4. function togglebutton4_Callback(hObject, eventdata, handles) % hObject handle to togglebutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton4 update_plot(handles) % --- Executes on button press in togglebutton20. function togglebutton20_Callback(hObject, eventdata, handles) % hObject handle to togglebutton20 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton20 update_plot(handles) % --- Executes on button press in togglebutton21. function togglebutton21_Callback(hObject, eventdata, handles) % hObject handle to togglebutton21 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton21 update_plot(handles) % --- Executes on button press in togglebutton22. function togglebutton22_Callback(hObject, eventdata, handles) % hObject handle to togglebutton22 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton22 update_plot(handles) % --- Executes on button press in togglebutton23. function togglebutton23_Callback(hObject, eventdata, handles) % hObject handle to togglebutton23 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton23 update_plot(handles) % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_mod if strcmp(get(i,'Enable'),'on') set(i,'Value',0); end end update_plot(handles); % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_mod if strcmp(get(i,'Enable'),'on') set(i,'Value',1); end end update_plot(handles); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_M if strcmp(get(i,'Enable'),'on') set(i,'Value',0); end end update_plot(handles); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_M if strcmp(get(i,'Enable'),'on') set(i,'Value',1); end end update_plot(handles); % --- Executes on button press in togglebutton13. function togglebutton13_Callback(hObject, eventdata, handles) % hObject handle to togglebutton13 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton13 update_plot(handles) % --- Executes on button press in togglebutton14. function togglebutton14_Callback(hObject, eventdata, handles) % hObject handle to togglebutton14 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton14 update_plot(handles) % --- Executes on button press in togglebutton15. function togglebutton15_Callback(hObject, eventdata, handles) % hObject handle to togglebutton15 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton15 update_plot(handles) % --- Executes on button press in togglebutton16. function togglebutton16_Callback(hObject, eventdata, handles) % hObject handle to togglebutton16 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton16 update_plot(handles) % --- Executes on button press in togglebutton17. function togglebutton17_Callback(hObject, eventdata, handles) % hObject handle to togglebutton17 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton17 update_plot(handles) % --- Executes on button press in togglebutton18. function togglebutton18_Callback(hObject, eventdata, handles) % hObject handle to togglebutton18 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton18 update_plot(handles) % --- Executes on button press in togglebutton19. function togglebutton19_Callback(hObject, eventdata, handles) % hObject handle to togglebutton19 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton19 update_plot(handles) % --- Executes on button press in togglebutton24. function togglebutton24_Callback(hObject, eventdata, handles) % hObject handle to togglebutton24 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton24 update_plot(handles) % --- Executes on button press in togglebutton25. function togglebutton25_Callback(hObject, eventdata, handles) % hObject handle to togglebutton25 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton25 update_plot(handles); % --- Executes on button press in togglebutton26. function togglebutton26_Callback(hObject, eventdata, handles) % hObject handle to togglebutton26 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton26 update_plot(handles); % --- Executes on button press in togglebutton27. function togglebutton27_Callback(hObject, eventdata, handles) % hObject handle to togglebutton27 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton27 update_plot(handles); % --- Executes on button press in togglebutton28. function togglebutton28_Callback(hObject, eventdata, handles) % hObject handle to togglebutton28 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton28 update_plot(handles); % -------------------------------------------------------------------- function uipushtool3_ClickedCallback(hObject, eventdata, handles) % hObject handle to uipushtool3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) msgbox(strcat(evalc('handles.conf'),sprintf('\n'),evalc('handles.conf.resp'),sprintf('\nexplanation:\n'),handles.conf.explanation)) % -------------------------------------------------------------------- function uipushtool4_ClickedCallback(hObject, eventdata, handles) % hObject handle to uipushtool4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) figu=handles.figure1; % c1=clock; name=get(handles.figure1,'Name'); savefig(figu,name(1:end-4)); function update_plot(handles) % toggle1: M=4 % toggle13-19: M=8,16,32,64,128,256,512 % toggle20-24: 4-16-64-128-256-QAM % plot data % line modifiers markers= ['+' 'o' '*' 's' '^']; lines = ['-' ':' '-.' '--']; colors = ['r' 'g' 'b' 'm' 'k']; combined = ['--g' '-m' '--b' '-r' '--k' '-g' '--m' '-b' '--r' '-k']; %colors and styles flag_at_least_one = false; %plot OFDM data if desired %QAM data if get(handles.togglebutton25,'Value') for zx=handles.CONF_OFDM_QAM.mod_sch modifier = strcat('--k',markers(mod(find(handles.all_mod==zx)-1,5)+1)); % find(handles.CONF_OFDM_QAM.mod_sch==zx) % handles.CONF_OFDM_QAM.SNR_val semilogy(handles.CONF_OFDM_QAM.SNR_val,handles.BER_OFDM_QAM(find(handles.CONF_OFDM_QAM.mod_sch==zx),:)... ,modifier,'LineWidth',2,'MarkerSize',8); flag_at_least_one = true; hold on grid on end end %PSK data if get(handles.togglebutton26,'Value') for zx=handles.CONF_OFDM_PSK.mod_sch % modifier = strcat('--k',markers(mod(find(handles.all_mod==zx)-1,5)+1)); % find(handles.CONF_OFDM_QAM.mod_sch==zx) % handles.CONF_OFDM_QAM.SNR_val semilogy(handles.CONF_OFDM_PSK.SNR_val,handles.BER_OFDM_PSK(find(handles.CONF_OFDM_PSK.mod_sch==zx),:)... ,'-.p','LineWidth',2,'MarkerSize',8); flag_at_least_one = true; hold on grid on end end for qw=handles.conf(1).M_val for zx=handles.conf(1).mod_sch if strcmp(handles.file,'BER') if get(handles.handles_M(log2(qw)-1),'Value')==1 && get(handles.handles_mod(find(handles.all_mod==zx)),'Value')==1 && ... strcmp(get(handles.handles_M(log2(qw)-1),'Enable'),'on') && strcmp(get(handles.handles_mod(find(handles.all_mod==zx)),'Enable'),'on') % handles.conf(1).SNR_val % disp('annen') % handles.data(length(handles.conf(1).mod_sch)*(find(handles.conf(1).M_val==qw)-1)+find(handles.conf(1).mod_sch==zx)) modifier = strcat(lines(mod(log2(qw)-1-1,2)+1),colors(mod(log2(qw)-1,5)+1),markers(mod(find(handles.all_mod==zx)-1,5)+1)); semilogy(handles.conf(1).SNR_val,handles.data(length(handles.conf(1).mod_sch)*(find(handles.conf(1).M_val==qw)-1)+find(handles.conf(1).mod_sch==zx),:),modifier,... 'LineWidth',1.5,'MarkerSize',8); flag_at_least_one = true; hold on grid on end ylabel('BER'); else if get(handles.handles_M(log2(qw)-1),'Value')==1 && get(handles.handles_mod(find(handles.all_mod==zx)),'Value')==1 && ... strcmp(get(handles.handles_M(log2(qw)-1),'Enable'),'on') && strcmp(get(handles.handles_mod(find(handles.all_mod==zx)),'Enable'),'on') % handles.conf(1).SNR_val % disp('annen') % handles.data(length(handles.conf(1).mod_sch)*(find(handles.conf(1).M_val==qw)-1)+find(handles.conf(1).mod_sch==zx)) modifier = strcat(lines(mod(log2(qw)-1-1,2)+1),colors(mod(log2(qw)-1,5)+1),markers(mod(find(handles.all_mod==zx)-1,5)+1)); plot(handles.conf(1).SNR_val,handles.data(length(handles.conf(1).mod_sch)*(find(handles.conf(1).M_val==qw)-1)+find(handles.conf(1).mod_sch==zx),:),modifier,... 'LineWidth',1.5,'MarkerSize',8); flag_at_least_one = true; hold on grid on end ylabel('NMSE'); end end end xlabel('SNR (dB)'); hold off if ~flag_at_least_one semilogy(1,1); end function new_data_process(hObject,handles,file,conf,fname) handles.conf = conf; %OFDM data retrieval os = computer; %os we are running showplot on. if isempty(findstr(os,'LNX')) % on windows try load('BER_archive\BER_OFDM_QAM.mat'); try load('BER_archive\CONF_OFDM_QAM.mat'); catch error('CONF_OFDM_QAM data could not be found.') end set(handles.togglebutton25,'Enable','on','Value',0); handles.BER_OFDM_QAM=BER_OFDM_QAM; handles.CONF_OFDM_QAM=CONF_OFDM_QAM; catch warning('BER_OFDM_QAM could not be loaded. This option will be disabled.') set(handles.togglebutton25,'Enable','off','Value',0); end try load('BER_archive\BER_OFDM_PSK.mat'); try load('BER_archive\CONF_OFDM_PSK.mat'); catch error('CONF_OFDM_PSK data could not be found.') end set(handles.togglebutton25,'Enable','on','Value',0); handles.BER_OFDM_PSK=BER_OFDM_PSK; handles.CONF_OFDM_PSK=CONF_OFDM_PSK; catch warning('BER_OFDM_PSK could not be loaded. This option will be disabled.') set(handles.togglebutton26,'Enable','off','Value',0); end else %on linux try load('BER_archive/BER_OFDM_QAM.mat'); try load('BER_archive/CONF_OFDM_QAM.mat'); catch error('CONF_OFDM_QAM data could not be found.') end set(handles.togglebutton25,'Enable','on','Value',0); handles.BER_OFDM_QAM=BER_OFDM_QAM; handles.CONF_OFDM_QAM=CONF_OFDM_QAM; catch warning('BER_OFDM_QAM could not be loaded. This option will be disabled.') set(handles.togglebutton25,'Enable','off','Value',0); end try load('BER_archive/BER_OFDM_PSK.mat'); try load('BER_archive/CONF_OFDM_PSK.mat'); catch error('CONF_OFDM_PSK data could not be found.') end set(handles.togglebutton25,'Enable','on','Value',0); handles.BER_OFDM_PSK=BER_OFDM_PSK; handles.CONF_OFDM_PSK=CONF_OFDM_PSK; catch warning('BER_OFDM_PSK could not be loaded. This option will be disabled.') set(handles.togglebutton26,'Enable','off','Value',0); end end set(handles.figure1,'Name',fname) % toggle button handles belonging to different M values handles.handles_M =[handles.togglebutton1,handles.togglebutton13,... handles.togglebutton14,handles.togglebutton15,handles.togglebutton16,... handles.togglebutton17, handles.togglebutton18,handles.togglebutton19,... handles.togglebutton27, handles.togglebutton28]; % toggle button handles belonging to different modulation values handles.handles_mod=[handles.togglebutton20,handles.togglebutton21, ... handles.togglebutton22, handles.togglebutton23, handles.togglebutton24]; handles.all_mod =[4 16 64 128 256]; handles.all_M =[4 8 16 32 64 128 256 512 1024 2048]; %active buttons for i=handles.all_M if ~ismember(i, handles.conf(1).M_val) set(handles.handles_M(log2(i)-1),'Value',0,'Enable','off'); else set(handles.handles_M(log2(i)-1),'Value',1,'Enable','on'); end end for i=handles.all_mod if ~ismember(i, handles.conf(1).mod_sch) set(handles.handles_mod(find(handles.all_mod==i)),'Value',0,'Enable','off'); else set(handles.handles_mod(find(handles.all_mod==i)),'Value',1,'Enable','on'); end end % retrieve data % data contains BER for (16) different SNR values and oriented in following % fashion: % M=4/4-QAM/SNR=0 M=4/4-QAM/SNR=1 M=4/4-QAM/SNR=2 .......... % M=4/16-QAM/SNR=0 ...... ...... ...... ...... ...... % ...... ...... ...... ...... ...... ...... ...... % ...... ...... ...... ...... ...... ...... ...... % M=512/128-QAM/SNR=0............................M=512/128-QAM/SNR=15 handles.data=zeros(length(handles.conf(1).M_val)*length(handles.conf(1).mod_sch),length(handles.conf(1).SNR_val)); for qw=1:length(handles.conf(1).M_val) for zx=1:length(handles.conf(1).mod_sch) if strcmp(file,'BER') handles.data(length(handles.conf(1).mod_sch)*(qw-1)+zx,:)=... handles.BER(log2(handles.conf(1).M_val(qw))-1,... find(handles.all_mod==handles.conf(1).mod_sch(zx)),... 1:length(handles.conf(1).SNR_val)); else handles.data(length(handles.conf(1).mod_sch)*(qw-1)+zx,:)=... handles.MSE_db(log2(handles.conf(1).M_val(qw))-1,... find(handles.all_mod==handles.conf(1).mod_sch(zx)),... 1:length(handles.conf(1).SNR_val)); end end end % Update handles structure guidata(hObject, handles); %initial plot pushbutton2_Callback(hObject, 0, handles) pushbutton4_Callback(hObject, 0, handles) update_plot(handles)
github
mohammadzainabbas/Digital-Communication-master
LTE_channels.m
.m
Digital-Communication-master/FBMC-master/00_FBMC/tests/LTE_channels.m
1,069
utf_8
214e89d4dfc04fcfdf1e73088ca803f8
function [ci_imp_out] = LTE_channels (type,bandwidth) % function [delay_a pow_a] = LTE_channels (type,bandwidth) %LTE channels % % EPA = 0; % % ETU = 1; % % EVA = 0; % % bandw = bandwidth; % 5MHz if type == 'EPA' % Low selectivity ci_imp = zeros(1,127); delay_a = [0 30 70 80 110 190 410]*1e-9; pow_a = [0 -1 -2 -3 -8 -17.2 -20.7]; elseif type == 'EVA' % Moderate selectivity ci_imp = zeros(1,127); delay_a = [0 30 150 310 370 710 1090 1730 2510 ]*1e-9; pow_a = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12-0 -16.9]; elseif type == 'ETU' % High selectivity ci_imp = zeros(1,127); delay_a = [0 50 120 200 230 500 1600 2300 5000]*1e-9; pow_a = [-1 -1.0 -1.0 0 0 0 -3 -5 -7]; else error('Invalid channel profile selection'); end pow_a_lin = 10.^(pow_a./10); % % %Making the sampled channel tss = 1./bandw; pos_a = round(delay_a./tss); c_imp_sampled = []; for i = min(pos_a):max(pos_a) c_imp_sampled(i+1) = sum(pow_a_lin(pos_a==i)); end ci_imp_out = sqrt((c_imp_sampled.^2./sum(c_imp_sampled.^2)));
github
mohammadzainabbas/Digital-Communication-master
simpleAM.m
.m
Digital-Communication-master/FBMC-master/00_FBMC/tests/simpleGUI/simpleAM.m
15,132
utf_8
9b0e04b34858cffdc6f36b449a8fe965
function varargout = simpleAM(varargin) % simpleAM MATLAB code for simpleAM.fig % simpleAM, by itself, creates a new simpleAM or raises the existing % singleton*. % % H = simpleAM returns the handle to a new simpleAM or the handle to % the existing singleton*. % % simpleAM('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in simpleAM.M with the given input arguments. % % simpleAM('Property','Value',...) creates a new simpleAM or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before simpleAM_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to simpleAM_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help simpleAM % Last Modified by GUIDE v2.5 13-Jan-2014 14:13:56 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @simpleAM_OpeningFcn, ... 'gui_OutputFcn', @simpleAM_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before simpleAM is made visible. function simpleAM_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to simpleAM (see VARARGIN) % Choose default command line output for simpleAM handles.output = hObject; % Update handles structure guidata(hObject, handles); %create data tmin=0; tmax=0.01; increment=0.000001; t=tmin:increment:tmax; A=1; B=4; display_offset = 1; handles.carrier = A.*cos(2*pi*2000.*t+pi/20); handles.message = B.*cos(2*pi*300.*t+pi/10); modulated = (1+handles.message).*handles.carrier; handles.current_data = modulated; plot(t,handles.current_data,'LineWidth',1.2); hold all plot(t,A.*handles.message+A,'r--'); plot(t,-A-A.*handles.message,'g--'); axis([tmin, tmax, -((B+1)*A)-display_offset, ((B+1)*A)+display_offset]); hold off % UIWAIT makes simpleAM wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = simpleAM_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit2_Callback(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit2 as text % str2double(get(hObject,'String')) returns contents of edit2 as a double % --- Executes during object creation, after setting all properties. function edit2_CreateFcn(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit3_Callback(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit3 as text % str2double(get(hObject,'String')) returns contents of edit3 as a double % --- Executes during object creation, after setting all properties. function edit3_CreateFcn(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit4_Callback(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit4 as text % str2double(get(hObject,'String')) returns contents of edit4 as a double % --- Executes during object creation, after setting all properties. function edit4_CreateFcn(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit5_Callback(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit5 as text % str2double(get(hObject,'String')) returns contents of edit5 as a double % --- Executes during object creation, after setting all properties. function edit5_CreateFcn(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit6_Callback(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit6 as text % str2double(get(hObject,'String')) returns contents of edit6 as a double % --- Executes during object creation, after setting all properties. function edit6_CreateFcn(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit7_Callback(hObject, eventdata, handles) % hObject handle to edit7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit7 as text % str2double(get(hObject,'String')) returns contents of edit7 as a double % --- Executes during object creation, after setting all properties. function edit7_CreateFcn(hObject, eventdata, handles) % hObject handle to edit7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit8_Callback(hObject, eventdata, handles) % hObject handle to edit8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit8 as text % str2double(get(hObject,'String')) returns contents of edit8 as a double % --- Executes during object creation, after setting all properties. function edit8_CreateFcn(hObject, eventdata, handles) % hObject handle to edit8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) tmin=str2double(get(handles.edit10,'String')); tmax=str2double(get(handles.edit12,'String')); increment=str2double(get(handles.edit11,'String')); t=tmin:increment:tmax; A=str2double(get(handles.edit3,'String')); fc=str2double(get(handles.edit4,'String')); phic=str2num(get(handles.edit5,'String')); B=str2double(get(handles.edit6,'String')); fm=str2double(get(handles.edit7,'String')); phim=str2num(get(handles.edit8,'String')); display_offset = 1; handles.carrier = A.*cos(2*pi*fc.*t+phic); handles.message = B.*cos(2*pi*fm.*t+phim); %modulated = (handles.message).*handles.carrier; modulated = (1+handles.message).*handles.carrier; handles.current_data = modulated; plot(t,handles.current_data,'LineWidth',1.2); hold all plot(t,A.*handles.message+A,'r--'); plot(t,-A-A.*handles.message,'g--'); axis([tmin, tmax, -((B+1)*A)-display_offset, ((B+1)*A)+display_offset]); hold off function edit11_Callback(hObject, eventdata, handles) % hObject handle to edit11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit11 as text % str2double(get(hObject,'String')) returns contents of edit11 as a double % --- Executes during object creation, after setting all properties. function edit11_CreateFcn(hObject, eventdata, handles) % hObject handle to edit11 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit10_Callback(hObject, eventdata, handles) % hObject handle to edit10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit10 as text % str2double(get(hObject,'String')) returns contents of edit10 as a double % --- Executes during object creation, after setting all properties. function edit10_CreateFcn(hObject, eventdata, handles) % hObject handle to edit10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit12_Callback(hObject, eventdata, handles) % hObject handle to edit12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit12 as text % str2double(get(hObject,'String')) returns contents of edit12 as a double % --- Executes during object creation, after setting all properties. function edit12_CreateFcn(hObject, eventdata, handles) % hObject handle to edit12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on key press with focus on pushbutton1 and none of its controls. function pushbutton1_KeyPressFcn(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata structure with the following fields (see UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA)
github
mohammadzainabbas/Digital-Communication-master
LTE_channels2.m
.m
Digital-Communication-master/FBMC-master/01_OFDM/LTE_channels2.m
1,092
utf_8
dfa01f96b571c56d572b9f530309cf89
% function [ci_imp_out] = LTE_channels (type,bandwidth) function [delay_a pow_a] = LTE_channels2 (type,bandwidth) %LTE channels % % EPA = 0; % % ETU = 1; % % EVA = 0; % % bandw = bandwidth; % 5MHz if type == 'EPA' % Low selectivity ci_imp = zeros(1,127); delay_a = [0 30 70 80 110 190 410]*1e-9; pow_a = [0 -1 -2 -3 -8 -17.2 -20.7]; elseif type == 'EVA' % Moderate selectivity ci_imp = zeros(1,127); delay_a = [0 30 150 310 370 710 1090 1730 2510 ]*1e-9; pow_a = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12-0 -16.9]; elseif type == 'ETU' % High selectivity ci_imp = zeros(1,127); delay_a = [0 50 120 200 230 500 1600 2300 5000]*1e-9; pow_a = [-1 -1.0 -1.0 0 0 0 -3 -5 -7]; else error('Invalid channel profile selection'); end % % pow_a_lin = 10.^(pow_a./10); % % % % %Making the sampled channel % tss = 1./bandw; % pos_a = round(delay_a./tss); % c_imp_sampled = []; % for i = min(pos_a):max(pos_a) % c_imp_sampled(i+1) = sum(pow_a_lin(pos_a==i)); % end % ci_imp_out = sqrt((c_imp_sampled.^2./sum(c_imp_sampled.^2)));
github
mohammadzainabbas/Digital-Communication-master
LTE_channels.m
.m
Digital-Communication-master/FBMC-master/01_OFDM/LTE_channels.m
1,159
utf_8
6cd1bd3a74ef171521fd74d48d312da8
function [ci_imp_out] = LTE_channels (type,bandwidth) % function [delay_a pow_a] = LTE_channels (type,bandwidth) %LTE channels % % EPA = 0; % % ETU = 1; % % EVA = 0; % % bandw = bandwidth; % 5MHz if type == 'EPA' % Low selectivity % disp('epa') ci_imp = zeros(1,127); delay_a = [0 30 70 80 110 190 410]*1e-9; pow_a = [0 -1 -2 -3 -8 -17.2 -20.7]; elseif type == 'EVA' % Moderate selectivity % disp('eva') ci_imp = zeros(1,127); delay_a = [0 30 150 310 370 710 1090 1730 2510 ]*1e-9; pow_a = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7.0 -12-0 -16.9]; elseif type == 'ETU' % High selectivity % disp('etu') ci_imp = zeros(1,127); delay_a = [0 50 120 200 230 500 1600 2300 5000]*1e-9; pow_a = [-1 -1.0 -1.0 0 0 0 -3 -5 -7]; else error('Invalid channel profile selection'); end pow_a_lin = 10.^(pow_a./10); % % %Making the sampled channel tss = 1./bandw; pos_a = round(delay_a./tss); c_imp_sampled = []; for i = min(pos_a):max(pos_a) c_imp_sampled(i+1) = sum(pow_a_lin(pos_a==i)); end ci_imp_out = sqrt((c_imp_sampled.^2./sum(c_imp_sampled.^2))); % figure % plot(ci_imp_out);
github
mohammadzainabbas/Digital-Communication-master
showplot.m
.m
Digital-Communication-master/FBMC-master/01_OFDM/showplot.m
15,617
utf_8
cd7a44aa3364963c386c214a0f538843
function varargout = showplot(varargin) % SHOWPLOT MATLAB code for showplot.fig % SHOWPLOT, by itself, creates a new SHOWPLOT or raises the existing % singleton*. % % H = SHOWPLOT returns the handle to a new SHOWPLOT or the handle to % the existing singleton*. % % SHOWPLOT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SHOWPLOT.M with the given input arguments. % % SHOWPLOT('Property','Value',...) creates a new SHOWPLOT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before showplot_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to showplot_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help showplot % Last Modified by GUIDE v2.5 23-Mar-2014 17:29:52 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @showplot_OpeningFcn, ... 'gui_OutputFcn', @showplot_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before showplot is made visible. function showplot_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to showplot (see VARARGIN) % Choose default command line output for showplot handles.output = hObject; % obtain BER file [fname, pname] = uigetfile({'BER*.mat'},'Choose BER file'); if fname try load(strcat(pname, fname)); catch error('BER data could not be loaded.') end try load(strcat(pname,'CONF',fname(4:length(fname)))); catch error('CONF data could not be found.') end else warning('A BER file should be selected'); [fname, pname] = uigetfile({'BER*.mat'},'Choose BER file'); if ~fname error('Could not reach a BER file'); else try load(strcat(pname, fname)); catch error('BER data could not be loaded.') end try load(strcat(pname,'CONF',fname(4:length(fname)))); catch error('CONF data could not be found.') end end end new_data_process(hObject,handles,BER,conf); % UIWAIT makes showplot wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = showplot_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in togglebutton1. function togglebutton1_Callback(hObject, eventdata, handles) % hObject handle to togglebutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton1 update_plot(handles) % --- Executes on button press in togglebutton2. function togglebutton2_Callback(hObject, eventdata, handles) % hObject handle to togglebutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton2 update_plot(handles) % --- Executes on button press in togglebutton3. function togglebutton3_Callback(hObject, eventdata, handles) % hObject handle to togglebutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton3 update_plot(handles) % --- Executes on button press in togglebutton4. function togglebutton4_Callback(hObject, eventdata, handles) % hObject handle to togglebutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton4 update_plot(handles) % --- Executes on button press in togglebutton20. function togglebutton20_Callback(hObject, eventdata, handles) % hObject handle to togglebutton20 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton20 update_plot(handles) % --- Executes on button press in togglebutton21. function togglebutton21_Callback(hObject, eventdata, handles) % hObject handle to togglebutton21 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton21 update_plot(handles) % --- Executes on button press in togglebutton22. function togglebutton22_Callback(hObject, eventdata, handles) % hObject handle to togglebutton22 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton22 update_plot(handles) % --- Executes on button press in togglebutton23. function togglebutton23_Callback(hObject, eventdata, handles) % hObject handle to togglebutton23 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton23 update_plot(handles) % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_mod if strcmp(get(i,'Enable'),'on') set(i,'Value',0); end end update_plot(handles); % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_mod if strcmp(get(i,'Enable'),'on') set(i,'Value',1); end end update_plot(handles); % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_M if strcmp(get(i,'Enable'),'on') set(i,'Value',0); end end update_plot(handles); % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) for i=handles.handles_M if strcmp(get(i,'Enable'),'on') set(i,'Value',1); end end update_plot(handles); % --- Executes on button press in togglebutton13. function togglebutton13_Callback(hObject, eventdata, handles) % hObject handle to togglebutton13 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton13 update_plot(handles) % --- Executes on button press in togglebutton14. function togglebutton14_Callback(hObject, eventdata, handles) % hObject handle to togglebutton14 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton14 update_plot(handles) % --- Executes on button press in togglebutton15. function togglebutton15_Callback(hObject, eventdata, handles) % hObject handle to togglebutton15 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton15 update_plot(handles) % --- Executes on button press in togglebutton16. function togglebutton16_Callback(hObject, eventdata, handles) % hObject handle to togglebutton16 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton16 update_plot(handles) % --- Executes on button press in togglebutton17. function togglebutton17_Callback(hObject, eventdata, handles) % hObject handle to togglebutton17 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton17 update_plot(handles) % --- Executes on button press in togglebutton18. function togglebutton18_Callback(hObject, eventdata, handles) % hObject handle to togglebutton18 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton18 update_plot(handles) % --- Executes on button press in togglebutton19. function togglebutton19_Callback(hObject, eventdata, handles) % hObject handle to togglebutton19 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton19 update_plot(handles) % --- Executes on button press in togglebutton24. function togglebutton24_Callback(hObject, eventdata, handles) % hObject handle to togglebutton24 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton24 update_plot(handles) function update_plot(handles) % toggle1: M=4 % toggle13-19: M=8,16,32,64,128,256,512 % toggle20-24: 4-16-64-128-256-QAM % plot data % line modifiers markers= ['+' 'o' '*' 's' '^']; lines = ['-' ':' '-.' '--']; colors = ['r' 'g' 'b' 'm' 'k']; combined = ['--g' '-m' '--b' '-r' '--k' '-g' '--m' '-b' '--r' '-k']; %colors and styles flag_at_least_one = false; for qw=handles.conf(1).M_val for zx=handles.conf(1).mod_sch if get(handles.handles_M(log2(qw)-1),'Value')==1 && get(handles.handles_mod(find(handles.all_mod==zx)),'Value')==1 && ... strcmp(get(handles.handles_M(log2(qw)-1),'Enable'),'on') && strcmp(get(handles.handles_mod(find(handles.all_mod==zx)),'Enable'),'on') % disp(sprintf('qw%d zx%d',qw,zx)) modifier = strcat(lines(mod(log2(qw)-1-1,2)+1),colors(mod(log2(qw)-1,5)+1),markers(mod(find(handles.all_mod==zx)-1,5)+1)); semilogy(handles.conf(1).SNR_val,handles.data(length(handles.conf(1).mod_sch)*(find(handles.conf(1).M_val==qw)-1)+find(handles.conf(1).mod_sch==zx),:),modifier,... 'LineWidth',1.5,'MarkerSize',8); flag_at_least_one = true; hold on grid on end end end xlabel('SNR (dB)'); ylabel('BER'); hold off if ~flag_at_least_one semilogy(1,1); end % -------------------------------------------------------------------- function uipushtool2_ClickedCallback(hObject, eventdata, handles) % hObject handle to uipushtool2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % obtain BER file [fname, pname] = uigetfile({'BER*.mat'},'Choose BER file'); if fname try load(strcat(pname, fname)); catch error('BER data could not be loaded.') end try load(strcat(pname,'CONF',fname(4:length(fname)))); catch error('CONF data could not be found.') end new_data_process(hObject,handles,BER,conf); end function new_data_process(hObject,handles,BER,conf) handles.BER = BER; handles.conf = conf; % toggle button handles belonging to different M values handles.handles_M =[handles.togglebutton1,handles.togglebutton13,... handles.togglebutton14,handles.togglebutton15,handles.togglebutton16,... handles.togglebutton17, handles.togglebutton18,handles.togglebutton19]; % toggle button handles belonging to different modulation values handles.handles_mod=[handles.togglebutton20,handles.togglebutton21, ... handles.togglebutton22, handles.togglebutton23, handles.togglebutton24]; handles.all_mod =[4 16 64 128 256]; handles.all_M =[4 8 16 32 64 128 256 512]; %active buttons for i=handles.all_M if ~ismember(i, handles.conf(1).M_val) set(handles.handles_M(log2(i)-1),'Value',0,'Enable','off'); else set(handles.handles_M(log2(i)-1),'Value',1,'Enable','on'); end end for i=handles.all_mod if ~ismember(i, handles.conf(1).mod_sch) set(handles.handles_mod(find(handles.all_mod==i)),'Value',0,'Enable','off'); else set(handles.handles_mod(find(handles.all_mod==i)),'Value',1,'Enable','on'); end end % retrieve data % data contains BER for (16) different SNR values and oriented in following % fashion: % M=4/4-QAM/SNR=0 M=4/4-QAM/SNR=1 M=4/4-QAM/SNR=2 .......... % M=4/16-QAM/SNR=0 ...... ...... ...... ...... ...... % ...... ...... ...... ...... ...... ...... ...... % ...... ...... ...... ...... ...... ...... ...... % M=512/128-QAM/SNR=0............................M=512/128-QAM/SNR=15 handles.data=zeros(length(handles.conf(1).M_val)*length(handles.conf(1).mod_sch),length(handles.conf(1).SNR_val)); for qw=1:length(handles.conf(1).M_val) for zx=1:length(handles.conf(1).mod_sch) handles.data(length(handles.conf(1).mod_sch)*(qw-1)+zx,:)=... handles.BER(log2(handles.conf(1).M_val(qw))-1,... find(handles.all_mod==handles.conf(1).mod_sch(zx)),... handles.conf(1).SNR_val+1); end end % Update handles structure guidata(hObject, handles); %initial plot pushbutton2_Callback(hObject, 0, handles) pushbutton4_Callback(hObject, 0, handles) update_plot(handles)
github
mohammadzainabbas/Digital-Communication-master
main.m
.m
Digital-Communication-master/Lab 02/main.m
1,488
utf_8
8489ed6eda6ec2344e9a48a58a36e4e1
function main() %Task No. 01 %Generate 2 random signal [x1,size1] = random_signal(); [x2,size2] = random_signal(); %Calculate pdfs of both [pdf1, bins1] = PDF(x1); [pdf2, bins2] = PDF(x2); %Rearranging x-axis of both so that mean appears at 0 x1_axis = min(x1):(max(x1)-min(x1))/(bins1):max(x1); x1_axis = x1_axis(1:size1); %coz no. of bins = length - 1 x2_axis = min(x2):(max(x2)-min(x2))/(bins2):max(x2); x2_axis = x2_axis(1:size2); % %plot both signals % figure % subplot(2,1,1) % bar(x1_axis,pdf1); % subplot(2,1,2) % bar(x2_axis,pdf2); %Task No. 02 %We already have both the signals x1 and x2, so don't need to generate them %Calculating mean of both signals mean1 = sum((x1) .* pdf1); mean2 = sum((x2) .* pdf2); %Calculating variance of both signals variance1 = sum(power((x1 - mean1),2)/(length(x1))) variance2 = sum(power((x2 - mean2),2)/(length(x2))) % %Ploting PDFs of both % figure % subplot(2,1,1) % bar(x1_axis,pdf1); % subplot(2,1,2) % bar(x2_axis,pdf2); %Chaning mean of signal x2 from 0 to 300 and -300 new1_x2 = x2 + 300; new2_x2 = x2 - 300; figure subplot(3,1,1) bar(x2_axis,pdf2) subplot(3,1,2) bar(x2_axis,PDF(new1_x2)[1]) subplot(3,1,3) bar(x2_axis,PDF(new2_x2)[1]) end function [x, size] = random_signal() size = input('Enter signal size: '); x = randn(1,size); end function [pdf, bins] = PDF(x) bins = input('Enter number of bins: '); pdf = hist(x,bins)/(length(x)); end
github
mohammadzainabbas/Digital-Communication-master
FBMC.m
.m
Digital-Communication-master/FBMC/+Modulation/FBMC.m
41,490
utf_8
9ce6c2fc7c3c9554a06c7a9e494abba9
classdef FBMC < handle % ===================================================================== % This MATLAB class represents an implementation of FBMC. The % modulation parameters are initialized by the class contructor. % The modulation of data symbols x and the demodulation of the % received samples r is then performed by the methods ".Modulation(x)" % and ".Demodulation(r)". % Additionally, there exist some other useful methods, such as, % ".PlotPowerSpectralDensity" or ".GetTXMatrix". % ===================================================================== % Ronald Nissel, [email protected] % (c) 2017 by Institute of Telecommunications, TU Wien % www.nt.tuwien.ac.at % ===================================================================== properties (SetAccess = private) Method % defines the modulation method (prototype filter) Nr % for dimensionless parameters PHY % for parameters with physical interpretation PrototypeFilter % for prototype filter parameters Implementation % implmentation relevent parameters end methods % Class constructor, define default values. function obj = FBMC(varargin) % Initialize parameters, set default values if numel(varargin) == 10 obj.Nr.Subcarriers = varargin{1}; % Number of subcarriers obj.Nr.MCSymbols = varargin{2}; % Number FBMC symbols in time obj.PHY.SubcarrierSpacing = varargin{3}; % Subcarrier spacing (Hz) obj.PHY.SamplingRate = varargin{4}; % Sampling rate (Samples/s) obj.PHY.IntermediateFrequency = varargin{5}; % Intermediate frequency of the first subcarrier (Hz). Must be a multiple of the subcarrier spacing obj.PHY.TransmitRealSignal = varargin{6}; % Transmit real valued signal (sampling theorem must be fulfilled!) obj.Method = varargin{7}; % Prototype filter (Hermite, PHYDYAS, RRC) and OQAM or QAM. The data rate of QAM is reduced by a factor of two compared to OQAM, but robustness in doubly-selective channels is inceased obj.PrototypeFilter.OverlappingFactor = varargin{8}; % Overlapping factor (also determines oversampling in the frequency domain) obj.Implementation.InitialPhaseShift = varargin{9}; % Initial phase shift obj.Implementation.UsePolyphase = varargin{10}; % Efficient IFFT implementation, true or false elseif numel(varargin) == 0 % Default Values (can later be changed using FBMC.Set...) obj.Nr.Subcarriers = 12; obj.Nr.MCSymbols = 30; obj.PHY.SubcarrierSpacing = 15e3; obj.PHY.SamplingRate = obj.Nr.Subcarriers*obj.PHY.SubcarrierSpacing; obj.PHY.IntermediateFrequency = 0; obj.PHY.TransmitRealSignal = false; obj.Method = 'Hermite-OQAM'; obj.PrototypeFilter.OverlappingFactor = 8; obj.Implementation.InitialPhaseShift = 0; obj.Implementation.UsePolyphase = true; else error('Number of input variables must be either 0 (default values) or 10'); end % calculate and set all dependent parameters obj.SetDependentParameters(); end function SetDependentParameters(obj) % method that sets all parameters which are dependent on other parameters % Check Parameters if mod(obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing),1)~=0 obj.PHY.SubcarrierSpacing=obj.PHY.SamplingRate/(2*round(obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing))); disp('Sampling Rate divided by (Subcarrier spacing times 2) must be must be an integer!'); disp(['Therefore, the subcarrier spacing is set to: ' int2str(obj.PHY.SubcarrierSpacing) 'Hz']); end if mod(obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing,1)~=0 obj.PHY.IntermediateFrequency = round(obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing)*obj.PHY.SubcarrierSpacing; disp('The intermediate frequency must be a multiple of the subcarrier spacing!'); disp(['Therefore, the intermediate frequency is set to ' int2str(obj.PHY.IntermediateFrequency) 'Hz']); end if (obj.PHY.SamplingRate<obj.Nr.Subcarriers*obj.PHY.SubcarrierSpacing) error('Sampling Rate must be higher: at least Number of Subcarriers times Subcarrier Spacing'); end % dependent parameters obj.PHY.dt = 1/obj.PHY.SamplingRate; % Different Prototype Filters and OQAM or QAM switch obj.Method case 'Hermite-OQAM' obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing); obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor; obj.PrototypeFilter.TimeDomain = PrototypeFilter_Hermite(obj.PHY.TimeSpacing*2,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor/2); case 'Hermite-QAM' obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing)*2; obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*4; obj.PrototypeFilter.TimeDomain = PrototypeFilter_Hermite(obj.PHY.TimeSpacing,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor); case 'Rectangle-QAM' % OFDM without cyclic prefix obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing); obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*2; TimeDomain = zeros(2*obj.PrototypeFilter.OverlappingFactor*obj.Implementation.TimeSpacing,1); TimeDomain(1:obj.Implementation.TimeSpacing) = 1/sqrt(obj.PHY.TimeSpacing); TimeDomain = circshift(TimeDomain,length(TimeDomain)/2-obj.Implementation.TimeSpacing/2); obj.PrototypeFilter.TimeDomain = TimeDomain; case 'RRC-OQAM' obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing); obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor; obj.PrototypeFilter.TimeDomain = PrototypeFilter_RootRaisedCosine(obj.PHY.TimeSpacing*2,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor/2); case 'RRC-QAM' obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing)*2; obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*4; obj.PrototypeFilter.TimeDomain = PrototypeFilter_RootRaisedCosine(obj.PHY.TimeSpacing,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor); case 'PHYDYAS-OQAM' obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing); obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor; obj.PrototypeFilter.TimeDomain = PrototypeFilter_PHYDYAS(obj.PHY.TimeSpacing*2,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor/2); case 'PHYDYAS-QAM' obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing)*2; obj.PHY.TimeSpacing = obj.Implementation.TimeSpacing*obj.PHY.dt; obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*4; obj.PrototypeFilter.TimeDomain = PrototypeFilter_PHYDYAS(obj.PHY.TimeSpacing,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor); otherwise error(['Method (prototype filter) "' obj.Method '" is not supported']); end obj.Nr.SamplesPrototypeFilter = length(obj.PrototypeFilter.TimeDomain); obj.Nr.SamplesTotal = obj.Nr.SamplesPrototypeFilter+(obj.Nr.MCSymbols-1)*obj.Implementation.TimeSpacing; % We assume a symmetric filter (=> real) and set small values to zero (=> lower computational complexity) PrototypefilterFFT = obj.PHY.dt*real(fft(circshift(obj.PrototypeFilter.TimeDomain,obj.Nr.SamplesPrototypeFilter/2))); PrototypefilterFFT = obj.PHY.dt*(fft(circshift(obj.PrototypeFilter.TimeDomain,obj.Nr.SamplesPrototypeFilter/2))); PrototypefilterFFT(abs(PrototypefilterFFT)./PrototypefilterFFT(1)<10^-14)=0; obj.PrototypeFilter.FrequencyDomain = PrototypefilterFFT; % Prepare paramters for an efficient implementation % Phase shift to guarentee that the interference is purely imaginary [k,l] = meshgrid(0:obj.Nr.MCSymbols-1,0:obj.Nr.Subcarriers-1); obj.Implementation.PhaseShift = exp(1j*pi/2*(l+k))*exp(1j*obj.Implementation.InitialPhaseShift); % index for the time shift of different FBMC symbols IndexAfterIFFT =[ones(obj.Nr.SamplesPrototypeFilter,obj.Nr.MCSymbols);zeros(obj.Implementation.TimeSpacing*(obj.Nr.MCSymbols-1),obj.Nr.MCSymbols)]; IndexNumberAfterIFFT = zeros(obj.Nr.SamplesPrototypeFilter,obj.Nr.MCSymbols); for i_k = 1:obj.Nr.MCSymbols IndexAfterIFFT(:,i_k) = circshift(IndexAfterIFFT(:,i_k),(i_k-1)*obj.Implementation.TimeSpacing); IndexNumberAfterIFFT(:,i_k) = find(IndexAfterIFFT(:,i_k)); end obj.Implementation.IndexAfterIFFT = logical(IndexAfterIFFT); obj.Implementation.IndexNumberAfterIFFT = IndexNumberAfterIFFT; % index for the polyphase implementation obj.Implementation.FFTSize = round(obj.Nr.SamplesPrototypeFilter./obj.Implementation.FrequencySpacing); obj.Implementation.IntermediateFrequency = round(obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing); obj.Implementation.IndexPolyphaseMap = logical(circshift([ones(obj.Nr.Subcarriers,obj.Nr.MCSymbols);... zeros(obj.Implementation.FFTSize-obj.Nr.Subcarriers,obj.Nr.MCSymbols)],... [obj.Implementation.IntermediateFrequency 1])); % Normalization factor so that the default power = 1 obj.Implementation.NormalizationFactor = sqrt(obj.PHY.SamplingRate^2/obj.PHY.SubcarrierSpacing^2*obj.PHY.TimeSpacing/obj.Nr.Subcarriers); end % Set Functions function SetNrSubcarriers(varargin) % set the number of subcarriers obj = varargin{1}; % set specific property obj.Nr.Subcarriers = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetNrMCSymbols(varargin) % set the number of symbols obj = varargin{1}; % set specific property obj.Nr.MCSymbols = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetSubcarrierSpacing(varargin) % set the subcarrier spacing obj = varargin{1}; % set specific property obj.PHY.SubcarrierSpacing = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetSamplingRate(varargin) % set the sampling rate obj = varargin{1}; % set specific property obj.PHY.SamplingRate = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetIntermediateFrequency(varargin) % set intermediate frequency obj = varargin{1}; % set specific property obj.PHY.IntermediateFrequency = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetTransmitRealSignal(varargin) % set real transmit signal indicator obj = varargin{1}; obj.PHY.TransmitRealSignal = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetMethod(varargin) % set method (prototype filter) obj = varargin{1}; % set specific property obj.Method = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetOverlappingFactor(varargin) % set overlapping factor obj = varargin{1}; % set specific property obj.PrototypeFilter.OverlappingFactor = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetInitialPhaseShift(varargin) % set initial phase shift obj = varargin{1}; % set specific property obj.Implementation.InitialPhaseShift = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end function SetUsePolyphase(varargin) % set polyphase filter indicator obj = varargin{1}; % set specific property obj.Implementation.UsePolyphase = varargin{2}; % recalculate dependent parameters obj.SetDependentParameters; end % Modulation and Demodulation function TransmitSignal = Modulation(obj, DataSymbols) % modulates the data symbols. The input argument is a matrix % of size "Number of subcarriers" \times "Number of FBMC symbols" % which represents the transmit data symbols TransmitSignal = zeros(size(obj.Implementation.IndexAfterIFFT)); if obj.Implementation.UsePolyphase DataSymbolsTemp = zeros(size(obj.Implementation.IndexPolyphaseMap)); DataSymbolsTemp(obj.Implementation.IndexPolyphaseMap) = DataSymbols.*obj.Implementation.PhaseShift.*obj.Implementation.NormalizationFactor; if obj.PHY.TransmitRealSignal DataSymbolsTemp = (DataSymbolsTemp+conj(DataSymbolsTemp([1 end:-1:2],:)))/sqrt(2); end TransmitSignal(obj.Implementation.IndexAfterIFFT) = repmat(ifft(DataSymbolsTemp),[obj.Implementation.FrequencySpacing 1]).*repmat(obj.PrototypeFilter.TimeDomain,[1 obj.Nr.MCSymbols]); TransmitSignal = sum(TransmitSignal,2); else % Include also the design in the frequency domain because it provides an alternative understanding of FBMC, but is less efficient! % Note that this matrix could be precomputed! FrequencyGeneration = zeros(size(obj.PrototypeFilter.FrequencyDomain,1),obj.Nr.Subcarriers); for i_l=1:obj.Nr.Subcarriers FrequencyGeneration(:,i_l) = circshift(obj.PrototypeFilter.FrequencyDomain, obj.Implementation.FrequencySpacing*(i_l-1+obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing)); end % normalized to have power 1 FrequencyGeneration = FrequencyGeneration*sqrt(1/obj.Nr.Subcarriers*obj.PHY.TimeSpacing)*obj.PHY.SamplingRate; FrequencyDomain = FrequencyGeneration*(DataSymbols.*obj.Implementation.PhaseShift); if obj.PHY.TransmitRealSignal FrequencyDomain = (FrequencyDomain+conj(FrequencyDomain([1 end:-1:2],:)))/sqrt(2); end TransmitSignal(obj.Implementation.IndexAfterIFFT) = circshift(ifft(FrequencyDomain),[-obj.Nr.SamplesPrototypeFilter/2 0]); TransmitSignal = sum(TransmitSignal,2); end end function ReceivedSymbols = Demodulation(obj, ReceivedSignal) % demodulates the received time signal and returns a matrix of % size "Number of subcarriers" \times "Number of FBMC symbols" % which represents the received symbols after demodulation but % before channel equalization % ReceivedSignal_CorrespondingSamplesToFBMCSymbol=reshape(ReceivedSignal(obj.Implementation.IndexNumberAfterIFFT(:)),[obj.Nr.SamplesPrototypeFilter obj.Nr.MCSymbols]); ReceivedSignal_CorrespondingSamplesToFBMCSymbol = ReceivedSignal(obj.Implementation.IndexNumberAfterIFFT); if obj.Implementation.UsePolyphase % similar to the transmitter, just in reversed order FilteredReceivedSignal = ReceivedSignal_CorrespondingSamplesToFBMCSymbol.*repmat(obj.PrototypeFilter.TimeDomain,[1 obj.Nr.MCSymbols]); ReceivedSymbolsTemp = fft(sum(reshape(FilteredReceivedSignal,[size(obj.Implementation.IndexPolyphaseMap,1) obj.Implementation.FrequencySpacing obj.Nr.MCSymbols]),2)); if obj.PHY.TransmitRealSignal ReceivedSymbolsTemp = ReceivedSymbolsTemp *sqrt(2); end ReceivedSymbols = reshape(ReceivedSymbolsTemp(obj.Implementation.IndexPolyphaseMap),size(obj.Implementation.PhaseShift)).*conj(obj.Implementation.PhaseShift)/(obj.Implementation.NormalizationFactor*obj.PHY.SubcarrierSpacing); else % same as before FrequencyGeneration = zeros(size(obj.PrototypeFilter.FrequencyDomain,1),obj.Nr.Subcarriers); for i_l=1:obj.Nr.Subcarriers FrequencyGeneration(:,i_l) = circshift(obj.PrototypeFilter.FrequencyDomain, obj.Implementation.FrequencySpacing*(i_l-1+obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing)); end % normalized to have power 1 FrequencyGeneration = FrequencyGeneration*sqrt(1/obj.Nr.Subcarriers*obj.PHY.TimeSpacing)*obj.PHY.SamplingRate; FrequencyDomain = fft(circshift(ReceivedSignal_CorrespondingSamplesToFBMCSymbol,[obj.Nr.SamplesPrototypeFilter/2 0])); ReceivedSymbols = (FrequencyGeneration'*FrequencyDomain).*conj(obj.Implementation.PhaseShift)*(obj.Nr.Subcarriers*obj.PHY.SubcarrierSpacing)/(obj.PHY.SamplingRate^2*obj.PHY.TimeSpacing*obj.Implementation.FrequencySpacing); end end % Matrix Description function TXMatrix = GetTXMatrix(obj) % returns a matrix G so that s=G*x(:) is the same as % s=obj.Modulation(x) TransmitRealSignal=false; if obj.PHY.TransmitRealSignal obj.PHY.TransmitRealSignal = false; TransmitRealSignal=true; end TXMatrix=zeros(obj.Nr.SamplesTotal,obj.Nr.Subcarriers*obj.Nr.MCSymbols); TXMatrixTemp=zeros(obj.Nr.SamplesTotal,obj.Nr.Subcarriers); x = zeros(obj.Nr.Subcarriers, obj.Nr.MCSymbols); for i_l= 1:obj.Nr.Subcarriers; x(i_l)=1; TXMatrixTemp(:,i_l) = obj.Modulation(x); x(i_l)=0; end for i_k=1:obj.Nr.MCSymbols TXMatrix(:,(1:obj.Nr.Subcarriers)+(i_k-1)*obj.Nr.Subcarriers)=circshift(TXMatrixTemp,[(i_k-1)*obj.Implementation.TimeSpacing,0])*1j^(i_k-1); end if TransmitRealSignal obj.PHY.TransmitRealSignal = true; TXMatrix = real(TXMatrix)*sqrt(2); end end function RXMatrix = GetRXMatrix(obj) % returns a matrix Q so that y=Q*r is the same as % y=reshape(obj.Demodulation(r),[],1) if obj.PHY.TransmitRealSignal obj.PHY.TransmitRealSignal = false; RXMatrix = sqrt(2)*obj.GetTXMatrix'*(obj.Nr.Subcarriers/(obj.PHY.SamplingRate*obj.PHY.TimeSpacing)); obj.PHY.TransmitRealSignal = true; else RXMatrix = obj.GetTXMatrix'*(obj.Nr.Subcarriers/(obj.PHY.SamplingRate*obj.PHY.TimeSpacing)); end end function FBMCMatrix = GetFBMCMatrix(obj,FastCalculation) % returns a matrix D, so that y=D*x is the same as % y=reshape(obj.Demodulation(obj.Modulation(x)),[],1) if not(exist('FastCalculation','var')) FastCalculation = true; end if FastCalculation InterferenceMatrix = obj.GetInterferenceMatrix; [Symbol_i,Subcarrier_i] = meshgrid(1:obj.Nr.MCSymbols,1:obj.Nr.Subcarriers); LK = obj.Nr.Subcarriers*obj.Nr.MCSymbols; Index_DeltaSubcarrier = repmat(Subcarrier_i(:),1,LK)-repmat(Subcarrier_i(:)',LK,1); Index_DeltaSymbols = repmat(Symbol_i(:),1,LK)-repmat(Symbol_i(:)',LK,1); Index_Subcarrier = repmat(Subcarrier_i(:),1,LK)-1; FBMCMatrix=reshape(InterferenceMatrix(Index_DeltaSubcarrier(:)+obj.Nr.Subcarriers+(Index_DeltaSymbols(:)+obj.Nr.MCSymbols-1)*size(InterferenceMatrix,1)),LK,LK); if obj.Method(end-3)=='-' % QAM, works only for an odd number of subcarriers, needs to be fixed! Hower it does not really matter because values are too small to have any effect! FBMCMatrix=FBMCMatrix.*exp(-1j*pi/2*(Index_DeltaSubcarrier+Index_DeltaSymbols)).*exp(-1j*pi*3/2*Index_DeltaSymbols.*Index_DeltaSubcarrier); else % OQAM, this works FBMCMatrix=FBMCMatrix.*exp(-1j*pi/2*(Index_DeltaSubcarrier+Index_DeltaSymbols)).*exp(-1j*2*pi*(obj.PHY.TimeSpacing*obj.PHY.SubcarrierSpacing)*Index_DeltaSymbols.*(Index_Subcarrier+Index_DeltaSubcarrier/2)); end else % straightforward slow implementation FBMCMatrix = zeros(obj.Nr.Subcarriers*obj.Nr.MCSymbols); DataImpulse=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols); for i_lk=1:obj.Nr.Subcarriers*obj.Nr.MCSymbols DataImpulse(i_lk)=1; FBMCMatrix(:,i_lk) = reshape(obj.Demodulation(obj.Modulation(DataImpulse)),[],1); DataImpulse(i_lk)=0; end end end function InterferenceMatrix = GetInterferenceMatrix(obj) % returns a matrix which represents the imaginary interference % weights in FBMC DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols); DataSymbols(1,1)=1; Y11=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols); [k_all,l_all] = meshgrid(0:obj.Nr.MCSymbols-1,0:obj.Nr.Subcarriers-1); Y11=Y11.*(exp(1j*pi/2*(l_all+k_all)).*exp(-1j*pi*k_all.*(l_all/2))); InterferenceMatrix = [Y11(end:-1:2,end:-1:2),Y11(end:-1:2,1:end);Y11(:,end:-1:2),Y11(1:end,1:end)]; end function TimePos = GetTimeIndexMidPos(obj) % returns a vector which represents the discete time position % of the corresponding FBMC symbol (middle position) TimePos = round(size(obj.PrototypeFilter.TimeDomain,1)/2)+1+(0:obj.Nr.MCSymbols-1)*obj.Implementation.TimeSpacing; end % Plot function [TransmitPower,Time]=PlotTransmitPower(obj, Rx) % plot the expected transmit power over time. The input % argument represents the correlation of the data symbols. % If no input argument is specified, an identity matrix is % assumed (uncorrelated data) if exist('Rx','var') [V,D] = eig(Rx); else % assume that Rx is an identity matrix, that is, % uncorrelated symbols V = eye(obj.Nr.Subcarriers*obj.Nr.MCSymbols); D = V; end D=sqrt(D); TransmitPower = zeros(obj.Nr.SamplesTotal,1); for i_lk = 1:obj.Nr.Subcarriers*obj.Nr.MCSymbols TransmitPower = TransmitPower+abs(obj.Modulation(reshape(V(:,i_lk),obj.Nr.Subcarriers,obj.Nr.MCSymbols))*D(i_lk,i_lk)).^2; if mod(i_lk,1000)==0 disp([int2str(i_lk/(obj.Nr.Subcarriers*obj.Nr.MCSymbols )*100) '%']); end end Time = (0:length(TransmitPower)-1)*obj.PHY.dt; if nargout==0 plot(Time,TransmitPower); ylabel('Transmit Power'); xlabel('Time(s)'); end end function [PowerSpectralDensity,Frequency] = PlotPowerSpectralDensity(obj,Rx) % plot the power spectral density. The input argument % represents the correlation of the data symbols. If no input % argument is specified, an identity matrix is assumed % (uncorrelated data) if exist('Rx','var') [V,D] = eig(Rx); else V = eye(obj.Nr.Subcarriers*obj.Nr.MCSymbols); D = V; end D=sqrt(D); PowerSpectralDensity = zeros(obj.Nr.SamplesTotal,1); for i_lk = 1:obj.Nr.Subcarriers*obj.Nr.MCSymbols PowerSpectralDensity = PowerSpectralDensity+abs(fft(obj.Modulation(reshape(V(:,i_lk),obj.Nr.Subcarriers,obj.Nr.MCSymbols))*D(i_lk,i_lk))).^2; if mod(i_lk,1000)==0 disp([int2str(i_lk/(obj.Nr.Subcarriers*obj.Nr.MCSymbols )*100) '%']); end end Frequency = (0:length(PowerSpectralDensity)-1)*1/(length(PowerSpectralDensity)*obj.PHY.dt); PowerSpectralDensity=PowerSpectralDensity/length(PowerSpectralDensity)^2/Frequency(2)^2; if nargout==0 plot(Frequency,10*log10(PowerSpectralDensity)); ylabel('Power Spectral Density (dB/Hz)'); xlabel('Frequency (Hz)'); end end function [PowerSpectralDensity,Frequency] = PlotPowerSpectralDensityUncorrelatedData(obj) % plot the power spectral density in case of uncorrelated data % symbols. Faster than FBMC.PlotPowerSpectralDensity PowerSpectralDensity = zeros(obj.Nr.SamplesTotal,1); for i_lk = 1:obj.Nr.Subcarriers V = zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols); V(i_lk,round(obj.Nr.MCSymbols/2))=1; PowerSpectralDensity = PowerSpectralDensity+abs(fft(obj.Modulation(V))).^2; end Frequency = (0:length(PowerSpectralDensity)-1)*1/(length(PowerSpectralDensity)*obj.PHY.dt); PowerSpectralDensity=obj.Nr.MCSymbols*PowerSpectralDensity/length(PowerSpectralDensity)^2/Frequency(2)^2; if nargout==0 plot(Frequency,10*log10(PowerSpectralDensity)); ylabel('Power Spectral Density (dB/Hz)'); xlabel('Frequency (Hz)'); end end % SIR and Noise power function [SIR_dB] = GetSIRdBDoublyFlat(obj) % returns the SIR [dB] in case of a doubly-flat channel. The % inferference is caused by the imperfect prototype filter. % Increasing the overlapping factor also increased the SIR. DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols); DataSymbols(ceil(end/2),ceil(end/2))=1; Y=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols); if obj.Method(end-3)=='O' Y = real(Y); end S = abs(Y(ceil(end/2),ceil(end/2))).^2; Y(ceil(end/2),ceil(end/2))=0; I =sum(sum(abs(Y).^2)); SIR_dB = 10*log10(S/I); end function Pn = GetSymbolNoisePower(obj,Pn_time) % returns the symbol noise power, that is, the noise power % after demodulation. The input argument is the noise power % in the time domain. Pn = (Pn_time*(obj.Nr.Subcarriers/(obj.PHY.SamplingRate*obj.PHY.TimeSpacing))); end function [SignalPower,InterferencePower] = GetSignalAndInterferencePowerQAM(... obj,... % FBMC object VectorizedChannelCorrelationMatrix,... % Let the received signal be r=H*s with H representing a time-variant convolution matrix. Then "VectorizedChannelCorrelationMatrix" represents the expectation E{{H(:)*H(:)'}. We can obtain such matrix by ChannelModel.GetCorrelationMatrix DataSymbolCorrelationMatrix,... % Correlation matrix of the vectorized data symbols TimeSamplesOffset,... % Time offset in samples (to improve the SIR) SubcarrierPosition,... % Subcarrier position for which the SIR is calculated. FBMCSymbolPosition... % FBMC symbol position in time for which the SIR is calculated. ) % returns the signal and interference power for a % doubly-selective channel in case of QAM transmissions TXMatrix = obj.GetTXMatrix; RXMatrix = obj.GetRXMatrix; RXMatrix = [zeros(size(RXMatrix,1),TimeSamplesOffset),RXMatrix(:,1:end-TimeSamplesOffset)]; % Time offset compensation Index = SubcarrierPosition+(FBMCSymbolPosition-1)*obj.Nr.Subcarriers; % TempOld = kron(TXMatrix.',RXMatrix(Index,:))*VectorizedChannelCorrelationMatrix*kron(TXMatrix.',RXMatrix(Index,:))'; % Much more efficient RXVectorRep = kron(sparse(eye(length(RXMatrix(Index,:)))),RXMatrix(Index,:)'); Temp = RXVectorRep'*VectorizedChannelCorrelationMatrix*RXVectorRep; CorrMatrixNoData = TXMatrix.'*Temp*conj(TXMatrix); SignalDataSymbolCorrelationMatrix = zeros(size(DataSymbolCorrelationMatrix)); SignalDataSymbolCorrelationMatrix(Index,Index) = DataSymbolCorrelationMatrix(Index,Index); InterferenceDataSymbolCorrelationMatrix = DataSymbolCorrelationMatrix; InterferenceDataSymbolCorrelationMatrix(Index,:)=0; InterferenceDataSymbolCorrelationMatrix(:,Index)=0; SignalPower = abs(sum(sum(CorrMatrixNoData.*SignalDataSymbolCorrelationMatrix))); InterferencePower = abs(sum(sum(CorrMatrixNoData.*InterferenceDataSymbolCorrelationMatrix))); end function [SignalPower,InterferencePower] = GetSignalAndInterferencePowerOQAM(... obj,... % FBMC object VectorizedChannelCorrelationMatrix,... % Let the received signal be r=H*s with H representing a time-variant convolution matrix. Then "VectorizedChannelCorrelationMatrix" represents the expectation E{{H(:)*H(:)'}. We can obtain such matrix by ChannelModel.GetCorrelationMatrix DataSymbolCorrelationMatrix,... % Correlation matrix of the vectorized data symbols TimeSamplesOffset,... % Time offset in samples (to improve the SIR) SubcarrierPosition,... % Subcarrier position for which the SIR is calculated. FBMCSymbolPosition... % FBMC symbol position in time for which the SIR is calculated. ) % returns the signal and interference power for a % doubly-selective channel in case of OQAM transmissions, that % is, real valued data symbols TXMatrix = obj.GetTXMatrix; RXMatrix = obj.GetRXMatrix; RXMatrix = [zeros(size(RXMatrix,1),TimeSamplesOffset),RXMatrix(:,1:end-TimeSamplesOffset)]; % Time offset compensation Index = SubcarrierPosition+(FBMCSymbolPosition-1)*obj.Nr.Subcarriers; % TempOld = kron(TXMatrix.',RXMatrix(Index,:))*VectorizedChannelCorrelationMatrix*kron(TXMatrix.',RXMatrix(Index,:))'; % Much more efficient RXVectorRep = kron(sparse(eye(length(RXMatrix(Index,:)))),RXMatrix(Index,:)'); Temp = RXVectorRep'*VectorizedChannelCorrelationMatrix*RXVectorRep; CorrMatrixNoData = TXMatrix.'*Temp*conj(TXMatrix); % additional processing for OQAM: we need to correct the phase [V,D] = eig(CorrMatrixNoData); Half = V*sqrt(D); Phase = exp(-1j*angle(Half(Index,:))); Half = Half.*repmat(Phase,[size(Half,1) 1]); CorrMatrixNoData = real(Half)*real(Half)'; SignalDataSymbolCorrelationMatrix = zeros(size(DataSymbolCorrelationMatrix)); SignalDataSymbolCorrelationMatrix(Index,Index) = DataSymbolCorrelationMatrix(Index,Index); InterferenceDataSymbolCorrelationMatrix = DataSymbolCorrelationMatrix; InterferenceDataSymbolCorrelationMatrix(Index,:)=0; InterferenceDataSymbolCorrelationMatrix(:,Index)=0; SignalPower = abs(sum(sum(CorrMatrixNoData.*SignalDataSymbolCorrelationMatrix))); InterferencePower = abs(sum(sum(CorrMatrixNoData.*InterferenceDataSymbolCorrelationMatrix))); end function CodingMatrix = GetPrecodingMatrixForQAMinOQAM(obj,TimeSpreading,StartIndex) % Returns a precoding matrix C which allows QAM transmission % in FBMC-OQAM by spreading data symbols in time or frequency. % For spreading in time, the first argument must be set to true. % For spreading in frequency, it must be set to false. % The second argument represents the start index of the % Hadamard matrix and can be set to 1 or 2. % Let D = obj.GetFBMCMatrix, then we have C'*D*C=eye(.) % For more information, see "Enabling Low-Complexity MIMO in % FBMC-OQAM", R.Nissel et al, 2016, GC Wkshps % Chose between time or frequency spreading if TimeSpreading if rem(log2(obj.Nr.MCSymbols),1) error('Number of time-symbols must be a power of 2'); end HadamardMatrix = fwht(eye(obj.Nr.MCSymbols),obj.Nr.MCSymbols,'sequency')*sqrt(obj.Nr.MCSymbols); CodingMatrix_Basis(:,:,1) = HadamardMatrix(:,1:2:end); CodingMatrix_Basis(:,:,2) = HadamardMatrix(:,2:2:end); IndexSpreading = repmat((1:obj.Nr.Subcarriers)',[1,obj.Nr.MCSymbols]); IndexSpreadingHalf = IndexSpreading(:,1:2:end); CodingMatrix = zeros(obj.Nr.Subcarriers*obj.Nr.MCSymbols,obj.Nr.Subcarriers*obj.Nr.MCSymbols/2); for i_CodeMapping = 1:max(max(IndexSpreading)) CodingMatrix(IndexSpreading(:)==i_CodeMapping,IndexSpreadingHalf(:)==i_CodeMapping) = CodingMatrix_Basis(:,:,mod(i_CodeMapping+StartIndex,2)+1); end else % Frequency spreading if rem(log2(obj.Nr.Subcarriers),1) error('Number of subcarriers must be a power of 2'); end HadamardMatrix = fwht(eye(obj.Nr.Subcarriers),obj.Nr.Subcarriers,'sequency')*sqrt(obj.Nr.Subcarriers); CodingMatrix_Basis(:,:,1) = HadamardMatrix(:,1:2:end); CodingMatrix_Basis(:,:,2) = HadamardMatrix(:,2:2:end); CodingMatrix = kron(sparse(eye(obj.Nr.MCSymbols)),CodingMatrix_Basis(:,:,mod(StartIndex-1,2)+1)); end end end end function PrototypeFilter = PrototypeFilter_Hermite(T0,dt,OF) % The pulse is orthogonal for a time-spacing of T=T_0 and a frequency-spacing of F=2/T_0 % Values taken from: R.Nissel et al. "ON PILOT-SYMBOL AIDED CHANNEL ESTIMATION IN FBMC-OQAM" t_filter=-(OF*T0):dt:(OF*T0-dt); D0=1/sqrt(T0)*HermiteH(0,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))) .*exp(-pi*(t_filter./(T0/sqrt(2))).^2); D4=1/sqrt(T0)*HermiteH(4,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))) .*exp(-pi*(t_filter./(T0/sqrt(2))).^2); D8=1/sqrt(T0)*HermiteH(8,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))) .*exp(-pi*(t_filter./(T0/sqrt(2))).^2); D12=1/sqrt(T0)*HermiteH(12,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))).*exp(-pi*(t_filter./(T0/sqrt(2))).^2); D16=1/sqrt(T0)*HermiteH(16,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))).*exp(-pi*(t_filter./(T0/sqrt(2))).^2); D20=1/sqrt(T0)*HermiteH(20,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))).*exp(-pi*(t_filter./(T0/sqrt(2))).^2); H0= 1.412692577; H4= -3.0145e-3; H8=-8.8041e-6; H12=-2.2611e-9; H16=-4.4570e-15; H20 = 1.8633e-16; PrototypeFilter=(D0.*H0+D4.*H4+D8.*H8+D12.*H12+D16.*H16+D20.*H20).'; PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt); end function PrototypeFilter = PrototypeFilter_RootRaisedCosine(T0,dt,OF) % The pulse is orthogonal for a time-spacing of T=T0 and a frequency-spacing of F=2/T0 t_filter=-(OF*T0):dt:(OF*T0-dt); PrototypeFilter=(1/sqrt(T0)*(4*t_filter/T0.*cos(2*pi*t_filter/T0))./(pi*t_filter/T0.*(1-(4*t_filter/T0).^2))); PrototypeFilter(abs(t_filter)<10^-14) =1/sqrt(T0)*(4/pi); PrototypeFilter(abs(abs(t_filter)-T0/4)<10^-14)=1/sqrt(2*T0)*((1+2/pi)*sin(pi/4)+(1-2/pi)*cos(pi/4)); PrototypeFilter=PrototypeFilter.'; PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt); end function PrototypeFilter = PrototypeFilter_PHYDYAS(T0,dt,OF) % The pulse is orthogonal for a time-spacing of T=T0 and a frequency-spacing of F=2/T0 t_filter=-(OF*T0):dt:(OF*T0-dt); switch OF*2 case 2 H= [sqrt(2)/2]; case 3 H = [0.91143783 0.41143783]; case 4 H = [0.97195983 sqrt(2)/2 0.23514695]; case 5 H = [0.99184131 0.86541624 0.50105361 0.12747868]; case 6 H = [0.99818572 0.94838678 sqrt(2)/2 0.31711593 0.06021021]; case 7 H = [0.99938080 0.97838560 0.84390076 0.53649931 0.20678881 0.03518546]; case 8 H = [0.99932588 0.98203168 0.89425129 sqrt(2)/2 0.44756522 0.18871614 0.03671221]; otherwise error('Oversampling factor must be an integer between 1 and 8 for OQAM or betwen 1 and 4 for QAM'); end PrototypeFilter = 1+2*sum(repmat(H,length(t_filter),1).*cos(2*pi*repmat(t_filter',1,length(H)).*repmat(1:length(H),length(t_filter),1)/((length(H)+1)*T0)),2); PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt); end function Hermite = HermiteH(n,x) % Hermite polynomials (obtained by Mathematica, "ToMatlab[HermiteH[n, x]]") if n==0 Hermite=ones(size(x)); elseif n==4 Hermite=12+(-48).*x.^2+16.*x.^4; elseif n==8 Hermite = 1680+(-13440).*x.^2+13440.*x.^4+(-3584).*x.^6+256.*x.^8; elseif n==12 Hermite = 665280+(-7983360).*x.^2+13305600.*x.^4+(-7096320).*x.^6+1520640.* ... x.^8+(-135168).*x.^10+4096.*x.^12; elseif n==16 Hermite = 518918400+(-8302694400).*x.^2+19372953600.*x.^4+(-15498362880).* ... x.^6+5535129600.*x.^8+(-984023040).*x.^10+89456640.*x.^12+( ... -3932160).*x.^14+65536.*x.^16; elseif n==20 Hermite = 670442572800+(-13408851456000).*x.^2+40226554368000.*x.^4+( ... -42908324659200).*x.^6+21454162329600.*x.^8+(-5721109954560).* ... x.^10+866834841600.*x.^12+(-76205260800).*x.^14+3810263040.*x.^16+ ... (-99614720).*x.^18+1048576.*x.^20; end end
github
mohammadzainabbas/Digital-Communication-master
BitErrorProbabilityDoublyFlatRayleigh.m
.m
Digital-Communication-master/FBMC/Theory/BitErrorProbabilityDoublyFlatRayleigh.m
5,433
utf_8
dad0d52f13e8cc151062cd0b3fa6f8f4
% Ronald Nissel, [email protected] % (c) 2017 by Institute of Telecommunications, TU Wien % www.tc.tuwien.ac.at % This function calculates the bit error probability for an arbitrary % signal constellation in a doubly flat rayleigh channel. % It is based on "OFDM and FBMC-OQAM in doubly-selective channels: % Calculating the bit error probability", R. Nissel and M. Rupp, IEEE % Communications Letters, 2017 function BitErrorProbability = BitErrorProbabilityDoublyFlatRayleigh(... SNR_dB, ... % The SNR in the complex domain => SNR_FBMC = SNR_OFDM-3dB. SymbolMapping, ...% The symbol mapping with mean(SymbolMapping.*conj(SymbolMapping))==1. For example in 4QAM we have: SymbolMapping=[0.7071 + 0.7071i;-0.7071 + 0.7071i;0.7071 - 0.7071i;-0.7071 - 0.7071i]; BitMapping) % The bitmapping corresponding to the symbol mapping. For example for 4QAM we have: BitMapping = [0 0;1 0;0 1;1 1]; % For the decision regions we assume a rectangular regular grid! The rest % of the function could also be used for an irregular grid but % the decision regions would have to be rewritten! HalfDecisionInterval = min(abs(real(SymbolMapping))); DecisionRegions = [... real(SymbolMapping)- HalfDecisionInterval ... real(SymbolMapping)+ HalfDecisionInterval ... imag(SymbolMapping)- HalfDecisionInterval ... imag(SymbolMapping)+ HalfDecisionInterval ]; DecisionRegions(min(real(SymbolMapping))==real(SymbolMapping),1) = -inf; DecisionRegions(max(real(SymbolMapping))==real(SymbolMapping),2) = +inf; DecisionRegions(min(imag(SymbolMapping))==imag(SymbolMapping),3) = -inf; DecisionRegions(max(imag(SymbolMapping))==imag(SymbolMapping),4) = +inf; BitErrorProbability = nan(length(SNR_dB),1); for i_SNR = 1:length(SNR_dB) Pn = 10^(-SNR_dB(i_SNR)/10); ProbabilityMatrix = nan(size(SymbolMapping,1),size(SymbolMapping,1)); for i_symbol = 1:size(SymbolMapping,1) x = SymbolMapping(i_symbol); Ey2 = abs(x).^2+Pn; Eh2 = 1; Eyh = x; ProbabilityMatrix(:,i_symbol)=GaussianRatioProbabilityRectangularRegion(Ey2,Eh2,Eyh,DecisionRegions(:,1),DecisionRegions(:,2),DecisionRegions(:,3),DecisionRegions(:,4)); end ErrorProbability = nan(2,size(BitMapping,2)); for i_bit= 1:size(BitMapping,2) for i_zero_one = [0 1] index_x = (BitMapping(:,i_bit)==i_zero_one); ErrorProbability(i_zero_one+1,i_bit) = mean(sum(ProbabilityMatrix(not(index_x),index_x))); end end BitErrorProbability(i_SNR) = mean(mean(ErrorProbability)); end end % This function calculates the Probability that the complex Gaussian ratio % y/h is within the rectrangular region "(zRlower zIlower] x (zRupper % zIupper]". It requires the function "GaussianRatioCDF" function Probability = GaussianRatioProbabilityRectangularRegion(... Ey2,... % Expectation{|y|^2} Eh2,... % Expectation{|h|^2} Eyh,... % Expectation{y*conj(h)} zRlower,... % Determines the rectangular region zRupper,... zIlower,... zIupper) CDF_RegionA = GaussianRatioCDF(Ey2,Eh2,Eyh,zRupper,zIupper); CDF_RegionB = GaussianRatioCDF(Ey2,Eh2,Eyh,zRlower,zIlower); CDF_RegionC = GaussianRatioCDF(Ey2,Eh2,Eyh,zRlower,zIupper); CDF_RegionD = GaussianRatioCDF(Ey2,Eh2,Eyh,zRupper,zIlower); Probability = CDF_RegionA+CDF_RegionB-CDF_RegionC-CDF_RegionD; end % This function calculates the CDF of the complex Gaussian ratio y/h, that % is Pr(real(y/h)<zR & imag(y/h)<zR), whereas y and h are complex Gaussian random variables function CDF = GaussianRatioCDF(... Ey2,... % Expectation{|y|^2} Eh2,... % Expectation{|h|^2} Eyh,... % Expectation{y*conj(h)} zR,... % Real part of the CDF, i.e, Pr(real(y/h)<zR &...) zI) % Imaginary part of the CDF, i.e, Pr(... & imag(y/h)<zR) a = Eyh/Eh2; % alpha b = Ey2/Eh2; % beta Index0 = (zR == -inf) | (zI == -inf); Index1 = (zR == inf) & (zI == inf); IndexReal = (zI == inf) & isfinite(zR); IndexImag = (zR == inf) & isfinite(zI); IndexNormal = isfinite(zR) & isfinite(zI); % See "Bit error probability for pilot-symbol aided channel estimation in % FBMC-OQAM", R. Nissel and M. Rupp, 2016 CDF_Real = 1/2-... (real(a)-zR(IndexReal))./... (2*sqrt((real(a)-zR(IndexReal)).^2+b-abs(a).^2)); CDF_Imag = 1/2-... (imag(a)-zI(IndexImag))./... (2*sqrt((imag(a)-zI(IndexImag)).^2+b-abs(a).^2)); % General Case, see "OFDM and FBMC-OQAM in Doubly-Selective Channels: % Calculating the Bit Error Probability" R. Nissel and M. Rupp, 2017 CDF_Normal = 1/4+... (zR(IndexNormal)-real(a)).*... (2*atan(... (zI(IndexNormal)-imag(a))./sqrt((zR(IndexNormal)-real(a)).^2+b-abs(a).^2)... )+pi)./... (4*pi*sqrt((zR(IndexNormal)-real(a)).^2+b-abs(a).^2))+... (zI(IndexNormal)-imag(a)).*... (2*atan(... (zR(IndexNormal)-real(a))./sqrt((zI(IndexNormal)-imag(a)).^2+b-abs(a).^2)... )+pi)./... (4*pi*sqrt((zI(IndexNormal)-imag(a)).^2+b-abs(a).^2)); % Map CDF to correct one CDF = nan(size(zR)); CDF(Index0) = 0; CDF(Index1) = 1; CDF(IndexReal) = CDF_Real; CDF(IndexImag) = CDF_Imag; CDF(IndexNormal) = CDF_Normal; end
github
mohammadzainabbas/Digital-Communication-master
BitErrorProbabilityAWGN.m
.m
Digital-Communication-master/FBMC/Theory/BitErrorProbabilityAWGN.m
3,640
utf_8
7c47a1abaea050d1e6e70b73ddd94551
% Ronald Nissel, [email protected] % (c) 2017 by Institute of Telecommunications, TU Wien % www.tc.tuwien.ac.at % This function calculates the bit error probability for an arbitrary % signal constellations in an AWGN channel function BitErrorProbability = BitErrorProbabilityAWGN(... SNR_dB, ... % The SNR in the complex domain => SNR_FBMC = SNR_OFDM-3dB. SymbolMapping, ...% The symbol mapping with mean(SymbolMapping.*conj(SymbolMapping))==1. For example in 4QAM we have: SymbolMapping=[0.7071 + 0.7071i;-0.7071 + 0.7071i;0.7071 - 0.7071i;-0.7071 - 0.7071i]; BitMapping) % The bitmapping corresponding to the symbol mapping. For example for 4QAM we have: BitMapping = [0 0;1 0;0 1;1 1]; % For the decision regions we assume a rectangular regular grid. The rest % of the function could also be used for an irregular grid but % the decision regions would have to be rewritten! HalfedDecisionInterval = min(abs(real(SymbolMapping))); DecisionRegions = [... real(SymbolMapping)- HalfedDecisionInterval ... real(SymbolMapping)+ HalfedDecisionInterval ... imag(SymbolMapping)- HalfedDecisionInterval ... imag(SymbolMapping)+ HalfedDecisionInterval ]; DecisionRegions(min(real(SymbolMapping))==real(SymbolMapping),1) = -inf; DecisionRegions(max(real(SymbolMapping))==real(SymbolMapping),2) = +inf; DecisionRegions(min(imag(SymbolMapping))==imag(SymbolMapping),3) = -inf; DecisionRegions(max(imag(SymbolMapping))==imag(SymbolMapping),4) = +inf; BitErrorProbability = nan(length(SNR_dB),1); for i_SNR = 1:length(SNR_dB) Pn = 10^(-SNR_dB(i_SNR)/10); ProbabilityMatrix = nan(size(SymbolMapping,1),size(SymbolMapping,1)); for i_symbol = 1:size(SymbolMapping,1) x = SymbolMapping(i_symbol); ProbabilityMatrix(:,i_symbol)=GaussianRatioProbabilityRectangularRegion(x,Pn,DecisionRegions(:,1),DecisionRegions(:,2),DecisionRegions(:,3),DecisionRegions(:,4)); end ErrorProbability = nan(2,size(BitMapping,2)); for i_bit= 1:size(BitMapping,2) for i_zero_one = [0 1] index_x = (BitMapping(:,i_bit)==i_zero_one); ErrorProbability(i_zero_one+1,i_bit) = mean(sum(ProbabilityMatrix(not(index_x),index_x))); end end BitErrorProbability(i_SNR) = mean(mean(ErrorProbability)); end end % This function calculates the Probability that y=x+n is within the % rectrangular region "(zRlower zIlower] \times (zRupper zIupper]". % It requires the function "GaussianRatioCDF" function Probability = GaussianRatioProbabilityRectangularRegion(... x,... % Transmitted symbol Pn,... % Complex noise power zRlower,... % Determines the rectangular region zRupper,... zIlower,... zIupper) CDF_RegionA = GaussianCDF(x,Pn,zRupper,zIupper); CDF_RegionB = GaussianCDF(x,Pn,zRlower,zIlower); CDF_RegionC = GaussianCDF(x,Pn,zRlower,zIupper); CDF_RegionD = GaussianCDF(x,Pn,zRupper,zIlower); Probability = CDF_RegionA+CDF_RegionB-CDF_RegionC-CDF_RegionD; end % This function calculates the CDF, that is Pr(real(x)<zR & imag(x)<zR), % whereas x is a complex Gaussian random variable function CDF = GaussianCDF(... x,... % .... Pn,... % ... zR,... % Real part of the CDF, i.e, Pr(real(y/h)<zR &...) zI) % Imaginary part of the CDF, i.e, Pr(... & imag(y/h)<zR) CDF = normcdf(zR,real(x),sqrt(Pn/2)).*normcdf(zI,imag(x),sqrt(Pn/2)); end
github
mohammadzainabbas/Digital-Communication-master
TurboCoding.m
.m
Digital-Communication-master/FBMC/+Coding/TurboCoding.m
5,605
utf_8
0d8994721a04fe4be8e040fa698bc99d
classdef TurboCoding < handle % ===================================================================== % This MATLAB class represents a turbo coder (LTE). % It requires the MATLAB Communications System Toolbox! % Usage: % 1) CodingObject = Coding.TurboCoding(NrDataBits,NrCodedBits) % 2) CodingObject.TurboEncoder(Bitstream) % 3) CodingObject.TurboDecoder(LLR) % Additionally, we might want to update the internal interleaver by % CodingObject.UpdateInterleaving; % The code is based on the book % "Understanding LTE with MATLAB", Houman Zarrinkoub % ===================================================================== % Ronald Nissel, [email protected] % (c) 2017 by Institute of Telecommunications, TU Wien % www.nt.tuwien.ac.at % ===================================================================== properties (SetAccess = private) CommTurboEncoder CommTurboDecoder NrDataBits NrCodedBits CodeRate Interleaving end methods function obj = TurboCoding(varargin) if varargin{2}>varargin{1} obj.NrDataBits = varargin{1}; obj.NrCodedBits = varargin{2}; else obj.NrDataBits = varargin{2}; obj.NrCodedBits = varargin{1}; end obj.CodeRate = obj.NrDataBits/obj.NrDataBits; obj.Interleaving = randperm(obj.NrDataBits); obj.CommTurboEncoder = comm.TurboEncoder('TrellisStructure', poly2trellis(4, [13 15], 13),'InterleaverIndicesSource','Input port'); obj.CommTurboDecoder = comm.TurboDecoder('TrellisStructure', poly2trellis(4, [13 15], 13),'InterleaverIndicesSource','Input port', 'NumIterations', 10); end function CodedBits = TurboEncoder( obj , DataBits ) ImplementationCodeRate = (obj.NrDataBits+4)/obj.NrCodedBits; CodedBits_1_3 = step(obj.CommTurboEncoder,DataBits,obj.Interleaving); if ImplementationCodeRate>=1/3 CodedBits=RateMatcher(CodedBits_1_3,length(DataBits),ImplementationCodeRate); else IndexTurboRepetition = repmat(1:length(CodedBits_1_3),1,ceil(obj.NrCodedBits/length(CodedBits_1_3))); IndexTurboRepetition=IndexTurboRepetition(1:obj.NrCodedBits); CodedBits = CodedBits_1_3(IndexTurboRepetition); end end function UpdateInterleaving(varargin) obj = varargin{1}; if numel(varargin)>=2 obj.Interleaving = varargin{2}; else obj.Interleaving = randperm(obj.NrDataBits); end end function DecodedDataBits = TurboDecoder( obj , LLR ) NrCodedBits_1_3 = (obj.NrDataBits+4)*3; ImplementationCodeRate = (obj.NrDataBits+4)/obj.NrCodedBits; if ImplementationCodeRate>=1/3 LLR_RateMatched = RateDematcher(LLR, obj.NrDataBits); else IndexTurboRepetition = repmat(1:NrCodedBits_1_3,1,ceil(obj.NrCodedBits/NrCodedBits_1_3)); IndexTurboRepetition=IndexTurboRepetition(1:obj.NrCodedBits); LLR_RateMatched = Coding.LTE_common_turbo_rate_matching_bit_selection_and_pruning(LLR,... IndexTurboRepetition-1,... 2,... NrCodedBits_1_3).'; end DecodedDataBits = step(obj.CommTurboDecoder,LLR_RateMatched,obj.Interleaving); end end end function CodedBits = RateMatcher(CodedBits_1_3, NrDataBits, CodeRate) NrDataBitsP4 = NrDataBits+4; a = 32; b = ceil(NrDataBitsP4/a); PermutationPattern = [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31]; Temp = reshape([nan(1,a*b-NrDataBitsP4),1:NrDataBitsP4],a,b).'; Temp2 = reshape(Temp.',[],1); Index1 = reshape(Temp(:,PermutationPattern+1),[],1); Index2 = Temp2(PermutationPattern(floor((0:a*b-1)/b)+1)+a*mod(0:a*b-1,b)+1); c0 = SubBlockInterleaving(CodedBits_1_3(1:3:end),Index1); c12 = reshape([SubBlockInterleaving(CodedBits_1_3(2:3:end),Index1),SubBlockInterleaving(CodedBits_1_3(3:3:end),Index2)].',[],1); c = [c0(isfinite(c0));c12(isfinite(c12))]; CodedBits = c(1:round(NrDataBitsP4/CodeRate)); end function LLR_RateMatched = RateDematcher(LLR, NrDataBits) NrDataBitsP4 = NrDataBits+4; a = 32; b = ceil(NrDataBitsP4/a); PermutationPattern = [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31]; Temp = reshape([nan(1,a*b-NrDataBitsP4),1:NrDataBitsP4],a,b).'; Temp2 = reshape(Temp.',[],1); Index1 = reshape(Temp(:,PermutationPattern+1),[],1); Index2 = Temp2(PermutationPattern(floor((0:a*b-1)/b)+1)+a*mod(0:a*b-1,b)+1); LLR0 = zeros(3*NrDataBitsP4,1); LLR0(1:numel(LLR)) = LLR; l0 = SubBlockDeInterleaving(LLR0(1:NrDataBitsP4), Index1); l12 = reshape(SubBlockDeInterleaving(LLR0(NrDataBitsP4+1:end), reshape([Index1,Index2+NrDataBitsP4].',[],1)), NrDataBitsP4 , 2); LLR_RateMatched = reshape([l0 l12].',[],1); end function c = SubBlockInterleaving(c_in,Index) c = zeros(size(Index)); c(~isnan(Index)==1) = c_in(Index(~isnan(Index)==1)); c(isnan(Index)==1) = nan*ones(sum(isnan(Index)==1),1); end function l = SubBlockDeInterleaving(LLR0,Index) l = zeros(size(LLR0)); l(Index(~isnan(Index)==1)) = LLR0; end
github
mohammadzainabbas/Digital-Communication-master
Task_1.m
.m
Digital-Communication-master/Lab 03/Task_1.m
894
utf_8
b2c12a7fc937158391de0f871d09b843
function Task_1() %To generate random signal x = random_signal(); size = length(x); bins = input('Enter number of bins: '); %Calculate pdf pdf = PDF(x, bins); %Rearranging x-axis of both so that mean appears at 0 x_axis = min(x):(max(x)-min(x))/(bins):max(x) - (max(x)-min(x))/(bins); %x_axis = x_axis(1:size-1); %coz no. of bins = length - 1 % length(x) % length(pdf) %Calculating mean of signal mean = sum((x) .* pdf); %Calculating variance of signal variance = sum(power((x - mean),2)/(length(x))); %To change mean and variance y = (100)*x + 1000; pdf_y = PDF(y, bins); y_axis = x_axis + 1000; %Plot figure subplot(2,1,1) bar(x_axis,pdf) subplot(2,1,2) bar(y_axis,pdf_y) end function x = random_signal() size = input('Enter signal size: '); x = randn(1,size); end function pdf = PDF(x, bins) pdf = hist(x,bins)/(length(x)); end
github
Simshang/cdc_data_prepare-master
intervaloverlapvalseconds.m
.m
cdc_data_prepare-master/THUMOS14/eval/TemporalActionLocalization/intervaloverlapvalseconds.m
918
utf_8
953715c547006494b896a8730ad7a9a9
function ov=intervaloverlapvalseconds(i1,i2,normtype,gt,det) % if nargin<3 normtype=0; end ov=zeros(size(i1,1),size(i2,1)); for i=1:size(i1,1) for j=1:size(i2,1) ov(i,j)=intervalsingleoverlapvalseconds(i1(i,:),i2(j,:),normtype); if nargin==5 ov(i,j)=ov(i,j)*strcmp(gt(i).class,det(j).class); end end end function ov=intervalsingleoverlapvalseconds(i1,i2,normtype) i1=[min(i1) max(i1)]; i2=[min(i2) max(i2)]; ov=0; if normtype<0 ua=1; elseif normtype==1 ua=(i1(2)-i1(1)); elseif normtype==2 ua=(i2(2)-i2(1)); else bu=[min(i1(1),i2(1)) ; max(i1(2),i2(2))]; ua=(bu(2)-bu(1)); end bi=[max(i1(1),i2(1)) ; min(i1(2),i2(2))]; iw=bi(2)-bi(1); if iw>0 if normtype<0 % no normalization! ov=iw; else ov=iw/ua; end end %i1=i1(:)'; %i2=i2(:)'; %ov=0; %[vs,is]=sort([i1(1:2) i2(1:2)]); %ind=[1 1 2 2]; %inds=ind(is); %if inds(1)~=inds(2) % ov=vs(3)-vs(2); %end
github
Simshang/cdc_data_prepare-master
TH14evalDet_Updated.m
.m
cdc_data_prepare-master/THUMOS14/eval/TemporalActionLocalization/TH14evalDet_Updated.m
6,265
utf_8
45f8f56f72274a8bf85d5373785e4762
function [pr_all,ap_all,map]=TH14evalDet_Updated(detfilename,gtpath,subset,threshold) % [pr_all,ap_all,map]=TH14evalDet_Updated(detfilename,gtpath,subset,[threshold]) % % Input: detfilename: file path of the input file % gtpath: the path of the groundtruth directory % subset: 'test' or 'val', means the testset or validation set % threshold: overlap threshold (0.5 in default) % % Output: pr_all: precision-recall curves % ap_all: AP for each class % map: MAP % % % Evaluation of the temporal detection for 20 classes in the THUMOS 2014 % action detection challenge http://crcv.ucf.edu/THUMOS14/ % % The function produces precision-recall curves and average precision % values for each action class and five values of thresholds for % the overlap between ground-truth action intervals and detected action % intervals. Mean average precision values over classes are also returned. % % % % Example: % % [pr_all,ap_all,map]=TH14evalDet('results/Run-2-det.txt','annotation','test',0.5); % % % Plotting precision-recall results: % % overlapthresh=0.1; % ind=find([pr_all.overlapthresh]==overlapthresh); % clf % for i=1:length(ind) % subplot(4,5,i) % pr=pr_all(ind(i)); % plot(pr.rec,pr.prec) % axis([0 1 0 1]) % title(sprintf('%s AP:%1.3f',pr.class,pr.ap)) % end % % THUMOS14 detection classes % if nargin<4 threshold=0.5; end if nargin<3 error('At least 3 parameters!') end [th14classids,th14classnames]=textread([gtpath '/detclasslist.txt'],'%d%s'); % read ground truth % clear gtevents gteventscount=0; th14classnamesamb=cat(1,th14classnames,'Ambiguous'); for i=1:length(th14classnamesamb) class=th14classnamesamb{i}; gtfilename=[gtpath '/' class '_' subset '.txt']; if exist(gtfilename,'file')~=2 error(['TH14evaldet: Could not find GT file ' gtfilename]) end [videonames,t1,t2]=textread(gtfilename,'%s%f%f'); for j=1:length(videonames) gteventscount=gteventscount+1; gtevents(gteventscount).videoname=videonames{j}; gtevents(gteventscount).timeinterval=[t1(j) t2(j)]; gtevents(gteventscount).class=class; gtevents(gteventscount).conf=1; end end % parse detection results % if exist(detfilename,'file')~=2 error(['TH14evaldet: Could not find file ' detfilename]) end [videonames,t1,t2,clsid,conf]=textread(detfilename,'%s%f%f%d%f'); videonames=regexprep(videonames,'\.mp4',''); clear detevents for i=1:length(videonames) ind=find(clsid(i)==th14classids); if length(ind) detevents(i).videoname=videonames{i}; detevents(i).timeinterval=[t1(i) t2(i)]; detevents(i).class=th14classnames{ind}; detevents(i).conf=conf(i); else fprintf('WARNING: Reported class ID %d is not among THUMOS14 detection classes.\n') end end % Evaluate per-class PR for multiple overlap thresholds % ap_all=[]; clear pr_all for i=1:length(th14classnames) class=th14classnames{i}; classid=strmatch(class,th14classnames,'exact'); assert(length(classid)==1); [rec,prec,ap]=TH14eventdetpr(detevents,gtevents,class,threshold); pr_all(i,1).class=class; pr_all(i,1).classid=classid; pr_all(i,1).overlapthresh=threshold; pr_all(i,1).prec=prec; pr_all(i,1).rec=rec; pr_all(i,1).ap=ap; ap_all(i,1)=ap; fprintf('AP:%1.3f at overlap %1.1f for %s\n',ap,threshold,class) end map=mean(ap_all,1); ap_all=ap_all'; fprintf('\n\nMAP: %f \n\n',map); function [rec,prec,ap]=TH14eventdetpr(detevents,gtevents,class,overlapthresh) gtvideonames={gtevents.videoname}; detvideonames={detevents(:).videoname}; videonames=unique(cat(2,gtvideonames,detvideonames)); %tpconf=[]; %fpconf=[]; unsortConf=[]; unsortFlag=[]; npos=length(strmatch(class,{gtevents.class},'exact')); assert(npos>0) indgtclass=strmatch(class,{gtevents.class},'exact'); indambclass=strmatch('Ambiguous',{gtevents.class},'exact'); inddetclass=strmatch(class,{detevents.class},'exact'); if length(inddetclass)==0 fprintf('Class %s no instance, skip\n',class); rec=0; prec=0; ap=0; return; end correctPortion=zeros(length(videonames),1); groundNum=zeros(length(videonames),1); for i=1:length(videonames) correctPortionName{i,1}=videonames{i}; gt=gtevents(intersect(strmatch(videonames{i},gtvideonames,'exact'),indgtclass)); amb=gtevents(intersect(strmatch(videonames{i},gtvideonames,'exact'),indambclass)); det=detevents(intersect(strmatch(videonames{i},detvideonames,'exact'),inddetclass)); groundNum(i) = length(gt); if length(det) [vs,is]=sort(-[det(:).conf]); det=det(is); conf=[det(:).conf]; indfree=ones(1,length(det)); indamb=zeros(1,length(det)); % interesct event detection intervals with GT if length(gt) ov=intervaloverlapvalseconds(cat(1,gt(:).timeinterval),cat(1,det(:).timeinterval)); for k=1:size(ov,1) ind=find(indfree); [vm,im]=max(ov(k,ind)); if vm>overlapthresh indfree(ind(im))=0; end end end % respect ambiguous events (overlapping detections will be removed from the FP list) if length(amb) ovamb=intervaloverlapvalseconds(cat(1,amb(:).timeinterval),cat(1,det(:).timeinterval)); indamb=sum(ovamb,1); end idx1 = find(indfree==0); idx2 = find(indfree==1 & indamb==0); flag = [ones(size(idx1)) 2*ones(size(idx2))]; [idxall, ttIdx] = sort([idx1 idx2]); flagall = flag(ttIdx); unsortConf = [unsortConf conf(idxall)]; unsortFlag = [unsortFlag flagall]; %tpconf=[tpconf conf(find(indfree==0))]; %fpconf=[fpconf conf(find(indfree==1))]; %fpconf=[fpconf conf(find(indfree==1 & indamb==0))]; if length(gt)~=0 correctPortion(i) = length(find(indfree==0))/length(gt); end end end %conf=[tpconf fpconf; 1*ones(size(tpconf)) 2*ones(size(fpconf))]; conf=[unsortConf; unsortFlag]; [vs,is]=sort(-conf(1,:)); tp=cumsum(conf(2,is)==1); fp=cumsum(conf(2,is)==2); tmp=conf(2,is)==1; rec=tp/npos; prec=tp./(fp+tp); ap=prap(rec,prec,tmp,npos); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ap=prap(rec,prec,tmp,npos) ap=0; for i=1:length(prec) if tmp(i)==1 ap=ap+prec(i); end end ap=ap/npos;
github
dariodematties/Dirichlet-master
libsvm_test.m
.m
Dirichlet-master/libsvm_test.m
2,992
utf_8
2e8a59d245cc070ad3f48f3c51522537
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: libsvm_test.m # Language: GNU Octave high-level interpreted language. function libsvm_test() Average_Accuracy = 0; Average_Clustering_Accuracy = 0; # load the files needed to feed libsvm i=0; string = ['Testing_Data' num2str(i)]; string = [string '.mat']; string1 = ['Testing_Output_Data' num2str(i)]; string1 = [string1 '.mat']; while (exist (string) && exist (string1)) load (string) disp(['Testing libsvm with data from file ' string]) disp("\n") testing_instance_matrix = double(data.samples); testing_label_vector = double(data.labels'); libsvm_options = ''; # test libsvm for Testing_Data load(['SVM_Model' num2str(i) '.mat']) model = best_model; cd ~/Downloads/libsvm-3.22/matlab [predicted_label, accuracy, prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software disp(['For the SVM_Model' num2str(i) 'inputs to the model we have:']); disp("accuracy"); disp(accuracy); Average_Accuracy += accuracy(1); save(['SVM_Model_Performance' num2str(i) '.mat'], 'predicted_label', 'accuracy', 'prob_estimates') load (string1) disp(['Testing libsvm with data from file ' string1]) disp("\n") testing_instance_matrix = double(data.SDRs); testing_label_vector = double(data.tags'); libsvm_options = ''; # test libsvm for Testing_Data load(['Clustering_SVM_Model' num2str(i) '.mat']) model = best_model; cd ~/Downloads/libsvm-3.22/matlab [predicted_label, accuracy, prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software disp(['For the Clustering_SVM_Model' num2str(i) 'inputs to the model we have:']); disp("accuracy"); disp(accuracy); Average_Clustering_Accuracy += accuracy(1); save(['Clustering_SVM_Model_Performance' num2str(i) '.mat'], 'predicted_label', 'accuracy', 'prob_estimates') i = i+1; string = ['Testing_Data' num2str(i)]; string = [string '.mat']; string1 = ['Testing_Output_Data' num2str(i)]; string1 = [string1 '.mat']; endwhile disp('Average Accuracy in the input is: ') Average_Accuracy/i disp('Average Clustering Accuracy in the input is: ') Average_Clustering_Accuracy/i endfunction
github
dariodematties/Dirichlet-master
libsvm_train.m
.m
Dirichlet-master/libsvm_train.m
7,306
utf_8
726572a0c0bca0b6006f73a76ef809d3
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: libsvm_train.m # Language: GNU Octave high-level interpreted language. function libsvm_train(kernel_type) if ( nargin ~= 1 ) error('Bad number of input arguments') endif if ( kernel_type ~= 0 && kernel_type ~= 2 ) error('Bad kernel type') endif # load the files needed to feed libsvm i=0; string = ['Inference_Data' num2str(i)]; string = [string '.mat']; string1 = ['Inference_Output_Data' num2str(i)]; string1 = [string1 '.mat']; samples_av_model = 0; clustering_av_model = 0; while (exist (string) && exist (string1)) load (string) disp(['Training libsvm with data from file ' string]) disp("\n") training_label_vector = double(data.labels'); if ( kernel_type == 2 ) options = '-t 2 -v 5 -q'; else options = '-t 0 -v 5 -q'; endif # train libsvm for Inference_Data best_model = 0; best_cost = 1; training_instance_matrix = double(data.samples); if ( kernel_type == 2 ) % coarse training for c = -5:15 for g = -15:3 libsvm_options = [options ' -c ' num2str(2^c) ' -g ' num2str(2^g)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; best_gamma = g; end end end % fine-grained training costs = [best_cost-1:0.1:best_cost+1]; gammas = [best_gamma-1:0.1:best_gamma+1]; for c = costs for g = gammas libsvm_options = [options ' -c ' num2str(2^c) ' -g ' num2str(2^g)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; best_gamma = g; end end end disp('The best model for inputs gives Accuracy = '); disp(best_model); training_options = ['-t 2 -q -c ' num2str(2^best_cost) ' -g ' num2str(2^best_gamma)]; best_model = svmtrain(training_label_vector, training_instance_matrix, [training_options]); else # coarse training for c = -5:15 libsvm_options = [options " -c " num2str(2^c)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; endif endfor # fine-grained training costs = [best_cost-1:0.1:best_cost+1]; for c = costs libsvm_options = [options " -c " num2str(2^c)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; endif endfor disp("The best model for inputs gives Accuracy = "); disp(best_model); samples_av_model += best_model; training_options = ['-t 0 -q -c ' num2str(2^best_cost)]; cd ~/Downloads/libsvm-3.22/matlab best_model = svmtrain(training_label_vector, training_instance_matrix, [training_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software endif # Saves the SVM model fileName = ['SVM_Model' num2str(i) '.mat']; save(fileName, 'best_model', 'best_cost') load (string1) disp("\n") disp(['Training libsvm with data from file ' string1]) disp("\n") disp(['The sparsity of the data is: ' num2str(1.0 - (sum(sum(data.SDRs)/prod(size(data.SDRs)))))]) disp("\n") training_label_vector = double(data.tags'); if ( kernel_type == 2 ) options = '-t 2 -v 5 -q'; else options = '-t 0 -v 5 -q'; endif # train libsvm for Inference_Output_Data best_model = 0; best_cost = 1; training_instance_matrix = double(data.SDRs); if ( kernel_type == 2 ) % coarse training for c = -5:15 for g = -15:3 libsvm_options = [options ' -c ' num2str(2^c) ' -g ' num2str(2^g)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; best_gamma = g; end end end % fine-grained training costs = [best_cost-1:0.1:best_cost+1]; gammas = [best_gamma-1:0.1:best_gamma+1]; for c = costs for g = gammas libsvm_options = [options ' -c ' num2str(2^c) ' -g ' num2str(2^g)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; best_gamma = g; end end end disp('The best model for inputs gives Accuracy = '); disp(best_model); cd ~/Downloads/libsvm-3.22/matlab training_options = ['-t 2 -q -c ' num2str(2^best_cost) ' -g ' num2str(2^best_gamma)]; best_model = svmtrain(training_label_vector, training_instance_matrix, [training_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software else # coarse training for c = -5:15 libsvm_options = [options " -c " num2str(2^c)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; endif endfor # fine-grained training costs = [best_cost-1:0.1:best_cost+1]; for c = costs libsvm_options = [options " -c " num2str(2^c)]; cd ~/Downloads/libsvm-3.22/matlab model = svmtrain(training_label_vector, training_instance_matrix, [libsvm_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software if (model > best_model) best_model = model; best_cost = c; endif endfor disp("The best model for inputs gives Accuracy = "); disp(best_model); clustering_av_model += best_model; training_options = ['-t 0 -q -c ' num2str(2^best_cost)]; cd ~/Downloads/libsvm-3.22/matlab best_model = svmtrain(training_label_vector, training_instance_matrix, [training_options]); cd ~/Contenidos/Tomasello/Dirichlet/Software endif # Saves the SVM model fileName = ['Clustering_SVM_Model' num2str(i) '.mat']; save(fileName, 'best_model', 'best_cost') i = i+1; string = ['Inference_Data' num2str(i)]; string = [string '.mat']; string1 = ['Inference_Output_Data' num2str(i)]; string1 = [string1 '.mat']; endwhile disp('Average training from samples is') samples_av_model/i disp('Clustering average training is') clustering_av_model/i endfunction
github
dariodematties/Dirichlet-master
Stick_breaking_process.m
.m
Dirichlet-master/Stick_breaking_process.m
1,873
utf_8
25553562352c6bca5304da7a3ab5706f
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Stick_breaking_process.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet process through the stick breaking method. # Those random samples are probability mass functions (pmf). # Inputs: # num_weights: This is the number of weightsl in which the stick is breaken. # alpha: Dispersion parameter of the Dirichlet process. This parameter is a scalar. # Outputs: # weights: A vector with the stick weights # Examples: # # Stick_breaking_process(10,1) # # 1 2 3 4 1 3 4 3 1 1 function weights = Stick_breaking_process(num_weights, alpha) # checks the function arguments if (nargin != 2) usage ("Stick_breaking_process(num_weights, alpha)"); endif if (!isscalar(alpha) || alpha<=0) error("alpha must be a scalar and it must be >0") endif if (mod(num_weights,1) != 0 || num_weights <= 0 || !isscalar(num_weights)) error("num_weights must be a scalar natural value >0") endif # computes a vector with all betas betas = betarnd(1, alpha, 1, num_weights-1); remaining_stick_lengths = cumprod(1-betas); weights = [betas 1].*[1 remaining_stick_lengths]; endfunction
github
dariodematties/Dirichlet-master
Chinese_restaurant_process.m
.m
Dirichlet-master/Chinese_restaurant_process.m
2,427
utf_8
891e80fc00893ba5ed961a644685ca1c
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Chinese_restaurant_process.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet process through the Chinese restaurant method. # Those random samples are probability mass functions (pmf). # Inputs: # num_customers: This is the number of customers to which assign tables. # alpha: Dispersion parameter of the Dirichlet process. This parameter is a scalar. # Outputs: # table_assignments: A vector with the table assignments in the restaurante. # Examples: # # Chinese_restaurant_process(10,1) # # 1 2 3 4 1 3 4 3 1 1 function table_assignments = Chinese_restaurant_process(num_customers, alpha) # checks the function arguments if (nargin != 2) usage ("Chinese_restaurant_process(num_customers, alpha)"); endif if (!isscalar(alpha) || alpha<=0) error("alpha must be a scalar and it must be >0") endif if (mod(num_customers,1) != 0 || num_customers <= 0 || !isscalar(num_customers)) error("num_customers must be a scalar natural value >0") endif table_assignments = [1]; # first customer sits at table 1 next_open_table = 2; # index of the next empty table # generates the table assignments for the rest of the customers. for i = 2:num_customers if (rand < alpha/(alpha + i)) # a new customer sits at a new table. table_assignments = [table_assignments next_open_table]; next_open_table += 1; else # a new customer sits at an existing table. # this customer chooses which table to sit at by giving equal weight to each # customer already sitting at a table. which_table = table_assignments(randi(length(table_assignments))); table_assignments = [table_assignments which_table]; end end endfunction
github
dariodematties/Dirichlet-master
Polya_urn_Dir_proc_function.m
.m
Dirichlet-master/Polya_urn_Dir_proc_function.m
2,545
utf_8
a8c9415309f451b626869209d5506950
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Polya_urn_Dir_proc_function.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet process through the Pólya's urn method. Those random samples are probability mass functions (pmf). # Inputs: # base_color_distribution: This is a function handle. This must be a color distribution to sample new colors. # num_balls: This is the number of balls tu put in the urn. # alpha: Dispersion parameter of the Dirichlet process. This parameter is a scalar. # Outputs: # balls_in_urn: A vector with the balls in the urn. # Examples: # # random_color = @() randi(100)/100; # Polya_urn_Dir_proc_function(random_color,10,1) # # 0.56000 0.56000 0.66000 0.88000 0.88000 0.66000 0.55000 0.66000 0.88000 0.66000 function balls_in_urn = Polya_urn_Dir_proc_function(base_color_distribution, num_balls, alpha) # checks the function arguments if (nargin != 3) usage ("Polya_urn_Dir_proc_function(base_color_distribution, num_balls, alpha)"); endif if (!isscalar(alpha) || alpha<=0) error("alpha must be a scalar and it must be >0") endif if (mod(num_balls,1) != 0 || num_balls <= 0 || !isscalar(num_balls)) error("num_balls must be a scalar natural value >0") endif if (!is_function_handle(base_color_distribution)) error("base_color_distribution must be a function handle") endif balls_in_urn = []; # this array represents the unr in which the balls are for i = 1:num_balls if (rand < alpha/(alpha+length(balls_in_urn))) # draws a new color, puts a ball of this color in the urn new_color = base_color_distribution(); balls_in_urn = [balls_in_urn new_color]; else # draws a ball from the urn, add another ball of the same color ball = balls_in_urn(randi(length(balls_in_urn))); balls_in_urn = [balls_in_urn ball]; endif endfor endfunction
github
dariodematties/Dirichlet-master
Gamma_Dir_dist_function.m
.m
Dirichlet-master/Gamma_Dir_dist_function.m
1,735
utf_8
435fbd89996a9b39796206b667680fb3
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Gamma_Dir_dist_function.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet distribution through the generating random variables # from the Gamma distribution. Those random samples are probability mass functions (pmf). # Inputs: # alpha: Parameter of the Dirichlet distribution Dir(alpha). This parameter is a column vector of k components. # Outputs: # Q_vector: A k components vector which is a pmf. function Q_vector = Gamma_Dir_dist_function(alpha) # checks the function arguments if (nargin != 1) usage ("Gamma_Dir_dist_function (alpha)"); endif [k, a]=size(alpha); # Extracts the number of components from the parameter vector alpha and put it in k. if (a!=1) error("alpha must be a column vector with a dimensionality (k,1)") endif if (any(alpha<=0)) error("alpha components must be >0") endif z=gamrnd(alpha',1); # Generates a k drawns from the Gamma distribution. Q_vector=z/(sum(z)); # Returns the output vector. endfunction
github
dariodematties/Dirichlet-master
Stick_breaking_Dir_dist_function.m
.m
Dirichlet-master/Stick_breaking_Dir_dist_function.m
2,183
utf_8
6bda883c6e7e4e14d89f65c6f88eb79d
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Stick_breaking_Dir_dist_function.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet distribution through the Stick-breaking method. Those random samples are probability mass functions (pmf). # Inputs: # alpha: Parameter of the Dirichlet distribution Dir(alpha). This parameter is a column vector of k components. # Outputs: # Q_vector: A k components vector which is a pmf. function Q_vector = Stick_breaking_Dir_dist_function(alpha) # checks the function arguments if (nargin != 1) usage ("Stick_breaking_Dir_dist_function (alpha)"); endif [k, a]=size(alpha); # Extracts the number of components from the parameter vector alpha and put it in k. if (a!=1) error("alpha must be a column vector with a dimensionality (k,1)") endif if (any(alpha<=0)) error("alpha components must be >0") endif alpha=alpha'; # tramposes alpha and transforms it into a row vector alpha_sum=flip(cumsum(flip(alpha(1,2:end)))); # accumulates alpha's components i.e. alpha=[1,2,3,4,5] then alpha_sum=[14,12,9,5] u=betarnd(alpha(1,1:end-1),alpha_sum); # generates samples from beta dist [u1 u2 u3 u4]=betarnd([1,2,3,4],[14,12,9,5]) remainder=cumprod(1-u); # computes the stick remainders [(1-u1) (1-u1)(1-u2) (1-u1)(1-u2)(1-u3) (1-u1)(1-u2)(1-u3)(1-u4)] Q_vector=[u 1].*[1 remainder]; # element wise mult [1*u1 (1-u1)*u2 (1-u1)(1-u2)*u3 (1-u1)(1-u2)(1-u3)*u4 (1-u1)(1-u2)(1-u3)(1-u4)*1] endfunction
github
dariodematties/Dirichlet-master
DrawLattice.m
.m
Dirichlet-master/DrawLattice.m
1,575
utf_8
c759ef6c15f031920b17e6c28d9e0933
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: DrawLattice.m # Language: GNU Octave high-level interpreted language. #This function draws the lattice. function DrawLattice(weights, dimensionsOfArray) hold on; for i = 0:rows(weights)-2 for j = i+1:rows(weights)-1 coordinates1 = unravelIndex(i, dimensionsOfArray); coordinates2 = unravelIndex(j, dimensionsOfArray); distance = sum(abs(coordinates1-coordinates2)); if (distance == 1) index1 = i+1; index2 = j+1; if (columns(weights) == 2) plot([weights(index1,1) weights(index2,1)],[weights(index1,2) weights(index2,2)],'b'); elseif (columns(weights) == 3) plot3([weights(index1,1) weights(index2,1)],[weights(index1,2) weights(index2,2)],[weights(index1,3) weights(index2,3)],'b'); else error("inputDimensionality exceeds the plots' possibilities.") endif endif endfor endfor hold off; endfunction
github
dariodematties/Dirichlet-master
ravelMultiIndex.m
.m
Dirichlet-master/ravelMultiIndex.m
2,222
utf_8
bafd20eacc475ea6190e4073e143bb42
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: ravelMultiIndex.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet process through the Chinese restaurant method. # Those random samples are probability mass functions (pmf). # Inputs: # coordinatesOfArray: These are the coordinates of the element in the array from which we want its flat position index. # dimensionsOfArray: These are the dimensions of the array. # Outputs: # index: This is the flat position index of the element in the array. # Examples: # # octave:2> ravelMultiIndex([2,0],[3,5]) # ans = 10 function index = ravelMultiIndex(coordinatesOfArray, dimensionsOfArray) if length(coordinatesOfArray) != length(dimensionsOfArray) error("the two input arrays have different number of elements\n") endif for i = 1:length(coordinatesOfArray) if coordinatesOfArray(i) >= dimensionsOfArray(i) string = ["Coordinate " num2str(i) " overflow its dimension\n"]; error(string) endif endfor numberOfCoordinates = length(dimensionsOfArray); if numberOfCoordinates == 1 index = coordinatesOfArray; else index = 0; for i = 1:numberOfCoordinates if dimensionsOfArray(i) <= 0 || coordinatesOfArray(i) < 0 error("at least one array dimension or array coordinate is <= 0\n") endif product = 1; if i < numberOfCoordinates for j = 2+(i-1):numberOfCoordinates product *= dimensionsOfArray(j); endfor endif index += product*coordinatesOfArray(i); endfor endif endfunction
github
dariodematties/Dirichlet-master
Plot_Dir_proc_points.m
.m
Dirichlet-master/Plot_Dir_proc_points.m
5,549
utf_8
2b47bce1503ea4a50c4aeadcecf9566e
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Plot_Dir_proc_points.m # Language: GNU Octave high-level interpreted language. # This function plots the points generated by a Dirichlet distribution in its simplex # The Dirichlet distribution can be generated by means of three methods: # Pólya's urn, stick-breaking and Gamma distribution. # Inputs: # alpha: Dispersion parameter of the Dirichlet process. This parameter is a scalar. # method The method by means of which the process is carried out # points The number of points to be drawn # color_dist This is a function handle. This must be a color distribution to sample new colors. # This is used for the Polya's urn # Outputs: # no return value. function Plot_Dir_proc_points(alpha,method,points,color_dist) # checks the function arguments if (nargin != 3 && nargin != 4) str = ["Plot_Dir_proc_points (alpha,method,points,color_dist)\n"]; str = [str "# Inputs:\n"]; str = [str "# alpha: Dispersion parameter of the Dirichlet process. This parameter is a scalar.\n"]; str = [str "# method The method by means of which the process is carried out\n"]; str = [str "method can be chinese, polya or stick\n"]; str = [str "# points The number of points to be drawn\n"]; str = [str "# color_dist This is a function handle. This must be a color distribution to sample new colors.\n"]; str = [str "# This is used for the Polya's urn\n"]; usage(str); endif # alpha must be a scalar greater than 0 if (!isscalar(alpha) || alpha<=0) error("alpha must be a scalar and it must be >0") endif # method argument has to be a string if (!ischar(method)) error("method must be of class string") endif # points has to be a scalar natural value if (!isscalar(points) || mod(points,1) != 0 || points <= 0) error("points must be a scalar natural value") endif # color_dist must be a function handle if (nargin == 4 && (!is_function_handle(color_dist))) error("color_dist must be a function handle") endif if (strcmp(method,"polya")) # if polya method is chosen if (nargin != 4) error("when you choose 'polya' method you have to provide 'color_dist' as the fourth argument") endif subplot(2,2,1); urn = Polya_urn_Dir_proc_function(color_dist,points,alpha); hist(urn,100); xlabel("color of balls") ylabel("number of balls in every color") subplot(2,2,2); plot(1:points,urn,"*"); xlabel("ball number","fontsize", 12) ylabel("color of the balls","fontsize", 12) balls_per_color=[]; for i=1:length(urn) balls_per_color=[balls_per_color i/length(unique(urn(1,1:i)))]; endfor subplot(2,2,3); plot(1:points,balls_per_color,"*"); xlabel("ball number","fontsize", 12) ylabel("balls per color","fontsize", 12) balls_per_color=[]; color_hist=hist(urn,unique(urn)); for i=1:length(color_hist) balls_per_color=[balls_per_color sum(color_hist(1,1:i))/i]; endfor subplot(2,2,4); plot(1:length(color_hist),balls_per_color,"*"); xlabel("number of colors","fontsize", 12) ylabel("balls per color","fontsize", 12) str = ["Polya's urn Dirichlet process, number of balls: " num2str(points) ", alpha: " num2str(alpha) "."]; suptitle(str) elseif (strcmp(method,"stick")) # if stick method is chosen if (nargin != 3) error("when you choose 'stick' method you have to provide three arguments") endif weights = Stick_breaking_process(points, alpha); bar(weights) xlabel("number of bar","fontsize", 12); ylabel("bar weghts","fontsize", 12); str = ["Stick breaking process. Number of weights is: " num2str(points) ", alpha is: " num2str(alpha) "."]; title(str); elseif (strcmp(method, "chinese")) # if chinese method is chosen if (nargin != 3) error("when you choose 'chinese' method you have to provide three arguments") endif subplot(2,2,1); rest = Chinese_restaurant_process(points,alpha); hist(rest,100); xlabel("table of customers","fontsize", 12) ylabel("number of customers in every table","fontsize", 12) subplot(2,2,2); plot(1:points,rest,"*"); xlabel("customer number","fontsize", 12) ylabel("table of the customers","fontsize", 12) customers_per_table=[]; for i=1:length(rest) customers_per_table=[customers_per_table i/length(unique(rest(1,1:i)))]; endfor subplot(2,2,3); plot(1:points,customers_per_table,"*"); xlabel("customer number","fontsize", 12) ylabel("customers per table","fontsize", 12) customers_per_table=[]; table_hist=hist(rest,unique(rest)); for i=1:length(table_hist) customers_per_table=[customers_per_table sum(table_hist(1,1:i))/i]; endfor subplot(2,2,4); plot(1:length(table_hist),customers_per_table,"*"); xlabel("number of tables","fontsize", 12) ylabel("customers per table","fontsize", 12) str = ["Chinese restaurant process, number of customers: " num2str(points) ", alpha: " num2str(alpha) "."]; suptitle(str) else error("incorrect method: you can choose polya, stick or chinese as allowed methods") endif endfunction
github
dariodematties/Dirichlet-master
Polya_urn_Dir_dist_function.m
.m
Dirichlet-master/Polya_urn_Dir_dist_function.m
2,518
utf_8
313944ef7a5ec59c47af1a3f5ba66df3
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Polya_urn_Dir_dist_function.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet distribution through the Pólya's urn method. Those random samples are probability mass functions (pmf). # Inputs: # alpha: Parameter of the Dirichlet distribution Dir(alpha). This parameter is a column vector of k components. # N_iterations: Number of iterations to generate a random sample. # Outputs: # Q_vector: A k components vector which is a pmf. function Q_vector = Polya_urn_Dir_dist_function(alpha, N_iterations) # checks the function arguments if (nargin != 2) usage ("Polya_urn_Dir_dist_function (alpha, N_iterations)"); endif [k, a]=size(alpha); # Extracts the number of components from the parameter vector alpha and put it in k. if (a!=1) error("alpha must be a column vector with a dimensionality (k,1)") endif if (any(alpha<=0)) error("alpha components must be >0") endif if (mod(N_iterations,1) != 0 || N_iterations <= 0 || !isscalar(N_iterations)) error("N_iterations must be a scalar natural value >0") endif alpha_0=sum(alpha); # Sums all the components of alpha. p=alpha/alpha_0; # Determines a pmf vector for use it in the multinomial distribution. q=zeros(k,1); # Prepares the output vector for i=1:N_iterations x=mnrnd(1,p); # Extracts a ball from the urn. q=q+x'; # Adds the color of the ball. alpha=alpha+x'; # Return the ball to the urn with another ball of the same color. alpha_0=sum(alpha); # Sums all the components of alpha. p=alpha/alpha_0; # Determines a pmf vector for use it in the multinomial distribution. endfor q_0=sum(q); # Sums all the components of q. Q_vector=q/q_0; # Determines a pmf vector for use it in the multinomial distribution. endfunction
github
dariodematties/Dirichlet-master
Plot_Dir_dist_points.m
.m
Dirichlet-master/Plot_Dir_dist_points.m
4,473
utf_8
1f5c93dc377fca4587a79f5970601d3c
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: Plot_Dir_dist_points.m # Language: GNU Octave high-level interpreted language. # This function plots the points generated by a Dirichlet distribution in its simplex # The Dirichlet distribution can be generated by means of three methods: # Pólya's urn, stick-breaking and Gamma distribution. # Inputs: # alpha: Parameter of the Dirichlet distribution Dir(alpha). This parameter is a column vector of k components. # method The method by means of which the distribution is generated # points The number of points to be drawn from the Dirichlet distribution # iterations This is an optinal parameter only used for Polya's urn method. # It is the number of iterations to be used in order to generate the distribution # Outputs: # no return value. function Plot_Dir_dist_points(alpha,method,points,iterations) # checks the function arguments if (nargin != 3 && nargin != 4) str = ["Plot_Dir_dist_points (alpha,method,points,iterations)\n"]; str = [str "# Inputs:\n"]; str = [str "# alpha: Parameter of the Dirichlet distribution Dir(alpha). This parameter is a column vector of k components.\n"]; str = [str "# method The method by means of which the distribution is generated\n"]; str = [str "method can be polya, stick or gamm\n"]; str = [str "# points The number of points to be drawn from the Dirichlet distribution\n"]; str = [str "# iterations This is an optinal parameter only used for Polya's urn method (method = polya).\n"]; str = [str "# It is the number of iterations to be used in order to generate the distribution\n"]; usage(str); endif [k, a]=size(alpha); # Extracts the number of components from the parameter vector alpha and put it in k. # alpha has to be a column vector if (a!=1) error("alpha must be a column vector with a dimensionality (k,1)") endif # alpha has to be a column vector of at most k=3 if (k>3) error("alpha has to be a column vector of at most k=3") endif # every element of alpha has to be >0 if (any(alpha<=0)) error("alpha components must be >0") endif # method argument has to be a string if (!ischar(method)) error("method must be of class string") endif # points has to be a scalar natural value if (!isscalar(points) || mod(points,1) != 0 || points <= 0) error("points must be a scalar natural value") endif # itertion has to be a scalar natural value if (nargin == 4 && (!isscalar(iterations) || mod(iterations,1) != 0 || iterations <= 0)) error("iterations must be a scalar natural value") endif if (strcmp(method,"polya")) # if polya method is chosen if (nargin != 4) error("when you choose 'polya' method you have to provide 'iterations' as the fourth argument") endif for i=1:points Q(:,:,i)=Polya_urn_Dir_dist_function(alpha,iterations); endfor elseif (strcmp(method,"stick")) # if stick method is chosen if (nargin != 3) error("when you choose 'stick' method you have to provide three arguments") endif for i=1:points Q(:,i)=Stick_breaking_Dir_dist_function(alpha); endfor elseif (strcmp(method, "gamm")) # if gamm method is chosen if (nargin != 3) error("when you choose 'gamm' method you have to provide three arguments") endif for i=1:points Q(:,i)=Gamma_Dir_dist_function(alpha); endfor else error("incorrect method: you can choose polya, stick or gamm as allowed methods") endif # reshape the output in order to be ploted for i=1:points for j=1:k if (strcmp(method,"polya")) A(j,i)=Q(j,1,i); else A(j,i)=Q(j,i); endif endfor endfor figure if (k==3) # 3D plots plot3(A(1,:), A(2,:), A(3,:), '*'); hold on v = patch([1,0,0],[0,1,0],[0,0,1], 'g'); set(v,'facealpha',0.5); hold off axis([0 1 0 1 0 1], "square"); elseif (k==2) # 2D plots plot(A(1,:), A(2,:), '*'); axis([0 1 0 1], "square"); endif endfunction
github
dariodematties/Dirichlet-master
unravelIndex.m
.m
Dirichlet-master/unravelIndex.m
1,840
utf_8
3ef9fa450032dc8c940ea40df6acc6f9
################################################################################################################## ## Author: Dematties Dario Jesus ## ## Contact: [email protected] ## ## [email protected] ## ## [email protected] ## ## Project: Engineering PhD Project ## ## Institution: Universidad de Buenos Aires ## ## Facultad de Ingeniería (FIUBA) ## ## Workplace: Instituto de Ingeniería ## ## Biomédica FIUBA & ## ## CCT CONICET Mendoza INCIHUSA ## ################################################################################################################## # File Name: unravelIndex.m # Language: GNU Octave high-level interpreted language. # This function generates random samples from the Dirichlet process through the Chinese restaurant method. # Those random samples are probability mass functions (pmf). # Inputs: # Index: This is the flat position index of the element in the array. # dimensionsOfArray: These are the dimensions of the array. # Outputs: # coordinates: These are the coordinates of the element in the array from which we want its flat position index. # Examples: # # octave:1> unravelIndex(8,[3,5]) # ans = # 1 3 function coordinates = unravelIndex(Index, dimensionsOfArray) numberOfCoordinates = length(dimensionsOfArray); if Index >= prod(dimensionsOfArray) error("Index is bigger than the number of elements in the array\n") endif if numberOfCoordinates == 1 coordinates = Index; else aux = Index; for i = numberOfCoordinates:-1:1 if dimensionsOfArray(i) <= 0 error("at least one array coordinate is <= 0\n") endif coordinates(i) = mod(aux,dimensionsOfArray(i)); aux = floor(aux/dimensionsOfArray(i)); endfor endif endfunction
github
kpegion/SubX-master
writeNetCDFGlobalAtts.m
.m
SubX-master/Matlab/V2/lib/writeNetCDFGlobalAtts.m
926
utf_8
05fae2dd2d98259f31b338c741992208
%================================================================================================ %================================================================================================ function []=writeNetCDFGlobalAtts(fname,title,longtitle,comments,institution,source,matlabSource) NC_GLOBAL = netcdf.getConstant('NC_GLOBAL'); % Open File ncid=netcdf.open(char(fname),'WRITE'); % Global Attributes netcdf.putAtt(ncid,NC_GLOBAL,'title',char(title)); netcdf.putAtt(ncid,NC_GLOBAL,'long_title',char(longtitle)); netcdf.putAtt(ncid,NC_GLOBAL,'comments',char(comments)); netcdf.putAtt(ncid,NC_GLOBAL,'institution',char(institution)); netcdf.putAtt(ncid,NC_GLOBAL,'source',source); netcdf.putAtt(ncid,NC_GLOBAL,'CreationDate',datestr(now,'yyyy/mm/dd HH:MM:SS')); netcdf.putAtt(ncid,NC_GLOBAL,'CreatedBy',getenv('LOGNAME')); netcdf.putAtt(ncid,NC_GLOBAL,'MatlabSource',matlabSource); % Close File netcdf.close(ncid);
github
kpegion/SubX-master
setupNetCDF3D.m
.m
SubX-master/Matlab/V2/lib/setupNetCDF3D.m
2,177
utf_8
1909607bfc785f263fdd332db3645711
%================================================================================================ % This function sets up everything for writing a netcdf file % It assumes the following: % % Data to be written is dimensions (lat,lon,time) % % lons: standard name is 'lon'; longname is 'longitude'; units are 'degrees east' % lats: standard name is 'lat'; longname is 'latitude'; units are 'degrees nort' % time: standard name is 'time'; longname is 'Time of measurements; units are passed in % fillValue and missing value for the data are the same and are passed in % There is no scale_factor and/or offset % Only dimenstion variables are written % Global Attributes are not set here % % To add variables use: addVarNetCDF3D function % To set global attributes use: setGlobalAtts %================================================================================================ function []=setupNetCDF3D(fname,lons,lats,time,unitst,fillValue,type) % Open File ncid=netcdf.create(char(fname),'netcdf4'); % Get dimensions nx=numel(lons); ny=numel(lats); nt=numel(time); % Set file Dimensions dimlat=netcdf.defDim(ncid,'lat',ny); dimlon=netcdf.defDim(ncid,'lon',nx); dimtime = netcdf.defDim(ncid,'time',nt); % Define lons, lats, time varid = netcdf.defVar(ncid,'lat',type,[dimlat]); netcdf.putAtt(ncid,varid,'standard_name','latitude'); netcdf.putAtt(ncid,varid,'long_name','latitude'); netcdf.putAtt(ncid,varid,'units','degrees_north'); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,squeeze(lats)); varid = netcdf.defVar(ncid,'lon',type,[dimlon]); netcdf.putAtt(ncid,varid,'standard_name','longitude'); netcdf.putAtt(ncid,varid,'long_name','longitude'); netcdf.putAtt(ncid,varid,'units','degrees_east'); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,squeeze(lons)); varid = netcdf.defVar(ncid,'time',type,[dimtime]); netcdf.putAtt(ncid,varid,'standard_name','time'); netcdf.putAtt(ncid,varid,'long_name','Time of measurements'); netcdf.putAtt(ncid,varid,'units',unitst); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,squeeze(time)); % Close File netcdf.close(ncid);
github
kpegion/SubX-master
nanfastsmooth.m
.m
SubX-master/Matlab/V2/lib/nanfastsmooth.m
4,587
utf_8
f66f272406af77ed747d388ce53eaff7
function SmoothY = nanfastsmooth(Y,w,type,tol) % nanfastsmooth(Y,w,type,tol) smooths vector Y with moving % average of width w ignoring NaNs in data.. % % Y is input signal. % w is the window width. % % The argument "type" determines the smooth type: % If type=1, rectangular (sliding-average or boxcar) % If type=2, triangular (2 passes of sliding-average) % If type=3, pseudo-Gaussian (3 passes of sliding-average) % % The argument "tol" controls the amount of tolerance to NaNs allowed % between 0 and 1. A value of zero means that if the window has any NaNs % in it then the output is set as NaN. A value of 1 allows any number of % NaNs in the window and will still give an answer for the smoothed signal. % A value of 0.5 means that there must be at least half % real values in the window for the output to be valid. % % The start and end of the file are treated as if there are NaNs beyond the % dataset. As such the behaviour depends on the value of 'tol' as above. % With 'tol' set at 0.5 the smoothed signal will start and end at the same % time as the orgional signal. However it's accuracy will be reduced and % the moving average will become more and more one-sided as the beginning % and end is approached. % % fastsmooth(Y,w,type) smooths with tol = 0.5. % fastsmooth(Y,w) smooths with type = 1 and tol = 0.5 % % Version 1.0, 26th August 2015. G.M.Pittam % - First Version % Version 1.1, 5th October 2015. G.M.Pittam % - Updated to correctly smooth both even and uneven window length. % - Issue identified by Erik Benkler 5th September 2015. % Modified from fastsmooth by T. C. O'Haver, May, 2008. if nargin == 2, tol = 0.5; type = 1; end if nargin == 3, tol = 0.5; end switch type case 1 SmoothY = sa(Y,w,tol); case 2 SmoothY = sa(sa(Y,w,tol),w,tol); case 3 SmoothY = sa(sa(sa(Y,w,tol),w,tol),w,tol); end function SmoothY = sa(Y,smoothwidth,tol) if smoothwidth == 1 SmoothY = Y; return end % Bound Tollerance if tol<0, tol=0; end if tol>1, tol=1; end w = round(smoothwidth); halfw = floor(w/2); L = length(Y); % Make empty arrays to store data n = size(Y); s = zeros(n); np = zeros(n); if mod(w,2) % Initialise Sums and counts SumPoints = NaNsum(Y(1:halfw+1)); NumPoints = sum(~isnan(Y(1:halfw+1))); % Loop through producing sum and count s(1) = SumPoints; np(1) = NumPoints; for k=2:L if k > halfw+1 && ~isnan(Y(k-halfw-1)) SumPoints = SumPoints-Y(k-halfw-1); NumPoints = NumPoints-1; end if k <= L-halfw && ~isnan(Y(k+halfw)) SumPoints = SumPoints+Y(k+halfw); NumPoints = NumPoints+1; end s(k) = SumPoints; np(k) = NumPoints; end else % Initialise Sums and counts SumPoints = NaNsum(Y(1:halfw))+0.5*Y(halfw+1); NumPoints = sum(~isnan(Y(1:halfw)))+0.5; % Loop through producing sum and count s(1) = SumPoints; np(1) = NumPoints; for k=2:L if k > halfw+1 && ~isnan(Y(k-halfw-1)) SumPoints = SumPoints - 0.5*Y(k-halfw-1); NumPoints = NumPoints - 0.5; end if k > halfw && ~isnan(Y(k-halfw)) SumPoints = SumPoints - 0.5*Y(k-halfw); NumPoints = NumPoints - 0.5; end if k <= L-halfw && ~isnan(Y(k+halfw)) SumPoints = SumPoints + 0.5*Y(k+halfw); NumPoints = NumPoints+1; end s(k) = SumPoints; np(k) = NumPoints; end else % Initialise Sums and counts SumPoints = NaNsum(Y(1:halfw))+0.5*Y(halfw+1); NumPoints = sum(~isnan(Y(1:halfw)))+0.5; % Loop through producing sum and count s(1) = SumPoints; np(1) = NumPoints; for k=2:L if k > halfw+1 && ~isnan(Y(k-halfw-1)) SumPoints = SumPoints - 0.5*Y(k-halfw-1); NumPoints = NumPoints - 0.5; end if k > halfw && ~isnan(Y(k-halfw)) SumPoints = SumPoints - 0.5*Y(k-halfw); NumPoints = NumPoints - 0.5; end if k <= L-halfw && ~isnan(Y(k+halfw)) SumPoints = SumPoints + 0.5*Y(k+halfw); NumPoints = NumPoints + 0.5; end if k <= L-halfw+1 && ~isnan(Y(k+halfw-1)) SumPoints = SumPoints + 0.5*Y(k+halfw-1); NumPoints = NumPoints + 0.5; end s(k) = SumPoints; np(k) = NumPoints; end end % Remove the amount of interpolated datapoints desired np(np<max((w*(1-tol)),1)) = NaN; % Calculate Smoothed Signal SmoothY=s./np; function y = NaNsum(x) y = sum(x(~isnan(x)));
github
kpegion/SubX-master
writeNetCDFData3D.m
.m
SubX-master/Matlab/V2/lib/writeNetCDFData3D.m
867
utf_8
b700e0acd4020b85aaf18a678c9c48cc
%================================================================================================ % This function write a 3D (lon,lat,tim) dataset to a netcdf file %================================================================================================ function []=writeNetCDFData3D(fname,data,units,name,longname,fillValue,type) % Open File ncid = netcdf.open(char(fname),'WRITE'); % Dimension IDs dimlat=netcdf.inqDimID(ncid,'lat'); dimlon=netcdf.inqDimID(ncid,'lon'); dimtime=netcdf.inqDimID(ncid,'time'); %Add Variable varid = netcdf.defVar(ncid,char(name),type,[dimlon,dimlat,dimtime]); netcdf.putAtt(ncid,varid,'name',char(name)'); netcdf.putAtt(ncid,varid,'long_name',char(longname)); netcdf.putAtt(ncid,varid,'units',char(units)); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,data); % Close File netcdf.close(ncid);
github
kpegion/SubX-master
writeNetCDFGlobalAtts.m
.m
SubX-master/Matlab/V1/writeNetCDFGlobalAtts.m
926
utf_8
05fae2dd2d98259f31b338c741992208
%================================================================================================ %================================================================================================ function []=writeNetCDFGlobalAtts(fname,title,longtitle,comments,institution,source,matlabSource) NC_GLOBAL = netcdf.getConstant('NC_GLOBAL'); % Open File ncid=netcdf.open(char(fname),'WRITE'); % Global Attributes netcdf.putAtt(ncid,NC_GLOBAL,'title',char(title)); netcdf.putAtt(ncid,NC_GLOBAL,'long_title',char(longtitle)); netcdf.putAtt(ncid,NC_GLOBAL,'comments',char(comments)); netcdf.putAtt(ncid,NC_GLOBAL,'institution',char(institution)); netcdf.putAtt(ncid,NC_GLOBAL,'source',source); netcdf.putAtt(ncid,NC_GLOBAL,'CreationDate',datestr(now,'yyyy/mm/dd HH:MM:SS')); netcdf.putAtt(ncid,NC_GLOBAL,'CreatedBy',getenv('LOGNAME')); netcdf.putAtt(ncid,NC_GLOBAL,'MatlabSource',matlabSource); % Close File netcdf.close(ncid);
github
kpegion/SubX-master
setupNetCDF3D.m
.m
SubX-master/Matlab/V1/setupNetCDF3D.m
2,185
utf_8
759af610c6f245fec4dc0b39e63de670
%================================================================================================ % This function sets up everything for writing a netcdf file % It assumes the following: % % Data to be written is dimensions (lat,lon,time) % % lons: standard name is 'lon'; longname is 'longitude'; units are 'degrees east' % lats: standard name is 'lat'; longname is 'latitude'; units are 'degrees nort' % time: standard name is 'time'; longname is 'Time of measurements; units are passed in % fillValue and missing value for the data are the same and are passed in % There is no scale_factor and/or offset % Only dimenstion variables are written % Global Attributes are not set here % % To add variables use: addVarNetCDF3D function % To set global attributes use: setGlobalAtts %================================================================================================ function []=setupNetCDF3D(fname,lons,lats,time,unitst,fillValue) % Open File ncid=netcdf.create(char(fname),'netcdf4'); % Get dimensions nx=numel(lons); ny=numel(lats); nt=numel(time); % Set file Dimensions dimlat=netcdf.defDim(ncid,'lat',ny); dimlon=netcdf.defDim(ncid,'lon',nx); dimtime = netcdf.defDim(ncid,'time',nt); % Define lons, lats, time varid = netcdf.defVar(ncid,'lat','double',[dimlat]); netcdf.putAtt(ncid,varid,'standard_name','latitude'); netcdf.putAtt(ncid,varid,'long_name','latitude'); netcdf.putAtt(ncid,varid,'units','degrees_north'); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,squeeze(lats)); varid = netcdf.defVar(ncid,'lon','double',[dimlon]); netcdf.putAtt(ncid,varid,'standard_name','longitude'); netcdf.putAtt(ncid,varid,'long_name','longitude'); netcdf.putAtt(ncid,varid,'units','degrees_east'); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,squeeze(lons)); varid = netcdf.defVar(ncid,'time','double',[dimtime]); netcdf.putAtt(ncid,varid,'standard_name','time'); netcdf.putAtt(ncid,varid,'long_name','Time of measurements'); netcdf.putAtt(ncid,varid,'units',unitst); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,squeeze(time)); % Close File netcdf.close(ncid);
github
kpegion/SubX-master
writeNetCDFData3D.m
.m
SubX-master/Matlab/V1/writeNetCDFData3D.m
866
utf_8
62f1e1f507f982a7fab6eef811d89c5a
%================================================================================================ % This function write a 3D (lon,lat,tim) dataset to a netcdf file %================================================================================================ function []=writeNetCDFData3D(fname,data,units,name,longname,fillValue) % Open File ncid = netcdf.open(char(fname),'WRITE'); % Dimension IDs dimlat=netcdf.inqDimID(ncid,'lat'); dimlon=netcdf.inqDimID(ncid,'lon'); dimtime=netcdf.inqDimID(ncid,'time'); %Add Variable varid = netcdf.defVar(ncid,char(name),'double',[dimlon,dimlat,dimtime]); netcdf.putAtt(ncid,varid,'name',char(name)'); netcdf.putAtt(ncid,varid,'long_name',char(longname)); netcdf.putAtt(ncid,varid,'units',char(units)); netcdf.defVarFill(ncid,varid,false,fillValue); netcdf.putVar(ncid,varid,data); % Close File netcdf.close(ncid);
github
yugt/ComputerVision-master
digitOpSeparate.m
.m
ComputerVision-master/Project/digitOpSeparate.m
1,415
utf_8
d3121f8a12145bdab78c3eeb27084c12
function [ op_left,op_right,operators,answers ] = digitOpSeparate( eqns,add,minus,times,divide,answers ) operators=zeros(size(eqns,1),1); op_left=zeros(size(eqns)); op_right=zeros(size(eqns)); for i=1:size(eqns,1) right=0; for j=1:size(eqns,2) if eqns(i,j)==0 break elseif any((add==eqns(i,j))) operators(i)=1; right=1; elseif any((minus==eqns(i,j))) operators(i)=2; right=1; elseif any((times==eqns(i,j))) operators(i)=3; right=1; elseif any((divide==eqns(i,j))) operators(i)=4; right=1; else % digits if right==0 op_left(i,j)=eqns(i,j); else op_right(i,j)=eqns(i,j); end end end end op_left(:,~any(op_left,1))=[]; op_right(:,~any(op_right,1))=[]; op_left=regularize(op_left); op_right=regularize(op_right); answers=regularize(answers); op_left(:,~any(op_left,1))=[]; op_right(:,~any(op_right,1))=[]; end function [input]=regularize(input) for i=1:size(input,1) while input(i,end)==0 input(i,:)=circshift(input(i,:),1); end % for j=size(input,2):-1:1 % if input(i,j)>0 % pos=j; % end % % end % if pos>0 % input(i,:)=circshift(input(i,:),size(input,2)-j); % end end end
github
yugt/ComputerVision-master
horizon.m
.m
ComputerVision-master/Project/horizon.m
4,632
utf_8
43889a5295a61f0b02825266b3cfb251
function [angle] = horizon(image, varargin) % HORIZON estimates the horizon rotation in the image. % ANGLE=HORIZON(I) returns rotation of an estimated horizon % in the image I. The returned value ANGLE is in the % range <-45,45> degrees. % % ANGLE=HORIZON(I, PRECISION) aligns the image I with % the predefined precision. The default value is 1 degree. If higher % precision is required, 0.1 could be a good value. % % ANGLE=HORIZON(I, PRECISION, METHOD, DISKSIZE) aligns the image I with % the specified METHOD. Following methods are supported: % 'fft' - Fast Fourier Transform, the default method, % 'hough' - Hough transform, which finds lines in the image, % 'blot' - Finds blots and estimates their's orientation. % Blot method allows additional parameter DISKSIZE that % defines the filter size of morphological transformations. % The default value is 7. Note that this method % may not work for all kind of pictures. % % Example % ------- % image = imread('board.tif'); % angle = horizon(rgb2gray(image), 0.1, 'fft') % imshow(imrotate(image, -angle, 'bicubic')); % % The example aligns the default image in Image Processing Toolbox. % Parameter checking. numvarargs = length(varargin); if numvarargs > 3 % only want 3 optional inputs at most error('myfuns:somefun2Alt:TooManyInputs', ... 'requires at most 2 optional inputs'); end optargs = {1, 'fft', 2}; % set defaults for optional inputs optargs(1:numvarargs) = varargin; [precision, method, diskSize] = optargs{:}; % use memorable variable names % Check image dimension. if ndims(image)~=2 error('The image must be two-dimensional (i.e. grayscale).') end % Call the selected method if strcmpi(method, 'fft') angle = horizonFFT(image, precision); elseif strcmpi(method, 'hough') angle = horizonHough(image, precision); else angle = horizonBlobs(image, precision, diskSize); end % Return the angle angle = mod(45+angle,90)-45; % rotation in -45..45 range end function angle = horizonFFT(image, precision) % FFT. maxsize = max(size(image)); T = fftshift(fft2(image, maxsize, maxsize)); % create rectangular transform T = log(abs(T)+1); % get magnitude in <0..inf) % Combine two FFT quadrants together (another two quadrants are symetric). center = ceil((maxsize+1)/2); evenS = mod(maxsize+1, 2); T = (rot90(T(center:end, 1+evenS:center), 1) + T(center:end, center:end)); T = T(2:end, 2:end); % remove artifacts for expense of inaccuracy % Find the dominant orientation angles = floor(90/precision); score = zeros(angles, 1); maxDist = maxsize/2-1; for angle = 0:angles-1 [y,x] = pol2cart(deg2rad(angle*precision), 0:maxDist-1); % all [x,y] for i = 1:maxDist score(angle+1) = score(angle+1) + T(round(y(i)+1), round(x(i)+1)); end end % Return the most dominant direction. [~, position] = max(score); angle = (position-1)*precision; end function angle = horizonHough(image, precision) % Detect edges. BW = edge(image,'prewitt'); % Perform the Hough transform. [H, T, ~] = hough(BW,'Theta',-90:precision:90-precision); % Find the most dominant line direction. data=var(H); % measure variance at each angle fold=floor(90/precision); % assume right angles & fold data data=data(1:fold) + data(end-fold+1:end); [~, column] = max(data); % the column with the crispiest peaks angle = -T(column); % column to degrees end function angle = horizonBlobs(image, precision, diskSize) % perform morphological operations bw = im2bw(image); bw = imopen(bw, strel('disk', diskSize)); % fill holes bw = imclose(bw, strel('disk', diskSize)); % remove spackles % get region properties stat = regionprops(~bw, 'Area', 'BoundingBox', 'Orientation'); % select only some blobs dimensions = cat(1, stat.BoundingBox); area = cat(1, stat.Area); boundingBoxArea = dimensions(:,3).*dimensions(:,4); areaRatio = boundingBoxArea./area; % create histogram of orientations in the picture histogram = hist(cat(1, stat(areaRatio>1.2).Orientation), -90:precision:90); % fold the histogram len = ceil(length(histogram)/2); histogram = histogram(1:len)+histogram(len:end); % find the peak and return the dominant orientation [~, index] = max(histogram); angle = mod(-precision*(index-1)+45,90)-45; % index -> angle end
github
yugt/ComputerVision-master
ginput2.m
.m
ComputerVision-master/Lectures/0907_math_background/ginput2.m
6,307
utf_8
9a3aa4e541096e823c927053daa3bc42
function [out1,out2,out3] = ginput2(arg1) %GINPUT Graphical input from mouse. % [X,Y] = GINPUT(N) gets N points from the current axes and returns % the X- and Y-coordinates in length N vectors X and Y. The cursor % can be positioned using a mouse (or by using the Arrow Keys on some % systems). Data points are entered by pressing a mouse button % or any key on the keyboard except carriage return, which terminates % the input before N points are entered. % % [X,Y] = GINPUT gathers an unlimited number of points until the % return key is pressed. % % [X,Y,BUTTON] = GINPUT(N) returns a third result, BUTTON, that % contains a vector of integers specifying which mouse button was % used (1,2,3 from left) or ASCII numbers if a key on the keyboard % was used. % Copyright (c) 1984-96 by The MathWorks, Inc. % $Revision: 1.1 $ $Date: 2003/10/07 18:07:16 $ % Fixed version by Jean-Yves Bouguet to have a cross instead of 2 lines % More visible for images out1 = []; out2 = []; out3 = []; y = []; c = computer; if ~strcmp(c(1:2),'PC') & ~strcmp(c(1:2),'MA') tp = get(0,'TerminalProtocol'); else tp = 'micro'; end if ~strcmp(tp,'none') & ~strcmp(tp,'x') & ~strcmp(tp,'micro'), if nargout == 1, if nargin == 1, eval('out1 = trmginput(arg1);'); else eval('out1 = trmginput;'); end elseif nargout == 2 | nargout == 0, if nargin == 1, eval('[out1,out2] = trmginput(arg1);'); else eval('[out1,out2] = trmginput;'); end if nargout == 0 out1 = [ out1 out2 ]; end elseif nargout == 3, if nargin == 1, eval('[out1,out2,out3] = trmginput(arg1);'); else eval('[out1,out2,out3] = trmginput;'); end end else fig = gcf; figure(gcf); if nargin == 0 how_many = -1; b = []; else how_many = arg1; b = []; if isstr(how_many) ... | size(how_many,1) ~= 1 | size(how_many,2) ~= 1 ... | ~(fix(how_many) == how_many) ... | how_many < 0 error('Requires a positive integer.') end if how_many == 0 ptr_fig = 0; while(ptr_fig ~= fig) ptr_fig = get(0,'PointerWindow'); end scrn_pt = get(0,'PointerLocation'); loc = get(fig,'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; out1 = pt(1); y = pt(2); elseif how_many < 0 error('Argument must be a positive integer.') end end pointer = get(gcf,'pointer'); set(gcf,'pointer','crosshair'); fig_units = get(fig,'units'); char = 0; while how_many ~= 0 % Use no-side effect WAITFORBUTTONPRESS waserr = 0; eval('keydown = wfbp;', 'waserr = 1;'); if(waserr == 1) if(ishandle(fig)) set(fig,'pointer',pointer,'units',fig_units); error('Interrupted'); else error('Interrupted by figure deletion'); end end ptr_fig = get(0,'CurrentFigure'); if(ptr_fig == fig) if keydown char = get(fig, 'CurrentCharacter'); button = abs(get(fig, 'CurrentCharacter')); scrn_pt = get(0, 'PointerLocation'); set(fig,'units','pixels') loc = get(fig, 'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; set(fig,'CurrentPoint',pt); else button = get(fig, 'SelectionType'); if strcmp(button,'open') button = b(length(b)); elseif strcmp(button,'normal') button = 1; elseif strcmp(button,'extend') button = 2; elseif strcmp(button,'alt') button = 3; else error('Invalid mouse selection.') end end pt = get(gca, 'CurrentPoint'); how_many = how_many - 1; if(char == 13) % & how_many ~= 0) % if the return key was pressed, char will == 13, % and that's our signal to break out of here whether % or not we have collected all the requested data % points. % If this was an early breakout, don't include % the <Return> key info in the return arrays. % We will no longer count it if it's the last input. break; end out1 = [out1;pt(1,1)]; y = [y;pt(1,2)]; b = [b;button]; end end set(fig,'pointer',pointer,'units',fig_units); if nargout > 1 out2 = y; if nargout > 2 out3 = b; end else out1 = [out1 y]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key = wfbp %WFBP Replacement for WAITFORBUTTONPRESS that has no side effects. % Remove figure button functions fprops = {'windowbuttonupfcn','buttondownfcn', ... 'windowbuttondownfcn','windowbuttonmotionfcn'}; fig = gcf; fvals = get(fig,fprops); set(fig,fprops,{'','','',''}) % Remove all other buttondown functions ax = findobj(fig,'type','axes'); if isempty(ax) ch = {}; else ch = get(ax,{'Children'}); end for i=1:length(ch), ch{i} = ch{i}(:)'; end h = [ax(:)',ch{:}]; vals = get(h,{'buttondownfcn'}); mt = repmat({''},size(vals)); set(h,{'buttondownfcn'},mt); % Now wait for that buttonpress, and check for error conditions waserr = 0; eval(['if nargout==0,', ... ' waitforbuttonpress,', ... 'else,', ... ' keydown = waitforbuttonpress;',... 'end' ], 'waserr = 1;'); % Put everything back if(ishandle(fig)) set(fig,fprops,fvals) set(h,{'buttondownfcn'},vals) end if(waserr == 1) error('Interrupted'); end if nargout>0, key = keydown; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
yugt/ComputerVision-master
graphcut.m
.m
ComputerVision-master/Homework/hw5/graphcut.m
4,766
utf_8
e049b47f50637ed996a9eeece3177528
function [B] = graphcut(segmentimage,segments,keyindex) % function [B] = graphcut(segmentimage,segments,keyindex % % EECS 442 Computer Vision; % Jason Corso % % Function to take a superpixel set and a keyindex and convert to a % foreground/background segmentation. % % keyindex is the index to the superpixel we wish to use as foreground and % find its relevant neighbors that would be in the same macro-segment % % Similarity is computed based on segments(i).fv (which is a color histogram) % and spatial proximity. % % segmentimage and segments are returned by the superpixel function % segmentimage is called S and segments is called Copt % % OUTPUT: B is a binary image with 1's for those pixels connected to the % source node and hence in the same segment as the keyindex. % B has 0's for those nodes connected to the sink. % compute basic adjacency information of superpixels %%%% Note that segNeighbors is code you need to implement adjacency = segNeighbors(segmentimage); %debug %figure; imagesc(adjacency); title('adjacency'); % normalization for distance calculation based on the image size % for points (x1,y1) and (x2,y2), distance is % exp(-||(x1,y1)-(x2,y2)||^2/dnorm) dnorm = 2*prod(size(segmentimage)/2)^2; % thinking of this like a Gaussian and considering the Std-Dev of the Gaussian % to be roughly half of the total number of pixels in the image. Just a guess k = length(segments); capacity = zeros(k+2,k+2); % initialize the zero-valued capacity matrix source = k+1; % set the index of the source node sink = k+2; % set the index of the sink node % this is a single planar graph with an extra source and sink % % Capacity of a present edge in the graph (adjacency) is to be defined as the product of % 1: the histogram similarity between the two color histogram feature vectors. % use the provided histintersect function below to compute this similarity % 2: the spatial proximity between the two superpixels connected by the edge. % use exp(-D(a,b)/dnorm) where D is the euclidean distance between superpixels a and b, % dnorm is given above. % % source gets connected to every node except sink % capacity is with respect to the keyindex superpixel % sink gets connected to every node except source; % capacity is opposite that of the corresponding source-connection (from each superpixel) % in our case, the max capacity on an edge is 3; so, 3 minus corresponding capacity % % superpixels get connected to each other based on computed adjacency matrix % capacity defined as above. EXCEPT THAT YOU ALSO NEED TO MULTIPLY BY A SCALAR 0.25 for % adjacent superpixels. %%% IMPLEMENT CODE TO fill in the capacity values using the description above. %debug %figure; imagesc(capacity); title('capacity'); for i=1:k for j=i+1:k if adjacency(i,j)>0 capacity(i,j)=histintersect(segments(i).fv,segments(j).fv)*exp(-D(i,j)/dnorm)/4; end end end capacity=capacity+capacity'; for i=1:k capacity(source,i)=histintersect(segments(keyindex).fv,segments(i).fv)... *exp(-D(keyindex,i)/dnorm); end for i=1:k capacity(i,sink)=3-capacity(source,i); end function d=D(a,b) dx=segments(a).x_sub-segments(b).x_sub; dy=segments(a).y_sub-segments(b).y_sub; d=sqrt(dx^2+dy^2); end % x=load('capacity.mat'); % ans=x.capacity-capacity; % figure % imagesc(capacity); % compute the cut (this code is provided to you) [~,current_flow] = ff_max_flow(source,sink,capacity,k+2); % extract the two-class segmentation. % the cut will separate all nodes into those connected to the % source and those connected to the sink. % The current_flow matrix contains the necessary information about % the max-flow through the graph. % % Populate the binary matrix B with 1's for those nodes that are connected % to the source (and hence are in the same big segment as our keyindex) in the % residual graph. % % You need to compute the set of reachable nodes from the source. Recall, from % lecture that these are any nodes that can be reached from any path from the % source in the graph with residual capacity (original capacity - current flow) % being positive. %%% IMPLEMENT code to read the cut into B residual=(capacity-current_flow); spixels=find(residual(source,:)>0)'; residual=residual(1:k,1:k); count=length(spixels); while(true) for i=1:length(spixels) spixels=unique([spixels; find(residual(spixels(i),:)>0)']); end if count<length(spixels) count=length(spixels); else break end end B=zeros(size(segmentimage)); for i=1:length(spixels) B=B+(segmentimage==spixels(i)); end B=(B>0); end function c = histintersect(a,b) c = sum(min(a,b)); end
github
yugt/ComputerVision-master
bfs_augmentpath.m
.m
ComputerVision-master/Homework/hw5/bfs_augmentpath.m
1,195
utf_8
9c16f5bdd848adf28ab0a2ef4a9d6878
%WHITE =0; %GRAY=1; %BLACK=2 function augmentpath=bfs_augmentpath(start,target,current_flow,capacity,n) WHITE =0; GRAY=1; BLACK=2; color(1:n)=WHITE; head=1; tail=1; q=[]; augmentpath=[]; %ENQUEUE q=[start q]; color(start)=GRAY; pred(start) = -1; pred=zeros(1,n); while ~isempty (q) % [u,q]=dequeue(q); u=q(end); q(end)=[]; color(u)=BLACK; % dequeue end here for v=1:n if (color(v)==WHITE && capacity(u,v)>current_flow(u,v) ) %enqueue(v,q) q=[v q]; color(v)=GRAY; % enqueue end here pred(v)=u; end end end if color(target)==BLACK %if target is accessible temp=target; while pred(temp)~=start augmentpath = [pred(temp) augmentpath]; %augment path doesnt containt the start point AND target point temp=pred(temp); end augmentpath=[start augmentpath target]; else augmentpath=[]; % default resulte is empty end
github
yugt/ComputerVision-master
stitchImages.m
.m
ComputerVision-master/Homework/hw2/problem3/stitchImages.m
9,979
utf_8
1a0fad27cea6fbdb8bebd0fdbd42cceb
function [Is, alpha] = stitchImages(It,varargin) % % Syntax: [Is, alpha] = stitchImages(It); % [Is, alpha] = stitchImages(...,'dim',dim,...); % [Is, alpha] = stitchImages(...,'b0',b0,...); % [Is, alpha] = stitchImages(...,'view',view,...); % [Is, alpha] = stitchImages(...,'order',order,...); % [Is, alpha] = stitchImages(...,'mode',mode,...); % % Inputs: It is an n x 1 array of structs, where % % It(i).image is an Nyi x Nxi x Nc uint8 image % % It(i).tform is the 3 x 3 transformation matrix that % maps It(i).image into the coordinates specified by the % mode argument below % % [OPTIONAL] dim = [h, w] are the desired height and width, % respectively, in pixels, of the stitched image. By default % dim is set to preserve the input resolutions % % [OPTIONAL] b0 is a Nc x 1 vector of double values in % [0, 255] specifying the background (i.e., missing data) % color. The default value is b0 = 255 * ones(Nc,1) % % [OPTIONAL] view = {'left','center','right','default'} % specifies what view to construct the stitched image from. % The default is view = 'default' (world coordinates) % % [OPTIONAL] order = {'natural','reverse'} specifies the % order in which to overlay the stitched images. In natural % ordering, the closest image is displayed on top. The % default is order = 'natural' % % [OPTIONAL] mode = {'absolute','relative'} specifies the % type of transform used. When mode = 'absolute', It(i).tform % should map to "world" coordinates. When mode = 'relative', % It(i).tform should map It(i).image into the coordinates of % It(i-1).image. Here, It(1).tform can be eye(3) or another % transformation that maps to the desired world coordinates. % The default value is mode = 'relative' % % Outputs: Is is a h x w x Nc uint8 matrix containing the stitched % image % % alpha is a h x w uint8 matrix containing the alpha channel % (transparency) values for generating a nice transparent png % of the stitched image % % Author: Brian Moore % [email protected] % % Date: September 30, 2015 % % Parse inputs [Ns, Nc, dim, b0, view, order, mode] = parseInputs(It,varargin{:}); % Convert to absolute coordinates, if necessary if strcmpi(mode,'relative') It = toAbsoluteCoordinates(It); end % Apply view It = applyView(It,view); % Apply order It = applyOrder(It,order); % Compute stitched image limits [It, xlim, ylim] = computeStitchedLimits(It); % Get sample points [x, y, w, h] = getSamplePoints(xlim,ylim,dim); % Stitch images Is = nan(h,w,Nc); for i = Ns:-1:1 Is = overlayImage(Is,It(i),x,y); end % Fill background [Is, alpha] = fillBackground(Is,b0); % Convert to unit8 Is = uint8(Is); %-------------------------------------------------------------------------- function [Ns, Nc, dim, b0, view, order, mode] = parseInputs(It,varargin) % Parse mandatory inputs Ns = numel(It); Nc = size(It(1).image,3); % Default values dim = []; b0 = 255 * ones(Nc,1); view = 'default'; order = 'natural'; mode = 'relative'; % Parse arguments for i = 1:2:numel(varargin) switch lower(varargin{i}) case 'dim' dim = varargin{i + 1}; case 'b0' b0 = varargin{i + 1}; case 'view' view = varargin{i + 1}; case 'order' order = varargin{i + 1}; case 'mode' mode = varargin{i + 1}; end end %-------------------------------------------------------------------------- function It = toAbsoluteCoordinates(It) % Map all transforms to coordinates of It(1) for i = 2:numel(It) It(i).tform = It(i).tform * It(i - 1).tform; end %-------------------------------------------------------------------------- function It = applyView(It,view) % Get transformed limits Ns = numel(It); xc = zeros(Ns,1); for i = 1:Ns [xlimi, ~] = getOutputLimits(It(i).image,It(i).tform); xc(i) = mean(xlimi); end % Get ordering switch lower(view) case 'left' % Left view [~,idx] = sort(xc,'ascend'); case 'center' % Center view [~,idx] = sort(abs(xc - mean(xc))); case 'right' % Right view [~,idx] = sort(xc,'descend'); case 'default' % Use input ordering idx = 1:Ns; otherwise % Unsupported view error('Unsupported view "%s"',view); end % Apply ordering It = It(idx); if ~strcmpi(view,'default') H1 = It(1).tform; for i = 1:Ns It(i).tform = It(i).tform / H1; end end %-------------------------------------------------------------------------- function It = applyOrder(It,order) % Apply order switch lower(order) case 'natural' % Natural ordering % Empty case 'reverse' % Reverse ordering It = flipud(It(:)); otherwise % Unsupported order error('Unsupported order "%s"',order); end %-------------------------------------------------------------------------- function [It, xlim, ylim] = computeStitchedLimits(It) % Compute limits minx = inf; maxx = -inf; miny = inf; maxy = -inf; for i = 1:numel(It) [xlimi, ylimi] = getOutputLimits(It(i).image,It(i).tform); It(i).xlim = xlimi; It(i).ylim = ylimi; minx = min(minx,xlimi(1)); maxx = max(maxx,xlimi(2)); miny = min(miny,ylimi(1)); maxy = max(maxy,ylimi(2)); end xlim = [floor(minx), ceil(maxx)]; ylim = [floor(miny), ceil(maxy)]; %-------------------------------------------------------------------------- function [xlim, ylim] = getOutputLimits(I,H) % Compute limits of transformed image [Ny, Nx, ~] = size(I); X = [1 Nx Nx 1]; Y = [1 1 Ny Ny]; [Xt, Yt] = applyTransform(X,Y,H); xlim = [min(Xt), max(Xt)]; ylim = [min(Yt), max(Yt)]; %-------------------------------------------------------------------------- function [Xt, Yt] = applyTransform(X,Y,H) % Apply transformation sz = size(X); n = numel(X); tmp = [X(:), Y(:), ones(n,1)] * H; Xt = reshape(tmp(:,1) ./ tmp(:,3),sz); Yt = reshape(tmp(:,2) ./ tmp(:,3),sz); %-------------------------------------------------------------------------- function [X, Y] = applyInverseTransform(Xt,Yt,H) % Apply inverse transformation sz = size(Xt); n = numel(Xt); tmp = [Xt(:), Yt(:), ones(n,1)] / H; X = reshape(tmp(:,1) ./ tmp(:,3),sz); Y = reshape(tmp(:,2) ./ tmp(:,3),sz); %-------------------------------------------------------------------------- function [x, y, w, h] = getSamplePoints(xlim,ylim,dim) % Get sample dimensions if isempty(dim) w = diff(xlim) + 1; h = diff(ylim) + 1; else w = dim(2); h = dim(1); end % Limit resolution to a reasonable value, if necessary MAX_PIXELS = 2000 * 2000; [w, h] = limitRes(w,h,MAX_PIXELS); % Compute sample points x = linspace(xlim(1),xlim(2),w); y = linspace(ylim(1),ylim(2),h); %-------------------------------------------------------------------------- function [w, h] = limitRes(w,h,lim) if w * h <= lim % No rescaling needed return; end % Rescale to meet limit kappa = w / h; w = round(sqrt(lim * kappa)); h = round(sqrt(lim / kappa)); warning('Output resolution too large, rescaling to %i x %i',h,w); %#ok %-------------------------------------------------------------------------- function Is = overlayImage(Is,It,x,y) % Overlay image Nc = size(Is,3); If = fillImage(It,x,y); mask = ~any(isnan(If),3); for j = 1:Nc Isj = Is(:,:,j); Ifj = If(:,:,j); Isj(mask) = Ifj(mask); Is(:,:,j) = Isj; end %-------------------------------------------------------------------------- function If = fillImage(It,x,y) % Parse inputs Nc = size(It.image,3); w = numel(x); h = numel(y); % Get active coordinates [~, xIdx1] = find(x <= It.xlim(1),1,'last'); [~, xIdx2] = find(x >= It.xlim(2),1,'first'); [~, yIdx1] = find(y <= It.ylim(1),1,'last'); [~, yIdx2] = find(y >= It.ylim(2),1,'first'); wa = xIdx2 + 1 - xIdx1; ha = yIdx2 + 1 - yIdx1; % Compute inverse transformed coordinates [Xta, Yta] = meshgrid(x(xIdx1:xIdx2),y(yIdx1:yIdx2)); [Xa, Ya] = applyInverseTransform(Xta,Yta,It.tform); % Compute active image Ia = zeros(ha,wa,Nc); for j = 1:Nc Ia(:,:,j) = interp2(double(It.image(:,:,j)),Xa,Ya); end % Embed into full image If = nan(h,w,Nc); If(yIdx1:yIdx2,xIdx1:xIdx2,:) = Ia; %-------------------------------------------------------------------------- function [Is, alpha] = fillBackground(Is,b0) % Fill background Nc = size(Is,3); mask = any(isnan(Is),3); for j = 1:Nc Isj = Is(:,:,j); Isj(mask) = b0(j); Is(:,:,j) = Isj; end % Return alpha alpha = zeros(size(mask),'uint8'); alpha(~mask) = 255;
github
yugt/ComputerVision-master
nonmaxsuppts.m
.m
ComputerVision-master/Homework/hw2/problem3/nonmaxsuppts.m
5,085
utf_8
b2a36d9b59c2f7914f7a5c33e132e7a2
% NONMAXSUPPTS - Non-maximal suppression for features/corners % % Non maxima suppression and thresholding for points generated by a feature % or corner detector. % % Usage: [r,c] = nonmaxsuppts(cim, radius, thresh, im) % / % optional % % [r,c, rsubp, csubp] = nonmaxsuppts(cim, radius, thresh, im) % % Arguments: % cim - corner strength image. % radius - radius of region considered in non-maximal % suppression. Typical values to use might % be 1-3 pixels. % thresh - threshold. % im - optional image data. If this is supplied the % thresholded corners are overlayed on this % image. This can be useful for parameter tuning. % Returns: % r - row coordinates of corner points (integer valued). % c - column coordinates of corner points. % rsubp - If four return values are requested sub-pixel % csubp - localization of feature points is attempted and % returned as an additional set of floating point % coords. Note that you may still want to use the integer % valued coords to specify centres of correlation windows % for feature matching. % % Copyright (c) 2003-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % September 2003 Original version % August 2005 Subpixel localization and Octave compatibility % January 2010 Fix for completely horizontal and vertical lines (by Thomas Stehle, % RWTH Aachen University) % January 2011 Warning given if no maxima found function [r,c, rsubp, csubp] = nonmaxsuppts(cim, radius, thresh, im) subPixel = nargout == 4; % We want sub-pixel locations [rows,cols] = size(cim); % Extract local maxima by performing a grey scale morphological % dilation and then finding points in the corner strength image that % match the dilated image and are also greater than the threshold. sze = 2*radius+1; % Size of dilation mask. mx = ordfilt2(cim,sze^2,ones(sze)); % Grey-scale dilate. % Make mask to exclude points within radius of the image boundary. bordermask = zeros(size(cim)); bordermask(radius+1:end-radius, radius+1:end-radius) = 1; % Find maxima, threshold, and apply bordermask cimmx = (cim==mx) & (cim>thresh) & bordermask; [r,c] = find(cimmx); % Find row,col coords. if subPixel % Compute local maxima to sub pixel accuracy if ~isempty(r) % ...if we have some ponts to work with ind = sub2ind(size(cim),r,c); % 1D indices of feature points w = 1; % Width that we look out on each side of the feature % point to fit a local parabola % Indices of points above, below, left and right of feature point indrminus1 = max(ind-w,1); indrplus1 = min(ind+w,rows*cols); indcminus1 = max(ind-w*rows,1); indcplus1 = min(ind+w*rows,rows*cols); % Solve for quadratic down rows rowshift = zeros(size(ind)); cy = cim(ind); ay = (cim(indrminus1) + cim(indrplus1))/2 - cy; by = ay + cy - cim(indrminus1); rowshift(ay ~= 0) = -w*by(ay ~= 0)./(2*ay(ay ~= 0)); % Maxima of quadradic rowshift(ay == 0) = 0; % Solve for quadratic across columns colshift = zeros(size(ind)); cx = cim(ind); ax = (cim(indcminus1) + cim(indcplus1))/2 - cx; bx = ax + cx - cim(indcminus1); colshift(ax ~= 0) = -w*bx(ax ~= 0)./(2*ax(ax ~= 0)); % Maxima of quadradic colshift(ax == 0) = 0; rsubp = r+rowshift; % Add subpixel corrections to original row csubp = c+colshift; % and column coords. else rsubp = []; csubp = []; end end if nargin==4 & ~isempty(r) % Overlay corners on supplied image. figure(1), imshow(im,[]), hold on if subPixel plot(csubp,rsubp,'r+'), title('corners detected'); else plot(c,r,'r+'), title('corners detected'); end hold off end if isempty(r) % fprintf('No maxima above threshold found\n'); end
github
yugt/ComputerVision-master
match.m
.m
ComputerVision-master/Homework/hw2/problem3/match.m
1,432
utf_8
a03ee15e52b0715f903e75b7fde00f78
function M = match(F1,F2,k) % function M = match(F1,F2,k) % % EECS 442; % Jason Corso % % Wrapper for function to matching extracted feature vectors from a pair % of images % % F1 is the feature matrix (rows -dimensions and cols number of points) % from image 1 % F2 feature matrix from image 2 % k is the number of matches to take (optional) % % M is a k x 2 matrix where k is the number of matches and the first col % is the index of the match in F1 and the second col in F2 if nargin==2 k=12; end n1 = size(F1,2); n2 = size(F2,2); n = max(n1,n2); C = zeros(n,n); for i=1:n1 C(i,1:n2) = distance(F1(:,i),F2); end A = hungarian(C); D = ones(n1,1); I = ones(n1,1); for i=1:n1 I(i) = A(i); D(i) = C(i,A(i)); end %for i=1:n1 % [I(i),D(i)] = matchsingle(F1(:,i),F2); %end % now, rank and take just the top $k=5$ [Ds,Di] = sort(D,'ascend'); M=zeros(k,2); for i=1:k M(i,1) = Di(i); M(i,2) = I(Di(i)); end function D = distance(f,F) n = size(F,2); ff = repmat(f,[1,n]); D = ff-F; D = D.*D; D = sum(D,1); D = sqrt(D); function [m,d] = matchsingle(f,F) % function [m,d] = matchsingle(f,F) % % Wrapper for function to matching an feature vector to a feature matrix % % f is the vector % F is the matrix % % m is the matched index % d is the distance for the match n = size(F,2); ff = repmat(f,[1,n]); D = ff-F; D = D.*D; D = sum(D,1); D = sqrt(D); [d,m] = min(D);
github
yugt/ComputerVision-master
colorcircle.m
.m
ComputerVision-master/Homework/hw3/problem1/colorcircle.m
661
utf_8
c257dd26bb66c52d14de02d1bd93a1f3
% Color CIRCLE - Draws a circle. % % Usage: colorcircle(c, r, s, n) % % Arguments: c - A 2-vector [x y] specifying the centre. % r - The radius. % n - Optional number of sides in the polygonal approximation. % (defualt is 16 sides) % s - color of the line segments to draw [r g b] in [0 1] function colorcircle(c, r, s, nsides) if nargin == 2 nsides = 16; s = [0 0 1]; elseif nargin == 3 nsides = 16; end nsides = round(nsides); % make sure it is an integer a = [0:pi/nsides:2*pi]; h = line(r*cos(a)+c(1), r*sin(a)+c(2)); set(h,'Color',s);
github
yugt/ComputerVision-master
colorcircle.m
.m
ComputerVision-master/Homework/hw3/problem2/colorcircle.m
677
utf_8
fc8960bac7b8d86d43fcb447ebcf1370
% Color CIRCLE - Draws a circle. % % Usage: colorcircle(c, r, s, n) % % Arguments: c - A 2-vector [x y] specifying the centre. % r - The radius. % n - Optional number of sides in the polygonal approximation. % (defualt is 16 sides) % s - color of the line segments to draw [r g b] in [0 1] function colorcircle(c, r, s, nsides) if nargin == 2 nsides = 16; s = [0 0 1]; elseif nargin == 3 nsides = 16; end nsides = round(nsides); % make sure it is an integer a = [0:pi/nsides:2*pi]; h = line(r*cos(a)+c(1), r*sin(a)+c(2), 'LineWidth', 2); set(h,'Color',s);
github
yugt/ComputerVision-master
match.m
.m
ComputerVision-master/Homework/hw3/problem2/match.m
1,432
utf_8
a03ee15e52b0715f903e75b7fde00f78
function M = match(F1,F2,k) % function M = match(F1,F2,k) % % EECS 442; % Jason Corso % % Wrapper for function to matching extracted feature vectors from a pair % of images % % F1 is the feature matrix (rows -dimensions and cols number of points) % from image 1 % F2 feature matrix from image 2 % k is the number of matches to take (optional) % % M is a k x 2 matrix where k is the number of matches and the first col % is the index of the match in F1 and the second col in F2 if nargin==2 k=12; end n1 = size(F1,2); n2 = size(F2,2); n = max(n1,n2); C = zeros(n,n); for i=1:n1 C(i,1:n2) = distance(F1(:,i),F2); end A = hungarian(C); D = ones(n1,1); I = ones(n1,1); for i=1:n1 I(i) = A(i); D(i) = C(i,A(i)); end %for i=1:n1 % [I(i),D(i)] = matchsingle(F1(:,i),F2); %end % now, rank and take just the top $k=5$ [Ds,Di] = sort(D,'ascend'); M=zeros(k,2); for i=1:k M(i,1) = Di(i); M(i,2) = I(Di(i)); end function D = distance(f,F) n = size(F,2); ff = repmat(f,[1,n]); D = ff-F; D = D.*D; D = sum(D,1); D = sqrt(D); function [m,d] = matchsingle(f,F) % function [m,d] = matchsingle(f,F) % % Wrapper for function to matching an feature vector to a feature matrix % % f is the vector % F is the matrix % % m is the matched index % d is the distance for the match n = size(F,2); ff = repmat(f,[1,n]); D = ff-F; D = D.*D; D = sum(D,1); D = sqrt(D); [d,m] = min(D);
github
yugt/ComputerVision-master
hog.m
.m
ComputerVision-master/Homework/hw3/problem2/hog.m
6,966
utf_8
094b0c972d07da4c8fa2b4fbe25c1170
function v = hog(im,x,y,Wfull) % function v = hog(im,x,y,Wfull) % % EECS Foundation of Computer Vision; % Chenliang Xu and Jason Corso % % Compute the histogram of oriented gradidents on image (im) % for a given location (x,y) and scale (Wfull) % % v is the output column vector of the hog. % % Use Lowe IJCV 2004 Sections 5 and 6 to (1) adapt to local rotation % and (2) compute the histogram. Use the parameters in the paper % Within the window a 4 by 4 array of histograms of oriented gradients % with 8 discretized orientations per bin. Do it separately per color channel % and then concatenate the resulting vectors. % Each v should be 3*128 dimensions = 3*4*4*8. % v = zeros(3,1152); %%%%%%%% fill in below %% Orientation Assignment margin_long = Wfull/2; margin_short = Wfull/2-1; sm = im(y-margin_long-1:y+margin_short+1, ... x-margin_long-1:x+margin_short+1, :); gm = rgb2gray(sm); dy = conv2(gm,[-1 0 1]','same'); dx = conv2(gm,[-1 0 1],'same'); dy = dy(2:end-1, 2:end-1); dx = dx(2:end-1, 2:end-1); mag = sqrt(dx.^2+dy.^2); ang = atan2(dy, dx); angd = 18-floor(ang/10); % map 180~-180 to 36 bins cnts = zeros(36,1); for i=1:36 cnts(i) = sum(mag(angd==i)); end [~,idx] = max(cnts); theta = (18-idx)*10+5; %% HOG Descriptor for i=1:3 cm = im(y-Wfull:y+Wfull, x-Wfull:x+Wfull, i); dy = conv2(cm,[-1 0 1]','same'); dx = conv2(cm,[-1 0 1],'same'); % rotate dy = imrotate(dy, -theta, 'crop', 'bilinear'); dx = imrotate(dx, -theta, 'crop', 'bilinear'); dy = dy(1+margin_long:end-1-margin_long, ... 1+margin_long:end-1-margin_long); dx = dx(1+margin_long:end-1-margin_long, ... 1+margin_long:end-1-margin_long); % Approximation v(i,:) = hog_feature_vector(dx, dy); end v = v(:); function [feature] = hog_feature_vector(Ix, Iy) % The given code finds the HOG feature vector for any given image. HOG % feature vector/descriptor can then be used for detection of any % particular object. The Matlab code provides the exact implementation of % the formation of HOG feature vector as detailed in the paper "Pedestrian % detection using HOG" by Dalal and Triggs % INPUT => im (input image) % OUTPUT => HOG feature vector for that particular image % Example: Running the code % >>> im = imread('cameraman.tif'); % >>> hog = hog_feature_vector (im); % Modified by Chenliang Xu. % Change Bi-Linear to Tri-Linear Interpolation for Binning Process. % Change Iterations and Angle Computation. rows=size(Ix,1); cols=size(Ix,2); angle=atan2(Iy, Ix); magnitude=sqrt(Ix.^2 + Iy.^2); % figure,imshow(uint8(angle)); % figure,imshow(uint8(magnitude)); % Remove redundant pixels in an image. angle(isnan(angle))=0; magnitude(isnan(magnitude))=0; feature=[]; %initialized the feature vector % Iterations for Blocks for i = 0: rows/8 - 2 for j= 0: cols/8 -2 %disp([i,j]) mag_patch = magnitude(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16); %mag_patch = imfilter(mag_patch,gauss); ang_patch = angle(8*i+1 : 8*i+16 , 8*j+1 : 8*j+16); block_feature=[]; %Iterations for cells in a block for x= 0:3 for y= 0:3 angleA =ang_patch(4*x+1:4*x+4, 4*y+1:4*y+4); magA =mag_patch(4*x+1:4*x+4, 4*y+1:4*y+4); histr =zeros(1,8); %Iterations for pixels in one cell for p=1:4 for q=1:4 % alpha= angleA(p,q); % Binning Process (Tri-Linear Interpolation) if alpha>135 && alpha<=180 histr(8)=histr(8)+ magA(p,q)*(1-(157.5+45-alpha)/360); histr(1)=histr(1)+ magA(p,q)*(1-abs(157.5-alpha)/360); histr(2)=histr(2)+ magA(p,q)*(1-abs(112.5-alpha)/360); elseif alpha>90 && alpha<=135 histr(1)=histr(1)+ magA(p,q)*(1-abs(157.5-alpha)/360); histr(2)=histr(2)+ magA(p,q)*(1-abs(112.5-alpha)/360); histr(3)=histr(3)+ magA(p,q)*(1-abs(67.5-alpha)/360); elseif alpha>45 && alpha<=90 histr(2)=histr(2)+ magA(p,q)*(1-abs(112.5-alpha)/360); histr(3)=histr(3)+ magA(p,q)*(1-abs(67.5-alpha)/360); histr(4)=histr(4)+ magA(p,q)*(1-abs(22.5-alpha)/360); elseif alpha>0 && alpha<=45 histr(3)=histr(3)+ magA(p,q)*(1-abs(67.5-alpha)/360); histr(4)=histr(4)+ magA(p,q)*(1-abs(22.5-alpha)/360); histr(5)=histr(5)+ magA(p,q)*(1-abs(-22.5-alpha)/360); elseif alpha>-45 && alpha<=0 histr(4)=histr(4)+ magA(p,q)*(1-abs(22.5-alpha)/360); histr(5)=histr(5)+ magA(p,q)*(1-abs(-22.5-alpha)/360); histr(6)=histr(6)+ magA(p,q)*(1-abs(-67.5-alpha)/360); elseif alpha>-90 && alpha<=-45 histr(5)=histr(5)+ magA(p,q)*(1-abs(-22.5-alpha)/360); histr(6)=histr(6)+ magA(p,q)*(1-abs(-67.5-alpha)/360); histr(7)=histr(7)+ magA(p,q)*(1-abs(-112.5-alpha)/360); elseif alpha>-135 && alpha<=-90 histr(6)=histr(6)+ magA(p,q)*(1-abs(-67.5-alpha)/360); histr(7)=histr(7)+ magA(p,q)*(1-abs(-112.5-alpha)/360); histr(8)=histr(8)+ magA(p,q)*(1-abs(-157.5-alpha)/360); elseif alpha>=-180 && alpha<=-135 histr(7)=histr(7)+ magA(p,q)*(1-abs(-112.5-alpha)/360); histr(8)=histr(8)+ magA(p,q)*(1-abs(-157.5-alpha)/360); histr(1)=histr(1)+ magA(p,q)*(1-(157.5+45+alpha)/360); end end end block_feature=[block_feature histr]; % Concatenation of Four histograms to form one block feature end end % Normalize the values in the block using L1-Norm block_feature=block_feature/sqrt(norm(block_feature)^2+.01); feature=[feature block_feature]; %Features concatenation end end feature(isnan(feature))=0; %Removing Infinitiy values % Normalization of the feature vector using L2-Norm feature=feature/sqrt(norm(feature)^2+.001); for z=1:length(feature) if feature(z)>0.2 feature(z)=0.2; end end feature=feature/sqrt(norm(feature)^2+.001); % toc; %%%%%%%% fill in above
github
yugt/ComputerVision-master
potts.m
.m
ComputerVision-master/Homework/hw1/problem4/potts.m
306
utf_8
41094b0510a36731bafe61ad02847dde
% potts.m % to be completed by students function E = potts(I,beta) if nargin==1 beta=1; end %%% FILL IN HERE L=int32(I); % convert to signed long to avoid overflow X=L(:,:,1)+L(:,:,2)*256+L(:,:,3)*65536; [m,n]=size(X); E=beta*(nnz(X(1:m-1,:)-X(2:m,:))+nnz(X(:,1:n-1)-X(:,2:n))); %%% FILL IN HERE
github
garrickbrazil/SDS-RCNN-master
roidb_generate.m
.m
SDS-RCNN-master/functions/utils/roidb_generate.m
4,496
utf_8
67b84b2e5a6f48060c1022d41f9d78b8
function roidb = roidb_generate(imdb, flip, cache_dir, dataset, min_gt_height) % roidb = roidb_generate(imdb, flip) % Package the roi annotations into the imdb. % % Inspired by Ross Girshick's imdb and roidb code. % AUTORIGHTS % --------------------------------------------------------- % Copyright (c) 2014, Ross Girshick % % This file is part of the R-CNN code and is available % under the terms of the Simplified BSD License provided in % LICENSE. Please retain this notice and LICENSE if you use % this file (or any portion of it) in your project. % --------------------------------------------------------- mkdir_if_missing([cache_dir]); roidb.name = imdb.name; anno_path = ['./datasets/' dataset '/' roidb.name '/annotations']; addpath(genpath('./external/code3.2.1')); pLoad={'lbls',{'person'},'ilbls',{'people', 'ignore'},'squarify',{3,.41}}; pLoad = [pLoad 'hRng',[min_gt_height inf], 'vRng',[1 1] ]; if flip cache_file = [cache_dir '/roidb_' dataset '_' imdb.name '_flip']; else cache_file = [cache_dir '/roidb_' dataset '_' imdb.name]; end cache_file = [cache_file, '.mat']; try load(cache_file); fprintf('Preloaded roidb %s.. ', roidb.name); catch fprintf('Computing roidb %s.. ', roidb.name); roidb.name = imdb.name; regions = []; if isempty(regions) regions.boxes = cell(length(imdb.image_ids), 1); end height = imdb.sizes(1,1); width = imdb.sizes(1,2); files=bbGt('getFiles',{anno_path}); num_gts = 0; num_gt_no_ignores = 0; for i = 1:length(files) [~,gts]=bbGt('bbLoad',files{i},pLoad); ignores = gts(:,end); num_gts = num_gts + length(ignores); num_gt_no_ignores = num_gt_no_ignores + (length(ignores)-sum(ignores)); if flip % for ori x1 = gts(:,1); y1 = gts(:,2); x2 = gts(:,1) + gts(:,3); y2 = gts(:,2) + gts(:,4); gt_boxes = [x1 y1 x2 y2]; roidb.rois(i*2-1) = attach_proposals(regions.boxes{i}, gt_boxes, ignores); % for flip x1_flip = width - gts(:,1) - gts(:,3); y1_flip = y1; x2_flip = width - gts(:,1); y2_flip = y2; gt_boxes_flip = [x1_flip y1_flip x2_flip y2_flip]; roidb.rois(i*2) = attach_proposals(regions.boxes{i}, gt_boxes_flip, ignores); if 0 % debugging visualizations im = imread(imdb.image_at(i*2-1)); t_boxes = roidb.rois(i*2-1).boxes; for k = 1:size(t_boxes, 1) showboxes2(im, t_boxes(k,1:4)); title(sprintf('%s, ignore: %d\n', imdb.image_ids{i*2-1}, roidb.rois(i*2-1).ignores(k))); pause; end im = imread(imdb.image_at(i*2)); t_boxes = roidb.rois(i*2).boxes; for k = 1:size(t_boxes, 1) showboxes2(im, t_boxes(k,1:4)); title(sprintf('%s, ignore: %d\n', imdb.image_ids{i*2}, roidb.rois(i*2).ignores(k))); pause; end end else % for ori x1 = gts(:,1); y1 = gts(:,2); x2 = gts(:,1) + gts(:,3); y2 = gts(:,2) + gts(:,4); gt_boxes = [x1 y1 x2 y2]; roidb.rois(i) = attach_proposals(regions.boxes{i}, gt_boxes, ignores); end end save(cache_file, 'roidb', '-v7.3'); %fprintf('num_gt / num_ignore %d / %d \n', num_gt_no_ignores, num_gts); end fprintf('done\n'); end % ------------------------------------------------------------------------ function rec = attach_proposals(boxes, gt_boxes, ignores) % ------------------------------------------------------------------------ % gt: [2108x1 double] % overlap: [2108x20 single] % dataset: 'voc_2007_trainval' % boxes: [2108x4 single] % feat: [2108x9216 single] % class: [2108x1 uint8] all_boxes = cat(1, gt_boxes, boxes); gt_classes = ones(size(gt_boxes, 1), 1); % set pedestrian label as 1 num_gt_boxes = size(gt_boxes, 1); num_boxes = size(boxes, 1); rec.gt = cat(1, true(num_gt_boxes, 1), false(num_boxes, 1)); rec.overlap = zeros(num_gt_boxes+num_boxes, 1, 'single'); for i = 1:num_gt_boxes rec.overlap(:, gt_classes(i)) = ... max(rec.overlap(:, gt_classes(i)), boxoverlap(all_boxes, gt_boxes(i, :))); end rec.boxes = single(all_boxes); rec.feat = []; rec.class = uint8(cat(1, gt_classes, zeros(num_boxes, 1))); rec.ignores = ignores; end
github
garrickbrazil/SDS-RCNN-master
evaluate_result_dir.m
.m
SDS-RCNN-master/functions/utils/evaluate_result_dir.m
22,081
utf_8
ca54816fbdcadc7110cf390fb95d574b
function [scores, thres, recall, dts, gts, res, occls, ols] = dbEval(aDirs, db, minh) % Evaluate and plot all pedestrian detection results. % % Set parameters by altering this function directly. % % USAGE % dbEval % % INPUTS % % OUTPUTS % % EXAMPLE % dbEval % % See also bbGt, dbInfo % % Caltech Pedestrian Dataset Version 3.2.1 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % List of experiment settings: { name, hr, vr, ar, overlap, filter } % name - experiment name % hr - height range to test % vr - visibility range to test % ar - aspect ratio range to test % overlap - overlap threshold for evaluation % filter - expanded filtering (see 3.3 in PAMI11) scores = 0; if nargin < 3 minh = 50; end exps = { 'Reasonable', [minh inf], [.65 inf], 0, .5, 1.25 'All', [20 inf], [.2 inf], 0, .5, 1.25 'Scale=large', [100 inf], [inf inf], 0, .5, 1.25 'Scale=near', [80 inf], [inf inf], 0, .5, 1.25 'Scale=medium', [30 80], [inf inf], 0, .5, 1.25 'Scale=far', [20 30], [inf inf], 0, .5, 1.25 'Occ=none', [50 inf], [inf inf], 0, .5, 1.25 'Occ=partial', [50 inf], [.65 1], 0, .5, 1.25 'Occ=heavy', [50 inf], [.2 .65], 0, .5, 1.25 'Ar=all', [50 inf], [inf inf], 0, .5, 1.25 'Ar=typical', [50 inf], [inf inf], .1, .5, 1.25 'Ar=atypical', [50 inf], [inf inf], -.1, .5, 1.25 'Overlap=25', [50 inf], [.65 inf], 0, .25, 1.25 'Overlap=50', [50 inf], [.65 inf], 0, .50, 1.25 'Overlap=75', [50 inf], [.65 inf], 0, .75, 1.25 'Expand=100', [50 inf], [.65 inf], 0, .5, 1.00 'Expand=125', [50 inf], [.65 inf], 0, .5, 1.25 'Expand=150', [50 inf], [.65 inf], 0, .5, 1.50 }; exps=cell2struct(exps',{'name','hr','vr','ar','overlap','filter'}); exps = exps(1); % List of algorithms: { name, resize, color, style } % name - algorithm name (defines data location) % resize - if true rescale height of each box by 100/128 % color - algorithm plot color % style - algorithm plot linestyle n=1000; clrs=zeros(n,3); for i=1:n, clrs(i,:)=max(.3,mod([78 121 42]*(i+1),255)/255); end algs = { 'VJ', 0, clrs(1,:), '--' 'HOG', 1, clrs(2,:), '--' 'FtrMine', 1, clrs(3,:), '-' 'Shapelet', 0, clrs(4,:), '--' 'PoseInv', 1, clrs(5,:), '-' 'MultiFtr', 0, clrs(6,:), '--' 'MultiFtr+CSS', 0, clrs(7,:), '-' 'MultiFtr+Motion', 0, clrs(8,:), '--' 'HikSvm', 1, clrs(9,:), '-' 'Pls', 0, clrs(10,:), '--' 'HogLbp', 0, clrs(11,:), '-' 'LatSvm-V1', 0, clrs(12,:), '--' 'LatSvm-V2', 0, clrs(13,:), '-' 'ChnFtrs', 0, clrs(14,:), '--' 'FPDW', 0, clrs(15,:), '-' 'FeatSynth', 0, clrs(16,:), '--' 'MultiResC', 0, clrs(17,:), '-' 'CrossTalk', 0, clrs(18,:), '--' 'VeryFast', 0, clrs(19,:), '-' 'ConvNet', 0, clrs(20,:), '--' 'SketchTokens', 0, clrs(21,:), '-' 'Roerei', 0, clrs(22,:), '--' 'AFS', 1, clrs(23,:), '-' 'AFS+Geo', 1, clrs(23,:), '--' 'MLS', 1, clrs(24,:), '-' 'MT-DPM', 0, clrs(25,:), '-' 'MT-DPM+Context', 0, clrs(25,:), '--' 'DBN-Isol', 0, clrs(26,:), '-' 'DBN-Mut', 0, clrs(26,:), '--' 'MF+Motion+2Ped', 0, clrs(27,:), '-' 'MultiResC+2Ped', 0, clrs(27,:), '--' 'MOCO', 0, clrs(28,:), '-' 'ACF', 0, clrs(29,:), '-' 'ACF-Caltech', 0, clrs(29,:), '--' 'ACF+SDt', 0, clrs(30,:), '-' 'FisherBoost', 0, clrs(31,:), '--' 'pAUCBoost', 0, clrs(32,:), '-' 'Franken', 0, clrs(33,:), '--' 'JointDeep', 0, clrs(34,:), '-' 'MultiSDP', 0, clrs(35,:), '--' 'SDN', 0, clrs(36,:), '-' 'RandForest', 0, clrs(37,:), '--' 'WordChannels', 0, clrs(38,:), '-' 'InformedHaar', 0, clrs(39,:), '--' 'SpatialPooling', 0, clrs(40,:), '-' 'SpatialPooling+', 0, clrs(42,:), '--' 'Seg+RPN', 0, clrs(43,:), '-' 'ACF-Caltech+', 0, clrs(44,:), '--' 'Katamari', 0, clrs(45,:), '-' 'NAMC', 0, clrs(46,:), '--' 'FastCF', 0, clrs(47,:), '-' 'TA-CNN', 0, clrs(48,:), '--' 'SCCPriors', 0, clrs(49,:), '-' 'DeepParts', 0, clrs(50,:), '--' 'DeepCascade', 0, clrs(51,:), '-' 'DeepCascade+', 0, clrs(51,:), '--' 'LFOV', 0, clrs(52,:), '-' 'Checkerboards', 0, clrs(53,:), '--' 'Checkerboards+', 0, clrs(53,:), '-' 'CCF', 0, clrs(54,:), '--' 'CCF+CF', 0, clrs(54,:), '-' 'CompACT-Deep', 0, clrs(55,:), '--' 'SCF+AlexNet', 0, clrs(56,:), '-' 'RPN-Only', 0, clrs(35,:), '-' %'Fast-VGG16-ACF', 0, clrs(59,:), '-' %'Faster-VGG16-seg', 0, clrs(61,:), '-' 'SA-FastRCNN', 0, clrs(57,:), '--' %'Faster-VGG16', 0, clrs(31,:), '-' 'cityscapes-multitask-comb', 0, clrs(31,:), '-' }; algs=cell2struct(algs',{'name','resize','color','style'}); % List of database names dataNames = {'cityscapes', 'UsaTest','UsaTrain','InriaTest',... 'TudBrussels','ETH','Daimler','Japan'}; % select databases, experiments and algorithms for evaluation dataNames = dataNames(2); % select one or more databases for evaluation %exps = exps(2); % select one or more experiment for evaluation algs = algs(:); % select one or more algorithms for evaluation if nargin > 1 dataNames = {db}; end % remaining parameters and constants aspectRatio = .41; % default aspect ratio for all bbs bnds = [5 5 635 475]; % discard bbs outside this pixel range plotRoc = 1; % if true plot ROC else PR curves plotAlg = 0; % if true one plot per alg else one plot per exp plotNum = 15; % only show best plotNum curves (and VJ and HOG) samples = 10.^(-2:.25:0); % samples for computing area under the curve lims = [2e-4 50 .035 1]; % axis limits for ROC plots bbsShow = 0; % if true displays sample bbs for each alg/exp bbsType = 'fp'; % type of bbs to display (fp/tp/fn/dt) algs0=aDirs; bnds0=bnds; for d=1:length(dataNames), dataName=dataNames{d}; % select algorithms with results for current dataset [~,set]=dbInfo(dataName); set=['/set' int2str2(set(1),2)]; names={algs0}; n=length(names); keep=true(1,n); algs=algs0(keep); % handle special database specific cases if(any(strcmp(dataName,{'InriaTest','TudBrussels','ETH', 'kitti_fold1', 'kitti_fold2', 'kitti_fold3'}))) bnds=[-inf -inf inf inf]; else bnds=bnds0; end if(strcmp(dataName,'InriaTest')) i=find(strcmp({algs.name},'FeatSynth')); if(~isempty(i)), algs(i).resize=1; end; end % name for all plots (and also temp directory for results) plotName=[fileparts(mfilename('fullpath')) '/results/' dataName]; %if(~exist(plotName,'dir')), mkdir(plotName); end % load detections and ground truth and evaluate dts = loadDt( algs, plotName, aspectRatio, aDirs ); [gts, occls, ols] = loadGt( exps, plotName, aspectRatio, bnds ); res = evalAlgs( plotName, algs, exps, gts, dts ); %disp([dbInfo '/res/' names{i} set]); tp=0; missed=0; for resi=1:length(res.gtr) if size(res.gtr{resi}, 1) > 0 if (res.gtr{resi}(5) == 1) tp=tp+1; elseif (res.gtr{resi}(5) == 0) missed=missed+1; end end end recall = tp/(tp+missed); % plot curves and bbs [scores, thres] = plotExps( res, plotRoc, plotAlg, plotNum, plotName, ... samples, lims, reshape([clrs(1,:)]',3,[])', {'-'} ); %plotBbs( res, plotName, bbsShow, bbsType ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = evalAlgs( plotName, algs, exps, gts, dts ) % Evaluate every algorithm on each experiment % % OUTPUTS % res - nGt x nDt cell of all evaluations, each with fields % .stra - string identifying algorithm % .stre - string identifying experiment % .gtr - [n x 1] gt result bbs for each frame [x y w h match] % .dtr - [n x 1] dt result bbs for each frame [x y w h score match] %fprintf('Evaluating: %s\n',plotName); nGt=length(gts); nDt=length(dts); res=repmat(struct('stra',[],'stre',[],'gtr',[],'dtr',[]),nGt,nDt); for g=1:nGt for d=1:nDt gt=gts{g}; dt=dts{d}; n=length(gt); %assert(length(dt)==n); stra=algs{d}; stre=exps(g).name; fName = [plotName '/ev-' [stre '-' stra] '.mat']; if(exist(fName,'file')), R=load(fName); res(g,d)=R.R; continue; end %fprintf('\tExp %i/%i, Alg %i/%i: %s/%s\n',g,nGt,d,nDt,stre,stra); hr = exps(g).hr.*[1/exps(g).filter exps(g).filter]; for f=1:n bb=dt{f}; dt{f}=bb(bb(:,4)>=hr(1) & bb(:,4)<hr(2),:); end [gtr,dtr] = bbGt('evalRes',gt,dt,exps(g).overlap); R=struct('stra',stra,'stre',stre,'gtr',{gtr},'dtr',{dtr}); res(g,d)=R; %save(fName,'R'); end end end function [scores thres] = plotExps( res, plotRoc, plotAlg, plotNum, plotName, ... samples, lims, colors, styles ) % Plot all ROC or PR curves. % % INPUTS % res - output of evalAlgs % plotRoc - if true plot ROC else PR curves % plotAlg - if true one plot per alg else one plot per exp % plotNum - only show best plotNum curves (and VJ and HOG) % plotName - filename for saving plots % samples - samples for computing area under the curve % lims - axis limits for ROC plots % colors - algorithm plot colors % styles - algorithm plot linestyles thres = []; % Compute (xs,ys) and score (area under the curve) for every exp/alg [nGt,nDt]=size(res); xs=cell(nGt,nDt); ys=xs; scores=zeros(nGt,nDt); for g=1:nGt for d=1:nDt [xs{g,d},ys{g,d},~, score] = ... bbGt('compRoc',res(g,d).gtr,res(g,d).dtr,plotRoc,samples); if(plotRoc), ys{g,d}=1-ys{g,d}; score=1-score; end %thres = [samples' thres' score']; if(plotRoc), score=exp(mean(log(score))); else score=mean(score); end scores(g,d)=[score]; end end return; % Generate plots if( plotRoc ), fName=[plotName 'Roc']; else fName=[plotName 'Pr']; end stra={res(1,:).stra}; stre={res(:,1).stre}; scores1=round(scores*100); if( plotAlg ), nPlots=nDt; else nPlots=nGt; end; plotNum=min(plotNum,nDt); for p=1:nPlots % prepare xs1,ys1,lgd1,colors1,styles1,fName1 according to plot type if( plotAlg ) xs1=xs(:,p); ys1=ys(:,p); fName1=[fName stra{p}]; lgd1=stre; for g=1:nGt, lgd1{g}=sprintf('%2i%% %s',scores1(g,p),stre{g}); end colors1=uniqueColors(1,max(10,nGt)); styles1=repmat({'-','--'},1,nGt); else xs1=xs(p,:); ys1=ys(p,:); fName1=[fName stre{p}]; lgd1=stra; for d=1:nDt, lgd1{d}=sprintf('%2i%% %s',scores1(p,d),stra{d}); end kp=[find(strcmp(stra,'VJ')) find(strcmp(stra,'HOG')) 1 1]; [~,ord]=sort(scores(p,:)); kp=ord==kp(1)|ord==kp(2); j=find(cumsum(~kp)>=plotNum-2); kp(1:j(1))=1; ord=fliplr(ord(kp)); xs1=xs1(ord); ys1=ys1(ord); lgd1=lgd1(ord); colors1=colors(ord,:); styles1=styles(ord); %f=fopen([fName1 '.txt'],'w'); %for d=1:nDt, fprintf(f,'%s %f\n',stra{d},scores(p,d)); end; fclose(f); end % plot curves and finalize display figure(1); clf; grid on; hold on; n=length(xs1); h=zeros(1,n); for i=1:n, h(i)=plot(xs1{i},ys1{i},'Color',colors1(i,:),... 'LineStyle',styles1{i},'LineWidth',2); end if( plotRoc ) yt=[.05 .1:.1:.5 .64 .8]; ytStr=int2str2(yt*100,2); for i=1:length(yt), ytStr{i}=['.' ytStr{i}]; end set(gca,'XScale','log','YScale','log',... 'YTick',[yt 1],'YTickLabel',[ytStr '1'],... 'XMinorGrid','off','XMinorTic','off',... 'YMinorGrid','off','YMinorTic','off'); xlabel('false positives per image','FontSize',14); ylabel('miss rate','FontSize',14); axis(lims); else x=1; for i=1:n, x=max(x,max(xs1{i})); end, x=min(x-mod(x,.1),1.0); y=.8; for i=1:n, y=min(y,min(ys1{i})); end, y=max(y-mod(y,.1),.01); xlim([0, x]); ylim([y, 1]); set(gca,'xtick',0:.1:1); xlabel('Recall','FontSize',14); ylabel('Precision','FontSize',14); end if(~isempty(lgd1)), legend(h,lgd1,'Location','sw','FontSize',11); end % save figure to disk (uncomment pdfcrop commands to automatically crop) %savefig(fName1,1,'pdf','-r300','-fonts'); %close(1); if(0), setenv('PATH',[getenv('PATH') ':/Library/TeX/texbin/']); end if(0), system(['pdfcrop -margins ''-30 -20 -50 -10 '' ' ... fName1 '.pdf ' fName1 '.pdf']); end end end function plotBbs( res, plotName, pPage, type ) % This function plots sample fp/tp/fn bbs for given algs/exps if(pPage==0), return; end; [nGt,nDt]=size(res); % construct set/vid/frame index for each image [~,setIds,vidIds,skip]=dbInfo; k=length(res(1).gtr); is=zeros(k,3); k=0; for s=1:length(setIds) for v=1:length(vidIds{s}) A=loadVbb(s,v); s1=setIds(s); v1=vidIds{s}(v); for f=skip-1:skip:A.nFrame-1, k=k+1; is(k,:)=[s1 v1 f]; end end end for g=1:nGt for d=1:nDt % augment each bb with set/video/frame index and flatten dtr=res(g,d).dtr; gtr=res(g,d).gtr; for i=1:k dtr{i}(:,7)=is(i,1); dtr{i}(:,8)=is(i,2); dtr{i}(:,9)=is(i,3); gtr{i}(:,6)=is(i,1); gtr{i}(:,7)=is(i,2); gtr{i}(:,8)=is(i,3); dtr{i}=dtr{i}'; gtr{i}=gtr{i}'; end dtr=[dtr{:}]'; dtr=dtr(dtr(:,6)~=-1,:); gtr=[gtr{:}]'; gtr=gtr(gtr(:,5)~=-1,:); % get bb, ind, bbo, and indo according to type if( strcmp(type,'fn') ) keep=gtr(:,5)==0; ord=randperm(sum(keep)); bbCol='r'; bboCol='y'; bbLst='-'; bboLst='--'; bb=gtr(:,1:4); ind=gtr(:,6:8); bbo=dtr(:,1:6); indo=dtr(:,7:9); else switch type case 'dt', bbCol='y'; keep=dtr(:,6)>=0; case 'fp', bbCol='r'; keep=dtr(:,6)==0; case 'tp', bbCol='y'; keep=dtr(:,6)==1; end [~,ord]=sort(dtr(keep,5),'descend'); bboCol='g'; bbLst='--'; bboLst='-'; bb=dtr(:,1:6); ind=dtr(:,7:9); bbo=gtr(:,1:4); indo=gtr(:,6:8); end % prepare and display n=sum(keep); bbo1=cell(1,n); O=ones(1,size(indo,1)); ind=ind(keep,:); bb=bb(keep,:); ind=ind(ord,:); bb=bb(ord,:); for f=1:n, bbo1{f}=bbo(all(indo==ind(O*f,:),2),:); end f=[plotName res(g,d).stre res(g,d).stra '-' type]; plotBbSheet( bb, ind, bbo1,'fName',f,'pPage',pPage,'bbCol',bbCol,... 'bbLst',bbLst,'bboCol',bboCol,'bboLst',bboLst ); end end end function plotBbSheet( bb, ind, bbo, varargin ) % Draw sheet of bbs. % % USAGE % plotBbSheet( R, varargin ) % % INPUTS % bb - [nx4] bbs to display % ind - [nx3] the set/video/image number for each bb % bbo - {nx1} cell of other bbs for each image (optional) % varargin - prm struct or name/value list w following fields: % .fName - ['REQ'] base file to save to % .pPage - [1] num pages % .mRows - [5] num rows / page % .nCols - [9] num cols / page % .scale - [2] size of image region to crop relative to bb % .siz0 - [100 50] target size of each bb % .pad - [4] amount of space between cells % .bbCol - ['g'] bb color % .bbLst - ['-'] bb LineStyle % .bboCol - ['r'] bbo color % .bboLst - ['--'] bbo LineStyle dfs={'fName','REQ', 'pPage',1, 'mRows',5, 'nCols',9, 'scale',1.5, ... 'siz0',[100 50], 'pad',8, 'bbCol','g', 'bbLst','-', ... 'bboCol','r', 'bboLst','--' }; [fName,pPage,mRows,nCols,scale,siz0,pad,bbCol,bbLst, ... bboCol,bboLst] = getPrmDflt(varargin,dfs); n=size(ind,1); indAll=ind; bbAll=bb; bboAll=bbo; for page=1:min(pPage,ceil(n/mRows/nCols)) Is = zeros(siz0(1)*scale,siz0(2)*scale,3,mRows*nCols,'uint8'); bbN=[]; bboN=[]; labels=repmat({''},1,mRows*nCols); images = dir('/home/gbmsu/Desktop/cityscapes/data-val/rgb_images/*.png'); for f=1:mRows*nCols % get fp bb (bb), double size (bb2), and other bbs (bbo) f0=f+(page-1)*mRows*nCols; if(f0>n), break, end [col,row]=ind2sub([nCols mRows],f); ind=indAll(f0,:); bb=bbAll(f0,:); bbo=bboAll{f0}; hr=siz0(1)/bb(4); wr=siz0(2)/bb(3); mr=min(hr,wr); bb2 = round(bbApply('resize',bb,scale*hr/mr,scale*wr/mr)); bbo=bbApply('intersect',bbo,bb2); bbo=bbo(bbApply('area',bbo)>0,:); labels{f}=sprintf('%i/%i/%i',ind(1),ind(2),ind(3)); % normalize bb and bbo for siz0*scale region, then shift bb=bbApply('shift',bb,bb2(1),bb2(2)); bb(:,1:4)=bb(:,1:4)*mr; bbo=bbApply('shift',bbo,bb2(1),bb2(2)); bbo(:,1:4)=bbo(:,1:4)*mr; xdel=-pad*scale-(siz0(2)+pad*2)*scale*(col-1); ydel=-pad*scale-(siz0(1)+pad*2)*scale*(row-1); bb=bbApply('shift',bb,xdel,ydel); bbN=[bbN; bb]; %#ok<AGROW> bbo=bbApply('shift',bbo,xdel,ydel); bboN=[bboN; bbo]; %#ok<AGROW> % load and crop image region sr=seqIo(sprintf('%s/videos/set%02i/V%03i',dbInfo,ind(1),ind(2)),'r'); sr.seek(ind(3)); I=sr.getframe(); sr.close(); %I = imread(['/home/gbmsu/Desktop/cityscapes/data-val/rgb_images/' images(ind(3)).name]); I=bbApply('crop',I,bb2,'replicate'); I=uint8(imResample(double(I{1}),siz0*scale)); Is(:,:,:,f)=I; end % now plot all and save prm=struct('hasChn',1,'padAmt',pad*2*scale,'padEl',0,'mm',mRows,... 'showLines',0,'labels',{labels}); h=figureResized(.9,1); clf; montage2(Is,prm); hold on; bbApply('draw',bbN,bbCol,2,bbLst); bbApply('draw',bboN,bboCol,2,bboLst); savefig([fName int2str2(page-1,2)],h,'png','-r200','-fonts'); close(h); if(0), save([fName int2str2(page-1,2) '.mat'],'Is'); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function A = loadVbb( s, v ) % Load given annotation (caches AS for speed). persistent AS pth sIds vIds; [pth1,sIds1,vIds1]=dbInfo; if(~strcmp(pth,pth1) || ~isequal(sIds,sIds1) || ~isequal(vIds,vIds1)) [pth,sIds,vIds]=dbInfo; AS=cell(length(sIds),1e3); end A=AS{s,v}; %if(~isempty(A)), return; end fName=@(s,v) sprintf('%s/annotations/set%02i/V%03i',pth,s,v); A=vbb('vbbLoad',fName(sIds(s),vIds{s}(v))); AS{s,v}=A; end function [gts, occls, ols] = loadGt( exps, plotName, aspectRatio, bnds ) % Load ground truth of all experiments for all frames. %fprintf('Loading ground truth: %s\n',plotName); nExp=length(exps); gts=cell(1,nExp); occls=cell(1,nExp); ols=cell(1,nExp); [~,setIds,vidIds,skip] = dbInfo; for i=1:nExp gName = [plotName '/gt-' exps(i).name '.mat']; if(exist(gName,'file')), gt=load(gName); gts{i}=gt.gt; continue; end %fprintf('\tExperiment #%d: %s\n', i, exps(i).name); gt=cell(1,100000); k=0; lbls={'person','person?','people','ignore'}; occl=cell(1,100000); ol=cell(1,100000); filterGt = @(lbl,bb,bbv) filterGtFun(lbl,bb,bbv,... exps(i).hr,exps(i).vr,exps(i).ar,bnds,aspectRatio); for s=1:length(setIds) for v=1:length(vidIds{s}) A = loadVbb(s,v); for f=skip-1:skip:A.nFrame-1 [bb, bbv, ~] = vbb('frameAnn',A,f+1,lbls,filterGt); ids=bb(:,5)~=1; oltmp = []; occtmp = logical([]); for bbind=1:size(bb,1) hasocc = ~all(bbv(bbind,:) == 0); occtmp = [occtmp hasocc]; boxtest1 = bb(bbind,:); boxtest2 = bbv(bbind,:); boxtest1(3:4) = boxtest1(1:2) + boxtest1(3:4); boxtest2(3:4) = boxtest2(1:2) + boxtest2(3:4); overlap = boxoverlap(boxtest1,boxtest2); if hasocc oltmp = [oltmp overlap]; else oltmp = [oltmp -1]; end end bb(ids,:)=bbApply('resize',bb(ids,:),1,0,aspectRatio); k=k+1; gt{k}=bb; ol{k} = oltmp'; occl{k} = occtmp'; end end end gt=gt(1:k); gts{i}=gt; %save(gName,'gt','-v6'); ol=ol(1:k); occl=occl(1:k); ols{i}=ol; occls{i}=occl; end function p = filterGtFun( lbl, bb, bbv, hr, vr, ar, bnds, aspectRatio ) p=strcmp(lbl,'person'); h=bb(4); p=p & (h>=hr(1) & h<hr(2)); if(all(bbv==0)), vf=inf; else vf=bbv(3).*bbv(4)./(bb(3)*bb(4)); end p=p & vf>=vr(1) & vf<=vr(2); if(ar~=0), p=p & sign(ar)*abs(bb(3)./bb(4)-aspectRatio)<ar; end p = p & bb(1)>=bnds(1) & (bb(1)+bb(3)<=bnds(3)); p = p & bb(2)>=bnds(2) & (bb(2)+bb(4)<=bnds(4)); end end function dts = loadDt( algs, plotName, aspectRatio, aDirs ) % Load detections of all algorithm for all frames. nAlg=length(algs); dts=cell(1,nAlg); [~,setIds,vidIds,skip] = dbInfo; for i=1:nAlg %fprintf('\tAlgorithm #%d: %s\n', i, algs{i}); dt=cell(1,100000); k=0; aDir=aDirs{i}; %[dbInfo '/res/' algs(i).name]; resize=1; for s=1:length(setIds), s1=setIds(s); for v=1:length(vidIds{s}), v1=vidIds{s}(v); A=loadVbb(s,v); frames=skip-1:skip:A.nFrame-1; vName=sprintf('%s/set%02d/V%03d',aDir,s1,v1); if(~exist([vName '.txt'],'file')) % consolidate bbs for video into single text file bbs=cell(length(frames),1); for f=1:length(frames) fName = sprintf('%s/I%05d.txt',vName,frames(f)); if(~exist(fName,'file')) error(['file not found:' fName]); %bb=zeros(0,5); else bb=load(fName,'-ascii'); if(isempty(bb)), bb=zeros(0,5); end end if(size(bb,2)~=5), error('incorrect dimensions'); end bbs{f}=[ones(size(bb,1),1)*(frames(f)+1) bb]; end %for f=frames, delete(sprintf('%s/I%05d.txt',vName,f)); end bbs=cell2mat(bbs); dlmwrite([vName '.txt'],bbs); %rmdir(vName,'s'); end bbs=load([vName '.txt'],'-ascii'); %disp([num2str(s1) ' ' num2str(v1) ' length is ' num2str(length(bbs))]); %if length(bbs) > 0 for f=frames if (length(bbs) > 0) bb=bbs(bbs(:,1)==f+1,2:6); %bb = bb((bb(:,5) > .9), :); bb=bbApply('resize',bb,resize,0,aspectRatio); else bb=zeros(1,5); end k=k+1; dt{k}=bb; %disp(size(bb)); end %end end end dt=dt(1:k); dts{i}=dt; %save(aName,'dt','-v6'); end end
github
garrickbrazil/SDS-RCNN-master
fast_rcnn_generate_sliding_windows.m
.m
SDS-RCNN-master/functions/utils/fast_rcnn_generate_sliding_windows.m
1,729
utf_8
a788da565d8e7d1810407473c3135094
function roidb = fast_rcnn_generate_sliding_windows(conf, imdb, roidb, roipool_in_size) % [pred_boxes, scores] = fast_rcnn_conv_feat_detect(conf, im, conv_feat, boxes, max_rois_num_in_gpu, net_idx) % -------------------------------------------------------- % Fast R-CNN % Reimplementation based on Python Fast R-CNN (https://github.com/rbgirshick/fast-rcnn) % Copyright (c) 2015, Shaoqing Ren % Licensed under The MIT License [see LICENSE for details] % -------------------------------------------------------- regions.images = imdb.image_ids; im_sizes = imdb.sizes; regions.boxes = cellfun(@(x) generate_sliding_windows_one_image(conf, x, roipool_in_size), num2cell(im_sizes, 2), 'UniformOutput', false); roidb = roidb_from_proposal(imdb, roidb, regions); end function boxes = generate_sliding_windows_one_image(conf, im_size, roipool_in_size) im_scale = prep_im_for_blob_size(im_size, conf.scales, conf.max_size); im_size = round(im_size * im_scale); x1 = 1:conf.feat_stride:im_size(2); y1 = 1:conf.feat_stride:im_size(1); [x1, y1] = meshgrid(x1, y1); x1 = x1(:); y1 = y1(:); x2 = x1 + roipool_in_size * conf.feat_stride - 1; y2 = y1 + roipool_in_size * conf.feat_stride - 1; boxes = [x1, y1, x2, y2]; boxes = filter_boxes(im_size, boxes); boxes = bsxfun(@times, boxes-1, 1/im_scale) + 1; end function boxes = filter_boxes(im_size, boxes) valid_ind = boxes(:, 1) >= 1 & boxes(:, 1) <= im_size(2) & ... boxes(:, 2) >= 1 & boxes(:, 2) <= im_size(1) & ... boxes(:, 3) >= 1 & boxes(:, 3) <= im_size(2) & ... boxes(:, 4) >= 1 & boxes(:, 4) <= im_size(1); boxes = boxes(valid_ind, :); end
github
garrickbrazil/SDS-RCNN-master
proposal_generate_anchors.m
.m
SDS-RCNN-master/functions/rpn/proposal_generate_anchors.m
1,760
utf_8
a7edd291c6d30be7bd615061b1d5e8be
function anchors = proposal_generate_anchors(conf) % anchors = proposal_generate_anchors(conf) % -------------------------------------------------------- % RPN_BF % Copyright (c) 2015, Liliang Zhang % Licensed under The MIT License [see LICENSE for details] % -------------------------------------------------------- anchor_cache_file = [conf.output_dir '/anchors']; try ld = load(anchor_cache_file); anchors = ld.anchors; catch base_anchor = [1, 1, conf.base_anchor_size, conf.base_anchor_size]; ratio_anchors = ratio_jitter(base_anchor, 1/conf.anchor_ratios); anchors = cellfun(@(x) scale_jitter(x, conf.anchor_scales), num2cell(ratio_anchors, 2), 'UniformOutput', false); anchors = cat(1, anchors{:}); save(anchor_cache_file, 'anchors'); end end function anchors = ratio_jitter(anchor, ratios) ratios = ratios(:); w = anchor(3) - anchor(1) + 1; h = anchor(4) - anchor(2) + 1; x_ctr = anchor(1) + (w - 1) / 2; y_ctr = anchor(2) + (h - 1) / 2; size = w * h; size_ratios = size ./ ratios; ws = round(sqrt(size_ratios)); hs = round(ws .* ratios); anchors = [x_ctr - (ws - 1) / 2, y_ctr - (hs - 1) / 2, x_ctr + (ws - 1) / 2, y_ctr + (hs - 1) / 2]; end function anchors = scale_jitter(anchor, scales) scales = scales(:); w = anchor(3) - anchor(1) + 1; h = anchor(4) - anchor(2) + 1; x_ctr = anchor(1) + (w - 1) / 2; y_ctr = anchor(2) + (h - 1) / 2; ws = w * scales; hs = h * scales; anchors = [x_ctr - (ws - 1) / 2, y_ctr - (hs - 1) / 2, x_ctr + (ws - 1) / 2, y_ctr + (hs - 1) / 2]; end
github
garrickbrazil/SDS-RCNN-master
proposal_compute_targets.m
.m
SDS-RCNN-master/functions/rpn/proposal_compute_targets.m
4,252
utf_8
cd447531a971eac63c9f754dbbd27dd4
function [bbox_targets, overlaps, targets ] = proposal_compute_targets(conf, gt_rois, gt_ignores, gt_labels, ex_rois, image_roidb, im_scale) % output: bbox_targets % positive: [class_label, regression_label] % ingore: [0, zero(regression_label)] % negative: [-1, zero(regression_label)] gt_rois_full = gt_rois; gt_rois = gt_rois(gt_ignores~=1, :); if isempty(gt_rois_full) overlaps = zeros(size(ex_rois, 1), 1, 'double'); overlaps = sparse(overlaps); targets = uint8(zeros(size(ex_rois, 1), 1)); else ex_gt_full_overlaps = boxoverlap(ex_rois, gt_rois_full); [overlaps, targets] = max(ex_gt_full_overlaps, [], 2); overlaps = sparse(double(overlaps)); end if isempty(gt_rois) bbox_targets = zeros(size(ex_rois, 1), 5, 'double'); bbox_targets(:, 1) = -1; bbox_targets = sparse(bbox_targets); return; end % ensure gt_labels is in single gt_labels = single(gt_labels); assert(all(gt_labels > 0)); ex_gt_overlaps = boxoverlap(ex_rois, gt_rois); % for fg ex_gt_full_overlaps = boxoverlap(ex_rois, gt_rois_full); % for bg % drop anchors which run out off image boundaries, if necessary contained_in_image = is_contain_in_image(ex_rois, round(image_roidb.im_size * im_scale)); % for each ex_rois(anchors), get its max overlap with all gt_rois [ex_max_overlaps, ex_assignment] = max(ex_gt_overlaps, [], 2); % for fg [ex_full_max_overlaps, ex_full_assignment] = max(ex_gt_full_overlaps, [], 2); % for bg % for each gt_rois, get its max overlap with all ex_rois(anchors), the % ex_rois(anchors) are recorded in gt_assignment % gt_assignment will be assigned as positive % (assign a rois for each gt at least) [gt_max_overlaps, gt_assignment] = max(ex_gt_overlaps, [], 1); % ex_rois(anchors) with gt_max_overlaps maybe more than one, find them % as (gt_best_matches) [gt_best_matches, gt_ind] = find(bsxfun(@eq, ex_gt_overlaps, [gt_max_overlaps])); % Indices of examples for which we try to make predictions % both (ex_max_overlaps >= conf.fg_thresh) and gt_best_matches are % assigned as positive examples fg_inds = unique([find(ex_max_overlaps >= conf.fg_thresh); gt_best_matches]); % Indices of examples for which we try to used as negtive samples % the logic for assigning labels to anchors can be satisfied by both the positive label and the negative label % When this happens, the code gives the positive label precedence to % pursue high recall bg_inds = setdiff(find(ex_full_max_overlaps < conf.bg_thresh_hi & ex_full_max_overlaps >= conf.bg_thresh_lo), fg_inds); contained_in_image_ind = find(contained_in_image); fg_inds = intersect(fg_inds, contained_in_image_ind); % Find which gt ROI each ex ROI has max overlap with: % this will be the ex ROI's gt target target_rois = gt_rois(ex_assignment(fg_inds), :); src_rois = ex_rois(fg_inds, :); % we predict regression_label which is generated by an un-linear % transformation from src_rois and target_rois [regression_label] = fast_rcnn_bbox_transform(src_rois, target_rois); bbox_targets = zeros(size(ex_rois, 1), 5, 'double'); bbox_targets(fg_inds, :) = [gt_labels(ex_assignment(fg_inds)), regression_label]; bbox_targets(bg_inds, 1) = -1; if 0 % debug %%%%%%%%%%%%%% im = imread(image_roidb.image_path); [im, im_scale] = prep_im_for_blob(im, conf.image_means, conf.scales, conf.max_size); imshow(mat2gray(im)); hold on; cellfun(@(x) rectangle('Position', RectLTRB2LTWH(x), 'EdgeColor', 'r'), ... num2cell(src_rois, 2)); cellfun(@(x) rectangle('Position', RectLTRB2LTWH(x), 'EdgeColor', 'g'), ... num2cell(target_rois, 2)); hold off; %%%%%%%%%%%%%% end bbox_targets = sparse(bbox_targets); end function contained = is_contain_in_image(boxes, im_size) contained = boxes >= 1 & bsxfun(@le, boxes, [im_size(2), im_size(1), im_size(2), im_size(1)]); contained = all(contained, 2); end
github
garrickbrazil/SDS-RCNN-master
proposal_locate_anchors.m
.m
SDS-RCNN-master/functions/rpn/proposal_locate_anchors.m
2,065
utf_8
92ae934220e4d73044787702a7ee66b5
function [anchors, im_scales] = proposal_locate_anchors(conf, im_size, target_scale, feature_map_size) % [anchors, im_scales] = proposal_locate_anchors(conf, im_size, target_scale, feature_map_size) % -------------------------------------------------------- % Faster R-CNN % Copyright (c) 2015, Shaoqing Ren % Licensed under The MIT License [see LICENSE for details] % -------------------------------------------------------- % generate anchors for each scale % only for fcn if ~exist('feature_map_size', 'var') feature_map_size = []; end func = @proposal_locate_anchors_single_scale; if exist('target_scale', 'var') [anchors, im_scales] = func(im_size, conf, target_scale, feature_map_size); else [anchors, im_scales] = arrayfun(@(x) func(im_size, conf, x, feature_map_size), ... conf.scales, 'UniformOutput', false); end end function [anchors, im_scale] = proposal_locate_anchors_single_scale(im_size, conf, target_scale, feature_map_size) if isempty(feature_map_size) im_scale = prep_im_for_blob_size(im_size, target_scale, conf.max_size); img_size = round(im_size * im_scale); output_size = [calc_output_size(img_size(1), conf), calc_output_size(img_size(2), conf)]; else im_scale = prep_im_for_blob_size(im_size, target_scale, conf.max_size); output_size = feature_map_size; end shift_x = [0:(output_size(2)-1)] * conf.feat_stride; shift_y = [0:(output_size(1)-1)] * conf.feat_stride; [shift_x, shift_y] = meshgrid(shift_x, shift_y); % concat anchors as [channel, height, width], where channel is the fastest dimension. anchors = reshape(bsxfun(@plus, permute(conf.anchors, [1, 3, 2]), ... permute([shift_x(:), shift_y(:), shift_x(:), shift_y(:)], [3, 1, 2])), [], 4); % equals to % anchors = arrayfun(@(x, y) single(bsxfun(@plus, conf.anchors, [x, y, x, y])), shift_x, shift_y, 'UniformOutput', false); % anchors = reshape(anchors, [], 1); % anchors = cat(1, anchors{:}); end
github
garrickbrazil/SDS-RCNN-master
proposal_prepare_image_roidb.m
.m
SDS-RCNN-master/functions/rpn/proposal_prepare_image_roidb.m
3,295
utf_8
3dc89509d3e21ef9b4675e9c54593241
function [image_roidb, bbox_means, bbox_stds] = proposal_prepare_image_roidb_caltech(conf, imdbs, roidbs) % -------------------------------------------------------- % RPN_BF % Copyright (c) 2016, Liliang Zhang % Licensed under The MIT License [see LICENSE for details] % -------------------------------------------------------- if ~iscell(imdbs) imdbs = {imdbs}; roidbs = {roidbs}; end imdbs = imdbs(:); roidbs = roidbs(:); image_roidb = ... cellfun(@(x, y) ... // @(imdbs, roidbs) arrayfun(@(z) ... //@([1:length(x.image_ids)]) struct('image_path', x.image_at(z), 'image_id', x.image_ids{z}, 'im_size', x.sizes(z, :), 'imdb_name', x.name, 'num_classes', x.num_classes, ... 'boxes', y.rois(z).boxes(y.rois(z).gt, :), 'gt_ignores', y.rois(z).ignores,'class', y.rois(z).class(y.rois(z).gt, :), 'image', [], 'bbox_targets', []), ... [1:length(x.image_ids)]', 'UniformOutput', true),... imdbs, roidbs, 'UniformOutput', false); image_roidb = cat(1, image_roidb{:}); % enhance roidb to contain bounding-box regression targets [image_roidb, bbox_means, bbox_stds] = append_bbox_regression_targets(conf, image_roidb); end function [image_roidb, means, stds] = append_bbox_regression_targets(conf, image_roidb) num_images = length(image_roidb); image_roidb_cell = num2cell(image_roidb, 2); % Compute values needed for means and stds % var(x) = E(x^2) - E(x)^2 class_counts = zeros(1, 1) + eps; sums = zeros(1, 4); squared_sums = zeros(1, 4); for i = 1:num_images % for fcn, anchors are concated as [channel, height, width], where channel is the fastest dimension. [anchors, im_scales] = proposal_locate_anchors(conf, image_roidb_cell{i}.im_size); gt_ignores = image_roidb_cell{i}.gt_ignores; % add by zhangll, whether the gt_rois empty? if isempty(image_roidb_cell{i}.boxes) [bbox_targets, ~] = ... proposal_compute_targets(conf, image_roidb_cell{i}.boxes, gt_ignores, image_roidb_cell{i}.class, anchors{1}, image_roidb_cell{i}, im_scales{1}); else [bbox_targets, ~] = ... proposal_compute_targets(conf, scale_rois(image_roidb_cell{i}.boxes, image_roidb_cell{i}.im_size, im_scales{1}), gt_ignores, image_roidb_cell{i}.class, anchors{1}, image_roidb_cell{i}, im_scales{1}); end targets = bbox_targets; gt_inds = find(targets(:, 1) > 0); image_roidb(i).has_bbox_target = ~isempty(gt_inds); if image_roidb(i).has_bbox_target class_counts = class_counts + length(gt_inds); sums = sums + sum(targets(gt_inds, 2:end), 1); squared_sums = squared_sums + sum(targets(gt_inds, 2:end).^2, 1); end end means = bsxfun(@rdivide, sums, class_counts); stds = (bsxfun(@minus, bsxfun(@rdivide, squared_sums, class_counts), means.^2)).^0.5; end function scaled_rois = scale_rois(rois, im_size, im_scale) im_size_scaled = round(im_size * im_scale); scale = (im_size_scaled - 1) ./ (im_size - 1); scaled_rois = bsxfun(@times, rois-1, [scale(2), scale(1), scale(2), scale(1)]) + 1; end
github
garrickbrazil/SDS-RCNN-master
proposal_im_detect.m
.m
SDS-RCNN-master/functions/rpn/proposal_im_detect.m
4,354
utf_8
bddedd391689c4b62b1982733ab32434
function [pred_boxes, scores, feat_scores_bg, feat_scores_fg] = proposal_im_detect(conf, caffe_net, im) % [pred_boxes, scores, feat_scores_bg, feat_scores_fg] = proposal_im_detect(conf, caffe_net, im) % -------------------------------------------------------- % RPN_BF % Copyright (c) 2016, Liliang Zhang % Licensed under The MIT License [see LICENSE for details] % -------------------------------------------------------- im = single(im); [im_blob, im_scales] = prep_im_for_blob(im, conf.image_means, conf.scales, conf.max_size); im_size = size(im); scaled_im_size = round(im_size * im_scales); % permute data into caffe c++ memory, thus [num, channels, height, width] im_blob = im_blob(:, :, [3, 2, 1], :); % from rgb to brg im_blob = permute(im_blob, [2, 1, 3, 4]); im_blob = single(im_blob); net_inputs = {im_blob}; % Reshape net's input blobs caffe_net = reshape_input_data(caffe_net, net_inputs); caffe_net.forward(net_inputs); % Apply bounding-box regression deltas box_deltas = caffe_net.blobs('proposal_bbox_pred').get_data(); featuremap_size = [size(box_deltas, 2), size(box_deltas, 1)]; % permute from [width, height, channel] to [channel, height, width], where channel is the fastest dimension box_deltas = permute(box_deltas, [3, 2, 1]); box_deltas = reshape(box_deltas, 4, [])'; anchors = proposal_locate_anchors(conf, size(im), conf.scales, featuremap_size); pred_boxes = fast_rcnn_bbox_transform_inv(anchors, box_deltas); % scale back pred_boxes = bsxfun(@times, pred_boxes - 1, ... ([im_size(2), im_size(1), im_size(2), im_size(1)] - 1) ./ ([scaled_im_size(2), scaled_im_size(1), scaled_im_size(2), scaled_im_size(1)] - 1)) + 1; pred_boxes = clip_boxes(pred_boxes, size(im, 2), size(im, 1)); % use softmax estimated probabilities scores = caffe_net.blobs('proposal_cls_prob').get_data(); scores = scores(:, :, end); scores = reshape(scores, size(caffe_net.blobs('proposal_bbox_pred').get_data(), 1), size(caffe_net.blobs('proposal_bbox_pred').get_data(), 2), []); % store features feat_scores = caffe_net.blobs('proposal_cls_score_reshape').get_data(); feat_scores_bg = feat_scores(:, :, 1); feat_scores_fg = feat_scores(:, :, 2); feat_scores_fg = reshape(feat_scores_fg, size(caffe_net.blobs('proposal_bbox_pred').get_data(), 1), size(caffe_net.blobs('proposal_bbox_pred').get_data(), 2), []); feat_scores_fg = permute(feat_scores_fg, [3, 2, 1]); feat_scores_fg = feat_scores_fg(:); feat_scores_bg = reshape(feat_scores_bg, size(caffe_net.blobs('proposal_bbox_pred').get_data(), 1), size(caffe_net.blobs('proposal_bbox_pred').get_data(), 2), []); feat_scores_bg = permute(feat_scores_bg, [3, 2, 1]); feat_scores_bg = feat_scores_bg(:); % permute from [width, height, channel] to [channel, height, width], where channel is the % fastest dimension scores = permute(scores, [3, 2, 1]); scores = scores(:); % drop too small boxes [pred_boxes, scores, valid_ind] = filter_boxes(conf.test_min_box_size, conf.test_min_box_height, pred_boxes, scores); % sort [scores, scores_ind] = sort(scores, 'descend'); pred_boxes = pred_boxes(scores_ind, :); feat_scores_fg = feat_scores_fg(valid_ind, :); feat_scores_fg = feat_scores_fg(scores_ind, :); feat_scores_bg = feat_scores_bg(valid_ind, :); feat_scores_bg = feat_scores_bg(scores_ind, :); end function [boxes, scores, valid_ind] = filter_boxes(min_box_size, min_box_height, boxes, scores) widths = boxes(:, 3) - boxes(:, 1) + 1; heights = boxes(:, 4) - boxes(:, 2) + 1; valid_ind = widths >= min_box_size & heights >= min_box_size & heights >= min_box_height; boxes = boxes(valid_ind, :); scores = scores(valid_ind, :); end function boxes = clip_boxes(boxes, im_width, im_height) % x1 >= 1 & <= im_width boxes(:, 1:4:end) = max(min(boxes(:, 1:4:end), im_width), 1); % y1 >= 1 & <= im_height boxes(:, 2:4:end) = max(min(boxes(:, 2:4:end), im_height), 1); % x2 >= 1 & <= im_width boxes(:, 3:4:end) = max(min(boxes(:, 3:4:end), im_width), 1); % y2 >= 1 & <= im_height boxes(:, 4:4:end) = max(min(boxes(:, 4:4:end), im_height), 1); end
github
garrickbrazil/SDS-RCNN-master
proposal_generate_minibatch.m
.m
SDS-RCNN-master/functions/rpn/proposal_generate_minibatch.m
8,106
utf_8
60b7b8f202ab7fb43a0f00bf441f87cf
function [input_blobs, random_scale_inds, im_rgb] = proposal_generate_minibatch(conf, image_roidb) % [input_blobs, random_scale_inds, im_rgb] = proposal_generate_minibatch(conf, image_roidb) % -------------------------------------------------------- % RPN_BF % Copyright (c) 2016, Liliang Zhang % Licensed under The MIT License [see LICENSE for details] % -------------------------------------------------------- num_images = length(image_roidb); assert(num_images == 1, 'only support num_images == 1'); % Sample random scales to use for each image in this batch random_scale_inds = randi(length(conf.scales), num_images, 1); rois_per_image = conf.batch_size / num_images; fg_rois_per_image = round(conf.batch_size * conf.fg_fraction); % Get the input image blob [im_blob, im_scales, im_rgb] = get_image_blob(conf, image_roidb, random_scale_inds); rois = image_roidb(1); % weak segmentation if conf.has_weak ped_mask_weights = single(ones(size(im_blob,1), size(im_blob,2))); ped_mask = uint8(zeros(size(im_blob,1), size(im_blob,2))); for gtind=1:size(rois.boxes,1) ignore = rois.gt_ignores(gtind); gt = rois.boxes(gtind,:); x1 = min(max(round(gt(1)*im_scales(1)),1),size(ped_mask,2)); y1 = min(max(round(gt(2)*im_scales(1)),1),size(ped_mask,1)); x2 = min(max(round(gt(3)*im_scales(1)),1),size(ped_mask,2)); y2 = min(max(round(gt(4)*im_scales(1)),1),size(ped_mask,1)); w = x2 - x1; h = y2 - y1; % assign fg label ped_mask(y1:y2,x1:x2) = 1; % cost sensitive if conf.cost_sensitive, ped_mask_weights(y1:y2,x1:x2) = single(1 + h/(conf.cost_mean_height*im_scales(1))); end end ped_mask = imresize(single(ped_mask), 1/conf.feat_stride, 'nearest'); ped_mask_weights = imresize(single(ped_mask_weights), 1/conf.feat_stride, 'nearest'); ped_mask = permute(ped_mask, [2, 1, 3, 4]); ped_mask_weights = permute(ped_mask_weights, [2, 1, 3, 4]); end % get fcn output size img_size = round(image_roidb(1).im_size * im_scales(1)); output_size = [calc_output_size(img_size(1), conf), calc_output_size(img_size(2), conf)]; % init blobs labels_blob = zeros(output_size(2), output_size(1), size(conf.anchors, 1), length(image_roidb)); label_weights_blob = zeros(output_size(2), output_size(1), size(conf.anchors, 1), length(image_roidb)); bbox_targets_blob = zeros(output_size(2), output_size(1), size(conf.anchors, 1)*4, length(image_roidb)); bbox_loss_blob = zeros(output_size(2), output_size(1), size(conf.anchors, 1)*4, length(image_roidb)); [labels, label_weights, bbox_targets, bbox_loss] = ... sample_rois(conf, image_roidb(1), fg_rois_per_image, rois_per_image, im_scales(1)); assert(img_size(1) == size(im_blob, 1) && img_size(2) == size(im_blob, 2)); cur_labels_blob = reshape(labels, size(conf.anchors, 1), output_size(1), output_size(2)); cur_label_weights_blob = reshape(label_weights, size(conf.anchors, 1), output_size(1), output_size(2)); cur_bbox_targets_blob = reshape(bbox_targets', size(conf.anchors, 1)*4, output_size(1), output_size(2)); cur_bbox_loss_blob = reshape(bbox_loss', size(conf.anchors, 1)*4, output_size(1), output_size(2)); % permute from [channel, height, width], where channel is the % fastest dimension to [width, height, channel] cur_labels_blob = permute(cur_labels_blob, [3, 2, 1]); cur_label_weights_blob = permute(cur_label_weights_blob, [3, 2, 1]); cur_bbox_targets_blob = permute(cur_bbox_targets_blob, [3, 2, 1]); cur_bbox_loss_blob = permute(cur_bbox_loss_blob, [3, 2, 1]); labels_blob(:, :, :, 1) = cur_labels_blob; label_weights_blob(:, :, :, 1) = cur_label_weights_blob; bbox_targets_blob(:, :, :, 1) = cur_bbox_targets_blob; bbox_loss_blob(:, :, :, 1) = cur_bbox_loss_blob; % permute data into caffe c++ memory, thus [num, channels, height, width] im_blob = im_blob(:, :, [3, 2, 1], :); % from rgb to brg im_blob = single(permute(im_blob, [2, 1, 3, 4])); labels_blob = single(labels_blob); labels_blob(labels_blob > 0) = 1; label_weights_blob = single(label_weights_blob); bbox_targets_blob = single(bbox_targets_blob); bbox_loss_blob = single(bbox_loss_blob); assert(~isempty(im_blob)); assert(~isempty(labels_blob)); assert(~isempty(label_weights_blob)); assert(~isempty(bbox_targets_blob)); assert(~isempty(bbox_loss_blob)); input_blobs = {im_blob, labels_blob, label_weights_blob, bbox_targets_blob, bbox_loss_blob}; if conf.has_weak input_blobs{length(input_blobs) + 1} = ped_mask; input_blobs{length(input_blobs) + 1} = ped_mask_weights; end end %% Build an input blob from the images in the roidb at the specified scales. function [im_blob, im_scales, im_] = get_image_blob(conf, images, random_scale_inds) num_images = length(images); processed_ims = cell(num_images, 1); im_scales = nan(num_images, 1); for i = 1:num_images im = imread(images(i).image_path); im_ = im; target_size = conf.scales(random_scale_inds(i)); [im, im_scale] = prep_im_for_blob(im, conf.image_means, target_size, conf.max_size); im_scales(i) = im_scale; processed_ims{i} = im; end im_blob = im_list_to_blob(processed_ims); end %% Generate a random sample of ROIs comprising foreground and background examples. function [labels, label_weights, bbox_targets, bbox_loss_weights] = sample_rois(conf, image_roidb, fg_rois_per_image, rois_per_image, im_scale) [anchors, ~] = proposal_locate_anchors(conf, image_roidb.im_size); gt_ignores = image_roidb.gt_ignores; % add by zhangll, whether the gt_rois empty? if isempty(image_roidb.boxes) [bbox_targets, ~] = ... proposal_compute_targets(conf, image_roidb.boxes, gt_ignores, image_roidb.class, anchors{1}, image_roidb, im_scale); else [bbox_targets, ~] = ... proposal_compute_targets(conf, scale_rois(image_roidb.boxes, image_roidb.im_size, im_scale), gt_ignores, image_roidb.class, anchors{1}, image_roidb, im_scale); end gt_inds = find(bbox_targets(:, 1) > 0); if ~isempty(gt_inds) bbox_targets(gt_inds, 2:end) = ... bsxfun(@minus, bbox_targets(gt_inds, 2:end), conf.bbox_means); bbox_targets(gt_inds, 2:end) = ... bsxfun(@rdivide, bbox_targets(gt_inds, 2:end), conf.bbox_stds); end ex_asign_labels = bbox_targets(:, 1); % Select foreground ROIs as those with >= FG_THRESH overlap fg_inds = find(bbox_targets(:, 1) > 0); % Select background ROIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = find(bbox_targets(:, 1) < 0); % select foreground fg_num = min(fg_rois_per_image, length(fg_inds)); fg_inds = fg_inds(randperm(length(fg_inds), fg_num)); bg_num = min(rois_per_image - fg_rois_per_image, length(bg_inds)); bg_inds = bg_inds(randperm(length(bg_inds), bg_num)); labels = zeros(size(bbox_targets, 1), 1); % set foreground labels labels(fg_inds) = ex_asign_labels(fg_inds); assert(all(ex_asign_labels(fg_inds) > 0)); bg_weight = 1; label_weights = zeros(size(bbox_targets, 1), 1); label_weights(fg_inds) = fg_rois_per_image/fg_num; label_weights(bg_inds) = bg_weight; bbox_targets = single(full(bbox_targets(:, 2:end))); bbox_loss_weights = bbox_targets * 0; bbox_loss_weights(fg_inds, :) = fg_rois_per_image / fg_num; end function scaled_rois = scale_rois(rois, im_size, im_scale) im_size_scaled = round(im_size * im_scale); scale = (im_size_scaled - 1) ./ (im_size - 1); scaled_rois = bsxfun(@times, rois-1, [scale(2), scale(1), scale(2), scale(1)]) + 1; end
github
garrickbrazil/SDS-RCNN-master
classification_demo.m
.m
SDS-RCNN-master/external/caffe/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
garrickbrazil/SDS-RCNN-master
vbb.m
.m
SDS-RCNN-master/external/caltech_toolbox/vbb.m
26,999
utf_8
49eea1941e375a3293a6f9aa9ee21726
function varargout = vbb( action, varargin ) % Data structure for video bounding box (vbb) annotations. % % A video bounding box (vbb) annotation stores bounding boxes (bbs) for % objects of interest. The primary difference from a static annotation is % that each object can exist for multiple frames, ie, a vbb annotation not % only provides the locations of objects but also tracking information. A % vbb annotation A is simply a Matlab struct. It contains data per object % (such as a string label) and data per object per frame (such as a bb). % Each object is identified with a unique integer id. % % Data per object (indexed by integer id) includes the following fields: % init - 0/1 value indicating whether object w given id exists % lbl - a string label describing object type (eg: 'pedestrian') % str - the first frame in which object appears (1 indexed) % end - the last frame in which object appears (1 indexed) % hide - 0/1 value indicating object is 'hidden' (used during labeling) % % Data per object per frame (indexed by frame and id) includes: % pos - [l t w h]: bb indicating predicted object extent % posv - [l t w h]: bb indicating visible region (may be [0 0 0 0]) % occl - 0/1 value indicating if bb is occluded % lock - 0/1 value indicating bb is 'locked' (used during labeling) % % vbb contains a number of utility functions for working with an % annotation A, making it generally unnecessary to access the fields of A % directly. The format for accessing the various utility functions is: % outputs = vbb( 'action', inputs ); % Below is a list of utility functions, broken up into 3 categories. % Occasionally more help is available via a call to help "vbb>action". % % %%% init and save/load annotation to/from disk % Create new annotation for given length video % A = vbb( 'init', nFrame, maxObj ) % Generate annotation filename (add .vbb and optionally time stamp) % [fName,ext] = vbb( 'vbbName', fName, [timeStmp], [ext] ) % Save annotation A to fName with optional time stamp (F by default) % vbb('vbbSave', A, fName, [timeStmp] ) % Load annotation from disk: % A = vbb('vbbLoad', fName ) % Save annotation A to fName (in .txt format): % vbb('vbbSaveTxt', A, fName, timeStmp ) % Load annotation from disk (in .txt format): % A = vbb('vbbLoadTxt', fName ) % Export single frame annotations to tarDir/*.txt % vbb( 'vbbToFiles', A, tarDir, [fs], [skip], [f0], [f1] ) % Combine single frame annotations from srcDir/*.txt % [A,fs] = vbb( 'vbbFrFiles', srcDir, [fs] ) % % %%% inspect / alter annotation % Get number of unique objects in annotation % n = vbb( 'numObj', A ) % Get an unused object id (for adding a new object) % [A,id] = vbb( 'newId', A ) % Create a new, empty object (not added to A) % [A,obj] = vbb( 'emptyObj', A, [frame] ) % Get struct with all data from frames s-e for given object % obj = vbb( 'get', A, id, [s], [e] ) % Add object to annotation % A = vbb( 'add', A, obj ) % Remove object from annotation % A = vbb( 'del', A, id ) % Crop or extend object temporally % A = vbb( 'setRng', A, id, s, e ) % Get object information, see above for valid properties % v = vbb( 'getVal', A, id, name, [frmS], [frmE] ) % Set object information, see above for valid properties % A = vbb( 'setVal', A, id, name, v, [frmS], [frmE] ) % % %%% other functions % Visulatization: draw annotation on top of current image % hs = vbb( 'drawToFrame', A, frame ) % Uses seqPlayer to display seq file with overlayed annotations. % vbb( 'vbbPlayer', A, srcName ) % Visulatization: create seq file w annotation superimposed. % vbb( 'drawToVideo', A, srcName, tarName ) % Shift entire annotation by del frames. (useful for synchronizing w video) % A = vbb( 'timeShift', A, del ) % Ensure posv is fully contained in pos % A = vbb( 'swapPosv', A, validate, swap, hide ) % Stats: get stats about annotation % [stats,stats1,logDur] = vbb( 'getStats', A ); % Returns the ground truth bbs for a single frame. % [gt,posv,lbls] = vbb( 'frameAnn', A, frame, lbls, test ) % % USAGE % varargout = vbb( action, varargin ); % % INPUTS % action - string specifying action % varargin - depends on action, see above % % OUTPUTS % varargout - depends on action, see above % % EXAMPLE % % See also BBAPPLY % % Caltech Pedestrian Dataset Version 3.2.1 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %#ok<*DEFNU> varargout = cell(1,nargout); [varargout{:}] = eval([action '(varargin{:});']); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % init / save / load function A = init( nFrame, maxObj ) if( nargin<2 || isempty(maxObj) ), maxObj=16; end A.nFrame = nFrame; A.objLists = cell(1,nFrame); A.maxObj = maxObj; A.objInit = zeros(1,A.maxObj); A.objLbl = cell(1,A.maxObj); A.objStr = -ones(1,A.maxObj); A.objEnd = -ones(1,A.maxObj); A.objHide = zeros(1,A.maxObj); A.altered = false; A.log = 0; A.logLen = 0; end function [fName,ext] = vbbName( fName, timeStmp, ext ) if(nargin<2), timeStmp=false; end; if(nargin<3), ext=''; end [d,f,ext1]=fileparts(fName); if(isempty(ext)), ext=ext1; end if(isempty(ext)), ext='.vbb'; end if(timeStmp), f=[f '-' regexprep(datestr(now), ':| ', '-')]; end if(isempty(d)), d='.'; end; fName=[d '/' f ext]; end function vbbSave( A, fName, timeStmp ) if(nargin<3), timeStmp=false; end; vers=1.4; %#ok<NASGU> [fName,ext]=vbbName(fName,timeStmp); if(strcmp(ext,'.txt')), vbbSaveTxt(A,fName,timeStmp); return; end A=cleanup(A); save(fName,'A','vers','-v6'); %#ok<NASGU> end function A = vbbLoad( fName ) [fName,ext]=vbbName(fName); vers=1.4; if(strcmp(ext,'.txt')), A=vbbLoadTxt(fName); return; end L = load( '-mat', fName ); if( ~isfield(L,'A') || ~isfield(L,'vers') ); error('Not a valid video annoation file.'); end; A = L.A; % .06 -> 1.0 conversion (add log/logLen) if( L.vers==.06 ) L.vers=1.0; A.log=0; A.logLen=0; end % 1.0 -> 1.1 conversion (add trnc field) if( L.vers==1.0 ) L.vers=1.1; for f=1:A.nFrame if(isempty(A.objLists{f})); A.objLists{f}=[]; end for j=1:length(A.objLists{f}); A.objLists{f}(j).trnc=0; end end end % 1.1 -> 1.2 conversion (add hide/posv fields) if( L.vers==1.1 ) L.vers=1.2; for f=1:A.nFrame if(isempty(A.objLists{f})); A.objLists{f}=[]; end for j=1:length(A.objLists{f}); A.objLists{f}(j).posv=[0 0 0 0]; end end A.objHide = zeros(1,A.maxObj); end % 1.2 -> 1.3 conversion (remove trnc field) if( L.vers==1.2 ) L.vers=1.3; for f=1:A.nFrame if(isempty(A.objLists{f})); A.objLists{f}=[]; else A.objLists{f} = rmfield(A.objLists{f},'trnc'); end end end % 1.3 -> 1.4 conversion (remove objAr field) if( L.vers==1.3 ) L.vers=1.4; A = rmfield(A,'objAr'); end % check version if( L.vers~=vers ) er = [num2str(L.vers) ' (current: ' num2str(vers) ')']; error(['Incompatible versions: ' er]); end % order fields order={'nFrame','objLists','maxObj','objInit','objLbl','objStr',... 'objEnd','objHide','altered','log','logLen'}; A = orderfields(A,order); A.altered = false; end function vbbSaveTxt( A, fName, timeStmp ) if(nargin<3), timeStmp=false; end; vers=1.4; fName=vbbName(fName,timeStmp,'.txt'); A=cleanup(A,0); n=numObj(A); nFrame=A.nFrame; fid=fopen(fName,'w'); assert(fid>0); % write header info to text fp=@(varargin) fprintf(fid,varargin{:}); fp('%% vbb version=%f\n',vers); fp('nFrame=%i n=%i\n',nFrame,n); fp('log=['); fp('%f ',A.log); fp(']\n'); % write each object to text for id=1:n, o=get(A,id); fp('\n-----------------------------------\n'); fp('lbl=''%s'' str=%i end=%i hide=%i\n',o.lbl,o.str,o.end,o.hide); fp('pos =['); fp('%f %f %f %f; ',o.pos'); fp(']\n'); fp('posv=['); fp('%f %f %f %f; ',o.posv'); fp(']\n'); fp('occl=['); fp('%i ',o.occl); fp(']\n'); fp('lock=['); fp('%i ',o.lock); fp(']\n'); end fclose(fid); end function A = vbbLoadTxt( fName ) fName=vbbName(fName,0,'.txt'); vers=1.4; if(~exist(fName,'file')), error([fName ' not found']); end try % read in header and create A f=fopen(fName,'r'); s=fgetl(f); v=sscanf(s,'%% vbb version=%f'); if(v~=vers), error('Incompatible versions: %f (current=%f)',v,vers); end s=fgetl(f); r=sscanf(s,'nFrame=%d n=%d'); nFrame=r(1); n=r(2); s=fgetl(f); assert(strcmp(s(1:5),'log=[')); assert(s(end)==']'); log=sscanf(s(6:end-1),'%f ')'; A=init(nFrame,n); % read in each object in turn for id=1:n s=fgetl(f); assert(isempty(s)); s=fgetl(f); assert(strcmp(s,'-----------------------------------')); s=fgetl(f); r=textscan(s,'lbl=%s str=%d end=%d hide=%d'); [A,o]=emptyObj(A,0); o.lbl=r{1}{1}(2:end-1); o.str=r{2}; o.end=r{3}; o.hide=r{4}; s=fgetl(f); assert(strcmp(s(1:6),'pos =[')); assert(s(end)==']'); pos=sscanf(s(7:end-1),'%f %f %f %f;'); o.pos=reshape(pos,4,[])'; s=fgetl(f); assert(strcmp(s(1:6),'posv=[')); assert(s(end)==']'); posv=sscanf(s(7:end-1),'%f %f %f %f;'); o.posv=reshape(posv,4,[])'; s=fgetl(f); assert(strcmp(s(1:6),'occl=[')); assert(s(end)==']'); o.occl=sscanf(s(7:end-1),'%d '); s=fgetl(f); assert(strcmp(s(1:6),'lock=[')); assert(s(end)==']'); o.lock=sscanf(s(7:end-1),'%d '); A=add(A,o); end if(isempty(log)), A.log=0; A.logLen=0; else A.log=log; A.logLen=length(log); end A.altered=false; fclose(f); catch e, fclose(f); throw(e); end end function vbbToFiles( A, tarDir, fs, skip, f0, f1 ) % export single frame annotations to tarDir/*.txt nFrm=A.nFrame; fName=@(f) ['I' int2str2(f-1,5) '.txt']; if(nargin<3 || isempty(fs)), for f=1:nFrm, fs{f}=fName(f); end; end if(nargin<4 || isempty(skip)), skip=1; end if(nargin<5 || isempty(f0)), f0=1; end if(nargin<6 || isempty(f1)), f1=nFrm; end if(~exist(tarDir,'dir')), mkdir(tarDir); end for f=f0:skip:f1 nObj=length(A.objLists{f}); objs=bbGt('create',nObj); for j=1:nObj o=A.objLists{f}(j); objs(j).lbl=A.objLbl{o.id}; objs(j).occ=o.occl; objs(j).bb=round(o.pos); objs(j).bbv=round(o.posv); end bbGt('bbSave',objs,[tarDir '/' fs{f}]); end end function [A,fs] = vbbFrFiles( srcDir, fs ) % combine single frame annotations from srcDir/*.txt if(nargin<2 || isempty(fs)), fs=dir([srcDir '/*.txt']); fs={fs.name}; end nFrm=length(fs); A=init(nFrm); for f=1:nFrm objs = bbGt('bbLoad',[srcDir '/' fs{f}]); for j=1:length(objs) [A,obj]=emptyObj(A,f); o=objs(j); obj.lbl=o.lbl; obj.pos=o.bb; obj.occl=o.occ; obj.posv=o.bbv; A=add(A,obj); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % inspect / alter annotation function n = numObj( A ) n = sum( A.objInit ); end function [A,id] = newId( A ) [val,id] = min( A.objInit ); if( isempty(val) || val~=0 ); A = doubleLen( A ); [val,id] = min( A.objInit ); end assert(val==0); end function [A,obj] = emptyObj( A, frame ) [A,id] = newId( A ); obj.id = id; obj.lbl = ''; obj.hide = 0; if(nargin<2) obj.str = -1; obj.end = -1; len = 0; else obj.str = frame; obj.end = frame; len = 1; end obj.pos = zeros(len,4); obj.posv = zeros(len,4); obj.occl = zeros(len,1); obj.lock = ones(len,1); end function obj = get( A, id, s, e ) assert( 0<id && id<=A.maxObj ); assert( A.objInit(id)==1 ); if(nargin<3); s=A.objStr(id); else assert(s>=A.objStr(id)); end; if(nargin<4); e=A.objEnd(id); else assert(e<=A.objEnd(id)); end; % get general object info obj.id = id; obj.lbl = A.objLbl{id}; obj.str = s; obj.end = e; obj.hide = A.objHide(id); % get per-frame object info len = obj.end-obj.str+1; obj.pos = zeros(len,4); obj.posv = zeros(len,4); obj.occl = zeros(len,1); obj.lock = zeros(len,1); for i=1:len f = obj.str+i-1; objList = A.objLists{f}; obj1 = objList([objList.id]==id); obj.pos(i,:) = obj1.pos; obj.posv(i,:) = obj1.posv; obj.occl(i) = obj1.occl; obj.lock(i) = obj1.lock; end end function A = add( A, obj ) % check id or get new id id = obj.id; if( id==-1 ) [A,id] = newId( A ); else assert( 0<id && id<=A.maxObj ); assert( A.objInit(id)==0 ); end % save general object info A.objInit(id) = 1; A.objLbl{id} = obj.lbl; A.objStr(id) = obj.str; A.objEnd(id) = obj.end; A.objHide(id) = obj.hide; % save per-frame object info len = obj.end - obj.str + 1; assert( size(obj.pos,1)==len ); assert( size(obj.posv,1)==len ); assert( size(obj.occl,1)==len ); assert( size(obj.lock,1)==len ); for i = 1:len obj1.id = id; obj1.pos = obj.pos(i,:); obj1.posv = obj.posv(i,:); obj1.occl = obj.occl(i); obj1.lock = obj.lock(i); f = obj.str+i-1; A.objLists{f}=[A.objLists{f} obj1]; end A = altered( A ); end function A = del( A, id ) assert( 0<id && id<=A.maxObj ); assert( A.objInit(id)==1 ); % delete per-frame object info objStr = A.objStr(id); objEnd = A.objEnd(id); len = objEnd-objStr+1; for i=1:len f = objStr+i-1; objList = A.objLists{f}; objList([objList.id]==id) = []; A.objLists{f} = objList; end % delete general object info A.objInit(id) = 0; A.objLbl{id} = []; A.objStr(id) = -1; A.objEnd(id) = -1; A.objHide(id) = 0; A = altered( A ); end function A = setRng( A, id, s, e ) assert( s>=1 && e<=A.nFrame && s<=e && A.objInit(id)==1 ); s0=A.objStr(id); e0=A.objEnd(id); assert( e>=s0 && e0>=s ); if(s==s0 && e==e0), return; end; A.objStr(id)=s; A.objEnd(id)=e; if( s0>s ) objs=A.objLists{s0}; obj=objs([objs.id]==id); obj.occl=0; obj.lock=0; for f=s:s0-1, A.objLists{f}=[A.objLists{f} obj]; end elseif( s0<s ) for f=s0:s-1, os=A.objLists{f}; os([os.id]==id)=[]; A.objLists{f}=os; end end if( e>e0 ) objs=A.objLists{e0}; obj=objs([objs.id]==id); obj.occl=0; obj.lock=0; for f=e0+1:e, A.objLists{f}=[A.objLists{f} obj]; end elseif( e<e0 ) for f=e+1:e0, os=A.objLists{f}; os([os.id]==id)=[]; A.objLists{f}=os; end end A = altered( A ); end function v = getVal( A, id, name, frmS, frmE ) if(nargin<4); frmS=[]; end; if(nargin<5); frmE=frmS; end; assert(strcmp(name,'init') || A.objInit(id)==1); switch name case 'lbl' assert( isempty(frmS) ); v = A.objLbl{id}; case {'init','str','end','hide'} assert( isempty(frmS) ); name = ['obj' upper(name(1)) name(2:end)]; v = A.(name)(id); case {'pos','posv','occl','lock'} assert( ~isempty(frmS) ); assert( A.objStr(id)<=frmS && frmE<=A.objEnd(id) ); frms = frmS:frmE; len=length(frms); for f=1:len objList = A.objLists{frms(f)}; v1 = objList([objList.id]==id).(name); if( f==1 ); v=repmat(v1,[len 1]); else v(f,:) = v1; end end otherwise error( ['invalid field: ' name] ); end end function A = setVal( A, id, name, v, frmS, frmE ) if(nargin<5); frmS=[]; end; if(nargin<6); frmE=frmS; end; assert( A.objInit(id)==1 ); switch name case 'lbl' assert( isempty(frmS) ); A.objLbl{id} = v; case {'hide'} assert( isempty(frmS) ); name = ['obj' upper(name(1)) name(2:end)]; A.(name)(id) = v; case {'pos','posv','occl','lock'} assert( ~isempty(frmS) ); assert( A.objStr(id)<=frmS && frmE<=A.objEnd(id) ); frms = frmS:frmE; len=length(frms); for f=1:len objList = A.objLists{frms(f)}; objList([objList.id]==id).(name) = v(f,:); A.objLists{frms(f)} = objList; end otherwise error( ['invalid/unalterable field: ' name] ); end A = altered( A ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % other functions function hs = drawToFrame( A, frame ) hs=[]; for o=A.objLists{frame} hr = bbApply('draw', o.pos, 'g', 2, '-' ); if(all(o.posv)==0), hrv=[]; else hrv = bbApply('draw', o.posv, 'y', 2, '--' ); end label = [A.objLbl{o.id} ' [' int2str(o.id) ']']; ht = text( o.pos(1), o.pos(2)-10, label ); set( ht, 'color', 'w', 'FontSize', 10, 'FontWeight', 'bold' ); hs = [hs hr ht hrv]; %#ok<AGROW> end end function vbbPlayer( A, srcName ) dispFunc=@(f) vbb('drawToFrame',A,f+1); seqPlayer(srcName,dispFunc); end function drawToVideo( A, srcName, tarName ) % open video to read and make video to write assert( ~strcmp(srcName,tarName) ); sr=seqIo(srcName,'r'); info=sr.getinfo(); nFrame=info.numFrames; w=info.width; h=info.height; assert(A.nFrame==nFrame); sw=seqIo(tarName,'w',info); % display and write each frame ticId=ticStatus; hf=figure; hAx=axes('parent',hf); hIm=imshow(zeros(h,w,3,'uint8'),'parent',hAx); truesize; for i=1:nFrame I=sr.getnext(); set(hIm,'CData',I); hs=drawToFrame(A,i); I=getframe; I=I.cdata; I=I(1:h,1:w,:); sw.addframe(I); delete(hs); tocStatus( ticId, i/nFrame ); end sr.close(); sw.close(); close(hf); end function A = timeShift( A, del ) % shift entire annotation by del frames nFrame=A.nFrame; locs=logical(A.objInit); if(del>0), is=locs & A.objStr==1; A.objStr(is)=A.objStr(is)-del; end A.objStr(locs)=min(max(A.objStr(locs)+del,1),nFrame); A.objEnd(locs)=min(max(A.objEnd(locs)+del,1),nFrame); if( del>0 ) % replicate annotation for first frame del times A.objLists=[A.objLists(ones(1,del)) A.objLists(1:end-del)]; else % no annotations for last del frames A.objLists=[A.objLists(1-del:end) cell(1,-del)]; end end function A = swapPosv( A, validate, swap, hide ) % Swap pos/posv and ensure pos/posv consistent. % % The visible region of an object (posv) should be a subset of the % predicted region (pos). If the object is not occluded, then posv is the % same as pos (posv=[0 0 0 0] by default and indicates posv not set). % Swapping is used to swap pos and posv, and validating is used to ensure % pos contains posv. In two cases no swapping/validating occurs. If occl==0 % for a given bb, posv is set to [0 0 0 0]. If occl==1 and posv=[0 0 0 0], % posv is set to pos. In either case there is no need to swap or validate. % % The validate flag: % validate==-1: posv = intersect(pos,posv) % validate== 0: no validation % validate==+1: pos = union(pos,posv) % If posv is shrunk to 0, it is set to a small bb inside pos. % % The swap flag: % swap==-1: pos and posv are swapped before validating % swap== 0: no swapping % swap==+1: pos and posv are swapped after validating % % The hide flag: % hide==0: set hide attribute to 0 for all objects % hide==1: set hide attribute to 1 iff object is at some point occluded % % Suppose a user has labeled pos in a given video using some annotation % tool. At this point can swap pos and posv and use the same tool in the % same manner to label posv (which is stored in pos). Afterwards, can swap % pos/posv again, and ensure they are consistent, and both end up labeled. % Additionally, in the second labeling phase, we may want to hide any % object that is never occluded. The command to setup labeling of posv is: % A=vbb('swapPosv',A,-1,1,1); % validate (trust pos) THEN swap % Afterwards, to swap back, would use: % A=vbb('swapPosv',A,1,-1,0); % swap THEN validate (trust posv) % While labeling posv only frames where occl is already set should be % altered (the occl flag itself shouldn't be altered). % % USAGE % A = vbb( 'swapPosv', A, validate, swap, hide ) % % INPUTS % A - annotation structure % validate - see above % swap - see above % hide - see above % % OUTPUTS % A - updated annotation % % EXAMPLE % % see also vbb for f=1:A.nFrame for i=1:length(A.objLists{f}) o=A.objLists{f}(i); p=o.pos; v=o.posv; vt=[]; % v is trivial - either [0 0 0 0] or same as p, continue if(o.occl==0), vt=[0 0 0 0]; elseif(all(v)==0), vt=p; end if(~isempty(vt)), A.objLists{f}(i).posv=vt; continue; end % optionally swap before validating if(swap==-1), t=p; p=v; v=t; end % validate if( validate==-1 ) v = bbApply('intersect',v,p); if(all(v==0)), v=[p(1:2)+p(3:4)/2 1 1]; end elseif( validate==1 ) p = bbApply('union',v,p); end % optionally swap after validating if(swap==1), t=p; p=v; v=t; end % store results o.pos=p; o.posv=v; A.objLists{f}(i)=o; end end if(~hide), A.objHide(:)=0; else for id=find( A.objInit ) occl=vbb('getVal',A,id,'occl',A.objStr(id),A.objEnd(id)); A.objHide(id) = all(occl==0); end end end function [stats,stats1,logDur] = getStats( A ) % get stats of many annotations simultaneously by first merging if(length(A)>1), A=merge(A); end % log activity (allows up to .25h of inactivity) nObj0=numObj(A); if(nObj0==0), stats=struct(); return; end log = A.log / 1.1574e-005 / 60 / 60; locs = find( (log(2:end)-log(1:end-1)) > .25 ); logS=log([1 locs+1]); logE=log([locs A.logLen]); logDur = sum(logE-logS); % getStats1 on entire annotation stats = getStats1( A ); % getStats1 separately for each label lbl0=unique(A.objLbl); nLbl0=length(lbl0); stats1=repmat(getStats1(subset(A,lbl0(1))),1,nLbl0); for i0=2:nLbl0, stats1(i0)=getStats1(subset(A,lbl0(i0))); end function stats = getStats1( A ) % unique labels and label counts lbl=unique(A.objLbl); nLbl=length(lbl); lblCnts=zeros(1,nLbl); for i=1:nLbl, lblCnts(i)=sum(strcmp(A.objLbl,lbl{i})); end stats.labels=lbl; stats.labelCnts=lblCnts; % get object lengths nObj=numObj(A); stats.nObj=nObj; len=A.objEnd-A.objStr+1; stats.len=len; % get all per frame info in one flat array ordered by object id nPerFrm=cellfun(@length,A.objLists); stats.nPerFrm=nPerFrm; ols=A.objLists(nPerFrm>0); ols=[ols{:}]; ids=[ols.id]; [ids,order]=sort(ids); ols=ols(order); stats.ids=ids; inds=[0 cumsum(len)]; stats.inds=inds; % get all pos/posv and centers, also first/last frame for each obj pos=reshape([ols.pos],4,[])'; posv=reshape([ols.posv],4,[])'; posS=pos(inds(1:end-1)+1,:); posE=pos(inds(2:end),:); stats.pos=pos; stats.posv=posv; stats.posS=posS; stats.posE=posE; % get object centers and per frame deltas cen=bbApply('getCenter',pos); stats.cen=cen; del=cen(2:end,:)-cen(1:end-1,:); del(inds(2:end),:)=-1; stats.del=del; % get occlusion information occl=(sum(posv,2)>0)'; %occl=[ols.occl]; <--slow occFrac=1-posv(:,3).*posv(:,4)./pos(:,3)./pos(:,4); occFrac(occl==0)=0; occTime=zeros(1,nObj); for i=1:nObj, occTime(i)=mean(occl(ids==i)); end stats.occl=occl; stats.occFrac=occFrac'; stats.occTime=occTime; end function A = subset( A, lbls ) % find elements to keep nObj=numObj(A); keep=false(1,nObj); for i=1:length(lbls), keep=keep | strcmp(A.objLbl,lbls{i}); end % clean up objLists by dropping elements frms=find(cellfun('isempty',A.objLists)==0); ols=A.objLists; for f=frms, ols{f}=ols{f}(keep([ols{f}.id])); end, A.objLists=ols; % run cleanup to reorder/drop elements A.objInit=keep; A=cleanup(A,0); end function A = merge( AS ) nFrm=0; nObj=0; for i=1:numel(AS) Ai=cleanup(AS(i),0); for f=1:Ai.nFrame for j=1:length(Ai.objLists{f}), Ai.objLists{f}(j).id=Ai.objLists{f}(j).id+nObj; end end Ai.objStr=Ai.objStr+nFrm; Ai.objEnd=Ai.objEnd+nFrm; nFrm=Ai.nFrame+nFrm; Ai.nFrame=nFrm; nObj=nObj+numObj(Ai); AS(i)=Ai; end A.nFrame = nFrm; A.objLists = [AS.objLists]; A.maxObj = sum([AS.maxObj]); A.objInit = [AS.objInit]; A.objLbl = [AS.objLbl]; A.objStr = [AS.objStr]; A.objEnd = [AS.objEnd]; A.objHide = [AS.objHide]; A.altered = false; A.log = sort([AS.log]); A.logLen = sum([AS.logLen]); end end function [gt,posv,lbls1] = frameAnn( A, frame, lbls, test ) % Returns the ground truth bbs for a single frame. % % Returns bbs for all object with lbl in lbls. The result is an [nx5] array % where each row is of the form [x y w h ignore]. [x y w h] is the bb and % ignore is a 0/1 flag that indicates regions to be ignored. For each % returned object, the ignore flag is set to 0 if test(lbl,pos,posv)=1 for % the given object. For example, using lbls={'person','people'}, and % test=@(lbl,bb,bbv) bb(4)>100, returns bbs for all 'person' and 'people' % in given frame, and for any objects under 100 pixels tall ignore=1. % % USAGE % [gt,posv,lbls] = vbb( 'frameAnn', A, frame, lbls, [test] ) % % INPUTS % A - annotation structure % frame - the frame index % lbls - cell array of string labels % test - [] ignore = ~test(lbl,pos,posv) % % OUTPUTS % gt - [n x 5] array containg ground truth for frame % posv - [n x 4] bbs of visible regions % lbls - [n x 1] list of object labels % % EXAMPLE % lbls={'person','people'}; test=@(lbl,bb,bbv) bb(4)>100; % [gt,lbls] = vbb( 'frameAnn', A, 200, lbls, test ) if( nargin<4 ), test=[]; end; assert(frame<=A.nFrame); ng=length(A.objLists{frame}); ignore=0; gt=zeros(ng,5); posv=zeros(ng,4); lbls1=cell(1,ng); keep=true(1,ng); for g=1:ng o=A.objLists{frame}(g); lbl=A.objLbl{o.id}; if(~any(strcmp(lbl,lbls))), keep(g)=0; continue; end if(~isempty(test)), ignore=~test(lbl,o.pos,o.posv); end gt(g,:)=[o.pos ignore]; lbls1{g}=lbl; posv(g,:)=o.posv; end gt=gt(keep,:); lbls1=lbls1(keep); posv=posv(keep,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions function A = doubleLen( A ) maxObj = max(1,A.maxObj); A.objInit = [A.objInit zeros(1,maxObj)]; A.objLbl = [A.objLbl cell(1,maxObj)]; A.objStr = [A.objStr -ones(1,maxObj)]; A.objEnd = [A.objEnd -ones(1,maxObj)]; A.objHide = [A.objHide zeros(1,maxObj)]; A.maxObj = max(1,A.maxObj * 2); A = altered( A ); end function A = altered( A ) A.altered = true; if( length(A.log)==A.logLen ) A.log = [A.log zeros(1,A.logLen)]; end T = now; sec=1.1574e-005; if( A.logLen>0 && (T-A.log(A.logLen))/sec<1 ) A.log(A.logLen) = T; else A.logLen = A.logLen+1; A.log(A.logLen) = T; end end function A = cleanup( A, minn ) % cleanup() Removes placeholder entries from A if( A.maxObj==0 ), return; end if( nargin<2 || isempty(minn) ), minn=1; end % reorder so all initialized objects are first while( 1 ) % find first 0 entry in objInit [val,id0] = min(A.objInit); if( val==1 || id0==A.maxObj ), break; end % find last 1 entry past 0 entry [val,id1]=max(fliplr(A.objInit(id0+1:end))); id1=A.maxObj-id1+1; if(val==0), break; end % swap these two locations A = swap( A, id0, id1 ); end % now discard all uninitialized objects (keep at least minn though) [val,n] = min(A.objInit); n=max(minn,n-1); if( val==0 ) A.maxObj = n; A.objInit = A.objInit(1:n); A.objLbl = A.objLbl(1:n); A.objStr = A.objStr(1:n); A.objEnd = A.objEnd(1:n); A.objHide = A.objHide(1:n); end % discard useless elements in log A.log = A.log(1:A.logLen); end function A = swap( A, id1, id2 ) A0=A; if(A0.objInit(id1)), fs=A0.objStr(id1):A0.objEnd(id1); else fs=[]; end for f=fs, ol=A0.objLists{f}; ol([ol.id]==id1).id=id2; A.objLists{f}=ol; end if(A0.objInit(id2)), fs=A0.objStr(id2):A0.objEnd(id2); else fs=[]; end for f=fs, ol=A0.objLists{f}; ol([ol.id]==id2).id=id1; A.objLists{f}=ol; end A.objInit(id1) = A0.objInit(id2); A.objInit(id2) = A0.objInit(id1); A.objLbl(id1) = A0.objLbl(id2); A.objLbl(id2) = A0.objLbl(id1); A.objStr(id1) = A0.objStr(id2); A.objStr(id2) = A0.objStr(id1); A.objEnd(id1) = A0.objEnd(id2); A.objEnd(id2) = A0.objEnd(id1); A.objHide(id1) = A0.objHide(id2); A.objHide(id2) = A0.objHide(id1); end
github
garrickbrazil/SDS-RCNN-master
vbbLabeler.m
.m
SDS-RCNN-master/external/caltech_toolbox/vbbLabeler.m
38,968
utf_8
03ea75bed8df14e50d44027476666f52
function vbbLabeler( objTypes, vidNm, annNm ) % Video bound box (vbb) Labeler. % % Used to annotated a video (seq file) with (tracked) bounding boxes. An % online demo describing usage is available. The code below is fairly % complex and poorly documented. Please do not email me with question about % how it works (unless you discover a bug). % % USAGE % vbbLabeler( [objTypes], [vidNm], [annNm] ) % % INPUTS % objTypes - [{'object'}] list of object types to annotate % imgDir - [] initial video to load % resDir - [] initial annotation to load % % OUTPUTS % % EXAMPLE % vbbLabeler % % See also vbb, vbbPlayer % % Caltech Pedestrian Dataset Version 3.2.1 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % defaults if(nargin<1 || isempty(objTypes)), objTypes={'object'}; end if(nargin<2 || isempty(vidNm)), vidNm=''; end if(nargin<3 || isempty(annNm)), annNm=''; end % settable constants maxSkip = 250; % max value for skip nStep = 16; % number of objects to display in lower panel repLen = 1; % number of seconds to replay on left replay maxCache = 500; % max cache length (set as high as memory allows) fps = 150; % initial fps for playback (if 0 uses actual fps) skip0 = 20; % initial skip (zoom) seqPad = 4; % amount of padding around object in seq view siz0 = 20; % minimum rect width/height sizLk = 0; % if true rects cannot be resized colType=0; rectCols=uniqueColors(3,8); % color rects according to id %colType=1; rectCols=uniqueColors(3,3); % color rects according to type % handles to gui objects / other globals enStr = {'off','on'}; [hFig, pLf, pRt, pMenu, pObj, pSeq ] = deal([]); [A,skip,offset,curInd,seqH,objApi,dispApi,filesApi] = deal([]); % initialize all makeLayout(); filesApi = filesMakeApi(); objApi = objMakeApi(); dispApi = dispMakeApi(); filesApi.closeVid(); set(hFig,'Visible','on'); drawnow; % optionally load default data if(~isempty(vidNm)), filesApi.openVid(vidNm); end if(~isempty(annNm)), filesApi.openAnn(annNm); end function makeLayout() % properties for gui objects bg='BackgroundColor'; fg='ForegroundColor'; ha='HorizontalAlignment'; units={'Units','pixels'}; st='String'; ps='Position'; fs='FontSize'; axsPr=[units {'Parent'}]; o4=[1 1 1 1]; clr=[.1 .1 .1]; pnlPr=[units {bg,clr,'BorderType','none','Parent'}]; btnPr={bg,[.7 .7 .7],fs,10,ps}; chbPr={'Style','checkbox',fs,8,'Interruptible','off',bg,clr,fg,'w',ps}; txtPr={'Style','text',fs,8,bg,clr,fg,'w',ps}; edtPr={'Style','edit',fs,8,bg,clr,fg,'w',ps}; uic = @(varargin) uicontrol(varargin{:}); icn=load('vbbIcons'); icn=icn.icons; % hFig: main figure set(0,units{:}); ss=get(0,'ScreenSize'); if( ss(3)<800 || ss(4)<600 ), error('screen too small'); end pos = [(ss(3)-780)/2 (ss(4)-580)/2 780 580]; hFig = figure( 'Name','VBB Labeler', 'NumberTitle','off', ... 'Toolbar','auto', 'MenuBar','none', 'ResizeFcn',@figResized, ... 'Color','k', 'Visible','off', 'DeleteFcn',@exitLb, ps,pos, ... 'keyPressFcn',@keyPress ); % pMenu: video/annotation menus pMenu.hVid = uimenu(hFig,'Label','Video'); pMenu.hVidOpn = uimenu(pMenu.hVid,'Label','Open'); pMenu.hVidCls = uimenu(pMenu.hVid,'Label','Close'); pMenu.hAnn = uimenu(hFig,'Label','Annotation'); pMenu.hAnnNew = uimenu(pMenu.hAnn,'Label','New'); pMenu.hAnnOpn = uimenu(pMenu.hAnn,'Label','Open'); pMenu.hAnnSav = uimenu(pMenu.hAnn,'Label','Save'); pMenu.hAnnCls = uimenu(pMenu.hAnn,'Label','Close'); pMenu.hCn = [pMenu.hVid pMenu.hAnn]; % pObj: top panel containing object controls pObj.h=uipanel(pnlPr{:},hFig); pObj.hObjTp = uic( pObj.h,'Style','popupmenu',fs,8,units{:},... ps,[31 2 100 25],st,objTypes,'Value',1); pObj.hBtPrv = uic(pObj.h,btnPr{:},[5 3 25 25],'CData',icn.rNext{1}); pObj.hBtNxt = uic(pObj.h,btnPr{:},[132 3 25 25],'CData',icn.rNext{2}); pObj.hBtNew = uic(pObj.h,btnPr{:},[169 3 25 25],'CData',icn.rNew); pObj.hBtDel = uic(pObj.h,btnPr{:},[196 3 25 25],'CData',icn.rDel); pObj.hCbFix = uic(pObj.h,chbPr{:},[230 9 50 13],st,'Lock'); pObj.hStSiz = uic(pObj.h,txtPr{:},[280 9 80 13],ha,'Center'); pObj.hCn = [pObj.hObjTp pObj.hBtNew pObj.hBtDel ... pObj.hBtPrv pObj.hBtNxt pObj.hCbFix]; % pSeq: bottom panel containing object sequence pSeq.h=uipanel(pnlPr{:},hFig); pSeq.hAx = axes(axsPr{:},pSeq.h,ps,o4); pSeq.apiRng = selectorRange(pSeq.h,o4,nStep,[],[.1 .5 1]); pSeq.apiOcc = selectorRange(pSeq.h,o4,nStep,[],[.9 .9 .7]); pSeq.apiLck = selectorRange(pSeq.h,o4,nStep,[],[.5 1 .5]); pSeq.lblRng = uic(pSeq.h,txtPr{:},o4,st,'vs',fs,7,ha,'Center'); pSeq.lblOcc = uic(pSeq.h,txtPr{:},o4,st,'oc',fs,7,ha,'Center'); pSeq.lblLck = uic(pSeq.h,txtPr{:},o4,st,'lk',fs,7,ha,'Center'); % pLf: left main panel pLf.h=uipanel(pnlPr{:},hFig); pLf.hAx=axes(axsPr{:},hFig); icn5={icn.pPlay{1},icn.pStep{1},icn.pPause,icn.pStep{2},icn.pPlay{2}}; for i=1:5, pLf.btn(i)=uic(pLf.h,btnPr{:},o4,'CData',icn5{i}); end pLf.btnRep = uic(pLf.h,btnPr{:},[10 5 25 20],'CData',icn.pRepeat); pLf.fpsLbl = uic(pLf.h,txtPr{:},o4,ha,'Left',st,'fps:'); pLf.fpsInd = uic(pLf.h,edtPr{:},o4,ha,'Center'); pLf.hFrInd = uic(pLf.h,edtPr{:},o4,ha,'Right'); pLf.hFrNum = uic(pLf.h,txtPr{:},o4,ha,'Left'); pLf.hCn = [pLf.btn pLf.btnRep]; % pRt: right main panel pRt.h=uipanel(pnlPr{:},hFig); pRt.hAx=axes(axsPr{:},hFig); pRt.btnRep = uic(pRt.h,btnPr{:},[10 5 25 20],'CData',icn.pRepeat); pRt.btnGo = uic(pRt.h,btnPr{:},[350 5 25 20],'CData',icn.fJump); pRt.hFrInd = uic(pRt.h,txtPr{:},o4,ha,'Right'); pRt.hFrNum = uic(pRt.h,txtPr{:},o4,ha,'Left'); pRt.stSkip = uic(pRt.h,txtPr{:},[55 8 45 14],ha,'Right'); pRt.edSkip = uic(pRt.h,edtPr{:},[100 7 28 16],ha,'Center'); pRt.stOffst = uic(pRt.h,txtPr{:},[140 7 30 14],ha,'Center'); pRt.slOffst = uic(pRt.h,'Style','slider',bg,clr,ps,[175 5 70 20]); setIntSlider( pRt.slOffst, [1 nStep-1] ); pRt.hCn = [pRt.btnRep pRt.btnGo pRt.slOffst]; function figResized( h, e ) %#ok<INUSD> % overall size of drawable area (fWxfH) pos = get(hFig,ps); pad=8; pTopH=30; fW=pos(3)-2*pad; fH=pos(4)-2*pad-pTopH-75; fW0=1290; fH0=(480+fW0/nStep); fW=max(fW,700); fH=max(fH,700*fH0/fW0); fW=min(fW,fH*fW0/fH0); fH=min(fH,fW*fH0/fW0); % where to draw r = fW/fW0; fW=round(fW); fH=round(fH); seqH=floor((fW0-pad)/nStep*r); seqW=seqH*nStep; seqH=seqH+29; x = max(pad,(pos(3)-fW)/2); y = max(pad,(pos(4)-fH-pTopH-70)/2); % set panel positions (resized from canonical positions) set( pObj.h, ps, [x y+fH+70 640*r pTopH] ); set( pLf.hAx, ps, [x y+seqH+32 640*r 480*r] ); set( pRt.hAx, ps, [x+650*r y+seqH+32 640*r 480*r] ); set( pLf.h, ps, [x y+seqH+2 640*r 30] ); set( pRt.h, ps, [x+650*r y+seqH+2 640*r 30] ); set( pSeq.h, ps, [x+(fW-seqW)/2+2 y seqW seqH] ); % postion pSeq contents set(pSeq.hAx,ps,[0 11 seqW seqH-29]); y=1; pSeq.apiLck.setPos([0 y seqW 10]); set(pSeq.lblLck,ps,[-13 y 12 10]); y=seqH-18; pSeq.apiOcc.setPos([0 y seqW 10]); set(pSeq.lblOcc,ps,[-13 y 12 10]); y=seqH-9; pSeq.apiRng.setPos([0 y seqW 10]); set(pSeq.lblRng,ps,[-13 y 12 10]); % postion pLf and pRt contents x=640*r-90; set(pRt.btnGo,ps,[x+60 5 25 20]); x1=640/3*r-75; set(pLf.hFrInd,ps,[x 7 40 16]); set(pLf.hFrNum,ps,[x+40 8 40 14]); set(pRt.hFrInd,ps,[x-30 8 40 14]); set(pRt.hFrNum,ps,[x+10 8 40 14]); for i2=1:5, set(pLf.btn(i2),ps,[640/2*r+(i2-3.5)*26+10 5 25 20]); end set(pLf.fpsLbl,ps,[x1 8 23 14]); set(pLf.fpsInd,ps,[x1+23 7 38 16]); % request display update if(~isempty(dispApi)); dispApi.requestUpdate(true); end; end function exitLb( h, e ) %#ok<INUSD> filesApi.closeVid(); end function keyPress( h, evnt ) %#ok<INUSL> char=int8(evnt.Character); if(isempty(char)), char=0; end; if( char==28 ), dispApi.setPlay(-inf); end if( char==29 ), dispApi.setPlay(+inf); end if( char==31 ), dispApi.setPlay(0); end end function setIntSlider( hSlider, rng ) set(hSlider,'Min',rng(1),'Value',rng(1),'Max',rng(2)); minSt=1/(rng(2)-rng(1)); maxSt=ceil(.25/minSt)*minSt; set(hSlider,'SliderStep',[minSt maxSt]); end end function api = objMakeApi() % variables [objId,objS,objE,objInd,seqObjs,lims] = deal([]); apiRng=pSeq.apiRng; apiOcc=pSeq.apiOcc; apiLck=pSeq.apiLck; % callbacks set(pObj.hBtNew, 'callback', @(h,e) objNew()); set(pObj.hBtDel, 'callback', @(h,e) objDel()); set(pObj.hBtPrv, 'callback', @(h,e) objToggle(-1)); set(pObj.hBtNxt, 'callback', @(h,e) objToggle(+1)); set(pObj.hObjTp, 'callback', @(h,e) objSetType()); set(pObj.hCbFix, 'callback', @(h,e) objSetFixed()); apiRng.setRngChnCb(@objSetRng); apiRng.setLockCen(1); apiOcc.setRngChnCb(@objSetOcc); apiLck.setRngChnCb(@objSetLck); % create api api=struct( 'init',@init, 'drawRects',@drawRects, ... 'prepSeq',@prepSeq, 'prepPlay',@prepPlay, ... 'annForSave',@annForSave, 'annSaved',@annSaved ); function init() [objId,objS,objE,objInd,seqObjs,lims] = deal([]); objId=-1; objSelect(-1); isAnn=~isempty(A); prepPlay(); if( ~isAnn ), return; end lims=[0 0 dispApi.width() dispApi.height()]+.5; objTypes = unique([A.objLbl(A.objInit==1) objTypes]); t='*new-type*'; objTypes=[setdiff(objTypes,t) t]; set( pObj.hObjTp, 'String', objTypes, 'Value',1 ); end function prepPlay() if(objId>0), A=vbb('setRng',A,objId,objS+1,objE+1); end set(pObj.hStSiz,'String',''); set(pObj.hCn,'Enable','off'); apiRng.enable(0); apiOcc.enable(0); apiLck.enable(0); end function seqI = prepSeq() seqI=100*ones(seqH,seqH*nStep,3,'uint8'); seqObjs=[]; if(isempty(A)), return; end; n=nStepVis(); % see if objId still visible, adjust controls accordingly lstInd = curInd + min(dispApi.nFrameRt(),skip*n-1); isVis = objId>0 && objS<=lstInd && objE>=curInd; set(pObj.hStSiz,'String',''); set(pObj.hCn,'Enable','on'); apiRng.enable(isVis); apiOcc.enable(isVis); apiLck.enable(isVis); if(~isVis), objSelect(-1); return; end % extrapolate obj to current range for display only objSe=min(objS,curInd); objEe=max(objE,lstInd); A = vbb( 'setRng', A, objId, objSe+1, objEe+1 ); % bound objInd to be in a visible axes s=max(objSe,curInd); e=min(objEe,lstInd); objInd = min(max(objInd,s),e); objInd = curInd + skip*floor((objInd-curInd)/skip); % update apiRng/apiOcc/apiLck s = max(floor((objS-curInd)/skip)+1,1); e = min(floor((objE-curInd)/skip)+1,n); rng=zeros(1,nStep); occ=rng; lck=rng; rng(s:e)=1; for i=1:n ind0=curInd+(i-1)*skip; ind1=objGrpInd(ind0,1); occ(i) = max(vbb('getVal',A,objId,'occl',ind0+1,ind1+1)); lck(i) = max(vbb('getVal',A,objId,'lock',ind0+1,ind1+1)); end; apiRng.setRng(rng); apiOcc.setRng(occ); apiLck.setRng(lck); apiRng.enable([1 n]); apiOcc.enable([s e]); apiLck.enable([s e]); if(objS<curInd), lk=0; else lk=[]; end; apiRng.setLockLf(lk); if(objE>lstInd), lk=0; else lk=[]; end; apiRng.setLockRt(lk); % update other gui controls objType=vbb('getVal',A,objId,'lbl'); set(pObj.hObjTp,'Value',find(strcmp(objType,objTypes))); p=ceil(vbb('getVal',A,objId,'pos',objInd+1)); set(pObj.hStSiz,'String',[num2str(p(3)) ' x ' num2str(p(4))]); % create seqObjs and seqI for display seqObjs = repmat(struct(),1,n); for i=0:n-1, ind=curInd+i*skip; % absolute object location pos0 = vbb('getVal', A, objId, 'pos', ind+1 ); posv = vbb('getVal', A, objId, 'posv', ind+1 ); % crop / resize sequence image posSq = bbApply( 'resize', pos0, seqPad, seqPad ); posSq = bbApply( 'squarify', posSq, 0 ); [Ii,posSq] = bbApply('crop',dispApi.getImg(ind),posSq); Ii=Ii{1}; rows = round(linspace(1,size(Ii,1),seqH-2)); cols = round(linspace(1,size(Ii,2),seqH-2)); seqI(2:seqH-1,(2:seqH-1)+i*seqH,:) = Ii(rows,cols,:); % oLim~=intersect(posSq,lims); pos~=centered(pos0*res) res = (seqH-2)/size(Ii,1); xDel=-i*seqH-1+posSq(1)*res; yDel=-1+posSq(2)*res; oLim = bbApply('intersect',lims-.5,posSq); oLim = bbApply('shift',oLim*res,xDel,yDel); pos = bbApply('shift',pos0*res,xDel,yDel); if(any(posv)), posv=bbApply('shift',posv*res,xDel,yDel); end % seqObjs info lks=vbb('getVal',A,objId,'lock',ind+1,objGrpInd(ind,1)+1); seqObjs(i+1).pos0=pos0; seqObjs(i+1).pos=pos; seqObjs(i+1).posv=posv; seqObjs(i+1).res=res; seqObjs(i+1).lims=oLim; seqObjs(i+1).lock=max(lks); end end function hs = drawRects( flag, ind ) hs=[]; if(isempty(A)), return; end switch flag case {'panelLf','panelRt'} os=A.objLists{ind+1}; n=length(os); if(n>0), [~,ord]=sort([os.id]==objId); os=os(ord); end lockSet = get(pObj.hCbFix,'Value'); playMode = strcmp(get(pObj.hObjTp,'enable'),'off'); for i=1:n, o=os(i); id=o.id; lbl=A.objLbl(id); if(A.objHide(id)), continue; end if(lockSet && id~=objId && ~playMode), continue; end static=(lockSet && id~=objId) || playMode; hs1=drawRect(o.pos,o.posv,lims,lbl,static,id,ind,-1); hs=[hs hs1]; %#ok<AGROW> end case 'objSeq' if(objInd==-1), return; end n=nStepVis(); id=objId; lbl=A.objLbl(id); for i=1:n, o=seqObjs(i); ind=curInd+skip*(i-1); hs1=drawRect(o.pos,o.posv,o.lims,lbl,0,id,ind,i-1); hs=[hs hs1]; %#ok<AGROW> end end function hs = drawRect(pos,posv,lims,lbl,static,id,ind,sid) if(colType), t=find(strcmp(lbl,objTypes)); else t=id; end col=rectCols(mod(t-1,size(rectCols,1))+1,:); if(id~=objId), ls='-'; else if(ind==objInd), ls='--'; else ls=':'; end; end rp = {'lw',2,'color',col,'ls',ls,'rotate',0,'ellipse',0}; [hs,api]=imRectRot('pos',pos,'lims',lims,rp{:}); api.setSizLock( sizLk ); if( static ) api.setPosLock(1); ht=text(pos(1),pos(2)-10, lbl); hs=[hs ht]; set(ht,'color','w','FontSize',10,'FontWeight','bold'); else api.setPosSetCb( @(pos) objSetPos(pos(1:4),id,ind,sid) ); end if( any(posv) ) rp={'LineWidth',2,'EdgeColor','y','LineStyle',':'}; hs = [hs rectangle('Position',posv,rp{:})]; end end function objSetPos( pos, id, ind, sid ) if(sid>=0), o=seqObjs(sid+1); pos=o.pos0-(o.pos-pos)/o.res; end if(sid>0), dispApi.setOffset(sid); end pos=constrainPos(pos); A=vbb('setVal',A,id,'pos',pos,ind+1); if(objId==id), objS=min(objS,ind); objE=max(objE,ind); end objSelect(id,ind); ind0=curInd+floor((ind-curInd)/skip)*skip; ind1=objGrpInd(ind0,0); lks=zeros(ind1-ind0+1,1); A = vbb('setVal',A,id,'lock',lks,ind0+1,ind1+1); dispApi.requestUpdate(); end end function objNew() [A,o]=vbb('emptyObj',A,curInd+1); t=get(pObj.hObjTp,'Value'); o.lbl=objTypes{t}; if(colType==0), t=o.id; end col=rectCols(mod(t-1,size(rectCols,1))+1,:); rp={'lw',2,'color',col,'ls','--','rotate',0,'ellipse',0}; pos=dispApi.newRect(lims,rp); o.pos=constrainPos(pos); A=vbb('add',A,o); objSelect(o.id,curInd); dispApi.requestUpdate(); end function objDel() if(objId<=0), return; end; A=vbb('del',A,objId); objId=-1; objSelect(-1); dispApi.requestUpdate(); end function objSetLck( rng0, rng1 ) assert(objId>0); [lf,rt]=apiRng.getBnds(rng0~=rng1); % set object locks accordingly for i=lf:rt ind0=curInd+(i-1)*skip; ind1=objGrpInd(ind0,0); lks = [rng1(i); zeros(ind1-ind0,1)]; A=vbb('setVal',A,objId,'lock',lks,ind0+1,ind1+1); end s=max(objS,curInd); e=min(objE,curInd+skip*(nStepVis()-1)); if(~rng1(lf) || s==e), dispApi.requestUpdate(); return; end % interpolate intermediate positions o=vbb('get',A,objId,s+1,e+1); pos=[o.pos]; [n,k]=size(pos); lks=[o.lock]; lks([1 end])=1; lks=find(lks); for i=1:k, pos(:,i)=interp1(lks,pos(lks,i),1:n,'cubic'); end pos=constrainPos(pos); A=vbb('setVal',A,objId,'pos',pos,s+1,e+1); dispApi.requestUpdate(); end function objSetRng( rng0, rng1 ) [lf0,rt0]=apiRng.getBnds( rng0 ); [lf1,rt1]=apiRng.getBnds( rng1 ); rt1=min(rt1,nStepVis()); assert(objId>0); if(lf1~=lf0), objS=curInd+(lf1-1)*skip; end if(rt1~=rt0), objE=curInd+(rt1-1)*skip; end if(lf1~=lf0 || rt1~=rt0), objSelect(objId,objInd); end dispApi.requestUpdate(); end function objSetOcc( rng0, rng1 ) assert(objId>0); [lf,rt]=apiRng.getBnds(rng0~=rng1); assert(lf>0); if(lf>1 && rng0(lf-1)==1), lf=lf-1; rng1(lf)=1; end %extend lf if(rt<nStep && rng0(rt+1)==1), rt=rt+1; rng1(rt)=1; end %extend rt for i=lf:rt ind0=curInd+(i-1)*skip; ind1=objGrpInd(ind0,0); occl = ones(ind1-ind0+1,1)*rng1(i); A=vbb('setVal',A,objId,'occl',occl,ind0+1,ind1+1); end; dispApi.requestUpdate(); end function objSetFixed(), dispApi.requestUpdate(); end function objSetType() type = get(pObj.hObjTp,'Value'); if( strcmp(objTypes{type},'*new-type*') ) typeStr = inputdlg('Define new object type:'); if(isempty(typeStr) || any(strcmp(typeStr,objTypes))) set(pObj.hObjTp,'Value',1); return; end objTypes = [objTypes(1:end-1) typeStr objTypes(end)]; set(pObj.hObjTp,'String',objTypes,'Value',length(objTypes)-1); end if( objId>0 ) A = vbb('setVal',A,objId,'lbl',objTypes{type}); dispApi.requestUpdate(); end end function objToggle( d ) li=curInd; ri=curInd+skip*offset; os=A.objLists{li+1}; if(isempty(os)), L=[]; else L=[os.id]; end os=A.objLists{ri+1}; if(isempty(os)), R=[]; else R=[os.id]; end [ids,R,L]=union(R,L); inds=[ones(1,numel(L))*li ones(1,numel(R))*ri]; keep=A.objHide(ids)==0; ids=ids(keep); inds=inds(keep); n=length(ids); if(n==0), return; end if(objId==-1), if(d==1), j=1; else j=n; end; else j=find(ids==objId)+d; end if(j<1 || j>n), objSelect(-1); else objSelect(ids(j),inds(j)); end dispApi.requestUpdate(); end function objSelect( id, ind ) if(objId>0), A=vbb('setRng',A,objId,objS+1,objE+1); end if(id==-1), [objId,objS,objE,objInd]=deal(-1); return; end objS=vbb('getVal',A,id,'str')-1; objE=vbb('getVal',A,id,'end')-1; objId=id; objInd=ind; end function ind1 = objGrpInd( ind0, useExtended ) ind1 = min(ind0+skip-1,curInd+dispApi.nFrameRt()); if(~useExtended); ind1=min(ind1,objE); end end function n = nStepVis() n = min(nStep,floor(dispApi.nFrameRt()/skip+1)); end function pos = constrainPos( pos ) p=pos; p(:,3:4)=max(1,p(:,3:4)); r=max(1,siz0./p(:,3:4)); dy=(r(:,2)-1).*p(:,4); p(:,2)=p(:,2)-dy/2; p(:,4)=p(:,4)+dy; dx=(r(:,1)-1).*p(:,3); p(:,1)=p(:,1)-dx/2; p(:,3)=p(:,3)+dx; s=p(:,1:2); e=s+p(:,3:4); for j=1:2, s(:,j)=min(max(s(:,j),lims(j)),lims(j+2)-siz0); end for j=1:2, e(:,j)=max(min(e(:,j),lims(j+2)),s(:,j)+siz0); end pos = [s e-s]; end function A1 = annForSave() if(objId==-1), A1=A; else A1=vbb('setRng',A,objId,objS+1,objE+1); end end function annSaved(), assert(~isempty(A)); A.altered=false; end end function api = dispMakeApi() % variables [sr, info, looping, nPlay, replay, needUpdate, dispMode, ... timeDisp, hImLf, hImRt, hImSeq, hObjCur] = deal([]); % callbacks set( pRt.slOffst, 'Callback', @(h,e) setOffset() ); set( pRt.edSkip, 'Callback', @(h,e) setSkip() ); set( pLf.fpsInd, 'Callback', @(h,e) setFps() ); set( pLf.btnRep, 'Callback', @(h,e) setPlay('replayLf') ); set( pRt.btnRep, 'Callback', @(h,e) setPlay('replayRt') ); set( pRt.btnGo, 'Callback', @(h,e) setFrame('go') ); set( pLf.hFrInd, 'Callback', @(h,e) setFrame() ); set( pLf.btn(1), 'Callback', @(h,e) setPlay(-inf) ); set( pLf.btn(2), 'Callback', @(h,e) setFrame('-') ); set( pLf.btn(3), 'Callback', @(h,e) setPlay(0) ); set( pLf.btn(4), 'Callback', @(h,e) setFrame('+') ); set( pLf.btn(5), 'Callback', @(h,e) setPlay(+inf) ); % create api api = struct( 'requestUpdate',@requestUpdate, 'init',@init, ... 'newRect',@newRect, 'setOffset',@setOffset, ... 'nFrame',@nFrame, 'nFrameRt', @nFrameRt, 'getImg',@getImg, ... 'width',@width, 'height',@height, 'setPlay', @setPlay ); function init( sr1 ) if(isstruct(sr)), sr=sr.close(); end; delete(hObjCur); [sr, info, looping, nPlay, replay, needUpdate, dispMode, ... timeDisp, hImLf, hImRt, hImSeq, hObjCur] = deal([]); nPlay=0; replay=0; dispMode=0; looping=1; curInd=0; needUpdate=1; sr=sr1; skip=1; if(isstruct(sr)), info=sr.getinfo(); else info=struct('numFrames',0,'width',0,'height',0,'fps',25); end if(fps), info.fps=fps; end setOffset(nStep-1); setSkip(skip0); setFps(info.fps); hs = [pLf.hAx pRt.hAx pSeq.hAx]; for h=hs; cla(h); set(h,'XTick',[],'YTick',[]); end set([pLf.hCn pRt.hCn],'Enable',enStr{(nFrame>0)+1}); set([pLf.hFrInd pRt.hFrInd],'String','0'); set([pLf.hFrNum pRt.hFrNum],'String',[' / ' int2str(nFrame)]); looping=0; requestUpdate(); end function dispLoop() if( looping ), return; end; looping=1; k=0; while( 1 ) % if vid not loaded nothing to display if( nFrame==0 ), looping=0; return; end % increment/decrement curInd/nPlay appropriately if( nPlay~=0 ) needUpdate=1; fps=info.fps; t=clock(); t=t(6)+60*t(5); del=round(fps*(t-timeDisp)); timeDisp=timeDisp+del/fps; if(nPlay>0), del=min(del,nPlay); else del=max(-del,nPlay); end nPlay=nPlay-del; if(~replay), curInd=curInd+del; end if(del==0), drawnow(); continue; end end % update display if necessary k=k+1; if(0 && ~needUpdate), fprintf('%i draw events.\n',k); end if( ~needUpdate ), looping=0; return; end updateDisp(); filesApi.backupAnn(); drawnow(); end end function updateDisp() % delete old objects delete(hObjCur); hObjCur=[]; % possibly switch display modes if( dispMode~=0 && nPlay==0 ) needUpdate=1; dispMode=0; replay=0; elseif( abs(dispMode)==1 ) needUpdate=1; dispMode=dispMode*2; if(dispMode<0), hImMsk=hImRt; else hImMsk=hImLf; end I=get(hImMsk,'CData'); I(:)=100; set(hImMsk,'CData',I); I=get(hImSeq,'CData'); I(:)=100; set(hImSeq,'CData',I); objApi.prepPlay(); else needUpdate=0; end if(dispMode==0), seqI = objApi.prepSeq(); end % display left panel if( dispMode<=0 ) set( hFig, 'CurrentAxes', pLf.hAx ); ind=curInd; if(replay), ind=ind-nPlay; end hImLf = imageFast( hImLf, getImg(ind) ); set( pLf.hFrInd, 'String', int2str(ind+1) ); hObjCur=[hObjCur objApi.drawRects('panelLf',ind)]; end % display right panel if( dispMode>=0 ) set( hFig, 'CurrentAxes', pRt.hAx ); ind=curInd+offset*skip; if(replay), ind=ind-nPlay; end hImRt = imageFast( hImRt, getImg(ind) ); set( pRt.hFrInd, 'String', int2str(ind+1) ); hObjCur=[hObjCur objApi.drawRects('panelRt',ind)]; end % display seq panel if( dispMode==0 ) set( hFig, 'CurrentAxes', pSeq.hAx ); hImSeq = imageFast( hImSeq, seqI ); hObjCur=[hObjCur objApi.drawRects('objSeq',[])]; end % adjust play controls set( pLf.btnRep, 'Enable', enStr{(curInd>0)+1} ); set( pLf.btn(1:2), 'Enable', enStr{(curInd>0)+1} ); set( pLf.btn(4:5), 'Enable', enStr{(offset*skip<nFrameRt())+1}); function hImg = imageFast( hImg, I ) if(isempty(hImg)), hImg=image(I); axis off; else set(hImg,'CData',I); end end end function pos = newRect( lims, rp ) % get new rectangle, extract pos (disable controls temporarily) hs=[pObj.hCn pLf.hCn pRt.hCn pMenu.hCn]; en=get(hs,'Enable'); set(hs,'Enable','off'); [hR,api]=imRectRot('hParent',pLf.hAx,'lims',lims,rp{:}); hObjCur=[hObjCur hR]; pos=api.getPos(); pos=pos(1:4); for i=1:length(hs); set(hs(i),'Enable',en{i}); end requestUpdate(); end function requestUpdate( clearHs ) if(nargin==0 || isempty(clearHs)), clearHs=0; end if(clearHs), [hImLf, hImRt, hImSeq]=deal([]); end needUpdate=true; dispLoop(); end function setSkip( skip1 ) if(nargin==0), skip1=round(str2double(get(pRt.edSkip,'String'))); end if(~isnan(skip1)), skip=max(1,min(skip1,maxSkip)); end if(nFrame>0), skip=min(skip,floor(nFrameRt()/offset)); end set( pRt.stSkip, 'String', 'zoom: 1 / '); set( pRt.edSkip, 'String', int2str(skip) ); set( pRt.stOffst,'String', ['+' int2str(offset*skip)] ); setPlay(0); end function setOffset( offset1 ) if( nargin==1 ), offset=offset1; else offset=round(get(pRt.slOffst,'Value')); end if(nFrame>0), offset=min(offset,floor(nFrameRt()/skip)); end set( pRt.slOffst, 'Value', offset ); set( pRt.stOffst, 'String', ['+' int2str(offset*skip)] ); setPlay(0); end function setFrame( f ) if(nargin==0), f=round(str2double(get(pLf.hFrInd,'String'))); end if(strcmp(f,'-')), f=curInd-skip+1; end if(strcmp(f,'+')), f=curInd+skip+1; end if(strcmp(f,'go')), f=curInd+skip*offset+1; end if(~isnan(f)), curInd=max(0,min(f-1,nFrame-skip*offset-1)); end set(pLf.hFrInd,'String',int2str(curInd+1)); setPlay(0); end function setPlay( type ) switch type case 'replayLf' nPlay=min(curInd,repLen*info.fps); dispMode=-1; replay=1; case 'replayRt' nPlay=min(skip*offset,nFrameRt()); dispMode=1; replay=1; otherwise nPlay=type; dispMode=-1; replay=0; if(nPlay<0), nPlay=max(nPlay,-curInd); end if(nPlay>0), nPlay=min(nPlay,nFrameRt-offset*skip); end end t=clock(); t=t(6)+60*t(5); timeDisp=t; requestUpdate(); end function setFps( fps ) if(nargin==0), fps=round(str2double(get(pLf.fpsInd,'String'))); end if(isnan(fps)), fps=info.fps; else fps=max(1,min(fps,99999)); end set(pLf.fpsInd,'String',int2str(fps)); info.fps=fps; setPlay(0); end function I=getImg(f) sr.seek(f); I=sr.getframe(); if(ismatrix(I)), I=I(:,:,[1 1 1]); end end function w=width(), w=info.width; end function h=height(), h=info.height; end function n=nFrame(), n=info.numFrames; end function n=nFrameRt(), n=nFrame-1-curInd; end end function api = filesMakeApi() % variables [fVid, fAnn, tSave, tSave1] = deal([]); % callbacks set( pMenu.hVidOpn, 'Callback', @(h,e) openVid() ); set( pMenu.hVidCls, 'Callback', @(h,e) closeVid() ); set( pMenu.hAnnNew, 'Callback', @(h,e) newAnn() ); set( pMenu.hAnnOpn, 'Callback', @(h,e) openAnn() ); set( pMenu.hAnnSav, 'Callback', @(h,e) saveAnn() ); set( pMenu.hAnnCls, 'Callback', @(h,e) closeAnn() ); % create api api = struct('closeVid',@closeVid, 'backupAnn',@backupAnn, ... 'openVid',@openVid, 'openAnn',@openAnn ); function updateMenus() m=pMenu; en=enStr{~isempty(fVid)+1}; nm='VBB Labeler'; set([m.hVidCls m.hAnnNew m.hAnnOpn],'Enable',en); en=enStr{~isempty(fAnn)+1}; set([m.hAnnSav m.hAnnCls],'Enable',en); if(~isempty(fVid)), [~,nm1]=fileparts(fVid); nm=[nm ' - ' nm1]; end set(hFig,'Name',nm); objApi.init(); dispApi.requestUpdate(); end function closeVid() fVid=[]; if(~isempty(fAnn)), closeAnn(); end dispApi.init([]); updateMenus(); end function openVid( f ) if( nargin>0 ) [d,f]=fileparts(f); if(isempty(d)), d='.'; end; d=[d '/']; f=[f '.seq']; else if(isempty(fVid)), d='.'; else d=fileparts(fVid); end [f,d]=uigetfile('*.seq','Select video',[d '/*.seq']); end if( f==0 ), return; end; closeVid(); fVid=[d f]; try s=0; sr=seqIo(fVid,'r',maxCache); s=1; dispApi.init(sr); updateMenus(); catch er errordlg(['Failed to load: ' fVid '. ' er.message],'Error'); if(s); closeVid(); end; return; end end function closeAnn() assert(~isempty(fAnn)); A1=objApi.annForSave(); if( ~isempty(A1) && A1.altered ) qstr = 'Save Current Annotation?'; button = questdlg(qstr,'Exiting','yes','no','yes'); if(strcmp(button,'yes')); saveAnn(); end end A=[]; [fAnn,tSave,tSave1]=deal([]); updateMenus(); end function openAnn( f ) assert(~isempty(fVid)); if(~isempty(fAnn)), closeAnn(); end if( nargin>0 ) [d,f,e]=fileparts(f); if(isempty(d)), d='.'; end; d=[d '/']; if(isempty(e) && exist([d f '.txt'],'file')), e='.txt'; end if(isempty(e) && exist([d f '.vbb'],'file')), e='.vbb'; end f=[f e]; else [f,d]=uigetfile('*.vbb;*.txt','Select Annotation',fVid(1:end-4)); end if( f==0 ), return; end; fAnn=[d f]; try if(~exist(fAnn,'file')) A=vbb('init',dispApi.nFrame()); vbb('vbbSave',A,fAnn); else A=vbb( 'vbbLoad', fAnn ); eMsg='Annotation/video mismatch.'; if(A.nFrame~=dispApi.nFrame()), error(eMsg); end end catch er errordlg(['Failed to load: ' fAnn '. ' er.message],'Error'); A=[]; fAnn=[]; return; end tSave=clock(); tSave1=tSave; updateMenus(); end function saveAnn() A1=objApi.annForSave(); if(isempty(A1)), return; end [f,d]=uiputfile('*.vbb;*.txt','Select Annotation',fAnn); if( f==0 ), return; end; fAnn=[d f]; tSave=clock; tSave1=tSave; if(exist(fAnn,'file')), copyfile(fAnn,vbb('vbbName',fAnn,1)); end vbb('vbbSave',A1,fAnn); objApi.annSaved(); end function newAnn() if(~isempty(fAnn)), closeAnn(); end; fAnn=[fVid(1:end-3) 'vbb']; assert(~isempty(fVid)); A=vbb('init',dispApi.nFrame()); updateMenus(); end function backupAnn() if(isempty(tSave) || etime(clock,tSave)<30), return; end A1=objApi.annForSave(); if(isempty(A1)), return; end tSave=clock(); timeStmp=etime(tSave,tSave1)>60*5; if(timeStmp), tSave1=tSave; fAnn1=fAnn; else fAnn1=[fAnn(1:end-4) '-autobackup' fAnn(end-3:end)]; end vbb( 'vbbSave', A1, fAnn1, timeStmp ); end end end function api = selectorRange( hParent, pos, n, col0, col1 ) % Graphical way of selecting ranges from the sequence {1,2,...,n}. % % The result of the selection is an n element vector rng in {0,1}^n that % indicates whether each element is selected (or in the terminology below % ON/OFF). Particularly efficient if the ON cells in the resulting rng can % be grouped into a few continguous blocks. % % Creates n individual cells, 1 per element. Each cell is either OFF/ON, % denoted by colors col0/col1. Each cell can be clicked in three discrete % locations: LEFT/MID/RIGHT: (1) Clicking a cell in the MID location % toggles it ON/OFF. (2) Clicking an ON cell i turns a number of cells OFF, % determined in the following manner. Let [lf,rt] denote the contiguous % block of ON cells containing i. Clicking on the LEFT of cell i shrinks % the contiguous block of ON cells to [i,rt] (ie cells [lf,i-1] are truned % OFF). Clicking on the RIGHT of cell i shrinks the contiguous block to % [lf,i] (ie cells [i+1,rt] are truned OFF). (3) In a similar manner % clicking an OFF cell i turns a number of cells ON. Clicking on the LEFT % extends the closest contiguous block to the right of i, [lf,rt], to % [i,rt]. Clicking on the RIGHT extends the closest contiguous block the % the left of i, [lf,rt], to [lf,i]. To better understand the interface % simply run the example below. % % Locks can be set to limit how the range can change. If setLockCen(1) is % set, the user cannot toggle individual element by clicking the MIDDLE % location (this prevents contiguous blocks from being split). setLockLf/Rt % can be used to ensure the overall range [lf*,rt*], where lf*=min(rng) and % rt*=max(rng) cannot change in certain ways (see below). Also use enable() % to enable only portion of cells for interaction. % % USAGE % api = selectorRange( hParent, pos, n, [col0], [col1] ) % % INPUTS % hParent - object parent, either a figure or a uipanel % pos - guis pos vector [xMin yMin width height] % n - sequence size % col0 - [.7 .7 .7] 1x3 array: color for OFF cells % col1 - [.7 .9 1] 1x3 array: color for ON cells % % OUTPUTS % api - interface allowing access to created gui object % .delete() - use to delete obj, syntax is 'api.delete()' % .enable(en) - enable given range (or 0/1 to enable/disable all) % .setPos(pos) - set position of range selector in the figure % .getRng() - get range: returns n elt range vector in {0,1}^n % .setRng(rng) - set range to specified rng (n elmt vector) % .getBnds([rng]) - get left-most/right-most (lf,rt) bounds of range % .setRngChnCb(f) - whenever range changes, calls f(rngOld,rngNew) % .setLockCen(v) - 0/1 enables toggling individual elements % .setLockLf(v) - []:none; 0:locked; -1: only shrink; +1: only ext % .setLockRt(v) - []:none; 0:locked; -1: only shrink; +1: only ext % % EXAMPLE % h=figure(1); clf; pos=[10 20 500 15]; n=10; % api = selectorRange( h, pos, n ); % rng=zeros(1,n); rng(3:7)=1; api.setRng( rng ); % f = @(rO,rN) disp(['new range= ' int2str(rN)]); % api.setRngChnCb( f ); % % See also imRectRot, uicontrol narginchk(3,5); if(nargin<4 || isempty(col0)), col0=[.7 .7 .7]; end if(nargin<5 || isempty(col1)), col1=[.7 .9 1]; end % globals (n, col0, col1 are implicit globals) lockLf=-2; lockRt=-2; lockCen=0; en=1; [Is,hAx,hImg,rangeChnCb,rng]=deal([]); % set initial position rng=ones(1,n); setPos( pos ); % create api api = struct('delete',@delete1, 'enable',@enable, 'setPos',@setPos, ... 'getRng',@getRng, 'setRng',@setRng, 'getBnds',@getBnds, ... 'setRngChnCb',@setRngChnCb, 'setLockCen',@(v) setLock(v,0), ... 'setLockLf',@(v) setLock(v,-1), 'setLockRt',@(v) setLock(v,1) ); function setPos( pos ) % create images for virtual buttons (Is = h x w x rgb x enable) w=max(3,round(pos(3)/n)); wSid=floor(w/3); wMid=w-wSid*2; h=max(4,round(pos(4))); cols=permute([col0; col1],[1 3 2]); IsSid=zeros(h-2,wSid,3,2); IsMid=zeros(h-2,wMid,3,2); for i=1:2, IsSid(:,:,:,i)=repmat(cols(i,:,:),[h-2 wSid 1]); end for i=1:2, IsMid(:,:,:,i)=repmat(cols(i,:,:),[h-2 wMid 1]); end IsSid(:,1,:,:)=0; Is=[IsSid IsMid IsSid(:,end:-1:1,:,:)]; Is=padarray(Is,[1 0 0 0],mean(col0)*.8,'both'); pos(3)=w*n; % create new axes and image objects delete1(); units=get(hParent,'units'); set(hParent,'Units','pixels'); hAx=axes('Parent',hParent,'Units','pixels','Position',pos); hImg=image(zeros(h,w*n)); axis off; set(hParent,'Units',units); set(hImg,'ButtonDownFcn',@(h,e) btnPressed()); draw(); end function btnPressed() if(length(en)==1 && en==0), return; end x=get(hAx,'CurrentPoint'); w=size(Is,2); x=ceil(min(1,max(eps,x(1)/w/n))*3*n); btnId=ceil(x/3); btnPos=x-btnId*3+1; assert( btnId>=1 && btnId<=n && btnPos>=-1 && btnPos<=1 ); if(length(en)==2 && (btnId<en(1) || btnId>en(2))), return; end % compute what contiguous block of cells to alter if( btnPos==0 ) % toggle center if( lockCen ), return; end s=btnId; e=btnId; v=~rng(btnId); elseif( btnPos==-1 && ~rng(btnId) ) rt = find(rng(btnId+1:end)) + btnId; if(isempty(rt)), return; else rt=rt(1); end s=btnId; e=rt-1; v=1; %extend to left elseif( btnPos==1 && ~rng(btnId) ) lf = btnId - find(fliplr(rng(1:btnId-1))); if(isempty(lf)), return; else lf=lf(1); end s=lf+1; e=btnId; v=1; %extend to right elseif( btnPos==-1 && rng(btnId) ) if(btnId==1 || ~rng(btnId-1)), return; end lf=btnId-find([fliplr(rng(1:btnId-1)==0) 1])+1; lf=lf(1); s=lf; e=btnId-1; v=0; %shrink to right elseif( btnPos==1 && rng(btnId) ) if(btnId==n || ~rng(btnId+1)), return; end rt = find([rng(btnId+1:end)==0 1]) + btnId - 1; rt=rt(1); s=btnId+1; e=rt; v=0; %shrink to left end assert( all(rng(s:e)~=v) ); % apply locks preventing extension/shrinking beyond endpoints [lf,rt] = getBnds(); if( lf==-1 && (any(lockLf==[0 -1])||any(lockRt==[0 -1]))), return; end if( v==1 && e<lf && any(lockLf==[0 -1]) ), return; end if( v==1 && s>rt && any(lockRt==[0 -1]) ), return; end if( v==0 && s==lf && any(lockLf==[0 1]) ), return; end if( v==0 && e==rt && any(lockRt==[0 1]) ), return; end % update rng, redraw and callback rng0=rng; rng(s:e)=v; draw(); if(~isempty(rangeChnCb)), rangeChnCb(rng0,rng); end end function draw() % construct I based on hRng and set image h=size(Is,1); w=size(Is,2); I=zeros(h,w*n,3); if(length(en)>1 || en==1), rng1=rng; else rng1=zeros(1,n); end for i=1:n, I(:,(1:w)+(i-1)*w,:)=Is(:,:,:,rng1(i)+1); end if(ishandle(hImg)), set(hImg,'CData',I); end end function setRng( rng1 ) assert( length(rng1)==n && all(rng1==0 | rng1==1) ); if(any(rng~=rng1)), rng=rng1; draw(); end end function [lf,rt] = getBnds( rng1 ) if(nargin==0 || isempty(rng1)); rng1=rng; end [~,lf]=max(rng1); [v,rt]=max(fliplr(rng1)); rt=n-rt+1; if(v==0); lf=-1; rt=-1; end; end function setLock( v, flag ) if( flag==0 ), lockCen = v; else if(isempty(v)), v=-2; end assert( any(v==[-2 -1 0 1]) ); if(flag==1), lockRt=v; else lockLf=v; end end end function delete1() if(ishandle(hAx)), delete(hAx); end; hAx=[]; if(ishandle(hImg)), delete(hImg); end; hImg=[]; end function enable( en1 ), en=en1; draw(); end function setRngChnCb( f ), rangeChnCb = f; end end
github
garrickbrazil/SDS-RCNN-master
dbEval.m
.m
SDS-RCNN-master/external/caltech_toolbox/dbEval.m
20,334
utf_8
ed18d84be7b0e43ce99c1ccd2fb9bc08
function dbEval % Evaluate and plot all pedestrian detection results. % % Set parameters by altering this function directly. % % USAGE % dbEval % % INPUTS % % OUTPUTS % % EXAMPLE % dbEval % % See also bbGt, dbInfo % % Caltech Pedestrian Dataset Version 3.2.1 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % List of experiment settings: { name, hr, vr, ar, overlap, filter } % name - experiment name % hr - height range to test % vr - visibility range to test % ar - aspect ratio range to test % overlap - overlap threshold for evaluation % filter - expanded filtering (see 3.3 in PAMI11) exps = { 'Reasonable', [50 inf], [.65 inf], 0, .5, 1.25 'All', [20 inf], [.2 inf], 0, .5, 1.25 'Scale=large', [100 inf], [inf inf], 0, .5, 1.25 'Scale=near', [80 inf], [inf inf], 0, .5, 1.25 'Scale=medium', [30 80], [inf inf], 0, .5, 1.25 'Scale=far', [20 30], [inf inf], 0, .5, 1.25 'Occ=none', [50 inf], [inf inf], 0, .5, 1.25 'Occ=partial', [50 inf], [.65 1], 0, .5, 1.25 'Occ=heavy', [50 inf], [.2 .65], 0, .5, 1.25 'Ar=all', [50 inf], [inf inf], 0, .5, 1.25 'Ar=typical', [50 inf], [inf inf], .1, .5, 1.25 'Ar=atypical', [50 inf], [inf inf], -.1, .5, 1.25 'Overlap=25', [50 inf], [.65 inf], 0, .25, 1.25 'Overlap=50', [50 inf], [.65 inf], 0, .50, 1.25 'Overlap=75', [50 inf], [.65 inf], 0, .75, 1.25 'Expand=100', [50 inf], [.65 inf], 0, .5, 1.00 'Expand=125', [50 inf], [.65 inf], 0, .5, 1.25 'Expand=150', [50 inf], [.65 inf], 0, .5, 1.50 }; exps=cell2struct(exps',{'name','hr','vr','ar','overlap','filter'}); % List of algorithms: { name, resize, color, style } % name - algorithm name (defines data location) % resize - if true rescale height of each box by 100/128 % color - algorithm plot color % style - algorithm plot linestyle n=1000; clrs=zeros(n,3); for i=1:n, clrs(i,:)=max(.3,mod([78 121 42]*(i+1),255)/255); end algs = { 'VJ', 0, clrs(1,:), '-' 'HOG', 1, clrs(2,:), '--' 'FtrMine', 1, clrs(3,:), '-' 'Shapelet', 0, clrs(4,:), '--' 'PoseInv', 1, clrs(5,:), '-' 'MultiFtr', 0, clrs(6,:), '--' 'MultiFtr+CSS', 0, clrs(7,:), '-' 'MultiFtr+Motion', 0, clrs(8,:), '--' 'HikSvm', 1, clrs(9,:), '-' 'Pls', 0, clrs(10,:), '--' 'HogLbp', 0, clrs(11,:), '-' 'LatSvm-V1', 0, clrs(12,:), '--' 'LatSvm-V2', 0, clrs(13,:), '-' 'ChnFtrs', 0, clrs(14,:), '--' 'FPDW', 0, clrs(15,:), '-' 'FeatSynth', 0, clrs(16,:), '--' 'MultiResC', 0, clrs(17,:), '-' 'CrossTalk', 0, clrs(18,:), '--' 'VeryFast', 0, clrs(19,:), '-' 'ConvNet', 0, clrs(20,:), '--' 'SketchTokens', 0, clrs(21,:), '-' 'Roerei', 0, clrs(22,:), '--' 'AFS', 1, clrs(23,:), '-' 'AFS+Geo', 1, clrs(23,:), '--' 'MLS', 1, clrs(24,:), '-' 'MT-DPM', 0, clrs(25,:), '-' 'MT-DPM+Context', 0, clrs(25,:), '--' 'DBN-Isol', 0, clrs(26,:), '-' 'DBN-Mut', 0, clrs(26,:), '--' 'MF+Motion+2Ped', 0, clrs(27,:), '-' 'MultiResC+2Ped', 0, clrs(27,:), '--' 'MOCO', 0, clrs(28,:), '-' 'ACF', 0, clrs(29,:), '-' 'ACF-Caltech', 0, clrs(29,:), '--' 'ACF+SDt', 0, clrs(30,:), '-' 'FisherBoost', 0, clrs(31,:), '--' 'pAUCBoost', 0, clrs(32,:), '-' 'Franken', 0, clrs(33,:), '--' 'JointDeep', 0, clrs(34,:), '-' 'MultiSDP', 0, clrs(35,:), '--' 'SDN', 0, clrs(36,:), '-' 'RandForest', 0, clrs(37,:), '--' 'WordChannels', 0, clrs(38,:), '-' 'InformedHaar', 0, clrs(39,:), '--' 'SpatialPooling', 0, clrs(40,:), '-' 'SpatialPooling+', 0, clrs(42,:), '--' 'LDCF', 0, clrs(43,:), '-' 'ACF-Caltech+', 0, clrs(44,:), '--' 'Katamari', 0, clrs(45,:), '-' 'NAMC', 0, clrs(46,:), '--' 'FastCF', 0, clrs(47,:), '-' 'TA-CNN', 0, clrs(48,:), '--' 'SCCPriors', 0, clrs(49,:), '-' 'DeepParts', 0, clrs(50,:), '--' 'DeepCascade', 0, clrs(51,:), '-' 'DeepCascade+', 0, clrs(51,:), '--' 'LFOV', 0, clrs(52,:), '-' 'Checkerboards', 0, clrs(53,:), '--' 'Checkerboards+', 0, clrs(53,:), '-' 'CCF', 0, clrs(54,:), '--' 'CCF+CF', 0, clrs(54,:), '-' 'CompACT-Deep', 0, clrs(55,:), '--' 'SCF+AlexNet', 0, clrs(56,:), '-' 'SA-FastRCNN', 0, clrs(57,:), '--' 'RPN+BF', 0, clrs(58,:), '-' 'MS-CNN', 0, clrs(59,:), '--' 'ACF++', 0, clrs(60,:), '-' 'LDCF++', 0, clrs(61,:), '--' 'MRFC+Semantic', 0, clrs(63,:), '--' 'F-DNN', 0, clrs(64,:), '-' 'F-DNN+SS', 0, clrs(65,:), '--' }; algs=cell2struct(algs',{'name','resize','color','style'}); % List of database names dataNames = {'UsaTest','UsaTrain','InriaTest',... 'TudBrussels','ETH','Daimler','Japan'}; % select databases, experiments and algorithms for evaluation dataNames = dataNames(1); % select one or more databases for evaluation exps = exps(1); % select one or more experiment for evaluation algs = algs(:); % select one or more algorithms for evaluation % remaining parameters and constants aspectRatio = .41; % default aspect ratio for all bbs bnds = [5 5 635 475]; % discard bbs outside this pixel range plotRoc = 1; % if true plot ROC else PR curves plotAlg = 0; % if true one plot per alg else one plot per exp plotNum = 15; % only show best plotNum curves (and VJ and HOG) samples = 10.^(-2:.25:0); % samples for computing area under the curve lims = [2e-4 50 .035 1]; % axis limits for ROC plots bbsShow = 0; % if true displays sample bbs for each alg/exp bbsType = 'fp'; % type of bbs to display (fp/tp/fn/dt) algs0=algs; bnds0=bnds; for d=1:length(dataNames), dataName=dataNames{d}; % select algorithms with results for current dataset [~,set]=dbInfo(dataName); set=['/set' int2str2(set(1),2)]; names={algs0.name}; n=length(names); keep=false(1,n); for i=1:n, keep(i)=exist([dbInfo '/res/' names{i} set],'dir'); end algs=algs0(keep); % handle special database specific cases if(any(strcmp(dataName,{'InriaTest','TudBrussels','ETH'}))) bnds=[-inf -inf inf inf]; else bnds=bnds0; end if(strcmp(dataName,'InriaTest')) i=find(strcmp({algs.name},'FeatSynth')); if(~isempty(i)), algs(i).resize=1; end; end % name for all plots (and also temp directory for results) plotName=[fileparts(mfilename('fullpath')) '/results/' dataName]; if(~exist(plotName,'dir')), mkdir(plotName); end % load detections and ground truth and evaluate dts = loadDt( algs, plotName, aspectRatio ); gts = loadGt( exps, plotName, aspectRatio, bnds ); res = evalAlgs( plotName, algs, exps, gts, dts ); % plot curves and bbs plotExps( res, plotRoc, plotAlg, plotNum, plotName, ... samples, lims, reshape([algs.color]',3,[])', {algs.style} ); plotBbs( res, plotName, bbsShow, bbsType ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function res = evalAlgs( plotName, algs, exps, gts, dts ) % Evaluate every algorithm on each experiment % % OUTPUTS % res - nGt x nDt cell of all evaluations, each with fields % .stra - string identifying algorithm % .stre - string identifying experiment % .gtr - [n x 1] gt result bbs for each frame [x y w h match] % .dtr - [n x 1] dt result bbs for each frame [x y w h score match] fprintf('Evaluating: %s\n',plotName); nGt=length(gts); nDt=length(dts); res=repmat(struct('stra',[],'stre',[],'gtr',[],'dtr',[]),nGt,nDt); for g=1:nGt for d=1:nDt gt=gts{g}; dt=dts{d}; n=length(gt); assert(length(dt)==n); stra=algs(d).name; stre=exps(g).name; fName = [plotName '/ev-' [stre '-' stra] '.mat']; if(exist(fName,'file')), R=load(fName); res(g,d)=R.R; continue; end fprintf('\tExp %i/%i, Alg %i/%i: %s/%s\n',g,nGt,d,nDt,stre,stra); hr = exps(g).hr.*[1/exps(g).filter exps(g).filter]; for f=1:n, bb=dt{f}; dt{f}=bb(bb(:,4)>=hr(1) & bb(:,4)<hr(2),:); end [gtr,dtr] = bbGt('evalRes',gt,dt,exps(g).overlap); R=struct('stra',stra,'stre',stre,'gtr',{gtr},'dtr',{dtr}); res(g,d)=R; save(fName,'R'); end end end function plotExps( res, plotRoc, plotAlg, plotNum, plotName, ... samples, lims, colors, styles ) % Plot all ROC or PR curves. % % INPUTS % res - output of evalAlgs % plotRoc - if true plot ROC else PR curves % plotAlg - if true one plot per alg else one plot per exp % plotNum - only show best plotNum curves (and VJ and HOG) % plotName - filename for saving plots % samples - samples for computing area under the curve % lims - axis limits for ROC plots % colors - algorithm plot colors % styles - algorithm plot linestyles % Compute (xs,ys) and score (area under the curve) for every exp/alg [nGt,nDt]=size(res); xs=cell(nGt,nDt); ys=xs; scores=zeros(nGt,nDt); for g=1:nGt for d=1:nDt [xs{g,d},ys{g,d},~,score] = ... bbGt('compRoc',res(g,d).gtr,res(g,d).dtr,plotRoc,samples); if(plotRoc), ys{g,d}=1-ys{g,d}; score=1-score; end if(plotRoc), score=exp(mean(log(score))); else score=mean(score); end scores(g,d)=score; end end % Generate plots if( plotRoc ), fName=[plotName 'Roc']; else fName=[plotName 'Pr']; end stra={res(1,:).stra}; stre={res(:,1).stre}; scores1=round(scores*100); if( plotAlg ), nPlots=nDt; else nPlots=nGt; end; plotNum=min(plotNum,nDt); for p=1:nPlots % prepare xs1,ys1,lgd1,colors1,styles1,fName1 according to plot type if( plotAlg ) xs1=xs(:,p); ys1=ys(:,p); fName1=[fName stra{p}]; lgd1=stre; for g=1:nGt, lgd1{g}=sprintf('%2i%% %s',scores1(g,p),stre{g}); end colors1=uniqueColors(1,max(10,nGt)); styles1=repmat({'-','--'},1,nGt); else xs1=xs(p,:); ys1=ys(p,:); fName1=[fName stre{p}]; lgd1=stra; for d=1:nDt, lgd1{d}=sprintf('%2i%% %s',scores1(p,d),stra{d}); end kp=[find(strcmp(stra,'VJ')) find(strcmp(stra,'HOG')) 1 1]; [~,ord]=sort(scores(p,:)); kp=ord==kp(1)|ord==kp(2); j=find(cumsum(~kp)>=plotNum-2); kp(1:j(1))=1; ord=fliplr(ord(kp)); xs1=xs1(ord); ys1=ys1(ord); lgd1=lgd1(ord); colors1=colors(ord,:); styles1=styles(ord); f=fopen([fName1 '.txt'],'w'); for d=1:nDt, fprintf(f,'%s %f\n',stra{d},scores(p,d)); end; fclose(f); end % plot curves and finalize display figure(1); clf; grid on; hold on; n=length(xs1); h=zeros(1,n); for i=1:n, h(i)=plot(xs1{i},ys1{i},'Color',colors1(i,:),... 'LineStyle',styles1{i},'LineWidth',2); end if( plotRoc ) yt=[.05 .1:.1:.5 .64 .8]; ytStr=int2str2(yt*100,2); for i=1:length(yt), ytStr{i}=['.' ytStr{i}]; end set(gca,'XScale','log','YScale','log',... 'YTick',[yt 1],'YTickLabel',[ytStr '1'],... 'XMinorGrid','off','XMinorTic','off',... 'YMinorGrid','off','YMinorTic','off'); xlabel('false positives per image','FontSize',14); ylabel('miss rate','FontSize',14); axis(lims); else x=1; for i=1:n, x=max(x,max(xs1{i})); end, x=min(x-mod(x,.1),1.0); y=.8; for i=1:n, y=min(y,min(ys1{i})); end, y=max(y-mod(y,.1),.01); xlim([0, x]); ylim([y, 1]); set(gca,'xtick',0:.1:1); xlabel('Recall','FontSize',14); ylabel('Precision','FontSize',14); end if(~isempty(lgd1)), legend(h,lgd1,'Location','sw','FontSize',10); end % save figure to disk (uncomment pdfcrop commands to automatically crop) [o,~]=system('pdfcrop'); if(o==127), setenv('PATH',... [getenv('PATH') ':/Library/TeX/texbin/:/usr/local/bin/']); end savefig(fName1,1,'pdf','-r300','-fonts'); close(1); f1=[fName1 '.pdf']; system(['pdfcrop -margins ''-30 -20 -50 -10 '' ' f1 ' ' f1]); end end function plotBbs( res, plotName, pPage, type ) % This function plots sample fp/tp/fn bbs for given algs/exps if(pPage==0), return; end; [nGt,nDt]=size(res); % construct set/vid/frame index for each image [~,setIds,vidIds,skip]=dbInfo; k=length(res(1).gtr); is=zeros(k,3); k=0; for s=1:length(setIds) for v=1:length(vidIds{s}) A=loadVbb(s,v); s1=setIds(s); v1=vidIds{s}(v); for f=skip-1:skip:A.nFrame-1, k=k+1; is(k,:)=[s1 v1 f]; end end end for g=1:nGt for d=1:nDt % augment each bb with set/video/frame index and flatten dtr=res(g,d).dtr; gtr=res(g,d).gtr; for i=1:k dtr{i}(:,7)=is(i,1); dtr{i}(:,8)=is(i,2); dtr{i}(:,9)=is(i,3); gtr{i}(:,6)=is(i,1); gtr{i}(:,7)=is(i,2); gtr{i}(:,8)=is(i,3); dtr{i}=dtr{i}'; gtr{i}=gtr{i}'; end dtr=[dtr{:}]'; dtr=dtr(dtr(:,6)~=-1,:); gtr=[gtr{:}]'; gtr=gtr(gtr(:,5)~=-1,:); % get bb, ind, bbo, and indo according to type if( strcmp(type,'fn') ) keep=gtr(:,5)==0; ord=randperm(sum(keep)); bbCol='r'; bboCol='y'; bbLst='-'; bboLst='--'; bb=gtr(:,1:4); ind=gtr(:,6:8); bbo=dtr(:,1:6); indo=dtr(:,7:9); else switch type case 'dt', bbCol='y'; keep=dtr(:,6)>=0; case 'fp', bbCol='r'; keep=dtr(:,6)==0; case 'tp', bbCol='y'; keep=dtr(:,6)==1; end [~,ord]=sort(dtr(keep,5),'descend'); bboCol='g'; bbLst='--'; bboLst='-'; bb=dtr(:,1:6); ind=dtr(:,7:9); bbo=gtr(:,1:4); indo=gtr(:,6:8); end % prepare and display n=sum(keep); bbo1=cell(1,n); O=ones(1,size(indo,1)); ind=ind(keep,:); bb=bb(keep,:); ind=ind(ord,:); bb=bb(ord,:); for f=1:n, bbo1{f}=bbo(all(indo==ind(O*f,:),2),:); end f=[plotName res(g,d).stre res(g,d).stra '-' type]; plotBbSheet( bb, ind, bbo1,'fName',f,'pPage',pPage,'bbCol',bbCol,... 'bbLst',bbLst,'bboCol',bboCol,'bboLst',bboLst ); end end end function plotBbSheet( bb, ind, bbo, varargin ) % Draw sheet of bbs. % % USAGE % plotBbSheet( R, varargin ) % % INPUTS % bb - [nx4] bbs to display % ind - [nx3] the set/video/image number for each bb % bbo - {nx1} cell of other bbs for each image (optional) % varargin - prm struct or name/value list w following fields: % .fName - ['REQ'] base file to save to % .pPage - [1] num pages % .mRows - [5] num rows / page % .nCols - [9] num cols / page % .scale - [2] size of image region to crop relative to bb % .siz0 - [100 50] target size of each bb % .pad - [4] amount of space between cells % .bbCol - ['g'] bb color % .bbLst - ['-'] bb LineStyle % .bboCol - ['r'] bbo color % .bboLst - ['--'] bbo LineStyle dfs={'fName','REQ', 'pPage',1, 'mRows',5, 'nCols',9, 'scale',1.5, ... 'siz0',[100 50], 'pad',8, 'bbCol','g', 'bbLst','-', ... 'bboCol','r', 'bboLst','--' }; [fName,pPage,mRows,nCols,scale,siz0,pad,bbCol,bbLst, ... bboCol,bboLst] = getPrmDflt(varargin,dfs); n=size(ind,1); indAll=ind; bbAll=bb; bboAll=bbo; for page=1:min(pPage,ceil(n/mRows/nCols)) Is = zeros(siz0(1)*scale,siz0(2)*scale,3,mRows*nCols,'uint8'); bbN=[]; bboN=[]; labels=repmat({''},1,mRows*nCols); for f=1:mRows*nCols % get fp bb (bb), double size (bb2), and other bbs (bbo) f0=f+(page-1)*mRows*nCols; if(f0>n), break, end [col,row]=ind2sub([nCols mRows],f); ind=indAll(f0,:); bb=bbAll(f0,:); bbo=bboAll{f0}; hr=siz0(1)/bb(4); wr=siz0(2)/bb(3); mr=min(hr,wr); bb2 = round(bbApply('resize',bb,scale*hr/mr,scale*wr/mr)); bbo=bbApply('intersect',bbo,bb2); bbo=bbo(bbApply('area',bbo)>0,:); labels{f}=sprintf('%i/%i/%i',ind(1),ind(2),ind(3)); % normalize bb and bbo for siz0*scale region, then shift bb=bbApply('shift',bb,bb2(1),bb2(2)); bb(:,1:4)=bb(:,1:4)*mr; bbo=bbApply('shift',bbo,bb2(1),bb2(2)); bbo(:,1:4)=bbo(:,1:4)*mr; xdel=-pad*scale-(siz0(2)+pad*2)*scale*(col-1); ydel=-pad*scale-(siz0(1)+pad*2)*scale*(row-1); bb=bbApply('shift',bb,xdel,ydel); bbN=[bbN; bb]; %#ok<AGROW> bbo=bbApply('shift',bbo,xdel,ydel); bboN=[bboN; bbo]; %#ok<AGROW> % load and crop image region sr=seqIo(sprintf('%s/videos/set%02i/V%03i',dbInfo,ind(1),ind(2)),'r'); sr.seek(ind(3)); I=sr.getframe(); sr.close(); I=bbApply('crop',I,bb2,'replicate'); I=uint8(imResample(double(I{1}),siz0*scale)); Is(:,:,:,f)=I; end % now plot all and save prm=struct('hasChn',1,'padAmt',pad*2*scale,'padEl',0,'mm',mRows,... 'showLines',0,'labels',{labels}); h=figureResized(.9,1); clf; montage2(Is,prm); hold on; bbApply('draw',bbN,bbCol,2,bbLst); bbApply('draw',bboN,bboCol,2,bboLst); savefig([fName int2str2(page-1,2)],h,'png','-r200','-fonts'); close(h); if(0), save([fName int2str2(page-1,2) '.mat'],'Is'); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function A = loadVbb( s, v ) % Load given annotation (caches AS for speed). persistent AS pth sIds vIds; [pth1,sIds1,vIds1]=dbInfo; if(~strcmp(pth,pth1) || ~isequal(sIds,sIds1) || ~isequal(vIds,vIds1)) [pth,sIds,vIds]=dbInfo; AS=cell(length(sIds),1e3); end A=AS{s,v}; if(~isempty(A)), return; end fName=@(s,v) sprintf('%s/annotations/set%02i/V%03i',pth,s,v); A=vbb('vbbLoad',fName(sIds(s),vIds{s}(v))); AS{s,v}=A; end function gts = loadGt( exps, plotName, aspectRatio, bnds ) % Load ground truth of all experiments for all frames. fprintf('Loading ground truth: %s\n',plotName); nExp=length(exps); gts=cell(1,nExp); [~,setIds,vidIds,skip] = dbInfo; for i=1:nExp gName = [plotName '/gt-' exps(i).name '.mat']; if(exist(gName,'file')), gt=load(gName); gts{i}=gt.gt; continue; end fprintf('\tExperiment #%d: %s\n', i, exps(i).name); gt=cell(1,100000); k=0; lbls={'person','person?','people','ignore'}; filterGt = @(lbl,bb,bbv) filterGtFun(lbl,bb,bbv,... exps(i).hr,exps(i).vr,exps(i).ar,bnds,aspectRatio); for s=1:length(setIds) for v=1:length(vidIds{s}) A = loadVbb(s,v); for f=skip-1:skip:A.nFrame-1 bb = vbb('frameAnn',A,f+1,lbls,filterGt); ids=bb(:,5)~=1; bb(ids,:)=bbApply('resize',bb(ids,:),1,0,aspectRatio); k=k+1; gt{k}=bb; end end end gt=gt(1:k); gts{i}=gt; save(gName,'gt','-v6'); end function p = filterGtFun( lbl, bb, bbv, hr, vr, ar, bnds, aspectRatio ) p=strcmp(lbl,'person'); h=bb(4); p=p & (h>=hr(1) & h<hr(2)); if(all(bbv==0)), vf=inf; else vf=bbv(3).*bbv(4)./(bb(3)*bb(4)); end p=p & vf>=vr(1) & vf<=vr(2); if(ar~=0), p=p & sign(ar)*abs(bb(3)./bb(4)-aspectRatio)<ar; end p = p & bb(1)>=bnds(1) & (bb(1)+bb(3)<=bnds(3)); p = p & bb(2)>=bnds(2) & (bb(2)+bb(4)<=bnds(4)); end end function dts = loadDt( algs, plotName, aspectRatio ) % Load detections of all algorithm for all frames. fprintf('Loading detections: %s\n',plotName); nAlg=length(algs); dts=cell(1,nAlg); [~,setIds,vidIds,skip] = dbInfo; for i=1:nAlg aName = [plotName '/dt-' algs(i).name '.mat']; if(exist(aName,'file')), dt=load(aName); dts{i}=dt.dt; continue; end fprintf('\tAlgorithm #%d: %s\n', i, algs(i).name); dt=cell(1,100000); k=0; aDir=[dbInfo '/res/' algs(i).name]; if(algs(i).resize), resize=100/128; else resize=1; end for s=1:length(setIds), s1=setIds(s); for v=1:length(vidIds{s}), v1=vidIds{s}(v); A=loadVbb(s,v); frames=skip-1:skip:A.nFrame-1; vName=sprintf('%s/set%02d/V%03d',aDir,s1,v1); if(~exist([vName '.txt'],'file')) % consolidate bbs for video into single text file bbs=cell(length(frames),1); for f=1:length(frames) fName = sprintf('%s/I%05d.txt',vName,frames(f)); if(~exist(fName,'file')), error(['file not found:' fName]); end bb=load(fName,'-ascii'); if(isempty(bb)), bb=zeros(0,5); end if(size(bb,2)~=5), error('incorrect dimensions'); end bbs{f}=[ones(size(bb,1),1)*(frames(f)+1) bb]; end for f=frames, delete(sprintf('%s/I%05d.txt',vName,f)); end bbs=cell2mat(bbs); dlmwrite([vName '.txt'],bbs); rmdir(vName,'s'); end bbs=load([vName '.txt'],'-ascii'); for f=frames, bb=bbs(bbs(:,1)==f+1,2:6); bb=bbApply('resize',bb,resize,0,aspectRatio); k=k+1; dt{k}=bb; end end end dt=dt(1:k); dts{i}=dt; save(aName,'dt','-v6'); end end
github
garrickbrazil/SDS-RCNN-master
imagesAlign.m
.m
SDS-RCNN-master/external/pdollar_toolbox/videos/imagesAlign.m
8,167
utf_8
d125eb5beb502d940be5bd145521f34b
function [H,Ip] = imagesAlign( I, Iref, varargin ) % Fast and robust estimation of homography relating two images. % % The algorithm for image alignment is a simple but effective variant of % the inverse compositional algorithm. For a thorough overview, see: % "Lucas-kanade 20 years on A unifying framework," % S. Baker and I. Matthews. IJCV 2004. % The implementation is optimized and can easily run at 20-30 fps. % % type may take on the following values: % 'translation' - translation only % 'rigid' - translation and rotation % 'similarity' - translation, rotation and scale % 'affine' - 6 parameter affine transform % 'rotation' - pure rotation (about x, y and z) % 'projective' - full 8 parameter homography % Alternatively, type may be a vector of ids between 1 and 8, specifying % exactly the types of transforms allowed. The ids correspond, to: 1: % translate-x, 2: translate-y, 3: uniform scale, 4: shear, 5: non-uniform % scale, 6: rotate-z, 7: rotate-x, 8: rotate-y. For example, to specify % translation use type=[1,2]. If the transforms don't form a group, the % returned homography may have more degrees of freedom than expected. % % Parameters (in rough order of importance): [resample] controls image % downsampling prior to computing H. Runtime is proportional to area, so % using resample<1 can dramatically speed up alignment, and in general not % degrade performance much. [sig] controls image smoothing, sig=2 gives % good performance, setting sig too low causes loss of information and too % high will violate the linearity assumption. [epsilon] defines the % stopping criteria, use to adjust performance versus speed tradeoff. % [lambda] is a regularization term that causes small transforms to be % favored, in general any small non-zero setting of lambda works well. % [outThr] is a threshold beyond which pixels are considered outliers, be % careful not to set too low. [minArea] determines coarsest scale beyond % which the image is not downsampled (should not be set too low). [H0] can % be used to specify an initial alignment. Use [show] to display results. % % USAGE % [H,Ip] = imagesAlign( I, Iref, varargin ) % % INPUTS % I - transformed version of I % Iref - reference grayscale double image % varargin - additional params (struct or name/value pairs) % .type - ['projective'] see above for options % .resample - [1] image resampling prior to homography estimation % .sig - [2] amount of Gaussian spatial smoothing to apply % .epsilon - [1e-3] stopping criteria (min change in error) % .lambda - [1e-6] regularization term favoring small transforms % .outThr - [inf] outlier threshold % .minArea - [4096] minimum image area in coarse to fine search % .H0 - [eye(3)] optional initial homography estimate % .show - [0] optionally display results in figure show % % OUTPUTS % H - estimated homography to transform I into Iref % Ip - tranformed version of I (slow to compute) % % EXAMPLE % Iref = double(imread('cameraman.tif'))/255; % H0 = [eye(2)+randn(2)*.1 randn(2,1)*10; randn(1,2)*1e-3 1]; % I = imtransform2(Iref,H0^-1,'pad','replicate'); % o=50; P=ones(o)*1; I(150:149+o,150:149+o)=P; % prmAlign={'outThr',.1,'resample',.5,'type',1:8,'show'}; % [H,Ip]=imagesAlign(I,Iref,prmAlign{:},1); % tic, for i=1:30, H=imagesAlign(I,Iref,prmAlign{:},0); end; % t=toc; fprintf('average fps: %f\n',30/t) % % See also imTransform2 % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get parameters dfs={'type','projective','resample',1,'sig',2,'epsilon',1e-3,... 'lambda',1e-6,'outThr',inf,'minArea',4096,'H0',eye(3),'show',0}; [type,resample,sig,epsilon,lambda,outThr,minArea,H0,show] = ... getPrmDflt(varargin,dfs,1); filt = filterGauss(2*ceil(sig*2.5)+1,[],sig^2); % determine type of transformation to recover if(isnumeric(type)), assert(length(type)<=8); else id=find(strcmpi(type,{'translation','rigid','similarity','affine',... 'rotation','projective'})); msgId='piotr:imagesAlign'; if(isempty(id)), error(msgId,'unknown type: %s',type); end type={1:2,[1:2 6],[1:3 6],1:6,6:8,1:8}; type=type{id}; end; keep=zeros(1,8); keep(type)=1; keep=keep>0; % compute image alignment (optionally resample first) prm={keep,filt,epsilon,H0,minArea,outThr,lambda}; if( resample==1 ), H=imagesAlign1(I,Iref,prm); else S=eye(3); S([1 5])=resample; H0=S*H0*S^-1; prm{4}=H0; I1=imResample(I,resample); Iref1=imResample(Iref,resample); H=imagesAlign1(I1,Iref1,prm); H=S^-1*H*S; end % optionally rectify I and display results (can be expensive) if(nargout==1 && show==0), return; end Ip = imtransform2(I,H,'pad','replicate'); if(show), figure(show); clf; s=@(i) subplot(2,3,i); Is=[I Iref Ip]; ri=[min(Is(:)) max(Is(:))]; D0=abs(I-Iref); D1=abs(Ip-Iref); Ds=[D0 D1]; di=[min(Ds(:)) max(Ds(:))]; s(1); im(I,ri,0); s(2); im(Iref,ri,0); s(3); im(D0,di,0); s(4); im(Ip,ri,0); s(5); im(Iref,ri,0); s(6); im(D1,di,0); s(3); title('|I-Iref|'); s(6); title('|Ip-Iref|'); end end function H = imagesAlign1( I, Iref, prm ) % apply recursively if image large [keep,filt,epsilon,H0,minArea,outThr,lambda]=deal(prm{:}); [h,w]=size(I); hc=mod(h,2); wc=mod(w,2); if( w*h<minArea ), H=H0; else I1=imResample(I(1:(h-hc),1:(w-wc)),.5); Iref1=imResample(Iref(1:(h-hc),1:(w-wc)),.5); S=eye(3); S([1 5])=2; H0=S^-1*H0*S; prm{4}=H0; H=imagesAlign1(I1,Iref1,prm); H=S*H*S^-1; end % smooth images (pad first so dimensions unchanged) O=ones(1,(length(filt)-1)/2); hs=[O 1:h h*O]; ws=[O 1:w w*O]; Iref=conv2(conv2(Iref(hs,ws),filt','valid'),filt,'valid'); I=conv2(conv2(I(hs,ws),filt','valid'),filt,'valid'); % pad images with nan so later can determine valid regions hs=[1 1 1:h h h]; ws=[1 1 1:w w w]; I=I(hs,ws); Iref=Iref(hs,ws); hs=[1:2 h+3:h+4]; I(hs,:)=nan; Iref(hs,:)=nan; ws=[1:2 w+3:w+4]; I(:,ws)=nan; Iref(:,ws)=nan; % convert weights hardcoded for 128x128 image to given image dims wts=[1 1 1.0204 .03125 1.0313 0.0204 .00055516 .00055516]; s=sqrt(numel(Iref))/128; wts=[wts(1:2) wts(3)^(1/s) wts(4)/s wts(5)^(1/s) wts(6)/s wts(7:8)/(s*s)]; % prepare subspace around Iref [~,Hs]=ds2H(-ones(1,8),wts); Hs=Hs(:,:,keep); K=size(Hs,3); [h,w]=size(Iref); Ts=zeros(h,w,K); k=0; if(keep(1)), k=k+1; Ts(:,1:end-1,k)=Iref(:,2:end); end if(keep(2)), k=k+1; Ts(1:end-1,:,k)=Iref(2:end,:); end pTransf={'method','bilinear','pad','none','useCache'}; for i=k+1:K, Ts(:,:,i)=imtransform2(Iref,Hs(:,:,i),pTransf{:},1); end Ds=Ts-Iref(:,:,ones(1,K)); Mref = ~any(isnan(Ds),3); if(0), figure(10); montage2(Ds); end Ds = reshape(Ds,[],size(Ds,3)); % iteratively project Ip onto subspace, storing transformation lambda=lambda*w*h*eye(K); ds=zeros(1,8); err=inf; for i=1:100 s=svd(H); if(s(3)<=1e-4*s(1)), H=eye(3); return; end Ip=imtransform2(I,H,pTransf{:},0); dI=Ip-Iref; dI0=abs(dI); M=Mref & ~isnan(Ip); M0=M; if(outThr<inf), M=M & dI0<outThr; end M1=find(M); D=Ds(M1,:); ds1=(D'*D + lambda)^(-1)*(D'*dI(M1)); if(any(isnan(ds1))), ds1=zeros(K,1); end ds(keep)=ds1; H1=ds2H(ds,wts); H=H*H1; H=H/H(9); err0=err; err=dI0; err(~M0)=0; err=mean2(err); del=err0-err; if(0), fprintf('i=%03i err=%e del=%e\n',i,err,del); end if( del<epsilon ), break; end end end function [H,Hs] = ds2H( ds, wts ) % compute homography from offsets ds Hs=eye(3); Hs=Hs(:,:,ones(1,8)); Hs(2,3,1)=wts(1)*ds(1); % 1 x translation Hs(1,3,2)=wts(2)*ds(2); % 2 y translation Hs(1:2,1:2,3)=eye(2)*wts(3)^ds(3); % 3 scale Hs(2,1,4)=wts(4)*ds(4); % 4 shear Hs(1,1,5)=wts(5)^ds(5); % 5 scale non-uniform ct=cos(wts(6)*ds(6)); st=sin(wts(6)*ds(6)); Hs(1:2,1:2,6)=[ct -st; st ct]; % 6 rotation about z ct=cos(wts(7)*ds(7)); st=sin(wts(7)*ds(7)); Hs([1 3],[1 3],7)=[ct -st; st ct]; % 7 rotation about x ct=cos(wts(8)*ds(8)); st=sin(wts(8)*ds(8)); Hs(2:3,2:3,8)=[ct -st; st ct]; % 8 rotation about y H=eye(3); for i=1:8, H=Hs(:,:,i)*H; end end
github
garrickbrazil/SDS-RCNN-master
opticalFlow.m
.m
SDS-RCNN-master/external/pdollar_toolbox/videos/opticalFlow.m
7,386
utf_8
bf636ebdd9a6e87b4705c8e9f4ffda81
function [Vx,Vy,reliab] = opticalFlow( I1, I2, varargin ) % Coarse-to-fine optical flow using Lucas&Kanade or Horn&Schunck. % % Implemented 'type' of optical flow estimation: % LK: http://en.wikipedia.org/wiki/Lucas-Kanade_method % HS: http://en.wikipedia.org/wiki/Horn-Schunck_method % SD: Simple block-based sum of absolute differences flow % LK is a local, fast method (the implementation is fully vectorized). % HS is a global, slower method (an SSE implementation is provided). % SD is a simple but potentially expensive approach. % % Common parameters: 'smooth' determines smoothing prior to computing flow % and can make flow estimation more robust. 'filt' determines amount of % median filtering of the computed flow field which improves results but is % costly. 'minScale' and 'maxScale' control image scales in the pyramid. % Setting 'maxScale'<1 results in faster but lower quality results, e.g. % maxScale=.5 makes flow computation about 4x faster. Method specific % parameters: 'radius' controls window size (and smoothness of flow) for LK % and SD. 'nBlock' determines number of blocks tested in each direction for % SD, computation time is O(nBlock^2). For HS, 'alpha' controls tradeoff % between data and smoothness term (and smoothness of flow) and 'nIter' % determines number of gradient decent steps. % % USAGE % [Vx,Vy,reliab] = opticalFlow( I1, I2, pFlow ) % % INPUTS % I1, I2 - input images to calculate flow between % pFlow - parameters (struct or name/value pairs) % .type - ['LK'] may be 'LK', 'HS' or 'SD' % .smooth - [1] smoothing radius for triangle filter (may be 0) % .filt - [0] median filtering radius for smoothing flow field % .minScale - [1/64] minimum pyramid scale (must be a power of 2) % .maxScale - [1] maximum pyramid scale (must be a power of 2) % .radius - [10] integration radius for weighted window [LK/SD only] % .nBlock - [5] number of tested blocks [SD only] % .alpha - [1] smoothness constraint [HS only] % .nIter - [250] number of iterations [HS only] % % OUTPUTS % Vx, Vy - x,y components of flow [Vx>0->right, Vy>0->down] % reliab - reliability of flow in given window % % EXAMPLE - compute LK flow on test images % load opticalFlowTest; % [Vx,Vy]=opticalFlow(I1,I2,'smooth',1,'radius',10,'type','LK'); % figure(1); im(I1); figure(2); im(I2); % figure(3); im([Vx Vy]); colormap jet; % % EXAMPLE - rectify I1 to I2 using computed flow % load opticalFlowTest; % [Vx,Vy]=opticalFlow(I1,I2,'smooth',1,'radius',10,'type','LK'); % I1=imtransform2(I1,[],'vs',-Vx,'us',-Vy,'pad','replicate'); % figure(1); im(I1); figure(2); im(I2); % % EXAMPLE - compare LK/HS/SD flows % load opticalFlowTest; % prm={'smooth',1,'radius',10,'alpha',20,'nIter',250,'type'}; % tic, [Vx1,Vy1]=opticalFlow(I1,I2,prm{:},'LK'); toc % tic, [Vx2,Vy2]=opticalFlow(I1,I2,prm{:},'HS'); toc % tic, [Vx3,Vy3]=opticalFlow(I1,I2,prm{:},'SD','minScale',1); toc % figure(1); im([Vx1 Vy1; Vx2 Vy2; Vx3 Vy3]); colormap jet; % % See also convTri, imtransform2, medfilt2 % % Piotr's Computer Vision Matlab Toolbox Version 3.50 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get default parameters and do error checking dfs={ 'type','LK', 'smooth',1, 'filt',0, 'minScale',1/64, ... 'maxScale',1, 'radius',10, 'nBlock',5, 'alpha',1, 'nIter',250 }; [type,smooth,filt,minScale,maxScale,radius,nBlock,alpha,nIter] = ... getPrmDflt(varargin,dfs,1); assert(any(strcmp(type,{'LK','HS','SD'}))); if( ~ismatrix(I1) || ~ismatrix(I2) || any(size(I1)~=size(I2)) ) error('Input images must be 2D and have same dimensions.'); end % run optical flow in coarse to fine fashion if(~isa(I1,'single')), I1=single(I1); I2=single(I2); end [h,w]=size(I1); nScales=max(1,floor(log2(min([h w 1/minScale])))+1); for s=1:max(1,nScales + round(log2(maxScale))) % get current scale and I1s and I2s at given scale scale=2^(nScales-s); h1=round(h/scale); w1=round(w/scale); if( scale==1 ), I1s=I1; I2s=I2; else I1s=imResample(I1,[h1 w1]); I2s=imResample(I2,[h1 w1]); end % initialize Vx,Vy or upsample from previous scale if(s==1), Vx=zeros(h1,w1,'single'); Vy=Vx; else r=sqrt(h1*w1/numel(Vx)); Vx=imResample(Vx,[h1 w1])*r; Vy=imResample(Vy,[h1 w1])*r; end % transform I2s according to current estimate of Vx and Vy if(s>1), I2s=imtransform2(I2s,[],'pad','replciate','vs',Vx,'us',Vy); end % smooth images I1s=convTri(I1s,smooth); I2s=convTri(I2s,smooth); % run optical flow on current scale switch type case 'LK', [Vx1,Vy1,reliab]=opticalFlowLk(I1s,I2s,radius); case 'HS', [Vx1,Vy1,reliab]=opticalFlowHs(I1s,I2s,alpha,nIter); case 'SD', [Vx1,Vy1,reliab]=opticalFlowSd(I1s,I2s,radius,nBlock,1); end Vx=Vx+Vx1; Vy=Vy+Vy1; % finally median filter the resulting flow field if(filt), Vx=medfilt2(Vx,[filt filt],'symmetric'); end if(filt), Vy=medfilt2(Vy,[filt filt],'symmetric'); end end r=sqrt(h*w/numel(Vx)); if(r~=1), Vx=imResample(Vx,[h w])*r; Vy=imResample(Vy,[h w])*r; end if(r~=1 && nargout==3), reliab=imResample(reliab,[h w]); end end function [Vx,Vy,reliab] = opticalFlowLk( I1, I2, radius ) % Compute elements of A'A and also of A'b radius=min(radius,floor(min(size(I1,1),size(I1,2))/2)-1); [Ix,Iy]=gradient2(I1); It=I2-I1; AAxy=convTri(Ix.*Iy,radius); AAxx=convTri(Ix.^2,radius)+1e-5; ABxt=convTri(-Ix.*It,radius); AAyy=convTri(Iy.^2,radius)+1e-5; AByt=convTri(-Iy.*It,radius); % Find determinant and trace of A'A AAdet=AAxx.*AAyy-AAxy.^2; AAdeti=1./AAdet; AAdeti(isinf(AAdeti))=0; AAtr=AAxx+AAyy; % Compute components of velocity vectors (A'A)^-1 * A'b Vx = AAdeti .* ( AAyy.*ABxt - AAxy.*AByt); Vy = AAdeti .* (-AAxy.*ABxt + AAxx.*AByt); % Check for ill conditioned second moment matrices reliab = 0.5*AAtr - 0.5*sqrt(AAtr.^2-4*AAdet); end function [Vx,Vy,reliab] = opticalFlowHs( I1, I2, alpha, nIter ) % compute derivatives (averaging over 2x2 neighborhoods) pad = @(I,p) imPad(I,p,'replicate'); crop = @(I,c) I(1+c:end-c,1+c:end-c); Ex = I1(:,2:end)-I1(:,1:end-1) + I2(:,2:end)-I2(:,1:end-1); Ey = I1(2:end,:)-I1(1:end-1,:) + I2(2:end,:)-I2(1:end-1,:); Ex = Ex/4; Ey = Ey/4; Et = (I2-I1)/4; Ex = pad(Ex,[1 1 1 2]) + pad(Ex,[0 2 1 2]); Ey = pad(Ey,[1 2 1 1]) + pad(Ey,[1 2 0 2]); Et=pad(Et,[0 2 1 1])+pad(Et,[1 1 1 1])+pad(Et,[1 1 0 2])+pad(Et,[0 2 0 2]); Z=1./(alpha*alpha + Ex.*Ex + Ey.*Ey); reliab=crop(Z,1); % iterate updating Ux and Vx in each iter if( 1 ) [Vx,Vy]=opticalFlowHsMex(Ex,Ey,Et,Z,nIter); Vx=crop(Vx,1); Vy=crop(Vy,1); else Ex=crop(Ex,1); Ey=crop(Ey,1); Et=crop(Et,1); Z=crop(Z,1); Vx=zeros(size(I1),'single'); Vy=Vx; f=single([0 1 0; 1 0 1; 0 1 0])/4; for i = 1:nIter Mx=conv2(Vx,f,'same'); My=conv2(Vy,f,'same'); m=(Ex.*Mx+Ey.*My+Et).*Z; Vx=Mx-Ex.*m; Vy=My-Ey.*m; end end end function [Vx,Vy,reliab] = opticalFlowSd( I1, I2, radius, nBlock, step ) % simple block-based sum of absolute differences flow [h,w]=size(I1); k=2*nBlock+1; k=k*k; D=zeros(h,w,k,'single'); k=1; rng = @(x,w) max(1+x*step,1):min(w+x*step,w); for x=-nBlock:nBlock, xs0=rng(x,w); xs1=rng(-x,w); for y=-nBlock:nBlock, ys0=rng(y,h); ys1=rng(-y,h); D(ys0,xs0,k)=abs(I1(ys0,xs0)-I2(ys1,xs1)); k=k+1; end end D=convTri(D,radius); [reliab,D]=min(D,[],3); k=2*nBlock+1; Vy=mod(D-1,k)+1; Vx=(D-Vy)/k+1; Vy=(nBlock+1-Vy)*step; Vx=(nBlock+1-Vx)*step; end
github
garrickbrazil/SDS-RCNN-master
seqWriterPlugin.m
.m
SDS-RCNN-master/external/pdollar_toolbox/videos/seqWriterPlugin.m
8,280
utf_8
597792f79fff08b8bb709313267c3860
function varargout = seqWriterPlugin( cmd, h, varargin ) % Plugin for seqIo and videoIO to allow writing of seq files. % % Do not call directly, use as plugin for seqIo or videoIO instead. % The following is a list of commands available (swp=seqWriterPlugin): % h=swp('open',h,fName,info) % Open a seq file for writing (h ignored). % h=swp('close',h) % Close seq file (output h is -1). % swp('addframe',h,I,[ts]) % Writes video frame (and timestamp). % swp('addframeb',h,I,[ts]) % Writes video frame with no encoding. % info = swp('getinfo',h) % Return struct with info about video. % % The following params must be specified in struct 'info' upon opening: % width - frame width % height - frame height % fps - frames per second % quality - [80] compression quality (0 to 100) % codec - string representing codec, options include: % 'monoraw'/'imageFormat100' - black/white uncompressed % 'raw'/'imageFormat200' - color (BGR) uncompressed % 'monojpg'/'imageFormat102' - black/white jpg compressed % 'jpg'/'imageFormat201' - color jpg compressed % 'monopng'/'imageFormat001' - black/white png compressed % 'png'/'imageFormat002' - color png compressed % % USAGE % varargout = seqWriterPlugin( cmd, h, varargin ) % % INPUTS % cmd - string indicating operation to perform % h - unique identifier for open seq file % varargin - additional options (vary according to cmd) % % OUTPUTS % varargout - output (varies according to cmd) % % EXAMPLE % % See also SEQIO, SEQREADERPLUGIN % % Piotr's Computer Vision Matlab Toolbox Version 2.66 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % persistent variables to keep track of all loaded .seq files persistent h1 hs fids infos tNms; if(isempty(h1)), h1=int32(now); hs=int32([]); infos={}; tNms={}; end nIn=nargin-2; in=varargin; o1=[]; cmd=lower(cmd); % open seq file if(strcmp(cmd,'open')) chk(nIn,2); h=length(hs)+1; hs(h)=h1; varargout={h1}; h1=h1+1; [pth,name]=fileparts(in{1}); if(isempty(pth)), pth='.'; end fName=[pth filesep name]; [infos{h},fids(h),tNms{h}]=open(fName,in{2}); return; end % Get the handle for this instance [v,h]=ismember(h,hs); if(~v), error('Invalid load plugin handle'); end fid=fids(h); info=infos{h}; tNm=tNms{h}; % close seq file if(strcmp(cmd,'close')) writeHeader(fid,info); chk(nIn,0); varargout={-1}; fclose(fid); kp=[1:h-1 h+1:length(hs)]; hs=hs(kp); fids=fids(kp); infos=infos(kp); tNms=tNms(kp); if(exist(tNm,'file')), delete(tNm); end; return; end % perform appropriate operation switch( cmd ) case 'addframe', chk(nIn,1,2); info=addFrame(fid,info,tNm,1,in{:}); case 'addframeb', chk(nIn,1,2); info=addFrame(fid,info,tNm,0,in{:}); case 'getinfo', chk(nIn,0); o1=info; otherwise, error(['Unrecognized command: "' cmd '"']); end infos{h}=info; varargout={o1}; end function chk(nIn,nMin,nMax) if(nargin<3), nMax=nMin; end if(nIn>0 && nMin==0 && nMax==0), error(['"' cmd '" takes no args.']); end if(nIn<nMin||nIn>nMax), error(['Incorrect num args for "' cmd '".']); end end function success = getImgFile( fName ) % create local copy of fName which is in a imagesci/private fName = [fName '.' mexext]; s = filesep; success = 1; sName = [fileparts(which('imread.m')) s 'private' s fName]; tName = [fileparts(mfilename('fullpath')) s 'private' s fName]; if(~exist(tName,'file')), success=copyfile(sName,tName); end end function [info, fid, tNm] = open( fName, info ) % open video for writing, create space for header t=[fName '.seq']; if(exist(t,'file')), delete(t); end t=[fName '-seek.mat']; if(exist(t,'file')), delete(t); end fid=fopen([fName '.seq'],'w','l'); assert(fid~=-1); fwrite(fid,zeros(1,1024),'uint8'); % initialize info struct (w all fields necessary for writeHeader) assert(isfield2(info,{'width','height','fps','codec'},1)); switch(info.codec) case {'monoraw', 'imageFormat100'}, frmt=100; nCh=1; ext='raw'; case {'raw', 'imageFormat200'}, frmt=200; nCh=3; ext='raw'; case {'monojpg', 'imageFormat102'}, frmt=102; nCh=1; ext='jpg'; case {'jpg', 'imageFormat201'}, frmt=201; nCh=3; ext='jpg'; case {'monopng', 'imageFormat001'}, frmt=001; nCh=1; ext='png'; case {'png', 'imageFormat002'}, frmt=002; nCh=3; ext='png'; otherwise, error('unknown format'); end; s=1; if(strcmp(ext,'jpg')), s=getImgFile('wjpg8c'); end if(strcmp(ext,'png')), s=getImgFile('png'); if(s), info.writeImg=@(p) png('write',p{:}); end; end if(strcmp(ext,'png') && ~s), s=getImgFile('pngwritec'); if(s), info.writeImg=@(p) pngwritec(p{:}); end; end if(~s), error('Cannot find Matlab''s source image writer'); end info.imageFormat=frmt; info.ext=ext; if(any(strcmp(ext,{'jpg','png'}))), info.seek=1024; info.seekNm=t; end if(~isfield2(info,'quality')), info.quality=80; end info.imageBitDepth=8*nCh; info.imageBitDepthReal=8; nByte=info.width*info.height*nCh; info.imageSizeBytes=nByte; info.numFrames=0; info.trueImageSize=nByte+6+512-mod(nByte+6,512); % generate unique temporary name [~,tNm]=fileparts(fName); t=clock; t=mod(t(end),1); tNm=sprintf('tmp_%s_%15i.%s',tNm,round((t+rand)/2*1e15),ext); end function info = addFrame( fid, info, tNm, encode, I, ts ) % write frame nCh=info.imageBitDepth/8; ext=info.ext; c=info.numFrames+1; if( encode ) siz = [info.height info.width nCh]; assert(size(I,1)==siz(1) && size(I,2)==siz(2) && size(I,3)==siz(3)); end switch ext case 'raw' % write an uncompressed image (assume imageBitDepthReal==8) if( ~encode ), assert(numel(I)==info.imageSizeBytes); else if(nCh==3), t=I(:,:,3); I(:,:,3)=I(:,:,1); I(:,:,1)=t; end if(nCh==1), I=I'; else I=permute(I,[3,2,1]); end end fwrite(fid,I(:),'uint8'); pad=info.trueImageSize-info.imageSizeBytes-6; case 'jpg' if( encode ) % write/read to/from temporary .jpg (not that much overhead) p=struct('quality',info.quality,'comment',{{}},'mode','lossy'); for t=0:99, try wjpg8c(I,tNm,p); fr=fopen(tNm,'r'); assert(fr>0); break; catch, pause(.01); fr=-1; end; end %#ok<CTCH> if(fr<0), error(['write fail: ' tNm]); end; I=fread(fr); fclose(fr); end assert(I(1)==255 && I(2)==216 && I(end-1)==255 && I(end)==217); % JPG fwrite(fid,numel(I)+4,'uint32'); fwrite(fid,I); pad=10; case 'png' if( encode ) % write/read to/from temporary .png (not that much overhead) p=cell(1,17); if(nCh==1), p{4}=0; else p{4}=2; end p{1}=I; p{3}=tNm; p{5}=8; p{8}='none'; p{16}=cell(0,2); for t=0:99, try info.writeImg(p); fr=fopen(tNm,'r'); assert(fr>0); break; catch, pause(.01); fr=-1; end; end %#ok<CTCH> if(fr<0), error(['write fail: ' tNm]); end; I=fread(fr); fclose(fr); end fwrite(fid,numel(I)+4,'uint32'); fwrite(fid,I); pad=10; otherwise, assert(false); end % store seek info if(any(strcmp(ext,{'jpg','png'}))) if(length(info.seek)<c+1), info.seek=[info.seek; zeros(c,1)]; end info.seek(c+1)=info.seek(c)+numel(I)+10+pad; end % write timestamp if(nargin<6),ts=(c-1)/info.fps; end; s=floor(ts); ms=round(mod(ts,1)*1000); fwrite(fid,s,'int32'); fwrite(fid,ms,'uint16'); info.numFrames=c; % pad with zeros if(pad>0), fwrite(fid,zeros(1,pad),'uint8'); end end function writeHeader( fid, info ) fseek(fid,0,'bof'); % first 4 bytes store OxFEED, next 24 store 'Norpix seq ' fwrite(fid,hex2dec('FEED'),'uint32'); fwrite(fid,['Norpix seq' 0 0],'uint16'); % next 8 bytes for version (3) and header size (1024), then 512 for descr fwrite(fid,[3 1024],'int32'); if(isfield(info,'descr')), d=info.descr(:); else d=('No Description')'; end d=[d(1:min(256,end)); zeros(256-length(d),1)]; fwrite(fid,d,'uint16'); % write remaining info vals=[info.width info.height info.imageBitDepth info.imageBitDepthReal ... info.imageSizeBytes info.imageFormat info.numFrames 0 ... info.trueImageSize]; fwrite(fid,vals,'uint32'); % store frame rate and pad with 0's fwrite(fid,info.fps,'float64'); fwrite(fid,zeros(1,432),'uint8'); % write seek info for compressed images to disk if(any(strcmp(info.ext,{'jpg','png'}))) seek=info.seek(1:info.numFrames); %#ok<NASGU> try save(info.seekNm,'seek'); catch; end %#ok<CTCH> end end