plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
ZijingMao/baselineeegtest-master
read_erplabheader.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_erplabheader.m
2,048
utf_8
c72fab70eaf79706e1f1f452bc50692a
% read_erplabheader() - import ERPLAB dataset files % % Usage: % >> header = read_erplabheader(filename); % % Inputs: % filename - [string] file name % % Outputs: % header - FILEIO toolbox type structure % % Modified from read_eeglabheader %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function header = read_erplabheader(filename) if nargin < 1 help read_erplabheader; return; end; if ~isstruct(filename) load('-mat', filename); else ERP = filename; end; header.Fs = ERP.srate; header.nChans = ERP.nchan; header.nSamples = ERP.pnts; header.nSamplesPre = -ERP.xmin*ERP.srate; header.nTrials = ERP.nbin; try header.label = { ERP.chanlocs.labels }'; catch warning('creating default channel names'); for i=1:header.nChans header.label{i} = sprintf('chan%03d', i); end end ind = 1; for i = 1:length( ERP.chanlocs ) if isfield(ERP.chanlocs(i), 'X') && ~isempty(ERP.chanlocs(i).X) header.elec.label{ind, 1} = ERP.chanlocs(i).labels; % this channel has a position header.elec.pnt(ind,1) = ERP.chanlocs(i).X; header.elec.pnt(ind,2) = ERP.chanlocs(i).Y; header.elec.pnt(ind,3) = ERP.chanlocs(i).Z; ind = ind+1; end; end; header.orig = ERP;
github
ZijingMao/baselineeegtest-master
write_plexon_nex.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/write_plexon_nex.m
9,546
utf_8
c3e00b18b8d0d194f3b0231301f3945f
function write_plexon_nex(filename, nex) % WRITE_PLEXON_NEX writes a Plexon *.nex file, which is a file % containing action-potential (spike) timestamps and waveforms (spike % channels), event timestamps (event channels), and continuous variable % data (continuous A/D channels). % % Use as % write_plexon_nex(filename, nex); % % The data structure should contain % nex.hdr.FileHeader.Frequency = TimeStampFreq % nex.hdr.VarHeader.Type = type, 5 for continuous % nex.hdr.VarHeader.Name = label, padded to length 64 % nex.hdr.VarHeader.WFrequency = sampling rate of continuous channel % nex.var.dat = data % nex.var.ts = timestamps % % See also READ_PLEXON_NEX, READ_PLEXON_PLX, READ_PLEXON_DDT % Copyright (C) 2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: write_plexon_nex.m 7123 2012-12-06 21:21:38Z roboos $ % get the optional arguments, these are all required % FirstTimeStamp = ft_getopt(varargin, 'FirstTimeStamp'); % TimeStampFreq = ft_getopt(varargin, 'TimeStampFreq'); hdr = nex.hdr; UVtoMV = 1/1000; switch hdr.VarHeader.Type case 5 dat = nex.var.dat; % this is in microVolt buf = zeros(size(dat), 'int16'); nchans = size(dat,1); nsamples = size(dat,2); nwaves = 1; % only one continuous datasegment is supported if length(hdr.VarHeader)~=nchans error('incorrect number of channels'); end % convert the data from floating point into int16 values % each channel gets its own optimal calibration factor for varlop=1:nchans ADMaxValue = double(intmax('int16')); ADMaxUV = max(abs(dat(varlop,:))); % this is in microVolt ADMaxMV = ADMaxUV/1000; % this is in miliVolt if isa(dat, 'int16') % do not rescale data that is already 16 bit MVtoAD = 1; elseif ADMaxMV==0 % do not rescale the data if the data is zero MVtoAD = 1; elseif ADMaxMV>0 % rescale the data so that it fits into the 16 bits with as little loss as possible MVtoAD = ADMaxValue / ADMaxMV; end buf(varlop,:) = int16(double(dat) * UVtoMV * MVtoAD); % remember the calibration value, it should be stored in the variable header ADtoMV(varlop) = 1/MVtoAD; end dat = buf; clear buf; case 3 dat = nex.var.dat; % this is in microVolt nchans = 1; % only one channel is supported nsamples = size(dat,1); nwaves = size(dat,2); if length(hdr.VarHeader)~=nchans error('incorrect number of channels'); end % convert the data from floating point into int16 values ADMaxValue = double(intmax('int16')); ADMaxUV = max(abs(dat(:))); % this is in microVolt ADMaxMV = ADMaxUV/1000; % this is in miliVolt if isa(dat, 'int16') % do not rescale data that is already 16 bit MVtoAD = 1; elseif ADMaxMV==0 % do not rescale the data if the data is zero MVtoAD = 1; elseif ADMaxMV>0 % rescale the data so that it fits into the 16 bits with as little loss as possible MVtoAD = ADMaxValue / ADMaxMV; end dat = int16(double(dat) * UVtoMV * MVtoAD); % remember the calibration value, it should be stored in the variable header ADtoMV = 1/MVtoAD; otherwise error('unsupported data type') end % switch type % determine the first and last timestamp ts = nex.var.ts; ts_beg = min(ts); ts_end = 0; % FIXME fid = fopen(filename, 'wb', 'ieee-le'); % write the file header write_NexFileHeader; % write the variable headers for varlop=1:nchans write_NexVarHeader; end % write the variable data for varlop=1:nchans write_NexVarData; end fclose(fid); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % nested function for writing the details %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function write_NexFileHeader % prepare the two char buffers buf1 = padstr('$Id: write_plexon_nex.m 7123 2012-12-06 21:21:38Z roboos $', 256); buf2 = char(zeros(1, 256)); % write the stuff to the file fwrite(fid, 'NEX1' , 'char'); % NexFileHeader = string NEX1 fwrite(fid, 100 , 'int32'); % Version = version fwrite(fid, buf1 , 'char'); % Comment = comment, 256 bytes fwrite(fid, hdr.FileHeader.Frequency, 'double'); % Frequency = timestamped freq. - tics per second fwrite(fid, ts_beg, 'int32'); % Beg = usually 0, minimum of all the timestamps in the file fwrite(fid, ts_end, 'int32'); % End = maximum timestamp + 1 fwrite(fid, nchans, 'int32'); % NumVars = number of variables in the first batch fwrite(fid, 0 , 'int32'); % NextFileHeader = position of the next file header in the file, not implemented yet fwrite(fid, buf2 , 'char'); % Padding = future expansion end % of the nested function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % nested function for writing the details %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function write_NexVarHeader filheadersize = 544; varheadersize = 208; offset = filheadersize + nchans*varheadersize + (varlop-1)*nsamples; calib = ADtoMV(varlop); % prepare the two char buffers buf1 = padstr(hdr.VarHeader(varlop).Name, 64); buf2 = char(zeros(1, 68)); % write the continuous variable to the file fwrite(fid, hdr.VarHeader.Type, 'int32'); % Type = 0 - neuron, 1 event, 2- interval, 3 - waveform, 4 - pop. vector, 5 - continuously recorded fwrite(fid, 100, 'int32'); % Version = 100 fwrite(fid, buf1, 'char'); % Name = variable name, 1x64 char fwrite(fid, offset, 'int32'); % DataOffset = where the data array for this variable is located in the file fwrite(fid, nwaves, 'int32'); % Count = number of events, intervals, waveforms or weights fwrite(fid, 0, 'int32'); % WireNumber = neuron only, not used now fwrite(fid, 0, 'int32'); % UnitNumber = neuron only, not used now fwrite(fid, 0, 'int32'); % Gain = neuron only, not used now fwrite(fid, 0, 'int32'); % Filter = neuron only, not used now fwrite(fid, 0, 'double'); % XPos = neuron only, electrode position in (0,100) range, used in 3D fwrite(fid, 0, 'double'); % YPos = neuron only, electrode position in (0,100) range, used in 3D fwrite(fid, hdr.VarHeader.WFrequency, 'double'); % WFrequency = waveform and continuous vars only, w/f sampling frequency fwrite(fid, calib, 'double'); % ADtoMV = waveform continuous vars only, coeff. to convert from A/D values to Millivolts fwrite(fid, nsamples, 'int32'); % NPointsWave = waveform only, number of points in each wave fwrite(fid, 0, 'int32'); % NMarkers = how many values are associated with each marker fwrite(fid, 0, 'int32'); % MarkerLength = how many characters are in each marker value fwrite(fid, buf2, 'char'); % Padding, 1x68 char end % of the nested function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % nested function for writing the details %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function write_NexVarData switch hdr.VarHeader.Type case 5 % this code only supports one continuous segment index = 0; fwrite(fid, ts , 'int32'); % timestamps, one for each continuous segment fwrite(fid, index , 'int32'); % where to cut the segments, zero offset fwrite(fid, dat(varlop,:) , 'int16'); % data case 3 fwrite(fid, ts , 'int32'); % timestamps, one for each spike fwrite(fid, dat , 'int16'); % waveforms, one for each spike otherwise error('unsupported data type'); end % switch end % of the nested function end % of the primary function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % subfunction for zero padding a char array to fixed length %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function str = padstr(str, num); if length(str)>num str = str(1:num); else str((end+1):num) = 0; end end % of the padstr subfunction
github
ZijingMao/baselineeegtest-master
ft_convert_units.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_convert_units.m
9,048
utf_8
b0b47d21a2d75a5138e1d3499af2bf96
function [obj] = ft_convert_units(obj, target, varargin) % FT_CONVERT_UNITS changes the geometrical dimension to the specified SI unit. % The units of the input object is determined from the structure field % object.unit, or is estimated based on the spatial extend of the structure, % e.g. a volume conduction model of the head should be approximately 20 cm large. % % Use as % [object] = ft_convert_units(object, target) % % The following geometrical objects are supported as inputs % electrode or gradiometer array, see FT_DATATYPE_SENS % volume conductor, see FT_DATATYPE_HEADMODEL % anatomical mri, see FT_DATATYPE_VOLUME % segmented mri, see FT_DATATYPE_SEGMENTATION % dipole grid definition, see FT_DATATYPE_SOURCE % % Possible target units are 'm', 'dm', 'cm ' or 'mm'. If no target units % are specified, this function will only determine the native geometrical % units of the object. % % See FT_ESTIMATE_UNITS, FT_READ_VOL, FT_READ_SENS % Copyright (C) 2005-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_convert_units.m 10013 2014-12-03 09:14:21Z roboos $ % This function consists of three parts: % 1) determine the input units % 2) determine the requested scaling factor to obtain the output units % 3) try to apply the scaling to the known geometrical elements in the input object feedback = ft_getopt(varargin, 'feedback', false); if isstruct(obj) && numel(obj)>1 % deal with a structure array for i=1:numel(obj) if nargin>1 tmp(i) = ft_convert_units(obj(i), target, varargin{:}); else tmp(i) = ft_convert_units(obj(i)); end end obj = tmp; return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % determine the unit-of-dimension of the input object %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(obj, 'unit') && ~isempty(obj.unit) % use the units specified in the object unit = obj.unit; elseif isfield(obj, 'bnd') && isfield(obj.bnd, 'unit') unit = unique({obj.bnd.unit}); if ~all(strcmp(unit, unit{1})) error('inconsistent units in the individual boundaries'); else unit = unit{1}; end % keep one representation of the units rather than keeping it with each boundary % the units will be reassigned further down obj.bnd = rmfield(obj.bnd, 'unit'); else % try to determine the units by looking at the size of the object if isfield(obj, 'chanpos') && ~isempty(obj.chanpos) siz = norm(idrange(obj.chanpos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'elecpos') && ~isempty(obj.elecpos) siz = norm(idrange(obj.elecpos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'coilpos') && ~isempty(obj.coilpos) siz = norm(idrange(obj.coilpos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'pnt') && ~isempty(obj.pnt) siz = norm(idrange(obj.pnt)); unit = ft_estimate_units(siz); elseif isfield(obj, 'pos') && ~isempty(obj.pos) siz = norm(idrange(obj.pos)); unit = ft_estimate_units(siz); elseif isfield(obj, 'transform') && ~isempty(obj.transform) % construct the corner points of the volume in voxel and in head coordinates [pos_voxel, pos_head] = cornerpoints(obj.dim, obj.transform); siz = norm(idrange(pos_head)); unit = ft_estimate_units(siz); elseif isfield(obj, 'fid') && isfield(obj.fid, 'pnt') && ~isempty(obj.fid.pnt) siz = norm(idrange(obj.fid.pnt)); unit = ft_estimate_units(siz); elseif ft_voltype(obj, 'infinite') % this is an infinite medium volume conductor, which does not care about units unit = 'm'; elseif ft_voltype(obj,'singlesphere') siz = obj.r; unit = ft_estimate_units(siz); elseif ft_voltype(obj,'localspheres') siz = median(obj.r); unit = ft_estimate_units(siz); elseif ft_voltype(obj,'concentricspheres') siz = max(obj.r); unit = ft_estimate_units(siz); elseif isfield(obj, 'bnd') && isstruct(obj.bnd) && isfield(obj.bnd(1), 'pnt') && ~isempty(obj.bnd(1).pnt) siz = norm(idrange(obj.bnd(1).pnt)); unit = ft_estimate_units(siz); elseif isfield(obj, 'nas') && isfield(obj, 'lpa') && isfield(obj, 'rpa') pnt = [obj.nas; obj.lpa; obj.rpa]; siz = norm(idrange(pnt)); unit = ft_estimate_units(siz); else error('cannot determine geometrical units'); end % recognized type of volume conduction model or sensor array end % determine input units if nargin<2 || isempty(target) % just remember the units in the output and return obj.unit = unit; return elseif strcmp(unit, target) % no conversion is needed obj.unit = unit; return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the scaling factor from the input units to the desired ones %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% scale = scalingfactor(unit, target); if istrue(feedback) % give some information about the conversion fprintf('converting units from ''%s'' to ''%s''\n', unit, target) end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % apply the scaling factor %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % volume conductor model if isfield(obj, 'r'), obj.r = scale * obj.r; end if isfield(obj, 'o'), obj.o = scale * obj.o; end if isfield(obj, 'bnd'), for i=1:length(obj.bnd) obj.bnd(i).pnt = scale * obj.bnd(i).pnt; end end % old-fashioned gradiometer array if isfield(obj, 'pnt1'), obj.pnt1 = scale * obj.pnt1; end if isfield(obj, 'pnt2'), obj.pnt2 = scale * obj.pnt2; end if isfield(obj, 'prj'), obj.prj = scale * obj.prj; end % gradiometer array, electrode array, head shape or dipole grid if isfield(obj, 'pnt'), obj.pnt = scale * obj.pnt; end if isfield(obj, 'chanpos'), obj.chanpos = scale * obj.chanpos; end if isfield(obj, 'chanposorg'), obj.chanposorg = scale * obj.chanposorg; end if isfield(obj, 'coilpos'), obj.coilpos = scale * obj.coilpos; end if isfield(obj, 'elecpos'), obj.elecpos = scale * obj.elecpos; end % gradiometer array that combines multiple coils in one channel if isfield(obj, 'tra') && isfield(obj, 'chanunit') % find the gradiometer channels that are expressed as unit of field strength divided by unit of distance, e.g. T/cm for i=1:length(obj.chanunit) tok = tokenize(obj.chanunit{i}, '/'); if ~isempty(regexp(obj.chanunit{i}, 'm$', 'once')) % assume that it is T/m or so obj.tra(i,:) = obj.tra(i,:) / scale; obj.chanunit{i} = [tok{1} '/' target]; elseif ~isempty(regexp(obj.chanunit{i}, '[T|V]$', 'once')) % assume that it is T or V, don't do anything elseif strcmp(obj.chanunit{i}, 'unknown') % assume that it is T or V, don't do anything else error('unexpected units %s', obj.chanunit{i}); end end % for end % if % fiducials if isfield(obj, 'fid') && isfield(obj.fid, 'pnt'), obj.fid.pnt = scale * obj.fid.pnt; end % dipole grid if isfield(obj, 'pos'), obj.pos = scale * obj.pos; end if isfield(obj, 'resolution'), obj.resolution = scale * obj.resolution; end % x,y,zgrid can also be 'auto' if isfield(obj, 'xgrid') && ~ischar(obj.xgrid), obj.xgrid = scale * obj.xgrid; end if isfield(obj, 'ygrid') && ~ischar(obj.ygrid), obj.ygrid = scale * obj.ygrid; end if isfield(obj, 'zgrid') && ~ischar(obj.zgrid), obj.zgrid = scale * obj.zgrid; end % anatomical MRI or functional volume if isfield(obj, 'transform'), H = diag([scale scale scale 1]); obj.transform = H * obj.transform; end if isfield(obj, 'transformorig'), H = diag([scale scale scale 1]); obj.transformorig = H * obj.transformorig; end % remember the unit obj.unit = target; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % IDRANGE interdecile range for more robust range estimation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function r = idrange(x) keeprow=true(size(x,1),1); for l=1:size(x,2) keeprow = keeprow & isfinite(x(:,l)); end sx = sort(x(keeprow,:), 1); ii = round(interp1([0, 1], [1, size(x(keeprow,:), 1)], [.1, .9])); % indices for 10 & 90 percentile r = diff(sx(ii, :));
github
ZijingMao/baselineeegtest-master
ft_datatype.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_datatype.m
9,441
utf_8
38c5cce959f40526c327578253ce1570
function [type, dimord] = ft_datatype(data, desired) % FT_DATATYPE determines the type of data represented in a FieldTrip data % structure and returns a string with raw, freq, timelock source, comp, % spike, source, volume, dip, montage, event. % % Use as % [type, dimord] = ft_datatype(data) % [status] = ft_datatype(data, desired) % % See also FT_DATATYPE_COMP FT_DATATYPE_FREQ FT_DATATYPE_MVAR % FT_DATATYPE_SEGMENTATION FT_DATATYPE_PARCELLATION FT_DATATYPE_SOURCE % FT_DATATYPE_TIMELOCK FT_DATATYPE_DIP FT_DATATYPE_HEADMODEL % FT_DATATYPE_RAW FT_DATATYPE_SENS FT_DATATYPE_SPIKE FT_DATATYPE_VOLUME % Copyright (C) 2008-2015, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_datatype.m 10489 2015-06-27 06:22:20Z roboos $ if nargin<2 desired = []; end % determine the type of input data, this can be raw, freq, timelock, comp, spike, source, volume, dip, segmentation, parcellation israw = isfield(data, 'label') && isfield(data, 'time') && isa(data.time, 'cell') && isfield(data, 'trial') && isa(data.trial, 'cell') && ~isfield(data,'trialtime'); isfreq = (isfield(data, 'label') || isfield(data, 'labelcmb')) && isfield(data, 'freq') && ~isfield(data,'trialtime') && ~isfield(data,'origtrial'); %&& (isfield(data, 'powspctrm') || isfield(data, 'crsspctrm') || isfield(data, 'cohspctrm') || isfield(data, 'fourierspctrm') || isfield(data, 'powcovspctrm')); istimelock = isfield(data, 'label') && isfield(data, 'time') && ~isfield(data, 'freq') && ~isfield(data,'timestamp') && ~isfield(data,'trialtime') && ~(isfield(data, 'trial') && iscell(data.trial)); %&& ((isfield(data, 'avg') && isnumeric(data.avg)) || (isfield(data, 'trial') && isnumeric(data.trial) || (isfield(data, 'cov') && isnumeric(data.cov)))); iscomp = isfield(data, 'label') && isfield(data, 'topo') || isfield(data, 'topolabel'); isvolume = isfield(data, 'transform') && isfield(data, 'dim') && ~isfield(data, 'pos'); issource = isfield(data, 'pos'); isdip = isfield(data, 'dip'); ismvar = isfield(data, 'dimord') && ~isempty(strfind(data.dimord, 'lag')); isfreqmvar = isfield(data, 'freq') && isfield(data, 'transfer'); ischan = check_chan(data); issegmentation = check_segmentation(data); isparcellation = check_parcellation(data); ismontage = isfield(data, 'labelorg') && isfield(data, 'labelnew') && isfield(data, 'tra'); isevent = isfield(data, 'type') && isfield(data, 'value') && isfield(data, 'sample') && isfield(data, 'offset') && isfield(data, 'duration'); if ~isfreq % this applies to a freq structure from 2003 up to early 2006 isfreq = all(isfield(data, {'foi', 'label', 'dimord'})) && ~isempty(strfind(data.dimord, 'frq')); end % check if it is a spike structure spk_hastimestamp = isfield(data,'label') && isfield(data, 'timestamp') && isa(data.timestamp, 'cell'); spk_hastrials = isfield(data,'label') && isfield(data, 'time') && isa(data.time, 'cell') && isfield(data, 'trial') && isa(data.trial, 'cell') && isfield(data, 'trialtime') && isa(data.trialtime, 'numeric'); spk_hasorig = isfield(data,'origtrial') && isfield(data,'origtime'); % for compatibility isspike = isfield(data, 'label') && (spk_hastimestamp || spk_hastrials || spk_hasorig); % check if it is a sensor array isgrad = isfield(data, 'label') && isfield(data, 'coilpos') && isfield(data, 'coilori'); iselec = isfield(data, 'label') && isfield(data, 'elecpos'); if isspike type = 'spike'; elseif israw && iscomp type = 'raw+comp'; elseif istimelock && iscomp type = 'timelock+comp'; elseif isfreq && iscomp type = 'freq+comp'; elseif israw type = 'raw'; elseif iscomp type = 'comp'; elseif isfreqmvar % freqmvar should conditionally go before freq, otherwise the returned ft_datatype will be freq in the case of frequency mvar data type = 'freqmvar'; elseif isfreq type = 'freq'; elseif ismvar type = 'mvar'; elseif isdip % dip should conditionally go before timelock, otherwise the ft_datatype will be timelock type = 'dip'; elseif istimelock type = 'timelock'; elseif issegmentation % a segmentation data structure is a volume data structure, but in general not vice versa % segmentation should conditionally go before volume, otherwise the returned ft_datatype will be volume type = 'segmentation'; elseif isvolume type = 'volume'; elseif isparcellation % a parcellation data structure is a source data structure, but in general not vice versa % parcellation should conditionally go before source, otherwise the returned ft_datatype will be source type = 'parcellation'; elseif issource type = 'source'; elseif ischan % this results from avgovertime/avgoverfreq after timelockstatistics or freqstatistics type = 'chan'; elseif iselec type = 'elec'; elseif isgrad type = 'grad'; elseif ismontage type = 'montage'; elseif isevent type = 'event'; else type = 'unknown'; end if nargin>1 % return a boolean value switch desired case 'raw' type = any(strcmp(type, {'raw', 'raw+comp'})); case 'timelock' type = any(strcmp(type, {'timelock', 'timelock+comp'})); case 'freq' type = any(strcmp(type, {'freq', 'freq+comp'})); case 'comp' type = any(strcmp(type, {'comp', 'raw+comp', 'timelock+comp', 'freq+comp'})); case 'volume' type = any(strcmp(type, {'volume', 'segmentation'})); case 'source' type = any(strcmp(type, {'source', 'parcellation'})); case 'sens' type = any(strcmp(type, {'elec', 'grad'})); otherwise type = strcmp(type, desired); end % switch end if nargout>1 % FIXME this should be replaced with getdimord in the calling code % also return the dimord of the input data if isfield(data, 'dimord') dimord = data.dimord; else dimord = 'unknown'; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [res] = check_chan(data) if ~isstruct(data) || any(isfield(data, {'time', 'freq', 'pos', 'dim', 'transform'})) res = false; elseif isfield(data, 'dimord') && any(strcmp(data.dimord, {'chan', 'chan_chan'})) res = true; else res = false; fn = fieldnames(data); for i=1:numel(fn) if isfield(data, [fn{i} 'dimord']) && any(strcmp(data.([fn{i} 'dimord']), {'chan', 'chan_chan'})) res = true; break; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [res] = check_segmentation(volume) res = false; if ~isfield(volume, 'dim') return end if isfield(volume, 'pos') return end if any(isfield(volume, {'seg', 'csf', 'white', 'gray', 'skull', 'scalp', 'brain'})) res = true; return end fn = fieldnames(volume); isboolean = []; cnt = 0; for i=1:length(fn) if isfield(volume, [fn{i} 'label']) res = true; return else if (islogical(volume.(fn{i})) || isnumeric(volume.(fn{i}))) && isequal(size(volume.(fn{i})),volume.dim) cnt = cnt+1; if islogical(volume.(fn{i})) isboolean(cnt) = true; else isboolean(cnt) = false; end end end end if ~isempty(isboolean) res = all(isboolean); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [res] = check_parcellation(source) res = false; if ~isfield(source, 'pos') return end fn = fieldnames(source); fb = false(size(fn)); npos = size(source.pos,1); for i=1:numel(fn) % for each of the fields check whether it might be a logical array with the size of the number of sources tmp = source.(fn{i}); fb(i) = numel(tmp)==npos && islogical(tmp); end if sum(fb)>1 % the presence of multiple logical arrays suggests it is a parcellation res = true; end if res == false % check if source has more D elements check = 0; for i = 1: length(fn) fname = fn{i}; switch fname case 'tri' npos = size(source.tri,1); check = 1; case 'hex' npos = size(source.hex,1); check = 1; case 'tet' npos = size(source.tet,1); check = 1; end end if check == 1 % check if elements are labelled for i=1:numel(fn) tmp = source.(fn{i}); fb(i) = numel(tmp)==npos && islogical(tmp); end if sum(fb)>1 res = true; end end end fn = fieldnames(source); for i=1:length(fn) if isfield(source, [fn{i} 'label']) && isnumeric(source.(fn{i})) res = true; return end end
github
ZijingMao/baselineeegtest-master
ft_apply_montage.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_apply_montage.m
19,718
utf_8
82280137ae6d7db9e4e24fa895096d47
function [input] = ft_apply_montage(input, montage, varargin) % FT_APPLY_MONTAGE changes the montage of an electrode or gradiometer array. A % montage can be used for EEG rereferencing, MEG synthetic gradients, MEG % planar gradients or unmixing using ICA. This function applies the montage % to the inputor array. The inputor array can subsequently be used for % forward computation and source reconstruction of the data. % % Use as % [sens] = ft_apply_montage(sens, montage, ...) % [data] = ft_apply_montage(data, montage, ...) % [freq] = ft_apply_montage(freq, montage, ...) % [montage] = ft_apply_montage(montage1, montage2, ...) % % A montage is specified as a structure with the fields % montage.tra = MxN matrix % montage.labelorg = Nx1 cell-array % montage.labelnew = Mx1 cell-array % % As an example, a bipolar montage could look like this % bipolar.labelorg = {'1', '2', '3', '4'} % bipolar.labelnew = {'1-2', '2-3', '3-4'} % bipolar.tra = [ % +1 -1 0 0 % 0 +1 -1 0 % 0 0 +1 -1 % ]; % % The montage can optionally also specify the channel type and unit of the input % and output data with % montage.chantypeorg = Nx1 cell-array % montage.chantypenew = Mx1 cell-array % montage.chanunitorg = Nx1 cell-array % montage.chanunitnew = Mx1 cell-array % % Additional options should be specified in key-value pairs and can be % 'keepunused' string, 'yes' or 'no' (default = 'no') % 'inverse' string, 'yes' or 'no' (default = 'no') % % If the first input is a montage, then the second input montage will be % applied to the first. In effect, the output montage will first do % montage1, then montage2. % % See also FT_READ_SENS, FT_TRANSFORM_SENS % Copyright (C) 2008-2014, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_apply_montage.m 10341 2015-04-17 14:10:18Z jorhor $ % get optional input arguments keepunused = ft_getopt(varargin, 'keepunused', 'no'); inverse = ft_getopt(varargin, 'inverse', 'no'); feedback = ft_getopt(varargin, 'feedback', 'text'); showwarning = ft_getopt(varargin, 'warning', 'yes'); bname = ft_getopt(varargin, 'balancename', ''); if istrue(showwarning) warningfun = @warning; else warningfun = @nowarning; end % these are optional, at the end we will clean up the output in case they did not % exist haschantype = (isfield(input, 'chantype') || isfield(input, 'chantypenew')) && all(isfield(montage, {'chantypeorg', 'chantypenew'})); haschanunit = (isfield(input, 'chanunit') || isfield(input, 'chanunitnew')) && all(isfield(montage, {'chanunitorg', 'chanunitnew'})); % make sure they always exist to facilitate the remainder of the code if ~isfield(montage, 'chantypeorg') montage.chantypeorg = repmat({'unknown'}, size(montage.labelorg)); if isfield(input, 'chantype') && ~istrue(inverse) warning('copying input chantype to montage'); [sel1, sel2] = match_str(montage.labelorg, input.label); montage.chantypeorg(sel1) = input.chantype(sel2); end end if ~isfield(montage, 'chantypenew') montage.chantypenew = repmat({'unknown'}, size(montage.labelnew)); if isfield(input, 'chantype') && istrue(inverse) warning('copying input chantype to montage'); [sel1, sel2] = match_str(montage.labelnew, input.label); montage.chantypenew(sel1) = input.chantype(sel2); end end if ~isfield(montage, 'chanunitorg') montage.chanunitorg = repmat({'unknown'}, size(montage.labelorg)); if isfield(input, 'chanunit') && ~istrue(inverse) warning('copying input chanunit to montage'); [sel1, sel2] = match_str(montage.labelorg, input.label); montage.chanunitorg(sel1) = input.chanunit(sel2); end end if ~isfield(montage, 'chanunitnew') montage.chanunitnew = repmat({'unknown'}, size(montage.labelnew)); if isfield(input, 'chanunit') && istrue(inverse) warning('copying input chanunit to montage'); [sel1, sel2] = match_str(montage.labelnew, input.label); montage.chanunitnew(sel1) = input.chanunit(sel2); end end if ~isfield(input, 'label') && isfield(input, 'labelnew') % the input data structure is also a montage inputlabel = input.labelnew; if isfield(input, 'chantypenew') inputchantype = input.chantypenew; else inputchantype = repmat({'unknown'}, size(input.labelnew)); end if isfield(input, 'chanunitnew') inputchanunit = input.chanunitnew; else inputchanunit = repmat({'unknown'}, size(input.labelnew)); end else % the input should describe the channel labels, and optionally the type and unit inputlabel = input.label; if isfield(input, 'chantype') inputchantype = input.chantype; else inputchantype = repmat({'unknown'}, size(input.label)); end if isfield(input, 'chanunit') inputchanunit = input.chanunit; else inputchanunit = repmat({'unknown'}, size(input.label)); end end % check the consistency of the montage if ~iscell(montage.labelorg) || ~iscell(montage.labelnew) error('montage labels need to be specified in cell-arrays'); end % check the consistency of the montage if ~all(isfield(montage, {'tra', 'labelorg', 'labelnew'})) error('the second input argument does not correspond to a montage'); end % check the consistency of the montage if size(montage.tra,1)~=length(montage.labelnew) error('the number of channels in the montage is inconsistent'); elseif size(montage.tra,2)~=length(montage.labelorg) error('the number of channels in the montage is inconsistent'); end % use a default unit transfer from sensors to channels if not otherwise specified if ~isfield(input, 'tra') && isfield(input, 'label') if isfield(input, 'elecpos') && length(input.label)==size(input.elecpos, 1) nchan = length(input.label); input.tra = eye(nchan); elseif isfield(input, 'coilpos') && length(input.label)==size(input.coilpos, 1) nchan = length(input.label); input.tra = eye(nchan); elseif isfield(input, 'chanpos') && length(input.label)==size(input.chanpos, 1) nchan = length(input.label); input.tra = eye(nchan); end end if istrue(inverse) % swap the role of the original and new channels tmp.labelnew = montage.labelorg; tmp.labelorg = montage.labelnew; tmp.chantypenew = montage.chantypeorg; tmp.chantypeorg = montage.chantypenew; tmp.chanunitnew = montage.chanunitorg; tmp.chanunitorg = montage.chanunitnew; % apply the inverse montage, this can be used to undo a previously % applied montage tmp.tra = full(montage.tra); if rank(tmp.tra) < length(tmp.tra) warningfun('the linear projection for the montage is not full-rank, the resulting data will have reduced dimensionality'); tmp.tra = pinv(tmp.tra); else tmp.tra = inv(tmp.tra); end montage = tmp; end % select and keep the columns that are non-empty, i.e. remove the empty columns selcol = find(~all(montage.tra==0, 1)); montage.tra = montage.tra(:,selcol); montage.labelorg = montage.labelorg(selcol); montage.chantypeorg = montage.chantypeorg(selcol); montage.chanunitorg = montage.chanunitorg(selcol); clear selcol % select and remove the columns corresponding to channels that are not present in the % original data remove = setdiff(montage.labelorg, intersect(montage.labelorg, inputlabel)); selcol = match_str(montage.labelorg, remove); % we cannot just remove the colums, all rows that depend on it should also be removed selrow = false(length(montage.labelnew),1); for i=1:length(selcol) selrow = selrow & (montage.tra(:,selcol(i))~=0); end % convert from indices to logical vector selcol = indx2logical(selcol, length(montage.labelorg)); % remove rows and columns montage.labelorg = montage.labelorg(~selcol); montage.labelnew = montage.labelnew(~selrow); montage.chantypeorg = montage.chantypeorg(~selcol); montage.chantypenew = montage.chantypenew(~selrow); montage.chanunitorg = montage.chanunitorg(~selcol); montage.chanunitnew = montage.chanunitnew(~selrow); montage.tra = montage.tra(~selrow, ~selcol); clear remove selcol selrow i % add columns for channels that are present in the input data but not specified in % the montage, stick to the original order in the data [dum, ix] = setdiff(inputlabel, montage.labelorg); addlabel = inputlabel(sort(ix)); addchantype = inputchantype(sort(ix)); addchanunit = inputchanunit(sort(ix)); m = size(montage.tra,1); n = size(montage.tra,2); k = length(addlabel); if istrue(keepunused) % add the channels that are not rereferenced to the input and output of the % montage montage.tra((m+(1:k)),(n+(1:k))) = eye(k); montage.labelorg = cat(1, montage.labelorg(:), addlabel(:)); montage.labelnew = cat(1, montage.labelnew(:), addlabel(:)); montage.chantypeorg = cat(1, montage.chantypeorg(:), addchantype(:)); montage.chantypenew = cat(1, montage.chantypenew(:), addchantype(:)); montage.chanunitorg = cat(1, montage.chanunitorg(:), addchanunit(:)); montage.chanunitnew = cat(1, montage.chanunitnew(:), addchanunit(:)); else % add the channels that are not rereferenced to the input of the montage only montage.tra(:,(n+(1:k))) = zeros(m,k); montage.labelorg = cat(1, montage.labelorg(:), addlabel(:)); montage.chantypeorg = cat(1, montage.chantypeorg(:), addchantype(:)); montage.chanunitorg = cat(1, montage.chanunitorg(:), addchanunit(:)); end clear addlabel addchantype addchanunit m n k % determine whether all channels are unique m = size(montage.tra,1); n = size(montage.tra,2); if length(unique(montage.labelnew))~=m error('not all output channels of the montage are unique'); end if length(unique(montage.labelorg))~=n error('not all input channels of the montage are unique'); end % determine whether all channels that have to be rereferenced are available if length(intersect(inputlabel, montage.labelorg))~=length(montage.labelorg) error('not all channels that are required in the montage are available in the data'); end % reorder the columns of the montage matrix [selinput, selmontage] = match_str(inputlabel, montage.labelorg); montage.tra = montage.tra(:,selmontage); montage.labelorg = montage.labelorg(selmontage); montage.chantypeorg = montage.chantypeorg(selmontage); montage.chanunitorg = montage.chanunitorg(selmontage); % ensure that the montage is double precision montage.tra = double(montage.tra); % making the tra matrix sparse will speed up subsequent multiplications, but should % not result in a sparse matrix % note that this only makes sense for matrices with a lot of zero elements, for dense % matrices keeping it full will be much quicker if size(montage.tra,1)>1 && nnz(montage.tra)/numel(montage.tra) < 0.3 montage.tra = sparse(montage.tra); else montage.tra = full(montage.tra); end % update the channel scaling if the input has different units than the montage expects if isfield(input, 'chanunit') && ~isequal(input.chanunit, montage.chanunitorg) scale = scalingfactor(input.chanunit, montage.chanunitorg); montage.tra = montage.tra * diag(scale); montage.chanunitorg = input.chanunit; elseif isfield(input, 'chanunitnew') && ~isequal(input.chanunitnew, montage.chanunitorg) scale = scalingfactor(input.chanunitnew, montage.chanunitorg); montage.tra = montage.tra * diag(scale); montage.chanunitorg = input.chanunitnew; end if isfield(input, 'chantype') && ~isequal(input.chantype, montage.chantypeorg) error('inconsistent chantype in data and montage'); elseif isfield(input, 'chantypenew') && ~isequal(input.chantypenew, montage.chantypeorg) error('inconsistent chantype in data and montage'); end if isfield(input, 'labelorg') && isfield(input, 'labelnew') inputtype = 'montage'; elseif isfield(input, 'tra') inputtype = 'sens'; elseif isfield(input, 'trial') inputtype = 'raw'; elseif isfield(input, 'fourierspctrm') inputtype = 'freq'; else inputtype = 'unknown'; end switch inputtype case 'montage' % apply the montage on top of the other montage if isa(input.tra, 'single') % sparse matrices and single precision do not match input.tra = full(montage.tra) * input.tra; else input.tra = montage.tra * input.tra; end input.labelnew = montage.labelnew; input.chantypenew = montage.chantypenew; input.chanunitnew = montage.chanunitnew; case 'sens' % apply the montage to an electrode or gradiometer description sens = input; clear input % apply the montage to the inputor array if isa(sens.tra, 'single') % sparse matrices and single precision do not match sens.tra = full(montage.tra) * sens.tra; else sens.tra = montage.tra * sens.tra; end % The montage operates on the coil weights in sens.tra, but the output channels % can be different. If possible, we want to keep the original channel positions % and orientations. [sel1, sel2] = match_str(montage.labelnew, inputlabel); keepchans = length(sel1)==length(montage.labelnew); if isfield(sens, 'chanpos') if keepchans sens.chanpos = sens.chanpos(sel2,:); else if ~isfield(sens, 'chanposorg') % add a chanposorg only if it is not there yet sens.chanposorg = sens.chanpos; end sens.chanpos = nan(numel(montage.labelnew),3); end end if isfield(sens, 'chanori') if keepchans sens.chanori = sens.chanori(sel2,:); else if ~isfield(sens, 'chanoriorg') sens.chanoriorg = sens.chanori; end sens.chanori = nan(numel(montage.labelnew),3); end end sens.label = montage.labelnew; sens.chantype = montage.chantypenew; sens.chanunit = montage.chanunitnew; % keep the % original label, % type and unit % for reference if ~isfield(sens, 'labelorg') sens.labelorg = inputlabel; end if ~isfield(sens, 'chantypeorg') sens.chantypeorg = inputchantype; end if ~isfield(sens, 'chanunitorg') sens.chanunitorg = inputchanunit; end % keep track of the order of the balancing and which one is the current one if istrue(inverse) if isfield(sens, 'balance')% && isfield(sens.balance, 'previous') if isfield(sens.balance, 'previous') && numel(sens.balance.previous)>=1 sens.balance.current = sens.balance.previous{1}; sens.balance.previous = sens.balance.previous(2:end); elseif isfield(sens.balance, 'previous') sens.balance.current = 'none'; sens.balance = rmfield(sens.balance, 'previous'); else sens.balance.current = 'none'; end end elseif ~istrue(inverse) && ~isempty(bname) if isfield(sens, 'balance'), % check whether a balancing montage with name bname already exist, % and if so, how many mnt = fieldnames(sens.balance); sel = strmatch(bname, mnt); if numel(sel)==0, % bname can stay the same elseif numel(sel)==1 % the original should be renamed to 'bname1' and the new one should % be 'bname2' sens.balance.([bname, '1']) = sens.balance.(bname); sens.balance = rmfield(sens.balance, bname); if isfield(sens.balance, 'current') && strcmp(sens.balance.current, bname) sens.balance.current = [bname, '1']; end if isfield(sens.balance, 'previous') sel2 = strmatch(bname, sens.balance.previous); if ~isempty(sel2) sens.balance.previous{sel2} = [bname, '1']; end end bname = [bname, '2']; else bname = [bname, num2str(length(sel)+1)]; end end if isfield(sens, 'balance') && isfield(sens.balance, 'current') if ~isfield(sens.balance, 'previous') sens.balance.previous = {}; end sens.balance.previous = [{sens.balance.current} sens.balance.previous]; sens.balance.current = bname; sens.balance.(bname) = montage; end end % rename the output variable input = sens; clear sens case 'raw'; % apply the montage to the raw data that was preprocessed using fieldtrip data = input; clear input Ntrials = numel(data.trial); ft_progress('init', feedback, 'processing trials'); for i=1:Ntrials ft_progress(i/Ntrials, 'processing trial %d from %d\n', i, Ntrials); if isa(data.trial{i}, 'single') % sparse matrices and single % precision do not match data.trial{i} = full(montage.tra) * data.trial{i}; else data.trial{i} = montage.tra * data.trial{i}; end end ft_progress('close'); data.label = montage.labelnew; data.chantype = montage.chantypenew; data.chanunit = montage.chanunitnew; % rename the output variable input = data; clear data case 'freq' % apply the montage to the spectrally decomposed data freq = input; clear input if strcmp(freq.dimord, 'rpttap_chan_freq') siz = size(freq.fourierspctrm); nrpt = siz(1); nchan = siz(2); nfreq = siz(3); output = zeros(nrpt, size(montage.tra,1), nfreq); for foilop=1:nfreq output(:,:,foilop) = freq.fourierspctrm(:,:,foilop) * montage.tra'; end freq.fourierspctrm = output; % replace the original Fourier spectrum elseif strcmp(freq.dimord, 'rpttap_chan_freq_time') siz = size(freq.fourierspctrm); nrpt = siz(1); nchan = siz(2); nfreq = siz(3); ntime = siz(4); output = zeros(nrpt, size(montage.tra,1), nfreq, ntime); for foilop=1:nfreq for toilop = 1:ntime output(:,:,foilop,toilop) = freq.fourierspctrm(:,:,foilop,toilop) * montage.tra'; end end freq.fourierspctrm = output; % replace the original Fourier spectrum else error('unsupported dimord in frequency data (%s)', freq.dimord); end freq.label = montage.labelnew; freq.chantype = montage.chantypenew; freq.chanunit = montage.chanunitnew; % rename the output variable input = freq; clear freq otherwise error('unrecognized input'); end % switch inputtype % only retain the chantype and/or chanunit if they were present in the input if ~haschantype input = removefields(input, {'chantype', 'chantypeorg', 'chantypenew'}); end if ~haschanunit input = removefields(input, {'chanunit', 'chanunitorg', 'chanunitnew'}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HELPER FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = indx2logical(x, n) y = false(1,n); y(x) = true; function nowarning(varargin) return function s = removefields(s, fn) for i=1:length(fn) if isfield(s, fn{i}) s = rmfield(s, fn{i}); end end
github
ZijingMao/baselineeegtest-master
read_erplabdata.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_erplabdata.m
2,110
utf_8
60380c3ce12bbfd85b4dd554bdc0ae20
% read_erplabdata() - import ERPLAB dataset files % % Usage: % >> dat = read_erplabdata(filename); % % Inputs: % filename - [string] file name % % Optional inputs: % 'begtrial' - [integer] first trial to read % 'endtrial' - [integer] last trial to read % 'chanindx' - [integer] list with channel indices to read % 'header' - FILEIO structure header % % Outputs: % dat - data over the specified range % % Modified from read_eeglabheader %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function dat = read_erplabdata(filename, varargin); if nargin < 1 help read_erplabdata; return; end; header = ft_getopt(varargin, 'header'); begsample = ft_getopt(varargin, 'begsample'); endsample = ft_getopt(varargin, 'endsample'); begtrial = ft_getopt(varargin, 'begtrial'); endtrial = ft_getopt(varargin, 'endtrial'); chanindx = ft_getopt(varargin, 'chanindx'); if isempty(header) header = read_erplabheader(filename); end dat = header.orig.bindata; if isempty(begtrial), begtrial = 1; end; if isempty(endtrial), endtrial = header.nTrials; end; if isempty(begsample), begsample = 1; end; if isempty(endsample), endsample = header.nSamples; end; dat = dat(:,begsample:endsample,begtrial:endtrial); if ~isempty(chanindx) % select the desired channels dat = dat(chanindx,:,:); end
github
ZijingMao/baselineeegtest-master
in_fopen_manscan.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/in_fopen_manscan.m
11,806
utf_8
caf4a8d115834da29621c65451b195b2
function sFile = in_fopen_manscan(DataFile) % IN_FOPEN_MANSCAN: Open a MANSCAN file (continuous recordings) % % USAGE: sFile = in_fopen_manscan(DataFile) % @============================================================================= % This software is part of the Brainstorm software: % http://neuroimage.usc.edu/brainstorm % % Copyright (c)2000-2013 Brainstorm by the University of Southern California % This software is distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html. % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. % % For more information type "brainstorm license" at command prompt. % =============================================================================@ % % Authors: Francois Tadel, 2012 %% ===== READ HEADER ===== % Get text file (.mbi) MbiFile = strrep(DataFile, '.mb2', '.mbi'); % If doesn't exist: error if ~exist(MbiFile, 'file') error('Cannot open file: missing text file .mbi'); end % Initialize header iEpoch = 1; hdr.epoch(iEpoch).Comment = {}; hdr.epoch(iEpoch).Channel = []; hdr.Events = []; curBlock = ''; % Read file line by line fid = fopen(MbiFile,'r'); while(1) % Reached the end of the file: exit the loop if feof(fid) break; end; % Read one line buf = fgetl(fid); if isempty(buf) curBlock = ''; continue; end % Split line based on space characters splitBuf = str_split(buf, [0 9 32]); if isempty(splitBuf) continue; end % Current block if ~isempty(curBlock) switch curBlock case 'event' % Ignore MANSCAN auto events if any(strcmpi(evtProp, 'Channel')) continue; end % New event iEvt = length(hdr.Events) + 1; % Read event name and epoch hdr.Events(iEvt).Name = splitBuf{1}; hdr.Events(iEvt).iEpoch = iEpoch; % Read each property for iProp = 2:length(evtProp) if strcmpi(evtProp{iProp}, 'Channel') hdr.Events(iEvt).Name = [hdr.Events(iEvt).Name '_' splitBuf{iProp}]; elseif strcmpi(evtType{iProp}, 'String') hdr.Events(iEvt).(evtProp{iProp}) = splitBuf{iProp}; else hdr.Events(iEvt).(evtProp{iProp}) = str2num(splitBuf{iProp}); end end case 'channel' % New channel iChan = length(hdr.epoch(iEpoch).Channel) + 1; % Read channel name hdr.epoch(iEpoch).Channel(iChan).Name = splitBuf{1}; % Read each property for iProp = 2:length(chanProp) if strcmpi(chanProp{iProp}, 'UnitDisplayToFile') propValue = str2num(splitBuf{iProp}); else propValue = splitBuf{iProp}; end hdr.epoch(iEpoch).Channel(iChan).(chanProp{iProp}) = propValue; end end % Next line continue; end % Detect keyword switch lower(splitBuf{1}) case 'datatypeid' iEpoch = iEpoch + 1; hdr.epoch(iEpoch).Comment = {}; hdr.epoch(iEpoch).Channel = []; case 'comment' hdr.epoch(iEpoch).Comment{end+1} = strtrim(strrep(buf, splitBuf{1}, '')); case 'event' curBlock = 'event'; evtProp = splitBuf; evtType = str_split(fgetl(fid), [0 9 32]); case 'channel' curBlock = 'channel'; chanProp = splitBuf; case 'offsetdisplayexperiment' hdr.epoch(iEpoch).OffsetDisplay = str2num(splitBuf{2}); case 'experimenttime' hdr.epoch(iEpoch).ExperimentTime = strtrim(strrep(buf, splitBuf{1}, '')); case 'worddatafile' % Read channel order hdr.epoch(iEpoch).ChannelOrder = str_split(fgetl(fid), [0 9 32]); % Read record info datainfo = str_split(fgetl(fid), [0 9 32]); hdr.epoch(iEpoch).StartData1 = str2num(datainfo{1}); hdr.epoch(iEpoch).StartData2 = str2num(datainfo{2}); hdr.epoch(iEpoch).Sweeps = str2num(datainfo{3}); hdr.epoch(iEpoch).BinFile = datainfo{4}; end end %% ===== CREATE BRAINSTORM SFILE STRUCTURE ===== % Initialize returned file structure sFile = [];%db_template('sfile'); % Add information read from header sFile.byteorder = 'l'; sFile.filename = DataFile; sFile.format = 'EEG-MANSCAN'; sFile.device = 'MANSCAN'; sFile.channelmat = []; % Comment: short filename [tmp__, sFile.comment, tmp__] = fileparts(DataFile); % Consider that the sampling rate of the file is the sampling rate of the first signal sFile.prop.sfreq = 256; sFile.prop.nAvg = 1; % No info on bad channels sFile.channelflag = ones(length(hdr.epoch(iEpoch).ChannelOrder), 1); %% ===== EPOCHS ===== if (length(hdr.epoch) <= 1) sFile.prop.samples = [0, hdr.epoch(1).Sweeps-1]; sFile.prop.times = sFile.prop.samples ./ sFile.prop.sfreq; else % Build epochs structure for iEpoch = 1:length(hdr.epoch) sFile.epochs(iEpoch).label = sprintf('Epoch #%02d', iEpoch); sFile.epochs(iEpoch).samples = [0, hdr.epoch(iEpoch).Sweeps-1]; sFile.epochs(iEpoch).times = sFile.epochs(iEpoch).samples ./ sFile.prop.sfreq; sFile.epochs(iEpoch).nAvg = 1; sFile.epochs(iEpoch).select = 1; sFile.epochs(iEpoch).bad = 0; sFile.epochs(iEpoch).channelflag = []; % Check if all the epochs have the same channel list if (iEpoch > 1) && ~isequal(hdr.epoch(iEpoch).ChannelOrder, hdr.epoch(1).ChannelOrder) error('Channel list must remain constant across epochs.'); end end % Extract global min/max for time and samples indices sFile.prop.samples = [min([sFile.epochs.samples]), max([sFile.epochs.samples])]; sFile.prop.times = [min([sFile.epochs.times]), max([sFile.epochs.times])]; end %% ===== CREATE EMPTY CHANNEL FILE ===== nChannels = length(hdr.epoch(1).ChannelOrder); ChannelMat.Comment = [sFile.device ' channels']; %ChannelMat.Channel = repmat(db_template('channeldesc'), [1, nChannels]); hdr.Gains = []; % For each channel for iChan = 1:nChannels % Find channel in description list chName = hdr.epoch(1).ChannelOrder{iChan}; iDesc = find(strcmpi({hdr.epoch(1).Channel.Name}, chName)); sDesc = hdr.epoch(1).Channel(iDesc); % Type if isfield(sDesc, 'IsEEG') && ~isempty(sDesc.IsEEG) if strcmpi(sDesc.IsEEG, 'Yes') ChannelMat.Channel(iChan).Type = 'EEG'; else ChannelMat.Channel(iChan).Type = 'Misc'; end elseif isfield(sDesc, 'IsEEG') ChannelMat.Channel(iChan).Type = 'EEG REF'; else ChannelMat.Channel(iChan).Type = 'EEG'; end % Create structure ChannelMat.Channel(iChan).Name = chName; ChannelMat.Channel(iChan).Loc = [0; 0; 0]; ChannelMat.Channel(iChan).Orient = []; ChannelMat.Channel(iChan).Weight = 1; ChannelMat.Channel(iChan).Comment = ''; % Check that this channel has a gain if isempty(hdr.epoch(1).Channel(iDesc).UnitDisplayToFile) hdr.Gains(iChan,1) = 1; else hdr.Gains(iChan,1) = hdr.epoch(1).Channel(iDesc).UnitDisplayToFile; end end % Return channel structure sFile.channelmat = ChannelMat; %% ===== FORMAT EVENTS ===== if ~isempty(hdr.Events) % Get all the epochs names uniqueEvt = unique({hdr.Events.Name}); % Create one category for each event for iEvt = 1:length(uniqueEvt) % Get all the occurrences iOcc = find(strcmpi({hdr.Events.Name}, uniqueEvt{iEvt})); % Get the samples for all the occurrences sample = [hdr.Events(iOcc).BeginSample]; duration = [hdr.Events(iOcc).DurationSamples]; % Extended event = duration is not 1 for all the markers if ~all(duration == 1) sample = [sample; sample + duration]; end % Create event structure sFile.events(iEvt).label = uniqueEvt{iEvt}; sFile.events(iEvt).samples = sample; sFile.events(iEvt).times = sample ./ sFile.prop.sfreq; sFile.events(iEvt).epochs = [hdr.Events(iOcc).iEpoch]; sFile.events(iEvt).select = 1; end end % Save file header sFile.header = hdr; function splStr = str_split( str, delimiters, isCollapse ) % STR_SPLIT: Split string. % % USAGE: str_split( str, delimiters, isCollapse=1 ) : delimiters in an array of char delimiters % str_split( str ) : default are file delimiters ('\' and '/') % % INPUT: % - str : String to split % - delimiters : String that contains all the characters used to split, default = '/\' % - isCollapse : If 1, remove all the empty entries % % OUTPUT: % - splStr : cell array of blocks found between separators % @============================================================================= % This software is part of the Brainstorm software: % http://neuroimage.usc.edu/brainstorm % % Copyright (c)2000-2013 Brainstorm by the University of Southern California % This software is distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html. % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. % % For more information type "brainstorm license" at command prompt. % =============================================================================@ % % Authors: Francois Tadel, 2008 % Default delimiters: file delimiters ('\', '/') if (nargin < 3) || isempty(isCollapse) isCollapse = 1; end if (nargin < 2) || isempty(delimiters) delimiters = '/\'; end % Empty input if isempty(str) splStr = {}; return end % Find all delimiters in string iDelim = []; for i=1:length(delimiters) iDelim = [iDelim strfind(str, delimiters(i))]; end iDelim = unique(iDelim); % If no delimiter: return the whole string if isempty(iDelim) splStr = {str}; return end % Allocates the split array splStr = cell(1, length(iDelim)+1); % First part (before first delimiter) if (iDelim(1) ~= 1) iSplitStr = 1; splStr{iSplitStr} = str(1:iDelim(1)-1); else iSplitStr = 0; end % Loop over all other delimiters for i = 2:length(iDelim) if (isCollapse && (iDelim(i) - iDelim(i-1) > 1)) || ... (~isCollapse && (iDelim(i) - iDelim(i-1) >= 1)) iSplitStr = iSplitStr + 1; splStr{iSplitStr} = str(iDelim(i-1)+1:iDelim(i)-1); end end % Last part (after last delimiter) if (iDelim(end) ~= length(str)) iSplitStr = iSplitStr + 1; splStr{iSplitStr} = str(iDelim(end)+1:end); end % Remove all the unused entries if (iSplitStr < length(splStr)) splStr(iSplitStr+1:end) = []; end
github
ZijingMao/baselineeegtest-master
read_biosemi_bdf.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_biosemi_bdf.m
10,872
utf_8
51356ef9877faea1b6799cde11807eff
function dat = read_biosemi_bdf(filename, hdr, begsample, endsample, chanindx); % READ_BIOSEMI_BDF reads specified samples from a BDF continous datafile % It neglects all trial boundaries as if the data was acquired in % non-continous mode. % % Use as % [hdr] = read_biosemi_bdf(filename); % where % filename name of the datafile, including the .bdf extension % This returns a header structure with the following elements % hdr.Fs sampling frequency % hdr.nChans number of channels % hdr.nSamples number of samples per trial % hdr.nSamplesPre number of pre-trigger samples in each trial % hdr.nTrials number of trials % hdr.label cell-array with labels of each channel % hdr.orig detailled EDF header information % % Or use as % [dat] = read_biosemi_bdf(filename, hdr, begsample, endsample, chanindx); % where % filename name of the datafile, including the .bdf extension % hdr header structure, see above % begsample index of the first sample to read % endsample index of the last sample to read % chanindx index of channels to read (optional, default is all) % This returns a Nchans X Nsamples data matrix % Copyright (C) 2006, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_biosemi_bdf.m 8119 2013-05-09 12:35:07Z jansch $ if nargin==1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the header, this code is from EEGLAB's openbdf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FILENAME = filename; % defines Seperator for Subdirectories SLASH='/'; BSLASH=char(92); cname=computer; if cname(1:2)=='PC' SLASH=BSLASH; end; fid=fopen(FILENAME,'r','ieee-le'); if fid<0 fprintf(2,['Error LOADEDF: File ' FILENAME ' not found\n']); return; end; EDF.FILE.FID=fid; EDF.FILE.OPEN = 1; EDF.FileName = FILENAME; PPos=min([max(find(FILENAME=='.')) length(FILENAME)+1]); SPos=max([0 find((FILENAME=='/') | (FILENAME==BSLASH))]); EDF.FILE.Ext = FILENAME(PPos+1:length(FILENAME)); EDF.FILE.Name = FILENAME(SPos+1:PPos-1); if SPos==0 EDF.FILE.Path = pwd; else EDF.FILE.Path = FILENAME(1:SPos-1); end; EDF.FileName = [EDF.FILE.Path SLASH EDF.FILE.Name '.' EDF.FILE.Ext]; H1=char(fread(EDF.FILE.FID,256,'char')'); % EDF.VERSION=H1(1:8); % 8 Byte Versionsnummer %if 0 fprintf(2,'LOADEDF: WARNING Version EDF Format %i',ver); end; EDF.PID = deblank(H1(9:88)); % 80 Byte local patient identification EDF.RID = deblank(H1(89:168)); % 80 Byte local recording identification %EDF.H.StartDate = H1(169:176); % 8 Byte %EDF.H.StartTime = H1(177:184); % 8 Byte EDF.T0=[str2num(H1(168+[7 8])) str2num(H1(168+[4 5])) str2num(H1(168+[1 2])) str2num(H1(168+[9 10])) str2num(H1(168+[12 13])) str2num(H1(168+[15 16])) ]; % Y2K compatibility until year 2090 if EDF.VERSION(1)=='0' if EDF.T0(1) < 91 EDF.T0(1)=2000+EDF.T0(1); else EDF.T0(1)=1900+EDF.T0(1); end; else ; % in a future version, this is hopefully not needed end; EDF.HeadLen = str2num(H1(185:192)); % 8 Byte Length of Header % reserved = H1(193:236); % 44 Byte EDF.NRec = str2num(H1(237:244)); % 8 Byte # of data records EDF.Dur = str2num(H1(245:252)); % 8 Byte # duration of data record in sec EDF.NS = str2num(H1(253:256)); % 8 Byte # of signals EDF.Label = char(fread(EDF.FILE.FID,[16,EDF.NS],'char')'); EDF.Transducer = char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); EDF.PhysDim = char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'); EDF.PhysMin= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.PhysMax= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.DigMin = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.DigMax = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); % check validity of DigMin and DigMax if (length(EDF.DigMin) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Digital Minimum\n'); EDF.DigMin = -(2^15)*ones(EDF.NS,1); end if (length(EDF.DigMax) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Digital Maximum\n'); EDF.DigMax = (2^15-1)*ones(EDF.NS,1); end if (any(EDF.DigMin >= EDF.DigMax)) fprintf(2,'Warning OPENEDF: Digital Minimum larger than Maximum\n'); end % check validity of PhysMin and PhysMax if (length(EDF.PhysMin) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Physical Minimum\n'); EDF.PhysMin = EDF.DigMin; end if (length(EDF.PhysMax) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Physical Maximum\n'); EDF.PhysMax = EDF.DigMax; end if (any(EDF.PhysMin >= EDF.PhysMax)) fprintf(2,'Warning OPENEDF: Physical Minimum larger than Maximum\n'); EDF.PhysMin = EDF.DigMin; EDF.PhysMax = EDF.DigMax; end EDF.PreFilt= char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); % tmp = fread(EDF.FILE.FID,[8,EDF.NS],'char')'; % samples per data record EDF.SPR = str2num(char(tmp)); % samples per data record fseek(EDF.FILE.FID,32*EDF.NS,0); EDF.Cal = (EDF.PhysMax-EDF.PhysMin)./(EDF.DigMax-EDF.DigMin); EDF.Off = EDF.PhysMin - EDF.Cal .* EDF.DigMin; tmp = find(EDF.Cal < 0); EDF.Cal(tmp) = ones(size(tmp)); EDF.Off(tmp) = zeros(size(tmp)); EDF.Calib=[EDF.Off';(diag(EDF.Cal))]; %EDF.Calib=sparse(diag([1; EDF.Cal])); %EDF.Calib(1,2:EDF.NS+1)=EDF.Off'; EDF.SampleRate = EDF.SPR / EDF.Dur; EDF.FILE.POS = ftell(EDF.FILE.FID); if EDF.NRec == -1 % unknown record size, determine correct NRec fseek(EDF.FILE.FID, 0, 'eof'); endpos = ftell(EDF.FILE.FID); EDF.NRec = floor((endpos - EDF.FILE.POS) / (sum(EDF.SPR) * 2)); fseek(EDF.FILE.FID, EDF.FILE.POS, 'bof'); H1(237:244)=sprintf('%-8i',EDF.NRec); % write number of records end; EDF.Chan_Select=(EDF.SPR==max(EDF.SPR)); for k=1:EDF.NS if EDF.Chan_Select(k) EDF.ChanTyp(k)='N'; else EDF.ChanTyp(k)=' '; end; if findstr(upper(EDF.Label(k,:)),'ECG') EDF.ChanTyp(k)='C'; elseif findstr(upper(EDF.Label(k,:)),'EKG') EDF.ChanTyp(k)='C'; elseif findstr(upper(EDF.Label(k,:)),'EEG') EDF.ChanTyp(k)='E'; elseif findstr(upper(EDF.Label(k,:)),'EOG') EDF.ChanTyp(k)='O'; elseif findstr(upper(EDF.Label(k,:)),'EMG') EDF.ChanTyp(k)='M'; end; end; EDF.AS.spb = sum(EDF.SPR); % Samples per Block % close the file fclose(EDF.FILE.FID); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert the header to Fieldtrip-style %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if any(EDF.SampleRate~=EDF.SampleRate(1)) error('channels with different sampling rate not supported'); end hdr.Fs = EDF.SampleRate(1); hdr.nChans = EDF.NS; hdr.label = cellstr(EDF.Label); % it is continuous data, therefore append all records in one trial hdr.nTrials = 1; hdr.nSamples = EDF.NRec * EDF.Dur * EDF.SampleRate(1); hdr.nSamplesPre = 0; hdr.orig = EDF; % return the header dat = hdr; else %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % retrieve the original header EDF = hdr.orig; % determine the trial containing the begin and end sample epochlength = EDF.Dur * EDF.SampleRate(1); begepoch = floor((begsample-1)/epochlength) + 1; endepoch = floor((endsample-1)/epochlength) + 1; nepochs = endepoch - begepoch + 1; nchans = EDF.NS; if nargin<5 chanindx = 1:nchans; end % allocate memory to hold the data dat = zeros(length(chanindx),nepochs*epochlength); % read and concatenate all required data epochs for i=begepoch:endepoch offset = EDF.HeadLen + (i-1)*epochlength*nchans*3; if length(chanindx)==1 % this is more efficient if only one channel has to be read, e.g. the status channel offset = offset + (chanindx-1)*epochlength*3; buf = readLowLevel(filename, offset, epochlength); % see below in subfunction dat(:,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf; else % read the data from all channels and then select the desired channels buf = readLowLevel(filename, offset, epochlength*nchans); % see below in subfunction buf = reshape(buf, epochlength, nchans); dat(:,((i-begepoch)*epochlength+1):((i-begepoch+1)*epochlength)) = buf(:,chanindx)'; end end % select the desired samples begsample = begsample - (begepoch-1)*epochlength; % correct for the number of bytes that were skipped endsample = endsample - (begepoch-1)*epochlength; % correct for the number of bytes that were skipped dat = dat(:, begsample:endsample); % Calibrate the data calib = diag(EDF.Cal(chanindx)); if length(chanindx)>1 % using a sparse matrix speeds up the multiplication dat = sparse(calib) * dat; else % in case of one channel the sparse multiplication would result in a sparse array dat = calib * dat; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for reading the 24 bit values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function buf = readLowLevel(filename, offset, numwords); if offset < 2*1024^3 % use the external mex file, only works for <2GB buf = read_24bit(filename, offset, numwords); % this would be the only difference between the bdf and edf implementation % buf = read_16bit(filename, offset, numwords); else % use plain matlab, thanks to Philip van der Broek fp = fopen(filename,'r','ieee-le'); status = fseek(fp, offset, 'bof'); if status error(['failed seeking ' filename]); end [buf,num] = fread(fp,numwords,'bit24=>double'); fclose(fp); if (num<numwords) error(['failed opening ' filename]); return end end
github
ZijingMao/baselineeegtest-master
read_ctf_ascii.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_ctf_ascii.m
3,218
utf_8
ed3ebfd532e8ac61a7237dede21d739b
function [file] = read_ctf_ascii(filename); % READ_CTF_ASCII reads general data from an CTF configuration file % % The file should be formatted like % Group % { % item1 : value1a value1b value1c % item2 : value2a value2b value2c % item3 : value3a value3b value3c % item4 : value4a value4b value4c % } % % This fileformat structure is used in % params.avg % default.hdm % multiSphere.hdm % processing.cfg % and maybe for other files as well. % Copyright (C) 2003, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_ctf_ascii.m 7123 2012-12-06 21:21:38Z roboos $ fid = fopen(filename, 'r'); if fid==-1 error(sprintf('could not open file %s', filename)); end line = ''; while ischar(line) line = cleanline(fgetl(fid)); if isempty(line) || (length(line)==1 && all(line==-1)) continue end % the line is not empty, which means that we have encountered a chunck of information subline = cleanline(fgetl(fid)); % read the { subline = cleanline(fgetl(fid)); % read the first item while isempty(findstr(subline, '}')) if ~isempty(subline) [item, value] = strtok(subline, ':'); value(1) = ' '; % remove the : value = strtrim(value); item = strtrim(item); % turn warnings off ws = warning('off'); % the item name should be a real string, otherwise I cannot put it into the structure if strcmp(sprintf('%d', str2num(deblank(item))), deblank(item)) % add something to the start of the string to distinguish it from a number item = ['item_' item]; end % the value can be either a number or a string, and is put into the structure accordingly if isempty(str2num(value)) % the value appears to be a string eval(sprintf('file.%s.%s = [ ''%s'' ];', line, item, value)); else % the value appears to be a number or a list of numbers eval(sprintf('file.%s.%s = [ %s ];', line, item, value)); end % revert to previous warning state warning(ws); end subline = cleanline(fgetl(fid)); % read the first item end end fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function line = cleanline(line) if isempty(line) || (length(line)==1 && all(line==-1)) return end comment = findstr(line, '//'); if ~isempty(comment) line(min(comment):end) = ' '; end line = strtrim(line);
github
ZijingMao/baselineeegtest-master
read_mpi_dap.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_mpi_dap.m
7,085
utf_8
a51b5774d3dc46b048015b2b12e95e76
function [dap] = read_mpi_dap(filename) % READ_MPI_DAP read the analog channels from a DAP file % and returns the values in microvolt (uV) % % Use as % [dap] = read_mpi_dap(filename) % Copyright (C) 2005-2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_mpi_dap.m 7123 2012-12-06 21:21:38Z roboos $ fid = fopen(filename, 'rb', 'ieee-le'); % read the file header filehdr = readheader(fid); analog = {}; analoghdr = {}; analogsweephdr = {}; spike = {}; spikehdr = {}; spikesweephdr = {}; W = filehdr.nexps; S = filehdr.nsweeps; for w=1:filehdr.nexps % read the experiment header exphdr{w} = readheader(fid); if filehdr.nanalog if filehdr.analogmode==-1 % record mode for s=1:filehdr.nsweeps % read the analogsweepheader analogsweephdr{s} = readheader(fid); for j=1:filehdr.nanalog % read the analog header analoghdr{w,s,j} = readheader(fid); % read the analog data analog{w,s,j} = fread(fid, analoghdr{w,s,j}.datasize, 'int16'); % calibrate the analog data analog{w,s,j} = analog{w,s,j} * 2.5/2048; end end % for s=1:S elseif filehdr.analogmode==0 % average mode s = 1; for j=1:filehdr.nanalog % read the analog header analoghdr{w,s,j} = readheader(fid); % read the analog data analog{w,s,j} = fread(fid, analoghdr{w,s,j}.datasize, 'int16'); % calibrate the analog data analog{w,s,j} = analog{w,s,j} * 2.5/2048; end else error('unknown analog mode'); end end if filehdr.nspike for s=1:filehdr.nsweeps spikesweephdr{s} = readheader(fid); for j=1:filehdr.nspike % read the spike header spikehdr{w,s,j} = readheader(fid); % read the spike data spike{w,s,j} = fread(fid, spikehdr{w,s,j}.datasize, 'int16'); end end % for s=1:S end end % for w=1:W dap.filehdr = filehdr; dap.exphdr = exphdr; dap.analogsweephdr = analogsweephdr; dap.analoghdr = analoghdr; dap.analog = analog; dap.spikesweephdr = spikesweephdr; dap.spikehdr = spikehdr; dap.spike = spike; fclose(fid); return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = readheader(fid); % determine the header type, header size and data size hdr.headertype = fread(fid, 1, 'uchar'); dummy = fread(fid, 1, 'uchar'); hdr.headersize = fread(fid, 1, 'int16') + 1; % expressed in words, not bytes hdr.datasize = fread(fid, 1, 'int16'); % expressed in words, not bytes % read the header details switch hdr.headertype case 1 % fileheader % fprintf('fileheader at %d\n' ,ftell(fid)-6); dummy = fread(fid, 1, 'uchar')'; % 6 hdr.nexps = fread(fid, 1, 'uchar')'; % 7 hdr.progname = fread(fid, 7, 'uchar')'; % 8-14 hdr.version = fread(fid, 1, 'uchar')'; % 15 hdr.progversion = fread(fid, 2, 'uchar')'; % 16-17 hdr.fileversion = fread(fid, 2, 'uchar')'; % 18-19 hdr.date = fread(fid, 1, 'int16'); % 20-21 hdr.time = fread(fid, 1, 'int16'); % 22-23 hdr.nanalog = fread(fid, 1, 'uint8'); % 24 hdr.nspike = fread(fid, 1, 'uint8'); % 25 hdr.nbins = fread(fid, 1, 'int16'); % 26-27 hdr.binwidth = fread(fid, 1, 'int16'); % 28-29 dummy = fread(fid, 1, 'int16'); % 30-31 hdr.nsweeps = fread(fid, 1, 'int16'); % 32-33 hdr.analogmode = fread(fid, 1, 'uchar')'; % 34 "0 for average, -1 for record" dummy = fread(fid, 1, 'uchar')'; % 35 dummy = fread(fid, 1, 'int16'); % 36-37 dummy = fread(fid, 1, 'int16'); % 38-39 dummy = fread(fid, 1, 'int16'); % 40-41 case 65 % expheader % fprintf('expheader at %d\n' ,ftell(fid)-6); hdr.time = fread(fid, 1, 'int16'); % 6-7 hdr.parallel = fread(fid, 1, 'int16'); % 8-9 hdr.id = fread(fid, 1, 'int16'); % 10-11 dummy = fread(fid, 1, 'int16'); % 12-13 dummy = fread(fid, 1, 'int16'); % 14-15 dummy = fread(fid, 1, 'int16'); % 16-17 case 129 % analogchannelheader % fprintf('analogchannelheader at %d\n' ,ftell(fid)-6); dummy = fread(fid, 1, 'int16'); % 6-7 hdr.channum = fread(fid, 1, 'uchar'); % 8 dummy = fread(fid, 1, 'uchar'); % 9 dummy = fread(fid, 1, 'int16'); % 10-11 dummy = fread(fid, 1, 'int16'); % 12-13 dummy = fread(fid, 1, 'int16'); % 14-15 dummy = fread(fid, 1, 'int16'); % 16-17 case 161 % spikechannelheader % fprintf('spikechannelheader at %d\n' ,ftell(fid)-6); dummy = fread(fid, 1, 'int16'); % 6-7 hdr.channum = fread(fid, 1, 'uchar'); % 8 dummy = fread(fid, 1, 'uchar'); % 9 dummy = fread(fid, 1, 'int16'); % 10-11 dummy = fread(fid, 1, 'int16'); % 12-13 dummy = fread(fid, 1, 'int16'); % 14-15 dummy = fread(fid, 1, 'int16'); % 16-17 case 137 % analogsweepheader % fprintf('analogsweepheader at %d\n' ,ftell(fid)-6); hdr.sweepnum = fread(fid, 1, 'int16'); % 6-7 hdr.parallel = fread(fid, 1, 'int16'); % 8-9 dummy = fread(fid, 1, 'int16'); % 10-11 dummy = fread(fid, 1, 'int16'); % 12-13 dummy = fread(fid, 1, 'int16'); % 14-15 dummy = fread(fid, 1, 'int16'); % 16-17 case 169 % spikesweepheader % fprintf('spikesweepheader at %d\n' ,ftell(fid)-6); hdr.sweepnum = fread(fid, 1, 'int16'); % 6-7 hdr.parallel = fread(fid, 1, 'int16'); % 8-9 dummy = fread(fid, 1, 'int16'); % 10-11 dummy = fread(fid, 1, 'int16'); % 12-13 dummy = fread(fid, 1, 'int16'); % 14-15 dummy = fread(fid, 1, 'int16'); % 16-17 otherwise error(sprintf('unsupported format for header (%d)', hdr.headertype)); end
github
ZijingMao/baselineeegtest-master
read_neuralynx_bin.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_neuralynx_bin.m
6,705
utf_8
1851b52bfcf664aadb50e417bd3ab74b
function [dat] = read_neuralynx_bin(filename, begsample, endsample); % READ_NEURALYNX_BIN % % Use as % hdr = read_neuralynx_bin(filename) % or % dat = read_neuralynx_bin(filename, begsample, endsample) % % This is not a formal Neuralynx file format, but at the % F.C. Donders Centre we use it in conjunction with Neuralynx, % SPIKESPLITTING and SPIKEDOWNSAMPLE. % % The first version of this file format contained in the first 8 bytes the % channel label as string. Subsequently it contained 32 bit integer values. % % The second version of this file format starts with 8 bytes describing (as % a space-padded string) the data type. The channel label is contained in % the filename as dataset.chanlabel.bin. % % The third version of this file format starts with 7 bytes describing (as % a zero-padded string) the data type, followed by the 8th byte which % describes the downscaling for the 8 and 16 bit integer representations. % The downscaling itself is represented as uint8 and should be interpreted as % the number of bits to shift. The channel label is contained in the % filename as dataset.chanlabel.bin. % Copyright (C) 2007-2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_neuralynx_bin.m 7123 2012-12-06 21:21:38Z roboos $ needhdr = (nargin==1); needdat = (nargin>=2); % this is used for backward compatibility oldformat = false; % the first 8 bytes contain the header fid = fopen(filename, 'rb', 'ieee-le'); magic = fread(fid, 8, 'uint8=>char')'; % the header describes the format of the subsequent samples subtype = []; if strncmp(magic, 'uint8', length('uint8')) format = 'uint8'; samplesize = 1; elseif strncmp(magic, 'int8', length('int8')) format = 'int8'; samplesize = 1; elseif strncmp(magic, 'uint16', length('uint16')) format = 'uint16'; samplesize = 2; elseif strncmp(magic, 'int16', length('int16')) format = 'int16'; samplesize = 2; elseif strncmp(magic, 'uint32', length('uint32')) format = 'uint32'; samplesize = 4; elseif strncmp(magic, 'int32', length('int32')) format = 'int32'; samplesize = 4; elseif strncmp(magic, 'uint64', length('uint64')) format = 'uint64'; samplesize = 8; elseif strncmp(magic, 'int64', length('int64')) format = 'int64'; samplesize = 8; elseif strncmp(magic, 'float32', length('float32')) format = 'float32'; samplesize = 4; elseif strncmp(magic, 'float64', length('float64')) format = 'float64'; samplesize = 8; else warning('could not detect sample format, assuming file format subtype 1 with ''int32'''); subtype = 1; % the file format is version 1 format = 'int32'; samplesize = 4; end % determine whether the file format is version 2 or 3 if isempty(subtype) if all(magic((length(format)+1):end)==' ') subtype = 2; else subtype = 3; end end % determine the channel name switch subtype case 1 % the first 8 bytes of the file contain the channel label (padded with spaces) label = strtrim(magic); case {2, 3} % the filename is formatted like "dataset.chanlabel.bin" [p, f, x1] = fileparts(filename); [p, f, x2] = fileparts(f); if isempty(x2) warning('could not determine channel label'); label = 'unknown'; else label = x2(2:end); end clear p f x1 x2 otherwise error('unknown file format subtype'); end % determine the downscale factor, i.e. the number of bits that the integer representation has to be shifted back to the left switch subtype case 1 % these never contained a multiplication factor but always corresponded % to the lowest N bits of the original 32 bit integer downscale = 0; case 2 % these might contain a multiplication factor but that factor cannot be retrieved from the file warning('downscale factor is unknown for ''%s'', assuming that no downscaling was applied', filename); downscale = 0; case 3 downscale = double(magic(8)); otherwise error('unknown file format subtype'); end [p1, f1, x1] = fileparts(filename); [p2, f2, x2] = fileparts(f1); headerfile = fullfile(p1, [f2, '.txt']); if exist(headerfile, 'file') orig = neuralynx_getheader(headerfile); % construct the header from the accompanying text file hdr = []; hdr.Fs = orig.SamplingFrequency; hdr.nChans = 1; hdr.nSamples = (filesize(filename)-8)/samplesize; hdr.nSamplesPre = 0; hdr.nTrials = 1; hdr.label = {label}; else % construct the header from the hard-coded defaults hdr = []; hdr.Fs = 32556; hdr.nChans = 1; hdr.nSamples = (filesize(filename)-8)/samplesize; hdr.nSamplesPre = 0; hdr.nTrials = 1; hdr.label = {label}; end if ~needdat % also return the file details hdr.orig.subtype = subtype; hdr.orig.magic = magic; hdr.orig.format = format; hdr.orig.downscale = downscale; % return only the header details dat = hdr; else % read and return the data if begsample<1 begsample = 1; end if isinf(endsample) endsample = hdr.nSamples; end fseek(fid, 8+(begsample-1)*samplesize, 'bof'); % skip to the beginning of the interesting data format = sprintf('%s=>%s', format, format); dat = fread(fid, [1 endsample-begsample+1], format); if downscale>1 % the data was downscaled with 2^N, i.e. shifted N bits to the right in case of integer representations % now it should be upscaled again with the same amount dat = dat.*(2^downscale); end if length(dat)<(endsample-begsample+1) error('could not read the requested data'); end end % needdat fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to determine the file size in bytes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [siz] = filesize(filename) l = dir(filename); if l.isdir error(sprintf('"%s" is not a file', filename)); end siz = l.bytes;
github
ZijingMao/baselineeegtest-master
inifile.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/inifile.m
23,578
utf_8
f647125ffa71c22e44a119c27e73d460
function readsett = inifile(fileName,operation,keys,style) %readsett = INIFILE(fileName,operation,keys,style) % Creates, reads, or writes data from/to ini (ascii) file. % % - fileName: ini file name % - operation: can be one of the following: % 'new' (rewrites an existing or creates a new, empty file), % 'deletekeys'(deletes keys and their values - if they exist), % 'read' (reads values as strings), % 'write' (writes values given as strings), % - keys: cell array of STRINGS; max 5 columns, min % 3 columns. Each row has the same number of columns. The columns are: % 'section': section name string (the root is considered if empty or not given) % 'subsection': subsection name string (the root is considered if empty or not given) % 'key': name of the field to write/read from (given as a string). % 'value': (optional) string-value to write to the ini file in case of 'write' operation % 'defaultValue': (optional) value that is returned when the key is not found when reading ('read' operation) % - style: 'tabbed' writes sections, subsections and keys in a tabbed style % to get a more readable file. The 'plain' style is the % default style. This only affects the keys that will be written/rewritten. % % - readsett: read setting in the case of the 'read' operation. If % the keys are not found, the default values are returned % as strings (if given in the 5-th column). % % EXAMPLE: % Suppose we want a new ini file, test1.ini with 3 fields. % We can write them into the file using: % % inifile('test1.ini','new'); % writeKeys = {'measurement','person','name','Primoz Cermelj';... % 'measurement','protocol','id','1';... % 'application','','description','some...'}; % inifile('test1.ini','write',writeKeys,'plain'); % % Later, you can read them out. Additionally, if any of them won't % exist, a default value will be returned (if the 5-th column is given as below). % % readKeys = {'measurement','person','name','','John Doe';... % 'measurement','protocol','id','','0';... % 'application','','description','','none'}; % readSett = inifile('test1.ini','read',readKeys); % % % NOTES: When the operation is 'new', only the first 2 parameters are % required. If the operation is 'write' and the file is empty or does not exist, % a new file is created. When writing and if any of the section or subsection or key does not exist, % it creates (adds) a new one. % Everything but value is NOT case sensitive. Given keys and values % will be trimmed (leading and trailing spaces will be removed). % Any duplicates (section, subsection, and keys) are ignored. Empty section and/or % subsection can be given as an empty string, '', but NOT as an empty matrix, []. % % This function was tested on the win32 platform only but it should % also work on Unix/Linux platforms. Since some short-circuit operators % are used, at least Matlab 6.5 should be used. % % FREE SOFTWARE - please refer the source % Copyright (c) 2003 by Primoz Cermelj % First release on 29.01.2003 % Primoz Cermelj, Slovenia % Contact: [email protected] % Download location: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=2976&objectType=file % % Version: 1.1.0 % Last revision: 04.02.2004 % % Bug reports, questions, etc. can be sent to the e-mail given above. % % This programme is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This programme is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. %-------------------------------------------------------------------------- %---------------- % INIFILE history %---------------- % % [v.1.1.0] 04.02.2004 % - FIX: 'writetext' option removed (there was a bug previously) % % [v.1.01b] 19.12.2003 % - NEW: A new concept - multiple keys can now be read, written, or deleted % ALL AT ONCE which makes this function much faster. For example, to % write 1000 keys, using previous versions it took 157 seconds on a % 1.5 GHz machine, with this new version it took only 1.83 seconds. % In general, the speed improvement is greater when larger number of % read/written keys are considered. % - NEW: The format of the input parameters has changed. See above. % % [v.0.97] 19.11.2003 % - NEW: Additional m-function, strtrim, is no longer needed % % [v.0.96] 16.10.2003 % - FIX: Detects empty keys % % [v.0.95] 04.07.2003 % - NEW: 'deletekey' option/operation added % - FIX: A major file refinement to obtain a more compact utility -> additional operations can "easily" be implemented % % [v.0.91-0.94] % - FIX: Some minor refinements % % [v.0.90] 29.01.2003 % - NEW: First release of this tool % %---------------- global NL_CHAR; % Checks the input arguments if nargin < 2 error('Not enough input arguments'); end if (strcmpi(operation,'read')) | (strcmpi(operation,'deletekeys')) if nargin < 3 error('Not enough input arguments.'); end if ~exist(fileName) error(['File ' fileName ' does not exist.']); end [m,n] = size(keys); if n > 5 error('Keys argument has too many columns'); end for ii=1:m if isempty(keys(ii,3)) | ~ischar(keys{ii,3}) error('Empty or non-char keys are not allowed.'); end end elseif (strcmpi(operation,'write')) | (strcmpi(operation,'writetext')) if nargin < 3 error('Not enough input arguments'); end [m,n] = size(keys); for ii=1:m if isempty(keys(ii,3)) | ~ischar(keys{ii,3}) error('Empty or non-char keys are not allowed.'); end end elseif (~strcmpi(operation,'new')) error(['Unknown inifile operation: ''' operation '''']); end if nargin >= 3 for ii=1:m for jj=1:n if ~ischar(keys{ii,jj}) error('All cells from keys must be given as strings, even the empty ones.'); end end end end if nargin < 4 || isempty(style) style = 'plain'; else if ~(strcmpi(style,'plain') | strcmpi(style,'tabbed')) | ~ischar(style) error('Unsupported style given or style not given as a string'); end end % Sets new-line character (string) if ispc NL_CHAR = '\r\n'; else NL_CHAR = '\n'; end %---------------------------- % CREATES a new, empty file (rewrites an existing one) %---------------------------- if strcmpi(operation,'new') fh = fopen(fileName,'w'); if fh == -1 error(['File: ''' fileName ''' can not be (re)created']); end fclose(fh); return %---------------------------- % READS key-value pairs out %---------------------------- elseif (strcmpi(operation,'read')) if n < 5 defaultValues = cellstrings(m,1); else defaultValues = keys(:,5); end readsett = defaultValues; keysIn = keys(:,1:3); [secsExist,subsecsExist,keysExist,readValues,so,eo] = findkeys(fileName,keysIn); ind = find(keysExist); if ~isempty(ind) readsett(ind) = readValues(ind); end return %---------------------------- % WRITES key-value pairs to an existing or non-existing % file (file can even be empty) %---------------------------- elseif (strcmpi(operation,'write')) if m < 1 error('At least one key is needed when writing keys'); end if ~exist(fileName) inifile(fileName,'new'); end writekeys(fileName,keys,style); return %---------------------------- % DELETES key-value pairs out %---------------------------- elseif (strcmpi(operation,'deletekeys')) deletekeys(fileName,keys); else error('Unknown operation for INIFILE.'); end %-------------------------------------------------- %%%%%%%%%%%%% SUBFUNCTIONS SECTION %%%%%%%%%%%%%%%% %-------------------------------------------------- %------------------------------------ function [secsExist,subSecsExist,keysExist,values,startOffsets,endOffsets] = findkeys(fileName,keysIn) % This function parses ini file for keys as given by keysIn. keysIn is a cell % array of strings having 3 columns; section, subsection and key in each row. % section and/or subsection can be empty (root section or root subsection) % but the key can not be empty. The startOffsets and endOffsets are start and % end bytes that each key occuppies, respectively. If any of the keys doesn't exist, % startOffset and endOffset for this key are the same. A special case is % when the key that doesn't exist also corresponds to a non-existing % section and non-existing subsection. In such a case, the startOffset and % endOffset have values of -1. nKeys = size(keysIn,1); % number of keys nKeysLocated = 0; % number of keys located secsExist = zeros(nKeys,1); % if section exists (and is non-empty) subSecsExist = zeros(nKeys,1); % if subsection... keysExist = zeros(nKeys,1); % if key that we are looking for exists keysLocated = keysExist; % if the key's position (existing or non-existing) is LOCATED values = cellstrings(nKeys,1); % read values of keys (strings) startOffsets = -ones(nKeys,1); % start byte-position of the keys endOffsets = -ones(nKeys,1); % end byte-position of the keys keyInd = find(strcmpi(keysIn(:,1),'')); % key indices having [] section (root section) line = []; currSection = ''; currSubSection = ''; fh = fopen(fileName,'r'); if fh == -1 error(['File: ''' fileName ''' does not exist or can not be opened.']); end try %--- Searching for the keys - their values and start and end locations in bytes while 1 pos1 = ftell(fh); line = fgetl(fh); if line == -1 % end of file, exit line = []; break end [status,readValue,readKey] = processiniline(line); if (status == 1) % (new) section found % Keys that were found as belonging to any previous section % are now assumed as located (because another % section is found here which could even be a repeated one) keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) ); if length(keyInd) keysLocated(keyInd) = 1; nKeysLocated = nKeysLocated + length(keyInd); end currSection = readValue; currSubSection = ''; % Indices to non-located keys belonging to current section keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) ); if ~isempty(keyInd) secsExist(keyInd) = 1; end pos2 = ftell(fh); startOffsets(keyInd) = pos2+1; endOffsets(keyInd) = pos2+1; elseif (status == 2) % (new) subsection found % Keys that were found as belonging to any PREVIOUS section % and/or subsection are now assumed as located (because another % subsection is found here which could even be a repeated one) keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) & ~keysLocated & strcmpi(keysIn(:,2),currSubSection)); if length(keyInd) keysLocated(keyInd) = 1; nKeysLocated = nKeysLocated + length(keyInd); end currSubSection = readValue; % Indices to non-located keys belonging to current section and subsection at the same time keyInd = find( ~keysLocated & strcmpi(keysIn(:,1),currSection) & ~keysLocated & strcmpi(keysIn(:,2),currSubSection)); if ~isempty(keyInd) subSecsExist(keyInd) = 1; end pos2 = ftell(fh); startOffsets(keyInd) = pos2+1; endOffsets(keyInd) = pos2+1; elseif (status == 3) % key found if isempty(keyInd) continue % no keys from 'keys' - from section-subsection par currently in end currKey = readValue; pos2 = ftell(fh); % the last-byte position of the read key - the total sum of chars read so far for ii=1:length(keyInd) if strcmpi( keysIn(keyInd(ii),3),readKey ) & ~keysLocated(keyInd(ii)) keysExist(keyInd(ii)) = 1; startOffsets(keyInd(ii)) = pos1+1; endOffsets(keyInd(ii)) = pos2; values{keyInd(ii)} = currKey; keysLocated(keyInd(ii)) = 1; nKeysLocated = nKeysLocated + 1; else if ~keysLocated(keyInd(ii)) startOffsets(keyInd(ii)) = pos2+1; endOffsets(keyInd(ii)) = pos2+1; end end end if nKeysLocated >= nKeys % if all the keys are located break end else % general text found (even empty line(s)) end %--- End searching end fclose(fh); catch fclose(fh); error(['Error parsing the file for keys: ' fileName ': ' lasterr]); end %------------------------------------ %------------------------------------ function writekeys(fileName,keys,style) % Writes keys to the section and subsection pair % If any of the keys doesn't exist, a new key is added to % the end of the section-subsection pair otherwise the key is updated (changed). % Keys is a 4-column cell array of strings. global NL_CHAR; RETURN = sprintf('\r'); NEWLINE = sprintf('\n'); [m,n] = size(keys); if n < 4 error('Keys to be written are given in an invalid format.'); end % Get keys position first using findkeys keysIn = keys; [secsExist,subSecsExist,keysExist,readValues,so,eo] = findkeys(fileName,keys(:,1:3)); % Read the whole file's contents out fh = fopen(fileName,'r'); if fh == -1 error(['File: ''' fileName ''' does not exist or can not be opened.']); end try dataout = fscanf(fh,'%c'); catch fclose(fh); error(lasterr); end fclose(fh); %--- Rewriting the file -> writing the refined contents fh = fopen(fileName,'w'); if fh == -1 error(['File: ''' fileName ''' does not exist or can not be opened.']); end try tab1 = []; if strcmpi(style,'tabbed') tab1 = sprintf('\t'); end % Proper sorting of keys is cruical at this point in order to avoid % inproper key-writing. % Find keys with -1 offsets - keys with non-existing section AND % subsection - keys that will be added to the end of the file fs = length(dataout); % file size in bytes nAddedKeys = 0; ind = find(so==-1); if ~isempty(ind) so(ind) = (fs+10); % make sure these keys will come to the end when sorting eo(ind) = (fs+10); nAddedKeys = length(ind); end % Sort keys according to start- and end-offsets [dummy,ind] = sort(so,1); so = so(ind); eo = eo(ind); keysIn = keysIn(ind,:); keysExist = keysExist(ind); secsExist = secsExist(ind); subSecsExist = subSecsExist(ind); readValues = readValues(ind); values = keysIn(:,4); % Find keys with equal start offset (so) and additionally sort them % (locally). These are non-existing keys, including the ones whose % section and subsection will also be added. nKeys = size(so,1); fullInd = 1:nKeys; ii = 1; while ii < nKeys ind = find(so==so(ii)); if ~isempty(ind) && length(ind) > 1 n = length(ind); from = ind(1); to = ind(end); tmpKeys = keysIn( ind,: ); [tmpKeys,ind2] = sortrows( lower(tmpKeys) ); fullInd(from:to) = ind(ind2); ii = ii + n; else ii = ii + 1; end end % Final (re)sorting so = so(fullInd); eo = eo(fullInd); keysIn = keysIn(fullInd,:); keysExist = keysExist(fullInd); secsExist = secsExist(fullInd); subSecsExist = subSecsExist(fullInd); readValues = readValues(fullInd); values = keysIn(:,4); % Refined data - datain datain = []; for ii=1:nKeys % go through all the keys, existing and non-existing ones if ii==1 from = 1; % from byte-offset of original data (dataout) else from = eo(ii-1); if keysExist(ii-1) from = from + 1; end end to = min(so(ii)-1,fs); % to byte-offset of original data (dataout) if ~isempty(dataout) datain = [datain dataout(from:to)]; % the lines before the key end if length(datain) & (~(datain(end)==RETURN | datain(end)==NEWLINE)) datain = [datain, sprintf(NL_CHAR)]; end tab = []; if ~keysExist(ii) if ~secsExist(ii) && ~isempty(keysIn(ii,1)) if ~isempty(keysIn{ii,1}) datain = [datain sprintf(['%s' NL_CHAR],['[' keysIn{ii,1} ']'])]; end % Key-indices with the same section as this, ii-th key (even empty sections are considered) ind = find( strcmpi( keysIn(:,1), keysIn(ii,1)) ); % This section exists at all keys corresponding to the same section from know on (even the empty ones) secsExist(ind) = 1; end if ~subSecsExist(ii) && ~isempty(keysIn(ii,2)) if ~isempty( keysIn{ii,2}) if secsExist(ii); tab = tab1; end; datain = [datain sprintf(['%s' NL_CHAR],[tab '{' keysIn{ii,2} '}'])]; end % Key-indices with the same section AND subsection as this, ii-th key (even empty sections and subsections are considered) ind = find( strcmpi( keysIn(:,1), keysIn(ii,1)) & strcmpi( keysIn(:,2), keysIn(ii,2)) ); % This subsection exists at all keys corresponding to the same section and subsection from know on (even the empty ones) subSecsExist(ind) = 1; end end if secsExist(ii) & (~isempty(keysIn{ii,1})); tab = tab1; end; if subSecsExist(ii) & (~isempty(keysIn{ii,2})); tab = [tab tab1]; end; datain = [datain sprintf(['%s' NL_CHAR],[tab keysIn{ii,3} ' = ' values{ii}])]; end from = eo(ii); if keysExist(ii) from = from + 1; end to = length(dataout); if from < to datain = [datain dataout(from:to)]; end fprintf(fh,'%c',datain); catch fclose(fh); error(['Error writing keys to file: ''' fileName ''' : ' lasterr]); end fclose(fh); %------------------------------------ %------------------------------------ function deletekeys(fileName,keys) % Deletes keys and their values out; keys must have at least 3 columns: % section, subsection, and key [m,n] = size(keys); if n < 3 error('Keys to be deleted are given in an invalid format.'); end % Get keys position first keysIn = keys; [secsExist,subSecsExist,keysExist,readValues,so,eo] = findkeys(fileName,keys(:,1:3)); % Read the whole file's contents out fh = fopen(fileName,'r'); if fh == -1 error(['File: ''' fileName ''' does not exist or can not be opened.']); end try dataout = fscanf(fh,'%c'); catch fclose(fh); error(lasterr); end fclose(fh); %--- Rewriting the file -> writing the refined contents fh = fopen(fileName,'w'); if fh == -1 error(['File: ''' fileName ''' does not exist or can not be opened.']); end try ind = find(keysExist); nExistingKeys = length(ind); datain = dataout; if nExistingKeys % Filtering - retain only the existing keys... fs = length(dataout); % file size in bytes so = so(ind); eo = eo(ind); keysIn = keysIn(ind,:); % ...and sorting [so,ind] = sort(so); eo = eo(ind); keysIn = keysIn(ind,:); % Refined data - datain datain = []; for ii=1:nExistingKeys % go through all the existing keys if ii==1 from = 1; % from byte-offset of original data (dataout) else from = eo(ii-1)+1; end to = so(ii)-1; % to byte-offset of original data (dataout) if ~isempty(dataout) datain = [datain dataout(from:to)]; % the lines before the key end end from = eo(ii)+1; to = length(dataout); if from < to datain = [datain dataout(from:to)]; end end fprintf(fh,'%c',datain); catch fclose(fh); error(['Error deleting keys from file: ''' fileName ''' : ' lasterr]); end fclose(fh); %------------------------------------ %------------------------------------ function [status,value,key] = processiniline(line) % Processes a line read from the ini file and % returns the following values: % - status: 0 => empty line or unknown string % 1 => section found % 2 => subsection found % 3 => key-value pair found % - value: value-string of a key, section, or subsection % - key: key-string status = 0; value = []; key = []; line = strim(line); % removes any leading and trailing spaces if isempty(line) % empty line return end if (line(1) == '[') & (line(end) == ']')... % section found & (length(line) >= 3) value = lower(line(2:end-1)); status = 1; elseif (line(1) == '{') &... % subsection found (line(end) == '}') & (length(line) >= 3) value = lower(line(2:end-1)); status = 2; else pos = findstr(line,'='); if ~isempty(pos) % key-value pair found status = 3; key = lower(line(1:pos-1)); value = line(pos+1:end); key = strim(key); % removes any leading and trailing spaces value = strim(value); % removes any leading and trailing spaces if isempty(key) % empty keys are not allowed status = 0; key = []; value = []; end end end %------------------------------------ %------------------------------------ function outstr = strim(str) % Removes leading and trailing spaces (spaces, tabs, endlines,...) % from the str string. if isnumeric(str); outstr = str; return end ind = find( ~isspace(str) ); % indices of the non-space characters in the str if isempty(ind) outstr = []; else outstr = str( ind(1):ind(end) ); end %------------------------------------ function cs = cellstrings(m,n) % Creates a m x n cell array of empty strings - '' cs = cell(m,n); for ii=1:m for jj=1:n cs{ii,jj} = ''; end end
github
ZijingMao/baselineeegtest-master
yokogawa2grad_new.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/yokogawa2grad_new.m
9,123
utf_8
a05c043b59134bedb201bba241ad57ef
function grad = yokogawa2grad_new(hdr) % YOKOGAWA2GRAD_NEW converts the position and weights of all coils that % compromise a gradiometer system into a structure that can be used % by FieldTrip. This implementation uses the new "yokogawa_meg_reader" % toolbox. % % See also FT_READ_HEADER, CTF2GRAD, BTI2GRAD, FIF2GRAD, YOKOGAWA2GRAD % Copyright (C) 2005-2012, Robert Oostenveld % Copyright (C) 2010, Tilmann Sander-Thoemmes % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: yokogawa2grad_new.m 7123 2012-12-06 21:21:38Z roboos $ % The following line is only a safety measure: No function of the toolbox % is actually called in this routine. if ~ft_hastoolbox('yokogawa_meg_reader') error('cannot determine whether Yokogawa toolbox is present'); end if isfield(hdr, 'label') label = hdr.label; % keep for later use end if isfield(hdr, 'orig') hdr = hdr.orig; % use the original header, not the FieldTrip header end % The "channel_info.channel(i)" structure contains, s. sepcifications in % Yokogawa MEG Reader Toolbox 1.4 specifications.pdf. % type, type of sensor % data.x (in m, inner coil) % data.y (in m, inner coil) % data.z (in m, inner coil) % data.size (in m, coil diameter) % for gradiometers % data.baseline (in m) % for axial gradiometers and magnetometers % data.zdir orientation of inner coil (theta in deg: angle to z-axis) % data.xdir orientation of inner coil (phi in deg: angle to x-axis) % for planar gradiometers % Note, that Yokogawa planar gradiometers contain two coils perpendicular to % the sphere, i.e. the planar gradiometers normal is the spheres tangential. % Therefore the definition of an inner coil makes sense here in contrast to % planar gradiometers from Neuromag, where the gradiometer normal is radial. % data.zdir1 orientation of inner coil (theta in deg: angle to z-axis) % data.xdir1 orientation of inner coil (phi in deg: angle to x-axis) % data.zdir2 baseline orientation from inner coil (theta in deg: angle to z-axis) % data.xdir2 baseline orientation from inner coil (phi in deg: angle to x-axis) % % The code below is not written for speed or elegance, but for readability. % % shorten names ch_info = hdr.channel_info.channel; type = [ch_info.type]; handles = definehandles; % get all axial grads, planar grads, and magnetometers. % reference channels without position information are excluded. grad_ind = [1:hdr.channel_count]; isgrad = (type==handles.AxialGradioMeter | type==handles.PlannerGradioMeter | ... type==handles.MagnetoMeter); isref = (type==handles.RefferenceAxialGradioMeter | type==handles.RefferencePlannerGradioMeter | ... type==handles.RefferenceMagnetoMeter); for i = 1: hdr.channel_count if isref(i) && sum( ch_info( i ).data.x^2 + ch_info( i ).data.y^2 + ch_info( i ).data.z^2 ) > 0.0, isgrad(i) = 1; end; end grad_ind = grad_ind(isgrad); grad_nr = size(grad_ind,2); grad = []; grad.coilpos = zeros(2*grad_nr,3); grad.coilori = zeros(2*grad_nr,3); % define gradiometer and magnetometer for i = 1:grad_nr ch_ind = grad_ind(i); grad.coilpos(i,1) = ch_info(ch_ind).data.x*100; % cm grad.coilpos(i,2) = ch_info(ch_ind).data.y*100; % cm grad.coilpos(i,3) = ch_info(ch_ind).data.z*100; % cm grad.chanpos = grad.coilpos(1:grad_nr,:); if ch_info(ch_ind).type==handles.AxialGradioMeter || ch_info(ch_ind).type==handles.RefferenceAxialGradioMeter baseline = ch_info(ch_ind).data.baseline; ori_1st = [ch_info(ch_ind).data.zdir ch_info(ch_ind).data.xdir ]; % polar to x,y,z coordinates ori_1st = ... [sin(ori_1st(:,1)/180*pi).*cos(ori_1st(:,2)/180*pi) ... sin(ori_1st(:,1)/180*pi).*sin(ori_1st(:,2)/180*pi) ... cos(ori_1st(:,1)/180*pi)]; grad.coilori(i,:) = ori_1st; grad.coilpos(i+grad_nr,:) = [grad.coilpos(i,:)+ori_1st*baseline*100]; grad.coilori(i+grad_nr,:) = -ori_1st; elseif ch_info(ch_ind).type==handles.PlannerGradioMeter || ch_info(ch_ind).type==handles.RefferencePlannerGradioMeter baseline = ch_info(ch_ind).data.baseline; ori_1st = [ch_info(ch_ind).data.zdir1 ch_info(ch_ind).data.xdir1 ]; % polar to x,y,z coordinates ori_1st = ... [sin(ori_1st(:,1)/180*pi).*cos(ori_1st(:,2)/180*pi) ... sin(ori_1st(:,1)/180*pi).*sin(ori_1st(:,2)/180*pi) ... cos(ori_1st(:,1)/180*pi)]; grad.coilori(i,:) = ori_1st; ori_1st_to_2nd = [ch_info(ch_ind).data.zdir2 ch_info(ch_ind).data.xdir2 ]; % polar to x,y,z coordinates ori_1st_to_2nd = ... [sin(ori_1st_to_2nd(:,1)/180*pi).*cos(ori_1st_to_2nd(:,2)/180*pi) ... sin(ori_1st_to_2nd(:,1)/180*pi).*sin(ori_1st_to_2nd(:,2)/180*pi) ... cos(ori_1st_to_2nd(:,1)/180*pi)]; grad.coilpos(i+grad_nr,:) = [grad.coilpos(i,:)+ori_1st_to_2nd*baseline*100]; grad.coilori(i+grad_nr,:) = -ori_1st; else % magnetometer ori_1st = [ch_info(ch_ind).data.zdir ch_info(ch_ind).data.xdir ]; % polar to x,y,z coordinates ori_1st = ... [sin(ori_1st(:,1)/180*pi).*cos(ori_1st(:,2)/180*pi) ... sin(ori_1st(:,1)/180*pi).*sin(ori_1st(:,2)/180*pi) ... cos(ori_1st(:,1)/180*pi)]; grad.coilori(i,:) = ori_1st; grad.coilpos(i+grad_nr,:) = [0 0 0]; grad.coilori(i+grad_nr,:) = [0 0 0]; end grad.chanori = grad.coilori(1:grad_nr,:); end % Define the pair of 1st and 2nd coils for each gradiometer grad.tra = repmat(diag(ones(1,grad_nr),0),1,2); % for mangetometers change tra as there is no second coil for i = 1:grad_nr ch_ind = grad_ind(i); if ch_info(ch_ind).type==handles.MagnetoMeter grad.tra(i,grad_nr+i) = 0; end end % the gradiometer labels should be consistent with the channel labels in % read_yokogawa_header, the predefined list of channel names in ft_senslabel % and with ft_channelselection: % but it is ONLY consistent with read_yokogawa_header as NO FIXED relation % between channel index and type of channel exists for Yokogawa systems. % Therefore all have individual label sequences: Support in ft_senslabel % is only partial. if ~isempty(label) grad.label = label(grad_ind)'; else % this is only backup, if something goes wrong above. label = cell(grad_nr,1); for i=1:length(label) label{i,1} = sprintf('AG%03d', i); end grad.label = label; end grad.unit = 'cm'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles; handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % ????4.0mm???????` handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % ???a15.5mm???~?? handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % ????12.0mm???????` handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
ZijingMao/baselineeegtest-master
read_besa_avr.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_besa_avr.m
3,929
utf_8
91f2ee59d1af564811511e0e7f201ba4
function [avr] = read_besa_avr(filename) % READ_BESA_AVR reads average EEG data in BESA format % % Use as % [avr] = read_besa_avr(filename) % % This will return a structure with the header information in % avr.npnt % avr.tsb % avr.di % avr.sb % avr.sc % avr.Nchan (optional) % avr.label (optional) % and the ERP data is contained in the Nchan X Nsamples matrix % avr.data % Copyright (C) 2003-2006, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_besa_avr.m 7123 2012-12-06 21:21:38Z roboos $ fid = fopen(filename, 'rt'); % the first line contains header information headstr = fgetl(fid); ok = 0; if ~ok try buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f SegmentName= %s\n'); avr.npnt = buf(1); avr.tsb = buf(2); avr.di = buf(3); avr.sb = buf(4); avr.sc = buf(5); avr.Nchan = buf(6); avr.SegmentName = buf(7); ok = 1; catch ok = 0; end end if ~ok try buf = fscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f Nchan= %f\n'); avr.npnt = buf(1); avr.tsb = buf(2); avr.di = buf(3); avr.sb = buf(4); avr.sc = buf(5); avr.Nchan = buf(6); ok = 1; catch ok = 0; end end if ~ok try buf = sscanf(headstr, 'Npts= %d TSB= %f DI= %f SB= %f SC= %f\n'); avr.npnt = buf(1); avr.tsb = buf(2); avr.di = buf(3); avr.sb = buf(4); avr.sc = buf(5); ok = 1; catch ok = 0; end end if ~ok error('Could not interpret the header information.'); end % rewind to the beginning of the file, skip the header line fseek(fid, 0, 'bof'); fgetl(fid); % the second line may contain channel names chanstr = fgetl(fid); chanstr = deblank(fliplr(deblank(fliplr(chanstr)))); if (chanstr(1)>='A' && chanstr(1)<='Z') || (chanstr(1)>='a' && chanstr(1)<='z') haschan = 1; avr.label = str2cell(strrep(deblank(chanstr), '''', ''))'; else [root, name] = fileparts(filename); haschan = 0; elpfile = fullfile(root, [name '.elp']); elafile = fullfile(root, [name '.ela']); if exist(elpfile, 'file') % read the channel names from the accompanying ELP file lbl = importdata(elpfile); avr.label = strrep(lbl.textdata(:,2) ,'''', ''); elseif exist(elafile, 'file') % read the channel names from the accompanying ELA file lbl = importdata(elafile); lbl = strrep(lbl ,'MEG ', ''); % remove the channel type lbl = strrep(lbl ,'EEG ', ''); % remove the channel type avr.label = lbl; else warning('Could not create channels labels.'); end end % seek to the beginning of the data fseek(fid, 0, 'bof'); fgetl(fid); % skip the header line if haschan fgetl(fid); % skip the channel name line end buf = fscanf(fid, '%f'); nchan = length(buf)/avr.npnt; avr.data = reshape(buf, avr.npnt, nchan)'; fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to cut a string into pieces at the spaces %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function c = str2cell(s) c = {}; [t, r] = strtok(s, ' '); while ~isempty(t) c{end+1} = t; [t, r] = strtok(r, ' '); end
github
ZijingMao/baselineeegtest-master
ft_datatype_source.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_datatype_source.m
11,599
utf_8
860bbf1db76786f373d55c7cd4a64746
function source = ft_datatype_source(source, varargin) % FT_DATATYPE_SOURCE describes the FieldTrip MATLAB structure for data that is % represented at the source level. This is typically obtained with a beamformer of % minimum-norm source reconstruction using FT_SOURCEANALYSIS. % % An example of a source structure obtained after performing DICS (a frequency % domain beamformer scanning method) is shown here % % pos: [6732x3 double] positions at which the source activity could have been estimated % inside: [6732x1 logical] boolean vector that indicates at which positions the source activity was estimated % dim: [xdim ydim zdim] if the positions can be described as a 3D regular grid, this contains the % dimensionality of the 3D volume % cumtapcnt: [120x1 double] information about the number of tapers per original trial % time: 0.100 the latency at which the activity is estimated (in seconds) % freq: 30 the frequency at which the activity is estimated (in Hz) % pow: [6732x120 double] the estimated power at each source position % powdimord: 'pos_rpt' defines how the numeric data has to be interpreted, % in this case 6732 dipole positions x 120 repetitions (i.e. trials) % cfg: [1x1 struct] the configuration used by the function that generated this data structure % % Required fields: % - pos % % Optional fields: % - time, freq, pow, coh, eta, mom, ori, cumtapcnt, dim, transform, inside, cfg, dimord, other fields with a dimord % % Deprecated fields: % - method, outside % % Obsoleted fields: % - xgrid, ygrid, zgrid, transform, latency, frequency % % Historical fields: % - avg, cfg, cumtapcnt, df, dim, freq, frequency, inside, method, % outside, pos, time, trial, vol, see bug2513 % % Revision history: % % (2014) The subfields in the avg and trial fields are now present in the % main structure, e.g. source.avg.pow is now source.pow. Furthermore, the % inside is always represented as logical vector. % % (2011) The source representation should always be irregular, i.e. not % a 3-D volume, contain a "pos" field and not contain a "transform". % % (2010) The source structure should contain a general "dimord" or specific % dimords for each of the fields. The source reconstruction in the avg and % trial substructures has been moved to the toplevel. % % (2007) The xgrid/ygrid/zgrid fields have been removed, because they are % redundant. % % (2003) The initial version was defined % % See also FT_DATATYPE, FT_DATATYPE_COMP, FT_DATATYPE_DIP, FT_DATATYPE_FREQ, % FT_DATATYPE_MVAR, FT_DATATYPE_RAW, FT_DATATYPE_SOURCE, FT_DATATYPE_SPIKE, % FT_DATATYPE_TIMELOCK, FT_DATATYPE_VOLUME % Copyright (C) 2013-2014, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_datatype_source.m 10266 2015-03-04 12:20:43Z jansch $ % FIXME: I am not sure whether the removal of the xgrid/ygrid/zgrid fields % was really in 2007 % get the optional input arguments, which should be specified as key-value pairs version = ft_getopt(varargin, 'version', 'latest'); if strcmp(version, 'latest') || strcmp(version, 'upcoming') version = '2014'; end if isempty(source) return; end % old data structures may use latency/frequency instead of time/freq. It is % unclear when these were introduced and removed again, but they were never % used by any fieldtrip function itself if isfield(source, 'frequency'), source.freq = source.frequency; source = rmfield(source, 'frequency'); end if isfield(source, 'latency'), source.time = source.latency; source = rmfield(source, 'latency'); end switch version case '2014' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ensure that it has individual source positions source = fixpos(source); % ensure that it is always logical source = fixinside(source, 'logical'); % remove obsolete fields if isfield(source, 'method') source = rmfield(source, 'method'); end if isfield(source, 'transform') source = rmfield(source, 'transform'); end if isfield(source, 'xgrid') source = rmfield(source, 'xgrid'); end if isfield(source, 'ygrid') source = rmfield(source, 'ygrid'); end if isfield(source, 'zgrid') source = rmfield(source, 'zgrid'); end if isfield(source, 'avg') && isstruct(source.avg) % move the average fields to the main structure fn = fieldnames(source.avg); for i=1:length(fn) dat = source.avg.(fn{i}); if isequal(size(dat), [1 size(source.pos,1)]) source.(fn{i}) = dat'; else source.(fn{i}) = dat; end clear dat end % j source = rmfield(source, 'avg'); end if isfield(source, 'inside') % the inside is by definition logically indexed probe = find(source.inside, 1, 'first'); else % just take the first source position probe = 1; end if isfield(source, 'trial') && isstruct(source.trial) npos = size(source.pos,1); % concatenate the fields for each trial and move them to the main structure fn = fieldnames(source.trial); for i=1:length(fn) % some fields are descriptive and hence identical over trials if strcmp(fn{i}, 'csdlabel') source.csdlabel = dat; continue end % start with the first trial dat = source.trial(1).(fn{i}); datsiz = getdimsiz(source, fn{i}); nrpt = datsiz(1); datsiz = datsiz(2:end); if iscell(dat) datsiz(1) = nrpt; % swap the size of pos with the size of rpt val = cell(npos,1); indx = find(source.inside); for k=1:length(indx) val{indx(k)} = nan(datsiz); val{indx(k)}(1,:,:,:) = dat{indx(k)}; end % concatenate all data as {pos}_rpt_etc for j=2:nrpt dat = source.trial(j).(fn{i}); for k=1:length(indx) val{indx(k)}(j,:,:,:) = dat{indx(k)}; end end % for all trials source.(fn{i}) = val; else % concatenate all data as pos_rpt_etc val = nan([datsiz(1) nrpt datsiz(2:end)]); val(:,1,:,:,:) = dat(:,:,:,:); for j=2:length(source.trial) dat = source.trial(j).(fn{i}); val(:,j,:,:,:) = dat(:,:,:,:); end % for all trials source.(fn{i}) = val; % else % siz = size(dat); % if prod(siz)==npos % siz = [npos nrpt]; % elseif siz(1)==npos % siz = [npos nrpt siz(2:end)]; % end % val = nan(siz); % % concatenate all data as pos_rpt_etc % val(:,1,:,:,:) = dat(:); % for j=2:length(source.trial) % dat = source.trial(j).(fn{i}); % val(:,j,:,:,:) = dat(:); % end % for all trials % source.(fn{i}) = val; end end % for each field source = rmfield(source, 'trial'); end % if trial % ensure that it has a dimord (or multiple for the different fields) source = fixdimord(source); case '2011' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ensure that it has individual source positions source = fixpos(source); % remove obsolete fields if isfield(source, 'xgrid') source = rmfield(source, 'xgrid'); end if isfield(source, 'ygrid') source = rmfield(source, 'ygrid'); end if isfield(source, 'zgrid') source = rmfield(source, 'zgrid'); end if isfield(source, 'transform') source = rmfield(source, 'transform'); end % ensure that it has a dimord (or multiple for the different fields) source = fixdimord(source); case '2010' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ensure that it has individual source positions source = fixpos(source); % remove obsolete fields if isfield(source, 'xgrid') source = rmfield(source, 'xgrid'); end if isfield(source, 'ygrid') source = rmfield(source, 'ygrid'); end if isfield(source, 'zgrid') source = rmfield(source, 'zgrid'); end % ensure that it has a dimord (or multiple for the different fields) source = fixdimord(source); case '2007' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ensure that it has individual source positions source = fixpos(source); % remove obsolete fields if isfield(source, 'dimord') source = rmfield(source, 'dimord'); end if isfield(source, 'xgrid') source = rmfield(source, 'xgrid'); end if isfield(source, 'ygrid') source = rmfield(source, 'ygrid'); end if isfield(source, 'zgrid') source = rmfield(source, 'zgrid'); end case '2003' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(source, 'dimord') source = rmfield(source, 'dimord'); end if ~isfield(source, 'xgrid') || ~isfield(source, 'ygrid') || ~isfield(source, 'zgrid') if isfield(source, 'dim') minx = min(source.pos(:,1)); maxx = max(source.pos(:,1)); miny = min(source.pos(:,2)); maxy = max(source.pos(:,2)); minz = min(source.pos(:,3)); maxz = max(source.pos(:,3)); source.xgrid = linspace(minx, maxx, source.dim(1)); source.ygrid = linspace(miny, maxy, source.dim(2)); source.zgrid = linspace(minz, maxz, source.dim(3)); end end otherwise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% error('unsupported version "%s" for source datatype', version); end function source = fixpos(source) if ~isfield(source, 'pos') if isfield(source, 'xgrid') && isfield(source, 'ygrid') && isfield(source, 'zgrid') source.pos = grid2pos(source.xgrid, source.ygrid, source.zgrid); elseif isfield(source, 'dim') && isfield(source, 'transform') source.pos = dim2pos(source.dim, source.transform); else error('cannot reconstruct individual source positions'); end end function pos = grid2pos(xgrid, ygrid, zgrid) [X, Y, Z] = ndgrid(xgrid, ygrid, zgrid); pos = [X(:) Y(:) Z(:)]; function pos = dim2pos(dim, transform) [X, Y, Z] = ndgrid(1:dim(1), 1:dim(2), 1:dim(3)); pos = [X(:) Y(:) Z(:)]; pos = ft_warp_apply(transform, pos, 'homogenous');
github
ZijingMao/baselineeegtest-master
xml2struct.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/xml2struct.m
8,612
utf_8
3d883353ccb551f2dcd554835610a565
function [ s ] = xml2struct( file ) %Convert xml file into a MATLAB structure % [ s ] = xml2struct( file ) % % A file containing: % <XMLname attrib1="Some value"> % <Element>Some text</Element> % <DifferentElement attrib2="2">Some more text</DifferentElement> % <DifferentElement attrib3="2" attrib4="1">Even more text</DifferentElement> % </XMLname> % % Used to produce: % s.XMLname.Attributes.attrib1 = "Some value"; % s.XMLname.Element.Text = "Some text"; % s.XMLname.DifferentElement{1}.Attributes.attrib2 = "2"; % s.XMLname.DifferentElement{1}.Text = "Some more text"; % s.XMLname.DifferentElement{2}.Attributes.attrib3 = "2"; % s.XMLname.DifferentElement{2}.Attributes.attrib4 = "1"; % s.XMLname.DifferentElement{2}.Text = "Even more text"; % % Will produce (gp: to matche the output of xml2struct in XML4MAT, but note that Element(2) is empty): % Element: Some text % DifferentElement: % attrib2: 2 % DifferentElement: Some more text % attrib1: Some value % % Element: % DifferentElement: % attrib3: 2 % attrib4: 1 % DifferentElement: Even more text % attrib1: % % Note the characters : - and . are not supported in structure fieldnames and % are replaced by _ % % Written by W. Falkena, ASTI, TUDelft, 21-08-2010 % Attribute parsing speed increased by 40% by A. Wanner, 14-6-2011 % 2011/12/14 giopia: changes in the main function to make more similar to xml2struct of the XML4MAT toolbox, bc it's used by fieldtrip % 2012/04/04 roboos: added the original license clause, see also http://bugzilla.fcdonders.nl/show_bug.cgi?id=645#c11 % 2012/04/04 roboos: don't print the filename that is being read %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Copyright (c) 2010, Wouter Falkena % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (nargin < 1) clc; help xml2struct return end %check for existance if (exist(file,'file') == 0) %Perhaps the xml extension was omitted from the file name. Add the %extension and try again. if (isempty(strfind(file,'.xml'))) file = [file '.xml']; end if (exist(file,'file') == 0) error(['The file ' file ' could not be found']); end end %fprintf('xml2struct reading %s\n', file); % gp 11/12/15 %read the xml file xDoc = xmlread(file); %parse xDoc into a MATLAB structure s = parseChildNodes(xDoc); fn = fieldnames(s); s = s.(fn{1}); % gp 11/12/15: output is compatible with xml2struct of xml2mat end % ----- Subfunction parseChildNodes ----- function [children,ptext] = parseChildNodes(theNode) % Recurse over node children. children = struct; ptext = []; if theNode.hasChildNodes childNodes = theNode.getChildNodes; numChildNodes = childNodes.getLength; for count = 1:numChildNodes theChild = childNodes.item(count-1); [text,name,attr,childs] = getNodeData(theChild); if (~strcmp(name,'#text') && ~strcmp(name,'#comment')) %XML allows the same elements to be defined multiple times, %put each in a different cell if (isfield(children,name)) % if 0 % numel(children) > 1 % gp 11/12/15: (~iscell(children.(name))) % %put existsing element into cell format % children.(name) = {children.(name)}; % end index = length(children)+1; % gp 11/12/15: index = length(children.(name))+1; else index = 1; % gp 11/12/15: new field end %add new element children(index).(name) = childs; if isempty(attr) if(~isempty(text)) children(index).(name) = text; end else fn = fieldnames(attr); for f = 1:numel(fn) children(index).(name)(1).(fn{f}) = attr.(fn{f}); % gp 11/12/15: children.(name){index}.('Attributes') = attr; end if(~isempty(text)) children(index).(name).(name) = text; % gp 11/12/15: children.(name){index}.('Text') = text; end end % else % gp 11/12/15: cleaner code, don't reuse the same code % %add previously unknown new element to the structure % children.(name) = childs; % if(~isempty(text)) % children.(name) = text; % gp 11/12/15: children.(name).('Text') = text; % end % if(~isempty(attr)) % children.('Attributes') = attr; % gp 11/12/15 children.(name).('Attributes') = attr; % end % end elseif (strcmp(name,'#text')) %this is the text in an element (i.e. the parentNode) if (~isempty(regexprep(text,'[\s]*',''))) if (isempty(ptext)) ptext = text; else %what to do when element data is as follows: %<element>Text <!--Comment--> More text</element> %put the text in different cells: % if (~iscell(ptext)) ptext = {ptext}; end % ptext{length(ptext)+1} = text; %just append the text ptext = [ptext text]; end end end end end end % ----- Subfunction getNodeData ----- function [text,name,attr,childs] = getNodeData(theNode) % Create structure of node info. %make sure name is allowed as structure name name = regexprep(char(theNode.getNodeName),'[-:.]','_'); attr = parseAttributes(theNode); if (isempty(fieldnames(attr))) attr = []; end %parse child nodes [childs,text] = parseChildNodes(theNode); if (isempty(fieldnames(childs))) %get the data of any childless nodes try %faster then if any(strcmp(methods(theNode), 'getData')) text = char(theNode.getData); catch %no data end end end % ----- Subfunction parseAttributes ----- function attributes = parseAttributes(theNode) % Create attributes structure. attributes = struct; if theNode.hasAttributes theAttributes = theNode.getAttributes; numAttributes = theAttributes.getLength; for count = 1:numAttributes %attrib = theAttributes.item(count-1); %attr_name = regexprep(char(attrib.getName),'[-:.]','_'); %attributes.(attr_name) = char(attrib.getValue); %Suggestion of Adrian Wanner str = theAttributes.item(count-1).toString.toCharArray()'; k = strfind(str,'='); attr_name = regexprep(str(1:(k(1)-1)),'[-:.]','_'); attributes.(attr_name) = str((k(1)+2):(end-1)); end end end
github
ZijingMao/baselineeegtest-master
in_fread_manscan.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/in_fread_manscan.m
4,760
utf_8
474793281d7e666aeb2bff303bd62b5b
function F = in_fread_manscan(sFile, sfid, iEpoch, SamplesBounds) % IN_FREAD_MANSCAN: Read a block of recordings from a MANSCAN file % % USAGE: F = in_fread_manscan(sFile, sfid, iEpoch, SamplesBounds) : Read all channels % F = in_fread_manscan(sFile, sfid) : Read all channels, all the times % @============================================================================= % This software is part of the Brainstorm software: % http://neuroimage.usc.edu/brainstorm % % Copyright (c)2000-2013 Brainstorm by the University of Southern California % This software is distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html. % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. % % For more information type "brainstorm license" at command prompt. % =============================================================================@ % % Authors: Francois Tadel, 2012 if (nargin < 3) || isempty(iEpoch) iEpoch = 1; end if (nargin < 4) || isempty(SamplesBounds) if ~isempty(sFile.epochs) SamplesBounds = sFile.epochs(iEpoch).samples; else SamplesBounds = sFile.prop.samples; end end % Read data block nChannels = length(sFile.channelmat.Channel); nTimes = SamplesBounds(2) - SamplesBounds(1) + 1; % Epoch offset epochOffset = sFile.header.epoch(iEpoch).StartData1; % Time offset timeOffset = 2 * SamplesBounds(1) * nChannels; % Total offset totalOffset = epochOffset + timeOffset; % Set position in file fseek(sfid, totalOffset, 'bof'); % Read value F = fread(sfid, [nChannels,nTimes], 'int16'); % Apply gains F = bst_bsxfun(@rdivide, double(F), double(sFile.header.Gains)); function C = bst_bsxfun(fun, A, B) % BST_BSXFUN: Compatible version of bsxfun function. % % DESCRIPTION: % Matlab function bsxfun() is a useful, fast, and memory efficient % way to apply element-by-element operations on huge matrices. % The problem is that this function only exists in Matlab versions >= 7.4 % This function check Matlab version, and use bsxfun if possible, if not % it finds another way to perform the same operation. % @============================================================================= % This software is part of the Brainstorm software: % http://neuroimage.usc.edu/brainstorm % % Copyright (c)2000-2013 Brainstorm by the University of Southern California % This software is distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html. % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. % % For more information type "brainstorm license" at command prompt. % =============================================================================@ % % Authors: Francois Tadel, 2010 % Old Matlab version: do it old school if ~exist('bsxfun', 'builtin') sA = [size(A,1), size(A,2), size(A,3)]; sB = [size(B,1), size(B,2), size(B,3)]; % If arguments were not provided in the correct order if all(sA == [1 1 1]) || all(sB == [1 1 1]) C = fun(A, B); elseif all(sA == sB) C = fun(A, B); % Dim 1 elseif (sB(1) == 1) && (sA(2) == sB(2)) && (sA(3) == sB(3)) C = fun(A, repmat(B, [sA(1), 1, 1])); elseif (sA(1) == 1) && (sA(2) == sB(2)) && (sA(3) == sB(3)) C = fun(repmat(A, [sB(1), 1, 1]), B); % Dim 2 elseif (sA(1) == sB(1)) && (sB(2) == 1) && (sA(3) == sB(3)) C = fun(A, repmat(B, [1, sA(2), 1])); elseif (sA(1) == sB(1)) && (sA(2) == 1) && (sA(3) == sB(3)) C = fun(repmat(A, [1, sB(2), 1]), B); % Dim 3 elseif (sA(1) == sB(1)) && (sA(2) == sB(2)) && (sB(3) == 1) C = fun(A, repmat(B, [1, 1, sA(3)])); elseif (sA(1) == sB(1)) && (sA(2) == sB(2)) && (sA(3) == 1) C = fun(repmat(A, [1, 1, sB(3)]), B); else error('A and B must have enough common dimensions.'); end % New Matlab version: use bsxfun else C = bsxfun(fun, A, B); end
github
ZijingMao/baselineeegtest-master
read_ply.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_ply.m
5,986
utf_8
e7e4d22b778a98c951a9972c41d4dea3
function [vert, face] = read_ply(fn) % READ_PLY reads triangles, tetraheders or hexaheders from a Stanford *.ply file % % Use as % [vert, face, prop, face_prop] = read_ply(filename) % % Documentation is provided on % http://paulbourke.net/dataformats/ply/ % http://en.wikipedia.org/wiki/PLY_(file_format) % % See also WRITE_PLY, WRITE_VTK, READ_VTK % Copyright (C) 2013, Robert Oostenveld % % $Id: read_ply.m 8776 2013-11-14 09:04:48Z roboos $ fid = fopen(fn, 'r'); if fid~=-1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the file starts with an ascii header %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% line = readline(fid); if ~strcmp(line, 'ply') fclose(fid); error('unexpected header line'); end line = readline(fid); if ~strncmp(line, 'format', 6) fclose(fid); error('unexpected header line'); else format = line(8:end); end line = readline(fid); if ~strncmp(line, 'element vertex', 14) fclose(fid); error('unexpected header line'); else nvert = str2double(line(16:end)); end line = readline(fid); prop = []; while strncmp(line, 'property', 8) tok = tokenize(line); prop(end+1).format = tok{2}; prop(end ).name = tok{3}; line = readline(fid); end if ~strncmp(line, 'element face', 12) fclose(fid); error('unexpected header line'); else nface = str2double(line(14:end)); end line = readline(fid); if ~strcmp(line, 'property list uchar int vertex_index') && ~strcmp(line, 'property list uchar int vertex_indices') % the wikipedia documentation specifies vertex_index, but the OPTOCAT files % have vertex_indices % it would not be very difficult to enhance the reader here with another % representation of the faces, i.e. something else than "uchar int" fclose(fid); error('unexpected header line'); end line = readline(fid); while ~strcmp(line, 'end_header'); line = readline(fid); end offset = ftell(fid); fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % the file continues with a section of data, which can be ascii or binary %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch format case 'ascii 1.0' fid = fopen(fn, 'rt'); fseek(fid, offset, 'cof'); dat = fscanf(fid,'%f',[numel(prop), nvert])'; for j=1:length(prop) vert.(prop(j).name) = dat(:,j); end face = zeros(nface,0); num = zeros(nface,1); for i=1:nface % each polygon can have a different number of elements num(i) = fscanf(fid,'%f',1); face(i,1:num(i)) = fscanf(fid,'%f',num(i)); end fclose(fid); case 'binary_little_endian 1.0' fid = fopen(fn, 'rb', 'l'); fseek(fid, offset, 'cof'); dat = zeros(nvert,length(prop)); for i=1:nvert for j=1:length(prop) dat(i,j) = fread(fid, 1, prop(j).format); end % for each property end % for each vertex for j=1:length(prop) switch prop(j).format % the format can be one of the following: char uchar short ushort int uint float double int8 uint8 int16 uint16 int32 uint32 float32 float64 case 'char' vert.(prop(j).name) = uint8(dat(:,j)); case 'uchar' vert.(prop(j).name) = uint8(dat(:,j)); case 'short' vert.(prop(j).name) = int16(dat(:,j)); case 'ushort' vert.(prop(j).name) = uint16(dat(:,j)); otherwise vert.(prop(j).name) = dat(:,j); end end clear dat; face = zeros(nface,0); num = zeros(nface,1); for i=1:nface % each polygon can have a different number of elements num(i) = fread(fid, 1, 'uint8'); face(i,1:num(i)) = fread(fid, num(i), 'int32'); end fclose(fid); case 'binary_big_endian 1.0' % this is exactly the same as the code above, except that the file is opened as big endian fid = fopen(fn, 'rb', 'b'); fseek(fid, offset, 'cof'); dat = zeros(nvert,length(prop)); for i=1:nvert for j=1:length(prop) dat(i,j) = fread(fid, 1, prop(j).format); end % for each property end % for each vertex for j=1:length(prop) switch prop(j).format % the format can be one of the following: char uchar short ushort int uint float double int8 uint8 int16 uint16 int32 uint32 float32 float64 case 'char' vert.(prop(j).name) = uint8(dat(:,j)); case 'uchar' vert.(prop(j).name) = uint8(dat(:,j)); case 'short' vert.(prop(j).name) = int16(dat(:,j)); case 'ushort' vert.(prop(j).name) = uint16(dat(:,j)); otherwise vert.(prop(j).name) = dat(:,j); end end clear dat; face = zeros(nface,0); num = zeros(nface,1); for i=1:nface % each polygon can have a different number of elements num(i) = fread(fid, 1, 'uint8'); face(i,1:num(i)) = fread(fid, num(i), 'int32'); end fclose(fid); otherwise error('unsupported format'); end % switch else error('unable to open file'); end % each polygon can have a different number of elements % mark all invalid entries with nan if any(num<size(face,2)) for i=1:nface face(i,(num(i)+1):end) = nan; end end % if if numel(face)>0 % MATLAB indexes start at 1, inside the file they start at 0 face = face+1; end end % function read_ply function line = readline(fid) % read the next line from the ascii header, skip all comment lines line = fgetl(fid); while strncmp(line, 'comment', 7); line = fgetl(fid); end end % function readline
github
ZijingMao/baselineeegtest-master
read_eeglabdata.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_eeglabdata.m
3,193
utf_8
33c4ab48f49c3929347fee8295589fbc
% read_eeglabdata() - import EEGLAB dataset files % % Usage: % >> dat = read_eeglabdata(filename); % % Inputs: % filename - [string] file name % % Optional inputs: % 'begtrial' - [integer] first trial to read % 'endtrial' - [integer] last trial to read % 'chanindx' - [integer] list with channel indices to read % 'header' - FILEIO structure header % % Outputs: % dat - data over the specified range % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2008- %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function dat = read_eeglabdata(filename, varargin); if nargin < 1 help read_eeglabdata; return; end; header = ft_getopt(varargin, 'header'); begsample = ft_getopt(varargin, 'begsample'); endsample = ft_getopt(varargin, 'endsample'); begtrial = ft_getopt(varargin, 'begtrial'); endtrial = ft_getopt(varargin, 'endtrial'); chanindx = ft_getopt(varargin, 'chanindx'); if isempty(header) header = read_eeglabheader(filename); end if ischar(header.orig.data) if strcmpi(header.orig.data(end-2:end), 'set'), header.ori = load('-mat', filename); else % assuming that the data file is in the current directory fid = fopen(header.orig.data); % assuming the .dat and .set files are located in the same directory if fid == -1 pathstr = fileparts(filename); fid = fopen(fullfile(pathstr, header.orig.data)); end if fid == -1 fid = fopen(fullfile(header.orig.filepath, header.orig.data)); % end if fid == -1, error(['Cannot not find data file: ' header.orig.data]); end; % only read the desired trials if strcmpi(header.orig.data(end-2:end), 'dat') dat = fread(fid,[header.nSamples*header.nTrials header.nChans],'float32')'; else dat = fread(fid,[header.nChans header.nSamples*header.nTrials],'float32'); end; dat = reshape(dat, header.nChans, header.nSamples, header.nTrials); fclose(fid); end; else dat = header.orig.data; dat = reshape(dat, header.nChans, header.nSamples, header.nTrials); end; if isempty(begtrial), begtrial = 1; end; if isempty(endtrial), endtrial = header.nTrials; end; if isempty(begsample), begsample = 1; end; if isempty(endsample), endsample = header.nSamples; end; dat = dat(:,begsample:endsample,begtrial:endtrial); if ~isempty(chanindx) % select the desired channels dat = dat(chanindx,:,:); end
github
ZijingMao/baselineeegtest-master
readbdf.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/readbdf.m
3,632
utf_8
9c94d90dc0c8728b0b46e5276747e847
% readbdf() - Loads selected Records of an EDF or BDF File (European Data Format % for Biosignals) into MATLAB % Usage: % >> [DAT,signal] = readedf(EDF_Struct,Records,Mode); % Notes: % Records - List of Records for Loading % Mode - 0 Default % 1 No AutoCalib % 2 Concatenated (channels with lower sampling rate % if more than 1 record is loaded) % Output: % DAT - EDF data structure % signal - output signal % % Author: Alois Schloegl, 03.02.1998, updated T.S. Lorig Sept 6, 2002 for BDF read % % See also: openbdf(), sdfopen(), sdfread(), eeglab() % Version 2.11 % 03.02.1998 % Copyright (c) 1997,98 by Alois Schloegl % [email protected] % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This program has been modified from the original version for .EDF files % The modifications are to the number of bytes read on line 53 (from 2 to % 3) and to the type of data read - line 54 (from int16 to bit24). Finally the name % was changed from readedf to readbdf % T.S. Lorig Sept 6, 2002 % % Header modified for eeglab() compatibility - Arnaud Delorme 12/02 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [DAT,S]=readbdf(DAT,Records,Mode) if nargin<3 Mode=0; end; EDF=DAT.Head; RecLen=max(EDF.SPR); S=nan(RecLen,EDF.NS); DAT.Record=zeros(length(Records)*RecLen,EDF.NS); DAT.Valid=uint8(zeros(1,length(Records)*RecLen)); DAT.Idx=Records(:)'; for nrec=1:length(Records), NREC=(DAT.Idx(nrec)-1); if NREC<0 fprintf(2,'Warning READEDF: invalid Record Number %i \n',NREC);end; fseek(EDF.FILE.FID,(EDF.HeadLen+NREC*EDF.AS.spb*3),'bof'); [s, count]=fread(EDF.FILE.FID,EDF.AS.spb,'bit24'); try, S(EDF.AS.IDX2)=s; catch, error('File is incomplete (try reading begining of file)'); end; %%%%% Test on Over- (Under-) Flow % V=sum([(S'==EDF.DigMax(:,ones(RecLen,1))) + (S'==EDF.DigMin(:,ones(RecLen,1)))])==0; V=sum([(S(:,EDF.Chan_Select)'>=EDF.DigMax(EDF.Chan_Select,ones(RecLen,1))) + ... (S(:,EDF.Chan_Select)'<=EDF.DigMin(EDF.Chan_Select,ones(RecLen,1)))])==0; EDF.ERROR.DigMinMax_Warning(find(sum([(S'>EDF.DigMax(:,ones(RecLen,1))) + (S'<EDF.DigMin(:,ones(RecLen,1)))]')>0))=1; % invalid=[invalid; find(V==0)+l*k]; if floor(Mode/2)==1 for k=1:EDF.NS, DAT.Record(nrec*EDF.SPR(k)+(1-EDF.SPR(k):0),k)=S(1:EDF.SPR(k),k); end; else DAT.Record(nrec*RecLen+(1-RecLen:0),:)=S; end; DAT.Valid(nrec*RecLen+(1-RecLen:0))=V; end; if rem(Mode,2)==0 % Autocalib DAT.Record=[ones(RecLen*length(Records),1) DAT.Record]*EDF.Calib; end; DAT.Record=DAT.Record'; return;
github
ZijingMao/baselineeegtest-master
ft_platform_supports.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_platform_supports.m
8,056
utf_8
ad60f22e6572bea34e03b9ffadfa0129
function tf = ft_platform_supports(what,varargin) % FT_PLATFORM_SUPPORTS returns a boolean indicating whether the current platform % supports a specific capability % % Usage: % tf = ft_platform_supports(what) % tf = ft_platform_supports('matlabversion', min_version, max_version) % % The following values are allowed for the 'what' parameter: % value means that the following is supported: % % 'which-all' which(...,'all') % 'exists-in-private-directory' exists(...) will look in the /private % subdirectory to see if a file exists % 'onCleanup' onCleanup(...) % 'int32_logical_operations' bitand(a,b) with a, b of type int32 % 'graphics_objects' graphics sysem is object-oriented % 'libmx_c_interface' libmx is supported through mex in the % C-language (recent Matlab versions only % support C++) % 'program_invocation_name' program_invocation_name() (GNU Octave) % 'singleCompThread' start Matlab with -singleCompThread % 'nosplash' -nosplash % 'nodisplay' -nodisplay % 'nojvm' -nojvm % 'no-gui' start GNU Octave with --no-gui % 'RandStream.setGlobalStream' RandStream.setGlobalStream(...) % 'RandStream.setDefaultStream' RandStream.setDefaultStream(...) % 'rng' rng(...) % 'rand-state' rand('state') % 'urlread-timeout' urlread(..., 'Timeout', t) if ~ischar(what) error('first argument must be a string'); end switch what case 'matlabversion' tf = is_matlab() && matlabversion(varargin{:}); case 'exists-in-private-directory' tf = is_matlab(); case 'which-all' tf = is_matlab(); case 'onCleanup' tf = is_octave() || matlabversion(7.8, Inf); case 'int32_logical_operations' % earlier version of Matlab don't support bitand (and similar) % operations on int32 tf = is_octave() || ~matlabversion(-inf, '2012a'); case 'graphics_objects' % introduced in Matlab 2014b, graphics is handled through objects; % previous versions use numeric handles tf = is_matlab() && matlabversion('2014b', Inf); case 'libmx_c_interface' % removed after 2013b tf = matlabversion(-Inf, '2013b'); case 'program_invocation_name' % Octave supports program_invocation_name, which returns the path % of the binary that was run to start Octave tf = is_octave(); case 'singleCompThread' tf = is_matlab() && matlabversion(7.8, inf); case {'nosplash','nodisplay','nojvm'} % Only on Matlab tf = is_matlab(); case 'no-gui' % Only on Octave tf = is_octave(); case 'RandStream.setDefaultStream' tf = is_matlab() && matlabversion('2008b', '2011b'); case 'RandStream.setGlobalStream' tf = is_matlab() && matlabversion('2012a', inf); case 'randomized_PRNG_on_startup' tf = is_octave() || ~matlabversion(-Inf,'7.3'); case 'rng' % recent Matlab versions tf = is_matlab() && matlabversion('7.12',Inf); case 'rand-state' % GNU Octave tf = is_octave(); case 'urlread-timeout' tf = matlabversion('2012b',Inf); otherwise error('unsupported value for first argument: %s', what); end % switch end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_matlab() tf = ~is_octave(); end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function tf = is_octave() persistent cached_tf; if isempty(cached_tf) cached_tf = logical(exist('OCTAVE_VERSION', 'builtin')); end tf = cached_tf; end % function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [inInterval] = matlabversion(min, max) % MATLABVERSION checks if the current MATLAB version is within the interval % specified by min and max. % % Use, e.g., as: % if matlabversion(7.0, 7.9) % % do something % end % % Both strings and numbers, as well as infinities, are supported, eg.: % matlabversion(7.1, 7.9) % is version between 7.1 and 7.9? % matlabversion(6, '7.10') % is version between 6 and 7.10? (note: '7.10', not 7.10) % matlabversion(-Inf, 7.6) % is version <= 7.6? % matlabversion('2009b') % exactly 2009b % matlabversion('2008b', '2010a') % between two versions % matlabversion('2008b', Inf) % from a version onwards % etc. % % See also VERSION, VER, VERLESSTHAN % Copyright (C) 2006, Robert Oostenveld % Copyright (C) 2010, Eelke Spaak % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_platform_supports.m 10466 2015-06-22 16:39:29Z roboos $ % this does not change over subsequent calls, making it persistent speeds it up persistent curVer if nargin<2 max = min; end if isempty(curVer) curVer = version(); end if ((ischar(min) && isempty(str2num(min))) || (ischar(max) && isempty(str2num(max)))) % perform comparison with respect to release string ind = strfind(curVer, '(R'); [year, ab] = parseMatlabRelease(curVer((ind + 2):(numel(curVer) - 1))); [minY, minAb] = parseMatlabRelease(min); [maxY, maxAb] = parseMatlabRelease(max); inInterval = orderedComparison(minY, minAb, maxY, maxAb, year, ab); else % perform comparison with respect to version number [major, minor] = parseMatlabVersion(curVer); [minMajor, minMinor] = parseMatlabVersion(min); [maxMajor, maxMinor] = parseMatlabVersion(max); inInterval = orderedComparison(minMajor, minMinor, maxMajor, maxMinor, major, minor); end function [year, ab] = parseMatlabRelease(str) if (str == Inf) year = Inf; ab = Inf; elseif (str == -Inf) year = -Inf; ab = -Inf; else year = str2num(str(1:4)); ab = str(5); end end function [major, minor] = parseMatlabVersion(ver) if (ver == Inf) major = Inf; minor = Inf; elseif (ver == -Inf) major = -Inf; minor = -Inf; elseif (isnumeric(ver)) major = floor(ver); minor = int8((ver - floor(ver)) * 10); else % ver is string (e.g. '7.10'), parse accordingly [major, rest] = strtok(ver, '.'); major = str2num(major); minor = str2num(strtok(rest, '.')); end end % checks if testA is in interval (lowerA,upperA); if at edges, checks if testB is in interval (lowerB,upperB). function inInterval = orderedComparison(lowerA, lowerB, upperA, upperB, testA, testB) if (testA < lowerA || testA > upperA) inInterval = false; else inInterval = true; if (testA == lowerA) inInterval = inInterval && (testB >= lowerB); end if (testA == upperA) inInterval = inInterval && (testB <= upperB); end end end end % function
github
ZijingMao/baselineeegtest-master
ft_warning.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_warning.m
7,651
utf_8
883d92d69f8b72d44f2446b5ee2353cb
function [ws, warned] = ft_warning(varargin) % FT_WARNING will throw a warning for every unique point in the % stacktrace only, e.g. in a for-loop a warning is thrown only once. % % Use as one of the following % ft_warning(string) % ft_warning(id, string) % Alternatively, you can use ft_warning using a timeout % ft_warning(string, timeout) % ft_warning(id, string, timeout) % where timeout should be inf if you don't want to see the warning ever % again. % % Use as ft_warning('-clear') to clear old warnings from the current % stack % % It can be used instead of the MATLAB built-in function WARNING, thus as % s = ft_warning(...) % or as % ft_warning(s) % where s is a structure with fields 'identifier' and 'state', storing the % state information. In other words, ft_warning accepts as an input the % same structure it returns as an output. This returns or restores the % states of warnings to their previous values. % % It can also be used as % [s w] = ft_warning(...) % where w is a boolean that indicates whether a warning as been thrown or not. % % Please note that you can NOT use it like this % ft_warning('the value is %d', 10) % instead you should do % ft_warning(sprintf('the value is %d', 10)) % Copyright (C) 2012, Robert Oostenveld % Copyright (C) 2013, Robert Oostenveld, J?rn M. Horschig % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_warning.m 10518 2015-07-04 13:07:46Z roboos $ global ft_default if nargin < 1 error('You need to specify at least a warning message'); end warned = false; if isstruct(varargin{1}) warning(varargin{1}); return; end if ~isfield(ft_default, 'warning') ft_default.warning.stopwatch = []; ft_default.warning.identifier = []; ft_default.warning.ignore = {}; end % put the arguments we will pass to warning() in this cell array warningArgs = {}; if nargin==3 % calling syntax (id, msg, timeout) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = varargin{3}; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==2 && isnumeric(varargin{2}) % calling syntax (msg, timeout) warningArgs = varargin(1); msg = warningArgs{1}; timeout = varargin{2}; fname = warningArgs{1}; elseif nargin==2 && isequal(varargin{1}, 'off') ft_default.warning.ignore = union(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && isequal(varargin{1}, 'on') ft_default.warning.ignore = setdiff(ft_default.warning.ignore, varargin{2}); return elseif nargin==2 && ~isnumeric(varargin{2}) % calling syntax (id, msg) warningArgs = varargin(1:2); msg = warningArgs{2}; timeout = inf; fname = [warningArgs{1} '_' warningArgs{2}]; elseif nargin==1 % calling syntax (msg) warningArgs = varargin(1); msg = warningArgs{1}; timeout = inf; % default timeout in seconds fname = [warningArgs{1}]; end if ismember(msg, ft_default.warning.ignore) % do not show this warning return; end if isempty(timeout) error('Timeout ill-specified'); end if timeout ~= inf fname = decomma(fixname(fname)); % make a nice string that is allowed as structure fieldname if length(fname) > 63 % MATLAB max name fname = fname(1:63); end line = []; else % here, we create the fieldname functionA.functionB.functionC... [tmpfname ft_default.warning.identifier line] = fieldnameFromStack(ft_default.warning.identifier); if ~isempty(tmpfname) fname = tmpfname; clear tmpfname; end end if nargin==1 && ischar(varargin{1}) && strcmp('-clear', varargin{1}) if strcmp(fname, '-clear') % reset all fields if called outside a function ft_default.warning.identifier = []; ft_default.warning.stopwatch = []; else if issubfield(ft_default.warning.identifier, fname) ft_default.warning.identifier = rmsubfield(ft_default.warning.identifier, fname); end end return; end % and add the line number to make this unique for the last function fname = horzcat(fname, line); if ~issubfield('ft_default.warning.stopwatch', fname) ft_default.warning.stopwatch = setsubfield(ft_default.warning.stopwatch, fname, tic); end now = toc(getsubfield(ft_default.warning.stopwatch, fname)); % measure time since first function call if ~issubfield(ft_default.warning.identifier, fname) || ... (issubfield(ft_default.warning.identifier, fname) && now>getsubfield(ft_default.warning.identifier, [fname '.timeout'])) % create or reset field ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, fname, []); % warning never given before or timed out ws = warning(warningArgs{:}); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.timeout'], now+timeout); ft_default.warning.identifier = setsubfield(ft_default.warning.identifier, [fname '.ws'], msg); warned = true; else % the warning has been issued before, but has not timed out yet ws = getsubfield(ft_default.warning.identifier, [fname '.ws']); end end % function ft_warning %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function name = decomma(name) name(name==',')=[]; end % function function [fname ft_previous_warnings line] = fieldnameFromStack(ft_previous_warnings) % stack(1) is this function, stack(2) is ft_warning stack = dbstack('-completenames'); if size(stack) < 3 fname = []; line = []; return; end i0 = 3; % ignore ft_preamble while strfind(stack(i0).name, 'ft_preamble') i0=i0+1; end fname = horzcat(fixname(stack(end).name)); if ~issubfield(ft_previous_warnings, fixname(stack(end).name)) ft_previous_warnings.(fixname(stack(end).name)) = []; % iteratively build up structure fields end for i=numel(stack)-1:-1:(i0) % skip postamble scripts if strncmp(stack(i).name, 'ft_postamble', 12) break; end fname = horzcat(fname, '.', horzcat(fixname(stack(i).name))); % , stack(i).file if ~issubfield(ft_previous_warnings, fname) % iteratively build up structure fields setsubfield(ft_previous_warnings, fname, []); end end % line of last function call line = ['.line', int2str(stack(i0).line)]; end % function outcome = issubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % outcome = eval(['isfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % outcome = isfield(strct, fname); % end % end % function strct = rmsubfield(strct, fname) % substrindx = strfind(fname, '.'); % if numel(substrindx) > 0 % % separate the last fieldname from all former % strct = eval(['rmfield(strct.' fname(1:substrindx(end)-1) ', ''' fname(substrindx(end)+1:end) ''')']); % else % % there is only one fieldname % strct = rmfield(strct, fname); % end % end
github
ZijingMao/baselineeegtest-master
ft_hastoolbox.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_hastoolbox.m
25,228
utf_8
0972697d520199424e9b41666dc33c04
function [status] = ft_hastoolbox(toolbox, autoadd, silent) % FT_HASTOOLBOX tests whether an external toolbox is installed. Optionally % it will try to determine the path to the toolbox and install it % automatically. % % Use as % [status] = ft_hastoolbox(toolbox, autoadd, silent) % % autoadd = 0 means that it will not be added % autoadd = 1 means that give an error if it cannot be added % autoadd = 2 means that give a warning if it cannot be added % autoadd = 3 means that it remains silent if it cannot be added % % silent = 0 means that it will give some feedback about adding the toolbox % silent = 1 means that it will not give feedback % Copyright (C) 2005-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_hastoolbox.m 10419 2015-05-22 10:19:44Z roboos $ % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before % persistent previous previouspath % % if ~isequal(previouspath, path) % previous = []; % end % % if isempty(previous) % previous = struct; % elseif isfield(previous, fixname(toolbox)) % status = previous.(fixname(toolbox)); % return % end if isdeployed % it is not possible to check the presence of functions or change the path in a compiled application status = 1; return end % this points the user to the website where he/she can download the toolbox url = { 'AFNI' 'see http://afni.nimh.nih.gov' 'DSS' 'see http://www.cis.hut.fi/projects/dss' 'EEGLAB' 'see http://www.sccn.ucsd.edu/eeglab' 'NWAY' 'see http://www.models.kvl.dk/source/nwaytoolbox' 'SPM99' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM2' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM5' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM8' 'see http://www.fil.ion.ucl.ac.uk/spm' 'SPM12' 'see http://www.fil.ion.ucl.ac.uk/spm' 'MEG-PD' 'see http://www.kolumbus.fi/kuutela/programs/meg-pd' 'MEG-CALC' 'this is a commercial toolbox from Neuromag, see http://www.neuromag.com' 'BIOSIG' 'see http://biosig.sourceforge.net' 'EEG' 'see http://eeg.sourceforge.net' 'EEGSF' 'see http://eeg.sourceforge.net' % alternative name 'MRI' 'see http://eeg.sourceforge.net' % alternative name 'NEUROSHARE' 'see http://www.neuroshare.org' 'BESA' 'see http://www.megis.de, or contact Karsten Hoechstetter' 'EEPROBE' 'see http://www.ant-neuro.com, or contact Maarten van der Velde' 'YOKOGAWA' 'this is deprecated, please use YOKOGAWA_MEG_READER instead' 'YOKOGAWA_MEG_READER' 'see http://www.yokogawa.com/me/me-login-en.htm' 'BEOWULF' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'MENTAT' 'see http://robertoostenveld.nl, or contact Robert Oostenveld' 'SON2' 'see http://www.kcl.ac.uk/depsta/biomedical/cfnr/lidierth.html, or contact Malcolm Lidierth' '4D-VERSION' 'contact Christian Wienbruch' 'SIGNAL' 'see http://www.mathworks.com/products/signal' 'OPTIM' 'see http://www.mathworks.com/products/optim' 'IMAGE' 'see http://www.mathworks.com/products/image' % Mathworks refers to this as IMAGES 'SPLINES' 'see http://www.mathworks.com/products/splines' 'DISTCOMP' 'see http://www.mathworks.nl/products/parallel-computing/' 'COMPILER' 'see http://www.mathworks.com/products/compiler' 'FASTICA' 'see http://www.cis.hut.fi/projects/ica/fastica' 'BRAINSTORM' 'see http://neuroimage.ucs.edu/brainstorm' 'FILEIO' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'PREPROC' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'FORWARD' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'INVERSE' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'SPECEST' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'REALTIME' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'PLOTTING' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'SPIKE' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'CONNECTIVITY' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'PEER' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'PLOTTING' 'see http://www.ru.nl/neuroimaging/fieldtrip' 'DENOISE' 'see http://lumiere.ens.fr/Audition/adc/meg, or contact Alain de Cheveigne' 'BCI2000' 'see http://bci2000.org' 'NLXNETCOM' 'see http://www.neuralynx.com' 'DIPOLI' 'see ftp://ftp.fcdonders.nl/pub/fieldtrip/external' 'MNE' 'see http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php' 'TCP_UDP_IP' 'see http://www.mathworks.com/matlabcentral/fileexchange/345, or contact Peter Rydesaeter' 'BEMCP' 'contact Christophe Phillips' 'OPENMEEG' 'see http://gforge.inria.fr/projects/openmeeg and http://gforge.inria.fr/frs/?group_id=435' 'PRTOOLS' 'see http://www.prtools.org' 'ITAB' 'contact Stefania Della Penna' 'BSMART' 'see http://www.brain-smart.org' 'PEER' 'see http://fieldtrip.fcdonders.nl/development/peer' 'FREESURFER' 'see http://surfer.nmr.mgh.harvard.edu/fswiki' 'SIMBIO' 'see https://www.mrt.uni-jena.de/simbio/index.php/Main_Page' 'VGRID' 'see http://www.rheinahrcampus.de/~medsim/vgrid/manual.html' 'FNS' 'see http://hhvn.nmsu.edu/wiki/index.php/FNS' 'GIFTI' 'see http://www.artefact.tk/software/matlab/gifti' 'XML4MAT' 'see http://www.mathworks.com/matlabcentral/fileexchange/6268-xml4mat-v2-0' 'SQDPROJECT' 'see http://www.isr.umd.edu/Labs/CSSL/simonlab' 'BCT' 'see http://www.brain-connectivity-toolbox.net/' 'CCA' 'see http://www.imt.liu.se/~magnus/cca or contact Magnus Borga' 'EGI_MFF' 'see http://www.egi.com/ or contact either Phan Luu or Colin Davey at EGI' 'TOOLBOX_GRAPH' 'see http://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph or contact Gabriel Peyre' 'NETCDF' 'see http://www.mathworks.com/matlabcentral/fileexchange/15177' 'MYSQL' 'see http://www.mathworks.com/matlabcentral/fileexchange/8663-mysql-database-connector' 'ISO2MESH' 'see http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?Home or contact Qianqian Fang' 'DATAHASH' 'see http://www.mathworks.com/matlabcentral/fileexchange/31272' 'IBTB' 'see http://www.ibtb.org' 'ICASSO' 'see http://www.cis.hut.fi/projects/ica/icasso' 'XUNIT' 'see http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework' 'PLEXON' 'available from http://www.plexon.com/assets/downloads/sdk/ReadingPLXandDDTfilesinMatlab-mexw.zip' 'MISC' 'various functions that were downloaded from http://www.mathworks.com/matlabcentral/fileexchange and elsewhere' '35625-INFORMATION-THEORY-TOOLBOX' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '29046-MUTUAL-INFORMATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/35625-information-theory-toolbox' '14888-MUTUAL-INFORMATION-COMPUTATION' 'see http://www.mathworks.com/matlabcentral/fileexchange/14888-mutual-information-computation' 'PLOT2SVG' 'see http://www.mathworks.com/matlabcentral/fileexchange/7401-scalable-vector-graphics-svg-export-of-figures' 'BRAINSUITE' 'see http://brainsuite.bmap.ucla.edu/processing/additional-tools/' 'BRAINVISA' 'see http://brainvisa.info' 'FILEEXCHANGE' 'see http://www.mathworks.com/matlabcentral/fileexchange/' }; if nargin<2 % default is not to add the path automatically autoadd = 0; end if nargin<3 % default is not to be silent silent = 0; end % determine whether the toolbox is installed toolbox = upper(toolbox); % set fieldtrip trunk path, used for determining ft-subdirs are on path fttrunkpath = unixpath(fileparts(which('ft_defaults'))); switch toolbox case 'AFNI' status = (exist('BrikLoad', 'file') && exist('BrikInfo', 'file')); case 'DSS' status = exist('denss', 'file') && exist('dss_create_state', 'file'); case 'EEGLAB' status = exist('runica', 'file'); case 'NWAY' status = exist('parafac', 'file'); case 'SPM' status = exist('spm.m', 'file'); % any version of SPM is fine case 'SPM99' status = exist('spm.m', 'file') && strcmp(spm('ver'),'SPM99'); case 'SPM2' status = exist('spm.m', 'file') && strcmp(spm('ver'),'SPM2'); case 'SPM5' status = exist('spm.m', 'file') && strcmp(spm('ver'),'SPM5'); case 'SPM8' status = exist('spm.m', 'file') && strncmp(spm('ver'),'SPM8', 4); case 'SPM8UP' % version 8 or later status = 0; if exist('spm.m', 'file') v = spm('ver'); if str2num(v(isstrprop(v, 'digit')))>=8 status = 1; end end %This is to avoid crashes when trying to add SPM to the path if ~status toolbox = 'SPM8'; end case 'SPM12' status = exist('spm.m', 'file') && strncmp(spm('ver'),'SPM12', 5); case 'MEG-PD' status = (exist('rawdata', 'file') && exist('channames', 'file')); case 'MEG-CALC' status = (exist('megmodel', 'file') && exist('megfield', 'file') && exist('megtrans', 'file')); case 'BIOSIG' status = (exist('sopen', 'file') && exist('sread', 'file')); case 'EEG' status = (exist('ctf_read_res4', 'file') && exist('ctf_read_meg4', 'file')); case 'EEGSF' % alternative name status = (exist('ctf_read_res4', 'file') && exist('ctf_read_meg4', 'file')); case 'MRI' % other functions in the mri section status = (exist('avw_hdr_read', 'file') && exist('avw_img_read', 'file')); case 'NEUROSHARE' status = (exist('ns_OpenFile', 'file') && exist('ns_SetLibrary', 'file') && exist('ns_GetAnalogData', 'file')); case 'ARTINIS' status = exist('read_artinis_oxy3', 'file'); case 'BESA' status = (exist('readBESAtfc', 'file') && exist('readBESAswf', 'file')); case 'EEPROBE' status = (exist('read_eep_avr', 'file') && exist('read_eep_cnt', 'file')); case 'YOKOGAWA' status = hasyokogawa('16bitBeta6'); case 'YOKOGAWA12BITBETA3' status = hasyokogawa('12bitBeta3'); case 'YOKOGAWA16BITBETA3' status = hasyokogawa('16bitBeta3'); case 'YOKOGAWA16BITBETA6' status = hasyokogawa('16bitBeta6'); case 'YOKOGAWA_MEG_READER' status = hasyokogawa('1.4'); case 'BEOWULF' status = (exist('evalwulf', 'file') && exist('evalwulf', 'file') && exist('evalwulf', 'file')); case 'MENTAT' status = (exist('pcompile', 'file') && exist('pfor', 'file') && exist('peval', 'file')); case 'SON2' status = (exist('SONFileHeader', 'file') && exist('SONChanList', 'file') && exist('SONGetChannel', 'file')); case '4D-VERSION' status = (exist('read4d', 'file') && exist('read4dhdr', 'file')); case {'STATS', 'STATISTICS'} status = license('checkout', 'statistics_toolbox'); % also check the availability of a toolbox license case {'OPTIM', 'OPTIMIZATION'} status = license('checkout', 'optimization_toolbox'); % also check the availability of a toolbox license case {'SPLINES', 'CURVE_FITTING'} status = license('checkout', 'curve_fitting_toolbox'); % also check the availability of a toolbox license case 'SIGNAL' status = license('checkout', 'signal_toolbox') && exist('window', 'file'); % also check the availability of a toolbox license case 'IMAGE' status = license('checkout', 'image_toolbox'); % also check the availability of a toolbox license case {'DCT', 'DISTCOMP'} status = license('checkout', 'distrib_computing_toolbox'); % also check the availability of a toolbox license case 'COMPILER' status = license('checkout', 'compiler'); % also check the availability of a toolbox license case 'FASTICA' status = exist('fpica', 'file'); case 'BRAINSTORM' status = exist('bem_xfer', 'file'); case 'DENOISE' status = (exist('tsr', 'file') && exist('sns', 'file')); case 'CTF' status = (exist('getCTFBalanceCoefs', 'file') && exist('getCTFdata', 'file')); case 'BCI2000' status = exist('load_bcidat', 'file'); case 'NLXNETCOM' status = (exist('MatlabNetComClient', 'file') && exist('NlxConnectToServer', 'file') && exist('NlxGetNewCSCData', 'file')); case 'DIPOLI' status = exist('dipoli.maci', 'file'); case 'MNE' status = (exist('fiff_read_meas_info', 'file') && exist('fiff_setup_read_raw', 'file')); case 'TCP_UDP_IP' status = (exist('pnet', 'file') && exist('pnet_getvar', 'file') && exist('pnet_putvar', 'file')); case 'BEMCP' status = (exist('bem_Cij_cog', 'file') && exist('bem_Cij_lin', 'file') && exist('bem_Cij_cst', 'file')); case 'OPENMEEG' status = exist('om_save_tri.m', 'file'); case 'PRTOOLS' status = (exist('prversion', 'file') && exist('dataset', 'file') && exist('svc', 'file')); case 'ITAB' status = (exist('lcReadHeader', 'file') && exist('lcReadData', 'file')); case 'BSMART' status = exist('bsmart', 'file'); case 'FREESURFER' status = exist('MRIread', 'file') && exist('vox2ras_0to1', 'file'); case 'FNS' status = exist('elecsfwd', 'file'); case 'SIMBIO' status = exist('calc_stiff_matrix_val', 'file') && exist('sb_transfer', 'file'); case 'VGRID' status = exist('vgrid.m', 'file'); case 'GIFTI' status = exist('gifti', 'file'); case 'XML4MAT' status = exist('xml2struct.m', 'file') && exist('xml2whos.m', 'file'); case 'SQDPROJECT' status = exist('sqdread.m', 'file') && exist('sqdwrite.m', 'file'); case 'BCT' status = exist('macaque71.mat', 'file') && exist('motif4funct_wei.m', 'file'); case 'CCA' status = exist('ccabss.m', 'file'); case 'EGI_MFF' status = exist('mff_getObject.m', 'file') && exist('mff_getSummaryInfo.m', 'file'); case 'TOOLBOX_GRAPH' status = exist('toolbox_graph', 'file'); case 'NETCDF' status = exist('netcdf', 'file'); case 'MYSQL' status = exist(['mysql.' mexext], 'file'); % this only consists of a single mex file case 'ISO2MESH' status = exist('vol2surf.m', 'file') && exist('qmeshcut.m', 'file'); case 'QSUB' status = exist('qsubfeval.m', 'file') && exist('qsubcellfun.m', 'file'); case 'ENGINE' status = exist('enginefeval.m', 'file') && exist('enginecellfun.m', 'file'); case 'DATAHASH' status = exist('DataHash.m', 'file'); case 'IBTB' status = exist('make_ibtb.m', 'file') && exist('binr.m', 'file'); case 'ICASSO' status = exist('icassoEst.m', 'file'); case 'XUNIT' status = exist('initTestSuite.m', 'file') && exist('runtests.m', 'file'); case 'PLEXON' status = exist('plx_adchan_gains.m', 'file') && exist('mexPlex', 'file'); case '35625-INFORMATION-THEORY-TOOLBOX' filelist = {'conditionalEntropy' 'entropy' 'jointEntropy' 'mutualInformation' 'nmi' 'nvi' 'relativeEntropy'}; status = all(cellfun(@exist, filelist, repmat({'file'}, size(filelist)))); case '29046-MUTUAL-INFORMATION' filelist = {'MI.m' 'license.txt'}; status = all(cellfun(@exist, filelist, repmat({'file'}, size(filelist)))); case '14888-MUTUAL-INFORMATION-COMPUTATION' filelist = {'condentropy.m' 'demo_mi.m' 'estcondentropy.cpp' 'estjointentropy.cpp' 'estpa.cpp' 'findjointstateab.cpp' 'makeosmex.m' 'mutualinfo.m' 'condmutualinfo.m' 'entropy.m' 'estentropy.cpp' 'estmutualinfo.cpp' 'estpab.cpp' 'jointentropy.m' 'mergemultivariables.m' }; status = all(cellfun(@exist, filelist, repmat({'file'}, size(filelist)))); case 'PLOT2SVG' filelist = {'plot2svg.m' 'simulink2svg.m'}; status = all(cellfun(@exist, filelist, repmat({'file'}, size(filelist)))); case 'BRAINSUITE' filelist = {'readdfs.m' 'writedfc.m'}; status = all(cellfun(@exist, filelist, repmat({'file'}, size(filelist)))); case 'BRAINVISA' filelist = {'loadmesh.m' 'plotmesh.m' 'savemesh.m'}; status = all(cellfun(@exist, filelist, repmat({'file'}, size(filelist)))); % the following are fieldtrip modules/toolboxes case 'FILEIO' status = (exist('ft_read_header', 'file') && exist('ft_read_data', 'file') && exist('ft_read_event', 'file') && exist('ft_read_sens', 'file')); case 'FORWARD' status = (exist('ft_compute_leadfield', 'file') && exist('ft_prepare_vol_sens', 'file')); case 'PLOTTING' status = (exist('ft_plot_topo', 'file') && exist('ft_plot_mesh', 'file') && exist('ft_plot_matrix', 'file')); case 'PEER' status = exist('peerslave', 'file') && exist('peermaster', 'file'); case 'CONNECTIVITY' status = exist('ft_connectivity_corr', 'file') && exist('ft_connectivity_granger', 'file'); case 'SPIKE' status = exist('ft_spiketriggeredaverage.m', 'file') && exist('ft_spiketriggeredspectrum.m', 'file'); % these were missing, added them using the below style, see bug 1804 - roevdmei case 'INVERSE' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/inverse'], 'once')); % INVERSE is not added above, consider doing it there -roevdmei case 'REALTIME' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/realtime'], 'once')); % REALTIME is not added above, consider doing it there -roevdmei case 'SPECEST' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/specest'], 'once')); % SPECEST is not added above, consider doing it there -roevdmei case 'PREPROC' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/preproc'], 'once')); % PREPROC is not added above, consider doing it there -roevdmei % the following are not proper toolboxes, but only subdirectories in the fieldtrip toolbox % these are added in ft_defaults and are specified with unix-style forward slashes case 'FILEEXCHANGE' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/external/fileexchange'], 'once')); case 'COMPAT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/compat'], 'once')); case 'STATFUN' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/statfun'], 'once')); case 'TRIALFUN' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/trialfun'], 'once')); case 'UTILITIES/COMPAT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/utilities/compat'], 'once')); case 'FILEIO/COMPAT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/fileio/compat'], 'once')); case 'PREPROC/COMPAT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/preproc/compat'], 'once')); case 'FORWARD/COMPAT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/forward/compat'], 'once')); case 'PLOTTING/COMPAT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/plotting/compat'], 'once')); case 'TEMPLATE/LAYOUT' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/template/layout'], 'once')); case 'TEMPLATE/ANATOMY' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/template/anatomy'], 'once')); case 'TEMPLATE/HEADMODEL' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/template/headmodel'], 'once')); case 'TEMPLATE/ELECTRODE' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/template/electrode'], 'once')); case 'TEMPLATE/NEIGHBOURS' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/template/neighbours'], 'once')); case 'TEMPLATE/SOURCEMODEL' status = ~isempty(regexp(unixpath(path), [fttrunkpath '/template/sourcemodel'], 'once')); otherwise if ~silent, warning('cannot determine whether the %s toolbox is present', toolbox); end status = 0; end % it should be a boolean value status = (status~=0); % try to determine the path of the requested toolbox if autoadd>0 && ~status % for core fieldtrip modules prefix = fileparts(which('ft_defaults')); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for external fieldtrip modules prefix = fullfile(fileparts(which('ft_defaults')), 'external'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for contributed fieldtrip extensions prefix = fullfile(fileparts(which('ft_defaults')), 'contrib'); if ~status status = myaddpath(fullfile(prefix, lower(toolbox)), silent); licensefile = [lower(toolbox) '_license']; if status && exist(licensefile, 'file') % this will execute openmeeg_license and mne_license % which display the license on screen for three seconds feval(licensefile); end end % for linux computers in the Donders Centre for Cognitive Neuroimaging prefix = '/home/common/matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % for windows computers in the Donders Centre for Cognitive Neuroimaging prefix = 'h:\common\matlab'; if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end % use the MATLAB subdirectory in your homedirectory, this works on linux and mac prefix = fullfile(getenv('HOME'), 'matlab'); if ~status && isdir(prefix) status = myaddpath(fullfile(prefix, lower(toolbox)), silent); end if ~status % the toolbox is not on the path and cannot be added sel = find(strcmp(url(:,1), toolbox)); if ~isempty(sel) msg = sprintf('the %s toolbox is not installed, %s', toolbox, url{sel, 2}); else msg = sprintf('the %s toolbox is not installed', toolbox); end if autoadd==1 error(msg); elseif autoadd==2 warning(msg); else % fail silently end end end % this function is called many times in FieldTrip and associated toolboxes % use efficient handling if the same toolbox has been investigated before if status previous.(fixname(toolbox)) = status; end % remember the previous path, allows us to determine on the next call % whether the path has been modified outise of this function previouspath = path; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = myaddpath(toolbox, silent) if isdeployed warning('cannot change path settings for %s in a compiled application', toolbox); status = 1; elseif exist(toolbox, 'dir') if ~silent, ws = warning('backtrace', 'off'); warning('adding %s toolbox to your MATLAB path', toolbox); warning(ws); % return to the previous warning level end addpath(toolbox); status = 1; elseif (~isempty(regexp(toolbox, 'spm5$', 'once')) || ~isempty(regexp(toolbox, 'spm8$', 'once')) || ~isempty(regexp(toolbox, 'spm12$', 'once'))) && exist([toolbox 'b'], 'dir') status = myaddpath([toolbox 'b'], silent); else status = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function path = unixpath(path) path(path=='\') = '/'; % replace backward slashes with forward slashes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % helper function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function status = hasfunction(funname, toolbox) try % call the function without any input arguments, which probably is inapropriate feval(funname); % it might be that the function without any input already works fine status = true; catch % either the function returned an error, or the function is not available % availability is influenced by the function being present and by having a % license for the function, i.e. in a concurrent licensing setting it might % be that all toolbox licenses are in use m = lasterror; if strcmp(m.identifier, 'MATLAB:license:checkouterror') if nargin>1 warning('the %s toolbox is available, but you don''t have a license for it', toolbox); else warning('the function ''%s'' is available, but you don''t have a license for it', funname); end status = false; elseif strcmp(m.identifier, 'MATLAB:UndefinedFunction') status = false; else % the function seems to be available and it gave an unknown error, % which is to be expected with inappropriate input arguments status = true; end end
github
ZijingMao/baselineeegtest-master
read_yokogawa_data_new.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_yokogawa_data_new.m
5,691
utf_8
0f379a92d07b29f6a231c357f4f02920
function [dat] = read_yokogawa_data_new(filename, hdr, begsample, endsample, chanindx) % READ_YOKAGAWA_DATA_NEW reads continuous, epoched or averaged MEG data % that has been generated by the Yokogawa MEG system and software % and allows that data to be used in combination with FieldTrip. % % Use as % [dat] = read_yokogawa_data_new(filename, hdr, begsample, endsample, chanindx) % % This is a wrapper function around the function % getYkgwData % % See also READ_YOKOGAWA_HEADER_NEW, READ_YOKOGAWA_EVENT % Copyright (C) 2005, Robert Oostenveld and 2010, Tilmann Sander-Thoemmes % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_yokogawa_data_new.m 7123 2012-12-06 21:21:38Z roboos $ if ~ft_hastoolbox('yokogawa_meg_reader') error('cannot determine whether Yokogawa toolbox is present'); end % hdr = read_yokogawa_header(filename); hdr = hdr.orig; % use the original Yokogawa header, not the FieldTrip header % default is to select all channels if nargin<5 chanindx = 1:hdr.channel_count; end handles = definehandles; switch hdr.acq_type case handles.AcqTypeEvokedAve % dat is returned as double start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = getYkgwData(filename, start_sample, sample_length); case handles.AcqTypeContinuousRaw % dat is returned as double start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = getYkgwData(filename, start_sample, sample_length); case handles.AcqTypeEvokedRaw % dat is returned as double begtrial = ceil(begsample/hdr.sample_count); endtrial = ceil(endsample/hdr.sample_count); if begtrial<1 error('cannot read before the begin of the file'); elseif endtrial>hdr.actual_epoch_count error('cannot read beyond the end of the file'); end epoch_count = endtrial-begtrial+1; start_epoch = begtrial-1; % read all the neccessary trials that contain the desired samples dat = getYkgwData(filename, start_epoch, epoch_count); if size(dat,2)~=epoch_count*hdr.sample_count error('could not read all epochs'); end rawbegsample = begsample - (begtrial-1)*hdr.sample_count; rawendsample = endsample - (begtrial-1)*hdr.sample_count; sample_length = rawendsample - rawbegsample + 1; % select the desired samples from the complete trials dat = dat(:,rawbegsample:rawendsample); otherwise error('unknown data type'); end if size(dat,1)~=hdr.channel_count error('could not read all channels'); elseif size(dat,2)~=(endsample-begsample+1) error('could not read all samples'); end % select only the desired channels dat = dat(chanindx,:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
ZijingMao/baselineeegtest-master
read_plexon_nex.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_plexon_nex.m
7,637
utf_8
fa08ec3a9e740a63be5c6ee72ef0d1a0
function [varargout] = read_plexon_nex(filename, varargin) % READ_PLEXON_NEX reads header or data from a Plexon *.nex file, which % is a file containing action-potential (spike) timestamps and waveforms % (spike channels), event timestamps (event channels), and continuous % variable data (continuous A/D channels). % % LFP and spike waveform data that is returned by this function is % expressed in microVolt. % % Use as % [hdr] = read_plexon_nex(filename) % [dat] = read_plexon_nex(filename, ...) % [dat1, dat2, dat3, hdr] = read_plexon_nex(filename, ...) % % Optional arguments should be specified in key-value pairs and can be % header structure with header information % feedback 0 or 1 % tsonly 0 or 1, read only the timestamps and not the waveforms % channel number, or list of numbers (that will result in multiple outputs) % begsample number (for continuous only) % endsample number (for continuous only) % % See also READ_PLEXON_PLX, READ_PLEXON_DDT % Copyright (C) 2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_plexon_nex.m 8429 2013-08-27 13:09:43Z roboos $ % parse the optional input arguments hdr = ft_getopt(varargin, 'header'); channel = ft_getopt(varargin, 'channel'); feedback = ft_getopt(varargin, 'feedback', false); tsonly = ft_getopt(varargin, 'tsonly', false); begsample = ft_getopt(varargin, 'begsample', 1); endsample = ft_getopt(varargin, 'endsample', inf); % start with empty return values and empty data varargout = {}; % read header info from file, use Matlabs for automatic byte-ordering fid = fopen(filename, 'r', 'ieee-le'); fseek(fid, 0, 'eof'); siz = ftell(fid); fseek(fid, 0, 'bof'); if isempty(hdr) if feedback, fprintf('reading header from %s\n', filename); end % a NEX file consists of a file header, followed by a number of variable headers % sizeof(NexFileHeader) = 544 % sizeof(NexVarHeader) = 208 hdr.FileHeader = NexFileHeader(fid); if hdr.FileHeader.NumVars<1 error('no channels present in file'); end hdr.VarHeader = NexVarHeader(fid, hdr.FileHeader.NumVars); end for i=1:length(channel) chan = channel(i); vh = hdr.VarHeader(chan); clear buf fseek(fid, vh.DataOffset, 'bof'); switch vh.Type case 0 % Neurons, only timestamps buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); case 1 % Events, only timestamps buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); case 2 % Interval variables buf.begs = fread(fid, [1 vh.Count], 'int32=>int32'); buf.ends = fread(fid, [1 vh.Count], 'int32=>int32'); case 3 % Waveform variables buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); if ~tsonly buf.dat = fread(fid, [vh.NPointsWave vh.Count], 'int16'); % convert the AD values to miliVolt, subsequently convert from miliVolt to microVolt buf.dat = buf.dat * (vh.ADtoMV * 1000); end case 4 % Population vector error('population vectors are not supported'); case 5 % Continuously recorded variables buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); buf.indx = fread(fid, [1 vh.Count], 'int32=>int32'); if vh.Count>1 && (begsample~=1 || endsample~=inf) error('reading selected samples from multiple AD segments is not supported'); end if ~tsonly numsample = min(endsample - begsample + 1, vh.NPointsWave); fseek(fid, (begsample-1)*2, 'cof'); buf.dat = fread(fid, [1 numsample], 'int16'); % convert the AD values to miliVolt, subsequently convert from miliVolt to microVolt buf.dat = buf.dat * (vh.ADtoMV * 1000); end case 6 % Markers buf.ts = fread(fid, [1 vh.Count], 'int32=>int32'); for j=1:vh.NMarkers buf.MarkerNames{j,1} = fread(fid, [1 64], 'uint8=>char'); for k=1:vh.Count buf.MarkerValues{j,k} = fread(fid, [1 vh.MarkerLength], 'uint8=>char'); end end otherwise error('incorrect channel type'); end % switch channel type % return the data of this channel varargout{i} = buf; end % for channel % always return the header as last varargout{end+1} = hdr; fclose(fid); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = NexFileHeader(fid); hdr.NexFileHeader = fread(fid,4,'uint8=>char')'; % string NEX1 hdr.Version = fread(fid,1,'int32'); hdr.Comment = fread(fid,256,'uint8=>char')'; hdr.Frequency = fread(fid,1,'double'); % timestamped freq. - tics per second hdr.Beg = fread(fid,1,'int32'); % usually 0 hdr.End = fread(fid,1,'int32'); % maximum timestamp + 1 hdr.NumVars = fread(fid,1,'int32'); % number of variables in the first batch hdr.NextFileHeader = fread(fid,1,'int32'); % position of the next file header in the file, not implemented yet Padding = fread(fid,256,'uint8=>char')'; % future expansion %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = NexVarHeader(fid, numvar); for varlop=1:numvar hdr(varlop).Type = fread(fid,1,'int32'); % 0 - neuron, 1 event, 2- interval, 3 - waveform, 4 - pop. vector, 5 - continuously recorded hdr(varlop).Version = fread(fid,1,'int32'); % 100 hdr(varlop).Name = fread(fid,64,'uint8=>char')'; % variable name hdr(varlop).DataOffset = fread(fid,1,'int32'); % where the data array for this variable is located in the file hdr(varlop).Count = fread(fid,1,'int32'); % number of events, intervals, waveforms or weights hdr(varlop).WireNumber = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).UnitNumber = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).Gain = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).Filter = fread(fid,1,'int32'); % neuron only, not used now hdr(varlop).XPos = fread(fid,1,'double'); % neuron only, electrode position in (0,100) range, used in 3D hdr(varlop).YPos = fread(fid,1,'double'); % neuron only, electrode position in (0,100) range, used in 3D hdr(varlop).WFrequency = fread(fid,1,'double'); % waveform and continuous vars only, w/f sampling frequency hdr(varlop).ADtoMV = fread(fid,1,'double'); % waveform continuous vars only, coeff. to convert from A/D values to Millivolts hdr(varlop).NPointsWave = fread(fid,1,'int32'); % waveform only, number of points in each wave hdr(varlop).NMarkers = fread(fid,1,'int32'); % how many values are associated with each marker hdr(varlop).MarkerLength = fread(fid,1,'int32'); % how many characters are in each marker value Padding = fread(fid,68,'uint8=>char')'; end
github
ZijingMao/baselineeegtest-master
read_bti_m4d.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_bti_m4d.m
5,838
utf_8
123c765eeecec5359bfdfc0af7c65fc0
function [msi] = read_bti_m4d(filename) % READ_BTI_M4D % % Use as % msi = read_bti_m4d(filename) % Copyright (C) 2007, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_bti_m4d.m 8770 2013-11-12 13:54:58Z roboos $ [p, f, x] = fileparts(filename); if ~strcmp(x, '.m4d') % add the extension of the header filename = [filename '.m4d']; end fid = fopen(filename, 'r'); if fid==-1 error(sprintf('could not open file %s', filename)); end % start with an empty header structure msi = struct; % these header elements contain strings and should be converted in a cell-array strlist = { 'MSI.ChannelOrder' }; % these header elements contain numbers and should be converted in a numeric array % 'MSI.ChannelScale' % 'MSI.ChannelGain' % 'MSI.FileType' % 'MSI.TotalChannels' % 'MSI.TotalEpochs' % 'MSI.SamplePeriod' % 'MSI.SampleFrequency' % 'MSI.FirstLatency' % 'MSI.SlicesPerEpoch' % the conversion to numeric arrays is implemented in a general fashion % and all the fields above are automatically converted numlist = {}; line = ''; msi.grad.label = {}; msi.grad.coilpos = zeros(0,3); msi.grad.coilori = zeros(0,3); while ischar(line) line = cleanline(fgetl(fid)); if isempty(line) || (length(line)==1 && all(line==-1)) continue end sep = strfind(line, ':'); if length(sep)==1 key = line(1:(sep-1)); val = line((sep+1):end); elseif length(sep)>1 % assume that the first separator is the relevant one, and that the % next ones are part of the value string (e.g. a channel with a ':' in % its name sep = sep(1); key = line(1:(sep-1)); val = line((sep+1):end); elseif length(sep)<1 % this is not what I would expect error('unexpected content in m4d file'); end if ~isempty(strfind(line, 'Begin')) && (~isempty(strfind(line, 'Meg_Position_Information')) || ~isempty(strfind(line, 'Ref_Position_Information'))) % jansch added the second ~isempty() to accommodate for when the % block is about Eeg_Position_Information, which does not pertain to % gradiometers, and moreover can be empty (added: Aug 03, 2013) sep = strfind(key, '.'); sep = sep(end); key = key(1:(sep-1)); % if the key ends with begin and there is no value, then there is a block % of numbers following that relates to the magnetometer/gradiometer information. % All lines in that Begin-End block should be treated separately val = {}; lab = {}; num = {}; ind = 0; while isempty(strfind(line, 'End')) line = cleanline(fgetl(fid)); if isempty(line) || (length(line)==1 && all(line==-1)) || ~isempty(strfind(line, 'End')) continue end ind = ind+1; % remember the line itself, and also cut it into pieces val{ind} = line; % the line is tab-separated and looks like this % A68 0.0873437 -0.075789 0.0891512 0.471135 -0.815532 0.336098 sep = find(line==9); % the ascii value of a tab is 9 sep = sep(1); lab{ind} = line(1:(sep-1)); num{ind} = str2num(line((sep+1):end)); end % parsing Begin-End block val = val(:); lab = lab(:); num = num(:); num = cell2mat(num); % the following is FieldTrip specific if size(num,2)==6 msi.grad.label = [msi.grad.label; lab(:)]; % the numbers represent position and orientation of each magnetometer coil msi.grad.coilpos = [msi.grad.coilpos; num(:,1:3)]; msi.grad.coilori = [msi.grad.coilori; num(:,4:6)]; else error('unknown gradiometer design') end end % the key looks like 'MSI.fieldname.subfieldname' fieldname = key(5:end); % remove spaces from the begin and end of the string val = strtrim(val); % try to convert the value string into something more usefull if ~iscell(val) % the value can contain a variety of elements, only some of which are decoded here if ~isempty(strfind(key, 'Index')) || ~isempty(strfind(key, 'Count')) || any(strcmp(key, numlist)) % this contains a single number or a comma-separated list of numbers val = str2num(val); elseif ~isempty(strfind(key, 'Names')) || any(strcmp(key, strlist)) % this contains a comma-separated list of strings val = tokenize(val, ','); else tmp = str2num(val); if ~isempty(tmp) val = tmp; end end end % assign this header element to the structure msi = setsubfield(msi, fieldname, val); end % while ischar(line) % each coil weighs with a value of 1 into each channel msi.grad.tra = eye(size(msi.grad.coilpos,1)); msi.grad.unit = 'm'; fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to remove spaces from the begin and end % and to remove comments from the lines %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function line = cleanline(line) if isempty(line) || (length(line)==1 && all(line==-1)) return end comment = findstr(line, '//'); if ~isempty(comment) line(min(comment):end) = ' '; end line = strtrim(line);
github
ZijingMao/baselineeegtest-master
read_asa.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_asa.m
3,857
utf_8
bd6525da96c296723f6a29b027b2445e
function [val] = read_asa(filename, elem, format, number, token) % READ_ASA reads a specified element from an ASA file % % val = read_asa(filename, element, type, number) % % where the element is a string such as % NumberSlices % NumberPositions % Rows % Columns % etc. % % and format specifies the datatype according to % %d (integer value) % %f (floating point value) % %s (string) % % number is optional to specify how many lines of data should be read % The default is 1 for strings and Inf for numbers. % % token is optional to specifiy a character that separates the values from % anything not wanted. % Copyright (C) 2002-2012, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_asa.m 7123 2012-12-06 21:21:38Z roboos $ fid = fopen(filename, 'rt'); if fid==-1 error(sprintf('could not open file %s', filename)); end if nargin<4 if strcmp(format, '%s') number = 1; else number = Inf; end end if nargin<5 token = ''; end val = []; elem = strtrim(lower(elem)); while (1) line = fgetl(fid); if ~isempty(line) && isequal(line, -1) % prematurely reached end of file fclose(fid); return end line = strtrim(line); lower_line = lower(line); if strmatch(elem, lower_line) data = line((length(elem)+1):end); break end end while isempty(data) line = fgetl(fid); if isequal(line, -1) % prematurely reached end of file fclose(fid); return end data = strtrim(line); end if strcmp(format, '%s') if number==1 % interpret the data as a single string, create char-array val = detoken(strtrim(data), token); if val(1)=='=' val = val(2:end); % remove the trailing = end fclose(fid); return end % interpret the data as a single string, create cell-array val{1} = detoken(strtrim(data), token); count = 1; % read the remaining strings while count<number line = fgetl(fid); if ~isempty(line) && isequal(line, -1) fclose(fid); return end tmp = sscanf(line, format); if isempty(tmp) fclose(fid); return else count = count + 1; val{count} = detoken(strtrim(line), token); end end else % interpret the data as numeric, create numeric array count = 1; data = sscanf(detoken(data, token), format)'; if isempty(data), fclose(fid); return else val(count,:) = data; end % read remaining numeric data while count<number line = fgetl(fid); if ~isempty(line) && isequal(line, -1) fclose(fid); return end data = sscanf(detoken(line, token), format)'; if isempty(data) fclose(fid); return else count = count+1; val(count,:) = data; end end end fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [out] = detoken(in, token) if isempty(token) out = in; return; end [tok rem] = strtok(in, token); if isempty(rem) out = in; return; else out = strtok(rem, token); return end
github
ZijingMao/baselineeegtest-master
ft_checkdata.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_checkdata.m
77,665
utf_8
0c7aabcbe3ab11b70e71782914d5d60e
function [data] = ft_checkdata(data, varargin) % FT_CHECKDATA checks the input data of the main FieldTrip functions, e.g. whether % the type of data strucure corresponds with the required data. If neccessary % and possible, this function will adjust the data structure to the input % requirements (e.g. change dimord, average over trials, convert inside from % index into logical). % % If the input data does NOT correspond to the requirements, this function % is supposed to give a elaborate warning message and if applicable point % the user to external documentation (link to website). % % Use as % [data] = ft_checkdata(data, ...) % % Optional input arguments should be specified as key-value pairs and can include % feedback = yes, no % datatype = raw, freq, timelock, comp, spike, source, dip, volume, segmentation, parcellation % dimord = any combination of time, freq, chan, refchan, rpt, subj, chancmb, rpttap, pos % senstype = ctf151, ctf275, ctf151_planar, ctf275_planar, neuromag122, neuromag306, bti148, bti248, bti248_planar, magnetometer, electrode % inside = logical, index % ismeg = yes, no % hasunit = yes, no % hascoordsys = yes, no % hassampleinfo = yes, no, ifmakessense (only applies to raw data) % hascumtapcnt = yes, no (only applies to freq data) % hasdim = yes, no % hasdof = yes, no % cmbrepresentation = sparse, full (applies to covariance and cross-spectral density) % fsample = sampling frequency to use to go from SPIKE to RAW representation % segmentationstyle = indexed, probabilistic (only applies to segmentation) % parcellationstyle = indexed, probabilistic (only applies to parcellation) % hasbrain = yes, no (only applies to segmentation) % % For some options you can specify multiple values, e.g. % [data] = ft_checkdata(data, 'senstype', {'ctf151', 'ctf275'}), e.g. in megrealign % [data] = ft_checkdata(data, 'datatype', {'timelock', 'freq'}), e.g. in sourceanalysis % Copyright (C) 2007-2015, Robert Oostenveld % Copyright (C) 2010-2012, Martin Vinck % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_checkdata.m 10497 2015-06-30 15:52:15Z jimher $ % in case of an error this function could use dbstack for more detailled % user feedback % % this function should replace/encapsulate % fixdimord % fixinside % fixprecision % fixvolume % data2raw % raw2data % grid2transform % transform2grid % fourier2crsspctrm % freq2cumtapcnt % sensortype % time2offset % offset2time % fixsens -> this is kept a separate function because it should also be % called from other modules % % other potential uses for this function: % time -> offset in freqanalysis % average over trials % csd as matrix % FIXME the following is difficult, if not impossible, to support without knowing the parameter % FIXME it is presently (dec 2014) not being used anywhere in FT, so can be removed % hastrials = yes, no % get the optional input arguments feedback = ft_getopt(varargin, 'feedback', 'no'); dtype = ft_getopt(varargin, 'datatype'); % should not conflict with the ft_datatype function dimord = ft_getopt(varargin, 'dimord'); stype = ft_getopt(varargin, 'senstype'); % senstype is a function name which should not be masked ismeg = ft_getopt(varargin, 'ismeg'); inside = ft_getopt(varargin, 'inside'); % can be 'logical' or 'index' hastrials = ft_getopt(varargin, 'hastrials'); hasunit = ft_getopt(varargin, 'hasunit', 'no'); hascoordsys = ft_getopt(varargin, 'hascoordsys', 'no'); hassampleinfo = ft_getopt(varargin, 'hassampleinfo', 'ifmakessense'); hasdimord = ft_getopt(varargin, 'hasdimord', 'no'); hasdim = ft_getopt(varargin, 'hasdim'); hascumtapcnt = ft_getopt(varargin, 'hascumtapcnt'); hasdof = ft_getopt(varargin, 'hasdof', 'no'); haspow = ft_getopt(varargin, 'haspow', 'no'); cmbrepresentation = ft_getopt(varargin, 'cmbrepresentation'); channelcmb = ft_getopt(varargin, 'channelcmb'); sourcedimord = ft_getopt(varargin, 'sourcedimord'); sourcerepresentation = ft_getopt(varargin, 'sourcerepresentation'); fsample = ft_getopt(varargin, 'fsample'); segmentationstyle = ft_getopt(varargin, 'segmentationstyle'); % this will be passed on to the corresponding ft_datatype_xxx function parcellationstyle = ft_getopt(varargin, 'parcellationstyle'); % this will be passed on to the corresponding ft_datatype_xxx function hasbrain = ft_getopt(varargin, 'hasbrain'); % check whether people are using deprecated stuff depHastrialdef = ft_getopt(varargin, 'hastrialdef'); if (~isempty(depHastrialdef)) ft_warning('ft_checkdata option ''hastrialdef'' is deprecated; use ''hassampleinfo'' instead'); hassampleinfo = depHastrialdef; end if (~isempty(ft_getopt(varargin, 'hasoffset'))) ft_warning('ft_checkdata option ''hasoffset'' has been removed and will be ignored'); end % determine the type of input data % this can be raw, freq, timelock, comp, spike, source, volume, dip israw = ft_datatype(data, 'raw'); isfreq = ft_datatype(data, 'freq'); istimelock = ft_datatype(data, 'timelock'); iscomp = ft_datatype(data, 'comp'); isspike = ft_datatype(data, 'spike'); isvolume = ft_datatype(data, 'volume'); issegmentation = ft_datatype(data, 'segmentation'); isparcellation = ft_datatype(data, 'parcellation'); issource = ft_datatype(data, 'source'); isdip = ft_datatype(data, 'dip'); ismvar = ft_datatype(data, 'mvar'); isfreqmvar = ft_datatype(data, 'freqmvar'); ischan = ft_datatype(data, 'chan'); % FIXME use the istrue function on ismeg and hasxxx options if ~isequal(feedback, 'no') if iscomp % it can be comp and raw/timelock/freq at the same time, therefore this has to go first nchan = size(data.topo,1); ncomp = size(data.topo,2); fprintf('the input is component data with %d components and %d original channels\n', ncomp, nchan); end if israw nchan = length(data.label); ntrial = length(data.trial); fprintf('the input is raw data with %d channels and %d trials\n', nchan, ntrial); elseif istimelock nchan = length(data.label); ntime = length(data.time); fprintf('the input is timelock data with %d channels and %d timebins\n', nchan, ntime); elseif isfreq if isfield(data, 'label') nchan = length(data.label); nfreq = length(data.freq); if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end fprintf('the input is freq data with %d channels, %d frequencybins and %s timebins\n', nchan, nfreq, ntime); elseif isfield(data, 'labelcmb') nchan = length(data.labelcmb); nfreq = length(data.freq); if isfield(data, 'time'), ntime = num2str(length(data.time)); else ntime = 'no'; end fprintf('the input is freq data with %d channel combinations, %d frequencybins and %s timebins\n', nchan, nfreq, ntime); else error('cannot infer freq dimensions'); end elseif isspike nchan = length(data.label); fprintf('the input is spike data with %d channels\n', nchan); elseif isvolume if issegmentation subtype = 'segmented volume'; else subtype = 'volume'; end fprintf('the input is %s data with dimensions [%d %d %d]\n', subtype, data.dim(1), data.dim(2), data.dim(3)); clear subtype elseif issource nsource = size(data.pos, 1); if isparcellation subtype = 'parcellated source'; else subtype = 'source'; end if isfield(data, 'dim') fprintf('the input is %s data with %d brainordinates on a [%d %d %d] grid\n', subtype, nsource, data.dim(1), data.dim(2), data.dim(3)); elseif isfield(data, 'tri') fprintf('the input is %s data with %d vertex positions and %d triangles\n', subtype, nsource, size(data.tri, 1)); else fprintf('the input is %s data with %d brainordinates\n', subtype, nsource); end clear subtype elseif isdip fprintf('the input is dipole data\n'); elseif ismvar fprintf('the input is mvar data\n'); elseif isfreqmvar fprintf('the input is freqmvar data\n'); elseif ischan nchan = length(data.label); if isfield(data, 'brainordinate') fprintf('the input is parcellated data with %d parcels\n', nchan); else fprintf('the input is chan data with %d channels\n', nchan); end end end % give feedback if issource && isvolume % it should be either one or the other: the choice here is to represent it as volume description since that is simpler to handle % the conversion is done by removing the grid positions data = rmfield(data, 'pos'); issource = false; end % the ft_datatype_XXX functions ensures the consistency of the XXX datatype % and provides a detailed description of the dataformat and its history if iscomp % this should go before israw/istimelock/isfreq data = ft_datatype_comp(data, 'hassampleinfo', hassampleinfo); elseif israw data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); elseif istimelock data = ft_datatype_timelock(data); elseif isfreq data = ft_datatype_freq(data); elseif isspike data = ft_datatype_spike(data); elseif issegmentation % this should go before isvolume data = ft_datatype_segmentation(data, 'segmentationstyle', segmentationstyle, 'hasbrain', hasbrain); elseif isvolume data = ft_datatype_volume(data); elseif isparcellation % this should go before issource data = ft_datatype_parcellation(data, 'parcellationstyle', parcellationstyle); elseif issource data = ft_datatype_source(data); elseif isdip data = ft_datatype_dip(data); elseif ismvar || isfreqmvar data = ft_datatype_mvar(data); end if ~isempty(dtype) if ~isa(dtype, 'cell') dtype = {dtype}; end okflag = 0; for i=1:length(dtype) % check that the data matches with one or more of the required ft_datatypes switch dtype{i} case 'raw+comp' okflag = okflag + (israw & iscomp); case 'freq+comp' okflag = okflag + (isfreq & iscomp); case 'timelock+comp' okflag = okflag + (istimelock & iscomp); case 'raw' okflag = okflag + (israw & ~iscomp); case 'freq' okflag = okflag + (isfreq & ~iscomp); case 'timelock' okflag = okflag + (istimelock & ~iscomp); case 'comp' okflag = okflag + (iscomp & ~(israw | istimelock | isfreq)); case 'spike' okflag = okflag + isspike; case 'volume' okflag = okflag + isvolume; case 'source' okflag = okflag + issource; case 'dip' okflag = okflag + isdip; case 'mvar' okflag = okflag + ismvar; case 'freqmvar' okflag = okflag + isfreqmvar; case 'chan' okflag = okflag + ischan; case 'segmentation' okflag = okflag + issegmentation; case 'parcellation' okflag = okflag + isparcellation; end % switch dtype end % for dtype % try to convert the data if needed for iCell = 1:length(dtype) if okflag % the requested datatype is specified in descending order of % preference (if there is a preference at all), so don't bother % checking the rest of the requested data types if we already % succeeded in converting break; end if isequal(dtype(iCell), {'parcellation'}) && issegmentation data = volume2source(data); % segmentation=volume, parcellation=source data = ft_datatype_parcellation(data); issegmentation = 0; isvolume = 0; isparcellation = 1; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'segmentation'}) && isparcellation data = source2volume(data); % segmentation=volume, parcellation=source data = ft_datatype_segmentation(data); isparcellation = 0; issource = 0; issegmentation = 1; isvolume = 1; okflag = 1; elseif isequal(dtype(iCell), {'source'}) && isvolume data = volume2source(data); data = ft_datatype_source(data); isvolume = 0; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'volume'}) && (ischan || istimelock || isfreq) data = parcellated2source(data); data = ft_datatype_volume(data); ischan = 0; isvolume = 1; okflag = 1; elseif isequal(dtype(iCell), {'source'}) && (ischan || istimelock || isfreq) data = parcellated2source(data); data = ft_datatype_source(data); ischan = 0; issource = 1; okflag = 1; elseif isequal(dtype(iCell), {'volume'}) && issource data = source2volume(data); data = ft_datatype_volume(data); isvolume = 1; issource = 0; okflag = 1; elseif isequal(dtype(iCell), {'raw+comp'}) && istimelock && iscomp data = timelock2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); istimelock = 0; iscomp = 1; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && issource data = source2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); issource = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && istimelock if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = timelock2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); istimelock = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'comp'}) && israw data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields data = ft_datatype_comp(data); israw = 0; iscomp = 1; okflag = 1; elseif isequal(dtype(iCell), {'comp'}) && istimelock data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields data = ft_datatype_comp(data); istimelock = 0; iscomp = 1; okflag = 1; elseif isequal(dtype(iCell), {'comp'}) && isfreq data = keepfields(data, {'label', 'topo', 'topolabel', 'unmixing', 'elec', 'grad', 'cfg'}); % these are the only relevant fields data = ft_datatype_comp(data); isfreq = 0; iscomp = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && israw if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = ft_datatype_raw(data); okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && istimelock if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = ft_datatype_timelock(data); okflag = 1; elseif isequal(dtype(iCell), {'freq'}) && isfreq if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = ft_datatype_freq(data); okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && israw if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = raw2timelock(data); data = ft_datatype_timelock(data); israw = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && isfreq if iscomp data = removefields(data, {'topo', 'topolabel', 'unmixing'}); % these fields are not desired iscomp = 0; end data = freq2raw(data); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); isfreq = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && ischan data = chan2timelock(data); data = timelock2raw(data); data = ft_datatype_raw(data); ischan = 0; israw = 1; okflag = 1; elseif isequal(dtype(iCell), {'timelock'}) && ischan data = chan2timelock(data); data = ft_datatype_timelock(data); ischan = 0; istimelock = 1; okflag = 1; elseif isequal(dtype(iCell), {'freq'}) && ischan data = chan2freq(data); data = ft_datatype_freq(data); ischan = 0; isfreq = 1; okflag = 1; elseif isequal(dtype(iCell), {'spike'}) && israw data = raw2spike(data); data = ft_datatype_spike(data); israw = 0; isspike = 1; okflag = 1; elseif isequal(dtype(iCell), {'raw'}) && isspike data = spike2raw(data,fsample); data = ft_datatype_raw(data, 'hassampleinfo', hassampleinfo); isspike = 0; israw = 1; okflag = 1; end end % for iCell if ~okflag % construct an error message if length(dtype)>1 str = sprintf('%s, ', dtype{1:(end-2)}); str = sprintf('%s%s or %s', str, dtype{end-1}, dtype{end}); else str = dtype{1}; end error('This function requires %s data as input.', str); end % if okflag end if ~isempty(dimord) if ~isa(dimord, 'cell') dimord = {dimord}; end if isfield(data, 'dimord') okflag = any(strcmp(data.dimord, dimord)); else okflag = 0; end if ~okflag % construct an error message if length(dimord)>1 str = sprintf('%s, ', dimord{1:(end-2)}); str = sprintf('%s%s or %s', str, dimord{end-1}, dimord{end}); else str = dimord{1}; end error('This function requires data with a dimord of %s.', str); end % if okflag end if ~isempty(stype) if ~isa(stype, 'cell') stype = {stype}; end if isfield(data, 'grad') || isfield(data, 'elec') if any(strcmp(ft_senstype(data), stype)) okflag = 1; elseif any(cellfun(@ft_senstype, repmat({data}, size(stype)), stype)) % this is required to detect more general types, such as "meg" or "ctf" rather than "ctf275" okflag = 1; else okflag = 0; end end if ~okflag % construct an error message if length(stype)>1 str = sprintf('%s, ', stype{1:(end-2)}); str = sprintf('%s%s or %s', str, stype{end-1}, stype{end}); else str = stype{1}; end error('This function requires %s data as input, but you are giving %s data.', str, ft_senstype(data)); end % if okflag end if ~isempty(ismeg) if isequal(ismeg, 'yes') okflag = isfield(data, 'grad'); elseif isequal(ismeg, 'no') okflag = ~isfield(data, 'grad'); end if ~okflag && isequal(ismeg, 'yes') error('This function requires MEG data with a ''grad'' field'); elseif ~okflag && isequal(ismeg, 'no') error('This function should not be given MEG data with a ''grad'' field'); end % if okflag end if ~isempty(inside) if strcmp(inside, 'index') warning('the indexed representation of inside/outside source locations is deprecated'); end % TODO absorb the fixinside function into this code data = fixinside(data, inside); okflag = isfield(data, 'inside'); if ~okflag % construct an error message error('This function requires data with an ''inside'' field.'); end % if okflag end %if isvolume % % ensure consistent dimensions of the volumetric data % % reshape each of the volumes that is found into a 3D array % param = parameterselection('all', data); % dim = data.dim; % for i=1:length(param) % tmp = getsubfield(data, param{i}); % tmp = reshape(tmp, dim); % data = setsubfield(data, param{i}, tmp); % end %end if istrue(hasunit) && ~isfield(data, 'unit') % calling convert_units with only the input data adds the units without converting data = ft_convert_units(data); end if istrue(hascoordsys) && ~isfield(data, 'coordsys') data = ft_determine_coordsys(data); end if issource || isvolume, % the following section is to make a dimord-consistent representation of % volume and source data, taking trials, time and frequency into account if isequal(hasdimord, 'yes') && (~isfield(data, 'dimord') || ~strcmp(data.dimord,sourcedimord)) % determine the size of the data if isfield(data, 'dimord'), dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('time', dimtok)), Ntime = length(data.time); else Ntime = 1; end if ~isempty(strmatch('freq', dimtok)), Nfreq = length(data.freq); else Nfreq = 1; end else Nfreq = 1; Ntime = 1; end %convert old style source representation into new style if isfield(data, 'avg') && isfield(data.avg, 'mom') && (isfield(data, 'freq') || isfield(data, 'frequency')) && strcmp(sourcedimord, 'rpt_pos'), %frequency domain source representation convert to single trial power Npos = size(data.pos,1); Nrpt = size(data.cumtapcnt,1); tmpmom = zeros(Npos, size(data.avg.mom{data.inside(1)},2)); tmpmom(data.inside,:) = cat(1,data.avg.mom{data.inside}); tmppow = zeros(Npos, Nrpt); tapcnt = [0;cumsum(data.cumtapcnt)]; for k = 1:Nrpt Ntap = tapcnt(k+1)-tapcnt(k); tmppow(data.inside,k) = sum(abs(tmpmom(data.inside,(tapcnt(k)+1):tapcnt(k+1))).^2,2)./Ntap; end data.pow = tmppow'; data = rmfield(data, 'avg'); if strcmp(inside, 'logical'), data = fixinside(data, 'logical'); data.inside = repmat(data.inside(:)',[Nrpt 1]); end elseif isfield(data, 'avg') && isfield(data.avg, 'mom') && (isfield(data, 'freq') || isfield(data, 'frequency')) && strcmp(sourcedimord, 'rpttap_pos'), %frequency domain source representation convert to single taper fourier coefficients Npos = size(data.pos,1); Nrpt = sum(data.cumtapcnt); data.fourierspctrm = complex(zeros(Nrpt, Npos), zeros(Nrpt, Npos)); data.fourierspctrm(:, data.inside) = transpose(cat(1, data.avg.mom{data.inside})); data = rmfield(data, 'avg'); elseif isfield(data, 'avg') && isfield(data.avg, 'mom') && isfield(data, 'time') && strcmp(sourcedimord, 'pos_time'), Npos = size(data.pos,1); Nrpt = 1; tmpmom = zeros(Npos, size(data.avg.mom{data.inside(1)},2)); tmpmom(data.inside,:) = cat(1,data.avg.mom{data.inside}); data.mom = tmpmom; if isfield(data.avg, 'noise'), tmpnoise = data.avg.noise(:); data.noise = tmpnoise(:,ones(1,size(tmpmom,2))); end data = rmfield(data, 'avg'); Ntime = length(data.time); elseif isfield(data, 'trial') && isfield(data.trial(1), 'mom') && isfield(data, 'time') && strcmp(sourcedimord, 'rpt_pos_time'), Npos = size(data.pos,1); Nrpt = length(data.trial); Ntime = length(data.time); tmpmom = zeros(Nrpt, Npos, Ntime); for k = 1:Nrpt tmpmom(k,data.inside,:) = cat(1,data.trial(k).mom{data.inside}); end data = rmfield(data, 'trial'); data.mom = tmpmom; elseif isfield(data, 'trial') && isstruct(data.trial) Nrpt = length(data.trial); else Nrpt = 1; end % start with an initial specification of the dimord and dim if (~isfield(data, 'dim') || ~isfield(data, 'dimord')) if issource % at least it should have a Nx3 pos data.dim = size(data.pos, 1); data.dimord = 'pos'; elseif isvolume % at least it should have a 1x3 dim data.dim = data.dim; data.dimord = 'dim1_dim2_dim3'; end end % add the additional dimensions if Nfreq>1 data.dimord = [data.dimord '_freq']; data.dim = [data.dim Nfreq]; end if Ntime>1 data.dimord = [data.dimord '_time']; data.dim = [data.dim Ntime]; end if Nrpt>1 && strcmp(sourcedimord, 'rpt_pos'), data.dimord = ['rpt_' data.dimord]; data.dim = [Nrpt data.dim ]; elseif Nrpt>1 && strcmp(sourcedimord, 'rpttap_pos'), data.dimord = ['rpttap_' data.dimord]; data.dim = [Nrpt data.dim ]; end % the nested trial structure is not compatible with dimord if isfield(data, 'trial') && isstruct(data.trial) param = fieldnames(data.trial); for i=1:length(param) if isa(data.trial(1).(param{i}), 'cell') concat = cell(data.dim(1), prod(data.dim(2:end))); else concat = zeros(data.dim(1), prod(data.dim(2:end))); end for j=1:length(data.trial) tmp = data.trial(j).(param{i}); concat(j,:) = tmp(:); end % for each trial data.trial = rmfield(data.trial, param{i}); data.(param{i}) = reshape(concat, data.dim); end % for each param data = rmfield(data, 'trial'); end end % ensure consistent dimensions of the source reconstructed data % reshape each of the source reconstructed parameters if issource && isfield(data, 'dim') && prod(data.dim)==size(data.pos,1) dim = [prod(data.dim) 1]; %elseif issource && any(~cellfun('isempty',strfind(fieldnames(data), 'dimord'))) % dim = [size(data.pos,1) 1]; %sparsely represented source structure new style elseif isfield(data, 'dim'), dim = [data.dim 1]; elseif issource && ~isfield(data, 'dimord') dim = [size(data.pos,1) 1]; elseif isfield(data, 'dimord'), %HACK dimtok = tokenize(data.dimord, '_'); for i=1:length(dimtok) if strcmp(dimtok(i), 'pos') dim(1,i) = size(data.pos,1); elseif strcmp(dimtok(i), '{pos}') dim(1,i) = size(data.pos,1); elseif issubfield(data,dimtok{i}) dim(1,i) = length(getsubfield(data,dimtok{i})); else dim(1,i) = nan; % this applies to rpt, ori end end try % the following only works for rpt, not for ori i = find(isnan(dim)); if ~isempty(i) n = fieldnames(data); for ii=1:length(n) numels(1,ii) = numel(getfield(data,n{ii})); end nrpt = numels./prod(dim(setdiff(1:length(dim),i))); nrpt = nrpt(nrpt==round(nrpt)); dim(i) = max(nrpt); end end % try if numel(dim)==1, dim(1,2) = 1; end; end % these fields should not be reshaped exclude = {'cfg' 'fwhm' 'leadfield' 'q' 'rough' 'pos'}; if ~isempty(inside) && ~strcmp(inside, 'logical') % also exclude the inside/outside from being reshaped exclude = cat(2, exclude, {'inside' 'outside'}); end param = setdiff(parameterselection('all', data), exclude); for i=1:length(param) if any(param{i}=='.') % the parameter is nested in a substructure, which can have multiple elements (e.g. source.trial(1).pow, source.trial(2).pow, ...) % loop over the substructure array and reshape for every element tok = tokenize(param{i}, '.'); sub1 = tok{1}; % i.e. this would be 'trial' sub2 = tok{2}; % i.e. this would be 'pow' tmp1 = getfield(data, sub1); for j=1:numel(tmp1) tmp2 = getfield(tmp1(j), sub2); if prod(dim)==numel(tmp2) tmp2 = reshape(tmp2, dim); end tmp1(j) = setfield(tmp1(j), sub2, tmp2); end data = setfield(data, sub1, tmp1); else tmp = getfield(data, param{i}); if prod(dim)==numel(tmp) tmp = reshape(tmp, dim); end data = setfield(data, param{i}, tmp); end end end if isequal(hastrials, 'yes') okflag = isfield(data, 'trial'); if ~okflag && isfield(data, 'dimord') % instead look in the dimord for rpt or subj okflag = ~isempty(strfind(data.dimord, 'rpt')) || ... ~isempty(strfind(data.dimord, 'rpttap')) || ... ~isempty(strfind(data.dimord, 'subj')); end if ~okflag error('This function requires data with a ''trial'' field'); end % if okflag end if isequal(hasdim, 'yes') && ~isfield(data, 'dim') data.dim = pos2dim(data.pos); elseif isequal(hasdim, 'no') && isfield(data, 'dim') data = rmfield(data, 'dim'); end % if hasdim if isequal(hascumtapcnt, 'yes') && ~isfield(data, 'cumtapcnt') error('This function requires data with a ''cumtapcnt'' field'); elseif isequal(hascumtapcnt, 'no') && isfield(data, 'cumtapcnt') data = rmfield(data, 'cumtapcnt'); end % if hascumtapcnt if isequal(hasdof, 'yes') && ~isfield(data, 'hasdof') error('This function requires data with a ''dof'' field'); elseif isequal(hasdof, 'no') && isfield(data, 'hasdof') data = rmfield(data, 'cumtapcnt'); end % if hasdof if ~isempty(cmbrepresentation) if istimelock data = fixcov(data, cmbrepresentation); elseif isfreq data = fixcsd(data, cmbrepresentation, channelcmb); elseif isfreqmvar data = fixcsd(data, cmbrepresentation, channelcmb); else error('This function requires data with a covariance, coherence or cross-spectrum'); end end % cmbrepresentation if isfield(data, 'grad') % ensure that the gradiometer structure is up to date data.grad = ft_datatype_sens(data.grad); end if isfield(data, 'elec') % ensure that the electrode structure is up to date data.elec = ft_datatype_sens(data.elec); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % represent the covariance matrix in a particular manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = fixcov(data, desired) if any(isfield(data, {'cov', 'corr'})) if ~isfield(data, 'labelcmb') current = 'full'; else current = 'sparse'; end else error('Could not determine the current representation of the covariance matrix'); end if isequal(current, desired) % nothing to do elseif strcmp(current, 'full') && strcmp(desired, 'sparse') % FIXME should be implemented error('not yet implemented'); elseif strcmp(current, 'sparse') && strcmp(desired, 'full') % FIXME should be implemented error('not yet implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % represent the cross-spectral density matrix in a particular manner %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = fixcsd(data, desired, channelcmb) % FIXCSD converts univariate frequency domain data (fourierspctrm) into a bivariate % representation (crsspctrm), or changes the representation of bivariate frequency % domain data (sparse/full/sparsewithpow, sparsewithpow only works for crsspctrm or % fourierspctrm) % Copyright (C) 2010, Jan-Mathijs Schoffelen, Robert Oostenveld if isfield(data, 'crsspctrm') && isfield(data, 'powspctrm') current = 'sparsewithpow'; elseif isfield(data, 'powspctrm') current = 'sparsewithpow'; elseif isfield(data, 'fourierspctrm') && ~isfield(data, 'labelcmb') current = 'fourier'; elseif ~isfield(data, 'labelcmb') current = 'full'; elseif isfield(data, 'labelcmb') current = 'sparse'; else error('Could not determine the current representation of the %s matrix', param); end % first go from univariate fourier to the required bivariate representation if isequal(current, desired) % nothing to do elseif strcmp(current, 'fourier') && strcmp(desired, 'sparsewithpow') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt,1); flag = 0; else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1)); flag = nrpt==1; % needed to truncate the singleton dimension upfront %create auto-spectra nchan = length(data.label); if fastflag % all trials have the same amount of tapers powspctrm = zeros(nrpt,nchan,nfrq,ntim); ntap = data.cumtapcnt(1); for p = 1:ntap powspctrm = powspctrm + abs(data.fourierspctrm(p:ntap:end,:,:,:,:)).^2; end powspctrm = powspctrm./ntap; else % different amount of tapers powspctrm = zeros(nrpt,nchan,nfrq,ntim)+i.*zeros(nrpt,nchan,nfrq,ntim); sumtapcnt = [0;cumsum(data.cumtapcnt(:))]; for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat = data.fourierspctrm(indx,:,:,:); powspctrm(p,:,:,:) = (sum(tmpdat.*conj(tmpdat),1))./data.cumtapcnt(p); end end %create cross-spectra if ~isempty(channelcmb), ncmb = size(channelcmb,1); cmbindx = zeros(ncmb,2); labelcmb = cell(ncmb,2); for k = 1:ncmb ch1 = find(strcmp(data.label, channelcmb(k,1))); ch2 = find(strcmp(data.label, channelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(k,:) = [ch1 ch2]; labelcmb(k,:) = data.label([ch1 ch2])'; end end crsspctrm = zeros(nrpt,ncmb,nfrq,ntim)+i.*zeros(nrpt,ncmb,nfrq,ntim); if fastflag for p = 1:ntap tmpdat1 = data.fourierspctrm(p:ntap:end,cmbindx(:,1),:,:,:); tmpdat2 = data.fourierspctrm(p:ntap:end,cmbindx(:,2),:,:,:); crsspctrm = crsspctrm + tmpdat1.*conj(tmpdat2); end crsspctrm = crsspctrm./ntap; else for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:); tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:); crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p); end end data.crsspctrm = crsspctrm; data.labelcmb = labelcmb; end data.powspctrm = powspctrm; data = rmfield(data, 'fourierspctrm'); if ntim>1, data.dimord = 'chan_freq_time'; else data.dimord = 'chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end if flag, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, [siz(2:end) 1]); end elseif strcmp(current, 'fourier') && strcmp(desired, 'sparse') if isempty(channelcmb), error('no channel combinations are specified'); end dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt,1); flag = 0; else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end flag = nrpt==1; % flag needed to squeeze first dimension if singleton ncmb = size(channelcmb,1); cmbindx = zeros(ncmb,2); labelcmb = cell(ncmb,2); for k = 1:ncmb ch1 = find(strcmp(data.label, channelcmb(k,1))); ch2 = find(strcmp(data.label, channelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(k,:) = [ch1 ch2]; labelcmb(k,:) = data.label([ch1 ch2])'; end end sumtapcnt = [0;cumsum(data.cumtapcnt(:))]; fastflag = all(data.cumtapcnt(:)==data.cumtapcnt(1)); if fastflag && nrpt>1 ntap = data.cumtapcnt(1); % compute running sum across tapers siz = [size(data.fourierspctrm) 1]; for p = 1:ntap indx = p:ntap:nrpt*ntap; if p==1. tmpc = zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)) + ... 1i.*zeros(numel(indx), size(cmbindx,1), siz(3), siz(4)); end for k = 1:size(cmbindx,1) tmpc(:,k,:,:) = data.fourierspctrm(indx,cmbindx(k,1),:,:).* ... conj(data.fourierspctrm(indx,cmbindx(k,2),:,:)); end if p==1 crsspctrm = tmpc; else crsspctrm = tmpc + crsspctrm; end end crsspctrm = crsspctrm./ntap; else crsspctrm = zeros(nrpt, ncmb, nfrq, ntim); for p = 1:nrpt indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat1 = data.fourierspctrm(indx,cmbindx(:,1),:,:); tmpdat2 = data.fourierspctrm(indx,cmbindx(:,2),:,:); crsspctrm(p,:,:,:) = (sum(tmpdat1.*conj(tmpdat2),1))./data.cumtapcnt(p); end end data.crsspctrm = crsspctrm; data.labelcmb = labelcmb; data = rmfield(data, 'fourierspctrm'); data = rmfield(data, 'label'); if ntim>1, data.dimord = 'chancmb_freq_time'; else data.dimord = 'chancmb_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end if flag, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, [siz(2:end) 1]); end elseif strcmp(current, 'fourier') && strcmp(desired, 'full') % this is how it is currently and the desired functionality of prepare_freq_matrices dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpttap', dimtok)), nrpt = size(data.cumtapcnt, 1); flag = 0; else nrpt = 1; flag = 1; end if ~isempty(strmatch('rpttap',dimtok)), nrpt=size(data.cumtapcnt, 1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=length(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=length(data.time); else ntim = 1; end if any(data.cumtapcnt(1,:) ~= data.cumtapcnt(1,1)), error('this only works when all frequencies have the same number of tapers'); end nchan = length(data.label); crsspctrm = zeros(nrpt,nchan,nchan,nfrq,ntim); sumtapcnt = [0;cumsum(data.cumtapcnt(:,1))]; for k = 1:ntim for m = 1:nfrq for p = 1:nrpt %FIXME speed this up in the case that all trials have equal number of tapers indx = (sumtapcnt(p)+1):sumtapcnt(p+1); tmpdat = transpose(data.fourierspctrm(indx,:,m,k)); crsspctrm(p,:,:,m,k) = (tmpdat*tmpdat')./data.cumtapcnt(p); clear tmpdat; end end end data.crsspctrm = crsspctrm; data = rmfield(data, 'fourierspctrm'); if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end % remove first singleton dimension if flag || nrpt==1, siz = size(data.crsspctrm); data.crsspctrm = reshape(data.crsspctrm, siz(2:end)); end elseif strcmp(current, 'fourier') && strcmp(desired, 'fullfast'), dimtok = tokenize(data.dimord, '_'); nrpt = size(data.fourierspctrm, 1); nchn = numel(data.label); nfrq = numel(data.freq); if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end data.fourierspctrm = reshape(data.fourierspctrm, [nrpt nchn nfrq*ntim]); data.fourierspctrm(~isfinite(data.fourierspctrm)) = 0; crsspctrm = complex(zeros(nchn,nchn,nfrq*ntim)); for k = 1:nfrq*ntim tmp = transpose(data.fourierspctrm(:,:,k)); n = sum(tmp~=0,2); crsspctrm(:,:,k) = tmp*tmp'./n(1); end data = rmfield(data, 'fourierspctrm'); data.crsspctrm = reshape(crsspctrm, [nchn nchn nfrq ntim]); if isfield(data, 'time'), data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if isfield(data, 'trialinfo'), data = rmfield(data, 'trialinfo'); end; if isfield(data, 'sampleinfo'), data = rmfield(data, 'sampleinfo'); end; if isfield(data, 'cumsumcnt'), data = rmfield(data, 'cumsumcnt'); end; if isfield(data, 'cumtapcnt'), data = rmfield(data, 'cumtapcnt'); end; end % convert to the requested bivariate representation % from one bivariate representation to another if isequal(current, desired) % nothing to do elseif (strcmp(current, 'full') && strcmp(desired, 'fourier')) || ... (strcmp(current, 'sparse') && strcmp(desired, 'fourier')) || ... (strcmp(current, 'sparsewithpow') && strcmp(desired, 'fourier')) % this is not possible error('converting the cross-spectrum into a Fourier representation is not possible'); elseif strcmp(current, 'full') && strcmp(desired, 'sparsewithpow') error('not yet implemented'); elseif strcmp(current, 'sparse') && strcmp(desired, 'sparsewithpow') % convert back to crsspctrm/powspctrm representation: useful for plotting functions etc indx = labelcmb2indx(data.labelcmb); autoindx = indx(indx(:,1)==indx(:,2), 1); cmbindx = setdiff([1:size(indx,1)]', autoindx); if strcmp(data.dimord(1:3), 'rpt') data.powspctrm = data.crsspctrm(:, autoindx, :, :); data.crsspctrm = data.crsspctrm(:, cmbindx, :, :); else data.powspctrm = data.crsspctrm(autoindx, :, :); data.crsspctrm = data.crsspctrm(cmbindx, :, :); end data.label = data.labelcmb(autoindx,1); data.labelcmb = data.labelcmb(cmbindx, :); if isempty(cmbindx) data = rmfield(data, 'crsspctrm'); data = rmfield(data, 'labelcmb'); end elseif strcmp(current, 'full') && strcmp(desired, 'sparse') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end nchan = length(data.label); ncmb = nchan*nchan; labelcmb = cell(ncmb, 2); cmbindx = zeros(nchan, nchan); k = 1; for j=1:nchan for m=1:nchan labelcmb{k, 1} = data.label{m}; labelcmb{k, 2} = data.label{j}; cmbindx(m,j) = k; k = k+1; end end % reshape all possible fields fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt>1, data.(fn{ii}) = reshape(data.(fn{ii}), nrpt, ncmb, nfrq, ntim); else data.(fn{ii}) = reshape(data.(fn{ii}), ncmb, nfrq, ntim); end end end % remove obsolete fields data = rmfield(data, 'label'); try data = rmfield(data, 'dof'); end % replace updated fields data.labelcmb = labelcmb; if ntim>1, data.dimord = 'chancmb_freq_time'; else data.dimord = 'chancmb_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end elseif strcmp(current, 'sparsewithpow') && strcmp(desired, 'sparse') % this representation for sparse data contains autospectra as e.g. {'A' 'A'} in labelcmb if isfield(data, 'crsspctrm'), dimtok = tokenize(data.dimord, '_'); catdim = match_str(dimtok, {'chan' 'chancmb'}); data.crsspctrm = cat(catdim, data.powspctrm, data.crsspctrm); data.labelcmb = [data.label(:) data.label(:); data.labelcmb]; data = rmfield(data, 'powspctrm'); else data.crsspctrm = data.powspctrm; data.labelcmb = [data.label(:) data.label(:)]; data = rmfield(data, 'powspctrm'); end data = rmfield(data, 'label'); elseif strcmp(current, 'sparse') && strcmp(desired, 'full') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end if ~isfield(data, 'label') % ensure that the bivariate spectral factorization results can be % processed. FIXME this is experimental and will not work if the user % did something weird before for k = 1:numel(data.labelcmb) tmp = tokenize(data.labelcmb{k}, '['); data.labelcmb{k} = tmp{1}; end data.label = unique(data.labelcmb(:)); end nchan = length(data.label); ncmb = size(data.labelcmb,1); cmbindx = zeros(nchan,nchan); for k = 1:size(data.labelcmb,1) ch1 = find(strcmp(data.label, data.labelcmb(k,1))); ch2 = find(strcmp(data.label, data.labelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(ch1,ch2) = k; end end complete = all(cmbindx(:)~=0); % remove obsolete fields try data = rmfield(data, 'powspctrm'); end try data = rmfield(data, 'labelcmb'); end try data = rmfield(data, 'dof'); end fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt==1, data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]); end tmpall = nan(nrpt,nchan,nchan,nfrq,ntim); for j = 1:nrpt for k = 1:ntim for m = 1:nfrq tmpdat = nan(nchan,nchan); indx = find(cmbindx); if ~complete % this realizes the missing combinations to be represented as the % conjugate of the corresponding combination across the diagonal tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]); tmpdat = ctranspose(tmpdat); end tmpdat(indx) = reshape(data.(fn{ii})(j,cmbindx(indx),m,k),[numel(indx) 1]); tmpall(j,:,:,m,k) = tmpdat; end % for m end % for k end % for j % replace the data in the old representation with the new representation if nrpt>1, data.(fn{ii}) = tmpall; else data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]); end end % if numel end % for ii if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end if nrpt>1, data.dimord = ['rpt_',data.dimord]; end elseif strcmp(current, 'sparse') && strcmp(desired, 'fullfast') dimtok = tokenize(data.dimord, '_'); if ~isempty(strmatch('rpt', dimtok)), nrpt=size(data.cumtapcnt,1); else nrpt = 1; end if ~isempty(strmatch('freq', dimtok)), nfrq=numel(data.freq); else nfrq = 1; end if ~isempty(strmatch('time', dimtok)), ntim=numel(data.time); else ntim = 1; end if ~isfield(data, 'label') data.label = unique(data.labelcmb(:)); end nchan = length(data.label); ncmb = size(data.labelcmb,1); cmbindx = zeros(nchan,nchan); for k = 1:size(data.labelcmb,1) ch1 = find(strcmp(data.label, data.labelcmb(k,1))); ch2 = find(strcmp(data.label, data.labelcmb(k,2))); if ~isempty(ch1) && ~isempty(ch2), cmbindx(ch1,ch2) = k; end end complete = all(cmbindx(:)~=0); fn = fieldnames(data); for ii=1:numel(fn) if numel(data.(fn{ii})) == nrpt*ncmb*nfrq*ntim; if nrpt==1, data.(fn{ii}) = reshape(data.(fn{ii}), [nrpt ncmb nfrq ntim]); end tmpall = nan(nchan,nchan,nfrq,ntim); for k = 1:ntim for m = 1:nfrq tmpdat = nan(nchan,nchan); indx = find(cmbindx); if ~complete % this realizes the missing combinations to be represented as the % conjugate of the corresponding combination across the diagonal tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]); tmpdat = ctranspose(tmpdat); end tmpdat(indx) = reshape(nanmean(data.(fn{ii})(:,cmbindx(indx),m,k)),[numel(indx) 1]); tmpall(:,:,m,k) = tmpdat; end % for m end % for k % replace the data in the old representation with the new representation if nrpt>1, data.(fn{ii}) = tmpall; else data.(fn{ii}) = reshape(tmpall, [nchan nchan nfrq ntim]); end end % if numel end % for ii % remove obsolete fields try data = rmfield(data, 'powspctrm'); end try data = rmfield(data, 'labelcmb'); end try data = rmfield(data, 'dof'); end if ntim>1, data.dimord = 'chan_chan_freq_time'; else data.dimord = 'chan_chan_freq'; end elseif strcmp(current, 'sparsewithpow') && any(strcmp(desired, {'full', 'fullfast'})) % this is how is currently done in prepare_freq_matrices data = ft_checkdata(data, 'cmbrepresentation', 'sparse'); data = ft_checkdata(data, 'cmbrepresentation', 'full'); end % convert from one to another bivariate representation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert to new source representation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [output] = fixsource(input, varargin) % FIXME this should be merged into ft_datatype_source % FIXSOURCE converts old style source structures into new style source structures and the % other way around % % Use as: % fixsource(input, type) % where input is a source structure, % % Typically, old style source structures contain % avg.XXX or trial.XXX fields % % The new style source structure contains: % source.pos % source.dim (optional, if the list of positions describes a 3D volume % source.XXX the old style subfields in avg/trial % source.XXXdimord string how to interpret the respective XXX field: % e.g. source.leadfield = cell(1,Npos), source.leadfielddimord = '{pos}_chan_ori' % source.mom = cell(1,Npos), source.momdimord = '{pos}_ori_rpttap' type = ft_getopt(varargin, 'type'); haspow = ft_getopt(varargin, 'haspow'); if isempty(type), type = 'old'; end if isempty(haspow), haspow = 'no'; end fnames = fieldnames(input); tmp = cell2mat(strfind(fnames, 'dimord')); % get dimord like fields if isfield(input, 'inside') && islogical(input.inside) % the following code expects an indexed representation input = fixinside(input, 'index'); end if any(tmp>1) current = 'new'; elseif any(tmp==1) % don't know what to do yet data is JM's own invention current = 'old'; else current = 'old'; end if strcmp(current, type), % do nothing output = input; % return elseif strcmp(current, 'old') && strcmp(type, 'new'), % go from old to new if isfield(input, 'avg'), stuff = getfield(input, 'avg'); output = rmfield(input, 'avg'); elseif isfield(input, 'trial'), stuff = getfield(input, 'trial'); output = rmfield(input, 'trial'); else % this could occur later in the pipeline, e.g. when doing group statistics using individual subject descriptive statistics % warning('the input does not contain an avg or trial field'); stuff = struct; % empty structure output = input; end %------------------------------------------------- %remove and rename the specified fields if present removefields = {'xgrid';'ygrid';'zgrid';'method'}; renamefields = {'frequency' 'freq'; 'csdlabel' 'orilabel'}; fnames = fieldnames(output); for k = 1:numel(fnames) ix = strmatch(fnames{k}, removefields); if ~isempty(ix), output = rmfield(output, fnames{k}); end ix = find(strcmp(fnames{k}, renamefields(:,1))); if ~isempty(ix), output = setfield(output, renamefields{ix,2}, ... getfield(output, renamefields{ix,1})); output = rmfield(output, fnames{k}); end end %---------------------------------------------------------------------- %put the stuff originally in avg or trial one level up in the structure fnames = fieldnames(stuff(1)); npos = size(input.pos,1); nrpt = numel(stuff); for k = 1:numel(fnames) if nrpt>1, %multiple trials %(or subjects FIXME not yet implemented, nor tested) tmp = getfield(stuff(1), fnames{k}); siz = size(tmp); if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom') %pcc based mom is orixrpttap %tranpose to keep manageable for kk = 1:numel(input.inside) indx = input.inside(kk); tmp{indx} = permute(tmp{indx}, [2 1 3]); end nrpttap = sum(input.cumtapcnt); sizvox = [size(tmp{input.inside(1)}) 1]; sizvox = [nrpttap sizvox(2:end)]; elseif strcmp(fnames{k}, 'mom'), %this is then probably not a frequency based mom nrpttap = numel(stuff); sizvox = [size(tmp{input.inside(1)}) 1]; sizvox = [nrpttap sizvox]; elseif iscell(tmp) nrpttap = numel(stuff); sizvox = [size(tmp{input.inside(1)}) 1]; sizvox = [nrpttap sizvox]; end if siz(1) ~= npos && siz(2) ==npos, tmp = transpose(tmp); end if iscell(tmp) %allocate memory for cell-array tmpall = cell(npos,1); for n = 1:numel(input.inside) tmpall{input.inside(n)} = zeros(sizvox); end else %allocate memory for matrix tmpall = zeros([npos nrpt siz(2:end)]); end cnt = 0; for m = 1:nrpt tmp = getfield(stuff(m), fnames{k}); siz = size(tmp); if siz(1) ~= npos && siz(2) ==npos, tmp = transpose(tmp); end if ~iscell(tmp), tmpall(:,m,:,:,:) = tmp; else for n = 1:numel(input.inside) indx = input.inside(n); tmpdat = tmp{indx}; if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom'), if n==1, siz1 = size(tmpdat,2); end else if n==1, siz1 = 1; end end tmpall{indx}(cnt+[1:siz1],:,:,:,:) = tmpdat; if n==numel(input.inside), cnt = cnt + siz1; end end end end output = setfield(output, fnames{k}, tmpall); newdimord = createdimord(output, fnames{k}, 1); if ~isempty(newdimord) output = setfield(output, [fnames{k},'dimord'], newdimord); end else tmp = getfield(stuff, fnames{k}); siz = size(tmp); if isfield(input, 'cumtapcnt') && strcmp(fnames{k}, 'mom') %pcc based mom is ori*rpttap %tranpose to keep manageable for kk = 1:numel(input.inside) indx = input.inside(kk); tmp{indx} = permute(tmp{indx}, [2 1 3]); end end if siz(1) ~= npos && siz(2) ==npos, tmp = transpose(tmp); end output = setfield(output, fnames{k}, tmp); newdimord = createdimord(output, fnames{k}); if ~isempty(newdimord) output = setfield(output, [fnames{k},'dimord'], newdimord); end end end if isfield(output, 'csdlabel') output = setfield(output, 'orilabel', getfield(output, 'csdlabel')); output = rmfield(output, 'csdlabel'); end if isfield(output, 'leadfield') % add dimord to leadfield as well. since the leadfield is not in % the original .avg or .trial field it has not yet been taken care of output.leadfielddimord = createdimord(output, 'leadfield'); end if isfield(output, 'ori') % convert cell-array ori into matrix ori = nan(3,npos); if ~islogical(output.inside) try ori(:,output.inside) = cat(2, output.ori{output.inside}); catch %when oris are in wrong orientation (row rather than column) for k = 1:numel(output.inside) ori(:,output.inside(k)) = output.ori{output.inside(k)}'; end end else try ori(:,find(output.inside)) = cat(2, output.ori{find(output.inside)}); catch tmpinside = find(output.inside); for k = 1:numel(tmpinside) ouri(:,tmpinside(k)) = output.ori{tmpinside(k)}'; end end end output.ori = ori; end current = 'new'; elseif strcmp(current, 'new') && strcmp(type, 'old') %go from new to old error('not implemented yet'); end if strcmp(current, 'new') && strcmp(haspow, 'yes'), %---------------------------------------------- %convert mom into pow if requested and possible convert = 0; if isfield(output, 'mom') && size(output.mom{output.inside(1)},2)==1, convert = 1; else warning('conversion from mom to pow is not possible, either because there is no mom in the data, or because the dimension of mom>1. in that case call ft_sourcedescriptives first with cfg.projectmom'); end if isfield(output, 'cumtapcnt') convert = 1 & convert; else warning('conversion from mom to pow will not be done, because cumtapcnt is missing'); end if convert, npos = size(output.pos,1); nrpt = size(output.cumtapcnt,1); tmpmom = cat(2,output.mom{output.inside}); tmppow = zeros(npos, nrpt); tapcnt = [0;cumsum(output.cumtapcnt(:))]; for k = 1:nrpt ntap = tapcnt(k+1)-tapcnt(k); tmppow(output.inside,k) = sum(abs(tmpmom((tapcnt(k)+1):tapcnt(k+1),:)).^2,1)./ntap; end output.pow = tmppow; output.powdimord = ['pos_rpt_freq']; end elseif strcmp(current, 'old') && strcmp(haspow, 'yes') warning('construction of single trial power estimates is not implemented here using old style source representation'); end %------------------------------------------------------- function [dimord] = createdimord(output, fname, rptflag) if nargin==2, rptflag = 0; end tmp = output.(fname); dimord = ''; dimnum = 1; hasori = isfield(output, 'ori'); %if not, this is probably singleton and not relevant at the end if iscell(tmp) && (size(output.pos,1)==size(tmp,dimnum) || size(output.pos,1)==size(tmp,2)) dimord = [dimord,'{pos}']; dimnum = dimnum + 1; elseif ~iscell(tmp) && size(output.pos,1)==size(tmp,dimnum) dimord = [dimord,'pos']; dimnum = dimnum + 1; end if isfield(output, 'inside') if islogical(output.inside) firstinside = find(output.inside, 1); else firstinside = output.inside(1); end end switch fname case 'cov' if hasori, dimord = [dimord,'_ori_ori']; end; case 'csd' if hasori, dimord = [dimord,'_ori_ori']; end; case 'csdlabel' dimord = dimord; case 'filter' dimord = [dimord,'_ori_chan']; case 'leadfield' dimord = [dimord,'_chan_ori']; case 'mom' if isfield(output, 'cumtapcnt') && sum(output.cumtapcnt)==size(tmp{firstinside},1) if hasori, dimord = [dimord,'_rpttap_ori']; else dimord = [dimord,'_rpttap']; end elseif isfield(output, 'time') && numel(output.time)>1 if rptflag, dimord = [dimord,'_rpt']; dimnum = dimnum + 1; end if numel(output.time)==size(tmp{firstinside},dimnum) dimord = [dimord,'_ori_time']; end end if isfield(output, 'freq') && numel(output.freq)>1 dimord = [dimord,'_freq']; end case 'nai' if isfield(output, 'freq') && numel(output.freq)==size(tmp,dimnum) dimord = [dimord,'_freq']; end case 'noise' if isfield(output, 'freq') && numel(output.freq)==size(tmp,dimnum) dimord = [dimord,'_freq']; end case 'noisecsd' dimord = [dimord,'_ori_ori']; case 'noisecov' dimord = [dimord,'_ori_ori']; case 'ori' dimord = ''; case {'pow' 'dspm'} if isfield(output, 'cumtapcnt') && size(output.cumtapcnt,1)==size(tmp,dimnum) dimord = [dimord,'_rpt']; dimnum = dimnum + 1; end if isfield(output, 'freq') && numel(output.freq)>1 && numel(output.freq)==size(tmp,dimnum) dimord = [dimord,'_freq']; dimnum = dimnum+1; end if isfield(output, 'time') && numel(output.time)>1 && numel(output.time)==size(tmp,dimnum) dimord = [dimord,'_time']; dimnum = dimnum+1; end otherwise warning('skipping unknown fieldname %s', fname); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function source = parcellated2source(data) if ~isfield(data, 'brainordinate') error('projecting parcellated data onto the full brain model geometry requires the specification of brainordinates'); end % the main structure contains the functional data on the parcels % the brainordinate sub-structure contains the original geometrical model source = data.brainordinate; data = rmfield(data, 'brainordinate'); if isfield(data, 'cfg') source.cfg = data.cfg; end fn = fieldnames(data); fn = setdiff(fn, {'label', 'time', 'freq', 'hdr', 'cfg', 'grad', 'elec', 'dimord', 'unit'}); % remove irrelevant fields fn(~cellfun(@isempty, regexp(fn, 'dimord$'))) = []; % remove irrelevant (dimord) fields sel = false(size(fn)); for i=1:numel(fn) try sel(i) = ismember(getdimord(data, fn{i}), {'chan', 'chan_time', 'chan_freq', 'chan_freq_time', 'chan_chan'}); end end parameter = fn(sel); fn = fieldnames(source); sel = false(size(fn)); for i=1:numel(fn) tmp = source.(fn{i}); sel(i) = iscell(tmp) && isequal(tmp(:), data.label(:)); end parcelparam = fn(sel); if numel(parcelparam)~=1 error('cannot determine which parcellation to use'); else parcelparam = parcelparam{1}(1:(end-5)); % minus the 'label' end for i=1:numel(parameter) source.(parameter{i}) = unparcellate(data, source, parameter{i}, parcelparam); end % copy over fields (these are necessary for visualising the data in ft_sourceplot) source = copyfields(data, source, {'time', 'freq'}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = volume2source(data) if isfield(data, 'dimord') % it is a modern source description else % it is an old-fashioned source description xgrid = 1:data.dim(1); ygrid = 1:data.dim(2); zgrid = 1:data.dim(3); [x y z] = ndgrid(xgrid, ygrid, zgrid); data.pos = ft_warp_apply(data.transform, [x(:) y(:) z(:)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = source2volume(data) if isfield(data, 'dimord') % it is a modern source description %this part depends on the assumption that the list of positions is describing a full 3D volume in %an ordered way which allows for the extraction of a transformation matrix %i.e. slice by slice try if isfield(data, 'dim'), data.dim = pos2dim(data.pos, data.dim); else data.dim = pos2dim(data); end catch end end if isfield(data, 'dim') && length(data.dim)>=3, data.transform = pos2transform(data.pos, data.dim); end % remove the unwanted fields data = removefields(data, {'pos', 'xgrid', 'ygrid', 'zgrid', 'tri', 'tet', 'hex'}); % make inside a volume data = fixinside(data, 'logical'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = freq2raw(freq) if isfield(freq, 'powspctrm') param = 'powspctrm'; elseif isfield(freq, 'fourierspctrm') param = 'fourierspctrm'; else error('not supported for this data representation'); end if strcmp(freq.dimord, 'rpt_chan_freq_time') || strcmp(freq.dimord, 'rpttap_chan_freq_time') dat = freq.(param); elseif strcmp(freq.dimord, 'chan_freq_time') dat = freq.(param); dat = reshape(dat, [1 size(dat)]); % add a singleton dimension else error('not supported for dimord %s', freq.dimord); end nrpt = size(dat,1); nchan = size(dat,2); nfreq = size(dat,3); ntime = size(dat,4); data = []; % create the channel labels like "MLP11@12Hz"" k = 0; for i=1:nfreq for j=1:nchan k = k+1; data.label{k} = sprintf('%s@%dHz', freq.label{j}, freq.freq(i)); end end % reshape and copy the data as if it were timecourses only for i=1:nrpt data.time{i} = freq.time; data.trial{i} = reshape(dat(i,:,:,:), nchan*nfreq, ntime); if any(isnan(data.trial{i}(1,:))), tmp = data.trial{i}(1,:); begsmp = find(isfinite(tmp),1, 'first'); endsmp = find(isfinite(tmp),1, 'last' ); data.trial{i} = data.trial{i}(:, begsmp:endsmp); data.time{i} = data.time{i}(begsmp:endsmp); end end if isfield(freq, 'trialinfo'), data.trialinfo = freq.trialinfo; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = raw2timelock(data) nsmp = cellfun('size',data.time,2); data = ft_checkdata(data, 'hassampleinfo', 'yes'); ntrial = numel(data.trial); nchan = numel(data.label); if ntrial==1 data.time = data.time{1}; data.avg = data.trial{1}; data = rmfield(data, 'trial'); data.dimord = 'chan_time'; else % code below tries to construct a general time-axis where samples of all trials can fall on % find earliest beginning and latest ending begtime = min(cellfun(@min,data.time)); endtime = max(cellfun(@max,data.time)); % find 'common' sampling rate fsample = 1./mean(cellfun(@mean,cellfun(@diff,data.time,'uniformoutput',false))); % estimate number of samples nsmp = round((endtime-begtime)*fsample) + 1; % numerical round-off issues should be dealt with by this round, as they will/should never cause an extra sample to appear % construct general time-axis time = linspace(begtime,endtime,nsmp); % concatenate all trials tmptrial = nan(ntrial, nchan, length(time)); for i=1:ntrial begsmp(i) = nearest(time, data.time{i}(1)); endsmp(i) = nearest(time, data.time{i}(end)); tmptrial(i,:,begsmp(i):endsmp(i)) = data.trial{i}; end % update the sampleinfo begpad = begsmp - min(begsmp); endpad = max(endsmp) - endsmp; if isfield(data, 'sampleinfo') data.sampleinfo = data.sampleinfo + [-begpad(:) endpad(:)]; end % construct the output timelocked data % data.avg = reshape(nanmean(tmptrial, 1), nchan, length(tmptime)); % data.var = reshape(nanvar (tmptrial, [], 1), nchan, length(tmptime)) % data.dof = reshape(sum(~isnan(tmptrial), 1), nchan, length(tmptime)); data.trial = tmptrial; data.time = time; data.dimord = 'rpt_chan_time'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = timelock2raw(data) switch data.dimord case 'chan_time' data.trial{1} = data.avg; data.time = {data.time}; data = rmfield(data, 'avg'); case 'rpt_chan_time' tmptrial = {}; tmptime = {}; ntrial = size(data.trial,1); nchan = size(data.trial,2); ntime = size(data.trial,3); for i=1:ntrial tmptrial{i} = reshape(data.trial(i,:,:), [nchan, ntime]); tmptime{i} = data.time; end data = rmfield(data, 'trial'); data.trial = tmptrial; data.time = tmptime; case 'subj_chan_time' tmptrial = {}; tmptime = {}; ntrial = size(data.individual,1); nchan = size(data.individual,2); ntime = size(data.individual,3); for i=1:ntrial tmptrial{i} = reshape(data.individual(i,:,:), [nchan, ntime]); tmptime{i} = data.time; end data = rmfield(data, 'individual'); data.trial = tmptrial; data.time = tmptime; otherwise error('unsupported dimord'); end % remove the unwanted fields if isfield(data, 'avg'), data = rmfield(data, 'avg'); end if isfield(data, 'var'), data = rmfield(data, 'var'); end if isfield(data, 'cov'), data = rmfield(data, 'cov'); end if isfield(data, 'dimord'), data = rmfield(data, 'dimord'); end if isfield(data, 'numsamples'), data = rmfield(data, 'numsamples'); end if isfield(data, 'dof'), data = rmfield(data, 'dof'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = chan2freq(data) data.dimord = [data.dimord '_freq']; data.freq = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = chan2timelock(data) data.dimord = [data.dimord '_time']; data.time = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spike] = raw2spike(data) fprintf('converting raw data into spike data\n'); nTrials = length(data.trial); [spikelabel] = detectspikechan(data); spikesel = match_str(data.label, spikelabel); nUnits = length(spikesel); if nUnits==0 error('cannot convert raw data to spike format since the raw data structure does not contain spike channels'); end trialTimes = zeros(nTrials,2); for iUnit = 1:nUnits unitIndx = spikesel(iUnit); spikeTimes = []; % we dont know how large it will be, so use concatenation inside loop trialInds = []; for iTrial = 1:nTrials % read in the spike times [spikeTimesTrial] = getspiketimes(data, iTrial, unitIndx); nSpikes = length(spikeTimesTrial); spikeTimes = [spikeTimes; spikeTimesTrial(:)]; trialInds = [trialInds; ones(nSpikes,1)*iTrial]; % get the begs and ends of trials hasNum = find(~isnan(data.time{iTrial})); if iUnit==1, trialTimes(iTrial,:) = data.time{iTrial}([hasNum(1) hasNum(end)]); end end spike.label{iUnit} = data.label{unitIndx}; spike.waveform{iUnit} = []; spike.time{iUnit} = spikeTimes(:)'; spike.trial{iUnit} = trialInds(:)'; if iUnit==1, spike.trialtime = trialTimes; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function timelock = freq2timelock(freq) % FREQ2TIMELOCK transform the frequency data into something % on which the timelocked source reconstruction methods can % perform their trick. % % After source reconstruction, you should use TIMELOCK2FREQ. if isfield(freq, 'fourierspctrm') fprintf('constructing real/imag data representation from single trial fourier representation\n'); % select the complex amplitude at the frequency of interest cdim = find(strcmp(freq.dimord, 'chan')); % should be 2 fdim = find(strcmp(freq.dimord, 'freq')); % should be 3 fbin = nearest(freq.freq, cfg.frequency); cfg.frequency = freq.freq(fbin); if cdim==2 && fdim==3 && numel(freq.freq)==1 % other dimords are not supported, since they do not occur spctrm = transpose(freq.fourierspctrm); else error('conversion of fourierspctrm failed'); end % concatenate the real and imaginary part avg = [real(spctrm) imag(spctrm)]; elseif isfield(freq, 'crsspctrm') fprintf('constructing real/imag data representation from csd matrix\n'); % hmmm... I have no idea whether this is correct tmpcfg.channel = freq.label; tmpcfg.frequency = freq.freq; % this subfunction also takes care of the channel selection [Cf, Cr, Pr, Ntrials, dum] = prepare_freq_matrices(tmpcfg, freq); if length(size(Cf))==3 % average the cross-spectrum over trials Cf = squeeze(mean(Cf,1)); end % reconstruct something that spans the same space as the fft of the data, hmmm... [u, s, v] = svd(Cf); spctrm = u * sqrt(s); % concatenate the real and imaginary part avg = [real(spctrm) imag(spctrm)]; else error('unknown representation of frequency domain data'); end timelock = []; timelock.avg = avg; timelock.label = cfg.channel; timelock.time = 1:size(timelock.avg,2); if isfield(freq, 'cfg'), timelock.cfg = freq.cfg; end timelock.dimord = 'chan_time'; if isfield(freq, 'grad') timelock.grad = freq.grad; end if isfield(freq, 'elec') timelock.elec = freq.elec; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function timelock = comp2timelock(comp) % COMP2TIMELOCK transform the independent components into something % on which the timelocked source reconstruction methods can % perform their trick. % only convert, do not perform channel or component selection timelock = []; timelock.avg = comp.topo; timelock.label = comp.topolabel; timelock.time = 1:size(timelock.avg,2); if isfield(comp, 'cfg'), timelock.cfg = comp.cfg; end timelock.dimord = 'chan_time'; if isfield(comp, 'grad') timelock.grad = comp.grad; end if isfield(comp, 'elec') timelock.elec = comp.elec; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION for detection of channels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spikelabel, eeglabel] = detectspikechan(data) maxRate = 2000; % default on what we still consider a neuronal signal: this firing rate should never be exceeded % autodetect the spike channels ntrial = length(data.trial); nchans = length(data.label); spikechan = zeros(nchans,1); for i=1:ntrial for j=1:nchans hasAllInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:) == round(data.trial{i}(j,:))); hasAllPosInts = all(isnan(data.trial{i}(j,:)) | data.trial{i}(j,:)>=0); T = nansum(diff(data.time{i}),2); % total time fr = nansum(data.trial{i}(j,:),2) ./ T; spikechan(j) = spikechan(j) + double(hasAllInts & hasAllPosInts & fr<=maxRate); end end spikechan = (spikechan==ntrial); spikelabel = data.label(spikechan); eeglabel = data.label(~spikechan); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [spikeTimes] = getspiketimes(data, trial, unit) spikeIndx = logical(data.trial{trial}(unit,:)); spikeCount = data.trial{trial}(unit,spikeIndx); spikeTimes = data.time{trial}(spikeIndx); if isempty(spikeTimes), return; end multiSpikes = find(spikeCount>1); % get the additional samples and spike times, we need only loop through the bins [addSamples, addTimes] = deal([]); for iBin = multiSpikes(:)' % looping over row vector addTimes = [addTimes ones(1,spikeCount(iBin))*spikeTimes(iBin)]; addSamples = [addSamples ones(1,spikeCount(iBin))*spikeIndx(iBin)]; end % before adding these times, first remove the old ones spikeTimes(multiSpikes) = []; spikeTimes = sort([spikeTimes(:); addTimes(:)]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = spike2raw(spike, fsample) if nargin<2 || isempty(fsample) timeDiff = abs(diff(sort([spike.time{:}]))); fsample = 1/min(timeDiff(timeDiff>0)); warning('Desired sampling rate for spike data not specified, automatically resampled to %f', fsample); end % get some sizes nUnits = length(spike.label); nTrials = size(spike.trialtime,1); % preallocate data.trial(1:nTrials) = {[]}; data.time(1:nTrials) = {[]}; for iTrial = 1:nTrials % make bins: note that the spike.time is already within spike.trialtime x = [spike.trialtime(iTrial,1):(1/fsample):spike.trialtime(iTrial,2)]; timeBins = [x x(end)+1/fsample] - (0.5/fsample); time = (spike.trialtime(iTrial,1):(1/fsample):spike.trialtime(iTrial,2)); % convert to continuous trialData = zeros(nUnits,length(time)); for iUnit = 1:nUnits % get the timestamps and only select those timestamps that are in the trial ts = spike.time{iUnit}; hasTrial = spike.trial{iUnit}==iTrial; ts = ts(hasTrial); N = histc(ts,timeBins); if isempty(N) N = zeros(1,length(timeBins)-1); else N(end) = []; end % store it in a matrix trialData(iUnit,:) = N; end data.trial{iTrial} = trialData; data.time{iTrial} = time; end % for all trials % create the associated labels and other aspects of data such as the header data.label = spike.label; data.fsample = fsample; if isfield(spike,'hdr'), data.hdr = spike.hdr; end if isfield(spike,'cfg'), data.cfg = spike.cfg; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % convert between datatypes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [data] = source2raw(source) fn = fieldnames(source); fn = setdiff(fn, {'pos', 'dim', 'transform', 'time', 'freq', 'cfg'}); for i=1:length(fn) dimord{i} = getdimord(source, fn{i}); end sel = strcmp(dimord, 'pos_time'); assert(sum(sel)>0, 'the source structure does not contain a suitable field to represent as raw channel-level data'); assert(sum(sel)<2, 'the source structure contains multiple fields that can be represented as raw channel-level data'); fn = fn{sel}; dimord = dimord{sel}; switch dimord case 'pos_time' % add fake raw channel data to the original data structure data.trial{1} = source.(fn); data.time{1} = source.time; % add fake channel labels data.label = {}; for i=1:size(source.pos,1) data.label{i} = sprintf('source%d', i); end data.label = data.label(:); data.cfg = source.cfg; otherwise % FIXME other formats could be implemented as well end
github
ZijingMao/baselineeegtest-master
read_yokogawa_data.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_yokogawa_data.m
11,038
utf_8
aa2c8a06c417ada7e9af353f2307443e
function [dat] = read_yokogawa_data(filename, hdr, begsample, endsample, chanindx) % READ_YOKAGAWA_DATA reads continuous, epoched or averaged MEG data % that has been generated by the Yokogawa MEG system and software % and allows that data to be used in combination with FieldTrip. % % Use as % [dat] = read_yokogawa_data(filename, hdr, begsample, endsample, chanindx) % % This is a wrapper function around the functions % GetMeg160ContinuousRawDataM % GetMeg160EvokedAverageDataM % GetMeg160EvokedRawDataM % % See also READ_YOKOGAWA_HEADER, READ_YOKOGAWA_EVENT % Copyright (C) 2005, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_yokogawa_data.m 7123 2012-12-06 21:21:38Z roboos $ if ~ft_hastoolbox('yokogawa') error('cannot determine whether Yokogawa toolbox is present'); end % hdr = read_yokogawa_header(filename); hdr = hdr.orig; % use the original Yokogawa header, not the FieldTrip header % default is to select all channels if nargin<5 chanindx = 1:hdr.channel_count; end handles = definehandles; fid = fopen(filename, 'rb', 'ieee-le'); switch hdr.acq_type case handles.AcqTypeEvokedAve % Data is returned by double. start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = double(GetMeg160EvokedAverageDataM( fid, start_sample, sample_length )); % the first extra sample is the channel number channum = dat(:,1); dat = dat(:,2:end); case handles.AcqTypeContinuousRaw % Data is returned by int16. start_sample = begsample - 1; % samples start at 0 sample_length = endsample - begsample + 1; epoch_count = 1; start_epoch = 0; dat = double(GetMeg160ContinuousRawDataM( fid, start_sample, sample_length )); % the first extra sample is the channel number channum = dat(:,1); dat = dat(:,2:end); case handles.AcqTypeEvokedRaw % Data is returned by int16. begtrial = ceil(begsample/hdr.sample_count); endtrial = ceil(endsample/hdr.sample_count); if begtrial<1 error('cannot read before the begin of the file'); elseif endtrial>hdr.actual_epoch_count error('cannot read beyond the end of the file'); end epoch_count = endtrial-begtrial+1; start_epoch = begtrial-1; % read all the neccessary trials that contain the desired samples dat = double(GetMeg160EvokedRawDataM( fid, start_epoch, epoch_count )); % the first extra sample is the channel number channum = dat(:,1); dat = dat(:,2:end); if size(dat,2)~=epoch_count*hdr.sample_count error('could not read all epochs'); end rawbegsample = begsample - (begtrial-1)*hdr.sample_count; rawendsample = endsample - (begtrial-1)*hdr.sample_count; sample_length = rawendsample - rawbegsample + 1; % select the desired samples from the complete trials dat = dat(:,rawbegsample:rawendsample); otherwise error('unknown data type'); end fclose(fid); if size(dat,1)~=hdr.channel_count error('could not read all channels'); elseif size(dat,2)~=(endsample-begsample+1) error('could not read all samples'); end % Count of AxialGradioMeter ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.AxialGradioMeter]); axialgradiometer_index_tmp = index; axialgradiometer_ch_count = length(index); % Count of PlannerGradioMeter ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.PlannerGradioMeter]); plannergradiometer_index_tmp = index; plannergradiometer_ch_count = length(index); % Count of EegChannel ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.EegChannel]); eegchannel_index_tmp = index; eegchannel_ch_count = length(index); % Count of NullChannel ch_type = hdr.channel_info(:,2); index = find(ch_type==[handles.NullChannel]); nullchannel_index_tmp = index; nullchannel_ch_count = length(index); %%% Pulling out AxialGradioMeter and value conversion to physical units. if ~isempty(axialgradiometer_index_tmp) % Acquisition of channel information axialgradiometer_index = axialgradiometer_index_tmp; ch_info = hdr.channel_info; axialgradiometer_ch_info = ch_info(axialgradiometer_index, :); % Value conversion % B = ( ADValue * VoltRange / ADRange - Offset ) * Sensitivity / FLLGain calib = hdr.calib_info; amp_gain = hdr.amp_gain(1); tmp_ch_no = channum(axialgradiometer_index, 1); tmp_data = dat(axialgradiometer_index, 1:sample_length); tmp_offset = calib(axialgradiometer_index, 3) * ones(1,sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = ( tmp_data * ad_range - tmp_offset ); clear tmp_offset; tmp_gain = calib(axialgradiometer_index, 2) * ones(1,sample_length); tmp_data = tmp_data .* tmp_gain / amp_gain; dat(axialgradiometer_index, 1:sample_length) = tmp_data; clear tmp_gain; % Deletion of Inf row index = find(axialgradiometer_ch_info(1,:) == Inf); axialgradiometer_ch_info(:,index) = []; % Deletion of channel_type row axialgradiometer_ch_info(:,2) = []; % Outputs to the global variable handles.sqd.axialgradiometer_ch_info = axialgradiometer_ch_info; handles.sqd.axialgradiometer_ch_no = tmp_ch_no; handles.sqd.axialgradiometer_data = [ tmp_ch_no tmp_data]; clear tmp_data; end %%% Pulling out PlannerGradioMeter and value conversion to physical units. if ~isempty(plannergradiometer_index_tmp) % Acquisition of channel information plannergradiometer_index = plannergradiometer_index_tmp; ch_info = hdr.channel_info; plannergradiometer_ch_info = ch_info(plannergradiometer_index, :); % Value conversion % B = ( ADValue * VoltRange / ADRange - Offset ) * Sensitivity / FLLGain calib = hdr.calib_info; amp_gain = hdr.amp_gain(1); tmp_ch_no = channum(plannergradiometer_index, 1); tmp_data = dat(plannergradiometer_index, 1:sample_length); tmp_offset = calib(plannergradiometer_index, 3) * ones(1,sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = ( tmp_data * ad_range - tmp_offset ); clear tmp_offset; tmp_gain = calib(plannergradiometer_index, 2) * ones(1,sample_length); tmp_data = tmp_data .* tmp_gain / amp_gain; dat(plannergradiometer_index, 1:sample_length) = tmp_data; clear tmp_gain; % Deletion of Inf row index = find(plannergradiometer_ch_info(1,:) == Inf); plannergradiometer_ch_info(:,index) = []; % Deletion of channel_type row plannergradiometer_ch_info(:,2) = []; % Outputs to the global variable handles.sqd.plannergradiometer_ch_info = plannergradiometer_ch_info; handles.sqd.plannergradiometer_ch_no = tmp_ch_no; handles.sqd.plannergradiometer_data = [ tmp_ch_no tmp_data]; clear tmp_data; end %%% Pulling out EegChannel Channel and value conversion to Volt units. if ~isempty(eegchannel_index_tmp) % Acquisition of channel information eegchannel_index = eegchannel_index_tmp; % Value conversion % B = ADValue * VoltRange / ADRange tmp_ch_no = channum(eegchannel_index, 1); tmp_data = dat(eegchannel_index, 1:sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = tmp_data * ad_range; dat(eegchannel_index, 1:sample_length) = tmp_data; % Outputs to the global variable handles.sqd.eegchannel_ch_no = tmp_ch_no; handles.sqd.eegchannel_data = [ tmp_ch_no tmp_data]; clear tmp_data; end %%% Pulling out Null Channel and value conversion to Volt units. if ~isempty(nullchannel_index_tmp) % Acquisition of channel information nullchannel_index = nullchannel_index_tmp; % Value conversion % B = ADValue * VoltRange / ADRange tmp_ch_no = channum(nullchannel_index, 1); tmp_data = dat(nullchannel_index, 1:sample_length); ad_range = 5/2^(hdr.ad_bit-1); tmp_data = tmp_data * ad_range; dat(nullchannel_index, 1:sample_length) = tmp_data; % Outputs to the global variable handles.sqd.nullchannel_ch_no = tmp_ch_no; handles.sqd.nullchannel_data = [ tmp_ch_no tmp_data]; clear tmp_data; end % select only the desired channels dat = dat(chanindx,:); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
ZijingMao/baselineeegtest-master
decode_fif.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/decode_fif.m
6,033
utf_8
4edf09a0624e103cb761080e759c75ae
function [info] = decode_fif(orig) % DECODE_FIF is a helper function for real-time processing of Neuromag data. This % function is used to decode the content of the optional neuromag_fif chunk(s). % % See also DECODE_RES4, DECODE_NIFTI1, SAP2MATLAB % Copyright (C) 2013 Arjen Stolk & Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: decode_fif.m 9030 2013-12-12 14:54:09Z roboos $ % check that the required low-level toolbox is available ft_hastoolbox('mne', 1); global FIFF if isempty(FIFF) FIFF = fiff_define_constants(); end if isfield(orig, 'neuromag_header') % The binary blob was created on the little-endian Intel Linux acquisition % computer, whereas the default for fiff files is that they are stored in % big-endian byte order. MATLAB is able to swap the bytes on the fly by specifying % 'le" or "be" to fopen. The normal MNE fiff_open function assumes that it is big % endian, hence here we have to open it as little endian. filename = tempname; % write the binary blob to disk, byte-by-byte to avoid any swapping between little and big-endian content F = fopen(filename, 'w'); fwrite(F, orig.neuromag_header, 'uint8'); fclose(F); % read the content of the file using the standard reading functions [info, meas] = read_header(filename); % clean up the temporary file delete(filename); end % Typically, at the end of acquisition, the isotrak and hpiresult information % is stored in the neuromag fiff container which can then (offline) be read by % fiff_read_meas_info. However, for the purpose of head position monitoring % (see Stolk et al., Neuroimage 2013) during acquisition, this crucial % information requires to be accessible online. read_isotrak and read_hpiresult % can extract information from the additionally chunked (neuromag2ft) files. if isfield(orig, 'neuromag_isotrak') filename = tempname; % write the binary blob to disk, byte-by-byte to avoid any swapping between little and big-endian content F = fopen(filename, 'w'); fwrite(F, orig.neuromag_isotrak, 'uint8'); fclose(F); % read the content of the file using the standard reading functions [info.dig] = read_isotrak(filename); % clean up the temporary file delete(filename); end if isfield(orig, 'neuromag_hpiresult') filename = tempname; % write the binary blob to disk, byte-by-byte to avoid any swapping between little and big-endian content F = fopen(filename, 'w'); fwrite(F, orig.neuromag_hpiresult, 'uint8'); fclose(F); % read the content of the file using the standard reading functions [info.dev_head_t, info.ctf_head_t] = read_hpiresult(filename); % clean up the temporary file delete(filename); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [info, meas] = read_header(filename) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % open and read the file as little endian [fid, tree] = fiff_open_le(filename); % open as little endian [info, meas] = fiff_read_meas_info(fid, tree); fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dig] = read_isotrak(filename) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% global FIFF % open the isotrak file (big endian) % (typically stored in meas_info dir during acquisition, no fif extension required) [fid, tree] = fiff_open(filename); % locate the Polhemus data isotrak = fiff_dir_tree_find(tree,FIFF.FIFFB_ISOTRAK); dig=struct('kind',{},'ident',{},'r',{},'coord_frame',{}); coord_frame = FIFF.FIFFV_COORD_HEAD; if length(isotrak) == 1 p = 0; for k = 1:isotrak.nent kind = isotrak.dir(k).kind; pos = isotrak.dir(k).pos; if kind == FIFF.FIFF_DIG_POINT p = p + 1; tag = fiff_read_tag(fid,pos); dig(p) = tag.data; else if kind == FIFF.FIFF_MNE_COORD_FRAME tag = fiff_read_tag(fid,pos); coord_frame = tag.data; elseif kind == FIFF.FIFF_COORD_TRANS tag = fiff_read_tag(fid,pos); dig_trans = tag.data; end end end end for k = 1:length(dig) dig(k).coord_frame = coord_frame; end if exist('dig_trans','var') if (dig_trans.from ~= coord_frame && dig_trans.to ~= coord_frame) clear('dig_trans'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dev_head_t, ctf_head_t] = read_hpiresult(filename) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% global FIFF % open the hpiresult file (big endian) % (typically stored in meas_info dir during acquisition, no fif extension required) [fid, tree] = fiff_open(filename); % locate the transformation matrix dev_head_t=[]; ctf_head_t=[]; hpi_result = fiff_dir_tree_find(tree,FIFF.FIFFB_HPI_RESULT); if length(hpi_result) == 1 for k = 1:hpi_result.nent kind = hpi_result.dir(k).kind; pos = hpi_result.dir(k).pos; if kind == FIFF.FIFF_COORD_TRANS tag = fiff_read_tag(fid,pos); cand = tag.data; if cand.from == FIFF.FIFFV_COORD_DEVICE && ... cand.to == FIFF.FIFFV_COORD_HEAD dev_head_t = cand; elseif cand.from == FIFF.FIFFV_MNE_COORD_CTF_HEAD && ... cand.to == FIFF.FIFFV_COORD_HEAD ctf_head_t = cand; end end end end
github
ZijingMao/baselineeegtest-master
read_biff.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_biff.m
5,857
utf_8
d71281c0e6be7868430597d71c166b5d
function [this] = read_biff(filename, opt) % READ_BIFF reads data and header information from a BIFF file % % This is a attemt for a reference implementation to read the BIFF % file format as defined by the Clinical Neurophysiology department of % the University Medical Centre, Nijmegen. % % read all data and information % [data] = read_biff(filename) % or read a selected top-level chunk % [chunk] = read_biff(filename, chunkID) % % known top-level chunk id's are % data : measured data (matrix) % dati : information on data (struct) % expi : information on experiment (struct) % pati : information on patient (struct) % evnt : event markers (struct) % Copyright (C) 2000, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_biff.m 7123 2012-12-06 21:21:38Z roboos $ define_biff; this = []; fid = fopen(filename, 'r'); fseek(fid,0,'eof'); eof = ftell(fid); fseek(fid,0,'bof'); [id, siz] = chunk_header(fid); switch id case 'SEMG' child = subtree(BIFF, id); this = read_biff_chunk(fid, id, siz, child); case 'LIST' fprintf('skipping unimplemented chunk id="%s" size=%4d\n', id, siz); case 'CAT ' fprintf('skipping unimplemented chunk id="%s" size=%4d\n', id, siz); otherwise fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz); fseek(fid, siz, 'cof'); end % switch fclose(fid); % close file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION read_biff_chunk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function this = read_biff_chunk(fid, id, siz, chunk); % start with empty structure this = []; if strcmp(id, 'null') % this is an empty chunk fprintf('skipping empty chunk id="%s" size=%4d\n', id, siz); assert(~feof(fid)); fseek(fid, siz, 'cof'); elseif isempty(chunk) % this is an unrecognized chunk fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz); assert(~feof(fid)); fseek(fid, siz, 'cof'); else eoc = ftell(fid) + siz; name = char(chunk.desc(2)); type = char(chunk.desc(3)); fprintf('reading chunk id= "%s" size=%4d name="%s"\n', id, siz, name); switch type case 'group' while ~feof(fid) & ftell(fid)<eoc % read all subchunks [id, siz] = chunk_header(fid); child = subtree(chunk, id); if ~isempty(child) % read data and add subchunk data to chunk structure name = char(child.desc(2)); val = read_biff_chunk(fid, id, siz, child); this = setfield(this, name, val); else fprintf('skipping unrecognized chunk id="%s" size=%4d\n', id, siz); fseek(fid, siz, 'cof'); end end % while case 'string' this = char(fread(fid, siz, 'uchar')'); case {'char', 'uchar', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'float32', 'float64'} this = fread(fid, 1, type); case {'char', 'uchar', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'float32', 'float64'} this = fread(fid, 1, type); case {'int8vec', 'int16vec', 'int32vec', 'int64vec', 'uint8vec', 'uint16vec', 'uint32vec', 'float32vec', 'float64vec'} ncol = fread(fid, 1, 'uint32'); this = fread(fid, ncol, type(1:(length(type)-3))); case {'int8mat', 'int16mat', 'int32mat', 'int64mat', 'uint8mat', 'uint16mat', 'uint32mat', 'float32mat', 'float64mat'} nrow = fread(fid, 1, 'uint32'); ncol = fread(fid, 1, 'uint32'); this = fread(fid, [nrow, ncol], type(1:(length(type)-3))); otherwise fseek(fid, siz, 'cof'); % skip this chunk sprintf('unimplemented data type "%s" in chunk "%s"', type, id); % warning(ans); end % switch chunk type end % else %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION subtree %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function child = subtree(parent, id); blank = findstr(id, ' '); while ~isempty(blank) id(blank) = '_'; blank = findstr(id, ' '); end elem = fieldnames(parent); % list of all subitems num = find(strcmp(elem, id)); % number in parent tree if size(num) == [1,1] child = getfield(parent, char(elem(num))); % child subtree else child = []; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION chunk_header %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [id, siz] = chunk_header(fid); id = char(fread(fid, 4, 'uchar')'); % read chunk ID siz = fread(fid, 1, 'uint32'); % read chunk size if strcmp(id, 'GRP ') | strcmp(id, 'BIFF') id = char(fread(fid, 4, 'uchar')'); % read real chunk ID siz = siz - 4; % reduce size by 4 end
github
ZijingMao/baselineeegtest-master
read_eeglabheader.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_eeglabheader.m
2,255
utf_8
fe4446f32b250441d57acff9ebe691a2
% read_eeglabheader() - import EEGLAB dataset files % % Usage: % >> header = read_eeglabheader(filename); % % Inputs: % filename - [string] file name % % Outputs: % header - FILEIO toolbox type structure % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2008- %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function header = read_eeglabheader(filename) if nargin < 1 help read_eeglabheader; return; end; if ~isstruct(filename) load('-mat', filename); else EEG = filename; end; header.Fs = EEG.srate; header.nChans = EEG.nbchan; header.nSamples = EEG.pnts; header.nSamplesPre = -EEG.xmin*EEG.srate; header.nTrials = EEG.trials; try header.label = { EEG.chanlocs.labels }'; catch warning('creating default channel names'); for i=1:header.nChans header.label{i} = sprintf('chan%03d', i); end end ind = 1; for i = 1:length( EEG.chanlocs ) if isfield(EEG.chanlocs(i), 'X') && ~isempty(EEG.chanlocs(i).X) header.elec.label{ind, 1} = EEG.chanlocs(i).labels; % this channel has a position header.elec.pnt(ind,1) = EEG.chanlocs(i).X; header.elec.pnt(ind,2) = EEG.chanlocs(i).Y; header.elec.pnt(ind,3) = EEG.chanlocs(i).Z; ind = ind+1; end; end; % remove data % ----------- %if isfield(EEG, 'datfile') % if ~isempty(EEG.datfile) % EEG.data = EEG.datfile; % end; %else % EEG.data = 'in set file'; %end; EEG.icaact = []; header.orig = EEG;
github
ZijingMao/baselineeegtest-master
read_ctf_svl.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_ctf_svl.m
3,812
utf_8
d3442d0a013cf5e0a8d4277d99e45206
% [data, hdr] = opensvl(filename) % % Reads a CTF SAM (.svl) file. function [data, hdr] = read_ctf_svl(filename) fid = fopen(filename, 'rb', 'ieee-be', 'ISO-8859-1'); if fid <= 0 error('Could not open SAM file: %s\n', filename); end % ---------------------------------------------------------------------- % Read header. hdr.identity = fread(fid, 8, '*char')'; % 'SAMIMAGE' hdr.version = fread(fid, 1, 'int32'); % SAM file version. hdr.setName = fread(fid, 256, '*char')'; % Dataset name. hdr.numChans = fread(fid, 1, 'int32'); hdr.numWeights = fread(fid, 1, 'int32'); % 0 for static image. if(hdr.numWeights ~= 0) warning('hdr.numWeights ~= 0'); end fread(fid,1,'int32'); % Padding to next 8 byte boundary. hdr.xmin = fread(fid, 1, 'double'); % Bounding box coordinates (m). hdr.xmax = fread(fid, 1, 'double'); hdr.ymin = fread(fid, 1, 'double'); hdr.ymax = fread(fid, 1, 'double'); hdr.zmin = fread(fid, 1, 'double'); hdr.zmax = fread(fid, 1, 'double'); hdr.stepSize = fread(fid, 1, 'double'); % m hdr.hpFreq = fread(fid, 1, 'double'); % High pass filtering frequency (Hz). hdr.lpFreq = fread(fid, 1, 'double'); % Low pass. hdr.bwFreq = fread(fid, 1, 'double'); % Bandwidth hdr.meanNoise = fread(fid, 1, 'double'); % Sensor noise (T). hdr.mriName = fread(fid, 256, '*char')'; hdr.fiducial.mri.nas = fread(fid, 3, 'int32'); % CTF MRI voxel coordinates? hdr.fiducial.mri.rpa = fread(fid, 3, 'int32'); hdr.fiducial.mri.lpa = fread(fid, 3, 'int32'); hdr.SAMType = fread(fid, 1, 'int32'); % 0: image, 1: weights array, 2: weights list. hdr.SAMUnit = fread(fid, 1, 'int32'); % Possible values: 0 coefficients Am/T, 1 moment Am, 2 power (Am)^2, 3 Z, % 4 F, 5 T, 6 probability, 7 MUSIC. fread(fid, 1, 'int32'); % Padding to next 8 byte boundary. if hdr.version > 1 % Version 2 has extra fields. hdr.fiducial.head.nas = fread(fid, 3, 'double'); % CTF head coordinates? hdr.fiducial.head.rpa = fread(fid, 3, 'double'); hdr.fiducial.head.lpa = fread(fid, 3, 'double'); hdr.SAMUnitName = fread(fid, 32, '*char')'; % Possible values: 'Am/T' SAM coefficients, 'Am' source strength, % '(Am)^2' source power, ('Z', 'F', 'T') statistics, 'P' probability. end % ---------------------------------------------------------------------- % Read image data. data = fread(fid, inf, 'double'); fclose(fid); % Raw image data is ordered as a C array with indices: [x][y][z], meaning % z changes fastest and x slowest. These x, y, z axes point to ALS % (anterior, left, superior) respectively in real world coordinates, % which means the voxels are in SLA order. % ---------------------------------------------------------------------- % Post processing. % Change from m to mm. hdr.xmin = hdr.xmin * 1000; hdr.ymin = hdr.ymin * 1000; hdr.zmin = hdr.zmin * 1000; hdr.xmax = hdr.xmax * 1000; hdr.ymax = hdr.ymax * 1000; hdr.zmax = hdr.zmax * 1000; hdr.stepSize = hdr.stepSize * 1000; % Number of voxels in each dimension. hdr.dim = [round((hdr.xmax - hdr.xmin)/hdr.stepSize) + 1, ... round((hdr.ymax - hdr.ymin)/hdr.stepSize) + 1, ... round((hdr.zmax - hdr.zmin)/hdr.stepSize) + 1]; data = reshape(data, hdr.dim([3, 2, 1])); % Build transformation matrix from raw voxel coordinates (indexed from 1) % to head coordinates in mm. Note that the bounding box is given in % these coordinates (in m, but converted above). % Apply scaling. hdr.transform = diag([hdr.stepSize * ones(1, 3), 1]); % Reorder directions. hdr.transform = hdr.transform(:, [3, 2, 1, 4]); % Apply translation. hdr.transform(1:3, 4) = [hdr.xmin; hdr.ymin; hdr.zmin] - hdr.stepSize; % -step is needed since voxels are indexed from 1. end
github
ZijingMao/baselineeegtest-master
read_erplabevent.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_erplabevent.m
1,786
utf_8
40ece49ff6bd2afd6024b46f210e65fa
% read_erplabevent() - import ERPLAB dataset events % % Usage: % >> event = read_erplabevent(filename, ...); % % Inputs: % filename - [string] file name % % Optional inputs: % 'header' - FILEIO structure header % % Outputs: % event - FILEIO toolbox event structure % % Modified from read_eeglabevent %123456789012345678901234567890123456789012345678901234567890123456789012 % % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function event = read_erplabevent(filename, varargin) if nargin < 1 help read_erplabheader; return; end; hdr = ft_getopt(varargin, 'header'); if isempty(hdr) hdr = read_erplabheader(filename); end event = []; % these will be the output in FieldTrip format oldevent = hdr.orig.bindescr; % these are in ERPLAB format for index = 1:length(oldevent) event(end+1).type = 'trial'; event(end ).sample = (index-1)*hdr.nSamples + 1; event(end ).value = oldevent{index}; event(end ).offset = -hdr.nSamplesPre; event(end ).duration = hdr.nSamples; end;
github
ZijingMao/baselineeegtest-master
read_yokogawa_header_new.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_yokogawa_header_new.m
8,959
utf_8
654f373c60405e9a27c40d65ab0147dd
function hdr = read_yokogawa_header_new(filename) % READ_YOKOGAWA_HEADER_NEW reads the header information from continuous, % epoched or averaged MEG data that has been generated by the Yokogawa % MEG system and software and allows that data to be used in combination % with FieldTrip. % % Use as % [hdr] = read_yokogawa_header_new(filename) % % This is a wrapper function around the functions % getYkgwHdrSystem % getYkgwHdrChannel % getYkgwHdrAcqCond % getYkgwHdrCoregist % getYkgwHdrDigitize % getYkgwHdrSource % % See also READ_YOKOGAWA_DATA_NEW, READ_YOKOGAWA_EVENT % ** % Copyright (C) 2005, Robert Oostenveld and 2010, Tilmann Sander-Thoemmes % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_yokogawa_header_new.m 7123 2012-12-06 21:21:38Z roboos $ % FIXED % txt -> m % fopen iee-le if ~ft_hastoolbox('yokogawa_meg_reader') error('cannot determine whether Yokogawa toolbox is present'); end handles = definehandles; sys_info = getYkgwHdrSystem(filename); id = sys_info.system_id; ver = sys_info.version; rev = sys_info.revision; sys_name = sys_info.system_name; model_name = sys_info.model_name; clear('sys_info'); % remove structure as local variables are collected in the end channel_info = getYkgwHdrChannel(filename); channel_count = channel_info.channel_count; acq_cond = getYkgwHdrAcqCond(filename); acq_type = acq_cond.acq_type; % these depend on the data type sample_rate = []; sample_count = []; pretrigger_length = []; averaged_count = []; actual_epoch_count = []; switch acq_type case handles.AcqTypeContinuousRaw sample_rate = acq_cond.sample_rate; sample_count = acq_cond.sample_count; if isempty(sample_rate) | isempty(sample_count) error('invalid sample rate or sample count in ', filename); return; end pretrigger_length = 0; averaged_count = 1; case handles.AcqTypeEvokedAve sample_rate = acq_cond.sample_rate; sample_count = acq_cond.frame_length; pretrigger_length = acq_cond.pretrigger_length; averaged_count = acq_cond.average_count; if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(averaged_count) error('invalid sample rate or sample count or pretrigger length or average count in ', filename); return; end if acq_cond.multi_trigger.enable error('multi trigger mode not supported for ', filename); return; end case handles.AcqTypeEvokedRaw sample_rate = acq_cond.sample_rate; sample_count = acq_cond.frame_length; pretrigger_length = acq_cond.pretrigger_length; actual_epoch_count = acq_cond.average_count; if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(actual_epoch_count) error('invalid sample rate or sample count or pretrigger length or epoch count in ', filename); return; end if acq_cond.multi_trigger.enable error('multi trigger mode not supported for ', filename); return; end otherwise error('unknown data type'); end clear('acq_cond'); % remove structure as local variables are collected in the end coregist = getYkgwHdrCoregist(filename); digitize = getYkgwHdrDigitize(filename); source = getYkgwHdrSource(filename); % put all local variables into a structure, this is a bit unusual matlab programming style tmp = whos; orig = []; for i=1:length(tmp) if isempty(strmatch(tmp(i).name, {'tmp', 'ans', 'handles'})) orig = setfield(orig, tmp(i).name, eval(tmp(i).name)); end end % convert the original header information into something that FieldTrip understands hdr = []; hdr.orig = orig; % also store the original full header information hdr.Fs = orig.sample_rate; % sampling frequency hdr.nChans = orig.channel_count; % number of channels hdr.nSamples = []; % number of samples per trial hdr.nSamplesPre = []; % number of pre-trigger samples in each trial hdr.nTrials = []; % number of trials switch orig.acq_type case handles.AcqTypeEvokedAve hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = 1; % only the average, which can be considered as a single trial case handles.AcqTypeContinuousRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = 0; % there is no fixed relation between triggers and data hdr.nTrials = 1; % the continuous data can be considered as a single very long trial case handles.AcqTypeEvokedRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = orig.actual_epoch_count; otherwise error('unknown acquisition type'); end % construct a cell-array with labels of each channel for i=1:hdr.nChans % this should be consistent with the predefined list in ft_senslabel, % with yokogawa2grad_new and with ft_channelselection if hdr.orig.channel_info.channel(i).type == handles.NullChannel prefix = ''; elseif hdr.orig.channel_info.channel(i).type == handles.MagnetoMeter prefix = 'M'; elseif hdr.orig.channel_info.channel(i).type == handles.AxialGradioMeter prefix = 'AG'; elseif hdr.orig.channel_info.channel(i).type == handles.PlannerGradioMeter prefix = 'PG'; elseif hdr.orig.channel_info.channel(i).type == handles.RefferenceMagnetoMeter prefix = 'RM'; elseif hdr.orig.channel_info.channel(i).type == handles.RefferenceAxialGradioMeter prefix = 'RAG'; elseif hdr.orig.channel_info.channel(i).type == handles.RefferencePlannerGradioMeter prefix = 'RPG'; elseif hdr.orig.channel_info.channel(i).type == handles.TriggerChannel prefix = 'TRIG'; elseif hdr.orig.channel_info.channel(i).type == handles.EegChannel prefix = 'EEG'; elseif hdr.orig.channel_info.channel(i).type == handles.EcgChannel prefix = 'ECG'; elseif hdr.orig.channel_info.channel(i).type == handles.EtcChannel prefix = 'ETC'; end hdr.label{i} = sprintf('%s%03d', prefix, i); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles; handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
ZijingMao/baselineeegtest-master
ft_datatype_raw.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/ft_datatype_raw.m
11,130
utf_8
ba366978335b30f2c90877f56f9b4519
function data = ft_datatype_raw(data, varargin) % FT_DATATYPE_RAW describes the FieldTrip MATLAB structure for raw data % % The raw datatype represents sensor-level time-domain data typically % obtained after calling FT_DEFINETRIAL and FT_PREPROCESSING. It contains % one or multiple segments of data, each represented as Nchan X Ntime % arrays. % % An example of a raw data structure with 151 MEG channels is % % label: {151x1 cell} the channel labels (e.g. 'MRC13') % time: {1x266 cell} the timeaxis [1*Ntime double] per trial % trial: {1x266 cell} the numeric data [151*Ntime double] per trial % sampleinfo: [266x2 double] the begin and endsample of each trial relative to the recording on disk % trialinfo: [266x1 double] optional trigger or condition codes for each trial % hdr: [1x1 struct] the full header information of the original dataset on disk % grad: [1x1 struct] information about the sensor array (for EEG it is called elec) % cfg: [1x1 struct] the configuration used by the function that generated this data structure % % Required fields: % - time, trial, label % % Optional fields: % - sampleinfo, trialinfo, grad, elec, hdr, cfg % % Deprecated fields: % - fsample % % Obsoleted fields: % - offset % % Historical fields: % - cfg, elec, fsample, grad, hdr, label, offset, sampleinfo, time, % trial, trialdef, see bug2513 % % Revision history: % % (2011/latest) The description of the sensors has changed, see FT_DATATYPE_SENS % for further information. % % (2010v2) The trialdef field has been replaced by the sampleinfo and % trialinfo fields. The sampleinfo corresponds to trl(:,1:2), the trialinfo % to trl(4:end). % % (2010v1) In 2010/Q3 it shortly contained the trialdef field which was a copy % of the trial definition (trl) is generated by FT_DEFINETRIAL. % % (2007) It used to contain the offset field, which correcponds to trl(:,3). % Since the offset field is redundant with the time axis, the offset field is % from now on not present any more. It can be recreated if needed. % % (2003) The initial version was defined % % See also FT_DATATYPE, FT_DATATYPE_COMP, FT_DATATYPE_TIMELOCK, FT_DATATYPE_FREQ, % FT_DATATYPE_SPIKE, FT_DATATYPE_SENS % Copyright (C) 2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_datatype_raw.m 10451 2015-06-10 22:00:07Z roboos $ % get the optional input arguments, which should be specified as key-value pairs version = ft_getopt(varargin, 'version', 'latest'); hassampleinfo = ft_getopt(varargin, 'hassampleinfo', 'ifmakessense'); % can be yes/no/ifmakessense hastrialinfo = ft_getopt(varargin, 'hastrialinfo', 'ifmakessense'); % can be yes/no/ifmakessense % do some sanity checks assert(isfield(data, 'trial') && isfield(data, 'time') && isfield(data, 'label'), 'inconsistent raw data structure, some field is missing'); assert(length(data.trial)==length(data.time), 'inconsistent number of trials in raw data structure'); for i=1:length(data.trial) assert(size(data.trial{i},2)==length(data.time{i}), 'inconsistent number of samples in trial %d', i); assert(size(data.trial{i},1)==length(data.label), 'inconsistent number of channels in trial %d', i); end if isequal(hassampleinfo, 'ifmakessense') hassampleinfo = 'no'; % default to not adding it if isfield(data, 'sampleinfo') && size(data.sampleinfo,1)~=numel(data.trial) % it does not make sense, so don't keep it hassampleinfo = 'no'; end if isfield(data, 'sampleinfo') hassampleinfo = 'yes'; % if it's already there, consider keeping it numsmp = data.sampleinfo(:,2)-data.sampleinfo(:,1)+1; for i=1:length(data.trial) if size(data.trial{i},2)~=numsmp(i); % it does not make sense, so don't keep it hassampleinfo = 'no'; % the actual removal will be done further down warning('removing inconsistent sampleinfo'); break; end end end end if isequal(hastrialinfo, 'ifmakessense') hastrialinfo = 'no'; if isfield(data, 'trialinfo') hastrialinfo = 'yes'; if size(data.trialinfo,1)~=numel(data.trial) % it does not make sense, so don't keep it hastrialinfo = 'no'; warning('removing inconsistent trialinfo'); end end end % convert it into true/false hassampleinfo = istrue(hassampleinfo); hastrialinfo = istrue(hastrialinfo); if strcmp(version, 'latest') version = '2011'; end if isempty(data) return; end switch version case '2011' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isfield(data, 'grad') % ensure that the gradiometer structure is up to date data.grad = ft_datatype_sens(data.grad); end if isfield(data, 'elec') % ensure that the electrode structure is up to date data.elec = ft_datatype_sens(data.elec); end if ~isfield(data, 'fsample') for i=1:length(data.time) if length(data.time{i})>1 data.fsample = 1/mean(diff(data.time{i})); break else data.fsample = nan; end end if isnan(data.fsample) warning('cannot determine sampling frequency'); end end if isfield(data, 'offset') data = rmfield(data, 'offset'); end % the trialdef field should be renamed into sampleinfo if isfield(data, 'trialdef') data.sampleinfo = data.trialdef; data = rmfield(data, 'trialdef'); end if (hassampleinfo && ~isfield(data, 'sampleinfo')) || (hastrialinfo && ~isfield(data, 'trialinfo')) % try to reconstruct the sampleinfo and trialinfo data = fixsampleinfo(data); end if ~hassampleinfo && isfield(data, 'sampleinfo') data = rmfield(data, 'sampleinfo'); end if ~hastrialinfo && isfield(data, 'trialinfo') data = rmfield(data, 'trialinfo'); end case '2010v2' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if isfield(data, 'offset') data = rmfield(data, 'offset'); end % the trialdef field should be renamed into sampleinfo if isfield(data, 'trialdef') data.sampleinfo = data.trialdef; data = rmfield(data, 'trialdef'); end if (hassampleinfo && ~isfield(data, 'sampleinfo')) || (hastrialinfo && ~isfield(data, 'trialinfo')) % try to reconstruct the sampleinfo and trialinfo data = fixsampleinfo(data); end if ~hassampleinfo && isfield(data, 'sampleinfo') data = rmfield(data, 'sampleinfo'); end if ~hastrialinfo && isfield(data, 'trialinfo') data = rmfield(data, 'trialinfo'); end case {'2010v1' '2010'} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if isfield(data, 'offset') data = rmfield(data, 'offset'); end if ~isfield(data, 'trialdef') && hascfg % try to find it in the nested configuration history data.trialdef = ft_findcfg(data.cfg, 'trl'); end case '2007' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if isfield(data, 'offset') data = rmfield(data, 'offset'); end case '2003' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isfield(data, 'fsample') data.fsample = 1/mean(diff(data.time{1})); end if ~isfield(data, 'offset') data.offset = zeros(length(data.time),1); for i=1:length(data.time); data.offset(i) = round(data.time{i}(1)*data.fsample); end end otherwise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% error('unsupported version "%s" for raw datatype', version); end % Numerical inaccuracies in the binary representations of floating point % values may accumulate. The following code corrects for small inaccuracies % in the time axes of the trials. See http://bugzilla.fcdonders.nl/show_bug.cgi?id=1390 data = fixtimeaxes(data); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function data = fixtimeaxes(data) if ~isfield(data, 'fsample') fsample = 1/mean(diff(data.time{1})); else fsample = data.fsample; end begtime = zeros(1, length(data.time)); endtime = zeros(1, length(data.time)); numsample = zeros(1, length(data.time)); for i=1:length(data.time) begtime(i) = data.time{i}(1); endtime(i) = data.time{i}(end); numsample(i) = length(data.time{i}); end % compute the differences over trials and the tolerance tolerance = 0.01*(1/fsample); begdifference = abs(begtime-begtime(1)); enddifference = abs(endtime-endtime(1)); % check whether begin and/or end are identical, or close to identical begidentical = all(begdifference==0); endidentical = all(enddifference==0); begsimilar = all(begdifference < tolerance); endsimilar = all(enddifference < tolerance); % Compute the offset of each trial relative to the first trial, and express % that in samples. Non-integer numbers indicate that there is a slight skew % in the time over trials. This works in case of variable length trials. offset = fsample * (begtime-begtime(1)); skew = abs(offset - round(offset)); % try to determine all cases where a correction is needed % note that this does not yet address all possible cases where a fix might be needed needfix = false; needfix = needfix || ~begidentical && begsimilar; needfix = needfix || ~endidentical && endsimilar; needfix = needfix || ~all(skew==0) && all(skew<0.01); % if the skew is less than 1% it will be corrected if needfix ft_warning('correcting numerical inaccuracy in the time axes'); for i=1:length(data.time) % reconstruct the time axis of each trial, using the begin latency of % the first trial and the integer offset in samples of each trial data.time{i} = begtime(1) + ((1:numsample(i)) - 1 + round(offset(i)))/fsample; end end
github
ZijingMao/baselineeegtest-master
getdimsiz.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/getdimsiz.m
1,601
utf_8
bd44c3d3917f25521cd5c01d896ce113
function dimsiz = getdimsiz(data, field) % GETDIMSIZ % % Use as % dimsiz = getdimsiz(data, field) % % See also GETDIMORD if ~isfield(data, field) && isfield(data, 'avg') && isfield(data.avg, field) field = ['avg.' field]; elseif ~isfield(data, field) && isfield(data, 'trial') && isfield(data.trial, field) field = ['trial.' field]; elseif ~isfield(data, field) error('field "%s" not present in data', field); end if strncmp(field, 'avg.', 4) prefix = []; field = field(5:end); % strip the avg data.(field) = data.avg.(field); % move the avg into the main structure data = rmfield(data, 'avg'); elseif strncmp(field, 'trial.', 6) prefix = numel(data.trial); field = field(7:end); % strip the trial data.(field) = data.trial(1).(field); % move the first trial into the main structure data = rmfield(data, 'trial'); else prefix = []; end dimsiz = cellmatsize(data.(field)); % add nrpt in case of source.trial dimsiz = [prefix dimsiz]; end % main function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION to determine the size of data representations like {pos}_ori_time % FIXME this will fail for {xxx_yyy}_zzz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function siz = cellmatsize(x) if iscell(x) cellsize = numel(x); % the number of elements in the cell-array [dum, indx] = max(cellfun(@numel, x)); matsize = size(x{indx}); % the size of the content of the cell-array siz = [cellsize matsize]; % concatenate the two else siz = size(x); end end % function cellmatsize
github
ZijingMao/baselineeegtest-master
read_yokogawa_header.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_yokogawa_header.m
8,340
utf_8
c1392a52ad7bb86127e7a704c5abce9d
function hdr = read_yokogawa_header(filename) % READ_YOKOGAWA_HEADER reads the header information from continuous, % epoched or averaged MEG data that has been generated by the Yokogawa % MEG system and software and allows that data to be used in combination % with FieldTrip. % % Use as % [hdr] = read_yokogawa_header(filename) % % This is a wrapper function around the functions % GetMeg160SystemInfoM % GetMeg160ChannelCountM % GetMeg160ChannelInfoM % GetMeg160CalibInfoM % GetMeg160AmpGainM % GetMeg160DataAcqTypeM % GetMeg160ContinuousAcqCondM % GetMeg160EvokedAcqCondM % % See also READ_YOKOGAWA_DATA, READ_YOKOGAWA_EVENT % this function also calls % GetMeg160MriInfoM % GetMeg160MatchingInfoM % GetMeg160SourceInfoM % but I don't know whether to use the information provided by those % Copyright (C) 2005, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_yokogawa_header.m 7123 2012-12-06 21:21:38Z roboos $ % FIXED % txt -> m % fopen iee-le if ~ft_hastoolbox('yokogawa') error('cannot determine whether Yokogawa toolbox is present'); end handles = definehandles; fid = fopen(filename, 'rb', 'ieee-le'); % these are always present [id ver rev sys_name] = GetMeg160SystemInfoM(fid); channel_count = GetMeg160ChannelCountM(fid); channel_info = GetMeg160ChannelInfoM(fid); calib_info = GetMeg160CalibInfoM(fid); amp_gain = GetMeg160AmpGainM(fid); acq_type = GetMeg160DataAcqTypeM(fid); ad_bit = GetMeg160ADbitInfoM(fid); % these depend on the data type sample_rate = []; sample_count = []; pretrigger_length = []; averaged_count = []; actual_epoch_count = []; switch acq_type case handles.AcqTypeContinuousRaw [sample_rate, sample_count] = GetMeg160ContinuousAcqCondM(fid); if isempty(sample_rate) | isempty(sample_count) fclose(fid); return; end pretrigger_length = 0; averaged_count = 1; case handles.AcqTypeEvokedAve [sample_rate, sample_count, pretrigger_length, averaged_count] = GetMeg160EvokedAcqCondM( fid ); if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(averaged_count) fclose(fid); return; end case handles.AcqTypeEvokedRaw [sample_rate, sample_count, pretrigger_length, actual_epoch_count] = GetMeg160EvokedAcqCondM( fid ); if isempty(sample_rate) | isempty(sample_count) | isempty(pretrigger_length) | isempty(actual_epoch_count) fclose(fid); return; end otherwise error('unknown data type'); end % these are always present mri_info = GetMeg160MriInfoM(fid); matching_info = GetMeg160MatchingInfoM(fid); source_info = GetMeg160SourceInfoM(fid); fclose(fid); % put all local variables into a structure, this is a bit unusual matlab programming style tmp = whos; orig = []; for i=1:length(tmp) if isempty(strmatch(tmp(i).name, {'tmp', 'fid', 'ans', 'handles'})) orig = setfield(orig, tmp(i).name, eval(tmp(i).name)); end end % convert the original header information into something that FieldTrip understands hdr = []; hdr.orig = orig; % also store the original full header information hdr.Fs = orig.sample_rate; % sampling frequency hdr.nChans = orig.channel_count; % number of channels hdr.nSamples = []; % number of samples per trial hdr.nSamplesPre = []; % number of pre-trigger samples in each trial hdr.nTrials = []; % number of trials switch orig.acq_type case handles.AcqTypeEvokedAve hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = 1; % only the average, which can be considered as a single trial case handles.AcqTypeContinuousRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = 0; % there is no fixed relation between triggers and data hdr.nTrials = 1; % the continuous data can be considered as a single very long trial case handles.AcqTypeEvokedRaw hdr.nSamples = orig.sample_count; hdr.nSamplesPre = orig.pretrigger_length; hdr.nTrials = orig.actual_epoch_count; otherwise error('unknown acquisition type'); end % construct a cell-array with labels of each channel for i=1:hdr.nChans % this should be consistent with the predefined list in ft_senslabel, % with yokogawa2grad and with ft_channelselection if hdr.orig.channel_info(i, 2) == handles.NullChannel prefix = ''; elseif hdr.orig.channel_info(i, 2) == handles.MagnetoMeter prefix = 'M'; elseif hdr.orig.channel_info(i, 2) == handles.AxialGradioMeter prefix = 'AG'; elseif hdr.orig.channel_info(i, 2) == handles.PlannerGradioMeter prefix = 'PG'; elseif hdr.orig.channel_info(i, 2) == handles.RefferenceMagnetoMeter prefix = 'RM'; elseif hdr.orig.channel_info(i, 2) == handles.RefferenceAxialGradioMeter prefix = 'RAG'; elseif hdr.orig.channel_info(i, 2) == handles.RefferencePlannerGradioMeter prefix = 'RPG'; elseif hdr.orig.channel_info(i, 2) == handles.TriggerChannel prefix = 'TRIG'; elseif hdr.orig.channel_info(i, 2) == handles.EegChannel prefix = 'EEG'; elseif hdr.orig.channel_info(i, 2) == handles.EcgChannel prefix = 'ECG'; elseif hdr.orig.channel_info(i, 2) == handles.EtcChannel prefix = 'ETC'; end hdr.label{i} = sprintf('%s%03d', prefix, i); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % this defines some usefull constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function handles = definehandles; handles.output = []; handles.sqd_load_flag = false; handles.mri_load_flag = false; handles.NullChannel = 0; handles.MagnetoMeter = 1; handles.AxialGradioMeter = 2; handles.PlannerGradioMeter = 3; handles.RefferenceChannelMark = hex2dec('0100'); handles.RefferenceMagnetoMeter = bitor( handles.RefferenceChannelMark, handles.MagnetoMeter ); handles.RefferenceAxialGradioMeter = bitor( handles.RefferenceChannelMark, handles.AxialGradioMeter ); handles.RefferencePlannerGradioMeter = bitor( handles.RefferenceChannelMark, handles.PlannerGradioMeter ); handles.TriggerChannel = -1; handles.EegChannel = -2; handles.EcgChannel = -3; handles.EtcChannel = -4; handles.NonMegChannelNameLength = 32; handles.DefaultMagnetometerSize = (4.0/1000.0); % Square of 4.0mm in length handles.DefaultAxialGradioMeterSize = (15.5/1000.0); % Circle of 15.5mm in diameter handles.DefaultPlannerGradioMeterSize = (12.0/1000.0); % Square of 12.0mm in length handles.AcqTypeContinuousRaw = 1; handles.AcqTypeEvokedAve = 2; handles.AcqTypeEvokedRaw = 3; handles.sqd = []; handles.sqd.selected_start = []; handles.sqd.selected_end = []; handles.sqd.axialgradiometer_ch_no = []; handles.sqd.axialgradiometer_ch_info = []; handles.sqd.axialgradiometer_data = []; handles.sqd.plannergradiometer_ch_no = []; handles.sqd.plannergradiometer_ch_info = []; handles.sqd.plannergradiometer_data = []; handles.sqd.eegchannel_ch_no = []; handles.sqd.eegchannel_data = []; handles.sqd.nullchannel_ch_no = []; handles.sqd.nullchannel_data = []; handles.sqd.selected_time = []; handles.sqd.sample_rate = []; handles.sqd.sample_count = []; handles.sqd.pretrigger_length = []; handles.sqd.matching_info = []; handles.sqd.source_info = []; handles.sqd.mri_info = []; handles.mri = [];
github
ZijingMao/baselineeegtest-master
encode_nifti1.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/encode_nifti1.m
4,870
utf_8
9cf92a03587c511a5cec2c8c76a3c2c3
function blob = encode_nifti1(H) %function blob = encode_nifti1(H) % % Encodes a NIFTI-1 header (=> raw 348 bytes (uint8)) from a Matlab structure % that matches the C struct defined in nifti1.h. % % WARNING: This function currently ignores endianness !!! % (C) 2010 S.Klanke blob = uint8(zeros(1,348)); if ~isstruct(H) error 'Input must be a structure'; end % see nift1.h for information on structure sizeof_hdr = int32(348); blob(1:4) = typecast(sizeof_hdr, 'uint8'); blob = setString(blob, 5, 14, H, 'data_type'); blob = setString(blob, 15, 32, H, 'db_name'); blob = setInt32( blob, 33, 36, H, 'extents'); blob = setInt16( blob, 37, 38, H, 'session_error'); blob = setInt8( blob, 39, 39, H, 'regular'); blob = setInt8( blob, 40, 40, H, 'dim_info'); dim = int16(H.dim(:)'); ndim = numel(dim); if ndim<1 || ndim>7 error 'Field "dim" must have 1..7 elements'; end dim = [int16(ndim) dim]; blob(41:(42+2*ndim)) = typecast(dim,'uint8'); blob = setSingle(blob, 57, 60, H, 'intent_p1'); blob = setSingle(blob, 61, 64, H, 'intent_p2'); blob = setSingle(blob, 65, 68, H, 'intent_p3'); blob = setInt16( blob, 69, 70, H, 'intent_code'); blob = setInt16( blob, 71, 72, H, 'datatype'); blob = setInt16( blob, 73, 74, H, 'bitpix'); blob = setInt16( blob, 75, 76, H, 'slice_start'); blob = setSingle(blob, 77, 80, H, 'qfac'); if isfield(H,'pixdim') pixdim = single(H.pixdim(:)'); ndim = numel(pixdim); if ndim<1 || ndim>7 error 'Field "pixdim" must have 1..7 elements'; end blob(81:(80+4*ndim)) = typecast(pixdim,'uint8'); end blob = setSingle(blob, 109, 112, H, 'vox_offset'); blob = setSingle(blob, 113, 116, H, 'scl_scope'); blob = setSingle(blob, 117, 120, H, 'scl_inter'); blob = setInt16( blob, 121, 122, H, 'slice_end'); blob = setInt8( blob, 123, 123, H, 'slice_code'); blob = setInt8( blob, 124, 124, H, 'xyzt_units'); blob = setSingle(blob, 125, 128, H, 'cal_max'); blob = setSingle(blob, 129, 132, H, 'cal_min'); blob = setSingle(blob, 133, 136, H, 'slice_duration'); blob = setSingle(blob, 137, 140, H, 'toffset'); blob = setInt32( blob, 141, 144, H, 'glmax'); blob = setInt32( blob, 145, 148, H, 'glmin'); blob = setString(blob, 149, 228, H, 'descrip'); blob = setString(blob, 229, 252, H, 'aux_file'); blob = setInt16( blob, 253, 254, H, 'qform_code'); blob = setInt16( blob, 255, 256, H, 'sform_code'); blob = setSingle(blob, 257, 260, H, 'quatern_b'); blob = setSingle(blob, 261, 264, H, 'quatern_c'); blob = setSingle(blob, 265, 268, H, 'quatern_d'); blob = setSingle(blob, 269, 272, H, 'quatern_x'); blob = setSingle(blob, 273, 276, H, 'quatern_y'); blob = setSingle(blob, 277, 280, H, 'quatern_z'); blob = setSingle(blob, 281, 296, H, 'srow_x'); blob = setSingle(blob, 297, 312, H, 'srow_y'); blob = setSingle(blob, 313, 328, H, 'srow_z'); blob = setString(blob, 329, 344, H, 'intent_name'); if ~isfield(H,'magic') blob(345:347) = uint8('ni1'); else blob = setString(blob, 345, 347, H, 'magic'); end function blob = setString(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = getfield(H, fieldname); ne = numel(F); mx = endidx - begidx +1; if ne > 0 if ~ischar(F) || ne > mx errmsg = sprintf('Field "data_type" must be a string of maximally %i characters.', mx); error(errmsg); end blob(begidx:(begidx+ne-1)) = uint8(F(:)'); end % set 32-bit integers (check #elements) function blob = setInt32(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int32(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8'); % set 16-bit integers (check #elements) function blob = setInt16(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int16(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 2; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+2*ne-1)) = typecast(F(:)', 'uint8'); % just 8-bit integers (check #elements) function blob = setInt8(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = int8(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1); if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+ne-1)) = typecast(F(:)', 'uint8'); % single precision floats function blob = setSingle(blob, begidx, endidx, H, fieldname) if ~isfield(H,fieldname) return end F = single(getfield(H, fieldname)); ne = numel(F); sp = (endidx - begidx +1) / 4; if ne~=sp errmsg = sprintf('Field "data_type" must be an array with exactly %i elements.', sp); error(errmsg); end blob(begidx:(begidx+4*ne-1)) = typecast(F(:)', 'uint8');
github
ZijingMao/baselineeegtest-master
avw_hdr_read.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/avw_hdr_read.m
16,668
utf_8
7cb599cd5b75177fed96189188822304
function [ avw, machine ] = avw_hdr_read(fileprefix, machine, verbose) % avw_hdr_read - read Analyze format data header (*.hdr) % % [ avw, machine ] = avw_hdr_read(fileprefix, [machine], [verbose]) % % fileprefix - string filename (without .hdr); the file name % can be given as a full path or relative to the % current directory. % % machine - a string, see machineformat in fread for details. % The default here is 'ieee-le' but the routine % will automatically switch between little and big % endian to read any such Analyze header. It % reports the appropriate machine format and can % return the machine value. % % avw.hdr - a struct, all fields returned from the header. % For details, find a good description on the web % or see the Analyze File Format pdf in the % mri_toolbox doc folder or read this .m file. % % verbose - the default is to output processing information to the command % window. If verbose = 0, this will not happen. % % This function is called by avw_img_read % % See also avw_hdr_write, avw_hdr_make, avw_view_hdr, avw_view % % $Revision: 7123 $ $Date: 2009/01/14 09:24:45 $ % Licence: GNU GPL, no express or implied warranties % History: 05/2002, [email protected] % The Analyze format and c code below is copyright % (c) Copyright, 1986-1995 % Biomedical Imaging Resource, Mayo Foundation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~exist('verbose','var'), verbose = 1; end if verbose, version = '[$Revision: 7123 $]'; fprintf('\nAVW_HDR_READ [v%s]\n',version(12:16)); tic; end if ~exist('fileprefix','var'), msg = sprintf('...no input fileprefix - see help avw_hdr_read\n\n'); error(msg); end if ~exist('machine','var'), machine = 'ieee-le'; end if findstr('.hdr',fileprefix), % fprintf('...removing .hdr extension from ''%s''\n',fileprefix); fileprefix = strrep(fileprefix,'.hdr',''); end if findstr('.img',fileprefix), % fprintf('...removing .img extension from ''%s''\n',fileprefix); fileprefix = strrep(fileprefix,'.img',''); end file = sprintf('%s.hdr',fileprefix); if exist(file), if verbose, fprintf('...reading %s Analyze format',machine); end fid = fopen(file,'r',machine); avw.hdr = read_header(fid,verbose); avw.fileprefix = fileprefix; fclose(fid); if ~isequal(avw.hdr.hk.sizeof_hdr,348), if verbose, fprintf('...failed.\n'); end % first try reading the opposite endian to 'machine' switch machine, case 'ieee-le', machine = 'ieee-be'; case 'ieee-be', machine = 'ieee-le'; end if verbose, fprintf('...reading %s Analyze format',machine); end fid = fopen(file,'r',machine); avw.hdr = read_header(fid,verbose); avw.fileprefix = fileprefix; fclose(fid); end if ~isequal(avw.hdr.hk.sizeof_hdr,348), % Now throw an error if verbose, fprintf('...failed.\n'); end msg = sprintf('...size of header not equal to 348 bytes!\n\n'); error(msg); end else msg = sprintf('...cannot find file %s.hdr\n\n',file); error(msg); end if verbose, t=toc; fprintf('...done (%5.2f sec).\n',t); end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ dsr ] = read_header(fid,verbose) % Original header structures - ANALYZE 7.5 %struct dsr % { % struct header_key hk; /* 0 + 40 */ % struct image_dimension dime; /* 40 + 108 */ % struct data_history hist; /* 148 + 200 */ % }; /* total= 348 bytes*/ dsr.hk = header_key(fid); dsr.dime = image_dimension(fid,verbose); dsr.hist = data_history(fid); return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [hk] = header_key(fid) % The required elements in the header_key substructure are: % % int sizeof_header Must indicate the byte size of the header file. % int extents Should be 16384, the image file is created as % contiguous with a minimum extent size. % char regular Must be 'r' to indicate that all images and % volumes are the same size. % Original header structures - ANALYZE 7.5 % struct header_key /* header key */ % { /* off + size */ % int sizeof_hdr /* 0 + 4 */ % char data_type[10]; /* 4 + 10 */ % char db_name[18]; /* 14 + 18 */ % int extents; /* 32 + 4 */ % short int session_error; /* 36 + 2 */ % char regular; /* 38 + 1 */ % char hkey_un0; /* 39 + 1 */ % }; /* total=40 bytes */ fseek(fid,0,'bof'); hk.sizeof_hdr = fread(fid, 1,'*int32'); % should be 348! hk.data_type = fread(fid,10,'*char')'; hk.db_name = fread(fid,18,'*char')'; hk.extents = fread(fid, 1,'*int32'); hk.session_error = fread(fid, 1,'*int16'); hk.regular = fread(fid, 1,'*char')'; % might be uint8 hk.hkey_un0 = fread(fid, 1,'*uint8')'; % check if this value was a char zero if hk.hkey_un0 == 48, hk.hkey_un0 = 0; end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ dime ] = image_dimension(fid,verbose) %struct image_dimension % { /* off + size */ % short int dim[8]; /* 0 + 16 */ % /* % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of *pixels* in an image row. % dim[2] Image Y dimension; number of *pixel rows* in slice. % dim[3] Volume Z dimension; number of *slices* in a volume. % dim[4] Time points; number of volumes in database % */ % char vox_units[4]; /* 16 + 4 */ % char cal_units[8]; /* 20 + 8 */ % short int unused1; /* 28 + 2 */ % short int datatype; /* 30 + 2 */ % short int bitpix; /* 32 + 2 */ % short int dim_un0; /* 34 + 2 */ % float pixdim[8]; /* 36 + 32 */ % /* % pixdim[] specifies the voxel dimensions: % pixdim[1] - voxel width, mm % pixdim[2] - voxel height, mm % pixdim[3] - slice thickness, mm % pixdim[4] - volume timing, in msec % ..etc % */ % float vox_offset; /* 68 + 4 */ % float roi_scale; /* 72 + 4 */ % float funused1; /* 76 + 4 */ % float funused2; /* 80 + 4 */ % float cal_max; /* 84 + 4 */ % float cal_min; /* 88 + 4 */ % int compressed; /* 92 + 4 */ % int verified; /* 96 + 4 */ % int glmax; /* 100 + 4 */ % int glmin; /* 104 + 4 */ % }; /* total=108 bytes */ dime.dim = fread(fid,8,'*int16')'; dime.vox_units = fread(fid,4,'*char')'; dime.cal_units = fread(fid,8,'*char')'; dime.unused1 = fread(fid,1,'*int16'); dime.datatype = fread(fid,1,'*int16'); dime.bitpix = fread(fid,1,'*int16'); dime.dim_un0 = fread(fid,1,'*int16'); dime.pixdim = fread(fid,8,'*float')'; dime.vox_offset = fread(fid,1,'*float'); dime.roi_scale = fread(fid,1,'*float'); dime.funused1 = fread(fid,1,'*float'); dime.funused2 = fread(fid,1,'*float'); dime.cal_max = fread(fid,1,'*float'); dime.cal_min = fread(fid,1,'*float'); dime.compressed = fread(fid,1,'*int32'); dime.verified = fread(fid,1,'*int32'); dime.glmax = fread(fid,1,'*int32'); dime.glmin = fread(fid,1,'*int32'); if dime.dim(1) < 4, % Number of dimensions in database; usually 4. if verbose, fprintf('...ensuring 4 dimensions in avw.hdr.dime.dim\n'); end dime.dim(1) = int16(4); end if dime.dim(5) < 1, % Time points; number of volumes in database if verbose, fprintf('...ensuring at least 1 volume in avw.hdr.dime.dim(5)\n'); end dime.dim(5) = int16(1); end return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ hist ] = data_history(fid) % Original header structures - ANALYZE 7.5 %struct data_history % { /* off + size */ % char descrip[80]; /* 0 + 80 */ % char aux_file[24]; /* 80 + 24 */ % char orient; /* 104 + 1 */ % char originator[10]; /* 105 + 10 */ % char generated[10]; /* 115 + 10 */ % char scannum[10]; /* 125 + 10 */ % char patient_id[10]; /* 135 + 10 */ % char exp_date[10]; /* 145 + 10 */ % char exp_time[10]; /* 155 + 10 */ % char hist_un0[3]; /* 165 + 3 */ % int views /* 168 + 4 */ % int vols_added; /* 172 + 4 */ % int start_field; /* 176 + 4 */ % int field_skip; /* 180 + 4 */ % int omax; /* 184 + 4 */ % int omin; /* 188 + 4 */ % int smax; /* 192 + 4 */ % int smin; /* 196 + 4 */ % }; /* total=200 bytes */ hist.descrip = fread(fid,80,'*char')'; hist.aux_file = fread(fid,24,'*char')'; hist.orient = fread(fid, 1,'*uint8'); % see note below on char hist.originator = fread(fid,10,'*char')'; hist.generated = fread(fid,10,'*char')'; hist.scannum = fread(fid,10,'*char')'; hist.patient_id = fread(fid,10,'*char')'; hist.exp_date = fread(fid,10,'*char')'; hist.exp_time = fread(fid,10,'*char')'; hist.hist_un0 = fread(fid, 3,'*char')'; hist.views = fread(fid, 1,'*int32'); hist.vols_added = fread(fid, 1,'*int32'); hist.start_field = fread(fid, 1,'*int32'); hist.field_skip = fread(fid, 1,'*int32'); hist.omax = fread(fid, 1,'*int32'); hist.omin = fread(fid, 1,'*int32'); hist.smax = fread(fid, 1,'*int32'); hist.smin = fread(fid, 1,'*int32'); % check if hist.orient was saved as ascii char value switch hist.orient, case 48, hist.orient = uint8(0); case 49, hist.orient = uint8(1); case 50, hist.orient = uint8(2); case 51, hist.orient = uint8(3); case 52, hist.orient = uint8(4); case 53, hist.orient = uint8(5); end return % Note on using char: % The 'char orient' field in the header is intended to % hold simply an 8-bit unsigned integer value, not the ASCII representation % of the character for that value. A single 'char' byte is often used to % represent an integer value in Analyze if the known value range doesn't % go beyond 0-255 - saves a byte over a short int, which may not mean % much in today's computing environments, but given that this format % has been around since the early 1980's, saving bytes here and there on % older systems was important! In this case, 'char' simply provides the % byte of storage - not an indicator of the format for what is stored in % this byte. Generally speaking, anytime a single 'char' is used, it is % probably meant to hold an 8-bit integer value, whereas if this has % been dimensioned as an array, then it is intended to hold an ASCII % character string, even if that was only a single character. % Denny <[email protected]> % Comments % The header format is flexible and can be extended for new % user-defined data types. The essential structures of the header % are the header_key and the image_dimension. % % The required elements in the header_key substructure are: % % int sizeof_header Must indicate the byte size of the header file. % int extents Should be 16384, the image file is created as % contiguous with a minimum extent size. % char regular Must be 'r' to indicate that all images and % volumes are the same size. % % The image_dimension substructure describes the organization and % size of the images. These elements enable the database to reference % images by volume and slice number. Explanation of each element follows: % % short int dim[ ]; /* Array of the image dimensions */ % % dim[0] Number of dimensions in database; usually 4. % dim[1] Image X dimension; number of pixels in an image row. % dim[2] Image Y dimension; number of pixel rows in slice. % dim[3] Volume Z dimension; number of slices in a volume. % dim[4] Time points; number of volumes in database. % dim[5] Undocumented. % dim[6] Undocumented. % dim[7] Undocumented. % % char vox_units[4] Specifies the spatial units of measure for a voxel. % char cal_units[8] Specifies the name of the calibration unit. % short int unused1 /* Unused */ % short int datatype /* Datatype for this image set */ % /*Acceptable values for datatype are*/ % #define DT_NONE 0 % #define DT_UNKNOWN 0 /*Unknown data type*/ % #define DT_BINARY 1 /*Binary ( 1 bit per voxel)*/ % #define DT_UNSIGNED_CHAR 2 /*Unsigned character ( 8 bits per voxel)*/ % #define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/ % #define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/ % #define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/ % #define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 floating point numbers)/* % #define DT_DOUBLE 64 /*Double precision (64 bits per voxel)*/ % #define DT_RGB 128 /*A Red-Green-Blue datatype*/ % #define DT_ALL 255 /*Undocumented*/ % % short int bitpix; /* Number of bits per pixel; 1, 8, 16, 32, or 64. */ % short int dim_un0; /* Unused */ % % float pixdim[]; Parallel array to dim[], giving real world measurements in mm and ms. % pixdim[0]; Pixel dimensions? % pixdim[1]; Voxel width in mm. % pixdim[2]; Voxel height in mm. % pixdim[3]; Slice thickness in mm. % pixdim[4]; timeslice in ms (ie, TR in fMRI). % pixdim[5]; Undocumented. % pixdim[6]; Undocumented. % pixdim[7]; Undocumented. % % float vox_offset; Byte offset in the .img file at which voxels start. This value can be % negative to specify that the absolute value is applied for every image % in the file. % % float roi_scale; Specifies the Region Of Interest scale? % float funused1; Undocumented. % float funused2; Undocumented. % % float cal_max; Specifies the upper bound of the range of calibration values. % float cal_min; Specifies the lower bound of the range of calibration values. % % int compressed; Undocumented. % int verified; Undocumented. % % int glmax; The maximum pixel value for the entire database. % int glmin; The minimum pixel value for the entire database. % %
github
ZijingMao/baselineeegtest-master
read_stl.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_stl.m
4,072
utf_8
f8ab163555c079a78445be6bc53cac39
function [pnt, tri, nrm] = read_stl(filename); % READ_STL reads a triangulation from an ascii or binary *.stl file, which % is a file format native to the stereolithography CAD software created by % 3D Systems. % % Use as % [pnt, tri, nrm] = read_stl(filename) % % The format is described at http://en.wikipedia.org/wiki/STL_(file_format) % % See also WRITE_STL % Copyright (C) 2006-2011, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_stl.m 7123 2012-12-06 21:21:38Z roboos $ fid = fopen(filename, 'rt'); % read a small section to determine whether it is ascii or binary % a binary STL file has an 80 byte asci header, followed by non-printable characters section = fread(fid, 160, 'uint8'); fseek(fid, 0, 'bof'); if printableascii(section) % the first 160 characters are printable ascii, so assume it is an ascii format % solid testsphere % facet normal -0.13 -0.13 -0.98 % outer loop % vertex 1.50000 1.50000 0.00000 % vertex 1.50000 1.11177 0.05111 % vertex 1.11177 1.50000 0.05111 % endloop % endfacet % ... ntri = 0; while ~feof(fid) line = fgetl(fid); ntri = ntri + ~isempty(findstr('facet normal', line)); end fseek(fid, 0, 'bof'); tri = zeros(ntri,3); nrm = zeros(ntri,3); pnt = zeros(ntri*3,3); line = fgetl(fid); name = sscanf(line, 'solid %s'); for i=1:ntri line1 = fgetl(fid); line2 = fgetl(fid); % outer loop line3 = fgetl(fid); line4 = fgetl(fid); line5 = fgetl(fid); line6 = fgetl(fid); % endloop line7 = fgetl(fid); % endfacet i1 = (i-1)*3+1; i2 = (i-1)*3+2; i3 = (i-1)*3+3; tri(i,:) = [i1 i2 i3]; dum = sscanf(strtrim(line1), 'facet normal %f %f %f'); nrm(i,:) = dum(:)'; dum = sscanf(strtrim(line3), 'vertex %f %f %f'); pnt(i1,:) = dum(:)'; dum = sscanf(strtrim(line4), 'vertex %f %f %f'); pnt(i2,:) = dum(:)'; dum = sscanf(strtrim(line5), 'vertex %f %f %f'); pnt(i3,:) = dum(:)'; end else % reopen the file in binary mode, which does not make a difference on % UNIX but it does on windows fclose(fid); fid = fopen(filename, 'rb'); fseek(fid, 80, 'bof'); % skip the ascii header ntri = fread(fid, 1, 'uint32'); tri = zeros(ntri,3); nrm = zeros(ntri,3); pnt = zeros(ntri*3,3); attr = zeros(ntri,1); for i=1:ntri i1 = (i-1)*3+1; i2 = (i-1)*3+2; i3 = (i-1)*3+3; tri(i,:) = [i1 i2 i3]; nrm(i,:) = fread(fid, 3, 'float32'); pnt(i1,:) = fread(fid, 3, 'float32'); pnt(i2,:) = fread(fid, 3, 'float32'); pnt(i3,:) = fread(fid, 3, 'float32'); attr(i) = fread(fid, 1, 'uint16'); % Attribute byte count, don't know what it is end % for each triangle end fclose(fid); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function retval = printableascii(num) % Codes 20hex (32dec) to 7Ehex (126dec), known as the printable characters, % represent letters, digits, punctuation marks, and a few miscellaneous % symbols. There are 95 printable characters in total. num = double(num); num(num==double(sprintf('\n'))) = double(sprintf(' ')); num(num==double(sprintf('\r'))) = double(sprintf(' ')); num(num==double(sprintf('\t'))) = double(sprintf(' ')); retval = all(num>=32 & num<=126);
github
ZijingMao/baselineeegtest-master
read_itab_mhd.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_itab_mhd.m
12,518
utf_8
d0ebd0b4e1de627d76cb523010d16ec7
function mhd = read_itab_mhd(filename) fid = fopen(filename, 'rb'); % Name of structure mhd.stname = fread(fid, [1 10], 'uint8=>char'); % Header identifier (VP_BIOMAG) mhd.stver = fread(fid, [1 8], 'uint8=>char'); % Header version mhd.stendian = fread(fid, [1 4], 'uint8=>char'); % LE (little endian) or BE (big endian) format % Subject's INFOs mhd.first_name = fread(fid, [1 32], 'uint8=>char'); % Subject's first name mhd.last_name = fread(fid, [1 32], 'uint8=>char'); % Subject's family name mhd.id = fread(fid, [1 32], 'uint8=>char'); % Subject's id mhd.notes = fread(fid, [1 256], 'uint8=>char'); % Notes on measurement % Other subj infos mhd.subj_info.sex = fread(fid, [1 1], 'uint8=>char'); % Sex (M or F) pad = fread(fid, [1 5], 'uint8'); mhd.subj_info.notes = fread(fid, [1 256], 'uint8=>char'); % Notes on subject mhd.subj_info.height = fread(fid, [1 1], 'float'); % Height in cm mhd.subj_info.weight = fread(fid, [1 1], 'float'); % Weight in kg mhd.subj_info.birthday = fread(fid, [1 1], 'int32'); % Birtday (1-31) mhd.subj_info.birthmonth = fread(fid, [1 1], 'int32'); % Birthmonth (1-12) mhd.subj_info.birthyear = fread(fid, [1 1], 'int32'); % Birthyear (1900-2002) % Data acquisition INFOs mhd.time = fread(fid, [1 12], 'uint8=>char'); % time (ascii) mhd.date = fread(fid, [1 16], 'uint8=>char'); % date (ascii) mhd.nchan = fread(fid, [1 1], 'int32'); % total number of channels mhd.nelech = fread(fid, [1 1], 'int32'); % number of electric channels mhd.nelerefch = fread(fid, [1 1], 'int32'); % number of electric reference channels mhd.nmagch = fread(fid, [1 1], 'int32'); % number of magnetic channels mhd.nmagrefch = fread(fid, [1 1], 'int32'); % number of magnetic reference channels mhd.nauxch = fread(fid, [1 1], 'int32'); % number of auxiliary channels mhd.nparamch = fread(fid, [1 1], 'int32'); % number of parameter channels mhd.ndigitch = fread(fid, [1 1], 'int32'); % number of digit channels mhd.nflagch = fread(fid, [1 1], 'int32'); % number of flag channels mhd.data_type = fread(fid, [1 1], 'int32'); % 0 - BE_SHORT (HP-PA, big endian) % 1 - BE_LONG (HP-PA, big endian) % 2 - BE_FLOAT (HP-PA, big endian) % 3 - LE_SHORT (Intel, little endian) % 4 - LE_LONG (Intel, little endian) % 5 - LE_FLOAT (Intel, little endian) % 6 - RTE_A_SHORT (HP-A900, big endian) % 7 - RTE_A_FLOAT (HP-A900, big endian) % 8 - ASCII mhd.smpfq = fread(fid, [1 1], 'single'); % sampling frequency in Hz mhd.hw_low_fr = fread(fid, [1 1], 'single'); % hw data acquisition low pass filter mhd.hw_hig_fr = fread(fid, [1 1], 'single'); % hw data acquisition high pass filter mhd.hw_comb = fread(fid, [1 1], 'int32'); % hw data acquisition 50 Hz filter (1-TRUE) mhd.sw_hig_tc = fread(fid, [1 1], 'single'); % sw data acquisition high pass time constant mhd.compensation= fread(fid, [1 1], 'int32'); % 0 - no compensation 1 - compensation mhd.ntpdata = fread(fid, [1 1], 'int32'); % total number of time points in data mhd.no_segments = fread(fid, [1 1], 'int32'); % Number of segments described in the segment structure % INFOs on different segments for i=1:5 mhd.sgmt(i).start = fread(fid, [1 1], 'int32'); % Starting time point from beginning of data mhd.sgmt(i).ntptot = fread(fid, [1 1], 'int32'); % Total number of time points mhd.sgmt(i).type = fread(fid, [1 1], 'int32'); mhd.sgmt(i).no_samples = fread(fid, [1 1], 'int32'); mhd.sgmt(i).st_sample = fread(fid, [1 1], 'int32'); end mhd.nsmpl = fread(fid, [1 1], 'int32'); % Overall number of samples % INFOs on different samples for i=1:4096 mhd.smpl(i).start = fread(fid, [1 1], 'int32'); % Starting time point from beginning of data mhd.smpl(i).ntptot = fread(fid, [1 1], 'int32'); % Total number of time points mhd.smpl(i).ntppre = fread(fid, [1 1], 'int32'); % Number of points in pretrigger mhd.smpl(i).type = fread(fid, [1 1], 'int32'); mhd.smpl(i).quality = fread(fid, [1 1], 'int32'); end mhd.nrefchan = fread(fid, [1 1], 'int32'); % number of reference channels mhd.ref_ch = fread(fid, [1 640], 'int32'); % reference channel list mhd.ntpref = fread(fid, [1 1], 'int32'); % total number of time points in reference % Header INFOs mhd.raw_header_type = fread(fid, [1 1], 'int32'); % 0 - Unknown header % 2 - rawfile (A900) % 3 - GE runfile header % 31 - ATB runfile header version 1.0 % 41 - IFN runfile header version 1.0 % 51 - BMDSys runfile header version 1.0 mhd.header_type = fread(fid, [1 1], 'int32'); % 0 - Unknown header % 2 - rawfile (A900) % 3 - GE runfile header % 4 - old header % 10 - 256ch normal header % 11 - 256ch master header % 20 - 640ch normal header % 21 - 640ch master header % 31 - ATB runfile header version 1.0 % 41 - IFN runfile header version 1.0 % 51 - BMDSys runfile header version 1.0 mhd.conf_file = fread(fid, [1 64], 'uint8=>char'); % Filename used for data acquisition configuration mhd.header_size = fread(fid, [1 1], 'int32'); % sizeof(header) at the time of file creation mhd.start_reference = fread(fid, [1 1], 'int32'); % start reference mhd.start_data = fread(fid, [1 1], 'int32'); % start data mhd.rawfile = fread(fid, [1 1], 'int32'); % 0 - not a rawfile 1 - rawfile mhd.multiplexed_data = fread(fid, [1 1], 'int32'); % 0 - FALSE 1 - TRUE mhd.isns = fread(fid, [1 1], 'int32'); % sensor code 1 - Single channel % 28 - Original Rome 28 ch. % 29 - .............. % .. - .............. % 45 - Updated Rome 28 ch. (spring 2009) % .. - .............. % .. - .............. % 55 - Original Chieti 55 ch. flat % 153 - Original Chieti 153 ch. helmet % 154 - Chieti 153 ch. helmet from Jan 2002 % Channel's INFOs for i=1:640 mhd.ch(i).type = fread(fid, [1 1], 'uint8'); pad = fread(fid, [1 3], 'uint8'); % type 0 - unknown % 1 - ele % 2 - mag % 4 - ele ref % 8 - mag ref % 16 - aux % 32 - param % 64 - digit % 128 - flag mhd.ch(i).number = fread(fid, [1 1], 'int32'); % number mhd.ch(i).label = fixstr(fread(fid, [1 16], 'uint8=>char')); % label mhd.ch(i).flag = fread(fid, [1 1], 'uint8'); pad = fread(fid, [1 3], 'uint8'); % on/off flag 0 - working channel % 1 - noisy channel % 2 - very noisy channel % 3 - broken channel mhd.ch(i).amvbit = fread(fid, [1 1], 'float'); % calibration from LSB to mV mhd.ch(i).calib = fread(fid, [1 1], 'float'); % calibration from mV to unit mhd.ch(i).unit = fread(fid, [1 6], 'uint8=>char'); % unit label (fT, uV, ...) pad = fread(fid, [1 2], 'uint8'); mhd.ch(i).ncoils = fread(fid, [1 1], 'int32'); % number of coils building up one channel mhd.ch(i).wgt = fread(fid, [1 10], 'float'); % weight of coils % position and orientation of coils for j=1:10 mhd.ch(i).position(j).r_s = fread(fid, [1 3], 'float'); mhd.ch(i).position(j).u_s = fread(fid, [1 3], 'float'); end end % Sensor position INFOs mhd.r_center = fread(fid, [1 3], 'float'); % sensor position in convenient format mhd.u_center = fread(fid, [1 3], 'float'); mhd.th_center = fread(fid, [1 1], 'float'); % sensor orientation as from markers fit mhd.fi_center= fread(fid, [1 1], 'float'); mhd.rotation_angle= fread(fid, [1 1], 'float'); mhd.cosdir = fread(fid, [3 3], 'float'); % for compatibility only mhd.irefsys = fread(fid, [1 1], 'int32'); % reference system 0 - sensor reference system % 1 - Polhemus % 2 - head3 % 3 - MEG % Marker positions for MRI integration mhd.num_markers = fread(fid, [1 1], 'int32'); % Total number of markers mhd.i_coil = fread(fid, [1 64], 'int32'); % Markers to be used to find sensor position mhd.marker = fread(fid, [3 64], 'float'); % Position of all the markers - MODIFIED VP mhd.best_chi = fread(fid, [1 1], 'float'); % Best chi_square value obtained in finding sensor position mhd.cup_vertex_center = fread(fid, [1 1], 'float'); % dist anc sensor cente vertex (as entered % from keyboard) mhd.cup_fi_center = fread(fid, [1 1], 'float'); % fi angle of sensor center mhd.cup_rotation_angle = fread(fid, [1 1], 'float'); % rotation angle of sensor center axis mhd.dist_a1_a2 = fread(fid, [1 1], 'float'); % head informations % (used to find subject's head dimensions) mhd.dist_inion_nasion = fread(fid, [1 1], 'float'); mhd.max_circ = fread(fid, [1 1], 'float'); mhd.nasion_vertex_inion = fread(fid, [1 1], 'float'); % Data analysis INFOs mhd.security = fread(fid, [1 1], 'int32'); % security flag mhd.ave_alignement = fread(fid, [1 1], 'int32'); % average data alignement 0 - FALSE % 1 - TRUE mhd.itri = fread(fid, [1 1], 'int32'); % trigger channel number mhd.ntpch = fread(fid, [1 1], 'int32'); % no. of time points per channel mhd.ntppre = fread(fid, [1 1], 'int32'); % no. of time points of pretrigger mhd.navrg = fread(fid, [1 1], 'int32'); % no. of averages mhd.nover = fread(fid, [1 1], 'int32'); % no. of discarded averages mhd.nave_filt = fread(fid, [1 1], 'int32'); % no. of applied filters % Filters used before average for i=1:15 mhd.ave_filt(i).type = fread(fid, [1 1], 'int32'); % type 0 - no filter % 1 - bandpass - param[0]: highpass freq % - param[1]: lowpass freq % 2 - notch - param[0]: notch freq 1 % param[1]: notch freq 2 % param[2]: notch freq 3 % param[3]: notch freq 4 % param[4]: span % 3 - artifact - param[0]: True/False % 4 - adaptive - param[0]: True/False % 5 - rectifier - param[0]: True/False % 6 - heart - param[0]: True/False % 7 - evoked - param[0]: True/False % 8 - derivate - param[0]: True/False % 9 - polarity - param[0]: True/False mhd.ave_filt(i).param = fread(fid, [1 5], 'float'); % up to 5 filter parameters end mhd.stdev = fread(fid, [1 1], 'int32'); % 0 - not present mhd.bas_start = fread(fid, [1 1], 'int32'); % starting data points for baseline mhd.bas_end = fread(fid, [1 1], 'int32'); % ending data points for baseline mhd.source_files = fread(fid, [1 32], 'int32'); % Progressive number of files (if more than one) % template INFOs mhd.ichtpl = fread(fid, [1 1], 'int32'); mhd.ntptpl = fread(fid, [1 1], 'int32'); mhd.ifitpl = fread(fid, [1 1], 'int32'); mhd.corlim = fread(fid, [1 1], 'float'); % Filters used before template for i=1:15 mhd.tpl_filt(i).type = fread(fid, [1 1], 'int32'); % type 0 - no filter % 1 - bandpass - param[0]: highpass freq % - param[1]: lowpass freq % 2 - notch - param[0]: notch freq 1 % param[1]: notch freq 2 % param[2]: notch freq 3 % param[3]: notch freq 4 % param[4]: span % 3 - artifact - param[0]: True/False % 4 - adaptive - param[0]: True/False % 5 - rectifier - param[0]: True/False % 6 - heart - param[0]: True/False % 7 - evoked - param[0]: True/False % 8 - derivate - param[0]: True/False % 9 - polarity - param[0]: True/False mhd.tpl_filt(i).param = fread(fid, [1 5], 'float'); % up to 5 filter parameters end % Just in case info mhd.dummy = fread(fid, [1 64], 'int32'); % there seems to be more dummy data at the end... fclose(fid); function str = fixstr(str) sel = find(str==0, 1, 'first'); if ~isempty(sel) str = str(1:sel-1); end
github
ZijingMao/baselineeegtest-master
read_plexon_plx.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_plexon_plx.m
20,344
utf_8
dd04c6311c617f6001b0b3938dac087a
function [varargout] = read_plexon_plx(filename, varargin) % READ_PLEXON_PLX reads header or data from a Plexon *.plx file, which % is a file containing action-potential (spike) timestamps and waveforms % (spike channels), event timestamps (event channels), and continuous % variable data (continuous A/D channels). % % Use as % [hdr] = read_plexon_plx(filename) % [dat] = read_plexon_plx(filename, ...) % [dat1, dat2, dat3, hdr] = read_plexon_plx(filename, ...) % % Optional input arguments should be specified in key-value pairs % 'header' = structure with header information % 'memmap' = 0 or 1 % 'feedback' = 0 or 1 % 'ChannelIndex' = number, or list of numbers (that will result in multiple outputs) % 'SlowChannelIndex' = number, or list of numbers (that will result in multiple outputs) % 'EventIndex' = number, or list of numbers (that will result in multiple outputs) % Copyright (C) 2007-2013, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_plexon_plx.m 8426 2013-08-26 09:48:07Z roboos $ % parse the optional input arguments hdr = ft_getopt(varargin, 'header'); memmap = ft_getopt(varargin, 'memmap', false); feedback = ft_getopt(varargin, 'feedback', true); ChannelIndex = ft_getopt(varargin, 'ChannelIndex'); % type 1 EventIndex = ft_getopt(varargin, 'EventIndex'); % type 4 SlowChannelIndex = ft_getopt(varargin, 'SlowChannelIndex'); % type 5 needhdr = isempty(hdr); % start with empty return values varargout = {}; % the datafile is little endian, hence it may be neccessary to swap bytes in % the memory mapped data stream depending on the CPU type of this computer if littleendian swapFcn = @(x) x; else swapFcn = @(x) swapbytes(x); end % read header info from file, use Matlabs for automatic byte-ordering fid = fopen(filename, 'r', 'ieee-le'); fseek(fid, 0, 'eof'); siz = ftell(fid); fseek(fid, 0, 'bof'); if needhdr if feedback, fprintf('reading header from %s\n', filename); end % a PLX file consists of a file header, channel headers, and data blocks hdr = PL_FileHeader(fid); for i=1:hdr.NumDSPChannels hdr.ChannelHeader(i) = PL_ChannelHeader(fid); end for i=1:hdr.NumEventChannels hdr.EventHeader(i) = PL_EventHeader(fid); end for i=1:hdr.NumSlowChannels hdr.SlowChannelHeader(i) = PL_SlowChannelHeader(fid); end hdr.DataOffset = ftell(fid); if memmap % open the file as meory mapped object, note that byte swapping may be needed mm = memmapfile(filename, 'offset', hdr.DataOffset, 'format', 'int16'); end dum = struct(... 'Type', [],... 'UpperByteOf5ByteTimestamp', [],... 'TimeStamp', [],... 'Channel', [],... 'Unit', [],... 'NumberOfWaveforms', [],... 'NumberOfWordsInWaveform', [] ... ); % read the header of each data block and remember its data offset in bytes Nblocks = 0; offset = hdr.DataOffset; % only used when reading from memmapped file hdr.DataBlockOffset = []; hdr.DataBlockHeader = dum; while offset<siz if Nblocks>=length(hdr.DataBlockOffset); % allocate another 1000 elements, this prevents continuous reallocation hdr.DataBlockOffset(Nblocks+10000) = 0; hdr.DataBlockHeader(Nblocks+10000) = dum; if feedback, fprintf('reading DataBlockHeader %4.1f%%\n', 100*(offset-hdr.DataOffset)/(siz-hdr.DataOffset)); end end Nblocks = Nblocks+1; if memmap % get the header information from the memory mapped file hdr.DataBlockOffset(Nblocks) = offset; hdr.DataBlockHeader(Nblocks) = PL_DataBlockHeader(mm, offset-hdr.DataOffset, swapFcn); % skip the header (16 bytes) and the data (int16 words) offset = offset + 16 + 2 * double(hdr.DataBlockHeader(Nblocks).NumberOfWordsInWaveform * hdr.DataBlockHeader(Nblocks).NumberOfWaveforms); else % read the header information from the file the traditional way hdr.DataBlockOffset(Nblocks) = offset; hdr.DataBlockHeader(Nblocks) = PL_DataBlockHeader(fid, [], swapFcn); fseek(fid, 2 * double(hdr.DataBlockHeader(Nblocks).NumberOfWordsInWaveform * hdr.DataBlockHeader(Nblocks).NumberOfWaveforms), 'cof'); % data consists of short integers offset = ftell(fid); end % if memmap end % this prints the final 100% if feedback, fprintf('reading DataBlockHeader %4.1f%%\n', 100*(offset-hdr.DataOffset)/(siz-hdr.DataOffset)); end % remove the allocated space that was not needed hdr.DataBlockOffset = hdr.DataBlockOffset(1:Nblocks); hdr.DataBlockHeader = hdr.DataBlockHeader(1:Nblocks); end % if needhdr %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the spike channel data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(ChannelIndex) if feedback, fprintf('reading spike data from %s\n', filename); end if memmap % open the file as meory mapped object, note that byte swapping may be needed mm = memmapfile(filename, 'offset', hdr.DataOffset, 'format', 'int16'); end type = [hdr.DataBlockHeader.Type]; chan = [hdr.DataBlockHeader.Channel]; ts = [hdr.DataBlockHeader.TimeStamp]; for i=1:length(ChannelIndex) % determine the data blocks with continuous data belonging to this channel sel = (type==1 & chan==hdr.ChannelHeader(ChannelIndex(i)).Channel); sel = find(sel); if isempty(sel) warning('spike channel %d contains no data', ChannelIndex(i)); varargin{end+1} = []; continue; end % the number of samples can potentially be different in each block num = double([hdr.DataBlockHeader(sel).NumberOfWordsInWaveform]) .* double([hdr.DataBlockHeader(sel).NumberOfWaveforms]); % check whether the number of samples per block makes sense if any(num~=num(1)) error('spike channel blocks with diffent number of samples'); end % allocate memory to hold the data buf = zeros(num(1), length(sel), 'int16'); if memmap % get the header information from the memory mapped file datbeg = double(hdr.DataBlockOffset(sel) - hdr.DataOffset)/2 + 8 + 1; % expressed in 2-byte words, minus the file header, skip the 16 byte block header datend = datbeg + num - 1; for j=1:length(sel) buf(:,j) = mm.Data(datbeg(j):datend(j)); end % optionally swap the bytes to correct for the endianness buf = swapFcn(buf); else % read the data from the file in the traditional way offset = double(hdr.DataBlockOffset(sel)) + 16; % expressed in bytes, skip the 16 byte block header for j=1:length(sel) fseek(fid, offset(j), 'bof'); buf(:,j) = fread(fid, num(j), 'int16'); end end % if memmap % remember the data for this channel varargout{i} = buf; end %for ChannelIndex end % if ChannelIndex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the continuous channel data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(SlowChannelIndex) if feedback, fprintf('reading continuous data from %s\n', filename); end if memmap % open the file as meory mapped object, note that byte swapping may be needed mm = memmapfile(filename, 'offset', hdr.DataOffset, 'format', 'int16'); end type = [hdr.DataBlockHeader.Type]; chan = [hdr.DataBlockHeader.Channel]; ts = [hdr.DataBlockHeader.TimeStamp]; for i=1:length(SlowChannelIndex) % determine the data blocks with continuous data belonging to this channel sel = (type==5 & chan==hdr.SlowChannelHeader(SlowChannelIndex(i)).Channel); sel = find(sel); if isempty(sel) error(sprintf('Continuous channel %d contains no data', SlowChannelIndex(i))); % warning('Continuous channel %d contains no data', SlowChannelIndex(i)); % varargin{end+1} = []; % continue; end % the number of samples can be different in each block num = double([hdr.DataBlockHeader(sel).NumberOfWordsInWaveform]) .* double([hdr.DataBlockHeader(sel).NumberOfWaveforms]); cumnum = cumsum([0 num]); % allocate memory to hold the data buf = zeros(1, cumnum(end), 'int16'); if memmap % get the header information from the memory mapped file datbeg = double(hdr.DataBlockOffset(sel) - hdr.DataOffset)/2 + 8 + 1; % expressed in 2-byte words, minus the file header, skip the 16 byte block header datend = datbeg + num - 1; for j=1:length(sel) bufbeg = cumnum(j)+1; bufend = cumnum(j+1); % copy the data from the memory mapped file into the continuous buffer buf(bufbeg:bufend) = mm.Data(datbeg(j):datend(j)); end % optionally swap the bytes to correct for the endianness buf = swapFcn(buf); else % read the data from the file in the traditional way offset = double(hdr.DataBlockOffset(sel)) + 16; % expressed in bytes, skip the 16 byte block header for j=1:length(sel) bufbeg = cumnum(j)+1; bufend = cumnum(j+1); % copy the data from the file into the continuous buffer fseek(fid, offset(j), 'bof'); buf(bufbeg:bufend) = fread(fid, num(j), 'int16'); end end % if memmap % remember the data for this channel varargout{i} = buf; end %for SlowChannelIndex end % if SlowChannelIndex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % read the event channel data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ~isempty(EventIndex) if feedback, fprintf('reading events from %s\n', filename); end type = [hdr.DataBlockHeader.Type]; unit = [hdr.DataBlockHeader.Unit]; chan = [hdr.DataBlockHeader.Channel]; ts = [hdr.DataBlockHeader.TimeStamp]; for i=1:length(EventIndex) % determine the data blocks with continuous data belonging to this channel sel = (type==4 & chan==hdr.EventHeader(EventIndex(i)).Channel); sel = find(sel); % all information is already contained in the DataBlockHeader, i.e. there is nothing to read if isempty(sel) warning('event channel %d contains no data', EventIndex(i)); end event.TimeStamp = ts(sel); event.Channel = chan(sel); event.Unit = unit(sel); varargout{i} = event; end % for EventIndex end % if EventIndex fclose(fid); % always return the header as last varargout{end+1} = hdr; return %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SUBFUNCTIONS for reading the different header elements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_FileHeader(fid) hdr.MagicNumber = fread(fid, 1, 'uint32=>uint32'); % = 0x58454c50; hdr.Version = fread(fid, 1, 'int32' ); % Version of the data format; determines which data items are valid hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); % User-supplied comment hdr.ADFrequency = fread(fid, 1, 'int32' ); % Timestamp frequency in hertz hdr.NumDSPChannels = fread(fid, 1, 'int32' ); % Number of DSP channel headers in the file hdr.NumEventChannels = fread(fid, 1, 'int32' ); % Number of Event channel headers in the file hdr.NumSlowChannels = fread(fid, 1, 'int32' ); % Number of A/D channel headers in the file hdr.NumPointsWave = fread(fid, 1, 'int32' ); % Number of data points in waveform hdr.NumPointsPreThr = fread(fid, 1, 'int32' ); % Number of data points before crossing the threshold hdr.Year = fread(fid, 1, 'int32' ); % Time/date when the data was acquired hdr.Month = fread(fid, 1, 'int32' ); hdr.Day = fread(fid, 1, 'int32' ); hdr.Hour = fread(fid, 1, 'int32' ); hdr.Minute = fread(fid, 1, 'int32' ); hdr.Second = fread(fid, 1, 'int32' ); hdr.FastRead = fread(fid, 1, 'int32' ); % reserved hdr.WaveformFreq = fread(fid, 1, 'int32' ); % waveform sampling rate; ADFrequency above is timestamp freq hdr.LastTimestamp = fread(fid, 1, 'double'); % duration of the experimental session, in ticks % The following 6 items are only valid if Version >= 103 hdr.Trodalness = fread(fid, 1, 'char' ); % 1 for single, 2 for stereotrode, 4 for tetrode hdr.DataTrodalness = fread(fid, 1, 'char' ); % trodalness of the data representation hdr.BitsPerSpikeSample = fread(fid, 1, 'char' ); % ADC resolution for spike waveforms in bits (usually 12) hdr.BitsPerSlowSample = fread(fid, 1, 'char' ); % ADC resolution for slow-channel data in bits (usually 12) hdr.SpikeMaxMagnitudeMV = fread(fid, 1, 'uint16'); % the zero-to-peak voltage in mV for spike waveform adc values (usually 3000) hdr.SlowMaxMagnitudeMV = fread(fid, 1, 'uint16'); % the zero-to-peak voltage in mV for slow-channel waveform adc values (usually 5000); Only valid if Version >= 105 (usually either 1000 or 500) % The following item is only valid if Version >= 105 hdr.SpikePreAmpGain = fread(fid, 1, 'uint16'); % so that this part of the header is 256 bytes hdr.Padding = fread(fid, 46, 'char' ); % so that this part of the header is 256 bytes % Counters for the number of timestamps and waveforms in each channel and unit. % Note that these only record the counts for the first 4 units in each channel. % channel numbers are 1-based - array entry at [0] is unused hdr.TSCounts = fread(fid, [5 130], 'int32' ); % number of timestamps[channel][unit] hdr.WFCounts = fread(fid, [5 130], 'int32' ); % number of waveforms[channel][unit] % Starting at index 300, the next array also records the number of samples for the % continuous channels. Note that since EVCounts has only 512 entries, continuous % channels above channel 211 do not have sample counts. hdr.EVCounts = fread(fid, 512, 'int32' ); % number of timestamps[event_number] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_ChannelHeader(fid) hdr.Name = fread(fid, [1 32], 'uint8=>char' ); % Name given to the DSP channel hdr.SIGName = fread(fid, [1 32], 'uint8=>char' ); % Name given to the corresponding SIG channel hdr.Channel = fread(fid, 1, 'int32' ); % DSP channel number, 1-based hdr.WFRate = fread(fid, 1, 'int32' ); % When MAP is doing waveform rate limiting, this is limit w/f per sec divided by 10 hdr.SIG = fread(fid, 1, 'int32' ); % SIG channel associated with this DSP channel 1 - based hdr.Ref = fread(fid, 1, 'int32' ); % SIG channel used as a Reference signal, 1- based hdr.Gain = fread(fid, 1, 'int32' ); % actual gain divided by SpikePreAmpGain. For pre version 105, actual gain divided by 1000. hdr.Filter = fread(fid, 1, 'int32' ); % 0 or 1 hdr.Threshold = fread(fid, 1, 'int32' ); % Threshold for spike detection in a/d values hdr.Method = fread(fid, 1, 'int32' ); % Method used for sorting units, 1 - boxes, 2 - templates hdr.NUnits = fread(fid, 1, 'int32' ); % number of sorted units hdr.Template = fread(fid, [64 5], 'int16' ); % Templates used for template sorting, in a/d values hdr.Fit = fread(fid, 5, 'int32' ); % Template fit hdr.SortWidth = fread(fid, 1, 'int32' ); % how many points to use in template sorting (template only) hdr.Boxes = reshape(fread(fid, 4*2*5, 'int16' ), [4 2 5]); % the boxes used in boxes sorting hdr.SortBeg = fread(fid, 1, 'int32' ); % beginning of the sorting window to use in template sorting (width defined by SortWidth) hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); hdr.Padding = fread(fid, 11, 'int32' ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_EventHeader(fid) hdr.Name = fread(fid, [1 32], 'uint8=>char' ); % name given to this event hdr.Channel = fread(fid, 1, 'int32' ); % event number, 1-based hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); hdr.Padding = fread(fid, 33, 'int32' ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_SlowChannelHeader(fid) hdr.Name = fread(fid, [1 32], 'uint8=>char' ); % name given to this channel hdr.Channel = fread(fid, 1, 'int32' ); % channel number, 0-based hdr.ADFreq = fread(fid, 1, 'int32' ); % digitization frequency hdr.Gain = fread(fid, 1, 'int32' ); % gain at the adc card hdr.Enabled = fread(fid, 1, 'int32' ); % whether this channel is enabled for taking data, 0 or 1 hdr.PreAmpGain = fread(fid, 1, 'int32' ); % gain at the preamp % As of Version 104, this indicates the spike channel (PL_ChannelHeader.Channel) of % a spike channel corresponding to this continuous data channel. % <=0 means no associated spike channel. hdr.SpikeChannel = fread(fid, 1, 'int32' ); hdr.Comment = fread(fid, [1 128], 'uint8=>char' ); hdr.Padding = fread(fid, 28, 'int32' ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hdr = PL_DataBlockHeader(fid, offset, swapFcn) % % this is the conventional code, it has been replaced by code that works % % with both regular and memmapped files % hdr.Type = fread(fid, 1, 'int16=>int16' ); % Data type; 1=spike, 4=Event, 5=continuous % hdr.UpperByteOf5ByteTimestamp = fread(fid, 1, 'uint16=>uint16' ); % Upper 8 bits of the 40 bit timestamp % hdr.TimeStamp = fread(fid, 1, 'uint32=>uint32' ); % Lower 32 bits of the 40 bit timestamp % hdr.Channel = fread(fid, 1, 'int16=>int16' ); % Channel number % hdr.Unit = fread(fid, 1, 'int16=>int16' ); % Sorted unit number; 0=unsorted % hdr.NumberOfWaveforms = fread(fid, 1, 'int16=>int16' ); % Number of waveforms in the data to folow, usually 0 or 1 % hdr.NumberOfWordsInWaveform = fread(fid, 1, 'int16=>int16' ); % Number of samples per waveform in the data to follow if isa(fid, 'memmapfile') mm = fid; datbeg = offset/2 + 1; % the offset is in bytes (minus the file header), the memory mapped file is indexed in int16 words datend = offset/2 + 8; buf = mm.Data(datbeg:datend); else buf = fread(fid, 8, 'int16=>int16'); end hdr.Type = swapFcn(buf(1)); hdr.UpperByteOf5ByteTimestamp = swapFcn(uint16(buf(2))); hdr.TimeStamp = swapFcn(typecast(buf([3 4]), 'uint32')); hdr.Channel = swapFcn(buf(5)); hdr.Unit = swapFcn(buf(6)); hdr.NumberOfWaveforms = swapFcn(buf(7)); hdr.NumberOfWordsInWaveform = swapFcn(buf(8));
github
ZijingMao/baselineeegtest-master
read_neurosim_evolution.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_neurosim_evolution.m
4,562
utf_8
e362fcc35f185715fe33ab48d889a0d9
function [hdr, dat] = read_neurosim_evolution(filename, varargin) % READ_NEUROSIM_EVOLUTION reads the "evolution" file that is written % by Jan van der Eerden's NeuroSim software. When a directory is used % as input, the default filename 'evolution' is read. % % Use as % [hdr, dat] = read_neurosim_evolution(filename, ...) % where additional options should come in key-value pairs and can include % Vonly = 0 or 1, only give the membrane potentials as output % headerOnly = 0 or 1, only read the header information (skip the data), automatically set to 1 if nargout==1 % % See also FT_READ_HEADER, FT_READ_DATA % Copyright (C) 2012 Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_neurosim_evolution.m 8776 2013-11-14 09:04:48Z roboos $ if isdir(filename) filename = fullfile(filename, 'evolution'); end Vonly = ft_getopt(varargin, 'Vonly',0); headerOnly = ft_getopt(varargin, 'headerOnly',0); if nargout<2 % make sure that when only one output is requested the header is returned headerOnly=true; end label = {}; orig = {}; fid = fopen(filename, 'rb'); % read the header line = '#'; ishdr=1; while ishdr==1 % find temporal information if strfind(lower(line),'start time') dum= regexp(line, 'time\s+(\d+.\d+E[+-]\d+)', 'tokens'); hdr.FirstTimeStamp = str2double(dum{1}{1}); end if strfind(lower(line),'time bin') dum= regexp(line, 'bin\s+(\d+.\d+E[+-]\d+)', 'tokens'); dt=str2double(dum{1}{1}); hdr.Fs= 1e3/dt; hdr.TimeStampPerSample=dt; end if strfind(lower(line),'end time') dum= regexp(line, 'time\s+(\d+.\d+E[+-]\d+)', 'tokens'); hdr.LastTimeStamp = str2double(dum{1}{1}); hdr.nSamples=int64((hdr.LastTimeStamp-hdr.FirstTimeStamp)/dt+1); end % parse the content of the line, determine the label for each column colid = sscanf(line, '# column %d:', 1); if ~isempty(colid) label{colid} = [num2str(colid) rmspace(line(find(line==':'):end))]; end offset = ftell(fid); % remember the file pointer position line = fgetl(fid); % get the next line if ~isempty(line) && line(1)~='#' && ~isempty(str2num(line)) % the data starts here, rewind the last line fseek(fid, offset, 'bof'); line = []; ishdr=0; else orig{end+1} = line; end end timelab=find(~cellfun('isempty',regexp(lower(label), 'time', 'match'))); if ~headerOnly % read the complete data dat = fscanf(fid, '%f', [length(label), inf]); hdr.nSamples = length(dat(timelab, :)); %overwrites the value written in the header with the actual number of samples found hdr.LastTimeStamp = dat(1,end); end fclose(fid); % only extract V_membrane if wanted if Vonly matchLab=regexp(label,'V of (\S+) neuron','start'); idx=find(~cellfun(@isempty,matchLab)); if isempty(idx) % most likely a multi compartment simulation matchLab=regexp(label,'V\S+ of (\S+) neuron','start'); idx=find(~cellfun(@isempty,matchLab)); end if ~headerOnly dat=dat([timelab idx],:); end label=label([timelab idx]); for n=2:length(label) % renumbering of the labels label{n}=[num2str(n) label{n}(regexp(label{n},': V'):end)]; end end % convert the header into fieldtrip style hdr.label = label(:); hdr.nChans = length(label); hdr.nSamplesPre = 0; hdr.nTrials = 1; % also store the original ascii header details hdr.orig = orig(:); [hdr.chanunit hdr.chantype] = deal(cell(length(label),1)); hdr.chantype(:) = {'evolution (neurosim)'}; hdr.chanunit(:) = {'unknown'}; function y=rmspace(x) % remove double spaces from string % (c) Bart Gips 2012 y=strtrim(x); [sbeg send]=regexp(y,' \s+'); for n=1:length(sbeg) y(sbeg(n):send(n)-1)=[]; end
github
ZijingMao/baselineeegtest-master
read_eeglabevent.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_eeglabevent.m
3,698
utf_8
6acdf266f18a8591ec4ac4582b3ef28c
% read_eeglabevent() - import EEGLAB dataset events % % Usage: % >> event = read_eeglabevent(filename, ...); % % Inputs: % filename - [string] file name % % Optional inputs: % 'header' - FILEIO structure header % % Outputs: % event - FILEIO toolbox event structure % % Author: Arnaud Delorme, SCCN, INC, UCSD, 2008- %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function event = read_eeglabevent(filename, varargin) if nargin < 1 help read_eeglabheader; return; end; hdr = ft_getopt(varargin, 'header'); if isempty(hdr) hdr = read_eeglabheader(filename); end event = []; % these will be the output in FieldTrip format oldevent = hdr.orig.event; % these are in EEGLAB format if ~isempty(oldevent) nameList=fieldnames(oldevent); else nameList=[]; end; nameList=setdiff(nameList,{'type','value','sample','offset','duration','latency'}); for index = 1:length(oldevent) if isfield(oldevent,'code') type = oldevent(index).code; elseif isfield(oldevent,'value') type = oldevent(index).value; else type = 'trigger'; end; % events can have a numeric or a string value if isfield(oldevent,'type') value = oldevent(index).type; else value = 'default'; end; % this is the sample number of the concatenated data to which the event corresponds sample = oldevent(index).latency; % a non-zero offset only applies to trial-events, i.e. in case the data is % segmented and each data segment needs to be represented as event. In % that case the offset corresponds to the baseline duration (times -1). offset = 0; if isfield(oldevent, 'duration') duration = oldevent(index).duration; else duration = 0; end; % add the current event in fieldtrip format event(index).type = type; % this is usually a string, e.g. 'trigger' or 'trial' event(index).value = value; % in case of a trigger, this is the value event(index).sample = sample; % this is the sample in the datafile at which the event happens event(index).offset = offset; % some events should be represented with a shifted time-axix, e.g. a trial with a baseline period event(index).duration = duration; % some events have a duration, such as a trial %add custom fields for iField=1:length(nameList) eval(['event(index).' nameList{iField} '=oldevent(index).' nameList{iField} ';']); end; end; if hdr.nTrials>1 % add the trials to the event structure for i=1:hdr.nTrials event(end+1).type = 'trial'; event(end ).sample = (i-1)*hdr.nSamples + 1; if isfield(oldevent,'setname') && (length(oldevent) == hdr.nTrials) event(end ).value = oldevent(i).setname; %accommodate Widmann's pop_grandaverage function else event(end ).value = []; end; event(end ).offset = -hdr.nSamplesPre; event(end ).duration = hdr.nSamples; end end
github
ZijingMao/baselineeegtest-master
read_bti_ascii.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/read_bti_ascii.m
2,300
utf_8
9144223206dfa96caa46025367ac07c8
function [file] = read_bti_ascii(filename) % READ_BTI_ASCII reads general data from a BTI configuration file % % The file should be formatted like % Group: % item1 : value1a value1b value1c % item2 : value2a value2b value2c % item3 : value3a value3b value3c % item4 : value4a value4b value4c % % Copyright (C) 2004, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: read_bti_ascii.m 8313 2013-07-15 09:31:42Z jansch $ fid = fopen(filename, 'r'); if fid==-1 error(sprintf('could not open file %s', filename)); end line = ''; while ischar(line) line = cleanline(fgetl(fid)) if isempty(line) | line==-1 | isempty(findstr(line, ':')) continue end % the line is not empty, which means that we have encountered a chunck of information if findstr(line, ':')~=length(line) [item, value] = strtok(line, ':'); value(1) = ' '; % remove the : value = strtrim(value); item = strtrim(item); item(findstr(item, '.')) = '_'; item(findstr(item, ' ')) = '_'; if ischar(item) eval(sprintf('file.%s = ''%s'';', item, value)); else eval(sprintf('file.%s = %s;', item, value)); end else subline = cleanline(fgetl(fid)); error, the rest has not been implemented (yet) end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function line = cleanline(line) if isempty(line) | line==-1 return end comment = findstr(line, '//'); if ~isempty(comment) line(min(comment):end) = ' '; end line = strtrim(line);
github
ZijingMao/baselineeegtest-master
openbdf.m
.m
baselineeegtest-master/External Software/EEGLAB/eeglab13_4_4b/plugins/Fileio150704/private/openbdf.m
6,812
utf_8
cb49358a2a955b165a5c50127c25e3d8
% openbdf() - Opens an BDF File (European Data Format for Biosignals) in MATLAB (R) % % Usage: % >> EDF=openedf(FILENAME) % % Note: About EDF -> www.biosemi.com/faq/file_format.htm % % Author: Alois Schloegl, 5.Nov.1998 % % See also: readedf() % Copyright (C) 1997-1998 by Alois Schloegl % [email protected] % Ver 2.20 18.Aug.1998 % Ver 2.21 10.Oct.1998 % Ver 2.30 5.Nov.1998 % % For use under Octave define the following function % function s=upper(s); s=toupper(s); end; % V2.12 Warning for missing Header information % V2.20 EDF.AS.* changed % V2.30 EDF.T0 made Y2K compatible until Year 2090 % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. % Name changed for bdf files Sept 6,2002 T.S. Lorig % Header updated for EEGLAB format (update web link too) - Arnaud Delorme 14 Oct 2002 function [DAT,H1]=openbdf(FILENAME) SLASH='/'; % defines Seperator for Subdirectories BSLASH=char(92); cname=computer; if cname(1:2)=='PC' SLASH=BSLASH; end; fid=fopen(FILENAME,'r','ieee-le'); if fid<0 fprintf(2,['Error LOADEDF: File ' FILENAME ' not found\n']); return; end; EDF.FILE.FID=fid; EDF.FILE.OPEN = 1; EDF.FileName = FILENAME; PPos=min([max(find(FILENAME=='.')) length(FILENAME)+1]); SPos=max([0 find((FILENAME=='/') | (FILENAME==BSLASH))]); EDF.FILE.Ext = FILENAME(PPos+1:length(FILENAME)); EDF.FILE.Name = FILENAME(SPos+1:PPos-1); if SPos==0 EDF.FILE.Path = pwd; else EDF.FILE.Path = FILENAME(1:SPos-1); end; EDF.FileName = [EDF.FILE.Path SLASH EDF.FILE.Name '.' EDF.FILE.Ext]; H1=char(fread(EDF.FILE.FID,256,'char')'); % EDF.VERSION=H1(1:8); % 8 Byte Versionsnummer %if 0 fprintf(2,'LOADEDF: WARNING Version EDF Format %i',ver); end; EDF.PID = deblank(H1(9:88)); % 80 Byte local patient identification EDF.RID = deblank(H1(89:168)); % 80 Byte local recording identification %EDF.H.StartDate = H1(169:176); % 8 Byte %EDF.H.StartTime = H1(177:184); % 8 Byte EDF.T0=[str2num(H1(168+[7 8])) str2num(H1(168+[4 5])) str2num(H1(168+[1 2])) str2num(H1(168+[9 10])) str2num(H1(168+[12 13])) str2num(H1(168+[15 16])) ]; % Y2K compatibility until year 2090 if EDF.VERSION(1)=='0' if EDF.T0(1) < 91 EDF.T0(1)=2000+EDF.T0(1); else EDF.T0(1)=1900+EDF.T0(1); end; else ; % in a future version, this is hopefully not needed end; EDF.HeadLen = str2num(H1(185:192)); % 8 Byte Length of Header % reserved = H1(193:236); % 44 Byte EDF.NRec = str2num(H1(237:244)); % 8 Byte # of data records EDF.Dur = str2num(H1(245:252)); % 8 Byte # duration of data record in sec EDF.NS = str2num(H1(253:256)); % 8 Byte # of signals EDF.Label = char(fread(EDF.FILE.FID,[16,EDF.NS],'char')'); EDF.Transducer = char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); EDF.PhysDim = char(fread(EDF.FILE.FID,[8,EDF.NS],'char')'); EDF.PhysMin= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.PhysMax= str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); EDF.DigMin = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); % EDF.DigMax = str2num(char(fread(EDF.FILE.FID,[8,EDF.NS],'char')')); % % check validity of DigMin and DigMax if (length(EDF.DigMin) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Digital Minimum\n'); EDF.DigMin = -(2^15)*ones(EDF.NS,1); end if (length(EDF.DigMax) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Digital Maximum\n'); EDF.DigMax = (2^15-1)*ones(EDF.NS,1); end if (any(EDF.DigMin >= EDF.DigMax)) fprintf(2,'Warning OPENEDF: Digital Minimum larger than Maximum\n'); end % check validity of PhysMin and PhysMax if (length(EDF.PhysMin) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Physical Minimum\n'); EDF.PhysMin = EDF.DigMin; end if (length(EDF.PhysMax) ~= EDF.NS) fprintf(2,'Warning OPENEDF: Failing Physical Maximum\n'); EDF.PhysMax = EDF.DigMax; end if (any(EDF.PhysMin >= EDF.PhysMax)) fprintf(2,'Warning OPENEDF: Physical Minimum larger than Maximum\n'); EDF.PhysMin = EDF.DigMin; EDF.PhysMax = EDF.DigMax; end EDF.PreFilt= char(fread(EDF.FILE.FID,[80,EDF.NS],'char')'); % tmp = fread(EDF.FILE.FID,[8,EDF.NS],'char')'; % samples per data record EDF.SPR = str2num(char(tmp)); % samples per data record fseek(EDF.FILE.FID,32*EDF.NS,0); EDF.Cal = (EDF.PhysMax-EDF.PhysMin)./ ... (EDF.DigMax-EDF.DigMin); EDF.Off = EDF.PhysMin - EDF.Cal .* EDF.DigMin; tmp = find(EDF.Cal < 0); EDF.Cal(tmp) = ones(size(tmp)); EDF.Off(tmp) = zeros(size(tmp)); EDF.Calib=[EDF.Off';(diag(EDF.Cal))]; %EDF.Calib=sparse(diag([1; EDF.Cal])); %EDF.Calib(1,2:EDF.NS+1)=EDF.Off'; EDF.SampleRate = EDF.SPR / EDF.Dur; EDF.FILE.POS = ftell(EDF.FILE.FID); if EDF.NRec == -1 % unknown record size, determine correct NRec fseek(EDF.FILE.FID, 0, 'eof'); endpos = ftell(EDF.FILE.FID); EDF.NRec = floor((endpos - EDF.FILE.POS) / (sum(EDF.SPR) * 2)); fseek(EDF.FILE.FID, EDF.FILE.POS, 'bof'); H1(237:244)=sprintf('%-8i',EDF.NRec); % write number of records end; EDF.Chan_Select=(EDF.SPR==max(EDF.SPR)); for k=1:EDF.NS if EDF.Chan_Select(k) EDF.ChanTyp(k)='N'; else EDF.ChanTyp(k)=' '; end; if findstr(upper(EDF.Label(k,:)),'ECG') EDF.ChanTyp(k)='C'; elseif findstr(upper(EDF.Label(k,:)),'EKG') EDF.ChanTyp(k)='C'; elseif findstr(upper(EDF.Label(k,:)),'EEG') EDF.ChanTyp(k)='E'; elseif findstr(upper(EDF.Label(k,:)),'EOG') EDF.ChanTyp(k)='O'; elseif findstr(upper(EDF.Label(k,:)),'EMG') EDF.ChanTyp(k)='M'; end; end; EDF.AS.spb = sum(EDF.SPR); % Samples per Block bi=[0;cumsum(EDF.SPR)]; idx=[];idx2=[]; for k=1:EDF.NS, idx2=[idx2, (k-1)*max(EDF.SPR)+(1:EDF.SPR(k))]; end; maxspr=max(EDF.SPR); idx3=zeros(EDF.NS*maxspr,1); for k=1:EDF.NS, idx3(maxspr*(k-1)+(1:maxspr))=bi(k)+ceil((1:maxspr)'/maxspr*EDF.SPR(k));end; %EDF.AS.bi=bi; EDF.AS.IDX2=idx2; %EDF.AS.IDX3=idx3; DAT.Head=EDF; DAT.MX.ReRef=1; %DAT.MX=feval('loadxcm',EDF); return;
github
ZijingMao/baselineeegtest-master
topoplot.m
.m
baselineeegtest-master/VisualizationFilters/External EEGLAB functions/topoplot.m
65,383
utf_8
0710c0959c950ba5e133559a71e28eb8
% topoplot() - plot a topographic map of a scalp data field in a 2-D circular view % (looking down at the top of the head) using interpolation on a fine % cartesian grid. Can also show specified channnel location(s), or return % an interpolated value at an arbitrary scalp location (see 'noplot'). % By default, channel locations below head center (arc_length 0.5) are % shown in a 'skirt' outside the cartoon head (see 'plotrad' and 'headrad' % options below). Nose is at top of plot; left is left; right is right. % Using option 'plotgrid', the plot may be one or more rectangular grids. % Usage: % >> topoplot(datavector, EEG.chanlocs); % plot a map using an EEG chanlocs structure % >> topoplot(datavector, 'my_chan.locs'); % read a channel locations file and plot a map % >> topoplot('example'); % give an example of an electrode location file % >> [h grid_or_val plotrad_or_grid, xmesh, ymesh]= ... % topoplot(datavector, chan_locs, 'Input1','Value1', ...); % Required Inputs: % datavector - single vector of channel values. Else, if a vector of selected subset % (int) channel numbers -> mark their location(s) using 'style' 'blank'. % chan_locs - name of an EEG electrode position file (>> topoplot example). % Else, an EEG.chanlocs structure (>> help readlocs or >> topoplot example) % Optional inputs: % 'maplimits' - 'absmax' -> scale map colors to +/- the absolute-max (makes green 0); % 'maxmin' -> scale colors to the data range (makes green mid-range); % [lo.hi] -> use user-definined lo/hi limits % {default: 'absmax'} % 'style' - 'map' -> plot colored map only % 'contour' -> plot contour lines only % 'both' -> plot both colored map and contour lines % 'fill' -> plot constant color between contour lines % 'blank' -> plot electrode locations only {default: 'both'} % 'electrodes' - 'on','off','labels','numbers','ptslabels','ptsnumbers'. To set the 'pts' % marker,,see 'Plot detail options' below. {default: 'on' -> mark electrode % locations with points ('.') unless more than 64 channels, then 'off'}. % 'plotchans' - [vector] channel numbers (indices) to use in making the head plot. % {default: [] -> plot all chans} % 'chantype' - cell array of channel type(s) to plot. Will also accept a single quoted % string type. Channel type for channel k is field EEG.chanlocs(k).type. % If present, overrides 'plotchans' and also 'chaninfo' with field % 'chantype'. Ex. 'EEG' or {'EEG','EOG'} {default: all, or 'plotchans' arg} % 'plotgrid' - [channels] Plot channel data in one or more rectangular grids, as % specified by [channels], a position matrix of channel numbers defining % the topographic locations of the channels in the grid. Zero values are % given the figure background color; negative integers, the color of the % polarity-reversed channel values. Ex: >> figure; ... % >> topoplot(values,'chanlocs','plotgrid',[11 12 0; 13 14 15]); % % Plot a (2,3) grid of data values from channels 11-15 with one empty % grid cell (top right) {default: no grid plot} % 'nosedir' - ['+X'|'-X'|'+Y'|'-Y'] direction of nose {default: '+X'} % 'chaninfo' - [struct] optional structure containing fields 'nosedir', 'plotrad' % and/or 'chantype'. See these (separate) field definitions above, below. % {default: nosedir +X, plotrad 0.5, all channels} % 'plotrad' - [0.15<=float<=1.0] plotting radius = max channel arc_length to plot. % See >> topoplot example. If plotrad > 0.5, chans with arc_length > 0.5 % (i.e. below ears-eyes) are plotted in a circular 'skirt' outside the % cartoon head. See 'intrad' below. {default: max(max(chanlocs.radius),0.5); % If the chanlocs structure includes a field chanlocs.plotrad, its value % is used by default}. % 'headrad' - [0.15<=float<=1.0] drawing radius (arc_length) for the cartoon head. % NOTE: Only headrad = 0.5 is anatomically correct! 0 -> don't draw head; % 'rim' -> show cartoon head at outer edge of the plot {default: 0.5} % 'intrad' - [0.15<=float<=1.0] radius of the scalp map interpolation area (square or % disk, see 'intsquare' below). Interpolate electrodes in this area and use % this limit to define boundaries of the scalp map interpolated data matrix % {default: max channel location radius} % 'intsquare' - ['on'|'off'] 'on' -> Interpolate values at electrodes located in the whole % square containing the (radius intrad) interpolation disk; 'off' -> Interpolate % values from electrodes shown in the interpolation disk only {default: 'on'}. % 'conv' - ['on'|'off'] Show map interpolation only out to the convext hull of % the electrode locations to minimize extrapolation. {default: 'off'} % 'noplot' - ['on'|'off'|[rad theta]] do not plot (but return interpolated data). % Else, if [rad theta] are coordinates of a (possibly missing) channel, % returns interpolated value for channel location. For more info, % see >> topoplot 'example' {default: 'off'} % 'verbose' - ['on'|'off'] comment on operations on command line {default: 'on'}. % % Plot detail options: % 'drawaxis' - ['on'|'off'] draw axis on the top left corner. % 'emarker' - Matlab marker char | {markerchar color size linewidth} char, else cell array % specifying the electrode 'pts' marker. Ex: {'s','r',32,1} -> 32-point solid % red square. {default: {'.','k',[],1} where marker size ([]) depends on the number % of channels plotted}. % 'emarker2' - {markchans}|{markchans marker color size linewidth} cell array specifying % an alternate marker for specified 'plotchans'. Ex: {[3 17],'s','g'} % {default: none, or if {markchans} only are specified, then {markchans,'o','r',10,1}} % 'hcolor' - color of the cartoon head. Use 'hcolor','none' to plot no head. {default: 'k' = black} % 'shading' - 'flat','interp' {default: 'flat'} % 'numcontour' - number of contour lines {default: 6} % 'contourvals' - values for contour {default: same as input values} % 'pmask' - values for masking topoplot. Array of zeros and 1 of the same size as the input % value array {default: []} % 'color' - color of the contours {default: dark grey} % 'whitebk ' - ('on'|'off') make the background color white (e.g., to print empty plotgrid channels) % {default: 'off'} % 'gridscale' - [int > 32] size (nrows) of interpolated scalp map data matrix {default: 67} % 'colormap' - (n,3) any size colormap {default: existing colormap} % 'circgrid' - [int > 100] number of elements (angles) in head and border circles {201} % % Dipole plotting options: % 'dipole' - [xi yi xe ye ze] plot dipole on the top of the scalp map % from coordinate (xi,yi) to coordinates (xe,ye,ze) (dipole head % model has radius 1). If several rows, plot one dipole per row. % Coordinates returned by dipplot() may be used. Can accept % an EEG.dipfit.model structure (See >> help dipplot). % Ex: ,'dipole',EEG.dipfit.model(17) % Plot dipole(s) for comp. 17. % 'dipnorm' - ['on'|'off'] normalize dipole length {default: 'on'}. % 'diporient' - [-1|1] invert dipole orientation {default: 1}. % 'diplen' - [real] scale dipole length {default: 1}. % 'dipscale' - [real] scale dipole size {default: 1}. % 'dipsphere' - [real] size of the dipole sphere. {default: 85 mm}. % 'dipcolor' - [color] dipole color as Matlab code code or [r g b] vector % {default: 'k' = black}. % Outputs: % h - handle of the colored surface. If no surface is plotted, % return "gca", the handle of the current plot. % grid_or_val - [matrix] the interpolated data image (with off-head points = NaN). % Else, single interpolated value at the specified 'noplot' arg channel % location ([rad theta]), if any. % plotrad_or_grid - IF grid image returned above, then the 'plotrad' radius of the grid. % Else, the grid image % xmesh, ymesh - x and y values of the returned grid (above) % % Chan_locs format: % See >> topoplot 'example' % % Examples: % % To plot channel locations only: % >> figure; topoplot([],EEG.chanlocs,'style','blank','electrodes','labelpoint','chaninfo',EEG.chaninfo); % % Notes: - To change the plot map masking ring to a new figure background color, % >> set(findobj(gca,'type','patch'),'facecolor',get(gcf,'color')) % - Topoplots may be rotated. From the commandline >> view([deg 90]) {default: [0 90]) % % Authors: Andy Spydell, Colin Humphries, Arnaud Delorme & Scott Makeig % CNL / Salk Institute, 8/1996-/10/2001; SCCN/INC/UCSD, Nov. 2001 - % % See also: timtopo(), envtopo() % Deprecated options: % 'shrink' - ['on'|'off'|'force'|factor] Deprecated. 'on' -> If max channel arc_length % > 0.5, shrink electrode coordinates towards vertex to plot all channels % by making max arc_length 0.5. 'force' -> Normalize arc_length % so the channel max is 0.5. factor -> Apply a specified shrink % factor (range (0,1) = shrink fraction). {default: 'off'} % 'electcolor' {'k'} ... electrode marking details and their {defaults}. % 'emarker' {'.'}|'emarkersize' {14}|'emarkersizemark' {40}|'efontsize' {var} - % electrode marking details and their {defaults}. % 'ecolor' - color of the electrode markers {default: 'k' = black} % 'interplimits' - ['electrodes'|'head'] 'electrodes'-> interpolate the electrode grid; % 'head'-> interpolate the whole disk {default: 'head'}. % Unimplemented future options: % Copyright (C) Colin Humphries & Scott Makeig, CNL / Salk Institute, Aug, 1996 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % Topoplot Version 2.1 % Early development history: % Begun by Andy Spydell and Scott Makeig, NHRC, 7-23-96 % 8-96 Revised by Colin Humphries, CNL / Salk Institute, La Jolla CA % -changed surf command to imagesc (faster) % -can now handle arbitrary scaling of electrode distances % -can now handle non integer angles in chan_locs % 4-4-97 Revised again by Colin Humphries, reformatted by SM % -added parameters % -changed chan_locs format % 2-26-98 Revised by Colin % -changed image back to surface command % -added fill and blank styles % -removed extra background colormap entry (now use any colormap) % -added parameters for electrode colors and labels % -now each topoplot axes use the caxis command again. % -removed OUTPUT parameter % 3-11-98 changed default emarkersize, improve help msg -sm % 5-24-01 made default emarkersize vary with number of channels -sm % 01-25-02 reformated help & license, added link -ad % 03-15-02 added readlocs and the use of eloc input structure -ad % 03-25-02 added 'labelpoint' options and allow Values=[] -ad &sm % 03-25-02 added details to "Unknown parameter" warning -sm & ad function [handle,Zi,grid,Xi,Yi] = topoplot(Values,loc_file,varargin) % %%%%%%%%%%%%%%%%%%%%%%%% Set defaults %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % icadefs % read defaults MAXTOPOPLOTCHANS and DEFAULT_ELOC and BACKCOLOR if ~exist('BACKCOLOR') % if icadefs.m does not define BACKCOLOR BACKCOLOR = [.93 .96 1]; % EEGLAB standard end whitebk = 'off'; % by default, make gridplot background color = EEGLAB screen background color plotgrid = 'off'; plotchans = []; noplot = 'off'; handle = []; Zi = []; chanval = NaN; rmax = 0.5; % actual head radius - Don't change this! INTERPLIMITS = 'head'; % head, electrodes INTSQUARE = 'on'; % default, interpolate electrodes located though the whole square containing % the plotting disk default_intrad = 1; % indicator for (no) specified intrad MAPLIMITS = 'absmax'; % absmax, maxmin, [values] GRID_SCALE = 67; % plot map on a 67X67 grid CIRCGRID = 201; % number of angles to use in drawing circles AXHEADFAC = 1.3; % head to axes scaling factor CONTOURNUM = 6; % number of contour levels to plot STYLE = 'both'; % default 'style': both,straight,fill,contour,blank HEADCOLOR = [0 0 0]; % default head color (black) CCOLOR = [0.2 0.2 0.2]; % default contour color ELECTRODES = []; % default 'electrodes': on|off|label - set below MAXDEFAULTSHOWLOCS = 64;% if more channels than this, don't show electrode locations by default EMARKER = '.'; % mark electrode locations with small disks ECOLOR = [0 0 0]; % default electrode color = black EMARKERSIZE = []; % default depends on number of electrodes, set in code EMARKERLINEWIDTH = 1; % default edge linewidth for emarkers EMARKERSIZE1CHAN = 20; % default selected channel location marker size EMARKERCOLOR1CHAN = 'red'; % selected channel location marker color EMARKER2CHANS = []; % mark subset of electrode locations with small disks EMARKER2 = 'o'; % mark subset of electrode locations with small disks EMARKER2COLOR = 'r'; % mark subset of electrode locations with small disks EMARKERSIZE2 = 10; % default selected channel location marker size EMARKER2LINEWIDTH = 1; EFSIZE = get(0,'DefaultAxesFontSize'); % use current default fontsize for electrode labels HLINEWIDTH = 1.7; % default linewidth for head, nose, ears BLANKINGRINGWIDTH = .035;% width of the blanking ring HEADRINGWIDTH = .007;% width of the cartoon head ring SHADING = 'flat'; % default 'shading': flat|interp shrinkfactor = []; % shrink mode (dprecated) intrad = []; % default interpolation square is to outermost electrode (<=1.0) plotrad = []; % plotting radius ([] = auto, based on outermost channel location) headrad = []; % default plotting radius for cartoon head is 0.5 squeezefac = 1.0; MINPLOTRAD = 0.15; % can't make a topoplot with smaller plotrad (contours fail) VERBOSE = 'off'; MASKSURF = 'off'; CONVHULL = 'off'; % dont mask outside the electrodes convex hull DRAWAXIS = 'off'; CHOOSECHANTYPE = 0; ContourVals = Values; PMASKFLAG = 0; %%%%%% Dipole defaults %%%%%%%%%%%% DIPOLE = []; DIPNORM = 'on'; DIPSPHERE = 85; DIPLEN = 1; DIPSCALE = 1; DIPORIENT = 1; DIPCOLOR = [0 0 0]; NOSEDIR = '+X'; CHANINFO = []; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%%%%%%%%%%%%%%%%%%%% Handle arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if nargin< 1 help topoplot; return end % calling topoplot from Fieldtrip % ------------------------------- fieldtrip = 0; if nargin < 2, loc_file = []; end; if isstruct(Values) | ~isstruct(loc_file), fieldtrip == 1; end; if isstr(loc_file), if exist(loc_file) ~= 2, fieldtrip == 1; end; end; if fieldtrip disp('Calling topoplot from Fieldtrip'); dir1 = which('topoplot'); dir1 = fileparts(dir1); dir2 = which('electrodenormalize'); dir2 = fileparts(dir2); addpath(dir2); try, topoplot(Values, loc_file, varargin{:}); catch, end; addpath(dir1); return; end; nargs = nargin; if nargs == 1 if isstr(Values) if any(strcmp(lower(Values),{'example','demo'})) fprintf(['This is an example of an electrode location file,\n',... 'an ascii file consisting of the following four columns:\n',... ' channel_number degrees arc_length channel_name\n\n',... 'Example:\n',... ' 1 -18 .352 Fp1 \n',... ' 2 18 .352 Fp2 \n',... ' 5 -90 .181 C3 \n',... ' 6 90 .181 C4 \n',... ' 7 -90 .500 A1 \n',... ' 8 90 .500 A2 \n',... ' 9 -142 .231 P3 \n',... '10 142 .231 P4 \n',... '11 0 .181 Fz \n',... '12 0 0 Cz \n',... '13 180 .181 Pz \n\n',... ... 'In topoplot() coordinates, 0 deg. points to the nose, positive\n',... 'angles point to the right hemisphere, and negative to the left.\n',... 'The model head sphere has a circumference of 2; the vertex\n',... '(Cz) has arc_length 0. Locations with arc_length > 0.5 are below\n',... 'head center and are plotted outside the head cartoon.\n',... 'Option plotrad controls how much of this lower-head "skirt" is shown.\n',... 'Option headrad controls if and where the cartoon head will be drawn.\n',... 'Option intrad controls how many channels will be included in the interpolation.\n',... ]) return end end end if nargs < 2 loc_file = DEFAULT_ELOC; if ~exist(loc_file) fprintf('default locations file "%s" not found - specify chan_locs in topoplot() call.\n',loc_file) error(' ') end end if isempty(loc_file) loc_file = 0; end if isnumeric(loc_file) & loc_file == 0 loc_file = DEFAULT_ELOC; end if nargs > 2 if ~(round(nargs/2) == nargs/2) error('Odd number of input arguments??') end for i = 1:2:length(varargin) Param = varargin{i}; Value = varargin{i+1}; if ~isstr(Param) error('Flag arguments must be strings') end Param = lower(Param); switch Param case 'conv' CONVHULL = lower(Value); if ~strcmp(CONVHULL,'on') & ~strcmp(CONVHULL,'off') error('Value of ''conv'' must be ''on'' or ''off''.'); end case 'colormap' if size(Value,2)~=3 error('Colormap must be a n x 3 matrix') end colormap(Value) case 'intsquare' INTSQUARE = lower(Value); if ~strcmp(INTSQUARE,'on') & ~strcmp(INTSQUARE,'off') error('Value of ''intsquare'' must be ''on'' or ''off''.'); end case {'interplimits','headlimits'} if ~isstr(Value) error('''interplimits'' value must be a string') end Value = lower(Value); if ~strcmp(Value,'electrodes') & ~strcmp(Value,'head') error('Incorrect value for interplimits') end INTERPLIMITS = Value; case 'verbose' VERBOSE = Value; case 'nosedir' NOSEDIR = Value; if isempty(strmatch(lower(NOSEDIR), { '+x', '-x', '+y', '-y' })) error('Invalid nose direction'); end; case 'chaninfo' CHANINFO = Value; if isfield(CHANINFO, 'nosedir'), NOSEDIR = CHANINFO.nosedir; end; if isfield(CHANINFO, 'shrink' ), shrinkfactor = CHANINFO.shrink; end; if isfield(CHANINFO, 'plotrad') & isempty(plotrad), plotrad = CHANINFO.plotrad; end; if isfield(CHANINFO, 'chantype') chantype = CHANINFO.chantype; if ischar(chantype), chantype = cellstr(chantype); end CHOOSECHANTYPE = 1; end case 'chantype' chantype = Value; CHOOSECHANTYPE = 1; if ischar(chantype), chantype = cellstr(chantype); end if ~iscell(chantype), error('chantype must be cell array. e.g. {''EEG'', ''EOG''}'); end case 'drawaxis' DRAWAXIS = Value; case 'maplimits' MAPLIMITS = Value; case 'masksurf' MASKSURF = Value; case 'circgrid' CIRCGRID = Value; if isstr(CIRCGRID) | CIRCGRID<100 error('''circgrid'' value must be an int > 100'); end case 'style' STYLE = lower(Value); case 'numcontour' CONTOURNUM = Value; case 'electrodes' ELECTRODES = lower(Value); if strcmpi(ELECTRODES,'pointlabels') | strcmpi(ELECTRODES,'ptslabels') ... | strcmpi(ELECTRODES,'labelspts') | strcmpi(ELECTRODES,'ptlabels') ... | strcmpi(ELECTRODES,'labelpts') ELECTRODES = 'labelpoint'; % backwards compatability elseif strcmpi(ELECTRODES,'pointnumbers') | strcmpi(ELECTRODES,'ptsnumbers') ... | strcmpi(ELECTRODES,'numberspts') | strcmpi(ELECTRODES,'ptnumbers') ... | strcmpi(ELECTRODES,'numberpts') | strcmpi(ELECTRODES,'ptsnums') ... | strcmpi(ELECTRODES,'numspts') ELECTRODES = 'numpoint'; % backwards compatability elseif strcmpi(ELECTRODES,'nums') ELECTRODES = 'numbers'; % backwards compatability elseif strcmpi(ELECTRODES,'pts') ELECTRODES = 'on'; % backwards compatability elseif ~strcmp(ELECTRODES,'off') ... & ~strcmpi(ELECTRODES,'on') ... & ~strcmp(ELECTRODES,'labels') ... & ~strcmpi(ELECTRODES,'numbers') ... & ~strcmpi(ELECTRODES,'labelpoint') ... & ~strcmpi(ELECTRODES,'numpoint') error('Unknown value for keyword ''electrodes'''); end case 'dipole' DIPOLE = Value; case 'dipsphere' DIPSPHERE = Value; case 'dipnorm' DIPNORM = Value; case 'diplen' DIPLEN = Value; case 'dipscale' DIPSCALE = Value; case 'contourvals' ContourVals = Value; case 'pmask' ContourVals = Value; PMASKFLAG = 1; case 'diporient' DIPORIENT = Value; case 'dipcolor' DIPCOLOR = Value; case 'emarker' if ischar(Value) EMARKER = Value; elseif ~iscell(Value) | length(Value) > 4 error('''emarker'' argument must be a cell array {marker color size linewidth}') else EMARKER = Value{1}; end if length(Value) > 1 ECOLOR = Value{2}; end if length(Value) > 2 EMARKERSIZE2 = Value{3}; end if length(Value) > 3 EMARKERLINEWIDTH = Value{4}; end case 'emarker2' if ~iscell(Value) | length(Value) > 5 error('''emarker2'' argument must be a cell array {chans marker color size linewidth}') end EMARKER2CHANS = abs(Value{1}); % ignore channels < 0 if length(Value) > 1 EMARKER2 = Value{2}; end if length(Value) > 2 EMARKER2COLOR = Value{3}; end if length(Value) > 3 EMARKERSIZE2 = Value{4}; end if length(Value) > 4 EMARKER2LINEWIDTH = Value{5}; end case 'shrink' shrinkfactor = Value; case 'intrad' intrad = Value; if isstr(intrad) | (intrad < MINPLOTRAD | intrad > 1) error('intrad argument should be a number between 0.15 and 1.0'); end case 'plotrad' plotrad = Value; if isstr(plotrad) | (plotrad < MINPLOTRAD | plotrad > 1) error('plotrad argument should be a number between 0.15 and 1.0'); end case 'headrad' headrad = Value; if isstr(headrad) & ( strcmpi(headrad,'off') | strcmpi(headrad,'none') ) headrad = 0; % undocumented 'no head' alternatives end if isempty(headrad) % [] -> none also headrad = 0; end if ~isstr(headrad) if ~(headrad==0) & (headrad < MINPLOTRAD | headrad>1) error('bad value for headrad'); end elseif ~strcmpi(headrad,'rim') error('bad value for headrad'); end case {'headcolor','hcolor'} HEADCOLOR = Value; case {'contourcolor','ccolor'} CCOLOR = Value; case {'electcolor','ecolor'} ECOLOR = Value; case {'emarkersize','emsize'} EMARKERSIZE = Value; case {'emarkersize1chan','emarkersizemark'} EMARKERSIZE1CHAN= Value; case {'efontsize','efsize'} EFSIZE = Value; case 'shading' SHADING = lower(Value); if ~any(strcmp(SHADING,{'flat','interp'})) error('Invalid shading parameter') end case 'noplot' noplot = Value; if ~isstr(noplot) if length(noplot) ~= 2 error('''noplot'' location should be [radius, angle]') else chanrad = noplot(1); chantheta = noplot(2); noplot = 'on'; end end case 'gridscale' GRID_SCALE = Value; if isstr(GRID_SCALE) | GRID_SCALE ~= round(GRID_SCALE) | GRID_SCALE < 32 error('''gridscale'' value must be integer > 32.'); end case {'plotgrid','gridplot'} plotgrid = 'on'; gridchans = Value; case 'plotchans' plotchans = Value(:); if find(plotchans<=0) error('''plotchans'' values must be > 0'); end % if max(abs(plotchans))>max(Values) | max(abs(plotchans))>length(Values) -sm ??? case {'whitebk','whiteback','forprint'} whitebk = Value; otherwise error(['Unknown input parameter ''' Param ''' ???']) end end end if strcmpi(whitebk, 'on') BACKCOLOR = [ 1 1 1 ]; end; cmap = colormap; cmaplen = size(cmap,1); if strcmp(STYLE,'blank') % else if Values holds numbers of channels to mark if length(Values) < length(loc_file) ContourVals = zeros(1,length(loc_file)); ContourVals(Values) = 1; Values = ContourVals; end; end; % %%%%%%%%%%%%%%%%%%%%%%%%%%% test args for plotting an electrode grid %%%%%%%%%%%%%%%%%%%%%% % if strcmp(plotgrid,'on') STYLE = 'grid'; gchans = sort(find(abs(gridchans(:))>0)); % if setdiff(gchans,unique(gchans)) % fprintf('topoplot() warning: ''plotgrid'' channel matrix has duplicate channels\n'); % end if ~isempty(plotchans) if intersect(gchans,abs(plotchans)) fprintf('topoplot() warning: ''plotgrid'' and ''plotchans'' have channels in common\n'); end end end % %%%%%%%%%%%%%%%%%%%%%%%%%%% misc arg tests %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if isempty(ELECTRODES) % if electrode labeling not specified if length(Values) > MAXDEFAULTSHOWLOCS % if more channels than default max ELECTRODES = 'off'; % don't show electrodes else % else if fewer chans, ELECTRODES = 'on'; % do end end if isempty(Values) STYLE = 'blank'; end [r,c] = size(Values); if r>1 & c>1, error('input data must be a single vector'); end Values = Values(:); % make Values a column vector ContourVals = ContourVals(:); % values for contour if ~isempty(intrad) & ~isempty(plotrad) & intrad < plotrad error('intrad must be >= plotrad'); end if ~strcmpi(STYLE,'grid') % if not plot grid only % %%%%%%%%%%%%%%%%%%%% Read the channel location information %%%%%%%%%%%%%%%%%%%%%%%% % if isstr(loc_file) [tmpeloc labels Th Rd indices] = readlocs( loc_file); elseif isstruct(loc_file) % a locs struct [tmpeloc labels Th Rd indices] = readlocs( loc_file ); % Note: Th and Rd correspond to indices channels-with-coordinates only else error('loc_file must be a EEG.locs struct or locs filename'); end Th = pi/180*Th; % convert degrees to radians allchansind = 1:length(Th); if ~isempty(plotchans) if max(plotchans) > length(Th) error('''plotchans'' values must be <= max channel index'); end end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% channels to plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if ~isempty(plotchans) plotchans = intersect(plotchans, indices); end; if ~isempty(Values) & ~strcmpi( STYLE, 'blank') & isempty(plotchans) plotchans = indices; end if isempty(plotchans) & strcmpi( STYLE, 'blank') plotchans = indices; end % %%%%%%%%%%%%%%%%%%%%%%%%%%% filter for channel type(s), if specified %%%%%%%%%%%%%%%%%%%%% % if CHOOSECHANTYPE, newplotchans = eeg_chantype(loc_file,chantype); plotchans = intersect(newplotchans, plotchans); end % %%%%%%%%%%%%%%%%%%%%%%%%%%% filter channels used for components %%%%%%%%%%%%%%%%%%%%% % if isfield(CHANINFO, 'icachansind') & ~isempty(Values) & length(Values) ~= length(tmpeloc) % test if ICA component % --------------------- if length(CHANINFO.icachansind) == length(Values) % if only a subset of channels are to be plotted % and ICA components also use a subject of channel % we must find the new indices for these channels plotchans = intersect(CHANINFO.icachansind, plotchans); tmpvals = zeros(1, length(tmpeloc)); tmpvals(CHANINFO.icachansind) = Values; Values = tmpvals; tmpvals = zeros(1, length(tmpeloc)); tmpvals(CHANINFO.icachansind) = ContourVals; ContourVals = tmpvals; end; end; % %%%%%%%%%%%%%%%%%%% last channel is reference? %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if length(tmpeloc) == length(Values) + 1 % remove last channel if necessary % (common reference channel) if plotchans(end) == length(tmpeloc) plotchans(end) = []; end; end; % %%%%%%%%%%%%%%%%%%% remove infinite and NaN values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if length(Values) > 1 inds = union(find(isnan(Values)), find(isinf(Values))); % NaN and Inf values plotchans = setdiff(plotchans, inds); end; if strcmp(plotgrid,'on') plotchans = setxor(plotchans,gchans); % remove grid chans from head plotchans end [x,y] = pol2cart(Th,Rd); % transform electrode locations from polar to cartesian coordinates plotchans = abs(plotchans); % reverse indicated channel polarities allchansind = allchansind(plotchans); Th = Th(plotchans); Rd = Rd(plotchans); x = x(plotchans); y = y(plotchans); labels = labels(plotchans); % remove labels for electrodes without locations labels = strvcat(labels); % make a label string matrix if ~isempty(Values) & length(Values) > 1 Values = Values(plotchans); ContourVals = ContourVals(plotchans); end; % %%%%%%%%%%%%%%%%%% Read plotting radius from chanlocs %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if isempty(plotrad) & isfield(tmpeloc, 'plotrad'), plotrad = tmpeloc(1).plotrad; if isstr(plotrad) % plotrad shouldn't be a string plotrad = str2num(plotrad) % just checking end if plotrad < MINPLOTRAD | plotrad > 1.0 fprintf('Bad value (%g) for plotrad.\n',plotrad); error(' '); end if strcmpi(VERBOSE,'on') & ~isempty(plotrad) fprintf('Plotting radius plotrad (%g) set from EEG.chanlocs.\n',plotrad); end end; if isempty(plotrad) plotrad = min(1.0,max(Rd)*1.02); % default: just outside the outermost electrode location plotrad = max(plotrad,0.5); % default: plot out to the 0.5 head boundary end % don't plot channels with Rd > 1 (below head) if isempty(intrad) default_intrad = 1; % indicator for (no) specified intrad intrad = min(1.0,max(Rd)*1.02); % default: just outside the outermost electrode location else default_intrad = 0; % indicator for (no) specified intrad if plotrad > intrad plotrad = intrad; end end % don't interpolate channels with Rd > 1 (below head) if isstr(plotrad) | plotrad < MINPLOTRAD | plotrad > 1.0 error('plotrad must be between 0.15 and 1.0'); end % %%%%%%%%%%%%%%%%%%%%%%% Set radius of head cartoon %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if isempty(headrad) % never set -> defaults if plotrad >= rmax headrad = rmax; % (anatomically correct) else % if plotrad < rmax headrad = 0; % don't plot head if strcmpi(VERBOSE, 'on') fprintf('topoplot(): not plotting cartoon head since plotrad (%5.4g) < 0.5\n',... plotrad); end end elseif strcmpi(headrad,'rim') % force plotting at rim of map headrad = plotrad; end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Shrink mode %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if ~isempty(shrinkfactor) | isfield(tmpeloc, 'shrink'), if isempty(shrinkfactor) & isfield(tmpeloc, 'shrink'), shrinkfactor = tmpeloc(1).shrink; if strcmpi(VERBOSE,'on') if isstr(shrinkfactor) fprintf('Automatically shrinking coordinates to lie above the head perimter.\n'); else fprintf('Automatically shrinking coordinates by %3.2f\n', shrinkfactor); end; end end; if isstr(shrinkfactor) if strcmpi(shrinkfactor, 'on') | strcmpi(shrinkfactor, 'force') | strcmpi(shrinkfactor, 'auto') if abs(headrad-rmax) > 1e-2 fprintf(' NOTE -> the head cartoon will NOT accurately indicate the actual electrode locations\n'); end if strcmpi(VERBOSE,'on') fprintf(' Shrink flag -> plotting cartoon head at plotrad\n'); end headrad = plotrad; % plot head around outer electrodes, no matter if 0.5 or not end else % apply shrinkfactor plotrad = rmax/(1-shrinkfactor); headrad = plotrad; % make deprecated 'shrink' mode plot if strcmpi(VERBOSE,'on') fprintf(' %g%% shrink applied.'); if abs(headrad-rmax) > 1e-2 fprintf(' Warning: With this "shrink" setting, the cartoon head will NOT be anatomically correct.\n'); else fprintf('\n'); end end end end; % if shrink % %%%%%%%%%%%%%%%%% Issue warning if headrad ~= rmax %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if headrad ~= 0.5 & strcmpi(VERBOSE, 'on') fprintf(' NB: Plotting map using ''plotrad'' %-4.3g,',plotrad); fprintf( ' ''headrad'' %-4.3g\n',headrad); fprintf('Warning: The plotting radius of the cartoon head is NOT anatomically correct (0.5).\n') end % %%%%%%%%%%%%%%%%%%%%% Find plotting channels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % pltchans = find(Rd <= plotrad); % plot channels inside plotting circle if strcmpi(INTSQUARE,'on') % interpolate channels in the radius intrad square intchans = find(x <= intrad & y <= intrad); % interpolate and plot channels inside interpolation square else intchans = find(Rd <= intrad); % interpolate channels in the radius intrad circle only end % %%%%%%%%%%%%%%%%%%%%% Eliminate channels not plotted %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % allx = x; ally = y; intchans; % interpolate using only the 'intchans' channels pltchans; % plot using only indicated 'plotchans' channels if length(pltchans) < length(Rd) & strcmpi(VERBOSE, 'on') fprintf('Interpolating %d and plotting %d of the %d scalp electrodes.\n', ... length(intchans),length(pltchans),length(Rd)); end; % fprintf('topoplot(): plotting %d channels\n',length(pltchans)); if ~isempty(EMARKER2CHANS) if strcmpi(STYLE,'blank') error('emarker2 not defined for style ''blank'' - use marking channel numbers in place of data'); else % mark1chans and mark2chans are subsets of pltchans for markers 1 and 2 [tmp1 mark1chans tmp2] = setxor(pltchans,EMARKER2CHANS); [tmp3 tmp4 mark2chans] = intersect(EMARKER2CHANS,pltchans); end end if ~isempty(Values) if length(Values) == length(Th) % if as many map Values as channel locs intValues = Values(intchans); intContourVals = ContourVals(intchans); Values = Values(pltchans); ContourVals = ContourVals(pltchans); end; end; % now channel parameters and values all refer to plotting channels only allchansind = allchansind(pltchans); intTh = Th(intchans); % eliminate channels outside the interpolation area intRd = Rd(intchans); intx = x(intchans); inty = y(intchans); Th = Th(pltchans); % eliminate channels outside the plotting area Rd = Rd(pltchans); x = x(pltchans); y = y(pltchans); labels= labels(pltchans,:); % %%%%%%%%%%%%%%% Squeeze channel locations to <= rmax %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % squeezefac = rmax/plotrad; intRd = intRd*squeezefac; % squeeze electrode arc_lengths towards the vertex Rd = Rd*squeezefac; % squeeze electrode arc_lengths towards the vertex % to plot all inside the head cartoon intx = intx*squeezefac; inty = inty*squeezefac; x = x*squeezefac; y = y*squeezefac; allx = allx*squeezefac; ally = ally*squeezefac; % Note: Now outermost channel will be plotted just inside rmax else % if strcmpi(STYLE,'grid') intx = rmax; inty=rmax; end % if ~strcmpi(STYLE,'grid') % %%%%%%%%%%%%%%%% rotate channels based on chaninfo %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if strcmpi(lower(NOSEDIR), '+x') rotate = 0; else if strcmpi(lower(NOSEDIR), '+y') rotate = 3*pi/2; elseif strcmpi(lower(NOSEDIR), '-x') rotate = pi; else rotate = pi/2; end; allcoords = (inty + intx*sqrt(-1))*exp(sqrt(-1)*rotate); intx = imag(allcoords); inty = real(allcoords); allcoords = (ally + allx*sqrt(-1))*exp(sqrt(-1)*rotate); allx = imag(allcoords); ally = real(allcoords); allcoords = (y + x*sqrt(-1))*exp(sqrt(-1)*rotate); x = imag(allcoords); y = real(allcoords); end; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Make the plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if ~strcmpi(STYLE,'blank') % if draw interpolated scalp map if ~strcmpi(STYLE,'grid') % not a rectangular channel grid % %%%%%%%%%%%%%%%% Find limits for interpolation %%%%%%%%%%%%%%%%%%%%%%%%%%%% % if default_intrad % if no specified intrad if strcmpi(INTERPLIMITS,'head') % intrad is 'head' xmin = min(-rmax,min(intx)); xmax = max(rmax,max(intx)); ymin = min(-rmax,min(inty)); ymax = max(rmax,max(inty)); else % INTERPLIMITS = rectangle containing electrodes -- DEPRECATED OPTION! xmin = max(-rmax,min(intx)); xmax = min(rmax,max(intx)); ymin = max(-rmax,min(inty)); ymax = min(rmax,max(inty)); end else % some other intrad specified xmin = -intrad*squeezefac; xmax = intrad*squeezefac; % use the specified intrad value ymin = -intrad*squeezefac; ymax = intrad*squeezefac; end % %%%%%%%%%%%%%%%%%%%%%%% Interpolate scalp map data %%%%%%%%%%%%%%%%%%%%%%%% % xi = linspace(xmin,xmax,GRID_SCALE); % x-axis description (row vector) yi = linspace(ymin,ymax,GRID_SCALE); % y-axis description (row vector) try [Xi,Yi,Zi] = griddata(inty,intx,intValues,yi',xi,'invdist'); % interpolate data [Xi,Yi,ZiC] = griddata(inty,intx,intContourVals,yi',xi,'invdist'); % interpolate data catch, [Xi,Yi,Zi] = griddata(inty,intx,intValues',yi,xi'); % interpolate data (Octave) [Xi,Yi,ZiC] = griddata(inty,intx,intContourVals',yi,xi'); % interpolate data end; % %%%%%%%%%%%%%%%%%%%%%%% Mask out data outside the head %%%%%%%%%%%%%%%%%%%%% % mask = (sqrt(Xi.^2 + Yi.^2) <= rmax); % mask outside the plotting circle ii = find(mask == 0); Zi(ii) = NaN; % mask non-plotting voxels with NaNs ZiC(ii) = NaN; % mask non-plotting voxels with NaNs grid = plotrad; % unless 'noplot', then 3rd output arg is plotrad % %%%%%%%%%% Return interpolated value at designated scalp location %%%%%%%%%% % if exist('chanrad') % optional first argument to 'noplot' chantheta = (chantheta/360)*2*pi; chancoords = round(ceil(GRID_SCALE/2)+GRID_SCALE/2*2*chanrad*[cos(-chantheta),... -sin(-chantheta)]); if chancoords(1)<1 ... | chancoords(1) > GRID_SCALE ... | chancoords(2)<1 ... | chancoords(2)>GRID_SCALE error('designated ''noplot'' channel out of bounds') else chanval = Zi(chancoords(1),chancoords(2)); grid = Zi; Zi = chanval; % return interpolated value instead of Zi end end % %%%%%%%%%%%%%%%%%%%%%%%%%% Return interpolated image only %%%%%%%%%%%%%%%%% % if strcmpi(noplot, 'on') if strcmpi(VERBOSE,'on') fprintf('topoplot(): no plot requested.\n') end return; end % %%%%%%%%%%%%%%%%%%%%%%% Calculate colormap limits %%%%%%%%%%%%%%%%%%%%%%%%%% % if isstr(MAPLIMITS) if strcmp(MAPLIMITS,'absmax') amax = max(max(abs(Zi))); amin = -amax; elseif strcmp(MAPLIMITS,'maxmin') | strcmp(MAPLIMITS,'minmax') amin = min(min(Zi)); amax = max(max(Zi)); else error('unknown ''maplimits'' value.'); end elseif length(MAPLIMITS) == 2 amin = MAPLIMITS(1); amax = MAPLIMITS(2); else error('unknown ''maplimits'' value'); end delta = xi(2)-xi(1); % length of grid entry end % if ~strcmpi(STYLE,'grid') % %%%%%%%%%%%%%%%%%%%%%%%%%% Scale the axes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %cla % clear current axis hold on h = gca; % uses current axes % instead of default larger AXHEADFAC if squeezefac<0.92 & plotrad-headrad > 0.05 % (size of head in axes) AXHEADFAC = 1.05; % do not leave room for external ears if head cartoon % shrunk enough by the 'skirt' option end set(gca,'Xlim',[-rmax rmax]*AXHEADFAC,'Ylim',[-rmax rmax]*AXHEADFAC); % specify size of head axes in gca unsh = (GRID_SCALE+1)/GRID_SCALE; % un-shrink the effects of 'interp' SHADING % %%%%%%%%%%%%%%%%%%%%%%%% Plot grid only %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if strcmpi(STYLE,'grid') % plot grid only % % The goal below is to make the grid cells square - not yet achieved in all cases? -sm % g1 = size(gridchans,1); g2 = size(gridchans,2); gmax = max([g1 g2]); Xi = linspace(-rmax*g2/gmax,rmax*g2/gmax,g1+1); Xi = Xi+rmax/g1; Xi = Xi(1:end-1); Yi = linspace(-rmax*g1/gmax,rmax*g1/gmax,g2+1); Yi = Yi+rmax/g2; Yi = Yi(1:end-1); Yi = Yi(end:-1:1); % by trial and error! % %%%%%%%%%%% collect the gridchans values %%%%%%%%%%%%%%%%%%%%%%%%%%% % gridvalues = zeros(size(gridchans)); for j=1:size(gridchans,1) for k=1:size(gridchans,2) gc = gridchans(j,k); if gc > 0 gridvalues(j,k) = Values(gc); elseif gc < 0 gridvalues(j,k) = -Values(gc); else gridvalues(j,k) = nan; % not-a-number = no value end end end % %%%%%%%%%%% reset color limits for grid plot %%%%%%%%%%%%%%%%%%%%%%%%% % if isstr(MAPLIMITS) if strcmp(MAPLIMITS,'maxmin') | strcmp(MAPLIMITS,'minmax') amin = min(min(gridvalues(~isnan(gridvalues)))); amax = max(max(gridvalues(~isnan(gridvalues)))); elseif strcmp(MAPLIMITS,'absmax') % 11/21/2005 Toby edit % This should now work as specified. Before it only crashed (using % "plotgrid" and "maplimits>absmax" options). amax = max(max(abs(gridvalues(~isnan(gridvalues))))); amin = -amax; %amin = -max(max(abs([amin amax]))); %amax = max(max(abs([amin amax]))); else error('unknown ''maplimits'' value'); end elseif length(MAPLIMITS) == 2 amin = MAPLIMITS(1); amax = MAPLIMITS(2); else error('unknown ''maplimits'' value'); end % %%%%%%%%%% explicitly compute grid colors, allowing BACKCOLOR %%%%%% % gridvalues = 1+floor(cmaplen*(gridvalues-amin)/(amax-amin)); gridvalues(find(gridvalues == cmaplen+1)) = cmaplen; gridcolors = zeros([size(gridvalues),3]); for j=1:size(gridchans,1) for k=1:size(gridchans,2) if ~isnan(gridvalues(j,k)) gridcolors(j,k,:) = cmap(gridvalues(j,k),:); else if strcmpi(whitebk,'off') gridcolors(j,k,:) = BACKCOLOR; % gridchans == 0 -> background color % This allows the plot to show 'space' between separate sub-grids or strips else % 'on' gridcolors(j,k,:) = [1 1 1]; BACKCOLOR; % gridchans == 0 -> white for printing end end end end % %%%%%%%%%% draw the gridplot image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % handle=imagesc(Xi,Yi,gridcolors); % plot grid with explicit colors axis square % %%%%%%%%%%%%%%%%%%%%%%%% Plot map contours only %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(STYLE,'contour') % plot surface contours only [cls chs] = contour(Xi,Yi,ZiC,CONTOURNUM,'k'); % for h=chs, set(h,'color',CCOLOR); end % %%%%%%%%%%%%%%%%%%%%%%%% Else plot map and contours %%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(STYLE,'both') % plot interpolated surface and surface contours if strcmp(SHADING,'interp') tmph = surface(Xi*unsh,Yi*unsh,zeros(size(Zi))-0.1,Zi,... 'EdgeColor','none','FaceColor',SHADING); else % SHADING == 'flat' tmph = surface(Xi-delta/2,Yi-delta/2,zeros(size(Zi))-0.1,Zi,... 'EdgeColor','none','FaceColor',SHADING); end if strcmpi(MASKSURF, 'on') set(tmph, 'visible', 'off'); handle = tmph; end; warning off; if ~PMASKFLAG [cls chs] = contour(Xi,Yi,ZiC,CONTOURNUM,'k'); else ZiC(find(ZiC > 0.5 )) = NaN; [cls chs] = contourf(Xi,Yi,ZiC,0,'k'); subh = get(chs, 'children'); for indsubh = 1:length(subh) numfaces = size(get(subh(indsubh), 'XData'),1); set(subh(indsubh), 'FaceVertexCData', ones(numfaces,3), 'Cdatamapping', 'direct', 'facealpha', 0.5, 'linewidth', 2); end; end; for h=chs, set(h,'color',CCOLOR); end warning on; % %%%%%%%%%%%%%%%%%%%%%%%% Else plot map only %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(STYLE,'straight') | strcmp(STYLE,'map') % 'straight' was former arg if strcmp(SHADING,'interp') % 'interp' mode is shifted somehow... but how? tmph = surface(Xi*unsh,Yi*unsh,zeros(size(Zi)),Zi,'EdgeColor','none',... 'FaceColor',SHADING); else tmph = surface(Xi-delta/2,Yi-delta/2,zeros(size(Zi)),Zi,'EdgeColor','none',... 'FaceColor',SHADING); end if strcmpi(MASKSURF, 'on') set(tmph, 'visible', 'off'); handle = tmph; end; % %%%%%%%%%%%%%%%%%% Else fill contours with uniform colors %%%%%%%%%%%%%%%%%% % elseif strcmp(STYLE,'fill') [cls chs] = contourf(Xi,Yi,Zi,CONTOURNUM,'k'); % for h=chs, set(h,'color',CCOLOR); end % <- 'not line objects.' Why does 'both' work above??? else error('Invalid style') end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Set color axis %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % caxis([amin amax]); % set coloraxis else % if STYLE 'blank' % %%%%%%%%%%%%%%%%%%%%%%% Draw blank head %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if strcmpi(noplot, 'on') if strcmpi(VERBOSE,'on') fprintf('topoplot(): no plot requested.\n') end return; end %cla hold on set(gca,'Xlim',[-rmax rmax]*AXHEADFAC,'Ylim',[-rmax rmax]*AXHEADFAC) % pos = get(gca,'position'); % fprintf('Current axes size %g,%g\n',pos(3),pos(4)); if strcmp(ELECTRODES,'labelpoint') | strcmp(ELECTRODES,'numpoint') text(-0.6,-0.6, ... [ int2str(length(Rd)) ' of ' int2str(length(tmpeloc)) ' electrode locations shown']); text(-0.6,-0.7, [ 'Click on electrodes to toggle name/number']); tl = title('Channel locations'); set(tl, 'fontweight', 'bold'); end; end % STYLE 'blank' if exist('handle') ~= 1 handle = gca; end; if ~strcmpi(STYLE,'grid') % if not plot grid only % %%%%%%%%%%%%%%%%%%% Plot filled ring to mask jagged grid boundary %%%%%%%%%%%%%%%%%%%%%%%%%%% % hwidth = HEADRINGWIDTH; % width of head ring hin = squeezefac*headrad*(1- hwidth/2); % inner head ring radius if strcmp(SHADING,'interp') rwidth = BLANKINGRINGWIDTH*1.3; % width of blanking outer ring else rwidth = BLANKINGRINGWIDTH; % width of blanking outer ring end rin = rmax*(1-rwidth/2); % inner ring radius if hin>rin rin = hin; % dont blank inside the head ring end if strcmp(CONVHULL,'on') %%%%%%%%% mask outside the convex hull of the electrodes %%%%%%%%% cnv = convhull(allx,ally); cnvfac = round(CIRCGRID/length(cnv)); % spline interpolate the convex hull if cnvfac < 1, cnvfac=1; end; CIRCGRID = cnvfac*length(cnv); startangle = atan2(allx(cnv(1)),ally(cnv(1))); circ = linspace(0+startangle,2*pi+startangle,CIRCGRID); rx = sin(circ); ry = cos(circ); allx = allx(:)'; % make x (elec locations; + to nose) a row vector ally = ally(:)'; % make y (elec locations, + to r? ear) a row vector erad = sqrt(allx(cnv).^2+ally(cnv).^2); % convert to polar coordinates eang = atan2(allx(cnv),ally(cnv)); eang = unwrap(eang); eradi =spline(linspace(0,1,3*length(cnv)), [erad erad erad], ... linspace(0,1,3*length(cnv)*cnvfac)); eangi =spline(linspace(0,1,3*length(cnv)), [eang+2*pi eang eang-2*pi], ... linspace(0,1,3*length(cnv)*cnvfac)); xx = eradi.*sin(eangi); % convert back to rect coordinates yy = eradi.*cos(eangi); yy = yy(CIRCGRID+1:2*CIRCGRID); xx = xx(CIRCGRID+1:2*CIRCGRID); eangi = eangi(CIRCGRID+1:2*CIRCGRID); eradi = eradi(CIRCGRID+1:2*CIRCGRID); xx = xx*1.02; yy = yy*1.02; % extend spline outside electrode marks splrad = sqrt(xx.^2+yy.^2); % arc radius of spline points (yy,xx) oob = find(splrad >= rin); % enforce an upper bound on xx,yy xx(oob) = rin*xx(oob)./splrad(oob); % max radius = rin yy(oob) = rin*yy(oob)./splrad(oob); % max radius = rin splrad = sqrt(xx.^2+yy.^2); % arc radius of spline points (yy,xx) oob = find(splrad < hin); % don't let splrad be inside the head cartoon xx(oob) = hin*xx(oob)./splrad(oob); % min radius = hin yy(oob) = hin*yy(oob)./splrad(oob); % min radius = hin ringy = [[ry(:)' ry(1) ]*(rin+rwidth) yy yy(1)]; ringx = [[rx(:)' rx(1) ]*(rin+rwidth) xx xx(1)]; ringh2= patch(ringy,ringx,ones(size(ringy)),BACKCOLOR,'edgecolor','none'); hold on % plot(ry*rmax,rx*rmax,'b') % debugging line else %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% mask the jagged border around rmax %%%%%%%%%%%%%%%5%%%%%% circ = linspace(0,2*pi,CIRCGRID); rx = sin(circ); ry = cos(circ); ringx = [[rx(:)' rx(1) ]*(rin+rwidth) [rx(:)' rx(1)]*rin]; ringy = [[ry(:)' ry(1) ]*(rin+rwidth) [ry(:)' ry(1)]*rin]; if ~strcmpi(STYLE,'blank') ringh= patch(ringx,ringy,0.01*ones(size(ringx)),BACKCOLOR,'edgecolor','none'); hold on end % plot(ry*rmax,rx*rmax,'b') % debugging line end %f1= fill(rin*[rx rX],rin*[ry rY],BACKCOLOR,'edgecolor',BACKCOLOR); hold on %f2= fill(rin*[rx rX*(1+rwidth)],rin*[ry rY*(1+rwidth)],BACKCOLOR,'edgecolor',BACKCOLOR); % Former line-style border smoothing - width did not scale with plot % brdr=plot(1.015*cos(circ).*rmax,1.015*sin(circ).*rmax,... % old line-based method % 'color',HEADCOLOR,'Linestyle','-','LineWidth',HLINEWIDTH); % plot skirt outline % set(brdr,'color',BACKCOLOR,'linewidth',HLINEWIDTH + 4); % hide the disk edge jaggies % %%%%%%%%%%%%%%%%%%%%%%%%% Plot cartoon head, ears, nose %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % if headrad > 0 % if cartoon head to be plotted % %%%%%%%%%%%%%%%%%%% Plot head outline %%%%%%%%%%%%%%%%%%%%%%%%%%% % headx = [[rx(:)' rx(1) ]*(hin+hwidth) [rx(:)' rx(1)]*hin]; heady = [[ry(:)' ry(1) ]*(hin+hwidth) [ry(:)' ry(1)]*hin]; if ~isstr(HEADCOLOR) | ~strcmpi(HEADCOLOR,'none') ringh= patch(headx,heady,ones(size(headx)),HEADCOLOR,'edgecolor',HEADCOLOR); hold on end % rx = sin(circ); rX = rx(end:-1:1); % ry = cos(circ); rY = ry(end:-1:1); % for k=2:2:CIRCGRID % rx(k) = rx(k)*(1+hwidth); % ry(k) = ry(k)*(1+hwidth); % end % f3= fill(hin*[rx rX],hin*[ry rY],HEADCOLOR,'edgecolor',HEADCOLOR); hold on % f4= fill(hin*[rx rX*(1+hwidth)],hin*[ry rY*(1+hwidth)],HEADCOLOR,'edgecolor',HEADCOLOR); % Former line-style head % plot(cos(circ).*squeezefac*headrad,sin(circ).*squeezefac*headrad,... % 'color',HEADCOLOR,'Linestyle','-','LineWidth',HLINEWIDTH); % plot head outline % %%%%%%%%%%%%%%%%%%% Plot ears and nose %%%%%%%%%%%%%%%%%%%%%%%%%%% % base = rmax-.0046; basex = 0.18*rmax; % nose width tip = 1.15*rmax; tiphw = .04*rmax; % nose tip half width tipr = .01*rmax; % nose tip rounding q = .04; % ear lengthening EarX = [.497-.005 .510 .518 .5299 .5419 .54 .547 .532 .510 .489-.005]; % rmax = 0.5 EarY = [q+.0555 q+.0775 q+.0783 q+.0746 q+.0555 -.0055 -.0932 -.1313 -.1384 -.1199]; sf = headrad/plotrad; % squeeze the model ears and nose % by this factor if ~isstr(HEADCOLOR) | ~strcmpi(HEADCOLOR,'none') plot3([basex;tiphw;0;-tiphw;-basex]*sf,[base;tip-tipr;tip;tip-tipr;base]*sf,... 2*ones(size([basex;tiphw;0;-tiphw;-basex])),... 'Color',HEADCOLOR,'LineWidth',HLINEWIDTH); % plot nose plot3(EarX*sf,EarY*sf,2*ones(size(EarX)),'color',HEADCOLOR,'LineWidth',HLINEWIDTH) % plot left ear plot3(-EarX*sf,EarY*sf,2*ones(size(EarY)),'color',HEADCOLOR,'LineWidth',HLINEWIDTH) % plot right ear end end % % %%%%%%%%%%%%%%%%%%% Show electrode information %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plotax = gca; axis square % make plotax square axis off pos = get(gca,'position'); xlm = get(gca,'xlim'); ylm = get(gca,'ylim'); % textax = axes('position',pos,'xlim',xlm,'ylim',ylm); % make new axes so clicking numbers <-> labels % will work inside head cartoon patch % axes(textax); axis square % make textax square pos = get(gca,'position'); set(plotax,'position',pos); xlm = get(gca,'xlim'); set(plotax,'xlim',xlm); ylm = get(gca,'ylim'); set(plotax,'ylim',ylm); % copy position and axis limits again axis equal; set(gca, 'xlim', [-0.525 0.525]); set(plotax, 'xlim', [-0.525 0.525]); set(gca, 'ylim', [-0.525 0.525]); set(plotax, 'ylim', [-0.525 0.525]); %get(textax,'pos') % test if equal! %get(plotax,'pos') %get(textax,'xlim') %get(plotax,'xlim') %get(textax,'ylim') %get(plotax,'ylim') if isempty(EMARKERSIZE) EMARKERSIZE = 10; if length(y)>=160 EMARKERSIZE = 3; elseif length(y)>=128 EMARKERSIZE = 3; elseif length(y)>=100 EMARKERSIZE = 3; elseif length(y)>=80 EMARKERSIZE = 4; elseif length(y)>=64 EMARKERSIZE = 5; elseif length(y)>=48 EMARKERSIZE = 6; elseif length(y)>=32 EMARKERSIZE = 8; end end % %%%%%%%%%%%%%%%%%%%%%%%% Mark electrode locations only %%%%%%%%%%%%%%%%%%%%%%%%%% % ELECTRODE_HEIGHT = 2.1; % z value for plotting electrode information (above the surf) if strcmp(ELECTRODES,'on') % plot electrodes as spots if isempty(EMARKER2CHANS) hp2 = plot3(y,x,ones(size(x))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE,'linewidth',EMARKERLINEWIDTH); else % plot markers for normal chans and EMARKER2CHANS separately hp2 = plot3(y(mark1chans),x(mark1chans),ones(size((mark1chans)))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE,'linewidth',EMARKERLINEWIDTH); hp2b = plot3(y(mark2chans),x(mark2chans),ones(size((mark2chans)))*ELECTRODE_HEIGHT,... EMARKER2,'Color',EMARKER2COLOR,'markerfacecolor',EMARKER2COLOR,'linewidth',EMARKER2LINEWIDTH,'markersize',EMARKERSIZE2); end % %%%%%%%%%%%%%%%%%%%%%%%% Print electrode labels only %%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'labels') % print electrode names (labels) for i = 1:size(labels,1) text(double(y(i)),double(x(i)),... ELECTRODE_HEIGHT,labels(i,:),'HorizontalAlignment','center',... 'VerticalAlignment','middle','Color',ECOLOR,... 'FontSize',EFSIZE) end % %%%%%%%%%%%%%%%%%%%%%%%% Mark electrode locations plus labels %%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'labelpoint') if isempty(EMARKER2CHANS) hp2 = plot3(y,x,ones(size(x))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE,'linewidth',EMARKERLINEWIDTH); else hp2 = plot3(y(mark1chans),x(mark1chans),ones(size((mark1chans)))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE,'linewidth',EMARKERLINEWIDTH); hp2b = plot3(y(mark2chans),x(mark2chans),ones(size((mark2chans)))*ELECTRODE_HEIGHT,... EMARKER2,'Color',EMARKER2COLOR,'markerfacecolor',EMARKER2COLOR,'linewidth',EMARKER2LINEWIDTH,'markersize',EMARKERSIZE2); end for i = 1:size(labels,1) hh(i) = text(double(y(i)+0.01),double(x(i)),... ELECTRODE_HEIGHT,labels(i,:),'HorizontalAlignment','left',... 'VerticalAlignment','middle','Color', ECOLOR,'userdata', num2str(allchansind(i)), ... 'FontSize',EFSIZE, 'buttondownfcn', ... ['tmpstr = get(gco, ''userdata'');'... 'set(gco, ''userdata'', get(gco, ''string''));' ... 'set(gco, ''string'', tmpstr); clear tmpstr;'] ); end % %%%%%%%%%%%%%%%%%%%%%%% Mark electrode locations plus numbers %%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'numpoint') if isempty(EMARKER2CHANS) hp2 = plot3(y,x,ones(size(x))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE,'linewidth',EMARKERLINEWIDTH); else hp2 = plot3(y(mark1chans),x(mark1chans),ones(size((mark1chans)))*ELECTRODE_HEIGHT,... EMARKER,'Color',ECOLOR,'markersize',EMARKERSIZE,'linewidth',EMARKERLINEWIDTH); hp2b = plot3(y(mark2chans),x(mark2chans),ones(size((mark2chans)))*ELECTRODE_HEIGHT,... EMARKER2,'Color',EMARKER2COLOR,'markerfacecolor',EMARKER2COLOR,'linewidth',EMARKER2LINEWIDTH,'markersize',EMARKERSIZE2); end for i = 1:size(labels,1) hh(i) = text(double(y(i)+0.01),double(x(i)),... ELECTRODE_HEIGHT,num2str(allchansind(i)),'HorizontalAlignment','left',... 'VerticalAlignment','middle','Color', ECOLOR,'userdata', labels(i,:) , ... 'FontSize',EFSIZE, 'buttondownfcn', ... ['tmpstr = get(gco, ''userdata'');'... 'set(gco, ''userdata'', get(gco, ''string''));' ... 'set(gco, ''string'', tmpstr); clear tmpstr;'] ); end % %%%%%%%%%%%%%%%%%%%%%% Print electrode numbers only %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'numbers') for i = 1:size(labels,1) text(double(y(i)),double(x(i)),... ELECTRODE_HEIGHT,int2str(allchansind(i)),'HorizontalAlignment','center',... 'VerticalAlignment','middle','Color',ECOLOR,... 'FontSize',EFSIZE) end % %%%%%%%%%%%%%%%%%%%%%% Mark emarker2 electrodes only %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % elseif strcmp(ELECTRODES,'off') & ~isempty(EMARKER2CHANS) hp2b = plot3(y(mark2chans),x(mark2chans),ones(size((mark2chans)))*ELECTRODE_HEIGHT,... EMARKER2,'Color',EMARKER2COLOR,'markerfacecolor',EMARKER2COLOR,'linewidth',EMARKER2LINEWIDTH,'markersize',EMARKERSIZE2); end % %%%%%%%% Mark specified electrode locations with red filled disks %%%%%%%%%%%%%%%%%%%%%% % try, if strcmpi(STYLE,'blank') % if mark-selected-channel-locations mode for kk = 1:length(1:length(x)) if Values(kk) == 3 hp2 = plot3(y(kk),x(kk),ELECTRODE_HEIGHT,EMARKER,'Color', [0 0 0], 'markersize', EMARKERSIZE1CHAN); elseif Values(kk) == 2 hp2 = plot3(y(kk),x(kk),ELECTRODE_HEIGHT,EMARKER,'Color', [0.5 0 0], 'markersize', EMARKERSIZE1CHAN); elseif Values(kk) == 1 hp2 = plot3(y(kk),x(kk),ELECTRODE_HEIGHT,EMARKER,'Color', [1 0 0], 'markersize', EMARKERSIZE1CHAN); elseif strcmpi(ELECTRODES,'on') hp2 = plot3(y(kk),x(kk),ELECTRODE_HEIGHT,EMARKER,'Color', ECOLOR, 'markersize', EMARKERSIZE); end end end catch, end; % %%%%%%%%%%%%%%%%%%%%%%%%%%% Plot dipole(s) on the scalp map %%%%%%%%%%%%%%%%%%%%%%%%%%%% % if ~isempty(DIPOLE) hold on; tmp = DIPOLE; if isstruct(DIPOLE) if ~isfield(tmp,'posxyz') error('dipole structure is not an EEG.dipfit.model') end DIPOLE = []; % Note: invert x and y from dipplot usage DIPOLE(:,1) = -tmp.posxyz(:,2)/DIPSPHERE; % -y -> x DIPOLE(:,2) = tmp.posxyz(:,1)/DIPSPHERE; % x -> y DIPOLE(:,3) = -tmp.momxyz(:,2); DIPOLE(:,4) = tmp.momxyz(:,1); else DIPOLE(:,1) = -tmp(:,2); % same for vector input DIPOLE(:,2) = tmp(:,1); DIPOLE(:,3) = -tmp(:,4); DIPOLE(:,4) = tmp(:,3); end; for index = 1:size(DIPOLE,1) if ~any(DIPOLE(index,:)) DIPOLE(index,:) = []; end end; DIPOLE(:,1:4) = DIPOLE(:,1:4)*rmax*(rmax/plotrad); % scale radius from 1 -> rmax (0.5) DIPOLE(:,3:end) = (DIPOLE(:,3:end))*rmax/100000*(rmax/plotrad); if strcmpi(DIPNORM, 'on') for index = 1:size(DIPOLE,1) DIPOLE(index,3:4) = DIPOLE(index,3:4)/norm(DIPOLE(index,3:end))*0.2; end; end; DIPOLE(:, 3:4) = DIPORIENT*DIPOLE(:, 3:4)*DIPLEN; PLOT_DIPOLE=1; if sum(DIPOLE(1,3:4).^2) <= 0.00001 if strcmpi(VERBOSE,'on') fprintf('Note: dipole is length 0 - not plotted\n') end PLOT_DIPOLE = 0; end if 0 % sum(DIPOLE(1,1:2).^2) > plotrad if strcmpi(VERBOSE,'on') fprintf('Note: dipole is outside plotting area - not plotted\n') end PLOT_DIPOLE = 0; end if PLOT_DIPOLE for index = 1:size(DIPOLE,1) hh = plot( DIPOLE(index, 1), DIPOLE(index, 2), '.'); set(hh, 'color', DIPCOLOR, 'markersize', DIPSCALE*30); hh = line( [DIPOLE(index, 1) DIPOLE(index, 1)+DIPOLE(index, 3)]', ... [DIPOLE(index, 2) DIPOLE(index, 2)+DIPOLE(index, 4)]',[10 10]); set(hh, 'color', DIPCOLOR, 'linewidth', DIPSCALE*30/7); end; end; end; end % if ~ 'gridplot' % %%%%%%%%%%%%% Plot axis orientation %%%%%%%%%%%%%%%%%%%% % if strcmpi(DRAWAXIS, 'on') axes('position', [0 0.85 0.08 0.1]); axis off; coordend1 = sqrt(-1)*3; coordend2 = -3; coordend1 = coordend1*exp(sqrt(-1)*rotate); coordend2 = coordend2*exp(sqrt(-1)*rotate); line([5 5+round(real(coordend1))]', [5 5+round(imag(coordend1))]', 'color', 'k'); line([5 5+round(real(coordend2))]', [5 5+round(imag(coordend2))]', 'color', 'k'); if round(real(coordend2))<0 text( 5+round(real(coordend2))*1.2, 5+round(imag(coordend2))*1.2-2, '+Y'); else text( 5+round(real(coordend2))*1.2, 5+round(imag(coordend2))*1.2, '+Y'); end; if round(real(coordend1))<0 text( 5+round(real(coordend1))*1.2, 5+round(imag(coordend1))*1.2+1.5, '+X'); else text( 5+round(real(coordend1))*1.2, 5+round(imag(coordend1))*1.2, '+X'); end; set(gca, 'xlim', [0 10], 'ylim', [0 10]); end; % %%%%%%%%%%%%% Set EEGLAB background color to match head border %%%%%%%%%%%%%%%%%%%%%%%% % try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end; hold off axis off return
github
ZijingMao/baselineeegtest-master
readlocs.m
.m
baselineeegtest-master/VisualizationFilters/External EEGLAB functions/readlocs.m
33,743
utf_8
c376d1ca0e88b41512b698fc39b404fd
% readlocs() - read electrode location coordinates and other information from a file. % Several standard file formats are supported. Users may also specify % a custom column format. Defined format examples are given below % (see File Formats). % Usage: % >> eloc = readlocs( filename ); % >> EEG.chanlocs = readlocs( filename, 'key', 'val', ... ); % >> [eloc, labels, theta, radius, indices] = ... % readlocs( filename, 'key', 'val', ... ); % Inputs: % filename - Name of the file containing the electrode locations % {default: 2-D polar coordinates} (see >> help topoplot ) % % Optional inputs: % 'filetype' - ['loc'|'sph'|'sfp'|'xyz'|'asc'|'polhemus'|'besa'|'chanedit'|'custom'] % Type of the file to read. By default the file type is determined % using the file extension (see below under File Formats), % 'loc' an EEGLAB 2-D polar coordinates channel locations file % Coordinates are theta and radius (see definitions below). % 'sph' Matlab spherical coordinates (Note: spherical % coordinates used by Matlab functions are different % from spherical coordinates used by BESA - see below). % 'sfp' EGI Cartesian coordinates (NOT Matlab Cartesian - see below). % 'xyz' Matlab/EEGLAB Cartesian coordinates (NOT EGI Cartesian). % z is toward nose; y is toward left ear; z is toward vertex % 'asc' Neuroscan polar coordinates. % 'polhemus' or 'polhemusx' - Polhemus electrode location file recorded % with 'X' on sensor pointing to subject (see below and readelp()). % 'polhemusy' - Polhemus electrode location file recorded with % 'Y' on sensor pointing to subject (see below and readelp()). % 'besa' BESA-'.elp' spherical coordinates. (Not MATLAB spherical - % see below). % 'chanedit' - EEGLAB channel location file created by pop_chanedit(). % 'custom' - Ascii file with columns in user-defined 'format' (see below). % 'importmode' - ['eeglab'|'native'] for location files containing 3-D cartesian electrode % coordinates, import either in EEGLAB format (nose pointing toward +X). % This may not always be possible since EEGLAB might not be able to % determine the nose direction for scanned electrode files. 'native' import % original carthesian coordinates (user can then specify the position of % the nose when calling the topoplot() function; in EEGLAB the position % of the nose is stored in the EEG.chaninfo structure). {default 'eeglab'} % 'format' - [cell array] Format of a 'custom' channel location file (see above). % {default: if no file type is defined. The cell array contains % labels defining the meaning of each column of the input file. % 'channum' [positive integer] channel number. % 'labels' [string] channel name (no spaces). % 'theta' [real degrees] 2-D angle in polar coordinates. % positive => rotating from nose (0) toward left ear % 'radius' [real] radius for 2-D polar coords; 0.5 is the head % disk radius and limit for topoplot() plotting). % 'X' [real] Matlab-Cartesian X coordinate (to nose). % 'Y' [real] Matlab-Cartesian Y coordinate (to left ear). % 'Z' [real] Matlab-Cartesian Z coordinate (to vertex). % '-X','-Y','-Z' Matlab-Cartesian coordinates pointing opposite % to the above. % 'sph_theta' [real degrees] Matlab spherical horizontal angle. % positive => rotating from nose (0) toward left ear. % 'sph_phi' [real degrees] Matlab spherical elevation angle. % positive => rotating from horizontal (0) upwards. % 'sph_radius' [real] distance from head center (unused). % 'sph_phi_besa' [real degrees] BESA phi angle from vertical. % positive => rotating from vertex (0) towards right ear. % 'sph_theta_besa' [real degrees] BESA theta horiz/azimuthal angle. % positive => rotating from right ear (0) toward nose. % 'ignore' ignore column}. % The input file may also contain other channel information fields. % 'type' channel type: 'EEG', 'MEG', 'EMG', 'ECG', others ... % 'calib' [real near 1.0] channel calibration value. % 'gain' [real > 1] channel gain. % 'custom1' custom field #1. % 'custom2', 'custom3', 'custom4', etc. more custom fields % 'skiplines' - [integer] Number of header lines to skip (in 'custom' file types only). % Note: Characters on a line following '%' will be treated as comments. % 'readchans' - [integer array] indices of electrodes to read. {default: all} % 'center' - [(1,3) real array or 'auto'] center of xyz coordinates for conversion % to spherical or polar, Specify the center of the sphere here, or 'auto'. % This uses the center of the sphere that best fits all the electrode % locations read. {default: [0 0 0]} % Outputs: % eloc - structure containing the channel names and locations (if present). % It has three fields: 'eloc.labels', 'eloc.theta' and 'eloc.radius' % identical in meaning to the EEGLAB struct 'EEG.chanlocs'. % labels - cell array of strings giving the names of the electrodes. NOTE: Unlike the % three outputs below, includes labels of channels *without* location info. % theta - vector (in degrees) of polar angles of the electrode locations. % radius - vector of polar-coordinate radii (arc_lengths) of the electrode locations % indices - indices, k, of channels with non-empty 'locs(k).theta' coordinate % % File formats: % If 'filetype' is unspecified, the file extension determines its type. % % '.loc' or '.locs' or '.eloc': % polar coordinates. Notes: angles in degrees: % right ear is 90; left ear -90; head disk radius is 0.5. % Fields: N angle radius label % Sample: 1 -18 .511 Fp1 % 2 18 .511 Fp2 % 3 -90 .256 C3 % 4 90 .256 C4 % ... % Note: In previous releases, channel labels had to contain exactly % four characters (spaces replaced by '.'). This format still works, % though dots are no longer required. % '.sph': % Matlab spherical coordinates. Notes: theta is the azimuthal/horizontal angle % in deg.: 0 is toward nose, 90 rotated to left ear. Following this, performs % the elevation (phi). Angles in degrees. % Fields: N theta phi label % Sample: 1 18 -2 Fp1 % 2 -18 -2 Fp2 % 3 90 44 C3 % 4 -90 44 C4 % ... % '.elc': % Cartesian 3-D electrode coordinates scanned using the EETrak software. % See readeetraklocs(). % '.elp': % Polhemus-.'elp' Cartesian coordinates. By default, an .elp extension is read % as PolhemusX-elp in which 'X' on the Polhemus sensor is pointed toward the % subject. Polhemus files are not in columnar format (see readelp()). % '.elp': % BESA-'.elp' spherical coordinates: Need to specify 'filetype','besa'. % The elevation angle (phi) is measured from the vertical axis. Positive % rotation is toward right ear. Next, perform azimuthal/horizontal rotation % (theta): 0 is toward right ear; 90 is toward nose, -90 toward occiput. % Angles are in degrees. If labels are absent or weights are given in % a last column, readlocs() adjusts for this. Default labels are E1, E2, ... % Fields: label phi theta % Sample: Fp1 -92 -72 % Fp2 92 72 % C3 -46 0 % C4 46 0 % ... % '.xyz': % Matlab/EEGLAB Cartesian coordinates. Here. x is towards the nose, % y is towards the left ear, and z towards the vertex. Note that the first % column (x) is -Y in a Matlab 3-D plot, the second column (y) is X in a % matlab 3-D plot, and the third column (z) is Z. % Fields: channum x y z label % Sample: 1 .950 .308 -.035 Fp1 % 2 .950 -.308 -.035 Fp2 % 3 0 .719 .695 C3 % 4 0 -.719 .695 C4 % ... % '.asc', '.dat': % Neuroscan-.'asc' or '.dat' Cartesian polar coordinates text file. % '.sfp': % BESA/EGI-xyz Cartesian coordinates. Notes: For EGI, x is toward right ear, % y is toward the nose, z is toward the vertex. EEGLAB converts EGI % Cartesian coordinates to Matlab/EEGLAB xyz coordinates. % Fields: label x y z % Sample: Fp1 -.308 .950 -.035 % Fp2 .308 .950 -.035 % C3 -.719 0 .695 % C4 .719 0 .695 % ... % '.ced': % ASCII file saved by pop_chanedit(). Contains multiple MATLAB/EEGLAB formats. % Cartesian coordinates are as in the 'xyz' format (above). % Fields: channum label theta radius x y z sph_theta sph_phi ... % Sample: 1 Fp1 -18 .511 .950 .308 -.035 18 -2 ... % 2 Fp2 18 .511 .950 -.308 -.035 -18 -2 ... % 3 C3 -90 .256 0 .719 .695 90 44 ... % 4 C4 90 .256 0 -.719 .695 -90 44 ... % ... % The last columns of the file may contain any other defined fields (gain, % calib, type, custom). % % Fieldtrip structure: % If a Fieltrip structure is given as input, an EEGLAB % chanlocs structure is returned % % Author: Arnaud Delorme, Salk Institute, 8 Dec 2002 % % See also: readelp(), writelocs(), topo2sph(), sph2topo(), sph2cart() % Copyright (C) Arnaud Delorme, CNL / Salk Institute, 28 Feb 2002 % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [eloc, labels, theta, radius, indices] = readlocs( filename, varargin ); if nargin < 1 help readlocs; return; end; % NOTE: To add a new channel format: % ---------------------------------- % 1) Add a new element to the structure 'chanformat' (see 'ADD NEW FORMATS HERE' below): % 2) Enter a format 'type' for the new file format, % 3) Enter a (short) 'typestring' description of the format % 4) Enter a longer format 'description' (possibly multiline, see ex. (1) below) % 5) Enter format file column labels in the 'importformat' field (see ex. (2) below) % 6) Enter the number of header lines to skip (if any) in the 'skipline' field % 7) Document the new channel format in the help message above. % 8) After testing, please send the new version of readloca.m to us % at [email protected] with a sample locs file. % The 'chanformat' structure is also used (automatically) by the writelocs() % and pop_readlocs() functions. You do not need to edit these functions. chanformat(1).type = 'polhemus'; chanformat(1).typestring = 'Polhemus native .elp file'; chanformat(1).description = [ 'Polhemus native coordinate file containing scanned electrode positions. ' ... 'User must select the direction ' ... 'for the nose after importing the data file.' ]; chanformat(1).importformat = 'readelp() function'; % --------------------------------------------------------------------------------------------------- chanformat(2).type = 'besa'; chanformat(2).typestring = 'BESA spherical .elp file'; chanformat(2).description = [ 'BESA spherical coordinate file. Note that BESA spherical coordinates ' ... 'are different from Matlab spherical coordinates' ]; chanformat(2).skipline = 0; % some BESA files do not have headers chanformat(2).importformat = { 'type' 'labels' 'sph_theta_besa' 'sph_phi_besa' 'sph_radius' }; % --------------------------------------------------------------------------------------------------- chanformat(3).type = 'xyz'; chanformat(3).typestring = 'Matlab .xyz file'; chanformat(3).description = [ 'Standard 3-D cartesian coordinate files with electrode labels in ' ... 'the first column and X, Y, and Z coordinates in columns 2, 3, and 4' ]; chanformat(3).importformat = { 'channum' '-Y' 'X' 'Z' 'labels'}; % --------------------------------------------------------------------------------------------------- chanformat(4).type = 'sfp'; chanformat(4).typestring = 'BESA or EGI 3-D cartesian .sfp file'; chanformat(4).description = [ 'Standard BESA 3-D cartesian coordinate files with electrode labels in ' ... 'the first column and X, Y, and Z coordinates in columns 2, 3, and 4.' ... 'Coordinates are re-oriented to fit the EEGLAB standard of having the ' ... 'nose along the +X axis.' ]; chanformat(4).importformat = { 'labels' '-Y' 'X' 'Z' }; chanformat(4).skipline = 0; % --------------------------------------------------------------------------------------------------- chanformat(5).type = 'loc'; chanformat(5).typestring = 'EEGLAB polar .loc file'; chanformat(5).description = [ 'EEGLAB polar .loc file' ]; chanformat(5).importformat = { 'channum' 'theta' 'radius' 'labels' }; % --------------------------------------------------------------------------------------------------- chanformat(6).type = 'sph'; chanformat(6).typestring = 'Matlab .sph spherical file'; chanformat(6).description = [ 'Standard 3-D spherical coordinate files in Matlab format' ]; chanformat(6).importformat = { 'channum' 'sph_theta' 'sph_phi' 'labels' }; % --------------------------------------------------------------------------------------------------- chanformat(7).type = 'asc'; chanformat(7).typestring = 'Neuroscan polar .asc file'; chanformat(7).description = [ 'Neuroscan polar .asc file, automatically recentered to fit EEGLAB standard' ... 'of having ''Cz'' at (0,0).' ]; chanformat(7).importformat = 'readneurolocs'; % --------------------------------------------------------------------------------------------------- chanformat(8).type = 'dat'; chanformat(8).typestring = 'Neuroscan 3-D .dat file'; chanformat(8).description = [ 'Neuroscan 3-D cartesian .dat file. Coordinates are re-oriented to fit ' ... 'the EEGLAB standard of having the nose along the +X axis.' ]; chanformat(8).importformat = 'readneurolocs'; % --------------------------------------------------------------------------------------------------- chanformat(9).type = 'elc'; chanformat(9).typestring = 'ASA .elc 3-D file'; chanformat(9).description = [ 'ASA .elc 3-D coordinate file containing scanned electrode positions. ' ... 'User must select the direction ' ... 'for the nose after importing the data file.' ]; chanformat(9).importformat = 'readeetraklocs'; % --------------------------------------------------------------------------------------------------- chanformat(10).type = 'chanedit'; chanformat(10).typestring = 'EEGLAB complete 3-D file'; chanformat(10).description = [ 'EEGLAB file containing polar, cartesian 3-D, and spherical 3-D ' ... 'electrode locations.' ]; chanformat(10).importformat = { 'channum' 'labels' 'theta' 'radius' 'X' 'Y' 'Z' 'sph_theta' 'sph_phi' ... 'sph_radius' 'type' }; chanformat(10).skipline = 1; % --------------------------------------------------------------------------------------------------- chanformat(11).type = 'custom'; chanformat(11).typestring = 'Custom file format'; chanformat(11).description = 'Custom ASCII file format where user can define content for each file columns.'; chanformat(11).importformat = ''; % --------------------------------------------------------------------------------------------------- % ----- ADD MORE FORMATS HERE ----------------------------------------------------------------------- % --------------------------------------------------------------------------------------------------- listcolformat = { 'labels' 'channum' 'theta' 'radius' 'sph_theta' 'sph_phi' ... 'sph_radius' 'sph_theta_besa' 'sph_phi_besa' 'gain' 'calib' 'type' ... 'X' 'Y' 'Z' '-X' '-Y' '-Z' 'custom1' 'custom2' 'custom3' 'custom4' 'ignore' 'not def' }; % ---------------------------------- % special mode for getting the info % ---------------------------------- if isstr(filename) & strcmp(filename, 'getinfos') eloc = chanformat; labels = listcolformat; return; end; g = finputcheck( varargin, ... { 'filetype' 'string' {} ''; 'importmode' 'string' { 'eeglab','native' } 'eeglab'; 'defaultelp' 'string' { 'besa','polhemus' } 'polhemus'; 'skiplines' 'integer' [0 Inf] []; 'elecind' 'integer' [1 Inf] []; 'format' 'cell' [] {} }, 'readlocs'); if isstr(g), error(g); end; if isstr(filename) % format auto detection % -------------------- if strcmpi(g.filetype, 'autodetect'), g.filetype = ''; end; g.filetype = strtok(g.filetype); periods = find(filename == '.'); fileextension = filename(periods(end)+1:end); g.filetype = lower(g.filetype); if isempty(g.filetype) switch lower(fileextension), case {'loc' 'locs' }, g.filetype = 'loc'; case 'xyz', g.filetype = 'xyz'; fprintf( [ 'WARNING: Matlab Cartesian coord. file extension (".xyz") detected.\n' ... 'If importing EGI Cartesian coords, force type "sfp" instead.\n'] ); case 'sph', g.filetype = 'sph'; case 'ced', g.filetype = 'chanedit'; case 'elp', g.filetype = g.defaultelp; case 'asc', g.filetype = 'asc'; case 'dat', g.filetype = 'dat'; case 'elc', g.filetype = 'elc'; case 'eps', g.filetype = 'besa'; case 'sfp', g.filetype = 'sfp'; otherwise, g.filetype = ''; end; fprintf('readlocs(): ''%s'' format assumed from file extension\n', g.filetype); else if strcmpi(g.filetype, 'locs'), g.filetype = 'loc'; end if strcmpi(g.filetype, 'eloc'), g.filetype = 'loc'; end end; % assign format from filetype % --------------------------- if ~isempty(g.filetype) & ~strcmpi(g.filetype, 'custom') ... & ~strcmpi(g.filetype, 'asc') & ~strcmpi(g.filetype, 'elc') & ~strcmpi(g.filetype, 'dat') indexformat = strmatch(lower(g.filetype), { chanformat.type }, 'exact'); g.format = chanformat(indexformat).importformat; if isempty(g.skiplines) g.skiplines = chanformat(indexformat).skipline; end; if isempty(g.filetype) error( ['readlocs() error: The filetype cannot be detected from the \n' ... ' file extension, and custom format not specified']); end; end; % import file % ----------- if strcmp(g.filetype, 'asc') | strcmp(g.filetype, 'dat') eloc = readneurolocs( filename ); eloc = rmfield(eloc, 'sph_theta'); % for the conversion below eloc = rmfield(eloc, 'sph_theta_besa'); % for the conversion below if isfield(eloc, 'type') for index = 1:length(eloc) type = eloc(index).type; if type == 69, eloc(index).type = 'EEG'; elseif type == 88, eloc(index).type = 'REF'; elseif type >= 76 & type <= 82, eloc(index).type = 'FID'; else eloc(index).type = num2str(eloc(index).type); end; end; end; elseif strcmp(g.filetype, 'elc') eloc = readeetraklocs( filename ); %eloc = read_asa_elc( filename ); % from fieldtrip %eloc = struct('labels', eloc.label, 'X', mattocell(eloc.pnt(:,1)'), 'Y', ... % mattocell(eloc.pnt(:,2)'), 'Z', mattocell(eloc.pnt(:,3)')); eloc = convertlocs(eloc, 'cart2all'); eloc = rmfield(eloc, 'sph_theta'); % for the conversion below eloc = rmfield(eloc, 'sph_theta_besa'); % for the conversion below elseif strcmp(lower(g.filetype(1:end-1)), 'polhemus') | ... strcmp(g.filetype, 'polhemus') try, [eloc labels X Y Z]= readelp( filename ); if strcmp(g.filetype, 'polhemusy') tmp = X; X = Y; Y = tmp; end; for index = 1:length( eloc ) eloc(index).X = X(index); eloc(index).Y = Y(index); eloc(index).Z = Z(index); end; catch, disp('readlocs(): Could not read Polhemus coords. Trying to read BESA .elp file.'); [eloc, labels, theta, radius, indices] = readlocs( filename, 'defaultelp', 'besa', varargin{:} ); end; else % importing file % -------------- if isempty(g.skiplines), g.skiplines = 0; end; if strcmpi(g.filetype, 'chanedit') array = loadtxt( filename, 'delim', 9, 'skipline', g.skiplines, 'blankcell', 'off'); else array = load_file_or_array( filename, g.skiplines); end; if size(array,2) < length(g.format) fprintf(['readlocs() warning: Fewer columns in the input than expected.\n' ... ' See >> help readlocs\n']); elseif size(array,2) > length(g.format) fprintf(['readlocs() warning: More columns in the input than expected.\n' ... ' See >> help readlocs\n']); end; % removing lines BESA % ------------------- if isempty(array{1,2}) disp('BESA header detected, skipping three lines...'); array = load_file_or_array( filename, g.skiplines-1); if isempty(array{1,2}) array = load_file_or_array( filename, g.skiplines-1); end; end; % xyz format, is the first col absent % ----------------------------------- if strcmp(g.filetype, 'xyz') if size(array, 2) == 4 array(:, 2:5) = array(:, 1:4); end; end; % removing comments and empty lines % --------------------------------- indexbeg = 1; while isempty(array{indexbeg,1}) | ... (isstr(array{indexbeg,1}) & array{indexbeg,1}(1) == '%' ) indexbeg = indexbeg+1; end; array = array(indexbeg:end,:); % converting file % --------------- for indexcol = 1:min(size(array,2), length(g.format)) [str mult] = checkformat(g.format{indexcol}); for indexrow = 1:size( array, 1) if mult ~= 1 eval ( [ 'eloc(indexrow).' str '= -array{indexrow, indexcol};' ]); else eval ( [ 'eloc(indexrow).' str '= array{indexrow, indexcol};' ]); end; end; end; end; % handling BESA coordinates % ------------------------- if isfield(eloc, 'sph_theta_besa') if isfield(eloc, 'type') if isnumeric(eloc(1).type) disp('BESA format detected ( Theta | Phi )'); for index = 1:length(eloc) eloc(index).sph_phi_besa = eloc(index).labels; eloc(index).sph_theta_besa = eloc(index).type; eloc(index).labels = ''; eloc(index).type = ''; end; eloc = rmfield(eloc, 'labels'); end; end; if isfield(eloc, 'labels') if isnumeric(eloc(1).labels) disp('BESA format detected ( Elec | Theta | Phi )'); for index = 1:length(eloc) eloc(index).sph_phi_besa = eloc(index).sph_theta_besa; eloc(index).sph_theta_besa = eloc(index).labels; eloc(index).labels = eloc(index).type; eloc(index).type = ''; eloc(index).radius = 1; end; end; end; try eloc = convertlocs(eloc, 'sphbesa2all'); eloc = convertlocs(eloc, 'topo2all'); % problem with some EGI files (not BESA files) catch, disp('Warning: coordinate conversion failed'); end; fprintf('Readlocs: BESA spherical coords. converted, now deleting BESA fields\n'); fprintf(' to avoid confusion (these fields can be exported, though)\n'); eloc = rmfield(eloc, 'sph_phi_besa'); eloc = rmfield(eloc, 'sph_theta_besa'); % converting XYZ coordinates to polar % ----------------------------------- elseif isfield(eloc, 'sph_theta') try eloc = convertlocs(eloc, 'sph2all'); catch, disp('Warning: coordinate conversion failed'); end; elseif isfield(eloc, 'X') try eloc = convertlocs(eloc, 'cart2all'); catch, disp('Warning: coordinate conversion failed'); end; else try eloc = convertlocs(eloc, 'topo2all'); catch, disp('Warning: coordinate conversion failed'); end; end; % inserting labels if no labels % ----------------------------- if ~isfield(eloc, 'labels') fprintf('readlocs(): Inserting electrode labels automatically.\n'); for index = 1:length(eloc) eloc(index).labels = [ 'E' int2str(index) ]; end; else % remove trailing '.' for index = 1:length(eloc) if isstr(eloc(index).labels) tmpdots = find( eloc(index).labels == '.' ); eloc(index).labels(tmpdots) = []; end; end; end; % resorting electrodes if number not-sorted % ----------------------------------------- if isfield(eloc, 'channum') if ~isnumeric(eloc(1).channum) error('Channel numbers must be numeric'); end; allchannum = [ eloc.channum ]; if any( sort(allchannum) ~= allchannum ) fprintf('readlocs(): Re-sorting channel numbers based on ''channum'' column indices\n'); [tmp newindices] = sort(allchannum); eloc = eloc(newindices); end; eloc = rmfield(eloc, 'channum'); end; else if isstruct(filename) % detect Fieldtrip structure and convert it % ----------------------------------------- if isfield(filename, 'pnt') neweloc = []; for index = 1:length(filename.label) neweloc(index).labels = filename.label{index}; neweloc(index).X = filename.pnt(index,1); neweloc(index).Y = filename.pnt(index,2); neweloc(index).Z = filename.pnt(index,3); end; eloc = neweloc; eloc = convertlocs(eloc, 'cart2all'); else eloc = filename; end; else disp('readlocs(): input variable must be a string or a structure'); end; end; if ~isempty(g.elecind) eloc = eloc(g.elecind); end; if nargout > 2 if isfield(eloc, 'theta') tmptheta = { eloc.theta }; % check which channels have (polar) coordinates set else tmptheta = cell(1,length(eloc)); end; if isfield(eloc, 'theta') tmpx = { eloc.X }; % check which channels have (polar) coordinates set else tmpx = cell(1,length(eloc)); end; indices = find(~cellfun('isempty', tmptheta)); indices = intersect(find(~cellfun('isempty', tmpx)), indices); indices = sort(indices); indbad = setdiff(1:length(eloc), indices); tmptheta(indbad) = { NaN }; theta = [ tmptheta{:} ]; end; if nargout > 3 if isfield(eloc, 'theta') tmprad = { eloc.radius }; % check which channels have (polar) coordinates set else tmprad = cell(1,length(eloc)); end; tmprad(indbad) = { NaN }; radius = [ tmprad{:} ]; end; %tmpnum = find(~cellfun('isclass', { eloc.labels }, 'char')); %disp('Converting channel labels to string'); for index = 1:length(eloc) if ~isstr(eloc(index).labels) eloc(index).labels = int2str(eloc(index).labels); end; end; labels = { eloc.labels }; if isfield(eloc, 'ignore') eloc = rmfield(eloc, 'ignore'); end; % process fiducials if any % ------------------------ fidnames = { 'nz' 'lpa' 'rpa' 'nasion' 'left' 'right' 'nazion' 'fidnz' 'fidt9' 'fidt10' 'cms' 'drl' }; for index = 1:length(fidnames) ind = strmatch(fidnames{index}, lower(labels), 'exact'); if ~isempty(ind), eloc(ind).type = 'FID'; end; end; return; % interpret the variable name % --------------------------- function array = load_file_or_array( varname, skiplines ); if isempty(skiplines), skiplines = 0; end; if exist( varname ) == 2 array = loadtxt(varname,'verbose','off','skipline',skiplines,'blankcell','off'); else % variable in the global workspace % -------------------------- try, array = evalin('base', varname); catch, error('readlocs(): cannot find the named file or variable, check syntax'); end; end; return; % check field format % ------------------ function [str, mult] = checkformat(str) mult = 1; if strcmpi(str, 'labels'), str = lower(str); return; end; if strcmpi(str, 'channum'), str = lower(str); return; end; if strcmpi(str, 'theta'), str = lower(str); return; end; if strcmpi(str, 'radius'), str = lower(str); return; end; if strcmpi(str, 'ignore'), str = lower(str); return; end; if strcmpi(str, 'sph_theta'), str = lower(str); return; end; if strcmpi(str, 'sph_phi'), str = lower(str); return; end; if strcmpi(str, 'sph_radius'), str = lower(str); return; end; if strcmpi(str, 'sph_theta_besa'), str = lower(str); return; end; if strcmpi(str, 'sph_phi_besa'), str = lower(str); return; end; if strcmpi(str, 'gain'), str = lower(str); return; end; if strcmpi(str, 'calib'), str = lower(str); return; end; if strcmpi(str, 'type') , str = lower(str); return; end; if strcmpi(str, 'X'), str = upper(str); return; end; if strcmpi(str, 'Y'), str = upper(str); return; end; if strcmpi(str, 'Z'), str = upper(str); return; end; if strcmpi(str, '-X'), str = upper(str(2:end)); mult = -1; return; end; if strcmpi(str, '-Y'), str = upper(str(2:end)); mult = -1; return; end; if strcmpi(str, '-Z'), str = upper(str(2:end)); mult = -1; return; end; if strcmpi(str, 'custom1'), return; end; if strcmpi(str, 'custom2'), return; end; if strcmpi(str, 'custom3'), return; end; if strcmpi(str, 'custom4'), return; end; error(['readlocs(): undefined field ''' str '''']);
github
ZijingMao/baselineeegtest-master
finputcheck.m
.m
baselineeegtest-master/VisualizationFilters/External EEGLAB functions/finputcheck.m
8,676
utf_8
98c5e52d4a9cd0c05a41cee29d409e4b
% finputcheck() - check Matlab function {'key','value'} input argument pairs % % Usage: >> result = finputcheck( varargin, fieldlist ); % >> [result varargin] = finputcheck( varargin, fieldlist, ... % callingfunc, mode, verbose ); % Input: % varargin - Cell array 'varargin' argument from a function call using 'key', % 'value' argument pairs. See Matlab function 'varargin' % fieldlist - A 4-column cell array, one row per 'key'. The first % column contains the key string, the second its type(s), % the third the accepted value range, and the fourth the % default value. Allowed types are 'boolean', 'integer', % 'real', 'string', 'cell' or 'struct'. For example, % {'key1' 'string' { 'string1' 'string2' } 'defaultval_key1'} % {'key2' {'real' 'integer'} { minint maxint } 'defaultval_key2'} % callingfunc - Calling function name for error messages. {default: none}. % mode - ['ignore'|'error'] ignore keywords that are either not specified % in the fieldlist cell array or generate an error. % {default: 'error'}. % verbose - ['verbose', 'quiet'] print information. Default: 'verbose'. % % Outputs: % result - If no error, structure with 'key' as fields and 'value' as % content. If error this output contain the string error. % varargin - residual varagin containing unrecognized input arguments. % Requires mode 'ignore' above. % % Note: In case of error, a string is returned containing the error message % instead of a structure. % % Example (insert the following at the beginning of your function): % result = finputcheck(varargin, ... % { 'title' 'string' [] ''; ... % 'percent' 'real' [0 1] 1 ; ... % 'elecamp' 'integer' [1:10] [] }); % if isstr(result) % error(result); % end % % Note: % The 'title' argument should be a string. {no default value} % The 'percent' argument should be a real number between 0 and 1. {default: 1} % The 'elecamp' argument should be an integer between 1 and 10 (inclusive). % % Now 'g.title' will contain the title arg (if any, else the default ''), etc. % % Author: Arnaud Delorme, CNL / Salk Institute, 10 July 2002 % Copyright (C) Arnaud Delorme, CNL / Salk Institute, 10 July 2002, [email protected] % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [g, varargnew] = finputcheck( vararg, fieldlist, callfunc, mode, verbose ) if nargin < 2 help finputcheck; return; end; if nargin < 3 callfunc = ''; else callfunc = [callfunc ' ' ]; end; if nargin < 4 mode = 'do not ignore'; end; if nargin < 5 verbose = 'verbose'; end; NAME = 1; TYPE = 2; VALS = 3; DEF = 4; SIZE = 5; varargnew = {}; % create structure % ---------------- if ~isempty(vararg) for index=1:length(vararg) if iscell(vararg{index}) vararg{index} = {vararg{index}}; end; end; try g = struct(vararg{:}); catch vararg = removedup(vararg, verbose); try g = struct(vararg{:}); catch g = [ callfunc 'error: bad ''key'', ''val'' sequence' ]; return; end; end; else g = []; end; for index = 1:size(fieldlist,NAME) % check if present % ---------------- if ~isfield(g, fieldlist{index, NAME}) g = setfield( g, fieldlist{index, NAME}, fieldlist{index, DEF}); end; tmpval = getfield( g, {1}, fieldlist{index, NAME}); % check type % ---------- if ~iscell( fieldlist{index, TYPE} ) res = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}, ... fieldlist{index, VALS}, tmpval, callfunc ); if isstr(res), g = res; return; end; else testres = 0; tmplist = fieldlist; for it = 1:length( fieldlist{index, TYPE} ) if ~iscell(fieldlist{index, VALS}) res{it} = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}{it}, ... fieldlist{index, VALS}, tmpval, callfunc ); else res{it} = fieldtest( fieldlist{index, NAME}, fieldlist{index, TYPE}{it}, ... fieldlist{index, VALS}{it}, tmpval, callfunc ); end; if ~isstr(res{it}), testres = 1; end; end; if testres == 0, g = res{1}; for tmpi = 2:length(res) g = [ g 10 'or ' res{tmpi} ]; end; return; end; end; end; % check if fields are defined % --------------------------- allfields = fieldnames(g); for index=1:length(allfields) if isempty(strmatch(allfields{index}, fieldlist(:, 1)', 'exact')) if ~strcmpi(mode, 'ignore') g = [ callfunc 'error: undefined argument ''' allfields{index} '''']; return; end; varargnew{end+1} = allfields{index}; varargnew{end+1} = getfield(g, {1}, allfields{index}); end; end; function g = fieldtest( fieldname, fieldtype, fieldval, tmpval, callfunc ); NAME = 1; TYPE = 2; VALS = 3; DEF = 4; SIZE = 5; g = []; switch fieldtype case { 'integer' 'real' 'boolean' 'float' }, if ~isnumeric(tmpval) && ~islogical(tmpval) g = [ callfunc 'error: argument ''' fieldname ''' must be numeric' ]; return; end; if strcmpi(fieldtype, 'boolean') if tmpval ~=0 && tmpval ~= 1 g = [ callfunc 'error: argument ''' fieldname ''' must be 0 or 1' ]; return; end; else if strcmpi(fieldtype, 'integer') if ~isempty(fieldval) if (any(isnan(tmpval(:))) && ~any(isnan(fieldval))) ... && (~ismember(tmpval, fieldval)) g = [ callfunc 'error: wrong value for argument ''' fieldname '''' ]; return; end; end; else % real or float if ~isempty(fieldval) && ~isempty(tmpval) if any(tmpval < fieldval(1)) || any(tmpval > fieldval(2)) g = [ callfunc 'error: value out of range for argument ''' fieldname '''' ]; return; end; end; end; end; case 'string' if ~isstr(tmpval) g = [ callfunc 'error: argument ''' fieldname ''' must be a string' ]; return; end; if ~isempty(fieldval) if isempty(strmatch(lower(tmpval), lower(fieldval), 'exact')) g = [ callfunc 'error: wrong value for argument ''' fieldname '''' ]; return; end; end; case 'cell' if ~iscell(tmpval) g = [ callfunc 'error: argument ''' fieldname ''' must be a cell array' ]; return; end; case 'struct' if ~isstruct(tmpval) g = [ callfunc 'error: argument ''' fieldname ''' must be a structure' ]; return; end; case ''; otherwise, error([ 'finputcheck error: unrecognized type ''' fieldname '''' ]); end; % remove duplicates in the list of parameters % ------------------------------------------- function cella = removedup(cella, verbose) % make sure if all the values passed to unique() are strings, if not, exist %try [tmp indices] = unique(cella(1:2:end)); if length(tmp) ~= length(cella)/2 myfprintf(verbose,'Note: duplicate ''key'', ''val'' parameter(s), keeping the last one(s)\n'); end; cella = cella(sort(union(indices*2-1, indices*2))); %catch % some elements of cella were not string % error('some ''key'' values are not string.'); %end; function myfprintf(verbose, varargin) if strcmpi(verbose, 'verbose') fprintf(varargin{:}); end;
github
ZijingMao/baselineeegtest-master
meshReduce.m
.m
baselineeegtest-master/VisualizationFilters/geom3d/meshes3d/meshReduce.m
9,863
utf_8
fe0668cc856377deaeeb38dfce52916d
function varargout = meshReduce(nodes, varargin) %MESHREDUCE Merge coplanar faces of a polyhedral mesh % % Note: deprecated, should use "mergeCoplanarFaces" instead % % [NODES FACES] = meshReduce(NODES, FACES) % [NODES EDGES FACES] = meshReduce(NODES, EDGES, FACES) % NODES is a set of 3D points (as a Nn-by-3 array), % and FACES is one of: % - a Nf-by-X array containing vertex indices of each face, with each % face having the same number of vertices, % - a Nf-by 1 cell array, each cell containing indices of a face. % The function groups faces which are coplanar and contiguous, resulting % in a "lighter" mesh. This can be useful for visualizing binary 3D % images for example. % % FACES = meshReduce(..., PRECISION) % Adjust the threshold for deciding if two faces are coplanar or % parallel. Default value is 1e-14. % % Example % [n e f] = createCube; % figure; drawMesh(n, f); view(3); axis equal; % f2 = meshReduce(n, f); % figure; drawMesh(n, f2); view(3); axis equal; % % See also % meshes3d, mergeCoplanarFaces % % ------ % Author: David Legland % e-mail: [email protected] % Created: 2006-07-05 % Copyright 2006 INRA - CEPIA Nantes - MIAJ (Jouy-en-Josas). % 20/07/2006 add tolerance for coplanarity test % 21/08/2006 fix small bug due to difference of methods to test % coplanaritity, sometimes resulting in 3 points of a face not coplanar ! % Also add control on precision % 14/08/2007 rename minConvexHull->meshReduce, and extend to non convex % shapes % 2011-01-14 code clean up % 2013-02-22 deprecate and rename to mergeCoplanarFaces warning('MatGeom:meshes3d:deprecated', ... 'Function ''meshReduce'' is deprecated, should use ''mergeCoplanarFaces'' instead'); %% Process input arguments % set up precision acc = 1e-14; if ~isempty(varargin) var = varargin{end}; if length(var)==1 acc = var; varargin(end) = []; end end % extract faces and edges if length(varargin)==1 faces = varargin{1}; else faces = varargin{2}; end %% Initialisations % number of faces Nn = size(nodes, 1); Nf = size(faces, 1); % compute number of vertices of each face Fn = ones(Nf, 1)*size(faces, 2); % compute normal of each faces normals = faceNormal(nodes, faces); % initialize empty faces and edges faces2 = cell(0, 1); edges2 = zeros(0, 2); % Processing flag for each face % 1: face to process, 0: already processed % in the beginning, every triangle face need to be processed flag = ones(Nf, 1); %% Main iteration % iterate on each face for f = 1:Nf % check if face was already performed if ~flag(f) continue; end % indices of faces with same normal ind = find(abs(vectorNorm3d(cross(repmat(normals(f, :), [Nf 1]), normals)))<acc); %ind = ind(ind~=i); % keep only coplanar faces (test coplanarity of points in both face) ind2 = false(size(ind)); for j = 1:length(ind) ind2(j) = isCoplanar(nodes([faces(f,:) faces(ind(j),:)], :), acc); end ind2 = ind(ind2); % compute edges of all faces in the plane planeEdges = zeros(sum(Fn(ind2)), 2); pos = 1; for i=1:length(ind2) face = faces(ind2(i), :); faceEdges = sort([face' face([2:end 1])'], 2); planeEdges(pos:sum(Fn(ind2(1:i))), :) = faceEdges; pos = sum(Fn(ind2(1:i)))+1; end planeEdges = unique(planeEdges, 'rows'); % relabel plane edges, and find connected components [planeNodes, I, J] = unique(planeEdges(:)); %#ok<ASGLU> planeEdges2 = reshape(J, size(planeEdges)); component = grLabel(nodes(planeNodes, :), planeEdges2); % compute degree (number of adjacent faces) of each edge. Npe = size(planeEdges, 1); edgesDegree = zeros(Npe, 1); for i = 1:length(ind2) face = faces(ind2(i), :); faceEdges = sort([face' face([2:end 1])'], 2); for j = 1:size(faceEdges, 1) indEdge = find(sum(ismember(planeEdges, faceEdges(j,:)),2)==2); edgesDegree(indEdge) = edgesDegree(indEdge)+1; end end % extract unique edges and nodes of the plane planeEdges = planeEdges(edgesDegree==1, :); planeEdges2 = planeEdges2(edgesDegree==1, :); % find connected component of each edge planeEdgesComp = zeros(size(planeEdges, 1), 1); for e = 1:size(planeEdges, 1) planeEdgesComp(e) = component(planeEdges2(e, 1)); end % iterate on connected faces for c=1:max(component) % convert to chains of nodes loops = graph2Contours(nodes, planeEdges(planeEdgesComp==c, :)); % add a simple Polygon for each loop facePolygon = loops{1}; for l = 2:length(loops) facePolygon = [facePolygon, NaN, loops{l}]; %#ok<AGROW> end faces2{length(faces2)+1, 1} = facePolygon; % also add news edges edges2 = unique([edges2; planeEdges], 'rows'); end % mark processed faces flag(ind2) = 0; end %% Additional processing on nodes % select only nodes which appear in at least one edge indNodes = unique(edges2(:)); % for each node, compute index of corresponding new node (or 0 if dropped) refNodes = zeros(Nn, 1); for i=1:length(indNodes) refNodes(indNodes(i)) = i; end % changes indices of nodes in edges2 array for i=1:length(edges2(:)) edges2(i) = refNodes(edges2(i)); end % changes indices of nodes in faces2 array for f=1:length(faces2) face = faces2{f}; for i=1:length(face) if ~isnan(face(i)) face(i) = refNodes(face(i)); end end faces2{f} = face; end % keep only boundary nodes nodes2 = nodes(indNodes, :); %% Process output arguments if nargout == 1 varargout{1} = faces2; elseif nargout == 2 varargout{1} = nodes2; varargout{2} = faces2; elseif nargout==3 varargout{1} = nodes2; varargout{2} = edges2; varargout{3} = faces2; end function labels = grLabel(nodes, edges) %GRLABEL associate a label to each connected component of the graph % LABELS = grLabel(NODES, EDGES) % Returns an array with as many rows as the array NODES, containing index % number of each connected component of the graph. If the graph is % totally connected, returns an array of 1. % % Example % nodes = rand(6, 2); % edges = [1 2;1 3;4 6]; % labels = grLabel(nodes, edges); % labels = % 1 % 1 % 1 % 2 % 3 % 2 % % See also % getNeighbourNodes % % % ------ % Author: David Legland % e-mail: [email protected] % Created: 2007-08-14, using Matlab 7.4.0.287 (R2007a) % Copyright 2007 INRA - BIA PV Nantes - MIAJ Jouy-en-Josas. % init Nn = size(nodes, 1); labels = (1:Nn)'; % iteration modif = true; while modif modif = false; for i=1:Nn neigh = getNeighbourNodes(i, edges); neighLabels = labels([i;neigh]); % check for a modification if length(unique(neighLabels))>1 modif = true; end % put new labels labels(ismember(labels, neighLabels)) = min(neighLabels); end end % change to have fewer labels labels2 = unique(labels); for i=1:length(labels2) labels(labels==labels2(i)) = i; end function nodes2 = getNeighbourNodes(node, edges) %GETNEIGHBOURNODES find nodes adjacent to a given node % % NEIGHS = getNeighbourNodes(NODE, EDGES) % NODE: index of the node % EDGES: the complete edges list % NEIGHS: the nodes adjacent to the given node. % % NODE can also be a vector of node indices, in this case the result is % the set of neighbors of any input node. % % % ----- % % author : David Legland % INRA - TPV URPOI - BIA IMASTE % created the 16/08/2004. % % HISTORY % 10/02/2004 documentation % 13/07/2004 faster algorithm % 03/10/2007 can specify several input nodes [i, j] = find(ismember(edges, node)); nodes2 = edges(i,1:2); nodes2 = unique(nodes2(:)); nodes2 = sort(nodes2(~ismember(nodes2, node))); function curves = graph2Contours(nodes, edges) %GRAPH2CONTOURS convert a graph to a set of contour curves % % CONTOURS = GRAPH2CONTOURS(NODES, EDGES) % NODES, EDGES is a graph representation (type "help graph" for details) % The algorithm assume every node has degree 2, and the set of edges % forms only closed loops. The result is a list of indices arrays, each % array containing consecutive point indices of a contour. % % To transform contours into drawable curves, please use : % CURVES{i} = NODES(CONTOURS{i}, :); % % % NOTE : contours are not oriented. To manage contour orientation, edges % also need to be oriented. So we must precise generation of edges. % % ----- % % author : David Legland % INRA - TPV URPOI - BIA IMASTE % created the 05/08/2004. % curves = {}; c = 0; while size(edges,1)>0 % find first point of the curve n0 = edges(1,1); curve = n0; % second point of the curve n = edges(1,2); e = 1; while true % add current point to the curve curve = [curve n]; % remove current edge from the list edges = edges((1:size(edges,1))~=e,:); % find index of edge containing reference to current node e = find(edges(:,1)==n | edges(:,2)==n); e = e(1); % get index of next current node % (this is the other node of the current edge) if edges(e,1)==n n = edges(e,2); else n = edges(e,1); end % if node is same as start node, loop is closed, and we stop % node iteration. if n==n0 break; end end % remove the last edge of the curve from edge list. edges = edges((1:size(edges,1))~=e,:); % add the current curve to the list, and start a new curve c = c+1; curves{c} = curve; end
github
ZijingMao/baselineeegtest-master
meshSurfaceArea.m
.m
baselineeegtest-master/VisualizationFilters/geom3d/meshes3d/meshSurfaceArea.m
1,883
utf_8
abe62e53f393c56a2782e20e4e788092
function area = meshSurfaceArea(vertices, edges, faces) %MESHSURFACEAREA Surface area of a polyhedral mesh % % S = meshSurfaceArea(V, F) % S = meshSurfaceArea(V, E, F) % Computes the surface area of the mesh specified by vertex array V and % face array F. Vertex array is a NV-by-3 array of coordinates. % Face array can be a NF-by-3 or NF-by-4 numeric array, or a Nf-by-1 cell % array, containing vertex indices of each face. % % This functions iterates on faces, extract vertices of the current face, % and computes the sum of face areas. % % This function assumes faces are coplanar and convex. If faces are all % triangular, the function "trimeshSurfaceArea" should be more efficient. % % % Example % % compute the surface of a unit cube (should be equal to 6) % [v f] = createCube; % meshSurfaceArea(v, f) % ans = % 6 % % See also % meshes3d, trimeshSurfaceArea, meshVolume, meshFacePolygons, % polygonArea3d % % ------ % Author: David Legland % e-mail: [email protected] % Created: 2010-10-13, using Matlab 7.9.0.529 (R2009b) % Copyright 2010 INRA - Cepia Software Platform. % check input number if nargin == 2 faces = edges; end % pre-compute normals normals = normalizeVector3d(faceNormal(vertices, faces)); % init accumulator area = 0; if isnumeric(faces) % iterate on faces in a numeric array for i = 1:size(faces, 1) poly = vertices(faces(i, :), :); area = area + polyArea3d(poly, normals(i,:)); end else % iterate on faces in a cell array for i = 1:length(faces) poly = vertices(faces{i}, :); area = area + polyArea3d(poly, normals(i,:)); end end function a = polyArea3d(v, normal) nv = size(v, 1); v0 = repmat(v(1,:), nv, 1); products = sum(cross(v-v0, v([2:end 1], :)-v0, 2), 1); a = abs(dot(products, normal, 2))/2;
github
ZijingMao/baselineeegtest-master
mergeCoplanarFaces.m
.m
baselineeegtest-master/VisualizationFilters/geom3d/meshes3d/mergeCoplanarFaces.m
10,111
utf_8
28a4d5c9c038ed1d5250c1babe495a14
function varargout = mergeCoplanarFaces(nodes, varargin) %MERGECOPLANARFACES Merge coplanar faces of a polyhedral mesh % % [NODES FACES] = mergeCoplanarFaces(NODES, FACES) % [NODES EDGES FACES] = mergeCoplanarFaces(NODES, EDGES, FACES) % NODES is a set of 3D points (as a nNodes-by-3 array), % and FACES is one of: % - a nFaces-by-X array containing vertex indices of each face, with each % face having the same number of vertices, % - a nFaces-by-1 cell array, each cell containing indices of a face. % The function groups faces which are coplanar and contiguous, resulting % in a "lighter" mesh. This can be useful for visualizing binary 3D % images for example. % % FACES = mergeCoplanarFaces(..., PRECISION) % Adjust the threshold for deciding if two faces are coplanar or % parallel. Default value is 1e-5. % % Example % [v e iFace] = createCube; % figure; drawMesh(v, iFace); view(3); axis equal; % [v2 f2] = mergeCoplanarFaces(v, iFace); % figure; drawMesh(v, f2); % view(3); axis equal; view(3); % % See also % meshes3d, drawMesh, minConvexHull, triangulateFaces % % ------ % Author: David Legland % e-mail: [email protected] % Created: 2006-07-05 % Copyright 2006 INRA - CEPIA Nantes - MIAJ (Jouy-en-Josas). % 20/07/2006 add tolerance for coplanarity test % 21/08/2006 fix small bug due to difference of methods to test % coplanaritity, sometimes resulting in 3 points of a face not coplanar ! % Also add control on precision % 14/08/2007 rename minConvexHull->meshReduce, and extend to non convex % shapes % 2011-01-14 code clean up % 2013-02-22 rename from meshReduce to mergeCoplanarFaces %% Process input arguments % set up precision acc = 1e-5; if ~isempty(varargin) var = varargin{end}; if length(var) == 1 acc = var; varargin(end) = []; end end % extract faces and edges if length(varargin) == 1 faces = varargin{1}; else faces = varargin{2}; end %% Initialisations % number of faces nNodes = size(nodes, 1); nFaces = size(faces, 1); % compute number of vertices of each face Fn = ones(nFaces, 1) * size(faces, 2); % compute normal of each faces normals = faceNormal(nodes, faces); % initialize empty faces and edges faces2 = cell(0, 1); edges2 = zeros(0, 2); % Processing flag for each face % 1: face to process, 0: already processed % in the beginning, every triangle face need to be processed flag = ones(nFaces, 1); %% Main iteration % iterate on each face for iFace = 1:nFaces % check if face was already performed if ~flag(iFace) continue; end % indices of faces with same normal % ind = find(abs(vectorNorm3d(cross(repmat(normals(iFace, :), [nFaces 1]), normals)))<acc); ind = find(vectorNorm3d(vectorCross3d(normals(iFace, :), normals)) < acc); % keep only coplanar faces (test coplanarity of points in both face) ind2 = false(size(ind)); for j = 1:length(ind) ind2(j) = isCoplanar(nodes([faces(iFace,:) faces(ind(j),:)], :), acc); end ind2 = ind(ind2); % compute edges of all faces in the plane planeEdges = zeros(sum(Fn(ind2)), 2); pos = 1; for i = 1:length(ind2) face = faces(ind2(i), :); faceEdges = sort([face' face([2:end 1])'], 2); planeEdges(pos:sum(Fn(ind2(1:i))), :) = faceEdges; pos = sum(Fn(ind2(1:i)))+1; end planeEdges = unique(planeEdges, 'rows'); % relabel plane edges [planeNodes, I, J] = unique(planeEdges(:)); %#ok<ASGLU> planeEdges2 = reshape(J, size(planeEdges)); % The set of coplanar faces may not necessarily form a single connected % component. The following computes label of each connected component. component = grLabel(nodes(planeNodes, :), planeEdges2); % compute degree (number of adjacent faces) of each edge. Npe = size(planeEdges, 1); edgeDegrees = zeros(Npe, 1); for i = 1:length(ind2) face = faces(ind2(i), :); faceEdges = sort([face' face([2:end 1])'], 2); for j = 1:size(faceEdges, 1) indEdge = find(sum(ismember(planeEdges, faceEdges(j,:)),2)==2); edgeDegrees(indEdge) = edgeDegrees(indEdge)+1; end end % extract unique edges and nodes of the plane planeEdges = planeEdges(edgeDegrees==1, :); planeEdges2 = planeEdges2(edgeDegrees==1, :); % find connected component of each edge planeEdgesComp = zeros(size(planeEdges, 1), 1); for iEdge = 1:size(planeEdges, 1) planeEdgesComp(iEdge) = component(planeEdges2(iEdge, 1)); end % iterate on connected faces for c = 1:max(component) % convert to chains of nodes loops = graph2Contours(nodes, planeEdges(planeEdgesComp==c, :)); % add a simple Polygon for each loop facePolygon = loops{1}; for l = 2:length(loops) facePolygon = [facePolygon, NaN, loops{l}]; %#ok<AGROW> end faces2{length(faces2)+1, 1} = facePolygon; % also add news edges edges2 = unique([edges2; planeEdges], 'rows'); end % mark processed faces flag(ind2) = 0; end %% Additional processing on nodes % select only nodes which appear in at least one edge indNodes = unique(edges2(:)); % for each node, compute index of corresponding new node (or 0 if dropped) refNodes = zeros(nNodes, 1); for i = 1:length(indNodes) refNodes(indNodes(i)) = i; end % changes indices of nodes in edges2 array for i = 1:length(edges2(:)) edges2(i) = refNodes(edges2(i)); end % changes indices of nodes in faces2 array for iFace = 1:length(faces2) face = faces2{iFace}; for i = 1:length(face) if ~isnan(face(i)) face(i) = refNodes(face(i)); end end faces2{iFace} = face; end % keep only boundary nodes nodes2 = nodes(indNodes, :); %% Process output arguments if nargout == 1 varargout{1} = faces2; elseif nargout == 2 varargout{1} = nodes2; varargout{2} = faces2; elseif nargout == 3 varargout{1} = nodes2; varargout{2} = edges2; varargout{3} = faces2; end function labels = grLabel(nodes, edges) %GRLABEL associate a label to each connected component of the graph % LABELS = grLabel(NODES, EDGES) % Returns an array with as many rows as the array NODES, containing index % number of each connected component of the graph. If the graph is % totally connected, returns an array of 1. % % Example % nodes = rand(6, 2); % edges = [1 2;1 3;4 6]; % labels = grLabel(nodes, edges); % labels = % 1 % 1 % 1 % 2 % 3 % 2 % % See also % getNeighbourNodes % % % ------ % Author: David Legland % e-mail: [email protected] % Created: 2007-08-14, using Matlab 7.4.0.287 (R2007a) % Copyright 2007 INRA - BIA PV Nantes - MIAJ Jouy-en-Josas. % init nNodes = size(nodes, 1); labels = (1:nNodes)'; % iteration modif = true; while modif modif = false; for i=1:nNodes neigh = getNeighbourNodes(i, edges); neighLabels = labels([i;neigh]); % check for a modification if length(unique(neighLabels))>1 modif = true; end % put new labels labels(ismember(labels, neighLabels)) = min(neighLabels); end end % change to have fewer labels labels2 = unique(labels); for i = 1:length(labels2) labels(labels==labels2(i)) = i; end function nodes2 = getNeighbourNodes(node, edges) %GETNEIGHBOURNODES find nodes adjacent to a given node % % NEIGHS = getNeighbourNodes(NODE, EDGES) % NODE: index of the node % EDGES: the complete edges list % NEIGHS: the nodes adjacent to the given node. % % NODE can also be a vector of node indices, in this case the result is % the set of neighbors of any input node. % % % ----- % % author : David Legland % INRA - TPV URPOI - BIA IMASTE % created the 16/08/2004. % % HISTORY % 10/02/2004 documentation % 13/07/2004 faster algorithm % 03/10/2007 can specify several input nodes [i, j] = find(ismember(edges, node)); %#ok<NASGU> nodes2 = edges(i,1:2); nodes2 = unique(nodes2(:)); nodes2 = sort(nodes2(~ismember(nodes2, node))); function curves = graph2Contours(nodes, edges) %#ok<INUSL> %GRAPH2CONTOURS convert a graph to a set of contour curves % % CONTOURS = GRAPH2CONTOURS(NODES, EDGES) % NODES, EDGES is a graph representation (type "help graph" for details) % The algorithm assume every node has degree 2, and the set of edges % forms only closed loops. The result is a list of indices arrays, each % array containing consecutive point indices of a contour. % % To transform contours into drawable curves, please use : % CURVES{i} = NODES(CONTOURS{i}, :); % % % NOTE : contours are not oriented. To manage contour orientation, edges % also need to be oriented. So we must precise generation of edges. % % ----- % % author : David Legland % INRA - TPV URPOI - BIA IMASTE % created the 05/08/2004. % curves = {}; c = 0; while size(edges,1)>0 % find first point of the curve n0 = edges(1,1); curve = n0; % second point of the curve n = edges(1,2); e = 1; while true % add current point to the curve curve = [curve n]; %#ok<AGROW> % remove current edge from the list edges = edges((1:size(edges,1))~=e,:); % find index of edge containing reference to current node e = find(edges(:,1)==n | edges(:,2)==n); e = e(1); % get index of next current node % (this is the other node of the current edge) if edges(e,1)==n n = edges(e,2); else n = edges(e,1); end % if node is same as start node, loop is closed, and we stop % node iteration. if n==n0 break; end end % remove the last edge of the curve from edge list. edges = edges((1:size(edges,1))~=e,:); % add the current curve to the list, and start a new curve c = c+1; curves{c} = curve; %#ok<AGROW> end
github
ZijingMao/baselineeegtest-master
rocarea.m
.m
baselineeegtest-master/BaselineTest/XDBLDAUtility/Utilities/rocarea.m
2,034
utf_8
c5ed1630baa8d2de141052ed2c13dab4
% rocarea() - computes the area under the ROC curve % If no output arguments are specified % it will display an ROC curve with the % Az and approximate fraction correct. % % Usage: % >> [Az,tp,fp,fc]=rocarea(p,label); % % Inputs: % p - classification output % label - truth labels {0,1} % % Outputs: % Az - Area under ROC curve % tp - true positive rate % fp - false positive rate % fc - fraction correct % % Authors: Lucas Parra ([email protected], 2004) % with Adam Gerson (reformatted for EEGLAB) %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2004 Lucas Parra % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [Az,tp,fp,fc]=rocarea(p,label) [tmp,indx]=sort(-p); label = label>0; Np=sum(label==1); Nn=sum(label==0); tp=0; pinc=1/Np; fp=0; finc=1/Nn; Az=0; N=Np+Nn; tp=zeros(N+1,1); fp=zeros(N+1,1); for i=1:N tp(i+1)=tp(i)+label(indx(i))/Np; fp(i+1)=fp(i)+(~label(indx(i)))/Nn; Az = Az + (~label(indx(i)))*tp(i+1)/Nn; end; [m,i]=min(fp-tp); fc = 1-mean([fp(i), 1-tp(i)]); if nargout==0 plot(fp,tp); axis([0 1 0 1]); hold on plot([0 1],[1 0],':'); hold off xlabel('false positive rate') ylabel('true positive rate') title('ROC Curve'); axis([0 1 0 1]); text(0.4,0.2,sprintf('Az = %.2f',Az)) text(0.4,0.1,sprintf('fc = %.2f',fc)) axis square end
github
ZijingMao/baselineeegtest-master
logist.m
.m
baselineeegtest-master/BaselineTest/XDBLDAUtility/Utilities/logist.m
9,603
utf_8
e175ee099b786fea664b3f83b907a2f7
% logist() - Iterative recursive least squares algorithm for linear % logistic model % % Usage: % >> [v] = logist(x,y,vinit,show,regularize,lambda,lambdasearch,eigvalratio); % % Inputs: % x - N input samples [N,D] % y - N binary labels [N,1] {0,1} % % Optional parameters: % vinit - initialization for faster convergence % show - if>0 will show first two dimensions % regularize - [1|0] -> [yes|no] % lambda - regularization constant for weight decay. Makes % logistic regression into a support vector machine % for large lambda (cf. Clay Spence). Defaults to 10^-6. % lambdasearch- [1|0] -> search for optimal regularization constant lambda % eigvalratio - if the data does not fill D-dimensional space, % i.e. rank(x)<D, you should specify a minimum % eigenvalue ratio relative to the largest eigenvalue % of the SVD. All dimensions with smaller eigenvalues % will be eliminated prior to the discrimination. % % Outputs: % v - v(1:D) normal to separating hyperplane. v(D+1) slope % % Compute probability of new samples with p = bernoull(1,[x 1]*v); % % References: % % @article{gerson2005, % author = {Adam D. Gerson and Lucas C. Parra and Paul Sajda}, % title = {Cortical Origins of Response Time Variability % During Rapid Discrimination of Visual Objects}, % journal = {{NeuroImage}}, % year = {in revision}} % % @article{parra2005, % author = {Lucas C. Parra and Clay D. Spence and Paul Sajda}, % title = {Recipes for the Linear Analysis of {EEG}}, % journal = {{NeuroImage}}, % year = {in revision}} % % Authors: Adam Gerson ([email protected], 2004), % with Lucas Parra ([email protected], 2004) % and Paul Sajda (ps629@columbia,edu 2004) %123456789012345678901234567890123456789012345678901234567890123456789012 % Copyright (C) 2004 Adam Gerson, Lucas Parra and Paul Sajda % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA function [v] = logist(x,y,v,show,regularize,lambda,lambdasearch,eigvalratio) printoutput=0; [N,D]=size(x); iter=0; showcount=0; if nargin<3 | isempty(v), v=zeros(D,1); vth=0; else vth=v(D+1); v=v(1:D); end; if nargin<4 | isempty(show); show=0; end; if nargin<5 | isempty(regularize); regularize=0; end if nargin<6 | isempty(lambda); lambda=eps; end; if nargin<7 | isempty(lambdasearch), lambdasearch=0; end if nargin<8 | isempty(eigvalratio); eigvalratio=0; end; if regularize, lambda=1e-6; end % subspace reduction if requested - electrodes might be linked if eigvalratio [U,S,V] = svd(x,0); % subspace analysis V = V(:,find(diag(S)/S(1,1)>eigvalratio)); % keep significant subspace x = x*V; % map the data to that subspace v = V'*v; % reduce initialization to the subspace [N,D]=size(x); % less dimensions now end % combine threshold computation with weight vector. x = [x ones(N,1)]; v = [v; vth]; vold=ones(size(v)); if regularize, lambda = [0.5*lambda*ones(1,D) 0]'; end % clear warning as we will use it to catch conditioning problems lastwarn(''); % If lambda increases, the maximum number of iterations is increased from % maxiter to maxiterlambda maxiter=100; maxiterlambda=1000; singularwarning=0; lambdawarning=0; % Initialize warning flags if show, figure; end % IRLS for binary classification of experts (bernoulli distr.) while ((subspace(vold,v)>1e-7)&(iter<=maxiter)& ... (~singularwarning)&(~lambdawarning))|iter==0, vold=v; % this computes step 1. In the Parra paper referenced above, mu is what Parra called "p". % mu is the estimate of y with the current weights v. % p <- f(wT * X) mu = bernoull(1,x*v); % recompute weights % w and e values are used in the calculations in steps 2 and 3. In the % Parra paper, w is what Parra called (p .* (1-p)). e is what Parra % calls (d-p) -- this the error between the actual y and the estimate % of y based on the current weights. w = mu.*(1-mu); e = (y - mu); % this computes Step 2 (Gradient) % g <- X * (d-p) - lambda * v grad = x'*e; % - lambda .* v; if regularize, grad=grad - lambda .* v; end %inc = inv(x'*diag(w)*x+eps*eye(D+1)) * grad; % this computes step 3 and the incremental part of 4. inc is equivalent % to inv(H) * g in the Parra paper. This value is essentially the % Newton Direction or Newton Step. Adding this to the vector of weights % moves the weights towards minimizing the error of the fit. % H <- X * diag(p.* (1-p)) * XT + lambda * I % H^-1 * g inc = inv(x' * (repmat(w,1,D+1).*x) + diag(lambda) * eye(D+1)) * grad; if strncmp(lastwarn,'Matrix is close to singular or badly scaled.',44) warning('Bad conditioning. Suggest reducing subspace.') singularwarning=1; end if (norm(inc)>=1000)&regularize, if ~lambdasearch, ... warning('Data may be perfectly separable. Suggest increasing regularization constant lambda'); end lambdawarning = 1; end; % avoid funny outliers that happen with inv if (norm(inc) >= 1000)&regularize&lambdasearch, % Increase regularization constant lambda lambda = sign(lambda).*abs(lambda.^(1/1.02)); lambdawarning = 0; if printoutput, fprintf('Bad conditioning. Data may be perfectly separable. Increasing lambda to: %6.2f\n',lambda(1)); end maxiter=maxiterlambda; elseif (~singularwarning)&(~lambdawarning), % update -- this completes step 4 in the Parra paper. % w <- w + inv(H) * g; v = v + inc; if show showcount=showcount+1; subplot(1,2,1) ax = [min(x(:,1)), max(x(:,1)), min(x(:,2)), max(x(:,2))]; hold off; h(1)=plot(x(y>0,1),x(y>0,2),'bo'); hold on; h(2)=plot(x(y<1,1),x(y<1,2),'r+'); xlabel('First Dimension','FontSize',14); ylabel('Second Dimension','FontSize',14); title('Discrimination Boundary','FontSize',14); legend(h,'Dataset 1','Dataset 2'); axis square; if norm(v)>0, tmean=mean(x); tmp = tmean; tmp(1)=0; t1=tmp; t1(2)=ax(3); t2=tmp; t2(2)=ax(4); xmin=median([ax(1), -(t1*v)/v(1), -(t2*v)/v(1)]); xmax=median([ax(2), -(t1*v)/v(1), -(t2*v)/v(1)]); tmp = tmean; tmp(2)=0; t1=tmp; t1(1)=ax(1); t2=tmp; t2(1)=ax(2); ymin=median([ax(3), -(t1*v)/v(2), -(t2*v)/v(2)]); ymax=median([ax(4), -(t1*v)/v(2), -(t2*v)/v(2)]); if v(1)*v(2)>0, tmp=xmax; xmax=xmin; xmin=tmp; end; if ~(xmin<ax(1)|xmax > ax(2)|ymin < ax(3)|ymax > ax(4)), h = plot([xmin xmax],[ymin ymax],'k','LineWidth',2); end; end; subplot(1,2,2); vnorm(showcount) = subspace(vold,v); if vnorm(showcount) == 0, vnorm(showcount)=nan; end plot(log(vnorm)/log(10)); title('Subspace between v(t) and v(t+1)','FontSize',14); xlabel('Iteration','FontSize',14); ylabel('Subspace','FontSize',14); axis square; drawnow; end; % exit if converged if subspace(vold,v)<1e-7, if printoutput, disp(['Converged... ']); disp(['Iterations: ' num2str(iter)]); disp(['Subspace: ' num2str(subspace(vold,v))]); disp(['Lambda: ' num2str(lambda(1))]); end end; end % exit if taking too long iter=iter+1; if iter>maxiter, if printoutput, disp(['Not converging after ' num2str(maxiter)' iterations.']); disp(['Iterations: ' num2str(iter-1)]); disp(['Subspace: ' num2str(subspace(vold,v))]); disp(['Lambda: ' num2str(lambda(1))]); end end; end; if eigvalratio v = [V*v(1:D);v(D+1)]; % the result should be in the original space end function [p]=bernoull(x,eta); % bernoull() - Computes Bernoulli distribution of x % for "natural parameter" eta. % % Usage: % >> [p] = bernoull(x,eta) % % The mean m of a Bernoulli distributions relates to eta as, % m = exp(eta)/(1+exp(eta)); p = exp(eta.*x - log(1+exp(eta)));
github
ZijingMao/baselineeegtest-master
LDAsimple.m
.m
baselineeegtest-master/BaselineTest/XDBLDAUtility/blda/LDAsimple.m
2,300
utf_8
b58ee004f29558ff0e923ce17fbe6102
% LDA - MATLAB subroutine to perform linear discriminant analysis % by Will Dwinnell and Deniz Sevis % % Use: % W = LDA(Input,Target,Priors) % % W = discovered linear coefficients (first column is the constants) % Input = predictor data (variables in columns, observations in rows) % Target = target variable (class labels) % Priors = vector of prior probabilities (optional) % % Note: discriminant coefficients are stored in W in the order of unique(Target) % % Example: % % % Generate example data: 2 groups, of 10 and 15, respectively % X = [randn(10,2); randn(15,2) + 1.5]; Y = [zeros(10,1); ones(15,1)]; % % % Calculate linear discriminant coefficients % W = LDA(X,Y); % % % Calulcate linear scores for training data % L = [ones(25,1) X] * W'; % % % Calculate class probabilities % P = exp(L) ./ repmat(sum(exp(L),2),[1 2]); % % % Last modified: Dec-11-2010 function W = LDAsimple(Input,Target,Priors) % Determine size of input data [n m] = size(Input); % Discover and count unique class labels ClassLabel = unique(Target); k = length(ClassLabel); % Initialize nGroup = NaN(k,1); % Group counts GroupMean = NaN(k,m); % Group sample means PooledCov = zeros(m,m); % Pooled covariance W = NaN(k,m+1); % model coefficients if (nargin >= 3) PriorProb = Priors; end % Loop over classes to perform intermediate calculations for i = 1:k, % Establish location and size of each class Group = (Target == ClassLabel(i)); nGroup(i) = sum(double(Group)); % Calculate group mean vectors GroupMean(i,:) = mean(Input(Group,:)); % Accumulate pooled covariance information PooledCov = PooledCov + ((nGroup(i) - 1) / (n - k) ).* cov(Input(Group,:)); end % Assign prior probabilities if (nargin >= 3) % Use the user-supplied priors PriorProb = Priors; else % Use the sample probabilities PriorProb = nGroup / n; end % Loop over classes to calculate linear discriminant coefficients for i = 1:k, % Intermediate calculation for efficiency % This replaces: GroupMean(g,:) * inv(PooledCov) Temp = GroupMean(i,:) / PooledCov; % Constant W(i,1) = -0.5 * Temp * GroupMean(i,:)' + log(PriorProb(i)); % Linear W(i,2:end) = Temp; end % Housekeeping clear Temp end % EOF
github
ZijingMao/baselineeegtest-master
mylasso.m
.m
baselineeegtest-master/Deconvolution/mylasso.m
57,431
utf_8
7247888eb5e7c928a60c6911143d2a0b
function [B,stats] = mylasso(x,y,distr,varargin) %LASSOGLM Perform lasso or elastic net regularization for a generalized linear model. % [B,STATS] = LASSOGLM(X,Y,DISTR,...) Performs L1-penalized maximum likelihood % fits (lasso) relating the predictors in X to the responses in Y, or % fits subject to joint L1- and L2 constraints (elastic net). % The default is a lasso-style fit, that is, a maximum likelihood fit % subject to a constraint on the L1-norm of the coefficients B. % % LASSOGLM accepts all the command line parameters of the LASSO function % and it accepts command line parameters of the GLMFIT function, with % the following exceptions. LASSOGLM also accepts the arguments 'Link' % and 'Offset' of GLMFIT (they can also be lower case 'link' or 'offset'). % LASSOGLM It does not accept the argument 'estdisp' of GLMFIT, or the % argument 'constant'. LASSOGLM does not calculate standard errors % or covariances among the coefficients, as GLMFIT does. % LASSOGLM always calculates an Intercept term. % % Positional parameters: % % X A numeric matrix (dimension, say, NxP) % Y A numeric vector of length N. If DISTR is % 'binomial', Y may be a binary vector indicating % success/failure, and the total number of trials is % taken to be 1 for all observations. If DISTR is % 'binomial', Y may also be a two column matrix, the % first column containing the number of successes for % each observation, and the second column containing % the total number of trials. % DISTR The distributional family for the non-systematic % variation in the responses. Acceptable values for DISTR are % 'normal', 'binomial', 'poisson', 'gamma', and 'inverse gaussian'. % By default, the distribution is fit using the canonical link % corresponding to DISTR. Other link functions may be % specified using the optional parameter 'link'. % % Optional input parameters: % % 'Weights' Observation weights. Must be a vector of non-negative % values, of the same length as columns of X. At least % two values must be positive. (default ones(N,1) or % equivalently (1/N)*ones(N,1)). % 'Alpha' Elastic net mixing value, or the relative balance % between L2 and L1 penalty (default 1, range (0,1]). % Alpha=1 ==> lasso, otherwise elastic net. % Alpha near zero ==> nearly ridge regression. % 'NumLambda' The number of lambda values to use, if the parameter % 'Lambda' is not supplied (default 100). Ignored % if 'Lambda' is supplied. LASSOGLM may return fewer % fits than specified by 'NumLambda' if the deviance % of the fits drops below a threshold percentage of % the null deviance (deviance of the fit without % any predictors X). % 'LambdaRatio' Ratio between the minimum value and maximum value of % lambda to generate, if the parameter "Lambda" is not % supplied. Legal range is [0,1). Default is 0.0001. % If 'LambdaRatio' is zero, LASSOGLM will generate its % default sequence of lambda values but replace the % smallest value in this sequence with the value zero. % 'LambdaRatio' is ignored if 'Lambda' is supplied. % 'Lambda' Lambda values. Will be returned in return argument % STATS in ascending order. The default is to have % LASSOGLM generate a sequence of lambda values, based % on 'NumLambda' and 'LambdaRatio'. LASSOGLM will generate % a sequence, based on the values in X and Y, such that % the largest Lambda value is estimated to be just % sufficient to produce all zero coefficients B. % You may supply a vector of real, non-negative values % of lambda for LASSOGLM to use, in place of its default % sequence. If you supply a value for 'Lambda', % 'NumLambda' and 'LambdaRatio' are ignored. % 'DFmax' Maximum number of non-zero coefficients in the model. % Can be useful with large numbers of predictors. % Results only for lambda values that satisfy this % degree of sparseness will be returned. % 'Standardize' Whether to scale X prior to fitting the model % sequence. % 'RelTol' Convergence threshold for coordinate descent algorithm. % The coordinate descent iterations will terminate % when the relative change in the size of the % estimated coefficients B drops below this threshold. % Default: 1e-4. Legal range is (0,1). % 'CV' If present, indicates the method used to compute Deviance. % When 'CV' is a positive integer K, LASSOGLM uses K-fold % cross-validation. Set 'CV' to a cross-validation % partition, created using CVPARTITION, to use other % forms of cross-validation. You cannot use a % 'Leaveout' partition with LASSOGLM. % When 'CV' is 'resubstitution', LASSOGLM uses X and Y % both to fit the model and to estimate the deviance % of the fitted model, without cross-validation. % The default is 'resubstitution'. % 'MCReps' A positive integer indicating the number of Monte-Carlo % repetitions for cross-validation. The default value is 1. % If 'CV' is 'resubstitution' or a cvpartition of type % 'resubstitution', 'MCReps' must be 1. If 'CV' is a % cvpartition of type 'holdout', then 'MCReps' must be % greater than one. % 'PredictorNames' A cell array of names for the predictor variables, % in the order in which they appear in X. % Default: {} % 'Options' A structure that contains options specifying whether to % conduct cross-validation evaluations in parallel, and % options specifying how to use random numbers when computing % cross validation partitions. This argument can be created % by a call to STATSET. CROSSVAL uses the following fields: % 'UseParallel' % 'UseSubstreams' % 'Streams' % For information on these fields see PARALLELSTATS. % NOTE: If supplied, 'Streams' must be of length one. % 'Link' The link function to use in place of the canonical link. % The link function defines the relationship f(mu) = x*b % between the mean response mu and the linear combination of % predictors x*b. Specify the link parameter value as one of % - the text strings 'identity', 'log', 'logit', 'probit', % 'comploglog', 'reciprocal', 'loglog', or % - an exponent P defining the power link, mu = (x*b)^P % for x*b > 0, or % - a cell array of the form {FL FD FI}, containing three % function handles, created using @, that define the link (FL), % the derivative of the link (FD), and the inverse link (FI). % 'Offset' A vector to use as an additional predictor variable, but % with a coefficient value fixed at 1.0. % % Return values: % B The fitted coefficients for each model. % B will have dimension PxL, where % P = size(X,2) is the number of predictors, and % L = length(STATS.Lambda). % STATS STATS is a struct that contains information about the % sequence of model fits corresponding to the columns % of B. STATS contains the following fields: % % 'Intercept' The intercept term for each model. Dimension 1xL. % 'Lambda' The sequence of lambda penalties used, in ascending order. % Dimension 1xL. % 'Alpha' The elastic net mixing value that was used. % 'DF' The number of nonzero coefficients in B for each % value of lambda. Dimension 1xL. % 'Deviance' The deviance of the fitted model for each value of % lambda. If cross-validation was performed, the values % for 'Deviance' represent the estimated expected % deviance of the model applied to new data, as % calculated by cross-validation. Otherwise, % 'Deviance' is the deviance of the fitted model % applied to the data used to perform the fit. % Dimension 1xL. % % If cross-validation was performed, STATS also includes the following % fields: % % 'SE' The standard error of 'Deviance' for each lambda, as % calculated during cross-validation. Dimension 1xL. % 'LambdaMinDeviance' The lambda value with minimum expected deviance, as % calculated during cross-validation. Scalar. % 'Lambda1SE' The largest lambda such that 'Deviance' is within % one standard error of the minimum. Scalar. % 'IndexMinDeviance' The index of Lambda with value LambdaMinMSE. Scalar. % 'Index1SE' The index of Lambda with value Lambda1SE. Scalar. % % See also lassoPlot, lasso, ridge, parallelstats, glmfit. % References: % [1] Tibshirani, R. (1996) Regression shrinkage and selection % via the lasso. Journal of the Royal Statistical Society, % Series B, Vol 58, No. 1, pp. 267-288. % [2] Zou, H. and T. Hastie. (2005) Regularization and variable % selection via the elastic net. Journal of the Royal Statistical % Society, Series B, Vol. 67, No. 2, pp. 301-320. % [3] Friedman, J., R. Tibshirani, and T. Hastie. (2010) Regularization % paths for generalized linear models via coordinate descent. % Journal of Statistical Software, Vol 33, No. 1, % http://www.jstatsoft.org/v33/i01. % [4] Hastie, T., R. Tibshirani, and J. Friedman. (2008) The Elements % of Statistical Learning, 2nd edition, Springer, New York. % [5] Dobson, A.J. (2002) An Introduction to Generalized Linear % Models, 2nd edition, Chapman&Hall/CRC Press. % [6] McCullagh, P., and J.A. Nelder (1989) Generalized Linear % Models, 2nd edition, Chapman&Hall/CRC Press. % [7] Collett, D. (2003) Modelling Binary Data, 2nd edition, % Chapman&Hall/CRC Press. % Copyright 2011-2012 The MathWorks, Inc. if nargin < 2 error(message('stats:lassoGlm:TooFewInputs')); end if nargin < 3 || isempty(distr), distr = 'normal'; end paramNames = { 'link' 'offset' 'weights'}; paramDflts = {'canonical' [] []}; [link,offset,pwts,~,varargin] = ... internal.stats.parseArgs(paramNames, paramDflts, varargin{:}); % Read in the optional parameters pertinent to regularization (eg, lasso) LRdefault = 1e-4; pnames = { 'alpha' 'numlambda' 'lambdaratio' 'lambda' ... 'dfmax' 'standardize' 'reltol' 'cv' 'mcreps' ... 'predictornames' 'options' }; dflts = { 1 100 LRdefault [] ... [] true 1e-4 'resubstitution' 1 ... {} []}; [alpha, nLambda, lambdaRatio, lambda, ... dfmax, standardize, reltol, cvp, mcreps, predictorNames, parallelOptions] ... = internal.stats.parseArgs(pnames, dflts, varargin{:}); if ~isempty(lambda) userSuppliedLambda = true; else userSuppliedLambda = false; end % X a real 2D matrix if ~ismatrix(x) || length(size(x)) ~= 2 || ~isreal(x) error(message('stats:lassoGlm:XnotaReal2DMatrix')); end % We need at least two observations. if isempty(x) || size(x,1) < 2 error(message('stats:lassoGlm:TooFewObservations')); end % Number of Predictors P = size(x,2); % Head off potential cruft in the command window. wsIllConditioned2 = warning('off','stats:glmfit:IllConditioned'); cleanupIllConditioned2 = onCleanup(@() warning(wsIllConditioned2)); % Sanity checking on predictors, responses, weights and offset parameter, % and removal of NaNs and Infs from same. Also, conversion of the % two-column form of binomial response to a proportion. [X, Y, offset, pwts, dataClass, nTrials, binomialTwoColumn] = ... glmProcessData(x, y, distr, 'off', offset, pwts); [~,sqrtvarFun,devFun,linkFun,dlinkFun,ilinkFun,link,mu,eta,muLims,isCanonical,dlinkFunCanonical] = ... glmProcessDistrAndLink(Y,distr,link,'off',nTrials,dataClass); [X,Y,pwts,nLambda,lambda,dfmax,cvp,mcreps,predictorNames,ever_active] = ... processLassoParameters(X,Y,pwts,alpha,nLambda,lambdaRatio,lambda,dfmax, ... standardize,reltol,cvp,mcreps,predictorNames); % Compute the amount of penalty at which all coefficients shrink to zero. [lambdaMax, nullDev, nullIntercept] = computeLambdaMax(X, Y, pwts, alpha, standardize, ... distr, link, dlinkFun, offset, isCanonical, dlinkFunCanonical, devFun); % If the command line did not provide a sequence of penalty terms, % generate a sequence. if isempty(lambda) lambda = computeLambdaSequence(lambdaMax, nLambda, lambdaRatio, LRdefault); end % Also, to help control saturated fits with binomial outcomes, % also alter the glmfit values for muLims if strcmp(distr,'binomial') muLims = [1.0e-5 1.0-1.0e-5]; end % Will convert from lambda penalty matched to average log-likelihood % per observation (which is what lasso uses) to an equivalent % penalty for total log-likelihood (which is what glmIRLS uses.) if isempty(pwts) && isscalar(nTrials) totalWeight = size(X,1); elseif ~isempty(pwts) && isscalar(nTrials) totalWeight = sum(pwts); elseif isempty(pwts) && ~isscalar(nTrials) totalWeight = sum(nTrials); else totalWeight = sum(pwts .* nTrials); end % Convert lambda penalty to match total log-likelihood lambda = lambda * totalWeight; penalizedFitPartition = @(x,y,offset,pwts,n,wlsfit,b,active,mu,eta,sqrtvarFun) ... glmIRLSwrapper(x,y,distr,offset,pwts,dataClass,n, ... sqrtvarFun,linkFun,dlinkFun,ilinkFun,devFun,b,active,mu,muLims,wlsfit,nullDev,reltol); penalizedFit = @(x,y,wlsfit,b,active,mu,eta) ... penalizedFitPartition(x,y,offset,pwts',nTrials,wlsfit,b,active,mu,eta,sqrtvarFun); [B,Intercept,lambda,deviance] = ... lassoFit(X,Y,pwts,lambda,alpha,dfmax,standardize,reltol,lambdaMax*totalWeight,ever_active, ... penalizedFit,mu,eta,dataClass,userSuppliedLambda,nullDev,nullIntercept); % Store the number of non-zero coefficients for each lambda. df = sum(B~=0,1); % The struct 'stats' will comprise the second return argument. % Put place holders for ever-present fields to avoid undefined references % and to secure the order we want in the struct. stats = struct(); stats.Intercept = []; stats.Lambda = []; stats.Alpha = alpha; stats.DF = []; stats.Deviance = []; stats.PredictorNames = predictorNames; % --------------------------------------------------------- % If requested, use cross-validation to calculate % Prediction Mean Squared Error for each lambda. % --------------------------------------------------------- if ~isequal(cvp,'resubstitution') % Replace dfmax with P, the number of predictors supplied at the % command line. dfmax might cause one fold to return empty values, % because no lambda satisfies the dfmax criteria, while other folds % return a numeric value. The lambda sequence has already been % pruned by dfmax, if appropriate, in the call to lassoFit above. cvfun = @(Xtrain,Ytrain,Xtest,Ytest) lassoFitAndPredict( ... Xtrain,Ytrain,Xtest,Ytest, ... lambda,alpha,P,standardize,reltol,ever_active, ... penalizedFitPartition,distr,link,linkFun,dlinkFun,sqrtvarFun, ... isCanonical, dlinkFunCanonical,devFun,dataClass); weights = pwts; if isempty(weights) weights = nan(size(X,1),1); end if isempty(offset) || isequal(offset,0) offset = nan(size(X,1),1); end if binomialTwoColumn response = [nTrials Y]; else response = Y; end cvDeviance = crossval(cvfun,[weights(:) offset(:) X],response, ... 'Partition',cvp,'Mcreps',mcreps,'Options',parallelOptions); % Scale single-fold deviances up to estimate whole data set deviance cvDeviance = bsxfun(@times,cvDeviance,repmat((size(X,1) ./ cvp.TestSize)', mcreps, 1)); deviance = mean(cvDeviance); se = std(cvDeviance) / sqrt(size(cvDeviance,1)); minDeviance = min(deviance); minIx = find(deviance == minDeviance,1); lambdaMin = lambda(minIx); minplus1 = deviance(minIx) + se(minIx); seIx = find((deviance(1:minIx) <= minplus1),1,'first'); if isempty(seIx) lambdaSE = []; else lambdaSE = lambda(seIx); end % Deposit cross-validation results in struct for return value. stats.SE = se; stats.LambdaMinDeviance = lambdaMin; stats.Lambda1SE = lambdaSE; stats.IndexMinDeviance = minIx; stats.Index1SE = seIx; % Convert key lambda values determined by cross-validation % back to match average log-likelihood per observation. stats.LambdaMinDeviance = stats.LambdaMinDeviance / totalWeight; stats.Lambda1SE = stats.Lambda1SE / totalWeight; end % ------------------------------------------ % Order results by ascending lambda % ------------------------------------------ nLambda = length(lambda); reverseIndices = nLambda:-1:1; lambda = lambda(reverseIndices); lambda = reshape(lambda,1,nLambda); B = B(:,reverseIndices); Intercept = Intercept(reverseIndices); df = df(reverseIndices); deviance = deviance(reverseIndices); if ~isequal(cvp,'resubstitution') stats.SE = stats.SE(reverseIndices); stats.IndexMinDeviance = nLambda - stats.IndexMinDeviance + 1; stats.Index1SE = nLambda - stats.Index1SE + 1; end stats.Intercept = Intercept; stats.Lambda = lambda; stats.DF = df; stats.Deviance = deviance; % Convert lambda penalty back to match average deviance per observation. stats.Lambda = stats.Lambda / totalWeight; end %-main block % ------------------------------------------ % SUBFUNCTIONS % ------------------------------------------ % =================================================== % startingVals() % =================================================== function mu = startingVals(distr,y,N) % Find a starting value for the mean, avoiding boundary values switch distr case 'poisson' mu = y + 0.25; case 'binomial' mu = (N .* y + 0.5) ./ (N + 1); case {'gamma' 'inverse gaussian'} mu = max(y, eps(class(y))); % somewhat arbitrary otherwise mu = y; end end %-startingVals % =================================================== % diagnoseSeparation() % =================================================== function diagnoseSeparation(eta,y,N) % Compute sample proportions, sorted by increasing fitted value [x,idx] = sort(eta); if ~isscalar(N) N = N(idx); end p = y(idx); if all(p==p(1)) % all sample proportions are the same return end if x(1)==x(end) % all fitted probabilities are the same return end noFront = 0<p(1) && p(1)<1; % no "front" section as defined below noEnd = 0<p(end) && p(end)<1; % no "end" section as defined below if p(1)==p(end) || (noFront && noEnd) % No potential for perfect separation if the ends match or neither % end is perfect return end % There is at least one observation potentially taking probability 0 or % 1 at one end or the other with the data sorted by eta. We want to see % if the data, sorted by eta (x) value, have this form: % x(1)<=...<=x(A) < x(A+1)=...=x(B-1) < x(B)<=...<=x(n) % with p(1)=...=p(A)=0 p(B)=...=p(n)=1 % or p(1)=...=p(A)=1 p(B)=...=p(n)=0 % % This includes the possibilities: % A+1=B - no middle section % A=0 - no perfect fit at the front % B=n+1 - no perfect fit at the end dx = 100*max(eps(x(1)),eps(x(end))); n = length(p); if noFront A = 0; else A = find(p~=p(1),1,'first')-1; cutoff = x(A+1)-dx; A = sum(x(1:A)<cutoff); end if noEnd B = n+1; else B = find(p~=p(end),1,'last')+1; cutoff = x(B-1)+dx; B = (n+1) - sum(x(B:end)>cutoff); end if A+1<B-1 % There is a middle region with >1 point, see if x varies there if x(B-1)-x(A+1)>dx return end end % We have perfect separation that can be defined by some middle point if A+1==B xmid = x(A) + 0.5*(x(B)-x(A)); else xmid = x(A+1); if isscalar(N) pmid = mean(p(A+1:B-1)); else pmid = sum(p(A+1:B-1).*N(A+1:B-1)) / sum(N(A+1:B-1)); end end % Create explanation part for the lower region, if any if A>=1 explanation = sprintf('\n XB<%g: P=%g',xmid,p(1)); else explanation = ''; end % Add explanation part for the middle region, if any if A+1<B explanation = sprintf('%s\n XB=%g: P=%g',explanation,xmid,pmid); end % Add explanation part for the upper region, if any if B<=n explanation = sprintf('%s\n XB>%g: P=%g',explanation,xmid,p(end)); end warning(message('stats:lassoGlm:PerfectSeparation', explanation)); end %-diagnoseSeparation() % =============================================== % glmProcessData() % =============================================== function [x, y, offset, pwts, dataClass, N, binomialTwoColumn] = ... glmProcessData(x, y, distr, const, offset, pwts) N = []; % needed only for binomial binomialTwoColumn = false; % Convert the two-column form of 'y', if supplied ('binomial' only). if strcmp(distr,'binomial') if size(y,2) == 1 % N will get set to 1 below if any(y < 0 | y > 1) error(message('stats:lassoGlm:BadDataBinomialFormat')); end elseif size(y,2) == 2 binomialTwoColumn = true; y(y(:,2)==0,2) = NaN; N = y(:,2); y = y(:,1) ./ N; if any(y < 0 | y > 1) error(message('stats:lassoGlm:BadDataBinomialRange')); end else error(message('stats:lassoGlm:MatrixOrBernoulliRequired')); end end [anybad,~,y,x,offset,pwts,N] = dfswitchyard('statremovenan',y,x,offset,pwts,N); if anybad > 0 switch anybad case 2 error(message('stats:lassoGlm:InputSizeMismatchX')) case 3 error(message('stats:lassoGlm:InputSizeMismatchOffset')) case 4 error(message('stats:lassoGlm:InputSizeMismatchPWTS')) end end % Extra screening for lassoglm (Infs and zero weights) okrows = all(isfinite(x),2) & all(isfinite(y),2) & all(isfinite(offset)); if ~isempty(pwts) % This screen works on weights prior to stripping NaNs and Infs. if ~isvector(pwts) || ~isreal(pwts) || size(x,1) ~= length(pwts) || ... ~all(isfinite(pwts)) || any(pwts<0) error(message('stats:lassoGlm:InvalidObservationWeights')); end okrows = okrows & pwts(:)>0; pwts = pwts(okrows); end % We need at least two observations after stripping NaNs and Infs and zero weights. if sum(okrows)<2 error(message('stats:lassoGlm:TooFewObservationsAfterNaNs')); end % Remove observations with Infs in the predictor or response % or with zero observation weight. NaNs were already gone. x = x(okrows,:); y = y(okrows); if ~isempty(N) && ~isscalar(N) N = N(okrows); end if ~isempty(offset) offset = offset(okrows); end if isequal(const,'on') x = [ones(size(x,1),1) x]; end dataClass = superiorfloat(x,y); x = cast(x,dataClass); y = cast(y,dataClass); if isempty(offset), offset = 0; end if isempty(N), N = 1; end end %-glmProcessData() % =================================================== % processLassoParameters() % =================================================== function [X,Y,weights,nLambda,lambda,dfmax,cvp,mcreps,predictorNames,ever_active] = ... processLassoParameters(X,Y,weights, alpha, nLambda, lambdaRatio, lambda, dfmax, ... standardize, reltol, cvp, mcreps, predictorNames) % === 'Weights' parameter === if ~isempty(weights) % Computations expect that weights is a row vector. weights = weights(:)'; end [~,P] = size(X); % If X has any constant columns, we want to exclude them from the % coordinate descent calculations. The corresponding coefficients % will be returned as zero. constantPredictors = (range(X)==0); ever_active = ~constantPredictors; % === 'Alpha' parameter === % Require 0 < alpha <= 1. % "0" would correspond to ridge, "1" is lasso. if ~isscalar(alpha) || ~isreal(alpha) || ~isfinite(alpha) || ... alpha <= 0 || alpha > 1 error(message('stats:lassoGlm:InvalidAlpha')) end % === 'Standardize' option === % Require a logical value. if ~isscalar(standardize) || (~islogical(standardize) && standardize~=0 && standardize~=1) error(message('stats:lassoGlm:InvalidStandardize')) end % === 'Lambda' sequence or 'NumLambda' and 'lambdaRatio' === if ~isempty(lambda) % Sanity check on user-supplied lambda sequence. Should be non-neg real. if ~isreal(lambda) || any(lambda < 0) error(message('stats:lassoGlm:NegativeLambda')); end lambda = sort(lambda(:),1,'descend'); else % Sanity-check of 'NumLambda', should be positive integer. if ~isreal(nLambda) || ~isfinite(nLambda) || nLambda < 1 error(message('stats:lassoGlm:InvalidNumLambda')); else nLambda = floor(nLambda); end % Sanity-checking of LambdaRatio, should be in [0,1). if ~isreal(lambdaRatio) || lambdaRatio <0 || lambdaRatio >= 1 error(message('stats:lassoGlm:InvalidLambdaRatio')); end end % === 'RelTol' parameter === % if ~isscalar(reltol) || ~isreal(reltol) || ~isfinite(reltol) || reltol <= 0 || reltol >= 1 error(message('stats:lassoGlm:InvalidRelTol')); end % === 'DFmax' parameter === % % DFmax is #non-zero coefficients % DFmax should map to an integer in [1,P] but we truncate if .gt. P % if isempty(dfmax) dfmax = P; else if ~isscalar(dfmax) error(message('stats:lassoGlm:DFmaxBadType')); end try dfmax = uint32(dfmax); catch ME mm = message('stats:lassoGlm:DFmaxBadType'); throwAsCaller(MException(mm.Identifier,'%s',getString(mm))); end if dfmax < 1 error(message('stats:lassoGlm:DFmaxNotAnIndex')); else dfmax = min(dfmax,P); end end % === 'Mcreps' parameter === % if ~isscalar(mcreps) || ~isreal(mcreps) || ~isfinite(mcreps) || mcreps < 1 error(message('stats:lassoGlm:MCRepsBadType')); end mcreps = fix(mcreps); % === 'CV' parameter === % if isnumeric(cvp) && isscalar(cvp) && (cvp==round(cvp)) && (0<cvp) % cvp is a kfold value. It will be passed as such to crossval. if (cvp>size(X,1)) error(message('stats:lassoGlm:InvalidCVforX')); end cvp = cvpartition(size(X,1),'Kfold',cvp); elseif isa(cvp,'cvpartition') if strcmpi(cvp.Type,'resubstitution') cvp = 'resubstitution'; elseif strcmpi(cvp.Type,'leaveout') error(message('stats:lassoGlm:InvalidCVtype')); elseif strcmpi(cvp.Type,'holdout') && mcreps<=1 error(message('stats:lassoGlm:InvalidMCReps')); end elseif strncmpi(cvp,'resubstitution',length(cvp)) % This may have been set as the default, or may have been % provided at the command line. In case it's the latter, we % expand abbreviations. cvp = 'resubstitution'; else error(message('stats:lassoGlm:InvalidCVtype')); end if strcmp(cvp,'resubstitution') && mcreps ~= 1 error(message('stats:lassoGlm:InvalidMCReps')); end if isa(cvp,'cvpartition') if (cvp.N ~= size(X,1)) || (min(cvp.TrainSize) < 2) % We need partitions that match the total number of observations % (after stripping NaNs and Infs and zero observation weights), and % we need training sets with at least 2 usable observations. error(message('stats:lassoGlm:TooFewObservationsForCrossval')); end end % === 'PredictorNames' parameter === % % If PredictorNames is not supplied or is supplied as empty, we just % leave it that way. Otherwise, confirm that it is a cell array of strings. % if ~isempty(predictorNames) if ~iscellstr(predictorNames) || length(predictorNames(:)) ~= size(X,2) error(message('stats:lassoGlm:InvalidPredictorNames')); else predictorNames = predictorNames(:)'; end end end %-processLassoParameters() % =================================================== % glmProcessDistrAndLink() % =================================================== function [estdisp,sqrtvarFun,devFun,linkFun,dlinkFun,ilinkFun,link,mu,eta,muLims,... isCanonical,dlinkFunCanonical] = ... glmProcessDistrAndLink(y,distr,link,estdisp,N,dataClass) switch distr case 'normal' canonicalLink = 'identity'; case 'binomial' canonicalLink = 'logit'; case 'poisson' canonicalLink = 'log'; case 'gamma' canonicalLink = 'reciprocal'; case 'inverse gaussian' canonicalLink = -2; end if isequal(link, 'canonical'), link = canonicalLink; end switch distr case 'normal' sqrtvarFun = @(mu) ones(size(mu)); devFun = @(mu,y) (y - mu).^2; estdisp = 'on'; case 'binomial' sqrtN = sqrt(N); sqrtvarFun = @(mu) sqrt(mu).*sqrt(1-mu) ./ sqrtN; devFun = @(mu,y) 2*N.*(y.*log((y+(y==0))./mu) + (1-y).*log((1-y+(y==1))./(1-mu))); case 'poisson' if any(y < 0) error(message('stats:lassoGlm:BadDataPoisson')); end sqrtvarFun = @(mu) sqrt(mu); devFun = @(mu,y) 2*(y .* (log((y+(y==0)) ./ mu)) - (y - mu)); case 'gamma' if any(y <= 0) error(message('stats:lassoGlm:BadDataGamma')); end sqrtvarFun = @(mu) mu; devFun = @(mu,y) 2*(-log(y ./ mu) + (y - mu) ./ mu); estdisp = 'on'; case 'inverse gaussian' if any(y <= 0) error(message('stats:lassoGlm:BadDataInvGamma')); end sqrtvarFun = @(mu) mu.^(3/2); devFun = @(mu,y) ((y - mu)./mu).^2 ./ y; estdisp = 'on'; otherwise error(message('stats:lassoGlm:BadDistribution')); end % Instantiate functions for one of the canned links, or validate a % user-defined link specification. [linkFun,dlinkFun,ilinkFun] = dfswitchyard('stattestlink',link,dataClass); % Initialize mu and eta from y. mu = startingVals(distr,y,N); eta = linkFun(mu); % Enforce limits on mu to guard against an inverse link that doesn't map into % the support of the distribution. switch distr case 'binomial' % mu is a probability, so order one is the natural scale, and eps is a % reasonable lower limit on that scale (plus it's symmetric). muLims = [eps(dataClass) 1-eps(dataClass)]; case {'poisson' 'gamma' 'inverse gaussian'} % Here we don't know the natural scale for mu, so make the lower limit % small. This choice keeps mu^4 from underflowing. No upper limit. muLims = realmin(dataClass).^.25; otherwise muLims = []; end % These two quantities (isCanonical, dlinkFunCanonical) are not used by % glmfit but they are needed for calculation of lambdaMax in lassoglm. isCanonical = isequal(link, canonicalLink); [~, dlinkFunCanonical] = dfswitchyard('stattestlink', canonicalLink, dataClass); end %-glmProcessDistrAndLink() % =================================================== % glmIRLS() % =================================================== function [b,mu,eta,varargout] = glmIRLS(x,y,distr,offset,pwts,dataClass,N, ... sqrtvarFun,linkFun,dlinkFun,ilinkFun,b,active,mu,muLims, ... wlsfit,nullDev,devFun,reltol) wsIterationLimit = warning('off','stats:lassoGlm:IterationLimit'); wsPerfectSeparation = warning('off','stats:lassoGlm:PerfectSeparation'); wsBadScaling = warning('off','stats:lassoGlm:BadScaling'); cleanupIterationLimit = onCleanup(@() warning(wsIterationLimit)); cleanupPerfectSeparation = onCleanup(@() warning(wsPerfectSeparation)); cleanupBadScaling = onCleanup(@() warning(wsBadScaling)); if isempty(pwts) pwts = 1; end % Set up for iterations iter = 0; iterLim = 100; warned = false; seps = sqrt(eps); % Match the convergence tolerance for the IRLS algorithm to the % command line parameter 'RelTol'. convcrit = max(1e-6,2*reltol); eta = linkFun(mu); while iter <= iterLim iter = iter+1; % Compute adjusted dependent variable for least squares fit deta = dlinkFun(mu); z = eta + (y - mu) .* deta; % Compute IRLS weights the inverse of the variance function sqrtw = sqrt(pwts) ./ (abs(deta) .* sqrtvarFun(mu)); % If the weights have an enormous range, we won't be able to do IRLS very % well. The prior weights may be bad, or the fitted mu's may have too % wide a range, which is probably because the data do as well, or because % the link function is trying to go outside the distribution's support. wtol = max(sqrtw)*eps(dataClass)^(2/3); t = (sqrtw < wtol); if any(t) t = t & (sqrtw ~= 0); if any(t) sqrtw(t) = wtol; if ~warned warning(message('stats:lassoGlm:BadScaling')); end warned = true; end end b_old = b; [b,active] = wlsfit(z - offset, x, sqrtw.^2, b, active); % Form current linear predictor, including offset eta = offset + x * b; % Compute predicted mean using inverse link function mu = ilinkFun(eta); % Force mean in bounds, in case the link function is a wacky choice switch distr case 'binomial' if any(mu < muLims(1) | muLims(2) < mu) mu = max(min(mu,muLims(2)),muLims(1)); end case {'poisson' 'gamma' 'inverse gaussian'} if any(mu < muLims(1)) mu = max(mu,muLims(1)); end end % Check stopping conditions % Convergence of the coefficients if (~any(abs(b-b_old) > convcrit * max(seps, abs(b_old)))) break; end % Proportion of explained deviance explained if sum(devFun(mu,y)) < (1.0e-3 * nullDev) break; end end if iter > iterLim warning(message('stats:lassoGlm:IterationLimit')); end if iter>iterLim && isequal(distr,'binomial') diagnoseSeparation(eta,y,N); end varargout{1} = active; end %-glmIRLS % =================================================== % glmIRLSwrapper() % =================================================== function [B,active,varargout] = glmIRLSwrapper(X,Y,distr,offset,pwts,dataClass,N, ... sqrtvarFun,linkFun,dlinkFun,ilinkFun,devFun,b,active,mu,muLims, ... wlsfit,nullDev,reltol) % glmIRLSwrapper is a utility function for regularized GLM. It is called by % the regularization framework (lassoFit()), and adapts to the conventions % and expectations of the IRLS implementation for GLM. % % Lasso always returns an intercept, but lassoFit passes in the predictor % matrix 'X' without a column of ones. Unlike OLS, GLM cannot calve off % estimation of the predictor variable coefficients and calculate the % intercept externally, post-fit. This is because each IRLS step % computes a local linear predictor (eta), and this requires an % intercept contribution. Therefore, prepend a column of ones before % passing to glmIRLS. The variable B returned by glmIRLS will include % the intercept term as the first element of B. X = [ones(size(X,1),1) X]; % glmIRLS assumes pwts=1 if no observation weights were supplied, % rather than empty, which is what lassoFit will feed in. if isempty(pwts), pwts=1; end [B,mu,eta,active] = glmIRLS(X,Y,distr,offset,pwts,dataClass,N, ... sqrtvarFun,linkFun,dlinkFun,ilinkFun,b,active,mu,muLims, ... wlsfit,nullDev,devFun,reltol); deviance = sum(pwts.* devFun(mu,Y)); % Pull the intercept estimate out of B and return separately. Intercept = B(1); B = B(2:end); extras.Intercept = Intercept; extras.Deviance = deviance; varargout{1} = extras; varargout{2} = mu; varargout{3} = eta; end %-glmIRLSwrapper % =================================================== % lassoFitAndPredict() % =================================================== function dev = lassoFitAndPredict(Xtrain,Ytrain,Xtest,Ytest, ... lambda,alpha,dfmax,standardize,reltol,ever_active, ... penalizedFitPartition,distr,link,linkFun,dlinkFun,sqrtvarFun, ... isCanonical, dlinkFunCanonical,devFun,dataClass) % % This function sets up the conditions for lasso fit and prediction from % within crossvalidation. It defines quantities as necessary for the % current fold. trainWeights = Xtrain(:,1); % To conform with crossval syntax, weights are prepended to the predictor % matrix. Empty weights are temporarily converted to a vector of NaNs. % This clause restores them to empty. Same occurs below for test weights. if any(isnan(trainWeights)) trainWeights = []; end trainOffset = Xtrain(:,2); if any(isnan(trainOffset)) trainOffset = 0; end Xtrain = Xtrain(:,3:end); if size(Ytrain,2) == 2 trainN = Ytrain(:,1); Ytrain = Ytrain(:,2); else trainN = 1; end % These quantities depend on the particular set of responses used for the fit. % Within crossval, we work with a subset of the original data. Therefore, % these quantities must be redefined on each invocation. mu = startingVals(distr,Ytrain,trainN); eta = linkFun(mu); if isequal(distr,'binomial') sqrtvarFun = @(mu) sqrt(mu).*sqrt(1-mu) ./ sqrt(trainN); devFun = @(mu,y) 2*trainN.*(y.*log((y+(y==0))./mu) + (1-y).*log((1-y+(y==1))./(1-mu))); end penalizedFit = @(x,y,wlsfit,b,active,mu,eta) penalizedFitPartition(x,y, ... trainOffset,trainWeights,trainN,wlsfit,b,active,mu,eta,sqrtvarFun); [lambdaMax, nullDev, nullIntercept] = computeLambdaMax(Xtrain, Ytrain, trainWeights, ... alpha, standardize, distr, link, dlinkFun, trainOffset, isCanonical, dlinkFunCanonical, devFun); % Will convert from lambda penalty matched to average log-likelihood % per observation (which is what lasso uses) to an equivalent % penalty for total log-likelihood (which is what glmIRLS uses.) if isempty(trainWeights) && isscalar(trainN) totalWeight = size(Xtrain,1); elseif ~isempty(trainWeights) && isscalar(trainN) totalWeight = sum(trainWeights); elseif isempty(trainWeights) && ~isscalar(trainN) totalWeight = sum(trainN); else totalWeight = sum(trainWeights .* trainN); end lambdaMax = lambdaMax * totalWeight; [B,Intercept] = lassoFit(Xtrain,Ytrain, ... trainWeights,lambda,alpha,dfmax,standardize,reltol, ... lambdaMax,ever_active,penalizedFit,mu,eta,dataClass,true,nullDev,nullIntercept); Bplus = [Intercept; B]; testWeights = Xtest(:,1); if any(isnan(testWeights)) testWeights = ones(size(Xtest,1),1); end testOffset = Xtest(:,2); if any(isnan(testOffset)) testOffset = 0; end Xtest = Xtest(:,3:end); if size(Ytest,2) == 2 testN = Ytest(:,1); Ytest = Ytest(:,2); else testN = 1; end % For binomial with two-column form of response, the deviance function % depends on the number of trials for each observation, which is provided % in testN. Within crossval, the test set is a subset of the original data. % Therefore, the deviance function needs to be redefined for each test set. if isequal(distr,'binomial') devFun = @(mu,y) 2*testN.*(y.*log((y+(y==0))./mu) + (1-y).*log((1-y+(y==1))./(1-mu))); end numFits = size(Bplus,2); dev = zeros(1,numFits); for i=1:numFits if ~isequal(testOffset,0) mu = glmval(Bplus(:,i), Xtest, link, 'Offset',testOffset); else mu = glmval(Bplus(:,i), Xtest, link); end di = devFun(mu,Ytest); dev(i) = sum(testWeights' * di); end end %-lassoFitAndPredict % =================================================== % lassoFit() % =================================================== function [B,Intercept,lambda,varargout] = ... lassoFit(X,Y,weights,lambda,alpha,dfmax,standardize,reltol, ... lambdaMax,ever_active,penalizedFit,mu,eta,dataClass,userSuppliedLambda,nullDev,nullIntercept) % % ------------------------------------------------------ % Perform model fit for each lambda and the given alpha % ------------------------------------------------------ regressionType = 'GLM'; [~,P] = size(X); nLambda = length(lambda); % If X has any constant columns, we want to exclude them from the % coordinate descent calculations. The corresponding coefficients % will be returned as zero. constantPredictors = (range(X)==0); ever_active = ever_active & ~constantPredictors; % === weights and standardization === % observationWeights = ~isempty(weights); if ~isempty(weights) observationWeights = true; weights = weights(:)'; % Normalize weights up front. weights = weights / sum(weights); end if standardize if ~observationWeights % Center and scale [X0,muX,sigmaX] = zscore(X); % Avoid divide by zero with constant predictors sigmaX(constantPredictors) = 1; else % Weighted center and scale muX = weights*X; X0 = bsxfun(@minus,X,muX); sigmaX = sqrt( weights*(X0.^2) ); % Avoid divide by zero with constant predictors sigmaX(constantPredictors) = 1; X0 = bsxfun(@rdivide, X0, sigmaX); end else switch regressionType case 'OLS' if ~observationWeights % Center muX = mean(X,1); X0 = bsxfun(@minus,X,muX); sigmaX = 1; else % Weighted center muX = weights*X; X0 = bsxfun(@minus,X,muX); sigmaX = 1; end case 'GLM' X0 = X; % For GLM don't center until we get inside the IRLS sigmaX = 1; muX = zeros(1,size(X,2)); end end % For OLS, Y is centered, for GLM it is not. switch regressionType case 'OLS' if ~observationWeights muY = mean(Y); else muY = weights*Y; end Y0 = bsxfun(@minus,Y,muY); case 'GLM' Y0 = Y; end % Preallocate the returned matrix of coefficients, B, % and other variables sized to nLambda. B = zeros(P,nLambda); b = zeros(P,1,dataClass); if nLambda > 0 Extras(nLambda) = struct('Intercept', nullIntercept, 'Deviance', nullDev); for i=1:nLambda-1, Extras(i) = Extras(nLambda); end intercept = nullIntercept; end active = false(1,P); for i = 1:nLambda lam = lambda(i); if lam >= lambdaMax continue; end % This anonymous function adapts the conventions of the IRLS algorithm % for glm fit to the coordinate descent algorithm for penalized WLS, % which is used within the IRLS algorithm. wlsfit = @(x,y,weights,b,active) glmPenalizedWlsWrapper(y,x,b,active,weights,lam, ... alpha,reltol,ever_active); [b,active,extras,mu,eta] = penalizedFit(X0,Y0,wlsfit,[intercept;b],active,mu,eta); B(:,i) = b; Extras(i) = extras; % Halt if maximum model size ('DFmax') has been met or exceeded. if sum(active) > dfmax % truncate B and lambda output arguments lambda = lambda(1:(i-1)); B = B(:,1:(i-1)); Extras = Extras(:,1:(i-1)); break end % Halt if we have exceeded a threshold on the percent of % null deviance left unexplained. if ~(userSuppliedLambda || isempty(nullDev)) if extras.Deviance < 1.0e-3 * nullDev lambda = lambda(1:i); B = B(:,1:i); Extras = Extras(:,1:i); break end end end % of lambda sequence % ------------------------------------------ % Unwind the centering and scaling (if any) % ------------------------------------------ B = bsxfun(@rdivide, B, sigmaX'); B(~ever_active,:) = 0; switch regressionType case 'OLS' Intercept = muY-muX*B; case 'GLM' Intercept = zeros(1,length(lambda)); for i=1:length(lambda) Intercept(i) = Extras(i).Intercept; end if isempty(lambda) Intercept = []; else Intercept = Intercept - muX*B; end end % ------------------------------------------ % Calculate Mean Prediction Squared Error (or other GoF) % ------------------------------------------ switch regressionType case 'OLS' Intercept = muY-muX*B; BwithI = [Intercept; B]; fits = [ones(size(X,1),1) X]*BwithI; residuals = bsxfun(@minus, Y, fits); if ~observationWeights mspe = mean(residuals.^2); else % This line relies on the weights having been normalized. mspe = weights * (residuals.^2); end varargout{1} = mspe; case 'GLM' deviance = zeros(1,length(lambda)); for i=1:length(lambda) deviance(i) = Extras(i).Deviance; end if isempty(lambda) deviance = []; end varargout{1} = deviance; end end %-lassoFit % =================================================== % thresholdScreen() % =================================================== function potentially_active = thresholdScreen(X0, wX0, Y0, ... b, active, threshold) r = Y0 - X0(:,active)*b(active,:); % We don't need the (b.*wX2)' term that one might expect, because it % is zero for the inactive predictors. potentially_active = abs(r' *wX0) > threshold; end %-thresholdScreen % =================================================== % cdescentCycleNewCandidates() % =================================================== function [b,active,wX2,wX2calculated,shrinkFactor] = ... cdescentCycleNewCandidates(X0, weights, wX0, wX2, wX2calculated, Y0, ... b, active, shrinkFactor, threshold, candidates) % r = Y0 - X0(:,active)*b(active,:); bold = b; for j=find(candidates); % Regress j-th partial residuals on j-th predictor bj = wX0(:,j)' * r; margin = abs(bj) - threshold; % Soft thresholding if margin > 0 if ~wX2calculated(j) wX2(j) = weights * X0(:,j).^2; wX2calculated(j) = true; shrinkFactor(j) = wX2(j) + shrinkFactor(j); end b(j) = sign(bj) .* margin ./ shrinkFactor(j); active(j) = true; end r = r - X0(:,j)*(b(j)-bold(j)); end end %-cdescentCycleNewCandidates % =================================================== % cdescentCycleNoRecalc() % =================================================== function [b,active] = ... cdescentCycleNoRecalc(X0, wX0, wX2, Y0, b, active, shrinkFactor, threshold) % r = Y0 - X0(:,active)*b(active,:); bwX2 = b.*wX2; bold = b; for j=find(active); % Regress j-th partial residuals on j-th predictor bj = wX0(:,j)' * r + bwX2(j); margin = abs(bj) - threshold; % Soft thresholding if margin > 0 b(j) = sign(bj) .* margin ./ shrinkFactor(j); else b(j) = 0; active(j) = false; end r = r - X0(:,j)*(b(j)-bold(j)); end end %-cdescentCycleNoRecalc % =================================================== % penalizedWls() % =================================================== function [b,varargout] = ... penalizedWls(X,Y,b,active,weights,lambda,alpha,reltol) weights = weights(:)'; [~,P] = size(X); wX = bsxfun(@times,X,weights'); wX2 = zeros(P,1); wX2(active) = (weights * X(:,active).^2)'; wX2calculated = active; threshold = lambda * alpha; shrinkFactor = wX2 + lambda * (1-alpha); % Iterative coordinate descent until converged while true bold = b; old_active = active; [b,active] = cdescentCycleNoRecalc(X,wX,wX2,Y, b,active,shrinkFactor,threshold); if ~any( abs(b(old_active) - bold(old_active)) > reltol * max(1.0,abs(bold(old_active))) ) % Cycling over the active set converged. % Do one full pass through the predictors. % If there is no predictor added to the active set, we're done. % Otherwise, resume the coordinate descent iterations. bold = b; potentially_active = thresholdScreen(X,wX,Y,b,active,threshold); new_candidates = potentially_active & ~active; if any(new_candidates) [b,new_active,wX2,wX2calculated,shrinkFactor] = ... cdescentCycleNewCandidates(X,weights,wX,wX2,wX2calculated,Y, ... b,active,shrinkFactor,threshold,new_candidates); else new_active = active; end if isequal(new_active, active) break else super_active = active | new_active; if ~any( abs(b(super_active) - bold(super_active)) > reltol * max(1.0,abs(bold(super_active))) ) % We didn't change the coefficients enough by the full pass % through the predictors to warrant continuing the iterations. % The active coefficients after this pass and the % active coefficients prior to this pass differ. % This implies that a coefficient changed between zero % and a small numeric value. There is no "fit-wise" reason % to prefer the before and after coefficients, so we % choose the more parsimonious alternative. if sum(new_active) > sum(active) b = bold; else active = new_active; end break else active = new_active; end end end end varargout{1} = active; end %-penalizedWls() % =================================================== % glmPenalizedWlsWrapper() % =================================================== function [b,varargout] = glmPenalizedWlsWrapper(X,Y,b,active,weights, ... lambda,alpha,reltol,ever_active) % The coordinate descent in penalizedWls() assumes centered X and Y, % and it assumes X does NOT have a column of ones. X0 = X(:,2:end); weights = weights(:)'; normedWeights = weights / sum(weights); % Center X muX = normedWeights * X0; X0 = bsxfun(@minus,X0,muX); % Center Y. muY = normedWeights * Y; Y = Y - muY; [bPredictors,varargout{1}] = penalizedWls(X0, Y, b(2:end), ... active,weights,lambda,alpha,reltol); bPredictors(~ever_active,:) = 0; % Since X and Y were centered for the WLS we can calculate the intercept % after the fact. Intercept = muY-muX*bPredictors; b = [Intercept; bPredictors]; end %-glmPenalizedWlsWrapper() function [lambdaMax, nullDev, nullIntercept] = computeLambdaMax(X, Y, weights, alpha, standardize, ... distr, link, dlinkFun, offset, isCanonical, dlinkFunCanonical, devFun) % lambdaMax is the penalty term (lambda) beyond which coefficients % are guaranteed to be all zero: there is no benefit to calculating % penalized fits with lambda > lambdaMax. % % nullDev is the deviance of the fit using just a constant term. % % The input parameter 'devFun' is used only as a sanity check to see if glmfit % gets a plausible fit with intercept term only. % Head off potential cruft in the command window. wsIllConditioned2 = warning('off','stats:glmfit:IllConditioned'); wsIterationLimit = warning('off','stats:glmfit:IterationLimit'); wsPerfectSeparation = warning('off','stats:glmfit:PerfectSeparation'); wsBadScaling = warning('off','stats:glmfit:BadScaling'); cleanupIllConditioned2 = onCleanup(@() warning(wsIllConditioned2)); cleanupIterationLimit = onCleanup(@() warning(wsIterationLimit)); cleanupPerfectSeparation = onCleanup(@() warning(wsPerfectSeparation)); cleanupBadScaling = onCleanup(@() warning(wsBadScaling)); if ~isempty(weights) observationWeights = true; weights = weights(:)'; % Normalized weights are used for standardization and calculating lambdaMax. normalizedweights = weights / sum(weights); else observationWeights = false; end [N,~] = size(X); % If we were asked to standardize the predictors, do so here because % the calculation of lambdaMax needs the predictors as we will use % them to perform fits. if standardize % If X has any constant columns, we want to protect against % divide-by-zero in normalizing variances. constantPredictors = (range(X)==0); if ~observationWeights % Center and scale %[X0,~,~] = zscore(X,1); [X0,~,~] = zscore(X); else % Weighted center and scale muX = normalizedweights * X; X0 = bsxfun(@minus,X,muX); sigmaX = sqrt( normalizedweights * (X0.^2) ); % Avoid divide by zero with constant predictors sigmaX(constantPredictors) = 1; X0 = bsxfun(@rdivide, X0, sigmaX); end else if ~observationWeights % Center muX = mean(X,1); X0 = bsxfun(@minus,X,muX); else % Weighted center muX = normalizedweights(:)' * X; X0 = bsxfun(@minus,X,muX); end end constantTerm = ones(length(Y),1); if isscalar(offset) [coeffs,nullDev] = glmfit(constantTerm,Y,distr,'constant','off', ... 'link',link, 'weights',weights); predictedMu = glmval(coeffs,constantTerm,link,'constant','off'); else [coeffs,nullDev] = glmfit(constantTerm,Y,distr,'constant','off', ... 'link',link,'weights',weights,'offset',offset); predictedMu = glmval(coeffs,constantTerm,link,'constant','off','offset',offset); end nullIntercept = coeffs; % Sanity check. With badly matched link / distr / data, glmfit may not % have been able to converge to a reasonble estimate. If so, the inputs % to lassoglm may constitute a difficult problem formulation with % unsatisfactory maximum likelihood solution. Poor formulations % have been observed with mismatched links (ie, 'reciprocal' link with % the Poisson distribution, in place of canonical 'log'). As a screen for % this contingency, calculate the deviance we would get using the scalar % unmodeled mean for the response data. Call this quantity "muDev". % The value of muDev should be no better than the nullDev calculated % by glmfit above (albeit it might be equal or nearly equal). % If the value is better, warn that the computations are of uncertain validity. if observationWeights muDev = weights * devFun(mean(Y)*ones(length(Y),1), Y); else muDev = sum(devFun(mean(Y)*ones(length(Y),1), Y)); end if (muDev - nullDev) / max([1.0 muDev nullDev]) < - 1.0e-4 [~, lastid] = lastwarn; if strcmp(lastid,'stats:glmfit:BadScaling') % This reassignment of predicted values is not guaranteed to % improve matters, but is an attempt to generate a workable % sequence of lambda values. Note: Since it is a constant % value for all observations, observation weights are a wash. predictedMu = mean(Y)*ones(length(Y),1); warning(message('stats:lassoGlm:DifficultLikelihood')); end end if ~isCanonical X0 = bsxfun( @times, X0, dlinkFunCanonical(predictedMu) ./ dlinkFun(predictedMu) ); end if ~observationWeights dotp = abs(X0' * (Y - predictedMu)); lambdaMax = max(dotp) / (N*alpha); else wX0 = bsxfun(@times, X0, normalizedweights'); dotp = abs(sum(bsxfun(@times, wX0, (Y - predictedMu)))); lambdaMax = max(dotp) / alpha; end end %-computeLambdaMax() function lambda = computeLambdaSequence(lambdaMax, nLambda, lambdaRatio, LRdefault) % Fill in the log-spaced sequence of lambda values. if nLambda==1 lambda = lambdaMax; else % Fill in a number "nLambda" of smaller values, on a log scale. if lambdaRatio==0 lambdaRatio = LRdefault; addZeroLambda = true; else addZeroLambda = false; end lambdaMin = lambdaMax * lambdaRatio; loghi = log(lambdaMax); loglo = log(lambdaMin); logrange = loghi - loglo; interval = -logrange/(nLambda-1); lambda = exp(loghi:interval:loglo)'; if addZeroLambda lambda(end) = 0; else lambda(end) = lambdaMin; end end end %-computeLambdaSequence
github
ZijingMao/baselineeegtest-master
extractfields.m
.m
baselineeegtest-master/DLResultAnalysis/extractfields.m
2,885
utf_8
749c4e2f71a16853b1cfdb07ec28f1e9
function A = extractfields(S, name) %EXTRACTFIELD Field values from structure array % % A = EXTRACTFIELD(S, NAME) returns the field values specified by the % fieldname NAME in the 1-by-N output array A. N is the total number % of elements in the field NAME of structure S: % % N = numel([S(:).(name)]). % % NAME is a case-sensitive string defining the field name of the % structure S. A will be a cell array if any field values in the % fieldname contain a string or if the field values are not uniform in % type; otherwise A will be the same type as the field values. The shape % of the input field is not preserved in A. % % Examples % -------- % % Plot X, Y coordinates from a geographic data structure % roads = shaperead('concord_roads.shp'); % plot(extractfield(roads,'X'),extractfield(roads,'Y')); % % % Extract feature names from a geographic data structure % roads = shaperead('concord_roads.shp'); % names = extractfield(roads,'STREETNAME'); % % % Extract a mixed-type field into a cell array % S(1).Type = 0; % S(2).Type = logical(0); % mixedType = extractfield(S,'Type'); % % See also STRUCT, SHAPEREAD. % Copyright 1996-2010 The MathWorks, Inc. % Validate inputs error(nargchk(2,2,nargin,'struct')) fcnname = mfilename; validateattributes(S, {'struct'}, {'vector'}, fcnname, 'S', 1) validateattributes(name, {'char'}, {'row'}, fcnname, 'NAME', 2) if isfield(S,name) % Determine if need to return a cell array if cellType(S,name) % The elements in the field are strings or mixed type A = {S(:).(name)}; return; end try % The field is numeric. % This will error if the fieldname's shape is neither row vector % nor uniform. A = [S(:).(name)]; % Do not preserve the shape if size(A,1) ~= 1 A = reshape(A, [1 numel(A)]); end catch % The elements in the field are mixed size % Reshape into a row vector and append A = reshape(S(1).(name),[ 1 numel(S(1).(name)) ]); for i=2:length(S) values = reshape(S(i).(name),[ 1 numel(S(i).(name)) ]); A = [A values]; end end else error('map:extractfield:invalidFieldname', ... 'Fieldname ''%s'' does not exist.', name) end %---------------------------------------------------------------- function returnCell = cellType(S, name) %CELLTYPE Return true if field values of NAME are mixed type, or % non-numeric. % Determine if the field is non-numeric or mixed type classType = class(S(1).(name)); for i=1:length(S) if issparse(S(i).(name)) error('map:extractfield:expectedNonSparse', ... 'Sparse storage class is not supported.'); end if ~isnumeric(S(i).(name)) || ... ~isequal(class(S(i).(name)), classType) returnCell = true; return; end end returnCell = false;
github
ZijingMao/baselineeegtest-master
datestr8601.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/datestr8601.m
17,551
utf_8
1b3b9a5bdd75dbc154c6dc8f3c241d7b
function varargout = datestr8601(DVN,varargin) % Convert a Date Vector or Serial Date Number to an ISO 8601 formatted Date String (timestamp). % % (c) 2014 Stephen Cobeldick % % ### Function ### % % Syntax: % Str = datestr8601 % Str = datestr8601(DVN) % Str = datestr8601(DVN,Tok) % [Str1,Str2,...] = datestr8601(DVN,Tok1,Tok2,...) % % Easy conversion of a Date Vector or Serial Date Number to a Date String % whose style is controlled by (optional) input token/s. The string may % be an ISO 8601 timestamp or a single date/time value: multiple tokens may % be used to output multiple strings (faster than multiple function calls). % % By default the function uses the current time and returns the basic % ISO 8601 calendar notation timestamp: this is very useful for naming % files that can be sorted alphabetically into chronological order! % % The ISO 8601 timestamp style options are: % - Date in calendar, ordinal or week-numbering notation. % - Basic or extended format. % - Choice of date-time separator character ( @T_). % - Full or lower precision (trailing units omitted) % - Decimal fraction of the trailing unit. % These style options are illustrated in the tables below. % % Note 1: Calls undocumented MATLAB functions "datevecmx" and "datenummx". % Note 2: Some Date Strings use the ISO 8601 week-numbering year, where the first % week of the year includes the first Thursday of the year: please double check! % Note 3: Out-of-range values are permitted in the input Date Vector. % % See also DATENUM8601 DATEROUND CLOCK NOW DATESTR DATENUM DATEVEC % % ### Examples ### % % Examples use the date+time described by the vector [1999,1,3,15,6,48.0568]. % % datestr8601 % ans = '19990103T150648' % % datestr8601([],'yn_HM') % ans = '1999003_1506' % % datestr8601(now-1,'DDDD') % ans = 'Saturday' % % datestr8601(clock,'*ymdHMS') % ans = '1999-01-03T15:06:48' % % [A,B,C,D] = datestr8601(clock,'ddd','mmmm','yyyy','*YWD') % sprintf('The %s of %s %s has the ISO week-date "%s".',A,B,C,D) % ans = 'The 3rd of January 1999 has the ISO week-date "1998-W53-7".' % % ### Single Value Tokens ### % % For date values the case of the token determines the output Date String's % year-type: lowercase = calendar year, UPPERCASE = week-numbering year. % % 'W' = the standard ISO 8601 week number (this is probably what you want). % 'w' = the weeks (rows) shown on an actual printed calendar (very esoteric). % % 'Q' = each quarter is 13 weeks (the last may be 14). Uses week-numbering year. % 'q' = each quarter is three months long: Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec. % % 'N'+'R' = 7*52 or 7*53 (year dependent). % 'n'+'r' = 365 (or 366 if a leap year). % % Input | Output | Output % <Tok>:| <Str> Date/Time Representation: | <Str> Example: % ------|---------------------------------------------|-------------------- % # Calendar year # | % 'yyyy'| year, four digit |'1999' % 'n' | day of the year, variable digits |'3' % 'nn' | day of the year, three digit, zero padded |'003' % 'nnn' | day of the year, ordinal and suffix |'3rd' % 'r' | days remaining in year, variable digits |'362' % 'rr' | days remaining in year, three digit, padded |'362' % 'rrr' | days remaining in year, ordinal and suffix |'362nd' % 'q' | year quarter, 3-month |'1' % 'qq' | year quarter, 3-month, abbreviation |'Q1' % 'qqq' | year quarter, 3-month, ordinal and suffix |'1st' % 'w' | week of the year, one or two digit |'1' % 'ww' | week of the year, two digit, zero padded |'01' % 'www' | week of the year, ordinal and suffix |'1st' % 'm' | month of the year, one or two digit |'1' % 'mm' | month of the year, two digit, zero padded |'01' % 'mmm' | month name, three letter abbreviation |'Jan' % 'mmmm'| month name, in full |'January' % 'd' | day of the month, one or two digit |'3' % 'dd' | day of the month, two digit, zero padded |'03' % 'ddd' | day of the month, ordinal and suffix |'3rd' % ------|---------------------------------------------|--------- % # Week-numbering year # | % 'YYYY'| year, four digit, |'1998' % 'N' | day of the year, variable digits |'371' % 'NN' | day of the year, three digit, zero padded |'371' % 'NNN' | day of the year, ordinal and suffix |'371st' % 'R' | days remaining in year, variable digits |'0' % 'RR' | days remaining in year, three digit, padded |'000' % 'RRR' | days remaining in year, ordinal and suffix |'0th' % 'Q' | year quarter, 13-week |'4' % 'QQ' | year quarter, 13-week, abbreviation |'Q4' % 'QQQ' | year quarter, 13-week, ordinal and suffix |'4th' % 'W' | week of the year, one or two digit |'53' % 'WW' | week of the year, two digit, zero padded |'53' % 'WWW' | week of the year, ordinal and suffix |'53rd' % ------|---------------------------------------------|--------- % # Weekday # | % 'D' | weekday number (Monday=1) |'7' % 'DD' | weekday name, two letter abbreviation |'Su' % 'DDD' | weekday name, three letter abbreviation |'Sun' % 'DDDD'| weekday name, in full |'Sunday' % ------|---------------------------------------------|--------- % # Time of day # | % 'H' | hour of the day, one or two digit |'15' % 'HH' | hour of the day, two digit, zero padded |'15' % 'M' | minute of the hour, one or two digit |'6' % 'MM' | minute of the hour, two digit, zero padded |'06' % 'S' | second of the minute, one or two digit |'48' % 'SS' | second of the minute, two digit, zero padded|'48' % 'F' | deci-second of the second, zero padded |'0' % 'FF' | centisecond of the second, zero padded |'05' % 'FFF' | millisecond of the second, zero padded |'056' % ------|---------------------------------------------|--------- % 'MANP'| Midnight/AM/Noon/PM (+-0.0005s) |'PM' % ------|---------------------------------------------|--------- % % ### ISO 8601 Timestamps ### % % The token consists of one letter for each of the consecutive date/time % units in the timestamp, thus it defines the date notation (calendar, % ordinal or week-date) and selects either basic or extended format: % % Output | Basic Format | Extended Format (token prefix '*') % Date | Input | Output Timestamp| Input | Output Timestamp % Notation:| <Tok>: | <Str> Example: | <Tok>: | <Str> Example: % ---------|--------|-----------------|---------|-------------------------- % Calendar |'ymdHMS'|'19990103T150648'|'*ymdHMS'|'1999-01-03T15:06:48' % ---------|--------|-----------------|---------|-------------------------- % Ordinal |'ynHMS' |'1999003T150648' |'*ynHMS' |'1999-003T15:06:48' % ---------|--------|-----------------|---------|-------------------------- % Week |'YWDHMS'|'1998W537T150648'|'*YWDHMS'|'1998-W53-7T15:06:48' % ---------|--------|-----------------|---------|-------------------------- % % Options for reduced precision timestamps, non-standard date-time separator % character, and the addition of a decimal fraction of the trailing unit: % % # Omit leading and/or trailing units (reduced precision), eg: % ---------|--------|-----------------|---------|-------------------------- % |'DHMS' |'7T150648' |'*DHMS' |'7T15:06:48' % ---------|--------|-----------------|---------|-------------------------- % |'mdH' |'0103T15' |'*mdH' |'01-03T15' % ---------|--------|-----------------|---------|-------------------------- % # Select the date-time separator character (one of ' ','@','T','_'), eg: % ---------|--------|-----------------|---------|-------------------------- % |'n_HMS' |'003_150648' |'*n_HMS' |'003_15:06:48' % ---------|--------|-----------------|---------|-------------------------- % |'YWD@H' |'1998W537@15' |'*YWD@H' |'1998-W53-7@15' % ---------|--------|-----------------|---------|-------------------------- % # Decimal fraction of the trailing date/time value, eg: % ---------|--------|-----------------|---------|-------------------------- % |'HMS4' |'150648.0568' |'*HMS4' |'15:06:48.0568' % ---------|--------|-----------------|---------|-------------------------- % |'YW7' |'1998W53.9471032'|'*YW7' |'1998-W53.9471032' % ---------|--------|-----------------|---------|-------------------------- % |'y10' |'1999.0072047202'|'*y10' |'1999.0072047202' % ---------|--------|-----------------|---------|-------------------------- % % Note 4: Token parsing matches Single Value tokens before ISO 8601 tokens. % Note 5: This function does not check for ISO 8601 compliance: user beware! % Note 6: Date-time separator character must be one of ' ','@','T','_'. % Note 7: Date notations cannot be combined: note upper/lower case characters. % % ### Input & Output Arguments ### % % Inputs: % DVN = Date Vector, [year,month,day,hour,minute,second.millisecond]. % = Serial Date Number, where 1 = start of 1st January of the year 0000. % = []*, uses current time (default). % Tok = String token, chosen from the above tables (default is 'ymdHMS'). % % Outputs: % Str = Date String, whose representation is controlled by argument <Tok>. % % [Str1,Str2,...] = datestr8601(DVN,Tok1,Tok2,...) DfAr = {'ymdHMS'}; % {Tok1} DfAr(1:numel(varargin)) = varargin; % % Calculate date-vector: if nargin==0||isempty(DVN) % Default = now DtV = clock; elseif isscalar(DVN) % Serial Date Number DtV = datevecmx(DVN); elseif isrow(DVN) % Date Vector DtV = datevecmx(datenummx(DVN)); else error('First input <DVN> must be a single Date Vector or Date Number.'); end % Calculate Serial Date Number: DtN = datenummx(DtV); % Weekday index (Mon=0): DtD = mod(floor(DtN(1))-3,7); % Adjust date to suit week-numbering: DtN(2,1) = DtN(1)+3-DtD; DtV(2,:) = datevecmx(floor(DtN(2))); DtV(2,4:6) = DtV(1,4:6); % Separate fraction of seconds from seconds: DtV(:,7) = round(rem(DtV(1,6),1)*10000); DtV(:,6) = floor(DtV(1,6)); % Date at the end of the year [last,this]: DtE(1,:) = datenummx([DtV(1)-1,12,31;DtV(1),12,31]); DtE(2,:) = datenummx([DtV(2)-1,12,31;DtV(2),12,31]); DtO = 3-mod(DtE(2,:)+1,7); DtE(2,:) = DtE(2,:)+DtO; % varargout = DfAr; % APC = {'Midnight','AM','Noon','PM'}; ChO = ['00000000001111111111222222222233333333334444444444555555555566666';... '01234567890123456789012345678901234567890123456789012345678901234';... 'tsnrtttttttttttttttttsnrtttttttsnrtttttttsnrtttttttsnrtttttttsnrt';... 'htddhhhhhhhhhhhhhhhhhtddhhhhhhhtddhhhhhhhtddhhhhhhhtddhhhhhhhtddh'].'; Err = '%.0f%s input (token) is not recognized: ''%s'''; % for m = 1:numel(DfAr) % Ordinal suffix of input: OrS = ChO(1+rem(m+1,10)+10*any(rem(m+1,100)==11:13),3:4); % (also day of the year) % Input token: Tok = DfAr{m}; assert(ischar(Tok)&&isrow(Tok),'%.0f%s input must be a string token.',m+1,OrS) TkL = numel(Tok); TkU = strcmp(upper(Tok),Tok); switch Tok case {'S','SS','M','MM','H','HH','d','dd','ddd','m','mm'} % seconds, minutes, hours, day of the month, month of the year Val = DtV(1,strfind('ymdHMS',Tok(1))); varargout{m} = ChO(1+Val,1+(TkL~=2&&Val<10):max(2,2*(TkL-1))); % (also week) case {'D','DD','DDD','DDDD'} % weekday varargout{m} = ds8601Day(TkL,DtD); case {'mmm','mmmm'} % month of the year varargout{m} = ds8601Mon(TkL,DtV(1,2)); case {'F','FF','FFF'} % deci/centi/milliseconds Tok = sprintf('%04.0f',DtV(1,7)); varargout{m} = Tok(1:TkL); case {'n','nn','nnn','r','rr','rrr','N','NN','NNN','R','RR','RRR'} % day of the year, days remaining in the year varargout{m} = ds8601DoY(TkL,ChO,... abs(floor(DtN(1))-DtE(1+TkU,1+strncmpi('r',Tok,1)))); case {'y','yyyy','Y','YYYY'} % year varargout{m} = sprintf('%04.0f',DtV(1+TkU)); case {'w','ww','www','W','WW','WWW'} % week of the year Val = floor(max(0,(DtN(1+TkU)-DtE(1+TkU)+DtO(1)*~TkU))/7); varargout{m} = ChO(2+Val,1+(TkL~=2&&Val<10):max(2,2*(TkL-1))); % (also S/M/H/d/m) case {'q','qq','qqq','Q','QQ','QQQ'} % year quarter Val = [ceil(DtV(1,2)/3),min(4,1+floor((DtN(2)-DtE(2))/91))]; varargout{m} = ds8601Qtr(TkL,Val(1+TkU)); case 'MANP' % midnight/am/noon/pm Val = 2+2*(DtV(1,4)>=12)-(all(DtV(1,5:7)==0)&&any(DtV(1,4)==[0,12])); varargout{m} = APC{Val}; otherwise % ISO 8601 timestamp % Identify format, date, separator, time and digit characters: TkU = regexp(Tok,'(^\*?)([ymdnYWD]*)([ @T_]?)([HMS]*)(\d*$)','tokens','once'); assert(~isempty(TkU),Err,m+1,OrS,Tok) TkL = [TkU{2},TkU{4}]; % Identify timestamp: Val = strfind('ymdHMSynHMSYWDHMS',TkL); assert(~isempty(Val),Err,m+1,OrS,Tok) BeR = [1,2,3,4,5,6,1,3,4,5,6,1,2,3,4,5,6]; BeN = [1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3]; BeR = BeR(Val(1)-1+(1:numel(TkL))); assert(all(diff(BeR)>0),Err,m+1,OrS,Tok) % Create date string: varargout{m} = ds8601ISO(DtV,DtN,DtE,DtD,ChO,BeR,...%Bas,Dgt,Ntn,Sep) isempty(TkU{1}),sscanf(TkU{5},'%d'),BeN(Val(1)),TkU{3}); end end % end %----------------------------------------------------------------------END:datestr8601 function DtS = ds8601Day(TkL,Val) % weekday % if TkL==1 StT = '1234567'; DtS = StT(1+Val); else StT = ['Monday ';'Tuesday ';'Wednesday';... 'Thursday ';'Friday ';'Saturday ';'Sunday ']; StE = [6,7,9,8,6,8,6]; % Weekday name lengths DtS = StT(1+Val,1:max(TkL,StE(1+Val)*(TkL-3))); % (also month) end % end %----------------------------------------------------------------------END:ds8601Day function DtS = ds8601Mon(TkL,Val) % month % StT = ['January ';'February ';'March ';'April ';... 'May ';'June ';'July ';'August ';... 'September';'October ';'November ';'December ']; StE = [7,8,5,5,3,4,4,6,9,7,8,8]; % Month name lengths DtS = StT(Val,1:max(TkL,StE(Val)*(TkL-3))); % (also weekday) % end %----------------------------------------------------------------------END:ds8601Mon function DtS = ds8601DoY(TkL,ChO,Val) % day of the year, days remaining in the year % if TkL<3 DtS = sprintf('%0*.0f',2*TkL-1,Val); else DtS = sprintf('%.0f%s',Val,ChO(1+rem(Val,10)+10*any(rem(Val,100)==11:13),3:4)); % (also OrS) end % end %----------------------------------------------------------------------END:ds8601DoY function DtS = ds8601Qtr(TkL,Val) % year quarter % QT = ['Q1st';'Q2nd';'Q3rd';'Q4th']; QI = 1+abs(TkL-2):max(2,2*(TkL-1)); DtS = QT(Val,QI); % end %----------------------------------------------------------------------END:ds8601Qtr function DtS = ds8601ISO(DtV,DtN,DtE,DtD,ChO,BeR,Bas,Dgt,Ntn,Sep) % ISO 8601 timestamp % % For calculating decimal fraction of date/time values: BeE = BeR(end); DtK = 1; DtW = DtV(1,:); DtZ = [1,1,1,0,0,0,0]; % if isempty(Sep) Sep = 'T'; end if Bas % Basic-format DtC = {'', '', '',Sep, '', '';'','','','','',''}; else % Extended-format DtC = {'','-','-',Sep,':',':';'','','','','',''}; end % % hours, minutes, seconds: for m = 4:max(BeR) DtC{2,m} = ChO(1+DtW(m),1:2); end % switch Ntn case 1 % Calendar. % month, day of the month: for m = max(2,min(BeR)):3 DtC{2,m} = ChO(1+DtW(m),1:2); end case 2 % Ordinal. % day of the year: DtC{2,3} = sprintf('%03.0f',floor(DtN(1))-DtE(1)); case 3 % Week-numbering DtW = DtV(2,:); % Decimal fraction of weeks, not days: if BeR(end)==2 BeE = 3; DtK = 7; DtZ(3) = DtW(3)-DtD; end % weekday: if any(BeR==3) DtC{2,3} = ChO(2+DtD,2); end % week of the year: if any(BeR==2) DtC{2,2} = ['W',ChO(2+floor((DtN(2)-DtE(2))/7),1:2)]; end end % if BeR(1)==1 % year: DtC{2,1} = sprintf('%04.0f',DtW(1)); end % % Concatenate separator and value strings: BeN = [BeR*2-1;BeR*2]; DtS = [DtC{BeN(2:end)}]; % % Decimal fraction of trailing unit (decimal places): if 0<Dgt DcP = 0; if BeR(end)==6 % second DcP = 4; Str = sprintf('%0*.0f',DcP,DtW(7)); elseif BeR(end)==3 % day DcP = 10; Str = sprintf('%.*f',DcP,rem(DtN(1),1)); Str(1:2) = []; elseif any(DtW(BeR(end)+1:7)>DtZ(BeR(end)+1:7)); % year/month/week/hour/minute DcP = 16; % Floor all trailing units: DtW(7) = []; DtW(BeR(end)+1:6) = DtZ(BeR(end)+1:6); DtF = datenummx(DtW); % Increment the chosen unit: DtW(BeE) = DtW(BeE)+DtK; % Decimal fraction of the chosen unit: dcf = (DtN(1+(Ntn==3))-DtF)/(datenummx(DtW)-DtF); Str = sprintf('%.*f',DcP,dcf); Str(1:2) = []; end Str(1+DcP:Dgt) = '0'; DtS = [DtS,'.',Str(1:Dgt)]; end % end %----------------------------------------------------------------------END:ds8601ISO
github
ZijingMao/baselineeegtest-master
parseXML.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/parseXML.m
2,009
utf_8
41322e38af16d5d7496a794c7b9ea2c8
function theStruct = parseXML(filename) % PARSEXML Convert XML file to a MATLAB structure. try tree = xmlread(filename); catch error('Failed to read XML file %s.',filename); end % Recurse over child nodes. This could run into problems % with very deeply nested trees. try theStruct = parseChildNodes(tree); catch error('Unable to parse XML file %s.',filename); end % ----- Subfunction PARSECHILDNODES ----- function children = parseChildNodes(theNode) % Recurse over node children. children = []; if theNode.hasChildNodes childNodes = theNode.getChildNodes; numChildNodes = childNodes.getLength; allocCell = cell(1, numChildNodes); children = struct( ... 'Name', allocCell, 'Attributes', allocCell, ... 'Data', allocCell, 'Children', allocCell); for count = 1:numChildNodes theChild = childNodes.item(count-1); children(count) = makeStructFromNode(theChild); end end % ----- Subfunction MAKESTRUCTFROMNODE ----- function nodeStruct = makeStructFromNode(theNode) % Create structure of node info. nodeStruct = struct( ... 'Name', char(theNode.getNodeName), ... 'Attributes', parseAttributes(theNode), ... 'Data', '', ... 'Children', parseChildNodes(theNode)); if any(strcmp(methods(theNode), 'getData')) nodeStruct.Data = char(theNode.getData); else nodeStruct.Data = ''; end % ----- Subfunction PARSEATTRIBUTES ----- function attributes = parseAttributes(theNode) % Create attributes structure. attributes = []; if theNode.hasAttributes theAttributes = theNode.getAttributes; numAttributes = theAttributes.getLength; allocCell = cell(1, numAttributes); attributes = struct('Name', allocCell, 'Value', ... allocCell); for count = 1:numAttributes attrib = theAttributes.item(count-1); attributes(count).Name = char(attrib.getName); attributes(count).Value = char(attrib.getValue); end end
github
ZijingMao/baselineeegtest-master
xml_write.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/xml_write.m
14,648
utf_8
22c16c351430ff67bb44dd116db74334
function DOMnode = xml_write(filename, tree, RootName, Pref) %XML_WRITE Writes Matlab data structures to XML file % % DESCRIPTION % xml_write( filename, tree) Converts Matlab data structure 'tree' containing % cells, structs, numbers and strings to Document Object Model (DOM) node % tree, then saves it to XML file 'filename' using Matlab's xmlwrite % function. Optionally one can also use alternative version of xmlwrite % function which directly calls JAVA functions for XML writing without % MATLAB middleware. This function is provided as a patch to existing % bugs in xmlwrite (in R2006b). % % xml_write(filename, tree, RootName, Pref) allows you to specify % additional preferences about file format % % DOMnode = xml_write([], tree) same as above except that DOM node is % not saved to the file but returned. % % INPUT % filename file name % tree Matlab structure tree to store in xml file. % RootName String with XML tag name used for root (top level) node % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % Pref Other preferences: % Pref.ItemName - default 'item' - name of a special tag used to % itemize cell arrays % Pref.XmlEngine - let you choose the XML engine. Currently default is % 'Xerces', which is using directly the apache xerces java file. % Other option is 'Matlab' which uses MATLAB's xmlwrite and its % XMLUtils java file. Both options create identical results except in % case of CDATA sections where xmlwrite fails. % Pref.CellItem - default 'true' - allow cell arrays to use 'item' % notation. See below. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.StructItem - default 'true' - allow arrays of structs to use % 'item' notation. For example "Pref.StructItem = true" gives: % <a> % <b> % <item> ... <\item> % <item> ... <\item> % <\b> % <\a> % while "Pref.StructItem = false" gives: % <a> % <b> ... <\b> % <b> ... <\b> % <\a> % % % Several special xml node types can be created if special tags are used % for field names of 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields % (usually ATTRIBUTE are present. Usually data section is stored % directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - create comment child node from the string. For global % comments see "RootName" input variable. % - node.PROCESSING_INSTRUCTIONS - create "processing instruction" child % node from the string. For global "processing instructions" see % "RootName" input variable. % - node.CDATA_SECTION - stores node's CDATA section (string). Only works % if Pref.XmlEngine='Xerces'. For more info, see comments of F_xmlwrite. % - other special node types like: document fragment nodes, document type % nodes, entity nodes and notation nodes are not being handled by % 'xml_write' at the moment. % % OUTPUT % DOMnode Document Object Model (DOM) node tree in the format % required as input to xmlwrite. (optional) % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % type('test.xml') % %See also xml_tutorial.m % % See also % xml_read, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com %% Check Matlab Version v = ver('MATLAB'); if length(v) > 1 v = v(1); % added by Nima end; v = str2double(regexp(v.Version, '\d.\d','match','once')); if (v<7) error('Your MATLAB version is too old. You need version 7.0 or newer.'); end %% default preferences DPref.ItemName = 'item'; % name of a special tag used to itemize cell arrays DPref.StructItem = true; % allow arrays of structs to use 'item' notation DPref.CellItem = true; % allow cell arrays to use 'item' notation DPref.XmlEngine = 'Matlab'; % use matlab provided XMLUtils %DPref.XmlEngine = 'Xerces'; % use Xerces xml generator directly RootOnly = true; % Input is root node only GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; %% read user preferences if (nargin>3) if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'StructItem')), DPref.StructItem = Pref.StructItem; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'XmlEngine' )), DPref.XmlEngine = Pref.XmlEngine; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end end if (nargin<3 || isempty(RootName)), RootName=inputname(2); end if (isempty(RootName)), RootName='ROOT'; end if (iscell(RootName)) % RootName also stores global text node data rName = RootName; RootName = char(rName{1}); if (length(rName)>1), GlobalProcInst = char(rName{2}); end if (length(rName)>2), GlobalComment = char(rName{3}); end if (length(rName)>3), GlobalDocType = char(rName{4}); end end if(~RootOnly && isstruct(tree)) % if struct than deal with each field separatly fields = fieldnames(tree); for i=1:length(fields) field = fields{i}; x = tree(1).(field); if (strcmp(field, 'COMMENT')) GlobalComment = x; elseif (strcmp(field, 'PROCESSING_INSTRUCTION')) GlobalProcInst = x; elseif (strcmp(field, 'DOCUMENT_TYPE')) GlobalDocType = x; else RootName = field; t = x; end end tree = t; end %% Initialize jave object that will store xml data structure RootName = varName2str(RootName); if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = com.mathworks.xml.XMLUtils.createDocumentType(GlobalDocType); % end % DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName, dtype); warning('xml_io_tools:write:docType', ... 'DOCUMENT_TYPE node was encountered which is not supported yet. Ignoring.'); end DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName); %% Use recursive function to convert matlab data structure to XML root = DOMnode.getDocumentElement; struct2DOMnode(DOMnode, root, tree, DPref.ItemName, DPref); %% Remove the only child of the root node root = DOMnode.getDocumentElement; Child = root.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children if (nChild==1) node = root.removeChild(root.getFirstChild); while(node.hasChildNodes) root.appendChild(node.removeChild(node.getFirstChild)); end while(node.hasAttributes) % copy all attributes root.setAttributeNode(node.removeAttributeNode(node.getAttributes.item(0))); end end %% Save exotic Global nodes if (~isempty(GlobalComment)) DOMnode.insertBefore(DOMnode.createComment(GlobalComment), DOMnode.getFirstChild()); end if (~isempty(GlobalProcInst)) n = strfind(GlobalProcInst, ' '); if (~isempty(n)) proc = DOMnode.createProcessingInstruction(GlobalProcInst(1:(n(1)-1)),... GlobalProcInst((n(1)+1):end)); DOMnode.insertBefore(proc, DOMnode.getFirstChild()); end end % if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = DOMnode.createDocumentType(GlobalDocType); % DOMnode.insertBefore(dtype, DOMnode.getFirstChild()); % end % end %% save java DOM tree to XML file if (~isempty(filename)) if (strcmpi(DPref.XmlEngine, 'Xerces')) xmlwrite_xerces(filename, DOMnode); else xmlwrite(filename, DOMnode); end end %% ======================================================================= % === struct2DOMnode Function =========================================== % ======================================================================= function [] = struct2DOMnode(xml, parent, s, name, Pref) % struct2DOMnode is a recursive function that converts matlab's structs to % DOM nodes. % INPUTS: % xml - jave object that will store xml data structure % parent - parent DOM Element % s - Matlab data structure to save % name - name to be used in xml tags describing 's' % Pref - preferenced name = varName2str(name); ItemName = Pref.ItemName; if (ischar(s) && min(size(s))>1) % if 2D array of characters s=cellstr(s); % than convert to cell array end while (iscell(s) && length(s)==1), s = s{1}; end nItem = length(s); if (iscell(s)) % if this is a cell array if (nItem==1 || strcmp(name, 'CONTENT') || ~Pref.CellItem) if (strcmp(name, 'CONTENT')), CellName = ItemName; % use 'item' notation <item> ... <\item> else CellName = name; end % don't use 'item' notation <a> ... <\a> for iItem=1:nItem % save each cell separatly struct2DOMnode(xml, parent, s{iItem}, CellName, Pref); % recursive call end else % use 'item' notation <a> <item> ... <\item> <\a> node = xml.createElement(name); for iItem=1:nItem % save each cell separatly struct2DOMnode(xml, node, s{iItem}, ItemName , Pref); % recursive call end parent.appendChild(node); end elseif (isstruct(s)) % if struct than deal with each field separatly fields = fieldnames(s); % if array of structs with no attributes than use 'items' notation if (nItem>1 && Pref.StructItem && ~isfield(s,'ATTRIBUTE') ) node = xml.createElement(name); for iItem=1:nItem struct2DOMnode(xml, node, s(iItem), ItemName, Pref ); % recursive call end parent.appendChild(node); else % otherwise save each struct separatelly for j=1:nItem node = xml.createElement(name); for i=1:length(fields) field = fields{i}; x = s(j).(field); %if (isempty(x)), continue; end if (iscell(x) && (strcmp(field, 'COMMENT') || ... strcmp(field, 'CDATA_SECTION') || ... strcmp(field, 'PROCESSING_INSTRUCTION'))) for k=1:length(x) % if nodes that should have strings have cellstrings struct2DOMnode(xml, node, x{k}, field, Pref ); % recursive call will modify 'node' end elseif (strcmp(field, 'ATTRIBUTE')) % set attributes of the node if (isempty(x)), continue; end if (~isstruct(x)) warning('xml_io_tools:write:badAttribute', ... 'Struct field named ATTRIBUTE encountered which was not a struct. Ignoring.'); continue; end attName = fieldnames(x); % get names of all the attributes for k=1:length(attName) % attach them to the node att = xml.createAttribute(varName2str(attName(k))); att.setValue(var2str(x.(attName{k}))); node.setAttributeNode(att); end else % set children of the node struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' end end % end for i=1:nFields parent.appendChild(node); end % end for j=1:nItem end else % if not a struct and not a cell than it is a leaf node if (strcmp(name, 'CONTENT')) txt = xml.createTextNode(var2str(s)); % ... than it can be converted to text parent.appendChild(txt); elseif (strcmp(name, 'COMMENT')) % create comment node if (ischar(s)) com = xml.createComment(s); parent.appendChild(com); else warning('xml_io_tools:write:badComment', ... 'Struct field named COMMENT encountered which was not a string. Ignoring.'); end elseif (strcmp(name, 'CDATA_SECTION')) % create CDATA Section if (ischar(s)) cdt = xml.createCDATASection(s); parent.appendChild(cdt); else warning('xml_io_tools:write:badCData', ... 'Struct field named CDATA_SECTION encountered which was not a string. Ignoring.'); end elseif (strcmp(name, 'PROCESSING_INSTRUCTION')) % set attributes of the node OK = false; if (ischar(s)) n = strfind(s, ' '); if (~isempty(n)) proc = xml.createProcessingInstruction(s(1:(n(1)-1)),s((n(1)+1):end)); parent.insertBefore(proc, parent.getFirstChild()); OK = true; end end if (~OK) warning('xml_io_tools:write:badProcInst', ... ['Struct field named PROCESSING_INSTRUCTION need to be',... ' a string, for example: xml-stylesheet type="text/css" ', ... 'href="myStyleSheet.css". Ignoring.']); end else % I guess it is a regular text leaf node txt = xml.createTextNode(var2str(s)); node = xml.createElement(name); node.appendChild(txt); parent.appendChild(node); end end %% ======================================================================= % === var2str Function ================================================== % ======================================================================= function str = var2str(s) % convert matlab variables to a sting if (isnumeric(s) || islogical(s)) dim = size(s); if (min(dim)<1 || length(dim)>2) % if 1D or 3D array s=s(:); s=s.'; % convert to 1D array str=num2str(s); % convert array of numbers to string else % if a 2D array s=mat2str(s); % convert matrix to a string str=regexprep(s,';',';\n'); end elseif iscell(s) str = char(s{1}); for i=2:length(s) str = [str, ' ', char(s{i})]; end else str = char(s); end str=str(:); str=str.'; % make sure this is a row vector of char's if (length(str)>1) str(str<32|str==127)=' '; % convert no-printable characters to spaces str = strtrim(str); % remove spaces from begining and the end str = regexprep(str,'\s+',' '); % remove multiple spaces end %% ======================================================================= % === var2Namestr Function ============================================== % ======================================================================= function str = varName2str(str) % convert matlab variable names to a sting str = char(str); p = strfind(str,'0x'); if (~isempty(p)) for i=1:length(p) before = str( p(i)+(0:3) ); % string to replace after = char(hex2dec(before(3:4))); % string to replace with str = regexprep(str,before,after, 'once', 'ignorecase'); p=p-3; % since 4 characters were replaced with one - compensate end end str = regexprep(str,'_COLON_',':', 'once', 'ignorecase'); str = regexprep(str,'_DASH_' ,'-', 'once', 'ignorecase');
github
ZijingMao/baselineeegtest-master
datenum8601.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/datenum8601.m
9,816
utf_8
a85d0376153e989173a5fb941cea7489
function [DtN,Spl,TkC] = datenum8601(Str,Tok) % Convert an ISO 8601 formatted Date String (timestamp) to a Serial Date Number. % % (c) 2014 Stephen Cobeldick % % ### Function ### % % Syntax: % DtN = datenum8601(Str) % DtN = datenum8601(Str,Tok) % [DtN,Spl,TkC] = datenum8601(...) % % By default the function automatically detects all ISO 8601 timestamp/s in % the string, or use a token to restrict detection to only one particular style. % % The ISO 8601 timestamp style options are: % - Date in calendar, ordinal or week-numbering notation. % - Basic or extended format. % - Choice of date-time separator character ( @T_). % - Full or lower precision (trailing units omitted) % - Decimal fraction of the trailing unit. % These style options are illustrated in the tables below. % % The function returns the Serial Date Numbers of the date and time given % by the ISO 8601 style timestamp/s, the input string parts that are split % by the detected timestamps (i.e. the substrings not part of any ISO 8601 % timestamp), and string token/s that define the detected timestamp style/s. % % Note 1: Calls undocumented MATLAB function "datenummx". % Note 2: Unspecified month/date/week/day timestamp values default to one (1). % Note 3: Unspecified hour/minute/second timestamp values default to zero (0). % Note 4: Auto-detection mode also parses mixed basic/extended timestamps. % % See also DATESTR8601 DATEROUND CLOCK NOW DATENUM DATEVEC DATESTR % % ### Examples ### % % Examples use the date+time described by the vector [1999,1,3,15,6,48.0568]. % % datenum8601('1999-01-03 15:06:48.0568') % ans = 730123.62972287962 % % datenum8601('1999003T150648.0568') % ans = 730123.62972287962 % % datenum8601('1998W537_150648.0568') % ans = 730123.62972287962 % % [DtN,Spl,Tok] = datenum8601('A19990103B1999-003C1998-W53-7D') % DtN = [730123,730123,730123] % Spl = {'A','B','C','D'} % Tok = {'ymd','*yn','*YWD'} % % [DtN,Spl,Tok] = datenum8601('1999-003T15') % DtN = 730123.6250 % Spl = {'',''} % Tok = {'*ynTH'} % % [DtN,Spl,Tok] = datenum8601('1999-01-03T15','*ymd') % DtN = 730123.0000 % Spl = {'','T15'} % Tok = {'*ymd'} % % ### ISO 8601 Timestamps ### % % The token consists of one letter for each of the consecutive date/time % units in the timestamp, thus it defines the date notation (calendar, % ordinal or week-date) and selects either basic or extended format: % % Input | Basic Format | Extended Format (token prefix '*') % Date | In/Out | Input Timestamp | In/Out | Input Timestamp % Notation:| <Tok>: | <Str> Example: | <Tok>: | <Str> Example: % ---------|--------|-----------------|---------|--------------------------- % Calendar |'ymdHMS'|'19990103T150648'|'*ymdHMS'|'1999-01-03T15:06:48' % ---------|--------|-----------------|---------|--------------------------- % Ordinal |'ynHMS' |'1999003T150648' |'*ynHMS' |'1999-003T15:06:48' % ---------|--------|-----------------|---------|--------------------------- % Week |'YWDHMS'|'1998W537T150648'|'*YWDHMS'|'1998-W53-7T15:06:48' % ---------|--------|-----------------|---------|--------------------------- % % Options for reduced precision timestamps, non-standard date-time separator % character, and the addition of a decimal fraction of the trailing unit: % % # Omit trailing units (reduced precision), eg: | Output->Vector: % ---------|--------|-----------------|---------|-----------------|--------------------- % |'Y' |'1999W' |'*Y' |'1999-W' |[1999,1,4,0,0,0] % ---------|--------|-----------------|---------|-----------------|--------------------- % |'ymdH' |'19990103T15' |'*ymdH' |'1999-01-03T15' |[1999,1,3,15,0,0] % ---------|--------|-----------------|---------|-----------------|--------------------- % # Select the date-time separator character (one of ' ','@','T','_'), eg: % ---------|--------|-----------------|---------|-----------------|--------------------- % |'yn_HM' |'1999003_1506' |'*yn_HM' |'1999-003_15:06' |[1999,1,3,15,6,0] % ---------|--------|-----------------|---------|-----------------|--------------------- % |'YWD@H' |'1998W537@15' |'*YWD@H' |'1998-W53-7@15' |[1999,1,3,15,0,0] % ---------|--------|-----------------|---------|-----------------|--------------------- % # Decimal fraction of trailing date/time value, eg: % ---------|--------|-----------------|---------|-----------------|--------------------- % |'ynH3' |'1999003T15.113' |'*ynH3' |'1999-003T15.113'|[1999,1,3,15,6,46.80] % ---------|--------|-----------------|---------|-----------------|--------------------- % |'YWD4' |'1998W537.6297' |'*YWD4' |'1998-W53-7.6297'|[1999,1,3,15,6,46.08] % ---------|--------|-----------------|---------|-----------------|--------------------- % |'y10' |'1999.0072047202'|'*y10' |'1999.0072047202'|[1999,1,3,15,6,48.06] % ---------|--------|-----------------|---------|-----------------|--------------------- % % Note 5: This function does not check for ISO 8601 compliance: user beware! % Note 6: Date-time separator character must be one of ' ','@','T','_'. % Note 7: Date notations cannot be combined: note upper/lower case characters. % % ### Input & Output Arguments ### % % Inputs (*default): % Str = Date String, possibly containing one or more ISO 8601 dates/timestamps. % Tok = String token, to select the required date notation and format (*[]=any). % % Outputs: % DtN = Numeric Vector of Serial Date Numbers, one from each timestamp in input <Str>. % Spl = Cell of Strings, the strings before, between and after the detected timestamps. % TkC = Cell of Strings, tokens of each timestamp notation and format (see tables). % % [DtN,Spl,TkC] = datenum8601(Str,Tok*) % Define "regexp" match string: if nargin<2 || isempty(Tok) % Automagically detect timestamp style. MtE = [... '(\d{4})',... % year '((-(?=(\d{2,3}|W)))?)',... % - '(W?)',... % W '(?(3)(\d{2})?|(\d{2}$|\d{2}(?=(\D|\d{2})))?)',... % week/month '(?(4)(-(?=(?(3)\d|\d{2})))?)',... % - '(?(4)(?(3)\d|\d{2})?|(\d{3})?)',... % day of week/month/year '(?(6)([ @T_](?=\d{2}))?)',... % date-time separator character '(?(7)(\d{2})?)',... % hour '(?(8)(:(?=\d{2}))?)',... % : '(?(8)(\d{2})?)',... % minute '(?(10)(:(?=\d{2}))?)',... % : '(?(10)(\d{2})?)',... % second '((\.\d+)?)']; % trailing unit decimal fraction % (Note: allows a mix of basic/extended formats) else % User requests a specific timestamp style. assert(ischar(Tok)&&isrow(Tok),'Second input <Tok> must be a string.') TkU = regexp(Tok,'(^\*?)([ymdnYWD]*)([ @T_]?)([HMS]*)(\d*$)','tokens','once'); assert(~isempty(TkU),'Second input <Tok> is not recognized: ''%s''',Tok) MtE = [TkU{2},TkU{4}]; TkL = numel(MtE); Ntn = find(strncmp(MtE,{'ymdHMS','ynHMS','YWDHMS'},TkL),1,'first'); assert(~isempty(Ntn),'Second input <Tok> is not recognized: ''%s''',Tok) MtE = dn8601Usr(TkU,TkL,Ntn); end % assert(ischar(Str)&&size(Str,1)<2,'First input <Str> must be a string.') % % Extract timestamp tokens, return split strings: [TkC,Spl] = regexp(Str,MtE,'tokens','split'); % [DtN,TkC] = cellfun(@dn8601Main,TkC); % end %----------------------------------------------------------------------END:datenum8601 function [DtN,Tok] = dn8601Main(TkC) % Convert detected substrings into serial date number, create string token. % % Lengths of matched tokens: TkL = cellfun('length',TkC); % Preallocate Date Vector: DtV = [1,1,1,0,0,0]; % % Create token: Ext = '*'; Sep = [TkC{7},'HMS']; TkX = {['ymd',Sep],['y*n',Sep],['YWD',Sep]}; Ntn = 1+(TkL(6)==3)+2*TkL(3); Tok = [Ext(1:+any(TkL([2,5,9,11])==1)),TkX{Ntn}(0<TkL([1,4,6,7,8,10,12]))]; % % Convert date and time values to numeric: Idx = [1,4,6,8,10,12]; for m = find(TkL(Idx)); DtV(m) = sscanf(TkC{Idx(m)},'%f'); end % Add decimal fraction of trailing unit: if TkL(13)>1 if Ntn==2&&m==2 % Month (special case not converted by "datenummx"): DtV(3) = 1+sscanf(TkC{13},'%f')*(datenummx(DtV+[0,1,0,0,0,0])-datenummx(DtV)); else % All other date or time values (are converted by "datenummx"): DtV(m) = DtV(m)+sscanf(TkC{13},'%f'); end Tok = {[Tok,sprintf('%.0f',TkL(13)-1)]}; else Tok = {Tok}; end % % Week-numbering vector to ordinal vector: if Ntn==3 DtV(3) = DtV(3)+7*DtV(2)-4-mod(datenummx([DtV(1),1,1]),7); DtV(2) = 1; end % Convert out-of-range Date Vector to Serial Date Number: DtN = datenummx(DtV) - 31*(0==DtV(2)); % (Month zero is a special case not converted by "datenummx") % end %----------------------------------------------------------------------END:dn8601Main function MtE = dn8601Usr(TkU,TkL,Ntn) % Create "regexp" <match> string from user input token. % % Decimal fraction: if isempty(TkU{5}) MtE{13} = '()'; else MtE{13} = ['(\.\d{',TkU{5},'})']; end % Date-time separator character: if isempty(TkU{3}) MtE{7} = '(T)'; else MtE{7} = ['(',TkU{3},')']; end % Year and time tokens (year, hour, minute, second): MtE([1,8,10,12]) = {'(\d{4})','(\d{2})','(\d{2})','(\d{2})'}; % Format tokens: if isempty(TkU{1}) % Basic MtE([2,5,9,11]) = {'()','()','()','()'}; else % Extended MtE([2,5,9,11]) = {'(-)','(-)','(:)','(:)'}; end % Date tokens: switch Ntn case 1 % Calendar Idx = [2,5,7,9,11,13]; MtE([3,4,6]) = {'()', '(\d{2})','(\d{2})'}; case 2 % Ordinal Idx = [2,7,9,11,13]; MtE([3,4,5,6]) = {'()','()','()','(\d{3})'}; case 3 % Week Idx = [2,5,7,9,11,13]; MtE([3,4,6]) = {'(W)','(\d{2})','(\d{1})'}; end % % Concatenate tokens into "regexp" match token: MtE(Idx(TkL):12) = {'()'}; MtE = [MtE{:}]; % end %----------------------------------------------------------------------END:dn8601Usr
github
ZijingMao/baselineeegtest-master
xml2struct.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/xml2struct.m
6,773
utf_8
0194599f7bac6b67c42391f372b5ff91
function [ s ] = xml2struct( file ) %Convert xml file into a MATLAB structure % [ s ] = xml2struct( file ) % % A file containing: % <XMLname attrib1="Some value"> % <Element>Some text</Element> % <DifferentElement attrib2="2">Some more text</Element> % <DifferentElement attrib3="2" attrib4="1">Even more text</DifferentElement> % </XMLname> % % Will produce: % s.XMLname.Attributes.attrib1 = "Some value"; % s.XMLname.Element.Text = "Some text"; % s.XMLname.DifferentElement{1}.Attributes.attrib2 = "2"; % s.XMLname.DifferentElement{1}.Text = "Some more text"; % s.XMLname.DifferentElement{2}.Attributes.attrib3 = "2"; % s.XMLname.DifferentElement{2}.Attributes.attrib4 = "1"; % s.XMLname.DifferentElement{2}.Text = "Even more text"; % % Please note that the following characters are substituted % '-' by '_dash_', ':' by '_colon_' and '.' by '_dot_' % % Written by W. Falkena, ASTI, TUDelft, 21-08-2010 % Attribute parsing speed increased by 40% by A. Wanner, 14-6-2011 % Added CDATA support by I. Smirnov, 20-3-2012 % % Modified by X. Mo, University of Wisconsin, 12-5-2012 if (nargin < 1) clc; help xml2struct return end if isa(file, 'org.apache.xerces.dom.DeferredDocumentImpl') || isa(file, 'org.apache.xerces.dom.DeferredElementImpl') % input is a java xml object xDoc = file; else %check for existance if (exist(file,'file') == 0) %Perhaps the xml extension was omitted from the file name. Add the %extension and try again. if (isempty(strfind(file,'.xml'))) file = [file '.xml']; end if (exist(file,'file') == 0) error(['The file ' file ' could not be found']); end end %read the xml file xDoc = xmlread(file); end %parse xDoc into a MATLAB structure s = parseChildNodes(xDoc); end % ----- Subfunction parseChildNodes ----- function [children,ptext,textflag] = parseChildNodes(theNode) % Recurse over node children. children = struct; ptext = struct; textflag = 'Text'; if hasChildNodes(theNode) childNodes = getChildNodes(theNode); numChildNodes = getLength(childNodes); for count = 1:numChildNodes theChild = item(childNodes,count-1); [text,name,attr,childs,textflag] = getNodeData(theChild); if (~strcmp(name,'#text') && ~strcmp(name,'#comment') && ~strcmp(name,'#cdata_dash_section')) %XML allows the same elements to be defined multiple times, %put each in a different cell if (isfield(children,name)) if (~iscell(children.(name))) %put existsing element into cell format children.(name) = {children.(name)}; end index = length(children.(name))+1; %add new element children.(name){index} = childs; if(~isempty(fieldnames(text))) children.(name){index} = text; end if(~isempty(attr)) children.(name){index}.('Attributes') = attr; end else %add previously unknown (new) element to the structure children.(name) = childs; if(~isempty(text) && ~isempty(fieldnames(text))) children.(name) = text; end if(~isempty(attr)) children.(name).('Attributes') = attr; end end else ptextflag = 'Text'; if (strcmp(name, '#cdata_dash_section')) ptextflag = 'CDATA'; elseif (strcmp(name, '#comment')) ptextflag = 'Comment'; end %this is the text in an element (i.e., the parentNode) if (~isempty(regexprep(text.(textflag),'[\s]*',''))) if (~isfield(ptext,ptextflag) || isempty(ptext.(ptextflag))) ptext.(ptextflag) = text.(textflag); else %what to do when element data is as follows: %<element>Text <!--Comment--> More text</element> %put the text in different cells: % if (~iscell(ptext)) ptext = {ptext}; end % ptext{length(ptext)+1} = text; %just append the text ptext.(ptextflag) = [ptext.(ptextflag) text.(textflag)]; end end end end end end % ----- Subfunction getNodeData ----- function [text,name,attr,childs,textflag] = getNodeData(theNode) % Create structure of node info. %make sure name is allowed as structure name name = toCharArray(getNodeName(theNode))'; name = strrep(name, '-', '_dash_'); name = strrep(name, ':', '_colon_'); name = strrep(name, '.', '_dot_'); attr = parseAttributes(theNode); if (isempty(fieldnames(attr))) attr = []; end %parse child nodes [childs,text,textflag] = parseChildNodes(theNode); if (isempty(fieldnames(childs)) && isempty(fieldnames(text))) %get the data of any childless nodes % faster than if any(strcmp(methods(theNode), 'getData')) % no need to try-catch (?) % faster than text = char(getData(theNode)); text.(textflag) = toCharArray(getTextContent(theNode))'; end end % ----- Subfunction parseAttributes ----- function attributes = parseAttributes(theNode) % Create attributes structure. attributes = struct; if hasAttributes(theNode) theAttributes = getAttributes(theNode); numAttributes = getLength(theAttributes); for count = 1:numAttributes %attrib = item(theAttributes,count-1); %attr_name = regexprep(char(getName(attrib)),'[-:.]','_'); %attributes.(attr_name) = char(getValue(attrib)); %Suggestion of Adrian Wanner str = toCharArray(toString(item(theAttributes,count-1)))'; k = strfind(str,'='); attr_name = str(1:(k(1)-1)); attr_name = strrep(attr_name, '-', '_dash_'); attr_name = strrep(attr_name, ':', '_colon_'); attr_name = strrep(attr_name, '.', '_dot_'); attributes.(attr_name) = str((k(1)+2):(end-1)); end end end
github
ZijingMao/baselineeegtest-master
progress.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/progress.m
5,835
utf_8
931aef4557497a7657c39bb4e0508084
function n = progress(rate,title) %PROGRESS Text progress bar % Similar to waitbar but without the figure display. % % Start: % PROGRESS('init'); initializes the progress bar with title 'Please wait...' % PROGRESS('init',TITLE); initializes the progress bar with title TITLE % PROGRESS(RATE); sets the length of the bar to RATE (between 0 and 1) % PROGRESS(RATE,TITLE); sets the RATE and the TITLE % PROGRESS('close'); (optionnal) closes the bar % % Faster version for high number of loops: % The function returns a integer indicating the length of the bar. % This can be use to speed up the computation by avoiding unnecessary % refresh of the display % N = PROGRESS('init'); or N = PROGRESS('init',TITLE); % N = PROGRESS(RATE,N); changes the length of the bar only if different % from the previous one % N = PROGRESS(RATE,TITLE); changes the RATE and the TITLE % PROGRESS('close'); (optionnal) closes the bar % % The previous state could be kept in a global variable, but it is a bit % slower and doesn't allows nested waitbars (see examples) % % Known bug: Calling progress('close') shortly afer another call of the % function may cause strange errors. I guess it is because of the % backspace char. You can add a pause(0.01) before to avoid this. % % Examples: % progress('init'); % for i=1:100 % progress(i/100, sprintf('loop %d/100',i)); % % % computing something ... % pause(.1) % end % progress('close'); % optionnal % % % % Inside a script you may use: % n = progress('init','wait for ... whatever'); % for i=1:100 % n = progress(i/100,n); % % % computing something ... % pause(.1) % end % progress('close'); % % % % Add a time estimation: % progress('init','Processing...'); % tic % only if not already called % t0 = toc; % or toc if tic has already been called % tm = t0; % L = 100; % for i=1:L % tt = ceil((toc-t0)*(L-i)/i); % progress(i/L,sprintf('Processing... (estimated time: %ds)',tt)); % % % computing something ... % pause(.1) % end % progress('close'); % % % % Add a faster time estimation: % n = progress('init','Processing...'); % tic % only if not already called % t0 = toc; % or toc if tic has already been called % tm = t0; % L = 100; % for i=1:L % if tm+1 < toc % refresh time every 1s only % tm = toc; % tt = ceil((toc-t0)*(L-i)/i); % n = progress(i/L,sprintf('Processing... (estimated time: %ds)',tt)); % else % n = progress(i/L,n); % end % % % computing something ... % pause(.1) % end % progress('close'); % % % Nested loops: % % One loop... % n1 = progress('init','Main loop'); % for i=0:7 % n1 = progress(i/7,n1); % % % ... and another, inside the first one. % n2 = progress('init','Inside loop'); % for j=0:50 % n2 = progress(j/50,n2); % % % computing something ... % pause(.01) % end % progress('close'); % end % pause(.01) % progress('close'); % 31-08-2007 % By Joseph martinot-Lagarde % [email protected] % Adapted from: % MMA 31-8-2005, [email protected] % Department of Physics % University of Aveiro, Portugal %% The simplest way to bypass it... % n = 0; return %% Width of the bar %If changes are made here, change also the default title lmax=70; % TM: changed from lmax=50; %% Erasing the bar if necessary % not needed, but one could find it prettier if isequal(rate,'close') % there were 3 '\n' added plus the title and the bar itself fprintf(rep('\b',2*lmax+3)) return end %% The init if isequal(rate,'init') % If in init stage cont = 0; % we don't continue a previous bar back = '\n'; % add a blank line at the begining rate = 0; % start from 0 else cont = 1; % we continue a previous bar end %% No need to update the view if not necessary % optional, but saves a LOT of time % length of the displayer bar in number of char % double([0,1]) to int([0,lmax-1]) n = min(max( ceil(rate*(lmax-2)) ,0),lmax-2); % If the 2nd arg is numeric, assumed to be the previous bar length if nargin >=2 && isnumeric(title) if n == title % If no change, do nothing return else % otherwise continue n_ = title; clear title end else % draw the whole bar n_ = -1; end %% The title % If a new title is given, display it if exist('title','var') Ltitle = length(title); if Ltitle > lmax % If too long, cut it title = [title(1:lmax) '\n'] else % otherwise center it title = [rep(' ',floor((lmax-Ltitle)/2)) title rep(' ',ceil((lmax-Ltitle)/2)) '\n']; end if cont % If not in init stage, erase the '\n' and the previous title back = rep('\b',lmax+1); end else if cont % If not in init stage, give a void title title = ''; back = ''; % has to be set else % else set a default title title = ' Please wait... \n'; end end %% The bar % '\f' should draw a small square (at least in Windows XP, Matlab 7.3.0 R2006b) % If not, change to any desired single character, like '*' or '#' if ~cont || n_ == -1 % at the begining disp the whole bar str = ['[' rep('*',n) rep(' ',lmax-n-2) ']\n']; if cont % If not in init stage, erase the previous bar back = [back, rep('\b',lmax+1)]; end else % draw only the part that changed str = [rep('*',n-n_) rep(' ',lmax-n-2) ']\n']; back = [back, rep('\b',lmax-n_)]; end %% The print % Actually make the change fprintf([back title str]); return %% Function to repeat a char n times function cout = rep(cin,n) if n==0 cout = []; return elseif length(cin)==1 cout = cin(ones(1,n)); return else d = [1; 2]; d = d(:,ones(1,n)); cout = cin(reshape(d,1,2*n)); return end
github
ZijingMao/baselineeegtest-master
strjoin_adjoiner_first.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/strjoin_adjoiner_first.m
993
utf_8
0b68faa60355ed75dc3a7916aa8293cc
% Concatenates a cell array of strings. % % Input arguments: % adjoiner: % string separating each neighboring element % strings: % a cell array of strings to join % % See also: strsplit, cell2mat % Copyright 2008-2009 Levente Hunyadi function string = strjoin(adjoiner, strings) if isempty(strings) string = ''; return; end; validateattributes(adjoiner, {'char'}, {'vector'}); validateattributes(strings, {'cell'}, {'vector'}); assert(iscellstr(strings), ... 'strjoin:ArgumentTypeMismatch', ... 'The elements to join should be stored in a cell vector of strings (character arrays).'); if isempty(strings) string = ''; return; end % arrange substrings into cell array of strings concat = cell(1, 2 * numel(strings) - 1); % must be row vector j = 1; concat{j} = strings{1}; for i = 2 : length(strings) j = j + 1; concat{j} = adjoiner; j = j + 1; concat{j} = strings{i}; end % concatenate substrings preserving spaces string = cell2mat(concat);
github
ZijingMao/baselineeegtest-master
env_load_dependencies.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_load_dependencies.m
10,994
utf_8
2e237b15a1d3f2144f496fe00181882c
function env_load_dependencies(dependency_dir,autocompile) % Execute dependency loaders in the given directory tree. % env_load_dependencies(Directory) % % This function recognizes 3 types of dependency loader scripts in the dependencies (sub-)folders. % 1. Scripts called env_exec.m. Each such script is executed by env_load_dependencies. % % 2. Scripts called env_add.m. Each such function is executed, and if the 'ans' variable is true % after executing the script (it is set to true before running the script), and no exception % had occured, the containing directory is added using addpath. % % 3. Scripts called env_compile.m. The presence of such a function indicates to the loader function % that any mex or Java source files in the given directory should be automatically compiled. % Additional compiler inputs (such as defines, libraries and include directories), if any, may % be declared as Name=value; statements in the file itself; These will be passed as named arguments % to hlp_trycompile (examples can be found throughout the existing dependencies). % A special parameter is Skip, which can be set to false on platforms on which the compilation % shall be skipped (perhaps because it is known to fail). % % In: % Directory : directory tree with dependencies to be loaded; by default, searches for a directory % named 'dependencies', relative to the current path or the path of this file. % % Compile : whether to act on env_compile.m files (default: true) % % Example: % % load the dependencies in the C:\mydependencies folder. % env_load_dependencies('C:\mydependencies') % % Notes: % If you intend to compile your toolbox, you cannot use empty .m files. Therefore, your marker files % must contain at least a space character to satisfy the compiler. % % See also: % env_startup % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-03-06 if ~exist('dependency_dir','var') % other possible directories where the dependencies could be located: possible_dirs = {pwd,fileparts(mfilename('fullpath'))}; while ~exist('dependency_dir','var') % for each of the possible directories... for d=1:length(possible_dirs) % check whether it contains a 'dependencies' directory curdir = possible_dirs{d}; if exist([curdir filesep 'dependencies'],'dir') dependency_dir = [curdir filesep 'dependencies']; break; end % otherwise peel off the last directory fsp = find(curdir==filesep,1,'last'); if ~isempty(fsp) possible_dirs{d} = curdir(1:fsp-1); end end if cellfun('isempty',possible_dirs) error('Did not find a directory called ''dependencies''. Please specify it.'); end end end if ~exist('autocompile','var') autocompile = true; end if autocompile % check if compilation is suppressed on this platform try fname = [hlp_homedir filesep '.bcilab' filesep 'bcilab-dont-compile']; fid = fopen(fname,'r'); platforms = fgetl(fid); fclose(fid); if strfind(platforms,[hlp_hostname ';']) autocompile = false; end catch end end load_dependencies(genpath(dependency_dir),autocompile); % now, make sure that the build-* directories are included after their ancestor directories... if ~isdeployed % get current path order added_paths = strsplit(path,pathsep)'; added_paths = added_paths(cellfun(@(s)strncmp(dependency_dir,s,length(dependency_dir)),added_paths)); super_dirs = {}; % this is a cell array of super directories with build dirs that may have to be moved sub_dirs = []; % this is an array of indices (into added_paths) of sub-directories that need % to be moved in front of the respective super dirs (indexed the same) % we start from the end so that we don't have to change indices for p=length(added_paths):-1:1 try cur = added_paths{p}; k = strfind(cur,[filesep 'build-']); if ~isempty(k) % if this is a build directory, add to the potential-move list super_dirs{end+1} = cur(1:k(end)-1); sub_dirs(end+1) = p; end % check if this is one of the super dirs match = strcmp(cur,super_dirs); if any(match) % move all the respective sub-dirs to right before this position indices = sub_dirs(match); added_paths = vertcat(added_paths(1:p-1),added_paths(indices),added_paths(setdiff(p:end,indices))); super_dirs = super_dirs(~match); sub_dirs = sub_dirs(~match); end catch warning('bcilab:dependency_glitch','Glitch during mex/build path reordering.'); super_dirs = {}; sub_dirs = []; end end % rebuild path rmpath(added_paths{:}); addpath(added_paths{:}); end % from the given path list, add all paths that contain an active env_add.m % file (active: either empty or runs without exceptions and ans is not being % set to false), and execute all env_exec.m files function load_dependencies(pathlist,autocompile) compile_problems = {}; paths = strsplit(pathlist,pathsep); for px = paths(end:-1:1) p = px{1}; if exist([p filesep 'env_add.m'],'file') % env_add file: check if "active" [dummy,isactive] = evalc('runscript([p filesep ''env_add.m''])'); %#ok<ASGLU> % immediately add all java .jar packages dirinfos = dir([p filesep '*.jar']); for m={dirinfos.name} if isdeployed warning off MATLAB:javaclasspath:jarAlreadySpecified; end evalc('javaaddpath([p filesep m{1}]);'); end else isactive = false; end % env_exec file: run it if exist([p filesep 'env_exec.m'],'file') runscript([p filesep 'env_exec.m']); end % env_compile file: invoke compilation, if necessary if autocompile && exist([p filesep 'env_compile.m'],'file') settings = get_settings([p filesep 'env_compile.m']); % the Skip field determines whether the current platform should be skipped if isfield(settings,'Skip') docompile = ~settings.Skip; else docompile = true; end if ~isequal(settings,false) && docompile if ~hlp_trycompile('Directory',p, 'Style','eager', settings); compile_problems{end+1} = p; end end end if isactive % finally add to MATLAB & Java path if ~isdeployed addpath(p); end % also add java files here (note: this may clear global variables) if ~isempty(dir([p filesep '*.class'])) if isdeployed warning off MATLAB:javaclasspath:jarAlreadySpecified; end javaaddpath(p); end end end % handle compilation errors gracefully if ~isempty(compile_problems) && ~isdeployed disp('There were compiling problems for the dependencies in:'); for k=1:length(compile_problems) disp([' ' compile_problems{k}]); end fprintf('\n'); disp('This means that the affected features of BCILAB will be disabled.'); if ispc disp('These issues are usually resolved by installing a (free) Microsoft Visual Studio Express version that is between five years to a half year older than your MATLAB release.'); disp('If you install a new compiler, you might have to type "mex -setup" in the MATLAB command line, before MATLAB recognizes it.'); elseif ismac disp('These issues are usually resolved by installing the Xcode application that comes with your OS (with all install options to include gcc compiler support).'); elseif isunix disp('These issues are usually resolved by a installing a version of the gcc compiler package that is between three years to a half year older than your MATLAB release.'); end yn = lower(input('Should BCILAB try to recompile in the future (or skip recompilation if not)? [y/n]','s')); if any(strcmp(yn,{'y','n','yes','no'})) if yn(1) == 'n' if ~exist([hlp_homedir filesep '.bcilab'],'dir') if ~mkdir(hlp_homedir,'.bcilab'); disp('Cannot create directory .bcilab in your home folder.'); end end fname = [hlp_homedir filesep '.bcilab' filesep 'bcilab-dont-compile']; disp(['BCILAB will add/update a file called ' fname ' which contains the names of computers on which you chose to disable compilation.']); fid = fopen(fname,'a'); if fid ~= -1 try fwrite(fid,[hlp_hostname ';']); fclose(fid); catch try fclose(fid); catch,end disp('There were permission problems while accessing this file. Did not update it.'); end else disp('The file name appears to be invalid on your platform; did not update it.'); end end else disp('Please type ''y'' or ''n'' next time.'); end fprintf('\n'); end % run the given script (in its own scope...) % and return the result of the last line function ans = runscript(filename__) try ans = 1; %#ok<NOANS> fprintf('Loading %s...\n',fileparts(filename__)); run_script(filename__); % Note: This function is equivalent to run(), but works in deployed mode, % too. If the code fails here, you probably don't have this % function in your path. You may retrieve it (it's in the 'misc' % directory of BCILAB), or replace it here by run(). catch e disp(['Error running dependency loader ' filename__ '; reason: ' e.message]); disp('The dependency will likely not be fully operational.'); ans = 0; %#ok<NOANS> end % run the given settings script (in its own scope...) % and return the collected defined variables (or false) function settings = get_settings(filename__) try evalc('run_script(filename__)'); infos = whos(); settings = struct(); for n = {infos.name} settings.(n{1}) = eval(n{1}); end catch disp(['The settings script ' filename__ ' contains an error.']); settings = false; end % Split a string according to some delimiter(s). Not as fast as hlp_split (and doesn't fuse % delimiters), but doesn't need bsxfun(). function strings = strsplit(string, splitter) ix = strfind(string, splitter); strings = cell(1,numel(ix)+1); ix = [0 ix numel(string)+1]; for k = 2 : numel(ix) strings{k-1} = string(ix(k-1)+1:ix(k)-1); end strings = strings(~cellfun('isempty',strings));
github
ZijingMao/baselineeegtest-master
env_clear_classes.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_clear_classes.m
1,399
utf_8
9aea4fb7a3c591fd3b2dbf3bbb2857e9
function env_clear_classes % Clear instances of BCI paradigm (and other) classes. % % This function is mainly useful when editing the code of BCI paradigms in BCILAB. Whenever after an % edit a warning along the lines of "Cannot apply change to the class Paradigm*** because some % instances of the old version still exist" comes up, this function may be called to clear all such % stray instances without erasing the remaining state of BCILAB. % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-12-29 global tracking; % clear all micro-caches hlp_microcache('clear'); % also clear all other stray class instances try % make a backup of the tracking struct persistent backup; %#ok<TLEV> backup = tracking; % clear the classes, but keep this file (and the backup) locked mlock; now_clear; munlock; % restore the tracking variable from the backup restore_tracking(backup); catch disp('Error while trying to clear classes from memory.'); end function now_clear % this needs to run in a different scope, otherwise the persistent variable ref would get lost clear classes; function restore_tracking(backup) % this must be in a different scope, as we cannot have 2 global statements for the same variable % in env_clear_memcaches() global tracking; tracking = backup;
github
ZijingMao/baselineeegtest-master
env_showmenu.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_showmenu.m
16,493
utf_8
159e1459c66a23bf0aa2650e6dd1b8a3
function env_showmenu(varargin) % Links the BCILAB menu into another menu, or creates a new root menu if necessary. % env_showmenu(Options...) % % In: % Options... : optional name-value pairs; names are: % 'parent': parent menu to link into % % 'shortcuts': whether to enable keyboard shortcuts % % 'forcenew': whether to force creation of a new menu % % Example: % % bring up the BCILAB main menu if it had been closed % env_showmenu; % % See also: % env_startup % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-29 % parse options... hlp_varargin2struct(varargin,'parent',[], 'shortcuts',true,'forcenew',false); % check if we're an EEGLAB plugin folders = hlp_split(fileparts(mfilename('fullpath')),filesep); within_eeglab = length(folders) >= 5 && strcmp(folders{end-3},'plugins') && ~isempty(strfind(folders{end-4},'eeglab')); % highlight the menu if already there f = findobj('Tag','bcilab_menu'); if ~isempty(f) && ~forcenew close(get(f,'Parent')); end if isempty(parent) %#ok<NODEF> if within_eeglab && ~forcenew % try to link into the EEGLAB main menu try toolsmenu = findobj(0,'tag','tools'); if ~isempty(toolsmenu) parent = uimenu(toolsmenu, 'Label','BCILAB'); set(toolsmenu,'Enable','on'); end catch disp('Unable to link BCILAB menu into EEGLAB menu.'); end end if isempty(parent) % create new root menu, if no parent from_left = 100; from_top = 150; width = 500; height = 1; % determine position on primary monitor import java.awt.GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment(); gd = ge.getDefaultScreenDevice(); scrheight = gd.getDisplayMode().getHeight(); pos = [from_left, scrheight-from_top, width, height]; % create figure figtitle = ['BCILAB ' env_version ' (on ' hlp_hostname ')']; parent = figure('DockControls','off','NumberTitle','off','Name',figtitle,'Resize','off','MenuBar','none','Position',pos,'Tag','bcilab_toolwnd'); end end % Data Source menu source = uimenu(parent, 'Label','Data Source','Tag','bcilab_menu'); uimenu(source,'Label','Load recording(s)...','Accelerator',char(shortcuts*'l'),'Callback','gui_loadset'); wspace = uimenu(source,'Label','Workspace','Separator','on'); uimenu(wspace,'Label','Load...','Callback','io_loadworkspace'); uimenu(wspace,'Label','Save...','Callback','io_saveworkspace'); uimenu(wspace,'Label','Clear...','Callback','clear'); uimenu(source,'Label','Run script...','Separator','on','Callback',@invoke_script); if isdeployed uimenu(source,'Label','Quit','Separator','on','Callback','exit'); end % Offline Analysis menu offline = uimenu(parent, 'Label','Offline Analysis'); uimenu(offline,'Label','New approach...','Accelerator',char(shortcuts*'n'),'Callback','gui_newapproach'); uimenu(offline,'Label','Modify approach...','Accelerator',char(shortcuts*'m'),'Callback','gui_configapproach([],true);'); uimenu(offline,'Label','Review/edit approach...','Accelerator',char(shortcuts*'r'),'Callback','gui_reviewapproach([],true);'); uimenu(offline,'Label','Save approach...','Accelerator',char(shortcuts*'s'),'Callback','gui_saveapproach'); uimenu(offline,'Label','Train new model...','Accelerator',char(shortcuts*'t'),'Callback','gui_calibratemodel','Separator','on'); uimenu(offline,'Label','Apply model to data...','Accelerator',char(shortcuts*'a'),'Callback','gui_applymodel'); uimenu(offline,'Label','Visualize model...','Accelerator',char(shortcuts*'v'),'Callback','gui_visualizemodel'); uimenu(offline,'Label','Run batch analysis...','Accelerator',char(shortcuts*'b'),'Callback','gui_batchanalysis','Separator','on'); uimenu(offline,'Label','Review results...','Accelerator',char(shortcuts*'i'),'Callback','gui_selectresults','Separator','on'); % Online Analysis menu online = uimenu(parent,'Label','Online Analysis'); pipe = uimenu(online,'Label','Process data within...'); read = uimenu(online,'Label','Read input from...'); write = uimenu(online,'Label','Write output to...'); cm_read = uicontextmenu('Tag','bcilab_cm_read'); cm_write = uicontextmenu('Tag','bcilab_cm_write'); % for each plugin sub-directory... dirs = dir(env_translatepath('functions:/online_plugins')); for d={dirs(3:end).name} % find all files, their names, identifiers, and function handles files = dir(env_translatepath(['functions:/online_plugins/' d{1} '/run_*.m'])); names = {files.name}; idents = cellfun(@(n)n(1:end-2),names,'UniformOutput',false); % for each entry... for f=1:length(idents) try if ~exist(idents{f},'file') && ~isdeployed addpath(env_translatepath(['functions:/online_plugins/' d{1}])); end % get properties... props = arg_report('properties',str2func(idents{f})); % get category if strncmp(idents{f},'run_read',8); cats = [read,cm_read]; elseif strncmp(idents{f},'run_write',9); cats = [write,cm_write]; elseif strncmp(idents{f},'run_pipe',8); cats = pipe; end if isfield(props,'name') % add menu entry for cat=cats uimenu(cat,'Label',[props.name '...'],'Callback',['arg_guidialog(@' idents{f} ');'],'Enable','on'); end else warning('env_showmenu:missing_guiname','The online plugin %s does not declare a GUI name; ignoring...',idents{f}); end catch disp(['Could not integrate the online plugin ' idents{f} '.']); end end end uimenu(online,'Label','Clear all online processing','Callback','onl_clear','Separator','on'); % Settings menu settings = uimenu(parent, 'Label','Settings'); uimenu(settings,'Label','Directory settings...','Callback','gui_configpaths'); uimenu(settings,'Label','Cache settings...','Callback','gui_configcache'); uimenu(settings,'Label','Cluster settings...','Callback','gui_configcluster'); uimenu(settings,'Label','Clear memory cache','Callback','env_clear_memcaches','Separator','on'); % Help menu helping = uimenu(parent,'Label','Help'); uimenu(helping,'Label','BCI Paradigms...','Callback','env_doc code/paradigms'); uimenu(helping,'Label','Filters...','Callback','env_doc code/filters'); uimenu(helping,'Label','Machine Learning...','Callback','env_doc code/machine_learning'); scripting = uimenu(helping,'Label','Scripting'); uimenu(scripting,'Label','File input/output...','Callback','env_doc code/io'); uimenu(scripting,'Label','Dataset editing...','Callback','env_doc code/dataset_editing'); uimenu(scripting,'Label','Offline scripting...','Callback','env_doc code/offline_analysis'); uimenu(scripting,'Label','Online scripting...','Callback','env_doc code/online_analysis'); uimenu(scripting,'Label','BCILAB environment...','Callback','env_doc code/environment'); uimenu(scripting,'Label','Cluster handling...','Callback','env_doc code/parallel'); uimenu(scripting,'Label','Keywords...','Separator','on','Callback','env_doc code/keywords'); uimenu(scripting,'Label','Helpers...','Callback','env_doc code/helpers'); uimenu(scripting,'Label','Internals...','Callback','env_doc code/utils'); authoring = uimenu(helping,'Label','Plugin authoring'); uimenu(authoring,'Label','Argument declaration...','Callback','env_doc code/arguments'); uimenu(authoring,'Label','Expression functions...','Callback','env_doc code/expressions'); uimenu(authoring,'Label','Online processing...','Callback','env_doc code/online_analysis'); uimenu(helping,'Label','About...','Separator','on','Callback',@about); uimenu(helping,'Label','Save bug report...','Separator','on','Callback','io_saveworkspace([],true)'); uimenu(helping,'Label','File bug report...','Callback','arg_guidialog(@env_bugreport);'); % toolbar (if not linked into the EEGLAB menu) if ~(within_eeglab && ~forcenew) global tracking; cluster_requested = isfield(tracking,'cluster_requested') && ~isempty(tracking.cluster_requested); cluster_requested = hlp_rewrite(cluster_requested,false,'off',true,'on'); ht = uitoolbar(parent,'HandleVisibility','callback'); uipushtool(ht,'TooltipString','Load recording(s)',... 'CData',load_icon('bcilab:/resources/icons/file_open.png'),... 'HandleVisibility','callback','ClickedCallback','gui_loadset'); uipushtool(ht,'TooltipString','New approach',... 'CData',load_icon('bcilab:/resources/icons/approach_new.png'),... 'HandleVisibility','callback','ClickedCallback','gui_newapproach','Separator','on'); uipushtool(ht,'TooltipString','Load Approach',... 'CData',load_icon('bcilab:/resources/icons/approach_load.png'),... 'HandleVisibility','callback','ClickedCallback',@load_approach); uipushtool(ht,'TooltipString','Save approach',... 'CData',load_icon('bcilab:/resources/icons/approach_save.png'),... 'HandleVisibility','callback','ClickedCallback','gui_saveapproach'); uipushtool(ht,'TooltipString','Modify approach',... 'CData',load_icon('bcilab:/resources/icons/approach_edit.png'),... 'HandleVisibility','callback','ClickedCallback','gui_configapproach([],true);'); uipushtool(ht,'TooltipString','Review/edit approach',... 'CData',load_icon('bcilab:/resources/icons/approach_review.png'),... 'HandleVisibility','callback','ClickedCallback','gui_reviewapproach([],true);'); uipushtool(ht,'TooltipString','Train new model',... 'CData',load_icon('bcilab:/resources/icons/model_new.png'),... 'HandleVisibility','callback','ClickedCallback','gui_calibratemodel','Separator','on'); uipushtool(ht,'TooltipString','Load Model',... 'CData',load_icon('bcilab:/resources/icons/model_load.png'),... 'HandleVisibility','callback','ClickedCallback',@load_model); uipushtool(ht,'TooltipString','Save Model',... 'CData',load_icon('bcilab:/resources/icons/model_save.png'),... 'HandleVisibility','callback','ClickedCallback','gui_savemodel'); uipushtool(ht,'TooltipString','Apply model to data',... 'CData',load_icon('bcilab:/resources/icons/model_apply.png'),... 'HandleVisibility','callback','ClickedCallback','gui_applymodel'); uipushtool(ht,'TooltipString','Visualize model',... 'CData',load_icon('bcilab:/resources/icons/model_visualize.png'),... 'HandleVisibility','callback','ClickedCallback','gui_visualizemodel'); uipushtool(ht,'TooltipString','Run batch analysis',... 'CData',load_icon('bcilab:/resources/icons/batch_analysis.png'),... 'HandleVisibility','callback','ClickedCallback','gui_batchanalysis'); uipushtool(ht,'TooltipString','Read input from (online)',... 'CData',load_icon('bcilab:/resources/icons/online_in.png'),... 'HandleVisibility','callback','Separator','on','ClickedCallback',@click_read); uipushtool(ht,'TooltipString','Write output to (online)',... 'CData',load_icon('bcilab:/resources/icons/online_out.png'),... 'HandleVisibility','callback','ClickedCallback',@click_write); uipushtool(ht,'TooltipString','Clear online processing',... 'CData',load_icon('bcilab:/resources/icons/online_clear.png'),... 'HandleVisibility','callback','ClickedCallback','onl_clear'); uitoggletool(ht,'TooltipString','Request cluster availability',... 'CData',load_icon('bcilab:/resources/icons/acquire_cluster.png'),'HandleVisibility','callback','Separator','on','State',cluster_requested,'OnCallback','env_acquire_cluster','OffCallback','env_release_cluster'); uipushtool(ht,'TooltipString','About BCILAB',... 'CData',load_icon('bcilab:/resources/icons/help.png'),'HandleVisibility','callback','Separator','on','ClickedCallback',@about); end if within_eeglab && forcenew mainmenu = findobj('Tag','EEGLAB'); % make the EEGLAB menu current again if ~isempty(mainmenu) figure(mainmenu); end end function about(varargin) infotext = strvcat(... 'BCILAB is an open-source toolbox for Brain-Computer Interfacing research.', ... 'It is being developed by Christian Kothe at the Swartz Center for Computational Neuroscience,',... 'Institute for Neural Computation (University of California San Diego).', ... ' ',... 'Development of this software was supported by the Army Research Laboratories under', ... 'Cooperative Agreement Number W911NF-10-2-0022, as well as by a gift from the Swartz Foundation.', ... ' ',... 'The design was inspired by the preceding PhyPA toolbox, written by C. Kothe and T. Zander', ... 'at the Berlin Institute of Technology, Chair Human-Machine Systems.', ... ' ',... 'BCILAB connects to the following toolboxes/libraries:', ... '* AWS SDK (Amazon)', ... '* Amica (SCCN/UCSD)', ... '* Chronux (Mitra Lab, Cold Spring Harbor)', ... '* CVX (Stanford)', ... '* DAL (U. Tokyo)', ... '* DataSuite (SCCN/UCSD)', ... '* EEGLAB (SCCN/UCSD)', ... '* BCI2000import (www.bci2000.org)', ... '* Logreg (Jan Drugowitsch)', ... '* FastICA (Helsinki UT)', ... '* glm-ie (Max Planck Institute for Biological Cybernetics, Tuebingen)', ... '* glmnet (Stanford)', ... '* GMMBayes (Helsinki UT)', ... '* HKL (Francis Bach, INRIA)', ... '* KernelICA (Francis Bach, Berkeley)', ... '* LIBLINEAR (National Taiwan University)', ... '* matlabcontrol (Joshua Kaplan)', ... '* mlUnit (Thomas Dohmke)', ... '* NESTA (Caltech)', ... '* OSC (Andy Schmeder) and LibLO (Steve Harris)', ... '* PROPACK (Stanford)', ... '* PropertyGrid (Levente Hunyadi)', ... '* SparseBayes (Vector Anomaly)', ... '* SVMlight (Thorsten Joachims)', ... '* SVMperf (Thorsten Joachims)', ... '* Talairach (UTHSCSA)', ... '* Time-frequency toolbox (CRNS / Rice University)', ... '* t-SNE (TU Delft)', ... '* UnLocBox (Nathanael Perraudin et al.)', ... '* VDPGM (Kenichi Kurihara)'); %#ok<REMFF1> warndlg2(infotext,'About'); function click_read(varargin) % pop up a menu when clicking the "read input from" toolbar button tw = findobj('tag','bcilab_toolwnd'); cm = findobj('tag','bcilab_cm_read'); tpos = get(tw,'Position'); ppos = get(0,'PointerLocation'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); function click_write(varargin) % pop up a menu when clicking the "write output to" toolbar button tw = findobj('tag','bcilab_toolwnd'); cm = findobj('tag','bcilab_cm_write'); tpos = get(tw,'Position'); ppos = get(0,'PointerLocation'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); set(cm,'Position',ppos - tpos(1:2), 'Visible', 'on'); % run a script function invoke_script(varargin) [filename,filepath] = uigetfile({'*.m', 'MATLAB file'},'Select script to run',env_translatepath('bcilab:/')); if ~isnumeric(filename) run_script([filepath filename],true); end % load a toolbar icon function cols = load_icon(filename) [cols,palette,alpha] = imread(env_translatepath(filename)); if ~isempty(palette) error('This function does not handle palettized icons.'); end cls = class(cols); cols = double(cols); cols = cols/double(intmax(cls)); cols([alpha,alpha,alpha]==0) = NaN; % load a BCI model from disk function load_model(varargin) [filename,filepath] = uigetfile({'*.mdl', 'BCI Model'},'Select BCI model to load',env_translatepath('home:/.bcilab/models')); if ~isnumeric(filename) contents = io_load([filepath filename],'-mat'); for fld=fieldnames(contents)' tmp = contents.(fld{1}); if isstruct(tmp) && isfield(tmp,'timestamp') tmp.timestamp = now; assignin('base',fld{1},tmp); end end end % load a BCI approach from disk function load_approach(varargin) [filename,filepath] = uigetfile({'*.apr', 'BCI Approach'},'Select BCI approach to load',env_translatepath('home:/.bcilab/approaches')); if ~isnumeric(filename) contents = io_load([filepath filename],'-mat'); for fld=fieldnames(contents)' tmp = contents.(fld{1}); if isstruct(tmp) && isfield(tmp,'paradigm') tmp.timestamp = now; assignin('base',fld{1},tmp); end end end
github
ZijingMao/baselineeegtest-master
env_buildslave.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_buildslave.m
8,548
utf_8
aa1e4148f6acf22b11f24d8df947e0e6
function env_buildslave(varargin) % Run as a build slave: recompile the toolbox whenever it has changed. % % In: % ScanInterval : the interval at which the toolbox is scanned for changes, in seconds % (default: 30) % % WaitPeriod : the period that must have passed between the last change and a rebuild % (default: 120) % % ScanDirectories : the directories and files to scan for changes % (default: {'bcilab:/code', 'bcilab:/*.m'}) % % ProjectName : name/location of the project to monitor % (default: 'bcilab:/build') % % SpinInterval : interval at which the function is querying whether the build has % finished (default: 5) % % LogFile : name/location of the logfile, if any % (default: 'bcilab:/build/buildslave.log') % % IssueBuild : function to be called to issue a new build (default: 'env_compile_bcilab') % % PostBuild : function to be called after a successful build (default: []) % (called with the name of the binary) % % WaitPreCompile : time to wait until we expect that the compilation has ramped up % (default: 30) % % WaitPostCompile : time to wait until we expect that the compilation has completed (after mcc's have finished) % (default: 30) % % WaitPostConflict : time to wait after we have had a failed build (e.g. due to concurrent editing) % (default: 120) % % Notes: % This function will likely not run on Win64, as it requires a process monitoring command to work. % % See also: % env_compile_bcilab, deploytool % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-03-13 % read options o = hlp_varargin2struct(varargin, ... {'scan_interval','ScanInterval'},15, ... {'wait_period','WaitPeriod'},120, ... {'scan_dirs','ScanDirectories'},{'bcilab:/code','bcilab:/*.m'}, ... {'project_name','ProjectName'},'bcilab:/build', ... {'spin_interval','SpinInterval'},5, ... {'log','LogFile'},'home:/.bcilab/logs/buildslave.log', ... {'issue_build','IssueBuild'},@env_compile_bcilab, ... {'post_build','PostBuild'},[], ... {'wait_precompile','WaitPreCompile'},30, ... {'wait_postcompile','WaitPostCompile'},30, ... {'wait_postconflict','WaitPostConflict'},120); % sanitize inputs if ischar(o.scan_dirs) o.scan_dirs = {o.scan_dirs}; end for d=1:length(o.scan_dirs) o.scan_dirs{d} = env_translatepath(o.scan_dirs{d}); end o.log = env_translatepath(o.log); if ischar(o.issue_build) o.issue_build = str2func(o.issue_build); end if ischar(o.post_build) o.post_build = str2func(o.post_build); end % name and location of the project file o.project_name = env_translatepath(o.project_name); [proj_dir,proj_tag] = fileparts(o.project_name); proj_dir(end+1) = filesep; % name and location of the binary binary_dir = [proj_dir proj_tag filesep 'distrib' filesep]; binary_name = proj_tag; if ispc binary_ext = '.exe'; else binary_ext = ''; end binary_path = [binary_dir binary_name binary_ext]; % names of marker files mrk_notsynched = [o.project_name filesep 'not_synched']; mrk_synching = [o.project_name filesep 'synching']; mrk_synched = [o.project_name filesep 'synched']; % check for status of the process monitoring tool... if ~is_process_running('matlab') error('Process monitoring does not work on your platform.'); end % turn off a few warnings if ispc warning off MATLAB:FILEATTRIB:SyntaxWarning; end warning off MATLAB:DELETE:FileNotFound; % run... quicklog(o.log,'===== Now running as build slave ====='); cleaner = onCleanup(@cleanup); while 1 % get the date of the binary bindate = timestamp(binary_path); % get the most recent date of scanned directories codedate = max(cellfun(@timestamp,o.scan_dirs)); % check if we are still sync'ed if codedate > bindate quicklog(o.log,'out of sync'); rmfile(mrk_synched); makefile(mrk_notsynched); rmfile(mrk_synching); end % check if wait period expired and there is no other compilation running... if (codedate - bindate)*24*60*60 > o.wait_period && ~is_process_running('mcc') % issue a recompilation... quicklog(o.log,'recompiling...'); makefile(mrk_synching); rmfile(mrk_notsynched); rmfile(mrk_synched); % rename the binary... try ds = datestr(clock); ds(ds == ':' | ds == ' ') = '-'; if exist(binary_path,'file') movefile(binary_path,[binary_dir binary_name '-old-' ds binary_ext]); end catch quicklog(o.log,'cannot move binary %s',binary_path); end % issue a rebuild try clear functions; o.issue_build(); % wait until mcc has ramped up pause(o.wait_precompile); catch e quicklog(o.log,evalc('env_handleerror(e)')); rethrow(e); end % wait until mcc's are done ... while is_process_running('mcc') pause(o.spin_interval); end % wait until the packaging has finished... pause(o.wait_postcompile); quicklog(o.log,'finished.'); % check whether the code has been edited during the build newdate = max(cellfun(@timestamp,o.scan_dirs)); if (newdate > codedate) && codedate quicklog(o.log,'code has been edited concurrently.'); try % if so, delete the binary delete(binary_path); catch quicklog(o.log,'Cannot delete failed binary. This is a serious condition; exiting...'); return; end end if exist(binary_path,'file') % binary present quicklog(o.log,'last compilation successful.'); if ~isempty(o.post_build) % run the postbuild step try quicklog(o.log,'running post-build step...'); o.post_build(binary_path); quicklog(o.log,'post-build step completed successfully...'); catch e quicklog(o.log,evalc('env_handleerror(e)')); rethrow(e); end end makefile(mrk_synched); rmfile(mrk_notsynched); rmfile(mrk_synching); else % compilation must have been unsucessful... quicklog(o.log,'last compilation failed...'); makefile(mrk_notsynched); rmfile(mrk_synched); rmfile(mrk_synching); % wait for a moment to let the dust settle pause(o.wait_postconflict); end else if codedate > bindate quicklog(o.log,'waiting for edits to finish...'); end pause(o.scan_interval); end end % calc the most recent time stamp of a given file system location function ts = timestamp(loc) if any(loc=='*') || ~exist(loc,'dir') % assume that it's a file mask / reference infos = dir(loc); else % assume that it's a directory reference infos = cellfun(@dir,hlp_split(genpath(loc),pathsep),'UniformOutput',false); infos = vertcat(infos{:}); end if ~isempty(infos) % take the maximum time stamp if ~isfield(infos,'datenum') [infos.datenum] = celldeal(cellfun(@datenum,{infos.date},'UniformOutput',false)); end ts = max([infos.datenum]); else % no file: set to the beginning of time... ts = 0; end % create a status marker file... function makefile(name) try fid = fopen(name,'w+'); fclose(fid); fileattrib(name,'+w','a'); catch if fid ~= -1 try fclose(fid); catch,end end end % remove a status marker file... function rmfile(name) try delete(name); catch end % check if a process is running using OS APIs function tf = is_process_running(name) if ispc cmd = 'wmic process get description'; else cmd = 'ps -A'; end [errcode,content] = system(cmd); if errcode error('Process monitoring non-operational on your platform. This means you''ll need to compile manually using env_compile_bcilab.'); end tf = ~isempty(strfind(lower(content),lower(name))); % clean up any stray MCC tasks function cleanup(varargin) if ispc system('taskkill /F /IM mcc.exe'); else system('killall mcc'); end
github
ZijingMao/baselineeegtest-master
env_testslave.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_testslave.m
5,607
utf_8
b279aa0a6ed3d730783ff07014023600
function env_testslave(varargin) % Run as a test slave: run tests for the toolbox whenever it has changed. % % In: % ScanInterval : the interval at which the toolbox is scanned for changes, in seconds % (default: 30) % % WaitPeriod : the period that must have passed between the last change and a re-test % (default: 120) % % ScanDirectories : the directories and files to scan for changes until re-tests are triggered % (default: {'bcilab:/code', 'bcilab:/*.m'}) % % TestDirectory : the directory where the test cases are located % (default: 'bcilab:/resources/testcases') % % IssueTest : function to be called to issue a test run (default: @env_test_bcilab) % (assumed to return data related to the test summary) % % PostTest : function to be called after a test run (default: []) % (called with the results of IssueTest) % % LogFile : name/location of the logfile, if any % (default: 'bcilab:/build/buildslave.log') % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-03-17 % read options o = hlp_varargin2struct(varargin, ... {'scan_interval','ScanInterval'},15, ... {'wait_period','WaitPeriod'},120, ... {'scan_dirs','ScanDirectories'},{'bcilab:/code','bcilab:/*.m'}, ... {'issue_test','IssueTest'},@env_test_bcilab, ... {'post_test','PostTest'},[], ... {'log','LogFile'},sprintf('bcilab:/resources/testcases/log_%s.log',hlp_hostname), ... {'report','ReportFile'},'bcilab:/resources/testcases/report_%s-%s.log'); % sanitize inputs if ischar(o.scan_dirs) o.scan_dirs = {o.scan_dirs}; end for d=1:length(o.scan_dirs) o.scan_dirs{d} = env_translatepath(o.scan_dirs{d}); end o.log = env_translatepath(o.log); o.report = env_translatepath(o.report); if ischar(o.post_build) o.post_build = str2func(o.post_build); end % names of marker files mrk_untested = [proj_dir 'untested']; mrk_testing = [proj_dir 'testing']; mrk_tested = [proj_dir 'tested']; % turn off a few warnings if ispc warning off MATLAB:FILEATTRIB:SyntaxWarning; end warning off MATLAB:DELETE:FileNotFound; % run... quicklog(o.log,'===== Now running as test slave ====='); while 1 % get the date of the last test (if any) testdate = timestamp(mrk_tested); % get the most recent date of scanned directories codedate = max(cellfun(@timestamp,o.scan_dirs)); % check if we are still up-to-date if codedate > testdate quicklog(o.log,'out of sync'); rmfile(mrk_tested); makefile(mrk_untested); rmfile(mrk_testing); end % check if wait period expired ... if (codedate - testdate)*24*60*60 > o.wait_period % issue a re-test... quicklog(o.log,'re-testing...'); makefile(mrk_testing); rmfile(mrk_untested); rmfile(mrk_tested); % issue a re-test try results = o.issue_test(); catch e quicklog(o.log,evalc('env_handleerror(e)')); rethrow(e); end quicklog(o.log,'finished.'); % check whether the code has been edited during the build newdate = max(cellfun(@timestamp,o.scan_dirs)); if (newdate > codedate) && codedate quicklog(o.log,'code has been edited concurrently.'); % if so, revert to untested makefile(mrk_untested); rmfile(mrk_tested); rmfile(mrk_testing); else quicklog(o.log,'testing completed.'); if ~isempty(o.post_test) % run the post-testing step try quicklog(o.log,'running post-testing step...'); o.post_test(results); quicklog(o.log,'post-testing step completed successfully...'); catch e quicklog(o.log,evalc('env_handleerror(e)')); rethrow(e); end end % test completed successfully makefile(mrk_tested); rmfile(mrk_untested); rmfile(mrk_testing); % write/update report, if applicable ds = datestr(clock); ds(ds == ':' | ds == ' ') = '-'; if ischar(results) quicklog(sprintf(o.report,hlp_hostname,ds),results); end end else if codedate > testdate quicklog(o.log,'waiting for edits to finish...'); end pause(o.scan_interval); end end % calc the most recent time stamp of a given file system location function ts = timestamp(loc) if any(loc=='*') || ~exist(loc,'dir') % assume that it's a file mask / reference infos = dir(loc); else % assume that it's a directory reference infos = cellfun(@dir,hlp_split(genpath(loc),pathsep),'UniformOutput',false); infos = vertcat(infos{:}); end if ~isempty(infos) % take the maximum time stamp if ~isfield(infos,'datenum') [infos.datenum] = celldeal(cellfun(@datenum,{infos.date},'UniformOutput',false)); end ts = max([infos.datenum]); else % no file: set to the beginning of time... ts = 0; end % create a status marker file... function makefile(name) try fid = fopen(name,'w+'); fclose(fid); fileattrib(name,'+w','a'); catch if fid ~= -1 try fclose(fid); catch,end end end % remove a status marker file... function rmfile(name) try delete(name); catch end
github
ZijingMao/baselineeegtest-master
env_startup.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_startup.m
23,183
utf_8
00cabe6e6e1273c1d7b52a22c679bbc9
function env_startup(varargin) % Start the BCILAB toolbox, i.e. set up global data structures and load dependency toolboxes. % env_startup(Options...) % % Does all steps necessary for loading the toolbox -- the functions bcilab.m and eegplugin_bcilab.m % are wrappers around this function which provide a higher level of convenience (configuration files % in particular). Directly calling this function is not recommended. % % In: % Options... : optional name-value pairs; allowed names are: % % --- directory settings --- % % 'data': Path where data sets are stored, used by data loading/saving routines. % (default: path/to/bcilab/userdata) % Note: this may also be a cell array of directories, in which case references % to data:/ are looked up in all of the specified directories, and the % best match is taken. % % 'store': Path in which data shall be stored. Write permissions necessary (by default % identical to the data path) % % 'temp': temp directory (for misc outputs, e.g., AMICA models and dipole fits) % (default: path/to/bcilab-temp, or path/to/cache/bcilab_temp if a cache % directory was specified) % % --- caching settings --- % % 'cache': Path where intermediate data sets are cached. Should be located on a fast % (local) drive with sufficient free capacity. % * if this is left unspecified or empty, the cache is disabled % * if this is a directory, it is used as the default cache location % * a fine-grained cache setup can be defined by specifying a cell array of % cache locations, where each cache location is a cell array of name-value % pairs, with possible names: % 'dir': directory of the cache location (e.g. '/tmp/bcilab_tmp/'), mandatory % 'time': only computations taking more than this many seconds may be stored % in this location, but if a computation takes so long that another % cache location with a higher time applies, that other location is % preferred. For example, the /tmp directory may take computations % that take at least a minute, the home directory may take % computations that take at least an hour, the shared /data/results % location of the lab may take computations that take at least 12 % hours (default: 30 seconds) % 'free': minimum amount of space to keep free on the given location, in GiB, % or, if smaller than 1, free is taken as the fraction of total % space to keep free. (default: 80) % 'tag': arbitrary identifier for the cache location (default: 'location_i', % for the i'th location) must be a valid MATLAB struct field name, % only for display purposes % % 'mem_capacity': capacity of the memory cache (default: 2) % if this is smaller than 1, it is taken as a fraction of the total % free physical memory at startup time, otherwise it is in GB % % 'data_reuses' : estimated number of reuses of a data set being computed (default: 3) % ... depending on disk access speeds, this determines whether it makes % sense to cache the data set % % --- parallel computing settings --- % % 'parallel' : parallelization options; cell array of name-value pairs, with names: % 'engine': parallelization engine to use, can be 'local', % 'ParallelComputingToolbox', or 'BLS' (BCILAB Scheduler) % (default: 'local') % 'pool': node pool, cell array of 'host:port' strings; necessary for the % BLS scheduler (default: {'localhost:23547','localhost:23548', % ..., 'localhost:23554'}) % 'policy': scheduling policy function; necessary for the BLS scheduler % (default: 'par_reschedule_policy') % % note: Parallel processing has so far received only relatively little % testing. Please use this facility at your own risk and report % any issues (e.g., starving jobs) that you may encounter. % % 'aquire_options' : Cell array of arguments as expected by par_getworkers_ssh % (with bcilab-specific defaults for unspecified arguments) % (default: {}) % % 'worker' : whether this toolbox instance is started as a worker process or not; if % false, diary logging and GUI menus and popups are enabled. If given as a % cell array, the cell contents are passed on to the function par_worker, % which lets the toolbox act as a commandline-less worker (waiting to % receive jobs over the network) (default: false) % % --- misc settings --- % % 'menu' : create a menu bar (default: true) -- if this is set to 'separate', the BCILAB % menu will be detached from the EEGLAB menu, even if run as a plugin. % % 'autocompile' : whether to try to auto-compile mex/java files (default: true) % % 'show_experimental' : whether to show methods and options marked 'experimental' in % the GUIs (default: false) % % 'show_guru' : whether to show methods and options marked 'guru' in the GUIs % (default: false) % % Examples: % Note that env_startup is usually not being called directly; instead the bcilab.m function in the % bcilab root directory forwards its arguments (and variables declared in a config script) to this % function. % % % start BCILAB with a custom data directory, and a custom cache directory % env_startup('data','C:\Data', 'cache','C:\Data\Temp'); % % % as before, but specify multiple data paths that are being fused into a common directory view % % where possible (in case of ambiguities, the earlier directories take precedence) % env_startup('data',{'C:\Data','F:\Data2'}, 'cache','C:\Data\Temp'); % % % start BCILAB with a custom data and storage directory, and specify a cache location with some % % additional meta-data (namely: only cache there if a computation takes at least 60 seconds, and % % reserve 15GB free space % env_startup('data','/media/data', 'store','/media/data/results', 'cache',{{'dir','/tmp/tracking','time',60,'free',15}}); % % % as before, but make sure that the free space does not fall below 20% of the disk % env_startup('data','/media/data', 'store','/media/data/results', 'cache',{{'dir','/tmp/tracking','time',60,'free',0.2}}); % % % start BCILAB and set up a very big in-memory cache for working with large data sets (of 16GB) % env_startup('mem_capacity',16) % % % start BCILAB but prevent the main menu from popping up % env_startup('menu',false) % % % start BCILAB and specify which parallel computation resources to use; this assumes that the % % respective hostnames are reachable from this computer, and are running MATLAB sessions which % % execute a command similar to: cd /your/path/to/bcilab; bcilab('worker',true); par_worker; % env_startup('parallel',{'engine','BLS', 'pool',{'computer1','computer2','computer3'}} % % % % start the toolbox as a worker % env_startup('worker',true) % % % start the toolbox as worker, and pass some arguments to par_worker (making it listen on port % % 15456, using a portrange of 0, and using some custom update-checking arguments % env_startup('worker',{15456,0,'update_check',{'/data/bcilab-0.9-beta2b/build/bcilab','/mnt/remote/bcilab-build/bcilab'}}) % % See also: % env_load_dependencies, env_translatepath % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-03-28 % determine the BCILAB core directories if ~isdeployed tmpdir = path_normalize(fileparts(mfilename('fullpath'))); delims = strfind(tmpdir,filesep); base_dir = tmpdir(1:delims(end-1)); else % in deployed mode, we walk up until we find the BCILAB base directory tmpdir = pwd; delims = strfind(tmpdir,filesep); disp(['Launching from directory ' tmpdir ' ...']); for k=length(delims):-1:1 base_dir = tmpdir(1:delims(k)); if exist([base_dir filesep 'code'],'dir') success = true; %#ok<NASGU> break; end end if ~exist('success','var') error('Could not find the ''code'' directory; make sure that the binary is in a sub-directory of a full BCILAB distribution.'); end end function_dir = [base_dir 'code']; dependency_dir = [base_dir 'dependencies']; resource_dir = [base_dir 'resources']; script_dir = [base_dir 'userscripts']; build_dir = [base_dir 'build']; % add them all to the MATLAB path (except for dependencies, which are loaded separately) if ~isdeployed % remove existing BCILAB path references ea = which('env_add'); if ~isempty(ea) % get the bcilab root directory that's currently in the path bad_path = ea(1:strfind(ea,'dependencies')-2); % remove all references paths = strsplit(path,pathsep); retain = cellfun('isempty',strfind(paths,bad_path)); path(sprintf(['%s' pathsep],paths{retain})); if ~all(retain) disp(' BCILAB sub-directories have been detected in the MATLAB path, removing them.'); end end % add core function paths addpath(genpath(function_dir)); if exist(build_dir,'dir') addpath(build_dir); end evalc('addpath(genpath(script_dir))'); evalc('addpath([base_dir ''userdata''])'); % remove existing eeglab path references, if BCILAB is not itself contained as a plugin in this % EEGLAB distribution ep = which('eeglab'); if ~isempty(ep) && isempty(strfind(mfilename('fullpath'),fileparts(which('eeglab')))) paths = strsplit(path,pathsep); ep = strsplit(ep,filesep); retain = cellfun('isempty',strfind(paths,ep{end-1})); path(sprintf(['%s' pathsep],paths{retain})); if ~all(retain) disp(' The previously loaded EEGLAB path has been replaced.'); end end end if hlp_matlab_version < 706 disp('Note: Your version of MATLAB is not supported by BCILAB any more. You may try BCILAB version 0.9, which supports old MATLAB''s back to version 2006a.'); end % get options opts = hlp_varargin2struct(varargin,'data',[],'store',[],'cache',[],'temp',[],'mem_capacity',2,'data_reuses',3, ... 'parallel',{'use','local'}, 'menu',true, 'configscript','', 'worker',false, 'autocompile',true, 'acquire_options',{}, ... 'show_experimental',false,'show_guru',false); % load all dependencies, recursively... disp('Loading BCILAB dependencies...'); env_load_dependencies(dependency_dir,opts.autocompile); if ischar(opts.worker) try disp(['Evaluating worker argument: ' opts.worker]); opts.worker = eval(opts.worker); catch disp('Failed to evaluate worker; setting it to false.'); opts.worker = false; end elseif ~isequal(opts.worker,false) fprintf('Worker was given as a %s with value %s\n',class(opts.worker),hlp_tostring(opts.worker)); end if ischar(opts.parallel) try disp(['Evaluating parallel argument: ' opts.parallel]); opts.parallel = eval(opts.parallel); catch disp('Failed to evaluate worker; setting it to empty.'); opts.parallel = {}; end end % process data directories if isempty(opts.data) opts.data = {}; end if ~iscell(opts.data) opts.data = {opts.data}; end for d = 1:length(opts.data) opts.data{d} = path_normalize(opts.data{d}); end if isempty(opts.data) || ~any(cellfun(@exist,opts.data)) opts.data = {[base_dir 'userdata']}; end % process store directory if isempty(opts.store) opts.store = opts.data{1}; end opts.store = path_normalize(opts.store); % process cache directories if isempty(opts.cache) opts.cache = {}; end if ischar(opts.cache) opts.cache = {{'dir',opts.cache}}; end if iscell(opts.cache) && ~isempty(opts.cache) && ~iscell(opts.cache{1}) opts.cache = {opts.cache}; end for d=1:length(opts.cache) opts.cache{d} = hlp_varargin2struct(opts.cache{d},'dir','','tag',['location_' num2str(d)],'time',30,'free',80); end % remove entries with empty dir opts.cache = opts.cache(cellfun(@(e)~isempty(e.dir),opts.cache)); for d=1:length(opts.cache) % make sure that the BCILAB cache is in its own proper sub-directory opts.cache{d}.dir = [path_normalize(opts.cache{d}.dir) filesep 'bcilab_cache']; % create the directory if necessary if ~isempty(opts.cache{d}.dir) && ~exist(opts.cache{d}.dir,'dir') try io_mkdirs([opts.cache{d}.dir filesep],{'+w','a'}); catch disp(['cache directory ' opts.cache{d}.dir ' does not exist and could not be created']); end end end % process temp directory if isempty(opts.temp) if ~isempty(opts.cache) opts.temp = [fileparts(opts.cache{1}.dir) filesep 'bcilab_temp']; else opts.temp = [base_dir(1:end-1) '-temp']; end end opts.temp = path_normalize(opts.temp); try io_mkdirs([opts.temp filesep],{'+w','a'}); catch disp(['temp directory ' opts.temp ' does not exist and could not be created.']); end % set global variables global tracking tracking.paths = struct('bcilab_path',{base_dir(1:end-1)}, 'function_path',{function_dir}, 'data_paths',{opts.data}, 'store_path',{opts.store}, 'dependency_path',{dependency_dir},'resource_path',{resource_dir},'temp_path',{opts.temp}); for d=1:length(opts.cache) location = rmfield(opts.cache{d},'tag'); % convert GiB to bytes if location.free >= 1 location.free = location.free*1024*1024*1024; end try warning off MATLAB:DELETE:Permission; % probe the cache locations... import java.io.*; % try to add a free space checker (Java File object), which we use to check the quota, etc. location.space_checker = File(opts.cache{d}.dir); filename = [opts.cache{d}.dir filesep '__probe_cache_ ' num2str(round(rand*2^32)) '__.mat']; if exist(filename,'file') delete(filename); end oldvalue = location.space_checker.getFreeSpace; testdata = double(rand(1024)); %#ok<NASGU> objinfo = whos('testdata'); % do a quick read/write test t0=tic; save(filename,'testdata'); location.writestats = struct('size',{0 objinfo.bytes},'time',{0 toc(t0)}); t0=tic; load(filename); location.readstats = struct('size',{0 objinfo.bytes},'time',{0 toc(t0)}); newvalue = location.space_checker.getFreeSpace; if exist(filename,'file') delete(filename); end % test if the space checker works, and also get some quick measurements of disk read/write speeds if newvalue >= oldvalue location = rmfield(location,'space_checker'); end % and turn the free space ratio into an absolute value if location.free < 1 location.free = location.free*location.space_checker.getTotalSpace; end catch e disp(['Could not probe cache file system speed; reason: ' e.message]); end tracking.cache.disk_paths.(opts.cache{d}.tag) = location; end if opts.mem_capacity < 1 free_mem = hlp_memavail(); tracking.cache.capacity = round(opts.mem_capacity * free_mem); if free_mem < 1024*1024*1024 sprintf('Warning: You have less than 1 GB of free memory (reserving %.0f%% = %.0fMB for data caches).\n',100*opts.mem_capacity,tracking.cache.capacity/(1024*1024)); sprintf(' This will severely impact the offline processing speed of BCILAB.\n'); sprintf(' You may force a fixed amount of cache cacpacity by assinging a value greater than 1 (in GB) to the ''mem_capacity'' variable in your bcilab_config.m.'); end else tracking.cache.capacity = opts.mem_capacity*1024*1024*1024; end tracking.cache.reuses = opts.data_reuses; tracking.cache.data = struct(); tracking.cache.sizes = struct(); tracking.cache.times = struct(); if ~isfield(tracking.cache,'disk_paths') tracking.cache.disk_paths = struct(); end % initialize stack mechanisms tracking.stack.base = struct('disable_expressions',false); % set parallelization settings tracking.parallel = hlp_varargin2struct(opts.parallel, ... 'engine','local', ... 'pool',{'localhost:23547','localhost:23548','localhost:23549','localhost:23550','localhost:23551','localhost:23552','localhost:23553','localhost:23554'}, ... 'policy','par_reschedule_policy'); tracking.acquire_options = opts.acquire_options; tracking.configscript = opts.configscript; % set GUI settings tracking.gui.show_experimental = opts.show_experimental; tracking.gui.show_guru = opts.show_guru; try cd(script_dir); catch end % set up some microcache domain properties hlp_microcache('arg','lambda_equality','proper'); hlp_microcache('spec','group_size',5); hlp_microcache('findfunction','lambda_equality','fast','group_size',5); hlp_microcache('verybig','max_key_size',2^30,'max_result_size',2^30); % set up some fine-grained disk-cache locations hlp_diskcache('filterdesign','folder',opts.temp,'subdir','filterdesign','exactmatch_cutoff',0); hlp_diskcache('icaweights','folder',opts.temp,'subdir','icaweights','exactmatch_cutoff',0); hlp_diskcache('dipfits','folder',opts.temp,'subdir','dipfits','exactmatch_cutoff',0); hlp_diskcache('featuremodels','folder',opts.temp,'subdir','featuremodels','exactmatch_cutoff',0); hlp_diskcache('predictivemodels','folder',opts.temp,'subdir','predictivemodels','exactmatch_cutoff',0); hlp_diskcache('statistics','folder',opts.temp,'subdir','statistics','exactmatch_cutoff',0); hlp_diskcache('general','folder',opts.temp,'subdir','general'); hlp_diskcache('finegrained','folder',opts.temp,'subdir','finegrained'); hlp_diskcache('temporary','folder',opts.temp,'subdir','temporary'); % show toolbox status fprintf('\n'); disp(['code is in ' function_dir]); datalocs = []; for d = opts.data datalocs = [datalocs d{1} ', ']; end %#ok<AGROW> disp(['data is in ' datalocs(1:end-2)]); disp(['results are in ' opts.store]); if ~isempty(opts.cache) fnames = fieldnames(tracking.cache.disk_paths); for f = 1:length(fnames) if f == 1 disp(['cache is in ' tracking.cache.disk_paths.(fnames{f}).dir ' (' fnames{f} ')']); else disp([' ' tracking.cache.disk_paths.(fnames{f}).dir ' (' fnames{f} ')']); end end else disp('cache is disabled'); end disp(['temp is in ' opts.temp]); fprintf('\n'); % turn off a few nasty warnings warning off MATLAB:log:logOfZero warning off MATLAB:divideByZero %#ok<RMWRN> warning off MATLAB:RandStream:ReadingInactiveLegacyGeneratorState % for GMMs.... if isequal(opts.worker,false) || isequal(opts.worker,0) % --- regular mode --- % set up logfile if ~exist([hlp_homedir filesep '.bcilab'],'dir') if ~mkdir(hlp_homedir,'.bcilab'); disp('Cannot create directory .bcilab in your home folder.'); end end tracking.logfile = env_translatepath('home:/.bcilab/logs/bcilab_console.log'); try if ~exist([hlp_homedir filesep '.bcilab' filesep 'logs'],'dir') mkdir([hlp_homedir filesep '.bcilab' filesep 'logs']); end if exist(tracking.logfile,'file') warning off MATLAB:DELETE:Permission delete(tracking.logfile); warning on MATLAB:DELETE:Permission end catch,end try diary(tracking.logfile); catch,end if ~exist([hlp_homedir filesep '.bcilab' filesep 'models'],'dir') mkdir([hlp_homedir filesep '.bcilab' filesep 'models']); end if ~exist([hlp_homedir filesep '.bcilab' filesep 'approaches'],'dir') mkdir([hlp_homedir filesep '.bcilab' filesep 'approaches']); end % create a menu if ~(isequal(opts.menu,false) || isequal(opts.menu,0)) try env_showmenu('forcenew',strcmp(opts.menu,'separate')); catch e disp('Could not open the BCILAB menu; traceback: '); env_handleerror(e); end end % display a version reminder bpath = hlp_split(env_translatepath('bcilab:/'),filesep); if ~isempty(strfind(bpath{end},'-stable')) if isdeployed disp(' This is the stable version.'); else disp(' This is the stable version - please keep this in mind when editing.'); end elseif ~isempty(strfind(bpath{end},'-devel')) if isdeployed disp(' This is the DEVELOPER version.'); else try cprintf([0 0.4 1],'This is the DEVELOPER version.\n'); catch disp(' This is the DEVELOPER version.'); end end end disp([' Welcome to the BCILAB toolbox on ' hlp_hostname '!']) fprintf('\n'); else disp('Now entering worker mode...'); % -- worker mode --- if ~isdeployed % disable standard dialogs in the workers addpath(env_translatepath('dependencies:/disabled_dialogs')); end % close EEGLAB main menu mainmenu = findobj('Tag','EEGLAB'); if ~isempty(mainmenu) close(mainmenu); end drawnow; % translate the options if isequal(opts.worker,true) opts.worker = {}; end if ~iscell(opts.worker) opts.worker = {opts.worker}; end % start! par_worker(opts.worker{:}); end try % pretend to invoke the dependency list so that the compiler finds it... dependency_list; catch end % normalize a directory path function dir = path_normalize(dir) dir = strrep(strrep(dir,'\',filesep),'/',filesep); if dir(end) == filesep dir = dir(1:end-1); end % Split a string according to some delimiter(s). % Not as fast as hlp_split (and doesn't fuse % delimiters), but works without bsxfun. function strings = strsplit(string, splitter) ix = strfind(string, splitter); strings = cell(1,numel(ix)+1); ix = [0 ix numel(string)+1]; for k = 2 : numel(ix) strings{k-1} = string(ix(k-1)+1:ix(k)-1); end
github
ZijingMao/baselineeegtest-master
env_acquire_cluster.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/environment/env_acquire_cluster.m
3,786
utf_8
7ae4a6c911fe57c69049246902a82526
function env_acquire_cluster % Acquire a cluster using the currently configured acquire options. % % The behavior of this function is governed by the configuration variable acquire_options that can % be set either in the config file or in the "Cluster Settings" GUI dialog. Generally, this function % will (if supported by the OS), check which of the desired cluster resources are already up, and % start what still needs to be started. There is no guarantee that the cluster resources actually % start successfully (and don't crash, etc), the function just tries its best. After that, the % function will start a "heartbeat" timer that periodically tells the cluster resources that it is % still interested in keeping them alive. Depending on how the cluster was configured, it may shut % down the resources after they are no longer needed (e.g., for cost reasons). % % The heartbeat signal can be disabled by calling env_release_cluster or pressing the "request % cluster availability" button in the GUI toolbar for a second time. % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2012-04-12 global tracking; import java.io.* import java.net.* import java.lang.* % interpret as cell array of arguments to par_getworkers_ssh arguments = tracking.acquire_options; if isempty(arguments) disp('No settings for acquiring the cluster have been specified, no startup command will be issued.'); elseif ~iscell(arguments) disp('The acquire_options parameter should be a cell array of name-value pairs which form arguments to par_getworkers_ssh.'); elseif isunix % invoke, but also impose default arguments (if unspecified) % by default, workers do not recruit (but only list) other workers, preventing a cascading effect try par_getworkers_ssh(arguments{:}); catch e disp('Could not acquire worker machines; traceback: '); env_handleerror(e); end else disp('Cannot automatically acquire hosts from a non-UNIX system.'); end % start the heartbeat timer if ~isempty(tracking.parallel.pool) fprintf('Initiating heartbeat signal... '); tracking.cluster_requested = {}; % for each endpoint in the pool... for p=1:length(tracking.parallel.pool) % make a new socket sock = DatagramSocket(); % and "connect" it to the worker endpoint (its heartbeat server) endpoint = hlp_split(tracking.parallel.pool{p},':'); sock.connect(InetSocketAddress(endpoint{1}, str2num(endpoint{2}))); tracking.cluster_requested{p} = sock; end % start a timer that sends the heartbeat (every 30 seconds) start(timer('ExecutionMode','fixedRate', 'Name','heartbeat_timer', 'Period',15, ... 'TimerFcn',@(timer_handle,varargin)send_heartbeat(timer_handle))); disp('success.'); else tracking.cluster_requested = true; end % called periodically to send heartbeat messages over the network function send_heartbeat(timer_handle) import java.io.* import java.net.* import java.lang.* global tracking; try if ~isfield(tracking,'cluster_requested') || isempty(tracking.cluster_requested) || ~iscell(tracking.cluster_requested) error('ouch!'); end % for each socket in the list of heartbeat sockets... for p=1:length(tracking.cluster_requested) try % send the message tmp = DatagramPacket(uint8('dsfjk45djf'),10); tracking.cluster_requested{p}.send(tmp); catch e % some socket problem: ignored. end end catch e % issue (most likely the request has been cancelled) stop & sdelete the heartbeat timer stop(timer_handle); delete(timer_handle); disp('Heartbeat signal stopped.'); end
github
ZijingMao/baselineeegtest-master
loadjson.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/jsonlab/loadjson.m
16,145
ibm852
7582071c5bd7f5e5f74806ce191a9078
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
ZijingMao/baselineeegtest-master
loadubjson.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/jsonlab/loadubjson.m
13,300
utf_8
b15e959f758c5c2efa2711aa79c443fc
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % opt.NameIsString [0|1]: for UBJSON Specification Draft 8 or % earlier versions (JSONLab 1.0 final or earlier), % the "name" tag is treated as a string. To load % these UBJSON data, you need to manually set this % flag to 1. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 if(jsonopt('NameIsString',0,varargin{:})) str = parseStr(varargin{:}); else str = parse_name(varargin{:}); end if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; object.(valid_field(str))=val; if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data, adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object, adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object, adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parse_name(varargin) global pos inStr bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of name'); end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
ZijingMao/baselineeegtest-master
savejson_for_ess.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/jsonlab/savejson_for_ess.m
19,319
utf_8
1299e4f40b734fe1fd182b132979005c
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % edited by Nima bigdely-Shamlo and added forceArray___ directive. % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.emptyString the string to use instead of null for empty values; % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(filename, 'wb'); fwrite(fid,json); else fid = fopen(filename, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt={}; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; bracketlevel=~jsonopt('singletcell',1,varargin{:}); if(len>bracketlevel) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; name=''; else txt={padding0, '[', nl}; end elseif(len==0) if(~isempty(name)) txt={padding0, '"' checkname(name,varargin{:}) '": []'}; name=''; else txt={padding0, '[]'}; end end for i=1:dim(1) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for j=1:dim(2) txt{end+1}=obj2json(name,item{i,j},level+(dim(1)>1)+(len>bracketlevel),varargin{:}); if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(i<dim(1)) txt(end+1:end+2)={',' nl}; end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>bracketlevel) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt={}; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); if isfield(item, 'forceArray_____'); % by Nima to allow focing to be an array forcearray = true; item = rmfield(item, 'forceArray_____'); end; ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+forcearray); nl=ws.newline; if(isempty(item)) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": []'}; else txt={padding0, '[]'}; end return; end if(~isempty(name)) if(forcearray) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; end else if(forcearray) txt={padding0, '[', nl}; end end for j=1:dim(2) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt(end+1:end+5)={padding1, '"', checkname(name,varargin{:}),'": {', nl}; else txt(end+1:end+3)={padding1, '{', nl}; end if(~isempty(names)) for e=1:length(names) txt{end+1}=obj2json(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:}); if(e<length(names)) txt{end+1}=','; end txt{end+1}=nl; end end txt(end+1:end+2)={padding1,'}'}; if(i<dim(1)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(forcearray) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt={}; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt={padding1, '"', checkname(name,varargin{:}),'": [', nl}; end else if(len>1) txt={padding1, '[', nl}; end end for e=1:len val=escapejsonstring(item(e,:)); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt(end+1:end+2)={padding1, obj}; else txt(end+1:end+4)={padding0,'"',val,'"'}; end if(e==len) sep=''; end txt{end+1}=sep; end if(len>1) txt(end+1:end+3)={nl,padding1,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matlabobject2json(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2json(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt=jsonopt('emptyString','null',varargin{:}); return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\\','\"','\/','\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\$1'); else escapechars={'\\','\"','\/','\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\\$1'); end
github
ZijingMao/baselineeegtest-master
saveubjson.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/jsonlab/saveubjson.m
17,723
utf_8
3414421172c05225dfbd4a9c8c76e6b3
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) fid = fopen(filename, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end bracketlevel=~jsonopt('singletcell',1,varargin{:}); len=numel(item); % let's handle 1D cell first if(len>bracketlevel) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>bracketlevel),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>bracketlevel) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); if(~isempty(name)) if(forcearray) txt=[N_(checkname(name,varargin{:})) '[']; end else if(forcearray) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt=[txt N_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(forcearray) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[N_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for e=1:len val=item(e,:); if(len==1) obj=[N_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[N_(checkname(name,varargin{:})),'Z']; return; else txt=[N_(checkname(name,varargin{:})),'{',N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[N_(checkname(name,varargin{:})) numtxt]; else txt=[N_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,N_('_ArrayIsComplex_'),'T']; end txt=[txt,N_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,N_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,N_('_ArrayIsComplex_'),'T']; txt=[txt,N_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matlabobject2ubjson(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2ubjson(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(id~=0)) error('high-precision data is not yet supported'); end key='iIlL'; type=key(id~=0); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=N_(str) val=[I_(int32(length(str))) str]; %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
ZijingMao/baselineeegtest-master
xml_write.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/xml_io/xml_write.m
18,325
utf_8
24bd3dc683e5a0a0ad4080deaa6a93a5
function DOMnode = xml_write(filename, tree, RootName, Pref) %XML_WRITE Writes Matlab data structures to XML file % % DESCRIPTION % xml_write( filename, tree) Converts Matlab data structure 'tree' containing % cells, structs, numbers and strings to Document Object Model (DOM) node % tree, then saves it to XML file 'filename' using Matlab's xmlwrite % function. Optionally one can also use alternative version of xmlwrite % function which directly calls JAVA functions for XML writing without % MATLAB middleware. This function is provided as a patch to existing % bugs in xmlwrite (in R2006b). % % xml_write(filename, tree, RootName, Pref) allows you to specify % additional preferences about file format % % DOMnode = xml_write([], tree) same as above except that DOM node is % not saved to the file but returned. % % INPUT % filename file name % tree Matlab structure tree to store in xml file. % RootName String with XML tag name used for root (top level) node % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % Pref Other preferences: % Pref.ItemName - default 'item' - name of a special tag used to % itemize cell or struct arrays % Pref.XmlEngine - let you choose the XML engine. Currently default is % 'Xerces', which is using directly the apache xerces java file. % Other option is 'Matlab' which uses MATLAB's xmlwrite and its % XMLUtils java file. Both options create identical results except in % case of CDATA sections where xmlwrite fails. % Pref.CellItem - default 'true' - allow cell arrays to use 'item' % notation. See below. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.StructItem - default 'true' - allow arrays of structs to use % 'item' notation. For example "Pref.StructItem = true" gives: % <a> % <b> % <item> ... <\item> % <item> ... <\item> % <\b> % <\a> % while "Pref.StructItem = false" gives: % <a> % <b> ... <\b> % <b> ... <\b> % <\a> % % % Several special xml node types can be created if special tags are used % for field names of 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields % (usually ATTRIBUTE are present. Usually data section is stored % directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - create comment child node from the string. For global % comments see "RootName" input variable. % - node.PROCESSING_INSTRUCTIONS - create "processing instruction" child % node from the string. For global "processing instructions" see % "RootName" input variable. % - node.CDATA_SECTION - stores node's CDATA section (string). Only works % if Pref.XmlEngine='Xerces'. For more info, see comments of F_xmlwrite. % - other special node types like: document fragment nodes, document type % nodes, entity nodes and notation nodes are not being handled by % 'xml_write' at the moment. % % OUTPUT % DOMnode Document Object Model (DOM) node tree in the format % required as input to xmlwrite. (optional) % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % type('test.xml') % %See also xml_tutorial.m % % See also % xml_read, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com %% Check Matlab Version v = ver('MATLAB'); v = str2double(regexp(v.Version, '\d.\d','match','once')); if (v<7) error('Your MATLAB version is too old. You need version 7.0 or newer.'); end %% default preferences DPref.TableName = {'tr','td'}; % name of a special tags used to itemize 2D cell arrays DPref.ItemName = 'item'; % name of a special tag used to itemize 1D cell arrays DPref.StructItem = true; % allow arrays of structs to use 'item' notation DPref.CellItem = true; % allow cell arrays to use 'item' notation DPref.StructTable= 'Html'; DPref.CellTable = 'Html'; DPref.XmlEngine = 'Matlab'; % use matlab provided XMLUtils %DPref.XmlEngine = 'Xerces'; % use Xerces xml generator directly DPref.PreserveSpace = false; % Preserve or delete spaces at the beggining and the end of stings? RootOnly = true; % Input is root node only GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; %% read user preferences if (nargin>3) if (isfield(Pref, 'TableName' )), DPref.TableName = Pref.TableName; end if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'StructItem')), DPref.StructItem = Pref.StructItem; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'CellTable')), DPref.CellTable = Pref.CellTable; end if (isfield(Pref, 'StructTable')), DPref.StructTable= Pref.StructTable; end if (isfield(Pref, 'XmlEngine' )), DPref.XmlEngine = Pref.XmlEngine; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end if (isfield(Pref, 'PreserveSpace')), DPref.PreserveSpace = Pref.PreserveSpace; end end if (nargin<3 || isempty(RootName)), RootName=inputname(2); end if (isempty(RootName)), RootName='ROOT'; end if (iscell(RootName)) % RootName also stores global text node data rName = RootName; RootName = char(rName{1}); if (length(rName)>1), GlobalProcInst = char(rName{2}); end if (length(rName)>2), GlobalComment = char(rName{3}); end if (length(rName)>3), GlobalDocType = char(rName{4}); end end if(~RootOnly && isstruct(tree)) % if struct than deal with each field separatly fields = fieldnames(tree); for i=1:length(fields) field = fields{i}; x = tree(1).(field); if (strcmp(field, 'COMMENT')) GlobalComment = x; elseif (strcmp(field, 'PROCESSING_INSTRUCTION')) GlobalProcInst = x; elseif (strcmp(field, 'DOCUMENT_TYPE')) GlobalDocType = x; else RootName = field; t = x; end end tree = t; end %% Initialize jave object that will store xml data structure RootName = varName2str(RootName); if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = com.mathworks.xml.XMLUtils.createDocumentType(GlobalDocType); % end % DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName, dtype); warning('xml_io_tools:write:docType', ... 'DOCUMENT_TYPE node was encountered which is not supported yet. Ignoring.'); end DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName); %% Use recursive function to convert matlab data structure to XML root = DOMnode.getDocumentElement; struct2DOMnode(DOMnode, root, tree, DPref.ItemName, DPref); %% Remove the only child of the root node root = DOMnode.getDocumentElement; Child = root.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children if (nChild==1) node = root.removeChild(root.getFirstChild); while(node.hasChildNodes) root.appendChild(node.removeChild(node.getFirstChild)); end while(node.hasAttributes) % copy all attributes root.setAttributeNode(node.removeAttributeNode(node.getAttributes.item(0))); end end %% Save exotic Global nodes if (~isempty(GlobalComment)) DOMnode.insertBefore(DOMnode.createComment(GlobalComment), DOMnode.getFirstChild()); end if (~isempty(GlobalProcInst)) n = strfind(GlobalProcInst, ' '); if (~isempty(n)) proc = DOMnode.createProcessingInstruction(GlobalProcInst(1:(n(1)-1)),... GlobalProcInst((n(1)+1):end)); DOMnode.insertBefore(proc, DOMnode.getFirstChild()); end end % Not supported yet as the code below does not work % if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = DOMnode.createDocumentType(GlobalDocType); % DOMnode.insertBefore(dtype, DOMnode.getFirstChild()); % end % end %% save java DOM tree to XML file if (~isempty(filename)) if (strcmpi(DPref.XmlEngine, 'Xerces')) xmlwrite_xerces(filename, DOMnode); else xmlwrite(filename, DOMnode); end end %% ======================================================================= % === struct2DOMnode Function =========================================== % ======================================================================= function [] = struct2DOMnode(xml, parent, s, TagName, Pref) % struct2DOMnode is a recursive function that converts matlab's structs to % DOM nodes. % INPUTS: % xml - jave object that will store xml data structure % parent - parent DOM Element % s - Matlab data structure to save % TagName - name to be used in xml tags describing 's' % Pref - preferenced % OUTPUT: % parent - modified 'parent' % perform some conversions if (ischar(s) && min(size(s))>1) % if 2D array of characters s=cellstr(s); % than convert to cell array end % if (strcmp(TagName, 'CONTENT')) % while (iscell(s) && length(s)==1), s = s{1}; end % unwrap cell arrays of length 1 % end TagName = varName2str(TagName); %% == node is a 2D cell array == % convert to some other format prior to further processing nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? if (iscell(s) && nDim==2 && strcmpi(Pref.CellTable, 'Matlab')) s = var2str(s, Pref.PreserveSpace); end if (nDim==2 && (iscell (s) && strcmpi(Pref.CellTable, 'Vector')) || ... (isstruct(s) && strcmpi(Pref.StructTable, 'Vector'))) s = s(:); end if (nDim>2), s = s(:); end % can not handle this case well nItem = numel(s); nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? %% == node is a cell == if (iscell(s)) % if this is a cell or cell array if ((nDim==2 && strcmpi(Pref.CellTable,'Html')) || (nDim< 2 && Pref.CellItem)) % if 2D array of cells than can use HTML-like notation or if 1D array % than can use item notation if (strcmp(TagName, 'CONTENT')) % CONTENT nodes already have <TagName> ... </TagName> array2DOMnode(xml, parent, s, Pref.ItemName, Pref ); % recursive call else node = xml.createElement(TagName); % <TagName> ... </TagName> array2DOMnode(xml, node, s, Pref.ItemName, Pref ); % recursive call parent.appendChild(node); end else % use <TagName>...<\TagName> <TagName>...<\TagName> notation array2DOMnode(xml, parent, s, TagName, Pref ); % recursive call end %% == node is a struct == elseif (isstruct(s)) % if struct than deal with each field separatly if ((nDim==2 && strcmpi(Pref.StructTable,'Html')) || (nItem>1 && Pref.StructItem)) % if 2D array of structs than can use HTML-like notation or % if 1D array of structs than can use 'items' notation node = xml.createElement(TagName); array2DOMnode(xml, node, s, Pref.ItemName, Pref ); % recursive call parent.appendChild(node); elseif (nItem>1) % use <TagName>...<\TagName> <TagName>...<\TagName> notation array2DOMnode(xml, parent, s, TagName, Pref ); % recursive call else % otherwise save each struct separatelly fields = fieldnames(s); node = xml.createElement(TagName); for i=1:length(fields) % add field by field to the node field = fields{i}; x = s.(field); switch field case {'COMMENT', 'CDATA_SECTION', 'PROCESSING_INSTRUCTION'} if iscellstr(x) % cell array of strings -> add them one by one array2DOMnode(xml, node, x(:), field, Pref ); % recursive call will modify 'node' elseif ischar(x) % single string -> add it struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' else % not a string - Ignore warning('xml_io_tools:write:badSpecialNode', ... ['Struct field named ',field,' encountered which was not a string. Ignoring.']); end case 'ATTRIBUTE' % set attributes of the node if (isempty(x)), continue; end if (isstruct(x)) attName = fieldnames(x); % get names of all the attributes for k=1:length(attName) % attach them to the node att = xml.createAttribute(varName2str(attName(k))); att.setValue(var2str(x.(attName{k}),Pref.PreserveSpace)); node.setAttributeNode(att); end else warning('xml_io_tools:write:badAttribute', ... 'Struct field named ATTRIBUTE encountered which was not a struct. Ignoring.'); end otherwise % set children of the node struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' end end % end for i=1:nFields parent.appendChild(node); end %% == node is a leaf node == else % if not a struct and not a cell than it is a leaf node switch TagName % different processing depending on desired type of the node case 'COMMENT' % create comment node com = xml.createComment(s); parent.appendChild(com); case 'CDATA_SECTION' % create CDATA Section cdt = xml.createCDATASection(s); parent.appendChild(cdt); case 'PROCESSING_INSTRUCTION' % set attributes of the node OK = false; if (ischar(s)) n = strfind(s, ' '); if (~isempty(n)) proc = xml.createProcessingInstruction(s(1:(n(1)-1)),s((n(1)+1):end)); parent.insertBefore(proc, parent.getFirstChild()); OK = true; end end if (~OK) warning('xml_io_tools:write:badProcInst', ... ['Struct field named PROCESSING_INSTRUCTION need to be',... ' a string, for example: xml-stylesheet type="text/css" ', ... 'href="myStyleSheet.css". Ignoring.']); end case 'CONTENT' % this is text part of already existing node txt = xml.createTextNode(var2str(s, Pref.PreserveSpace)); % convert to text parent.appendChild(txt); otherwise % I guess it is a regular text leaf node txt = xml.createTextNode(var2str(s, Pref.PreserveSpace)); node = xml.createElement(TagName); node.appendChild(txt); parent.appendChild(node); end end % of struct2DOMnode function %% ======================================================================= % === array2DOMnode Function ============================================ % ======================================================================= function [] = array2DOMnode(xml, parent, s, TagName, Pref) % Deal with 1D and 2D arrays of cell or struct. Will modify 'parent'. nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? switch nDim case 2 % 2D array for r=1:size(s,1) subnode = xml.createElement(Pref.TableName{1}); for c=1:size(s,2) v = s(r,c); if iscell(v), v = v{1}; end struct2DOMnode(xml, subnode, v, Pref.TableName{2}, Pref ); % recursive call end parent.appendChild(subnode); end case 1 %1D array for iItem=1:numel(s) v = s(iItem); if iscell(v), v = v{1}; end struct2DOMnode(xml, parent, v, TagName, Pref ); % recursive call end case 0 % scalar -> this case should never be called if ~isempty(s) if iscell(s), s = s{1}; end struct2DOMnode(xml, parent, s, TagName, Pref ); end end %% ======================================================================= % === var2str Function ================================================== % ======================================================================= function str = var2str(object, PreserveSpace) % convert matlab variables to a string switch (1) case isempty(object) str = ''; case (isnumeric(object) || islogical(object)) if ndims(object)>2, object=object(:); end % can't handle arrays with dimention > 2 str=mat2str(object); % convert matrix to a string % mark logical scalars with [] (logical arrays already have them) so the xml_read % recognizes them as MATLAB objects instead of strings. Same with sparse % matrices if ((islogical(object) && isscalar(object)) || issparse(object)), str = ['[' str ']']; end if (isinteger(object)), str = ['[', class(object), '(', str ')]']; end case iscell(object) if ndims(object)>2, object=object(:); end % can't handle cell arrays with dimention > 2 [nr nc] = size(object); obj2 = object; for i=1:length(object(:)) str = var2str(object{i}, PreserveSpace); if (ischar(object{i})), object{i} = ['''' object{i} '''']; else object{i}=str; end obj2{i} = [object{i} ',']; end for r = 1:nr, obj2{r,nc} = [object{r,nc} ';']; end obj2 = obj2.'; str = ['{' obj2{:} '}']; case isstruct(object) str=''; warning('xml_io_tools:write:var2str', ... 'Struct was encountered where string was expected. Ignoring.'); case isa(object, 'function_handle') str = ['[@' char(object) ']']; case ischar(object) str = object; otherwise str = char(object); end %% string clean-up str=str(:); str=str.'; % make sure this is a row vector of char's if (~isempty(str)) str(str<32|str==127)=' '; % convert no-printable characters to spaces if (~PreserveSpace) str = strtrim(str); % remove spaces from begining and the end str = regexprep(str,'\s+',' '); % remove multiple spaces end end %% ======================================================================= % === var2Namestr Function ============================================== % ======================================================================= function str = varName2str(str) % convert matlab variable names to a sting str = char(str); p = strfind(str,'0x'); if (~isempty(p)) for i=1:length(p) before = str( p(i)+(0:3) ); % string to replace after = char(hex2dec(before(3:4))); % string to replace with str = regexprep(str,before,after, 'once', 'ignorecase'); p=p-3; % since 4 characters were replaced with one - compensate end end str = regexprep(str,'_COLON_',':', 'once', 'ignorecase'); str = regexprep(str,'_DASH_' ,'-', 'once', 'ignorecase');
github
ZijingMao/baselineeegtest-master
xml_read.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/xml_io/xml_read.m
23,875
utf_8
46289b67fb9eefddf374ceaa34ea8ae8
function [tree, RootName, DOMnode] = xml_read(xmlfile, Pref) %XML_READ reads xml files and converts them into Matlab's struct tree. % % DESCRIPTION % tree = xml_read(xmlfile) reads 'xmlfile' into data structure 'tree' % % tree = xml_read(xmlfile, Pref) reads 'xmlfile' into data structure 'tree' % according to your preferences % % [tree, RootName, DOMnode] = xml_read(xmlfile) get additional information % about XML file % % INPUT: % xmlfile URL or filename of xml file to read % Pref Preferences: % Pref.ItemName - default 'item' - name of a special tag used to itemize % cell arrays % Pref.ReadAttr - default true - allow reading attributes % Pref.ReadSpec - default true - allow reading special nodes % Pref.Str2Num - default 'smart' - convert strings that look like numbers % to numbers. Options: "always", "never", and "smart" % Pref.KeepNS - default true - keep or strip namespace info % Pref.NoCells - default true - force output to have no cell arrays % Pref.Debug - default false - show mode specific error messages % Pref.NumLevels- default infinity - how many recursive levels are % allowed. Can be used to speed up the function by prunning the tree. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.CellItem - default 'true' - leave 'item' nodes in cell notation. % OUTPUT: % tree tree of structs and/or cell arrays corresponding to xml file % RootName XML tag name used for root (top level) node. % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % DOMnode output of xmlread % % DETAILS: % Function xml_read first calls MATLAB's xmlread function and than % converts its output ('Document Object Model' tree of Java objects) % to tree of MATLAB struct's. The output is in format of nested structs % and cells. In the output data structure field names are based on % XML tags, except in cases when tags produce illegal variable names. % % Several special xml node types result in special tags for fields of % 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields are % present. Usually data section is stored directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - stores node's comment section (string). For global % comments see "RootName" output variable. % - node.CDATA_SECTION - stores node's CDATA section (string). % - node.PROCESSING_INSTRUCTIONS - stores "processing instruction" child % node. For global "processing instructions" see "RootName" output variable. % - other special node types like: document fragment nodes, document type % nodes, entity nodes, notation nodes and processing instruction nodes % will be treated like regular nodes % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % [tree treeName] = xml_read ('test.xml'); % disp(treeName) % gen_object_display() % % See also xml_examples.m % % See also: % xml_write, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com % References: % - Function inspired by Example 3 found in xmlread function. % - Output data structures inspired by xml_toolbox structures. %% default preferences DPref.TableName = {'tr','td'}; % name of a special tags used to itemize 2D cell arrays DPref.ItemName = 'item'; % name of a special tag used to itemize 1D cell arrays DPref.CellItem = false; % leave 'item' nodes in cell notation DPref.ReadAttr = true; % allow reading attributes DPref.ReadSpec = true; % allow reading special nodes: comments, CData, etc. DPref.KeepNS = true; % Keep or strip namespace info DPref.Str2Num = 'smart';% convert strings that look like numbers to numbers DPref.NoCells = true; % force output to have no cell arrays DPref.NumLevels = 1e10; % number of recurence levels DPref.PreserveSpace = false; % Preserve or delete spaces at the beggining and the end of stings? RootOnly = true; % return root node with no top level special nodes Debug = false; % show specific errors (true) or general (false)? tree = []; RootName = []; %% Check Matlab Version v = ver('MATLAB'); try version = str2double(regexp(v.Version, '\d.\d','match','once')); if (version<7.1) error('Your MATLAB version is too old. You need version 7.1 or newer.'); end catch e end; %% read user preferences if (nargin>1) if (isfield(Pref, 'TableName')), DPref.TableName = Pref.TableName; end if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'Str2Num' )), DPref.Str2Num = Pref.Str2Num ; end if (isfield(Pref, 'NoCells' )), DPref.NoCells = Pref.NoCells ; end if (isfield(Pref, 'NumLevels')), DPref.NumLevels = Pref.NumLevels; end if (isfield(Pref, 'ReadAttr' )), DPref.ReadAttr = Pref.ReadAttr; end if (isfield(Pref, 'ReadSpec' )), DPref.ReadSpec = Pref.ReadSpec; end if (isfield(Pref, 'KeepNS' )), DPref.KeepNS = Pref.KeepNS; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end if (isfield(Pref, 'Debug' )), Debug = Pref.Debug ; end if (isfield(Pref, 'PreserveSpace')), DPref.PreserveSpace = Pref.PreserveSpace; end end if ischar(DPref.Str2Num), % convert from character description to numbers DPref.Str2Num = find(strcmpi(DPref.Str2Num, {'never', 'smart', 'always'}))-1; if isempty(DPref.Str2Num), DPref.Str2Num=1; end % 1-smart by default end %% read xml file using Matlab function if isa(xmlfile, 'org.apache.xerces.dom.DeferredDocumentImpl'); % if xmlfile is a DOMnode than skip the call to xmlread try try DOMnode = xmlfile; catch ME error('Invalid DOM node: \n%s.', getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Invalid DOM node. \n'); end else % we assume xmlfile is a filename if (Debug) % in debuging mode crashes are allowed DOMnode = xmlread(xmlfile); else % in normal mode crashes are not allowed try try DOMnode = xmlread(xmlfile); catch ME error('Failed to read XML file %s: \n%s',xmlfile, getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Failed to read XML file %s\n',xmlfile); end end end Node = DOMnode.getFirstChild; %% Find the Root node. Also store data from Global Comment and Processing % Instruction nodes, if any. GlobalTextNodes = cell(1,3); GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; while (~isempty(Node)) if (Node.getNodeType==Node.ELEMENT_NODE) RootNode=Node; elseif (Node.getNodeType==Node.PROCESSING_INSTRUCTION_NODE) data = strtrim(char(Node.getData)); target = strtrim(char(Node.getTarget)); GlobalProcInst = [target, ' ', data]; GlobalTextNodes{2} = GlobalProcInst; elseif (Node.getNodeType==Node.COMMENT_NODE) GlobalComment = strtrim(char(Node.getData)); GlobalTextNodes{3} = GlobalComment; % elseif (Node.getNodeType==Node.DOCUMENT_TYPE_NODE) % GlobalTextNodes{4} = GlobalDocType; end Node = Node.getNextSibling; end %% parse xml file through calls to recursive DOMnode2struct function if (Debug) % in debuging mode crashes are allowed [tree RootName] = DOMnode2struct(RootNode, DPref, 1); else % in normal mode crashes are not allowed try try [tree RootName] = DOMnode2struct(RootNode, DPref, 1); catch ME error('Unable to parse XML file %s: \n %s.',xmlfile, getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Unable to parse XML file %s.',xmlfile); end end %% If there were any Global Text nodes than return them if (~RootOnly) if (~isempty(GlobalProcInst) && DPref.ReadSpec) t.PROCESSING_INSTRUCTION = GlobalProcInst; end if (~isempty(GlobalComment) && DPref.ReadSpec) t.COMMENT = GlobalComment; end if (~isempty(GlobalDocType) && DPref.ReadSpec) t.DOCUMENT_TYPE = GlobalDocType; end t.(RootName) = tree; tree=t; end if (~isempty(GlobalTextNodes)) GlobalTextNodes{1} = RootName; RootName = GlobalTextNodes; end %% ======================================================================= % === DOMnode2struct Function =========================================== % ======================================================================= function [s TagName LeafNode] = DOMnode2struct(node, Pref, level) %% === Step 1: Get node name and check if it is a leaf node ============== [TagName LeafNode] = NodeName(node, Pref.KeepNS); s = []; % initialize output structure %% === Step 2: Process Leaf Nodes (nodes with no children) =============== if (LeafNode) if (LeafNode>1 && ~Pref.ReadSpec), LeafNode=-1; end % tags only so ignore special nodes if (LeafNode>0) % supported leaf node types try try % use try-catch: errors here are often due to VERY large fields (like images) that overflow java memory s = char(node.getData); if (isempty(s)), s = ' '; end % make it a string % for some reason current xmlread 'creates' a lot of empty text % fields with first chatacter=10 - those will be deleted. if (~Pref.PreserveSpace || s(1)==10) if (isspace(s(1)) || isspace(s(end))), s = strtrim(s); end % trim speces is any end if (LeafNode==1), s=str2var(s, Pref.Str2Num, 0); end % convert to number(s) if needed catch ME % catch for mablab versions 7.5 and higher warning('xml_io_tools:read:LeafRead', ... 'This leaf node could not be read and was ignored. '); getReport(ME) end catch %#ok<CTCH> catch for mablab versions prior to 7.5 warning('xml_io_tools:read:LeafRead', ... 'This leaf node could not be read and was ignored. '); end end if (LeafNode==3) % ProcessingInstructions need special treatment target = strtrim(char(node.getTarget)); s = [target, ' ', s]; end return % We are done the rest of the function deals with nodes with children end if (level>Pref.NumLevels+1), return; end % if Pref.NumLevels is reached than we are done %% === Step 3: Process nodes with children =============================== if (node.hasChildNodes) % children present Child = node.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children % --- pass 1: how many children with each name ----------------------- f = []; for iChild = 1:nChild % read in each child [cname cLeaf] = NodeName(Child.item(iChild-1), Pref.KeepNS); if (cLeaf<0), continue; end % unsupported leaf node types if (~isfield(f,cname)), f.(cname)=0; % initialize first time I see this name end f.(cname) = f.(cname)+1; % add to the counter end % end for iChild % text_nodes become CONTENT & for some reason current xmlread 'creates' a % lot of empty text fields so f.CONTENT value should not be trusted if (isfield(f,'CONTENT') && f.CONTENT>2), f.CONTENT=2; end % --- pass 2: store all the children as struct of cell arrays ---------- for iChild = 1:nChild % read in each child [c cname cLeaf] = DOMnode2struct(Child.item(iChild-1), Pref, level+1); if (cLeaf && isempty(c)) % if empty leaf node than skip continue; % usually empty text node or one of unhandled node types elseif (nChild==1 && cLeaf==1) s=c; % shortcut for a common case else % if normal node if (level>Pref.NumLevels), continue; end n = f.(cname); % how many of them in the array so far? if (~isfield(s,cname)) % encountered this name for the first time if (n==1) % if there will be only one of them ... s.(cname) = c; % than save it in format it came in else % if there will be many of them ... s.(cname) = cell(1,n); s.(cname){1} = c; % than save as cell array end f.(cname) = 1; % initialize the counter else % already have seen this name s.(cname){n+1} = c; % add to the array f.(cname) = n+1; % add to the array counter end end end % for iChild end % end if (node.hasChildNodes) %% === Step 4: Post-process struct's created for nodes with children ===== if (isstruct(s)) fields = fieldnames(s); nField = length(fields); % Detect structure that looks like Html table and store it in cell Matrix if (nField==1 && strcmpi(fields{1},Pref.TableName{1})) tr = s.(Pref.TableName{1}); fields2 = fieldnames(tr{1}); if (length(fields2)==1 && strcmpi(fields2{1},Pref.TableName{2})) % This seems to be a special structure such that for % Pref.TableName = {'tr','td'} 's' corresponds to % <tr> <td>M11</td> <td>M12</td> </tr> % <tr> <td>M12</td> <td>M22</td> </tr> % Recognize it as encoding for 2D struct nr = length(tr); for r = 1:nr row = tr{r}.(Pref.TableName{2}); Table(r,1:length(row)) = row; %#ok<AGROW> end s = Table; end end % --- Post-processing: convert 'struct of cell-arrays' to 'array of structs' % Example: let say s has 3 fields s.a, s.b & s.c and each field is an % cell-array with more than one cell-element and all 3 have the same length. % Then change it to array of structs, each with single cell. % This way element s.a{1} will be now accessed through s(1).a vec = zeros(size(fields)); for i=1:nField, vec(i) = f.(fields{i}); end if (numel(vec)>1 && vec(1)>1 && var(vec)==0) % convert from struct of s = cell2struct(struct2cell(s), fields, 1); % arrays to array of struct end % if anyone knows better way to do above conversion please let me know. end %% === Step 5: Process nodes with attributes ============================= if (node.hasAttributes && Pref.ReadAttr) if (~isstruct(s)), % make into struct if is not already ss.CONTENT=s; s=ss; end Attr = node.getAttributes; % list of all attributes for iAttr = 1:Attr.getLength % for each attribute name = char(Attr.item(iAttr-1).getName); % attribute name name = str2varName(name, Pref.KeepNS); % fix name if needed value = char(Attr.item(iAttr-1).getValue); % attribute value value = str2var(value, Pref.Str2Num, 1); % convert to number if possible s.ATTRIBUTE.(name) = value; % save again end % end iAttr loop end % done with attributes if (~isstruct(s)), return; end %The rest of the code deals with struct's %% === Post-processing: fields of "s" % convert 'cell-array of structs' to 'arrays of structs' fields = fieldnames(s); % get field names nField = length(fields); for iItem=1:length(s) % for each struct in the array - usually one for iField=1:length(fields) field = fields{iField}; % get field name % if this is an 'item' field and user want to leave those as cells % than skip this one if (strcmpi(field, Pref.ItemName) && Pref.CellItem), continue; end x = s(iItem).(field); if (iscell(x) && all(cellfun(@isstruct,x(:))) && numel(x)>1) % it's cell-array of structs % numel(x)>1 check is to keep 1 cell-arrays created when Pref.CellItem=1 try % this operation fails sometimes % example: change s(1).a{1}.b='jack'; s(1).a{2}.b='john'; to % more convinient s(1).a(1).b='jack'; s(1).a(2).b='john'; s(iItem).(field) = [x{:}]'; %#ok<AGROW> % converted to arrays of structs catch %#ok<CTCH> % above operation will fail if s(1).a{1} and s(1).a{2} have % different fields. If desired, function forceCell2Struct can force % them to the same field structure by adding empty fields. if (Pref.NoCells) s(iItem).(field) = forceCell2Struct(x); %#ok<AGROW> end end % end catch end end end %% === Step 4: Post-process struct's created for nodes with children ===== % --- Post-processing: remove special 'item' tags --------------------- % many xml writes (including xml_write) use a special keyword to mark % arrays of nodes (see xml_write for examples). The code below converts % s.item to s.CONTENT ItemContent = false; if (isfield(s,Pref.ItemName)) s.CONTENT = s.(Pref.ItemName); s = rmfield(s,Pref.ItemName); ItemContent = Pref.CellItem; % if CellItem than keep s.CONTENT as cells end % --- Post-processing: clean up CONTENT tags --------------------- % if s.CONTENT is a cell-array with empty elements at the end than trim % the length of this cell-array. Also if s.CONTENT is the only field than % remove .CONTENT part and store it as s. if (isfield(s,'CONTENT')) if (iscell(s.CONTENT) && isvector(s.CONTENT)) x = s.CONTENT; for i=numel(x):-1:1, if ~isempty(x{i}), break; end; end if (i==1 && ~ItemContent) s.CONTENT = x{1}; % delete cell structure else s.CONTENT = x(1:i); % delete empty cells end end if (nField==1) if (ItemContent) ss = s.CONTENT; % only child: remove a level but ensure output is a cell-array s=[]; s{1}=ss; else s = s.CONTENT; % only child: remove a level end end end %% ======================================================================= % === forceCell2Struct Function ========================================= % ======================================================================= function s = forceCell2Struct(x) % Convert cell-array of structs, where not all of structs have the same % fields, to a single array of structs %% Convert 1D cell array of structs to 2D cell array, where each row % represents item in original array and each column corresponds to a unique % field name. Array "AllFields" store fieldnames for each column AllFields = fieldnames(x{1}); % get field names of the first struct CellMat = cell(length(x), length(AllFields)); for iItem=1:length(x) fields = fieldnames(x{iItem}); % get field names of the next struct for iField=1:length(fields) % inspect all fieldnames and find those field = fields{iField}; % get field name col = find(strcmp(field,AllFields),1); if isempty(col) % no column for such fieldname yet AllFields = [AllFields; field]; %#ok<AGROW> col = length(AllFields); % create a new column for it end CellMat{iItem,col} = x{iItem}.(field); % store rearanged data end end %% Convert 2D cell array to array of structs s = cell2struct(CellMat, AllFields, 2); %% ======================================================================= % === str2var Function ================================================== % ======================================================================= function val=str2var(str, option, attribute) % Can this string 'str' be converted to a number? if so than do it. val = str; len = numel(str); if (len==0 || option==0), return; end % Str2Num="never" of empty string -> do not do enything if (len>10000 && option==1), return; end % Str2Num="smart" and string is very long -> probably base64 encoded binary digits = '(Inf)|(NaN)|(pi)|[\t\n\d\+\-\*\.ei EI\[\]\;\,]'; s = regexprep(str, digits, ''); % remove all the digits and other allowed characters if (~all(~isempty(s))) % if nothing left than this is probably a number if (~isempty(strfind(str, ' '))), option=2; end %if str has white-spaces assume by default that it is not a date string if (~isempty(strfind(str, '['))), option=2; end % same with brackets str(strfind(str, '\n')) = ';';% parse data tables into 2D arrays, if any if (option==1) % the 'smart' option try % try to convert to a date, like 2007-12-05 datenum(str); % if successful than leave it as string catch %#ok<CTCH> % if this is not a date than ... option=2; % ... try converting to a number end end if (option==2) if (attribute) num = str2double(str); % try converting to a single number using sscanf function if isnan(num), return; end % So, it wasn't really a number after all else num = str2num(str); %#ok<ST2NM> % try converting to a single number or array using eval function end if(isnumeric(num) && numel(num)>0), val=num; end % if convertion to a single was succesful than save end elseif ((str(1)=='[' && str(end)==']') || (str(1)=='{' && str(end)=='}')) % this looks like a (cell) array encoded as a string try val = eval(str); catch %#ok<CTCH> val = str; end elseif (~attribute) % see if it is a boolean array with no [] brackets str1 = lower(str); str1 = strrep(str1, 'false', '0'); str1 = strrep(str1, 'true' , '1'); s = regexprep(str1, '[01 \;\,]', ''); % remove all 0/1, spaces, commas and semicolons if (~all(~isempty(s))) % if nothing left than this is probably a boolean array num = str2num(str1); %#ok<ST2NM> if(isnumeric(num) && numel(num)>0), val = (num>0); end % if convertion was succesful than save as logical end end %% ======================================================================= % === str2varName Function ============================================== % ======================================================================= function str = str2varName(str, KeepNS) % convert a sting to a valid matlab variable name if(KeepNS) str = regexprep(str,':','_COLON_', 'once', 'ignorecase'); else k = strfind(str,':'); if (~isempty(k)) str = str(k+1:end); end end str = regexprep(str,'-','_DASH_' ,'once', 'ignorecase'); if (~isvarname(str)) && (~iskeyword(str)) str = genvarname(str); end %% ======================================================================= % === NodeName Function ================================================= % ======================================================================= function [Name LeafNode] = NodeName(node, KeepNS) % get node name and make sure it is a valid variable name in Matlab. % also get node type: % LeafNode=0 - normal element node, % LeafNode=1 - text node % LeafNode=2 - supported non-text leaf node, % LeafNode=3 - supported processing instructions leaf node, % LeafNode=-1 - unsupported non-text leaf node switch (node.getNodeType) case node.ELEMENT_NODE Name = char(node.getNodeName);% capture name of the node Name = str2varName(Name, KeepNS); % if Name is not a good variable name - fix it LeafNode = 0; case node.TEXT_NODE Name = 'CONTENT'; LeafNode = 1; case node.COMMENT_NODE Name = 'COMMENT'; LeafNode = 2; case node.CDATA_SECTION_NODE Name = 'CDATA_SECTION'; LeafNode = 2; case node.DOCUMENT_TYPE_NODE Name = 'DOCUMENT_TYPE'; LeafNode = 2; case node.PROCESSING_INSTRUCTION_NODE Name = 'PROCESSING_INSTRUCTION'; LeafNode = 3; otherwise NodeType = {'ELEMENT','ATTRIBUTE','TEXT','CDATA_SECTION', ... 'ENTITY_REFERENCE', 'ENTITY', 'PROCESSING_INSTRUCTION', 'COMMENT',... 'DOCUMENT', 'DOCUMENT_TYPE', 'DOCUMENT_FRAGMENT', 'NOTATION'}; Name = char(node.getNodeName);% capture name of the node warning('xml_io_tools:read:unkNode', ... 'Unknown node type encountered: %s_NODE (%s)', NodeType{node.getNodeType}, Name); LeafNode = -1; end
github
ZijingMao/baselineeegtest-master
DataHash.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/data_hash/DataHash.m
15,429
utf_8
e725a80cb9180de1eb03e47b850a95dc
function Hash = DataHash(Data, Opt) % DATAHASH - Checksum for Matlab array of any type % This function creates a hash value for an input of any type. The type and % dimensions of the input are considered as default, such that UINT8([0,0]) and % UINT16(0) have different hash values. Nested STRUCTs and CELLs are parsed % recursively. % % Hash = DataHash(Data, Opt) % INPUT: % Data: Array of these built-in types: % (U)INT8/16/32/64, SINGLE, DOUBLE, (real or complex) % CHAR, LOGICAL, CELL (nested), STRUCT (scalar or array, nested), % function_handle. % Opt: Struct to specify the hashing algorithm and the output format. % Opt and all its fields are optional. % Opt.Method: String, known methods for Java 1.6 (Matlab 2009a): % 'SHA-1', 'SHA-256', 'SHA-384', 'SHA-512', 'MD2', 'MD5'. % Known methods for Java 1.3 (Matlab 6.5): % 'MD5', 'SHA-1'. % Default: 'MD5'. % Opt.Format: String specifying the output format: % 'hex', 'HEX': Lower/uppercase hexadecimal string. % 'double', 'uint8': Numerical vector. % 'base64': Base64 encoded string, only printable % ASCII characters, 33% shorter than 'hex'. % Default: 'hex'. % Opt.Input: Type of the input as string, not case-sensitive: % 'array': The contents, type and size of the input [Data] are % considered for the creation of the hash. Nested CELLs % and STRUCT arrays are parsed recursively. Empty arrays of % different type reply different hashs. % 'file': [Data] is treated as file name and the hash is calculated % for the files contents. % 'bin': [Data] is a numerical, LOGICAL or CHAR array. Only the % binary contents of the array is considered, such that % e.g. empty arrays of different type reply the same hash. % Default: 'array'. % % OUTPUT: % Hash: String, DOUBLE or UINT8 vector. The length depends on the hashing % method. % % EXAMPLES: % % Default: MD5, hex: % DataHash([]) % 7de5637fd217d0e44e0082f4d79b3e73 % % MD5, Base64: % Opt.Format = 'base64'; % Opt.Method = 'MD5'; % DataHash(int32(1:10), Opt) % bKdecqzUpOrL4oxzk+cfyg % % SHA-1, Base64: % S.a = uint8([]); % S.b = {{1:10}, struct('q', uint64(415))}; % Opt.Method = 'SHA-1'; % DataHash(S, Opt) % ZMe4eUAp0G9TDrvSW0/Qc0gQ9/A % % SHA-1 of binary values: % Opt.Method = 'SHA-1'; % Opt.Input = 'bin'; % DataHash(1:8, Opt) % 826cf9d3a5d74bbe415e97d4cecf03f445f69225 % % NOTE: % Function handles and user-defined objects cannot be converted uniquely: % - The subfunction ConvertFuncHandle uses the built-in function FUNCTIONS, % but the replied struct can depend on the Matlab version. % - It is tried to convert objects to UINT8 streams in the subfunction % ConvertObject. A conversion by STRUCT() might be more appropriate. % Adjust these subfunctions on demand. % % MATLAB CHARs have 16 bits! In consequence the string 'hello' is treated as % UINT16('hello') for the binary input method. % % DataHash uses James Tursa's smart and fast TYPECASTX, if it is installed: % http://www.mathworks.com/matlabcentral/fileexchange/17476 % As fallback the built-in TYPECAST is used automatically, but for large % inputs this can be more than 100 times slower. % For Matlab 6.5 installing typecastx is obligatory to run DataHash. % % Tested: Matlab 6.5, 7.7, 7.8, 7.13, WinXP/32, Win7/64 % Author: Jan Simon, Heidelberg, (C) 2011-2012 matlab.THISYEAR(a)nMINUSsimon.de % % See also: TYPECAST, CAST. % FEX: % Michael Kleder, "Compute Hash", no structs and cells: % http://www.mathworks.com/matlabcentral/fileexchange/8944 % Tim, "Serialize/Deserialize", converts structs and cells to a byte stream: % http://www.mathworks.com/matlabcentral/fileexchange/29457 % Jan Simon, "CalcMD5", MD5 only, faster C-mex, no structs and cells: % http://www.mathworks.com/matlabcentral/fileexchange/25921 % $JRev: R-k V:011 Sum:kZG25iszfKbg Date:28-May-2012 12:48:06 $ % $License: BSD (use/copy/change/redistribute on own risk, mention the author) $ % $File: Tools\GLFile\DataHash.m $ % History: % 001: 01-May-2011 21:52, First version. % 007: 10-Jun-2011 10:38, [Opt.Input], binary data, complex values considered. % 011: 26-May-2012 15:57, Fails for binary input and empty data. % Main function: =============================================================== % Java is needed: if ~usejava('jvm') error(['JSimon:', mfilename, ':NoJava'], ... '*** %s: Java is required.', mfilename); end % typecastx creates a shared data copy instead of the deep copy as Matlab's % TYPECAST - for a [1000x1000] DOUBLE array this is 100 times faster! persistent usetypecastx if isempty(usetypecastx) usetypecastx = ~isempty(which('typecastx')); % Run the slow WHICH once only end % Default options: ------------------------------------------------------------- Method = 'MD5'; OutFormat = 'hex'; isFile = false; isBin = false; % Check number and type of inputs: --------------------------------------------- nArg = nargin; if nArg == 2 if isa(Opt, 'struct') == 0 % Bad type of 2nd input: error(['JSimon:', mfilename, ':BadInput2'], ... '*** %s: 2nd input [Opt] must be a struct.', mfilename); end % Specify hash algorithm: if isfield(Opt, 'Method') Method = upper(Opt.Method); end % Specify output format: if isfield(Opt, 'Format') OutFormat = Opt.Format; end % Check if the Input type is specified - default: 'array': if isfield(Opt, 'Input') if strcmpi(Opt.Input, 'File') isFile = true; if ischar(Data) == 0 error(['JSimon:', mfilename, ':CannotOpen'], ... '*** %s: 1st input is not a file name', mfilename); end if exist(Data, 'file') ~= 2 error(['JSimon:', mfilename, ':FileNotFound'], ... '*** %s: File not found: %s.', mfilename, Data); end elseif strncmpi(Opt.Input, 'bin', 3) % Accept 'binary' isBin = true; if (isnumeric(Data) || ischar(Data) || islogical(Data)) == 0 error(['JSimon:', mfilename, ':BadDataType'], ... '*** %s: 1st input is not numeric, CHAR or LOGICAL.', mfilename); end end end elseif nArg ~= 1 % Bad number of arguments: error(['JSimon:', mfilename, ':BadNInput'], ... '*** %s: 1 or 2 inputs required.', mfilename); end % Create the engine: ----------------------------------------------------------- try Engine = java.security.MessageDigest.getInstance(Method); catch error(['JSimon:', mfilename, ':BadInput2'], ... '*** %s: Invalid algorithm: [%s].', mfilename, Method); end % Create the hash value: ------------------------------------------------------- if isFile % Read the file and calculate the hash: FID = fopen(Data, 'r'); if FID < 0 error(['JSimon:', mfilename, ':CannotOpen'], ... '*** %s: Cannot open file: %s.', mfilename, Data); end Data = fread(FID, Inf, '*uint8'); fclose(FID); Engine.update(Data); if usetypecastx Hash = typecastx(Engine.digest, 'uint8'); else Hash = typecast(Engine.digest, 'uint8'); end elseif isBin % Contents of an elementary array: if isempty(Data) % Nothing to do, Engine.update fails for empty input! Hash = typecastx(Engine.digest, 'uint8'); elseif usetypecastx % Faster typecastx: if isreal(Data) Engine.update(typecastx(Data(:), 'uint8')); else Engine.update(typecastx(real(Data(:)), 'uint8')); Engine.update(typecastx(imag(Data(:)), 'uint8')); end Hash = typecastx(Engine.digest, 'uint8'); else % Matlab's TYPECAST is less elegant: if isnumeric(Data) if isreal(Data) Engine.update(typecast(Data(:), 'uint8')); else Engine.update(typecast(real(Data(:)), 'uint8')); Engine.update(typecast(imag(Data(:)), 'uint8')); end elseif islogical(Data) % TYPECAST cannot handle LOGICAL Engine.update(typecast(uint8(Data(:)), 'uint8')); elseif ischar(Data) % TYPECAST cannot handle CHAR Engine.update(typecast(uint16(Data(:)), 'uint8')); Engine.update(typecast(Data(:), 'uint8')); end Hash = typecast(Engine.digest, 'uint8'); end elseif usetypecastx % Faster typecastx: Engine = CoreHash_(Data, Engine); Hash = typecastx(Engine.digest, 'uint8'); else % Slower built-in TYPECAST: Engine = CoreHash(Data, Engine); Hash = typecast(Engine.digest, 'uint8'); end % Convert hash specific output format: ----------------------------------------- switch OutFormat case 'hex' Hash = sprintf('%.2x', double(Hash)); case 'HEX' Hash = sprintf('%.2X', double(Hash)); case 'double' Hash = double(reshape(Hash, 1, [])); case 'uint8' Hash = reshape(Hash, 1, []); case 'base64' Hash = fBase64_enc(double(Hash)); otherwise error(['JSimon:', mfilename, ':BadOutFormat'], ... '*** %s: [Opt.Format] must be: HEX, hex, uint8, double, base64.', ... mfilename); end % return; % ****************************************************************************** function Engine = CoreHash_(Data, Engine) % This mothod uses the faster typecastx version. % Consider the type and dimensions of the array to distinguish arrays with the % same data, but different shape: [0 x 0] and [0 x 1], [1,2] and [1;2], % DOUBLE(0) and SINGLE([0,0]): Engine.update([uint8(class(Data)), typecastx(size(Data), 'uint8')]); if isstruct(Data) % Hash for all array elements and fields: F = sort(fieldnames(Data)); % Ignore order of fields Engine = CoreHash_(F, Engine); % Catch the fieldnames for iS = 1:numel(Data) % Loop over elements of struct array for iField = 1:length(F) % Loop over fields Engine = CoreHash_(Data(iS).(F{iField}), Engine); end end elseif iscell(Data) % Get hash for all cell elements: for iS = 1:numel(Data) Engine = CoreHash_(Data{iS}, Engine); end elseif isnumeric(Data) || islogical(Data) || ischar(Data) if isempty(Data) == 0 if isreal(Data) % TRUE for LOGICAL and CHAR also: Engine.update(typecastx(Data(:), 'uint8')); else % typecastx accepts complex input: Engine.update(typecastx(real(Data(:)), 'uint8')); Engine.update(typecastx(imag(Data(:)), 'uint8')); end end elseif isa(Data, 'function_handle') Engine = CoreHash(ConvertFuncHandle(Data), Engine); else % Most likely this is a user-defined object: try Engine = CoreHash(ConvertObject(Data), Engine); catch warning(['JSimon:', mfilename, ':BadDataType'], ... ['Type of variable not considered: ', class(Data)]); end end % return; % ****************************************************************************** function Engine = CoreHash(Data, Engine) % This methods uses the slower TYPECAST of Matlab % See CoreHash_ for comments. Engine.update([uint8(class(Data)), typecast(size(Data), 'uint8')]); if isstruct(Data) % Hash for all array elements and fields: F = sort(fieldnames(Data)); % Ignore order of fields Engine = CoreHash(F, Engine); % Catch the fieldnames for iS = 1:numel(Data) % Loop over elements of struct array for iField = 1:length(F) % Loop over fields Engine = CoreHash(Data(iS).(F{iField}), Engine); end end elseif iscell(Data) % Get hash for all cell elements: for iS = 1:numel(Data) Engine = CoreHash(Data{iS}, Engine); end elseif isempty(Data) elseif isnumeric(Data) if isreal(Data) Engine.update(typecast(Data(:), 'uint8')); else Engine.update(typecast(real(Data(:)), 'uint8')); Engine.update(typecast(imag(Data(:)), 'uint8')); end elseif islogical(Data) % TYPECAST cannot handle LOGICAL Engine.update(typecast(uint8(Data(:)), 'uint8')); elseif ischar(Data) % TYPECAST cannot handle CHAR Engine.update(typecast(uint16(Data(:)), 'uint8')); elseif isa(Data, 'function_handle') Engine = CoreHash(ConvertFuncHandle(Data), Engine); else % Most likely a user-defined object: try Engine = CoreHash(ConvertObject(Data), Engine); catch warning(['JSimon:', mfilename, ':BadDataType'], ... ['Type of variable not considered: ', class(Data)]); end end % return; % ****************************************************************************** function FuncKey = ConvertFuncHandle(FuncH) % The subfunction ConvertFuncHandle converts function_handles to a struct % using the Matlab function FUNCTIONS. The output of this function changes % with the Matlab version, such that DataHash(@sin) replies different hashes % under Matlab 6.5 and 2009a. % An alternative is using the function name and name of the file for % function_handles, but this is not unique for nested or anonymous functions. % If the MATLABROOT is removed from the file's path, at least the hash of % Matlab's toolbox functions is (usually!) not influenced by the version. % Finally I'm in doubt if there is a unique method to hash function handles. % Please adjust the subfunction ConvertFuncHandles to your needs. % The Matlab version influences the conversion by FUNCTIONS: % 1. The format of the struct replied FUNCTIONS is not fixed, % 2. The full paths of toolbox function e.g. for @mean differ. FuncKey = functions(FuncH); % ALTERNATIVE: Use name and path. The <matlabroot> part of the toolbox functions % is replaced such that the hash for @mean does not depend on the Matlab % version. % Drawbacks: Anonymous functions, nested functions... % funcStruct = functions(FuncH); % funcfile = strrep(funcStruct.file, matlabroot, '<MATLAB>'); % FuncKey = uint8([funcStruct.function, ' ', funcfile]); % Finally I'm afraid there is no unique method to get a hash for a function % handle. Please adjust this conversion to your needs. % return; % ****************************************************************************** function DataBin = ConvertObject(DataObj) % Convert a user-defined object to a binary stream. There cannot be a unique % solution, so this part is left for the user... % Perhaps a direct conversion is implemented: DataBin = uint8(DataObj); % Or perhaps this is better: % DataBin = struct(DataObj); % return; % ****************************************************************************** function Out = fBase64_enc(In) % Encode numeric vector of UINT8 values to base64 string. Pool = [65:90, 97:122, 48:57, 43, 47]; % [0:9, a:z, A:Z, +, /] v8 = [128; 64; 32; 16; 8; 4; 2; 1]; v6 = [32, 16, 8, 4, 2, 1]; In = reshape(In, 1, []); X = rem(floor(In(ones(8, 1), :) ./ v8(:, ones(length(In), 1))), 2); Y = reshape([X(:); zeros(6 - rem(numel(X), 6), 1)], 6, []); Out = char(Pool(1 + v6 * Y)); % return;
github
ZijingMao/baselineeegtest-master
strsetmatch.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/strsetmatch.m
928
utf_8
73f5541ad337bbbc7179cf71004b7062
% Indicator of which elements of a universal set are in a particular set. % % Input arguments: % strset: % the particular set as a cell array of strings % struniversal: % the universal set as a cell array of strings, all elements in the % particular set are expected to be in the universal set % % Output arguments: % ind: % a logical vector of which elements of the universal set are found in % the particular set % Copyright 2010 Levente Hunyadi function ind = strsetmatch(strset, struniversal) assert(iscellstr(strset), 'strsetmatch:ArgumentTypeMismatch', ... 'The particular set is expected to be a cell array of strings.'); assert(iscellstr(struniversal), 'strsetmatch:ArgumentTypeMismatch', ... 'The particular set is expected to be a cell array of strings.'); ind = false(size(struniversal)); for k = 1 : numel(struniversal) ind(k) = ~isempty(strmatch(struniversal{k}, strset, 'exact')); end
github
ZijingMao/baselineeegtest-master
helptext.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/helptext.m
1,593
utf_8
bd49205fc50aeae5a909c8b58a47be6d
% Help text associated with a function, class, property or method. % Spaces are removed as necessary. % % See also: helpdialog % Copyright 2008-2010 Levente Hunyadi function text = helptext(obj) if ischar(obj) text = gethelptext(obj); else text = gethelptext(class(obj)); end text = texttrim(text); function text = gethelptext(key) persistent dict; if isempty(dict) && usejava('jvm') dict = java.util.Properties(); end if ~isempty(dict) text = char(dict.getProperty(key)); % look up key in cache if ~isempty(text) % help text found in cache return; end text = help(key); if ~isempty(text) % help text returned by help call, save it into cache dict.setProperty(key, text); end else text = help(key); end function lines = texttrim(text) % Trims leading and trailing whitespace characters from lines of text. % The number of leading whitespace characters to trim is determined by % inspecting all lines of text. loc = strfind(text, sprintf('\n')); n = numel(loc); loc = [ 0 loc ]; lines = cell(n,1); if ~isempty(loc) for k = 1 : n lines{k} = text(loc(k)+1 : loc(k+1)); end end lines = deblank(lines); % determine maximum leading whitespace count f = ~cellfun(@isempty, lines); % filter for non-empty lines firstchar = cellfun(@(line) find(~isspace(line), 1), lines(f)); % index of first non-whitespace character if isempty(firstchar) indent = 1; else indent = min(firstchar); end % trim leading whitespace lines(f) = cellfun(@(line) line(min(indent,numel(line)):end), lines(f), 'UniformOutput', false);
github
ZijingMao/baselineeegtest-master
javaclass.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/javaclass.m
3,635
utf_8
7165e1fd27bd4f5898132023dc04662b
% Return java.lang.Class instance for MatLab type. % % Input arguments: % mtype: % the MatLab name of the type for which to return the java.lang.Class % instance % ndims: % the number of dimensions of the MatLab data type % % See also: class % Copyright 2009-2010 Levente Hunyadi function jclass = javaclass(mtype, ndims) validateattributes(mtype, {'char'}, {'nonempty','row'}); if nargin < 2 ndims = 0; else validateattributes(ndims, {'numeric'}, {'nonnegative','integer','scalar'}); end if ndims == 1 && strcmp(mtype, 'char'); % a character vector converts into a string jclassname = 'java.lang.String'; elseif ndims > 0 jclassname = javaarrayclass(mtype, ndims); else % The static property .class applied to a Java type returns a string in % MatLab rather than an instance of java.lang.Class. For this reason, % use a string and java.lang.Class.forName to instantiate a % java.lang.Class object; the syntax java.lang.Boolean.class will not % do so. switch mtype case 'logical' % logical vaule (true or false) jclassname = 'java.lang.Boolean'; case 'char' % a singe character jclassname = 'java.lang.Character'; case {'int8','uint8'} % 8-bit signed and unsigned integer jclassname = 'java.lang.Byte'; case {'int16','uint16'} % 16-bit signed and unsigned integer jclassname = 'java.lang.Short'; case {'int32','uint32'} % 32-bit signed and unsigned integer jclassname = 'java.lang.Integer'; case {'int64','uint64'} % 64-bit signed and unsigned integer jclassname = 'java.lang.Long'; case 'single' % single-precision floating-point number jclassname = 'java.lang.Float'; case 'double' % double-precision floating-point number jclassname = 'java.lang.Double'; case 'cellstr' % a single cell or a character array jclassname = 'java.lang.String'; otherwise error('java:javaclass:InvalidArgumentValue', ... 'MatLab type "%s" is not recognized or supported in Java.', mtype); end end % Note: When querying a java.lang.Class object by name with the method % jclass = java.lang.Class.forName(jclassname); % MatLab generates an error. For the Class.forName method to work, MatLab % requires class loader to be specified explicitly. jclass = java.lang.Class.forName(jclassname, true, java.lang.Thread.currentThread().getContextClassLoader()); function jclassname = javaarrayclass(mtype, ndims) % Returns the type qualifier for a multidimensional Java array. switch mtype case 'logical' % logical array of true and false values jclassid = 'Z'; case 'char' % character array jclassid = 'C'; case {'int8','uint8'} % 8-bit signed and unsigned integer array jclassid = 'B'; case {'int16','uint16'} % 16-bit signed and unsigned integer array jclassid = 'S'; case {'int32','uint32'} % 32-bit signed and unsigned integer array jclassid = 'I'; case {'int64','uint64'} % 64-bit signed and unsigned integer array jclassid = 'J'; case 'single' % single-precision floating-point number array jclassid = 'F'; case 'double' % double-precision floating-point number array jclassid = 'D'; case 'cellstr' % cell array of strings jclassid = 'Ljava.lang.String;'; otherwise error('java:javaclass:InvalidArgumentValue', ... 'MatLab type "%s" is not recognized or supported in Java.', mtype); end jclassname = [repmat('[',1,ndims), jclassid];
github
ZijingMao/baselineeegtest-master
helpdialog.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/helpdialog.m
3,397
utf_8
f16f23c1b608a247bc5298f5ebc6d321
% Displays a dialog to give help information on an object. % % Examples: % helpdialog char % gives information of character arrays % helpdialog plot % gives help on the plot command % helpdialog(obj) % gives help on the MatLab object obj % % See also: helptext, msgbox % Copyright 2008-2010 Levente Hunyadi function helpdialog(obj) if nargin < 1 obj = 'helpdialog'; end if ischar(obj) key = obj; else key = class(obj); end title = [key ' - Quick help']; text = helptext(key); if isempty(text) text = {'No help available.'}; end if 0 % standard MatLab message dialog box createmode = struct( ... 'WindowStyle', 'replace', ... 'Interpreter', 'none'); msgbox(text, title, 'help', createmode); else fig = figure( ... 'MenuBar', 'none', ... 'Name', title, ... 'NumberTitle', 'off', ... 'Position', [0 0 480 160], ... 'Toolbar', 'none', ... 'Visible', 'off', ... 'ResizeFcn', @helpdialog_resize); % information icon icons = load('dialogicons.mat'); icons.helpIconMap(256,:) = get(fig, 'Color'); iconaxes = axes( ... 'Parent', fig, ... 'Units', 'pixels', ... 'Tag', 'IconAxes'); try iconimg = image('CData', icons.helpIconData, 'Parent', iconaxes); set(fig, 'Colormap', icons.helpIconMap); catch me delete(fig); rethrow(me) end if ~isempty(get(iconimg,'XData')) && ~isempty(get(iconimg,'YData')) set(iconaxes, ... 'XLim', get(iconimg,'XData')+[-0.5 0.5], ... 'YLim', get(iconimg,'YData')+[-0.5 0.5]); end set(iconaxes, ... 'Visible', 'off', ... 'YDir', 'reverse'); % help text rgb = get(fig, 'Color'); text = cellfun(@(line) helpdialog_html(line), text, 'UniformOutput', false); html = ['<html>' strjoin(sprintf('\n'), text) '</html>']; jtext = javax.swing.JLabel(html); jcolor = java.awt.Color(rgb(1), rgb(2), rgb(3)); jtext.setBackground(jcolor); jtext.setVerticalAlignment(1); jscrollpane = javax.swing.JScrollPane(jtext, javax.swing.JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED, javax.swing.JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED); jscrollpane.getViewport().setBackground(jcolor); jscrollpane.setBorder(javax.swing.border.EmptyBorder(0,0,0,0)); [jcontrol,jcontainer] = javacomponent(jscrollpane, [0 0 100 100]); set(jcontainer, 'Tag', 'HelpText'); movegui(fig, 'center'); % center figure on screen set(fig, 'Visible', 'on'); end function helpdialog_resize(fig, event) %#ok<INUSD> position = getpixelposition(fig); width = position(3); height = position(4); iconaxes = findobj(fig, 'Tag', 'IconAxes'); helptext = findobj(fig, 'Tag', 'HelpText'); bottom = 7*height/12; set(iconaxes, 'Position', [12 bottom 51 51]); set(helptext, 'Position', [75 12 width-75-12 height-24]); function html = helpdialog_html(line) preline = deblank(line); % trailing spaces removed line = strtrim(preline); % leading spaces removed leadingspace = repmat('&nbsp;', 1, numel(preline)-numel(line)); % add leading spaces as non-breaking space ix = strfind(line, 'See also'); if ~isempty(ix) ix = ix(1) + numel('See also'); line = [ line(1:ix-1) regexprep(line(ix:end), '(\w[\d\w]+)', '<a href="matlab:helpdialog $1">$1</a>') ]; end html = ['<p>' leadingspace line '</p>'];
github
ZijingMao/baselineeegtest-master
getdependentproperties.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/getdependentproperties.m
907
utf_8
5f87bb7115d9bcacd8556d89a4492c44
% Publicly accessible dependent properties of an object. % % See also: meta.property % Copyright 2010 Levente Hunyadi function dependent = getdependentproperties(obj) dependent = {}; if isstruct(obj) % structures have no dependent properties return; end try clazz = metaclass(obj); catch %#ok<CTCH> return; % old-style class (i.e. not defined with the classdef keyword) have no dependent properties end k = 0; % number of dependent properties found n = numel(clazz.Properties); % maximum number of properties dependent = cell(n, 1); for i = 1 : n property = clazz.Properties{i}; if property.Abstract || property.Hidden || ~strcmp(property.GetAccess, 'public') || ~property.Dependent continue; % skip abstract, hidden, inaccessible and independent properties end k = k + 1; dependent{k} = property.Name; end dependent(k+1:end) = []; % drop unused cells
github
ZijingMao/baselineeegtest-master
example_matrixeditor.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/example_matrixeditor.m
471
utf_8
637b619421d215e7270f8502574e4ff7
% Demonstrates how to use the matrix editor. % % See also: MatrixEditor % Copyright 2010 Levente Hunyadi function example_matrixeditor fig = figure( ... 'MenuBar', 'none', ... 'Name', 'Matrix editor demo - Copyright 2010 Levente Hunyadi', ... 'NumberTitle', 'off', ... 'Toolbar', 'none'); editor = MatrixEditor(fig, ... 'Item', [1,2,3,4;5,6,7,8;9,10,11,12], ... 'Type', PropertyType('denserealdouble','matrix')); uiwait(fig); disp(editor.Item);
github
ZijingMao/baselineeegtest-master
example_propertyeditor.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/example_propertyeditor.m
473
utf_8
49faa2989b2f9c32c26f366e77eaf0b2
% Demonstrates how to use the property editor. % % See also: PropertyEditor % Copyright 2010 Levente Hunyadi function example_propertyeditor % create figure f = figure( ... 'MenuBar', 'none', ... 'Name', 'Property editor demo - Copyright 2010 Levente Hunyadi', ... 'NumberTitle', 'off', ... 'Toolbar', 'none'); items = { SampleObject SampleObject }; editor = PropertyEditor(f, 'Items', items); editor.AddItem(SampleNestedObject, 1); editor.RemoveItem(1);
github
ZijingMao/baselineeegtest-master
nestedfetch.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/nestedfetch.m
1,000
utf_8
1f3b58597c8ee6879bc2650defb0799d
% Fetches the value of the named property of an object or structure. % This function can deal with nested properties. % % Input arguments: % obj: % the handle or value object the value should be assigned to % name: % a property name with dot (.) separating property names at % different hierarchy levels % value: % the value to assign to the property at the deepest hierarchy % level % % Example: % obj = struct('surface', struct('nested', 23)); % value = nestedfetch(obj, 'surface.nested'); % disp(value); % prints 23 % % See also: nestedassign % Copyright 2010 Levente Hunyadi function value = nestedfetch(obj, name) if ~iscell(name) nameparts = strsplit(name, '.'); else nameparts = name; end value = nestedfetch_recurse(obj, nameparts); end function value = nestedfetch_recurse(obj, name) if numel(name) > 1 value = nestedfetch_recurse(obj.(name{1}), name(2:end)); else value = obj.(name{1}); end end
github
ZijingMao/baselineeegtest-master
findobjuser.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/findobjuser.m
1,391
utf_8
3275be54ee6c453c85fd950bb6ac56b5
% Find handle graphics object with user data check. % Retrieves those handle graphics objects (HGOs) that have the specified % Tag property and whose UserData property satisfies the given predicate. % % Input arguments: % fcn: % a predicate (a function that returns a logical value) to test against % the HGO's UserData property % tag (optional): % a string tag to restrict the set of controls to investigate % % See also: findobj % Copyright 2010 Levente Hunyadi function h = findobjuser(fcn, tag) validateattributes(fcn, {'function_handle'}, {'scalar'}); if nargin < 2 || isempty(tag) tag = ''; else validateattributes(tag, {'char'}, {'row'}); end %hh = get(0, 'ShowHiddenHandles'); %cleanup = onCleanup(@() set(0, 'ShowHiddenHandles', hh)); % restore visibility on exit or exception if ~isempty(tag) % look among all handles (incl. hidden handles) to help findobj locate the object it seeks h = findobj(findall(0), '-property', 'UserData', '-and', 'Tag', tag); % more results if multiple matching HGOs exist else h = findobj(findall(0), '-property', 'UserData'); end h = unique(h); try for k=1:length(h) pred = fcn(get(h(k), 'UserData')); if isempty(pred) pred = false; end f(k) = pred; end %f = arrayfun(@(handle) fcn(get(handle, 'UserData')), h, 'UniformOutput',false); catch 1 end h = h(f);
github
ZijingMao/baselineeegtest-master
javaStringArray.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/javaStringArray.m
628
utf_8
fe0389e3b0d1933d49c1a78c416a279c
% Converts a MatLab cell array of strings into a java.lang.String array. % % Input arguments: % str: % a cell array of strings (i.e. a cell array of char row vectors) % % Output arguments: % arr: % a java.lang.String array instance (i.e. java.lang.String[]) % % See also: javaArray % Copyright 2009-2010 Levente Hunyadi function arr = javaStringArray(str) assert(iscellstr(str) && isvector(str), ... 'java:StringArray:InvalidArgumentType', ... 'Cell row or column vector of strings expected.'); arr = javaArray('java.lang.String', length(str)); for k = 1 : numel(str); arr(k) = java.lang.String(str{k}); end
github
ZijingMao/baselineeegtest-master
var2str.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/var2str.m
441
utf_8
5588acb0d18dcfac8183caf10a3b5675
% Textual representation of any MatLab value. % Copyright 2009 Levente Hunyadi function s = var2str(value) if islogical(value) || isnumeric(value) s = num2str(value); elseif ischar(value) && isvector(value) s = reshape(value, 1, numel(value)); elseif isjava(value) s = char(value); % calls java.lang.Object.toString() else try s = char(value); catch %#ok<CTCH> s = '[no preview available]'; end end
github
ZijingMao/baselineeegtest-master
getclassfield.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/getclassfield.m
376
utf_8
e3b87866af8da4dd40243e750a7e53f6
% Field value of each object in an array or cell array. % % See also: getfield % Copyright 2010 Levente Hunyadi function values = getclassfield(objects, field) values = cell(size(objects)); if iscell(objects) for k = 1 : numel(values) values{k} = objects{k}.(field); end else for k = 1 : numel(values) values{k} = objects(k).(field); end end
github
ZijingMao/baselineeegtest-master
arrayfilter.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/arrayfilter.m
488
utf_8
a2649b876169e3d850372917e57a8b68
% Filter elements of array that meet a condition. % Copyright 2010 Levente Hunyadi function array = arrayfilter(fun, array) validateattributes(fun, {'function_handle'}, {'scalar'}); if isobject(array) filter = false(size(array)); for k = 1 : numel(filter) filter(k) = fun(array(k)); end else filter = arrayfun(fun, array); % logical indicator array of elements that satisfy condition end array = array(filter); % array of elements that meet condition
github
ZijingMao/baselineeegtest-master
example_propertygrid.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/example_propertygrid.m
4,929
utf_8
f1e5d6dc7fc518cdb070956ff714353c
% Demonstrates how to use the property pane. % % See also: PropertyGrid % Copyright 2010 Levente Hunyadi function example_propertygrid properties = [ ... PropertyGridField('double', pi, ... 'Category', 'Primitive types', ... 'DisplayName', 'real double', ... 'Description', 'Standard MatLab type.') ... PropertyGridField('single', pi, ... 'Category', 'Primitive types', ... 'DisplayName', 'real single', ... 'Description', 'Single-precision floating point number.') ... PropertyGridField('integer', int32(23), ... 'Category', 'Primitive types', ... 'DisplayName', 'int32', ... 'Description', 'A 32-bit integer value.') ... PropertyGridField('interval', int32(2), ... 'Type', PropertyType('int32', 'scalar', [0 6]), ... 'Category', 'Primitive types', ... 'DisplayName', 'int32', ... 'Description', 'A 32-bit integer value with an interval domain.') ... PropertyGridField('enumerated', int32(-1), ... 'Type', PropertyType('int32', 'scalar', {int32(-1), int32(0), int32(1)}), ... 'Category', 'Primitive types', ... 'DisplayName', 'int32', ... 'Description', 'A 32-bit integer value with an enumerated domain.') ... PropertyGridField('logical', true, ... 'Category', 'Primitive types', ... 'DisplayName', 'logical', ... 'Description', 'A Boolean value that takes either true or false.') ... PropertyGridField('doublematrix', [], ... 'Type', PropertyType('denserealdouble', 'matrix'), ... 'Category', 'Compound types', ... 'DisplayName', 'real double matrix', ... 'Description', 'Matrix of standard MatLab type with empty initial value.') ... PropertyGridField('string', 'a sample string', ... 'Category', 'Compound types', ... 'DisplayName', 'string', ... 'Description', 'A row vector of characters.') ... PropertyGridField('rowcellstr', {'a sample string','spanning multiple','lines'}, ... 'Category', 'Compound types', ... 'DisplayName', 'cell row of strings', ... 'Description', 'A row cell array whose every element is a string (char array).') ... PropertyGridField('colcellstr', {'a sample string';'spanning multiple';'lines'}, ... 'Category', 'Compound types', ... 'DisplayName', 'cell column of strings', ... 'Description', 'A column cell array whose every element is a string (char array).') ... PropertyGridField('season', 'spring', ... 'Type', PropertyType('char', 'row', {'spring','summer','fall','winter'}), ... 'Category', 'Compound types', ... 'DisplayName', 'string', ... 'Description', 'A row vector of characters that can take any of the predefined set of values.') ... PropertyGridField('set', [true false true], ... 'Type', PropertyType('logical', 'row', {'A','B','C'}), ... 'Category', 'Compound types', ... 'DisplayName', 'set', ... 'Description', 'A logical vector that serves an indicator of which elements from a universe are included in the set.') ... PropertyGridField('root', [], ... % [] (and no type explicitly set) indicates that value is not editable 'Category', 'Compound types', ... 'DisplayName', 'root node') ... PropertyGridField('root.parent', int32(23), ... 'Category', 'Compound types', ... 'DisplayName', 'parent node') ... PropertyGridField('root.parent.child', int32(2007), ... 'Category', 'Compound types', ... 'DisplayName', 'child node') ... ]; % arrange flat list into a hierarchy based on qualified names properties = properties.GetHierarchy(); % create figure f = figure( ... 'MenuBar', 'none', ... 'Name', 'Property grid demo - Copyright 2010 Levente Hunyadi', ... 'NumberTitle', 'off', ... 'Toolbar', 'none'); % procedural usage g = PropertyGrid(f, ... % add property pane to figure 'Properties', properties, ... % set properties explicitly 'Position', [0 0 0.5 1]); h = PropertyGrid(f, ... 'Position', [0.5 0 0.5 1]); % declarative usage, bind object to grid obj = SampleObject; % a value object h.Item = obj; % bind object, discards any previously set properties % update the type of a property assigned with type autodiscovery userproperties = PropertyGridField.GenerateFrom(obj); userproperties.FindByName('IntegerMatrix').Type = PropertyType('denserealdouble', 'matrix'); disp(userproperties.FindByName('IntegerMatrix').Type); h.Bind(obj, userproperties); % wait for figure to close uiwait(f); % display all properties and their values on screen disp('Left-hand property grid'); disp(g.GetPropertyValues()); disp('Right-hand property grid'); disp(h.GetPropertyValues()); disp('SampleObject (modified)'); disp(h.Item); disp('SampleNestedObject (modified)'); disp(h.Item.NestedObject);
github
ZijingMao/baselineeegtest-master
constructor.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/constructor.m
2,078
utf_8
c67e647ec8055710896666c9e83b45e0
% Sets public properties of a MatLab object using a name-value list. % Properties are traversed in the order they occur in the class definition. % Copyright 2008-2009 Levente Hunyadi function obj = constructor(obj, varargin) assert(isobject(obj), ... 'Function operates on MatLab new-style objects only.'); if nargin <= 1 return; end if isa(obj, 'hgsetget') set(obj, varargin{:}); return; end assert(is_name_value_list(varargin), ... 'constructor:ArgumentTypeMismatch', ... 'A list of property name--value pairs is expected.'); % instantiate input parser object parser = inputParser; % query class properties using meta-class facility metaobj = metaclass(obj); properties = metaobj.Properties; for i = 1 : numel(properties) property = properties{i}; if is_public_property(property) parser.addParamValue(property.Name, obj.(property.Name)); end end % set property values according to name-value list parser.parse(varargin{:}); for i = 1 : numel(properties) property = properties{i}; if is_public_property(property) && ~is_string_in_vector(property.Name, parser.UsingDefaults) % do not set defaults obj.(property.Name) = parser.Results.(property.Name); end end function tf = is_name_value_list(list) % True if the specified list is a name-value list. % % Input arguments: % list: % a name-value list as a cell array. validateattributes(list, {'cell'}, {'vector'}); n = numel(list); if mod(n, 2) ~= 0 % a name-value list has an even number of elements tf = false; else for i = 1 : 2 : n if ~ischar(list{i}) % each odd element in a name-value list must be a char array tf = false; return; end end tf = true; end function tf = is_string_in_vector(str, vector) tf = any(strcmp(str, vector)); function tf = is_public_property(property) % True if the property designates a public, accessible property. tf = ~property.Abstract && ~property.Hidden && strcmp(property.GetAccess, 'public') && strcmp(property.SetAccess, 'public');
github
ZijingMao/baselineeegtest-master
nestedassign.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/nestedassign.m
1,457
utf_8
12d661bb4df3c64a0707a06f7e3e6afc
% Assigns the given value to the named property of an object or structure. % This function can deal with nested properties. % % Input arguments: % obj: % the structure, handle or value object the value should be assigned to % name: % a property name with dot (.) separating property names at % different hierarchy levels % value: % the value to assign to the property at the deepest hierarchy % level % % Output arguments: % obj: % the updated object or structure, optional for handle objects % % Example: % obj = struct('surface', struct('nested', 10)); % obj = nestedassign(obj, 'surface.nested', 23); % disp(obj.surface.nested); % prints 23 % % See also: nestedfetch % Copyright 2010 Levente Hunyadi function obj = nestedassign(obj, name, value) if ~iscell(name) nameparts = strsplit(name, '.'); else nameparts = name; end obj = nestedassign_recurse(obj, nameparts, value); end function obj = nestedassign_recurse(obj, name, value) % Assigns the given value to the named property of an object. % % Input arguments: % obj: % the handle or value object the value should be assigned to % name: % a cell array of the composite property name % value: % the value to assign to the property at the deepest hierarchy % level if numel(name) > 1 obj.(name{1}) = nestedassign_recurse(obj.(name{1}), name(2:end), value); else obj.(name{1}) = value; end end
github
ZijingMao/baselineeegtest-master
javaArrayList.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/javaArrayList.m
740
utf_8
cb4ad03c4e0fc536bc1ae024bfb8920a
% Converts a MatLab array into a java.util.ArrayList. % % Input arguments: % array: % a MatLab row or column vector (with elements of any type) % % Output arguments: % list: % a java.util.ArrayList instance % % See also: javaArray % Copyright 2010 Levente Hunyadi function list = javaArrayList(array) list = java.util.ArrayList; if ~isempty(array) assert(isvector(array), 'javaArrayList:DimensionMismatch', ... 'Row or column vector expected.'); if iscell(array) % convert cell array into ArrayList for k = 1 : numel(array) list.add(array{k}); end else % convert (numeric) array into ArrayList for k = 1 : numel(array) list.add(array(k)); end end end
github
ZijingMao/baselineeegtest-master
strjoin.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/private/strjoin.m
938
utf_8
63425068d4fd2fd0543aa9e5b46eca84
% Concatenates a cell array of strings. % % Input arguments: % adjoiner: % string separating each neighboring element % strings: % a cell array of strings to join % % See also: strsplit, cell2mat % Copyright 2008-2009 Levente Hunyadi function string = strjoin(adjoiner, strings) validateattributes(adjoiner, {'char'}, {'vector'}); validateattributes(strings, {'cell'}, {'vector'}); assert(iscellstr(strings), ... 'strjoin:ArgumentTypeMismatch', ... 'The elements to join should be stored in a cell vector of strings (character arrays).'); if isempty(strings) string = ''; return; end % arrange substrings into cell array of strings concat = cell(1, 2 * numel(strings) - 1); % must be row vector j = 1; concat{j} = strings{1}; for i = 2 : length(strings) j = j + 1; concat{j} = adjoiner; j = j + 1; concat{j} = strings{i}; end % concatenate substrings preserving spaces string = cell2mat(concat);
github
ZijingMao/baselineeegtest-master
strsplit.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/PropertyGrid-2010-09-16-mod/private/strsplit.m
553
utf_8
81fa1c544a57b6a796400f39aedf3d44
% Splits a string into a cell array of strings. % % Input arguments: % string: % a string to split into a cell array % adjoiner: % string separating each neighboring element % % See also: strjoin % Copyright 2008-2009 Levente Hunyadi function strings = strsplit(string, adjoiner) if nargin < 2 adjoiner = sprintf('\n'); end ix = strfind(string, adjoiner); strings = cell(numel(ix)+1, 1); ix = [0 ix numel(string)+1]; % place implicit adjoiners before and after string for k = 2 : numel(ix) strings{k-1} = string(ix(k-1)+1:ix(k)-1); end
github
ZijingMao/baselineeegtest-master
hlp_scope.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_scope.m
4,133
utf_8
fa953a173bee2b8cdcaacdbde3865192
function varargout = hlp_scope(assignments, f, varargin) % Execute a function within a dynamic scope of values assigned to symbols. % Results... = hlp_scope(Assignments, Function, Arguments...) % % This is the only completely reliable way in MATLAB to ensure that symbols that should be assigned % while a function is running get cleared after the function returns orderly, crashes, segfaults, % the user slams Ctrl+C, and so on. Symbols can be looked up via hlp_resolve(). % % In: % Assignments : Cell array of name-value pairs or a struct. Values are associated with symbols of % the given names. The names should be valid MATLAB identifiers. These assigments % form a dynamic scope for the execution of the function; scopes can also be % nested, and assignments in inner scopes override those of outer scopes. % % Function : a function handle to invoke % % Arguments... : arguments to pass to the function % % Out: % Results... : return value(s) of the function % % See also: % hlp_resolve % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-05-03 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % add a new stack frame with the evaluated assignments & get its unique id id = make_stackframe(assignments); % also take care that it gets reclaimed after we're done reclaimer = onCleanup(@()return_stackframe(id)); % make a function that is tagged by id func = make_func(id); % evaluate the function with the id introduced into MATLAB's own stack [varargout{1:nargout}] = func(f,varargin); function func = make_func(id) persistent funccache; % (cached, since the eval() below is a bit slow) try func = funccache.(id); catch func = eval(['@(f,a,frame__' id ')feval(f,a{:})']); funccache.(id) = func; end function id = make_stackframe(assignments) % put the assignments into a struct if iscell(assignments) assignments = cell2struct(assignments(2:2:end),assignments(1:2:end),2); end % get a fresh frame id global tracking; try id = tracking.stack.frameids.removeLast(); catch if ~isfield(tracking,'stack') || ~isfield(tracking.stack,'frameids') % need to create the id repository first tracking.stack.frameids = java.util.concurrent.LinkedBlockingDeque(); for k=50000:-1:1 tracking.stack.frameids.addLast(sprintf('f%d',k)); end else if tracking.stack.frameids.size() == 0 % if this happens then either you have 10.000s of parallel executions of hlp_scope(), % or you have a very deep recursion level (the MATLAB default is 500), or your function % has crashed 10.000s of times in a way that keeps onCleanup from doing its job, or you have % substituted onCleanup by a dummy class or function that doesn't actually work (e.g. on % pre-2008a systems). error('We ran out of stack frame ids. This should not happen under normal conditions. Please make sure that your onCleanup implementation is not consistently failing to execute.'); end end id = tracking.stack.frameids.removeLast(); end % and store the assignments under it tracking.stack.frames.(id) = assignments; function return_stackframe(id) % finally return the frame id again... global tracking; tracking.stack.frameids.addLast(id);
github
ZijingMao/baselineeegtest-master
hlp_fingerprint.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_fingerprint.m
7,989
utf_8
6c791e0e23e57c2a9b97a43096c2269f
function fp = hlp_fingerprint(data) % Make a fingerprint (hash) of the given data structure. % Fingerprint = hlp_fingerprint(Data) % % This includes all contents; however, large arrays (such as EEG.data) are only spot-checked. For % thorough checking, use hlp_cryptohash. % % In: % Data : some data structure % % Out: % Fingerprint : an integer that identifies the data % % Notes: % The fingerprint is not unique and identifies the data set only with a certain (albeit high) % probability. % % On MATLAB versions prior to 2008b, hlp_fingerprint cannot be used concurrently from timers, % and also may alter the random generator's state if cancelled via Ctrl+C. % % Examples: % % calculate the hash of a large data structure % hash = hlp_fingerprint(data); % % See also: % hlp_cryptohash % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-02 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA warning off MATLAB:structOnObject if hlp_matlab_version >= 707 fp = fingerprint(data,RandStream('swb2712','Seed',5183)); else try % save & override random state randstate = rand('state'); %#ok<*RAND> rand('state',5183); % make the fingerprint fp = fingerprint(data,0); % restore random state rand('state',randstate); catch e % restore random state in case of an error... rand('state',randstate); rethrow(e); end end % make a fingerprint of the given data structure function fp = fingerprint(data,rs) % convert data into a string representation data = summarize(data,rs); % make sure that it does not contain 0's data(data==0) = 'x'; % obtain a hash code via Java (MATLAB does not support proper integer arithmetic...) str = java.lang.String(data); fp = str.hashCode()+2^31; % get a recursive string summary of arbitrary data function x = summarize(x,rs) if isnumeric(x) % numeric array if ~isreal(x) x = [real(x) imag(x)]; end if issparse(x) x = [find(x) nonzeros(x)]; end if numel(x) <= 4096 % small matrices are hashed completely try x = ['n' typecast([size(x) x(:)'],'uint8')]; catch if hlp_matlab_version <= 702 x = ['n' typecast([size(x) double(x(:))'],'uint8')]; end end else % large matrices are spot-checked ne = numel(x); count = floor(256 + (ne-256)/1000); if hlp_matlab_version < 707 indices = 1+floor((ne-1)*rand(1,count)); else indices = 1+floor((ne-1)*rand(rs,1,count)); end if size(x,2) == 1 % x is a column vector: reindexed expression needs to be transposed x = ['n' typecast([size(x) x(indices)'],'uint8')]; else % x is a matrix or row vector: shape follows that of indices x = ['n' typecast([size(x) x(indices)],'uint8')]; end end elseif iscell(x) % cell array sizeprod = cellfun('prodofsize',x(:)); if all(sizeprod <= 1) && any(sizeprod) % all scalar elements (some empty, but not all) if all(cellfun('isclass',x(:),'double')) || all(cellfun('isclass',x(:),'single')) % standard floating-point scalars if cellfun('isreal',x) % all real x = ['cdr' typecast([size(x) x{:}],'uint8')]; else % some complex x = ['cdc' typecast([size(x) real([x{:}]) imag([x{:}])],'uint8')]; end elseif cellfun('isclass',x(:),'logical') % all logical x = ['cl' typecast(uint32(size(x)),'uint8') uint8([x{:}])]; elseif cellfun('isclass',x(:),'char') % all single chars x = ['ccs' typecast(uint32(size(x)),'uint8') x{:}]; else % generic types (structs, cells, integers, handles, ...) tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false); x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}]; end elseif isempty(x) % empty cell array x = ['ce' typecast(uint32(size(x)),'uint8')]; else % some non-scalar elements dims = cellfun('ndims',x(:)); size1 = cellfun('size',x(:),1); size2 = cellfun('size',x(:),2); if all((size1+size2 == 0) & (dims == 2)) % all empty and nondegenerate elements if all(cellfun('isclass',x(:),'double')) % []'s x = ['ced' typecast(uint32(size(x)),'uint8')]; elseif all(cellfun('isclass',x(:),'cell')) % {}'s x = ['cec' typecast(uint32(size(x)),'uint8')]; elseif all(cellfun('isclass',x(:),'struct')) % struct()'s x = ['ces' typecast(uint32(size(x)),'uint8')]; elseif length(unique(cellfun(@class,x(:),'UniformOutput',false))) == 1 % same class x = ['cex' class(x{1}) typecast(uint32(size(x)),'uint8')]; else % arbitrary class... tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false); x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}]; end elseif all((cellfun('isclass',x(:),'char') & size1 <= 1) | (sizeprod==0 & cellfun('isclass',x(:),'double'))) % all horizontal strings or proper empty strings, possibly some []'s x = ['cch' [x{:}] typecast(uint32(size2'),'uint8')]; else % arbitrary sizes... if all(cellfun('isclass',x(:),'double')) || all(cellfun('isclass',x(:),'single')) % all standard floating-point types... tmp = cellfun(@vectorize,x,'UniformOutput',false); % treat as a big vector... x = ['cn' typecast(uint32(size(x)),'uint8') summarize([tmp{:}],rs)]; else tmp = cellfun(@summarize,x,repmat({rs},size(x)),'UniformOutput',false); x = ['cg' typecast(uint32(size(x)),'uint8') tmp{:}]; end end end elseif ischar(x) % char array x = ['c' x(:)']; elseif isstruct(x) % struct fn = fieldnames(x)'; if numel(x) > length(fn) % summarize over struct fields to expose homogeneity x = cellfun(@(f)summarize({x.(f)},rs),fn,'UniformOutput',false); x = ['s' [fn{:}] ':' [x{:}]]; else % summarize over struct elements x = ['s' [fn{:}] ':' summarize(struct2cell(x),rs)]; end elseif islogical(x) % logical array x = ['l' typecast(uint32(size(x)),'uint8') uint8(x(:)')]; elseif isa(x,'function_handle') if strncmp(char(x),'@(',2) f = functions(x); x = ['f' f.function summarize(f.workspace{1},rs)]; else x = ['f ' char(x)]; end elseif isobject(x) x = ['o' class(x) ':' summarize(struct(x),rs)]; else try x = ['u' class(x) ':' summarize(struct(x),rs)]; catch warning('BCILAB:hlp_fingerprint:unsupported_type','Unsupported type: %s',class(x)); error; %#ok<LTARG> end end function x = vectorize(x) x = x(:)';