plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
ZijingMao/baselineeegtest-master
hlp_flattensearch.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_flattensearch.m
4,984
utf_8
862f3f897f7991f789931d500395318c
function x = hlp_flattensearch(x,form) % Flatten search() clauses in a nested data structure into a flat search() clause. % Result = hlp_flattensearch(Expression, Output-Form) % % Internal tool used by utl_gridsearch to enable the specification of search parameters using % search() clauses. % % In: % Expression : some data structure, usually an argument to utl_gridsearch, may or may not contain % nested search clauses. % % Output-Form : form of the output (default: 'search') % * 'search': the output shall be a flattened search clause (or a plain value if no % search) % * 'cell': the output shall be a cell array of elements to search over % % Out: % Result : a flattened search clause (or plain value), or a cell array of search possibilities. % % See also: % search, utl_gridsearch % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-06-29 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA x = flatten(x); if ~exist('form','var') || isempty(form) || strcmp(form,'search') % turn from cell format into search format if isscalar(x) % just one option: return the plain value x = x{1}; else % multiple options: return a search expression x = struct('head',{@search},'parts',{x}); end elseif ~strcmp(form,'cell') error(['Unsupported output form: ' form]); end % recursively factor search expressions out of a data structure, to give an overall search % expression (output format is cell array of search options) function parts = flatten(x) if isstruct(x) if isfield(x,{'data','srate','chanlocs','event','epoch'}) % data set? do not descend further parts = {x}; elseif all(isfield(x,{'head','parts'})) && numel(x)==1 && strcmp(char(x.head),'search') % search expression: flatten any nested searches... parts = cellfun(@flatten,x.parts,'UniformOutput',false); % ... and splice their parts in parts = [parts{:}]; else % generic structure: create a cartesian product over field-wise searches if isscalar(x) parts = {x}; % flatten per-field contents fields = cellfun(@flatten,struct2cell(x),'UniformOutput',false); lengths = cellfun('length',fields); % was any one a search? if any(lengths>1) fnames = fieldnames(x); % for each field that is a search... for k=find(lengths>1)' % replicate all parts once for each search item in the current field partnum = length(parts); parts = repmat(parts,1,lengths(k)); % and fill each item into the appropriate place for j=1:length(parts) parts{j}.(fnames{k}) = fields{k}{ceil(j/partnum)}; end end end elseif ~isempty(x) % struct array (either with nested searches or a concatenation of search() expressions): % handle as a cell array of structs parts = flatten(arrayfun(@(s){s},x)); % got a search? if ~isscalar(parts) % re-concatenate the cell contents of each part of the search expression into % struct arrays for i=1:length(parts) parts{i} = reshape([parts{i}{:}],size(parts{i})); end else parts = {x}; end else parts = {x}; end end elseif iscell(x) % cell array: create a cartesian product over cell-wise searches parts = {x}; x = cellfun(@flatten,x,'UniformOutput',false); % for each cell that is a search... for c=find(cellfun('length',x(:)')>1) % replicate all parts once for each search item in the current cell partnum = length(parts); parts = repmat(parts,1,length(x{c})); % and fill in the new item in the appropriate place for j=1:length(parts) parts{j}{c} = x{c}{ceil(j/partnum)}; end end else % anything else: wrap parts = {x}; end
github
ZijingMao/baselineeegtest-master
hlp_tostring.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_tostring.m
9,007
utf_8
27a2805eb3c352fa66ade79a1bff3974
function str = hlp_tostring(v,stringcutoff,prec) % Get an human-readable string representation of a data structure. % String = hlp_tostring(Data,StringCutoff) % % The resulting string representations are usually executable, but there are corner cases (e.g., % certain anonymous function handles and large data sets), which are not supported. For % general-purpose serialization, see hlp_serialize/hlp_deserialize. % % In: % Data : a data structure % % StringCutoff : optional maximum string length for atomic fields (default: 0=off) % % Precision : maximum significant digits (default: 15) % % Out: % String : string form of the data structure % % Notes: % hlp_tostring has builtin support for displaying expression data structures. % % Examples: % % get a string representation of a data structure % hlp_tostring({'test',[1 2 3], struct('field','value')}) % % See also: % hlp_serialize % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-15 % % adapted from serialize.m % (C) 2006 Joger Hansegord ([email protected]) % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA if nargin < 2 stringcutoff = 0; end if nargin < 3 prec = 15; end str = serializevalue(v); function val = serializevalue(v) % Main hub for serializing values if isnumeric(v) || islogical(v) val = serializematrix(v); elseif ischar(v) val = serializestring(v); elseif isa(v,'function_handle') val = serializefunction(v); elseif is_impure_expression(v) val = serializevalue(v.tracking.expression); elseif has_canonical_representation(v) val = serializeexpression(v); elseif is_dataset(v) val = serializedataset(v); elseif isstruct(v) val = serializestruct(v); elseif iscell(v) val = serializecell(v); elseif isobject(v) val = serializeobject(v); else try val = serializeobject(v); catch error('Unhandled type %s', class(v)); end end end function val = serializestring(v) % Serialize a string if any(v == '''') val = ['''' strrep(v,'''','''''') '''']; try if ~isequal(eval(val),v) val = ['char(' serializevalue(uint8(v)) ')']; end catch val = ['char(' serializevalue(uint8(v)) ')']; end else val = ['''' v '''']; end val = trim_value(val,''''); end function val = serializematrix(v) % Serialize a matrix and apply correct class and reshape if required if ndims(v) < 3 %#ok<ISMAT> if isa(v, 'double') if size(v,1) == 1 && length(v) > 3 && isequal(v,v(1):v(2)-v(1):v(end)) % special case: colon sequence if v(2)-v(1) == 1 val = ['[' num2str(v(1)) ':' num2str(v(end)) ']']; else val = ['[' num2str(v(1)) ':' num2str(v(2)-v(1)) ':' num2str(v(end)) ']']; end elseif size(v,2) == 1 && length(v) > 3 && isequal(v',v(1):v(2)-v(1):v(end)) % special case: colon sequence if v(2)-v(1) == 1 val = ['[' num2str(v(1)) ':' num2str(v(end)) ']''']; else val = ['[' num2str(v(1)) ':' num2str(v(2)-v(1)) ':' num2str(v(end)) ']''']; end else val = mat2str(v,prec); end else val = mat2str(v,prec,'class'); end val = trim_value(val,']'); else if isa(v, 'double') val = mat2str(v(:),prec); else val = mat2str(v(:),prec,'class'); end val = trim_value(val,']'); val = sprintf('reshape(%s, %s)', val, mat2str(size(v))); end end function val = serializecell(v) % Serialize a cell if isempty(v) val = '{}'; return end cellSep = ', '; if isvector(v) && size(v,1) > 1 cellSep = '; '; end % Serialize each value in the cell array, and pad the string with a cell % separator. vstr = cellfun(@(val) [serializevalue(val) cellSep], v, 'UniformOutput', false); vstr{end} = vstr{end}(1:end-2); % Concatenate the elements and add a reshape if requied val = [ '{' vstr{:} '}']; if ~isvector(v) val = ['reshape(' val sprintf(', %s)', mat2str(size(v)))]; end end function val = serializeexpression(v) % Serialize an expression if numel(v) > 1 val = ['[']; for k = 1:numel(v) val = [val serializevalue(v(k)), ', ']; end val = [val(1:end-2) ']']; else if numel(v.parts) > 0 val = [char(v.head) '(']; for fieldNo = 1:numel(v.parts) val = [val serializevalue(v.parts{fieldNo}), ', ']; end val = [val(1:end-2) ')']; else val = char(v.head); end end end function val = serializedataset(v) %#ok<INUSD> % Serialize a data set val = '<EEGLAB data set>'; end function val = serializestruct(v) % Serialize a struct by converting the field values using struct2cell fieldNames = fieldnames(v); fieldValues = struct2cell(v); if ndims(fieldValues) > 6 error('Structures with more than six dimensions are not supported'); end val = 'struct('; for fieldNo = 1:numel(fieldNames) val = [val serializevalue( fieldNames{fieldNo}) ', ']; val = [val serializevalue( permute(fieldValues(fieldNo, :,:,:,:,:,:), [2:ndims(fieldValues) 1]) ) ]; val = [val ', ']; end if numel(fieldNames)==0 val = [val ')']; else val = [val(1:end-2) ')']; end if ~isvector(v) val = sprintf('reshape(%s, %s)', val, mat2str(size(v))); end end function val = serializeobject(v) % Serialize an object by converting to struct and add a call to the copy constructor val = sprintf('%s(%s)', class(v), serializevalue(struct(v))); end function val = serializefunction(v) % Serialize a function handle try val = ['@' char(get_function_symbol(v))]; catch val = char(v); end end function v = trim_value(v,appendix) if nargin < 2 appendix = ''; end % Trim a serialized value to a certain length if stringcutoff && length(v) > stringcutoff v = [v(1:stringcutoff) '...' appendix]; end end end function result___ = get_function_symbol(expression___) % internal: some function_handle expressions have a function symbol (an @name expression), and this function obtains it % note: we are using funny names here to bypass potential name conflicts within the eval() clause further below if ~isa(expression___,'function_handle') error('the expression has no associated function symbol.'); end string___ = char(expression___); if string___(1) == '@' % we are dealing with a lambda function if is_symbolic_lambda(expression___) result___ = eval(string___(27:end-21)); else error('cannot derive a function symbol from a non-symbolic lambda function.'); end else % we are dealing with a regular function handle result___ = expression___; end end function res = is_symbolic_lambda(x) % internal: a symbolic lambda function is one which generates expressions when invoked with arguments (this is what exp_symbol generates) res = isa(x,'function_handle') && ~isempty(regexp(char(x),'@\(varargin\)struct\(''head'',\{.*\},''parts'',\{varargin\}\)','once')); end
github
ZijingMao/baselineeegtest-master
hlp_config.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_config.m
13,648
utf_8
63022cdbc72bbfdfcf73c317df53f400
function result = hlp_config(configname, operation, varargin) % helper function to process human-readable config scripts. % Result = hlp_config(FileName,Operation,VariableName,Value,NVPs...) % % Config scripts consist of assignments of the form name = value; to set configuration options. In % addition, there may be any type of comments, conditional control flow, etc - e.g., setting certain % values on some platforms and others on others. This function allows to get or set the value % assigned to a variable in the place of the script where it is actually assigned on the current % platform. Note that the respective variable has to be already in the config file for this function % to work. % % In: % FileName : name of the configuration file to process % % Operation : operation to perform on the config file % 'get' : get the currently defined value of a given variable % 'set' : replace the current defintion of a given variable % % VariableName : name of the variable to be affected (must be a MATLAB identifier) % % Value : the new value to be assigned, if the operation is 'set', as a string % note that most data structures can be converted into a string via hlp_tostring % % NVPs... : list of further name-value pairs, where each name denotes a config variables and the subsequent % value is the string expression that should be written into the config file. It is % generally a good idea to use hlp_tostring() to turn a data structure into such a string % representation. % % Out: % Result : the current value of the variable of interest, when using the 'get' % operation % % Notes: % There can be multiple successive variable name / value pairs for the set mode. % If an error occurs during a set operation, any changes will be rolled back. % % Examples: % % read out the value of the 'data' config variable from a config file % data = hlp_config('/home/christian/myconfig.m','get','data') % % % override the values of the 'files' and 'capacity' config variables in the given config script % hlp_config('/home/christian/myconfig.m', 'set', 'files',myfiles, 'capacity',1000) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-11-19 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA if ~exist(configname,'file') error('hlp_config:file_not_found','The specified config file was not found.'); end switch operation case 'get' varname = varargin{1}; if ~isvarname(varname) error('hlp_config:bad_varname','The variable name must be a valid MATLAB identifier.'); end % get the currently defined value of a variable... result = get_value(configname,varname); case 'set' backupfile = []; try % apply first assignment backupfile = set_value(configname,varargin{1},varargin{2},true); for k = 4:2:length(varargin) % apply all other assignments set_value(configname,varargin{k-1},varargin{k},false); end catch e % got an error; roll back changes if necessary if ~isempty(backupfile) try movefile(backupfile,configname); catch disp(['Could not roll back changes. You can manually revert changes by replacing ' configname ' by ' backupfile '.']); end end rethrow(e); end otherwise error('hlp_config:unsupported_option','Unsupported config operation.'); end % run the given config script and obtain the current value of the given variable... function res = get_value(filename__,varname__) try run_script(filename__); catch e error('hlp_config:erroneous_file',['The config file is erroneous; Error message: ' e.message]); end if ~exist(varname__,'var') error('hlp_config:var_not_found','The variable is not being defined in the config file.'); end res = eval(varname__); function backup_name = set_value(filename,varname,newvalue,makebackup) backup_name = []; if ~exist(filename,'file') error('hlp_config:file_not_found','The config file was not found.'); end if ~isvarname(varname) error('hlp_config:incorrect_value','The variable name must be a valid MATLAB identifier.'); end if ~ischar(newvalue) error('hlp_config:incorrect_value','The value to be assigned must be given as a string.'); end try % read the config file contents contents = {}; f = fopen(filename,'r'); while 1 l = fgetl(f); if ~ischar(l) break; end contents{end+1} = [l 10]; end fclose(f); % turn it into one str contents = [contents{:}]; catch e try fclose(f); catch,end error('hlp_config:cannot_read_config',['Cannot read the config file; Error message: ' e.message]); end % now check if the file is actually writable try f = fopen(filename,'r+'); if f ~= -1 fclose(f); else error('hlp_config:permissions_error','Could not update the config file %s. Please check file permissions and try again.',filename); end catch error('hlp_config:permissions_error','Could not update the config file %s. Please check file permissions and try again.',filename); end % temporarily replace stray semicolons by a special character and contract ellipses, % so that the subsequent assignment regex matching will not get derailed) evalstr = contents; comment_flag = false; string_flag = false; bracket_level = 0; ellipsis_flag = false; substitute = false(1,length(evalstr)); % this mask indicates where we have to subsitute reversibly by special characters spaceout = false(1,length(evalstr)); % this mask indicates where we can substitute irreversibly by whitespace characters... for k=1:length(evalstr) if ellipsis_flag % everything that follows an ellipsis will be spaced out (including the subsequent newline that resets it) spaceout(k) = true; end switch evalstr(k) case ';' % semicolon % in strs, brackets or comments: indicate need for substitution if string_flag || bracket_level>0 || comment_flag substitute(k) = true; end case '''' % quotes % flip str flag, unless in comment if ~comment_flag string_flag = ~string_flag; end case 10 % newline % reset bracket level, unless in ellipsis if ~ellipsis_flag bracket_level = 0; end % reset comment flag, str flag and ellipsis flag comment_flag = false; string_flag = false; ellipsis_flag = false; case {'[','{'} % opening array bracket % if not in str nor comment, increase bracket level if ~string_flag && ~comment_flag bracket_level = bracket_level+1; end case {']','}'} % closing array bracket % if not in str nor comment, decrease bracket level if ~string_flag && ~comment_flag bracket_level = bracket_level-1; end case '%' % comment character % if not in str, switch on comment flag if ~string_flag comment_flag = true; end case '.' % potential ellipsis character % if not in comment nor in str, turn on ellipsis and comment if ~string_flag && ~comment_flag && k>2 && strcmp(evalstr(k-2:k),'...') ellipsis_flag = true; comment_flag = true; % we want to replace the ellipsis and everything that follows up to and including the next newline spaceout(k-2:k) = true; end end end % replace the characters that need to be substituted (by the bell character) evalstr(substitute) = 7; evalstr(spaceout) = ' '; % replace all assignments of the form "varname = *;" by "varname{end+1} = num;" [starts,ends] = regexp(evalstr,[varname '\s*=[^;\n]*;']); for k=length(starts):-1:1 evalstr = [evalstr(1:starts(k)-1) varname '{end+1} = struct(''assignment'',' num2str(k) ');' evalstr(ends(k)+1:end)]; end % add initial assignment evalstr = [sprintf('%s = {};\n',varname) evalstr]; % back-substitute the special character by semicolons evalstr(evalstr==7) = ';'; % evaluate contents and get the matching assignment id's ids = run_protected(evalstr,varname); % check validity of the updated value, and of the updated config file try % check if the value str can in fact be evaluated newvalue_eval = eval(newvalue); catch error('hlp_config:incorrect_value','The value "%s" (to be assigned to variable "%s") cannot be evaluated properly. Note that, for example, string values need to be quoted.',newvalue,varname); end % evaluate the original config script and record the full variable assignment [dummy,wspace_old] = run_protected(contents); %#ok<ASGLU> % splice the new value into the config file contents, for the last assignment in ids id = ids{end}.assignment; contents = [contents(1:starts(id)-1) varname ' = ' newvalue ';' contents(ends(id)+1:end)]; % evaluate the new config script and record the full variable assignment [dummy,wspace_new] = run_protected(contents); %#ok<ASGLU> % make sure that the only thing that has changed is the assignment to the variable of interest wspace_old.(varname) = newvalue_eval; if ~isequalwithequalnans(wspace_old,wspace_new) error('hlp_config:update_failed','The config file can not be properly updated.'); end % apparently, everything went well, except for the following possibilities % * the newly assigned value makes no sense (--> usage error) % * the settings were changed for unanticipated platforms (--> this needs to be documented properly) if makebackup try % make a backup of the original config file using a fresh name (.bak00X) [p,n,x] = fileparts(filename); files = dir([p filesep n '*.bak*']); backup_numbers = cellfun(@(n)str2num(n(end-2:end)),{files.name},'UniformOutput',false); backup_numbers = [backup_numbers{:}]; if ~isempty(backup_numbers) new_number = 1 + max(backup_numbers); else new_number = 1; end backup_name = [p filesep n '.bak' sprintf('%03i',new_number)]; copyfile(filename,backup_name); % set read permissions warning off MATLAB:FILEATTRIB:SyntaxWarning fileattrib(backup_name,'+w','a'); catch error('hlp_config:permissions_error','Could not create a backup of the original config file %s. Please check file permissions and try again.',filename); end end % split the contents into lines again contents = strsplit(contents,10); try % re-create the file, line by line f = fopen(filename,'w+'); for k=1:length(contents) fwrite(f,contents{k}); fprintf(f,'\n'); end fclose(f); % set file attributes warning off MATLAB:FILEATTRIB:SyntaxWarning fileattrib(filename,'+w','a'); catch try fclose(f); catch,end error('hlp_config:permissions_error','Could not override the config file %s. Please check file permissions and try again.',filename); end % run the given config script and obtain the current value of the given variable... function [res,wspace] = run_protected(code__,varname__) try eval(code__); % collect all variables into a workspace struct infos = whos(); for n = {infos.name} if ~any(strcmp(n{1},{'code__','varname__'})) wspace.(n{1}) = eval(n{1}); end end if exist('varname__','var') % if a specific variable was to be inspected... res = eval(varname__); if ~iscell(res) || length(res) < 1 || ~all(cellfun('isclass',res,'struct')) || ~all(cellfun(@(x)isfield(x,'assignment'),res)) error('Not all assignments to the variable were correctly identified.'); end else res = []; end catch e error('hlp_config:update_error',['The config file could not be parsed (probably it is ill-formed); Debug message: ' e.message]); end % split a string without fusing delimiters (unlike hlp_split) function strs = strsplit(str, delim) idx = strfind(str, delim); strs = cell(numel(idx)+1, 1); idx = [0 idx numel(str)+1]; for k = 2:numel(idx) strs{k-1} = str(idx(k-1)+1:idx(k)-1); end % for old MATLABs that can't properly move files... function movefile(src,dst) try builtin('movefile',src,dst); catch e if any([src dst]=='$') && hlp_matlab_version <= 705 if ispc [errcode,text] = system(sprintf('move ''%s'' ''%s''',src,dst)); %#ok<NASGU> else [errcode,text] = system(sprintf('mv ''%s'' ''%s''',src,dst)); %#ok<NASGU> end if errcode error('Failed to move %s to %s.',src,dst); end else rethrow(e); end end
github
ZijingMao/baselineeegtest-master
hlp_deserialize.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_deserialize.m
13,494
utf_8
bb9c30239d4a0cee13a59fbc98798cd3
function v = hlp_deserialize(m) % Convert a serialized byte vector back into the corresponding MATLAB data structure. % Data = hlp_deserialize(Bytes) % % In: % Bytes : a representation of the original data as a byte stream % % Out: % Data : some MATLAB data structure % % % See also: % hlp_serialize % % Examples: % bytes = hlp_serialize(mydata); % ... e.g. transfer the 'bytes' array over the network ... % mydata = hlp_deserialize(bytes); % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-02 % % adapted from deserialize.m % (C) 2010 Tim Hutt % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % wrap dispatcher v = deserialize_value(uint8(m(:)),1); end % dispatch function [v,pos] = deserialize_value(m,pos) switch m(pos) case {0,200} [v,pos] = deserialize_string(m,pos); case 128 [v,pos] = deserialize_struct(m,pos); case {33,34,35,36,37,38,39} [v,pos] = deserialize_cell(m,pos); case {1,2,3,4,5,6,7,8,9,10} [v,pos] = deserialize_scalar(m,pos); case 133 [v,pos] = deserialize_logical(m,pos); case {151,152,153} [v,pos] = deserialize_handle(m,pos); case {17,18,19,20,21,22,23,24,25,26} [v,pos] = deserialize_numeric_simple(m,pos); case 130 [v,pos] = deserialize_sparse(m,pos); case 131 [v,pos] = deserialize_complex(m,pos); case 132 [v,pos] = deserialize_char(m,pos); case 134 [v,pos] = deserialize_object(m,pos); otherwise error('Unknown class'); end end % individual scalar function [v,pos] = deserialize_scalar(m,pos) classes = {'double','single','int8','uint8','int16','uint16','int32','uint32','int64','uint64'}; sizes = [8,4,1,1,2,2,4,4,8,8]; sz = sizes(m(pos)); % Data. v = typecast(m(pos+1:pos+sz),classes{m(pos)}); pos = pos + 1 + sz; end % standard string function [v,pos] = deserialize_string(m,pos) if m(pos) == 0 % horizontal string: tag pos = pos + 1; % length (uint32) nbytes = double(typecast(m(pos:pos+3),'uint32')); pos = pos + 4; % data (chars) v = char(m(pos:pos+nbytes-1))'; pos = pos + nbytes; else % proper empty string: tag [v,pos] = deal('',pos+1); end end % general char array function [v,pos] = deserialize_char(m,pos) pos = pos + 1; % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; nbytes = prod(dms); % Data. v = char(m(pos:pos+nbytes-1)); pos = pos + nbytes; v = reshape(v,[dms 1 1]); end % general logical array function [v,pos] = deserialize_logical(m,pos) pos = pos + 1; % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; nbytes = prod(dms); % Data. v = logical(m(pos:pos+nbytes-1)); pos = pos + nbytes; v = reshape(v,[dms 1 1]); end % simple numerical matrix function [v,pos] = deserialize_numeric_simple(m,pos) classes = {'double','single','int8','uint8','int16','uint16','int32','uint32','int64','uint64'}; sizes = [8,4,1,1,2,2,4,4,8,8]; cls = classes{m(pos)-16}; sz = sizes(m(pos)-16); pos = pos + 1; % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; nbytes = prod(dms) * sz; % Data. v = typecast(m(pos:pos+nbytes-1),cls); pos = pos + nbytes; v = reshape(v,[dms 1 1]); end % complex matrix function [v,pos] = deserialize_complex(m,pos) pos = pos + 1; [re,pos] = deserialize_numeric_simple(m,pos); [im,pos] = deserialize_numeric_simple(m,pos); v = complex(re,im); end % sparse matrix function [v,pos] = deserialize_sparse(m,pos) pos = pos + 1; % matrix dims u = double(typecast(m(pos:pos+7),'uint64')); pos = pos + 8; v = double(typecast(m(pos:pos+7),'uint64')); pos = pos + 8; % index vectors [i,pos] = deserialize_numeric_simple(m,pos); [j,pos] = deserialize_numeric_simple(m,pos); if m(pos) % real pos = pos+1; [s,pos] = deserialize_numeric_simple(m,pos); else % complex pos = pos+1; [re,pos] = deserialize_numeric_simple(m,pos); [im,pos] = deserialize_numeric_simple(m,pos); s = complex(re,im); end v = sparse(i,j,s,u,v); end % struct array function [v,pos] = deserialize_struct(m,pos) pos = pos + 1; % Number of field names. nfields = double(typecast(m(pos:pos+3),'uint32')); pos = pos + 4; % Field name lengths fnLengths = double(typecast(m(pos:pos+nfields*4-1),'uint32')); pos = pos + nfields*4; % Field name char data fnChars = char(m(pos:pos+sum(fnLengths)-1)).'; pos = pos + length(fnChars); % Number of dims ndms = double(typecast(m(pos:pos+3),'uint32')); pos = pos + 4; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; % Field names. fieldNames = cell(length(fnLengths),1); splits = [0; cumsum(double(fnLengths))]; for k=1:length(splits)-1 fieldNames{k} = fnChars(splits(k)+1:splits(k+1)); end % Content. v = reshape(struct(),[dms 1 1]); if m(pos) % using struct2cell pos = pos + 1; [contents,pos] = deserialize_cell(m,pos); v = cell2struct(contents,fieldNames,1); else % using per-field cell arrays pos = pos + 1; for ff = 1:nfields [contents,pos] = deserialize_cell(m,pos); [v.(fieldNames{ff})] = deal(contents{:}); end end end % cell array function [v,pos] = deserialize_cell(m,pos) kind = m(pos); pos = pos + 1; switch kind case 33 % arbitrary/heterogenous cell array % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; % Contents v = cell([dms,1,1]); for ii = 1:numel(v) [v{ii},pos] = deserialize_value(m,pos); end case 34 % cell scalars [content,pos] = deserialize_value(m,pos); v = cell(size(content)); for k=1:numel(v) v{k} = content(k); end case 35 % mixed-real cell scalars [content,pos] = deserialize_value(m,pos); v = cell(size(content)); for k=1:numel(v) v{k} = content(k); end [reality,pos] = deserialize_value(m,pos); v(reality) = real(v(reality)); case 36 % cell array with horizontal or empty strings [chars,pos] = deserialize_string(m,pos); [lengths,pos] = deserialize_numeric_simple(m,pos); [empty,pos] = deserialize_logical(m,pos); v = cell(size(lengths)); splits = [0 cumsum(double(lengths(:)))']; for k=1:length(lengths) v{k} = chars(splits(k)+1:splits(k+1)); end [v{empty}] = deal(''); case 37 % empty,known type tag = m(pos); pos = pos + 1; switch tag case 1 % double - [] prot = []; case 33 % cell - {} prot = {}; case 128 % struct - struct() prot = struct([]); otherwise error('Unsupported type tag.'); end % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; % Create content v = repmat({prot},dms); case 38 % empty, prototype available % Prototype. [prot,pos] = deserialize_value(m,pos); % Number of dims ndms = double(m(pos)); pos = pos + 1; % Dimensions dms = double(typecast(m(pos:pos+ndms*4-1),'uint32')'); pos = pos + ndms*4; % Create content v = repmat({prot},dms); case 39 % boolean flags [content,pos] = deserialize_logical(m,pos); v = cell(size(content)); for k=1:numel(v) v{k} = content(k); end otherwise error('Unsupported cell array type.'); end end % object function [v,pos] = deserialize_object(m,pos) pos = pos + 1; % Get class name. [cls,pos] = deserialize_string(m,pos); % Get contents [conts,pos] = deserialize_value(m,pos); % construct object try % try to use the loadobj function v = eval([cls '.loadobj(conts)']); catch try % pass the struct directly to the constructor v = eval([cls '(conts)']); catch try % try to set the fields manually v = feval(cls); for fn=fieldnames(conts)' try set(v,fn{1},conts.(fn{1})); catch % Note: if this happens, your deserialized object might not be fully identical % to the original (if you are lucky, it didn't matter, through). Consider % relaxing the access rights to this property or add support for loadobj from % a struct. warn_once('hlp_deserialize:restricted_access','No permission to set property %s in object of type %s.',fn{1},cls); end end catch v = conts; v.hlp_deserialize_failed = ['could not construct class: ' cls]; end end end end % function handle function [v,pos] = deserialize_handle(m,pos) % Tag kind = m(pos); pos = pos + 1; switch kind case 151 % simple function persistent db_simple; %#ok<TLEV> % database of simple functions (indexed by name) % Name [name,pos] = deserialize_string(m,pos); try % look up from table v = db_simple.(name); catch % otherwise generate & fill table v = str2func(name); db_simple.(name) = v; end case 152 % anonymous function % Function code [code,pos] = deserialize_string(m,pos); % Workspace [wspace,pos] = deserialize_struct(m,pos); % Construct v = restore_function(code,wspace); case 153 % scoped or nested function persistent db_nested; %#ok<TLEV> % database of nested functions (indexed by name) % Parents [parentage,pos] = deserialize_cell(m,pos); try key = sprintf('%s_',parentage{:}); % look up from table v = db_nested.(key); catch % recursively look up from parents, assuming that these support the arg system v = parentage{end}; for k=length(parentage)-1:-1:1 % Note: if you get an error here, you are trying to deserialize a function handle % to a nested function. This is not natively supported by MATLAB and can only be made % to work if your function's parent implements some mechanism to return such a handle. % The below call assumes that your function uses the BCILAB arg system to do this. try next_v = arg_report('handle',v,parentage(k)); catch warn_once('hlp_deserialize:lookup_failed',['Could not look report properties of scoped/nested function handle "' parentage{k} '" from enclosing function "' char(v) '".']); v = @error_deserializing_function; return end if isempty(next_v{1}) warn_once('hlp_deserialize:lookup_failed',['Could not look up scoped/nested function handle "' parentage{k} '" from enclosing function "' char(v) '".']); end v = next_v{1}; end if ~isempty(v) db_nested.(key) = v; end end end end % helper for deserialize_handle function f = restore_function(decl__,workspace__) % create workspace for fn__=fieldnames(workspace__)' % we use underscore names here to not run into conflicts with names defined in the workspace eval([fn__{1} ' = workspace__.(fn__{1}) ;']); end clear workspace__ fn__; % evaluate declaration f = eval(decl__); end % emit a specific warning only once (per MATLAB session) function warn_once(varargin) persistent displayed_warnings; % determine the message content if length(varargin) > 1 && any(varargin{1}==':') && ~any(varargin{1}==' ') && ischar(varargin{2}) message_content = [varargin{1} sprintf(varargin{2:end})]; else message_content = sprintf(varargin{1:end}); end % generate a hash of of the message content str = java.lang.String(message_content); message_id = sprintf('x%.0f',str.hashCode()+2^31); % and check if it had been displayed before if ~isfield(displayed_warnings,message_id) % emit the warning warning(varargin{:}); % remember to not display the warning again displayed_warnings.(message_id) = true; end end
github
ZijingMao/baselineeegtest-master
hlp_aggregatestructs.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_aggregatestructs.m
8,572
utf_8
c7ca0758ab30ea7e668808cb89ef00a1
function res = hlp_aggregatestructs(structs,defaultop,varargin) % Aggregate structs (recursively), using the given combiner operations. % Result = hlp_aggregatestructs(Structs,Default-Op,Field-Ops...) % % This results in a single 1x1 struct which has aggregated values in its fields (e.g., arrays, % averages, etc.). For a different use case, see hlp_superimposedata. % % In: % Structs : cell array of structs to be aggregated (recursively) into a single struct % % Default-Op : optional default combiner operation to execute for every field that is not itself a % struct; see notes for the format. % % Field-Ops : name-value pairs of field-specific ops; names can have dots to denote operations % that apply to subfields. field-specific ops that apply to fields that are % themselves structures become the default op for that sub-structure % % Out: % recursively merged structure. % % Notes: % If an operation cannot be applied, a sequence of fall-backs is silently applied. First, % concatenation is tried, then, replacement is tried (which never fails). Therefore, % function_handles are being concatenated up to 2008a, and replaced starting with 2008b. % Operations are specified in one of the following formats: % * 'cat': concatenate values horizontally using [] % * 'replace': replace values by those of later structs (noncommutative) % * 'sum': sum up values % * 'mean': compute the mean value % * 'std': compute the standard deviation % * 'median': compute the median value % * 'random': pick a random value % * 'fillblanks': replace [] by values of later structs % * binary function: apply the function to aggregate pairs of values; applied in this order % f(f(f(first,second),third),fourth)... % * cell array of binary and unary function: apply the binary function to aggregate pairs of % values, then apply the unary function to finalize the result: functions {b,u} are applied in % the following order: u(b(b(b(first,second),third),fourth)) % % Examples: % % calc the average of the respective field values, across structs % hlp_aggregatestructs({result1,result2,result3},'mean') % % % calc the std deviation of the respective field values, across structs % hlp_aggregatestructs({result1,result2,result3},'std') % % % concatenate the field values across structs % hlp_aggregatestructs({result1,result2,result3},'cat') % % % as before, but use different operations for a few fields % hlp_aggregatestructs({result1,result2,result3},'cat','myfield1','mean','myfield2.subfield','median') % % % use a custom combiner operation (here: product) % hlp_aggregatestructs({result1,result2,result3},@times) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-05-04 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA warning off MATLAB:warn_r14_function_handle_transition if ~exist('defaultop','var') defaultop = 'cat'; end if ~iscell(structs) structs = {structs}; end fieldops = hlp_varargin2struct(varargin); % translate all ops (if they are specified as strings) defaultop = translateop(defaultop); fieldops = translateop(fieldops); % aggregate, then finalize res = finalize(aggregate(structs,defaultop,fieldops),defaultop,fieldops); function res = aggregate(structs,defaultop,fieldops) % we skip empty records structs = structs(~cellfun('isempty',structs)); % for any struct array in the input, we first merge it recursively as if it were a cell array for k=find(cellfun('length',structs)>1) structs{k} = hlp_aggregatestructs(structarray2cellarray(structs{k}),defaultop,fieldops); end % at this point, we should have a cell array of structs if ~isempty(structs) % we begin with the first struct res = structs{1}; % and aggregate the remaining ones onto it for i=2:length(structs) si = structs{i}; % proceeding field by field... for fn=fieldnames(si)' f = fn{1}; % figure out which operation applies if isfield(fieldops,f) % a field-specific op applies if isstruct(fieldops.(f)) % ... which is itself a struct fop = fieldops.(f); else op = fieldops.(f); end else % the default op applies op = defaultop; fop = fieldops; end % now process the field if ~isfield(res,f) % field is not yet in the aggregate: just assign res.(f) = si.(f); else % need to aggregate it if isstruct(res.(f)) && isstruct(si.(f)) % both are a struct: recursively aggregate res.(f) = aggregate({res.(f),si.(f)},op,fop); else % they are not both structus try % try to apply the combiner op res.(f) = op{1}(res.(f),si.(f)); catch % didn't work: try to concatenate as fallback try res.(f) = [res.(f),si.(f)]; catch % didn't work: try to assign as fallback (dropping previous field) res.(f) = si.(f); end end end end end end else % nothing to aggregate res = []; end function x = finalize(x,defaultop,fieldops) % proceed field by field... for fn=fieldnames(x)' f = fn{1}; % figure out which operation applies if ~isempty(fieldops) && isfield(fieldops,f) % a field-specific op applies if isstruct(fieldops.(f)) % ... which is itself a struct fop = fieldops.(f); else op = fieldops.(f); end else % the default op applies op = defaultop; fop = fieldops; end try % now apply the finalizer if isstruct(x.(f)) % we have a sub-struct: recurse x.(f) = finalize(x.(f),op,fop); else % we have a regular element: apply finalizer x.(f) = op{2}(x.(f)); end catch % for empty structs, x.(f) produces no output end end % translate string ops into actual ops, add the default finalizer if missing function op = translateop(op) if isstruct(op) % recurse op = structfun(@translateop,op,'UniformOutput',false); else % remap strings if ischar(op) switch op case 'cat' op = @(a,b)[a b]; case 'replace' op = @(a,b)b; case 'sum' op = @(a,b)a+b; case 'mean' op = {@(a,b)[a b], @(x)mean(x)}; case 'median' op = {@(a,b)[a b], @(x)median(x)}; case 'std' op = {@(a,b)[a b], @(x)std(x)}; case 'random' op = {@(a,b)[a b], @(x) x(min(length(x),ceil(eps+rand(1)*length(x))))}; case 'fillblanks' op = @(a,b)fastif(isempty(a),b,a); otherwise error('unsupported combiner op specified'); end end % add finalizer if missing if ~iscell(op) op = {op,@(x)x}; end end % inefficiently turn a struct array into a cell array of structs function res = structarray2cellarray(arg) res = {}; for k=1:numel(arg) res = [res {arg(k)}]; end % for the 'fillblanks' translate op function val = fastif(cond,trueval,falseval) if cond val = trueval; else val = falseval; end
github
ZijingMao/baselineeegtest-master
hlp_matlab_version.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_matlab_version.m
1,410
utf_8
ca4cb09e51849db00730a297a71d0869
function v = hlp_matlab_version() % Get the MATLAB version in a numeric format that can be compared with <, >, etc. % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA persistent vers; try v = vers(1); catch v = strsplit(version,'.'); v = str2num(v{1})*100 + str2num(v{2}); vers = v; end % Split a string according to some delimiter(s). Not as fast as hlp_split (and doesn't fuse % delimiters), but doesn't need bsxfun(). function strings = strsplit(string, splitter) ix = strfind(string, splitter); strings = cell(1,numel(ix)+1); ix = [0 ix numel(string)+1]; for k = 2 : numel(ix) strings{k-1} = string(ix(k-1)+1:ix(k)-1); end strings = strings(~cellfun('isempty',strings));
github
ZijingMao/baselineeegtest-master
hlp_diskcache.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_diskcache.m
21,219
utf_8
f71772574ae6ef73a7d234bf721dfe94
function varargout = hlp_diskcache(options, f, varargin) % Cache results of function invocations. % Results... = hlp_diskcache(Settings, Function, Arguments...) % % This function maintains a disk cache of function results in a user-specified folder and % if a result had already been computed before, it will be immediately looked up instead of being % computed again. % % This function should only be used for computations that take a long enough time to justify the % overhead since disk I/O can be relatively slow, since results can fill up the disk quickly, and % since there are important safety considerations (see below). % % In: % Settings : settings that determine where and what to cache (either a cell array of name-value % pairs or a struct). The most important options are: % * folder: the folder relative to which the results are saved (default: '.') % * freemem: the amount of memory that should remain free on the disk (in GB if > 1, % otherwise a fraction of total space) (default: 80) % * bypass: bypass caching system (default: false) % See Advanced Options below for further options, and see Pre-defining and Recalling % Settings for a way to separate the settings declaration from the call-site that % invokes hlp_diskcache. % % Function : function handle to compute a result from some arguments % % Arguments... : arguments to pass to the function % % Out: % Results... : return values of the function for the given arguments % % % Safety Notes: % 1) Only *referentially transparent* functions can be cached safely; if a function can give different % outputs for the same arguments, this can lead to subtle bugs; examples include functions that % refer to global state (global variables, files on disk). This can be fixed by turning all % dependencies of the function into arguments. Also, if a function's desired behavior includes % side effects (e.g., creating or updating files), it cannot be cached safely. This can be % worked around by caching only the core function that performs the actual computation (if % any). When applying functions to "smart" objects, make sure that the call does not % inadvertently fall under these categories (e.g., reads, creates or updates files or global % variables). % % 2) If the execution of a function changes, an obsolete result might be looked up from the cache. % Therefore the code of the passed-in function is checksummed against the code that calculated % the original result, however *none* of the functions called by that function will be checksummed % since it cannot readily be made fast enough. Therefore, if a dependent function changes and % that change affects results in the cache, you will want to delete or disable the cache. This is % especially important during debugging sessions. % % % Usability Notes: % 1) If you are debugging a function whose results are being cached, *bypass* the cache temporarily % (you can do this either below in the first code line, or at the call site by passing in 'bypass'). % % 2) If you do not want the cache to be invalidated when you change a function and you know what % you are doing, you can add a version line to your function that you increment whenever you % make a change that renders previous results obsolete. This requires very serious programmer % discipline and cannot possibly be enforced when multiple people edit the code at random. % % 3) Make sure that your disk is fast enough for the caching to make sense; ideally you want an SSD. % Do not use hlp_diskcache for small jobs that are very fast to compute -- use hlp_microcache % instead, which is in-memory (not persistent across MATLAB restarts) and extremely lightweight. % % % Advanced Options: % The following further settings can be passed for Settings: % * maxsize: don't save result files that are larger than this in bytes (default: Inf) % * minsize: don't save result files that are smaller than this in bytes (default: 0) % * mintime: don't save results that took less than this time to compute, in seconds (default: 0) % * versiontag: syntax of the optional version tag in your function's code (default: '$(funcname)_version<\S+>') % code versioning can be disabled by setting the versiontag to false (discouraged) % * subdir: the cache sub-directory relative to the folder; created if missing (default: 'diskcache') % * exactmatch_cutoff: if the input is larger than this many bytes, it will not be stored with the result % and will not be compared byte-for-byte during lookup, in bytes (default: 1000000) % note that the hash is usually strong enough to make a byte-for-byte check unnecessary % * cleanup: clean up old cache entries when running out of disk space (default: true) % * serialize: use serialization for the result, faster than raw save/load for large files (default: true) % * permissions: cell array of file permissions to use for created directories and files, as in fileattrib % (default: {'+w','a'}) % * bypass_if_folder_missing: if the given folder does not exist, the cache will be bypassed; % otherwise the folder will be created if missing (default: false) % note: this can be useful to prevent inadvertent littering of directories % with cache files when running from a different installation % overwrite_files: overwrite existing files (can create broken files when multiple processes write % to the same files in parallel) (default: false) % % % Pre-defining and Recalling Settings: % If Settings is passed in as a string instead of a cell array of name-value pairs or a struct, % it is taken as the name of a settings profile (similar to a cache "domain" in hlp_microcache). % Note that the profile name should be a valid MATLAB field name. % % Pre-defining settings for a profile: % To assign settings for a named cache profile, call: % > hlp_diskcache('myprofile','name',value,'name',value, ...) % Where myprofile is the name of the profile for which settings shall be assigned % and the names/values are the settings to assign to it (what would normally be passed as a % cell array). Note that settings are not persistent across MATLAB runs, so you'd need to % put them into an initializer or startup function. By default a "clear all" does not clear the % settings (this can be disabled by setting clearable_settings to true in the code below). % % Recalling settings from a profile: % To recall settings from a profile in a call of hlp_diskcache, just use the name of the % profile instead of the Settings cell array. It is permitted to recall from a profile that % has not been defined before (in this case, all defaults will be assumed). % % % Examples: % % if this line is executed for the first time, it is as slow as magic(2000) % % the result will be written into a sub-directory of ~/myresults % m = hlp_diskcache({'folder','./myresults'},@magic,2000); % % % if it is executed a second time, it is likely much faster than m=magic(2000) % % if the result is found on disk % m = hlp_diskcache({'folder','./myresults'},@magic,2000); % % % it is also possible to assign settings separately for a named 'profile', and then later recall % % them: % hlp_diskcache('myprofile','folder','./myresults','freemem',10); % m = hlp_diskcache('myprofile',@magic,2000); % % % See also: % hlp_microcache % % Depends on: % hlp_serialize, hlp_deserialize, hlp_cryptohash % % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2013-04-15 % Copyright (C) Christian Kothe, SCCN, 2013, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA bypass = false; % whether to bypass caching (switch for debugging) clearable_settings = false; % whether settings should be clearable by "clear all" archive_version = 1.0; % version of the archive format persistent settings; persistent have_translatepath; if isempty(have_translatepath) have_translatepath = exist('env_translatepath','file'); end % parse options if iscell(options) || isstruct(options) % options are directly given as cell array or struct options = assign_defaults(options); elseif ischar(options) % options is referring to the name of a profile profilename = options; % make sure that it exists if ~isfield(settings,profilename) settings.(profilename) = assign_defaults({}); end if isa(f,'function_handle') % recall options from it options = settings.(profilename); elseif ischar(f) % assign options to it varargin = [{f} varargin]; for k=1:2:length(varargin) settings.(profilename).(varargin{k}) = varargin{k+1}; end if ~clearable_settings mlock; end return; else error('Unrecognized syntax.'); end else error('Unrecognized syntax.'); end % make path platform-specific if ~have_translatepath options.folder = strrep(strrep(options.folder,'\',filesep),'/',filesep); else options.folder = env_translatepath(options.folder); end % optionally bypass the caching if bypass || options.bypass || (options.bypass_if_folder_missing && ~exist(options.folder,'dir')) [varargout{1:nargout}] = f(varargin{:}); return; end % get a unique identifier of the computation uid = hlp_serialize(trim_expression({nargout,f,func_version(f,options.versiontag),varargin})); % get a short hash value of that hash = hlp_cryptohash(uid); % get the file name under which this would be cached cachedir = [options.folder filesep options.subdir]; filename = [cachedir filesep hash(1:2) filesep hash(3:end) '.mat']; if exist(filename,'file') try % try to load from disk result = load(filename); % do some sanity checks if floor(result.settings.archive_version) > floor(archive_version) disp('Note: The file was saved with a newer major archive version. Performing a safe fallback...'); elseif ~all(isfield(result,{'settings','hash','uid','varargout'})) disp('The cached file is apparently malformed (missing some required fields). Performing a safe fallback...'); elseif ~isequal(result.hash,hash) disp('Note: the hash does not match that of the file on disk. Performing a safe fallback...'); elseif ~isempty(result.uid) && ~isequal(result.uid,uid) disp('Note: two results yielded the same MD5 hash; this should be a very rare event. Performing a safe fallback...'); else % deserialize data if necessary if result.settings.is_serialized result.varargout = hlp_deserialize(result.varargout); end % all went well: return result varargout = result.varargout; return; end catch e error_message('Could not look up result from disk',e); disp('Performing a safe fallback...'); end end result.settings = options; if numel(uid) <= result.settings.exactmatch_cutoff result.uid = uid; else result.uid = []; clear uid; end result.settings.is_serialized = result.settings.serialize; result.settings.archive_version = archive_version; result.hash = hash; % (re)calculate the result start_time = tic; [varargout{1:nargout}] = f(varargin{:}); computation_time = toc(start_time); % prepare result for writeback if result.settings.is_serialized try result.varargout = hlp_serialize(varargout); catch e error_message('Could not serialize the result (try to disable the option serialize)',e); disp('Saving result in unserialized form (can be slow).') result.varargout = varargout; end else result.varargout = varargout; end % do some size & time checks stats = whos('result'); resultsize = stats.bytes; if resultsize > options.maxsize % result too big to store return; elseif resultsize < options.minsize % result too small to store return; elseif computation_time < options.mintime % computation too short to be worth it return; else % ensure that we have enough space total_space = disk_total_space(filename); if options.freemem > 0 && total_space > 0 free_space = disk_free_space(filename); if options.freemem < 1 ensured_space = total_space * options.freemem; else ensured_space = options.freemem*(2^9); end if total_space && free_space-resultsize < ensured_space if ~options.cleanup return; end % generate a list of all result files allfiles = struct(); records = dir(cachedir); for d = 1:length(records) record = records(d); if record.isdir && length(record.name) == 2 && all(record.name~='.') % get a list of all MATAB files in this subdir files = dir([cachedir filesep record.name filesep '*.mat']); for f=1:length(files) files(f).path = [cachedir filesep record.name filesep files(f).name]; allfiles(end+1) = files(f); %#ok<AGROW> end % try to remove dirs that are empty if isempty(files) try rmdir([cachedir filesep record.name]); catch,end; end %#ok<CTCH> end end % delete old files as long as ours doesn't yet fit into memory [dummy,newest_to_oldest] = sort([allfiles.datenum],'descend'); %#ok<ASGLU> while ~isempty(newest_to_oldest) && disk_free_space(filename) - resultsize < ensured_space try delete(allfiles(newest_to_oldest(end)).path); catch,end %#ok<CTCH> newest_to_oldest = newest_to_oldest(1:end-1); end end else persistent message_shown; %#ok<TLEV> if isempty(message_shown) disp('Note: cannot determine free disk space on your platform, trying to cache results anyway. This message will only be shown once.'); message_shown = true; end end % save the result try % ensure that the target directory exists make_directories(filename,options.permissions); % save result file fldnames = fieldnames(result); if exist(filename,'file') && ~options.overwrite_files return; end if resultsize >= (2000*1024*1024) save(filename,'-struct','result',fldnames{:},'-v7.3'); else save(filename,'-struct','result',fldnames{:}); end % finalize file permissions if ~isempty(options.permissions) warning off MATLAB:FILEATTRIB:SyntaxWarning try fileattrib(filename,options.permissions{:}); catch e error_message('Note: could not set permissions for result file',e); end end catch e error_message('Could not cache result on disk',e); end end function options = assign_defaults(options) % Assign default settings to an options struct / name-value pair list if iscell(options) options = cell2struct(options(2:2:end),options(1:2:end),2); end if ~isfield(options,'folder') options.folder = '.'; end if ~isfield(options,'maxsize') options.maxsize = Inf; end if ~isfield(options,'minsize') options.minsize = 0; end if ~isfield(options,'mintime') options.mintime = 0; end if ~isfield(options,'freemem') options.freemem = 80; end if ~isfield(options,'versiontag') options.versiontag = '$(funcname)_version<\S+>'; end if ~isfield(options,'serialize') options.serialize = true; end if ~isfield(options,'subdir') options.subdir = 'diskcache'; end if ~isfield(options,'exactmatch_cutoff') options.exactmatch_cutoff = 1000000; end if ~isfield(options,'cleanup') options.cleanup = true; end if ~isfield(options,'permissions') options.permissions = {'+w','a'}; end if ~isfield(options,'bypass') options.bypass = false; end if ~isfield(options,'bypass_if_folder_missing') options.bypass_if_folder_missing = false; end if ~isfield(options,'overwrite_files') options.overwrite_files = false; end function x = trim_expression(x) % Recursively trim partially evaluated parts of a data structure containing expressions. % In particular, x.tracking.expression is replaced by x. if isfield(x,'tracking') && isfield(x.tracking,'expression') x = trim_expression(x.tracking.expression); elseif iscell(x) x = cellfun(@trim_expression,x,'UniformOutput',false); elseif isfield(x,{'head','parts'}) x.parts = trim_expression(x.parts); end function v = func_version(func,versiontag) % Get a version identifier of a MATLAB function; can be any of the following % * cell array of version strings of a MATLAB function, if present % * MD5 hash of the file if unversioned. % * string form of the input if there is no accessible file (e.g., anonymous function), % or if the versiontag is passed in as false try if ischar(func) filename = which(func); else filename = getfield(functions(func),'file'); end catch filename = ''; end func = char(func); if isequal(versiontag,false) || strncmp(char(func),'@',1) v = char(func); else if ~isempty(filename) % open the source file f = fopen(filename,'r'); try % read the code code = fread(f,Inf,'uint8=>char')'; % check if it contains the version descriptor tag v = regexp(code,strrep(versiontag,'$(funcname)',func),'match'); % otherwise we just hash the entire code if isempty(versiontag) || isempty(v) v = hlp_cryptohash(code); end fclose(f); catch %#ok<CTCH> try fclose(f); catch %#ok<CTCH> end v = func; end else % otherwise use the string representation as version v = func; end end function res = disk_total_space(path) % Get the amount of total space on the disk (can be 0 if the check fails). f = java.io.File(path); res = f.getTotalSpace(); function res = disk_free_space(path) % Get the amount of free space on the disk (can be 0 if the check fails). f = java.io.File(path); res = f.getFreeSpace(); function error_message(msg,e) % Display a formatted error message with traceback. if exist('hlp_handleerror','file') disp([msg ': ']); hlp_handleerror(e); else disp([msg ': ' e.message]); end function res = strsplit(str,delims) % Split a string according to some delimiter(s). pos = find(diff([0 ~sum(bsxfun(@eq,str(:)',delims(:)),1) 0])); res = cell(~isempty(pos),length(pos)/2); for k=1:length(res) res{k} = str(pos(k*2-1):pos(k*2)-1); end function make_directories(filepath,attribs) % Create directories recursively for a given file path. paths = strsplit(filepath,filesep); % find the base directory where the directory creation begins if filepath(1) == filesep % Unix, absolute curpath = filesep; first = 1; elseif ~isempty(strfind(paths{1},':')) && ispc % Windows, absolute curpath = [paths{1} filesep]; first = 2; else % relative curpath = [pwd filesep]; first = 1; end % determine where to stop if filepath(end) == filesep last = length(paths); else last = length(paths)-1; end % walk... for i=first:last if ~exist([curpath paths{i}],'dir') if ~mkdir(curpath,paths{i}) error(['Unable to create directory ' filepath]); else % set attributes if ~isempty(attribs) warning off MATLAB:FILEATTRIB:SyntaxWarning try fileattrib([curpath paths{i}],attribs{:}); catch e error_message(['Note: could not set permissions for created directory (' filepath ')'],e); end end end end curpath = [curpath paths{i} filesep]; %#ok<AGROW> end
github
ZijingMao/baselineeegtest-master
hlp_trycompile.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_trycompile.m
51,457
utf_8
23414826acf0e2e771679cbd7296fb01
function ok = hlp_trycompile(varargin) % Try to auto-compile a set of binary files in a folder, and return the status. % OK = hlp_trycompile(Options...) % % This function tries to ensure that a given set of functions or classes (specified by their % MATLAB identifier), whose source files are assumed to be located in a given directory, are % properly compiled. % % The Style parameter determines how the function proceeds: Either compilation is always done % ('force'), or only if necessary ('eager', e.g. if invalid file or changed source code). The check % for re-compilation may be done on every call ('eager'), or once per MATLAB session ('lazy'). % % The most common use case is specifying a given directory (and omitting the identifiers). In this % case, all source files that have a mexFunction declaration are compiled, and all other source % files are also supplied to the compiler as additional files. In case of compilation errors, % hlp_trycompile also tries to omit all additional files during compilation. Both the list of % additional files (or their file name patterns) or the considered file types can be specified. The % list of identifiers to consider can also be specified. % % Another possible use case is to omit both the identifiers and the directory. In this case, % hlp_trycompile assumes that a mex file with the same identifier (and path) as the calling function % shall be compiled. This is would be used in .m files which directly implement some fallback code % in case that the compilation fails (or which are just stubs to trigger the on-demand compilation). % % % Since there can be many different versions of a mex binary under Linux (even with the same name), % .mex files are by default moved into a sub-directory (named according to the hostname) after % compilation. This does not apply to .class files, which are not platform-specific. % % The function supports nearly all features of the underlying MEX compiler, and can thus be used % to compile a large variety of mex packages found in the wild (in some cases with custom defines, % libraries, or include directories). % % If you are debugging code with it, it is best to set Verbose to true, so that you get compilation % output. % % Additional features of this function include: % * Figures out whether the -largeArrayDims switch should be used. % * Repeated calls of this function are very fast if used in 'lazy' mode (so that it can be used in % an inner loop). % * Automatically rebuilds if the mex source has changed (does not apply to misc dependency files), % if used in 'eager' mode. % * By default uses the Mathworks versions of BLAS and LAPACK (if these libraries are pulled in). % * Supports both '/' and '\' in directory names. % * Behaves reasonably in deployed mode (i.e. gives warnings if files are missing). % * Also compiles .java files where appropriate. % * Supports test code. % % If this function produces errors for some mex package, the most common causes are: % * If the platform has never been used to compile code, an appropriate compiler may have to be % selected using "mex -setup". If no supported compiler is installed (e.g. on Win64), it must % first be doenloaded and installed (there is a free standard compiler for every platform). % * Some unused source files are in the directory which produce errors when they are automatically % pulled in. % --> turn on verbose output and identify & remove these (or check the supplied make file for % what files are actually needed) % * The functions require a custom define switch to work. % --> Check the make file, and add the switch(es) using the 'Defines' parameter. % * The functions use non-standard C code (e.g. // comments). % --> Tentatively rename the offending .c files into .cpp. % * The functions require a specific library to work. % --> Check the make file, and add the libraries using the 'Libaries' parameter. % * The functions require specific include directories to work. % --> Check the make file, and add the directories using the 'IncludeDirectories' parameter. % * The functions require additional files that are in a different directory. % --> Check the make file, and add these files using the 'SupportFiles' parameter. Wildcards are % allowed (in particular the special '*' string, which translates into all source files in % the Directory). % * The package assumes that mex is used with the -output option to use a custom identifier name % --> This type of make acrobatic is not supported by hlp_trycompile; instead, rename the source % file which has the mexFunction definition such that it matches the target identifier. % * The functions require specific library directories to work. % --> Check the make file, and add the directories using the 'LibraryDirectories' parameter. % % % In: % Style : execution style, can be one of the following (default: 'lazy') % 'force' : force compilation (regardless of whether the binaries are already there) % 'eager' : compile only if necessary, check every time that this function is called % 'lazy' : compile only if necessary, and don't check again during this MATLAB session % % --- target files --- % % Directory : directory in which the source files are located % (default: directory of the calling function) % % Identifiers : identifier of the target function/class, or cell array of identifiers that should % be compiled (default: Calling function, if no directory given, or names of all % compilable source files in the directory, if a directory is given.) % % FileTypes : file type patterns to consider as sources files for the Identifiers % (default: {'*.f','*.c','*.cpp','*.java'}) % % % --- testing conditions --- % % TestCode : MATLAB code (string) which evaluates to true if the compiled code is behaving % correctly (and false otherwise), or alternatively a function handle which does the % same % % % --- additional compiler inputs --- % % SupportFiles : cell array of additional / supporting source filenames to include in the compilation of all % Identifiers (default: '*') % Note: Any file listed here will not be considered part of the Identifiers, when % all contents of a directory are to be compiled. % Note: If there are support source files in sub-directories, include the full path % to them. % Note: If this is '*', all source files that are not mex files in the given % directory are used as support files. % % Libraries : names of libraries to include in the compilation % (default: {}) % % IncludeDirectories : additional directories in which to search for included source files. % (default: {}) % % LibraryDirectories : additional directories in which to search for referenced library files. % (default: {}) % % Defines : list of defined symbols (either 'name' or 'name=value' strings) % (default: {}) % % Renaming : cell array of {sourcefile,identifier,sourcefile,identifier, ...} indicating that % the MEX functions generated from the respective source files should be renamed to % the given identifiers. Corresponds to MEX's -output option; does not apply to Java files. % (default: {}) % % Arguments : miscellaneous compiler arguments (default: {}) % For possible arguments, type "help mex" in the command line % % DebugBuild : whether to build binaries in debug mode (default: false) % % % --- user messages --- % % ErrorMessage : the detail error message to display which describes what type of functionality % will not be available (if any). % Note: If you have a MATLAB fallback, mention this in the error message. % % PreparationMessage : the message that will be displayed before compilation begins. % (default: {}) % % Verbose : whether to display verbose compiler outputs (default: false) % % % --- misc options --- % % MathworksLibs : whether to use the Mathworks versions of std. libraries instead of OS-supplied % ones, if present (applies to blas and lapack) (default: true) % % DebugCompile : debug the compilation process; halts in the directory prior to invoking mex % (default: false) % % % Examples: % % try to compile all mex / Java files in a given directory: % hlp_trycompile('Directory','/Extern/MySources'); % % % as before, but restrict the set of identifiers to compile to a given set % hlp_trycompile('Directory','/Extern/MySources','Identifiers',{'svmtrain','svmpredict'}); % % % try to compile mex / Java files in a given directory, and include 2 libraries in the compilation % hlp_trycompile('Directory','/Extern/MySources','Libraries',{'blas','lapack'}); % % % like before, but this time include additional source files from two other directories % % (the single '*' means: include non-mex sources in the specified directory) % hlp_trycompile('Directory','/Extern/MySources','SupportFiles',{'*','../blas/*.c','../*.cpp'}); % % % like before, but this time add an include directory, a library directory, and some library % hlp_trycompile('Directory','/Extern/MySources', 'IncludeDirectories','/boost/include','LibraryDirectories','/boost/lib','Libraries','boost_date_time-1.44'); % % % like before, this time specifying some custom #define's % hlp_trycompile('Directory','/Extern/MySources','Defines',{'DEBUG','MAX=((a)>(b)?(a):(b))'}); % % % Use cases: % 1) In addition to a source file mysvd.c (compiling into mysvd.mex*), a stub .m file of the same % name can be placed in the same directory, which contains code to compile the binary when needed. % % function [U,S,V] = mysvd(X) % if hlp_trycompile % [U,S,V] = mysvd(X); % else % % either display an error message or implement some fallback code. % end % % 2) In a MATLAB function which makes use of a few mex files, ensure compilation of these files. % function myprocessing(X,y) % if ~hlp_trycompile('Identifiers',{'svmtrain.c','svmpredict.c'}) % error('Your binary files could not be compiled.'); % else % m = svmtrain(X,y); % l = svmpredict(X,m); % ... % end % % 3) In a startup script. % hlp_trycompile('Directory','/Extern/MySources'); % % See also: % mex % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-03-09 % Copyright (C) Christian Kothe, SCCN, 2011, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA persistent results; % a map of result-tag to OK value persistent compiler_selected; % whether a compiler has been selected (true/false, or [] if uncertain) % read options o = hlp_varargin2struct(varargin, ... ... % overall behavior {'style','Style'}, 'lazy', ... ... % target files {'dir','Directory'}, [], ... {'idents','Identifiers'}, [], ... {'types','FileTypes'}, {'*.c','*.C','*.cpp','*.CPP','*.f','*.F','*.java','*.Java'}, ... ... % test condition {'test','TestCode'},'', ... ... % additional compiler inputs {'support','SupportFiles'}, {'*'}, ... {'libs','Libraries'}, {}, ... {'includedirs','IncludeDirectories'}, {}, ... {'libdirs','LibraryDirectories'}, {}, ... {'defines','Defines'}, {}, ... {'args','Arguments'}, '', ... {'renaming','Renaming'}, {}, ... {'debug','DebugBuild'}, false, ... ... % messages {'errmsg','ErrorMessage'}, {'Some BCILAB functionality will likely not be available.'}, ... {'prepmsg','PreparationMessage'}, {}, ... {'verbose','Verbose'}, false, ... ... % misc {'mwlibs','MathworksLibs'}, true, ... {'debugcompile','DebugCompile'}, false ... ); % support for parameterless calls if isempty(o.dir) % if no dir given, use the calling function's directory [name,file] = hlp_getcaller(); o.dir = fileparts(file); if isempty(file) error('If hlp_trycompile is called without a directory, it must be called from within a file.'); end % if neither idents nor dir given, use the calling function's identifier if isempty(o.idents) o.idents = name; end end % uniformize ident format if isa(o.idents,'function_handle') o.idents = char(o.idents); end if ischar(o.idents) o.idents = {o.idents}; end if isempty(o.idents) o.idents = {}; end % decide whether a re-check can be skipped based on identifiers and directory if strcmp(o.style,'lazy') || isdeployed str = java.lang.String(sprintf('%s:',o.dir,o.idents{:})); tag = sprintf('x%.0f',str.hashCode()+3^31); if isfield(results,tag) ok = results.(tag); return; end end % uniformize directory format o.dir = path_normalize(o.dir); % verify style if ~any(strcmp(o.style,{'force','eager','lazy'})) error('Unsupported style: %s',o.style); end % uniformize test condition if isa(o.test,'function_handle') o.test = char(o.test); end % uniformize user messages if ischar(o.errmsg) o.errmsg = {o.errmsg}; end if ischar(o.prepmsg) o.prepmsg = {o.prepmsg}; end % uniformize types if ischar(o.types) o.types = {o.types}; end for t=1:length(o.types) if o.types{t}(1) ~= '*' o.types{t} = ['*' o.types{t}]; end end % uniformize compiler inputs if ischar(o.support) o.support = {o.support}; end if ischar(o.includedirs) o.includedirs = {o.includedirs}; end if ischar(o.libdirs) o.libdirs = {o.libdirs}; end if ischar(o.libs) o.libs = {o.libs}; end if ischar(o.defines) o.defines = {o.defines}; end if ischar(o.args) o.args = {o.args}; end for i=1:length(o.support) o.support{i} = path_normalize(o.support{i}); end for i=1:length(o.includedirs) o.includedirs{i} = path_normalize(o.includedirs{i}); end for i=1:length(o.libdirs) o.libdirs{i} = path_normalize(o.libdirs{i}); end % if a support is given as '*' starred = strcmp('*',o.support); if any(starred) % list all in the given directory that are not mex files infos = []; for t = 1:length(o.types) if ~isempty(infos) infos = [infos; dir([o.dir filesep o.types{t}])]; else infos = dir([o.dir filesep o.types{t}]); end end fnames = {infos.name}; supportfiles = ~cellfun(@(n)is_primary([o.dir filesep n]),fnames); o.support = [fnames(supportfiles) o.support(~starred)]; end % infer directory, if not given (take it from the calling function) if isempty(o.idents) && ~isempty(o.dir) % get all the source files in the given direcctory infos = []; for t = 1:length(o.types) if ~isempty(infos) infos = [infos; dir([o.dir filesep o.types{t}])]; else infos = dir([o.dir filesep o.types{t}]); end end fnames = {infos.name}; % ... but exclude the support files fnames = setdiff(fnames,o.support); % and apply any renamings to get the corresponding identifiers if ~isempty(o.renaming) for n=1:length(fnames) fnames{n} = hlp_rewrite(fnames{n},o.renaming{:}); end end % ... and strip off the extensions for n=1:length(fnames) fnames{n} = hlp_getresult(2,@fileparts,fnames{n}); end o.idents = fnames; end ok = false; missingid = []; % indices of missing identifiers (for dont-retry-next-time beacon files) if isdeployed % --- deployed mode --- % Can not compile, but figure out whether everything needed is present. A special consideration % is that both the mex files calling functions are in a mounted .ctf archive. % check if all identifiers are present (either as mex or class) for i=1:length(o.idents) if ~any(exist(o.idents{i}) == [2 3 8]) missingid(end+1) = i; end end ok = isempty(missingid); if ~isempty(missingid) % not all identifiers are compiled for this platform disp(['Note: The MEX functions/identifiers ' format_cellstr(o.idents(missingid)) ' are not included for your platform.']); elseif strcmp(o.style,'force') % in force mode, we remark that everything is already compiled disp_once(['The functions ' format_cellstr(o.idents) ' are properly compiled.']); end else % --- regular mode --- % here, we *do* compile what needs to be compiled % find out a key configuration settings is64bit = ~isempty(strfind(computer,'64')); has_largearrays = is64bit && hlp_matlab_version >= 703; if ispc warning off MATLAB:FILEATTRIB:SyntaxWarning; end % add a few missing defines if hlp_matlab_version < 703 o.defines = [o.defines {'mwIndex=int','mwSize=int','mwSignedIndex=int'}]; end % rewrite blas & lapack libs.... if o.mwlibs % for each type of library for l={'blas','lapack'} lib = l{1}; % note: this code is based on SeDuMi's compile script (by Michael C. Grant) in_use = strcmp(o.libs,lib); if any(in_use) if ispc if is64bit osdir = 'win64'; else osdir = 'win32'; end libpath = [matlabroot '\extern\lib\' osdir '\microsoft\libmw' lib '.lib']; if ~exist(libpath,'file') libpath = [matlabroot '\extern\lib\' osdir '\microsoft\msvc60\libmw' lib '.lib']; end if exist(libpath,'file') o.libs{in_use} = libpath; else disp_once('Note: The Mathworks library %s was assumed to be in %s, but not found.',lib,libpath); end else o.libs{in_use} = ['mw' lib]; end end end end try % remember the current directory & enter the target directory olddir = pwd; if hlp_matlab_version >= 706 go_back = onCleanup(@()cd(olddir)); end if ~exist(o.dir,'dir') error(['The target directory ' o.dir ' does not exist.']); end cd(o.dir); % expand regex patterns in o.support for i=length(o.support):-1:1 if any(o.support{i} == '*') found = dir(o.support{i}); if ~isempty(found) % ... and splice the results in basepath = fileparts(o.support{i}); items = cellfun(@(x)[basepath filesep x],{found.name},'UniformOutput',false); o.support = [o.support(1:i-1) items o.support(i+1:end)]; end end end % find all source & target files for the respective identifiers... % (note that there might be multiple source files for each one) sources = cell(1,length(o.idents)); % list of all source file names for the corresponding identifiers (indexed like idents) targets = cell(1,length(o.idents)); % list of all target file names for the corresponding identifiers (indexed like idents) for i=1:length(o.idents) if ~isempty(o.renaming) % the renaming may yield additional source file names for the given identifiers idx = strcmp(o.idents{i},o.renaming(2:2:end)); if any(idx) % the identifier is a renaming target: add the corresponding source file name filename = o.renaming{find(idx)*2-1}; % if a source file with this ident & type is present if exist([o.dir filesep filename],'file') % remember it & derive its respective target file name sources{i}{end+1} = filename; targets{i}{end+1} = [o.idents{i} '.' mexext]; end end end for t=1:length(o.types) filename = [o.idents{i} o.types{t}(2:end)]; % if a source file with this ident & type is present if exist([o.dir filesep filename],'file') % remember it sources{i}{end+1} = filename; % and also derive its respective target file name if strcmp(o.types{t},'*.java') targets{i}{end+1} = [o.idents{i} '.class']; else targets{i}{end+1} = [o.idents{i} '.' mexext]; end end end % check whether we have all necessary source files if isempty(sources{i}) error('Did not find source file for %s',o.idents{i}); end if isempty(targets{i}) error('Could not determine target file for %s',o.idents{i}); end end % check for existence (either .mex* or class) of all identifiers % and make a list of missing & present binary files; do this in a different directory, % to not shadow the mex files of interest with whatever .m files live in this directory cd .. binaries = {}; % table of existing binary file paths (indexed like idents) for i=1:length(o.idents) % get current file reference to this identifier binaries{i} = which(o.idents{i}); % if it doesn't point to a .mex or .class file, ignore it if ~any(exist(o.idents{i}) == [3 8]) binaries{i} = []; end if ~isempty(binaries{i}) % check whether it is correct file path if ~any(binaries{i} == filesep) error(['Could not determine the location of the mex file for: ' o.idents{i}]); end % check whether the referenced file actually exists in the file system if isempty(dir(binaries{i})) binaries{i} = []; end end % if no binary found, record it as missing if isempty(binaries{i}) missingid(end+1) = i; end end cd(o.dir); % check which of the existing binaries need to be re-compiled (if out of date) outdatedid = []; % indices of identifiers (in o.idents) that need to be recompiled for i=1:length(binaries) if ~isempty(binaries{i}) % get the date of the binary file bininfo = dir(binaries{i}); % find all corresponding source files srcinfo = []; for s=1:length(sources{i}) srcinfo = [srcinfo; dir([o.dir filesep sources{i}{s}])]; end if ~isfield(bininfo,'datenum') [bininfo.datenum] = celldeal(cellfun(@datenum,{bininfo.date},'UniformOutput',false)); end if ~isfield(srcinfo,'datenum') [srcinfo.datenum] = celldeal(cellfun(@datenum,{srcinfo.date},'UniformOutput',false)); end % if any of the source files has been changed if bininfo.datenum < max([srcinfo.datenum]) % check if their md5 hash is still the same... if exist([binaries{i} '.md5'],'file') try contents = load([binaries{i} '.md5'],'-mat','srchash'); % need to do that over all source files... srchash = []; sorted_sources = sort(sources{i}); for s=1:length(sorted_sources) srchash = [srchash hlp_cryptohash([o.dir filesep sorted_sources{s}],true)]; end if ~isequal(srchash,contents.srchash) % hash is different: mark binary as outdated outdatedid(end+1) = i; end catch % there was a probblem: mark as outdated outdatedid(end+1) = i; end else % no md5 present: mark as outdated outdatedid(end+1) = i; end end end end % we try to recompile both what's missing and what's outdated recompileid = [missingid outdatedid]; javainvolved = false; % for final error/help message generation mexinvolved = false; % same if ~isempty(recompileid) % need to recompile something -- display a few preparatory messages... for l=1:length(o.prepmsg) disp(o.prepmsg{l}); end failedid = []; % list of indices of identifier that failed the build % for each identifier, try to compile it % and record whether it failed for i=recompileid success = false; fprintf(['Compiling the function/class ' o.idents{i} '...']); % for each source file mapping to that identifier for s=1:length(sources{i}) % check type of source if ~isempty(strfind(sources{i}{s},'.java')) % we have a Java source file: compile [errcode,result] = system(['javac ' javac_options(o) sources{i}{s}]); if errcode javainvolved = true; % problem: show display output fprintf('\n'); disp(result); else success = true; break; end else % generate MEX options opts = mex_options(o); supp = sprintf(' %s',o.support{:}); if isempty(compiler_selected) % not clear whether a compiler has been selected yet if hlp_matlab_version >= 708 % we can find it out programmatically try cconf = mex.getCompilerConfigurations; %#ok<NASGU> compiler_selected = true; catch % no compiler has been selected yet... try % display a few useful hints to the user disp(' to compile this feature, you first need to select'); disp('which compiler should be used on your platform.'); if ispc if is64bit disp_once('As you are on 64-bit windows, you may find that no compiler is installed.'); else disp_once('On 32-bit Windows, MATLAB supplies a built-in compiler (LLC), which should'); disp_once('faithfully compile most C code. For broader support across C dialects (as well as C++), '); disp_once('you should make sure that a better compiler is installed on your system and selected in the following.'); end disp_once('A good choice is the free Microsoft Visual Studio 2005/2008/2010 Express compiler suite'); disp_once('together with the Microsoft Platform SDK (6.1 for 2008, 7.1 for 2010) for your Windows Version.'); disp_once('See also: http://argus-home.coas.oregonstate.edu/forums/development/core-software-development/compiling-64-bit-mex-files'); disp_once(' http://www.mathworks.com/support/compilers/R2010b/win64.html'); disp_once('The installation is easier if a professional Intel or Microsoft compiler is used.'); elseif isunix disp_once('On Linux/UNIX, the best choice is usually a supported version of the GCC compiler suite.'); else disp_once('On Mac OS, you need to have a supported version of Xcode/GCC installed.'); end % start the compiler selection tool mex -setup % verify that a compiler has been selected cconf = mex.getCompilerConfigurations; %#ok<NASGU> compiler_selected = true; catch compiler_selected = false; end end else disp(' you may be prompted to select a compiler in the following'); disp('(as BCILAB cannot auto-determine whether one is selected on your platform).'); end end if ~compiler_selected fprintf('skipped (no compiler selected).\n'); else if o.verbose || isempty(compiler_selected) % this variant will also be brought up if not sure whether a compiler % has already been selected... doeval = @eval; else doeval = @evalc; end % try to build the file try mexinvolved = true; % check if a renaming applies... idx = strcmp(sources{i}{s},o.renaming); if any(idx) rename = [' -output ' o.renaming{find(idx,1)+1} ' ']; else rename = ''; end if o.debugcompile % display a debug console to allow the user to debug how their file compiles fprintf('\nExecution has been paused immediately before running mex.\n'); disp(['You are in the directory "' pwd '".']); disp('The mex command that will be invoked in the following is:'); if has_largearrays disp([' mex ' opts ' -largeArrayDims ' rename sources{i}{s} supp]); else disp([' mex ' opts rename sources{i}{s} supp]); end fprintf('\n\nTo proceed normally, type "dbcont".\n'); keyboard; end if has_largearrays try % -largeArrayDims enabled try doeval(['mex ' opts ' -largeArrayDims ' rename sources{i}{s} supp]); % with supporting libaries catch doeval(['mex ' opts ' -largeArrayDims ' rename sources{i}{s}]); % without supporting libraries end catch % -largeArrayDims disabled try doeval(['mex ' opts rename sources{i}{s} supp]); % with supporting libaries catch doeval(['mex ' opts rename sources{i}{s}]); % without supporting libraries end end else % -largeArrayDims disabled try doeval(['mex ' opts rename sources{i}{s} supp]); % with supporting libaries catch doeval(['mex ' opts rename sources{i}{s}]); % without supporting libraries end end % compilation succeeded... if any(i==outdatedid) % there is an outdated binary, which needs to be deleted try delete(binaries{i}); catch disp(['Could not delete outdated binary ' binaries{i}]); end end % check whether the file is being found now if exist(o.idents{i}) == 3 success = true; compiler_selected = true; break; end catch % build failed end end end end % check if compilation of this identifier was successful if success % if so, we sign off the binary with an md5 hash of the sources... newbinary = which(o.idents{i}); try srchash = []; sorted_sources = sort(sources{i}); for s=1:length(sorted_sources) srchash = [srchash hlp_cryptohash([o.dir filesep sorted_sources{s}],true)]; end save([newbinary '.md5'],'srchash','-mat'); fprintf('success.\n'); catch disp('could not create md5 hash for the source files; other than that, successful.'); end else fprintf('failed.\n'); failedid(end+1) = i; end end embed_test = false; if isempty(failedid) % all worked: now run the test code - if any - to verify the correctness of the build if length(recompileid) > 1 if ~isempty(o.test) fprintf('All files in %s compiled successfully; now testing the build outputs...',o.dir); else fprintf('All files in %s compiled successfully.\n',o.dir); end elseif ~isempty(o.test) fprintf('Now testing the build outputs...'); end % test the output try ans = true; %#ok<NOANS> eval(o.test); catch ans = false; %#ok<NOANS> end if ans %#ok<NOANS> % the test was successful; now copy the files into a platform-specific directory if ~isempty(o.test) % only if we have a succeeding non-empty test embed_test = true; fprintf('success.\n'); end retainid = recompileid; eraseid = []; ok = true; else % the test was unsuccessful: remove all newly-compiled files... if ~isempty(o.test) fprintf('failed.\n'); end disp('The code compiled correctly but failed the build tests. Reverting the build...'); disp('If this is unmodified BCILAB code, please consider reporting this issue.'); retainid = []; eraseid = recompileid; end else if length(recompileid) > 1 if isempty(setdiff(recompileid,failedid)) fprintf('All files in %s failed to build; this indicates a problem in your build environment/settings.\n',o.dir); else fprintf('Some files in %s failed to build. Please make sure that you have a supported compiler; otherwise, please report this issue.\n',o.dir); end else disp('Please make sure that you have a supported compiler and that your build environment is set up correctly.'); disp('Also, please consider reporting this issue.'); end % compilation failed; only a part of the binaries may be available... retainid = setdiff(recompileid,failedid); eraseid = []; end % move the mex files into their own directory moveid = retainid(cellfun(@exist,o.idents(retainid)) == 3); if ~isempty(moveid) % some files to be moved dest_path = [o.dir filesep 'build-' hlp_hostname filesep]; % create a new directory if ~exist(dest_path,'dir') if ~mkdir(o.dir,['build-' hlp_hostname]) error(['unable to create directory ' dest_path]); end % set permissions try fileattrib(dest_path,'+w','a'); catch disp(['Note: There are permission problems for the directory ' dest_path]); end end % create a new env_add.m there try filename = [dest_path 'env_add.m']; fid = fopen(filename,'w+'); if embed_test % if we had a successful test, we use this to control inclusion of the mex files fprintf(fid,o.test); else % otherwise we check whether any one of the identifiers is recognized by % MATLAB as a mex function fprintf(fid,'any(cellfun(@exist,%s)==3)',hlp_tostring(o.idents(moveid))); end fclose(fid); fileattrib(filename,'+w','a'); catch disp(['Note: There were write permission problems for the file ' filename]); end % move the targets over there... movefiles = unique(o.idents(moveid)); for t = 1:length(movefiles) [d,n,x] = fileparts(which(movefiles{t})); movefile([d filesep n x],[dest_path n x]); try movefile([d filesep n x '.md5'],[dest_path n x '.md5']); catch end end % add the destination path addpath(dest_path); % and to be entirely sure, CD into that directory to verify that the files are being recognized... % (and don't get shadowed by whatever is in the directory below) cd(dest_path); all_ok = all(strncmp(dest_path,cellfun(@which,o.idents(moveid),'UniformOutput',false),length(dest_path))); cd(o.dir); % make sure that they are still being found... if ~all_ok error('It could not be verified that the MEX file records in %s were successfully updated to their new sub-directories.',o.dir); end end % move the java class files into their own directory infos = dir([o.dir filesep '*.class']); movefiles = {infos.name}; moveid = retainid(cellfun(@exist,o.idents(retainid)) ~= 3); if ~isempty(movefiles) % some files to be moved dest_path = [o.dir filesep 'build-javaclasses' filesep]; % create a new directory if ~exist(dest_path,'dir') if ~mkdir(o.dir,'build-javaclasses') error(['unable to create directory ' dest_path]); end % set permissions try fileattrib(dest_path,'+w','a'); catch disp(['Note: There are permission problems for the directory ' dest_path]); end end % create a new env_add.m there try filename = [dest_path 'env_add.m']; fid = fopen(filename,'w+'); fclose(fid); fileattrib(filename,'+w','a'); catch disp(['Note: There were write permission problems for the file ' filename]); end % move the targets over there... for t = 1:length(movefiles) movefile([o.dir filesep movefiles{t}],[dest_path movefiles{t}]); try movefile([o.dir filesep movefiles{t} '.md5'],[dest_path movefiles{t} '.md5']); catch end end % add the destination path if isdeployed warning off MATLAB:javaclasspath:jarAlreadySpecified; end javaaddpath(dest_path); % check whether the class is found if ~all(cellfun(@exist,o.idents(moveid)) == 8) disp_once('Not all Java binaries in %s could be recognized by MATLAB.',dest_path); end end if ~isempty(eraseid) % some files need to be erased... for k=eraseid for t=1:length(targets{k}) if exist([o.dir filesep targets{k}{t}]) try delete(targets{k}{t}); catch disp(['Could not delete broken binary ' binaries{i}{s}]); end end end end end else % nothing to recompile ok = true; if strcmp(o.style,'eager') && ~isempty(o.idents) && o.verbose disp_once(['The functions ' format_cellstr(o.idents) ' are already compiled.']); end end % go back to the old directory if hlp_matlab_version < 706 cd(olddir); end catch e ok = false; %#ok<NASGU> % go back to the old path in case of an error if hlp_matlab_version < 706 cd(olddir); end rethrow(e); end end % store the OK flag in the results if strcmp(o.style,'lazy') || isdeployed results.(tag) = ok; end if ~ok if ~isdeployed % regular error summary if mexinvolved disp_once('\nIn case you need to use a better / fully supported compiler, please have a look at:'); try v=version; releasename = v(find(v=='(')+1 : find(v==')')-1); if length(releasename) > 3 && releasename(1) == 'R' releasename = releasename(2:end); end site = ['http://www.google.com/search?q=matlab+supported+compilers+' releasename]; catch site = 'http://www.google.com/search?q=matlab+supported+compilers'; end disp_once(' <a href="%s">%s</a>\n',site,site); if ispc if is64bit disp_once('On 64-bit Windows, MATLAB comes with no built-in compiler, so you need to have one installed.'); else disp_once('On 32-bit Windows, MATLAB supplies a built-in compiler (LLC), which is, however, not very good.'); end disp_once('A good choice is the free Microsoft Visual Studio 2005/2008/2010 Express compiler suite'); disp_once('together with the Microsoft Platform SDK (6.1 for 2008, 7.1 for 2010) for your Windows Version.'); disp_once('See also: http://argus-home.coas.oregonstate.edu/forums/development/core-software-development/compiling-64-bit-mex-files'); disp_once(' http://www.mathworks.com/support/compilers/R2010b/win64.html'); disp_once('The installation is easier if a professional Intel or Microsoft compiler is used.'); elseif isunix disp_once('On Linux/UNIX, the best choice is usually a supported version of the GCC compiler suite.'); else disp_once('On Mac OS, you need to have a supported version of Xcode/GCC installed.'); end end if javainvolved disp_once('Please make sure that your system''s java configuration matches the one used by MATLAB (see "ver" command).'); end end end % create javac options string from options struct function opts = javac_options(o) verbosity = hlp_rewrite(o.verbose,true,'-verbose',false,''); if ~isempty(o.libdirs) cpath = ['-classpath ' sprintf('%s;',o.libdirs{:})]; cpath(end) = []; else cpath = ''; end if ~isempty(o.includedirs) ipath = ['-sourcepath ' sprintf('%s;',o.includedirs{:})]; ipath(end) = []; else ipath = ''; end debugness = hlp_rewrite(o.debug,true,'-g',false,'-g:none'); targetsource = '-target 1.6 -source 1.6'; opts = [sprintf(' %s',verbosity,cpath,ipath,debugness,targetsource) ' ']; % create mex options string from options struct function opts = mex_options(o) if ~isempty(o.defines) defs = sprintf(' -D%s',o.defines{:}); else defs = ''; end debugness = hlp_rewrite(o.debug,true,'-g',false,''); if ~isempty(o.includedirs) incdirs = sprintf(' -I"%s"',o.includedirs{:}); else incdirs = ''; end if ~isempty(o.libs) if ispc libs = sprintf(' -l"%s"',o.libs{:}); else libs = sprintf(' -l%s',o.libs{:}); end else libs = ''; end if ~isempty(o.libdirs) libdirs = sprintf(' -L"%s"',o.libdirs{:}); else libdirs = ''; end verbosity = hlp_rewrite(o.verbose,true,'-v',false,''); opts = [sprintf(' %s',defs,debugness,incdirs,libs,libdirs,verbosity) ' ']; % format a non-empty cell-string array into a string function x = format_cellstr(x) if isempty(x) x = ''; else x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}']; end % check whether a given identifier is frozen in a ctf archive function tf = in_ctf(ident) %#ok<DEFNU> tf = isdeployed && strncmp(ctfroot,which(ident),length(ctfroot)); % normalize a directory path function dir = path_normalize(dir) if filesep == '\'; dir(dir == '/') = filesep; else dir(dir == '\') = filesep; end if dir(end) == filesep dir = dir(1:end-1); end % determine if a given file is a mex source file or a java source file % (and compiles into an identifier that is seen by MATLAB) function tf = is_primary(filename) if length(filename)>5 && strcmp(filename(end-4:end),'.java') tf = true; return; else tf = false; end fid = fopen(filename); if fid ~= -1 try contents = fread(fid); tf = ~isempty(strfind(char(contents)','mexFunction')); %#ok<FREAD> fclose(fid); catch fclose(fid); end end % act like deal, but with a single cell array as input function varargout = celldeal(argin) varargout = argin; % for old MATLABs that can't properly move files... function movefile(src,dst) try builtin('movefile',src,dst); catch e if any([src dst]=='$') && hlp_matlab_version <= 705 if ispc [errcode,text] = system(sprintf('move ''%s'' ''%s''',src,dst)); %#ok<NASGU> else [errcode,text] = system(sprintf('mv ''%s'' ''%s''',src,dst)); %#ok<NASGU> end if errcode error('Failed to move %s to %s.',src,dst); end else rethrow(e); end end % for old MATLABs that don't handle Java classes on the dynamic path... function res = exist(obj,type) if nargin > 1 res = builtin('exist',obj,type); if ~res && (hlp_matlab_version <= 704) && strcmp(type,'class') && builtin('exist',[obj '.class'],'file') res = 8; end else res = builtin('exist',obj); if ~res && (hlp_matlab_version <= 704) && builtin('exist',[obj '.class']) res = 8; end end % for old MATLABs that don't handle Java classes on the dynamic path... function res = which(ident) res = builtin('which',ident); if ~any(res == filesep) if hlp_matlab_version <= 704 if isempty(res) || ~isempty(strfind(res,'not found')) res = builtin('which',[ident '.class']); end else if ~isempty(strfind(res,'Java')) res = builtin('which',[ident '.class']); end end end
github
ZijingMao/baselineeegtest-master
hlp_serialize.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_serialize.m
16,643
utf_8
3fb4a9c53a5cb6059f6ad2653c028e4b
function m = hlp_serialize(v) % Convert a MATLAB data structure into a compact byte vector. % Bytes = hlp_serialize(Data) % % The original data structure can be recovered from the byte vector via hlp_deserialize. % % In: % Data : some MATLAB data structure % % Out: % Bytes : a representation of the original data as a byte stream % % Notes: % The code is a rewrite of Tim Hutt's serialization code. Support has been added for correct % recovery of sparse, complex, single, (u)intX, function handles, anonymous functions, objects, % and structures with unlimited field count. Serialize/deserialize performance is ~10x higher. % % Limitations: % * Java objects cannot be serialized % * Arrays with more than 255 dimensions have their last dimensions clamped % * Handles to nested/scoped functions can only be deserialized when their parent functions % support the BCILAB argument reporting protocol (e.g., by using arg_define). % * New MATLAB objects need to be reasonably friendly to serialization; either they support % construction from a struct, or they support saveobj/loadobj(struct), or all their important % properties can be set via set(obj,'name',value) % * In anonymous functions, accessing unreferenced variables in the workspace of the original % declaration via eval(in) works only if manually enabled via the global variable % tracking.serialize_anonymous_fully (possibly at a significant performance hit). % note: this feature is currently not rock solid and can be broken either by Ctrl+C'ing % in the wrong moment or by concurrently serializing from MATLAB timers. % % See also: % hlp_deserialize % % Examples: % bytes = hlp_serialize(mydata); % ... e.g. transfer the 'bytes' array over the network ... % mydata = hlp_deserialize(bytes); % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-02 % % adapted from serialize.m % (C) 2010 Tim Hutt % hlp_serialize_version<1.00> % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % dispatch according to type if isnumeric(v) m = serialize_numeric(v); elseif ischar(v) m = serialize_string(v); elseif iscell(v) m = serialize_cell(v); elseif isstruct(v) m = serialize_struct(v); elseif isa(v,'function_handle') m = serialize_handle(v); elseif islogical(v) m = serialize_logical(v); elseif isobject(v) m = serialize_object(v); elseif isjava(v) warn_once('hlp_serialize:cannot_serialize_java','Cannot properly serialize Java class %s; using a placeholder instead.',class(v)); m = serialize_string(['<<hlp_serialize: ' class(v) ' unsupported>>']); else try m = serialize_object(v); catch warn_once('hlp_serialize:unknown_type','Cannot properly serialize object of unknown type "%s"; using a placeholder instead.',class(v)); m = serialize_string(['<<hlp_serialize: ' class(v) ' unsupported>>']); end end end % single scalar function m = serialize_scalar(v) % Data type & data m = [class2tag(class(v)); typecast(v,'uint8').']; end % char arrays function m = serialize_string(v) if size(v,1) == 1 % horizontal string: Type, Length, and Data m = [uint8(0); typecast(uint32(length(v)),'uint8').'; uint8(v(:))]; elseif sum(size(v)) == 0 % '': special encoding m = uint8(200); else % general char array: Tag & Number of dimensions, Dimensions, Data m = [uint8(132); ndims(v); typecast(uint32(size(v)),'uint8').'; uint8(v(:))]; end end % logical arrays function m = serialize_logical(v) % Tag & Number of dimensions, Dimensions, Data m = [uint8(133); ndims(v); typecast(uint32(size(v)),'uint8').'; uint8(v(:))]; end % non-complex and non-sparse numerical matrix function m = serialize_numeric_simple(v) % Tag & Number of dimensions, Dimensions, Data m = [16+class2tag(class(v)); ndims(v); typecast(uint32(size(v)),'uint8').'; typecast(v(:).','uint8').']; end % Numeric Matrix: can be real/complex, sparse/full, scalar function m = serialize_numeric(v) if isa(v,'gpuArray') m = serialize_numeric(gather(v)); elseif issparse(v) % Data Type & Dimensions m = [uint8(130); typecast(uint64(size(v,1)), 'uint8').'; typecast(uint64(size(v,2)), 'uint8').']; % vectorize % Index vectors [i,j,s] = find(v); % Real/Complex if isreal(v) m = [m; serialize_numeric_simple(i); serialize_numeric_simple(j); 1; serialize_numeric_simple(s)]; else m = [m; serialize_numeric_simple(i); serialize_numeric_simple(j); 0; serialize_numeric_simple(real(s)); serialize_numeric_simple(imag(s))]; end elseif ~isreal(v) % Data type & contents m = [uint8(131); serialize_numeric_simple(real(v)); serialize_numeric_simple(imag(v))]; elseif isscalar(v) % Scalar m = serialize_scalar(v); else % Simple matrix m = serialize_numeric_simple(v); end end % Struct array. function m = serialize_struct(v) % Tag, Field Count, Field name lengths, Field name char data, #dimensions, dimensions fieldNames = fieldnames(v); fnLengths = [length(fieldNames); cellfun('length',fieldNames)]; fnChars = [fieldNames{:}]; dims = [ndims(v) size(v)]; m = [uint8(128); typecast(uint32(fnLengths(:)).','uint8').'; uint8(fnChars(:)); typecast(uint32(dims), 'uint8').']; % Content. if numel(v) > length(fieldNames) % more records than field names; serialize each field as a cell array to expose homogenous content tmp = cellfun(@(f)serialize_cell({v.(f)}),fieldNames,'UniformOutput',false); m = [m; 0; vertcat(tmp{:})]; else % more field names than records; use struct2cell m = [m; 1; serialize_cell(struct2cell(v))]; end end % Cell array of heterogenous contents function m = serialize_cell_heterogenous(v) contents = cellfun(@hlp_serialize,v,'UniformOutput',false); m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'; vertcat(contents{:})]; end % Cell array of homogenously-typed contents function m = serialize_cell_typed(v,serializer) contents = cellfun(serializer,v,'UniformOutput',false); m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').'; vertcat(contents{:})]; end % Cell array function m = serialize_cell(v) sizeprod = cellfun('prodofsize',v); if sizeprod == 1 % all scalar elements if (all(cellfun('isclass',v(:),'double')) || all(cellfun('isclass',v(:),'single'))) && all(~cellfun(@issparse,v(:))) % uniformly typed floating-point scalars (and non-sparse) reality = cellfun('isreal',v); if reality % all real m = [uint8(34); serialize_numeric_simple(reshape([v{:}],size(v)))]; elseif ~reality % all complex m = [uint8(34); serialize_numeric(reshape([v{:}],size(v)))]; else % mixed reality m = [uint8(35); serialize_numeric(reshape([v{:}],size(v))); serialize_logical(reality(:))]; end else % non-float types if cellfun('isclass',v,'struct') % structs m = serialize_cell_typed(v,@serialize_struct); elseif cellfun('isclass',v,'cell') % cells m = serialize_cell_typed(v,@serialize_cell); elseif cellfun('isclass',v,'logical') % bool flags m = [uint8(39); serialize_logical(reshape([v{:}],size(v)))]; elseif cellfun('isclass',v,'function_handle') % function handles m = serialize_cell_typed(v,@serialize_handle); else % arbitrary / mixed types m = serialize_cell_heterogenous(v); end end elseif isempty(v) % empty cell array m = [uint8(33); ndims(v); typecast(uint32(size(v)),'uint8').']; else % some non-scalar elements dims = cellfun('ndims',v); size1 = cellfun('size',v,1); size2 = cellfun('size',v,2); if cellfun('isclass',v,'char') & size1 <= 1 %#ok<AND2> % all horizontal strings or proper empty strings m = [uint8(36); serialize_string([v{:}]); serialize_numeric_simple(uint32(size2)); serialize_logical(size1(:)==0)]; elseif (size1+size2 == 0) & (dims == 2) %#ok<AND2> % all empty and non-degenerate elements if all(cellfun('isclass',v(:),'double')) || all(cellfun('isclass',v(:),'cell')) || all(cellfun('isclass',v(:),'struct')) % of standard data types: Tag, Type Tag, #Dims, Dims m = [uint8(37); class2tag(class(v{1})); ndims(v); typecast(uint32(size(v)),'uint8').']; elseif length(unique(cellfun(@class,v(:),'UniformOutput',false))) == 1 % of uniform class with prototype m = [uint8(38); hlp_serialize(class(v{1})); ndims(v); typecast(uint32(size(v)),'uint8').']; else % of arbitrary classes m = serialize_cell_heterogenous(v); end else % arbitrary sizes (and types, etc.) m = serialize_cell_heterogenous(v); end end end % Object / class function m = serialize_object(v) try % try to use the saveobj method first to get the contents conts = saveobj(v); if isstruct(conts) || iscell(conts) || isnumeric(conts) || ischar(conts) || islogical(conts) || isa(conts,'function_handle') % contents is something that we can readily serialize conts = hlp_serialize(conts); else % contents is still an object: turn into a struct now conts = serialize_struct(struct(conts)); end catch % saveobj failed for this object: turn into a struct conts = serialize_struct(struct(v)); end % Tag, Class name and Contents m = [uint8(134); serialize_string(class(v)); conts]; end % Function handle function m = serialize_handle(v) % get the representation rep = functions(v); switch rep.type case {'simple','classsimple'} % simple function: Tag & name m = [uint8(151); serialize_string(rep.function)]; case 'anonymous' global tracking; %#ok<TLEV> if isfield(tracking,'serialize_anonymous_fully') && tracking.serialize_anonymous_fully % serialize anonymous function with their entire variable environment (for complete % eval and evalin support). Requires a stack of function id's, as function handles % can reference themselves in their full workspace. persistent handle_stack; %#ok<TLEV> % Tag and Code m = [uint8(152); serialize_string(char(v))]; % take care of self-references str = java.lang.String(rep.function); func_id = str.hashCode(); if ~any(handle_stack == func_id) try % push the function id handle_stack(end+1) = func_id; % now serialize workspace m = [m; serialize_struct(rep.workspace{end})]; % pop the ID again handle_stack(end) = []; catch e % note: Ctrl-C can mess up the handle stack handle_stack(end) = []; %#ok<NASGU> rethrow(e); end else % serialize the empty workspace m = [m; serialize_struct(struct())]; end if length(m) > 2^18 % If you are getting this warning, it is likely that one of your anonymous functions % was created in a scope that contained large variables; MATLAB will implicitly keep % these variables around (referenced by the function) just in case you refer to them. % To avoid this, you can create the anonymous function instead in a sub-function % to which you only pass the variables that you actually need. warn_once('hlp_serialize:large_handle','The function handle with code %s references variables of more than 256k bytes; this is likely very slow.',rep.function); end else % anonymous function: Tag, Code, and reduced workspace if ~isempty(rep.workspace) m = [uint8(152); serialize_string(char(v)); serialize_struct(rep.workspace{1})]; else m = [uint8(152); serialize_string(char(v)); serialize_struct(struct())]; end end case {'scopedfunction','nested'} % scoped function: Tag and Parentage m = [uint8(153); serialize_cell(rep.parentage)]; otherwise warn_once('hlp_serialize:unknown_handle_type','A function handle with unsupported type "%s" was encountered; using a placeholder instead.',rep.type); m = serialize_string(['<<hlp_serialize: function handle of type ' rep.type ' unsupported>>']); end end % *container* class to byte function b = class2tag(cls) switch cls case 'string' b = uint8(0); case 'double' b = uint8(1); case 'single' b = uint8(2); case 'int8' b = uint8(3); case 'uint8' b = uint8(4); case 'int16' b = uint8(5); case 'uint16' b = uint8(6); case 'int32' b = uint8(7); case 'uint32' b = uint8(8); case 'int64' b = uint8(9); case 'uint64' b = uint8(10); % other tags are as follows: % % offset by +16: scalar variants of these... case 'cell' b = uint8(33); case 'cellscalars' b = uint8(34); case 'cellscalarsmixed' b = uint8(35); case 'cellstrings' b = uint8(36); case 'cellempty' b = uint8(37); case 'cellemptyprot' b = uint8(38); case 'cellbools' b = uint8(39); case 'struct' b = uint8(128); case 'sparse' b = uint8(130); case 'complex' b = uint8(131); case 'char' b = uint8(132); case 'logical' b = uint8(133); case 'object' b = uint8(134); case 'function_handle' b = uint8(150); case 'function_simple' b = uint8(151); case 'function_anon' b = uint8(152); case 'function_scoped' b = uint8(153); case 'emptystring' b = uint8(200); otherwise error(['Unknown class: ' cls]); end end % emit a specific warning only once (per MATLAB session) function warn_once(varargin) persistent displayed_warnings; % determine the message content if length(varargin) > 1 && any(varargin{1}==':') && ~any(varargin{1}==' ') && ischar(varargin{2}) message_content = [varargin{1} sprintf(varargin{2:end})]; else message_content = sprintf(varargin{1:end}); end % generate a hash of of the message content str = java.lang.String(message_content); message_id = sprintf('x%.0f',str.hashCode()+2^31); % and check if it had been displayed before if ~isfield(displayed_warnings,message_id) % emit the warning warning(varargin{:}); % remember to not display the warning again displayed_warnings.(message_id) = true; end end
github
ZijingMao/baselineeegtest-master
hlp_varargin2struct.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_varargin2struct.m
6,991
utf_8
c99a9bbc7d04cae15828bc517e8e27fe
function res = hlp_varargin2struct(args, varargin) % Convert a list of name-value pairs into a struct with values assigned to names. % struct = hlp_varargin2struct(Varargin, Defaults) % % In: % Varargin : cell array of name-value pairs and/or structs (with values assigned to names) % % Defaults : optional list of name-value pairs, encoding defaults; multiple alternative names may % be specified in a cell array % % Example: % function myfunc(x,y,z,varargin) % % parse options, and give defaults for some of them: % options = hlp_varargin2struct(varargin, 'somearg',10, 'anotherarg',{1 2 3}); % % Notes: % * mandatory args can be expressed by specifying them as ..., 'myparam',mandatory, ... in the defaults % an error is raised when any of those is left unspecified % % * the following two parameter lists are equivalent (note that the struct is specified where a name would be expected, % and that it replaces the entire name-value pair): % ..., 'xyz',5, 'a',[], 'test','toast', 'xxx',{1}. ... % ..., 'xyz',5, struct( 'a',{[]},'test',{'toast'} ), 'xxx',{1}, ... % % * names with dots are allowed, i.e.: ..., 'abc',5, 'xxx.a',10, 'xxx.yyy',20, ... % % * some parameters may have multiple alternative names, which shall be remapped to the % standard name within opts; alternative names are given together with the defaults, % by specifying a cell array of names instead of the name in the defaults, as in the following example: % ... ,{'standard_name','alt_name_x','alt_name_y'}, 20, ... % % Out: % Result : a struct with fields corresponding to the passed arguments (plus the defaults that were % not overridden); if the caller function does not retrieve the struct, the variables are % instead copied into the caller's workspace. % % Examples: % % define a function which takes some of its arguments as name-value pairs % function myfunction(myarg1,myarg2,varargin) % opts = hlp_varargin2struct(varargin, 'myarg3',10, 'myarg4',1001, 'myarg5','test'); % % % as before, but this time allow an alternative name for myarg3 % function myfunction(myarg1,myarg2,varargin) % opts = hlp_varargin2struct(varargin, {'myarg3','legacyargXY'},10, 'myarg4',1001, 'myarg5','test'); % % % as before, but this time do not return arguments in a struct, but assign them directly to the % % function's workspace % function myfunction(myarg1,myarg2,varargin) % hlp_varargin2struct(varargin, {'myarg3','legacyargXY'},10, 'myarg4',1001, 'myarg5','test'); % % See also: % hlp_struct2varargin, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-05 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA if isstruct(args) args = {args}; end % --- handle defaults --- if ~isempty(varargin) % splice substructs into the name-value list if any(cellfun('isclass',varargin(1:2:end),'struct')) varargin = flatten_structs(varargin); end defnames = varargin(1:2:end); defvalues = varargin(2:2:end); % make a remapping table for alternative default names... for k=find(cellfun('isclass',defnames,'cell')) for l=2:length(defnames{k}) name_for_alternative.(defnames{k}{l}) = defnames{k}{1}; end defnames{k} = defnames{k}{1}; end % create default struct if [defnames{:}]~='.' % use only the last assignment for each name [s,indices] = sort(defnames(:)); indices( strcmp(s((1:end-1)'),s((2:end)'))) = []; % and make the struct res = cell2struct(defvalues(indices),defnames(indices),2); else % some dot-assignments are contained in the defaults try res = struct(); for k=1:length(defnames) if any(defnames{k}=='.') eval(['res.' defnames{k} ' = defvalues{k};']); else res.(defnames{k}) = defvalues{k}; end end catch error(['invalid field name specified in defaults: ' defnames{k}]); end end else res = struct(); end % --- handle overrides --- if ~isempty(args) % splice substructs into the name-value list if any(cellfun('isclass',args(1:2:end),'struct')) args = flatten_structs(args); end % rewrite alternative names into their standard form... if exist('name_for_alternative','var') for k=1:2:length(args) if isfield(name_for_alternative,args{k}) args{k} = name_for_alternative.(args{k}); end end end % override defaults with arguments... try if [args{1:2:end}]~='.' for k=1:2:length(args) res.(args{k}) = args{k+1}; end else % some dot-assignments are contained in the overrides for k=1:2:length(args) if any(args{k}=='.') eval(['res.' args{k} ' = args{k+1};']); else res.(args{k}) = args{k+1}; end end end catch if ischar(args{k}) error(['invalid field name specified in arguments: ' args{k}]); else error(['invalid field name specified for the argument at position ' num2str(k)]); end end end % check for missing but mandatory args % note: the used string needs to match mandatory.m missing_entries = strcmp('__arg_mandatory__',struct2cell(res)); if any(missing_entries) fn = fieldnames(res)'; fn = fn(missing_entries); error(['The parameters {' sprintf('%s, ',fn{1:end-1}) fn{end} '} were unspecified but are mandatory.']); end % copy to the caller's workspace if no output requested if nargout == 0 for fn=fieldnames(res)' assignin('caller',fn{1},res.(fn{1})); end end % substitute any structs in place of a name-value pair into the name-value list function args = flatten_structs(args) k = 1; while k <= length(args) if isstruct(args{k}) tmp = [fieldnames(args{k}) struct2cell(args{k})]'; args = [args(1:k-1) tmp(:)' args(k+1:end)]; k = k+numel(tmp); else k = k+2; end end
github
ZijingMao/baselineeegtest-master
hlp_superimposedata.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/helpers/hlp_superimposedata.m
6,265
utf_8
57e525f9b2247bd13dcfe2e4a88519fc
function res = hlp_superimposedata(varargin) % Merge multiple partially populated data structures into one fully populated one. % Result = hlp_superimposedata(Data1, Data2, Data3, ...) % % The function is applicable when you have cell arrays or structs/struct arrays with non-overlapping % patterns of non-empty entries, where all entries should be merged into a single data structure % which retains their original positions. If entries exist in multiple data structures at the same % location, entries of later items will be ignored (i.e. earlier data structures take precedence). % % In: % DataK : a data structure that should be super-imposed with the others to form a single data % structure % % Out: % Result : the resulting data structure % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-08-19 % Copyright (C) Christian Kothe, SCCN, 2011, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % first, compactify the data by removing the empty items compact = varargin(~cellfun('isempty',varargin)); if isempty(compact) res = []; else % start with the last data structure, then merge the remaining data structures into it (in reverse % order as this avoids having to grow arrays incrementally in typical cases) res = compact{end}; for k=length(compact)-1:-1:1 res = merge(res,compact{k}); end end % merge data structures A and B function A = merge(A,B) if iscell(A) && iscell(B) % make sure that both have the same number of dimensions if ndims(A) > ndims(B) B = grow_cell(B,size(A)); elseif ndims(A) < ndims(B) A = grow_cell(A,size(B)); end % make sure that both have the same size if all(size(B)==size(A)) % we're fine elseif all(size(B)>=size(A)) % A is a minor of B: grow A A = grow_cell(A,size(B)); elseif all(size(A)>=size(B)) % B is a minor of A: grow B B = grow_cell(B,size(A)); else % A and B have mixed sizes... grow both as necessary M = max(size(A),size(B)); A = grow_cell(A,M); B = grow_cell(B,M); end % find all non-empty elements in B idx = find(~cellfun(@(x)isequal(x,[]),B)); if ~isempty(idx) % check if any of these is occupied in A clean = cellfun('isempty',A(idx)); if ~all(clean) % merge all conflicting items recursively conflicts = idx(~clean); for k=conflicts(:)' A{k} = merge(A{k},B{k}); end % and transfer the rest if any(clean) A(idx(clean)) = B(idx(clean)); end else % transfer all to A A(idx) = B(idx); end end elseif isstruct(A) && isstruct(B) % first make sure that both have the same fields fnA = fieldnames(A); fnB = fieldnames(B); if isequal(fnA,fnB) % we're fine elseif isequal(sort(fnA),sort(fnB)) % order doesn't match -- impose A's order on B B = orderfields(B,fnA); elseif isempty(setdiff(fnA,fnB)) % B has a superset of A's fields: add the remaining fields to A, and order them according to B remaining = setdiff(fnB,fnA); for fn = remaining' A(1).(fn{1}) = []; end A = orderfields(A,fnB); elseif isempty(setdiff(fnB,fnA)) % A has a superset of B's fields: add the remaining fields to B, and order them according to A remaining = setdiff(fnA,fnB); for fn = remaining' B(1).(fn{1}) = []; end B = orderfields(B,fnA); else % A and B have incommensurable fields; add B's fields to A's fields, add A's fields to B's % and order according to A's fields remainingB = setdiff(fnB,fnA); for fn = remainingB' A(1).(fn{1}) = []; end remainingA = setdiff(fnA,fnB); for fn = remainingA' B(1).(fn{1}) = []; end B = orderfields(B,A); end % that being established, convert them to cell arrays, merge their cell arrays, and convert back to structs merged = merge(struct2cell(A),struct2cell(B)); A = cell2struct(merged,fieldnames(A),1); elseif isstruct(A) && ~isstruct(B) if ~isempty(B) error('One of the sub-items is a struct, and the other one is of a non-struct type.'); else % we retain A end elseif isstruct(B) && ~isstruct(A) if ~isempty(A) error('One of the sub-items is a struct, and the other one is of a non-struct type.'); else % we retain B A = B; end elseif iscell(A) && ~iscell(B) if ~isempty(B) error('One of the sub-items is a cell array, and the other one is of a non-cell type.'); else % we retain A end elseif iscell(B) && ~iscell(A) if ~isempty(A) error('One of the sub-items is a cell array, and the other one is of a non-cell type.'); else % we retain B A = B; end elseif isempty(A) && ~isempty(B) % we retain B A = B; elseif isempty(B) && ~isempty(A) % we retain A elseif ~isequal_weak(A,B) % we retain A and warn about dropping B warn_once('Two non-empty (and non-identical) sub-elements occupied the same index; one was dropped. This warning will only be displayed once.'); end % grow a cell array to accomodate a particular index % (assuming that this index is not contained in the cell array yet) function C = grow_cell(C,idx) tmp = sprintf('%i,',idx); eval(['C{' tmp(1:end-1) '} = [];']);
github
ZijingMao/baselineeegtest-master
utl_check_fingerprint.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_check_fingerprint.m
1,935
utf_8
ec068f208d9bfb62e93003b17b4e37c4
function x = utl_check_fingerprint(x,opts,ctx,exp) % Check whether the given argument is an inconsistent impure expression. % Data = utl_check_fingerprint(Data,Options,Context,Expressions) % % The remaining arguments are used only when the function is used as an argstep in exp_beginfun. % There, it serves as an argstep for 'filter'/'editing' functions, to check, fix up and warn about the value of % inconsistent impure expressions (expressions referring to signals, in particular) and data set values % (without any notion of expressions). % % See also: % hlp_fingerprint, exp_beginfun, exp_endfun % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-15 if ~exist('opts','var') opts.fingerprint_check = true; exp = []; ctx = []; end if isfield(x,'tracking') && all(isfield(x.tracking,{'expression','fingerprint'})) % get the fingerprint checking expression (either from the options or from the dynamic context) if isempty(opts.fingerprint_check) opts.fingerprint_check = hlp_resolve('fingerprint_check',true,ctx); end % this check can be selectively overridden with a block-scoped symbol 'fingerprint_check', which may be an expression that involves @expression % (the expression for which we are about to execute the check) if hlp_microcache('fprint_lookup',@is_enabled,opts.fingerprint_check,exp) if ~isequal(hlp_fingerprint(rmfield(x,'tracking')),x.tracking.fingerprint) error('expression is inconsistent with the attached value'); end end end % find out whether a given reference expression yields true if @expression is substituted with some substitution expression function res = is_enabled(ref_exp,subs_exp) if exp_eval(utl_releasehold(utl_replacerepeated(ref_exp,{exp_rule(@expression,subs_exp)})),inf) res = true; else res = false; end
github
ZijingMao/baselineeegtest-master
utl_memoize_lookup.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_memoize_lookup.m
8,255
utf_8
d560d4554b490a97703199eacfbc418b
function [action,result] = utl_memoize_lookup(exp,memo_ctrl,ctx) % Check for memoizability and/or availability of the given expression. % [Action,Result] = utl_memoize_lookup(Key-Expression,Memo-Locations) % % In: % Key-Expression : an expression that uniquely identifies the object to be looked up; % this expression is also required to be identical to the one stored in the looked-up object's .tracking.expression field % % Memo-Locations : cell array of location specifiers, given as name-value pairs. possible names are currently 'disk' and 'memory', and the value % is expected to be an expression that evaluates into 0 or 1, to indicate whether the given location is enabled for % storage/retrieval or not. The expression may use the symbol @expression to refer to the Key-Expression. The locations % are looked up in order, so the fastest locations should come first in the list. % % Out: % Action : the action to be taken by the caller, one of: % 'return' : result contains the object that shall be returned as first output argument % 'memoize': result contains a cell array of store locations to be used for storing the result, when it is eventually computed % - store locations begining with the fileep indicate disk locations, relative to the appropriate memoization domain % - store locations beginning with a . indicate memory locations, relative to the in-memory cache data structure % 'skip': do not memoize the result % % Result : the payload to which the action applies (either the successfully looked up result or the memoization % locations for a subsequent commit) % % Notes: % If a location further down in the list has the object in question but preceding ones do not, the object is implicitly commited % (copied) to these locations. % % See also: % utl_memoize_commit % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-05-23 global tracking; if ~exist('memo_ctrl','var') || (isempty(memo_ctrl) && ~iscell(memo_ctrl)) memo_ctrl = hlp_resolve('memoize',[],ctx); end action = 'skip'; result = {}; % first check whether the current expression is matched by anything in memoize if iscell(memo_ctrl) for i=1:2:length(memo_ctrl) % evaluate whether memoization is enabled right now, and get a hash of exp, if so, and [] otherwise exp_hash = hlp_microcache('cache_lookup',@hash_if_enabled,memo_ctrl{i+1},exp); if exp_hash % memoization is enabled for the following location location = memo_ctrl{i}; if strcmp(location,'disk') % DISK-BASED MEMOIZATION: compute the storage location according to some path schema memo_path = [filesep exp_hash(1:2) filesep exp_hash(3:end) '.mat']; if ~isfield(tracking,'cache') % cache disabled... return; end % try all known disk paths for lookup for p = fieldnames(tracking.cache.disk_paths)' try % try to load the file location = tracking.cache.disk_paths.(p{1}); file_location = [location.dir memo_path]; t0 = tic; load(file_location,'obj'); disp(['loaded ' file_location '.']); % delete the file if it is invalid for some reason (e.g. the machine crashed during saving) if ~exist('obj','var') && strcmp('.mat',file_location(end-3:end)) delete(file_location); error('error'); end % check whether the expression matches if ~iscell(obj) || isempty(obj) || ~isfield(obj{1}, 'tracking') || ~isfield(obj{1}.tracking,'expression') warning('BCILAB:exp_beginfun:memo_error','memoized object is not conformat; reverting...'); error('error'); end if ~utl_same(obj{1}.tracking.expression,exp) && ~isequal_weak(obj{1}.tracking.expression,exp) disp('exp_beginfun: hash conflict between '); disp(['* retrieved: ' exp_fullform(obj{1}.tracking.expression)]); disp(['* requested: ' exp_fullform(exp)]); error('error'); end % got the correct result: make the function return it if ~isempty(result) && strcmp(action,'memoize') % ... but first commit it to the other higher-priority memory locations that don't yet have it for r=1:length(result) utl_memoize_commit(obj,result{r}); end end result = obj; action = 'return'; try % ... and record some statistics on the read speed of this location... objinfo = whos('obj'); location.readstats(end+1) = struct('size',{objinfo.bytes},'time',{toc(t0)}); % write back the updated location record tracking.cache.disk_paths.(p{1}) = location; catch,end return; catch,end end % value not yet stored: we want to memoize after the function's body has been evaluated, so remember the location data action = 'memoize'; result{end+1} = memo_path; elseif strcmp(location,'memory') % MEMORY-BASED MEMOIZATION: compute the storage location according to a fieldname schema memo_field = ['x' exp_hash]; % check if the requested object is present try % found: return obj = tracking.cache.data.(memo_field); % check whether the expression matches if ~iscell(obj) || isempty(obj) || ~isfield(obj{1}, 'tracking') || ~isfield(obj{1}.tracking,'expression') warning('BCILAB:exp_beginfun:memo_error','memoized object is not conformat; reverting...'); error('error'); end if ~utl_same(obj{1}.tracking.expression,exp) && ~isequal_weak(obj{1}.tracking.expression,exp) disp('exp_beginfun: hash conflict during lookup.'); error('error'); end tracking.cache.times.(memo_field) = cputime; % for the least-recently used policy % got the correct result: make the function return it if ~isempty(result) && strcmp(action,'memoize') % ... but first commit it to the other higher-priority memory locations that don't yet have it for r=1:length(result) utl_memoize_commit(obj,result{r}); end end result = obj; action = 'return'; return; catch,end % not found: remember to memoize later action = 'memoize'; result{end+1} = ['.' memo_field]; end end end end % find out whether a given memoization expression for some expression is enabled, and obtain the expression's hash if so... function hash = hash_if_enabled(memo_exp,exp) if exp_eval(utl_releasehold(utl_replacerepeated(memo_exp,{exp_rule(@expression,exp)})),inf) hash = num2str(145342 + hlp_fingerprint(exp)); else hash = []; end
github
ZijingMao/baselineeegtest-master
utl_check_dataset.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_check_dataset.m
5,228
utf_8
9e99691540285666e5f5ec5dc35f01b4
function sig = utl_check_dataset(sig,opts,ctx,exp) % Check whether the given argument is an imporperly tracked data set and fix. % Data = utl_check_dataset(Data,Options,Context,Expressions) % % The remaining arguments are used only when the function is used as an argstep in exp_beginfun. % There, it serves as an argstep for 'filter'/'editing' functions, to check, fix up and warn about % the value of inconsistent impure expressions (expressions referring to signals, in particular) and % data set values (without any notion of expressions). % % See also: % exp_beginfun, exp_endfun % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-15 if ~exist('opts','var') opts.fingerprint_check = true; ctx = []; exp = []; end % check if we have a data set if isfield(sig,{'data','srate'}) if ~isfield(sig,'tracking') || ~isfield(sig.tracking,'expression') % the data set was imported from EEGLAB or the tracking info was ruined elseif isfield(sig.tracking,'fingerprint') % get the fingerprint checking expression (either from the options or from the dynamic scope) if isempty(opts.fingerprint_check) opts.fingerprint_check = hlp_resolve('fingerprint_check',true,ctx); end % check whether it is enabled if ~opts.fingerprint_check return; end if isequal(opts.fingerprint_check,true) || hlp_microcache('fprint_lookup',@is_enabled,opts.fingerprint_check,exp) fprint = hlp_fingerprint(rmfield(sig,'tracking')); if fprint ~= sig.tracking.fingerprint % the data set has been edited according to some fingerprint check else % no problem was spotted return; end else % fingerprinting disabled (nothing to check here...) return; end else return; % the data set does hot have a fingerprint end % --- the data set has been imported from EEGLAB or has been edited with it: do an implict flush-to-disk & re-import --- if isfield(sig,'tracking') if isfield(sig.tracking,'expression') sig.tracking = rmfield(sig.tracking,'expression'); end if isfield(sig.tracking,'online_expression') sig.tracking = rmfield(sig.tracking,'online_expression'); end if isfield(sig.tracking,'fingerprint') sig.tracking = rmfield(sig.tracking,'fingerprint'); end else sig.tracking = struct(); end % check for problems by scanning the history found_problem = 0; if isfield(sig,'history') % catch a few known to be problematic operations in the imported data set operations = { ... {{'pop_epoch'}, ... 'Note: The BCILAB framework cannot operate on datasets that have been epoched using pop_epoch in EEGLAB.\n'}, ... {{'pop_eegfilt','pop_runica'}, ... 'Note: The operation ''%s'' will neither allow to generate reliable predictions nor usable online models from the imported data set.\n'}, ... {{'pop_averef','pop_interp','pop_reref','pop_resample','pop_rmbase','pop_subcomp'}, ... 'Note: The operation ''%s'' will not allow to generate online models from the imported data set.\n'}, ... {{'pop_chansel','pop_rejchan','pop_rejchanspec','pop_select'}, ... ['Note: The operation ''%s'' requires that the channels supplied during online processing (and their order) match those' ... ' in the present data set.\n']}, ... }; for l=1:length(operations) for op=operations{l}{1} if strfind(sig.history,[op{1} '(']) fprintf(operations{l}{2},op{1}); found_problem = 1; end end end if found_problem fprintf(['\nIt is recommended that these operations be executed from BCILAB''s ' ... 'processing palette, since the operations implemented there are online-capable.\n']); end end % (re-) create the fingerprint, if necessary if ~exist('fprint','var') fprint = hlp_fingerprint(rmfield(sig,'tracking')); end % flush data to disk, if not already there... filepath = ['temp:/flushedsets/' num2str(fprint) '.set']; if ~exist(env_translatepath(filepath),'file') disp('Flushing data set to disk...'); EEG = sig; %#ok<NASGU> io_save(filepath,'EEG','-makedirs','-attributes','''+w'',''a'''); end % change the expression into a re-loading sig = io_loadset(filepath); elseif isfield(sig,{'head','parts'}) % we have an expression: check parts recursively... for p=1:length(sig.parts) sig.parts{p} = utl_check_dataset(sig.parts{p},opts,ctx,exp); end end % find out whether a given reference expression yields true if @expression is substituted with some substitution expression function res = is_enabled(ref_exp,subs_exp) if exp_eval(utl_releasehold(utl_replacerepeated(ref_exp,{exp_rule(@expression,subs_exp)})),inf) res = true; else res = false; end
github
ZijingMao/baselineeegtest-master
utl_crossval.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_crossval.m
18,571
utf_8
62c4543edf1543c8940dfdd6fa1c3662
function [measure,stats] = utl_crossval(data, varargin) % Run a generic cross-validation over indexable data. % [Measure, Stats] = utl_crossval(Data, Arguments...) % % Cross-validation [1] is a data resampling technique in which per each iteration (or "fold"), a % model is formed given a subset of the data (called the training set), and then its quality is % tested on the remaining portion of the data (called the test set). Most applications of % cross-validation ensure that each observation (or trial) in the data is used for testing in at % least one fold. The most common version is k-fold cross-validation, where the data is split into k % parts, and throughout k iterations of the algorithm, each of the parts is chosen as the test set % exactly once, while the remaining k-1 parts are used jointly to train the model that shall be % tested. Thus, each part of the data is used in k-1 training sets. % % The partitions of the data are traditionally chosen in a randomized fashion, under the assumption % that each trial is identically and independently distributed w.r.t. the others. This assumption % is wrong in time-series data (i.e. in almost all BCI cases). For this reason, the recommended % cross-validation scheme in BCILAB is "chronological" (a.k.a. "block-wise") cross-validation, where % the trials within the test set are taken from a compact interval of the underyling time series. % % In addition, it is recommended to exclude trials that are close to any of the test set trials % from use in the respective training set (these excluded trials are called safety margins). % % The utl_crossval function is primarily used for testing predictive models, i.e., models which are % learned to be able to estimate some "target" value for each data trial. Thus, the quality of a % model given some test data is primarily assessed by letting it predict target values for each test % trial, and comparing the outcomes with the known values for the given set of test trials. % % The data to be cross-validated can be in a variety of formats (as long as utl_crossval can % determine how to partition it), and a custom partitioning function can be supplied for completely % free-form data (such as EEGLAB data sets, which are handled by utl_dataset_partitioner). Aside % from the data, usually two functions need to be passed - one to learn a model from some data % portion (the 'trainer'), and one to test the learned model on some data portion (the 'tester'), by % making predictions. Further customization options include choice of the comparison metric (or % 'loss' function), choice of the function which extracts known target values from the data (as the % ground truth used in the comparison), as well as cluster parallelization options. % % In: % Data : some data that can be partitioned using index sets, such as, for example, % {X,y} with X being the [NxF] training data and y being the [Nx1] labels % (N=#trials, F=#features) % % Arguments : optional name-value pairs specifying the arguments: % 'trainer': training function; receives a partition of the data (as produced by % the specified partitioner), possibly some further arguments as % specified in args, and returns a model (of any kind) (default: % @ml_train; natively supports the {X,y} data format) % % 'tester' : testing function; receives a partition of the data (as produced by % the partitioner) and a model (as produced by the trainer), and % returns a prediction for every index of the input data, in one of the % formats that can be produced by ml_predict (default: @ml_predict) % % 'scheme': cross-validation scheme, can be one of the following formats (default: 10) % * 0: skip CV, return NaN and empty statistics % * k: k-fold randomized CV (or, if 0<k<1, k-holdhout CV) % * [r k]: r times repartitioned k-fold randomized CV (or, if 0<k<1, k-holdout CV % (with k a fraction)) % * [r k m]: r times repartitioned k-fold randomized CV (or, if 0<k<1, k-holdout CV % (with k a fraction)) with m indices margin width (between training and % test set) % * 'loo': leave-one-out CV % * {'chron', k} or {'block', k}: k-fold chronological/blockwise CV % * {'chron', k, m} or {'block', k, m}: k-fold chronological/blockwise CV with m % indices margin width (between training and % test set) % * 'trainerr': This is the training-set error, i.e. it is a measure of the % separability of the data (not of the generalization ability of the % classifier); it is usually an error to report this number in a paper % % 'partitioner': partitioning function for the data, receives two parameters: % (data, index vector) % * if the index vector is empty, should return the highest index in % the data OR a cell array of {training-partition,test-partition} % for each fold (in the latter case, the partitioner fully controls % the cross-validation scheme); for each fold, these two outputs % will be fed into the partitioner as second argument to generate the % training set and the test set, respectively % * otherwise, it should return data subindexed by the index vector % default: provides support for cell arrays, numeric arrays, struct % arrays and {Data,Target} cell arrays % % 'target': a function to derive the target variable from a partition of the data % (as produced by the partitioner), for evaluation; the allowed format is % anything that may be output by ml_predict default: provides support for % {Data,Target} cell arrays % % 'metric': metric to be employed, applied both to results of each fold and results % aggregated over all folds % * function handle: a custom, user-supplied loss function; receives target % data in the first argument and prediction data in the second argument; % each can be in any format that can be produced by ml_predict (but can be % expected to be mutually consistent). shall return a real number % indicating the summary metric over all data, and optionally additional % statistics in a struct % * string: use ml_calcloss, with 'metric' determining the loss type % * default/empty: use 'mcr','mse','nll','kld' depending on supplied target % and prediction data formats, via ml_calcloss % % 'args': optional arguments to the training function, packed in a cell array % (default: empty) % note: if using the default trainer/tester combination, args must at least % specify the learning function to be used, e.g. {'lda'} for linear % discriminant analysis (see ml_train* functions for options) % % 'repeatable': whether the randomization procedure shall give repeatable results % (default: 1); different numbers (aside from 0) give different % repeatable runs, i.e. the value determines the randseed % % 'return_models': whether to return models trained for each fold (default: false) % % 'engine_cv': parallelization engine to use (default: 'global'); see par_beginsschedule % % 'pool' : worker pool to use (default: 'global'); see par_beginsschedule % % 'policy': scheduling policy to use (default: 'global'); see par_beginschedule % % Out: % Measure : a measure of the overall performance of the trainer/tester combination, w.r.t. to the % target variable returned by the target function computed by the metric % % Stats : additional statistics, as produced by the metric % % Example: % % assuming a feature matrix called trials and a label vector called targets, sized as: % % trials: [NxF] array of training instances % % targets: [Nx1] array of labels % % % cross-validate using (shrinkage) linear discriminant analysis % [loss,stats] = utl_nested_crossval({trials,targets}, 'args',{'lda'}) % % % cross-validate using hierarchical kernel learning with a specific kernel % [loss,stats] = utl_nested_crossval({trials,targets}, 'args',{{'hkl' 'kernel' 'hermite'}}) % % Configuration Examples: % A simple training function would be: % @ml_train, with args being {'lda'} -- for this case, the data X (size NxF) and labels y % (size Nx1) should be supplied as {X,y} to utl_crossval % % A simple prediction function would be: % @ml_predict % % A simple partitioner for epoched EEG data sets would be: % function result = my_partitioner(data,indices,misc) % if isempty(indices) % result = data.trials; % else % result = exp_eval(set_selepos(data,indices)); % end % % A simple mean-square error loss metric would be: % my_metric = @(target,predicted) mean((target-predicted).^2); % % A simple target extraction function for epoched EEG data sets would be (assuming that there is % an epoch-associated target value): % my_target = @(data) [data.epoch.target]; % % References: % [1] Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification" % Wiley Interscience, 2000 % % See also: % utl_evaluate_fold, bci_train, utl_searchmodel, utl_nested_crossval % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-07 % read arguments opts = hlp_varargin2struct(varargin, ... 'scheme',10, ... 'partitioner',@utl_default_partitioner, ... 'target',@utl_default_target, ... 'metric',@(T,P) ml_calcloss([],T,P), ... 'trainer',@ml_train, ... 'tester',@utl_default_predict, ... 'args',{}, ... 'repeatable',1, ... 'collect_models',false, ... 'engine_cv','global', ... 'pool','global', ... 'policy','global'); % string arguments are considered to be variants of the default metric if isempty(opts.metric) || ischar(opts.metric) || (iscell(opts.metric) && all(cellfun(@ischar,opts.metric))) opts.metric = @(T,P)ml_calcloss(opts.metric,T,P); end if ~has_stats(opts.metric) opts.metric = @(T,P)add_stats(opts.metric(T,P)); end % derive indices from CV scheme & N inds = make_indices(opts.scheme,opts.partitioner(data,[]),opts.repeatable); if isempty(inds) measure = NaN; stats = struct(); else time0 = tic; % generate tasks for each fold for p = 1:length(inds) tasks{p} = {@utl_evaluate_fold,opts,data,inds{p}}; end % schedule the tasks results = par_schedule(tasks, 'engine',opts.engine_cv, 'pool',opts.pool, 'policy',opts.policy); % collect results for p=1:length(inds) % collect results targets{p} = results{p}{1}; predictions{p} = results{p}{2}; if opts.collect_models models{p} = results{p}{3}; end end % compute aggregate metric [dummy,stats] = opts.metric(utl_aggregate_results(targets{:}),utl_aggregate_results(predictions{:})); %#ok<ASGLU> % add per-fold metric for p=1:length(targets) stats.per_fold(p) = hlp_getresult(2,opts.metric,targets{p},predictions{p}); end % calculate basic cross-validation statistics tmp = [stats.per_fold.(stats.measure)]; stats.(stats.measure) = mean(tmp); stats.([stats.measure '_mu']) = mean(tmp); stats.([stats.measure '_std']) = std(tmp); stats.([stats.measure '_med']) = median(tmp); stats.([stats.measure '_mad']) = median(abs(tmp-median(tmp))); measure = mean(tmp); % also add the original targets & predictions for p=1:length(targets) stats.per_fold(p).targ = targets{p}; stats.per_fold(p).pred = predictions{p}; end % add original index sets if all(cellfun(@(inds) length(inds{1}) < 10000 && length(inds{2}) < 10000,inds)) for p=1:length(targets) stats.per_fold(p).indices = inds{p}; end end % add collected models, if any if opts.collect_models for p=1:length(models) stats.per_fold(p).model = models{p}; end end % add additional stats stats.time = toc(time0); end end function inds = make_indices(S,N,repeatable) % Inds = make_indices(Scheme,Index-Cardinality) % make cross-validation indices for each fold, from the scheme and the index set cardinality if iscell(N) && all(cellfun('isclass',N,'cell')) && all(cellfun('prodofsize',N)>=2) % the partitioner returned the index sets already; pass them through inds = N; else if strcmp(S,'trainerr') % special case: index set for computing the training-set error inds = {{1:N,1:N}}; else % regular case: proper cross-validation % set parameter defaults k = 10; % foldness or fraction of holdout data repeats = 1; % # of monte carlo repartitions randomized = 1; % randomized indices or not margin = 0; % width of the index margin between training and evaluation sets subblocks = 1; % number of sub-blocks within which to cross-validate % parse scheme grammar if isnumeric(S) && length(S) == 3 % "[repeats, folds, margin]" format repeats = S(1); k = S(2); margin = S(3); elseif isnumeric(S) && length(S) == 2 % "[repeats, folds]" format repeats = S(1); k = S(2); elseif iscell(S) && ~isempty(S) && ischar(S{1}) && ... (strcmp('chron',S{1}) || strcmp('block',S{1})) % "{'chron', k, m}" format randomized = 0; if length(S) > 1 && isscalar(S{2}) k = S{2}; end if length(S) > 2 && isscalar(S{3}) margin = S{3}; end elseif iscell(S) && ~isempty(S) && ischar(S{1}) && ... (strcmp('subchron',S{1}) || strcmp('subblock',S{1})) % "{'subchron', b, k, m}" format randomized = 0; if length(S) > 1 && isscalar(S{2}) subblocks = S{2}; end if length(S) > 2 && isscalar(S{3}) k = S{3}; end if length(S) > 3 && isscalar(S{4}) margin = S{4}; end elseif isscalar(S) % "k" format k = S; elseif ischar(S) && strcmp(S,'loo') % "'loo'" format k = N; elseif iscell(S) && all(cellfun('isclass',S,'cell')) && all(cellfun('prodofsize',S)>=2) % direct specification inds = S; return; else error('unknown cross-validation scheme format'); end % check for skipped CV inds = {}; if k <= 0 return; end if randomized && repeatable if hlp_matlab_version < 707 % save & override RNG state randstate = rand('state'); %#ok<*RAND> rand('state',5182+repeatable); %#ok<RAND> else % create a legacy-compatible RandStream randstream = RandStream('swb2712','Seed',5182+repeatable); end end % generate evaluation index sets from the parameters try if subblocks == 1 perm = 1:N; else Nblock = N + subblocks-mod(N,subblocks); perm = reshape(1:Nblock,[],subblocks)'; perm = round(perm(:)*N/Nblock); end for r=1:repeats if randomized if hlp_matlab_version < 707 perm = randperm(N); else perm = randstream.randperm(N); end end if k < 1 % p-holdout inds{end+1} = {sort(perm(1+(0:(round(N*k)-1))))}; else % k-fold for i=0:k-1 inds{end+1} = sort(perm(1+floor(i*N/k) : min(N,floor((i+1)*N/k)))); end end end catch err % % this error is thrown only after the subsequent delicate RNG state restoration indexgen_error = err; end if randomized && repeatable && hlp_matlab_version < 707 % restore saved RNG state rand('state',randstate); %#ok<RAND> end if exist('indexgen_error','var') rethrow(indexgen_error); end % throw the error that happened during previous index set creation % add complementary training index sets for i=1:length(inds) tmpinds = true(1,N); tmpinds(inds{i}) = 0; for j=1:margin tmpinds(max(1,inds{i}-j)) = 0; tmpinds(min(N,inds{i}+j)) = 0; end inds{i} = {find(tmpinds),inds{i}}; end end end end % test whether the given metric supplies stats or not function result = has_stats(metric) try [x,y] = metric([],[]); %#ok<NASGU,ASGLU> result = true; catch e result = ~any(strcmp(e.identifier,{'MATLAB:TooManyOutputs','MATLAB:maxlhs','MATLAB:unassignedOutputs'})); end end % add stats to the result of some metric function [result,stats] = add_stats(result) stats.value = result; end
github
ZijingMao/baselineeegtest-master
utl_prune_handles.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_prune_handles.m
1,215
utf_8
693a58479eb9a012c85a785e96e5a1ff
function x = utl_prune_handles(x) % Prune unreferenced workspace variables from anonymous functions in the given argument. % % In: % Data : an arbitrary data structure % % Out: % Data : the data structure with hidden references in anonymous functions removed % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-11-23 if iscell(x) % recurse into cell arrays... for k=1:numel(x) x{k} = utl_prune_handles(x{k}); end elseif isstruct(x) % recurse into structs... for f=fieldnames(x)' if ~isempty(x) [x.(f{1})] = celldeal(utl_prune_handles({x.(f{1})})); end end elseif isa(x,'function_handle') % inspect function handles f = char(x); if f(1) == '@' % anonymous function: take apart... parts = functions(x); % ... and put back together x = make_function(f,parts.workspace{1}); end end % create a function handle function f = make_function(decl__,workspace__) % create workspace for fn__=fieldnames(workspace__)' eval([fn__{1} ' = workspace__.(fn__{1}) ;']); end clear workspace__ fn__; % evaluate declaration f = eval(decl__);
github
ZijingMao/baselineeegtest-master
utl_resolve_streams.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_resolve_streams.m
16,798
utf_8
38280b0e6e9771ff30e132ca3877ac2d
function pip = utl_resolve_streams(pip,streams,chanlocs) % resolve the stream that each rawdata node in the given filter chain requires, given a list % of workspace stream names (or stream structs), and a subset of channels needed by above pipelines (where empty means 'all') % % In: % Pipeline : a filter chain or filter graph (cell array of filter chains) with rawdata nodes to resolve % % Streams : a cell array of workspace stream names, or a cell array of stream/dataset structs, % or a stream bundle (struct with .streams{} cell array); these are the candidates % that shall be subsituted into the open rawdata nodes % % Chanlocs : optionally the chanlocs structure that is expected at the outlet of the filter % chain, as cell array of chanlocs structs in case the pipeline is a filter graph; if % known, it can help in situations where a candidate stream provides fewer channels than % technically required by the filter chain -- but not effectively required as the chain % prunes some of them further down the processing % % Out: % Pipeline : the pipeline with matched streams filled in at the @rawdata nodes; % if streams was a name array, then the rawdata nodes are augmented with the stream name % (for online processing); otherwise, the expression of the respective stream is % substituted in place of the respective rawdata node % % See also: % bci_train, bci_predict, onl_newpredictor % % Notes: % The matching is generally case insensitive (both for channel labels and channel types). % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-11-23 % turn streams into a cell array if isstruct(streams) && isscalar(streams) && isfield(streams,'streams') streams = streams.streams; end if ~iscell(streams) streams = {streams}; end % resolve stream properties for s = 1:length(streams) if ischar(streams{s}) % stream given as a workspace variable name: % - can read out the chanlocs.labels directly from it % - we take the types as declared by the stream % - we substitute the variable name into the rawdata node, as we will refer to this stream online tmp = evalin('base',streams{s}); streams{s} = struct('labels',{{tmp.chanlocs.labels}},'types',{tmp.types},'substitute',streams{s}); elseif all(isfield(streams{s},{'chanlocs','tracking'})) % stream is given as a full data set: % - can read out the chanlocs & their types directly from it % - we substitute the streams expression in there streams{s} = struct('labels',{{streams{s}.chanlocs.labels}},'types',{unique({streams{s}.chanlocs.type})},'substitute',streams{s}.tracking.expression); elseif all(isfield(streams{s},{'head','parts'})) % stream is an unevaluated expression: % - we try to infer the chanlocs & their types from it without evaluating too much of it % - we substitute the stream expression itself streams{s} = resolve_stream_properties(streams{s}); end end % now resolve rawdata nodes using the stream information if ~iscell(pip) % pipeline given as single filter chain if exist('chanlocs','var') && ~isempty(chanlocs) labels = {chanlocs.labels}; if isfield(chanlocs,'type') types = unique({chanlocs.type}); else types = []; end else labels = []; types = []; end pip = resolve_rawdata(pip,streams,labels,types); else % pipeline given as a cell array: resolve each one by one if exist('chanlocs','var') && ~isempty(chanlocs) if ~iscell(chanlocs) error('If given, chanlocs should be a cell array with one cell for each chain in the filter graph.'); end if length(chanlocs) ~= length(pip) error('The Chanlocs array has a different number of elements than the filter graph.'); end for p = 1:length(pip) labels{p} = {chanlocs{p}.labels}; %#ok<AGROW> if isfield(chanlocs{p},'type') types{p} = unique({chanlocs{p}.type}); %#ok<AGROW> else types{p} = []; end end else labels = repmat({[]},1,length(pip)); types = repmat({[]},1,length(pip)); end for p = 1:length(pip) pip{p} = resolve_rawdata(pip{p},streams,labels{p},types{p}); end end function pip = resolve_rawdata(pip,streams,chan_subset,type_subset) % Resolve rawdata nodes in a single filter chain into streams. % % In: % Pipeline : the filter chain % % Streams : cell array of structs with fields .labels, .types, and .substitute % (.labels is a cell array of labels provided by the stream, .types is a cell array of % channel types (unique) provided by the stream, and .substitute is the object that % should be used for substitution in the respective rawdata slot if it matches) % % RequiredChannels : full set of channel labels that are required from this pipeline (may be a % subset of the channel labels expected at the @rawdata node, in which case % fewer channels need to be provided by a matching stream); may be a cell array % of channel labels or index range, or [] (which stands for "all channels" of this stage) % % RequiredTypes : full set of channel types that are required from this pipeline (may be a subset % of the types expected at the rawdata node, in which case fewer channeels need to % be provided by the matching stream); may also be [] (which stands for "all types" of this stage) % % Out: % Pipeline : the filter chain with @rawdata nodes substituted appropriately % phead = char(pip.head); if ~strcmp(phead,'rawdata') % --- intermediate node --- % figure out the needed channels & types along the way if strcmp(phead,'flt_selchans') % a selchans node: informs us that we need only a subset of channels from our input streams % find the last index in the pipeline's arguments that is 'channels'... % the channel selection is the argument following that (it is a name-value pair) ci = find(strcmp(pip.parts,'channels'),1,'last'); selected_chans = pip.parts{ci+1}; % our current channel working subset is either a subset of the selection done by this % flt_selchans or refers to "all" channels if isempty(chan_subset) % "all" channels required: we need the entire chan selection at this level chan_subset = selected_chans; elseif isnumeric(chan_subset) % we need an index subrange of pip.parts chan_subset = selected_chans(chan_subset); else % we known which named subset we need; the flt_selchans does not provide additional info end elseif strcmp(phead,'flt_seltypes') % a seltypes node: informs us that we need only a subset of channel types from here on if isempty(type_subset) % find the last index in the pipeline's arguments that is 'types'... % the channel selection is the argument following that (it is a name-value pair) ti = find(strcmp(pip.parts,'chantypes'),1,'last'); type_subset = pip.parts{ti+1}; if ~iscell(type_subset) type_subset = {type_subset}; end else % note: if we already have a type subset from farther up in the processing chain we % don't need additional info from this stage end else % a generic node: check if this one mixes channels -- in which case we need all channels & types from below props = hlp_microcache('props',@arg_report,'properties',pip.head,{hlp_fileinfo(pip.head,[],'hash')}); if ~props.independent_channels % the node doesn't have independent channels: need all channnels & types from below chan_subset = []; type_subset = []; end end % and follow down its inlets for p = find(cellfun(@(p)all(isfield(p,{'head','parts'})),pip.parts)) pip.parts{p} = resolve_rawdata(pip.parts{p},streams,chan_subset,type_subset); end else % --- reached a rawdata node: resolve it using streams --- % find out what types we need if isempty(type_subset) % all types from here are needed needed_types = pip.parts{2}; elseif iscell(type_subset) % can restrict the types according to the already known type subset (from further up the pipeline) needed_types = intersect(pip.parts{2},type_subset); else error('Unsupported type subset format.'); end % find out what channels we need if isempty(chan_subset) % all channels are needed needed_channels = pip.parts{1}; elseif iscell(chan_subset) % a particular named set of channels is needed needed_channels = chan_subset; elseif isnumeric(chan_subset) % an index range referring to the base channel set is needed needed_channels = pip.parts{1}(chan_subset); else error('Unsupported channel subset format.'); end satisfies_channels = logical([]); % the stream can provide all the channels required by the pipeline (ideal case if non-ambiguous) satisfies_types = logical([]); % the stream has the same number of channels and set of types as required by the pipeline (happens when the online plugin doesn't supply the correct channel labels...) % for each stream... for s = 1:length(streams) % find out if the stream matches satisfies_channels(s) = isempty(fast_setdiff(lower(needed_channels),lower(streams{s}.labels))); satisfies_types(s) = length(pip.parts{1}) == length(streams{s}.labels) && isequal(sort(lower(needed_types)),lower(streams{s}.types)); end % resolve the stream used for this rawdata node if nnz(satisfies_channels) == 1 % found exactly one applicable stream strm = streams{satisfies_channels}; if ischar(strm.substitute) % substitute a variable name into the rawdata node pip = struct('head',@rawdata,'parts',{{strm.substitute,set_chanid(strm.labels,needed_channels)}}); else % substitute the rawdata node by the stream's expression pip = strm.substitute; end else % no clear-cut case: check whether the channel numbers & set of types matches if nnz(satisfies_channels) > 1 % found more than one stream: include the type constraint if nnz(satisfies_channels & satisfies_types) == 1 % now it is non-ambiguous, but warn warning('BCILAB:onl_newpredictor:ambiguous','More than one of the supplied/available streams could supply the required channels; falling back to basic channel type requirements to resolve the ambiguity.'); strm = streams{satisfies_channels & satisfies_types}; if ischar(strm.substitute) % stream given as a variable name: augment the rawdata node pip = struct('head',@rawdata,'parts',{{strm.substitute,set_chanid(strm.labels,needed_channels)}}); else % substitute the rawdata node by the stream's expression pip = strm.substitute; end elseif nnz(satisfies_channels & satisfies_types) > 1 % still ambiguous error('BCILAB:onl_newpredictor:ambiguous','More than one of the supplied/available streams could supply the required channels & types; please provide the desired subset of streams.'); else % the additional constraint eliminates all options error('BCILAB:onl_newpredictor:ambiguous','More than one of the supplied/available streams could supply the required channels; please provide the desired subset of streams.'); end elseif nnz(satisfies_types) == 1 % found exactly one stream which has the correct number of channels and the same set of types warning('BCILAB:onl_newpredictor:ambiguous','No stream was found which contains the required channels; however, a stream was found to have the same number of channels and set of types as required by the pipeline.'); strm = streams{satisfies_types}; if ischar(strm) % stream given as a variable name: augment the rawdata node pip = struct('head',@rawdata,'parts',{{strm,1:length(strm.labels)}}); else % substitute the rawdata node by the stream's expression pip = strm.substitute; end else % found no applicable stream error('BCILAB:onl_newpredictor:nostream',['None of the supplied/available streams has the required channels: ' hlp_tostring(needed_channels) '.']); end end end function output = resolve_stream_properties(stream) % recursively infer the channel labels & types, as well as the substitution expression produced by this pipeline stage if isfield(stream,'chanlocs') % we have reached a data set node: derive all properties output.chanlocs = stream.chanlocs; output.labels = {stream.chanlocs.labels}; output.types = unique({stream.chanlocs.type}); try output.substitute = stream.tracking.expression; catch %#ok<CTCH> error('Reached a dataset node which is lacking an associated expression. This should have been resolved previously using utl_check_dataset or utl_check_bundle.'); end elseif all(isfield(stream,{'head','parts'})) % we are looking at a symbolic expression output.substitute = stream; % check if it is a special known one shead = char(stream.head); switch(shead) case 'io_loadset' % the chanlocs info can be obtained from the underlying raw data set tmp = exp_eval_optimized(stream); output.chanlocs = tmp.chanlocs; output.labels = {tmp.chanlocs.labels}; output.types = unique({tmp.chanlocs.type}); case 'flt_selchans' % a channel subset has been selected here: get the chanlocs from further below... subprops = resolve_stream_properties(stream.parts{find(cellfun(@(p)all(isfield(p,{'head','parts'})),stream.parts),1)}); % and get the selected channel labels selection = stream.parts{find(strcmp(stream.parts,'channels'),1,'last')+1}; output.chanlocs = subprops.chanlocs(set_chanid(subprops.chanlocs,selection)); output.labels = {output.chanlocs.labels}; output.types = unique({output.chanlocs.type}); case 'flt_seltypes' % a type subset has been selected here: get the chanlocs from further below subprops = resolve_stream_properties(stream.parts{find(cellfun(@(p)all(isfield(p,{'head','parts'})),stream.parts),1)}); % and get the selected type labels selection = stream.parts{find(strcmp(stream.parts,'types'),1,'last')+1}; if ~iscell(selection) selection = {selection}; end % now restrict both the types and the chanlocs appropriately [dummy,ia] = intersect(lower({subprops.chanlocs.type}),lower(selection)); %#ok<ASGLU> output.chanlocs = subprops.chanlocs(ia); output.labels = {output.chanlocs.labels}; output.types = unique({output.chanlocs.type}); case 'exp_block' output = resolve_stream_properties(stream.parts{2}); otherwise % generic expression node: check if this node mixes up channels ... props = hlp_microcache('props',@arg_report,'properties',stream.head,{hlp_fileinfo(stream.head,[],'hash')}); if isfield(props,'independent_channels') && props.independent_channels % has independent channels: just take the output from below output = resolve_stream_properties(stream.parts{find(cellfun(@(p) any(isfield(p,{'parts','chanlocs'})),stream.parts),1)}); output.substitute = stream; else % does not have independent channels: need to evaluate the sub-expression tmp = exp_eval_optimized(stream); output.chanlocs = tmp.chanlocs; output.labels = {tmp.chanlocs.labels}; output.types = unique({tmp.chanlocs.type}); end end end
github
ZijingMao/baselineeegtest-master
utl_collection_partition.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_collection_partition.m
14,933
utf_8
ac43428cc40e2b8adf3e76d0eb985dfc
function res = utl_collection_partition(collection,inds,settings) % Partition a dataset collection according to some settings % Result = utl_collection_partition(Collection,IndexSet,Settings) % % In: % Collection : a dataset collection, i.e. cell array of structs with meta-data % % IndexSet : the index set to use for partitioning; this partitioner is somewhat special; % * if this is [], the function generates the partitioning, i.e. returns % a cell array of partitions, each of which is a cell array of: % {training collection, test collection, {'goal_identifier',identifier for test collection}} % % * otherwise, we assume that this is one of the partitioned collections that we % generated, and just return it unmodified % % Settings : the settings for the partitioning; may have the following fields (or names, if given % as a cell array of NvPs): % % 'restrict_to' : struct with properties to which the test sets under consideration are % restricted (default: blank / no restriction) % 'exclude' struct with a property signature to exclude from the test sets % or a cell array of multiple signatures to exclude % 'test_on' : identifier that determines the items to use as test sets (default: % coarsest granularity out of the known identifiers or element-by-element, % if none known) % 'consider' : modifier that determines how to pack and optionally prune the test % items ('each', 'all', 'last', or 'allexceptfirst') % (default: 'each') % 'per' : if consider is not each, determines the context to which the % packing and pruning operation of 'consider' refers % (default: next coarser granularity than test_on) % % 'scope_order' : odering of partitioning-relevant properties from coarsest granularity % to finest (default: {'group','subject','day','montage','session','recording'} % % This expresses, among others, that there exist multiple sessions % (say 1,2,3) for each subject -- i.e. the session property is *per % subject*, and thus two sets tagged with session 3 do not % necessarily refer to the same unique session (unless the subject, % day, montage (if present) are also the same. If any such nesting % relationship is properly expressed, the 'test_on' and 'per' settings % will work as expected. % % Out: % Result : result of the partitioning; depends on the IndexSet % % See also: % set_partition, bci_train % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-08-29 if isempty(inds) settings = hlp_varargin2struct(settings, ... {'scope_order','ScopeOrdering'}, {'group','subject','day','montage','session','recording'}, ... % the known granularities ordered from coarsest to finest {'restrict_to','RestrictTo'}, [], ... % struct with properties to which restrict test considered test sets (default: blank) {'exclude','Exclude'}, {}, ... % struct with a property signature to exclude from the test sets, or cell array of such structs) (default: blank) {'test_on','TestOn'}, [], ... % identifier that determines the items to use as test sets (default: coarsest known granularity) {'consider','Consider'},'each', ... % specifier that determines which items to consider (options: 'each','all','last','allexceptfirst') {'per','Per'},[] ... % if consider is not each, determines the context to which the last/allbutfirst refers (default: next coarsest granularity) ); known_granularities = settings.scope_order; if length(unique(known_granularities)) < length(known_granularities) error('Please do not pass duplicates in the scope_order parameter.'); end % first tag all items in the collection with a unique tracking id % (will be used towards the end to determine the contents of the respective training sets) for k=1:length(collection) collection{k}.tracking_index = k; end % restrict the collection of test set material according to the restrict_to property test_material = collection; if ~isempty(settings.restrict_to) for fn = fieldnames(settings.restrict_to)' field = fn{1}; present = find(cellfun(@(x)isfield(x,field),test_material)); if isempty(present) fprintf('None of the sets in the collection has the property "%s"; ignoring this restriction.\n',field); else test_material = test_material(present); end restrictor = settings.restrict_to.(field); retain = cellfun(isequal_weak(@(x)x.(field),restrictor),test_material,'UniformOutput',false); if ~any(retain) fprintf('None of the sets in the collection has value "%s" for property "%s"; ignoring this restriction.\n',hlp_tostring(restrictor),field); else test_material = test_material(retain); end end end % implement the exclusion if isstruct(settings.exclude) settings.exclude = {settings.exclude}; end % for each excluder... for e=1:length(settings.exclude) ex = settings.exclude{e}; % go through all fields and identify matches potential_match = true(1,length(test_material)); for fn=fieldnames(ex)' field = fn{1}; val = ex.(field); present = cellfun(@(x)isfield(x,field),test_material); matching_value = true(1,length(test_material)); matching_value(present) = cellfun(@(x)isequal_weak(x.(field),val),test_material(present)); potential_match = potential_match & present & matching_value; end % retain only the non-matching test items test_material = test_material(~potential_match); end % remove all entries from known_granularities which are not contained in the test material and % remove all elements from the test material which are lacking one of the remaining granularity properties retain = []; for k=1:length(known_granularities) gran = known_granularities{k}; present = cellfun(@(x)isfield(x,gran),test_material); if any(present) test_material = test_material(present); retain(end+1) = k; end end known_granularities = known_granularities(retain); if isempty(settings.test_on) % use coarsest granularity to test on if ~isempty(known_granularities) settings.test_on = known_granularities{1}; end end if ~strcmp(settings.consider,'each') if isempty(settings.per) % need to determine the granularity at which to pack test items if isempty(settings.test_on) % we're testing on individual data items, so the finest known granularity in the % data will be used for grouping if ~isempty(known_granularities) settings.per = known_granularities{end}; end else % see if we can find the next-coarser granularity known_gran = find(strcmp(settings.test_on,known_granularities),1); if ~isempty(known_gran) if known_gran == 1 error('The testing is already performed at the coarsest known granularity; cannot determine a coarser granularity to group data into. You may specify the ''per'' property manually.'); else settings.per = known_granularities{known_gran-1}; end end end if isempty(settings.per) error('Please specify a granularity (i.e. a property) over which the ''consider'' clause should apply.'); end end % prune the test material appropriately present = find(cellfun(@(x)isfield(x,settings.per),test_material)); if isempty(present) error('None of the sets in the collection has the ''per'' property "%s".\n',settings.per); else % exclude all items that are lacking the given field test_material = test_material(present); end end % build the test sets, which is a cell array of collections -- one per test set test_sets = {}; if isempty(settings.test_on) % test at the granularity of data sets in the collection (finest) for k=1:length(test_material) test_sets{k} = {test_material{k}}; end else % test at the given granularity present = find(cellfun(@(x)isfield(x,settings.test_on),test_material)); if isempty(present) error('None of the sets in the collection has the ''test_on'' property "%s".\n',settings.test_on); else % exclude all items that are lacking the given field test_material = test_material(present); end % we partition the test material into test sets by unique elements of the 'test_on' property % and all coarser properties, if any; next: build the list of these properties pos = find(strcmp(settings.test_on,known_granularities)); if ~isempty(pos) partition_properties = known_granularities(1:pos); else partition_properties = {settings.test_on}; end % now partition values = cellfun(@(x)getprops_as_string(x,partition_properties),test_material,'UniformOutput',false); uniquevals = unique(values); for v=1:length(uniquevals) matches = strcmp(values,uniquevals{v}); test_sets{v} = test_material(matches); end end % optionally re-pack and/or prune the test sets according to the consider clause if ~strcmp(settings.consider,'each') % we repack the test sets into groups by unique elements of the 'per' property % and all coarser properties, if any; next: build the list of these properties pos = find(strcmp(settings.per,known_granularities)); if ~isempty(pos) partition_properties = known_granularities(1:pos); else partition_properties = {settings.per}; end % sanity check: make sure that each test set has only one unique 'per' identifier for k=1:length(test_sets) if length(unique(cellfun(@(x)getprops_as_string(x,partition_properties),test_sets{k},'UniformOutput',false))) > 1 error('You are trying to operate on your %s''s in groups per %s, but some of the %s''s consist of items in multiple groups. You can likely avoid this problem by specifying including both properties in the ''scope_order'' list at the appropriate place.'); end end % now partition by 'per' test_groups = {}; values = cellfun(@(x)getprops_as_string(x{1},partition_properties),test_sets,'UniformOutput',false); uniquevals = unique(values); for v=1:length(uniquevals) matches = strcmp(values,uniquevals{v}); test_groups{v} = test_sets(matches); end % and re-pack/prune to get the final test sets test_sets = {}; switch settings.consider case 'all' % flatten the test groups for g=1:length(test_groups) test_sets{g} = [test_groups{g}{:}]; end case 'last' % take only the last set per group (= the one with the highest value for the test_on property) for g=1:length(test_groups) idx = argmax(cellfun(@(x)x{1}.(settings.test_on),test_groups{g})); test_sets{g} = [test_groups{g}{idx}]; end case 'allexceptfirst' % take all except for the first set per group (= all except for those with the lowest value for the test_on property) for g=1:length(test_groups) idx = argmin(cellfun(@(x)x{1}.(settings.test_on),test_groups{g})); test_sets{g} = [test_groups{g}{setdiff(1:end,idx)}]; end otherwise error('Unsupported ''consider'' clause specified.'); end end % build the final partition res = {}; for s=1:length(test_sets) testset = test_sets{s}; % derive the corresponding training sets test_indices = cellfun(@(x)x.tracking_index,testset); not_in_test = cellfun(@(x)~ismember(x.tracking_index,test_indices),collection); trainset = collection(not_in_test); % get rid of tracking indices for k=1:length(trainset) trainset{k} = rmfield(trainset{k},'tracking_index'); end for k=1:length(testset) testset{k} = rmfield(testset{k},'tracking_index'); end % also derive the common identifying information of the test sets: common_fields = setdiff(fieldnames(testset{1}),{'streams'}); for k=2:length(testset) common_fields = intersect(common_fields,fieldnames(testset{k})); end if length(testset) > 1 % restrict to those fields that are unique across all test sets retain = []; for c=1:length(common_fields) field = common_fields{c}; val = testset{1}.(field); if all(cellfun(@(x)isequal_weak(x.(field),val),testset(2:end))) retain(end+1) = c; end end common_fields = common_fields(retain); end % form an identifier struct for the test set; the cross-validation will append the contents % of this cell array as additional arguments into the trainer function identifier = []; for f=1:length(common_fields) identifier.(common_fields{f}) = testset{1}.(common_fields{f}); end % combine res{s} = {trainset,testset,{'goal_identifier',identifier}}; end else % otherwise just pass through the index set res = inds; end % obtain a string version of values from a struct, for a given cell array of properties function y = getprops_as_string(x,props) y = hlp_tostring(cellfun(@(p)x.(p),props,'UniformOutput',false));
github
ZijingMao/baselineeegtest-master
utl_timeseries_fields.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_timeseries_fields.m
2,603
utf_8
09b9960261401f01fc406f35b8985890
function fields = utl_timeseries_fields(signal) % Get the time-series fields of te given signal. % function Fields = utl_timeseries_fields(Signal) % % This function returns the field names in the given signal that are % carrying time-series information (and which therefore should be filtered, % buffered, etc.). The result is a combination of a set of hard-coded fields % and the names listed in the field .tracking.timeseries_fields. Only fields % that are present in the signal are returned. % % In: % Signal : a signal for which time-series field names shall be looked up % % Out: % Fields : Cell array of field names (row vector). It is assumed that the second dimension of % these fields is the time axis along which buffering and/or filtering should happen; any % number of other dimensions may be present for any field returned by this function. % % See also: % utl_register_field % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2013-08-16 % define a database of cached queries and associated results % (this approach is more than 10x as fast as using unique/intersect every time) persistent keys; persistent values; % generate the query (assuming that the signal usually has the right fields) try query = [fieldnames(signal)' {'|'} signal.tracking.timeseries_fields]; catch query = fieldnames(signal)'; end % turn into a string query = [query{:}]; try % look up from the database (assuming that it is already contained) fields = values{strcmp(keys,query)}; catch % not yet in DB: actually determine the timeseries fields if isfield(signal,'tracking') && isfield(signal.tracking,'timeseries_fields') fields = get_timeseries_fields(fieldnames(signal),signal.tracking.timeseries_fields); else fields = get_timeseries_fields(fieldnames(signal),[]); end % initialize the DB if necessary, otherwise append if ~iscell(keys) keys = {query}; values = {fields}; else keys{end+1} = query; values{end+1} = fields; end end function fields = get_timeseries_fields(field_names,ts_fields) % This function performs the actual computation % generate initial list of candidates candidates = {'data','icaact','srcpot'}; % append whatever is registered in the signal's .tracking.timeseries_fields candidates = unique([candidates(:); ts_fields(:)]); % restrict to those that are actually present in the signal fields = intersect(candidates(:),field_names); fields = fields(:)';
github
ZijingMao/baselineeegtest-master
utl_printapproach.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_printapproach.m
2,158
utf_8
f2d75a0e24733c93a2b3841475b3a743
function string = utl_printapproach(app,strip_direct,indent,indent_incr) % Convert an approach to a string representation % String = utl_printapproach(Approach) % % In: % Approach : a BCI approach, either designed in the GUI or constructed in a script % % StripDirect : strip arg_direct flags (default: true) % % Indent : initial indent (default: 0) % % IndentIncrement : indentation increment (default: 4) % % Out: % String : a string representation of the approach, for use in scripts % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2013-10-22 % check inputs if nargin < 2 strip_direct = true; end if nargin < 3 indent = 0; end if nargin < 4 indent_incr = 4; end % get required approach properties if ischar(app) paradigm = ['Paradigm' app]; parameters = {}; elseif iscell(app) paradigm = ['Paradigm' app{1}]; parameters = app(2:end); else paradigm = app.paradigm; parameters = app.parameters; end % get a handle to the paradigm's calibrate() function instance = eval(paradigm); func = @instance.calibrate; % report both the defaults of the paradigm and % the current settings in form of argument specifications defaults = clean_fields(arg_report('rich',func)); settings = clean_fields(arg_report('lean',func,parameters)); % get the difference as cell array of human-readable name-value pairs specdiff = arg_diff(defaults,settings); difference = arg_tovals(specdiff,[],'HumanReadableCell',false); % pre-pend the paradigm choice paradigm_name = char(paradigm); difference = [{'arg_selection',paradigm_name(9:end)} difference]; % and convert to string string = arg_tostring(difference,strip_direct,indent,indent_incr); % clean fields of x, by removing all arg_direct instances and % all skippable fields function x = clean_fields(x) x(strcmp({x.first_name},'arg_direct') | [x.skippable]) = []; try children = {x.children}; empty_children = cellfun('isempty',children); [x(~empty_children).children] = celldeal(cellfun(@clean_fields,children(~empty_children),'UniformOutput',false)); catch end
github
ZijingMao/baselineeegtest-master
utl_match.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/utils/utl_match.m
3,245
utf_8
31c0021a79888d0261036c7eff8d1feb
function [r,dict] = utl_match(x,f,dict) % Check whether an expression is matched by a pattern. % [Equals,Assignment] = utl_match(Expression, Pattern, Assignment) % % The pattern may contain blanks, conditional expressions, and named sub-patterns. % Assignment is an optional output which contains sub-expressions matched by named parts of the pattern. % note: exp_symbol('x') and @x are considered non-equal by utl_match. % % See also: % exp_match, utl_same % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-19 if isfield(f,{'head','parts'}) % f is a canonical expression (may be a pattern or a blank) head = char(f.head); if strcmp(head,'Pattern') % f is a pattern: try to match its form [r,dict] = utl_match(x,f.parts{2},dict); if r % we have a match for a named pattern name = char(f.parts{1}); if name(1) == '@' % normalize if it has a symbolic lambda name name = name(28:end-21); end % try to store the name-x relationship in the dictionary [r,dict] = update_dict(dict,name,x); end elseif strcmp(head,'Blank') && (isempty(f.parts) || strcmp(char(get_function_symbol(f.parts{1})),char(exp_head(x)))) % we have a match for an unnamed pattern r = 1; elseif strcmp(head,'Condition') % f is a condition expression: try to match its expression [r,dict] = utl_match(x,f.parts{1},dict); % then substitute the named sub-expressions into f's condition and evaluate that r = r && exp_eval(utl_replacerepeated(f.parts{2},dict),inf); else % f is a non-pattern expression... match recursively if isfield(x,'tracking') && isfield(x.tracking,'expression') % normalize impure x x = x.tracking.expression; end if isfield(x,{'head','parts'}) % x has substructure: we have to match recursively if ~isequal(x.head,f.head) || (length(x.parts) ~= length(f.parts)) r = false; else for k=1:length(x.parts) [r,dict] = utl_match(x.parts{k},f.parts{k},dict); if ~r return; end end r = true; end else % x has no substructure (but f has) r = false; end end elseif isfield(f,'tracking') && isfield(f.tracking,'expression') % f is an impure expression; descend [r,dict] = utl_match(x,f.tracking.expression,dict); elseif isa(f,'function_handle') && isa(x,'function_handle') % f an x are function handles: compare their string representations r = strcmp(char(f),char(x)); else % f is atomic; x must be identical r = isequalwithequalnans(f,x); end % update the given dictionary with a name-value pair; also return whether the naming is still consistent function [ok,dict] = update_dict(dict,name,val) ok = true; if isfield(dict,name) if ~utl_same(dict.(name),val) % mismatch! ok = false; return; end else dict.(name) = val; end
github
ZijingMao/baselineeegtest-master
arg_guidialog.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_guidialog.m
11,737
utf_8
37a7d0aadf53e47998dd759d4f19867c
function varargout = arg_guidialog(func,varargin) % Create an input dialog that displays input fields for a Function and Parameters. % Parameters = arg_guidialog(Function, Options...) % % The Parameters that are passed to the function can be used to override some of its defaults. The % function must declare its arguments via arg_define. In addition, only a Subset of the function's % specified arguments can be displayed. % % In: % Function : the function for which to display arguments % % Options... : optional name-value pairs; possible names are: % 'Parameters' : cell array of parameters to the Function to override some of its % defaults. % % 'Subset' : Cell array of argument names to which the dialog shall be restricted; % these arguments may contain . notation to index into arg_sub and the % selected branch(es) of arg_subswitch/arg_subtoggle specifiers. Empty % cells show up in the dialog as empty rows. % % 'Title' : title of the dialog (by default: functionname()) % % 'Invoke' : whether to invoke the function directly; in this case, the output % arguments are those of the function (default: true, unless called in % the form g = arg_guidialog; e.g., from within some function) % % Out: % Parameters : either a struct that is a valid input to the Function or the outputs of the function % when Invoke is set to true (possibly multiple outputs) % % Examples: % % bring up a configuration dialog for the given function % settings = arg_guidialog(@myfunction) % % % bring up a config dialog with some pre-specified defaults % settings = arg_guidialog(@myfunction,'Parameters',{4,20,'test'}) % % % bring up a config dialog which displays only a subset of the function's arguments (in a particular order) % settings = arg_guidialog(@myfunction,'Subset',{'blah','xyz',[],'flag'}) % % % bring up a dialog, and invoke the function with the selected settings after the user clicks OK % settings = arg_guidialog(@myfunction,'Invoke',true) % % See also: % arg_guidialog_ex, arg_guipanel, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA if ~exist('func','var') % called with no arguments, from inside a function: open function dialog func = hlp_getcaller; varargin = {'Parameters',evalin('caller','varargin'),'Invoke',nargout==0}; end % parse arguments... hlp_varargin2struct(varargin,{'params','Parameters','parameters'},{}, {'subset','Subset'},{}, {'dialogtitle','title','Title'}, [char(func) '()'], {'buttons','Buttons'},[],{'invoke','Invoke'},true); oldparams = params; % obtain the argument specification for the function rawspec = arg_report('rich', func, params); %#ok<*NODEF> % extract a list of sub arguments... if ~isempty(subset) && subset{1}==-1 % user specified a set of items to *exclude* % convert subset to setdiff(all-arguments,subset) allnames = fieldnames(arg_tovals(rawspec)); subset(1) = []; subset = allnames(~ismember(allnames,[subset 'arg_direct'])); end [spec,subset] = obtain_items(rawspec,subset); % create an inputgui() dialog... geometry = repmat({[0.6 0.35]},1,length(spec)+length(buttons)/2); geomvert = ones(1,length(spec)+length(buttons)/2); % turn the spec into a UI list... uilist = {}; for k = 1:length(spec) s = spec{k}; if isempty(s) uilist(end+1:end+2) = {{} {}}; else if isempty(s.help) error(['Cannot display the argument ' subset{k} ' because it contains no description.']); else tag = subset{k}; uilist{end+1} = {'Style','text', 'string',s.help{1}, 'fontweight','bold'}; % depending on the type, we introduce different types of input widgets here... if iscell(s.range) && strcmp(s.type,'char') % string popup menu uilist{end+1} = {'Style','popupmenu', 'string',s.range,'value',find(strcmp(s.value,s.range)),'tag',tag}; elseif strcmp(s.type,'logical') if iscell(s.range) % length(s.range)>1 % multiselect uilist{end+1} = {'Style','listbox', 'string',s.range, 'value',find(ismember(s.range,s.value)),'tag',tag,'min',1,'max',100000}; geomvert(k) = min(3.5,length(s.range)); else % checkbox uilist{end+1} = {'Style','checkbox', 'string','(set)', 'value',double(s.value),'tag',tag}; end elseif strcmp(s.type,'char') % string edit uilist{end+1} = {'Style','edit', 'string', s.value,'tag',tag}; else % expression edit if isinteger(s.value) s.value = double(s.value); end uilist{end+1} = {'Style','edit', 'string', hlp_tostring(s.value),'tag',tag}; end % append the tooltip string if length(s.help) > 1 uilist{end} = [uilist{end} 'tooltipstring', regexprep(s.help{2},'\.\s+(?=[A-Z])','.\n')]; end end end if ~isempty(buttons) && k==buttons{1} % render a command button uilist(end+1:end+2) = {{} buttons{2}}; buttons(1:2) = []; end end % invoke the GUI, obtaining a list of output values... helptopic = char(func); try if helptopic(1) == '@' fn = functions(func); tmp = struct2cell(fn.workspace{1}); helptopic = class(tmp{1}); end catch disp('Cannot deduce help topic.'); end [outs,dummy,okpressed] = inputgui('geometry',geometry, 'uilist',uilist,'helpcom',['env_doc ' helptopic], 'title',dialogtitle,'geomvert',geomvert); %#ok<ASGLU> if ~isempty(okpressed) % remove blanks from the spec spec = spec(~cellfun('isempty',spec)); subset = subset(~cellfun('isempty',subset)); % turn the raw specification into a parameter struct (a non-direct one, since we will mess with % it) params = arg_tovals(rawspec,false); % for each parameter produced by the GUI... for k = 1:length(outs) s = spec{k}; % current specifier v = outs{k}; % current raw value % do type conversion according to spec if iscell(s.range) && strcmp(s.type,'char') v = s.range{v}; elseif strcmp(s.type,'expression') v = eval(v); elseif strcmp(s.type,'logical') if length(s.range)>1 v = s.range(v); else v = logical(v); end elseif strcmp(s.type,'char') % noting to do else if ~isempty(v) v = eval(v); % convert back to numeric (or object, or cell) value end end % assign the converted value to params struct... params = assign(params,subset{k},v); end % now send the result through the function to check for errors and obtain a values structure... params = arg_report('rich',func,{params}); params = arg_tovals(params,false); % invoke the function, if so desired if ischar(func) func = str2func(func); end if invoke [varargout{1:nargout(func)}] = func(oldparams{:},params); else varargout = {params}; end else varargout = {[]}; end % obtain a cell array of spec entries by name from the given specification function [items,ids] = obtain_items(rawspec,requested,prefix) if ~exist('prefix','var') prefix = ''; end items = {}; ids = {}; % determine what subset of (possibly nested) items is requested if isempty(requested) % look for a special argument/property arg_dialogsel, which defines the standard dialog % representation for the given specification dialog_sel = find(cellfun(@(x)any(strcmp(x,'arg_dialogsel')),{rawspec.names})); if ~isempty(dialog_sel) requested = rawspec(dialog_sel).value; end end if isempty(requested) % empty means that all items are requested for k=1:length(rawspec) items{k} = rawspec(k); ids{k} = [prefix rawspec(k).names{1}]; end else % otherwise we need to obtain those items for k=1:length(requested) if ~isempty(requested{k}) try [items{k},subid] = obtain(rawspec,requested{k}); catch error(['The specified identifier (' prefix requested{k} ') could not be found in the function''s declared arguments.']); end ids{k} = [prefix subid]; end end end % splice items that have children (recursively) into this list for k = length(items):-1:1 % special case: switch arguments are not spliced, but instead the argument that defines the % option popupmenu will be retained if ~isempty(items{k}) && ~isempty(items{k}.children) && (~iscellstr(items{k}.range) || isempty(requested)) [subitems, subids] = obtain_items(items{k}.children,{},[ids{k} '.']); if ~isempty(subitems) % and introduce blank rows around them items = [items(1:k-1) {{}} subitems {{}} items(k+1:end)]; ids = [ids(1:k-1) {{}} subids {{}} ids(k+1:end)]; end end end % remove items that cannot be displayed retain = cellfun(@(x)isempty(x)||x.displayable,items); items = items(retain); ids = ids(retain); % remove double blank rows empties = cellfun('isempty',ids); items(empties(1:end-1) & empties(2:end)) = []; ids(empties(1:end-1) & empties(2:end)) = []; % obtain a spec entry by name from the given specification function [item,id] = obtain(rawspec,identifier,prefix) if ~exist('prefix','var') prefix = ''; end % parse the . notation dot = find(identifier=='.',1); if ~isempty(dot) [head,rest] = deal(identifier(1:dot-1), identifier(dot+1:end)); else head = identifier; rest = []; end % search for the identifier at this level names = {rawspec.names}; for k=1:length(names) if any(strcmp(names{k},head)) % found a match! if isempty(rest) % return it item = rawspec(k); id = [prefix names{k}{1}]; else % obtain the rest of the identifier [item,id] = obtain(rawspec(k).children,rest,[prefix names{k}{1} '.']); end return; end end error(['The given identifier (' head ') was not found among the function''s declared arguments.']); % assign a field with dot notation in a struct function s = assign(s,id,v) % parse the . notation dot = find(id=='.',1); if ~isempty(dot) [head,rest] = deal(id(1:dot-1), id(dot+1:end)); if ~isfield(s,head) s.(head) = struct(); end s.(head) = assign(s.(head),rest,v); else s.(id) = v; end
github
ZijingMao/baselineeegtest-master
arg_define.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_define.m
32,685
utf_8
8d8bd4577decde884d4bcb63072bb9e1
function res = arg_define(vals,varargin) % Declare function arguments with optional defaults and built-in GUI support. % Struct = arg_define(Values, Specification...) % Struct = arg_define(Format, Values, Specification...) % % This is essentially an improved replacement for the parameter declaration line of a function. % Assigns Values (a cell array of values, typically the "varargin" of the calling function, % henceforth named the "Function") to fields in the output Struct, with parsing implemented % according to a Specification of argument names and their order (optionally with a custom argument % Format description). % % By default, values can be a list of a fixed number of positional arguments (i.e., the typical % MATLAB calling format), optionally followed by a list of name-value pairs (NVPs, e.g., as the % format accepted by figure()), in which, as well, instead of any given NVP, a struct may be % passed (thus, one may pass a mix of 'name',value,struct,'name',value,'name',value, ... % parameters). Alternatively, by default the entire list of positional arguments can instead be be % specified as a list of NVPs/structs. Only names that are allowed by the Specification may be used, % if positional syntax is allowed by the Format (which is the default). % % The special feature over hlp_varargin2struct()-like functionality is that arguments defined via % arg_define can be reported to outside functions (if triggered by arg_report()). The resulting % specification can be rendered in a GUI or be processed otherwise. % % In: % Format : Optional format description (default: [0 Inf]): % * If this is a number (say, k), it indicates that the first k arguments are specified % in a positional manner, and the following arguments are specified as list of % name-value pairs and/or structs. % * If this is a vector of two numbers [0 k], it indicates that the first k arguments MAY % be specified in a positional manner (the following arguments must be be specified as % NVPs/structs) OR alternatively, all arguments can be specified as NVPs / structs. % Only names that are listed in the specification may be used as names (in NVPs and % structs) in this case. % * If this is a function handle, the function is used to transform the Values prior to % any other processing into a new Values cell array. The function may specify a new % (numeric) Format as its second output argument (if not specified, this is 0). % % Values : A cell array of values passed to the function (usually the calling function's % "varargin"). Interpreted according to the Format and the Specification. % % Specification... : The specification of the calling function's arguments; this is a sequence of % arg(), arg_norep(), arg_nogui(), arg_sub(), arg_subswitch(), arg_subtoggle() % specifiers. The special keywords mandatory and unassigned can be used in the % declaration of default values, where "mandatory" declares that this argument % must be assigned some value via Values (otherwise, an error is raised before % the arg is passed to the Function) and "unassigned" declares that the % variable will not be assigned unless passed as an argument (akin to the % default behavior of regular MATLAB function arguments). % % Out: % Struct : A struct with values assigned to fields, according to the Specification and Format. % % If this is not captured by the Function in a variable, the contents of Struct are % instead assigned to the Function's workspace (default practice) -- but note that this % only works for variable names are *not& also names of functions in the path (due to a % flaw in MATLAB's treatment of identifiers). Thus, it is good advice to use long/expressive % variable names to avoid this situation, or possibly CamelCase names. % % See also: % arg, arg_nogui, arg_norep, arg_sub, arg_subswitch, arg_subtoggle % % Notes: % 1) If the Struct output argument is omitted by the user, the arguments are not returned as a % struct but instead directly copied into the Function's workspace. % % 2) Someone may call the user's Function with the request to deliver the parameter specification, % instead of following the normal execution flow. arg_define() automatically handles this task % by throwing an exception of the type 'BCILAB:arg:report_args' using arg_issuereport(), which % is to be caught by the requesting function. % % Performance Tips: % 1) If a struct with a field named 'arg_direct' is passed (and is set to true), or a name-value % pair 'arg_direct',true is passed, then all type checking, specification parsing, fallback to % default values and reporting functionality are skipped. This is a fast path to call a function, % and it usually requires that all of its arguments are passed. The function arg_report allows % to get a struct of all function arguments that can be used subsequently as part of a direct % call. % % Please make sure not to pass multiple occurrences of 'arg_direct' with conflicting values to % arg_define, as the behavior will then be undefined. % % 2) The function is about 2x as fast (in direct mode) if arguments are returned as a struct instead % of being written into the caller's workspace. % % Examples: % function myfunction(varargin) % % % begin a default argument declaration and declare a few arguments; The arguments can be passed either: % % - by position: myfunction(4,20); including the option to leave some values at their defaults, e.g. myfunction(4) or myfunction() % % - by name: myfunction('test',4,'blah',20); myfunction('blah',21,'test',4); myfunction('blah',22); % % - as a struct: myfunction(struct('test',4,'blah',20)) % % - as a sequence of either name-value pairs or structs: myfunction('test',4,struct('blah',20)) (note that this is not ambiguous, as the struct would come in a place where only a name could show up otherwise % arg_define(varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % a special syntax that is allowed is passing a particular parameter multiple times - in which case only the last specification is effective % % myfunction('test',11, 'blah',21, 'test',3, struct('blah',15,'test',5), 'test',10) --> test will be 10, blah will be 15 % % % begin an argument declaration which allows 0 positional arguments (i.e. everything must be passed by name % arg_define(0,varargin, ... % % % begin an argument declaration which allows exactly 1 positional arguments, i.e. the first one must be passed by position and the other one by name (or struct) % % valid calls would be: myfunction(3,'blah',25); myfunction(3); myfunction(); (the last one assumes the default for both) % arg_define(1,varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % begin an argument decalration which allows either 2 positional arguments or 0 positional arguments (i.e. either the first two are passed by position, or all are passed by name) % % some valid calls are: myfunction(4,20,'flag',true); myfunction(4,20); myfunction(4,20,'xyz','test','flag',true); myfunction(4); myfunction('flag',true,'test',4,'blah',21); myfunction('flag',true) % arg_define([0 2],varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.'), ... % arg('xyz','defaultstr',[],'XYZ.'), ... % arg('flag',false,[],'Some flag.')); % % % begin an argument declaration in which the formatting of arguments is completely arbitrary, and a custom function takes care of bringing them into a form understood by % % the arg_define implementation. This function takes a cell array of arguments (in any formatting), and returns a cell array of a standard formatting (e.g. name-value pairs, or structs) % arg_define(@myparser,varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % return the arguments as fields in a struct (here: opts), instead of directly in the workspace % opts = arg_define(varargin, ... % arg('test',3,[],'A test.'), ... % arg('blah',25,[],'Blah.')); % % % note: in the current implementation, the only combinations of allowed argument numbers are: arg_define(...); arg_define(0, ...); arg_define(X, ...); arg_define([0 X], ...); arg_define(@somefunc, ...); % % the implicit default is arg_define([0 Inf], ...) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % --- get Format, Values and Specification --- if iscell(vals) % no Format specifier was given: use default fmt = [0 Inf]; spec = varargin; try % quick checks for direct (fast) mode if isfield(vals{end},'arg_direct') direct_mode = vals{end}.arg_direct; elseif strcmp(vals{1},'arg_direct') direct_mode = vals{2}; else % figure it out later direct_mode = false; end structs = cellfun('isclass',vals,'struct'); catch % vals was empty: default behavior direct_mode = false; end else % a Format specifier was given as the first argument (instead of vals as the first argument) ... if isempty(vals) % ... but it was empty: use default behavior fmt = [0 Inf]; else % ... and was nonempty: use it fmt = vals; end % shift the remaining two args vals = varargin{1}; spec = varargin(2:end); if isa(fmt,'function_handle') % Format was a function: run it if nargout(fmt) == 1 vals = fmt(vals); fmt = 0; else [vals,fmt] = feval(fmt,vals); end end direct_mode = false; end % --- if not yet known, determine conclusively if we are in direct mode (specificationless and therefore fast) --- % this mode is only applicable when all arguments can be passed as NVPs/structs if ~direct_mode && any(fmt == 0) % search for an arg_direct argument structs = cellfun('isclass',vals,'struct'); indices = find(structs | strcmp(vals,'arg_direct')); for k = indices(end:-1:1) if ischar(vals{k}) && k<length(vals) % found it in the NVPs direct_mode = vals{k+1}; break; elseif isfield(vals{k},'arg_direct') % found it in a struct direct_mode = vals{k}.arg_direct; break; end end end if direct_mode % --- direct mode: quickly collect NVPs from the arguments and produce a result --- % obtain flat NVP list if any(structs(1:2:end)) vals = flatten_structs(vals); end if nargout % get names & values names = vals(1:2:end); values = vals(2:2:end); % use only the last assignment for each name [s,indices] = sort(names); indices(strcmp(s(1:end-1),s(2:end))) = []; % build & return a struct res = cell2struct(values(indices),names(indices),2); else % place the arguments in the caller's workspace try for k=1:2:length(vals) assignin('caller',vals{k},vals{k+1}); end catch e if strcmp(e.identifier,'MATLAB:err_static_workspace_violation') error('In a function with nested functions you need to capture the outputs of arg_define into a struct.'); else rethrow(e); end end end try % also return the arguments in NVP form assignin('caller','arg_nvps',vals); catch % this operation might be disallowed under some circumstances end else % --- full parsing mode: determine the reporting type --- % usually, the reporting type is 'none', except if called (possibly indirectly) by % arg_report('type', ...): in this case, the reporting type is 'type' reporting is a special way to % call arg_define, which requests the argument specification, so that it can be displayed by GUIs, % etc. % % * 'none' normal execution: arg_define returns a Struct of Values to the Function or assigns the % Struct's fields to the Function's workspace % * 'rich' arg_define yields a rich specifier list to arg_report(), basically an array of specifier % structs (see arg_specifier for the field names) % * 'lean' arg_define yields a lean specifier list to arg_report(), basically an array of specifier % structs but without alternatives for multi-option specifiers % * 'vals' arg_define yields a struct of values to arg_report(), wich can subsequently be used as % the full specification of arguments to pass to the Function try throw; %#ok<LTARG> % faster than error() catch context names = {context.stack(3:min(6,end)).name}; % function names at the considered levels of indirection... matches = find(strncmp(names,'arg_report_',11)); % ... which start with 'arg_report_' if isempty(matches) reporting_type = 'none'; % no report requested (default case) else % the reporting type is the suffix of the deepest arg_report_* function in the call stack reporting_type = names{matches(end)}(11+1:end); end end % --- deal with 'handle' and 'properties' reports --- if strcmp(reporting_type,'handle') % very special report type: 'handle'--> this asks for function handles to nested / scoped % functions. unfortunately, these cannot be obtained using standard MATLAB functionality. if ~iscellstr(vals) error('The arguments passed for handle report must denote function names.'); end unresolved = {}; for f=1:length(vals) % resolve each function name in the caller scope funcs{f} = evalin('caller',['@' vals{f}]); % check if the function could be retrieved tmp = functions(funcs{f}); if isempty(tmp.file) unresolved{f} = vals{f}; end end if ~isempty(unresolved) % search the remaining ones in the specification for f=find(~cellfun('isempty',unresolved)) funcs{f} = hlp_microcache('findfunction',@find_function_cached,spec,vals{f}); end end % report it if length(funcs) == 1 funcs = funcs{1}; end arg_issuereport(funcs); elseif strcmp(reporting_type,'properties') % 'properties' report, but no properties were declared arg_issuereport(struct()); end % --- one-time evaluation of the Specification list into a struct array --- % evaluate the specification or retrieve it from cache [spec,all_names,joint_names,remap] = hlp_microcache('spec',@evaluate_spec,spec,reporting_type,nargout==0); % --- transform vals to a pure list of name-value pairs (NVPs) --- if length(fmt) == 2 if fmt(1) ~= 0 || fmt(2) <= 0 % This error is thrown when the first parameter to arg_define() was not a cell array (i.e., not varargin), % so that it is taken to denote the optional Format parameter. % Format is usually a numeric array that specifies the number of positional arguments that are % accepted by the function, and if numeric, it can only be either a number or a two-element array % that contains 0 and a non-zero number. error('For two-element formats, the first entry must be 0 and the second entry must be > 0.'); end % there are two possible options: either 0 arguments are positional, or k arguments are % positional; assuming at first that 0 arguments are positional, splice substructs into one % uniform NVP list (this is because structs are allowed instead of individual NVPs) if any(cellfun('isclass',vals(1:2:end),'struct')) nvps = flatten_structs(vals); else nvps = vals; end % check if all the resulting names are in the set of allowed names (a disambiguation % condition in this case) if iscellstr(nvps(1:2:end)) try disallowed_nvp = fast_setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); catch disallowed_nvp = setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); end else disallowed_nvp = 'N/A'; end if isempty(disallowed_nvp) % the assumption was correct: 0 arguments are positional fmt = 0; else % the assumption was violated: most likely k arguments are positional % but check if at least one of the names in the first k arguments would have matched % and warn if so if iscellstr(nvps(1:2:end)) matching_nvp = intersect(nvps(1:2:min(end,max(fmt))),[joint_names {'arg_selection','arg_direct'}]); if ~isempty(matching_nvp) % if you get this warning you passed in a sequence of parameters to a function that uses % arg_define and permits both 1) a number of positional arguments followed by name-value pairs % or 2) alternatively all arguments passed in as name-value pairs. If your sequence is % interpreted as all name-value pairs (case 2), a fraction of them are recognized as matching % arguments (indicating that they are indeed NVPs), while another fraction of them are % not recognized (indicating that the sequence is in fact consisting of some positional arguments). % Therefore either the matching names are actually values that you passed in (and spuriously match), % or you have a typo in one of your intended argument names, or perhaps the argument has been removed % from the function. caller = hlp_getcaller; warn_once([caller ':arg_define:possible_conflict'],'arg_define() in %s: Possible parameter conflict -- both unrecognized names %s and matching names %s passed in. Assuming that the function is called with some positional arguments. This warning will not be repeated for this MATLAB session.',caller,hlp_tostring(disallowed_nvp),hlp_tostring(matching_nvp)); end end strict_names = true; fmt = fmt(2); end elseif fmt == 0 % 0 arguments are positional nvps = flatten_structs(vals); elseif fmt > 0 % k arguments are positional, the rest are NVPs (no need to enforce strict naming here) strict_names = false; else % This error refers to the optional Format argument. error('Negative or NaN formats are not allowed.'); end % (from now on fmt holds the determined # of positional arguments) if fmt > 0 % the first k arguments are positional % Find out if we are being called by another arg_define; in this case, this definition % appears inside an arg_sub/arg_*, and the values passed to the arg_define are part of the % defaults declaration of one of these. If these defaults are specified positionally, the % first k arg_norep() arguments in Specification are implicitly skipped. if ~strcmp(reporting_type,'none') && any(strcmp('arg_define',{context.stack(2:end).name})); % we implicitly skip the leading non-reportable arguments in the case of positional % assignment (assuming that these are supplied by the outer function), by shifting the % name/value assignment by the appropriate number of places shift_positionals = min(fmt,find([spec.reportable],1)-1); else shift_positionals = 0; end % get the effective number of positional arguments fmt = min(fmt,length(vals)+shift_positionals); % the NVPs begin only after the k'th argument (defined by the Format) nvps = vals(fmt+1-shift_positionals:end); % splice in any structs if any(cellfun('isclass',nvps(1:2:end),'struct')) nvps = flatten_structs(nvps); end % do minimal error checking... if ~iscellstr(nvps(1:2:end)) % If you are getting this error, the order of names and values passed as name-value pairs % to the function in question was likely mixed up. The error mentions structs because it % is also allowed to pass in a struct in place of any 'name',value pair. error('Some of the specified arguments that should be names or structs, are not.'); end if strict_names % enforce strict names try disallowed_pos = fast_setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); catch disallowed_pos = setdiff(nvps(1:2:end),[joint_names {'arg_selection','arg_direct'}]); end if ~isempty(disallowed_pos) % If you are getting this error, it is most likely due to a mis-typed argument name % in the list of name-value pairs passed to the function in question. % % Because some functions may support also positional arguments, it is also possible % that something that was supposed to be the value for one of the positional % arguments was interpreted as part of the name-value pairs lit that may follow the % positional arguments of the function. This error is likely because the wrong number % of positional arguments was passed (a safer alternative is to instead pass everything % by name). error(['Some of the specified arguments do not appear in the argument specification; ' format_cellstr(disallowed_pos) '.']); end end try % remap the positionals (everything up to the k'th argument) into an NVP list, using the % code names poss = [cellfun(@(x)x{1},all_names(shift_positionals+1:fmt),'UniformOutput',false); vals(1:fmt-shift_positionals)]; catch if strict_names if iscell(disallowed_nvp) % maybe the user intended to pass 0 positionals, but used some disallowed names error(['Apparently, some of the used argument names are not known to function ' hlp_getcaller ': ' format_cellstr(disallowed_nvp) '.']); else % maybe the user intended to pass 0 positionals, but used some disallowed names error(['Possibly the argument order was confused when calling ' hlp_getcaller ': ' hlp_tostring(vals,20) '.']); end else error(['The first ' fmt ' arguments must be passed by position, and the remaining ones must be passed by name (either in name-value pairs or structs).']); end end % ... and concatenate them with the remaining NVPs into one big NVP list nvps = [poss(:)' nvps]; end % --- assign values to names using the assigner functions of the spec --- for k=1:2:length(nvps) if isfield(remap,nvps{k}) idx = remap.(nvps{k}); newvalue = nvps{k+1}; if spec(idx).deprecated && ~isequal_weak(spec(idx).value,newvalue) if ~isempty(spec(idx).help) disp_once(['Using deprecated argument "' nvps{k} '" in function ' hlp_getcaller ' (help: ' [spec(idx).help{:}] ').']); else disp_once(['Using deprecated argument "' nvps{k} '" in function ' hlp_getcaller '.']); end end spec(idx) = spec(idx).assigner(spec(idx),newvalue); else % append it to the spec (note: this might need some optimization... it would be better % if the spec automatically contained the arg_selection field) tmp = arg_nogui(nvps{k},nvps{k+1}); spec(end+1) = tmp{1}([],tmp{2}{:}); end end % --- if requested, yield a 'vals', 'lean' or 'rich' report --- if ~strcmp(reporting_type,'none') % but deliver only the reportable arguments, and only if the values are not unassigned tmp = spec([spec.reportable] & ~strcmp(unassigned,{spec.value})); if strcmp(reporting_type,'vals') tmp = arg_tovals(tmp); end arg_issuereport(tmp); end % --- otherwise post-process the outputs and create a result struct to pass to the Function --- % generate errors for mandatory arguments that were not assigned missing_entries = strcmp(mandatory,{spec.value}); if any(missing_entries) missing_names = cellfun(@(x)x{1},{spec(missing_entries).names},'UniformOutput',false); error(['The arguments ' format_cellstr(missing_names) ' were unspecified but are mandatory.']); end % strip non-returned arguments, and convert it all to a struct of values res = arg_tovals(spec); % also emit a final NVPs list tmp = [fieldnames(res) struct2cell(res)]'; try assignin('caller','arg_nvps',tmp(:)'); catch % this operation might be disallowed under some circumstances end % if requested, place the arguments in the caller's workspace if nargout==0 try for fn=fieldnames(res)' assignin('caller',fn{1},res.(fn{1})); end catch e if strcmp(e.identifier,'MATLAB:err_static_workspace_violation') error('In a function with nested functions you need to capture the outputs of arg_define into a struct.'); else rethrow(e); end end end end % substitute any structs in place of a name-value pair into the name-value list function args = flatten_structs(args) k = 1; while k <= length(args) if isstruct(args{k}) tmp = [fieldnames(args{k}) struct2cell(args{k})]'; args = [args(1:k-1) tmp(:)' args(k+1:end)]; k = k+numel(tmp); else k = k+2; end end % evaluate a specification into a struct array function [spec,all_names,joint_names,remap] = evaluate_spec(spec,reporting_type,require_namecheck) if strcmp(reporting_type,'rich') subreport_type = 'rich'; else subreport_type = 'lean'; end % evaluate the functions to get (possibly arrays of) specifier structs for k=1:length(spec) spec{k} = spec{k}{1}(subreport_type,spec{k}{2}{:}); end % concatenate the structs to one big struct array spec = [spec{:}]; % make sure that spec has the correct fields, even if empty if isempty(spec) spec = arg_specifier; spec = spec([]); end % obtain the argument names and the joined names all_names = {spec.names}; joint_names = [all_names{:}]; % create a name/index remapping table remap = struct(); for n=1:length(all_names) for k=1:length(all_names{n}) remap.(all_names{n}{k}) = n; end end % check for duplicate argument names in the Specification sorted_names = sort(joint_names); duplicates = joint_names(strcmp(sorted_names(1:end-1),sorted_names(2:end))); if ~isempty(duplicates) error(['The names ' format_cellstr(duplicates) ' refer to multiple arguments.']); end % if required, check for name clashes with functions on the path % (this is due to a glitch in MATLAB's handling of variables that were assigned to a function's scope % from the outside, which are prone to clashes with functions on the path...) if require_namecheck && strcmp(reporting_type,'none') try check_names(cellfun(@(x)x{1},all_names,'UniformOutput',false)); catch e disp_once('The function check_names failed; reason: %s',e.message); end end % check for name clashes (once) function check_names(code_names) persistent name_table; if ~isstruct(name_table) name_table = struct(); end for name_cell = fast_setdiff(code_names,fieldnames(name_table)) current_name = name_cell{1}; existing_func = which(current_name); if ~isempty(existing_func) if ~exist('function_caller','var') function_caller = hlp_getcaller(4); if function_caller(1) == '@' function_caller = hlp_getcaller(14); end end if isempty(strfind(existing_func,'Java method')) [path_part,file_part,ext_part] = fileparts(existing_func); if ~any(strncmp('@',hlp_split(path_part,filesep),1)) % If this happens, it means that there is a function in one of the directories in % MATLAB's path which has the same name as an argument of the specification. If this % argument variable is copied into the function's workspace by arg_define, most MATLAB % versions will (incorrectly) try to call that function instead of accessing the % variable. I hope that they handle this issue at some point. One workaround is to use % a longer argument name (that is less likely to clash) and, if it should still be % usable for parameter passing, to retain the old name as a secondary or ternary % argument name (using a cell array of names in arg()). The only really good % solution at this point is to generally assign the output of arg_define to a % struct. disp([function_caller ': The argument name "' current_name '" clashes with the function "' [file_part ext_part] '" in directory "' path_part '"; it is strongly recommended that you either rename the function or remove it from the path.']); end else % these Java methods are probably spurious "false positives" of the which() function disp([function_caller ': There is a Java method named "' current_name '" on your path; if you experience any name clash with it, please report this issue.']); end end name_table.(current_name) = existing_func; end % recursively find a function handle by name in a specification % the first occurrence of a handle to a function with the given name is returned function r = find_function(spec,name) r = []; for k=1:length(spec) if isa(spec(k).value,'function_handle') && strcmp(char(spec(k).value),name) r = spec(k).value; return; elseif ~isempty(spec(k).alternatives) for n = 1:length(spec(k).alternatives) r = find_function(spec(k).alternatives{n},name); if ~isempty(r) return; end end elseif ~isempty(spec(k).children) r = find_function(spec(k).children,name); if ~isempty(r) return; end end end % find a function handle by name in a specification function f = find_function_cached(spec,name) % evaluate the functions to get (possibly arrays of) specifier structs for k=1:length(spec) spec{k} = spec{k}{1}('rich',spec{k}{2}{:}); end % concatenate the structs to one big struct array spec = [spec{:}]; % now search the function in it f = find_function(spec,name); % format a non-empty cell-string array into a string function x = format_cellstr(x) x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
github
ZijingMao/baselineeegtest-master
invoke_arg_internal.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/invoke_arg_internal.m
5,224
utf_8
2784cfbfe50f9ab2d84cdd3e0fa13f95
function spec = invoke_arg_internal(reptype,varargin) %#ok<INUSL> % same type of invoke function as in arg_sub, arg_subswitch, etc. - but shared between % arg, arg_norep, and arg_nogui % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA spec = hlp_microcache('arg',@invoke_arg,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_arg(names,default,range,help,varargin) % start with a base specification spec = arg_specifier('head',@arg); % override properties if exist('names','var') spec.names = names; end if exist('default','var') spec.value = default; end if exist('range','var') spec.range = range; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; else error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.'); end end % do fixups & checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end % do type inference [spec.type,spec.shape,spec.range,spec.value] = infer_type(spec.type,spec.shape,spec.range,spec.value); % infer the type & range of the argument, based on provided info (note: somewhat messy) function [type,shape,range,value] = infer_type(type,shape,range,value) try if isempty(type) % try to auto-discover the type (or leave empty, if impossible) if ~isempty(value) type = PropertyType.AutoDiscoverType(value); elseif ~isempty(range) if isnumeric(range) type = PropertyType.AutoDiscoverType(range); elseif iscell(range) types = cellfun(@PropertyType.AutoDiscoverType,range,'UniformOutput',false); if length(unique(types)) == 1 type = types{1}; end end end end if isempty(shape) % try to auto-discover the shape if ~isempty(value) shape = PropertyType.AutoDiscoverShape(value); elseif ~isempty(range) if isnumeric(range) shape = 'scalar'; elseif iscell(range) shapes = cellfun(@PropertyType.AutoDiscoverShape,range,'UniformOutput',false); if length(unique(shapes)) == 1 shape = shapes{1}; end end end end catch end % rule: if in doubt, fall back to denserealdouble and/or matrix if isempty(type) type = 'denserealdouble'; end if isempty(shape) shape = 'matrix'; end % rule: if both the value and the range are cell-string arrays, the type is 'logical'; % this means that the value is a subset of the range if iscellstr(value) && iscellstr(range) type = 'logical'; end % rule: if the value is empty, but the range is a cell-string array and the type is not 'logical', % the value is the first range element; here, the value is exactly one out of the possible % strings in range (and cannot be empty) if isempty(value) && iscellstr(range) && ~strcmp(type,'logical') value = range{1}; end % rule: if the value is an empty char array, the shape is by default 'row' if isequal(value,'') && ischar(value) shape = 'row'; end % rule: if the value is []; convert to the appropriate MATLAB type (e.g., int, etc.) if isequal(value,[]) if strcmp(type,'cellstr') value = {}; else try pt = PropertyType(type,shape,range); value = pt.ConvertFromMatLab(value); catch end end end % rule: if the value is a logical scalar and the type is logical, and the range is a cell-string % array (i.e. a set of strings), the value is mapped to either the entire set or the empty set % (i.e. either all elements are in, or none) if isscalar(value) && islogical(value) && strcmp(type,'logical') && iscell(range) if value value = range; else value = {}; end end
github
ZijingMao/baselineeegtest-master
arg_report.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_report.m
7,719
utf_8
8c31f7700b53f8cc14f0f913ba6aaf20
function res = arg_report(type,func,args) % Report information of a certain Type from the given Function. % Result = arg_report(Type,Function,Arguments) % % Functions that declare their arguments via arg_define() make their parameter specification % accessible to outside functions. This can be used to display auto-generated settings dialogs, to % record function calls, and so on. % % Varying amounts of meta-data can be obtained in addition to the raw parameter values, including % just the bare-bones value struct ('vals'), the meta-data associated with the passed arguments, % and the full set of meta-data for all possible options (for multi-option parameters), even if these % options were not actually prompted by the Arguments. % % In: % Type : Type of information to report, can be one of the following: % 'rich' : Report a rich declaration of the function's arguments as a struct array, with % fields as in arg_specifier. % 'lean' : Report a lean declaration of the function's arguments as a struct array, with % fields as in arg_specifier, like rich, but excluding the alternatives field. % 'vals' : Report the values of the function's arguments as a struct, possibly with % sub-structs. % % 'properties' : Report properties of the function, if any (these can be declared via % declare_properties) % % 'handle': Report function handles to scoped functions within the Function (i.e., % subfunctions). The named of those functions are listed as a cell string array % in place of Arguments, unless there is exactly one returned function. Then, % this function is returned as-is. This functionality is a nice-to-have feature % for some use cases but not essential to the operation of the argument system. % % Function : a function handle to a function which defines some arguments (via arg_define) % % Arguments : cell array of parameters to be passed to the function; depending on the function's % implementation, this can affect the current value assignment (or structure) of the % parameters being returned If this is not a cell, it is automatically wrapped inside % one (note: to specify the first positional argument as [] to the function, always % pass it as {[]}; this is only relevant if the first argument's default is non-[]). % % Out: % Result : the reported data. % % Notes: % In all cases except 'properties', the Function must use arg_define() to define its arguments. % % Examples: % % for a function call with some arguments assigned, obtain a struct with all parameter % % names and values, including defaults % params = arg_report('vals',@myfunction,{4,10,true,'option1','xxx','option5',10}) % % % obtain a specification of all function arguments, with defaults, help text, type, shape, and other % % meta-data (with a subset of settings customized according to arguments) % spec = arg_report('rich',@myfunction,myarguments) % % % obtain a report of properties of the function (declared via declared_properties() within the % % function) % props = arg_report('properties',@myfunction) % % See also: % arg_define, declare_properties % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % uniformize arguments if ~exist('args','var') args = {}; end if isequal(args,[]) args = {}; end if ~iscell(args) args = {args}; end if ischar(func) func = str2func(func); end % make sure that the direct mode is disabled for the function being called (because in direct mode % it doesn't report) indices = find(cellfun('isclass',args,'struct') | strcmp(args,'arg_direct')); for k = indices(end:-1:1) if ischar(args{k}) && k<length(args) % found it in the NVPs args{k+1} = false; break; elseif isfield(args{k},'arg_direct') % found it in a struct args{k}.arg_direct = false; break; end end if any(strcmpi(type,{'rich','lean','vals','handle'})) % issue the report res = do_report(type,func,args); elseif strcmpi(type,'properties') if isempty(args) % without arguments we can do a quick hash map lookup % (based on the MD5 hash of the file in question) info = functions(func); hash = ['h' hlp_getresult(5,@utl_fileinfo,info.file,char(func))]; try % try lookup persistent cached_properties; %#ok<TLEV> res = cached_properties.(hash); catch % fall back to actually reporting it res = do_report('properties',func,args); % and store it for the next time cached_properties.(hash) = res; end else % with arguments we don't try to cache (as the properties might be argument-dependent) res = do_report('properties',func,args); end end function res = do_report(type,func,args) global tracking; persistent have_expeval; if isempty(have_expeval) have_expeval = exist('exp_eval','file'); end res = {}; try % the presence of one of the arg_report_*** functions in the stack communicates to the receiver % that a report is requested and what type of report... feval(['arg_report_' lower(type)],func,args,have_expeval); catch report if strcmp(report.identifier,'BCILAB:arg:report_args') % get the ticket of the report ticket = sscanf(report.message((find(report.message=='=',1,'last')+1):end),'%f'); % read out the payload res = tracking.arg_sys.reports{ticket}; % and return the ticket tracking.arg_sys.tickets.addLast(ticket); else % other error: if strcmp(type,'properties') % almost certainly no properties clause defined res = {}; else % genuine error: pass it on rethrow(report); end end end % --- a bit of boilerplate below (as the caller's name is relevant here) --- function arg_report_rich(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_lean(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_vals(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_handle(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end function arg_report_properties(func,args,have_expeval) %#ok<DEFNU> if have_expeval && nargout(func) > 0 exp_eval(func(args{:})); else func(args{:}); end
github
ZijingMao/baselineeegtest-master
arg_subswitch.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_subswitch.m
18,030
utf_8
2b99bc728471da69b824b4c58fbcdcd3
function res = arg_subswitch(varargin) % Specify a function argument that can be one of several alternative structs. % Spec = arg_subswitch(Names,Defaults,Alternatives,Help,Options...) % % The correct struct is chosen according to a selection rule (the mapper). Accessible to the % function as a struct, and visible in the GUI as an expandable sub-list of arguments (with a % drop-down list of alternative options). The chosen option (usually one out of a set of strings) is % delivered to the Function as the special struct field 'arg_selection'. % % In: % Names : The name(s) of the argument. At least one must be specified, and if multiple are % specified, they must be passed in a cell array. % * The first name specified is the argument's "code" name, as it should appear in the % function's code (= the name under which arg_define() returns it to the function). % * The second name, if specified, is the "Human-readable" name, which is exposed in the % GUIs (if omitted, the code name is displayed). % * Further specified names are alternative names for the argument (e.g., for backwards % compatibility with older function syntaxes/parameter names). % % Defaults : A cell array of arguments to override defaults for the Source (sources declared as % part of Alternatives); all syntax accepted by the (selected) Source is allowed here, % whereas in the case of positional arguments, the leading arg_norep() arguments of the % source are implicitly skipped. Note: Which one out of the several alternatives should % be selected is determined via the 'mapper' (which can be overridden in form of an % optional parameter). By default, the mapper maps the first argument to the Selector, % and assigns the rest to the matching Source. % % Alternatives : Definition of the switchable option groups. This is a cell array of the form: % {{'selector', Source}, {'selector', Source}, {'selector', Source}, ...} Each % Source is either a function handle (referring to a function that exposes % arguments via an arg_define() clause), or an in-line cell array of argument % specifications, analogously to the more detailed explanation in arg_sub(). In the % latter case (Source is a cell array), the option group may also be a 3-element % cell array of the form {'selector',Source,Format} ... where Format is a format % specifier as explained in arg_define(). % % Help : The help text for this argument (displayed inside GUIs), optional. (default: []). % (Developers: Please do *not* omit this, as it is the key bridge between ease of use and % advanced functionality.) % % The first sentence should be the executive summary (max. 60 chars), any further sentences % are a detailed explanation (examples, units, considerations). The end of the first % sentence is indicated by a '. ' followed by a capital letter (beginning of the next % sentence). If ambiguous, the help can also be specified as a cell array of 2 cells. % % Options... : Optional name-value pairs to denote additional properties: % 'cat' : The human-readable category of this argument, helpful to present a list % of many parameters in a categorized list, and to separate "Core % Parameters" from "Miscellaneous" arguments. Developers: When choosing % names, every bit of consistency with other function in the toolbox helps % the uses find their way (default: []). % % 'mapper' : A function that maps the value (cell array of arguments like Defaults) % to a value in the domain of selectors (first output), and a potentially % updated argument list (second output). The mapper is applied to the % argument list prior to any parsing (i.e. it faces the raw argument % list) to determine the current selection, and its second output (the % potentially updated argument list) is forwarded to the Source that was % selected, for further parsing. % % The default mapper takes the first argument in the argument list as the % Selector and passes the remaining list entries to the Source. If there % is only a single argument that is a struct with a field % 'arg_selection', this field's value is taken as the Selector, and the % struct is passed as-is to the Source. % % 'merge': Whether a value (cell array of arguments) assigned to this argument % should completely replace all arguments of the default, or whether it % should instead the two cell arrays should be concatenated ('merged'), so % that defaults are only selectively overridden. Note that for % concatenation to make sense, the cell array of Defaults cannot be some % subset of all allowed positional arguments, but must instead either be % the full set of positional arguments (and possibly some NVPs) or be % specified as NVPs in the first place. % % Out: % Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of % the argument, for use by arg_define. Technical note: Upon assignment with a value (via % the assigner field), the 'children' field of the specifier struct is populated according % to how the selected (by the mapper) Source (from Alternatives) parses the value into % arguments. The additional struct field 'arg_selection 'is introduced at this point. % % Examples: % % define a function with a multiple-choice argument, with different sub-arguments for each choice % % (where the default is 'kmeans'; some valid calls are: % % myfunction('method','em','flagXY',true) % % myfunction('flagXY',true, 'method',{'em', 'myarg',1001}) % % myfunction({'vb', 'myarg1',1001, 'myarg2','test'},false) % % myfunction({'kmeans', struct('arg2','test')}) % function myfunction(varargin) % arg_define(varargin, ... % arg_subswitch('method','kmeans',{ ... % {'kmeans', {arg('arg1',10,[],'argument for kmeans.'), arg('arg2','test',[],'another argument for it.')}, ... % {'em', {arg('myarg',1000,[],'argument for the EM method.')}, ... % {'vb', {arg('myarg1',test',[],'argument for the VB method.'), arg('myarg2','xyz',[],'another argument for VB.')} ... % }, 'Method to use. Three methods are supported: k-means, EM and VB, and each method has optional parameters that can be specified if chosen.'), ... % arg('flagXY',false,[],'And some flag.')); % % % define a function with a multiple-choice argument, where the arguments for the choices come % % from a different function each % function myfunction(varargin) % arg_define(varargin, ... % arg_subswitch('method','kmeans',{{'kmeans', @kmeans},{'em', @expectation_maximization},{'vb',@variational_bayes}}, 'Method to use. Each has optional parameters that can be specified if chosen.'), ... % arg('flagXY',false,[],'And some flag.')); % % % as before, but specify a different default and override some of the arguments for that default % function myfunction(varargin) % arg_define(varargin, ... % arg_subswitch('method',{'vb','myarg1','toast'},{{'kmeans', @kmeans},{'em', @expectation_maximization},{'vb',@variational_bayes}}, 'Method to use. Each has optional parameters that can be specified if chosen.'), ... % arg('flagXY',false,[],'And some flag.')); % % % specify a custom function to determine the format of the argument (and in particular the % % mapping of assigned value to chosen selection % arg_subswitch('method','kmeans',{{'kmeans', @kmeans},{'em',@expectation_maximization},{'vb',@variational_bayes}}, ... % 'Method to use. Each has optional parameters that can be specified if chosen.', 'mapper',@mymapper), ... % % See also: % arg, arg_nogui, arg_norep, arg_sub, arg_subtoggle, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % we return a function that an be invoked to yield a specification (its output is cached for % efficiency) packed in a cell array together with the remaining arguments res = {@invoke_argsubswitch_cached,varargin}; function spec = invoke_argsubswitch_cached(varargin) spec = hlp_microcache('arg',@invoke_argsubswitch,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_argsubswitch(reptype,names,defaults,alternatives,help,varargin) suppressNames = {}; % start with a base specification spec = arg_specifier('head',@arg_subswitch, 'type','char', 'shape','row', 'mapper',@map_argsubswitch); % override properties if exist('names','var') spec.names = names; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; elseif strcmpi(varargin{k},'suppress') suppressNames = varargin{k+1}; else error(['BCILAB:arg:no_new_fields','It is not allowed to introduce fields (here: ' varargin{k} ') into a specifier that are not declared in arg_specifier.']); end end % do checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end if isempty(alternatives) error('BCILAB:args:no_options','The Alternatives argument for arg_subswitch() may not be omitted.'); end %#ok<*NODEF> if nargin(spec.mapper) == 1 spec.mapper = @(x,y,z) spec.mapper(x); end % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help,100); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end % uniformize Alternatives syntax into {{'selector1',@function1, ...}, {'selector2',@function2, ...}, ...} if iscellstr(alternatives(1:2:end)) && all(cellfun(@(x)iscell(x)||isa(x,'function_handle'),alternatives(2:2:end))) alternatives = mat2cell(alternatives,1,repmat(2,length(alternatives)/2,1)); end % derive range spec.range = cellfun(@(c)c{1},alternatives,'UniformOutput',false); % turn Alternatives into a cell array of Source functions for k=1:length(alternatives) sel = alternatives{k}; selector = sel{1}; source = sel{2}; if ~ischar(selector) error('In arg_subswitch, each selector must be a string.'); end if length(sel) > 2 fmt = sel{3}; else fmt = []; end % uniformize Source syntax... if iscell(source) % args is a cell array instead of a function: we effectively turn this into a regular % arg_define-using function (taking & parsing values) source = @(varargin) arg_define(fmt,varargin,source{:}); else % args is a function: was a custom format specified? if isa(fmt,'function_handle') source = @(varargin) source(fmt(varargin)); elseif ~isempty(fmt) error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end end alternatives{k} = source; end sources = alternatives; % wrap the defaults into a cell if necessary (note: this is convenience syntax) if ~iscell(defaults) if ~(isstruct(defaults) || ischar(defaults)) error(['It is not allowed to use anything other than a cell, a struct, or a (selector) string as default for an arg_subswitch argument (here:' spec.names{1} ')']); end defaults = {defaults}; end % find out what index and value set the default configuration maps to; this is relevant for the % merging option: in this case, we need to pull up the correct default and merge it with the passed % value [default_sel,default_val] = spec.mapper(defaults,spec.range,spec.names); default_idx = find(strcmp(default_sel,spec.range)); % create the regular assigner... spec.assigner = @(spec,value) assign_argsubswitch(spec,value,reptype,sources,default_idx,default_val,suppressNames); % and assign the default itself if strcmp(reptype,'rich') spec = assign_argsubswitch(spec,defaults,'build',sources,0,{},suppressNames); else spec = assign_argsubswitch(spec,defaults,'lean',sources,0,{},suppressNames); end function spec = assign_argsubswitch(spec,value,reptype,sources,default_idx,default_val,suppressNames) % for convenience (in scripts calling the function), also support values that are not cell arrays if ~iscell(value) if ~(isstruct(value) || ischar(value)) error(['It is not allowed to assign anything other than a cell, a struct, or a (selector) string to an arg_subswitch argument (here:' spec.names{1} ')']); end value = {value}; end % run the mapper to get the selection according to the value (selectors is here for error checking); % also update the value [selection,value] = spec.mapper(value,spec.range,spec.names); % find the appropriate index in the selections... idx = find(strcmp(selection,spec.range)); % if we should build the set of alternatives, do so now.... if strcmp(reptype,'build') for n=setdiff(1:length(sources),idx) arg_sel = arg_nogui('arg_selection',spec.range{n}); spec.alternatives{n} = [arg_report('rich',sources{n}) arg_sel{1}([],arg_sel{2}{:})]; end reptype = 'rich'; end % build children and override the appropriate item in the aternatives arg_sel = arg_nogui('arg_selection',spec.range{idx}); if spec.merge && idx == default_idx spec.children = [arg_report(reptype,sources{idx},[default_val value]) arg_sel{1}([],arg_sel{2}{:})]; else spec.children = [arg_report(reptype,sources{idx},value) arg_sel{1}([],arg_sel{2}{:})]; end % toggle the displayable option for children which should be suppressed if ~isempty(suppressNames) % identify which children we want to suppress display hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.children(k).displayable = false; end % identify which alternatives we want to suppress display for alt_idx = 1:length(spec.alternatives) if isempty(spec.alternatives{alt_idx}) continue; end hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.alternatives{alt_idx}.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.alternatives{alt_idx}(k).displayable = false; end end end spec.alternatives{idx} = spec.children; % and set the value of the selector field itself to the current selection spec.value = selection; function [selection,args] = map_argsubswitch(args,selectors,names) if isempty(args) selection = selectors{1}; elseif isfield(args{1},'arg_selection') selection = args{1}.arg_selection; elseif any(strcmp(args{1},selectors)) [selection,args] = deal(args{1},args(2:end)); else % find the arg_selection in the cell array pos = find(strcmp('arg_selection',args(1:end-1)),1,'last'); [selection,args] = deal(args{pos+1},args([1:pos-1 pos+2:end])); end % Note: If this error is triggered, an value was passed for an argument which has a flexible structure (chosen out of a set of possibilities), but the possibility % which was chosen according to the passed value does not match any of the specified ones. For a value that is a cell array of arguments, the choice is % made based on the first element in the cell. For a value that is a structure of arguments, the choice is made based on the 'arg_selection' field. % The error is usually resolved by reviewing the argument specification of the offending function carefully, and comparing the passed value to the Alternatives % declared in the arg_subswitch() clause in which the offending argument is declared. if isempty(selection) error(['The chosen selector argument (empty) does not match any of the possible options (' sprintf('%s, ',selectors{1:end-1}) selectors{end} ') in the function argument ' names{1} '.']); elseif ~any(strcmpi(selection,selectors)) error(['The chosen selector argument (' selection ') does not match any of the possible options (' sprintf('%s, ',selectors{1:end-1}) selectors{end} ') in the function argument ' names{1} '.']); end
github
ZijingMao/baselineeegtest-master
arg_sub.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_sub.m
12,903
utf_8
d2d222baf398ec763c607d5b9168fd97
function res = arg_sub(varargin) % Specify an argument of a function which is a structure of sub-arguments. % Spec = arg_sub(Names,Defaults,Source,Help,Options...) % % Delivered to the function as a struct, and visible in the GUI as a an expandable sub-list of % arguments. A function may have an argument which itself consists of several arguments. For % example, a function may be passing the contents of this struct as arguments to another function, % or may just collect several arguments into sub-fields of a single struct. Differs from the default % arg() function by allowing, instead of the Range, either a Source function which exposes a list of % arguments (itself using arg_define), or a cell array with argument specifications, identical in % format to the Specification part of an arg_define() clause. % % In: % Names : The name(s) of the argument. At least one must be specified, and if multiple are % specified, they must be passed in a cell array. % * The first name specified is the argument's "code" name, as it should appear in the % function's code (= the name under which arg_define() returns it to the function). % * The second name, if specified, is the "Human-readable" name, which is exposed in the % GUIs (if omitted, the code name is displayed). % * Further specified names are alternative names for the argument (e.g., for backwards % compatibility with older function syntaxes/parameter names). % % Defaults : A cell array of arguments to override defaults for the Source; all syntax accepted by % the Source is allowed here, whereas in the case of positional arguments, the leading % arg_norep() arguments of the source are implicitly skipped. If empty, the defaults of % the Source are unaffected. % % Source : A source of argument specifications, usually a function handle (referring to a function % which defines arguments via arg_define()). % % For convenience, a cell array with a list of argument declarations, formatted like the % Specification part of an arg_define() clause can be given, instead. In this case, the % effect is the same as specifying @some_function, for a function implemented as: % % function some_function(varargin) arg_define(Format,varargin,Source{:}); % % Help : The help text for this argument (displayed inside GUIs), optional. (default: []). % (Developers: Please do *not* omit this, as it is the key bridge between ease of use and % advanced functionality.) % % The first sentence should be the executive summary (max. 60 chars), any further sentences % are a detailed explanation (examples, units, considerations). The end of the first % sentence is indicated by a '. ' followed by a capital letter (beginning of the next % sentence). If ambiguous, the help can also be specified as a cell array of 2 cells. % % Options... : Optional name-value pairs to denote additional properties: % 'cat' : The human-readable category of this argument, helpful to present a list % of many parameters in a categorized list, and to separate "Core % Parameters" from "Miscellaneous" arguments. Developers: When choosing % names, every bit of consistency with other function in the toolbox helps % the uses find their way (default: []). % % 'fmt' : Optional format specification for the Source (if it is a cell array) % (default: []). See arg_define() for a detailed explanation. % % 'merge': Whether a value (cell array of arguments) assigned to this argument % should completely replace all arguments of the default, or whether % instead the two cell arrays should be concatenated ('merged'), so that % defaults are only selectively overridden. Note that for concatenation to % make sense, the cell array of Defaults cannot be some subset of all % allowed positional arguments, but must instead either be the full set of % positional arguments (and possibly some NVPs) or be specified as NVPs in % the first place. (default: true) % % Out: % Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of % the argument, for use by arg_define. Technical note: Upon assignment with a value (via % the assigner field), the 'children' field of the specifier struct is populated according % to how the Source parses the value into arguments. % % Notes: % for MATLAB versions older than 2008a, type and shape checking is not necessarily enforced. % % Examples: % % define 3 arguments for a function, including one which is a struct of two other arguments. % % some valid calls to the function are: % % myfunction('somearg',false, 'anotherarg',10, 'structarg',{'myarg1',5,'myarg2','xyz'}) % % myfunction(false, 10, {'myarg1',5,'myarg2','xyz'}) % % myfunction('structarg',{'myarg2','xyz'}, 'somearg',false) % % myfunction('structarg',struct('myarg2','xyz','myarg1',10), 'somearg',false) % function myfunction(varargin) % arg_define(varargin, ... % arg('somearg',true,[],'Some argument.'),... % arg_sub('structarg',{},{ ... % arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ... % arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.') % }, 'Struct argument. This argument has sub-structure. It can generally be assigned a cell array of name-value pairs, or a struct.'), ... % arg('anotherarg',5,[],'Another argument. This is a regular numeric argument of myfunction again.)); % % % define a struct argument with some overridden defaults % arg_sub('structarg',{'myarg2','toast'},{ ... % arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ... % arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.') % }, 'Struct argument. This argument has sub-structure. It can generally be assigned a cell array of name-value pairs, or a struct.'), ... % % % define an arguments including one whose sub-parameters match those that are declared in some % % other function (@myotherfunction), which uses arg_define itself % function myfunction(varargin) % arg_define(varargin, ... % arg('somearg',[],[],'Some help text.'), ... % arg_sub('structarg',{},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction(), can be assigned as a cell array of name-value pairs or structs.')); % % % define an argument with sub-parameters sourced from some other function, but with partially overridden defaults % arg_sub('structarg',{'myarg1',1001},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction(), can be assigned as a cell array of name-value pairs or structs.')); % % % define an argument with sub-parameters sourced from some other function, with a particular set of custom defaults % % which are jointly replaced when a value is assigned to structarg (including an empty cell array) % arg_sub('structarg',{'myarg1',1001},@myotherfunction, 'A struct argument. Arguments are as in myotherfunction().', 'merge',false)); % % % define a struct argument with a custom formatting function (analogously to the optional Format function in arg_define) % % myparser shall be a function that takes a string and returns a cell array of name-value pairs (names compatible to the sub-argument names) % arg_sub('structarg',{},{ ... % arg('myarg1',4,[],'Some sub-argument. This is a sub-argument of the argument named structarg in the function'), ... % arg('myarg2','test',[],'Another sub-argument. This, too, is a sub-argument of structarg.') % }, 'Struct argument. This argument has sub-structure. Assign it as a string of the form ''name=value; name=value;''.', 'fmt',@myparser), ... % % See also: % arg, arg_nogui, arg_norep, arg_subswitch, arg_subtoggle, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % we return a function that an be invoked to yield a specification (its output is cached for % efficiency) packed in a cell array together with the remaining arguments res = {@invoke_argsub_cached,varargin}; function spec = invoke_argsub_cached(varargin) spec = hlp_microcache('arg',@invoke_argsub,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_argsub(reptype,names,defaults,source,help,varargin) % start with a base specification spec = arg_specifier('head',@arg_sub,'fmt',[], 'value','', 'type','char', 'shape','row'); suppressNames = {}; % override properties if exist('names','var') spec.names = names; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; elseif strcmpi(varargin{k},'suppress') suppressNames = varargin{k+1}; else error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.'); end end % do checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end if ~exist('source','var') || isequal(source,[]) error('BCILAB:args:no_source','The Source argument for arg_sub() may not be omitted.'); end %#ok<*NODEF> % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help,100); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end if ~isempty(source) % uniformize Source syntax if iscell(source) % args is a cell array instead of a function: we effectively turn this into a regular % arg_define-using function (taking & parsing values) source = @(varargin) arg_define(spec.fmt,varargin,source{:}); else % args is a function: was a custom format specified? if isa(spec.fmt,'function_handle') source = @(varargin) source(spec.fmt(varargin)); elseif ~isempty(spec.fmt) error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end end end spec = rmfield(spec,'fmt'); % assignment to this object does not touch the value, but instead creates a new children structure spec.assigner = @(spec,value) assign_argsub(spec,value,reptype,source,defaults,suppressNames); % assign the default spec = assign_argsub(spec,defaults,reptype,source,[],suppressNames); % function to do the value assignment function spec = assign_argsub(spec,value,reptype,source,default,suppressNames) if ~isempty(source) if spec.merge spec.children = arg_report(reptype,source,[default,value]); else spec.children = arg_report(reptype,source,value); end end % toggle the displayable option for children which should be suppressed if ~isempty(suppressNames) % identify which children we want to suppress display hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.children(k).displayable = false; end end
github
ZijingMao/baselineeegtest-master
arg_subtoggle.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_subtoggle.m
16,104
utf_8
7e89df9d3f60a509a08809550a8266e1
function res = arg_subtoggle(varargin) % Specify an argument of a function which is a struct of sub-arguments that can be disabled. % Spec = arg_subtoggle(Names,Default,Source,Help,Options...) % % Accessible to the function as a struct, and visible in the GUI as a an expandable sub-list of % arguments (with a checkbox to toggle). The special field 'arg_selection' (true/false) indicates % whether the argument is enabled or not. The value assigned to the argument determines whether it % is turned on or off, as determined by the mapper option. % % In: % Names : The name(s) of the argument. At least one must be specified, and if multiple are % specified, they must be passed in a cell array. % * The first name specified is the argument's "code" name, as it should appear in the % function's code (= the name under which arg_define() returns it to the function). % * The second name, if specified, is the "Human-readable" name, which is exposed in the % GUIs (if omitted, the code name is displayed). % * Further specified names are alternative names for the argument (e.g., for backwards % compatibility with older function syntaxes/parameter names). % % Defaults : A cell array of arguments to override defaults for the Source; all syntax accepted by % the (selected) Source is allowed here, whereas in the case of positional arguments, % the leading arg_norep() arguments of the source are implicitly skipped. Note: Whether % the argument is turned on or off is determined via the 'mapper' option. By default, % [] and 'off' are mapped to off, whereas {}, non-empty cell arrays and structs are % mapped to on. % % Source : A source of argument specifications, usually a function handle (referring to a function % which defines arguments via arg_define()). % % For convenience, a cell array with a list of argument declarations, formatted like the % Specification part of an arg_define() clause can be given, instead. In this case, the % effect is the same as specifying @some_function, for a function implemented as: % % function some_function(varargin) arg_define(Format,varargin,Source{:}); % % Help : The help text for this argument (displayed inside GUIs), optional. (default: []). % (Developers: Please do *not* omit this, as it is the key bridge between ease of use and % advanced functionality.) % % The first sentence should be the executive summary (max. 60 chars), any further sentences % are a detailed explanation (examples, units, considerations). The end of the first % sentence is indicated by a '. ' followed by a capital letter (beginning of the next % sentence). If ambiguous, the help can also be specified as a cell array of 2 cells. % % Options... : Optional name-value pairs to denote additional properties: % 'cat' : The human-readable category of this argument, helpful to present a list % of many parameters in a categorized list, and to separate % "Core Parameters" from "Miscellaneous" arguments. Developers: When % choosing names, every bit of consistency with other function in the % toolbox helps the uses find their way (default: []). % % 'fmt' : Optional format specification for the Source (if it is a cell array) % (default: []). See arg_define() for a detailed explanation. % % 'mapper' : A function that maps the argument list (e.g., Defaults) to a value in % the domain of selectors, and a potentially updated argument list. The % mapper is applied to the argument list prior to any parsing (i.e. it % faces the raw argument list) to determine the current selection, and % its its second output (the potentially updated argument list) is % forwarded to the Source that was selected, for further parsing. % % The default mapper maps [] and 'off' to off, whereas 'on', empty or % non-empty cell arrays and structs are mapped to on. % % 'merge': Whether a value (cell array of arguments) assigned to this argument % should completely replace all arguments of the default, or whether it % should instead the two cell arrays should be concatenated ('merged'), so % that defaults are only selectively overridden. Note that for % concatenation to make sense, the cell array of Defaults cannot be some % subset of all allowed positional arguments, but must instead either be % the full set of positional arguments (and possibly some NVPs) or be % specified as NVPs in the first place. % % % Out: % Spec : A cell array, that, when called as spec{1}(reptype,spec{2}{:}), yields a specification of % the argument, for use by arg_define. Technical note: Upon assignment with a value (via % the assigner field), the 'children' field of the specifier struct is populated according % to how the selected (by the mapper) Source parses the value into arguments. The % additional struct field 'arg_selection 'is introduced at this point. % % Examples: % % define a function with an argument that can be turned on or off, and which has sub-arguments % % that are effective if the argument is turned on (default: on); some valid calls are: % % myfunction('somearg','testtest', 'myoption','off') % % myfunction('somearg','testtest', 'myoption',[]) % alternative for: off % % myfunction('somearg','testtest', 'myoption','on') % % myfunction('somearg','testtest', 'myoption',{}) % alternatie for: on % % myfunction('somearg','testtest', 'myoption',{'param1','test','param2',10}) % % myfunction('somearg','testtest', 'myoption',{'param2',10}) % % myfunction('testtest', {'param2',10}) % % myfunction('myoption', {'param2',10}) % function myfunction(varargin) % arg_define(varargin, ... % arg('somearg','test',[],'Some help.'), ... % arg_subtoggle('myoption',},{},{ ... % arg('param1',[],[],'Parameter 1.'), ... % arg('param2',5,[],'Parameter 2.') ... % }, 'Optional processing step. If selected, several sub-argument can be specified.')); % % % define a function with an argument that can be turned on or off, and whose sub-arguments match % % those of some other function (there declared via arg_define) % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.')); % % % as before, but override some of the defaults of someotherfunction % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{'param1',10},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.')); % % % as before, but specify a custom mapper function that determines how myoption is passed, and % % what forms map to 'on' and 'off' % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'.'mapper',@mymapper)); % % % as before, but specify a custom formatting function that determines the arguments in myoption % % may be passed (keeping the defaults regarding what forms map to 'on' and 'off') % function myfunction(varargin) % arg_define(varargin, ... % arg_subtoggle('myoption',},{},@someotherfunction, 'Optional processing step. If selected, several sub-argument can be specified.'.'fmt',@myparser)); % % See also: % arg, arg_nogui, arg_norep, arg_sub, arg_subswitch, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA % we return a function that an be invoked to yield a specification (its output is cached for % efficiency) packed in a cell array together with the remaining arguments res = {@invoke_argsubtoggle_cached,varargin}; function spec = invoke_argsubtoggle_cached(varargin) spec = hlp_microcache('arg',@invoke_argsubtoggle,varargin{:}); % the function that does the actual work of building the argument specifier function spec = invoke_argsubtoggle(reptype,names,defaults,source,help,varargin) % start with a base specification spec = arg_specifier('head',@arg_subtoggle, 'fmt',[], 'type','logical', 'shape','scalar', 'mapper',@map_argsubtoggle); suppressNames = {}; % override properties if exist('names','var') spec.names = names; end if exist('help','var') spec.help = help; end for k=1:2:length(varargin) if isfield(spec,varargin{k}) spec.(varargin{k}) = varargin{k+1}; elseif strcmpi(varargin{k},'suppress') suppressNames = varargin{k+1}; else error('BCILAB:arg:no_new_fields','It is not allowed to introduce fields into a specifier that are not declared in arg_specifier.'); end end % do checking if ~iscell(spec.names) spec.names = {spec.names}; end if isempty(spec.names) || ~iscellstr(spec.names) error('The argument must have a name or cell array of names.'); end if ~exist('source','var') || isempty(source) error('BCILAB:args:no_options','The Source argument for arg_subtoggle() may not be omitted.'); end %#ok<*NODEF> if nargin(spec.mapper) == 1 spec.mapper = @(x,y,z) spec.mapper(x); end % parse the help if ~isempty(spec.help) try spec.help = parse_help(spec.help,100); catch e disp(['Problem with the help text for argument ' spec.names{1} ': ' e.message]); spec.help = {}; end elseif spec.reportable && spec.displayable disp(['Please specify a description for argument ' spec.names{1} ', or specify it via arg_nogui() instead.']); end % uniformize Source syntax if iscell(source) % args is a cell array instead of a function: we effectively turn this into a regular % arg_define-using function (taking & parsing values) source = @(varargin) arg_define(spec.fmt,varargin,source{:}); else % args is a function: was a custom format specified? if isa(spec.fmt,'function_handle') source = @(varargin) source(spec.fmt(varargin)); elseif ~isempty(spec.fmt) error('The only allowed form in which the Format of a Source that is a function may be overridden is as a pre-parser (given as a function handle)'); end end spec = rmfield(spec,'fmt'); % wrap the default into a cell if necessary (note: this is convenience syntax) if isstruct(defaults) defaults = {defaults}; elseif strcmp(defaults,'off') defaults = []; elseif strcmp(defaults,'on') defaults = {}; elseif ~iscell(defaults) && ~isequal(defaults,[]) error(['It is not allowed to use anything other than a cell array, a struct, [] or ''off'' and ''on'' as defaults of an arg_subtoggle argument (here:' spec.names{1} ')']); end % resolve the default configuration into the boolean flag and value set; this is relevant for % the merging option: in this case, we need to pull up the currect default and merge it with the % passed value [default_sel,default_val] = spec.mapper(defaults); % set up the regular assigner spec.assigner = @(spec,value) assign_argsubtoggle(spec,value,reptype,source,default_sel,default_val,suppressNames); % assign the default if strcmp(reptype,'rich') spec = assign_argsubtoggle(spec,defaults,'build',source,NaN,{},suppressNames); else spec = assign_argsubtoggle(spec,defaults,'lean',source,NaN,{},suppressNames); end function spec = assign_argsubtoggle(spec,value,reptype,source,default_sel,default_val,suppressNames) % precompute things that we might need later persistent arg_sel arg_desel; if isempty(arg_sel) || isempty(arg_sel) arg_sel = arg_nogui('arg_selection',true); arg_sel = arg_sel{1}([],arg_sel{2}{:}); arg_desel = arg_nogui('arg_selection',false); arg_desel = arg_desel{1}([],arg_desel{2}{:}); end % wrap the value into a cell if necessary (note: this is convenience syntax) if isstruct(value) value = {value}; elseif ~iscell(value) && ~isequal(value,[]) && ~isempty(default_val) error(['For an arg_subtoggle argument that has non-empty defaults (here:' spec.names{1} '), it is not allowed to assign anything other than a cell array, a struct, or [] to it.']); end % retrieve the values for the realized switch option... [selected,value] = spec.mapper(value); % build the complementary alternative, if requested if strcmp(reptype,'build') if selected spec.alternatives{1} = arg_desel; else spec.alternatives{2} = [arg_report('rich',source,{}) arg_sel]; end reptype = 'rich'; end % obtain the children if ~selected spec.children = arg_desel; elseif spec.merge && (default_sel==true) spec.children = [arg_report(reptype,source,[default_val value]) arg_sel]; else spec.children = [arg_report(reptype,source,value) arg_sel]; end % toggle the displayable option for children which should be suppressed if ~isempty(suppressNames) % identify which children we want to suppress display hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.children.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.children(k).displayable = false; end % identify which alternatives we want to suppress display for alt_idx = 1:length(spec.alternatives) if isempty(spec.alternatives{alt_idx}) continue; end hidden = find(cellfun(@any,cellfun(@(x,y) ismember(x,suppressNames),{spec.alternatives{alt_idx}.names},'UniformOutput',false))); % set display flag to false for k=hidden(:)' spec.alternatives{alt_idx}(k).displayable = false; end end end spec.alternatives{selected+1} = spec.children; % and set the cell's value spec.value = selected; % this function maps an argument list onto a binary flag (enabled status) plus value set to assign function [selected,args] = map_argsubtoggle(args) if isequal(args,'on') selected = true; args = {}; elseif isequal(args,'off') || isequal(args,[]) selected = false; args = []; elseif length(args) == 1 && isfield(args,'arg_selection') selected = args.arg_selection; elseif length(args) == 1 && iscell(args) && isstruct(args{1}) && isfield(args{1},'arg_selection') selected = args{1}.arg_selection; elseif isequal(args,{'arg_selection',0}) selected = false; args = {}; elseif isequal(args,{'arg_selection',1}) selected = true; args = {}; elseif iscell(args) % find the arg_selection in the cell array pos = find(strcmp('arg_selection',args(1:end-1)),1,'last'); if isempty(pos) selected = true; else [selected,args] = deal(args{pos+1},args([1:pos-1 pos+2:end])); end else selected = true; end
github
ZijingMao/baselineeegtest-master
arg_guipanel.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_guipanel.m
4,253
utf_8
f1f39d58a10b31916e58237bd50d0811
function result = arg_guipanel(varargin) % Create a uipanel that displays an argument property inspector for a Function. % Result = arg_guipanel(Options ...) % Result = arg_guipanel(Parent, Options ...) % % The handle supports the method .GetPropertySpecification(), by means of which the edited argument % specification can be retrieved. This result can be turned into a valid Function argument using % arg_tovals(). Additional Parameters may be passed to the Function, in order to override some of % its defaults. % % In: % Parent : optional parent widget % % Options : name-value pairs; possible names are: % 'Function' : the function for which to display arguments % % 'Parameters' : cell array of parameters to the function % % 'Position' : position of the panel within the parent widget % % 'PanelOnly' : if true, generate only a uipanel that can be embedded in a dialog; % otherwise generate a figure and wait until it is closed. % (default: true) % % Out: % Result : * if PanelOnly, this is the handle to the panel; supports .GetPropertySpecification() % to obain the edited specification (when done) % * otherwise this is the PropertySpecification of the function at the time when the % figure is closed % % Examples: % % get a uipanel that allows to edit parameters to a function % f = figure; % h = arg_guipanel(f,'Function',@myfunction); % % % get a uipanel that allows to edit parameters to a function, and customize initial settings % f = figure; % h = arg_guipanel(f,'Function',@myfunction,'Parameters',{3,21,'test'}); % % % get a uipanel that allows to edit parameters to a function, and put it in a specific position % f = figure; % h = arg_guipanel(f,'Function',@myfunction,'Position',[0 0 100 200]); % % See also: % arg_guidialog, arg_guidialog_ex, arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-24 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA global tracking; if ~isfield(tracking,'gui') || ~isfield(tracking.gui,'show_guru') tracking.gui.show_guru = true; end % separate the parent, if specified if isscalar(varargin{1}) && ishandle(varargin{1}) parent = varargin{1}; varargin = varargin(2:end); else mp = get(0,'MonitorPositions')'; parent = figure('MenuBar','none','Position',[mp(3)/2-200,mp(4)/2-200,400,400]); end % get the options opts = hlp_varargin2struct(varargin, {'Function','function','func'},mandatory, {'Parameters','parameters','params'},{}, {'Position','position','pos'},[0 0 1 1],{'PanelOnly','panel_only'},true); % obtain the argument specification for the function spec = arg_report('rich', opts.Function, opts.Parameters); % ... and turn it into an array of PropertyGridField's properties = PropertyGridField.GenerateFrom(spec); % instantiate the grid args = hlp_struct2varargin(opts,'suppress',{'Function','Parameters','PanelOnly'}); hpanel = PropertyGrid(parent,args{:},'Properties',properties,'ShowExpert',tracking.gui.show_guru); if ~opts.PanelOnly % in this case a figure is generated and we wait until the figure is closed set(hpanel.Parent,'CloseRequestFcn',@(hfig,v)extract_properties(hfig)); uiwait(hpanel.Parent); else result = hpanel; end function extract_properties(hfig) result = arg_tovals(hpanel.GetPropertySpecification); delete(hfig); end end
github
ZijingMao/baselineeegtest-master
arg_tovals.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_tovals.m
3,298
utf_8
4c53983211063113b2ef46011720a192
function res = arg_tovals(spec,direct) % Convert a 'rich' argument report into a 'vals' report. % Vals = arg_tovals(Rich) % % In: % Rich : a 'rich' argument report, as obtained via arg_report('rich',some_function) % % Direct : whether to endow the result with an 'arg_direct' flag set to true, which indicates to % the function taking the Vals struct that the contents of the struct directly correspond % to workspace variables of the function. If enabled, contents of Vals must be changed % with care - for example, removing/renaming fields will likely lead to errors in the % function. (default: true) % % Out: % Vals : a 'vals' argument report, as obtained via arg_report('vals',some_function) this data % structure can be used as a valid argument to some_function. % % Examples: % % report arguments of myfunction % report = arg_report('rich',@myfunction) % % convert the report to a valid argument to the function % values = arg_tovals(report); % % See also: % arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-10-18 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA if ~exist('direct','var') direct = false; end % remove unassigned specifiers spec = spec(~strcmp(unassigned,{spec.value})); % evaluate expressions expressions = strcmp('expression',{spec.type}) & cellfun('isclass',{spec.value},'char'); if any(expressions) try [spec(expressions).value] = dealout(evalin('base',format_cellstr({spec(expressions).value}))); catch for e=find(expressions) try spec(e).value = evalin('base',spec(e).value); catch end end end end % and replace by structs res = struct('arg_direct',{direct}); for k=1:length(spec) if isstruct(spec(k).children) % has children: replace by struct val = arg_tovals(spec(k).children,direct); else % no children: take value (and possibly convert to double) val = spec(k).value; if spec(k).to_double && isinteger(val) val = double(val); end end % and assign the value res.(spec(k).names{1}) = val; end res.arg_direct = direct; % like deal(), except that the inputs are given as a cell array instead of a comma-separated list function varargout = dealout(argin) varargout = argin; % format a non-empty cell-string array into a string function x = format_cellstr(x) x = ['{' sprintf('%s, ',x{1:end-1}) x{end} '}'];
github
ZijingMao/baselineeegtest-master
arg_specifier.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/arguments/arg_specifier.m
3,766
utf_8
d9f9eaf9bd9514675f5ba5e7832bf577
function spec = arg_specifier(varargin) % Internal: create a base specifier struct for an argument. % Specifier = arg_specifier(Overrides...) % % In: % Overrides... : name-value pairs of fields that should be overridden % % Out: % A specifier that is recognized by arg_define. % % See also: % arg_define % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-09-25 % Copyright (C) Christian Kothe, SCCN, 2010, [email protected] % % This program is free software; you can redistribute it and/or modify it under the terms of the GNU % General Public License as published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without % even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License along with this program; if not, % write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA spec = struct(... ... % core properties 'head',{@arg_specifier},...% the expression type that generated this specifier (@arg, @arg_sub, ...) 'names',{{}}, ... % cell array of argument names; first is the "code" name (reported to the function), second (if present) is the human-readable name (reported to the GUI) 'value',{[]}, ... % the assigned value of the argument; can be any data structure 'assigner',{@assign},...% function to be invoked in order to assign a new value the specifier ... % properties for (possibly dependent) child arguments 'children',{{}}, ... % cell array of child arguments (returned to the function in a struct, and made available to the GUI in a subgroup) 'mapper',@(x)x, ... % mapping function: maps a value into the index space of alternatives (possibly via range) 'alternatives',{{}}, ...% cell array of alternative children structures; only used for arg_subtoggle, arg_subswitch 'merge',{true},... % whether the value (a cell array of arguments) should completely replace the default, or be merged with it, such that sub-arguments are only selectively overridden ... % type-related properties 'range',{[]}, ... % the allowed range of the argument (for type checking in GUI and elsewhere); can be [], [lo hi], {'option1','option2','option3',...} 'type',{[]}, ... % the type of the argument: string, only touches the type-checking system & GUI 'shape',{[]}, ... % the shape of the argument: empty. scalar, row, column, matrix ... % user interface properties 'help',{''}, ... % the help text / description for the argument 'cat',{''}, ... % the human-readable category of the argument ... % misc attributes 'displayable',{true},...% whether the argument may be displayed by GUIs (true/false) 'deprecated',{false},...% whether the argument has been deprecated (true/false) 'experimental',{false},...% whether the argument is marked as experimental or "prototype-stage" (true/false) 'guru',{false},... % whether the argument is marked as guru-level (true/false) 'reportable',{true},... % whether the argument can be reported to outer function (given that it is assigned), or not (true/false) 'to_double',{true} ... % convert numeric values to double before returning them to the function ); % selectively override fields for k=1:2:length(varargin) spec.(varargin{k}) = varargin{k+1}; end function spec = assign(spec,value) spec.value = value;
github
ZijingMao/baselineeegtest-master
is_needing_search.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/queries/is_needing_search.m
808
utf_8
b4e0ea02b09d80b71d7e2970b648578f
function res = is_needing_search(argform,args) % test whether some argument pack requires a search or not (according to the specified argument format) if strcmp(argform,'direct') % a search is specified by multielement arguments res = prod(max(1,cellfun(@length,args))) > 1; elseif strcmp(argform,'clauses') % a search is specified by (possibly nested) search clauses res = contains_search(args); else error('unsupported argument form.'); end % test whether the given data structure contains a search clause function res = contains_search(x) if has_canonical_representation(x) && isequal(x.head,@search) res = true; elseif iscell(x) res = any(cellfun(@contains_search,x)); elseif isstruct(x) && numel(x) == 1 res = contains_search(struct2cell(x)); else res = false; end
github
ZijingMao/baselineeegtest-master
is_raw_dataset.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/queries/is_raw_dataset.m
184
utf_8
6bcaef74ea534a299898aa10b68af85a
% determine whether some object is a raw EEGLAB data set with no BCILAB constituents function res = is_raw_dataset(x) res = all(isfield(x,{'data','srate'})) && ~isfield(x,'tracking');
github
ZijingMao/baselineeegtest-master
asr_process.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/ASR/asr_process.m
10,842
utf_8
2b9444373fa0587a1378382eea5850ec
function [outdata,outstate] = asr_process(data,srate,state,windowlen,lookahead,stepsize,maxdims,maxmem,usegpu) % Processing function for the Artifact Subspace Reconstruction (ASR) method. % [Data,State] = asr_process(Data,SamplingRate,State,WindowLength,LookAhead,StepSize,MaxDimensions,MaxMemory,UseGPU) % % This function is used to clean multi-channel signal using the ASR method. The required inputs are % the data matrix, the sampling rate of the data, and the filter state (as initialized by % asr_calibrate). If the data is used on successive chunks of data, the output state of the previous % call to asr_process should be passed in. % % In: % Data : Chunk of data to process [#channels x #samples]. This is a chunk of data, assumed to be % a continuation of the data that was passed in during the last call to asr_process (if % any). The data should be *zero-mean* (e.g., high-pass filtered the same way as for % asr_calibrate). % % SamplingRate : sampling rate of the data in Hz (e.g., 250.0) % % State : initial filter state (determined by asr_calibrate or from previous call to asr_process) % % WindowLength : Length of the statistcs window, in seconds (e.g., 0.5). This should not be much % longer than the time scale over which artifacts persist, but the number of samples % in the window should not be smaller than 1.5x the number of channels. Default: 0.5 % % LookAhead : Amount of look-ahead that the algorithm should use. Since the processing is causal, % the output signal will be delayed by this amount. This value is in seconds and should % be between 0 (no lookahead) and WindowLength/2 (optimal lookahead). The recommended % value is WindowLength/2. Default: WindowLength/2 % % StepSize : The statistics will be updated every this many samples. The larger this is, the faster % the algorithm will be. The value must not be larger than WindowLength*SamplingRate. % The minimum value is 1 (update for every sample) while a good value is 1/3 of a second. % Note that an update is always performed also on the first and last sample of the data % chunk. Default: 32 % % MaxDimensions : Maximum dimensionality of artifacts to remove. Up to this many dimensions (or up % to this fraction of dimensions) can be removed for a given data segment. If the % algorithm needs to tolerate extreme artifacts a higher value than the default % may be used (the maximum fraction is 1.0). Default 0.66 % % MaxMemory : The maximum amount of memory used by the algorithm when processing a long chunk with % many channels, in MB. The recommended value is at least 256. To run on the GPU, use % the amount of memory available to your GPU here (needs the parallel computing toolbox). % default: min(5000,1/2 * free memory in MB). Using smaller amounts of memory leads to % longer running times. % % UseGPU : Whether to run on the GPU. This makes sense for offline processing if you have a a card % with enough memory and good double-precision performance (e.g., NVIDIA GTX Titan or % K20). Note that for this to work you need to have the Parallel Computing toolbox. % Default: false % % Out: % Data : cleaned data chunk (same length as input but delayed by LookAhead samples) % % State : final filter state (can be passed in for subsequent calls) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2012-08-31 % UC Copyright Notice % This software is Copyright (C) 2013 The Regents of the University of California. All Rights Reserved. % % Permission to copy, modify, and distribute this software and its documentation for educational, % research and non-profit purposes, without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the following three paragraphs appear % in all copies. % % Permission to make commercial use of this software may be obtained by contacting: % Technology Transfer Office % 9500 Gilman Drive, Mail Code 0910 % University of California % La Jolla, CA 92093-0910 % (858) 534-5815 % [email protected] % % This software program and documentation are copyrighted by The Regents of the University of % California. The software program and documentation are supplied "as is", without any accompanying % services from The Regents. The Regents does not warrant that the operation of the program will be % uninterrupted or error-free. The end-user understands that the program was developed for research % purposes and is advised not to rely exclusively on the program for any reason. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, % SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF % THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, % INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A % PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF % CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR % MODIFICATIONS. if nargin < 4 || isempty(windowlen) windowlen = 0.5; end windowlen = max(windowlen,1.5*size(data,1)/srate); if nargin < 5 || isempty(lookahead) lookahead = windowlen/2; end if nargin < 6 || isempty(stepsize) stepsize = 32; end if nargin < 7 || isempty(maxdims) maxdims = 0.66; end if nargin < 9 || isempty(usegpu) usegpu = false; end if nargin < 8 || isempty(maxmem) if usegpu dev = gpuDevice(); maxmem = dev.FreeMemory/2^20; else maxmem = hlp_memfree/(2^21); end end if maxdims < 1 maxdims = round(size(data,1)*maxdims); end if isempty(data) outdata = data; outstate = state; return; end [C,S] = size(data); N = round(windowlen*srate); P = round(lookahead*srate); [T,M,A,B] = deal(state.T,state.M,state.A,state.B); % initialize prior filter state by extrapolating available data into the past (if necessary) if isempty(state.carry) state.carry = repmat(2*data(:,1),1,P) - data(:,1+mod(((P+1):-1:2)-1,S)); end data = [state.carry data]; data(~isfinite(data(:))) = 0; % split up the total sample range into k chunks that will fit in memory splits = ceil((C*C*S*8*8 + C*C*8*S/stepsize + C*S*8*2 + S*8*5) / (maxmem*1024*1024 - C*C*P*8*3)); if splits > 1 fprintf('Now cleaning data in %i blocks',splits); end for i=1:splits range = 1+floor((i-1)*S/splits) : min(S,floor(i*S/splits)); if ~isempty(range) % get spectrally shaped data X for statistics computation (range shifted by lookahead) [X,state.iir] = filter(B,A,double(data(:,range+P)),state.iir,2); % move it to the GPU if applicable if usegpu && length(range) > 1000 try X = gpuArray(X); catch,end; end % compute running mean covariance (assuming a zero-mean signal) [Xcov,state.cov] = moving_average(N,reshape(bsxfun(@times,reshape(X,1,C,[]),reshape(X,C,1,[])),C*C,[]),state.cov); % extract the subset of time points at which we intend to update update_at = min(stepsize:stepsize:(size(Xcov,2)+stepsize-1),size(Xcov,2)); % if there is no previous R (from the end of the last chunk), we estimate it right at the first sample if isempty(state.last_R) update_at = [1 update_at]; state.last_R = eye(C); end Xcov = reshape(Xcov(:,update_at),C,C,[]); if usegpu Xcov = gather(Xcov); end % do the reconstruction in intervals of length stepsize (or shorter if at the end of a chunk) last_n = 0; for j=1:length(update_at) % do a PCA to find potential artifact components [V,D] = eig(Xcov(:,:,j)); [D,order] = sort(reshape(diag(D),1,C)); V = V(:,order); % determine which components to keep (variance below directional threshold or not admissible for rejection) keep = D<sum((T*V).^2) | (1:C)<(C-maxdims); trivial = all(keep); % update the reconstruction matrix R (reconstruct artifact components using the mixing matrix) if ~trivial R = real(M*pinv(bsxfun(@times,keep',V'*M))*V'); else R = eye(C); end % apply the reconstruction to intermediate samples (using raised-cosine blending) n = update_at(j); if ~trivial || ~state.last_trivial subrange = range((last_n+1):n); blend = (1-cos(pi*(1:(n-last_n))/(n-last_n)))/2; data(:,subrange) = bsxfun(@times,blend,R*data(:,subrange)) + bsxfun(@times,1-blend,state.last_R*data(:,subrange)); end [last_n,state.last_R,state.last_trivial] = deal(n,R,trivial); end end if splits > 1 fprintf('.'); end end if splits > 1 fprintf('\n'); end % carry the look-ahead portion of the data over to the state (for successive calls) state.carry = [state.carry data(:,(end-P+1):end)]; state.carry = state.carry(:,(end-P+1):end); % finalize outputs outdata = data(:,1:(end-P)); if usegpu state.iir = gather(state.iir); state.cov = gather(state.cov); end outstate = state; function [X,Zf] = moving_average(N,X,Zi) % Run a moving-average filter along the second dimension of the data. % [X,Zf] = moving_average(N,X,Zi) % % In: % N : filter length in samples % X : data matrix [#Channels x #Samples] % Zi : initial filter conditions (default: []) % % Out: % X : the filtered data % Zf : final filter conditions % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2012-01-10 if nargin <= 2 || isempty(Zi) Zi = zeros(size(X,1),N); end % pre-pend initial state & get dimensions Y = [Zi X]; M = size(Y,2); % get alternating index vector (for additions & subtractions) I = [1:M-N; 1+N:M]; % get sign vector (also alternating, and includes the scaling) S = [-ones(1,M-N); ones(1,M-N)]/N; % run moving average X = cumsum(bsxfun(@times,Y(:,I(:)),S(:)'),2); % read out result X = X(:,2:2:end); if nargout > 1 Zf = [-(X(:,end)*N-Y(:,end-N+1)) Y(:,end-N+2:end)]; end function result = hlp_memfree % Get the amount of free physical memory, in bytes result = java.lang.management.ManagementFactory.getOperatingSystemMXBean().getFreePhysicalMemorySize();
github
ZijingMao/baselineeegtest-master
asr_calibrate.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/ASR/asr_calibrate.m
20,719
utf_8
8fae81e23ca90db07857571dd5142fbb
function state = asr_calibrate(X,srate,cutoff,blocksize,B,A,window_len,window_overlap,max_dropout_fraction,min_clean_fraction) % Calibration function for the Artifact Subspace Reconstruction (ASR) method. % State = asr_calibrate(Data,SamplingRate,Cutoff,BlockSize,FilterB,FilterA,WindowLength,WindowOverlap,MaxDropoutFraction,MinCleanFraction) % % The input to this data is a multi-channel time series of calibration data. In typical uses the % calibration data is clean resting EEG data of ca. 1 minute duration (can also be longer). One can % also use on-task data if the fraction of artifact content is below the breakdown point of the % robust statistics used for estimation (50% theoretical, ~30% practical). If the data has a % proportion of more than 30-50% artifacts then bad time windows should be removed beforehand. This % data is used to estimate the thresholds that are used by the ASR processing function to identify % and remove artifact components. % % The calibration data must have been recorded for the same cap design from which data for cleanup % will be recorded, and ideally should be from the same session and same subject, but it is possible % to reuse the calibration data from a previous session and montage to the extent that the cap is % placed in the same location (where loss in accuracy is more or less proportional to the mismatch % in cap placement). % % The calibration data should have been high-pass filtered (for example at 0.5Hz or 1Hz using a % Butterworth IIR filter). % % In: % Data : Calibration data [#channels x #samples]; *zero-mean* (e.g., high-pass filtered) and % reasonably clean EEG of not much less than 30 seconds length (this method is typically % used with 1 minute or more). % % SamplingRate : Sampling rate of the data, in Hz. % % % The following are optional parameters (the key parameter of the method is the RejectionCutoff): % % RejectionCutoff: Standard deviation cutoff for rejection. Data portions whose variance is larger % than this threshold relative to the calibration data are considered missing % data and will be removed. The most aggressive value that can be used without % losing too much EEG is 2.5. A quite conservative value would be 5. Default: 5. % % Blocksize : Block size for calculating the robust data covariance and thresholds, in samples; % allows to reduce the memory and time requirements of the robust estimators by this % factor (down to Channels x Channels x Samples x 16 / Blocksize bytes). Default: 10 % % FilterB, FilterA : Coefficients of an IIR filter that is used to shape the spectrum of the signal % when calculating artifact statistics. The output signal does not go through % this filter. This is an optional way to tune the sensitivity of the algorithm % to each frequency component of the signal. The default filter is less % sensitive at alpha and beta frequencies and more sensitive at delta (blinks) % and gamma (muscle) frequencies. Default: % [b,a] = yulewalk(8,[[0 2 3 13 16 40 min(80,srate/2-1)]*2/srate 1],[3 0.75 0.33 0.33 1 1 3 3]); % % WindowLength : Window length that is used to check the data for artifact content. This is % ideally as long as the expected time scale of the artifacts but short enough to % allow for several 1000 windows to compute statistics over. Default: 0.5. % % WindowOverlap : Window overlap fraction. The fraction of two successive windows that overlaps. % Higher overlap ensures that fewer artifact portions are going to be missed (but % is slower). Default: 0.66 % % MaxDropoutFraction : Maximum fraction of windows that can be subject to signal dropouts % (e.g., sensor unplugged), used for threshold estimation. Default: 0.1 % % MinCleanFraction : Minimum fraction of windows that need to be clean, used for threshold % estimation. Default: 0.25 % % % Out: % State : initial state struct for asr_process % % Notes: % This can run on a GPU with large memory and good double-precision performance for faster processing % (e.g., on an NVIDIA GTX Titan or K20), but requires that the Parallel Computing toolbox is % installed. % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2012-08-31 % asr_calibrate_version<1.03> -- for the cache % UC Copyright Notice % This software is Copyright (C) 2013 The Regents of the University of California. All Rights Reserved. % % Permission to copy, modify, and distribute this software and its documentation for educational, % research and non-profit purposes, without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the following three paragraphs appear % in all copies. % % Permission to make commercial use of this software may be obtained by contacting: % Technology Transfer Office % 9500 Gilman Drive, Mail Code 0910 % University of California % La Jolla, CA 92093-0910 % (858) 534-5815 % [email protected] % % This software program and documentation are copyrighted by The Regents of the University of % California. The software program and documentation are supplied "as is", without any accompanying % services from The Regents. The Regents does not warrant that the operation of the program will be % uninterrupted or error-free. The end-user understands that the program was developed for research % purposes and is advised not to rely exclusively on the program for any reason. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, % SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF % THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, % INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A % PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF % CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR % MODIFICATIONS. [C,S] = size(X); if nargin < 3 || isempty(cutoff) cutoff = 5; end if nargin < 4 || isempty(blocksize) blocksize = 10; end blocksize = max(blocksize,ceil((C*C*S*8*3*2)/hlp_memfree)); if nargin < 6 || isempty(A) || isempty(B) try % try to use yulewalk to design the filter (Signal Processing toolbox required) [B,A] = yulewalk(8,[[0 2 3 13 16 40 min(80,srate/2-1)]*2/srate 1],[3 0.75 0.33 0.33 1 1 3 3]); catch e %#ok<NASGU> % yulewalk not available (maybe no toolbox installed) -- use precomputed filter % coefficients depending on sampling rate switch srate case 100 [B,A] = deal([0.9314233528641650 -1.0023683814963549 -0.4125359862018213 0.7631567476327510 0.4160430392910331 -0.6549131038692215 -0.0372583518046807 0.1916268458752655 0.0462411971592346],[1.0000000000000000 -0.4544220180303844 -1.0007038682936749 0.5374925521337940 0.4905013360991340 -0.4861062879351137 -0.1995986490699414 0.1830048420730026 0.0457678549234644]); case 128 [B,A] = deal([1.1027301639165037 -2.0025621813611867 0.8942119516481342 0.1549979524226999 0.0192366904488084 0.1782897770278735 -0.5280306696498717 0.2913540603407520 -0.0262209802526358],[1.0000000000000000 -1.1042042046423233 -0.3319558528606542 0.5802946221107337 -0.0010360013915635 0.0382167091925086 -0.2609928034425362 0.0298719057761086 0.0935044692959187]); case 200 [B,A] = deal([1.4489483325802353 -2.6692514764802775 2.0813970620731115 -0.9736678877049534 0.1054605060352928 -0.1889101692314626 0.6111331636592364 -0.3616483013075088 0.1834313060776763],[1.0000000000000000 -0.9913236099393967 0.3159563145469344 -0.0708347481677557 -0.0558793822071149 -0.2539619026478943 0.2473056615251193 -0.0420478437473110 0.0077455718334464]); case 256 [B,A] = deal([1.7587013141770287 -4.3267624394458641 5.7999880031015953 -6.2396625463547508 5.3768079046882207 -3.7938218893374835 2.1649108095226470 -0.8591392569863763 0.2569361125627988],[1.0000000000000000 -1.7008039639301735 1.9232830391058724 -2.0826929726929797 1.5982638742557307 -1.0735854183930011 0.5679719225652651 -0.1886181499768189 0.0572954115997261]); case 300 [B,A] = deal([1.9153920676433143 -5.7748421104926795 9.1864764859103936 -10.7350356619363630 9.6423672437729007 -6.6181939699544277 3.4219421494177711 -1.2622976569994351 0.2968423019363821],[1.0000000000000000 -2.3143703322055491 3.2222567327379434 -3.6030527704320621 2.9645154844073698 -1.8842615840684735 0.9222455868758080 -0.3103251703648485 0.0634586449896364]); case 500 [B,A] = deal([2.3133520086975823 -11.9471223009159130 29.1067166493384340 -43.7550171007238190 44.3385767452216370 -30.9965523846388000 14.6209883020737190 -4.2743412400311449 0.5982553583777899],[1.0000000000000000 -4.6893329084452580 10.5989986701080210 -14.9691518101365230 14.3320358399731820 -9.4924317069169977 4.2425899618982656 -1.1715600975178280 0.1538048427717476]); case 512 [B,A] = deal([2.3275475636130865 -12.2166478485960430 30.1632789058248850 -45.8009842020820410 46.7261263011068880 -32.7796858196767220 15.4623349612560630 -4.5019779685307473 0.6242733481676324],[1.0000000000000000 -4.7827378944258703 10.9780696236622980 -15.6795187888195360 15.1281978667576310 -10.0632079834518220 4.5014690636505614 -1.2394100873286753 0.1614727510688058]); otherwise error('repair_bursts:NoYulewalk','The yulewalk() function was not found and there is no pre-computed spectral filter for your sampling rate. If you would like to use the default spectral filter please try to resample to one of the supported rates (100,128,200,256,300,500,512) or get the appropriate toobox license (you can also disable the spectral weighting feature or supply your own precalculated IIR filter coefficients).'); end end end if nargin < 8 || isempty(window_len) window_len = 0.5; end if nargin < 9 || isempty(window_overlap) window_overlap = 0.66; end if nargin < 10 || isempty(max_dropout_fraction) max_dropout_fraction = 0.1; end if nargin < 11 || isempty(min_clean_fraction) min_clean_fraction = 0.25; end X(~isfinite(X(:))) = 0; % apply the signal shaping filter and initialize the IIR filter state [X,iirstate] = filter(B,A,double(X),[],2); X = X'; if any(~isfinite(X(:))) error('The IIR filter diverged on your data. Please try using either a more conservative filter or removing some bad sections/channels from the calibration data.'); end % calculate the sample covariance matrices U (averaged in blocks of blocksize successive samples) U = zeros(length(1:blocksize:S),C*C); for k=1:blocksize range = min(S,k:blocksize:(S+k-1)); U = U + reshape(bsxfun(@times,reshape(X(range,:),[],1,C),reshape(X(range,:),[],C,1)),size(U)); end % get the mixing matrix M M = sqrtm(real(reshape(block_geometric_median(U/blocksize),C,C))); % window length for calculating thresholds N = round(window_len*srate); % get the threshold matrix T fprintf('Determining per-component thresholds...'); [V,D] = eig(M); %#ok<NASGU> X = abs(X*V); for c = C:-1:1 % compute RMS amplitude for each window... rms = X(:,c).^2; rms = sqrt(sum(rms(bsxfun(@plus,round(1:N*(1-window_overlap):S-N),(0:N-1)')))/N); % fit a distribution to the clean part [mu(c),sig(c)] = fit_eeg_distribution(rms,min_clean_fraction,max_dropout_fraction); end T = diag(mu + cutoff*sig)*V'; disp('done.'); % initialize the remaining filter state state = struct('M',M,'T',T,'B',B,'A',A,'cov',[],'carry',[],'iir',iirstate,'last_R',[],'last_trivial',true); function y = block_geometric_median(X,blocksize,varargin) % Calculate a blockwise geometric median (faster and less memory-intensive % than the regular geom_median function). % % This statistic is not robust to artifacts that persist over a duration that % is significantly shorter than the blocksize. % % In: % X : the data (#observations x #variables) % blocksize : the number of successive samples over which a regular mean % should be taken % tol : tolerance (default: 1.e-5) % y : initial value (default: median(X)) % max_iter : max number of iterations (default: 500) % % Out: % g : geometric median over X % % Notes: % This function is noticably faster if the length of the data is divisible by the block size. % Uses the GPU if available. % if nargin < 2 || isempty(blocksize) blocksize = 1; end if blocksize > 1 [o,v] = size(X); % #observations & #variables r = mod(o,blocksize); % #rest in last block b = (o-r)/blocksize; % #blocks if r > 0 X = [reshape(sum(reshape(X(1:(o-r),:),blocksize,b*v)),b,v); sum(X((o-r+1):end,:))*(blocksize/r)]; else X = reshape(sum(reshape(X,blocksize,b*v)),b,v); end end try y = gather(geometric_median(gpuArray(X),varargin{:}))/blocksize; catch y = geometric_median(X,varargin{:})/blocksize; end function y = geometric_median(X,tol,y,max_iter) % Calculate the geometric median for a set of observations (mean under a Laplacian noise distribution) % This is using Weiszfeld's algorithm. % % In: % X : the data, as in mean % tol : tolerance (default: 1.e-5) % y : initial value (default: median(X)) % max_iter : max number of iterations (default: 500) % % Out: % g : geometric median over X if ~exist('tol','var') || isempty(tol) tol = 1.e-5; end if ~exist('y','var') || isempty(y) y = median(X); end if ~exist('max_iter','var') || isempty(max_iter) max_iter = 500; end for i=1:max_iter invnorms = 1./sqrt(sum(bsxfun(@minus,X,y).^2,2)); [y,oldy] = deal(sum(bsxfun(@times,X,invnorms)) / sum(invnorms),y); if norm(y-oldy)/norm(y) < tol break; end end function result = hlp_memfree % Get the amount of free physical memory, in bytes result = java.lang.management.ManagementFactory.getOperatingSystemMXBean().getFreePhysicalMemorySize(); function [mu,sig,alpha,beta] = fit_eeg_distribution(X,min_clean_fraction,max_dropout_fraction,quants,step_sizes,beta) % Estimate the mean and standard deviation of clean EEG from contaminated data. % [Mu,Sigma,Alpha,Beta] = fit_eeg_distribution(X,MinCleanFraction,MaxDropoutFraction,FitQuantiles,StepSizes,ShapeRange) % % This function estimates the mean and standard deviation of clean EEG from a sample of amplitude % values (that have preferably been computed over short windows) that may include a large fraction % of contaminated samples. The clean EEG is assumed to represent a generalized Gaussian component in % a mixture with near-arbitrary artifact components. By default, at least 25% (MinCleanFraction) of % the data must be clean EEG, and the rest can be contaminated. No more than 10% % (MaxDropoutFraction) of the data is allowed to come from contaminations that cause lower-than-EEG % amplitudes (e.g., sensor unplugged). There are no restrictions on artifacts causing % larger-than-EEG amplitudes, i.e., virtually anything is handled (with the exception of a very % unlikely type of distribution that combines with the clean EEG samples into a larger symmetric % generalized Gaussian peak and thereby "fools" the estimator). The default parameters should be % fine for a wide range of settings but may be adapted to accomodate special circumstances. % % The method works by fitting a truncated generalized Gaussian whose parameters are constrained by % MinCleanFraction, MaxDropoutFraction, FitQuantiles, and ShapeRange. The alpha and beta parameters % of the gen. Gaussian are also returned. The fit is performed by a grid search that always finds a % close-to-optimal solution if the above assumptions are fulfilled. % % In: % X : vector of amplitude values of EEG, possible containing artifacts % (coming from single samples or windowed averages) % % MinCleanFraction : Minimum fraction of values in X that needs to be clean % (default: 0.25) % % MaxDropoutFraction : Maximum fraction of values in X that can be subject to % signal dropouts (e.g., sensor unplugged) (default: 0.1) % % FitQuantiles : Quantile range [lower,upper] of the truncated generalized Gaussian distribution % that shall be fit to the EEG contents (default: [0.022 0.6]) % % StepSizes : Step size of the grid search; the first value is the stepping of the lower bound % (which essentially steps over any dropout samples), and the second value % is the stepping over possible scales (i.e., clean-data quantiles) % (default: [0.01 0.01]) % % ShapeRange : Range that the clean EEG distribution's shape parameter beta may take (default: % 1.7:0.15:3.5) % % Out: % Mu : estimated mean of the clean EEG distribution % % Sigma : estimated standard deviation of the clean EEG distribution % % Alpha : estimated scale parameter of the generalized Gaussian clean EEG distribution (optional) % % Beta : estimated shape parameter of the generalized Gaussian clean EEG distribution (optional) % assign defaults if ~exist('min_clean_fraction','var') || isempty(min_clean_fraction) min_clean_fraction = 0.25; end if ~exist('max_dropout_fraction','var') || isempty(max_dropout_fraction) max_dropout_fraction = 0.1; end if ~exist('quants','var') || isempty(quants) quants = [0.022 0.6]; end if ~exist('step_sizes','var') || isempty(step_sizes) step_sizes = [0.01 0.01]; end if ~exist('beta','var') || isempty(beta) beta = 1.7:0.15:3.5; end % sanity checks if ~isvector(quants) || numel(quants) > 2 error('Fit quantiles needs to be a 2-element vector (support for matrices deprecated).'); end if any(quants(:)<0) || any(quants(:)>1) error('Unreasonable fit quantiles.'); end if any(step_sizes<0.0001) || any(step_sizes>0.1) error('Unreasonable step sizes.'); end if any(beta>=7) || any(beta<=1) error('Unreasonable shape range.'); end % sort data so we can access quantiles directly X = double(sort(X(:))); n = length(X); % calc z bounds for the truncated standard generalized Gaussian pdf and pdf rescaler for b=1:length(beta) zbounds{b} = sign(quants-1/2).*gammaincinv(sign(quants-1/2).*(2*quants-1),1/beta(b)).^(1/beta(b)); %#ok<*AGROW> rescale(b) = beta(b)/(2*gamma(1/beta(b))); end % determine the quantile-dependent limits for the grid search lower_min = min(quants); % we can generally skip the tail below the lower quantile max_width = diff(quants); % maximum width is the fit interval if all data is clean min_width = min_clean_fraction*max_width; % minimum width of the fit interval, as fraction of data % get matrix of shifted data ranges X = X(bsxfun(@plus,(1:round(n*max_width))',round(n*(lower_min:step_sizes(1):lower_min+max_dropout_fraction)))); X1 = X(1,:); X = bsxfun(@minus,X,X1); opt_val = Inf; % for each interval width... for m = round(n*(max_width:-step_sizes(2):min_width)) % scale and bin the data in the intervals nbins = round(3*log2(1+m/2)); H = bsxfun(@times,X(1:m,:),nbins./X(m,:)); logq = log(histc(H,[0:nbins-1,Inf]) + 0.01); % for each shape value... for b=1:length(beta) bounds = zbounds{b}; % evaluate truncated generalized Gaussian pdf at bin centers x = bounds(1)+(0.5:(nbins-0.5))/nbins*diff(bounds); p = exp(-abs(x).^beta(b))*rescale(b); p=p'/sum(p); % calc KL divergences kl = sum(bsxfun(@times,p,bsxfun(@minus,log(p),logq(1:end-1,:)))) + log(m); % update optimal parameters [min_val,idx] = min(kl); if min_val < opt_val opt_val = min_val; opt_beta = beta(b); opt_bounds = bounds; opt_lu = [X1(idx) X1(idx)+X(m,idx)]; end end end % recover distribution parameters at optimum alpha = (opt_lu(2)-opt_lu(1))/diff(opt_bounds); mu = opt_lu(1)-opt_bounds(1)*alpha; beta = opt_beta; % calculate the distribution's standard deviation from alpha and beta sig = sqrt((alpha^2)*gamma(3/beta)/gamma(1/beta));
github
ZijingMao/baselineeegtest-master
set_merge.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/dataset_editing/set_merge.m
1,974
utf_8
755faf243ef5fb29eb8933010d7985cd
function [data,idxmap] = set_merge(varargin) % Merge epoched EEGLAB data sets across trials or time in a fault-tolerant way. % [Merged,IndexMap] = set_merge(Set-#1, Set-#2, ...) % % In: % Set-#k : data set #k % % Out: % Merged : The merged epoched data set % % IndexMap : a mapping from trial index (in the merged set), to data set index % (in the list of sets supplied) % % Notes: % This function merges data sets either across trials (if epoched) or across time (if continuous) % in a manner that supports inconsistent meta-data. For data that is known to be consistent, use % set_joinepos or set_concat, which are much faster. % % Examples: % % merge data sets eegA, eegB and eegC across trials % eeg = set_merge(eegA,eegB,eegC) % % See also: % set_concat, set_joinepos % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-03-31 % set_merge_version<1.0> -- for the cache if ~exp_beginfun('editing') return; end declare_properties('name','MergeSets','independent_channels',true,'independent_trials',true); idxmap = {}; data = {}; if ~isempty(varargin) % identify non-empty sets & create the index map for i=1:length(varargin) if isfield(varargin{i},'data') data{end+1} = varargin{i}; %#ok<AGROW> idxmap{end+1} = i*ones(1,size(varargin{i}.data,3)); %#ok<AGROW> end end % do the merging data = merge(data{:}); idxmap = [idxmap{:}]; end exp_endfun; % merge recursively to avoid growing big arrays incrementally function X = merge(varargin) if nargin > 1 A = merge(varargin{1:floor(nargin/2)}); B = merge(varargin{(floor(nargin/2)+1):end}); try X = pop_mergeset(A,B); catch err disp(['The two data sets ' hlp_tostring(A) ' and ' hlp_tostring(B) ' cannot be merged; reason:']); rethrow(err); end else X = varargin{1}; end
github
ZijingMao/baselineeegtest-master
set_gettarget.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/dataset_editing/set_gettarget.m
4,587
utf_8
cc8abafa68a3a656c951cd1a88a51321
function targ = set_gettarget(signal) % Generic function to extract the target values from a data set (epoched/continuous). % Target = set_gettarget(Signal) % % Data sets may have associated "target values" in their meta-data (usually one per epoch and/or per % event). These target values encode what outputs a cognitive monitoring system is supposed to % output at the given epoch/marker time point/etc. These meta-data are the primary means in which % the relationship between raw data and cognitive state is specified. % % If an epoched data set is passed, the .target field of the epochs will be used. If a continuous % data set is passed which has events with a non-empty .target field, the target values of those % events will be returned. Otherwise, if the signal has channels with a .type field that is set to % 'target', the time course of these channels will be returned. Otherwise, the signal has no associated % target values and this function will throw an error. % % In: % Signal : EEGLAB data set, either epoched or continuous % % Out: % Target : Array target values for the data set; either per epoch, per event, or per sample % this is of the form [N x D] where N is the number of target values and D is the dimensionality % of the target values (usually 1). % % Examples: % % obtain the target values for the given set % labels = set_gettarget(eeg) % % See also: % set_targetmarkers, set_makepos % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-07 if ~exist('signal','var') % trivial targ = []; else % we got a bundle: extract target markers from the first stream if isfield(signal,'streams') signal = signal.streams{1}; end if all(isfield(signal,{'head','parts'})) && strcmp(char(signal.head),'set_partition') && length(signal.parts) >= 2 % a computational shortcut applies if we're operating on partitioned data: this allows us to skip % the actual partitioning and instead look just at the target markers sourcetargets = set_gettarget(signal.parts{1}); targ = sourcetargets(signal.parts{2},:); else % make sure that the data is evaluated signal = exp_eval_optimized(signal); if isfield(signal,'epoch') && ~isempty(signal.epoch) && isfield(signal.epoch,'target') % epoched data set with target field: get per-epoch targets targets = {signal.epoch.target}; targetmask = ~cellfun('isempty',targets); if any(targetmask) targ = concat_targets(targets(targetmask)); return; end end % continuous data set: check for events with non-empty target field if isfield(signal,'event') && isfield(signal.event,'target') targets = {signal.event.target}; targetmask = ~cellfun('isempty',targets); if any(targetmask) if ~issorted([signal.event.latency]) warning('BCILAB:unsorted_events','The events in this data set are unsorted - this is likely an error in your processing pipeline.'); end targ = concat_targets(targets(targetmask)); return; end end if isfield(signal,'chanlocs') && isfield(signal.chanlocs,'type') && isfield(signal,'data') && size(signal.data,3) == 1 % continuous data set: get per-sample epoch targets targchans = strcmpi('target',{signal.chanlocs.type}); if any(targchans) targ = signal.data(targchans,:)'; return; end end % otherwise... error('set_gettarget did not find any target information in this data set. See help of set_gettarget and set_targetmarkers for how data sets can be annotated with target information.'); end end function targets = concat_targets(targets) if all(cellfun('size',targets,1) == 1) if length(unique(cellfun('size',targets,2))) > 1 error('The target values in this set must have uniform dimensionality.'); end targets = vertcat(targets{:}); elseif all(cellfun('size',targets,2) == 1) if length(unique(cellfun('size',targets,1))) > 1 error('The target values in this set must have uniform dimensionality.'); end targets = horzcat(targets{:})'; else error('The target values in this set must be either all row vectors or all column vectors.'); end
github
ZijingMao/baselineeegtest-master
set_insert_markers.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/dataset_editing/set_insert_markers.m
20,491
utf_8
2fbcb099d528aa6023ef9d7caba9cee8
function newsignal = set_insert_markers(varargin) % Inject runs of markers into specific segments of a continuous data set. % Signal = set_insert_markers(Signal, Options...) % % Almost all real-time inference in BCIs is done on the basis of epochs, and epochs are most % conveniently created relative to certain ("time-locking") events/markers in the data. This % function allows to cover periods of continuous data with events, at regular or random intervals, % so that epochs covering these ranges can subsequently be extracted. What periods shall be % populated with events can be flexibly specified. % % In: % Signal : continuous data set % % SegmentSpec : segment specification. cell array of one of the following forms (lats in seconds): % (default: {0 Inf}) % note: the ordering of time values w.r.t. event-type values and cell-array values in the subsequent % specifications is arbitrary, whereas the ordering of time values w.r.t. each other is relevant % (first time value shall be lower than second time value); the ordering of eventtypes w.r.t. each % other is also relevant. % * {absolute_time absolute_time}: % segment specified using two time points % * {event_type relative_time relative_time} / {relative_time event_type relative_time} / % {relative_time relative_time event_type}: % here, the segment is relative to some event (of a given type), in between the time interval given by the % first and second time value % * {event_type relative_time relative_time event_type} / {relative_time event_type event_type relative_time} / ... % here, the segment is in between two immediately successive events of the given types (any intervals with other % events in between the specified ones are not considered for injection), constrained by the relative lats % for each event % * {event_type relative_time {ignore_type1,ignore_type2,...} relative_time event_type} % as above, except that intermediate events of type ignore_type1/ignore_type2/etc. are ignored % (if the in-between cell array is empty, any other events are ignored) % % Limits : optional time limits (in seconds) to constrain event placement (default: [-Inf Inf]) % % Event : the inserted event type string, or alternatively a template event struct % (default: "mytype_i", when injected relative to an event of type "mytype" or % "mytype1_mytype2", when injected in between two events of type "mytype1" and "mytype2") % * if a string is specified, all event fields besides the 'type', 'latency' and 'duration' fields % contained in the data will be left empty % * if a struct is specified, the 'latency' field will be substituted appropriately % % Count : number of events inserted within an interval; see Counting for the counting scheme (default: 1) % % Counting : what count means for any given segmentspec, either 'perinterval' or 'persecond' (default: 'perinterval') % % Placement : how the injected events should be placed, either 'random' or 'equidistant' (default: 'equidistant') % % Repeatable : whether the randomization procedure shall give repeatable results (default: 1); different numbers (aside from 0) % give different repeatable runs, i.e. the value determines the randseed % % MinLength : segments that are shorter than this (in seconds) are ignored. (default: 0) % % MaxLength : segments that are longer than this (in seconds) are ignored. (default: Inf) % % Out: % Signal : continuous data set with new events injected % % Notes: % The only parameter that may be specified by position (instead of as name-value pair) is the first one. % % Examples: % % place 20 events of type 'X' within the interval 1000s to 2000s into the given data set (regular placement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{1000 2000},'Count',20,'Event','X') % % % as before, but use an event struct % eeg = set_insert_markers(eeg, 'SegmentSpec',{1000 2000},'Count',20,'Event',struct('type','X')) % % % place 20 events within the interval 1000s to 2000s into the given data set (random pleacement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{1000 2000},'Count',20,'Placement','random','Event','X') % % % place 3 events per second within the interval 1000s to 2000s into the given data set (regular placement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{1000 2000}, 'Count',3, 'Counting','persecond','Event','X') % % % place on average 3 events per second within the interval 1000s to 2000s into the given data set (random placement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{1000 2000}, 'Count',3, 'Counting','persecond','Placement','random','Event','X') % % % place 20 events of type 'X' within each interval within 2s to 10s following each occurrence of the event 'A' % eeg = set_insert_markers(eeg, 'SegmentSpec',{'A',2,10},'Count',20,'Event','X') % % % place on average 5 events per second (typed 'X') within each interval within -5s to 10s around each occurrence of the event 'A' (random placement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{'A',-5,10},'Counting','persecond','Count',5,'Event','X','Placement','random') % % % same as before, equivalent SegmentSpec formatting % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A',10},'Counting','persecond','Count',5,'Event','X','Placement','random') % % % place 10 events (typed 'X') between each successive occurrence of event 'A' followed by event 'B' (with no other event in between), % % and begin the interval 5s after event 'A' and end it 3s before event 'B' (regular placement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{'A',5,-3,'B'},'Count',10,'Event','X') % % % place 10 events (typed 'X') between each successive occurrence of event 'A' followed by event 'B' (with no other event in between), % % and begin the interval 5s *before* event 'A' and end it right on event 'B' (regular placement) % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A',0,'B'},'Count',10,'Event','X') % % % as before, but insert 3 events per second % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A',0,'B'},'Count',3,'Counting','persecond','Event','X') % % % as before, but also consider those intervals where other events of type 'p' and/or 'q' occur between the 'A' and the 'B' % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A', {'p','q'}, 0,'B'},'Count',3,'Counting','persecond','Event','X') % % % as before, but also consider intervals where any other event occurs between the 'A' and the 'B' (except for 'B' obviously) % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A', {}, 0,'B'},'Count',3,'Counting','persecond','Event','X') % % % as before, but discard segments that would be longer than 10 seconds % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A', {}, 0,'B'},'Count',3,'Counting','persecond','Event','X','MaxLength',10) % % % as before, but use random placement % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A', {}, 0,'B'},'Count',3,'Counting','persecond','Event','X','Placement','random') % % % as before, but use a random rand seed to obtain different placing at every call % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A', {}, 0,'B'},'Count',3,'Counting','persecond','Event','X','Placement','random','Repeatable',0) % % % as before, but use a fixed specific rand seed to obtain a specific (but repeatable placing) % eeg = set_insert_markers(eeg, 'SegmentSpec',{-5,'A', {}, 0,'B'},'Count',3,'Counting','persecond','Event','X','Placement','random','Repeatable',10) % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-05-24 % set_insert_markers_version<1.0> -- for the cache global tracking; if ~exp_beginfun('editing') return; end declare_properties('name','MarkerInsertion', 'independent_channels',true, 'cannot_follow','set_makepos', 'independent_channels',true,'independent_trials',true); opts = arg_define([0 1],varargin, ... arg_norep({'signal','Signal'}), ... arg_subswitch({'segmentspec','SegmentSpec','segment'},'absoluterange', ... {'absoluterange',{ ... arg({'lo','BeginOffset'},0,[],'Lower bound of insertion interval. Events will be inserted beginning from this time point, in seconds.'), ... arg({'hi','EndOffset'},Inf,[],'Upper bound of insertion interval. Events will be inserted up to this time point, in seconds. If this is negative, it counts from the end of the recording.')}, ... 'relativerange',{ ... arg({'event','EventType'},'event1',[],'Reference event type. New events will be inserted in a range around each event of this type.'), ... arg({'lo','BeginOffset'},-0.5,[],'Lower bound relative to event. This is the lower boundary of insertion intervals relative to the reference events. In seconds.'), ... arg({'hi','EndOffset'},1,[],'Upper bound relative to event. This is the upper boundary of insertion intervals relative to the reference events. In seconds.')}, ... 'spannedrange',{ ... arg({'openevent','OpenEvent'},'event1',[],'Type of opening reference event. New events will be inserted between each pair of successive events with types OpenEvent and CloseEvent.'), ... arg({'closeevent','CloseEvent'},'event2',[],'Type of closing reference event. New events will be inserted between each pair of successive events with types OpenEvent and CloseEvent.'), ... arg({'lo','OpenOffset'},0.5,[],'Offset relative to opening event. This is an offset relative to the position of the opening reference event, which shifts the beginning of a spanned insertion interval. In seconds.'), ... arg({'hi','CloseOffset'},-0.5,[],'Offset relative to closing event. This is an offset relative to the position of the closing reference event, which shifts the beginning of a spanned insertion interval. In seconds.'), ... arg({'ignored','IgnoredEvents'},{},[],'Ignored event types. This is the list of event types that may occur between the opening and closing events. If any other event appears between a pair of successive opening and closing events, this range will not be considered for event insertion (it is considered "broken"). If set to ''ignoreall'', any event type may appear in between.', 'type','cellstr','shape','row')} ... },'Insertion interval definition. Events can be inserted either in fixed, absolute time window of the data set (absoluterange), or in time windows relative to reference events of a certain type (relativerange), or in time window spanned by two subsequent events of certain types (called the opening event and the closing event), optionally with ignored events in between (spannedrange).','cat','Time Ranges','mapper',@parse_segment), ... arg({'limits','Limits'},[-Inf Inf],[],'Time limits for event placement. Events that fall outside these bounds will be skipped. Therefore, intervals that intersect these boundaries may have fewer events than others.','cat','Time Ranges'),... arg({'event','InsertedType','Event'},'newevent',[],'Type of inserted events. The event type for the newly inserted events.','cat','Placement'), ... arg({'count','Count'},1,[],'Number of inserted events. This is either per interval or per second, depending on the Counting argument.','cat','Placement'), ... arg({'counting','Counting'},'perinterval',{'perinterval','persecond'},'Counting measure. Events can be inserted in a certain number per interval or per second','cat','Placement'), ... arg({'placement','Placement'},'equidistant',{'equidistant','random'},'Event placement scheme. Events can be inserted at equal (regular) distance from each other, or at random positions.','cat','Placement'), ... arg({'repeatable','Repeatable'},1,[],'Repeatable versus random placement. If 0, placement is random, if different from 0, the number is taken as the random seed, giving a unique repeatable run per number.','cat','Placement'), ... arg({'minlen','MinLength'},0,[],'Minimum segment length. Ignore segments that are shorter than this, in seconds.'), ... arg({'maxlen','MaxLength'},Inf,[],'Maximum segment length. Ignore segments that are longer than this, in seconds.')); signal = opts.signal; if isfield(signal,'epoch') && ~isempty(signal.epoch) error('the data set appears to contain epochs: only continuous data set are supported for now.'); end % refine options opts.limits = sort(max(min(opts.limits,signal.xmax),signal.xmin)); opts.limits = opts.limits*signal.srate; opts.segmentspec.lo = opts.segmentspec.lo*signal.srate; opts.segmentspec.hi = opts.segmentspec.hi*signal.srate; % init randomization if strcmp(opts.placement,'random') && opts.repeatable if hlp_matlab_version < 707 % save & override RNG state randstate = rand('state'); %#ok<RAND> rand('state',5182+opts.repeatable); %#ok<RAND> else % create a legacy-compatible RandStream tracking.temp.randstream_inject_events = RandStream('swb2712','Seed',5182+opts.repeatable); end end newsignal = signal; switch opts.segmentspec.arg_selection case 'absoluterange' if opts.segmentspec.lo == -Inf opts.segmentspec.lo = signal.xmin*signal.srate; end if opts.segmentspec.hi == Inf opts.segmentspec.hi = signal.xmax*signal.srate; end if opts.segmentspec.hi < 0 opts.segmentspec.hi = signal.xmax*signal.srate - opts.segmentspec.hi; end % inject using absolute latencies if isempty(opts.event) error('an event type must be specified'); end if ischar(opts.event) opts.event = make_default_event(signal.event,opts.event); end newsignal = perform_injection(newsignal,[opts.segmentspec.lo opts.segmentspec.hi],opts); case 'relativerange' % inject relative to one single marker if isempty(opts.event) opts.event = [opts.segmentspec.event '_i']; end if ischar(opts.event) opts.event = make_default_event(signal.event,opts.event); end for e=1:length(signal.event) if strcmp(signal.event(e).type,opts.segmentspec.event) newsignal = perform_injection(newsignal,signal.event(e).latency+[opts.segmentspec.lo opts.segmentspec.hi],opts); end end case 'spannedrange' % inject in between two successive markersputting that if isempty(opts.event) opts.event = [opts.segmentspec.openevent '_' opts.segmentspec.closeevent]; end if ischar(opts.event) opts.event = make_default_event(signal.event,opts.event); end startlat = []; for e=1:length(signal.event) % ignorance turned off but intermediate marker found? if ~iscell(opts.segmentspec.ignored) && ~strcmp(signal.event(e).type,opts.segmentspec.closeevent) startlat = []; end % selective ignorance turned on but non-ignored intermediate marker found? if ~isequal(opts.segmentspec.ignored,{'ignoreall'}) && ~any(strcmp(signal.event(e).type,[opts.segmentspec.ignored {opts.segmentspec.closeevent}])) startlat = []; end % found the begin-marker: open a new segmentspec if strcmp(signal.event(e).type,opts.segmentspec.openevent) startlat = signal.event(e).latency; end % reached the end-marker & have an open segmentspec: inject. if ~isempty(startlat) && strcmp(signal.event(e).type,opts.segmentspec.closeevent) newsignal = perform_injection(newsignal,[startlat+opts.segmentspec.lo,signal.event(e).latency+opts.segmentspec.hi],opts); end end end % sort the events by latency... newsignal.event = newsignal.event(hlp_getresult(2,@sort,[newsignal.event.latency])); % update .urevent field if trivial if isempty(newsignal.urevent) || isequal([newsignal.event.urevent],1:length(newsignal.event)) newsignal.urevent = newsignal.event; [newsignal.event.urevent] = arraydeal(1:length(newsignal.event)); end % conclude randomization if strcmp(opts.placement,'random') && opts.repeatable && hlp_matlab_version < 707 % restore saved RNG state rand('state',randstate); %#ok<RAND> end exp_endfun; function [signal,coverage] = perform_injection(signal,ival,opts) global tracking; coverage = 0; % sanity check if length(ival) == 2 && ival(1) <= ival(2) coverage = ival(2)-ival(1); % check the segment length seg_length = coverage/signal.srate; if seg_length < opts.minlen || seg_length > opts.maxlen return; end % hande the spacing method if strcmp(opts.counting,'persecond') opts.count = max(1,round(opts.count*(ival(2)-ival(1))/signal.srate)); end % handle the placement method if strcmp(opts.placement,'equidistant') if coverage ~= 0 stepsize = (ival(2)-ival(1))/(opts.count-1); ival = round(ival(1):stepsize:ival(2)); else ival = ival(1)*ones(1,opts.count); end elseif strcmp(opts.placement,'random') if ival(1) < ival(2) if hlp_matlab_version < 707 positions = rand(1,opts.count); else positions = rand(tracking.temp.randstream_inject_events,1,opts.count); end ival = round(positions*(ival(2)-ival(1))+ival(1)); elseif ival(1) == ival(2) ival = ival(1)*ones(1,opts.count); else ival = []; end else error('unsupported placement scheme specified'); end if ~isempty(ival) % compute the individual latencies lats = ival(ival>=opts.limits(1) & ival<=opts.limits(2)); % sanitize latencies lats = min(max(lats,1),signal.pnts); if ~isempty(signal.urevent) signal.urevent = []; end if isempty(signal.event) signal.event = setfield(setfield(opts.event,'latency',1),'type','dummy'); end; %#ok<SFLD> range = length(signal.event) + (1:length(lats)); [signal.event(range)] = deal(opts.event); [signal.event(range).latency] = arraydeal(lats); end end % create a default event from an event array function evt = make_default_event(evts,type) if isempty(evts) evt = struct('type',{type},'latency',{[]},'duration',{1},'urevent',{[]}); else evt = evts(1); for fn=fieldnames(evt)' evt.(fn{1}) = []; end evt.type = type; if isfield(evt,'duration') evt.duration = 1; end end % parse a segmentspec specification into a cell array {tag,name,value,name,value,...} function [selection,spec] = parse_segment(spec) if isempty(spec) selection = 'absoluterange'; elseif ischar(spec) && any(strcmp(spec,{'absoluterange','relativerange','spannedrange'})) selection = spec; spec = {}; elseif iscell(spec) && any(strcmp(spec{1},{'absoluterange','relativerange','spannedrange'})) selection = spec{1}; spec = {}; elseif isfield(spec{1},'arg_selection') selection = spec{1}.arg_selection; elseif any(strcmp(spec{1},{'absoluterange','relativerange','spannedrange'})) [selection,spec] = deal(spec{1},spec(2:end)); else % we have a custom segmentspec specification (as indicated in the function's help text) % parse it. mrks = {}; lats = []; ignored = []; for i=1:length(spec) if ischar(spec{i}) mrks{end+1} = spec{i}; elseif iscell(spec{i}) ignored = [ignored spec{i}]; else lats(end+1) = spec{i}; end end % and configure parameters if isempty(mrks) selection = 'absoluterange'; spec = {'lo' min(lats) 'hi' max(lats)}; elseif length(mrks) == 1 selection = 'relativerange'; spec = {'event' mrks{1} 'lo' min(lats) 'hi' max(lats)}; elseif length(mrks) == 2 if isequal(ignored,{}) ignored = {'ignoreall'}; elseif isequal(ignored,[]) ignored = {}; end selection = 'spannedrange'; spec = {'openevent' mrks{1} 'closeevent' mrks{2} 'lo' lats(1) 'hi' lats(2) 'ignored' ignored}; end end
github
ZijingMao/baselineeegtest-master
set_concat.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/dataset_editing/set_concat.m
3,110
utf_8
46fd9077c3b6a6e2c007ff4991a9712c
function result = set_concat(varargin) % Concatenate continuous signals across time. % Result = set_joinepos(Set1, Set2, ...) % % In: % SetK : The k'th data set to concatenate. % % Out: % Result : A new data set that is the concatenation of all input sets. The following changes are made: % * .data and all other time-series fields are concatenated across time (2nd dimension) % * .event is joined and .latency fields are updated appropriately % * .xmax/.pnts are updated % % Notes: % This function returns a new data set with meta-data set to that of the first input set, and the % time series field sjoined across all sets. No checks for meta-data consistency are done. There % is a heavy-duty function for merging inconsistent sets called set_merge, which can merge cats % and dogs. This function does not attempt to keep miscellaneous EEGLAB meta-data consistent, % including: setname,filename,filepath,subject,group,condition,session,comments,urevent,reject,stats,history,etc % % Examples: % % concatenate data sets eegA, eegB and eegC across time % eeg = set_concat(eegA,eegB,eegC) % % See also: % set_joinepos, set_merge % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-03-31 % set_joinepos_version<1.0> -- for the cache if ~exp_beginfun('editing') return; end declare_properties('name','Concatenate','independent_channels',true,'independent_trials',false); if ~isempty(varargin) if any(cellfun(@(x)isfield(x,'epoch') && ~isempty(x.epoch),varargin)) error('Only continuous data can be concatenated with set_concat -- use set_joinepos for epoched data.'); end result = varargin{1}; if length(varargin) > 1 % concatenate time series fields for field = utl_timeseries_fields(result) data = cellfun(@(x)x.(field{1}),varargin,'UniformOutput',false); result.(field{1}) = cat(2,data{:}); if isempty(result.(field{1})) result.(field{1}) = []; end end % count events, epochs and samples in each set event_count = cellfun(@(x)length(x.event),varargin); sample_count = cellfun(@(x)x.pnts,varargin); % concatenate .event and .epoch fields event = cellfun(@(x)x.event,varargin,'UniformOutput',false); result.event = [event{:}]; % shift event latencies based on cumulative sample counts if ~isempty(result.event) [result.event.latency] = arraydeal([result.event.latency]+replicate(cumsum(sample_count)-sample_count,event_count)); end % update misc fields [result.nbchan,result.pnts,result.trials,extra_dims] = size(result.data); %#ok<NASGU> result.xmax = result.xmin + (result.pnts-1)/result.srate; end else result = eeg_emptyset; end exp_endfun; function result = replicate(values,counts) % Replicate each element Values(k) by Count(k) times. result = zeros(1,sum(counts)); k = 0; for p=find(counts) result(k+(1:counts(p))) = values(p); k = k+counts(p); end
github
ZijingMao/baselineeegtest-master
set_fit_dipoles.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/dataset_editing/set_fit_dipoles.m
13,316
utf_8
5ca3bc4f74abcc0a542211d0525687ba
function signal = set_fit_dipoles(varargin) % Fit dipoles for each independent component of an IC-decomposed dataset. % % This function uses the Dipfit plugin for EEGLAB to automatically derive dipole locations % for all IC's in the data set. The returned coordinates are in the MNI coordinate system. % In addition, (probabilistic) anatomical labels can be looked up from different brain atlases [1,2]. % % % In: % Signal : data set with valid IC decomposition % % HeadModel : head model file (see pop_dipfit_settings) (default: standard BEM volume) % % MRImage : anatomical MR head image file (default: standard BEM image) % % ChannelLocations : coregistered channel locations file (default: standard 10-20 locations) % % LookupLabels : whether to look up anatomical labels & probabilities (default: true) % % ConfusionRange : radius (in mm) of uncertainty over which to scan for labels (default: 4) % % BrainAtlas : brain atlas to use. Talairach has a larger repertoire of areas, but is (in % this version) non-probabilistic. The LONI LBPA40 atlas is a high-quality % probabilistic atlas. % % Out: % Signal : data set with added dipole annotations % % Notes: % In the default settings, a standard Eurasian BEM head model amd MR image is used, and channel % locations are assumed to be standard 10-20 locations if not specifically given. % % Examples: % % for a data set which is annotated with independent components, e.g. via % eeg = flt_ica(raw); % % % ... fit dipoles for each component using default settings, and look up the nearby anatomical % % structures and their hit probabilities) % eeg = set_fit_dipoles(eeg) % % % ... fit dipoles and and look up anatomical structures within a radius of 10mm around each % % dipole coordinate (passing arguments by name) % eeg = set_fit_dipoles('Signal',eeg,'ConfusionRange',10) % % % ... fit dipoles but do not look up anatomical structures % eeg = set_fit_dipoles('Signal',eeg,'LookupLabels',false) % % % ... fit dipoles using a (subject-) specific head model and MR file % eeg = set_fit_dipoles('Signal',eeg,'HeadModel','volXY.mat','MRImage','mriXY.mat') % % % ... fit dipoles using a (subject-) specific head model and MR file, as well as digitized % % channel locations % eeg = set_fit_dipoles('Signal',eeg,'HeadModel','my_vol.mat','MRImage','my_mri.mat','ChannelLocations','my_locs.mat') % % References: % [1] Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT, "Automated Talairach Atlas labels for functional brain mapping". % Human Brain Mapping 10:120-131, 2000 % [2] Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW, "Construction of a 3D probabilistic atlas of human cortical structures." % Neuroimage. 2008 39(3):1064-80 % % See also: % flt_ica, coregister, pop_multifit % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2011-01-21 % set_fit_dipoles_version<0.91> -- for the cache if ~exp_beginfun('filter') return; end % declare GUI name, etc. declare_properties('name',{'DipoleFitting','dipfit'}, 'depends','flt_ica', 'precedes','flt_project', 'independent_channels',true, 'independent_trials',true); % define arguments... arg_define(varargin, ... arg_norep({'signal','Signal'}), ... arg({'hdm_file','HeadModel'}, '', [],'Head model file. The BEM head model that should be used by dipfit (using a standard model if empty).'),... arg({'mri_file','MRImage'}, '', [],'MR head image file. The MR head image that should be used by dipfit (using a standard image if empty).'),... arg({'chan_file','ReferenceLocations'}, '', [],'Coregistered reference chanlocs. The coregistered electrode locations that should be used as reference for alignment warping.'),... arg({'lookup_labels','LookupLabels'},true,[], 'Look up dipole labels. If enabled, look up anatomical labels from the selected brain atlas.'),... arg({'confusion_range','ConfusionRange'}, 4, [1 30], 'Confusion Radius (mm). Assumed standard deviation of uncertainty in the dipole fits, in millimeters.'),... arg({'brain_atlas','BrainAtlas'}, 'Talairach', {'Talairach','LBPA40'}, 'Brain atlas to use. Talairach has a larger repertoire of areas, but is (in this version) non-probabilistic. The LONI LBPA40 atlas is a high-quality probabilistic atlas; however, you have to to download it yourself.'),... arg({'var_threshold','VarianceThreshold'}, 15, [1 100], 'Residual Variance Thresold (%). The threshold in dipole fit residual variance above which dipoles models are rejected.'),... arg({'mri_constraints','UseMRIConstraints'}, false, [], 'Use MRI constraints. If enabled, restricts dipole solutions to the grey-matter volume. The currently requires the SPM toolbox to be in the path.'),... arg({'discard_nonlocalizable','DiscardNonlocalizable'}, false, [], 'Discard non-localizable components.'),... arg({'verbose','VerboseOutput'}, false, [], 'Verbose output.'),... arg_norep('dipfit_info', unassigned)); if ~exist('dipfit_info','var') % use standard data if unspecified if isempty(hdm_file) %#ok<*NODEF> hdm_file = env_translatepath('resources:/standard_BEM/standard_vol.mat'); end if isempty(mri_file) if mri_constraints mri_file = env_translatepath('resources:/standard_BEM/standard_mri_gm.mat'); else mri_file = ''; end end if isempty(chan_file) % figure out the labeling scheme to determine the correct coregistration... if ~isfield(signal.chaninfo,'labelscheme') signal.chaninfo.labelscheme = '10-20'; end switch signal.chaninfo.labelscheme case '10-20' chan_file = env_translatepath('resources:/standard_BEM/elec/standard_1005.elc'); case 'sccn_128_v1' chan_file = env_translatepath('resources:/sccn_BEM_coregistered_128_v1.xyz'); case 'sccn_128_v2' chan_file = env_translatepath('resources:/sccn_BEM_coregistered_128_v2.xyz'); case 'sccn_256_v1' chan_file = env_translatepath('resources:/sccn_BEM_coregistered_256_v1.xyz'); case 'sccn_256_v2' chan_file = env_translatepath('resources:/sccn_BEM_coregistered_256_v2.xyz'); otherwise error('Unknown channel labeling scheme -- please supply a chan_file argument.'); end end disp(['Now fitting dipoles... (montage reference: ' chan_file ')']); % fit icaweights if verbose dipfit_info = hlp_diskcache('dipfits',@do_fitting,signal,mri_file,hdm_file,chan_file,lookup_labels,brain_atlas,confusion_range,var_threshold); else [text,dipfit_info] = evalc('hlp_diskcache(''dipfits'',@do_fitting,signal,mri_file,hdm_file,chan_file,lookup_labels,brain_atlas,confusion_range,var_threshold)'); end try % check if we need to fit Amica models, too... if isfield(signal.etc,'amica') sig = signal; multimodel = {}; for m=1:size(signal.etc.amica.W,3) sig.icaweights = signal.etc.amica.W(:,:,m); sig.icawinv = signal.etc.amica.A(:,:,m); sig.icasphere = signal.etc.amica.S; if verbose tmp = hlp_diskcache('dipfits',@do_fitting,sig,mri_file,hdm_file,chan_file,lookup_labels,brain_atlas,confusion_range,var_threshold); else [text,tmp] = evalc('hlp_diskcache(''dipfits'',@do_fitting,sig,mri_file,hdm_file,chan_file,lookup_labels,brain_atlas,confusion_range,var_threshold);'); end multimodel{m} = tmp.model; %#ok<AGROW> end dipfit_info.multimodel = multimodel; end catch disp('Could not compute dipfit solutions for Amica models.'); end end signal.dipfit = dipfit_info; if discard_nonlocalizable retain_ics = ~cellfun(@isempty,{signal.dipfit.model.posxyz}); % update the dipole model signal.dipfit.model = signal.dipfit.model(retain_ics); % restrict the ICs & some derived data signal.icaweights = signal.icaweights(retain_ics,:); signal.icawinv = signal.icawinv(:,retain_ics); if ~isempty(signal.icaact) && ~isscalar(signal.icaact) signal.icaact = signal.icaact(retain_ics,:,:); end end if isfield(signal.etc,'amica') signal.etc.amica.dipfit = dipfit_info; end global tracking; tracking.inspection.dipfit = dipfit_info; % when applied online, include the dipfit info into the parameters (so it gets attached immediately) exp_endfun('append_online',{'dipfit_info',dipfit_info}); function result = do_fitting(signal,mri_file,hdm_file,chan_file,lookup_labels,brain_atlas,confusion_range,var_threshold) % coregister chanlocs to reference channels [dummy,warping] = coregister(signal.chanlocs,chan_file,'warp','auto','manual','off'); %#ok<ASGLU> % generate the dipfit info %nosedir needs to be set to +X here for dipfit to work signal.chaninfo.nosedir = '+X'; tmp = pop_multifit(pop_dipfit_settings(pop_select(signal,'channel',signal.icachansind), ... 'mrifile',mri_file, 'hdmfile',hdm_file,'chanfile',chan_file,'coordformat','MNI','coord_transform',warping), 1:size(signal.icaweights,1),'threshold',var_threshold); % optionally derive anatomical labels & probabilities if lookup_labels switch lower(brain_atlas) case 'talairach' db = org.talairach.Database; db.load(env_translatepath('resources:/talairach.nii')); for k=1:length(tmp.dipfit.model) try p = icbm_spm2tal(tmp.dipfit.model(k).posxyz); tmp.dipfit.model(k).labels = cellfun(@(d)char(d),cell(db.search_range(p(1),p(2),p(3),1.5*confusion_range)),'UniformOutput',false); % and compute structure probabilities within the selected volume [structures,x,idxs] = unique(hlp_split(sprintf('%s,',tmp.dipfit.model(k).labels{:}),',')); %#ok<ASGLU> probabilities = mean(bsxfun(@eq,1:max(idxs),idxs')); [probabilities,reindex] = sort(probabilities,'descend'); structures = structures(reindex); mask = ~strcmp(structures,'*'); tmp.dipfit.model(k).structures = structures(mask); tmp.dipfit.model(k).probabilities = probabilities(mask)*5; % there are 5 partitions % figure('Position',[0 0 2560 900]); topoplot(tmp.icawinv(:,k),tmp.chanlocs); title([hlp_tostring(structures(mask)) 10 hlp_tostring(5*probabilities(mask))]); pop_dipplot(tmp,k); catch tmp.dipfit.model(k).labels = {}; tmp.dipfit.model(k).structures = {}; tmp.dipfit.model(k).probabilities = []; end end case 'lbpa40' mask = find(~cellfun('isempty',{tmp.dipfit.model.posxyz})); % build query coords = vertcat(tmp.dipfit.model.posxyz); coords = [coords confusion_range * ones(size(coords,1),1)]; % look up from atlas (note: slow!) [probs,labels] = label_dipoles(coords); % determine overlapped specialty regions to match up with Talairach's labeling scheme L = ~cellfun('isempty',strfind(labels,' L ')); R = ~cellfun('isempty',strfind(labels,' R ')); B = ~cellfun('isempty',strfind(labels,'Brainstem')); C = ~cellfun('isempty',strfind(labels,'Cerebellum')); allprobs = [sum(probs(:,L),2) sum(probs(:,R),2) sum(probs(:,C),2)*[0.5 0.5] sum(probs(:,B),2)]; allstructs = {'Left Cerebrum' 'Right Cerebrum' 'Left Cerebellum' 'Right Cerebellum' 'Brainstem'}; % go through all gyri and add up left & right probabilities gyri = unique(cellfun(@(l)l(12:end),labels(1:end-2),'UniformOutput',false))'; allstructs = [allstructs gyri]; for g=1:length(gyri) curgyrus = gyri{g}; matches = ~cellfun('isempty',strfind(labels,curgyrus)); allprobs = [allprobs sum(probs(:,matches),2)]; end for k=1:length(mask) % retain only those with non-zero probability sel = allprobs(k,:) ~= 0; probabilities = allprobs(k,sel); structures = allstructs(sel); % sort probs & associated structs by descending probability [probabilities,reindex] = sort(probabilities,'descend'); structures = structures(reindex); % store in the model... tmp.dipfit.model(mask(k)).structures = structures; tmp.dipfit.model(mask(k)).probabilities = probabilities; % figure('Position',[0 0 2560 900]);topoplot(tmp.icawinv(:,k),tmp.chanlocs); title([hlp_tostring(structures) 10 hlp_tostring(probabilities)]); pop_dipplot(tmp,k); end end end result = tmp.dipfit;
github
ZijingMao/baselineeegtest-master
set_joinepos.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/dataset_editing/set_joinepos.m
3,572
utf_8
86418e7bbad408ccff0c1f5d02c48478
function result = set_joinepos(varargin) % Join epoched signals across epochs. % Result = set_joinepos(Set1, Set2, ...) % % In: % SetK : The k'th data set to join. % % Out: % Result : A new data set with trials from all sets joined. The following changes are made: % * .data and all other time-series fields are joined across trials (3rd dimension) % * .epoch is joined and its .event field is updated appropriately % * .event is joined and its .epoch and .latency fields are updated appropriately % * .xmax/.trials are updated % % Notes: % This function returns a new data set with meta-data set to that of the first input set, and the % trials joined across all sets. No checks for meta-data consistency are done. There is a % heavy-duty function for merging inconsistent sets called set_merge, which can merge cats and % dogs. This function does not attempt to keep miscellaneous EEGLAB meta-data consistent, including: % setname,filename,filepath,subject,group,condition,session,comments,urevent,reject,stats,history,etc % % To concatenate continuous sets across time, use set_concat. % % Examples: % % merge data sets eegA, eegB and eegC across epochs % eeg = set_joinepos(eegA,eegB,eegC) % % See also: % set_concat, set_merge % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-03-31 % set_joinepos_version<1.0> -- for the cache if ~exp_beginfun('editing') return; end declare_properties('name','JoinTrials','independent_channels',true,'independent_trials',true); if ~isempty(varargin) result = varargin{1}; if length(varargin) > 1 % concatenate time series fields for field = utl_timeseries_fields(result) data = cellfun(@(x)x.(field{1}),varargin,'UniformOutput',false); result.(field{1}) = cat(3,data{:}); if isempty(result.(field{1})) result.(field{1}) = []; end end % count events, epochs and samples in each set event_count = cellfun(@(x)length(x.event),varargin); epoch_count = cellfun(@(x)length(x.epoch),varargin); sample_count = cellfun(@(x)x.pnts,varargin).*epoch_count; % concatenate .event and .epoch fields event = cellfun(@(x)x.event,varargin,'UniformOutput',false); result.event = [event{:}]; epoch = cellfun(@(x)x.epoch,varargin,'UniformOutput',false); result.epoch = [epoch{:}]; % shift event latencies based on cumulative sample counts if ~isempty(result.event) [result.event.latency] = arraydeal([result.event.latency]+replicate(cumsum(sample_count)-sample_count,event_count)); % shift event/epoch cross-references based on cumulative counts [result.event.epoch] = arraydeal([result.event.epoch]+replicate(cumsum(epoch_count)-epoch_count,event_count)); [result.epoch.event] = chopdeal([result.epoch.event]+replicate(cumsum(event_count)-event_count,event_count),cellfun('length',{result.epoch.event})); end % update misc fields [result.nbchan,result.pnts,result.trials,extra_dims] = size(result.data); %#ok<NASGU> result.xmax = result.xmin + (result.pnts-1)/result.srate; end else result = eeg_emptyset; end exp_endfun; function result = replicate(values,counts) % Replicate each element Values(k) by Count(k) times. result = zeros(1,sum(counts)); k = 0; for p=find(counts) result(k+(1:counts(p))) = values(p); k = k+counts(p); end
github
ZijingMao/baselineeegtest-master
exp_eval_optimized.m
.m
baselineeegtest-master/BigEEGConsortium-ESS/Ess_tools/dependency/expressions/exp_eval_optimized.m
5,336
utf_8
ebfd9f7b2500706eaefa02a690f4c01d
function varargout = exp_eval_optimized(x,iters) % Evaluate the given expression using optimizations. % Out-Args = exp_eval_optimized(exp) % % This function should produce the same result as exp_eval(), however it may cache intermediate % results in memory or on disk (and reuse them later), or perform some (known-to-be-safe) reorderings % of computations. Currently, this function is primarily relevant for evaluating filter expressions % efficiently, and it contains some domain-specific optimizations to expedite their evaluation. % % In: % Expression : expression to evaluate % % Iterations : optionally restrict the number of iterations done by exp_eval (default: 1) % % Out: % Out-Args : the result of the evaluation % % Notes: % The currently implemented optimizations are memory and optional disk caching of all expressions % (while it does not attempt to disk-cache expressions that contain a set_partition() since, as % there can be 100s of partitioned versions during bootstrap/resampling calculations). The other % optimization is that partitioning steps are being reodered to come after expensive filter operations % (e.g., resampling), so that the same data does not have to be processed over and over for different % overlapping partitions. Partitioning steps are not moved over processing steps that compute % statistics over the data (such as ICA, SSA or standardization), as declared by the % 'independent_trials' property of the respective stage. % % See also: % exp_eval % % Christian Kothe, Swartz Center for Computational Neuroscience, UCSD % 2010-04-15 if ~exist('iters','var') iters = 1; end varargout = {x}; if isfield(x,{'head','parts'}) % first (and key) optimization: "pull up" any set_partition() node in the expression as high as % possible (i.e. partition the data as late as possible); the only nodes that cannot be skipped by % a partition operation are those which have their 'independent_trials' property set to false. x = pull_up(x); % now add caching hints recursively... [x,unpartitioned] = add_cache_hints(x,iters); % ... and evaluate with the remaining evaluation hints around the top-level expression [varargout{1:nargout}] = hlp_scope({'memoize',{'memory',1,'disk',double(unpartitioned)}}, @exp_eval,x,iters); end % add disk cache hints around whatever is sitting below a set_partition expression... function [x,unpartitioned] = add_cache_hints(x,iters) unpartitioned = true; if all(isfield(x,{'parts','head'})) % first recurse and find out whether the sub-expressions are partitioned or not for p=1:length(x.parts) [x.parts{p},unp] = add_cache_hints(x.parts{p},iters); unpartitioned = unpartitioned & unp; end % check if this is a set_partition expression chead = char(x.head); if strcmp(chead,'set_partition') if unpartitioned % it is sitting on top of an unpartitioned sub-expression: add a disk cache hint % around that sub-expression x.parts{1} = exp_block({exp_rule(@memoize,{'memory',1,'disk',1})},x.parts{1},iters); end unpartitioned = false; end end function [x,chead] = pull_up(x) % recursively pull up set_partition(x,_) nodes in an expression structure chead = char(x.head); num_expressions = 0; % number of sub-expressions partition_at = []; % indices of the set_partition sub-expressions in parts, if any % recurse into parts... for p=1:length(x.parts) if isfield(x.parts{p},{'head','parts'}) [x.parts{p},head_p] = pull_up(x.parts{p}); % count the number of sub-expressions num_expressions = num_expressions+1; % remember the places where we have set_partition sub-expressions if strcmp(head_p,'set_partition') partition_at(end+1) = p; end %#ok<AGROW> end end % now perform the reordering, if applicable if num_expressions == length(partition_at) && num_expressions > 0 % check if the current node has the independent_trials=false property (which prevents reordering) props = hlp_microcache('props',@arg_report,'properties',x.head,{hlp_fileinfo(x.head,[],'hash')}); if ~props.independent_trials return; end % we can proceed if num_expressions == 1 % simple standard case: reorder this node with the set_partition below it % make a backup of our old set_partition(<y>,index_set) sub-expression oldchild = x.parts{partition_at}; % replace our old set_partition(<y>,index_set) by the <y> x.parts{partition_at} = oldchild.parts{1}; % and replace the whole thing by a new set_partition(<the whole thing>,index_set) node x = struct('head',{@set_partition},'parts',{{x,oldchild.parts{2:end}}}); chead = 'set_partition'; % finally recurse again and pull up any subordinate set_partition's for p=1:length(x.parts) if isfield(x.parts{p},{'head','parts'}) x.parts{p} = pull_up(x.parts{p}); end end else % fusion of multiple partitioned data sets (only permitted if indices are identical) return; % not yet implemented... end end
github
minogame/caffe-qhconv-master
prepare_batch.m
.m
caffe-qhconv-master/matlab/caffe/prepare_batch.m
1,298
utf_8
68088231982895c248aef25b4886eab0
% ------------------------------------------------------------------------ function images = prepare_batch(image_files,IMAGE_MEAN,batch_size) % ------------------------------------------------------------------------ if nargin < 2 d = load('ilsvrc_2012_mean'); IMAGE_MEAN = d.image_mean; end num_images = length(image_files); if nargin < 3 batch_size = num_images; end IMAGE_DIM = 256; CROPPED_DIM = 227; indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; center = floor(indices(2) / 2)+1; num_images = length(image_files); images = zeros(CROPPED_DIM,CROPPED_DIM,3,batch_size,'single'); parfor i=1:num_images % read file fprintf('%c Preparing %s\n',13,image_files{i}); try im = imread(image_files{i}); % resize to fixed input size im = single(im); im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % Transform GRAY to RGB if size(im,3) == 1 im = cat(3,im,im,im); end % permute from RGB to BGR (IMAGE_MEAN is already BGR) im = im(:,:,[3 2 1]) - IMAGE_MEAN; % Crop the center of the image images(:,:,:,i) = permute(im(center:center+CROPPED_DIM-1,... center:center+CROPPED_DIM-1,:),[2 1 3]); catch warning('Problems with file',image_files{i}); end end
github
minogame/caffe-qhconv-master
matcaffe_demo_vgg.m
.m
caffe-qhconv-master/matlab/caffe/matcaffe_demo_vgg.m
3,036
utf_8
f836eefad26027ac1be6e24421b59543
function scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file) % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file) % % Demo of the matlab wrapper using the networks described in the BMVC-2014 paper "Return of the Devil in the Details: Delving Deep into Convolutional Nets" % % INPUT % im - color image as uint8 HxWx3 % use_gpu - 1 to use the GPU, 0 to use the CPU % model_def_file - network configuration (.prototxt file) % model_file - network weights (.caffemodel file) % mean_file - mean BGR image as uint8 HxWx3 (.mat file) % % OUTPUT % scores 1000-dimensional ILSVRC score vector % % EXAMPLE USAGE % model_def_file = 'zoo/VGG_CNN_F_deploy.prototxt'; % model_file = 'zoo/VGG_CNN_F.caffemodel'; % mean_file = 'zoo/VGG_mean.mat'; % use_gpu = true; % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file); % % NOTES % the image crops are prepared as described in the paper (the aspect ratio is preserved) % % PREREQUISITES % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % init caffe network (spews logging info) matcaffe_init(use_gpu, model_def_file, model_file); % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im, mean_file)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; % size(scores) scores = squeeze(scores); % scores = mean(scores,2); % [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im, mean_file) % ------------------------------------------------------------------------ IMAGE_DIM = 256; CROPPED_DIM = 224; d = load(mean_file); IMAGE_MEAN = d.image_mean; % resize to fixed input size im = single(im); if size(im, 1) < size(im, 2) im = imresize(im, [IMAGE_DIM NaN]); else im = imresize(im, [NaN IMAGE_DIM]); end % RGB -> BGR im = im(:, :, [3 2 1]); % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices_y = [0 size(im,1)-CROPPED_DIM] + 1; indices_x = [0 size(im,2)-CROPPED_DIM] + 1; center_y = floor(indices_y(2) / 2)+1; center_x = floor(indices_x(2) / 2)+1; curr = 1; for i = indices_y for j = indices_x images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :)-IMAGE_MEAN, [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end images(:,:,:,5) = ... permute(im(center_y:center_y+CROPPED_DIM-1,center_x:center_x+CROPPED_DIM-1,:)-IMAGE_MEAN, ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr);
github
minogame/caffe-qhconv-master
matcaffe_demo.m
.m
caffe-qhconv-master/matlab/caffe/matcaffe_demo.m
3,344
utf_8
669622769508a684210d164ac749a614
function [scores, maxlabel] = matcaffe_demo(im, use_gpu) % scores = matcaffe_demo(im, use_gpu) % % Demo of the matlab wrapper using the ILSVRC network. % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format: % % convert from uint8 to single % im = single(im); % % reshape to a fixed size (e.g., 227x227) % im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % permute from RGB to BGR and subtract the data mean (already in BGR) % im = im(:,:,[3 2 1]) - data_mean; % % flip width and height to make width the fastest dimension % im = permute(im, [2 1 3]); % If you have multiple images, cat them with cat(4, ...) % The actual forward function. It takes in a cell array of 4-D arrays as % input and outputs a cell array. % init caffe network (spews logging info) if exist('use_gpu', 'var') matcaffe_init(use_gpu); else matcaffe_init(); end if nargin < 1 % For demo purposes we will use the peppers image im = imread('peppers.png'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; size(scores) scores = squeeze(scores); scores = mean(scores,2); [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im) % ------------------------------------------------------------------------ d = load('ilsvrc_2012_mean'); IMAGE_MEAN = d.image_mean; IMAGE_DIM = 256; CROPPED_DIM = 227; % resize to fixed input size im = single(im); im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % permute from RGB to BGR (IMAGE_MEAN is already BGR) im = im(:,:,[3 2 1]) - IMAGE_MEAN; % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; curr = 1; for i = indices for j = indices images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :), [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end center = floor(indices(2) / 2)+1; images(:,:,:,5) = ... permute(im(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:), ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr);
github
minogame/caffe-qhconv-master
matcaffe_demo_vgg_mean_pix.m
.m
caffe-qhconv-master/matlab/caffe/matcaffe_demo_vgg_mean_pix.m
3,069
utf_8
04b831d0f205ef0932c4f3cfa930d6f9
function scores = matcaffe_demo_vgg_mean_pix(im, use_gpu, model_def_file, model_file) % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file) % % Demo of the matlab wrapper based on the networks used for the "VGG" entry % in the ILSVRC-2014 competition and described in the tech. report % "Very Deep Convolutional Networks for Large-Scale Image Recognition" % http://arxiv.org/abs/1409.1556/ % % INPUT % im - color image as uint8 HxWx3 % use_gpu - 1 to use the GPU, 0 to use the CPU % model_def_file - network configuration (.prototxt file) % model_file - network weights (.caffemodel file) % % OUTPUT % scores 1000-dimensional ILSVRC score vector % % EXAMPLE USAGE % model_def_file = 'zoo/deploy.prototxt'; % model_file = 'zoo/model.caffemodel'; % use_gpu = true; % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file); % % NOTES % mean pixel subtraction is used instead of the mean image subtraction % % PREREQUISITES % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % init caffe network (spews logging info) matcaffe_init(use_gpu, model_def_file, model_file); % mean BGR pixel mean_pix = [103.939, 116.779, 123.68]; % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im, mean_pix)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; % size(scores) scores = squeeze(scores); % scores = mean(scores,2); % [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im, mean_pix) % ------------------------------------------------------------------------ IMAGE_DIM = 256; CROPPED_DIM = 224; % resize to fixed input size im = single(im); if size(im, 1) < size(im, 2) im = imresize(im, [IMAGE_DIM NaN]); else im = imresize(im, [NaN IMAGE_DIM]); end % RGB -> BGR im = im(:, :, [3 2 1]); % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices_y = [0 size(im,1)-CROPPED_DIM] + 1; indices_x = [0 size(im,2)-CROPPED_DIM] + 1; center_y = floor(indices_y(2) / 2)+1; center_x = floor(indices_x(2) / 2)+1; curr = 1; for i = indices_y for j = indices_x images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :), [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end images(:,:,:,5) = ... permute(im(center_y:center_y+CROPPED_DIM-1,center_x:center_x+CROPPED_DIM-1,:), ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr); % mean BGR pixel subtraction for c = 1:3 images(:, :, c, :) = images(:, :, c, :) - mean_pix(c); end
github
minogame/caffe-qhconv-master
classification_demo.m
.m
caffe-qhconv-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
PSLmodels/Geo-DICE-master
T_Utility.m
.m
Geo-DICE-master/CTP/T_Utility.m
1,456
utf_8
925d74c7c2c30029e45997ddcc1ee234
%Algorithm for calculating the social utility of each state under ceratin %action (a3) function [ U ] = T_Utility( S4, a4, g4, Wm4, t4) %Social Utility for a given state St % state = S4 % action = a4, g4 % time = t4 global theta1 theta2 theta3 L alpha Gcoeff deltarf Fex etha1 global thetaGE sai2temp sai2ocean sai2atmos nuG Geffective TP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Radiative Forcings change due to GE RF0 = S4(9); S4(9) = (deltarf * ((log(S4(4)) - log(596.4)) / log(2)) + Fex(t4)) * (1 - Geffective * g4); %Atmospheric Temperature change due to GE S4(2) = S4(2) + etha1 * (S4(9) - RF0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if TP == 7 && S4(10) == 1 dm = 0.01; else dm = 0; end % Damage cost function Damage = (1 - dm)/((1 + sai2temp * (Wm4 * S4(2)) ^ 2 + sai2ocean * (S4(5) - 1094) ^ 2 + sai2atmos * (S4(4) - 596.4) ^ 2) * (1 + nuG * g4 ^ 2)); Dam = 1 - Damage; % Abatement cost function Abate = theta1(t4) * a4 ^ theta2; % Geoengineering cost function %Geoengineer = Gcoeff * theta1(t4) * g4 ^ theta3; Geoengineer = Gcoeff * thetaGE * g4 ^ theta3; % Net output after damage and abatement Q = (1 - (Dam + Abate + Geoengineer)) * S4(7); % Consumption C = (1 - 0.22) * Q; % Consumption per capita c = C / L(t4) * 1000; % Utility per capita u = 1 + c ^ (1 - alpha) / (1 - alpha); % Social utility U = u * L(t4) * 10; end
github
PSLmodels/Geo-DICE-master
Rep_Utility.m
.m
Geo-DICE-master/CTP/MHE-DWI/Rep_Utility.m
745
utf_8
d33cbd5b2f47256faebac97e812f7a35
%Algorithm for calculating the social utility of each state under ceratin %action (a3) function [ U ] = Rep_Utility( S4, a4, Wm4, t4) %Social Utility for a given state St % state = S4 % action = a4 % time = t4 global theta1 theta2 L alpha global sai1 sai2 sai3 % Damage cost function Damage = 1 / (1 + sai1 * S4(2) + sai2 * (Wm4 * S4(2)) ^ sai3); Dam = 1 - Damage; % Abatement cost function Abate = theta1(t4) * a4 ^ theta2; % Net output after damage and abatement Q = (1 - (Dam + Abate)) * S4(7); % Consumption C = (1 - 0.22) * Q; % Consumption per capita c = C / L(t4) * 1000; % Utility per capita u = 1 + c ^ (1 - alpha) / (1 - alpha); % Social utility U = u * L(t4) * 10; end
github
PSLmodels/Geo-DICE-master
T_G_Utility.m
.m
Geo-DICE-master/CTP/MHE-DWI/T_G_Utility.m
1,460
utf_8
94eca70573405582478bde2db91a5d39
%Algorithm for calculating the social utility of each state under ceratin %action (a3) function [ U ] = T_G_Utility( S4, a4, g4, Wm4, t4) %Social Utility for a given state St % state = S4 % action = a4, g4 % time = t4 global theta1 theta2 theta3 L alpha Gcoeff deltarf Fex etha1 global thetaGE sai2temp sai2ocean sai2atmos nuG Geffective TP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Radiative Forcings change due to GE RF0 = S4(9); S4(9) = (deltarf * ((log(S4(4)) - log(596.4)) / log(2)) + Fex(t4)) * (1 - Geffective * g4); %Atmospheric Temperature change due to GE S4(2) = S4(2) + etha1 * (S4(9) - RF0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if TP == 7 && S4(10) == 1 dm = 0.01; else dm = 0; end % Damage cost function Damage = (1 - dm)/((1 + sai2temp * (Wm4 * S4(2)) ^ 2 + sai2ocean * (S4(5) - 1094) ^ 2 + sai2atmos * (S4(4) - 596.4) ^ 2) * (1 + nuG * g4 ^ 2)); Dam = 1 - Damage; % Abatement cost function Abate = theta1(t4) * a4 ^ theta2; % Geoengineering cost function %Geoengineer = Gcoeff * theta1(t4) * g4 ^ theta3; Geoengineer = Gcoeff * thetaGE * g4 ^ theta3; % Net output after damage and abatement Q = (1 - (Dam + Abate + Geoengineer)) * S4(7); % Consumption C = (1 - 0.22) * Q; % Consumption per capita c = C / L(t4) * 1000; % Utility per capita u = 1 + c ^ (1 - alpha) / (1 - alpha); % Social utility U = u * L(t4) * 10; end
github
PSLmodels/Geo-DICE-master
Utility.m
.m
Geo-DICE-master/SGEUPC/Utility.m
1,448
utf_8
b544380a9a72033fabc965a1f78de0f6
%Algorithm for calculating the social utility of each state under ceratin %action (a3) function [ U ] = Utility( S4, a4, g4, Wm4, t4) %Social Utility for a given state St % state = S4 % action = a4, g4 % time = t4 global theta1 theta2 theta3 L alpha Gcoeff deltarf Fex etha1 global thetaGE sai2temp sai2ocean sai2atmos nuG TP Geffective %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Radiative Forcings change due to GE RF0 = S4(9); S4(9) = (deltarf * ((log(S4(4)) - log(596.4)) / log(2)) + Fex(t4)) * (1 - Geffective * g4); %Atmospheric Temperature change due to GE S4(2) = S4(2) + etha1 * (S4(9) - RF0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Damage cost function if TP == 7 && S4(10) == 1 dm = 0.01; else dm = 0; end Damage = (1 - dm)/((1 + sai2temp * (Wm4 * S4(2)) ^ 2 + sai2ocean * (S4(5) - 1094) ^ 2 + sai2atmos * (S4(4) - 596.4) ^ 2) * (1 + nuG * g4 ^ 2)); Dam = 1 - Damage; % Abatement cost function Abate = theta1(t4) * a4 ^ theta2; % Geoengineering cost function %Geoengineer = Gcoeff * theta1(t4) * g4 ^ theta3; Geoengineer = Gcoeff * thetaGE * g4 ^ theta3; % Net output after damage and abatement Q = (1 - (Dam + Abate + Geoengineer)) * S4(7); % Consumption C = (1 - 0.22) * Q; % Consumption per capita c = C / L(t4) * 1000; % Utility per capita u = 1 + c ^ (1 - alpha) / (1 - alpha); % Social utility U = u * L(t4) * 10; end
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/Unsolved/linear regression/ex1/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/Unsolved/linear regression/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/Unsolved/linear regression/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/Unsolved/linear regression/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/Unsolved/linear regression/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/Unsolved/handwriting recognition/ex3/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/Unsolved/handwriting recognition/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/Unsolved/handwriting recognition/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/Unsolved/handwriting recognition/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/Unsolved/handwriting recognition/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/Unsolved/logistic regression/ex2/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/Unsolved/logistic regression/ex2/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/Unsolved/logistic regression/ex2/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/Unsolved/logistic regression/ex2/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/Unsolved/logistic regression/ex2/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submit.m
.m
MLworkshop-master/Unsolved/Anomaly Detection and Recommender Systems/ex8/submit.m
2,064
utf_8
7c4fcf60df3a7e09d05a74f7772fed3b
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/Unsolved/Anomaly Detection and Recommender Systems/ex8/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/Unsolved/Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/Unsolved/Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/Unsolved/Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/Unsolved/Anomaly Detection and Recommender Systems/ex8/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/solved/linear regression/ex1/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/solved/linear regression/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/solved/linear regression/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/solved/linear regression/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/solved/linear regression/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submit.m
.m
MLworkshop-master/solved/anomaly detection and reccomendor system/ex8/submit.m
2,064
utf_8
7c4fcf60df3a7e09d05a74f7772fed3b
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/solved/anomaly detection and reccomendor system/ex8/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/solved/anomaly detection and reccomendor system/ex8/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/solved/anomaly detection and reccomendor system/ex8/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/solved/anomaly detection and reccomendor system/ex8/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/solved/anomaly detection and reccomendor system/ex8/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submit.m
.m
MLworkshop-master/solved/handwriting recognition/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/solved/handwriting recognition/ex3/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/solved/handwriting recognition/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/solved/handwriting recognition/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/solved/handwriting recognition/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/solved/handwriting recognition/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
uday1201/MLworkshop-master
submit.m
.m
MLworkshop-master/solved/logistic regression/ex2/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
uday1201/MLworkshop-master
submitWithConfiguration.m
.m
MLworkshop-master/solved/logistic regression/ex2/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
uday1201/MLworkshop-master
savejson.m
.m
MLworkshop-master/solved/logistic regression/ex2/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
uday1201/MLworkshop-master
loadjson.m
.m
MLworkshop-master/solved/logistic regression/ex2/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
loadubjson.m
.m
MLworkshop-master/solved/logistic regression/ex2/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
uday1201/MLworkshop-master
saveubjson.m
.m
MLworkshop-master/solved/logistic regression/ex2/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
marcotcr/BlackBoxAuditing-master
SLIMCoefficientConstraints.m
.m
BlackBoxAuditing-master/MATLAB_code/src/SLIMCoefficientConstraints.m
17,125
utf_8
d66e1a62518673dd6497f25601e4c046
classdef SLIMCoefficientConstraints %Helper class to store, access, and change information used for %coefficients in a SLIM model. % %Fields include: % %variable_name: names of each feature, X_1...X_d by default % %ub: upperbound on coefficient set, 10 by default % %lb: lowerbound on coefficient set, -10 by default % %type: type of coefficient, 'integer' by default % if 'integer' then coefficient will take on integer values in [lb,ub] % if 'custom' then coefficient will take any value specified in 'values' % %values: values that can be taken by a 'custom' coefficient, empty by default % %sign: sign of the coefficient set, =0 by default % -1 means coefficient is restricted to negative values % 1 means coefficient is restricted to positive values % 0 means coefficient can take on positive/negative values % % setting sign will override conflicts with lb/ub/values field, % so if [lb,ub] = [-10,10] and we set sign to 1, then [lb,ub] will change to [0,10] % %C_0j: custom sparsity parameter, NaN by default % must be either NaN or a value in [0,1] % C_0j represents the minimum % accuracy that feature j must add % in order to be included in the SLIM classifier (i.e. have a non-zero % coefficient % %Author: Berk Ustun | [email protected] | www.berkustun.com %Reference: SLIM for Optimized Medical Scoring Systems, http://arxiv.org/abs/1502.04269 %Repository: <a href="matlab: web('https://github.com/ustunb/slim_for_matlab')">slim_for_matlab</a> properties(Access=private) constraintArray; n_variables; end properties(Dependent) variable_name ub lb type values sign C_0j end methods %% Constructor to create new coefConstraints object function obj = SLIMCoefficientConstraints(varargin) if nargin > 0 if nargin == 1 && isnumeric(varargin{1}) obj.n_variables = varargin{1}; variable_names = arrayfun(@(j) sprintf('X_%d',j), 1:obj.n_variables, 'UniformOutput', false); elseif nargin == 1 && iscell(varargin{1}) variable_names = varargin{1}; obj.n_variables = length(variable_names); end varargin tmpArray = cellfun(@(n) SLIMCoefficientFields(n), variable_names, 'UniformOutput', false); obj.constraintArray = [tmpArray{:}]; obj.checkRep() end end %% Native Getter Methods function variable_name = get.variable_name(obj) variable_name = {obj.constraintArray(:).variable_name}'; end function ub = get.ub(obj) ub = [obj.constraintArray(:).ub]'; end function lb = get.lb(obj) lb = [obj.constraintArray(:).lb]'; end function sign = get.sign(obj) sign = [obj.constraintArray(:).sign]'; end function C_0j = get.C_0j(obj) C_0j = [obj.constraintArray(:).C_0j]'; end function type = get.type(obj) type = {obj.constraintArray(:).type}'; end function values = get.values(obj) values = {obj.constraintArray(:).values}'; end %% Native Setter Methods function obj = set.variable_name(obj, new_name) if ischar(new_name) new_name = {new_name}; end if length(new_name)==1 new_name = repmat(new_name, obj.n_variables, 1); else assert(length(new_name)==length(obj.constraintArray)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).variable_name = new_name{i}; end obj.checkRep() end function obj = set.values(obj, new_values) if isnumeric(new_values) new_values = {new_values}; end if length(new_values)==1 new_values = repmat(new_values, obj.n_variables, 1); else assert(length(new_values)==length(obj.constraintArray),... sprintf('new values must have length = 1 or %d', obj.n_variables)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).values = new_values{i}; end obj.checkRep() end function obj = set.type(obj, new_type) if length(new_type)==1 new_type = repmat(new_type, obj.n_variables, 1); else assert(length(new_type)==length(obj.constraintArray),... sprintf('new type must have length = 1 or %d', obj.n_variables)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).type = new_type(i); end obj.checkRep() end function obj = set.ub(obj, new_ub) if length(new_ub)==1 new_ub = repmat(new_ub, obj.n_variables, 1); else assert(length(new_ub)==length(obj.constraintArray),... sprintf('new ub values must have length = 1 or %d', obj.n_variables)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).ub = new_ub(i); end obj.checkRep() end function obj = set.lb(obj, new_lb) if length(new_lb)==1 new_lb = repmat(new_lb, obj.n_variables, 1); else assert(length(new_lb)==length(obj.constraintArray)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).lb = new_lb(i); end obj.checkRep() end function obj = set.sign(obj, new_sign) if length(new_sign)==1 new_sign = repmat(new_sign, obj.n_variables, 1); else assert(length(new_sign)==length(obj.constraintArray)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).sign = new_sign(i); end obj.checkRep() end function obj = set.C_0j(obj, new_C_0j) if length(new_C_0j)==1 new_C_0j = repmat(new_C_0j, obj.n_variables, 1); else assert(length(new_C_0j)==length(obj.constraintArray)) end for i = 1:length(obj.constraintArray) obj.constraintArray(i).C_0j = new_C_0j(i); end obj.checkRep() end %% Name-Based Getter/Setter Methods function field_values = getfield(obj, varargin) %Get field values for one or more variables % %variable_names names of the variables for which the field_name will be set to field_value % can either be a single char or a cell array of strings % all variable names must match the variable_name field of the SLIMCoefficientConstraint object % %field_name any field name of a SLIMCoefficientConstraints object if nargin == 2 variable_names = obj.variable_name; field_name = varargin{1}; elseif nargin == 3 variable_names = varargin{1}; field_name = varargin{2}; else error('invalid number of inputs') end assert(sum(strcmp(field_name,{'variable_name','lb','ub','type','values','sign','C_0j'}))==1, .... 'field name must be: variable_name, lb, ub, values, type, sign, C_0j'); if ischar(variable_names) variable_names = {variable_names}; end current_names = obj.variable_name; variable_names = unique(variable_names, 'stable'); valid_name_ind = ismember(variable_names, current_names, 'legacy'); valid_names = variable_names(valid_name_ind); if any(~valid_name_ind) invalid_names = variable_names(~valid_name_ind); error_msg = sprintf('could not find variable matching name: %s\n', invalid_names{:}); error_msg = error_msg(1:end-1); %remove last \n error(error_msg); end switch field_name case {'variable_name', 'type', 'values'} field_values = cell(length(valid_names),1); counter = 1; for i = 1:length(valid_names) ind = find(strcmp(current_names, valid_names{i})); for j = 1:length(ind) field_values(counter) = {obj.constraintArray(ind(j)).(field_name)}; counter = counter + 1; end end if length(field_values)==1 field_values = field_values{1}; end otherwise field_values = nan(length(valid_names),1); counter = 1; for i = 1:length(valid_names) ind = find(strcmp(current_names, valid_names{i})); for j = 1:length(ind) field_values(counter) = obj.constraintArray(ind(j)).(field_name); counter = counter + 1; end end end obj.checkRep() end function obj = setfield(obj, varargin) %Set the field value for one or more variables % %variable_names names of the variables for which the field_name will be set to field_value % can either be a single char or a cell array of strings % all variable names must match the variable_name field of the SLIMCoefficientConstraint object % % %field_name limited to be 'variable_name','lb','ub','values','sign','C_0j' % %field_value limited to valid values of the fields above if nargin == 3 variable_names = obj.variable_name; field_name = varargin{1}; field_value = varargin{2}; elseif nargin == 4 variable_names = varargin{1}; field_name = varargin{2}; field_value = varargin{3}; else error('invalid number of inputs') end assert(sum(strcmp(field_name,{'variable_name','lb','ub','values','sign','C_0j'}))==1, .... 'field name must be: variable_name, lb,ub, values, sign, C_0j'); if ischar(variable_names) variable_names = {variable_names}; end current_names = obj.variable_name; variable_names = unique(variable_names, 'stable'); valid_name_ind = ismember(variable_names, current_names, 'legacy'); valid_names = variable_names(valid_name_ind); if any(~valid_name_ind) invalid_names = variable_names(~valid_name_ind); error_msg = sprintf('could not find variable matching name: %s\n', invalid_names{:}); error_msg = error_msg(1:end-1); %remove last \n error(error_msg); end for i = 1:length(valid_names) ind = find(strcmp(current_names, valid_names{i})); for j = 1:length(ind) obj.constraintArray(ind(j)).(field_name) = field_value; end end obj.checkRep() end %% Display, Warnings and CheckRep function print_warning(obj, msg) warning('SLIM:ConstraintWarning', msg); end function disp(obj) headers = {'variable_name','type','lb','ub','sign','values','C_0j'}; info = [... obj.variable_name, ... obj.type, ... num2cell(obj.lb), ... num2cell(obj.ub), ... num2cell(int8(obj.sign)), ... obj.values, ... num2cell(obj.C_0j)... ]; coefTable = [headers;info]; disp(coefTable) end function n = numel(obj) n = obj.n_variables; end function checkRep(obj) assert(obj.n_variables>0, 'need at least 1 variable'); %check sizes assert(length(obj.variable_name)==obj.n_variables, sprintf('variable_name field should have exactly %d entries', obj.n_variables)); assert(length(obj.ub)==obj.n_variables, sprintf('ub field should have exactly %d entries', obj.n_variables)); assert(length(obj.lb)==obj.n_variables, sprintf('ub field should have exactly %d entries', obj.n_variables)); assert(length(obj.C_0j)==obj.n_variables, sprintf('C_0j field should have exactly %d entries', obj.n_variables)); assert(length(obj.sign)==obj.n_variables, sprintf('sign field should have exactly %d entries', obj.n_variables)); assert(length(obj.type)==obj.n_variables, sprintf('type field should have exactly %d entries', obj.n_variables)); assert(length(obj.values)==obj.n_variables, sprintf('values field should have exactly %d entries', obj.n_variables)); %check types assert(iscell(obj.variable_name), 'variable_name field should be a cell'); assert(iscell(obj.type), 'type field should be a cell'); assert(iscell(obj.values), 'values field should be a cell'); assert(isnumeric(obj.ub), 'ub field should be a array'); assert(isnumeric(obj.lb), 'lb field should be a array'); assert(isnumeric(obj.C_0j), 'C_0j field should be a array'); assert(isnumeric(obj.sign), 'sign field should be a array'); %check entries assert(all(cellfun(@(x) ~isempty(x), obj.variable_name)), 'each variable_names entry should be non-empty'); assert(all(strcmp('integer',obj.type)| strcmp('custom',obj.type)),'type must be *integer* or *custom*'); assert(all(obj.C_0j<=1 | obj.C_0j>=0 | isnan(obj.C_0j)), 'each C_0j entry should be between 0 and 1 or NaN'); assert(all(obj.sign==0 | obj.sign==1 | obj.sign==-1), 'sign must either be -1,0,1'); %check ub/lb assert(all(obj.ub >= obj.lb), 'ub should be > lb for each coefficient'); pos_sign = obj.sign==1; neg_sign = obj.sign==-1; %no_sign == obj.sign==0; assert(all(obj.ub(neg_sign)<=0), 'ub <= for any coefficient s.t. sign == - 1'); assert(all(obj.lb(pos_sign)>=0), 'lb <= for any coefficient s.t. sign == - 1'); custom_ind = strcmp('custom', obj.type); if any(custom_ind) assert(all(cellfun(@(x) ~isempty(x), obj.values(custom_ind), 'UniformOutput', true)), 'if coefficient uses custom set of values, then values field must be non-empty and non-NaN'); end end end end %% Helper Functions %apply a function to each entry of a cell/numeric array %returns numeric array containing function output function values = apply(f, entries) assert(isa(f,'function_handle'), 'first input needs to be a function handle') assert(iscell(entries)||isnumeric(entries), 'second input needs to be cell array or numeric array') n = length(entries); if iscell(entries) values = cellfun(f, entries, 'UniformOutput', false); elseif isnumeric(entries) values = arrayfun(f, entries, 'UniformOutput', true); end end
github
kartik-nighania/Coursera-Machine-Learning-Course-by-Stanford-master
submit.m
.m
Coursera-Machine-Learning-Course-by-Stanford-master/5 bias vs variance linear regression/ex5/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end
github
kartik-nighania/Coursera-Machine-Learning-Course-by-Stanford-master
submitWithConfiguration.m
.m
Coursera-Machine-Learning-Course-by-Stanford-master/5 bias vs variance linear regression/ex5/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
kartik-nighania/Coursera-Machine-Learning-Course-by-Stanford-master
savejson.m
.m
Coursera-Machine-Learning-Course-by-Stanford-master/5 bias vs variance linear regression/ex5/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
kartik-nighania/Coursera-Machine-Learning-Course-by-Stanford-master
loadjson.m
.m
Coursera-Machine-Learning-Course-by-Stanford-master/5 bias vs variance linear regression/ex5/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end