plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jianxiongxiao/ProfXkit-master
dirSmart.m
.m
ProfXkit-master/dirSmart/dirSmart.m
1,476
utf_8
937e09fdced78e2b7c9bb27706116c62
% example usage: imageFiles = dirSmart(fullfile(...),'jpg'); function files = dirSmart(page, tag) [files, status] = urldir(page, tag); if status == 0 files = dir(fullfile(page, ['*.' tag])); end end function [files, status] = urldir(page, tag) if nargin == 1 tag = '/'; else tag = lower(tag); if strcmp(tag, 'dir') tag = '/'; end if strcmp(tag, 'img') tag = 'jpg'; end end nl = length(tag); nfiles = 0; files = []; % Read page page = strrep(page, '\', '/'); [webpage, status] = urlread(page); if status % Parse page j1 = findstr(lower(webpage), '<a href="'); j2 = findstr(lower(webpage), '</a>'); Nelements = length(j1); if Nelements>0 for f = 1:Nelements % get HREF element chain = webpage(j1(f):j2(f)); jc = findstr(lower(chain), '">'); chain = deblank(chain(10:jc(1)-1)); % check if it is the right type if length(chain)>length(tag)-1 if strcmp(chain(end-nl+1:end), tag) nfiles = nfiles+1; chain = strrep(chain, '%20', ' '); % replace space character files(nfiles).name = chain; files(nfiles).bytes = 1; end end end end end end
github
jianxiongxiao/ProfXkit-master
duplicateRemoval.m
.m
ProfXkit-master/duplicateRemoval/duplicateRemoval.m
13,686
utf_8
9a2d5d0eca38443523c43d23346de6a4
function [images, image2keep, image2delete]=duplicateRemoval(rootPath,category) % find all duplicates under the path fullfile(rootPath,category) % and DELETE all the duplicated images!!! (file deletion will happen!!!) % Written by Jianxiong Xiao @ 20130812 if ~exist('rootPath','var') rootPath = '/data/vision/torralba/gigaSUN/imageGood/'; end if ~exist('category','var') %category = 'o/office_cubicles/'; category = 'o/office_cubicles'; end % parameters threshold_1st = 0.0005; % threshold for the first pca components threshold_gist = 0.02; % threshold for the gist square distance % parameters for gist param.imageSize = [256 256]; % it works also with non-square images param.orientationsPerScale = [8 8 8 8]; param.numberBlocks = 4; param.fc_prefilt = 4; param.boundaryExtension = 32; % number of pixels to pad param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); folders = regexp(genpath(fullfile(rootPath,category)), pathsep, 'split'); folders = folders(1:end-1); cnt = 0; for f=1:length(folders) files = dir(folders{f}); for i=1:length(files) if ~files(i).isdir cnt = cnt + 1; images{cnt} = fullfile(folders{f},files(i).name); end end end if matlabpool('size')==0 try matlabpool catch e end end fprintf('# CPU threads = %d\n',matlabpool('size')); % current implementation load all images into the memory % it can be improved by loading individual images into the memory fprintf('computing gist for %d images',cnt); tic gistMatrix =single(zeros(cnt,512)); parfor i=1:cnt gistMatrix(i,:) = LMgist(imread(images{i}), '', param); end toc try load('pca_result.mat'); catch e % training mu = mean(gistMatrix,1); fprintf('PCAing'); tic coeff = princomp(bsxfun(@minus, gistMatrix,mu)); toc cnt = length(images); save('pca_result.mat','mu','coeff','rootPath','category','cnt','-v7.3'); end % reproject score_reproject = bsxfun(@minus, gistMatrix,mu)*coeff; score_1st = score_reproject(:,1); cnt = length(images); time_complexity = zeros(1,cnt-1); duplicates = cell(cnt-1,1); parfor i=1:cnt-1 candidates = find(abs(score_1st(i+1:end) - score_1st(i))<threshold_1st); time_complexity(i)=length(candidates); candidates = candidates + i; diff = sum(bsxfun(@minus, gistMatrix(candidates,:),gistMatrix(i,:)) .^ 2,2); candidates_subset = find(diff < threshold_gist); if isempty(candidates_subset) duplicates{i} = single(zeros(0,3)); else duplicates{i} =[repmat(i,length(candidates_subset),1) candidates(candidates_subset) diff(candidates_subset)]; end end fprintf('\nTime complexity = %f\n',mean(time_complexity)); duplicates = cell2mat(duplicates); [~,ind] = sort(duplicates(:,3)); duplicates = duplicates(ind,:); %save('debugThreshold.mat','duplicates','images','-v7.3'); duplicates = duplicates(duplicates(:,3)<threshold_gist,:); %{ % visualization for duplicate pairs. duplicates, images close all for i=1:max(1,round(size(duplicates,1)/30)):size(duplicates,1) figure(i); subplot(1,2,1); imshow(imread(images{duplicates(i,1)})); title(duplicates(i,3)); subplot(1,2,2); imshow(images{duplicates(i,2)}); end %} fprintf('connected components'); tic G = sparse(double(duplicates(:,1)), double(duplicates(:,2)),true,length(images),length(images)); [numOfComponents, componentID] = graphconncomp(G, 'Weak', true); toc % connected component image2keep = []; image2delete = cell(0,0); for i=1:numOfComponents ids = find(componentID==i); if length(ids)>1 area = zeros(1,length(ids)); for j=1:length(ids) im = imread(images{ids(j)}); area(j) = size(im,1)*size(im,2); end [~,maxj] = max(area); image2keep = [image2keep ids(maxj)]; image2delete{end+1} = ids( 1:length(ids) ~= maxj); end end % visualize for connected components %{ for i=1:length(image2keep) figure(i) num = length(image2delete{i})+1; subplot(1,num,1); imshow(imread(images{image2keep(i)})); title(images{image2keep(i)}) for j=1:num-1 subplot(1,num,j+1); imshow(imread(images{image2delete{i}(j)})); title(images{image2delete{i}(j)}) end end %} % delete the duplicated images disp('Deleting images'); cntDeletedImages = 0; for i=1:length(image2delete) cntDeletedImages = cntDeletedImages + length(image2delete{i}); for j=1:length(image2delete{i}) delete(images{image2delete{i}(j)}); disp(images{image2delete{i}(j)}); end end disp('Image-based duplicate removal is finished!'); fprintf('Removed %d images (from %d images to %d images)\n', cntDeletedImages, length(images), length(images)-cntDeletedImages); end %% gist computation functions from Antonio function [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST) % % [gist, param] = LMgist(D, HOMEIMAGES, param); % [gist, param] = LMgist(filename, HOMEIMAGES, param); % [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST); % % For a set of images: % gist = LMgist(img, [], param); % % When calling LMgist with a fourth argument it will store the gists in a % new folder structure mirroring the folder structure of the images. Then, % when called again, if the gist files already exist, it will just read % them without recomputing them: % % [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST); % [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Modeling the shape of the scene: a holistic representation of the spatial envelope % Aude Oliva, Antonio Torralba % International Journal of Computer Vision, Vol. 42(3): 145-175, 2001. if nargin==4 precomputed = 1; % get list of folders and create non-existing ones %listoffolders = {D(:).annotation.folder}; %for i = 1:length(D); % f{i} = D(i).annotation.folder; %end %[categories,b,class] = unique(f); else precomputed = 0; HOMEGIST = ''; end % select type of input if isstruct(D) % [gist, param] = LMgist(D, HOMEIMAGES, param); Nscenes = length(D); typeD = 1; end if iscell(D) % [gist, param] = LMgist(filename, HOMEIMAGES, param); Nscenes = length(D); typeD = 2; end if isnumeric(D) % [gist, param] = LMgist(img, HOMEIMAGES, param); Nscenes = size(D,4); typeD = 3; if ~isfield(param, 'imageSize') param.imageSize = [size(D,1) size(D,2)]; end end param.boundaryExtension = 32; % number of pixels to pad if nargin<3 % Default parameters param.imageSize = 128; param.orientationsPerScale = [8 8 8 8]; param.numberBlocks = 4; param.fc_prefilt = 4; param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); else if ~isfield(param, 'G') param.G = createGabor(param.orientationsPerScale, param.imageSize+2*param.boundaryExtension); end end % Precompute filter transfert functions (only need to do this once, unless % image size is changes): Nfeatures = size(param.G,3)*param.numberBlocks^2; % Loop: Compute gist features for all scenes gist = zeros([Nscenes Nfeatures], 'single'); for n = 1:Nscenes g = []; todo = 1; % if gist has already been computed, just read the file if precomputed==1 filegist = fullfile(HOMEGIST, D(n).annotation.folder, [D(n).annotation.filename(1:end-4) '.mat']); if exist(filegist, 'file') load(filegist, 'g'); todo = 0; end end % otherwise compute gist if todo==1 if Nscenes>1 disp([n Nscenes]); end % load image try switch typeD case 1 img = LMimread(D, n, HOMEIMAGES); case 2 img = imread(fullfile(HOMEIMAGES, D{n})); case 3 img = D(:,:,:,n); end catch disp(D(n).annotation.folder) disp(D(n).annotation.filename) rethrow(lasterror) end % convert to gray scale img = single(mean(img,3)); % resize and crop image to make it square img = imresizecrop(img, param.imageSize, 'bilinear'); %img = imresize(img, param.imageSize, 'bilinear'); %jhhays % scale intensities to be in the range [0 255] img = img-min(img(:)); %img = 255*img/max(img(:)); img = 255*img/max(1,max(img(:))); if Nscenes>1 imshow(uint8(img)) title(n) end % prefiltering: local contrast scaling output = prefilt(img, param.fc_prefilt); % get gist: g = gistGabor(output, param); % save gist if a HOMEGIST file is provided if precomputed mkdir(fullfile(HOMEGIST, D(n).annotation.folder)) save (filegist, 'g') end end gist(n,:) = g; drawnow end end function output = prefilt(img, fc) % ima = prefilt(img, fc); % fc = 4 (default) % % Input images are double in the range [0, 255]; % You can also input a block of images [ncols nrows 3 Nimages] % % For color images, normalization is done by dividing by the local % luminance variance. if nargin == 1 fc = 4; % 4 cycles/image end w = 5; s1 = fc/sqrt(log(2)); % Pad images to reduce boundary artifacts img = log(img+1); img = padarray(img, [w w], 'symmetric'); [sn, sm, c, N] = size(img); n = max([sn sm]); n = n + mod(n,2); img = padarray(img, [n-sn n-sm], 'symmetric','post'); % Filter [fx, fy] = meshgrid(-n/2:n/2-1); gf = fftshift(exp(-(fx.^2+fy.^2)/(s1^2))); gf = repmat(gf, [1 1 c N]); % Whitening output = img - real(ifft2(fft2(img).*gf)); clear img % Local contrast normalization localstd = repmat(sqrt(abs(ifft2(fft2(mean(output,3).^2).*gf(:,:,1,:)))), [1 1 c 1]); output = output./(.2+localstd); % Crop output to have same size than the input output = output(w+1:sn-w, w+1:sm-w,:,:); end function g = gistGabor(img, param) % % Input: % img = input image (it can be a block: [nrows, ncols, c, Nimages]) % param.w = number of windows (w*w) % param.G = precomputed transfer functions % % Output: % g: are the global features = [Nfeatures Nimages], % Nfeatures = w*w*Nfilters*c img = single(img); w = param.numberBlocks; G = param.G; be = param.boundaryExtension; if ndims(img)==2 c = 1; N = 1; [nrows ncols c] = size(img); end if ndims(img)==3 [nrows ncols c] = size(img); N = c; end if ndims(img)==4 [nrows ncols c N] = size(img); img = reshape(img, [nrows ncols c*N]); N = c*N; end [ny nx Nfilters] = size(G); W = w*w; g = zeros([W*Nfilters N]); % pad image img = padarray(img, [be be], 'symmetric'); img = single(fft2(img)); k=0; for n = 1:Nfilters ig = abs(ifft2(img.*repmat(G(:,:,n), [1 1 N]))); ig = ig(be+1:ny-be, be+1:nx-be, :); v = downN(ig, w); g(k+1:k+W,:) = reshape(v, [W N]); k = k + W; drawnow end if c == 3 % If the input was a color image, then reshape 'g' so that one column % is one images output: g = reshape(g, [size(g,1)*3 size(g,2)/3]); end end function y=downN(x, N) % % averaging over non-overlapping square image blocks % % Input % x = [nrows ncols nchanels] % Output % y = [N N nchanels] nx = fix(linspace(0,size(x,1),N+1)); ny = fix(linspace(0,size(x,2),N+1)); y = zeros(N, N, size(x,3)); for xx=1:N for yy=1:N v=mean(mean(x(nx(xx)+1:nx(xx+1), ny(yy)+1:ny(yy+1),:),1),2); y(xx,yy,:)=v(:); end end end function img = imresizecrop(img, M, METHOD) % % img = imresizecrop(img, M, METHOD); % % Output an image of size M(1) x M(2). if nargin < 3 METHOD = 'bilinear'; end if length(M) == 1 M = [M(1) M(1)]; end scaling = max([M(1)/size(img,1) M(2)/size(img,2)]); %scaling = M/min([size(img,1) size(img,2)]); newsize = round([size(img,1) size(img,2)]*scaling); img = imresize(img, newsize, METHOD); [nr nc cc] = size(img); sr = floor((nr-M(1))/2); sc = floor((nc-M(2))/2); img = img(sr+1:sr+M(1), sc+1:sc+M(2),:); end function G = createGabor(or, n) % % G = createGabor(numberOfOrientationsPerScale, n); % % Precomputes filter transfer functions. All computations are done on the % Fourier domain. % % If you call this function without output arguments it will show the % tiling of the Fourier domain. % % Input % numberOfOrientationsPerScale = vector that contains the number of % orientations at each scale (from HF to BF) % n = imagesize = [nrows ncols] % % output % G = transfer functions for a jet of gabor filters Nscales = length(or); Nfilters = sum(or); if length(n) == 1 n = [n(1) n(1)]; end l=0; for i=1:Nscales for j=1:or(i) l=l+1; param(l,:)=[.35 .3/(1.85^(i-1)) 16*or(i)^2/32^2 pi/(or(i))*(j-1)]; end end % Frequencies: %[fx, fy] = meshgrid(-n/2:n/2-1); [fx, fy] = meshgrid(-n(2)/2:n(2)/2-1, -n(1)/2:n(1)/2-1); fr = fftshift(sqrt(fx.^2+fy.^2)); t = fftshift(angle(fx+sqrt(-1)*fy)); % Transfer functions: G=zeros([n(1) n(2) Nfilters]); for i=1:Nfilters tr=t+param(i,4); tr=tr+2*pi*(tr<-pi)-2*pi*(tr>pi); G(:,:,i)=exp(-10*param(i,1)*(fr/n(2)/param(i,2)-1).^2-2*param(i,3)*pi*tr.^2); end if nargout == 0 figure for i=1:Nfilters contour(fx, fy, fftshift(G(:,:,i)),[1 .7 .6],'r'); hold on end axis('on') axis('equal') axis([-n(2)/2 n(2)/2 -n(1)/2 n(1)/2]) axis('ij') xlabel('f_x (cycles per image)') ylabel('f_y (cycles per image)') grid on end end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
meanTesterGeneral.m
.m
AgnosticMeanAndCovarianceCode-master/meanTesterGeneral.m
2,260
utf_8
6cf708f98619aa376136460d3c3e2e55
% Output: Several vectors of values corresponding to the performance of % the algorithm, the coordinate-wise median, and the mean of the true % samples % vecs contains the vectors for the algorithm's estimate and the mean of % the true samples for dimension equal to the largest value of drange % This code also plots the performance of the different estimators over a % range of values of the dimension. function [algError, medError, trueSampleError, vecs] = meanTesterGeneral() drange = [50:50:200 300:100:600]; %drange = [500]; algError = zeros(size(drange)); medError = zeros(size(drange)); sampleError = zeros(size(drange)); trueSampleError = zeros(size(drange)); vecs = zeros(3, drange(end)); eta = .1; for i = 1:size(drange,2) d = drange(i); m = 10*d; %X = noisyG(zeros(d,1), eye(d), 2*ones(d,1), eta, m); I = eye(d); trueMu = I(1,:); trueMu = zeros(1,d); Y = genTruePoints(d, trueMu, (1-eta)*m); Z = cauchyrnd(2, 1, eta*m, d); X = [Y;Z]; est = agnosticMeanGeneral(X, eta); algError(i) = norm(est-trueMu); medError(i) = norm(median(X)-trueMu); sampleError(i) = norm(mean(X)-trueMu); trueSampleError(i) = norm(mean(Y)-trueMu); if d == drange(end) vecs(1,:) = est; vecs(2,:) = mean(Y); vecs(3,:) = median(Y); end end plot(drange, algError, drange, medError, drange, trueSampleError);%, drange, vals3); legend('Algorithm norm', 'Coord-median', 'True sample mean norm', 'Location', 'NorthEastOutside'); end % trueMu parameter only transfers to mvnrnd function [Y] = genTruePoints(d, trueMu, numPts) %Gaussian Y = mvnrnd(trueMu, 3*eye(d), numPts); %GMM %Y = useGMM(d, numPts); %Uniform in simplex %Y = useSimplex(d, numPts); end function Y = useSimplex(d, numPts) Z = gamrnd(1, 1, numPts, d+1); % generate points from d+1 dimensional Dirichlet a = sum(Z, 2); Z = bsxfun(@rdivide, Z, a); % normalize Y = Z(:, 1:d); % Only use the first d coordinates to get a point inside the simplex end function [Y] = useGMM(d, numPts) A = eye(d); w1 = .2; mu1 = zeros(1, d); Sigma1 = eye(d); mu2 = A(1, :); Sigma2 = 2*eye(d); Y = generateGMMsamples(numPts, w1, mu1, Sigma1, mu2, Sigma2); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
covTesterGeneral.m
.m
AgnosticMeanAndCovarianceCode-master/covTesterGeneral.m
3,978
utf_8
526f5f44d82b36c11eada85bfbe4473e
% Output: Several vectors of values corresponding to the performance of % the algorithm, the coordinate-wise median, and the mean of the true % samples % vecs contains the vectors for the algorithm's estimate and the mean of % the true samples for dimension equal to the largest value of drange % This code also plots the performance of the different estimators over a % range of values of the dimension. function [algError, medError, trueSampleError] = covTesterGeneral() drange = [40:10:60]; %drange = [500]; algError = zeros(size(drange)); medError = zeros(size(drange)); trueSampleError = zeros(size(drange)); vecs = zeros(3, drange(end)); eta = .1; for i = 1:size(drange,2) d = drange(i); m = d^2; %X = noisyG(zeros(d,1), eye(d), 2*ones(d,1), eta, m); I = eye(d); %trueMu = I(1,:); trueMu = zeros(1,d); % Set the mean of the true distribution trueCov = 3*eye(d); % Set the covariance of the true distribution mD = floor((1-eta)*m); mN = m - mD; trueDistType = 1; % Set the type of the true distribution % 1: Gaussian % 2: GMM (to set mixture parameters, see code below) % 3: Uniform in standard simplex % trueMu and trueCov variables are only used for Gaussian Y = genTruePoints(d, trueMu, trueCov, mD, trueDistType); Z = cauchyrnd(2, 1, mN, d); %noise distribution %Z = 10000*randn(mN, d); X = [Y;Z]; %X = Y; [muHat, SigmaHat, ~] = agnosticCovarianceGeneral(X, eta); fprintf('%d : %f\n', d, norm(muHat)); C = num2cell(X, 2); XX = cell2mat(cellfun(@outerProdToVec, C, 'UniformOutput', 0)); % XX is a matrix where each row is the d^2 length vector corresponding % to the outer product of a sample CC = num2cell(Y, 2); YY = cell2mat(cellfun(@outerProdToVec, CC, 'UniformOutput', 0)); % YY is a matrix where each row is the d^2 length vector corresponding % to the outer product of a true sample medvec = median(XX); med = reshape(medvec, [d d]); trueSampleMeanVec = mean(YY); trueSampleMean = reshape(trueSampleMeanVec, [d d]); algError(i) = norm(SigmaHat - trueCov, 'fro'); medError(i) = norm(med - trueCov, 'fro'); trueSampleError(i) = norm(trueSampleMean - trueCov, 'fro'); clf plot(drange(1:i), algError(1:i),'--o', drange(1:i), medError(1:i),'-o', drange(1:i), trueSampleError(1:i),'-*'); legend('Algorithm norm', 'Coord-median', 'True sample mean norm', 'Location', 'NorthEastOutside'); axis([0 drange(end) 0 14]) drawnow end %plot(drange, algError, drange, medError, drange, trueSampleError);%, drange, vals3); %legend('Algorithm norm', 'Coord-median', 'True sample mean norm', 'Location', 'NorthEastOutside'); end % trueMu parameter only transfers to mvnrnd % 1: Gaussian % 2: GMM (to set mixture parameters, see code below) % 3: Uniform in standard simplex function [Y] = genTruePoints(d, trueMu, trueCov, numPts, type) if type == 1 %Gaussian Y = mvnrnd(trueMu, trueCov, numPts); elseif type == 2 %GMM Y = useGMM(d, numPts); elseif type == 3 %Uniform in simplex Y = useSimplex(d, numPts); else fprintf('Invalid type provided. Using Gaussian.\n') Y = mvnrnd(trueMu, trueCov, numPts); end end function Y = useSimplex(d, numPts) Z = gamrnd(1, 1, numPts, d+1); % generate points from d+1 dimensional Dirichlet a = sum(Z, 2); Z = bsxfun(@rdivide, Z, a); % normalize Y = Z(:, 1:d); % Only use the first d coordinates to get a point inside the simplex end function [Y] = useGMM(d, numPts) A = eye(d); w1 = .2; mu1 = zeros(1, d); Sigma1 = eye(d); mu2 = A(1, :); Sigma2 = 2*eye(d); Y = generateGMMsamples(numPts, w1, mu1, Sigma1, mu2, Sigma2); end %transform row vector v to outer product and then reshape into vector function out = outerProdToVec(v) len = size(v, 2); V = v'*v; out = reshape(V,[1, len*len]); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
noisyG.m
.m
AgnosticMeanAndCovarianceCode-master/noisyG.m
646
utf_8
2ec7a1383e477d64b10e6b615992815c
% Method for generating points from a spherical Gaussian with noise placed % at a single point % % Input: mean, covariance matrix, noise fraction eta, number of samples m, % and a noise point z. Mean and z are column vectors in n dimensions % % Output: a matrix X of samples, where in expectation, first 1-eta % fraction are from N(mu, var), and the last eta fraction are repeats of % the vector z % The output has m rows (one per sample point) and n columns (one per % dimension) function [X] = noisyG(mu, Sigma, z, eta, m) mN = binornd(m, eta); %ceil(eta*m); mG = m - mN; Y = mvnrnd(mu', Sigma, mG); Z = repmat(z', mN, 1); X = [Y; Z]; end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
agnosticMeanGeneral.m
.m
AgnosticMeanAndCovarianceCode-master/agnosticMeanGeneral.m
857
utf_8
d77761516d49c3db9c7ed9e63c4ef926
% Agnostic algorithm for computing mean of a general distribution with % bounded fouth moments % % Input: X = noisy data from a general distribution with bounded fourth % moments, noise fraction eta % Output: est = estimate for the mean function est = agnosticMeanGeneral(X, eta) n = size(X,2); if n <= 1 est = estGeneral1D(X, 1, eta); return; end w = outRemBall(X, eta); newX = X(w>0,:); %newX = bsxfun(@times, X, sqrt(w)); S = cov(newX); [V,D] = eig(S); if ~issorted(diag(D)) % check if eigvecs are in ascending order [~,inds] = sort(diag(D)); V = V(:, inds); end PW = V(:, 1:floor(n/2))*V(:, 1:floor(n/2))'; %weightedProjX = bsxfun(@times, X*PW, w); weightedProjX = newX*PW; est1 = mean(weightedProjX); %weighted mean QV = V(:, floor(n/2)+1:end); est2 = agnosticMeanGeneral(X*QV, eta); est2 = est2*QV'; est = est1 + est2; end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
generateGMMsamples.m
.m
AgnosticMeanAndCovarianceCode-master/generateGMMsamples.m
303
utf_8
679bd5af6f168a8fa24843e805386e31
% Generates m samples from a general GMM with the given parameters function x = generateGMMsamples(m, w1, mu1, Sigma1, mu2, Sigma2) d = size(mu1, 2); x = zeros(m, d); numOnes = binornd(m, w1); x(1:numOnes,:) = mvnrnd(mu1, Sigma1, numOnes); x(numOnes+1:end,:) = mvnrnd(mu2, Sigma2, m - numOnes); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
recursivePCA.m
.m
AgnosticMeanAndCovarianceCode-master/recursivePCA.m
701
utf_8
69d5d69cc551640850c7441656b65498
% Agnostic algorithm for computing mean of a Gaussian % % Input: data X from a Gaussian, outlierRemoval procedure % Output: estimate for the mean function est = recursivePCA(X,sig,outlierRemoval) m = length(X); n = size(X,2); if n<=2 est = median(X); return; end % iter = ceil(m/2); % R = zeros(iter,1); % for i=1:iter % i1 = ceil(rand()*m); j1 = ceil(rand()*m); % R(i) = norm(X(i1,:) - X(j1,:)); % end % sig = median(R)/sqrt(n); r = sig*sqrt(n); [X] = outlierRemoval(X,r); S = cov(X); [V,~] = eig(S); PW = V(:, 1:floor(n/2))*V(:, 1:floor(n/2))'; est1 = mean(X*PW); QV = V(:, floor(n/2)+1:end); est2 = recursivePCA(X*QV,sig); est2 = est2*QV'; est = est1 + est2; %est = mean(X); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
estG1D.m
.m
AgnosticMeanAndCovarianceCode-master/estG1D.m
590
utf_8
2a0a2d58bf29151c01e9792ec94f14c6
% Algorithm for estimating 1D mean and variance of a Gaussian in a % direction v % % Input: Noisy samples from a general Gaussian % Output: estimate of the mean and variance along the direction v function [mu, sigma2] = estG1D(X, v) v = v/norm(v); %normalize m = size(X,1); Z = X*v; mu = median(Z); Z = Z - repmat(mu, m, 1); % subtract 60th quantile location from 40th quantile topQuant = .6; botQuant = .4; diff = quantile(Z,topQuant) - quantile(Z,botQuant); sigma2 = (diff/(norminv(topQuant, 0, 1) - norminv(botQuant, 0, 1)))^2; end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
agnosticCovarianceGeneral.m
.m
AgnosticMeanAndCovarianceCode-master/agnosticCovarianceGeneral.m
821
utf_8
3933997e1758b32366fb3ee0b79cf9ee
% Algorithm for estimating general covariance % Assume mean of X's is 0 function [muHat, SigmaEst, centeredX] = agnosticCovarianceGeneral(X, eta) m = size(X, 1); n = size(X, 2); %muHat = agnosticMeanGeneral(X, eta); muHat = zeros(1, n); tic; Z = X - repmat(muHat, m, 1); C = num2cell(Z, 2); centeredX = cellfun(@outerProdToVec, C, 'UniformOutput', 0); centeredX = cell2mat(centeredX); toc; fprintf('%d %d\n', size(centeredX)); w = outRemBall(centeredX, eta); tic; SigmaEst = agnosticMeanGeneral(centeredX, eta); toc; SigmaEst = reshape(SigmaEst, [n n]); end %transform row vector v to outer product and then reshape into vector function out = outerProdToVec(v) len = size(v, 2); V = v'*v; out = reshape(V,[1, len*len]); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
estGeneral1D.m
.m
AgnosticMeanAndCovarianceCode-master/estGeneral1D.m
718
utf_8
c3c13e6cc219840e6d497e99c10eb60c
% Algorithm for estimating the 1D mean of a general distribution with % bounded fourth moments in a direction v % % Input: Noisy samples from a general distribution with bounded fourth % moments, column vector v, noise fraction eta % Output: estimate of the mean and variance along the direction v function mu = estGeneral1D(X, v, eta) v = v/norm(v); %normalize m = size(X,1); Z = X*v; Z = sort(Z); intervalWidth = floor(m*(1-eta)^2); lengths = zeros(m - intervalWidth + 1, 1); for i = 1:m - intervalWidth + 1 lengths(i) = Z(i + intervalWidth - 1) - Z(i); end [~,ind] = min(lengths); ind = ind(1); mu = mean(Z(ind:ind + intervalWidth - 1)); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
outRemBall.m
.m
AgnosticMeanAndCovarianceCode-master/outRemBall.m
673
utf_8
3f50404576c02f2e35495df7a4d97486
% Removes points outside of a ball containing (1-eta)^2 fraction of the % points. The ball is centered at the coordinate-wise median. % The weight vector returned has 0 weight for points from X that are % outside this ball. % % Input: X = sample from a distribution with bounded fourth moments, % noise fraction eta % % Output: weight (column) vector w that is 0 for "removed" points function [w] = outRemBall(X, eta) m = size(X, 1); med = median(X); w = ones(m, 1); Z = X - repmat(med, m, 1); T = sum(Z.^2,2); thresh = prctile(T, 100*(1-eta)^2); w(T > thresh) = 0; %fprintf('dim = %d and numOverThresh = %d, median norm = %f\n',n,sum(T> C*thresh), norm(med)); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
agnosticMeanG.m
.m
AgnosticMeanAndCovarianceCode-master/agnosticMeanG.m
1,177
utf_8
1544f8ae91b45b7dfd7a2dec75b3129c
% Agnostic algorithm for computing mean of a general Gaussian % % Input: X = noisy data from a general Gaussian % Output: est = estimate for the mean function est = agnosticMeanG(X, eta) m = size(X,1); n = size(X,2); if n<=2 est = median(X); return; end w = outlierRemoval(X, eta); muHat = w'*X/m; norm(muHat); C = X - repmat(muHat, m, 1); C = bsxfun(@times, C, sqrt(w)); %for i=1:m % S = S + (X(i,:) - muHat)' * (X(i,:) - muHat); %end S = C'*C; %does the outer product from above S = S/m; % weighted covariance matrix [V,~] = eig(S); PW = V(:, 1:floor(n/2))*V(:, 1:floor(n/2))'; weightedProjX = bsxfun(@times, X*PW, w); est1 = mean(weightedProjX); QV = V(:, floor(n/2)+1:end); est2 = agnosticMeanG(X*QV, eta); est2 = est2*QV'; %fprintf('dim = %d, mean norm here = %f\n', n, norm(est2)); est = est1 + est2; end function [w] = outlierRemoval(X, eta) m = size(X,1); n = size(X,2); w = outlierDamping(X); %w = ones(m, 1); %w = outRemBall(X, eta); %w = outRemSpherical(X, sqrt(n)); %size(w) %r = sqrt(n); %w = ones(m, 1); %Z = X - repmat(med,m,1); %T = sum(Z.^2,2); %w(T > 2*r*r) = 0; %size(w) end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
tester.m
.m
AgnosticMeanAndCovarianceCode-master/tester.m
946
utf_8
d7f0f0d73a362c7cb7e40db450157d48
% Testing code for agnosticMeanG % Compares the quality of agnosticMeanG's output to the sample mean and % sample median for noise all at the ones vector times 100 % % Input: eta = noise fraction % m = number of samples to test % Output: norms of agnosticMeanG estimate, sample mean, and sample median % for various values of the dimension n function [est, sMean, sMed] = tester(eta, m) numVals = 10; range = ceil(linspace(100, 10000, numVals)); sMean = zeros(numVals, 1); sMed = zeros(numVals, 1); est = zeros(numVals, 1); for i=1:numVals n = range(i); fprintf('Working on i=%d, n=%d\n',i, n); mu = zeros(n, 1); I = eye(n); z = 100*ones(n, 1); X = noisyG(mu, I, z, eta, m); sMean(i) = norm(mean(X)); sMed(i) = norm(median(X)); est(i) = norm(agnosticMeanG(X)); end plot(range, est, range, sMean, range, sMed); end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
cauchyfit.m
.m
AgnosticMeanAndCovarianceCode-master/Cauchy code/cauchyfit.m
5,565
utf_8
026e4e274726fdf96ecf7abf0cddf87b
function [mlepars, output]= cauchyfit(varargin) % USAGE: % [mlepars, res]= cauchyfit(x) Fit parameters to data x. % [mlepars, res]= cauchyfit(x, xpars) Fit parameters to data x, with one known parameter. % [mlepars, res]= cauchyfit(n, npars) Debugging: generate a n-size sample and fit it... % [mlepars, res]= cauchyfit(..., i) Info about execution. % % Parameter estimates (one or both parameters) for Cauchy distributed data. % % Parameters are estimated thru MLE, using Matlab optimization fminsearch (fmincon, % if the Optimization Toolbox is available). % % NOTE: No confidence interval yet, I got to find the math for it first... % % ARGUMENTS: % - x (vector of length 2 or more) The data to fit. % - xpars: [a NaN], [NaN b], or [NaN NaN] (b>0) NaN-parameters are calculated, others are given. % - n (scalar) Generate a n-sized random sample and fit. % - npars, [a b] (b>0) The parameters to use for the random generation. % - i (string) Information ('info') or detailed information ('info2') % about execution. Generates a nice figure too! % - mlepars, the mle parameter estimation. % - res (structure) is the 'output' structure of the optimization call with two additions: % .exitflag is the exitflag value returned by the optimization call. % .call is the name of the called function, see its reference for the other fields. % % EXAMPLE: % x= cauchyrnd(1, 0.3, [1 100]); % params1= cauchyfit(x, [1 NaN], 'info2'); % Fits b, given that a equals 1. % params2= cauchyfit(x, 'info2'); % Fits a and b. % % SEE ALSO: cauchycdf, cauchyinv, cauchypdf, cauchyrnd, cauchystat. % % Copyright (C) Peder Axensten <peder at axensten dot se> % % HISTORY: % Version 1.1, 2006-07-26. % - Added cauchyfit to the cauchy package. % Version 1.2, 2006-08-06: % - Can now estimate one parameter when the other is given. % - The arrangement of arguments now follows the ways of Statistics Toolbox. % - Put the actual mle in a separate file. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check the arguments argok= true; dbg= 0; % No execution information displayed. dbgstr= ''; if((nargin > 1) && ischar(varargin{end})) % Display execution information. switch(varargin{end}) case 'info', dbg= 1; case 'info2', dbg= 2; otherwise, argok= false; end dbgstr= varargin{end}; varargin= {varargin{1:end-1}}; end if((length(varargin) == 2) && all(cellfun('isreal', varargin)) && ... ~isempty(varargin{1}) && (length(varargin{2}) == 2) ... ) tpars= varargin{2}; if(~any(isnan(varargin{2})) && (length(varargin{1}) == 1)) % All parameters given: generate random numbers to fit. x= cauchyrnd(tpars(1), tpars(2), [1 varargin{1}]); elseif(any(isnan(varargin{2})) && (length(varargin{1}) >= 2)) x= varargin{1}; else argok= false; end elseif((length(varargin) == 1) && all(all(isreal(varargin{1})))) % This is a "real" run. tpars= [NaN, NaN]; x= varargin{1}; else argok= false; end if(~argok) error('Incorrect arguments, check ''help cauchyfit''.'); end % Initial parameter values and stuff. ipars= [ median(x), ... % Initial a. max([std(x)/10 0.2]) ... % initial b. ]; lBounds= [-Inf, 1e-20]; n= length(x); negloglikeshort= @(pp)negloglike(pp(1), pp(2), x, n, 3); if(isnan(tpars(1)) && ~isnan(tpars(2))) ipars= ipars(1); lBounds= lBounds(1); negloglikeshort= @(a)negloglike(a, tpars(2), x, n, 1); elseif(~isnan(tpars(1)) && isnan(tpars(2))) ipars= ipars(2); lBounds= lBounds(2); negloglikeshort= @(b)negloglike(tpars(1), b(1), x, n, 2); end % Info on the data. if(dbg) value(' ', 'size', 'mean', 'median', 'std'); value('Data:', numel(x), mean(x), median(x), std(x)); disp(' '); end % Find parameters. [mlepars, output]= paxmle(ipars, negloglikeshort, lBounds, dbgstr); % Result info. if(dbg) if(isnan(tpars(1)) && ~isnan(tpars(2))), [l, dl]= negloglikeshort(tpars(2)); else [l, dl]= negloglikeshort(tpars); end value('True params:', [l, sqrt(sum(dl.^2)), tpars]); disp(' '); % Add to figure. legend('Initial point', 'Best fit', 'Location', 'ne'); hold off; end end function value(gs, varargin) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % For debugging purposes. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf(1, '\n%-20s', gs); for i= 1:length(varargin) if(ischar(varargin{i})), fprintf(1, '%15s', varargin{i}); else fprintf(1, '%15.6f', varargin{i}); end end end function [L, dL, ddL]= negloglike(a, b, x, n, whatab) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Calculate the log-likelihood and, if need be, the derivates and second derivates. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k1= (x-a)/b; kL= 1 + k1.*k1; L= n*log(pi*b) + sum(log(kL)); % The log-likelihood if(nargout >= 2) k2= 1./kL; k3= k1.*k2; if(whatab == 1) % Only fitting a. dL= -2*sum(k3)/b; if(nargout >= 3), ddL= 2*sum(k2)/(b*b); end elseif(whatab == 2) % Only fitting b. k4= k1.*k3; dL= (n-2*sum(k4))/b; if(nargout >= 3) ddL= (-n+sum(k4.*(6-4*k4)))/(b*b); end else % Fitting a and b. k4= k1.*k3; dL= [-2*sum(k3), n-2*sum(k4)]/b; if(nargout >= 3) k5= 4*sum(k3.*(1-k4)); ddL= [2*sum(k2), k5; k5, -n+sum(k4.*(6-4*k4))]/(b*b); end end end end
github
kevinalai/AgnosticMeanAndCovarianceCode-master
paxmle.m
.m
AgnosticMeanAndCovarianceCode-master/Cauchy code/paxmle.m
6,174
utf_8
e3a492151051b3c6fb196ba07e8436ef
function [mlepars, output]= paxmle(pars, negloglike, varargin) % USAGE: % [mlepars, output]= paxmle(pars, negloglike) % [mlepars, output]= paxmle(pars, negloglike, lBounds) % [mlepars, output]= paxmle(pars, negloglike, lBounds, uBounds) % [mlepars, output]= paxmle(..., options) % % Calculate the best parameter fit given the negative log-likelihood. % % The parameter(s) is/are estimated thru MLE, using Matlab optimization fminsearch (fmincon, % if the Optimization Toolbox is available). % % NOTE: No confidence interval yet, I got to find the math for it first... % % ARGUMENTS: % - pars (non empty vector) The initial parameter, the starting value. % - negloglike is a function of the type [negL, negDL, negDDL]= negloglike(p), where % negL, negDL, and negDDL are the value, first derivate (Jacobian), and second derivate % (Hessian) respectively for the (log-)likelihood function at p. If you don't want to % calculate the Jacobian and/or the Hessian, return NaN for these instead. They are only % used when the Optimisation Toolbox is available. % - lBounds (default is -Inf), the lower bounds for mlepars. % - uBounds (default is Inf), the upper bounds for mlepars. % - options (string) Information ('info') or detailed information ('info2') % about execution. Generates a nice figure too! % - mlepars is the maximum likelihood estimated parameter values, or NaNs if none was found. % - output (structure) is the 'output' structure of the optimization call with two additions: % .exitflag is the exitflag value returned by the optimization call. % .call is the name of the called function, see its reference for the other fields. % % EXAMPLE: % [v, res]= paxmle([mean(x) std(x)], myfunhandle, 'info2'); % % Copyright (C) Peder Axensten <peder at axensten dot se> % % HISTORY: % Version 1.0, 2006-08-03. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Default values. options= optimset( ... 'Display', 'off', ... 'MaxIter', 2000, ... 'TolX', eps, ... 'TolFun', 0 ... ); % Check the arguments argok= all(all(isreal(pars))) && ~isempty(pars) && strcmp(class(negloglike), 'function_handle'); pLen= length(pars); % Number of parameters. if((nargin > 2) && ischar(varargin{end})) % Display execution information? dbg= true; switch(varargin{end}) case 'info', options= optimset(options, 'Display', 'final'); case 'info2', options= optimset(options, 'Display', 'iter'); case '', dbg= false; otherwise, argok= false; end varargin= {varargin{1:end-1}}; else dbg= false; end if(length(varargin) >= 1) % Lower bounds? lBounds= varargin{1}; argok= argok && all(all(isreal(lBounds))) && all(all(size(lBounds) == size(pars))); else lBounds= repmat(-Inf, [1 pLen]); end if(length(varargin) >= 2) % Upper bounds? uBounds= varargin{2}; argok= argok && all(all(isreal(uBounds))) && all(all(size(uBounds) == size(pars))); else uBounds= repmat( Inf, [1 pLen]); end if(~argok || (length(varargin) > 2)) % Argument error? error('Incorrect arguments, check ''help paxmle''.'); end % Do we have the Jacobian ? The Hessian?. [L, dL, ddL]= negloglike(pars); if(~isnan(dL)) options= optimset(options, 'LargeScale', 'on', 'GradObj', 'on'); if(~isnan(ddL)) options= optimset(options, 'Hessian', 'on'); end end % Find parameters. divzero= warning('query', 'MATLAB:divideByZero'); warning('off', 'MATLAB:divideByZero'); if(exist('fmincon', 'file') == 2) % Optimization Toolbox is available. [mlepars,fval,exitflag,output]= fmincon(negloglike, pars, ... [], [], [], [], lBounds, uBounds, [], options); output.call= 'fmincon'; else % Standard Matlab. [mlepars,fval,exitflag,output]= fminsearch(negloglike, pars, options); output.call= 'fminsearch'; end warning(divzero.state, 'MATLAB:divideByZero'); output.exitflag= exitflag; % Diverged? if(exitflag <= 0), mlepars= repmat(NaN, [1 pLen]); end % We did not find a solution... % Debug info. if(dbg) % Textual information. value('ALGORITHM:', output.algorithm); value('Iterations:', output.iterations); value('Function calls:', output.funcCount); disp(' '); value('', '-loglike', '-Jacobian', 'parameter(s)'); [l, dl]= negloglike(pars); value('Initial value(s):', [l, sqrt(sum(dl.^2)), pars]); [l, dl]= negloglike(mlepars); value('Best fit:', [l, sqrt(sum(dl.^2)), mlepars]); % Prepare for figure. st= 0.05; pmin= max([lBounds; min([mlepars; pars; uBounds]) - 0.5 - st*3]); pmax= min([uBounds; max([mlepars; pars; lBounds]) + 0.5 + st*3]); if(pLen == 1) % Draw 2-d figure. mark= {'MarkerFaceColor', 'r', 'MarkerSize', 8}; xx= linspace(pmin(1), pmax(1), 50); LL= zeros(1, length(xx)); for nx= 1:length(xx) LL(nx)= negloglike(xx(nx)); end plot(xx, LL); hold on; plot(pars, negloglike(pars), '^r', mark{:}); plot(mlepars, negloglike(mlepars), 'vr', mark{:}); xlabel('Parameter'); ylabel('negative log-likelihood'); else % Draw 3-d figure. mark= {'MarkerFaceColor', 'k', 'MarkerSize', 12}; aa= linspace(pmin(1), pmax(1), 50); bb= linspace(pmin(2), pmax(2), 50); LL= zeros(length(bb), length(aa)); for na= 1:length(aa) for nb= 1:length(bb) LL(nb, na)= negloglike([aa(na), bb(nb)]); end end [aa, bb]= meshgrid(aa, bb); plot3(pars(1), pars(2), negloglike(pars), '^k', mark{:}); hold on plot3(mlepars(1), mlepars(2), negloglike(mlepars), 'vk', mark{:}); meshz(aa, bb, LL); contour3(aa, bb, LL, 'LineSpec', 'k'); shading interp; colormap hsv; xlabel('Parameter 1'); ylabel('Parameter 2'); zlabel('negative log-likelihood'); end end end function value(gs, varargin) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % For debugging purposes. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf(1, '\n%-20s', gs); for i= 1:length(varargin) if(ischar(varargin{i})), fprintf(1, '%15s', varargin{i}); else fprintf(1, '%15.6f', varargin{i}); end end end
github
joe-of-all-trades/czifinfo-master
czifinfo.m
.m
czifinfo-master/czifinfo.m
5,263
utf_8
77e512aa3e745b1d6c0d642e3ee955ab
function fileInfo = czifinfo( filename, varargin ) %CZIFINFO returns informaion of Zeiss CZI file % % czifinfo returns information of czi file includingl pixel type, % compression method, fileGUID, file version number, a structure % recording various information of raw image data including data start % position within the czi file, data size and spatial coordinates. Also % the function returns associated metadata in the field named 'XML_text'. % This can be saved as an .xml file and examined in web browser. % % Version 1.0 % Copyright Chao-Yuan Yeh, 2016 fID = fopen(filename); while true segHeader = readSegHeader(fID); if strfind(segHeader.SID, 'ZISRAWSUBBLOCK') fileInfo.genInfo = readMinSUBBLOCKHeader(fID); break end fseek(fID, segHeader.currPos + segHeader.allocSize, 'bof'); end count = 0; frewind(fID); flag = 1; sBlockCount_P0 = 0; sBlockCount_P2 = 0; while flag segHeader = readSegHeader(fID); if segHeader.allocSize if strfind(segHeader.SID, 'ZISRAWSUBBLOCK') [sBlockHeader, pyramidType] = readPartSUBBLOCKHeader(fID); switch pyramidType case 0 sBlockCount_P0 = sBlockCount_P0 + 1; fileInfo.sBlockList_P0(sBlockCount_P0) = sBlockHeader; case 2 if strcmpi(varargin,'P2') sBlockCount_P2 = sBlockCount_P2 + 1; fileInfo.sBlockList_P2(sBlockCount_P2) = sBlockHeader; end end elseif strfind(segHeader.SID, 'ZISRAWFILE') fileInfo.fileHeader = readFILEHeader(fID); elseif strfind(segHeader.SID, 'ZISRAWATTACH') count = count + 1; readAttach(fID); end flag = fseek(fID, segHeader.currPos + segHeader.allocSize, 'bof') + 1; else flag = 0; end end fseek(fID, 92, 'bof'); fseek(fID, fileInfo.fileHeader.mDataPos, 'bof'); fseek(fID, fileInfo.fileHeader.mDataPos + 32, 'bof'); XmlSize = uint32(fread(fID, 1, '*uint32')); fseek(fID, fileInfo.fileHeader.mDataPos + 288, 'bof'); fileInfo.metadataXML = fread(fID, XmlSize, '*char')'; fclose(fID); disp(count) end function segHeader = readSegHeader(fID) segHeader.SID = fread(fID, 16, '*char')'; segHeader.allocSize = fread(fID, 1, '*uint64'); fseek(fID, 8, 'cof'); segHeader.currPos = ftell(fID); end function sBlockHeader = readMinSUBBLOCKHeader(fID) fseek(fID, 18, 'cof'); sBlockHeader.pixelType = getPixType(fread(fID, 1, '*uint32')); fseek(fID, 12, 'cof'); sBlockHeader.compression = getCompType(fread(fID, 1, '*uint32')); fseek(fID, 6, 'cof'); sBlockHeader.dimensionCount = fread(fID, 1, '*uint32'); end function [sBlockHeader, pyramidType] = readPartSUBBLOCKHeader(fID) currPos = ftell(fID); mDataSize = fread(fID, 1, '*uint32'); fseek(fID, 4, 'cof'); sBlockHeader.dataSize = fread(fID, 1, '*uint64'); fseek(fID, 22, 'cof'); pyramidType = fread(fID, 1, '*uint8'); fseek(fID, 5, 'cof'); dimensionCount = fread(fID, 1, '*uint32'); for ii = 1 : dimensionCount dimension = fread(fID, 4, '*char'); sBlockHeader.([dimension(1),'Start']) = fread(fID, 1, '*uint32'); if ~strcmp(dimension(1),'X') && ~strcmp(dimension(1),'Y') fseek(fID, 12, 'cof'); else sBlockHeader.([dimension(1),'Size']) = fread(fID, 1, '*uint32'); fseek(fID, 8, 'cof'); end end sBlockHeader.dataStartPos = currPos + 256 + mDataSize; end function fileHeader = readFILEHeader(fID) fileHeader.major = fread(fID, 1, '*uint32'); fileHeader.minor = fread(fID, 1, '*uint32'); fseek(fID, 8, 'cof'); fileHeader.primaryFileGuid = fread(fID, 2, '*uint64'); fileHeader.fileGuid = fread(fID, 2, '*uint64'); fileHeader.filePart = fread(fID, 1, '*uint32'); fileHeader.dirPos = fread(fID, 1, '*uint64'); fileHeader.mDataPos = fread(fID, 1, '*uint64'); fseek(fID, 4, 'cof'); fileHeader.attDirPos = fread(fID, 1, '*uint64'); end function readAttach(fID) dataSize = fread(fID, 1, '*uint32'); fseek(fID, 24, 'cof'); filePos = fread(fID, 1, '*uint64'); fseek(fID, 20, 'cof'); contentType = fread(fID, 8, '*char')'; disp(contentType) name = fread(fID, 80, '*char')'; disp(name) if strfind(contentType, 'JPG') fseek(fID, 112, 'cof'); fout = fopen('thumbnail.jpg', 'wb'); fwrite(fout, fread(fID, dataSize, '*uint8'), 'uint8'); fclose(fout); end end function pixType = getPixType(index) switch index case 0 pixType = 'Gray8'; case 1 pixType = 'Gray16'; case 2 pixType = 'Gray32Float'; case 3 pixType = 'Bgr24'; case 4 pixType = 'Bgr48'; case 8 pixType = 'Bgr96Float'; case 9 pixType = 'Bgra32'; case 10 pixType = 'Gray64ComplexFloat'; case 11 pixType = 'Bgr192ComplexFloat'; case 12 pixType = 'Gray32'; case 13 pixType = 'Gray64'; end end function compType = getCompType(index) if index >= 1000 compType = 'System-RAW'; elseif index >= 100 && index < 999 compType = 'Camera-RAW'; else switch index case 0 compType = 'Uncompressed'; case 1 compType = 'JPEG'; case 2 compType = 'LZW'; case 4 compType = 'JPEG-XR'; end end end
github
onalbach/caffe-deep-shading-master
classification_demo.m
.m
caffe-deep-shading-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
antipa/proxMin-master
tv3d_iso_Haar.m
.m
proxMin-master/tv3d_iso_Haar.m
2,349
utf_8
9dbca1f3c36fa28e8cf93711c0874c42
function y = tv3d_iso_Haar(x, tau, alpha) % Private functions here % circshift does circular shifting % indexing: x(5:10), 1 indexed. Use x(5:4:end-6) to index in strides of 4 % to the 6th-to-last element D = 3; gamma = 1; %step size thresh = sqrt(2) * 2 * D * tau * gamma; y = zeros(size(x), 'like', x); for axis = 1 : 3 if axis == 3 t_scale = alpha; else t_scale = 1; end y = y + iht3(ht3(x, axis, false, thresh*t_scale), axis, false); y = y + iht3(ht3(x, axis, true, thresh*t_scale), axis, true); end y = y / (2 * D); return function w = ht3(x, ax, shift, thresh) s = size(x); w = zeros(s, 'like', x); C = 1 / sqrt(2); if shift x = circshift(x, -1, ax); end m = floor(s(ax) / 2); if ax == 1 w(1:m, :, :) = C * (x(2:2:end, :, :) + x(1:2:end, :, :)); % use diff or circhisft? w((m + 1):end, :, :) = hs_soft(C * (x(2:2:end, :, :) - x(1:2:end, :, :)), thresh); %w((m + 1):end, :, :) = hs_soft(w((m + 1):end, :, :), thresh); elseif ax == 2 w(:, 1:m, :) = C * (x(:, 2:2:end, :) + x(:, 1:2:end, :)); w(:, (m + 1):end, :) = hs_soft(C * (x(:, 2:2:end, :) - x(:, 1:2:end, :)), thresh); %w(:, (m + 1):end, :) = hs_soft(w(:, (m + 1):end, :), thresh); else w(:, :, 1:m) = C * (x(:, :, 2:2:end) + x(:, :, 1:2:end)); w(:, :, (m + 1):end) = hs_soft(C * (x(:, :, 2:2:end) - x(:, :, 1:2:end)), thresh); %w(:, :, (m + 1):end) = hs_soft(w(:, :, (m + 1):end), thresh); end return function y = iht3(w, ax, shift) s = size(w); y = zeros(s, 'like', w); C = 1 / sqrt(2); m = floor(s(ax) / 2); if ax == 1 y(1:2:end, :, :) = C * (w(1:m, :, :) - w((m + 1):end, :, :)); y(2:2:end, :, :) = C * (w(1:m, :, :) + w((m + 1):end, :, :)); elseif ax == 2 y(:, 1:2:end, :) = C * (w(:, 1:m, :) - w(:, (m + 1):end, :)); y(:, 2:2:end, :) = C * (w(:, 1:m, :) + w(:, (m + 1):end, :)); else y(:, :, 1:2:end) = C * (w(:, :, 1:m) - w(:, :, (m + 1):end)); y(:, :, 2:2:end) = C * (w(:, :, 1:m) + w(:, :, (m + 1):end)); end if shift y = circshift(y, 1, ax); end return function threshed = hs_soft(x,tau) threshed = max(abs(x)-tau,0); threshed = threshed.*sign(x); return
github
antipa/proxMin-master
proxMin.m
.m
proxMin-master/proxMin.m
8,566
utf_8
31302ab2b5b63c6185b13bd08ca43337
function [out,varargout] = proxMin(GradErrHandle,ProxFunc,xk,b,options) % Out = proxMin(GradErrHanle,ProxHandle,AxyTxy0,measurement,options) % % GradErrHandle: handle for function that computes error and gradient at % each step % % ProxFunc: handle for function that does projection step % % AxyTxy0: initialization Nx x Ny x 2 % where the first matrix is the amplitude of the diffuser A(x,y) % and the second matrix is the thickness of the diffuser T(x,y) % % options: similar to minFunc, but won't support all of the same options. % % Nick Antipa, summer 2016 if ~isa(GradErrHandle,'function_handle') GradErrHandle = @(x) matrixError(GradErrHandle,transpose(GradErrHandle),x,b); end if ~isfield(options,'convTol') options.convTol = 1e-9; end if ~isfield(options,'residTol') options.residTol = 1e-2; end if ~isfield(options,'xsize') options.xsize = size(A,2); end if ~isfield(options,'momentum') options.momentum = 'nesterov'; end if ~isfield(options,'disp_figs') options.disp_figs = 0; end if ~isfield(options,'restarting') options.restarting = 0; end if ~isfield(options,'print_interval') options.print_interval = 1; end if ~isfield(options,'color_map') options.color_map = 'parula'; end if ~isfield(options,'save_progress') options.save_progress = 0; end if ~isfield(options,'restart_interval') options.restart_interval = 0; end if ~isfield(options,'disp_crop') options.disp_crop = @(x)x; end if ~isfield(options,'disp_prctl') options.disp_prctl = 99.999; end if options.save_progress if ~isfield(options,'save_progress') options.progress_file = 'prox_progress.avi'; end if exist(options.progress_file,'file') overwrite_mov = input('video file exists. Overwrite? y to overwrite, n to abort.'); if strcmpi(overwrite_mov,'n') new_mov_name = input('input new name (no extension): '); options.progress_file = [new_mov_name,'.avi']; end end options.vidObj = VideoWriter(options.progress_file); open(options.vidObj); end step_num = 0; yk = xk; %h1 = figure(1); fun_val = zeros([options.maxIter,1],'like',xk); %step_size = .0000000008; step_size = options.stepsize*ones(1,'like',xk); fm1 = zeros(1,'like',xk); f = inf; switch lower(options.momentum) case('linear') while (step_num < options.maxIter) && (f>options.residTol) step_num = step_num+1; [ f, g ] = GradErrHandle( yk ); fun_val(step_num) = f; x_t1 = yk - step_size*g; yk = ProxFunc(x_t1); if ~mod(step_num,options.disp_fig_interval) if options.disp_figs draw_figures(yk,options) end end if abs(fm1-f)<options.convTol fprintf('Answer is stable to within convTol. Stopping.\n') out = yk; break end fm1 = f; fprintf('%i\t%6.4e\n',step_num,f) end case ('nesterov') tk = ones(1,'like',xk); yk = xk; f = 1e12*ones(1,'like',xk); f_kp1 = f; tic while (step_num < options.maxIter) && (f>options.residTol) step_num = step_num+1; [f_kp1, g] = GradErrHandle(yk); fun_val(step_num) = f_kp1; %fun_val(step_num) = norm(options.xin-options.crop(yk),'fro')/norm(options.xin,'fro'); [x_kp1, norm_x] = ProxFunc(yk-options.stepsize*g); fun_val(step_num) = fun_val(step_num)+norm_x; t_kp1 = (1+sqrt(1+4*tk^2))/2; beta_kp1 = (tk-1)/t_kp1; restart = (yk(:)-x_kp1(:))'*vec(x_kp1 - xk); %dx(:); yk = x_kp1+beta_kp1*(x_kp1 - xk); if step_num == 1 if options.known_input fprintf('Iteration \t objective \t ||x|| \t momentum \t MSE \t PSNR\n'); else fprintf('Iter\t ||Ax-b|| \t ||x|| \t Obj \t sparsity \t momentum \t elapsed time\n'); end end if restart<0 && mod(step_num,options.restart_interval)==0 fprintf('reached momentum reset interval\n') restart = Inf; end %restart = f_kp1-f; if ~mod(step_num,options.print_interval) if options.known_input fprintf('%i\t %6.4e\t %6.4e\t %.3f\t %6.4e\t %.2f dB\n',... step_num,f,norm_x,tk,... norm(options.xin(:) - yk(:)),... psnr(gather(yk),options.xin,max(options.xin(:)))); else telapse = toc; fprintf('%i\t%6.4e\t%6.4e\t%6.4e\t%6.4e\t%.3f\t%.4f\n',step_num,f,norm_x,fun_val(step_num), nnz(x_kp1)/numel(x_kp1)*100,tk,telapse) end tic end if ~mod(step_num,options.disp_fig_interval) if options.disp_figs draw_figures(yk,options); end if options.save_progress frame = getframe(options.fighandle); writeVideo(options.vidObj,frame); end end if restart>0 && options.restarting tk = 1; fprintf('restarting momentum \n') yk = x_kp1; else tk = t_kp1; %yk = y_kp1; end xk = x_kp1; f = fun_val(step_num); if abs(restart)<options.convTol fprintf('Answer is stable to within convTol. Stopping.\n') out = yk; draw_figures(out,options); break end end end if (f<options.residTol) fprintf('Residual below residTol. Stopping. \n') end if step_num>=options.maxIter fprintf('Reached max number of iterations. Stopping. \n'); end out = yk; if nargout>1 varargout{1} = fun_val; end draw_figures(out,options) if options.save_progress close(options.vidObj); end return function draw_figures(xk,options) set(0,'CurrentFigure',options.fighandle) if numel(options.xsize)==2 imagesc(options.disp_crop(xk)) axis image colorbar colormap(options.color_map); %caxis(gather([prctile(xk(:),.1) prctile(xk(:),90)])) elseif numel(options.xsize)==3 xk = gather(xk); set(0,'CurrentFigure',options.fighandle) subplot(1,3,1) im1 = squeeze(max(xk,[],3)); imagesc(im1); hold on axis image colormap parula %colorbar caxis([0 prctile(im1(:),options.disp_prctl)]) set(gca,'fontSize',6) axis off hold off set(0,'CurrentFigure',options.fighandle) subplot(1,3,2) im2 = squeeze(max(xk,[],1)); imagesc(im2); hold on %axis image colormap parula %colorbar set(gca,'fontSize',8) caxis([0 prctile(im2(:),options.disp_prctl)]) axis off hold off drawnow set(0,'CurrentFigure',options.fighandle) subplot(1,3,3) im3 = squeeze(max(xk,[],2)); imagesc(im3); hold on %axis image colormap parula colorbar set(gca,'fontSize',8) caxis([0 prctile(im3(:),options.disp_prctl)]); axis off hold off elseif numel(options.xsize) == 4 xkr = reshape(xk,options.xsize); subplot(2,2,1) imagesc(transpose(squeeze(xkr(end,ceil(options.xsize(2)/2),:,:)))) hold on axis image colorbar colormap gray caxis([0 prctile(xkr(:),99)]); hold off subplot(2,2,2) imagesc(transpose(squeeze(xkr(1,ceil(options.xsize(2)/2),:,:)))) hold on axis image colorbar colormap gray caxis([0 prctile(xkr(:),99)]); hold off subplot(2,2,3) imagesc(transpose(squeeze(xkr(ceil(options.xsize(2)/2),1,:,:)))) hold on axis image colorbar colormap gray caxis([0 prctile(xkr(:),99)]); hold off subplot(2,2,4) imagesc(transpose(squeeze(xkr(ceil(options.xsize(2)/2),end,:,:)))) hold on axis image colorbar colormap gray caxis([0 prctile(xkr(:),99)]); hold off elseif numel(options.xsize)==1 plot(xk) end drawnow
github
antipa/proxMin-master
tv2d_aniso_haar.m
.m
proxMin-master/tv2d_aniso_haar.m
2,249
utf_8
3d7154b33f0fde5be8941b98e3824b62
function y = tv2dApproxHaar(x, tau) % Private functions here % circshift does circular shifting % indexing: x(5:10), 1 indexed. Use x(5:4:end-6) to index in strides of 4 % to the 6th-to-last element D = 2; gamma = 1; %step size thresh = sqrt(2) * 2 * D * tau * gamma; y = zeros(size(x), 'like', x); for axis = 1 : 2 % if axis == 3 % t_scale = alpha; % else % t_scale = 1; % end y = y + iht2(ht2(x, axis, false, thresh), axis, false); y = y + iht2(ht2(x, axis, true, thresh), axis, true); end y = y / (2 * D); return function w = ht2(x, ax, shift, thresh) s = size(x); w = zeros(s, 'like', x); C = 1 / sqrt(2); if shift x = circshift(x, -1, ax); end m = floor(s(ax) / 2); if ax == 1 w(1:m, :) = C * (x(2:2:end, :) + x(1:2:end, :)); % use diff or circhisft? w((m + 1):end, :) = soft(C * (x(2:2:end, :) - x(1:2:end, :)), thresh); %w((m + 1):end, :) = hs_soft(w((m + 1):end, :), thresh); elseif ax == 2 w(:, 1:m) = C * (x(:, 2:2:end) + x(:, 1:2:end)); w(:, (m + 1):end) = soft(C * (x(:, 2:2:end) - x(:, 1:2:end)), thresh); %w(:, (m + 1):end, :) = hs_soft(w(:, (m + 1):end, :), thresh); % else % w(:, :, 1:m) = C * (x(:, :, 2:2:end) + x(:, :, 1:2:end)); % w(:, :, (m + 1):end) = C * (x(:, :, 2:2:end) - x(:, :, 1:2:end)); % w(:, :, (m + 1):end) = hs_soft(w(:, :, (m + 1):end), thresh); end return function y = iht2(w, ax, shift) s = size(w); y = zeros(s, 'like', w); C = 1 / sqrt(2); m = floor(s(ax) / 2); if ax == 1 y(1:2:end, :) = C * (w(1:m, :) - w((m + 1):end, :)); y(2:2:end, :) = C * (w(1:m, :) + w((m + 1):end, :)); elseif ax == 2 y(:, 1:2:end) = C * (w(:, 1:m) - w(:, (m + 1):end)); y(:, 2:2:end) = C * (w(:, 1:m) + w(:, (m + 1):end)); % else % y(:, :, 1:2:end) = C * (w(:, :, 1:m) - w(:, :, (m + 1):end)); % y(:, :, 2:2:end) = C * (w(:, :, 1:m) + w(:, :, (m + 1):end)); end if shift y = circshift(y, 1, ax); end return function threshed = hs_soft(x,tau) threshed = max(abs(x)-tau,0); threshed = threshed.*sign(x); return
github
antipa/proxMin-master
conv2c.m
.m
proxMin-master/conv2c.m
1,666
utf_8
fbd814f6dbc22cf39b0304b1630681a6
function y = conv2c(x,h) % Circular 2D convolution x=wraparound(x,h); y=conv2(x,h,'valid'); function y = wraparound(x, m) % Extend x so as to wrap around on both axes, sufficient to allow a % "valid" convolution with m to return the cyclical convolution. % We assume mask origin near centre of mask for compatibility with % "same" option. [mx, nx] = size(x); [mm, nm] = size(m); if mm > mx | nm > nx error('Mask does not fit inside array') end mo = floor((1+mm)/2); no = floor((1+nm)/2); % reflected mask origin ml = mo-1; nl = no-1; % mask left/above origin mr = mm-mo; nr = nm-no; % mask right/below origin me = mx-ml+1; ne = nx-nl+1; % reflected margin in input mt = mx+ml; nt = nx+nl; % top of image in output my = mx+mm-1; ny = nx+nm-1; % output size y = zeros(my, ny); y(mo:mt, no:nt) = x; % central region if ml > 0 y(1:ml, no:nt) = x(me:mx, :); % top side if nl > 0 y(1:ml, 1:nl) = x(me:mx, ne:nx); % top left corner end if nr > 0 y(1:ml, nt+1:ny) = x(me:mx, 1:nr); % top right corner end end if mr > 0 y(mt+1:my, no:nt) = x(1:mr, :); % bottom side if nl > 0 y(mt+1:my, 1:nl) = x(1:mr, ne:nx); % bottom left corner end if nr > 0 y(mt+1:my, nt+1:ny) = x(1:mr, 1:nr); % bottom right corner end end if nl > 0 y(mo:mt, 1:nl) = x(:, ne:nx); % left side end if nr > 0 y(mo:mt, nt+1:ny) = x(:, 1:nr); % right side end
github
oussamamoslah/Democratic-RPSO-master
simeditcb.m
.m
Democratic-RPSO-master/simeditcb.m
14,986
utf_8
e773b67088c3cf2660ecb16b0639b3c6
function simeditcb(action) nameSim = 'MRSim - Multi-Robot Simulator v1.0'; switch action case 'import' % ***************** Import bitmap ******************** h = findobj('Tag','ListStore'); % We need to check the list list = get(h,'UserData'); % Get it if ~isempty(list) % If it is not empty, ask a question answer = questdlg('This will delete all robots. Continue?','Question','Yes','No','No'); else answer = 'Yes'; end if strcmp(answer,'Yes') set(h,'UserData',[]); % Delete the list [filename,pathname] = uigetfile('*.bmp','Open map'); if filename ~= 0 % if any file selected matrix = matrprep([pathname filename]); for i = 1:3 matrix = rot90(matrix); % Ensures normal position of the matrix end % (as it is stored in bitmap) LocalDraw(matrix,2); list = []; h = findobj('Tag','EditorWindow'); set(h,'UserData',matrix); set(h,'Name',['Editor Window - [untitled.mat - ' pwd '\untitled.mat]']) h = findobj('Tag','EditPath'); set(h,'UserData',[pwd '\untitled.mat']) save([pwd '\untitled.mat'],'matrix') % ******** Enable disabled context menu items ********* h = findobj('Type','uimenu','Enable','off'); set(h,'Enable','on') h = findobj('Tag','SaveMenu'); set(h,'Enable','off') h = findobj('Tag','StepsMenu'); set(h,'UserData',Inf) h = findobj('Tag','DelayMenu'); set(h,'UserData',0.001) % ***************************************************** end end % **************************************************** case 'load' [filename,pathname] = uigetfile('*.mat','Open simulation'); robotT = simrobot('',2,2,2,'',[1 1 0],1,10,10); % Create object if filename ~= 0 % ****** Check the file structure ****** vars = who('-file',[pathname filename]); load([pathname filename],'list') if isempty(strmatch('list',vars)) | isempty(strmatch('no_steps',vars)) | isempty(strmatch('delay',vars)) | isempty(strmatch('matrix',vars)) | isempty(strmatch('type',vars)) | isempty(list) dispstr = strvcat(['"' pathname filename '"'],' '); dispstr = strvcat(dispstr,'Cannot open this file - invalid file structure!'); h = msgbox(dispstr,'Error','error'); return end % ************************************** load([pathname filename]); % type = 'replay'; % This is necessary !! % if strcmp(type,'replay') % answer = questdlg('You are going to edit a replay file. This will delete replay data. Continue?','Question','Yes','No','No'); % if strcmp(answer,'Yes') % type = 'simulation'; % for i = 1:length(list) % list(i) = delhist(list(i)); % end % else % return % end % end path = [pathname filename]; save(path,'list','matrix','no_steps','delay','type'); h = findobj('Tag','EditPath'); set(h,'UserData',path); simeditcb loadfile; end case 'loadfile' % ******** New part ******** h = findobj('Tag','EditPath'); path = get(h,'UserData'); [pathname,filename,ext] = fileparts(path); pathname = [pathname '\']; filename = [filename ext]; % ************************** % robotT = simrobot('',2,2,2,'',[1 1 0],1,10,10); % Create object load([pathname filename]); h = findobj('Tag','EditorWindow'); set(h,'UserData',matrix) set(h,'Name',['Editor Window - [' filename ' - ' pathname filename ']']) LocalDraw(matrix,2); for i = 1:length(list) list(i) = putrob(list(i),getpos(list(i)),matrix); end h = findobj('Tag','ListStore'); set(h,'UserData',list) % Store list h = findobj('Tag','StepsMenu'); if iscell(no_steps) no_steps = no_steps{1}; end set(h,'Label',['Steps limit: ' num2str(no_steps)]); set(h,'UserData',no_steps) h = findobj('Tag','DelayMenu'); if iscell(delay) delay = delay{1}; end set(h,'Label',['Step time: ' num2str(delay)]); set(h,'UserData',delay) % ******* Enable disabled context menu items ******** h = findobj('Type','uimenu','Enable','off'); set(h,'Enable','on') % *************************************************** % *********************************************************** case 'save' h = findobj('Tag','EditPath'); path = get(h,'UserData'); if ~isempty(path) loadstr = load(path); % Load (matrix) from original file [pathn,file,ext] = fileparts(path); file = [file ext]; % *************************************************************************** if strcmp(file,'untitled.mat') [filename,pathname] = uiputfile('newsave.mat','Save simulation'); if strcmp(filename,'untitled.mat') h = msgbox('Error: Cannot save as ''untitled.mat''. Please select another name','Error','error'); return end if filename ~= 0 delete(path) path = [pathname filename]; h = findobj('Tag','EditPath'); set(h,'UserData',path); h = findobj('Tag','EditorWindow'); if isempty(findstr(filename,'.mat')) filename = [filename '.mat']; end set(h,'Name',['Editor Window - [' filename ' - ' pathname filename ']']); else return end end h = findobj('Tag','StepsMenu'); no_steps = get(h,'UserData'); no_steps = no_steps{1}; % Convert from cell h = findobj('Tag','ListStore'); list = get(h,'UserData'); % Get list matrix = loadstr.matrix; h = findobj('Tag','DelayMenu'); delay = get(h,'UserData'); % Get delay delay = delay{1}; % Convert from cell type = 'simulation'; save(path,'list','matrix','no_steps','delay','type'); end case 'saveas' % *********** Select mat file and save simulation *********** h = findobj('Tag','EditPath'); path = get(h,'UserData'); loadstr = load(path); [path,name,ext] = fileparts(path); if strcmp(name,'untitled') name = 'newsave'; end [filename,pathname] = uiputfile([name ext],'Save simulation'); if strcmp(filename,'untitled.mat') h = msgbox('Error: Cannot save as ''untitled.mat''. Please select another name','Error','error'); return end if filename ~= 0 % if any file selected h = findobj('Tag','StepsMenu'); no_steps = get(h,'UserData'); path = [pathname filename]; h = findobj('Tag','ListStore'); list = get(h,'UserData'); % Get list matrix = loadstr.matrix; h = findobj('Tag','DelayMenu'); delay = get(h,'UserData'); % Get delay type = 'simulation'; save(path,'list','matrix','no_steps','delay','type'); h = findobj('Tag','EditPath'); % Store the path set(h,'UserData',path); h = findobj('Tag','EditorWindow'); title = ['Editor Window - [' filename ' - ' pathname filename ']']; set(h,'Name',title) end % *********************************************************** case 'add' gui_addr; % Open the window gui_addrcb('initialize'); case 'add_ok' % ********* User pressed OK button on robot-adding screen ********* h = findobj('Tag','Store'); robot = get(h,'UserData'); if ~isempty(robot) load cur_put % Load cursor shape data set(gcf,'Pointer','custom',... 'PointerShapeCData',cdata,... % User data defining pointer shape 'PointerShapeHotSpot',[11 5]); % Pointer active area (center of the p.) h = findobj('Tag','Axes'); % Main window axes set(h,'ButtonDownFcn','simeditcb add_click') % Set callback fcn & wait for a click end % ***************************************************************** case 'add_click' % *********** Put down the new robot ************* cpoint = get(gca,'CurrentPoint'); cpoint = cpoint(1,1:2); h = findobj('Tag','Axes'); % Main window axes set(h,'ButtonDownFcn','') % Delete callback set(gcf,'Pointer','arrow',... 'PointerShapeHotSpot',[1 1]) h = findobj('Tag','EditorWindow'); matrix = get(h,'UserData'); h = findobj('Tag','Store'); data = get(h,'UserData'); h = findobj('Tag','ListStore'); list = get(h,'UserData'); if length(list) > 0 number = getnum(list(length(list))) + 1; else number = 2; % First robot end robot = simrobot(data.name,number,data.heading,data.power,data.af,... data.color,1,data.xdata,data.ydata); % Create object robot = putrob(robot,cpoint,matrix); % Put it robot = addsenss(robot,data.sensors); if ~isempty(robot) if isempty(list) list = robot; else list = list + robot; end end set(h,'UserData',list); h = findobj('Tag','SaveMenu'); set(h,'Enable','on') % ************************************************** case 'steps' h = findobj('Tag','StepsMenu'); def = get(h,'UserData'); steps = inputdlg('Steps limit:','Number of steps',[1 14],{num2str(def{1})}); if ~isempty(steps) if ~strcmp(steps{1},'Inf') steps = str2num(steps{1}); if isempty(steps) | steps <= 0 | strcmpi(num2str(steps),'NaN') h = msgbox('Please enter a valid number','Error','error'); waitfor(h) simeditcb steps return else steps = round(steps(1)); end else steps = Inf; end set(h,'UserData',steps) set(h,'Label',['Steps limit: ' num2str(steps)]) end case 'delay' h = findobj('Tag','DelayMenu'); def = get(h,'UserData'); steps = inputdlg('Step time (in secs):','Minimum step length',[1 25],{num2str(def{1})}); if ~isempty(steps) if ~strcmp(steps{1},'Inf') steps = strrep(steps{1},',','.'); steps = str2num(steps); if isempty(steps) | steps < 0 | strcmpi(num2str(steps),'NaN') h = msgbox('Please enter a valid number','Error','error'); waitfor(h) simeditcb delay return else steps = steps(1); end else steps = Inf; end set(h,'UserData',steps) set(h,'Label',['Step time: ' num2str(steps)]) end case 'run' h = findobj('Tag','ListStore'); list = get(h,'UserData'); if ~isempty(list) simeditcb save h = findobj('Tag','EditPath'); path = get(h,'UserData'); [path,file,ext] = fileparts(path); if ~strcmp([file ext],'untitled.mat') simview h = findobj('Tag','SimPath'); set(h,'UserData',path) close(gcbf) pathname = [path '\']; filename = [file ext]; h = findobj('Tag','SimPath'); set(h,'UserData',[pathname filename]); simviewcb loadfile; simviewcb sim; end else h = msgbox('Please insert at least one robot','Request','warn'); end % **************************** case 'close' % Maybe some question here ?? h = findobj('Tag','SensWindow'); delete(h) h = findobj('Tag','PowerWindow'); delete(h) h = findobj('Tag','HeadWindow'); delete(h) h = findobj('Tag','AddrWindow'); delete(h) h = findobj('Tag','Info'); delete(h) h = findobj('Tag','EditorWindow'); delete(h) end function LocalDraw(matrix,size_of_marker); [xmax, ymax] = size(matrix); [x, y] = find(matrix); figNumber = findobj('Tag','EditorWindow'); figure(figNumber); axHndl = findobj('Tag','Axes'); color = get(figNumber,'Color'); plotHndl = plot(x,y,'s', ... 'Color','black', ... 'MarkerFaceColor','black',... 'Tag','mapplot',... 'MarkerSize',size_of_marker,... 'Parent',axHndl); axis equal set(axHndl, ... 'XLim',[0 xmax+1],'YLim',[0 ymax+1], ... 'XDir','normal','YDir','normal', ... 'Drawmode','fast', ... 'Visible','on', ... 'NextPlot','replace', ... 'Tag','Axes',... 'TickLength',[0 0],... 'XColor',color,... 'YColor',color); drawnow;
github
oussamamoslah/Democratic-RPSO-master
gui_senscb.m
.m
Democratic-RPSO-master/gui_senscb.m
9,298
utf_8
22009f4c455b3ff73eacfc8a5718e513
function gui_senscb(action); if nargin == 0 action = 'initialize'; end % Data - in SensStore (static text) % SensAdd (add button) - 1 if new sensor % Shape in SensCancel % SensOK = OK Button - number of callbacking robot (when called from robot's uicm) switch(action) case 'initialize' h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); h = findobj('Tag','SensAdd'); new = get(h,'UserData'); if isempty(sensors) | new if new h = findobj('Tag','NamesMenu'); name = get(h,'String'); s = size(name); name = name(s(1),:); else name = 'sensor_1'; end sensor = struct( 'name',name,'position',[5 0],'axisangle',0,... 'scanangle',60,'range',30,'resolution',30); sensors = [sensors sensor]; h = findobj('Tag','SensStore'); set(h,'UserData',sensors); h = findobj('Tag','SensAdd'); set(h,'UserData',0); i = length(sensors); else h = findobj('Tag','NamesMenu'); i = get(h,'Value'); end % ********* Fill in the popup menu with names of sensors ********* names = sensors(1).name; for j = 2:length(sensors) names = [names '|' sensors(j).name]; end % **************************************************************** h = findobj('Tag','NamesMenu'); % Needed when adding new sensor set(h,'Value',i); set(h,'String',names) h = findobj('Tag','XPos'); set(h,'String',num2str(sensors(i).position(1))) h = findobj('Tag','YPos'); set(h,'String',num2str(sensors(i).position(2))) h = findobj('Tag','AxisSlider'); set(h,'Value',sensors(i).axisangle) h = findobj('Tag','AxisVal'); set(h,'String',num2str(sensors(i).axisangle)) h = findobj('Tag','ScanSlider'); set(h,'Value',sensors(i).scanangle) h = findobj('Tag','ScanVal'); set(h,'String',num2str(sensors(i).scanangle)); h = findobj('Tag','EditRes'); set(h,'String',num2str(sensors(i).resolution)); h = findobj('Tag','EditRange'); set(h,'String',num2str(sensors(i).range)); h = findobj('Tag','SensCancel'); shape = get(h,'UserData'); UpdatePreview(shape,sensors) case 'xpos' h = findobj('Tag','XPos'); xpos = get(h,'String'); xpos = str2num(xpos); h = findobj('Tag','NamesMenu'); % Get index of the sensor in sensors' structure i = get(h,'Value'); h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).position(1) = xpos; set(h,'UserData',sensors) case 'ypos' h = findobj('Tag','YPos'); ypos = get(h,'String'); ypos = str2num(ypos); h = findobj('Tag','NamesMenu'); % Get index of the sensor in sensors' structure i = get(h,'Value'); h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).position(2) = ypos; set(h,'UserData',sensors) case 'res' h = findobj('Tag','EditRes'); res = get(h,'String'); res = str2num(res); h = findobj('Tag','NamesMenu'); % Get index of the sensor in sensors' structure i = get(h,'Value'); h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).resolution = res; set(h,'UserData',sensors) case 'range' h = findobj('Tag','EditRange'); range = get(h,'String'); range = str2num(range); h = findobj('Tag','NamesMenu'); % Get index of the sensor in sensors' structure i = get(h,'Value'); h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).range = range; set(h,'UserData',sensors) case 'axisangle' h = findobj('Tag','AxisSlider'); angle = get(h,'Value'); angle = round(angle); h = findobj('Tag','AxisVal'); set(h,'String',num2str(angle)); h = findobj('Tag','NamesMenu'); % Get index of the sensor in sensors' structure i = get(h,'Value'); h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).axisangle = angle; set(h,'UserData',sensors) case 'scanangle' h = findobj('Tag','ScanSlider'); angle = get(h,'Value'); angle = round(angle); h = findobj('Tag','ScanVal'); set(h,'String',num2str(angle)); h = findobj('Tag','NamesMenu'); % Get index of the sensor in sensors' structure i = get(h,'Value'); h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).scanangle = angle; set(h,'UserData',sensors) case 'ok' % The callback routine is assigned by caller of the editor case 'cancel' close(gcbf) case 'select' gui_senscb initialize; case 'sensdel' answer = questdlg('Really delete selected sensor ?','Question','Yes','No','No'); if strcmp(answer,'Yes') h = findobj('Tag','NamesMenu'); i = get(h,'Value'); set(h,'Value',1) h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i) = []; set(h,'UserData',sensors) gui_senscb initialize; end case 'sensren' h = findobj('Tag','NamesMenu'); i = get(h,'Value'); names = get(h,'String'); name = inputdlg('Name:','Enter name',[1 15],{names(i,:)}); if ~isempty(name) h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); sensors(i).name = name{1}; set(h,'UserData',sensors) gui_senscb initialize; end case 'updprev' h = findobj('Tag','SensStore'); sensors = get(h,'UserData'); h = findobj('Tag','SensCancel'); shape = get(h,'UserData'); UpdatePreview(shape,sensors) case 'add' name = inputdlg('Name:','Enter name',[1 15]);% This returns CELL if ~isempty(name{1}) h = findobj('Tag','NamesMenu'); names = get(h,'String'); % Get list of names if names == ' ' % This is value for new-defined menu names = ''; % and we need empty string instead end % because otherwise we'll have an empty line names = strvcat(names,name{1}); % Add new name to menu's list set(h,'String',names,'Value',length(names)) h = findobj('Tag','SensAdd'); set(h,'UserData',1) gui_senscb initialize; end end function UpdatePreview(shape,sensors) axHndl = findobj('Tag','SensAxes'); scale = get(axHndl,'UserData'); axes(axHndl); cla; % Clear Axes h = findobj('Tag','NamesMenu'); active = get(h,'Value'); xmax = 0; % ****** Determine plotting order of sensors - the active one goes last ****** order = 1:length(sensors); order(active) = []; % Delete active order = [order active]; % ... and put it at the end % This all is necessarry when drawing two indentical sensors % (the active one could be overlapped by non-active one) % **************************************************************************** for j = 1:length(order) i = order(j); angles = sensors(i).axisangle - sensors(i).scanangle/2:1:sensors(i).axisangle + sensors(i).scanangle/2; angles = angles*pi/180; % *** Points of ending arcs *** x = sensors(i).position(1) * scale + sensors(i).range * cos(angles); y = sensors(i).position(2) * scale + sensors(i).range * sin(angles); % ***************************** tx = max(max(x),abs(min(x))); ty = max(max(y),abs(min(y))); if tx > xmax xmax = tx; end if ty > xmax xmax = ty; end x1 = sensors(i).position(1) * scale; y1 = sensors(i).position(2) * scale; x2 = x1 + sensors(i).range * cos((sensors(i).axisangle + sensors(i).scanangle/2)*pi/180); y2 = y1 + sensors(i).range * sin((sensors(i).axisangle + sensors(i).scanangle/2)*pi/180); line1 = line([x1 x2],[y1 y2]); x2 = x1 + sensors(i).range * cos((sensors(i).axisangle - sensors(i).scanangle/2)*pi/180); y2 = y1 + sensors(i).range * sin((sensors(i).axisangle - sensors(i).scanangle/2)*pi/180); line2 = line([x1 x2],[y1 y2]); plot1 = plot(x,y); set(line1,'Color','b') set(line2,'Color','b') set(plot1,'Color','b') end % ***** The last drawn sensor is the active one, color it red ***** set(line1,'Color','r') set(line2,'Color','r') set(plot1,'Color','r') % ***************************************************************** % ******* Now set axes limits ******** set(axHndl, 'XLim',[-xmax-0.25*xmax xmax+0.25*xmax],... 'YLim',[-xmax-0.25*xmax xmax+0.25*xmax],... 'XTickMode','auto','YTickMode','auto') % ************************************ rob = patch(shape.xdata,shape.ydata,[1 1 1]);
github
joe-of-all-trades/xml2struct-master
xml2struct.m
.m
xml2struct-master/xml2struct.m
6,351
utf_8
0feee43c103f51c376a7dab2ac8457d0
function outStruct = xml2struct(input) %XML2STRUCT converts xml file into a MATLAB structure % % outStruct = xml2struct2(input) % % xml2struct2 takes either a java xml object, an xml file, or a string in % xml format as input and returns a parsed xml tree in structure. % % Please note that the following characters are substituted % '-' by '_dash_', ':' by '_colon_' and '.' by '_dot_' % % Originally written by W. Falkena, ASTI, TUDelft, 21-08-2010 % Attribute parsing speed increase by 40% by A. Wanner, 14-6-2011 % Added CDATA support by I. Smirnov, 20-3-2012 % Modified by X. Mo, University of Wisconsin, 12-5-2012 % Modified by Chao-Yuan Yeh, August 2016 errorMsg = ['%s is not in a supported format.\n\nInput has to be',... ' a java xml object, an xml file, or a string in xml format.']; % check if input is a java xml object if isa(input, 'org.apache.xerces.dom.DeferredDocumentImpl') ||... isa(input, 'org.apache.xerces.dom.DeferredElementImpl') xDoc = input; else try if exist(input, 'file') == 2 xDoc = xmlread(input); else try xDoc = xmlFromString(input); catch error(errorMsg, inputname(1)); end end catch ME if strcmp(ME.identifier, 'MATLAB:UndefinedFunction') error(errorMsg, inputname(1)); else rethrow(ME) end end end % parse xDoc into a MATLAB structure outStruct = parseChildNodes(xDoc); end % ----- Local function parseChildNodes ----- function [children, ptext, textflag] = parseChildNodes(theNode) % Recurse over node children. children = struct; ptext = struct; textflag = 'Text'; if hasChildNodes(theNode) childNodes = getChildNodes(theNode); numChildNodes = getLength(childNodes); for count = 1:numChildNodes theChild = item(childNodes,count-1); [text, name, attr, childs, textflag] = getNodeData(theChild); if ~strcmp(name,'#text') && ~strcmp(name,'#comment') && ... ~strcmp(name,'#cdata_dash_section') % XML allows the same elements to be defined multiple times, % put each in a different cell if (isfield(children,name)) if (~iscell(children.(name))) % put existsing element into cell format children.(name) = {children.(name)}; end index = length(children.(name))+1; % add new element children.(name){index} = childs; textfields = fieldnames(text); if ~isempty(textfields) for ii = 1:length(textfields) children.(name){index}.(textfields{ii}) = ... text.(textfields{ii}); end end if(~isempty(attr)) children.(name){index}.('Attributes') = attr; end else % add previously unknown (new) element to the structure children.(name) = childs; % add text data ( ptext returned by child node ) textfields = fieldnames(text); if ~isempty(textfields) for ii = 1:length(textfields) children.(name).(textfields{ii}) = text.(textfields{ii}); end end if(~isempty(attr)) children.(name).('Attributes') = attr; end end else ptextflag = 'Text'; if (strcmp(name, '#cdata_dash_section')) ptextflag = 'CDATA'; elseif (strcmp(name, '#comment')) ptextflag = 'Comment'; end % this is the text in an element (i.e., the parentNode) if (~isempty(regexprep(text.(textflag),'[\s]*',''))) if (~isfield(ptext,ptextflag) || isempty(ptext.(ptextflag))) ptext.(ptextflag) = text.(textflag); else % This is what happens when document is like this: % <element>Text <!--Comment--> More text</element> % % text will be appended to existing ptext ptext.(ptextflag) = [ptext.(ptextflag) text.(textflag)]; end end end end end end % ----- Local function getNodeData ----- function [text,name,attr,childs,textflag] = getNodeData(theNode) % Create structure of node info. %make sure name is allowed as structure name name = char(getNodeName(theNode)); name = strrep(name, '-', '_dash_'); name = strrep(name, ':', '_colon_'); name = strrep(name, '.', '_dot_'); name = strrep(name, '_', 'u_'); attr = parseAttributes(theNode); if (isempty(fieldnames(attr))) attr = []; end %parse child nodes [childs, text, textflag] = parseChildNodes(theNode); % Get data from any childless nodes. This version is faster than below. if isempty(fieldnames(childs)) && isempty(fieldnames(text)) text.(textflag) = char(getTextContent(theNode)); end % This alterative to the above 'if' block will also work but very slowly. % if any(strcmp(methods(theNode),'getData')) % text.(textflag) = char(getData(theNode)); % end end % ----- Local function parseAttributes ----- function attributes = parseAttributes(theNode) % Create attributes structure. attributes = struct; if hasAttributes(theNode) theAttributes = getAttributes(theNode); numAttributes = getLength(theAttributes); for count = 1:numAttributes % Suggestion of Adrian Wanner str = char(toString(item(theAttributes,count-1))); k = strfind(str,'='); attr_name = str(1:(k(1)-1)); attr_name = strrep(attr_name, '-', '_dash_'); attr_name = strrep(attr_name, ':', '_colon_'); attr_name = strrep(attr_name, '.', '_dot_'); attributes.(attr_name) = str((k(1)+2):(end-1)); end end end % ----- Local function xmlFromString ----- function xmlroot = xmlFromString(iString) import org.xml.sax.InputSource import java.io.* iSource = InputSource(); iSource.setCharacterStream(StringReader(iString)); xmlroot = xmlread(iSource); end
github
inria-larsen/toolbox-probabilistic_movement_primitives-master
visualisation.m
.m
toolbox-probabilistic_movement_primitives-master/toolbox_promps/visualisation.m
510
utf_8
0100f613e186d950ded2e0809db7067d
% Function that plot the matrix with the color col1. x is the line of the % matrix, y the number of colonnes function y = visualisation(matrix, x,y, z, col1, nameFig) tall = size(nameFig,2); for i=1:x for j=1:y val(i,j) = matrix(y*(i-1)+j); end end if(isa(col1, 'char')) %for i=1:x i=z; nameFig(tall + 1) = plot(val(i,:), col1); hold on; %end else %for i=1:x i=z; nameFig(tall + 1) = plot(val(i,:), 'Color', col1); hold on; %end end y = nameFig; end
github
inria-larsen/toolbox-probabilistic_movement_primitives-master
computeBasisFunction.m
.m
toolbox-probabilistic_movement_primitives-master/toolbox_promps/computeBasisFunction.m
1,618
utf_8
854c5ead441fdfc45654ce74ccef107d
%In this function, we create basis function matrix corresponding to the %number of input information we have and the number of basis function we %have defined with their bandwith h. function PSI = computeBasisFunction(z,nbFunctions, nbDof, alpha, totalTime, center_gaussian, h, nbData) %creating the center of basis function model for k = 1 : size(nbFunctions,2) for i = 1 : nbFunctions(k) c(k,i) = center_gaussian(k)*(i-1); end for t = 1 : z / alpha %creating a basis functions model (time*nbFunctions) for i = 1 : nbFunctions(k) val{k} = -(alpha*t*0.01-c(k,i))*(alpha*t*0.01-c(k,i))/(h(k)); basis{k}(t,i) = exp(val{k}); end sumBI = sum(basis{k}(t,:)); for i = 1 : nbFunctions(k) phi{k}(t,i) = basis{k}(t,i) / sumBI; end end end for i=1:size(nbDof,2) for j =1:nbDof(i) if and(i==1,j==1) PSI = phi{i}(1:nbData,:); else PSI = blkdiag(PSI, phi{i}(1:nbData,:)); end end end % %draw the basis function % figure; % for k=1:size(nbFunctions,2) % for i=1:nbFunctions(k) % plot(phi{k}(:,i), 'color', [0, k/size(nbFunctions,2), 0]); hold on; % plot(basis{k}(:,i),'.', 'color', [0, k/size(nbFunctions,2), 0]); % end % end % title('representation of the basis function used for each type of data') % xlabel('time') % ylabel('basis normalized') %TODO ameliorate here to pu as much as we have trajectories! %CREATING THE MATRIX BLOCK FOR ALL DOF end
github
inria-larsen/toolbox-probabilistic_movement_primitives-master
visualisation2.m
.m
toolbox-probabilistic_movement_primitives-master/toolbox_promps/visualisation2.m
674
utf_8
dd838d01f4acf9892cc1fd8ad967d9da
% Function that plot the matrix with the color col1. x is the line of the % matrix, y the number of colonnes %take into account the alpha function y = visualisation2(matrix, x,y, z, col1, alpha, nameFig) tall = size(nameFig,2); for i=1:x for j=1:y val(i,j) = matrix(y*(i-1)+j); end end if(isa(col1, 'char')) % for i=1:x i=z; nameFig(tall + 1) = plot([alpha : alpha : 100], val(i,:), col1); hold on; % end else % for i=1:x i=z; nameFig(tall + (2*1) - 1) = plot([alpha : alpha : 100], val(i,:), col1); hold on; nameFig(tall + 2*1) = plot(tmp, val(i,:), 'Color', col1); hold on; % end end y = nameFig; end
github
inria-larsen/toolbox-probabilistic_movement_primitives-master
visualisation3D.m
.m
toolbox-probabilistic_movement_primitives-master/toolbox_promps/visualisation3D.m
668
utf_8
4acca5e107cb4216bd2b761c1339c88a
% Function that plot the matrix with the color col1. x is the number of line of the % matrix, y the number of colonnes, type is the reference of the kind of data you want to plot, nameFig is the fig function y = visualisation3D(matrix, x, y, type, nbDof, col1, nameFig) tall= size(nameFig,2); for i=1:x for j=1:y val(i,j) = matrix(y*(i-1)+j); end end nb=0; for cpt =1:type-1 nb = nb + nbDof(cpt); end if(isa(col1, 'char')) nameFig(tall + 1 ) = plot3(val(nb + 1,:) ,val(nb + 2,:),val(nb + 3,:), col1); hold on; else nameFig(tall+ 1) = plot3(val(nb + 1,:) ,val(nb + 2,:),val(nb + 3,:), 'Color', col1); hold on; end y = nameFig; end
github
inria-larsen/toolbox-probabilistic_movement_primitives-master
visualisation3D2.m
.m
toolbox-probabilistic_movement_primitives-master/toolbox_promps/visualisation3D2.m
816
utf_8
60fec35072c7d3c8166bb3632e59270e
% Function that plot the matrix with the color col1. x is the number of line of the % matrix, y the number of colonnes, bool=1 if we want forces, 0 if we want % cartesian position, col1 is the color of the fig, nameFig is the fig function y = visualisation3D2(matrix, , y, type, col1, alpha, nameFig) tall= size(nameFig,2); for i=1:x for j=1:y val(i,j) = matrix(y*(i-1)+j); end end nb=0; for cpt =1:type-1 nb = nb + nbDof(cpt); end sizeV = size(val, 2); if(isa(col1, 'char')) nameFig(tall + 1 ) = plot3(val(nb + 1,1:alpha:sizeV), val(nb + 2,1:alpha:sizeV),val(nb + 3,1:alpha:sizeV), col1); hold on; else nameFig(tall+ 1) = plot3( val(nb + 1,1:alpha:sizeV), val(nb + 2,1:alpha:sizeV),val(nb + 3,1:alpha:sizeV), 'Color', col1); hold on; end y = nameFig; end
github
inria-larsen/toolbox-probabilistic_movement_primitives-master
logLikelihood.m
.m
toolbox-probabilistic_movement_primitives-master/toolbox_promps/logLikelihood.m
276
utf_8
b0809bc3dbdd70c471b3ca61227a78cd
%function that compute the log likelihood % If A positif symetric % R = chol(A) where R'*R = A function log_p = logLikelihood(x,mu,S) Sigma = chol(2*pi*S); logdetSigma = sum(log(diag(Sigma))); % logdetSigma log_p = -2*logdetSigma -(1/2)*(x-mu)*(S\(x-mu)'); end
github
sergiocastellanos/switch_mexico_data-master
UIExample.m
.m
switch_mexico_data-master/SAM/sam-sdk-2016-3-14-r3/languages/matlab/UIExample.m
586,602
utf_8
0aa9c0ca12306d99f27e822c55971cd2
function varargout = UIExample(varargin) % UIEXAMPLE MATLAB code for UIExample.fig % UIEXAMPLE, by itself, creates a new UIEXAMPLE or raises the existing % singleton*. % % H = UIEXAMPLE returns the handle to a new UIEXAMPLE or the handle to % the existing singleton*. % % UIEXAMPLE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in UIEXAMPLE.M with the given input arguments. % % UIEXAMPLE('Property','Value',...) creates a new UIEXAMPLE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before UIExample_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to UIExample_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help UIExample % Last Modified by GUIDE v2.5 01-Dec-2014 04:23:19 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @UIExample_OpeningFcn, ... 'gui_OutputFcn', @UIExample_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before UIExample is made visible. function UIExample_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to UIExample (see VARARGIN) % Choose default command line output for UIExample handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes UIExample wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = UIExample_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function txtData_Callback(hObject, eventdata, handles) % hObject handle to txtData (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of txtData as text % str2double(get(hObject,'String')) returns contents of txtData as a double % --- Executes during object creation, after setting all properties. function txtData_CreateFcn(hObject, eventdata, handles) % hObject handle to txtData (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnVersion. function btnVersion_Callback(hObject, eventdata, handles) % hObject handle to btnVersion (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sscAPI = SSC.API(); set(handles.txtData,'String',{sprintf('Version = %d',sscAPI.Version);sscAPI.BuildInfo}); % --- Executes on button press in btnModuleList. function btnModuleList_Callback(hObject, eventdata, handles) % hObject handle to btnModuleList (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sscEntry = SSC.Entry(); names = {}; while (sscEntry.Get()) module_name = sscEntry.Name(); description = sscEntry.Description(); version = sscEntry.Version(); names{end+1} = sprintf('Module: %s, version: %d', module_name, version ); names{end+1} = description ; end set(handles.txtData,'String',names); % --- Executes on button press in btnModuleAndVariables. function btnModuleAndVariables_Callback(hObject, eventdata, handles) % hObject handle to btnModuleAndVariables (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sscEntry = SSC.Entry(); names = {}; while (sscEntry.Get()) moduleName = sscEntry.Name(); description = sscEntry.Description(); version = sscEntry.Version(); names{end+1} = sprintf('Module: %s, version: %d', moduleName, version ); names{end+1} = description ; sscModule = SSC.Module(moduleName); sscInfo = SSC.Info(sscModule); while (sscInfo.Get()) names{end+1} = sprintf('\t%s: "%s" ["%s"] %s (%s)',sscInfo.VariableType(), sscInfo.Name(), sscInfo.DataType(), sscInfo.Label(), sscInfo.Units()); end end set(handles.txtData,'String',names); % --- Executes on button press in btnTestArrays. function btnTestArrays_Callback(hObject, eventdata, handles) % hObject handle to btnTestArrays (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); arr = []; for i = 1:10 arr(i) = i / 10.0; end sscData.SetArray('TestArray', arr); retArray = sscData.GetArray('TestArray'); names{end+1} = 'Testing SetArray and GetArray'; for i = 1:10 names{end+1} = sprintf('\treturned array element: %d = %g',i, retArray(i)); end set(handles.txtData,'String',names); % --- Executes on button press in btnTestMatrices. function btnTestMatrices_Callback(hObject, eventdata, handles) % hObject handle to btnTestMatrices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); matrix = [ 1 2 ; 3 4 ; 5 6 ; 7 8; 9 10]; sscData.SetMatrix('TestMatrix', matrix); retMatrix = sscData.GetMatrix('TestMatrix'); [nrows ncols] = size(retMatrix); names{end+1} = sprintf('Testing SetMatrix and GetMatrix size %d x %d', nrows,ncols); for i = 1: nrows for j = 1: ncols names{end+1} = sprintf('\treturned matrix element: (%d,%d) = %g', i,j, retMatrix(i,j)); end end set(handles.txtData,'String',names); % --- Executes on button press in btnPVWatts. function btnPVWatts_Callback(hObject, eventdata, handles) % hObject handle to btnPVWatts (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); sscData.SetString('solar_resource_file', '../../examples/abilene.tm2'); sscData.SetNumber('system_capacity', 4.0); sscData.SetNumber('dc_ac_ratio', 1.1); sscData.SetNumber('tilt', 20); sscData.SetNumber('azimuth', 180); sscData.SetNumber('inv_eff', 96 ); sscData.SetNumber('losses', 14.0757 ); sscData.SetNumber('array_type', 0 ); sscData.SetNumber('gcr', 0.4 ); sscData.SetNumber('adjust:factor', 1 ); mod = SSC.Module('pvwattsv5'); if (mod.Exec(sscData)), tot = sscData.GetNumber('ac_annual'); ac = sscData.GetArray('ac_monthly'); for i = 1:size(ac) names{end+1} = sprintf('[%d]: %g kWh', i,ac(i)); end names{end+1} = sprintf('AC total: %g kWh', tot); names{end+1} = 'PVWatts test OK'; else idx = 0; [result, msg, type, time] = mod.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = mod.Log(idx); end names{end+1} = 'PVWatts example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in bntPVWattsFunc. function bntPVWattsFunc_Callback(hObject, eventdata, handles) % hObject handle to bntPVWattsFunc (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); sscModule = SSC.Module('pvwattsv1_1ts'); sscData.SetNumber('year', 1970); % general year (tiny effect in sun position) sscData.SetNumber('month', 1); % 1-12 sscData.SetNumber('day', 1); %1-number of days in month sscData.SetNumber('hour', 9); % 0-23 sscData.SetNumber('minute', 30); % minute of the hour (typically 30 min for midpoint calculation) sscData.SetNumber('lat', 33.4); % latitude, degrees sscData.SetNumber('lon', -112); % longitude, degrees sscData.SetNumber('tz', -7); % timezone from gmt, hours sscData.SetNumber('time_step', 1); % time step, hours % solar and weather data sscData.SetNumber('beam', 824); % beam (DNI) irradiance, W/m2 sscData.SetNumber('diffuse', 29); % diffuse (DHI) horizontal irradiance, W/m2 sscData.SetNumber('tamb', 9.4); % ambient temp, degree C sscData.SetNumber('wspd', 2.1); % wind speed, m/s sscData.SetNumber('snow', 0); % snow depth, cm (0 is default - when there is snow, ground reflectance is increased. assumes panels have been cleaned off) % system specifications sscData.SetNumber('system_size', 4); % system DC nameplate rating (kW) sscData.SetNumber('derate', 0.77); % derate factor sscData.SetNumber('track_mode', 0); % tracking mode 0=fixed, 1=1axis, 2=2axis sscData.SetNumber('azimuth', 180); % azimuth angle 0=north, 90=east, 180=south, 270=west sscData.SetNumber('tilt', 20); % tilt angle from horizontal 0=flat, 90=vertical % previous timestep values of cell temperature and POA sscData.SetNumber('tcell', 6.94); % calculated cell temperature from previous timestep, degree C, (can default to ambient for morning or if you don't know) sscData.SetNumber('poa', 84.5); % plane of array irradiance (W/m2) from previous time step if (sscModule.Exec(sscData)) poa = sscData.GetNumber('poa'); tcell = sscData.GetNumber('tcell'); dc = sscData.GetNumber('dc'); ac = sscData.GetNumber('ac'); names{end+1} = sprintf('poa: %g W/m2', poa); names{end+1} = sprintf('tcell: %g C', tcell); names{end+1} = sprintf('dc: %g W', dc); names{end+1} = sprintf('ac: %g W', ac); end set(handles.txtData,'String',names); % --- Executes on button press in btnPVSamV1. function btnPVSamV1_Callback(hObject, eventdata, handles) % hObject handle to btnPVSamV1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names={}; data = SSC.Data(); % pvsamv1 compute module call from 2014.11.24 "Photovoltaic, Residential" configuration data.SetNumber( 'system_capacity', 3.8745 ); data.SetString( 'solar_resource_file', '../../examples/USA AZ Phoenix (TMY2).csv' ); data.SetNumber( 'use_wf_albedo', 0 ); data.SetArray( 'albedo', [ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 ] ); data.SetNumber( 'irrad_mode', 0 ); data.SetNumber( 'sky_model', 2 ); data.SetNumber( 'ac_loss', 1 ); data.SetNumber( 'modules_per_string', 9 ); data.SetNumber( 'strings_in_parallel', 2 ); data.SetNumber( 'inverter_count', 1 ); data.SetNumber( 'enable_mismatch_vmax_calc', 0 ); data.SetNumber( 'subarray1_tilt', 20 ); data.SetNumber( 'subarray1_tilt_eq_lat', 0 ); data.SetNumber( 'subarray1_azimuth', 180 ); data.SetNumber( 'subarray1_track_mode', 0 ); data.SetNumber( 'subarray1_rotlim', 45 ); data.SetNumber( 'subarray1_shade_mode', 1 ); data.SetNumber( 'subarray1_gcr', 0.3 ); data.SetArray( 'subarray1_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray1_dcloss', 4.4402 ); data.SetNumber( 'subarray1_mismatch_loss', 2 ); data.SetNumber( 'subarray1_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray1_dcwiring_loss', 2 ); data.SetNumber( 'subarray1_tracking_loss', 0 ); data.SetNumber( 'subarray1_nameplate_loss', 0 ); data.SetNumber( 'subarray2_mismatch_loss', 2 ); data.SetNumber( 'subarray2_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray2_dcwiring_loss', 2 ); data.SetNumber( 'subarray2_tracking_loss', 0 ); data.SetNumber( 'subarray2_nameplate_loss', 0 ); data.SetNumber( 'subarray3_mismatch_loss', 2 ); data.SetNumber( 'subarray3_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray3_dcwiring_loss', 2 ); data.SetNumber( 'subarray3_tracking_loss', 0 ); data.SetNumber( 'subarray3_nameplate_loss', 0 ); data.SetNumber( 'subarray4_mismatch_loss', 2 ); data.SetNumber( 'subarray4_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray4_dcwiring_loss', 2 ); data.SetNumber( 'subarray4_tracking_loss', 0 ); data.SetNumber( 'subarray4_nameplate_loss', 0 ); data.SetNumber( 'acwiring_loss', 1 ); data.SetNumber( 'transformer_loss', 0 ); data.SetNumber( 'subarray1_mod_orient', 0 ); data.SetNumber( 'subarray1_nmodx', 9 ); data.SetNumber( 'subarray1_nmody', 2 ); data.SetNumber( 'subarray1_backtrack', 0 ); data.SetNumber( 'subarray2_enable', 0 ); data.SetNumber( 'subarray2_nstrings', 0 ); data.SetNumber( 'subarray2_tilt', 20 ); data.SetNumber( 'subarray2_tilt_eq_lat', 0 ); data.SetNumber( 'subarray2_azimuth', 180 ); data.SetNumber( 'subarray2_track_mode', 0 ); data.SetNumber( 'subarray2_rotlim', 45 ); data.SetNumber( 'subarray2_shade_mode', 1 ); data.SetNumber( 'subarray2_gcr', 0.3 ); data.SetArray( 'subarray2_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray2_dcloss', 4.4402 ); data.SetNumber( 'subarray2_mod_orient', 0 ); data.SetNumber( 'subarray2_nmodx', 9 ); data.SetNumber( 'subarray2_nmody', 2 ); data.SetNumber( 'subarray2_backtrack', 0 ); data.SetNumber( 'subarray3_enable', 0 ); data.SetNumber( 'subarray3_nstrings', 0 ); data.SetNumber( 'subarray3_tilt', 20 ); data.SetNumber( 'subarray3_tilt_eq_lat', 0 ); data.SetNumber( 'subarray3_azimuth', 180 ); data.SetNumber( 'subarray3_track_mode', 0 ); data.SetNumber( 'subarray3_rotlim', 45 ); data.SetNumber( 'subarray3_shade_mode', 1 ); data.SetNumber( 'subarray3_gcr', 0.3 ); data.SetArray( 'subarray3_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray3_dcloss', 4.4402 ); data.SetNumber( 'subarray3_mod_orient', 0 ); data.SetNumber( 'subarray3_nmodx', 9 ); data.SetNumber( 'subarray3_nmody', 2 ); data.SetNumber( 'subarray3_backtrack', 0 ); data.SetNumber( 'subarray4_enable', 0 ); data.SetNumber( 'subarray4_nstrings', 0 ); data.SetNumber( 'subarray4_tilt', 20 ); data.SetNumber( 'subarray4_tilt_eq_lat', 0 ); data.SetNumber( 'subarray4_azimuth', 180 ); data.SetNumber( 'subarray4_track_mode', 0 ); data.SetNumber( 'subarray4_rotlim', 45 ); data.SetNumber( 'subarray4_shade_mode', 1 ); data.SetNumber( 'subarray4_gcr', 0.3 ); data.SetArray( 'subarray4_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray4_dcloss', 4.4402 ); data.SetNumber( 'subarray4_mod_orient', 0 ); data.SetNumber( 'subarray4_nmodx', 9 ); data.SetNumber( 'subarray4_nmody', 2 ); data.SetNumber( 'subarray4_backtrack', 0 ); data.SetNumber( 'module_model', 1 ); data.SetNumber( 'spe_area', 0.74074 ); data.SetNumber( 'spe_rad0', 200 ); data.SetNumber( 'spe_rad1', 400 ); data.SetNumber( 'spe_rad2', 600 ); data.SetNumber( 'spe_rad3', 800 ); data.SetNumber( 'spe_rad4', 1000 ); data.SetNumber( 'spe_eff0', 13.5 ); data.SetNumber( 'spe_eff1', 13.5 ); data.SetNumber( 'spe_eff2', 13.5 ); data.SetNumber( 'spe_eff3', 13.5 ); data.SetNumber( 'spe_eff4', 13.5 ); data.SetNumber( 'spe_reference', 4 ); data.SetNumber( 'spe_module_structure', 0 ); data.SetNumber( 'spe_a', -3.56 ); data.SetNumber( 'spe_b', -0.075 ); data.SetNumber( 'spe_dT', 3 ); data.SetNumber( 'spe_temp_coeff', -0.5 ); data.SetNumber( 'spe_fd', 1 ); data.SetNumber( 'cec_area', 1.244 ); data.SetNumber( 'cec_a_ref', 1.9816 ); data.SetNumber( 'cec_adjust', 20.8 ); data.SetNumber( 'cec_alpha_sc', 0.002651 ); data.SetNumber( 'cec_beta_oc', -0.14234 ); data.SetNumber( 'cec_gamma_r', -0.407 ); data.SetNumber( 'cec_i_l_ref', 5.754 ); data.SetNumber( 'cec_i_mp_ref', 5.25 ); data.SetNumber( 'cec_i_o_ref', 1.919e-010 ); data.SetNumber( 'cec_i_sc_ref', 5.75 ); data.SetNumber( 'cec_n_s', 72 ); data.SetNumber( 'cec_r_s', 0.105 ); data.SetNumber( 'cec_r_sh_ref', 160.48 ); data.SetNumber( 'cec_t_noct', 49.2 ); data.SetNumber( 'cec_v_mp_ref', 41 ); data.SetNumber( 'cec_v_oc_ref', 47.7 ); data.SetNumber( 'cec_temp_corr_mode', 0 ); data.SetNumber( 'cec_standoff', 6 ); data.SetNumber( 'cec_height', 0 ); data.SetNumber( 'cec_mounting_config', 0 ); data.SetNumber( 'cec_heat_transfer', 0 ); data.SetNumber( 'cec_mounting_orientation', 0 ); data.SetNumber( 'cec_gap_spacing', 0.05 ); data.SetNumber( 'cec_module_width', 1 ); data.SetNumber( 'cec_module_length', 1.244 ); data.SetNumber( 'cec_array_rows', 1 ); data.SetNumber( 'cec_array_cols', 10 ); data.SetNumber( 'cec_backside_temp', 20 ); data.SetNumber( '6par_celltech', 1 ); data.SetNumber( '6par_vmp', 30 ); data.SetNumber( '6par_imp', 6 ); data.SetNumber( '6par_voc', 37 ); data.SetNumber( '6par_isc', 7 ); data.SetNumber( '6par_bvoc', -0.11 ); data.SetNumber( '6par_aisc', 0.004 ); data.SetNumber( '6par_gpmp', -0.41 ); data.SetNumber( '6par_nser', 60 ); data.SetNumber( '6par_area', 1.3 ); data.SetNumber( '6par_tnoct', 46 ); data.SetNumber( '6par_standoff', 6 ); data.SetNumber( '6par_mounting', 0 ); data.SetNumber( 'snl_module_structure', 0 ); data.SetNumber( 'snl_a', -3.62 ); data.SetNumber( 'snl_b', -0.075 ); data.SetNumber( 'snl_dtc', 3 ); data.SetNumber( 'snl_ref_a', -3.62 ); data.SetNumber( 'snl_ref_b', -0.075 ); data.SetNumber( 'snl_ref_dT', 3 ); data.SetNumber( 'snl_fd', 1 ); data.SetNumber( 'snl_a0', 0.94045 ); data.SetNumber( 'snl_a1', 0.052641 ); data.SetNumber( 'snl_a2', -0.0093897 ); data.SetNumber( 'snl_a3', 0.00072623 ); data.SetNumber( 'snl_a4', -1.9938e-005 ); data.SetNumber( 'snl_aimp', -0.00038 ); data.SetNumber( 'snl_aisc', 0.00061 ); data.SetNumber( 'snl_area', 1.244 ); data.SetNumber( 'snl_b0', 1 ); data.SetNumber( 'snl_b1', -0.002438 ); data.SetNumber( 'snl_b2', 0.0003103 ); data.SetNumber( 'snl_b3', -1.246e-005 ); data.SetNumber( 'snl_b4', 2.11e-007 ); data.SetNumber( 'snl_b5', -1.36e-009 ); data.SetNumber( 'snl_bvmpo', -0.139 ); data.SetNumber( 'snl_bvoco', -0.136 ); data.SetNumber( 'snl_c0', 1.0039 ); data.SetNumber( 'snl_c1', -0.0039 ); data.SetNumber( 'snl_c2', 0.291066 ); data.SetNumber( 'snl_c3', -4.73546 ); data.SetNumber( 'snl_c4', 0.9942 ); data.SetNumber( 'snl_c5', 0.0058 ); data.SetNumber( 'snl_c6', 1.0723 ); data.SetNumber( 'snl_c7', -0.0723 ); data.SetNumber( 'snl_impo', 5.25 ); data.SetNumber( 'snl_isco', 5.75 ); data.SetNumber( 'snl_ixo', 5.65 ); data.SetNumber( 'snl_ixxo', 3.85 ); data.SetNumber( 'snl_mbvmp', 0 ); data.SetNumber( 'snl_mbvoc', 0 ); data.SetNumber( 'snl_n', 1.221 ); data.SetNumber( 'snl_series_cells', 72 ); data.SetNumber( 'snl_vmpo', 40 ); data.SetNumber( 'snl_voco', 47.7 ); data.SetNumber( 'inverter_model', 0 ); data.SetNumber( 'inv_snl_c0', -6.57929e-006 ); data.SetNumber( 'inv_snl_c1', 4.72925e-005 ); data.SetNumber( 'inv_snl_c2', 0.00202195 ); data.SetNumber( 'inv_snl_c3', 0.000285321 ); data.SetNumber( 'inv_snl_paco', 4000 ); data.SetNumber( 'inv_snl_pdco', 4186 ); data.SetNumber( 'inv_snl_pnt', 0.17 ); data.SetNumber( 'inv_snl_pso', 19.7391 ); data.SetNumber( 'inv_snl_vdco', 310.67 ); data.SetNumber( 'inv_snl_vdcmax', 600 ); data.SetNumber( 'inv_ds_paco', 4000 ); data.SetNumber( 'inv_ds_eff', 96 ); data.SetNumber( 'inv_ds_pnt', 1 ); data.SetNumber( 'inv_ds_pso', 0 ); data.SetNumber( 'inv_ds_vdco', 310 ); data.SetNumber( 'inv_ds_vdcmax', 600 ); data.SetNumber( 'inv_pd_paco', 4000 ); data.SetNumber( 'inv_pd_pdco', 4210.53 ); data.SetArray( 'inv_pd_partload', [ 0, 0.404, 0.808, 1.212, 1.616, 2.02, 2.424, 2.828, 3.232, 3.636, 4.04, 4.444, 4.848, 5.252, 5.656, 6.06, 6.464, 6.868, 7.272, 7.676, 8.08, 8.484, 8.888, 9.292, 9.696, 10.1, 10.504, 10.908, 11.312, 11.716, 12.12, 12.524, 12.928, 13.332, 13.736, 14.14, 14.544, 14.948, 15.352, 15.756, 16.16, 16.564, 16.968, 17.372, 17.776, 18.18, 18.584, 18.988, 19.392, 19.796, 20.2, 20.604, 21.008, 21.412, 21.816, 22.22, 22.624, 23.028, 23.432, 23.836, 24.24, 24.644, 25.048, 25.452, 25.856, 26.26, 26.664, 27.068, 27.472, 27.876, 28.28, 28.684, 29.088, 29.492, 29.896, 30.3, 30.704, 31.108, 31.512, 31.916, 32.32, 32.724, 33.128, 33.532, 33.936, 34.34, 34.744, 35.148, 35.552, 35.956, 36.36, 36.764, 37.168, 37.572, 37.976, 38.38, 38.784, 39.188, 39.592, 39.996, 40.4, 40.804, 41.208, 41.612, 42.016, 42.42, 42.824, 43.228, 43.632, 44.036, 44.44, 44.844, 45.248, 45.652, 46.056, 46.46, 46.864, 47.268, 47.672, 48.076, 48.48, 48.884, 49.288, 49.692, 50.096, 50.5, 50.904, 51.308, 51.712, 52.116, 52.52, 52.924, 53.328, 53.732, 54.136, 54.54, 54.944, 55.348, 55.752, 56.156, 56.56, 56.964, 57.368, 57.772, 58.176, 58.58, 58.984, 59.388, 59.792, 60.196, 60.6, 61.004, 61.408, 61.812, 62.216, 62.62, 63.024, 63.428, 63.832, 64.236, 64.64, 65.044, 65.448, 65.852, 66.256, 66.66, 67.064, 67.468, 67.872, 68.276, 68.68, 69.084, 69.488, 69.892, 70.296, 70.7, 71.104, 71.508, 71.912, 72.316, 72.72, 73.124, 73.528, 73.932, 74.336, 74.74, 75.144, 75.548, 75.952, 76.356, 76.76, 77.164, 77.568, 77.972, 78.376, 78.78, 79.184, 79.588, 79.992, 80.396, 80.8, 81.204, 81.608, 82.012, 82.416, 82.82, 83.224, 83.628, 84.032, 84.436, 84.84, 85.244, 85.648, 86.052, 86.456, 86.86, 87.264, 87.668, 88.072, 88.476, 88.88, 89.284, 89.688, 90.092, 90.496, 90.9, 91.304, 91.708, 92.112, 92.516, 92.92, 93.324, 93.728, 94.132, 94.536, 94.94, 95.344, 95.748, 96.152, 96.556, 96.96, 97.364, 97.768, 98.172, 98.576, 98.98, 99.384, 99.788, 100.192, 100.596, 101 ] ); data.SetArray( 'inv_pd_efficiency', [ 0, 0, 34.42, 55.2, 65.59, 71.82, 75.97, 78.94, 81.17, 82.9, 84.28, 85.42, 86.36, 87.16, 87.84, 88.44, 88.95, 89.41, 89.82, 90.18, 90.51, 90.81, 91.08, 91.32, 91.55, 91.75, 91.95, 92.12, 92.29, 92.44, 92.58, 92.72, 92.84, 92.96, 93.07, 93.17, 93.27, 93.37, 93.45, 93.54, 93.62, 93.69, 93.76, 93.83, 93.9, 93.96, 94.02, 94.08, 94.13, 94.18, 94.23, 94.28, 94.33, 94.37, 94.42, 94.46, 94.5, 94.54, 94.57, 94.61, 94.64, 94.68, 94.71, 94.74, 94.77, 94.8, 94.83, 94.86, 94.89, 94.91, 94.94, 94.96, 94.98, 95.01, 95.03, 95.05, 95.07, 95.09, 95.11, 95.13, 95.15, 95.17, 95.19, 95.21, 95.23, 95.24, 95.26, 95.28, 95.29, 95.31, 95.32, 95.34, 95.35, 95.36, 95.38, 95.39, 95.4, 95.42, 95.43, 95.44, 95.45, 95.47, 95.48, 95.49, 95.5, 95.51, 95.52, 95.53, 95.54, 95.55, 95.56, 95.57, 95.58, 95.59, 95.6, 95.61, 95.62, 95.63, 95.64, 95.64, 95.65, 95.66, 95.67, 95.68, 95.68, 95.69, 95.7, 95.71, 95.71, 95.72, 95.73, 95.73, 95.74, 95.75, 95.75, 95.76, 95.77, 95.77, 95.78, 95.78, 95.79, 95.8, 95.8, 95.81, 95.81, 95.82, 95.82, 95.83, 95.83, 95.84, 95.84, 95.85, 95.85, 95.86, 95.86, 95.87, 95.87, 95.88, 95.88, 95.89, 95.89, 95.89, 95.9, 95.9, 95.91, 95.91, 95.91, 95.92, 95.92, 95.93, 95.93, 95.93, 95.94, 95.94, 95.94, 95.95, 95.95, 95.96, 95.96, 95.96, 95.97, 95.97, 95.97, 95.98, 95.98, 95.98, 95.98, 95.99, 95.99, 95.99, 96, 96, 96, 96.01, 96.01, 96.01, 96.01, 96.02, 96.02, 96.02, 96.02, 96.03, 96.03, 96.03, 96.03, 96.04, 96.04, 96.04, 96.04, 96.05, 96.05, 96.05, 96.05, 96.06, 96.06, 96.06, 96.06, 96.06, 96.07, 96.07, 96.07, 96.07, 96.07, 96.08, 96.08, 96.08, 96.08, 96.08, 96.09, 96.09, 96.09, 96.09, 96.09, 96.09, 96.1, 96.1, 96.1, 96.1, 96.1, 96.1, 96.11, 96.11, 96.11, 96.11, 96.11, 96.11, 96.12, 96.12, 96.12, 96.12, 96.12 ] ); data.SetNumber( 'inv_pd_pnt', 0 ); data.SetNumber( 'inv_pd_vdco', 310 ); data.SetNumber( 'inv_pd_vdcmax', 600 ); data.SetNumber( 'adjust:factor', 1 ); module = SSC.Module('pvsamv1'); if (module.Exec(data)) enet = data.GetNumber('annual_energy'); cf = data.GetNumber('capacity_factor'); kWhperkW = data.GetNumber('kwh_per_kw'); names{end+1} = sprintf('Annual energy : %g kWh', enet); names{end+1} = sprintf('Capacity factor : %g %%', cf); names{end+1} = sprintf('First year kWhAC/kWDC : %g ', kWhperkW); names{end+1} = 'PVSamV1 test OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'pvsamv1 example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in btnBelpe. function btnBelpe_Callback(hObject, eventdata, handles) % hObject handle to btnBelpe (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % belpe compute module call from 2014.11.24 "Photovoltaic, Residential" configuration names={}; data = SSC.Data(); data.SetNumber( 'en_belpe', 0 ); data.SetArray( 'e_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetArray( 'p_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetString( 'solar_resource_file', '../../examples/USA AZ Phoenix (TMY2).csv' ); data.SetNumber( 'floor_area', 2000 ); data.SetNumber( 'Stories', 2 ); data.SetNumber( 'YrBuilt', 1980 ); data.SetNumber( 'Retrofits', 0 ); data.SetNumber( 'Occupants', 4 ); data.SetArray( 'Occ_Schedule', [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ); data.SetNumber( 'THeat', 68 ); data.SetNumber( 'TCool', 76 ); data.SetNumber( 'THeatSB', 68 ); data.SetNumber( 'TCoolSB', 76 ); data.SetArray( 'T_Sched', [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ); data.SetNumber( 'en_heat', 1 ); data.SetNumber( 'en_cool', 1 ); data.SetNumber( 'en_fridge', 1 ); data.SetNumber( 'en_range', 1 ); data.SetNumber( 'en_dish', 1 ); data.SetNumber( 'en_wash', 1 ); data.SetNumber( 'en_dry', 1 ); data.SetNumber( 'en_mels', 1 ); data.SetArray( 'Monthly_util', [ 725, 630, 665, 795, 1040, 1590, 1925, 1730, 1380, 1080, 635, 715 ] ); module = SSC.Module('belpe'); if (module.Exec(data)) pload = data.GetArray('p_load'); eload = data.GetArray('e_load'); for i = 1:size(eload) names{end+1} = sprintf('[%d]: %g kWh', i,eload(i)); end for i = 1:size(pload) names{end+1} = sprintf('[%d]: %g kW', i,pload(i)); end names{end+1} = 'belpe test OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'belpe example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in btnUtilityRate3. function btnUtilityRate3_Callback(hObject, eventdata, handles) % hObject handle to btnUtilityRate3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %utilityrate3 compute module call from 2014.11.24 "Photovoltaic, Residential" configuration names={}; data = SSC.Data(); data.SetNumber( 'analysis_period', 25 ); data.SetArray( 'hourly_energy', [ -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.237892, 1.55848, 2.07121, 2.54933, 2.77945, 2.42071, 1.25773, 0.593002, 0.235599, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0131131, 0.701084, 1.32711, 1.76305, 2.5502, 2.29087, 1.83336, 2.01766, 0.881524, 0.298536, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00528433, 0.737449, 1.51351, 2.14093, 2.39439, 2.32012, 1.83616, 0.712188, 0.32981, 0.087085, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.163208, 0.438056, 0.343575, 1.18182, 1.85202, 1.85609, 0.842696, 0.641464, 0.260647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298244, 0.0723487, 0.189837, 0.2028, 0.559363, 0.610891, 0.424415, 0.21567, 0.0438746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228363, 0.399806, 1.6819, 2.36102, 2.50324, 2.37421, 1.99454, 1.55301, 0.560049, 0.012407, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257482, 1.26562, 1.75789, 2.28831, 1.9963, 2.05102, 1.71107, 1.21754, 0.264943, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.531982, 1.2253, 1.74739, 2.31801, 2.38827, 2.23093, 1.90488, 1.21141, 0.498004, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00198372, 0.593078, 1.31965, 2.07685, 2.40343, 2.53277, 2.29068, 2.13211, 1.5245, 0.603361, 0.0113138, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0032201, 0.661057, 1.43, 2.03944, 2.29233, 2.56232, 2.47674, 2.22701, 1.32747, 0.482224, 0.0189405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.14109, 0.281369, 0.61837, 1.17956, 1.35886, 1.24448, 0.674592, 0.60305, 0.306165, 0.0125432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00466503, 0.668332, 1.4492, 2.1348, 2.45217, 2.67319, 2.67974, 2.32841, 1.71872, 0.753559, 0.0235207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.031651, 0.710846, 1.51631, 2.0761, 2.59069, 2.73589, 2.61101, 2.27566, 1.28793, 0.596088, 0.0825364, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0251314, 0.674564, 1.48159, 2.16343, 2.52639, 2.6672, 2.58934, 2.19609, 1.67186, 0.858018, 0.0881195, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.207666, 0.579903, 0.912926, 1.00532, 0.884244, 0.696492, 0.608002, 0.459878, 0.217412, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188015, 0.714458, 1.06288, 1.94864, 2.57486, 2.31493, 1.9987, 1.61288, 0.662761, 0.0476338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803296, 0.341384, 0.735301, 0.726501, 0.711979, 1.14964, 1.19626, 0.328706, 0.0181347, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0305592, 0.156043, 0.341021, 0.474378, 0.914521, 0.580048, 0.433983, 0.686068, 0.103174, 0.0121079, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0060497, 0.703844, 1.48762, 2.17949, 2.59902, 2.78725, 2.62568, 2.43746, 1.82643, 0.823967, 0.0825833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0158048, 0.702795, 1.61301, 2.33222, 2.67688, 2.8999, 2.90041, 2.53403, 1.93685, 0.855748, 0.0747284, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.523808, 1.61883, 2.32098, 2.57078, 2.77892, 2.55405, 2.36358, 1.7967, 0.825932, 0.0744693, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179379, 0.743217, 1.67058, 2.40603, 2.83378, 2.95908, 2.8987, 2.57699, 1.95782, 0.894908, 0.0864452, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0209617, 0.775254, 1.67189, 2.35763, 2.71016, 2.76434, 2.74124, 2.41092, 1.87865, 0.848176, 0.0809343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0518558, 0.766187, 1.66598, 2.2831, 2.66382, 2.84186, 2.73265, 2.48005, 1.87026, 1.04913, 0.183123, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.02225, 0.799729, 1.69815, 1.74506, 2.89107, 3.02621, 2.94313, 2.62588, 1.87551, 0.951237, 0.112167, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0256666, 0.747031, 1.61328, 2.20768, 2.59202, 2.81236, 2.77996, 2.41353, 1.92279, 0.651178, 0.124277, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00617361, 0.636098, 1.20967, 2.07618, 2.11638, 2.66892, 2.49594, 1.6139, 0.809756, 0.322557, 0.0374598, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3227, 1.28248, 2.55227, 2.75435, 2.56264, 1.83712, 2.17066, 1.50979, 0.754942, 0.137741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0211536, 0.731656, 1.56781, 2.22288, 2.54379, 2.73358, 2.61749, 2.25027, 1.58404, 0.641335, 0.0444765, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120561, 0.753942, 1.58639, 2.09348, 2.40988, 2.82317, 2.74801, 2.46944, 1.86985, 0.945149, 0.207441, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0464183, 0.69387, 1.56588, 2.09747, 2.1085, 1.67782, 1.826, 2.01889, 0.981731, 0.438836, 0.136136, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0521473, 0.773615, 1.65551, 2.26765, 2.6259, 2.82139, 2.72325, 2.49335, 1.8784, 1.07924, 0.227448, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0671193, 0.830364, 1.72201, 2.35263, 2.75282, 2.91385, 2.75284, 2.48439, 1.91677, 1.14569, 0.260342, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0473347, 0.585262, 1.62684, 2.28808, 1.7178, 2.71214, 2.29105, 0.924231, 1.16708, 0.272148, 0.0880208, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0342007, 0.638932, 1.42686, 1.88306, 2.20658, 1.79152, 1.62162, 0.690246, 0.524674, 0.310858, 0.0494554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.060942, 0.64943, 1.43918, 2.28859, 2.4677, 2.61078, 2.8912, 2.31511, 1.93241, 1.16167, 0.222327, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0556933, 0.690716, 1.47685, 2.1498, 2.60054, 2.8157, 2.71164, 2.45462, 1.72675, 0.820188, 0.175575, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0746355, 0.51225, 0.809798, 0.77761, 0.967812, 1.14769, 1.38166, 1.2552, 1.21951, 0.630871, 0.119638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0667311, 0.786457, 1.6966, 2.31386, 2.71669, 2.78051, 2.73365, 2.54435, 1.94229, 1.16229, 0.281953, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065812, 0.845292, 1.76217, 2.41753, 2.77411, 2.88281, 2.15553, 0.793721, 0.484992, 0.441506, 0.13502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0599431, 0.612415, 1.70107, 2.26915, 1.88099, 2.59508, 2.5845, 2.19306, 2.00529, 0.731647, 0.297952, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0790636, 0.811192, 1.61865, 2.18342, 2.67058, 2.76951, 2.84814, 2.54805, 1.98559, 1.19967, 0.30857, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0906775, 0.789972, 1.70023, 2.00477, 2.46167, 2.65024, 1.74838, 1.41502, 1.72101, 0.938604, 0.28449, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0724386, 0.702447, 0.868642, 0.546874, 2.14543, 1.31574, 0.82919, 1.22686, 0.897264, 0.500842, 0.0736991, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0201163, 0.128451, 0.300408, 0.76382, 0.915334, 1.68752, 1.28516, 2.06155, 1.53318, 0.94012, 0.167664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0389222, 0.180573, 0.613588, 0.758888, 0.51899, 1.17105, 1.06341, 0.93313, 0.73764, 0.569722, 0.0709034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0658192, 0.431479, 1.19453, 2.24483, 2.40198, 3.02736, 2.91366, 2.58129, 1.9729, 1.13816, 0.27833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.114606, 0.925966, 1.84552, 2.36439, 2.87467, 2.91533, 2.80996, 2.61612, 2.1303, 1.26343, 0.359798, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129498, 0.933003, 1.73591, 2.48908, 2.81416, 3.01391, 2.84047, 2.65169, 2.12741, 1.30098, 0.374405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.157235, 1.02468, 1.90783, 2.65349, 2.98748, 3.06543, 2.94032, 2.64438, 2.18112, 1.37498, 0.390754, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822836, 0.897545, 1.82385, 2.05875, 2.70064, 2.67203, 2.56134, 2.32863, 1.99009, 1.31135, 0.349636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0811695, 0.920532, 1.56637, 2.43379, 2.65679, 3.13148, 3.25006, 2.87731, 1.17271, 0.480157, 0.1948, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181889, 1.03881, 2.03771, 2.65972, 3.12291, 3.27627, 3.2033, 2.83183, 2.18556, 1.43695, 0.461076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.183358, 1.07588, 1.96893, 2.63122, 3.01158, 3.06493, 3.0246, 2.80486, 2.22148, 1.39715, 0.455539, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.196156, 1.08146, 1.94145, 2.36668, 2.99154, 3.0687, 2.70037, 2.68487, 2.10532, 1.31872, 0.456283, 0.000657285, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113946, 0.551505, 1.65781, 2.18213, 2.14962, 2.72893, 2.81724, 2.40752, 1.84958, 1.05666, 0.245989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155523, 0.86744, 1.74231, 2.24297, 2.90425, 3.00904, 2.88222, 2.52595, 2.01596, 1.2348, 0.370649, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.20253, 1.08269, 1.98556, 2.13004, 2.4654, 2.72754, 2.38109, 2.11288, 1.52105, 1.14451, 0.333204, 0.00459637, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.154559, 0.95803, 1.79215, 2.42852, 2.78651, 2.78852, 2.7031, 2.42729, 2.00225, 1.21656, 0.385532, 0.00223397, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0916559, 0.549396, 0.75385, 2.22277, 2.12315, 1.40701, 1.31119, 1.46777, 1.35661, 0.926233, 0.34359, 0.0106012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0397063, 0.327252, 0.392382, 0.483877, 1.00748, 1.03345, 2.16925, 2.29605, 1.59847, 0.773749, 0.33413, 0.00651965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0787509, 0.506391, 0.831606, 1.75896, 2.63316, 2.87503, 2.59263, 2.69132, 2.15608, 1.3304, 0.424729, 0.00319275, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.261674, 1.15784, 2.05384, 2.69619, 3.02786, 3.19709, 3.17375, 2.86824, 2.30189, 1.48386, 0.534188, 0.0138144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.256328, 1.18148, 2.04045, 2.65444, 2.91485, 3.11753, 3.0243, 2.68981, 2.18902, 1.41382, 0.494521, 0.0134833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.244045, 1.13313, 1.99179, 2.58184, 2.93921, 3.1217, 3.05008, 2.56994, 2.0232, 1.28437, 0.402903, 0.0178204, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266809, 1.15784, 1.91754, 2.55805, 2.88242, 2.99619, 3.00307, 2.5902, 1.81057, 1.19422, 0.47619, 0.0185877, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.040466, 0.230568, 0.309243, 0.582696, 0.646274, 0.6753, 1.33353, 0.569191, 0.482061, 0.317662, 0.116617, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.080749, 0.451759, 0.425689, 0.642428, 1.19467, 2.38699, 2.79147, 2.29211, 0.50947, 0.513716, 0.394361, 0.0107271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.317282, 1.21208, 2.12014, 2.62569, 3.00869, 3.21302, 3.1563, 2.79564, 2.2559, 1.48345, 0.545944, 0.0202432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.26923, 1.13371, 1.96823, 2.55829, 2.69989, 2.88385, 2.65694, 2.32741, 1.81625, 1.2666, 0.331561, 0.0241534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.220531, 0.779394, 1.62667, 2.23521, 2.55763, 2.69444, 3.02501, 2.382, 1.97013, 1.29111, 0.297147, 0.0292915, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.336994, 1.20974, 1.86143, 2.32418, 2.49948, 2.82045, 2.32595, 2.59306, 2.10933, 1.43306, 0.535486, 0.0210137, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3127, 1.18289, 1.90734, 2.46451, 2.91878, 3.01669, 2.93144, 2.41273, 2.14119, 1.30841, 0.485927, 0.024567, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.378011, 1.30699, 2.11861, 2.68462, 3.05483, 3.06153, 3.09706, 2.75535, 2.19957, 1.45378, 0.5578, 0.0276917, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.347243, 1.2271, 2.04089, 2.6192, 2.92527, 3.0189, 2.89591, 2.66876, 2.10579, 1.40257, 0.473208, 0.0229249, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000403494, 0.337658, 1.16051, 1.82589, 2.45538, 2.57733, 2.89009, 2.76417, 2.60689, 1.98839, 1.30573, 0.483454, 0.0211595, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00808479, 0.314223, 0.910464, 1.80632, 2.46236, 2.27492, 2.75766, 2.39879, 2.29447, 1.39087, 1.0941, 0.337407, 0.0271273, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00172127, 0.109056, 0.179196, 0.37062, 1.20613, 2.08287, 0.705299, 0.906088, 1.19809, 0.679673, 0.796208, 0.283034, 0.0252436, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0649632, 0.368292, 0.792937, 0.993877, 1.09533, 1.2053, 1.20991, 1.34161, 0.955249, 1.14, 0.382964, 0.0161921, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00881097, 0.207262, 0.916083, 1.71332, 2.83532, 2.64491, 3.34268, 3.15964, 2.65037, 2.11147, 1.3217, 0.547824, 0.034669, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011599, 0.440098, 1.35861, 2.09894, 2.4451, 3.05401, 2.942, 2.68885, 2.75181, 2.17083, 1.51662, 0.59046, 0.0282801, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177853, 0.405087, 1.21104, 2.01975, 2.36418, 3.00371, 2.9622, 2.21349, 1.44564, 1.52112, 0.816214, 0.483528, 0.0346759, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112733, 0.467786, 1.38389, 2.12949, 2.741, 2.73288, 3.15948, 3.11531, 2.77932, 2.24467, 1.48522, 0.587207, 0.0326499, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0141428, 0.43465, 1.31316, 2.09238, 2.6159, 2.90832, 3.01194, 2.95357, 2.65734, 2.14486, 1.33686, 0.483806, 0.0326749, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00889213, 0.315005, 0.958325, 0.798187, 1.93203, 0.912173, 1.94889, 3.20138, 2.51446, 2.19894, 1.45864, 0.60054, 0.0355296, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0288925, 0.471801, 1.37805, 2.13256, 2.53429, 2.89463, 3.05365, 3.09967, 2.81197, 2.29455, 1.39346, 0.577399, 0.0359271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0184371, 0.510202, 1.42878, 2.15722, 2.72898, 3.09284, 3.229, 3.03457, 2.75948, 2.17573, 1.49261, 0.585832, 0.0395015, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148868, 0.536923, 1.45241, 2.2231, 2.77469, 3.1491, 3.1734, 3.02611, 2.55435, 2.09986, 1.31292, 0.554965, 0.0475305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0236629, 0.502378, 1.33382, 2.05257, 2.53122, 2.77383, 3.06528, 2.91351, 2.50308, 1.76945, 1.12408, 0.538006, 0.0450965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266797, 0.533507, 1.4479, 2.26204, 2.84049, 3.17678, 3.32571, 3.23657, 2.90545, 2.31084, 1.52298, 0.5994, 0.0447657, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0253841, 0.565154, 1.43935, 2.16465, 2.61938, 3.00398, 3.04388, 2.90682, 2.64879, 2.16171, 1.44131, 0.586497, 0.0399844, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0392779, 0.529717, 1.41222, 2.13948, 2.64051, 2.93131, 3.02475, 2.92114, 2.66524, 2.14606, 1.40554, 0.509182, 0.0440143, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0399866, 0.537241, 1.40124, 2.12679, 2.60461, 2.99403, 3.15687, 3.07992, 2.74554, 2.20116, 1.41404, 0.565366, 0.0478372, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0322141, 0.608073, 1.52175, 2.30897, 2.89622, 3.20449, 3.33122, 3.15288, 2.69974, 2.00487, 1.1623, 0.437806, 0.0718506, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0354949, 0.630341, 1.56012, 2.32286, 2.83081, 3.07942, 3.23508, 3.10054, 2.5652, 1.89407, 1.14653, 0.584859, 0.0707731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0548709, 0.536024, 1.46114, 2.27397, 2.7781, 3.06547, 3.13765, 3.03407, 2.74069, 2.18397, 1.44939, 0.588229, 0.0489847, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0405229, 0.652224, 1.57546, 2.31813, 2.79927, 3.11065, 3.19751, 3.08447, 2.77844, 2.17496, 1.30624, 0.50788, 0.0664955, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0609572, 0.626741, 1.46374, 2.06884, 2.60626, 2.92929, 3.04597, 2.93743, 2.6767, 2.1617, 1.42157, 0.575155, 0.0537245, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0569194, 0.536364, 1.20958, 1.88815, 2.1139, 2.11402, 2.28908, 2.19308, 2.07061, 1.81591, 1.23062, 0.518255, 0.0506118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0750783, 0.526686, 1.51303, 2.24141, 2.70579, 3.07067, 3.22044, 3.13129, 2.79936, 2.24669, 1.48998, 0.610699, 0.0526024, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.058005, 0.659603, 1.54682, 2.25896, 2.74218, 3.10186, 3.23616, 3.14822, 2.83675, 2.28725, 1.52222, 0.625084, 0.0534571, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0650978, 0.653472, 1.53213, 2.25282, 2.72627, 3.02882, 3.1423, 3.03596, 2.75289, 2.22356, 1.46622, 0.599287, 0.0587027, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0647384, 0.682668, 1.55742, 2.2204, 2.51572, 2.73816, 2.79876, 2.69893, 2.63468, 2.20494, 1.48071, 0.617379, 0.0542741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0662758, 0.662644, 1.19351, 2.20201, 2.62177, 2.00008, 1.98446, 2.13843, 1.45937, 0.979667, 0.76762, 0.360797, 0.0794803, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0708823, 0.438068, 1.4136, 1.21455, 1.94576, 2.67061, 2.94195, 2.90573, 2.49822, 1.98532, 1.3096, 0.596536, 0.074317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0676154, 0.66044, 1.48344, 2.20409, 2.68566, 2.95263, 2.99171, 2.89686, 2.62648, 1.85678, 0.762592, 0.256873, 0.0516922, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735763, 0.681711, 1.53943, 2.26025, 2.76668, 3.08078, 3.18449, 3.07735, 2.76899, 2.21142, 1.45044, 0.576247, 0.0675459, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722196, 0.715952, 1.60383, 2.36278, 2.90965, 3.24567, 3.36799, 3.25055, 2.90777, 2.31158, 1.53354, 0.645628, 0.0574003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0858675, 0.71055, 1.44588, 1.61342, 1.61347, 2.65035, 3.17898, 2.99356, 2.18792, 1.23177, 0.625731, 0.388882, 0.0685941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0700062, 0.790228, 1.69931, 2.43393, 2.91848, 3.16941, 3.28006, 3.11227, 2.57059, 1.69833, 1.05156, 0.607487, 0.0504325, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0981146, 0.624676, 1.08738, 1.20998, 1.65829, 2.14022, 2.58157, 2.60387, 2.26207, 1.68797, 1.39096, 0.578985, 0.0590457, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.085902, 0.808598, 1.72312, 2.40023, 2.80219, 3.0116, 3.07193, 3.0028, 2.72769, 1.82679, 0.928683, 0.470704, 0.0869378, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0962456, 0.774851, 1.63656, 2.27717, 2.64756, 2.91136, 2.75283, 2.51511, 2.12374, 1.5262, 1.22164, 0.637387, 0.0651746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12208, 0.772775, 1.65919, 2.3125, 2.75844, 2.94242, 3.10179, 2.57348, 2.18172, 2.09362, 1.22624, 0.607346, 0.0558773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.109762, 0.757301, 1.60192, 2.2786, 2.69139, 3.01823, 3.1452, 3.0452, 2.72662, 2.1803, 1.43945, 0.612033, 0.049229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.10675, 0.797373, 1.66938, 2.37582, 2.85356, 3.12765, 3.17581, 3.02977, 2.73167, 2.20776, 1.48555, 0.641002, 0.0602119, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116645, 0.755499, 1.55861, 2.26803, 2.79243, 2.84688, 2.24335, 2.08348, 2.20779, 1.98175, 1.19437, 0.601086, 0.0864918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.122241, 0.797115, 1.67095, 2.35005, 2.87278, 3.0651, 3.12155, 2.75254, 2.28834, 1.7754, 1.06189, 0.450902, 0.0717686, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101894, 0.831542, 1.70191, 2.40867, 2.90902, 3.1729, 3.22909, 3.06804, 2.75855, 2.23902, 1.52088, 0.66733, 0.0509003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.112582, 0.831971, 1.69128, 2.37716, 2.84981, 3.08773, 3.13156, 2.98066, 2.70612, 2.20559, 1.49668, 0.654666, 0.0565775, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129145, 0.807537, 1.64849, 2.32647, 2.81199, 2.84717, 3.11578, 2.7647, 2.5865, 2.06058, 1.38171, 0.610986, 0.0972929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.159398, 0.763961, 1.65229, 2.11526, 2.45448, 2.65856, 2.80733, 2.65771, 1.82989, 1.87144, 1.247, 0.619683, 0.0779092, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.143521, 0.787479, 1.60701, 2.26644, 2.71265, 2.98539, 3.05393, 2.92063, 2.63169, 2.12654, 1.42543, 0.623454, 0.0836456, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127846, 0.832122, 1.65227, 2.30008, 2.75441, 3.05248, 3.14783, 3.04817, 2.72575, 2.20136, 1.49123, 0.662025, 0.0608644, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12921, 0.753355, 1.50469, 2.1567, 2.62023, 2.66214, 2.84622, 1.51219, 2.16284, 2.07225, 1.36593, 0.575431, 0.130153, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135647, 0.84252, 1.66633, 2.33516, 2.81382, 3.13956, 3.25637, 3.14925, 2.81955, 2.28168, 1.54681, 0.688536, 0.0682094, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00165914, 0.158257, 0.891535, 1.66063, 2.23236, 2.66644, 2.51164, 3.19894, 2.67346, 2.46674, 2.03028, 1.1353, 0.563678, 0.144014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228252, 0.770962, 1.51878, 2.20541, 2.39687, 2.99418, 2.49508, 2.81298, 1.57403, 1.35384, 0.859823, 0.5316, 0.160225, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00210359, 0.171357, 0.682981, 1.72554, 2.33712, 2.65495, 3.01422, 2.80369, 2.85166, 2.50521, 2.07613, 0.927183, 0.535246, 0.121822, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00470825, 0.208109, 0.697719, 1.38214, 2.27311, 2.67732, 2.93912, 3.02113, 2.939, 2.69761, 2.21605, 1.53427, 0.689161, 0.0700752, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188575, 0.812971, 1.58373, 2.18966, 2.4398, 2.52119, 2.74827, 2.16702, 2.28575, 1.1059, 0.951395, 0.463407, 0.130058, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00103133, 0.208934, 0.529844, 1.34709, 1.71067, 1.74444, 2.15295, 2.6936, 3.02927, 2.71354, 2.16063, 1.31071, 0.637204, 0.10814, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00411861, 0.173495, 0.857579, 1.5912, 1.88548, 2.54273, 2.91239, 3.03047, 2.85125, 2.67845, 2.08782, 1.44804, 0.680682, 0.141815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00298558, 0.208136, 0.77388, 1.51529, 1.96781, 2.68107, 2.91423, 2.9837, 3.02686, 2.70103, 2.16625, 1.4457, 0.651117, 0.119267, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00420348, 0.177532, 0.869816, 1.67987, 2.33923, 2.75394, 3.01352, 3.07211, 2.9521, 2.68093, 2.17199, 1.48601, 0.688324, 0.102701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00037804, 0.161727, 0.911264, 1.74062, 2.39848, 2.84942, 3.10467, 3.17958, 3.03841, 2.74816, 2.25293, 1.54944, 0.712441, 0.082845, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00722287, 0.18654, 0.846172, 1.63269, 2.28621, 2.76518, 3.02561, 3.08418, 2.94445, 2.64137, 2.13936, 1.45237, 0.669704, 0.107472, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0073604, 0.195552, 0.869899, 1.60564, 2.34285, 2.72922, 3.00171, 2.54619, 2.80817, 2.37255, 2.14998, 1.47301, 0.647853, 0.136282, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00998686, 0.195464, 0.817284, 1.58321, 2.21867, 2.63865, 2.90441, 2.97468, 2.86389, 2.54656, 2.04225, 1.37826, 0.638302, 0.125642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0100893, 0.212461, 0.846209, 1.40114, 1.66376, 2.51259, 2.52983, 2.91774, 2.75677, 2.36695, 2.01823, 1.43843, 0.625016, 0.0875731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103211, 0.189596, 0.836327, 1.5929, 2.22834, 2.64641, 2.94496, 3.05147, 2.94914, 2.62605, 2.11873, 1.42873, 0.668804, 0.119774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00844064, 0.172512, 0.855141, 1.66765, 2.39908, 2.95615, 3.2106, 3.22918, 3.0931, 2.76159, 2.23, 1.52843, 0.72178, 0.105405, 0.00102409, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00879042, 0.172649, 0.908936, 1.72547, 2.35728, 2.77699, 3.0702, 3.17186, 3.07619, 2.75136, 2.24379, 1.55093, 0.734365, 0.0976701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00902068, 0.20316, 0.844992, 1.61049, 2.24806, 2.67335, 2.92833, 2.99831, 2.8712, 2.64821, 2.1726, 1.47415, 0.674886, 0.134395, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0105429, 0.169243, 0.889637, 1.68158, 2.2973, 2.66564, 2.95568, 3.0882, 3.00275, 2.6882, 2.19767, 1.5189, 0.72323, 0.0961988, 0.00138465, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103563, 0.174803, 0.888596, 1.67499, 2.2963, 2.70371, 2.92538, 2.97835, 2.84461, 2.57913, 2.11434, 1.47324, 0.70742, 0.0996139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00858938, 0.176313, 0.882133, 1.6595, 2.25836, 2.64365, 2.91095, 3.01304, 2.9115, 2.62185, 2.1453, 1.48293, 0.707107, 0.0985141, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0099618, 0.164097, 0.882342, 1.65443, 2.25296, 2.6526, 2.9143, 2.997, 2.915, 2.58918, 2.1007, 1.4532, 0.710263, 0.0926265, 0.00264106, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116669, 0.251722, 0.807634, 1.5043, 1.76167, 2.75289, 2.79941, 2.8398, 2.87009, 2.59008, 2.11509, 1.46723, 0.711563, 0.100572, 0.00270279, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.01159, 0.190915, 0.83593, 1.59379, 2.21854, 2.65663, 2.94373, 3.01026, 2.93374, 2.62922, 2.13328, 1.46042, 0.701619, 0.126912, 0.00279454, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116828, 0.167594, 0.886378, 1.66619, 2.27667, 2.68944, 2.93343, 2.98996, 2.87565, 2.63117, 2.17394, 1.52046, 0.740498, 0.101754, 0.00455638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0119045, 0.192339, 0.832221, 1.60926, 2.2468, 2.70341, 2.81328, 3.10612, 2.9649, 2.56929, 2.13696, 1.48744, 0.719687, 0.131981, 0.00328923, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012033, 0.168196, 0.884494, 1.64345, 2.29716, 2.74529, 2.95001, 3.08466, 2.99608, 2.49645, 2.18943, 1.54902, 0.718758, 0.154761, 0.00916451, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103788, 0.173905, 0.85883, 1.6208, 2.21073, 2.66578, 2.88199, 2.97622, 2.8997, 2.66386, 2.14788, 1.5366, 0.760603, 0.11681, 0.00310701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0169434, 0.206844, 0.839549, 1.58902, 2.22687, 2.60443, 2.90569, 2.96443, 2.84728, 2.45616, 2.05874, 1.4573, 0.709309, 0.15923, 0.00707017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018367, 0.191745, 0.792261, 1.54615, 2.10934, 2.62511, 2.82193, 2.79861, 2.74191, 2.53946, 2.06565, 1.44359, 0.609218, 0.19961, 0.00678988, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0194048, 0.264724, 0.792298, 1.41527, 2.05339, 2.31867, 2.19959, 2.78049, 2.63426, 1.91259, 1.60584, 0.66961, 0.370011, 0.140473, 0.00520895, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0262043, 0.203434, 0.844303, 1.32285, 2.17294, 2.38622, 2.77567, 2.83142, 2.90035, 2.43399, 2.07689, 1.47882, 0.716914, 0.122516, 0.00419636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179313, 0.206407, 0.782456, 1.50386, 2.09514, 2.49642, 2.74182, 2.80607, 2.69275, 2.49633, 2.00002, 1.32843, 0.674167, 0.160247, 0.00962815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0149655, 0.196164, 0.807138, 1.54556, 2.11172, 2.56236, 2.79263, 2.66943, 2.59856, 2.43957, 2.05922, 1.44283, 0.71322, 0.172421, 0.0111287, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193062, 0.205699, 0.782122, 1.49777, 2.00565, 2.48795, 2.85162, 2.79092, 2.78895, 2.51879, 2.07275, 1.44178, 0.70049, 0.160372, 0.00998491, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0102114, 0.176229, 0.807035, 1.44791, 2.13029, 2.39885, 2.26312, 2.74658, 2.52566, 2.11521, 1.85449, 1.38553, 0.617648, 0.245118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0152172, 0.19409, 0.37733, 0.885839, 0.954922, 0.578682, 0.997392, 0.728898, 1.19001, 1.04847, 0.563794, 0.716207, 0.435781, 0.175336, 0.0129026, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000959363, 0.144046, 0.789758, 1.52023, 1.76547, 0.602784, 0.615986, 1.4068, 2.45622, 1.96302, 1.44963, 1.00825, 0.643477, 0.151699, 0.00977678, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012024, 0.200452, 0.806475, 1.57281, 2.20809, 2.69486, 2.94436, 3.02981, 2.97768, 2.62376, 2.16768, 1.50908, 0.743206, 0.166434, 0.0121462, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0186774, 0.204083, 0.800783, 1.53792, 2.17033, 2.62381, 2.82746, 2.99521, 2.94267, 2.59681, 2.15403, 1.51751, 0.746394, 0.175029, 0.012288, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.015982, 0.192937, 0.843708, 1.61476, 2.22945, 2.71503, 2.97106, 3.06964, 2.9321, 2.6283, 2.14969, 1.50665, 0.763926, 0.163346, 0.0107528, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120422, 0.182313, 0.83598, 1.60237, 2.21205, 2.67347, 2.84206, 2.98217, 2.84642, 2.60202, 2.1484, 1.53139, 0.770039, 0.156446, 0.00886176, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011909, 0.181566, 0.823898, 1.56355, 2.16596, 2.59199, 2.83048, 2.9171, 2.86701, 2.59527, 2.1337, 1.50122, 0.755798, 0.156411, 0.0101431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00743233, 0.160124, 0.828795, 1.62435, 2.26407, 2.70487, 2.97282, 3.08021, 2.95172, 2.6151, 2.2121, 1.57448, 0.794359, 0.142596, 0.00649177, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116903, 0.172864, 0.80786, 1.59841, 2.20876, 2.60883, 2.94353, 3.01587, 2.85442, 2.59657, 2.11983, 1.44909, 0.742567, 0.15165, 0.00845716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0167364, 0.164264, 0.810215, 1.58212, 2.23312, 2.54221, 2.98027, 3.03752, 2.93603, 2.65803, 2.15811, 1.53454, 0.778381, 0.140829, 0.00348851, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0146709, 0.192459, 0.752904, 1.4679, 2.12887, 2.58938, 2.89436, 2.98953, 2.888, 2.57102, 2.08723, 1.44693, 0.726154, 0.177611, 0.0144642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00189165, 0.141457, 0.809742, 1.59418, 2.24783, 2.72107, 2.99185, 3.04199, 2.95036, 2.65736, 2.20351, 1.55265, 0.790919, 0.137065, 0.00282834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0113361, 0.168559, 0.782321, 1.52319, 2.15272, 2.59735, 2.80849, 2.95386, 2.78169, 2.50632, 2.0844, 1.28559, 0.802357, 0.194668, 0.0114317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00575232, 0.144693, 0.798239, 1.5453, 2.08986, 2.54933, 2.85062, 2.91108, 2.85599, 2.60716, 2.14469, 1.5195, 0.778154, 0.145614, 0.00600712, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00576718, 0.146662, 0.787946, 1.53978, 2.11139, 2.58464, 2.73414, 2.84743, 2.89168, 2.60069, 2.12416, 1.50686, 0.780478, 0.146872, 0.00599902, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00960108, 0.162909, 0.753287, 1.46066, 2.02865, 2.43624, 2.70678, 2.8761, 2.79907, 2.5512, 2.07405, 1.46719, 0.748012, 0.161994, 0.0108115, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0143567, 0.168607, 0.755387, 1.42058, 2.08245, 2.50489, 2.84611, 2.86617, 2.82978, 2.56332, 2.117, 1.49347, 0.767142, 0.147512, 0.00590247, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00188139, 0.130137, 0.775081, 1.54065, 2.13983, 2.54417, 2.74039, 2.93018, 2.81115, 2.5921, 2.1365, 1.51411, 0.78615, 0.141675, 0.00892945, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00254457, 0.13345, 0.753354, 1.50679, 1.89094, 2.42934, 2.78811, 2.84742, 2.87708, 2.44763, 2.01129, 1.44028, 0.828007, 0.201246, 0.0188561, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112877, 0.185095, 0.481712, 1.25281, 2.15442, 2.43126, 2.68642, 2.88882, 2.85456, 2.62765, 2.14612, 1.53909, 0.654715, 0.198077, 0.00660839, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168889, 0.523702, 0.716119, 1.26213, 1.78503, 2.11363, 2.54066, 2.5202, 2.30744, 2.10412, 1.36478, 0.790438, 0.0845819, 0.00253886, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0041946, 0.127578, 0.538535, 0.663227, 1.6302, 2.47425, 2.53213, 2.63215, 2.62422, 2.4561, 1.55462, 0.707734, 0.454021, 0.202391, 0.0041337, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.119956, 0.773787, 1.52834, 2.18996, 2.63159, 2.83895, 3.03025, 2.86949, 2.62024, 2.13344, 1.56567, 0.806336, 0.142918, 0.00295997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00707657, 0.178483, 0.715089, 1.53483, 2.22085, 2.63643, 2.82946, 3.00663, 2.94075, 2.65689, 2.17547, 1.56169, 0.808193, 0.186895, 0.00292767, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00874176, 0.159874, 0.78601, 1.50691, 2.15549, 2.29186, 2.6201, 3.0004, 2.89487, 2.30353, 2.16453, 1.52014, 0.790991, 0.173974, 0.010301, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00150322, 0.120923, 0.645635, 0.904701, 1.1991, 1.79465, 2.02966, 2.18285, 2.61717, 2.1586, 2.07884, 1.47669, 0.732479, 0.204133, 0.0117017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00655917, 0.142552, 0.715533, 1.42854, 2.07253, 2.52103, 2.7711, 2.76447, 2.77237, 2.50935, 2.01069, 1.45613, 0.768901, 0.170406, 0.0110594, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00161599, 0.127996, 0.699287, 1.45847, 2.10445, 2.47082, 2.81339, 2.80009, 2.82546, 2.57653, 2.14616, 1.52376, 0.786867, 0.156082, 0.00606573, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00478923, 0.170454, 0.625092, 1.44531, 2.09083, 2.54226, 2.73922, 2.86666, 2.70376, 2.51737, 2.09586, 1.48395, 0.769685, 0.198551, 0.012664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181651, 0.703232, 1.40852, 1.95084, 2.44953, 2.76794, 2.87566, 2.83908, 2.54569, 2.10007, 1.50861, 0.806428, 0.225536, 0.015461, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0062447, 0.151059, 0.677188, 1.36565, 2.04982, 2.50734, 2.65012, 2.92033, 2.7558, 2.49916, 2.06071, 1.44766, 0.73727, 0.181134, 0.0126815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.16457, 0.67161, 1.36785, 2.00689, 2.48041, 2.76038, 2.79268, 2.84055, 2.5241, 2.03042, 1.41445, 0.730137, 0.192148, 0.0142135, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00571395, 0.139913, 0.689706, 1.40722, 1.97493, 2.48386, 2.75286, 2.80076, 2.85889, 2.55625, 2.09031, 1.48889, 0.739887, 0.169346, 0.00864832, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00166953, 0.158131, 0.691401, 1.43124, 2.04207, 2.4929, 2.81061, 2.87438, 2.82588, 2.53593, 2.11409, 1.48313, 0.760553, 0.174872, 0.0113274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.167249, 0.715641, 1.45302, 2.03157, 2.45238, 2.6749, 2.79958, 2.73873, 2.5032, 2.07806, 1.47464, 0.753314, 0.171313, 0.00345076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168119, 0.680728, 1.39575, 1.94944, 2.37446, 2.7018, 2.90588, 2.76537, 2.62063, 2.11547, 1.49524, 0.761582, 0.166064, 0.00556377, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00175971, 0.142055, 0.672208, 1.38489, 1.92688, 2.25374, 2.91391, 2.96268, 2.86009, 2.62511, 2.13615, 1.44862, 0.624081, 0.201465, 0.0139778, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0942829, 0.664684, 1.40883, 2.05587, 2.52003, 2.80878, 2.81603, 2.86036, 2.58954, 2.14468, 1.49567, 0.747873, 0.195261, 0.0066746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.131579, 0.683109, 1.38844, 2.07232, 2.53207, 2.84633, 2.87893, 2.83407, 2.58916, 2.12816, 1.483, 0.757693, 0.169989, 0.0100503, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.128115, 0.673371, 1.42376, 2.0583, 2.53754, 2.80192, 2.82906, 2.82699, 2.60079, 2.07233, 1.50145, 0.756233, 0.169976, 0.0085701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.133724, 0.587952, 1.33759, 1.96659, 2.35405, 2.60623, 2.68242, 2.51227, 2.3902, 1.58646, 1.38298, 0.521305, 0.171031, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.146961, 0.628935, 1.22642, 1.89497, 2.49727, 2.77543, 2.96307, 2.8014, 2.55317, 2.096, 1.43624, 0.729116, 0.183544, 0.0103431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127469, 0.653814, 1.39269, 2.05353, 2.54031, 2.81355, 2.6474, 2.67485, 2.30994, 1.27007, 1.18552, 0.701357, 0.201486, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.124022, 0.655698, 1.39615, 2.06531, 2.56278, 2.84877, 2.93388, 2.87197, 2.55063, 2.11825, 1.48594, 0.751302, 0.161569, 0.00656647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.102619, 0.553095, 1.36301, 1.99205, 2.48061, 2.57212, 2.20375, 2.28307, 2.58216, 2.07553, 1.43113, 0.720885, 0.180626, 0.00335261, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.162652, 0.459857, 1.35947, 1.90372, 2.03607, 2.35772, 2.88379, 2.86554, 2.54593, 2.02175, 1.48485, 0.544905, 0.182212, 0.0156003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.136938, 0.622721, 1.33026, 1.96376, 2.4275, 2.77337, 2.86327, 2.74461, 2.51973, 2.09937, 1.3309, 0.561994, 0.148311, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.161601, 0.590961, 1.19234, 1.90159, 2.34499, 2.57277, 2.83035, 2.63856, 2.51683, 2.15067, 1.5086, 0.751578, 0.169159, 0.00381326, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.141244, 0.530304, 0.89178, 1.91016, 2.12185, 1.06686, 1.25686, 1.14955, 1.97719, 2.07733, 1.19934, 0.76792, 0.195926, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.126832, 0.348834, 0.943124, 1.31568, 1.63363, 1.70356, 2.03719, 2.8068, 2.49034, 2.0989, 1.41598, 0.695838, 0.196975, 0.00995171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.074258, 0.668474, 1.42878, 2.04092, 2.46363, 2.77568, 2.90789, 2.85667, 2.58875, 2.14697, 1.51457, 0.756549, 0.115954, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116311, 0.609867, 1.33565, 1.95423, 2.37513, 2.67292, 2.7793, 2.71764, 2.44125, 1.99745, 1.38292, 0.683056, 0.151377, 0.00207918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874647, 0.667945, 1.44877, 2.06774, 2.46837, 2.79869, 2.94288, 2.88513, 2.59199, 2.11564, 1.47901, 0.740747, 0.124008, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0837679, 0.660728, 1.45207, 2.11303, 2.60186, 2.86842, 2.95123, 2.84262, 2.57428, 2.12009, 1.4934, 0.763431, 0.165689, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0866459, 0.226084, 0.570371, 0.980998, 1.294, 2.67212, 2.635, 2.7611, 2.39714, 2.08126, 1.41069, 0.69347, 0.160871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0961693, 0.648319, 1.24623, 2.00136, 2.40963, 2.39268, 2.76356, 2.80613, 2.44237, 2.05332, 1.53094, 0.684592, 0.158903, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.107103, 0.559653, 1.29924, 2.00332, 2.48873, 2.78445, 2.90023, 2.79688, 2.49159, 1.49476, 1.24237, 0.446324, 0.11537, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0718186, 0.655328, 1.4323, 2.05811, 2.49211, 2.81462, 2.94748, 2.89598, 2.61428, 1.98258, 1.34663, 0.704698, 0.140171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113979, 0.656228, 1.35447, 1.8262, 1.85056, 2.65712, 2.74365, 2.72849, 2.51911, 2.09129, 1.48118, 0.67837, 0.138897, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.082063, 0.632873, 1.39298, 2.04155, 2.48638, 2.77315, 2.90779, 2.84828, 2.58512, 2.11506, 1.46526, 0.674334, 0.127982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0967313, 0.592045, 1.34506, 1.99766, 2.49584, 2.79458, 2.90237, 2.82153, 2.55896, 2.03803, 1.25243, 0.620439, 0.108661, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0827799, 0.603722, 1.36288, 2.04741, 2.48221, 2.62087, 2.95841, 2.78688, 2.50242, 2.10942, 1.24134, 0.521986, 0.140146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803725, 0.599322, 1.27525, 1.84746, 2.55023, 2.84104, 2.91807, 2.82879, 2.50682, 2.01673, 1.37841, 0.645786, 0.118179, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135877, 0.519114, 1.18995, 1.29106, 1.68406, 2.42739, 2.95309, 2.7228, 2.41363, 1.81214, 1.38203, 0.643829, 0.0844544, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822091, 0.607307, 1.38766, 2.09281, 2.6312, 2.93997, 3.04618, 2.93628, 2.62591, 2.1242, 1.4373, 0.661784, 0.104471, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.076813, 0.558857, 1.32431, 1.96676, 2.52178, 2.58148, 2.7145, 2.5459, 2.46563, 1.99722, 1.40924, 0.626723, 0.105159, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0988024, 0.564332, 1.58078, 1.222, 2.09311, 2.74267, 2.84595, 2.64055, 1.51563, 1.59465, 1.046, 0.602529, 0.0911578, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.110205, 0.47868, 1.10258, 1.79473, 2.56823, 2.72574, 2.9249, 2.89164, 2.56855, 2.05315, 1.50018, 0.694648, 0.0838305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0685451, 0.638703, 1.40727, 1.96904, 2.52822, 2.88186, 3.06141, 2.93239, 1.47515, 1.86506, 0.926577, 0.452191, 0.0782871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722847, 0.41796, 1.24803, 1.84907, 2.33735, 2.73996, 2.88481, 2.80795, 2.5008, 2.00368, 1.32932, 0.585382, 0.0934257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0620534, 0.637852, 1.44444, 2.11819, 2.60091, 2.91, 3.02803, 2.93445, 2.63447, 2.12679, 1.44275, 0.642491, 0.0657356, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0635102, 0.631902, 1.44423, 2.11787, 2.56464, 2.86377, 2.96015, 2.86964, 2.57534, 2.10331, 1.42479, 0.625264, 0.0677029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0554671, 0.647978, 1.47487, 2.15173, 2.61273, 2.91647, 3.02239, 2.92615, 2.63165, 2.16127, 1.47707, 0.649939, 0.0625764, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0503483, 0.649665, 1.47861, 2.16345, 2.64379, 2.94089, 3.04917, 2.95254, 2.6485, 2.17476, 1.48682, 0.672714, 0.0733716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0627893, 0.636756, 1.47251, 2.18105, 2.67914, 2.98696, 3.08861, 2.97281, 2.45133, 2.03769, 1.12903, 0.635381, 0.0789128, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530097, 0.530287, 1.09529, 1.53273, 2.31613, 2.64565, 2.90371, 2.80079, 2.42539, 2.00568, 1.24904, 0.545514, 0.0717802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0747693, 0.590976, 1.40428, 2.18842, 2.19527, 2.87198, 3.03146, 2.88684, 2.53442, 2.07439, 1.39176, 0.599792, 0.0487012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0812483, 0.338995, 0.943231, 1.71032, 1.54293, 1.45803, 1.49048, 1.18458, 1.45548, 1.48231, 0.726116, 0.370422, 0.074907, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0706397, 0.298608, 0.693437, 0.868068, 1.057, 1.05774, 1.41603, 1.21317, 1.03131, 1.5055, 0.944799, 0.470658, 0.0560533, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0636706, 0.545125, 1.33769, 1.97976, 2.51285, 2.80972, 2.92788, 2.85001, 2.49735, 1.98661, 1.30084, 0.535294, 0.0551447, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0630137, 0.594556, 1.38777, 2.0452, 2.45512, 2.79113, 2.91576, 2.85015, 2.53687, 2.03114, 1.32904, 0.522692, 0.0458542, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0921235, 0.550202, 1.40824, 2.19814, 2.66854, 2.94437, 2.94621, 2.95156, 2.61668, 2.07645, 1.39212, 0.555749, 0.052243, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0598607, 0.607197, 1.49603, 2.15983, 2.53775, 2.78569, 3.0271, 2.80046, 2.55025, 1.98426, 1.28284, 0.504204, 0.0643534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0488327, 0.234015, 1.13492, 1.50114, 1.49683, 1.58395, 1.77712, 1.48984, 1.15918, 0.698794, 0.381561, 0.177318, 0.0259773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0543459, 0.251085, 0.70347, 1.37035, 1.9359, 1.47011, 1.26154, 1.28883, 1.05902, 0.712481, 0.460393, 0.316435, 0.0371834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0546598, 0.589425, 1.43735, 1.99533, 2.61962, 2.94395, 2.97196, 2.94451, 2.6119, 2.0532, 1.37468, 0.52678, 0.0285464, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0491086, 0.640628, 1.48563, 2.12463, 2.63875, 2.57606, 2.90398, 2.89757, 2.51515, 2.08991, 1.36151, 0.52707, 0.0291493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.057458, 0.599789, 1.43109, 2.09432, 2.56615, 2.83044, 2.93551, 2.74055, 2.51022, 1.9941, 1.2709, 0.48947, 0.0341722, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495198, 0.551152, 1.35478, 1.92729, 2.50128, 2.77097, 2.86863, 2.72813, 2.33305, 1.32508, 0.869809, 0.401135, 0.0315517, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0472957, 0.626293, 1.47185, 2.06796, 2.63572, 2.86345, 2.97356, 2.85752, 2.48992, 1.949, 1.21548, 0.386919, 0.0444566, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0480247, 0.626677, 1.48318, 2.13373, 2.62443, 2.78464, 3.02881, 2.79645, 2.48874, 2.01162, 1.27846, 0.473634, 0.0176231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0485813, 0.625041, 1.47403, 2.1493, 2.57962, 2.7032, 2.81884, 2.79439, 2.46861, 1.98177, 1.16985, 0.444661, 0.0138774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0476938, 0.626477, 1.46485, 2.18222, 2.53089, 2.88338, 2.57247, 2.82883, 2.42714, 1.91793, 1.26719, 0.451424, 0.0136338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.062744, 0.534313, 1.28908, 1.39367, 1.70953, 1.92528, 1.4979, 1.25709, 1.56851, 0.460231, 0.433218, 0.271935, 0.0113341, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0507544, 0.631655, 1.52463, 2.23636, 2.61679, 2.77275, 3.09677, 2.90242, 2.5384, 1.98708, 1.26822, 0.444385, 0.0102497, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0467404, 0.631289, 1.49475, 2.21925, 2.67279, 3.02542, 3.0069, 2.88931, 2.55148, 1.86613, 0.98586, 0.306098, 0.0141028, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0468918, 0.63682, 1.48818, 1.91572, 2.57634, 2.86028, 3.12595, 2.93237, 2.02971, 1.53111, 0.970641, 0.292872, 0.00954183, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530691, 0.278596, 0.710307, 1.75494, 1.93369, 2.59395, 2.1474, 2.08441, 2.4093, 1.64794, 0.707985, 0.176968, 0.00942944, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0225823, 0.257623, 1.15898, 1.27103, 1.36994, 2.44283, 2.53714, 2.57301, 2.45846, 1.71717, 1.21014, 0.384109, 0.0100996, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0490136, 0.619481, 1.40951, 2.07362, 2.59631, 2.93212, 2.88774, 2.88589, 2.44332, 1.34616, 1.01079, 0.360483, 0.0050239, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0477879, 0.557428, 1.40343, 2.0607, 2.529, 2.86509, 2.8957, 2.84587, 2.49531, 1.90849, 1.15014, 0.347369, 0.00786638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0456306, 0.566433, 1.40548, 2.08079, 2.53726, 2.90473, 2.90334, 2.7544, 2.48315, 1.90071, 1.13627, 0.333313, 0.00432551, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0411426, 0.538448, 1.31635, 2.06374, 2.55512, 2.7784, 2.76667, 2.7161, 2.37434, 1.75785, 1.05782, 0.298046, 0.00444154, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0398027, 0.506552, 1.31496, 2.01258, 2.50915, 2.80087, 2.82082, 2.68585, 2.31933, 1.75225, 1.01731, 0.276147, 0.0024794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0378068, 0.516439, 1.3237, 1.9844, 2.48721, 2.73089, 2.7913, 2.6349, 2.30522, 1.73333, 1.0191, 0.272984, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0326045, 0.486301, 1.28177, 1.99039, 2.5537, 2.84249, 2.90591, 2.75151, 2.37631, 1.76779, 0.997124, 0.25585, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.034152, 0.544521, 1.38959, 2.12458, 2.64752, 2.8682, 2.93068, 2.73509, 2.34177, 1.81129, 1.05311, 0.272257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298425, 0.51395, 1.34332, 2.03626, 2.5163, 2.78393, 2.88142, 2.71087, 2.24621, 1.71637, 0.989168, 0.248125, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0297438, 0.547156, 1.38585, 2.06845, 2.59857, 2.76403, 2.71168, 2.56308, 2.34846, 1.81275, 1.01775, 0.254424, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0312677, 0.571942, 1.41337, 2.14682, 2.61529, 2.81236, 2.83486, 2.69556, 2.38026, 1.80964, 1.02306, 0.258667, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.025711, 0.487116, 1.31046, 2.05953, 2.54594, 2.74182, 2.6669, 2.61398, 2.20409, 1.68644, 0.926109, 0.210592, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266587, 0.500527, 1.33064, 2.02234, 2.46859, 2.79064, 2.89275, 2.76506, 2.38655, 1.77078, 0.957321, 0.203554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0307606, 0.608462, 1.48234, 2.14578, 2.53649, 2.83935, 2.79254, 2.67611, 2.32918, 1.37529, 0.718783, 0.102789, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257399, 0.596151, 0.618198, 0.932307, 1.11627, 1.80471, 1.49932, 1.98548, 1.62123, 0.887383, 0.216274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0218172, 0.442436, 1.28418, 1.65119, 2.06324, 2.8153, 2.87248, 2.75972, 2.4213, 1.78608, 0.980408, 0.198545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0261191, 0.559828, 1.43129, 2.15606, 2.61832, 2.88192, 2.93259, 2.76611, 2.39472, 1.80714, 1.00123, 0.201638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0181092, 0.47691, 1.32138, 2.04737, 2.53287, 2.77984, 2.81653, 2.61895, 2.24942, 1.65811, 0.875438, 0.157701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0224252, 0.553886, 1.43116, 2.15292, 2.63295, 2.90992, 2.92236, 2.72355, 2.36874, 1.7821, 0.978402, 0.182788, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0217243, 0.557375, 1.43813, 2.14048, 2.6066, 2.9011, 2.9703, 2.81987, 2.40951, 1.79145, 0.982079, 0.183358, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0222415, 0.406559, 1.16532, 1.92261, 2.62899, 2.27091, 2.51093, 2.55803, 1.87459, 1.23276, 0.82378, 0.132736, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0030839, 0.273125, 0.612674, 1.10182, 0.97749, 2.44962, 2.69463, 2.61196, 2.31239, 1.52616, 0.695026, 0.131059, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193046, 0.535548, 1.32908, 1.89231, 2.3344, 2.66934, 2.69401, 2.40107, 1.63853, 1.07633, 0.414617, 0.09089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148048, 0.503641, 1.36696, 2.09054, 2.58528, 2.83094, 2.85524, 2.6491, 2.2908, 1.68113, 0.87983, 0.142065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0159944, 0.537966, 1.41211, 2.11186, 2.56962, 2.81613, 2.8463, 2.66543, 2.29324, 1.70013, 0.89981, 0.151597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177827, 0.533898, 1.39741, 2.08388, 2.52496, 2.7959, 2.86384, 2.70967, 2.2359, 1.66843, 0.830887, 0.108993, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0173678, 0.539237, 1.43478, 2.19422, 2.72179, 3.00315, 3.06528, 2.91423, 2.48262, 1.82169, 0.950397, 0.155545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0122137, 0.506213, 1.25484, 2.02289, 2.60949, 2.828, 2.9454, 2.79542, 2.39521, 1.74633, 0.90908, 0.140715, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00567717, 0.447616, 1.32529, 2.10601, 2.644, 2.91506, 2.93069, 2.71282, 2.28833, 1.62227, 0.781972, 0.100374, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0071703, 0.516888, 1.41596, 2.15612, 2.68517, 2.92569, 2.94525, 2.7262, 2.31116, 1.67819, 0.854201, 0.123207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101196, 0.434654, 0.545021, 0.794965, 0.95079, 0.92709, 0.86511, 0.88412, 0.920948, 0.403239, 0.0604237, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0050214, 0.489133, 1.41237, 2.13215, 2.58094, 2.80843, 2.81482, 2.65557, 2.31325, 1.70511, 0.860183, 0.115029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.442254, 1.32365, 2.05354, 2.53987, 2.80283, 2.83081, 2.63549, 2.22141, 1.58247, 0.752964, 0.0838618, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00183713, 0.487195, 1.38542, 2.0931, 2.56246, 2.79964, 2.82016, 2.62423, 2.25969, 1.64835, 0.807354, 0.0929453, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.471791, 1.36802, 2.08122, 2.55913, 2.79546, 2.81959, 2.62288, 2.23868, 1.62149, 0.790018, 0.0881965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.393166, 1.12901, 2.05863, 2.55846, 2.80809, 2.81336, 2.58996, 2.18519, 1.55474, 0.741281, 0.0721062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.407826, 1.25917, 1.96763, 2.44053, 2.6883, 2.72273, 2.52256, 2.1136, 1.49186, 0.692521, 0.058705, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.398361, 1.16024, 2.08848, 2.55007, 2.80598, 2.5823, 2.44332, 2.02995, 1.34985, 0.640321, 0.0593084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.376962, 1.23655, 1.94699, 2.42332, 2.67406, 2.67149, 2.46828, 2.08312, 1.4677, 0.65628, 0.0459148, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.312774, 1.12192, 1.86186, 2.36585, 2.62563, 2.65369, 2.44513, 2.01941, 1.36887, 0.56475, 0.0318932, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.420878, 1.31407, 2.0436, 2.53299, 2.77703, 2.77311, 2.56259, 2.16614, 1.54495, 0.69607, 0.0605146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.186864, 0.776643, 1.11296, 1.3613, 1.4029, 1.32843, 0.84702, 1.60913, 1.53424, 0.585114, 0.0554989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.405553, 1.3055, 2.02312, 2.24511, 2.5698, 2.76645, 2.55523, 2.06375, 1.4647, 0.526674, 0.0397479, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.358718, 1.23943, 1.99361, 2.49416, 2.76228, 2.78153, 2.57349, 2.14329, 1.48199, 0.642622, 0.0408724, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.417752, 1.32241, 2.07576, 2.56725, 2.80036, 2.78979, 2.56726, 2.19757, 1.56693, 0.714042, 0.0545929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.380177, 1.26324, 1.99454, 2.49506, 2.74882, 2.76952, 2.57879, 2.18151, 1.55321, 0.697511, 0.048516, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.339274, 1.22219, 1.98614, 2.51212, 2.75552, 2.75325, 2.50671, 1.82336, 1.3368, 0.35014, 0.0265505, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155406, 0.709141, 1.46824, 1.72778, 1.40264, 2.32384, 1.24471, 0.905223, 0.825468, 0.25404, 0.0238229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.234547, 0.524141, 1.01198, 1.96367, 1.48455, 1.53361, 1.54547, 1.45455, 1.49171, 0.69226, 0.0497781, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.314568, 1.17814, 1.95047, 2.48708, 2.7567, 2.80329, 2.61153, 2.13997, 1.45941, 0.615436, 0.034016, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.319608, 1.18896, 1.95159, 2.4745, 2.74224, 2.76041, 2.55106, 2.12011, 1.45609, 0.621564, 0.0360139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.176389, 1.09475, 1.54706, 2.09934, 2.58656, 2.63709, 2.304, 1.8956, 1.24311, 0.555996, 0.0408867, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.337718, 1.22406, 1.99613, 2.48105, 2.75383, 2.76308, 2.5516, 2.14704, 1.49931, 0.652349, 0.0375473, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.268122, 1.11687, 1.92691, 2.39495, 2.63416, 2.50656, 2.31362, 1.96494, 1.45167, 0.606942, 0.0353997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.169034, 0.70711, 1.51291, 1.79509, 2.33705, 2.31565, 1.96247, 1.80294, 1.13287, 0.410915, 0.00828084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.209215, 0.99918, 1.68423, 2.37275, 2.6411, 2.68122, 2.4777, 2.01814, 1.36275, 0.56725, 0.0178318, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.274335, 1.13971, 1.89173, 2.36404, 2.61083, 2.65488, 2.45541, 1.94482, 1.26782, 0.435059, 0.0113625, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266063, 1.13902, 1.89011, 2.35685, 2.63245, 2.65567, 2.46624, 2.06783, 1.41222, 0.568892, 0.0187401, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.103242, 0.449287, 0.641768, 1.14698, 2.02601, 2.09943, 1.83827, 1.45379, 0.647278, 0.29229, 0.0118034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.158775, 0.965937, 1.65126, 2.18431, 2.45956, 2.49522, 2.29052, 1.89838, 1.24009, 0.444249, 0.00576343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.267949, 1.13874, 1.88622, 2.37224, 2.63115, 2.66375, 2.46568, 2.06571, 1.42709, 0.600795, 0.0199062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.200155, 1.0388, 1.80604, 2.31109, 2.5976, 2.48462, 2.37419, 1.93498, 1.31213, 0.490937, 0.00187941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.211218, 1.07113, 1.84205, 2.32768, 2.61495, 2.65447, 2.46488, 2.06518, 1.40297, 0.562, 0.0096666, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495723, 0.316007, 0.705406, 0.925945, 1.36558, 1.20527, 1.13828, 0.798454, 0.490275, 0.207794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0960258, 0.461797, 0.799314, 1.66444, 1.83744, 2.17274, 1.99765, 1.33448, 1.17342, 0.390065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0410012, 0.253314, 0.44846, 0.542014, 1.00671, 1.72451, 1.56988, 1.37945, 1.0103, 0.221834, 0.00297818, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.193052, 1.01274, 1.74808, 2.14129, 2.26798, 2.31485, 1.7443, 1.82873, 1.30264, 0.558156, 0.003089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.177427, 0.960579, 1.69027, 2.31174, 2.53894, 2.53478, 2.26277, 1.94876, 1.36808, 0.552443, 0.0030694, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735695, 0.386191, 0.500033, 1.01997, 1.82284, 1.64211, 2.22032, 1.45944, 0.817895, 0.211683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0270115, 0.330469, 0.704482, 1.15311, 1.11017, 1.43845, 1.42385, 0.787482, 0.418198, 0.208425, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874109, 0.518723, 0.764813, 1.62588, 2.18347, 2.48146, 2.49381, 1.50128, 0.695467, 0.102454, 0.00175785, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.125392, 0.815936, 1.61683, 2.20125, 2.51928, 2.58707, 2.39184, 1.96382, 1.26507, 0.433267, 0.00343493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.139731, 0.906014, 1.5118, 2.05165, 2.4631, 2.50325, 2.19475, 1.98331, 1.0871, 0.373263, 0.00635676, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0840508, 0.89122, 1.67306, 2.2444, 2.55379, 2.54926, 2.38309, 2.01112, 1.37717, 0.385584, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0806627, 0.896134, 1.6722, 2.09143, 2.50926, 2.6095, 2.49229, 2.09575, 1.43002, 0.419231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0674048, 0.826869, 1.53305, 2.15252, 2.55022, 2.69385, 2.43524, 2.12164, 1.47643, 0.406549, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0728229, 0.93033, 1.65307, 2.36954, 2.72635, 2.78009, 2.54611, 2.13136, 1.445, 0.335429, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065983, 0.836743, 1.66307, 2.02002, 2.25217, 2.04728, 1.31683, 1.44705, 0.520483, 0.152014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0672768, 0.8701, 1.62945, 2.06665, 2.52923, 2.57851, 2.53364, 2.1891, 1.49987, 0.408982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0704926, 0.921662, 1.80945, 2.36019, 2.69131, 2.71485, 2.49763, 2.13633, 1.12458, 0.159082, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018072, 0.441738, 1.31287, 2.26044, 2.59563, 2.74967, 2.3883, 1.45722, 1.17082, 0.486192, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0575502, 0.862923, 1.75224, 2.23236, 2.565, 2.61853, 2.42698, 2.08496, 1.43983, 0.426276, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0486084, 0.85129, 1.63782, 2.22145, 2.54094, 2.59651, 2.40314, 2.05572, 1.44303, 0.391974, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.05928, 0.767469, 1.5819, 2.16771, 2.36594, 1.4439, 2.29927, 1.77709, 1.22857, 0.44854, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.191902, 0.442925, 1.05556, 1.56482, 0.916337, 0.894296, 0.307147, 0.350279, 0.0507144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.081911, 0.809343, 1.41589, 2.16322, 2.55162, 2.42665, 2.39785, 1.86343, 0.861136, 0.301437, 0.00740766, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0228486, 0.596429, 1.41305, 2.01139, 1.54031, 2.31804, 2.13488, 1.45011, 1.14562, 0.302929, 0.00178418, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0043009, 0.190437, 0.456663, 0.774345, 0.706195, 0.750254, 0.227952, 0.347005, 0.296926, 0.0424597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00197333, 0.204573, 0.438987, 0.817599, 1.39033, 1.58748, 2.36097, 1.58063, 0.643465, 0.153036, 0.00123386, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0478906, 0.617714, 1.44506, 2.22169, 2.64015, 2.76753, 2.72533, 2.10653, 1.48583, 0.624074, 0.0140018, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0684115, 0.831108, 1.64862, 2.11006, 2.23473, 2.5439, 2.41996, 2.1085, 1.3753, 0.551184, 0.0141597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0621342, 0.801802, 1.66097, 2.2744, 2.58507, 2.64147, 2.53203, 2.11848, 1.42249, 0.600005, 0.00850035, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0155231, 0.581836, 0.296733, 0.422429, 0.374893, 0.551731, 0.39159, 0.319519, 0.185209, 0.0673856, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.046428, 0.266905, 0.385405, 0.835716, 1.0922, 0.852107, 0.495775, 1.37224, 0.59438, 0.136954, 0.0061824, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0249813, 0.69457, 1.55655, 2.11814, 2.63947, 2.31963, 2.51107, 2.05978, 1.4301, 0.580408, 0.016515, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0273457, 0.710806, 1.58519, 2.29257, 2.6472, 2.72238, 2.59093, 2.1224, 1.29532, 0.587764, 0.00953753, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0460713, 0.376908, 1.00585, 1.95558, 1.64906, 2.57991, 2.60255, 2.28628, 1.63853, 0.765819, 0.0403367, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00573357, 0.652154, 1.14825, 1.76315, 2.42017, 2.11687, 1.3265, 1.52103, 1.42792, 0.669677, 0.0299071, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0651526, 0.831276, 1.56939, 2.111, 2.42803, 2.39902, 2.57196, 2.28312, 1.63737, 0.744143, 0.0352433, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193468, 0.415173, 1.3696, 1.41055, 1.83304, 2.2093, 1.35684, 1.81534, 1.26016, 0.453816, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0834133, 0.308908, 0.683149, 0.688705, 0.62197, 0.67926, 0.485344, 0.312526, 0.0695502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0997101, 0.24553, 0.292913, 1.14435, 0.989543, 0.57329, 1.26016, 0.542071, 0.171351, 0.00539238, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0481958, 0.778754, 1.47179, 2.1002, 2.02692, 2.59275, 2.56468, 2.08318, 1.48502, 0.770173, 0.0568852, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.016664, 0.620281, 1.46676, 1.97059, 2.4413, 2.57254, 2.42621, 2.0301, 1.42493, 0.617651, 0.025802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683 ] ); data.SetArray( 'e_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetArray ('p_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetNumber( 'inflation_rate', 2.5 ); data.SetArray( 'degradation', [ 0.5 ] ); data.SetArray( 'load_escalation', [ 0 ] ); data.SetArray( 'rate_escalation', [ 0 ] ); data.SetNumber( 'ur_enable_net_metering', 1 ); data.SetNumber( 'ur_nm_yearend_sell_rate', 0.02789 ); data.SetNumber( 'ur_monthly_fixed_charge', 16.68 ); data.SetNumber( 'ur_flat_buy_rate', 0 ); data.SetNumber( 'ur_flat_sell_rate', 0 ); data.SetNumber( 'ur_monthly_min_charge', 0 ); data.SetNumber( 'ur_annual_min_charge', 0 ); data.SetNumber( 'ur_ec_enable', 1 ); data.SetMatrix( 'ur_ec_sched_weekday',[ 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ] ); data.SetMatrix( 'ur_ec_sched_weekend', [ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ] ); data.SetNumber( 'ur_ec_p1_t1_br', 0.26687 ); data.SetNumber( 'ur_ec_p1_t1_sr', 0 ); data.SetNumber( 'ur_ec_p1_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t2_br', 0 ); data.SetNumber( 'ur_ec_p1_t2_sr', 0 ); data.SetNumber( 'ur_ec_p1_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t3_br', 0 ); data.SetNumber( 'ur_ec_p1_t3_sr', 0 ); data.SetNumber( 'ur_ec_p1_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t4_br', 0 ); data.SetNumber( 'ur_ec_p1_t4_sr', 0 ); data.SetNumber( 'ur_ec_p1_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t5_br', 0 ); data.SetNumber( 'ur_ec_p1_t5_sr', 0 ); data.SetNumber( 'ur_ec_p1_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t6_br', 0 ); data.SetNumber( 'ur_ec_p1_t6_sr', 0 ); data.SetNumber( 'ur_ec_p1_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t1_br', 0.08328 ); data.SetNumber( 'ur_ec_p2_t1_sr', 0 ); data.SetNumber( 'ur_ec_p2_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t2_br', 0 ); data.SetNumber( 'ur_ec_p2_t2_sr', 0 ); data.SetNumber( 'ur_ec_p2_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t3_br', 0 ); data.SetNumber( 'ur_ec_p2_t3_sr', 0 ); data.SetNumber( 'ur_ec_p2_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t4_br', 0 ); data.SetNumber( 'ur_ec_p2_t4_sr', 0 ); data.SetNumber( 'ur_ec_p2_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t5_br', 0 ); data.SetNumber( 'ur_ec_p2_t5_sr', 0 ); data.SetNumber( 'ur_ec_p2_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t6_br', 0 ); data.SetNumber( 'ur_ec_p2_t6_sr', 0 ); data.SetNumber( 'ur_ec_p2_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t1_br', 0.22057 ); data.SetNumber( 'ur_ec_p3_t1_sr', 0 ); data.SetNumber( 'ur_ec_p3_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t2_br', 0 ); data.SetNumber( 'ur_ec_p3_t2_sr', 0 ); data.SetNumber( 'ur_ec_p3_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t3_br', 0 ); data.SetNumber( 'ur_ec_p3_t3_sr', 0 ); data.SetNumber( 'ur_ec_p3_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t4_br', 0 ); data.SetNumber( 'ur_ec_p3_t4_sr', 0 ); data.SetNumber( 'ur_ec_p3_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t5_br', 0 ); data.SetNumber( 'ur_ec_p3_t5_sr', 0 ); data.SetNumber( 'ur_ec_p3_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t6_br', 0 ); data.SetNumber( 'ur_ec_p3_t6_sr', 0 ); data.SetNumber( 'ur_ec_p3_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t1_br', 0.08326 ); data.SetNumber( 'ur_ec_p4_t1_sr', 0 ); data.SetNumber( 'ur_ec_p4_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t2_br', 0 ); data.SetNumber( 'ur_ec_p4_t2_sr', 0 ); data.SetNumber( 'ur_ec_p4_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t3_br', 0 ); data.SetNumber( 'ur_ec_p4_t3_sr', 0 ); data.SetNumber( 'ur_ec_p4_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t4_br', 0 ); data.SetNumber( 'ur_ec_p4_t4_sr', 0 ); data.SetNumber( 'ur_ec_p4_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t5_br', 0 ); data.SetNumber( 'ur_ec_p4_t5_sr', 0 ); data.SetNumber( 'ur_ec_p4_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t6_br', 0 ); data.SetNumber( 'ur_ec_p4_t6_sr', 0 ); data.SetNumber( 'ur_ec_p4_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t1_br', 0 ); data.SetNumber( 'ur_ec_p5_t1_sr', 0 ); data.SetNumber( 'ur_ec_p5_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t2_br', 0 ); data.SetNumber( 'ur_ec_p5_t2_sr', 0 ); data.SetNumber( 'ur_ec_p5_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t3_br', 0 ); data.SetNumber( 'ur_ec_p5_t3_sr', 0 ); data.SetNumber( 'ur_ec_p5_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t4_br', 0 ); data.SetNumber( 'ur_ec_p5_t4_sr', 0 ); data.SetNumber( 'ur_ec_p5_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t5_br', 0 ); data.SetNumber( 'ur_ec_p5_t5_sr', 0 ); data.SetNumber( 'ur_ec_p5_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t6_br', 0 ); data.SetNumber( 'ur_ec_p5_t6_sr', 0 ); data.SetNumber( 'ur_ec_p5_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t1_br', 0 ); data.SetNumber( 'ur_ec_p6_t1_sr', 0 ); data.SetNumber( 'ur_ec_p6_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t2_br', 0 ); data.SetNumber( 'ur_ec_p6_t2_sr', 0 ); data.SetNumber( 'ur_ec_p6_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t3_br', 0 ); data.SetNumber( 'ur_ec_p6_t3_sr', 0 ); data.SetNumber( 'ur_ec_p6_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t4_br', 0 ); data.SetNumber( 'ur_ec_p6_t4_sr', 0 ); data.SetNumber( 'ur_ec_p6_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t5_br', 0 ); data.SetNumber( 'ur_ec_p6_t5_sr', 0 ); data.SetNumber( 'ur_ec_p6_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t6_br', 0 ); data.SetNumber( 'ur_ec_p6_t6_sr', 0 ); data.SetNumber( 'ur_ec_p6_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t1_br', 0 ); data.SetNumber( 'ur_ec_p7_t1_sr', 0 ); data.SetNumber( 'ur_ec_p7_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t2_br', 0 ); data.SetNumber( 'ur_ec_p7_t2_sr', 0 ); data.SetNumber( 'ur_ec_p7_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t3_br', 0 ); data.SetNumber( 'ur_ec_p7_t3_sr', 0 ); data.SetNumber( 'ur_ec_p7_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t4_br', 0 ); data.SetNumber( 'ur_ec_p7_t4_sr', 0 ); data.SetNumber( 'ur_ec_p7_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t5_br', 0 ); data.SetNumber( 'ur_ec_p7_t5_sr', 0 ); data.SetNumber( 'ur_ec_p7_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t6_br', 0 ); data.SetNumber( 'ur_ec_p7_t6_sr', 0 ); data.SetNumber( 'ur_ec_p7_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t1_br', 0 ); data.SetNumber( 'ur_ec_p8_t1_sr', 0 ); data.SetNumber( 'ur_ec_p8_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t2_br', 0 ); data.SetNumber( 'ur_ec_p8_t2_sr', 0 ); data.SetNumber( 'ur_ec_p8_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t3_br', 0 ); data.SetNumber( 'ur_ec_p8_t3_sr', 0 ); data.SetNumber( 'ur_ec_p8_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t4_br', 0 ); data.SetNumber( 'ur_ec_p8_t4_sr', 0 ); data.SetNumber( 'ur_ec_p8_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t5_br', 0 ); data.SetNumber( 'ur_ec_p8_t5_sr', 0 ); data.SetNumber( 'ur_ec_p8_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t6_br', 0 ); data.SetNumber( 'ur_ec_p8_t6_sr', 0 ); data.SetNumber( 'ur_ec_p8_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t1_br', 0 ); data.SetNumber( 'ur_ec_p9_t1_sr', 0 ); data.SetNumber( 'ur_ec_p9_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t2_br', 0 ); data.SetNumber( 'ur_ec_p9_t2_sr', 0 ); data.SetNumber( 'ur_ec_p9_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t3_br', 0 ); data.SetNumber( 'ur_ec_p9_t3_sr', 0 ); data.SetNumber( 'ur_ec_p9_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t4_br', 0 ); data.SetNumber( 'ur_ec_p9_t4_sr', 0 ); data.SetNumber( 'ur_ec_p9_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t5_br', 0 ); data.SetNumber( 'ur_ec_p9_t5_sr', 0 ); data.SetNumber( 'ur_ec_p9_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t6_br', 0 ); data.SetNumber( 'ur_ec_p9_t6_sr', 0 ); data.SetNumber( 'ur_ec_p9_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t1_br', 0 ); data.SetNumber( 'ur_ec_p10_t1_sr', 0 ); data.SetNumber( 'ur_ec_p10_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t2_br', 0 ); data.SetNumber( 'ur_ec_p10_t2_sr', 0 ); data.SetNumber( 'ur_ec_p10_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t3_br', 0 ); data.SetNumber( 'ur_ec_p10_t3_sr', 0 ); data.SetNumber( 'ur_ec_p10_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t4_br', 0 ); data.SetNumber( 'ur_ec_p10_t4_sr', 0 ); data.SetNumber( 'ur_ec_p10_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t5_br', 0 ); data.SetNumber( 'ur_ec_p10_t5_sr', 0 ); data.SetNumber( 'ur_ec_p10_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t6_br', 0 ); data.SetNumber( 'ur_ec_p10_t6_sr', 0 ); data.SetNumber( 'ur_ec_p10_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t1_br', 0 ); data.SetNumber( 'ur_ec_p11_t1_sr', 0 ); data.SetNumber( 'ur_ec_p11_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t2_br', 0 ); data.SetNumber( 'ur_ec_p11_t2_sr', 0 ); data.SetNumber( 'ur_ec_p11_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t3_br', 0 ); data.SetNumber( 'ur_ec_p11_t3_sr', 0 ); data.SetNumber( 'ur_ec_p11_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t4_br', 0 ); data.SetNumber( 'ur_ec_p11_t4_sr', 0 ); data.SetNumber( 'ur_ec_p11_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t5_br', 0 ); data.SetNumber( 'ur_ec_p11_t5_sr', 0 ); data.SetNumber( 'ur_ec_p11_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t6_br', 0 ); data.SetNumber( 'ur_ec_p11_t6_sr', 0 ); data.SetNumber( 'ur_ec_p11_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t1_br', 0 ); data.SetNumber( 'ur_ec_p12_t1_sr', 0 ); data.SetNumber( 'ur_ec_p12_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t2_br', 0 ); data.SetNumber( 'ur_ec_p12_t2_sr', 0 ); data.SetNumber( 'ur_ec_p12_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t3_br', 0 ); data.SetNumber( 'ur_ec_p12_t3_sr', 0 ); data.SetNumber( 'ur_ec_p12_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t4_br', 0 ); data.SetNumber( 'ur_ec_p12_t4_sr', 0 ); data.SetNumber( 'ur_ec_p12_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t5_br', 0 ); data.SetNumber( 'ur_ec_p12_t5_sr', 0 ); data.SetNumber( 'ur_ec_p12_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t6_br', 0 ); data.SetNumber( 'ur_ec_p12_t6_sr', 0 ); data.SetNumber( 'ur_ec_p12_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_enable', 0 ); data.SetMatrix( 'ur_dc_sched_weekday', [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ); data.SetMatrix( 'ur_dc_sched_weekend', [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ); data.SetNumber( 'ur_dc_p1_t1_dc', 0 ); data.SetNumber( 'ur_dc_p1_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t2_dc', 0 ); data.SetNumber( 'ur_dc_p1_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t3_dc', 0 ); data.SetNumber( 'ur_dc_p1_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t4_dc', 0 ); data.SetNumber( 'ur_dc_p1_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t5_dc', 0 ); data.SetNumber( 'ur_dc_p1_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t6_dc', 0 ); data.SetNumber( 'ur_dc_p1_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t1_dc', 0 ); data.SetNumber( 'ur_dc_p2_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t2_dc', 0 ); data.SetNumber( 'ur_dc_p2_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t3_dc', 0 ); data.SetNumber( 'ur_dc_p2_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t4_dc', 0 ); data.SetNumber( 'ur_dc_p2_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t5_dc', 0 ); data.SetNumber( 'ur_dc_p2_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t6_dc', 0 ); data.SetNumber( 'ur_dc_p2_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t1_dc', 0 ); data.SetNumber( 'ur_dc_p3_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t2_dc', 0 ); data.SetNumber( 'ur_dc_p3_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t3_dc', 0 ); data.SetNumber( 'ur_dc_p3_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t4_dc', 0 ); data.SetNumber( 'ur_dc_p3_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t5_dc', 0 ); data.SetNumber( 'ur_dc_p3_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t6_dc', 0 ); data.SetNumber( 'ur_dc_p3_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t1_dc', 0 ); data.SetNumber( 'ur_dc_p4_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t2_dc', 0 ); data.SetNumber( 'ur_dc_p4_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t3_dc', 0 ); data.SetNumber( 'ur_dc_p4_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t4_dc', 0 ); data.SetNumber( 'ur_dc_p4_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t5_dc', 0 ); data.SetNumber( 'ur_dc_p4_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t6_dc', 0 ); data.SetNumber( 'ur_dc_p4_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t1_dc', 0 ); data.SetNumber( 'ur_dc_p5_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t2_dc', 0 ); data.SetNumber( 'ur_dc_p5_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t3_dc', 0 ); data.SetNumber( 'ur_dc_p5_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t4_dc', 0 ); data.SetNumber( 'ur_dc_p5_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t5_dc', 0 ); data.SetNumber( 'ur_dc_p5_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t6_dc', 0 ); data.SetNumber( 'ur_dc_p5_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t1_dc', 0 ); data.SetNumber( 'ur_dc_p6_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t2_dc', 0 ); data.SetNumber( 'ur_dc_p6_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t3_dc', 0 ); data.SetNumber( 'ur_dc_p6_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t4_dc', 0 ); data.SetNumber( 'ur_dc_p6_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t5_dc', 0 ); data.SetNumber( 'ur_dc_p6_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t6_dc', 0 ); data.SetNumber( 'ur_dc_p6_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t1_dc', 0 ); data.SetNumber( 'ur_dc_p7_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t2_dc', 0 ); data.SetNumber( 'ur_dc_p7_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t3_dc', 0 ); data.SetNumber( 'ur_dc_p7_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t4_dc', 0 ); data.SetNumber( 'ur_dc_p7_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t5_dc', 0 ); data.SetNumber( 'ur_dc_p7_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t6_dc', 0 ); data.SetNumber( 'ur_dc_p7_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t1_dc', 0 ); data.SetNumber( 'ur_dc_p8_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t2_dc', 0 ); data.SetNumber( 'ur_dc_p8_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t3_dc', 0 ); data.SetNumber( 'ur_dc_p8_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t4_dc', 0 ); data.SetNumber( 'ur_dc_p8_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t5_dc', 0 ); data.SetNumber( 'ur_dc_p8_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t6_dc', 0 ); data.SetNumber( 'ur_dc_p8_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t1_dc', 0 ); data.SetNumber( 'ur_dc_p9_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t2_dc', 0 ); data.SetNumber( 'ur_dc_p9_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t3_dc', 0 ); data.SetNumber( 'ur_dc_p9_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t4_dc', 0 ); data.SetNumber( 'ur_dc_p9_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t5_dc', 0 ); data.SetNumber( 'ur_dc_p9_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t6_dc', 0 ); data.SetNumber( 'ur_dc_p9_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t1_dc', 0 ); data.SetNumber( 'ur_dc_p10_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t2_dc', 0 ); data.SetNumber( 'ur_dc_p10_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t3_dc', 0 ); data.SetNumber( 'ur_dc_p10_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t4_dc', 0 ); data.SetNumber( 'ur_dc_p10_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t5_dc', 0 ); data.SetNumber( 'ur_dc_p10_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t6_dc', 0 ); data.SetNumber( 'ur_dc_p10_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t1_dc', 0 ); data.SetNumber( 'ur_dc_p11_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t2_dc', 0 ); data.SetNumber( 'ur_dc_p11_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t3_dc', 0 ); data.SetNumber( 'ur_dc_p11_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t4_dc', 0 ); data.SetNumber( 'ur_dc_p11_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t5_dc', 0 ); data.SetNumber( 'ur_dc_p11_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t6_dc', 0 ); data.SetNumber( 'ur_dc_p11_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t1_dc', 0 ); data.SetNumber( 'ur_dc_p12_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t2_dc', 0 ); data.SetNumber( 'ur_dc_p12_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t3_dc', 0 ); data.SetNumber( 'ur_dc_p12_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t4_dc', 0 ); data.SetNumber( 'ur_dc_p12_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t5_dc', 0 ); data.SetNumber( 'ur_dc_p12_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t6_dc', 0 ); data.SetNumber( 'ur_dc_p12_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t1_dc', 0 ); data.SetNumber( 'ur_dc_jan_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t2_dc', 0 ); data.SetNumber( 'ur_dc_jan_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t3_dc', 0 ); data.SetNumber( 'ur_dc_jan_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t4_dc', 0 ); data.SetNumber( 'ur_dc_jan_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t5_dc', 0 ); data.SetNumber( 'ur_dc_jan_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t6_dc', 0 ); data.SetNumber( 'ur_dc_jan_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t1_dc', 0 ); data.SetNumber( 'ur_dc_feb_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t2_dc', 0 ); data.SetNumber( 'ur_dc_feb_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t3_dc', 0 ); data.SetNumber( 'ur_dc_feb_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t4_dc', 0 ); data.SetNumber( 'ur_dc_feb_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t5_dc', 0 ); data.SetNumber( 'ur_dc_feb_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t6_dc', 0 ); data.SetNumber( 'ur_dc_feb_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t1_dc', 0 ); data.SetNumber( 'ur_dc_mar_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t2_dc', 0 ); data.SetNumber( 'ur_dc_mar_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t3_dc', 0 ); data.SetNumber( 'ur_dc_mar_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t4_dc', 0 ); data.SetNumber( 'ur_dc_mar_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t5_dc', 0 ); data.SetNumber( 'ur_dc_mar_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t6_dc', 0 ); data.SetNumber( 'ur_dc_mar_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t1_dc', 0 ); data.SetNumber( 'ur_dc_apr_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t2_dc', 0 ); data.SetNumber( 'ur_dc_apr_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t3_dc', 0 ); data.SetNumber( 'ur_dc_apr_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t4_dc', 0 ); data.SetNumber( 'ur_dc_apr_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t5_dc', 0 ); data.SetNumber( 'ur_dc_apr_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t6_dc', 0 ); data.SetNumber( 'ur_dc_apr_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t1_dc', 0 ); data.SetNumber( 'ur_dc_may_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t2_dc', 0 ); data.SetNumber( 'ur_dc_may_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t3_dc', 0 ); data.SetNumber( 'ur_dc_may_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t4_dc', 0 ); data.SetNumber( 'ur_dc_may_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t5_dc', 0 ); data.SetNumber( 'ur_dc_may_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t6_dc', 0 ); data.SetNumber( 'ur_dc_may_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t1_dc', 0 ); data.SetNumber( 'ur_dc_jun_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t2_dc', 0 ); data.SetNumber( 'ur_dc_jun_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t3_dc', 0 ); data.SetNumber( 'ur_dc_jun_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t4_dc', 0 ); data.SetNumber( 'ur_dc_jun_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t5_dc', 0 ); data.SetNumber( 'ur_dc_jun_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t6_dc', 0 ); data.SetNumber( 'ur_dc_jun_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t1_dc', 0 ); data.SetNumber( 'ur_dc_jul_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t2_dc', 0 ); data.SetNumber( 'ur_dc_jul_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t3_dc', 0 ); data.SetNumber( 'ur_dc_jul_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t4_dc', 0 ); data.SetNumber( 'ur_dc_jul_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t5_dc', 0 ); data.SetNumber( 'ur_dc_jul_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t6_dc', 0 ); data.SetNumber( 'ur_dc_jul_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t1_dc', 0 ); data.SetNumber( 'ur_dc_aug_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t2_dc', 0 ); data.SetNumber( 'ur_dc_aug_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t3_dc', 0 ); data.SetNumber( 'ur_dc_aug_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t4_dc', 0 ); data.SetNumber( 'ur_dc_aug_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t5_dc', 0 ); data.SetNumber( 'ur_dc_aug_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t6_dc', 0 ); data.SetNumber( 'ur_dc_aug_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t1_dc', 0 ); data.SetNumber( 'ur_dc_sep_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t2_dc', 0 ); data.SetNumber( 'ur_dc_sep_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t3_dc', 0 ); data.SetNumber( 'ur_dc_sep_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t4_dc', 0 ); data.SetNumber( 'ur_dc_sep_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t5_dc', 0 ); data.SetNumber( 'ur_dc_sep_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t6_dc', 0 ); data.SetNumber( 'ur_dc_sep_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t1_dc', 0 ); data.SetNumber( 'ur_dc_oct_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t2_dc', 0 ); data.SetNumber( 'ur_dc_oct_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t3_dc', 0 ); data.SetNumber( 'ur_dc_oct_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t4_dc', 0 ); data.SetNumber( 'ur_dc_oct_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t5_dc', 0 ); data.SetNumber( 'ur_dc_oct_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t6_dc', 0 ); data.SetNumber( 'ur_dc_oct_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t1_dc', 0 ); data.SetNumber( 'ur_dc_nov_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t2_dc', 0 ); data.SetNumber( 'ur_dc_nov_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t3_dc', 0 ); data.SetNumber( 'ur_dc_nov_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t4_dc', 0 ); data.SetNumber( 'ur_dc_nov_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t5_dc', 0 ); data.SetNumber( 'ur_dc_nov_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t6_dc', 0 ); data.SetNumber( 'ur_dc_nov_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t1_dc', 0 ); data.SetNumber( 'ur_dc_dec_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t2_dc', 0 ); data.SetNumber( 'ur_dc_dec_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t3_dc', 0 ); data.SetNumber( 'ur_dc_dec_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t4_dc', 0 ); data.SetNumber( 'ur_dc_dec_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t5_dc', 0 ); data.SetNumber( 'ur_dc_dec_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t6_dc', 0 ); data.SetNumber( 'ur_dc_dec_t6_ub', 1e+038 ); module = SSC.Module('utilityrate3'); if (module.Exec(data)) salespurchases = data.GetArray('year1_monthly_salespurchases'); ns = data.GetNumber('savings_year1'); names{end+1} = 'ear 1 monthly sales/purchases with system : '; for i = 1:size(salespurchases) names{end+1} = sprintf('[%d]: $%g', i,salespurchases(i)); end names{end+1} = sprintf('Net savings : $%g', ns); names{end+1} = 'UtilityRate3 example OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'UtilityRate3 example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in btnCashLoan. function btnCashLoan_Callback(hObject, eventdata, handles) % hObject handle to btnCashLoan (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %cashloan compute module call from 2014.11.24 "Photovoltaic, Residential" configuration names={}; data = SSC.Data(); data.SetNumber( 'analysis_period', 25 ); data.SetNumber( 'federal_tax_rate', 30 ); data.SetNumber( 'state_tax_rate', 7 ); data.SetNumber( 'property_tax_rate', 1 ); data.SetNumber( 'prop_tax_cost_assessed_percent', 100 ); data.SetNumber( 'prop_tax_assessed_decline', 0 ); data.SetNumber( 'sales_tax_rate', 5 ); data.SetNumber( 'real_discount_rate', 5.5 ); data.SetNumber( 'inflation_rate', 2.5 ); data.SetNumber( 'insurance_rate', 1 ); data.SetNumber( 'system_capacity', 3.8745 ); data.SetNumber( 'loan_term', 25 ); data.SetNumber( 'loan_rate', 5 ); data.SetNumber( 'debt_fraction', 100 ); data.SetArray( 'om_fixed', [ 0 ] ); data.SetNumber( 'om_fixed_escal', 0 ); data.SetArray( 'om_production', [ 0 ] ); data.SetNumber( 'om_production_escal', 0 ); data.SetArray( 'om_capacity', [ 20 ] ); data.SetNumber( 'om_capacity_escal', 0 ); data.SetArray( 'om_fuel_cost', [ 0 ] ); data.SetNumber( 'om_fuel_cost_escal', 0 ); data.SetNumber( 'itc_fed_amount', 0 ); data.SetNumber( 'itc_fed_amount_deprbas_fed', 1 ); data.SetNumber( 'itc_fed_amount_deprbas_sta', 1 ); data.SetNumber( 'itc_sta_amount', 0 ); data.SetNumber( 'itc_sta_amount_deprbas_fed', 0 ); data.SetNumber( 'itc_sta_amount_deprbas_sta', 0 ); data.SetNumber( 'itc_fed_percent', 30 ); data.SetNumber( 'itc_fed_percent_maxvalue', 1e+038 ); data.SetNumber( 'itc_fed_percent_deprbas_fed', 1 ); data.SetNumber( 'itc_fed_percent_deprbas_sta', 1 ); data.SetNumber( 'itc_sta_percent', 25 ); data.SetNumber( 'itc_sta_percent_maxvalue', 1e+038 ); data.SetNumber( 'itc_sta_percent_deprbas_fed', 0 ); data.SetNumber( 'itc_sta_percent_deprbas_sta', 0 ); data.SetArray( 'ptc_fed_amount', [ 0 ] ); data.SetNumber( 'ptc_fed_term', 10 ); data.SetNumber( 'ptc_fed_escal', 0 ); data.SetArray( 'ptc_sta_amount', [ 0 ] ); data.SetNumber( 'ptc_sta_term', 10 ); data.SetNumber( 'ptc_sta_escal', 0 ); data.SetNumber( 'ibi_fed_amount', 0 ); data.SetNumber( 'ibi_fed_amount_tax_fed', 1 ); data.SetNumber( 'ibi_fed_amount_tax_sta', 1 ); data.SetNumber( 'ibi_fed_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_fed_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_sta_amount', 0 ); data.SetNumber( 'ibi_sta_amount_tax_fed', 1 ); data.SetNumber( 'ibi_sta_amount_tax_sta', 1 ); data.SetNumber( 'ibi_sta_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_sta_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_uti_amount', 0 ); data.SetNumber( 'ibi_uti_amount_tax_fed', 1 ); data.SetNumber( 'ibi_uti_amount_tax_sta', 1 ); data.SetNumber( 'ibi_uti_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_uti_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_oth_amount', 0 ); data.SetNumber( 'ibi_oth_amount_tax_fed', 1 ); data.SetNumber( 'ibi_oth_amount_tax_sta', 1 ); data.SetNumber( 'ibi_oth_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_oth_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_fed_percent', 0 ); data.SetNumber( 'ibi_fed_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_fed_percent_tax_fed', 1 ); data.SetNumber( 'ibi_fed_percent_tax_sta', 1 ); data.SetNumber( 'ibi_fed_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_fed_percent_deprbas_sta', 0 ); data.SetNumber( 'ibi_sta_percent', 0 ); data.SetNumber( 'ibi_sta_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_sta_percent_tax_fed', 1 ); data.SetNumber( 'ibi_sta_percent_tax_sta', 1 ); data.SetNumber( 'ibi_sta_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_sta_percent_deprbas_sta', 0 ); data.SetNumber( 'ibi_uti_percent', 0 ); data.SetNumber( 'ibi_uti_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_uti_percent_tax_fed', 1 ); data.SetNumber( 'ibi_uti_percent_tax_sta', 1 ); data.SetNumber( 'ibi_uti_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_uti_percent_deprbas_sta', 0 ); data.SetNumber( 'ibi_oth_percent', 0 ); data.SetNumber( 'ibi_oth_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_oth_percent_tax_fed', 1 ); data.SetNumber( 'ibi_oth_percent_tax_sta', 1 ); data.SetNumber( 'ibi_oth_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_oth_percent_deprbas_sta', 0 ); data.SetNumber( 'cbi_fed_amount', 0 ); data.SetNumber( 'cbi_fed_maxvalue', 1e+038 ); data.SetNumber( 'cbi_fed_tax_fed', 1 ); data.SetNumber( 'cbi_fed_tax_sta', 1 ); data.SetNumber( 'cbi_fed_deprbas_fed', 0 ); data.SetNumber( 'cbi_fed_deprbas_sta', 0 ); data.SetNumber( 'cbi_sta_amount', 0 ); data.SetNumber( 'cbi_sta_maxvalue', 1e+038 ); data.SetNumber( 'cbi_sta_tax_fed', 1 ); data.SetNumber( 'cbi_sta_tax_sta', 1 ); data.SetNumber( 'cbi_sta_deprbas_fed', 0 ); data.SetNumber( 'cbi_sta_deprbas_sta', 0 ); data.SetNumber( 'cbi_uti_amount', 0 ); data.SetNumber( 'cbi_uti_maxvalue', 1e+038 ); data.SetNumber( 'cbi_uti_tax_fed', 1 ); data.SetNumber( 'cbi_uti_tax_sta', 1 ); data.SetNumber( 'cbi_uti_deprbas_fed', 0 ); data.SetNumber( 'cbi_uti_deprbas_sta', 0 ); data.SetNumber( 'cbi_oth_amount', 0 ); data.SetNumber( 'cbi_oth_maxvalue', 1e+038 ); data.SetNumber( 'cbi_oth_tax_fed', 1 ); data.SetNumber( 'cbi_oth_tax_sta', 1 ); data.SetNumber( 'cbi_oth_deprbas_fed', 0 ); data.SetNumber( 'cbi_oth_deprbas_sta', 0 ); data.SetArray( 'pbi_fed_amount', [ 0 ] ); data.SetNumber( 'pbi_fed_term', 0 ); data.SetNumber( 'pbi_fed_escal', 0 ); data.SetNumber( 'pbi_fed_tax_fed', 1 ); data.SetNumber( 'pbi_fed_tax_sta', 1 ); data.SetArray( 'pbi_sta_amount', [ 0 ] ); data.SetNumber( 'pbi_sta_term', 0 ); data.SetNumber( 'pbi_sta_escal', 0 ); data.SetNumber( 'pbi_sta_tax_fed', 1 ); data.SetNumber( 'pbi_sta_tax_sta', 1 ); data.SetArray( 'pbi_uti_amount', [ 0 ] ); data.SetNumber( 'pbi_uti_term', 0 ); data.SetNumber( 'pbi_uti_escal', 0 ); data.SetNumber( 'pbi_uti_tax_fed', 1 ); data.SetNumber( 'pbi_uti_tax_sta', 1 ); data.SetArray( 'pbi_oth_amount', [ 0 ] ); data.SetNumber( 'pbi_oth_term', 0 ); data.SetNumber( 'pbi_oth_escal', 0 ); data.SetNumber( 'pbi_oth_tax_fed', 1 ); data.SetNumber( 'pbi_oth_tax_sta', 1 ); data.SetNumber( 'market', 0 ); data.SetNumber( 'mortgage', 1 ); data.SetNumber( 'total_installed_cost', 12746.7 ); data.SetNumber( 'salvage_percentage', 0 ); data.SetArray( 'annual_energy_value', [ 812.892, 832.234, 852.04, 872.322, 892.814, 913.738, 935.158, 957.085, 979.531, 1002.51, 1026.03, 1050.11, 1074.76, 1100, 1125.83, 1152.28, 1179.35, 1207.07, 1235.44, 1264.49, 1294.22, 1324.67, 1355.83, 1387.74, 1428.58 ] ); data.SetArray( 'hourly_energy', [ -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.237892, 1.55848, 2.07121, 2.54933, 2.77945, 2.42071, 1.25773, 0.593002, 0.235599, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0131131, 0.701084, 1.32711, 1.76305, 2.5502, 2.29087, 1.83336, 2.01766, 0.881524, 0.298536, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00528433, 0.737449, 1.51351, 2.14093, 2.39439, 2.32012, 1.83616, 0.712188, 0.32981, 0.087085, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.163208, 0.438056, 0.343575, 1.18182, 1.85202, 1.85609, 0.842696, 0.641464, 0.260647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298244, 0.0723487, 0.189837, 0.2028, 0.559363, 0.610891, 0.424415, 0.21567, 0.0438746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228363, 0.399806, 1.6819, 2.36102, 2.50324, 2.37421, 1.99454, 1.55301, 0.560049, 0.012407, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257482, 1.26562, 1.75789, 2.28831, 1.9963, 2.05102, 1.71107, 1.21754, 0.264943, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.531982, 1.2253, 1.74739, 2.31801, 2.38827, 2.23093, 1.90488, 1.21141, 0.498004, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00198372, 0.593078, 1.31965, 2.07685, 2.40343, 2.53277, 2.29068, 2.13211, 1.5245, 0.603361, 0.0113138, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0032201, 0.661057, 1.43, 2.03944, 2.29233, 2.56232, 2.47674, 2.22701, 1.32747, 0.482224, 0.0189405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.14109, 0.281369, 0.61837, 1.17956, 1.35886, 1.24448, 0.674592, 0.60305, 0.306165, 0.0125432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00466503, 0.668332, 1.4492, 2.1348, 2.45217, 2.67319, 2.67974, 2.32841, 1.71872, 0.753559, 0.0235207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.031651, 0.710846, 1.51631, 2.0761, 2.59069, 2.73589, 2.61101, 2.27566, 1.28793, 0.596088, 0.0825364, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0251314, 0.674564, 1.48159, 2.16343, 2.52639, 2.6672, 2.58934, 2.19609, 1.67186, 0.858018, 0.0881195, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.207666, 0.579903, 0.912926, 1.00532, 0.884244, 0.696492, 0.608002, 0.459878, 0.217412, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188015, 0.714458, 1.06288, 1.94864, 2.57486, 2.31493, 1.9987, 1.61288, 0.662761, 0.0476338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803296, 0.341384, 0.735301, 0.726501, 0.711979, 1.14964, 1.19626, 0.328706, 0.0181347, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0305592, 0.156043, 0.341021, 0.474378, 0.914521, 0.580048, 0.433983, 0.686068, 0.103174, 0.0121079, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0060497, 0.703844, 1.48762, 2.17949, 2.59902, 2.78725, 2.62568, 2.43746, 1.82643, 0.823967, 0.0825833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0158048, 0.702795, 1.61301, 2.33222, 2.67688, 2.8999, 2.90041, 2.53403, 1.93685, 0.855748, 0.0747284, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.523808, 1.61883, 2.32098, 2.57078, 2.77892, 2.55405, 2.36358, 1.7967, 0.825932, 0.0744693, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179379, 0.743217, 1.67058, 2.40603, 2.83378, 2.95908, 2.8987, 2.57699, 1.95782, 0.894908, 0.0864452, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0209617, 0.775254, 1.67189, 2.35763, 2.71016, 2.76434, 2.74124, 2.41092, 1.87865, 0.848176, 0.0809343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0518558, 0.766187, 1.66598, 2.2831, 2.66382, 2.84186, 2.73265, 2.48005, 1.87026, 1.04913, 0.183123, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.02225, 0.799729, 1.69815, 1.74506, 2.89107, 3.02621, 2.94313, 2.62588, 1.87551, 0.951237, 0.112167, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0256666, 0.747031, 1.61328, 2.20768, 2.59202, 2.81236, 2.77996, 2.41353, 1.92279, 0.651178, 0.124277, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00617361, 0.636098, 1.20967, 2.07618, 2.11638, 2.66892, 2.49594, 1.6139, 0.809756, 0.322557, 0.0374598, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3227, 1.28248, 2.55227, 2.75435, 2.56264, 1.83712, 2.17066, 1.50979, 0.754942, 0.137741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0211536, 0.731656, 1.56781, 2.22288, 2.54379, 2.73358, 2.61749, 2.25027, 1.58404, 0.641335, 0.0444765, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120561, 0.753942, 1.58639, 2.09348, 2.40988, 2.82317, 2.74801, 2.46944, 1.86985, 0.945149, 0.207441, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0464183, 0.69387, 1.56588, 2.09747, 2.1085, 1.67782, 1.826, 2.01889, 0.981731, 0.438836, 0.136136, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0521473, 0.773615, 1.65551, 2.26765, 2.6259, 2.82139, 2.72325, 2.49335, 1.8784, 1.07924, 0.227448, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0671193, 0.830364, 1.72201, 2.35263, 2.75282, 2.91385, 2.75284, 2.48439, 1.91677, 1.14569, 0.260342, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0473347, 0.585262, 1.62684, 2.28808, 1.7178, 2.71214, 2.29105, 0.924231, 1.16708, 0.272148, 0.0880208, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0342007, 0.638932, 1.42686, 1.88306, 2.20658, 1.79152, 1.62162, 0.690246, 0.524674, 0.310858, 0.0494554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.060942, 0.64943, 1.43918, 2.28859, 2.4677, 2.61078, 2.8912, 2.31511, 1.93241, 1.16167, 0.222327, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0556933, 0.690716, 1.47685, 2.1498, 2.60054, 2.8157, 2.71164, 2.45462, 1.72675, 0.820188, 0.175575, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0746355, 0.51225, 0.809798, 0.77761, 0.967812, 1.14769, 1.38166, 1.2552, 1.21951, 0.630871, 0.119638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0667311, 0.786457, 1.6966, 2.31386, 2.71669, 2.78051, 2.73365, 2.54435, 1.94229, 1.16229, 0.281953, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065812, 0.845292, 1.76217, 2.41753, 2.77411, 2.88281, 2.15553, 0.793721, 0.484992, 0.441506, 0.13502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0599431, 0.612415, 1.70107, 2.26915, 1.88099, 2.59508, 2.5845, 2.19306, 2.00529, 0.731647, 0.297952, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0790636, 0.811192, 1.61865, 2.18342, 2.67058, 2.76951, 2.84814, 2.54805, 1.98559, 1.19967, 0.30857, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0906775, 0.789972, 1.70023, 2.00477, 2.46167, 2.65024, 1.74838, 1.41502, 1.72101, 0.938604, 0.28449, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0724386, 0.702447, 0.868642, 0.546874, 2.14543, 1.31574, 0.82919, 1.22686, 0.897264, 0.500842, 0.0736991, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0201163, 0.128451, 0.300408, 0.76382, 0.915334, 1.68752, 1.28516, 2.06155, 1.53318, 0.94012, 0.167664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0389222, 0.180573, 0.613588, 0.758888, 0.51899, 1.17105, 1.06341, 0.93313, 0.73764, 0.569722, 0.0709034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0658192, 0.431479, 1.19453, 2.24483, 2.40198, 3.02736, 2.91366, 2.58129, 1.9729, 1.13816, 0.27833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.114606, 0.925966, 1.84552, 2.36439, 2.87467, 2.91533, 2.80996, 2.61612, 2.1303, 1.26343, 0.359798, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129498, 0.933003, 1.73591, 2.48908, 2.81416, 3.01391, 2.84047, 2.65169, 2.12741, 1.30098, 0.374405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.157235, 1.02468, 1.90783, 2.65349, 2.98748, 3.06543, 2.94032, 2.64438, 2.18112, 1.37498, 0.390754, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822836, 0.897545, 1.82385, 2.05875, 2.70064, 2.67203, 2.56134, 2.32863, 1.99009, 1.31135, 0.349636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0811695, 0.920532, 1.56637, 2.43379, 2.65679, 3.13148, 3.25006, 2.87731, 1.17271, 0.480157, 0.1948, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181889, 1.03881, 2.03771, 2.65972, 3.12291, 3.27627, 3.2033, 2.83183, 2.18556, 1.43695, 0.461076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.183358, 1.07588, 1.96893, 2.63122, 3.01158, 3.06493, 3.0246, 2.80486, 2.22148, 1.39715, 0.455539, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.196156, 1.08146, 1.94145, 2.36668, 2.99154, 3.0687, 2.70037, 2.68487, 2.10532, 1.31872, 0.456283, 0.000657285, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113946, 0.551505, 1.65781, 2.18213, 2.14962, 2.72893, 2.81724, 2.40752, 1.84958, 1.05666, 0.245989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155523, 0.86744, 1.74231, 2.24297, 2.90425, 3.00904, 2.88222, 2.52595, 2.01596, 1.2348, 0.370649, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.20253, 1.08269, 1.98556, 2.13004, 2.4654, 2.72754, 2.38109, 2.11288, 1.52105, 1.14451, 0.333204, 0.00459637, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.154559, 0.95803, 1.79215, 2.42852, 2.78651, 2.78852, 2.7031, 2.42729, 2.00225, 1.21656, 0.385532, 0.00223397, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0916559, 0.549396, 0.75385, 2.22277, 2.12315, 1.40701, 1.31119, 1.46777, 1.35661, 0.926233, 0.34359, 0.0106012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0397063, 0.327252, 0.392382, 0.483877, 1.00748, 1.03345, 2.16925, 2.29605, 1.59847, 0.773749, 0.33413, 0.00651965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0787509, 0.506391, 0.831606, 1.75896, 2.63316, 2.87503, 2.59263, 2.69132, 2.15608, 1.3304, 0.424729, 0.00319275, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.261674, 1.15784, 2.05384, 2.69619, 3.02786, 3.19709, 3.17375, 2.86824, 2.30189, 1.48386, 0.534188, 0.0138144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.256328, 1.18148, 2.04045, 2.65444, 2.91485, 3.11753, 3.0243, 2.68981, 2.18902, 1.41382, 0.494521, 0.0134833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.244045, 1.13313, 1.99179, 2.58184, 2.93921, 3.1217, 3.05008, 2.56994, 2.0232, 1.28437, 0.402903, 0.0178204, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266809, 1.15784, 1.91754, 2.55805, 2.88242, 2.99619, 3.00307, 2.5902, 1.81057, 1.19422, 0.47619, 0.0185877, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.040466, 0.230568, 0.309243, 0.582696, 0.646274, 0.6753, 1.33353, 0.569191, 0.482061, 0.317662, 0.116617, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.080749, 0.451759, 0.425689, 0.642428, 1.19467, 2.38699, 2.79147, 2.29211, 0.50947, 0.513716, 0.394361, 0.0107271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.317282, 1.21208, 2.12014, 2.62569, 3.00869, 3.21302, 3.1563, 2.79564, 2.2559, 1.48345, 0.545944, 0.0202432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.26923, 1.13371, 1.96823, 2.55829, 2.69989, 2.88385, 2.65694, 2.32741, 1.81625, 1.2666, 0.331561, 0.0241534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.220531, 0.779394, 1.62667, 2.23521, 2.55763, 2.69444, 3.02501, 2.382, 1.97013, 1.29111, 0.297147, 0.0292915, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.336994, 1.20974, 1.86143, 2.32418, 2.49948, 2.82045, 2.32595, 2.59306, 2.10933, 1.43306, 0.535486, 0.0210137, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3127, 1.18289, 1.90734, 2.46451, 2.91878, 3.01669, 2.93144, 2.41273, 2.14119, 1.30841, 0.485927, 0.024567, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.378011, 1.30699, 2.11861, 2.68462, 3.05483, 3.06153, 3.09706, 2.75535, 2.19957, 1.45378, 0.5578, 0.0276917, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.347243, 1.2271, 2.04089, 2.6192, 2.92527, 3.0189, 2.89591, 2.66876, 2.10579, 1.40257, 0.473208, 0.0229249, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000403494, 0.337658, 1.16051, 1.82589, 2.45538, 2.57733, 2.89009, 2.76417, 2.60689, 1.98839, 1.30573, 0.483454, 0.0211595, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00808479, 0.314223, 0.910464, 1.80632, 2.46236, 2.27492, 2.75766, 2.39879, 2.29447, 1.39087, 1.0941, 0.337407, 0.0271273, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00172127, 0.109056, 0.179196, 0.37062, 1.20613, 2.08287, 0.705299, 0.906088, 1.19809, 0.679673, 0.796208, 0.283034, 0.0252436, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0649632, 0.368292, 0.792937, 0.993877, 1.09533, 1.2053, 1.20991, 1.34161, 0.955249, 1.14, 0.382964, 0.0161921, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00881097, 0.207262, 0.916083, 1.71332, 2.83532, 2.64491, 3.34268, 3.15964, 2.65037, 2.11147, 1.3217, 0.547824, 0.034669, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011599, 0.440098, 1.35861, 2.09894, 2.4451, 3.05401, 2.942, 2.68885, 2.75181, 2.17083, 1.51662, 0.59046, 0.0282801, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177853, 0.405087, 1.21104, 2.01975, 2.36418, 3.00371, 2.9622, 2.21349, 1.44564, 1.52112, 0.816214, 0.483528, 0.0346759, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112733, 0.467786, 1.38389, 2.12949, 2.741, 2.73288, 3.15948, 3.11531, 2.77932, 2.24467, 1.48522, 0.587207, 0.0326499, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0141428, 0.43465, 1.31316, 2.09238, 2.6159, 2.90832, 3.01194, 2.95357, 2.65734, 2.14486, 1.33686, 0.483806, 0.0326749, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00889213, 0.315005, 0.958325, 0.798187, 1.93203, 0.912173, 1.94889, 3.20138, 2.51446, 2.19894, 1.45864, 0.60054, 0.0355296, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0288925, 0.471801, 1.37805, 2.13256, 2.53429, 2.89463, 3.05365, 3.09967, 2.81197, 2.29455, 1.39346, 0.577399, 0.0359271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0184371, 0.510202, 1.42878, 2.15722, 2.72898, 3.09284, 3.229, 3.03457, 2.75948, 2.17573, 1.49261, 0.585832, 0.0395015, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148868, 0.536923, 1.45241, 2.2231, 2.77469, 3.1491, 3.1734, 3.02611, 2.55435, 2.09986, 1.31292, 0.554965, 0.0475305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0236629, 0.502378, 1.33382, 2.05257, 2.53122, 2.77383, 3.06528, 2.91351, 2.50308, 1.76945, 1.12408, 0.538006, 0.0450965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266797, 0.533507, 1.4479, 2.26204, 2.84049, 3.17678, 3.32571, 3.23657, 2.90545, 2.31084, 1.52298, 0.5994, 0.0447657, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0253841, 0.565154, 1.43935, 2.16465, 2.61938, 3.00398, 3.04388, 2.90682, 2.64879, 2.16171, 1.44131, 0.586497, 0.0399844, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0392779, 0.529717, 1.41222, 2.13948, 2.64051, 2.93131, 3.02475, 2.92114, 2.66524, 2.14606, 1.40554, 0.509182, 0.0440143, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0399866, 0.537241, 1.40124, 2.12679, 2.60461, 2.99403, 3.15687, 3.07992, 2.74554, 2.20116, 1.41404, 0.565366, 0.0478372, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0322141, 0.608073, 1.52175, 2.30897, 2.89622, 3.20449, 3.33122, 3.15288, 2.69974, 2.00487, 1.1623, 0.437806, 0.0718506, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0354949, 0.630341, 1.56012, 2.32286, 2.83081, 3.07942, 3.23508, 3.10054, 2.5652, 1.89407, 1.14653, 0.584859, 0.0707731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0548709, 0.536024, 1.46114, 2.27397, 2.7781, 3.06547, 3.13765, 3.03407, 2.74069, 2.18397, 1.44939, 0.588229, 0.0489847, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0405229, 0.652224, 1.57546, 2.31813, 2.79927, 3.11065, 3.19751, 3.08447, 2.77844, 2.17496, 1.30624, 0.50788, 0.0664955, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0609572, 0.626741, 1.46374, 2.06884, 2.60626, 2.92929, 3.04597, 2.93743, 2.6767, 2.1617, 1.42157, 0.575155, 0.0537245, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0569194, 0.536364, 1.20958, 1.88815, 2.1139, 2.11402, 2.28908, 2.19308, 2.07061, 1.81591, 1.23062, 0.518255, 0.0506118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0750783, 0.526686, 1.51303, 2.24141, 2.70579, 3.07067, 3.22044, 3.13129, 2.79936, 2.24669, 1.48998, 0.610699, 0.0526024, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.058005, 0.659603, 1.54682, 2.25896, 2.74218, 3.10186, 3.23616, 3.14822, 2.83675, 2.28725, 1.52222, 0.625084, 0.0534571, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0650978, 0.653472, 1.53213, 2.25282, 2.72627, 3.02882, 3.1423, 3.03596, 2.75289, 2.22356, 1.46622, 0.599287, 0.0587027, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0647384, 0.682668, 1.55742, 2.2204, 2.51572, 2.73816, 2.79876, 2.69893, 2.63468, 2.20494, 1.48071, 0.617379, 0.0542741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0662758, 0.662644, 1.19351, 2.20201, 2.62177, 2.00008, 1.98446, 2.13843, 1.45937, 0.979667, 0.76762, 0.360797, 0.0794803, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0708823, 0.438068, 1.4136, 1.21455, 1.94576, 2.67061, 2.94195, 2.90573, 2.49822, 1.98532, 1.3096, 0.596536, 0.074317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0676154, 0.66044, 1.48344, 2.20409, 2.68566, 2.95263, 2.99171, 2.89686, 2.62648, 1.85678, 0.762592, 0.256873, 0.0516922, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735763, 0.681711, 1.53943, 2.26025, 2.76668, 3.08078, 3.18449, 3.07735, 2.76899, 2.21142, 1.45044, 0.576247, 0.0675459, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722196, 0.715952, 1.60383, 2.36278, 2.90965, 3.24567, 3.36799, 3.25055, 2.90777, 2.31158, 1.53354, 0.645628, 0.0574003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0858675, 0.71055, 1.44588, 1.61342, 1.61347, 2.65035, 3.17898, 2.99356, 2.18792, 1.23177, 0.625731, 0.388882, 0.0685941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0700062, 0.790228, 1.69931, 2.43393, 2.91848, 3.16941, 3.28006, 3.11227, 2.57059, 1.69833, 1.05156, 0.607487, 0.0504325, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0981146, 0.624676, 1.08738, 1.20998, 1.65829, 2.14022, 2.58157, 2.60387, 2.26207, 1.68797, 1.39096, 0.578985, 0.0590457, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.085902, 0.808598, 1.72312, 2.40023, 2.80219, 3.0116, 3.07193, 3.0028, 2.72769, 1.82679, 0.928683, 0.470704, 0.0869378, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0962456, 0.774851, 1.63656, 2.27717, 2.64756, 2.91136, 2.75283, 2.51511, 2.12374, 1.5262, 1.22164, 0.637387, 0.0651746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12208, 0.772775, 1.65919, 2.3125, 2.75844, 2.94242, 3.10179, 2.57348, 2.18172, 2.09362, 1.22624, 0.607346, 0.0558773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.109762, 0.757301, 1.60192, 2.2786, 2.69139, 3.01823, 3.1452, 3.0452, 2.72662, 2.1803, 1.43945, 0.612033, 0.049229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.10675, 0.797373, 1.66938, 2.37582, 2.85356, 3.12765, 3.17581, 3.02977, 2.73167, 2.20776, 1.48555, 0.641002, 0.0602119, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116645, 0.755499, 1.55861, 2.26803, 2.79243, 2.84688, 2.24335, 2.08348, 2.20779, 1.98175, 1.19437, 0.601086, 0.0864918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.122241, 0.797115, 1.67095, 2.35005, 2.87278, 3.0651, 3.12155, 2.75254, 2.28834, 1.7754, 1.06189, 0.450902, 0.0717686, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101894, 0.831542, 1.70191, 2.40867, 2.90902, 3.1729, 3.22909, 3.06804, 2.75855, 2.23902, 1.52088, 0.66733, 0.0509003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.112582, 0.831971, 1.69128, 2.37716, 2.84981, 3.08773, 3.13156, 2.98066, 2.70612, 2.20559, 1.49668, 0.654666, 0.0565775, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129145, 0.807537, 1.64849, 2.32647, 2.81199, 2.84717, 3.11578, 2.7647, 2.5865, 2.06058, 1.38171, 0.610986, 0.0972929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.159398, 0.763961, 1.65229, 2.11526, 2.45448, 2.65856, 2.80733, 2.65771, 1.82989, 1.87144, 1.247, 0.619683, 0.0779092, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.143521, 0.787479, 1.60701, 2.26644, 2.71265, 2.98539, 3.05393, 2.92063, 2.63169, 2.12654, 1.42543, 0.623454, 0.0836456, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127846, 0.832122, 1.65227, 2.30008, 2.75441, 3.05248, 3.14783, 3.04817, 2.72575, 2.20136, 1.49123, 0.662025, 0.0608644, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12921, 0.753355, 1.50469, 2.1567, 2.62023, 2.66214, 2.84622, 1.51219, 2.16284, 2.07225, 1.36593, 0.575431, 0.130153, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135647, 0.84252, 1.66633, 2.33516, 2.81382, 3.13956, 3.25637, 3.14925, 2.81955, 2.28168, 1.54681, 0.688536, 0.0682094, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00165914, 0.158257, 0.891535, 1.66063, 2.23236, 2.66644, 2.51164, 3.19894, 2.67346, 2.46674, 2.03028, 1.1353, 0.563678, 0.144014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228252, 0.770962, 1.51878, 2.20541, 2.39687, 2.99418, 2.49508, 2.81298, 1.57403, 1.35384, 0.859823, 0.5316, 0.160225, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00210359, 0.171357, 0.682981, 1.72554, 2.33712, 2.65495, 3.01422, 2.80369, 2.85166, 2.50521, 2.07613, 0.927183, 0.535246, 0.121822, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00470825, 0.208109, 0.697719, 1.38214, 2.27311, 2.67732, 2.93912, 3.02113, 2.939, 2.69761, 2.21605, 1.53427, 0.689161, 0.0700752, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188575, 0.812971, 1.58373, 2.18966, 2.4398, 2.52119, 2.74827, 2.16702, 2.28575, 1.1059, 0.951395, 0.463407, 0.130058, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00103133, 0.208934, 0.529844, 1.34709, 1.71067, 1.74444, 2.15295, 2.6936, 3.02927, 2.71354, 2.16063, 1.31071, 0.637204, 0.10814, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00411861, 0.173495, 0.857579, 1.5912, 1.88548, 2.54273, 2.91239, 3.03047, 2.85125, 2.67845, 2.08782, 1.44804, 0.680682, 0.141815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00298558, 0.208136, 0.77388, 1.51529, 1.96781, 2.68107, 2.91423, 2.9837, 3.02686, 2.70103, 2.16625, 1.4457, 0.651117, 0.119267, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00420348, 0.177532, 0.869816, 1.67987, 2.33923, 2.75394, 3.01352, 3.07211, 2.9521, 2.68093, 2.17199, 1.48601, 0.688324, 0.102701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00037804, 0.161727, 0.911264, 1.74062, 2.39848, 2.84942, 3.10467, 3.17958, 3.03841, 2.74816, 2.25293, 1.54944, 0.712441, 0.082845, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00722287, 0.18654, 0.846172, 1.63269, 2.28621, 2.76518, 3.02561, 3.08418, 2.94445, 2.64137, 2.13936, 1.45237, 0.669704, 0.107472, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0073604, 0.195552, 0.869899, 1.60564, 2.34285, 2.72922, 3.00171, 2.54619, 2.80817, 2.37255, 2.14998, 1.47301, 0.647853, 0.136282, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00998686, 0.195464, 0.817284, 1.58321, 2.21867, 2.63865, 2.90441, 2.97468, 2.86389, 2.54656, 2.04225, 1.37826, 0.638302, 0.125642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0100893, 0.212461, 0.846209, 1.40114, 1.66376, 2.51259, 2.52983, 2.91774, 2.75677, 2.36695, 2.01823, 1.43843, 0.625016, 0.0875731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103211, 0.189596, 0.836327, 1.5929, 2.22834, 2.64641, 2.94496, 3.05147, 2.94914, 2.62605, 2.11873, 1.42873, 0.668804, 0.119774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00844064, 0.172512, 0.855141, 1.66765, 2.39908, 2.95615, 3.2106, 3.22918, 3.0931, 2.76159, 2.23, 1.52843, 0.72178, 0.105405, 0.00102409, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00879042, 0.172649, 0.908936, 1.72547, 2.35728, 2.77699, 3.0702, 3.17186, 3.07619, 2.75136, 2.24379, 1.55093, 0.734365, 0.0976701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00902068, 0.20316, 0.844992, 1.61049, 2.24806, 2.67335, 2.92833, 2.99831, 2.8712, 2.64821, 2.1726, 1.47415, 0.674886, 0.134395, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0105429, 0.169243, 0.889637, 1.68158, 2.2973, 2.66564, 2.95568, 3.0882, 3.00275, 2.6882, 2.19767, 1.5189, 0.72323, 0.0961988, 0.00138465, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103563, 0.174803, 0.888596, 1.67499, 2.2963, 2.70371, 2.92538, 2.97835, 2.84461, 2.57913, 2.11434, 1.47324, 0.70742, 0.0996139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00858938, 0.176313, 0.882133, 1.6595, 2.25836, 2.64365, 2.91095, 3.01304, 2.9115, 2.62185, 2.1453, 1.48293, 0.707107, 0.0985141, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0099618, 0.164097, 0.882342, 1.65443, 2.25296, 2.6526, 2.9143, 2.997, 2.915, 2.58918, 2.1007, 1.4532, 0.710263, 0.0926265, 0.00264106, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116669, 0.251722, 0.807634, 1.5043, 1.76167, 2.75289, 2.79941, 2.8398, 2.87009, 2.59008, 2.11509, 1.46723, 0.711563, 0.100572, 0.00270279, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.01159, 0.190915, 0.83593, 1.59379, 2.21854, 2.65663, 2.94373, 3.01026, 2.93374, 2.62922, 2.13328, 1.46042, 0.701619, 0.126912, 0.00279454, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116828, 0.167594, 0.886378, 1.66619, 2.27667, 2.68944, 2.93343, 2.98996, 2.87565, 2.63117, 2.17394, 1.52046, 0.740498, 0.101754, 0.00455638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0119045, 0.192339, 0.832221, 1.60926, 2.2468, 2.70341, 2.81328, 3.10612, 2.9649, 2.56929, 2.13696, 1.48744, 0.719687, 0.131981, 0.00328923, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012033, 0.168196, 0.884494, 1.64345, 2.29716, 2.74529, 2.95001, 3.08466, 2.99608, 2.49645, 2.18943, 1.54902, 0.718758, 0.154761, 0.00916451, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103788, 0.173905, 0.85883, 1.6208, 2.21073, 2.66578, 2.88199, 2.97622, 2.8997, 2.66386, 2.14788, 1.5366, 0.760603, 0.11681, 0.00310701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0169434, 0.206844, 0.839549, 1.58902, 2.22687, 2.60443, 2.90569, 2.96443, 2.84728, 2.45616, 2.05874, 1.4573, 0.709309, 0.15923, 0.00707017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018367, 0.191745, 0.792261, 1.54615, 2.10934, 2.62511, 2.82193, 2.79861, 2.74191, 2.53946, 2.06565, 1.44359, 0.609218, 0.19961, 0.00678988, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0194048, 0.264724, 0.792298, 1.41527, 2.05339, 2.31867, 2.19959, 2.78049, 2.63426, 1.91259, 1.60584, 0.66961, 0.370011, 0.140473, 0.00520895, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0262043, 0.203434, 0.844303, 1.32285, 2.17294, 2.38622, 2.77567, 2.83142, 2.90035, 2.43399, 2.07689, 1.47882, 0.716914, 0.122516, 0.00419636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179313, 0.206407, 0.782456, 1.50386, 2.09514, 2.49642, 2.74182, 2.80607, 2.69275, 2.49633, 2.00002, 1.32843, 0.674167, 0.160247, 0.00962815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0149655, 0.196164, 0.807138, 1.54556, 2.11172, 2.56236, 2.79263, 2.66943, 2.59856, 2.43957, 2.05922, 1.44283, 0.71322, 0.172421, 0.0111287, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193062, 0.205699, 0.782122, 1.49777, 2.00565, 2.48795, 2.85162, 2.79092, 2.78895, 2.51879, 2.07275, 1.44178, 0.70049, 0.160372, 0.00998491, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0102114, 0.176229, 0.807035, 1.44791, 2.13029, 2.39885, 2.26312, 2.74658, 2.52566, 2.11521, 1.85449, 1.38553, 0.617648, 0.245118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0152172, 0.19409, 0.37733, 0.885839, 0.954922, 0.578682, 0.997392, 0.728898, 1.19001, 1.04847, 0.563794, 0.716207, 0.435781, 0.175336, 0.0129026, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000959363, 0.144046, 0.789758, 1.52023, 1.76547, 0.602784, 0.615986, 1.4068, 2.45622, 1.96302, 1.44963, 1.00825, 0.643477, 0.151699, 0.00977678, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012024, 0.200452, 0.806475, 1.57281, 2.20809, 2.69486, 2.94436, 3.02981, 2.97768, 2.62376, 2.16768, 1.50908, 0.743206, 0.166434, 0.0121462, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0186774, 0.204083, 0.800783, 1.53792, 2.17033, 2.62381, 2.82746, 2.99521, 2.94267, 2.59681, 2.15403, 1.51751, 0.746394, 0.175029, 0.012288, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.015982, 0.192937, 0.843708, 1.61476, 2.22945, 2.71503, 2.97106, 3.06964, 2.9321, 2.6283, 2.14969, 1.50665, 0.763926, 0.163346, 0.0107528, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120422, 0.182313, 0.83598, 1.60237, 2.21205, 2.67347, 2.84206, 2.98217, 2.84642, 2.60202, 2.1484, 1.53139, 0.770039, 0.156446, 0.00886176, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011909, 0.181566, 0.823898, 1.56355, 2.16596, 2.59199, 2.83048, 2.9171, 2.86701, 2.59527, 2.1337, 1.50122, 0.755798, 0.156411, 0.0101431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00743233, 0.160124, 0.828795, 1.62435, 2.26407, 2.70487, 2.97282, 3.08021, 2.95172, 2.6151, 2.2121, 1.57448, 0.794359, 0.142596, 0.00649177, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116903, 0.172864, 0.80786, 1.59841, 2.20876, 2.60883, 2.94353, 3.01587, 2.85442, 2.59657, 2.11983, 1.44909, 0.742567, 0.15165, 0.00845716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0167364, 0.164264, 0.810215, 1.58212, 2.23312, 2.54221, 2.98027, 3.03752, 2.93603, 2.65803, 2.15811, 1.53454, 0.778381, 0.140829, 0.00348851, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0146709, 0.192459, 0.752904, 1.4679, 2.12887, 2.58938, 2.89436, 2.98953, 2.888, 2.57102, 2.08723, 1.44693, 0.726154, 0.177611, 0.0144642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00189165, 0.141457, 0.809742, 1.59418, 2.24783, 2.72107, 2.99185, 3.04199, 2.95036, 2.65736, 2.20351, 1.55265, 0.790919, 0.137065, 0.00282834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0113361, 0.168559, 0.782321, 1.52319, 2.15272, 2.59735, 2.80849, 2.95386, 2.78169, 2.50632, 2.0844, 1.28559, 0.802357, 0.194668, 0.0114317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00575232, 0.144693, 0.798239, 1.5453, 2.08986, 2.54933, 2.85062, 2.91108, 2.85599, 2.60716, 2.14469, 1.5195, 0.778154, 0.145614, 0.00600712, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00576718, 0.146662, 0.787946, 1.53978, 2.11139, 2.58464, 2.73414, 2.84743, 2.89168, 2.60069, 2.12416, 1.50686, 0.780478, 0.146872, 0.00599902, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00960108, 0.162909, 0.753287, 1.46066, 2.02865, 2.43624, 2.70678, 2.8761, 2.79907, 2.5512, 2.07405, 1.46719, 0.748012, 0.161994, 0.0108115, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0143567, 0.168607, 0.755387, 1.42058, 2.08245, 2.50489, 2.84611, 2.86617, 2.82978, 2.56332, 2.117, 1.49347, 0.767142, 0.147512, 0.00590247, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00188139, 0.130137, 0.775081, 1.54065, 2.13983, 2.54417, 2.74039, 2.93018, 2.81115, 2.5921, 2.1365, 1.51411, 0.78615, 0.141675, 0.00892945, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00254457, 0.13345, 0.753354, 1.50679, 1.89094, 2.42934, 2.78811, 2.84742, 2.87708, 2.44763, 2.01129, 1.44028, 0.828007, 0.201246, 0.0188561, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112877, 0.185095, 0.481712, 1.25281, 2.15442, 2.43126, 2.68642, 2.88882, 2.85456, 2.62765, 2.14612, 1.53909, 0.654715, 0.198077, 0.00660839, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168889, 0.523702, 0.716119, 1.26213, 1.78503, 2.11363, 2.54066, 2.5202, 2.30744, 2.10412, 1.36478, 0.790438, 0.0845819, 0.00253886, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0041946, 0.127578, 0.538535, 0.663227, 1.6302, 2.47425, 2.53213, 2.63215, 2.62422, 2.4561, 1.55462, 0.707734, 0.454021, 0.202391, 0.0041337, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.119956, 0.773787, 1.52834, 2.18996, 2.63159, 2.83895, 3.03025, 2.86949, 2.62024, 2.13344, 1.56567, 0.806336, 0.142918, 0.00295997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00707657, 0.178483, 0.715089, 1.53483, 2.22085, 2.63643, 2.82946, 3.00663, 2.94075, 2.65689, 2.17547, 1.56169, 0.808193, 0.186895, 0.00292767, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00874176, 0.159874, 0.78601, 1.50691, 2.15549, 2.29186, 2.6201, 3.0004, 2.89487, 2.30353, 2.16453, 1.52014, 0.790991, 0.173974, 0.010301, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00150322, 0.120923, 0.645635, 0.904701, 1.1991, 1.79465, 2.02966, 2.18285, 2.61717, 2.1586, 2.07884, 1.47669, 0.732479, 0.204133, 0.0117017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00655917, 0.142552, 0.715533, 1.42854, 2.07253, 2.52103, 2.7711, 2.76447, 2.77237, 2.50935, 2.01069, 1.45613, 0.768901, 0.170406, 0.0110594, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00161599, 0.127996, 0.699287, 1.45847, 2.10445, 2.47082, 2.81339, 2.80009, 2.82546, 2.57653, 2.14616, 1.52376, 0.786867, 0.156082, 0.00606573, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00478923, 0.170454, 0.625092, 1.44531, 2.09083, 2.54226, 2.73922, 2.86666, 2.70376, 2.51737, 2.09586, 1.48395, 0.769685, 0.198551, 0.012664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181651, 0.703232, 1.40852, 1.95084, 2.44953, 2.76794, 2.87566, 2.83908, 2.54569, 2.10007, 1.50861, 0.806428, 0.225536, 0.015461, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0062447, 0.151059, 0.677188, 1.36565, 2.04982, 2.50734, 2.65012, 2.92033, 2.7558, 2.49916, 2.06071, 1.44766, 0.73727, 0.181134, 0.0126815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.16457, 0.67161, 1.36785, 2.00689, 2.48041, 2.76038, 2.79268, 2.84055, 2.5241, 2.03042, 1.41445, 0.730137, 0.192148, 0.0142135, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00571395, 0.139913, 0.689706, 1.40722, 1.97493, 2.48386, 2.75286, 2.80076, 2.85889, 2.55625, 2.09031, 1.48889, 0.739887, 0.169346, 0.00864832, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00166953, 0.158131, 0.691401, 1.43124, 2.04207, 2.4929, 2.81061, 2.87438, 2.82588, 2.53593, 2.11409, 1.48313, 0.760553, 0.174872, 0.0113274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.167249, 0.715641, 1.45302, 2.03157, 2.45238, 2.6749, 2.79958, 2.73873, 2.5032, 2.07806, 1.47464, 0.753314, 0.171313, 0.00345076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168119, 0.680728, 1.39575, 1.94944, 2.37446, 2.7018, 2.90588, 2.76537, 2.62063, 2.11547, 1.49524, 0.761582, 0.166064, 0.00556377, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00175971, 0.142055, 0.672208, 1.38489, 1.92688, 2.25374, 2.91391, 2.96268, 2.86009, 2.62511, 2.13615, 1.44862, 0.624081, 0.201465, 0.0139778, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0942829, 0.664684, 1.40883, 2.05587, 2.52003, 2.80878, 2.81603, 2.86036, 2.58954, 2.14468, 1.49567, 0.747873, 0.195261, 0.0066746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.131579, 0.683109, 1.38844, 2.07232, 2.53207, 2.84633, 2.87893, 2.83407, 2.58916, 2.12816, 1.483, 0.757693, 0.169989, 0.0100503, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.128115, 0.673371, 1.42376, 2.0583, 2.53754, 2.80192, 2.82906, 2.82699, 2.60079, 2.07233, 1.50145, 0.756233, 0.169976, 0.0085701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.133724, 0.587952, 1.33759, 1.96659, 2.35405, 2.60623, 2.68242, 2.51227, 2.3902, 1.58646, 1.38298, 0.521305, 0.171031, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.146961, 0.628935, 1.22642, 1.89497, 2.49727, 2.77543, 2.96307, 2.8014, 2.55317, 2.096, 1.43624, 0.729116, 0.183544, 0.0103431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127469, 0.653814, 1.39269, 2.05353, 2.54031, 2.81355, 2.6474, 2.67485, 2.30994, 1.27007, 1.18552, 0.701357, 0.201486, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.124022, 0.655698, 1.39615, 2.06531, 2.56278, 2.84877, 2.93388, 2.87197, 2.55063, 2.11825, 1.48594, 0.751302, 0.161569, 0.00656647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.102619, 0.553095, 1.36301, 1.99205, 2.48061, 2.57212, 2.20375, 2.28307, 2.58216, 2.07553, 1.43113, 0.720885, 0.180626, 0.00335261, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.162652, 0.459857, 1.35947, 1.90372, 2.03607, 2.35772, 2.88379, 2.86554, 2.54593, 2.02175, 1.48485, 0.544905, 0.182212, 0.0156003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.136938, 0.622721, 1.33026, 1.96376, 2.4275, 2.77337, 2.86327, 2.74461, 2.51973, 2.09937, 1.3309, 0.561994, 0.148311, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.161601, 0.590961, 1.19234, 1.90159, 2.34499, 2.57277, 2.83035, 2.63856, 2.51683, 2.15067, 1.5086, 0.751578, 0.169159, 0.00381326, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.141244, 0.530304, 0.89178, 1.91016, 2.12185, 1.06686, 1.25686, 1.14955, 1.97719, 2.07733, 1.19934, 0.76792, 0.195926, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.126832, 0.348834, 0.943124, 1.31568, 1.63363, 1.70356, 2.03719, 2.8068, 2.49034, 2.0989, 1.41598, 0.695838, 0.196975, 0.00995171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.074258, 0.668474, 1.42878, 2.04092, 2.46363, 2.77568, 2.90789, 2.85667, 2.58875, 2.14697, 1.51457, 0.756549, 0.115954, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116311, 0.609867, 1.33565, 1.95423, 2.37513, 2.67292, 2.7793, 2.71764, 2.44125, 1.99745, 1.38292, 0.683056, 0.151377, 0.00207918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874647, 0.667945, 1.44877, 2.06774, 2.46837, 2.79869, 2.94288, 2.88513, 2.59199, 2.11564, 1.47901, 0.740747, 0.124008, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0837679, 0.660728, 1.45207, 2.11303, 2.60186, 2.86842, 2.95123, 2.84262, 2.57428, 2.12009, 1.4934, 0.763431, 0.165689, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0866459, 0.226084, 0.570371, 0.980998, 1.294, 2.67212, 2.635, 2.7611, 2.39714, 2.08126, 1.41069, 0.69347, 0.160871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0961693, 0.648319, 1.24623, 2.00136, 2.40963, 2.39268, 2.76356, 2.80613, 2.44237, 2.05332, 1.53094, 0.684592, 0.158903, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.107103, 0.559653, 1.29924, 2.00332, 2.48873, 2.78445, 2.90023, 2.79688, 2.49159, 1.49476, 1.24237, 0.446324, 0.11537, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0718186, 0.655328, 1.4323, 2.05811, 2.49211, 2.81462, 2.94748, 2.89598, 2.61428, 1.98258, 1.34663, 0.704698, 0.140171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113979, 0.656228, 1.35447, 1.8262, 1.85056, 2.65712, 2.74365, 2.72849, 2.51911, 2.09129, 1.48118, 0.67837, 0.138897, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.082063, 0.632873, 1.39298, 2.04155, 2.48638, 2.77315, 2.90779, 2.84828, 2.58512, 2.11506, 1.46526, 0.674334, 0.127982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0967313, 0.592045, 1.34506, 1.99766, 2.49584, 2.79458, 2.90237, 2.82153, 2.55896, 2.03803, 1.25243, 0.620439, 0.108661, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0827799, 0.603722, 1.36288, 2.04741, 2.48221, 2.62087, 2.95841, 2.78688, 2.50242, 2.10942, 1.24134, 0.521986, 0.140146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803725, 0.599322, 1.27525, 1.84746, 2.55023, 2.84104, 2.91807, 2.82879, 2.50682, 2.01673, 1.37841, 0.645786, 0.118179, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135877, 0.519114, 1.18995, 1.29106, 1.68406, 2.42739, 2.95309, 2.7228, 2.41363, 1.81214, 1.38203, 0.643829, 0.0844544, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822091, 0.607307, 1.38766, 2.09281, 2.6312, 2.93997, 3.04618, 2.93628, 2.62591, 2.1242, 1.4373, 0.661784, 0.104471, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.076813, 0.558857, 1.32431, 1.96676, 2.52178, 2.58148, 2.7145, 2.5459, 2.46563, 1.99722, 1.40924, 0.626723, 0.105159, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0988024, 0.564332, 1.58078, 1.222, 2.09311, 2.74267, 2.84595, 2.64055, 1.51563, 1.59465, 1.046, 0.602529, 0.0911578, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.110205, 0.47868, 1.10258, 1.79473, 2.56823, 2.72574, 2.9249, 2.89164, 2.56855, 2.05315, 1.50018, 0.694648, 0.0838305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0685451, 0.638703, 1.40727, 1.96904, 2.52822, 2.88186, 3.06141, 2.93239, 1.47515, 1.86506, 0.926577, 0.452191, 0.0782871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722847, 0.41796, 1.24803, 1.84907, 2.33735, 2.73996, 2.88481, 2.80795, 2.5008, 2.00368, 1.32932, 0.585382, 0.0934257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0620534, 0.637852, 1.44444, 2.11819, 2.60091, 2.91, 3.02803, 2.93445, 2.63447, 2.12679, 1.44275, 0.642491, 0.0657356, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0635102, 0.631902, 1.44423, 2.11787, 2.56464, 2.86377, 2.96015, 2.86964, 2.57534, 2.10331, 1.42479, 0.625264, 0.0677029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0554671, 0.647978, 1.47487, 2.15173, 2.61273, 2.91647, 3.02239, 2.92615, 2.63165, 2.16127, 1.47707, 0.649939, 0.0625764, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0503483, 0.649665, 1.47861, 2.16345, 2.64379, 2.94089, 3.04917, 2.95254, 2.6485, 2.17476, 1.48682, 0.672714, 0.0733716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0627893, 0.636756, 1.47251, 2.18105, 2.67914, 2.98696, 3.08861, 2.97281, 2.45133, 2.03769, 1.12903, 0.635381, 0.0789128, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530097, 0.530287, 1.09529, 1.53273, 2.31613, 2.64565, 2.90371, 2.80079, 2.42539, 2.00568, 1.24904, 0.545514, 0.0717802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0747693, 0.590976, 1.40428, 2.18842, 2.19527, 2.87198, 3.03146, 2.88684, 2.53442, 2.07439, 1.39176, 0.599792, 0.0487012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0812483, 0.338995, 0.943231, 1.71032, 1.54293, 1.45803, 1.49048, 1.18458, 1.45548, 1.48231, 0.726116, 0.370422, 0.074907, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0706397, 0.298608, 0.693437, 0.868068, 1.057, 1.05774, 1.41603, 1.21317, 1.03131, 1.5055, 0.944799, 0.470658, 0.0560533, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0636706, 0.545125, 1.33769, 1.97976, 2.51285, 2.80972, 2.92788, 2.85001, 2.49735, 1.98661, 1.30084, 0.535294, 0.0551447, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0630137, 0.594556, 1.38777, 2.0452, 2.45512, 2.79113, 2.91576, 2.85015, 2.53687, 2.03114, 1.32904, 0.522692, 0.0458542, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0921235, 0.550202, 1.40824, 2.19814, 2.66854, 2.94437, 2.94621, 2.95156, 2.61668, 2.07645, 1.39212, 0.555749, 0.052243, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0598607, 0.607197, 1.49603, 2.15983, 2.53775, 2.78569, 3.0271, 2.80046, 2.55025, 1.98426, 1.28284, 0.504204, 0.0643534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0488327, 0.234015, 1.13492, 1.50114, 1.49683, 1.58395, 1.77712, 1.48984, 1.15918, 0.698794, 0.381561, 0.177318, 0.0259773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0543459, 0.251085, 0.70347, 1.37035, 1.9359, 1.47011, 1.26154, 1.28883, 1.05902, 0.712481, 0.460393, 0.316435, 0.0371834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0546598, 0.589425, 1.43735, 1.99533, 2.61962, 2.94395, 2.97196, 2.94451, 2.6119, 2.0532, 1.37468, 0.52678, 0.0285464, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0491086, 0.640628, 1.48563, 2.12463, 2.63875, 2.57606, 2.90398, 2.89757, 2.51515, 2.08991, 1.36151, 0.52707, 0.0291493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.057458, 0.599789, 1.43109, 2.09432, 2.56615, 2.83044, 2.93551, 2.74055, 2.51022, 1.9941, 1.2709, 0.48947, 0.0341722, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495198, 0.551152, 1.35478, 1.92729, 2.50128, 2.77097, 2.86863, 2.72813, 2.33305, 1.32508, 0.869809, 0.401135, 0.0315517, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0472957, 0.626293, 1.47185, 2.06796, 2.63572, 2.86345, 2.97356, 2.85752, 2.48992, 1.949, 1.21548, 0.386919, 0.0444566, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0480247, 0.626677, 1.48318, 2.13373, 2.62443, 2.78464, 3.02881, 2.79645, 2.48874, 2.01162, 1.27846, 0.473634, 0.0176231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0485813, 0.625041, 1.47403, 2.1493, 2.57962, 2.7032, 2.81884, 2.79439, 2.46861, 1.98177, 1.16985, 0.444661, 0.0138774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0476938, 0.626477, 1.46485, 2.18222, 2.53089, 2.88338, 2.57247, 2.82883, 2.42714, 1.91793, 1.26719, 0.451424, 0.0136338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.062744, 0.534313, 1.28908, 1.39367, 1.70953, 1.92528, 1.4979, 1.25709, 1.56851, 0.460231, 0.433218, 0.271935, 0.0113341, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0507544, 0.631655, 1.52463, 2.23636, 2.61679, 2.77275, 3.09677, 2.90242, 2.5384, 1.98708, 1.26822, 0.444385, 0.0102497, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0467404, 0.631289, 1.49475, 2.21925, 2.67279, 3.02542, 3.0069, 2.88931, 2.55148, 1.86613, 0.98586, 0.306098, 0.0141028, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0468918, 0.63682, 1.48818, 1.91572, 2.57634, 2.86028, 3.12595, 2.93237, 2.02971, 1.53111, 0.970641, 0.292872, 0.00954183, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530691, 0.278596, 0.710307, 1.75494, 1.93369, 2.59395, 2.1474, 2.08441, 2.4093, 1.64794, 0.707985, 0.176968, 0.00942944, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0225823, 0.257623, 1.15898, 1.27103, 1.36994, 2.44283, 2.53714, 2.57301, 2.45846, 1.71717, 1.21014, 0.384109, 0.0100996, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0490136, 0.619481, 1.40951, 2.07362, 2.59631, 2.93212, 2.88774, 2.88589, 2.44332, 1.34616, 1.01079, 0.360483, 0.0050239, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0477879, 0.557428, 1.40343, 2.0607, 2.529, 2.86509, 2.8957, 2.84587, 2.49531, 1.90849, 1.15014, 0.347369, 0.00786638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0456306, 0.566433, 1.40548, 2.08079, 2.53726, 2.90473, 2.90334, 2.7544, 2.48315, 1.90071, 1.13627, 0.333313, 0.00432551, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0411426, 0.538448, 1.31635, 2.06374, 2.55512, 2.7784, 2.76667, 2.7161, 2.37434, 1.75785, 1.05782, 0.298046, 0.00444154, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0398027, 0.506552, 1.31496, 2.01258, 2.50915, 2.80087, 2.82082, 2.68585, 2.31933, 1.75225, 1.01731, 0.276147, 0.0024794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0378068, 0.516439, 1.3237, 1.9844, 2.48721, 2.73089, 2.7913, 2.6349, 2.30522, 1.73333, 1.0191, 0.272984, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0326045, 0.486301, 1.28177, 1.99039, 2.5537, 2.84249, 2.90591, 2.75151, 2.37631, 1.76779, 0.997124, 0.25585, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.034152, 0.544521, 1.38959, 2.12458, 2.64752, 2.8682, 2.93068, 2.73509, 2.34177, 1.81129, 1.05311, 0.272257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298425, 0.51395, 1.34332, 2.03626, 2.5163, 2.78393, 2.88142, 2.71087, 2.24621, 1.71637, 0.989168, 0.248125, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0297438, 0.547156, 1.38585, 2.06845, 2.59857, 2.76403, 2.71168, 2.56308, 2.34846, 1.81275, 1.01775, 0.254424, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0312677, 0.571942, 1.41337, 2.14682, 2.61529, 2.81236, 2.83486, 2.69556, 2.38026, 1.80964, 1.02306, 0.258667, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.025711, 0.487116, 1.31046, 2.05953, 2.54594, 2.74182, 2.6669, 2.61398, 2.20409, 1.68644, 0.926109, 0.210592, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266587, 0.500527, 1.33064, 2.02234, 2.46859, 2.79064, 2.89275, 2.76506, 2.38655, 1.77078, 0.957321, 0.203554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0307606, 0.608462, 1.48234, 2.14578, 2.53649, 2.83935, 2.79254, 2.67611, 2.32918, 1.37529, 0.718783, 0.102789, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257399, 0.596151, 0.618198, 0.932307, 1.11627, 1.80471, 1.49932, 1.98548, 1.62123, 0.887383, 0.216274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0218172, 0.442436, 1.28418, 1.65119, 2.06324, 2.8153, 2.87248, 2.75972, 2.4213, 1.78608, 0.980408, 0.198545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0261191, 0.559828, 1.43129, 2.15606, 2.61832, 2.88192, 2.93259, 2.76611, 2.39472, 1.80714, 1.00123, 0.201638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0181092, 0.47691, 1.32138, 2.04737, 2.53287, 2.77984, 2.81653, 2.61895, 2.24942, 1.65811, 0.875438, 0.157701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0224252, 0.553886, 1.43116, 2.15292, 2.63295, 2.90992, 2.92236, 2.72355, 2.36874, 1.7821, 0.978402, 0.182788, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0217243, 0.557375, 1.43813, 2.14048, 2.6066, 2.9011, 2.9703, 2.81987, 2.40951, 1.79145, 0.982079, 0.183358, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0222415, 0.406559, 1.16532, 1.92261, 2.62899, 2.27091, 2.51093, 2.55803, 1.87459, 1.23276, 0.82378, 0.132736, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0030839, 0.273125, 0.612674, 1.10182, 0.97749, 2.44962, 2.69463, 2.61196, 2.31239, 1.52616, 0.695026, 0.131059, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193046, 0.535548, 1.32908, 1.89231, 2.3344, 2.66934, 2.69401, 2.40107, 1.63853, 1.07633, 0.414617, 0.09089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148048, 0.503641, 1.36696, 2.09054, 2.58528, 2.83094, 2.85524, 2.6491, 2.2908, 1.68113, 0.87983, 0.142065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0159944, 0.537966, 1.41211, 2.11186, 2.56962, 2.81613, 2.8463, 2.66543, 2.29324, 1.70013, 0.89981, 0.151597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177827, 0.533898, 1.39741, 2.08388, 2.52496, 2.7959, 2.86384, 2.70967, 2.2359, 1.66843, 0.830887, 0.108993, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0173678, 0.539237, 1.43478, 2.19422, 2.72179, 3.00315, 3.06528, 2.91423, 2.48262, 1.82169, 0.950397, 0.155545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0122137, 0.506213, 1.25484, 2.02289, 2.60949, 2.828, 2.9454, 2.79542, 2.39521, 1.74633, 0.90908, 0.140715, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00567717, 0.447616, 1.32529, 2.10601, 2.644, 2.91506, 2.93069, 2.71282, 2.28833, 1.62227, 0.781972, 0.100374, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0071703, 0.516888, 1.41596, 2.15612, 2.68517, 2.92569, 2.94525, 2.7262, 2.31116, 1.67819, 0.854201, 0.123207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101196, 0.434654, 0.545021, 0.794965, 0.95079, 0.92709, 0.86511, 0.88412, 0.920948, 0.403239, 0.0604237, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0050214, 0.489133, 1.41237, 2.13215, 2.58094, 2.80843, 2.81482, 2.65557, 2.31325, 1.70511, 0.860183, 0.115029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.442254, 1.32365, 2.05354, 2.53987, 2.80283, 2.83081, 2.63549, 2.22141, 1.58247, 0.752964, 0.0838618, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00183713, 0.487195, 1.38542, 2.0931, 2.56246, 2.79964, 2.82016, 2.62423, 2.25969, 1.64835, 0.807354, 0.0929453, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.471791, 1.36802, 2.08122, 2.55913, 2.79546, 2.81959, 2.62288, 2.23868, 1.62149, 0.790018, 0.0881965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.393166, 1.12901, 2.05863, 2.55846, 2.80809, 2.81336, 2.58996, 2.18519, 1.55474, 0.741281, 0.0721062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.407826, 1.25917, 1.96763, 2.44053, 2.6883, 2.72273, 2.52256, 2.1136, 1.49186, 0.692521, 0.058705, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.398361, 1.16024, 2.08848, 2.55007, 2.80598, 2.5823, 2.44332, 2.02995, 1.34985, 0.640321, 0.0593084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.376962, 1.23655, 1.94699, 2.42332, 2.67406, 2.67149, 2.46828, 2.08312, 1.4677, 0.65628, 0.0459148, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.312774, 1.12192, 1.86186, 2.36585, 2.62563, 2.65369, 2.44513, 2.01941, 1.36887, 0.56475, 0.0318932, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.420878, 1.31407, 2.0436, 2.53299, 2.77703, 2.77311, 2.56259, 2.16614, 1.54495, 0.69607, 0.0605146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.186864, 0.776643, 1.11296, 1.3613, 1.4029, 1.32843, 0.84702, 1.60913, 1.53424, 0.585114, 0.0554989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.405553, 1.3055, 2.02312, 2.24511, 2.5698, 2.76645, 2.55523, 2.06375, 1.4647, 0.526674, 0.0397479, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.358718, 1.23943, 1.99361, 2.49416, 2.76228, 2.78153, 2.57349, 2.14329, 1.48199, 0.642622, 0.0408724, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.417752, 1.32241, 2.07576, 2.56725, 2.80036, 2.78979, 2.56726, 2.19757, 1.56693, 0.714042, 0.0545929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.380177, 1.26324, 1.99454, 2.49506, 2.74882, 2.76952, 2.57879, 2.18151, 1.55321, 0.697511, 0.048516, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.339274, 1.22219, 1.98614, 2.51212, 2.75552, 2.75325, 2.50671, 1.82336, 1.3368, 0.35014, 0.0265505, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155406, 0.709141, 1.46824, 1.72778, 1.40264, 2.32384, 1.24471, 0.905223, 0.825468, 0.25404, 0.0238229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.234547, 0.524141, 1.01198, 1.96367, 1.48455, 1.53361, 1.54547, 1.45455, 1.49171, 0.69226, 0.0497781, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.314568, 1.17814, 1.95047, 2.48708, 2.7567, 2.80329, 2.61153, 2.13997, 1.45941, 0.615436, 0.034016, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.319608, 1.18896, 1.95159, 2.4745, 2.74224, 2.76041, 2.55106, 2.12011, 1.45609, 0.621564, 0.0360139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.176389, 1.09475, 1.54706, 2.09934, 2.58656, 2.63709, 2.304, 1.8956, 1.24311, 0.555996, 0.0408867, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.337718, 1.22406, 1.99613, 2.48105, 2.75383, 2.76308, 2.5516, 2.14704, 1.49931, 0.652349, 0.0375473, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.268122, 1.11687, 1.92691, 2.39495, 2.63416, 2.50656, 2.31362, 1.96494, 1.45167, 0.606942, 0.0353997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.169034, 0.70711, 1.51291, 1.79509, 2.33705, 2.31565, 1.96247, 1.80294, 1.13287, 0.410915, 0.00828084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.209215, 0.99918, 1.68423, 2.37275, 2.6411, 2.68122, 2.4777, 2.01814, 1.36275, 0.56725, 0.0178318, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.274335, 1.13971, 1.89173, 2.36404, 2.61083, 2.65488, 2.45541, 1.94482, 1.26782, 0.435059, 0.0113625, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266063, 1.13902, 1.89011, 2.35685, 2.63245, 2.65567, 2.46624, 2.06783, 1.41222, 0.568892, 0.0187401, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.103242, 0.449287, 0.641768, 1.14698, 2.02601, 2.09943, 1.83827, 1.45379, 0.647278, 0.29229, 0.0118034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.158775, 0.965937, 1.65126, 2.18431, 2.45956, 2.49522, 2.29052, 1.89838, 1.24009, 0.444249, 0.00576343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.267949, 1.13874, 1.88622, 2.37224, 2.63115, 2.66375, 2.46568, 2.06571, 1.42709, 0.600795, 0.0199062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.200155, 1.0388, 1.80604, 2.31109, 2.5976, 2.48462, 2.37419, 1.93498, 1.31213, 0.490937, 0.00187941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.211218, 1.07113, 1.84205, 2.32768, 2.61495, 2.65447, 2.46488, 2.06518, 1.40297, 0.562, 0.0096666, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495723, 0.316007, 0.705406, 0.925945, 1.36558, 1.20527, 1.13828, 0.798454, 0.490275, 0.207794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0960258, 0.461797, 0.799314, 1.66444, 1.83744, 2.17274, 1.99765, 1.33448, 1.17342, 0.390065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0410012, 0.253314, 0.44846, 0.542014, 1.00671, 1.72451, 1.56988, 1.37945, 1.0103, 0.221834, 0.00297818, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.193052, 1.01274, 1.74808, 2.14129, 2.26798, 2.31485, 1.7443, 1.82873, 1.30264, 0.558156, 0.003089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.177427, 0.960579, 1.69027, 2.31174, 2.53894, 2.53478, 2.26277, 1.94876, 1.36808, 0.552443, 0.0030694, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735695, 0.386191, 0.500033, 1.01997, 1.82284, 1.64211, 2.22032, 1.45944, 0.817895, 0.211683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0270115, 0.330469, 0.704482, 1.15311, 1.11017, 1.43845, 1.42385, 0.787482, 0.418198, 0.208425, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874109, 0.518723, 0.764813, 1.62588, 2.18347, 2.48146, 2.49381, 1.50128, 0.695467, 0.102454, 0.00175785, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.125392, 0.815936, 1.61683, 2.20125, 2.51928, 2.58707, 2.39184, 1.96382, 1.26507, 0.433267, 0.00343493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.139731, 0.906014, 1.5118, 2.05165, 2.4631, 2.50325, 2.19475, 1.98331, 1.0871, 0.373263, 0.00635676, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0840508, 0.89122, 1.67306, 2.2444, 2.55379, 2.54926, 2.38309, 2.01112, 1.37717, 0.385584, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0806627, 0.896134, 1.6722, 2.09143, 2.50926, 2.6095, 2.49229, 2.09575, 1.43002, 0.419231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0674048, 0.826869, 1.53305, 2.15252, 2.55022, 2.69385, 2.43524, 2.12164, 1.47643, 0.406549, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0728229, 0.93033, 1.65307, 2.36954, 2.72635, 2.78009, 2.54611, 2.13136, 1.445, 0.335429, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065983, 0.836743, 1.66307, 2.02002, 2.25217, 2.04728, 1.31683, 1.44705, 0.520483, 0.152014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0672768, 0.8701, 1.62945, 2.06665, 2.52923, 2.57851, 2.53364, 2.1891, 1.49987, 0.408982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0704926, 0.921662, 1.80945, 2.36019, 2.69131, 2.71485, 2.49763, 2.13633, 1.12458, 0.159082, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018072, 0.441738, 1.31287, 2.26044, 2.59563, 2.74967, 2.3883, 1.45722, 1.17082, 0.486192, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0575502, 0.862923, 1.75224, 2.23236, 2.565, 2.61853, 2.42698, 2.08496, 1.43983, 0.426276, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0486084, 0.85129, 1.63782, 2.22145, 2.54094, 2.59651, 2.40314, 2.05572, 1.44303, 0.391974, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.05928, 0.767469, 1.5819, 2.16771, 2.36594, 1.4439, 2.29927, 1.77709, 1.22857, 0.44854, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.191902, 0.442925, 1.05556, 1.56482, 0.916337, 0.894296, 0.307147, 0.350279, 0.0507144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.081911, 0.809343, 1.41589, 2.16322, 2.55162, 2.42665, 2.39785, 1.86343, 0.861136, 0.301437, 0.00740766, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0228486, 0.596429, 1.41305, 2.01139, 1.54031, 2.31804, 2.13488, 1.45011, 1.14562, 0.302929, 0.00178418, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0043009, 0.190437, 0.456663, 0.774345, 0.706195, 0.750254, 0.227952, 0.347005, 0.296926, 0.0424597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00197333, 0.204573, 0.438987, 0.817599, 1.39033, 1.58748, 2.36097, 1.58063, 0.643465, 0.153036, 0.00123386, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0478906, 0.617714, 1.44506, 2.22169, 2.64015, 2.76753, 2.72533, 2.10653, 1.48583, 0.624074, 0.0140018, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0684115, 0.831108, 1.64862, 2.11006, 2.23473, 2.5439, 2.41996, 2.1085, 1.3753, 0.551184, 0.0141597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0621342, 0.801802, 1.66097, 2.2744, 2.58507, 2.64147, 2.53203, 2.11848, 1.42249, 0.600005, 0.00850035, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0155231, 0.581836, 0.296733, 0.422429, 0.374893, 0.551731, 0.39159, 0.319519, 0.185209, 0.0673856, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.046428, 0.266905, 0.385405, 0.835716, 1.0922, 0.852107, 0.495775, 1.37224, 0.59438, 0.136954, 0.0061824, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0249813, 0.69457, 1.55655, 2.11814, 2.63947, 2.31963, 2.51107, 2.05978, 1.4301, 0.580408, 0.016515, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0273457, 0.710806, 1.58519, 2.29257, 2.6472, 2.72238, 2.59093, 2.1224, 1.29532, 0.587764, 0.00953753, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0460713, 0.376908, 1.00585, 1.95558, 1.64906, 2.57991, 2.60255, 2.28628, 1.63853, 0.765819, 0.0403367, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00573357, 0.652154, 1.14825, 1.76315, 2.42017, 2.11687, 1.3265, 1.52103, 1.42792, 0.669677, 0.0299071, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0651526, 0.831276, 1.56939, 2.111, 2.42803, 2.39902, 2.57196, 2.28312, 1.63737, 0.744143, 0.0352433, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193468, 0.415173, 1.3696, 1.41055, 1.83304, 2.2093, 1.35684, 1.81534, 1.26016, 0.453816, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0834133, 0.308908, 0.683149, 0.688705, 0.62197, 0.67926, 0.485344, 0.312526, 0.0695502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0997101, 0.24553, 0.292913, 1.14435, 0.989543, 0.57329, 1.26016, 0.542071, 0.171351, 0.00539238, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0481958, 0.778754, 1.47179, 2.1002, 2.02692, 2.59275, 2.56468, 2.08318, 1.48502, 0.770173, 0.0568852, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.016664, 0.620281, 1.46676, 1.97059, 2.4413, 2.57254, 2.42621, 2.0301, 1.42493, 0.617651, 0.025802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683 ] ); data.SetArray( 'degradation', [ 0.5 ] ); data.SetNumber( 'system_use_lifetime_output', 0 ); module = SSC.Module('cashloan'); if (module.Exec(data)) lcoe = data.GetNumber('lcoe_nom'); npv = data.GetNumber('npv'); names{end+1} = sprintf('Levelized COE (nominal) : %g cents/kWh', lcoe); names{end+1} = sprintf('Net present value : $%g', npv); names{end+1} = 'CashLoan example OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'CashLoan example failed'; end set(handles.txtData,'String',names);
github
sergiocastellanos/switch_mexico_data-master
ssccall.m
.m
switch_mexico_data-master/SAM/sam-sdk-2016-3-14-r3/languages/matlab/+SSC/ssccall.m
8,963
utf_8
61a4af2373d48538fcfc4a2dd42eda7c
function [result] = ssccall(action, arg0, arg1, arg2 ) % SAM Simulation Core (SSC) MATLAB API % Copyright (c) 2012 National Renewable Energy Laboratory % author: Aron P. Dobos and Steven H. Janzou % automatically detect architecture to load proper dll. [pathstr, fn, fext] = fileparts(mfilename('fullpath')); if ( strcmp(computer(), 'PCWIN') ) % Windows 32-bit ssclibpath = '../../../win32/'; ssclib = 'ssc'; elseif ( strcmp(computer(), 'PCWIN64') ) % Windows 64-bit ssclibpath = '../../../win64/'; ssclib = 'ssc'; elseif ( strcmp(computer(), 'MACI64') ) % Mac Intel 64-bit ssclibpath = '../../../osx64/'; ssclib = 'ssc'; elseif ( strcmp(computer(), 'GLNXA64') ) % Linux 64-bit ssclibpath = '../../../linux64/'; ssclib = 'ssc'; end % load proper ssc library for all functions if ~libisloaded(ssclib) oldFolder = cd(pathstr); loadlibrary(strcat(ssclibpath,ssclib),strcat(ssclibpath,'../sscapi.h')); cd(oldFolder); end if strcmp(action,'load') if ~libisloaded(ssclib) oldFolder = cd(pathstr); loadlibrary(strcat(ssclibpath,ssclib),strcat(ssclibpath,'../sscapi.h')); cd(oldFolder); end elseif strcmp(action,'unload') if libisloaded(ssclib) unloadlibrary(ssclib) end elseif strcmp(action,'version') result = calllib(ssclib,'ssc_version'); elseif strcmp(action,'build_info') result = calllib(ssclib, 'ssc_build_info'); elseif strcmp(action,'data_create') result = calllib(ssclib, 'ssc_data_create'); if ( isnullpointer(result) ) result = 0; end elseif strcmp(action,'data_free') result = calllib(ssclib, 'ssc_data_free', arg0); elseif strcmp(action,'data_unassign') result = calllib(ssclib, 'ssc_data_unassign', arg0, arg1); elseif strcmp(action,'data_query') result = calllib(ssclib, 'ssc_data_query', arg0, arg1 ); elseif strcmp(action,'data_first') result = calllib(ssclib, 'ssc_data_first', arg0 ); elseif strcmp(action,'data_next') result = calllib(ssclib, 'ssc_data_next', arg0 ); elseif strcmp(action,'data_set_string') result = calllib(ssclib, 'ssc_data_set_string', arg0, arg1, arg2 ); elseif strcmp(action,'data_set_number') result = calllib(ssclib, 'ssc_data_set_number', arg0, arg1, single(arg2) ); elseif strcmp(action,'data_set_array') len = length(arg2); arr = libpointer( 'singlePtr', arg2 ); result = calllib(ssclib,'ssc_data_set_array',arg0,arg1,arr,len); elseif strcmp(action,'data_set_matrix') [nr nc] = size(arg2); mat = zeros(nr*nc, 1); ii = 1; for r=1:nr, for c=1:nc, mat(ii) = arg2(r,c); ii=ii+1; end end arr = libpointer( 'singlePtr', mat ); result = calllib(ssclib,'ssc_data_set_matrix',arg0,arg1,arr,nr,nc); elseif strcmp(action,'data_set_table') result = calllib(ssclib,'ssc_data_set_table',arg0,arg1,arg2); elseif strcmp(action,'data_get_string') result = calllib(ssclib,'ssc_data_get_string',arg0,arg1); elseif strcmp(action,'data_get_number') p = libpointer('singlePtr',0); calllib(ssclib,'ssc_data_get_number', arg0,arg1,p); result = get(p,'Value'); elseif strcmp(action,'data_get_array') p_count = libpointer('int32Ptr',0); [xobj] = calllib(ssclib,'ssc_data_get_array',arg0,arg1,p_count); setdatatype(xobj,'int32Ptr',p_count.Value,1); len = p_count.Value; result = zeros( len, 1 ); for i=1:len, pidx = xobj+(i-1); setdatatype(pidx,'singlePtr',1,1); result(i) = pidx.Value; end elseif strcmp(action,'data_get_matrix') p_rows = libpointer('int32Ptr',0); p_cols = libpointer('int32Ptr',0); [xobj] = calllib(ssclib,'ssc_data_get_matrix',arg0,arg1,p_rows,p_cols); setdatatype(xobj,'int32Ptr',p_rows.Value*p_cols.Value,1); nrows = p_rows.Value; ncols = p_cols.Value; if ( nrows*ncols > 0 ) result = zeros( nrows, ncols ); ii=1; for r=1:nrows, for c=1:ncols, pidx = xobj+(ii-1); setdatatype(pidx,'singlePtr',1,1); result(r,c) = pidx.Value; ii=ii+1; end end end elseif strcmp(action,'data_get_table') result = calllib(ssclib,'ssc_data_get_table',arg0,arg1); elseif strcmp(action,'module_entry') result = calllib(ssclib,'ssc_module_entry',arg0); if isnullpointer( result ), result = 0; end elseif strcmp(action,'entry_name') result = calllib(ssclib,'ssc_entry_name',arg0); elseif strcmp(action,'entry_description') result = calllib(ssclib,'ssc_entry_description',arg0); elseif strcmp(action,'entry_version') result = calllib(ssclib,'ssc_entry_version',arg0); elseif strcmp(action,'module_var_info') result = calllib(ssclib,'ssc_module_var_info',arg0,arg1); if isnullpointer( result ), result = 0; end elseif strcmp(action,'info_var_type') ty = calllib(ssclib,'ssc_info_var_type',arg0); if (ty == 1) result = 'input'; elseif ( ty==2 ) result = 'output'; else result = 'inout'; end elseif strcmp(action,'info_data_type') dt = calllib(ssclib,'ssc_info_data_type',arg0); if (dt == 1) result = 'string'; elseif (dt == 2) result = 'number'; elseif (dt == 3) result = 'array'; elseif (dt == 4) result = 'matrix'; elseif (dt == 5) result = 'table'; else result = 'invalid'; end elseif strcmp(action,'info_name') result = calllib(ssclib,'ssc_info_name',arg0); elseif strcmp(action,'info_label') result = calllib(ssclib,'ssc_info_label',arg0); elseif strcmp(action,'info_units') result = calllib(ssclib,'ssc_info_units',arg0); elseif strcmp(action,'info_meta') result = calllib(ssclib,'ssc_info_meta',arg0); elseif strcmp(action,'info_group') result = calllib(ssclib,'ssc_info_group',arg0); elseif strcmp(action,'info_required') result = calllib(ssclib,'ssc_info_required',arg0); elseif strcmp(action,'info_constraints') result = calllib(ssclib,'ssc_info_constraints',arg0); elseif strcmp(action,'info_uihint') result = calllib(ssclib,'ssc_info_uihint',arg0); elseif strcmp(action,'exec_simple') result = calllib(ssclib,'ssc_module_exec_simple',arg0,arg1); elseif strcmp(action,'exec_simple_nothread') result = calllib(ssclib,'ssc_module_exec_simple_nothread',arg0,arg1); elseif strcmp(action,'module_create') result = calllib(ssclib,'ssc_module_create',arg0); if ( isnullpointer(result) ) result = 0; end elseif strcmp(action,'module_free') result = calllib(ssclib,'ssc_module_free',arg0); elseif strcmp(action,'module_exec') result = calllib(ssclib,'ssc_module_exec',arg0,arg1); elseif strcmp(action,'module_log') p_type = libpointer('int32Ptr',1); p_time = libpointer('singlePtr',1); result = calllib(ssclib,'ssc_module_log', arg0, arg1, p_type, p_time); elseif strcmp(action,'module_log_detailed') p_type = libpointer('int32Ptr',1); p_time = libpointer('singlePtr',1); text = calllib(ssclib,'ssc_module_log', arg0, arg1, p_type, p_time); typetext = 'notice'; if (p_type.Value == 2) typetext = 'warning'; elseif (p_type.Value == 3) typetext = 'error'; end if ( strcmp(text,'') ) result = 0; else result = {text , typetext , p_time.Value}; end else disp( sprintf('ssccall: invalid action %s', action) ); result = 0; end end function bb = isnullpointer(p) bb = false; try setdatatype(p, 'voidPtr', 1, 1); deref = get(p); catch e = lasterror(); if strcmp(e.identifier, 'MATLAB:libpointer:ValueNotDefined') bb = true; end end end
github
sergiocastellanos/switch_mexico_data-master
UIExample.m
.m
switch_mexico_data-master/SAM/SDK/languages/matlab/UIExample.m
586,602
utf_8
0aa9c0ca12306d99f27e822c55971cd2
function varargout = UIExample(varargin) % UIEXAMPLE MATLAB code for UIExample.fig % UIEXAMPLE, by itself, creates a new UIEXAMPLE or raises the existing % singleton*. % % H = UIEXAMPLE returns the handle to a new UIEXAMPLE or the handle to % the existing singleton*. % % UIEXAMPLE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in UIEXAMPLE.M with the given input arguments. % % UIEXAMPLE('Property','Value',...) creates a new UIEXAMPLE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before UIExample_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to UIExample_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help UIExample % Last Modified by GUIDE v2.5 01-Dec-2014 04:23:19 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @UIExample_OpeningFcn, ... 'gui_OutputFcn', @UIExample_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before UIExample is made visible. function UIExample_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to UIExample (see VARARGIN) % Choose default command line output for UIExample handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes UIExample wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = UIExample_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function txtData_Callback(hObject, eventdata, handles) % hObject handle to txtData (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of txtData as text % str2double(get(hObject,'String')) returns contents of txtData as a double % --- Executes during object creation, after setting all properties. function txtData_CreateFcn(hObject, eventdata, handles) % hObject handle to txtData (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in btnVersion. function btnVersion_Callback(hObject, eventdata, handles) % hObject handle to btnVersion (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sscAPI = SSC.API(); set(handles.txtData,'String',{sprintf('Version = %d',sscAPI.Version);sscAPI.BuildInfo}); % --- Executes on button press in btnModuleList. function btnModuleList_Callback(hObject, eventdata, handles) % hObject handle to btnModuleList (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sscEntry = SSC.Entry(); names = {}; while (sscEntry.Get()) module_name = sscEntry.Name(); description = sscEntry.Description(); version = sscEntry.Version(); names{end+1} = sprintf('Module: %s, version: %d', module_name, version ); names{end+1} = description ; end set(handles.txtData,'String',names); % --- Executes on button press in btnModuleAndVariables. function btnModuleAndVariables_Callback(hObject, eventdata, handles) % hObject handle to btnModuleAndVariables (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sscEntry = SSC.Entry(); names = {}; while (sscEntry.Get()) moduleName = sscEntry.Name(); description = sscEntry.Description(); version = sscEntry.Version(); names{end+1} = sprintf('Module: %s, version: %d', moduleName, version ); names{end+1} = description ; sscModule = SSC.Module(moduleName); sscInfo = SSC.Info(sscModule); while (sscInfo.Get()) names{end+1} = sprintf('\t%s: "%s" ["%s"] %s (%s)',sscInfo.VariableType(), sscInfo.Name(), sscInfo.DataType(), sscInfo.Label(), sscInfo.Units()); end end set(handles.txtData,'String',names); % --- Executes on button press in btnTestArrays. function btnTestArrays_Callback(hObject, eventdata, handles) % hObject handle to btnTestArrays (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); arr = []; for i = 1:10 arr(i) = i / 10.0; end sscData.SetArray('TestArray', arr); retArray = sscData.GetArray('TestArray'); names{end+1} = 'Testing SetArray and GetArray'; for i = 1:10 names{end+1} = sprintf('\treturned array element: %d = %g',i, retArray(i)); end set(handles.txtData,'String',names); % --- Executes on button press in btnTestMatrices. function btnTestMatrices_Callback(hObject, eventdata, handles) % hObject handle to btnTestMatrices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); matrix = [ 1 2 ; 3 4 ; 5 6 ; 7 8; 9 10]; sscData.SetMatrix('TestMatrix', matrix); retMatrix = sscData.GetMatrix('TestMatrix'); [nrows ncols] = size(retMatrix); names{end+1} = sprintf('Testing SetMatrix and GetMatrix size %d x %d', nrows,ncols); for i = 1: nrows for j = 1: ncols names{end+1} = sprintf('\treturned matrix element: (%d,%d) = %g', i,j, retMatrix(i,j)); end end set(handles.txtData,'String',names); % --- Executes on button press in btnPVWatts. function btnPVWatts_Callback(hObject, eventdata, handles) % hObject handle to btnPVWatts (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); sscData.SetString('solar_resource_file', '../../examples/abilene.tm2'); sscData.SetNumber('system_capacity', 4.0); sscData.SetNumber('dc_ac_ratio', 1.1); sscData.SetNumber('tilt', 20); sscData.SetNumber('azimuth', 180); sscData.SetNumber('inv_eff', 96 ); sscData.SetNumber('losses', 14.0757 ); sscData.SetNumber('array_type', 0 ); sscData.SetNumber('gcr', 0.4 ); sscData.SetNumber('adjust:factor', 1 ); mod = SSC.Module('pvwattsv5'); if (mod.Exec(sscData)), tot = sscData.GetNumber('ac_annual'); ac = sscData.GetArray('ac_monthly'); for i = 1:size(ac) names{end+1} = sprintf('[%d]: %g kWh', i,ac(i)); end names{end+1} = sprintf('AC total: %g kWh', tot); names{end+1} = 'PVWatts test OK'; else idx = 0; [result, msg, type, time] = mod.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = mod.Log(idx); end names{end+1} = 'PVWatts example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in bntPVWattsFunc. function bntPVWattsFunc_Callback(hObject, eventdata, handles) % hObject handle to bntPVWattsFunc (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names = {}; sscData = SSC.Data(); sscModule = SSC.Module('pvwattsv1_1ts'); sscData.SetNumber('year', 1970); % general year (tiny effect in sun position) sscData.SetNumber('month', 1); % 1-12 sscData.SetNumber('day', 1); %1-number of days in month sscData.SetNumber('hour', 9); % 0-23 sscData.SetNumber('minute', 30); % minute of the hour (typically 30 min for midpoint calculation) sscData.SetNumber('lat', 33.4); % latitude, degrees sscData.SetNumber('lon', -112); % longitude, degrees sscData.SetNumber('tz', -7); % timezone from gmt, hours sscData.SetNumber('time_step', 1); % time step, hours % solar and weather data sscData.SetNumber('beam', 824); % beam (DNI) irradiance, W/m2 sscData.SetNumber('diffuse', 29); % diffuse (DHI) horizontal irradiance, W/m2 sscData.SetNumber('tamb', 9.4); % ambient temp, degree C sscData.SetNumber('wspd', 2.1); % wind speed, m/s sscData.SetNumber('snow', 0); % snow depth, cm (0 is default - when there is snow, ground reflectance is increased. assumes panels have been cleaned off) % system specifications sscData.SetNumber('system_size', 4); % system DC nameplate rating (kW) sscData.SetNumber('derate', 0.77); % derate factor sscData.SetNumber('track_mode', 0); % tracking mode 0=fixed, 1=1axis, 2=2axis sscData.SetNumber('azimuth', 180); % azimuth angle 0=north, 90=east, 180=south, 270=west sscData.SetNumber('tilt', 20); % tilt angle from horizontal 0=flat, 90=vertical % previous timestep values of cell temperature and POA sscData.SetNumber('tcell', 6.94); % calculated cell temperature from previous timestep, degree C, (can default to ambient for morning or if you don't know) sscData.SetNumber('poa', 84.5); % plane of array irradiance (W/m2) from previous time step if (sscModule.Exec(sscData)) poa = sscData.GetNumber('poa'); tcell = sscData.GetNumber('tcell'); dc = sscData.GetNumber('dc'); ac = sscData.GetNumber('ac'); names{end+1} = sprintf('poa: %g W/m2', poa); names{end+1} = sprintf('tcell: %g C', tcell); names{end+1} = sprintf('dc: %g W', dc); names{end+1} = sprintf('ac: %g W', ac); end set(handles.txtData,'String',names); % --- Executes on button press in btnPVSamV1. function btnPVSamV1_Callback(hObject, eventdata, handles) % hObject handle to btnPVSamV1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) names={}; data = SSC.Data(); % pvsamv1 compute module call from 2014.11.24 "Photovoltaic, Residential" configuration data.SetNumber( 'system_capacity', 3.8745 ); data.SetString( 'solar_resource_file', '../../examples/USA AZ Phoenix (TMY2).csv' ); data.SetNumber( 'use_wf_albedo', 0 ); data.SetArray( 'albedo', [ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2 ] ); data.SetNumber( 'irrad_mode', 0 ); data.SetNumber( 'sky_model', 2 ); data.SetNumber( 'ac_loss', 1 ); data.SetNumber( 'modules_per_string', 9 ); data.SetNumber( 'strings_in_parallel', 2 ); data.SetNumber( 'inverter_count', 1 ); data.SetNumber( 'enable_mismatch_vmax_calc', 0 ); data.SetNumber( 'subarray1_tilt', 20 ); data.SetNumber( 'subarray1_tilt_eq_lat', 0 ); data.SetNumber( 'subarray1_azimuth', 180 ); data.SetNumber( 'subarray1_track_mode', 0 ); data.SetNumber( 'subarray1_rotlim', 45 ); data.SetNumber( 'subarray1_shade_mode', 1 ); data.SetNumber( 'subarray1_gcr', 0.3 ); data.SetArray( 'subarray1_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray1_dcloss', 4.4402 ); data.SetNumber( 'subarray1_mismatch_loss', 2 ); data.SetNumber( 'subarray1_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray1_dcwiring_loss', 2 ); data.SetNumber( 'subarray1_tracking_loss', 0 ); data.SetNumber( 'subarray1_nameplate_loss', 0 ); data.SetNumber( 'subarray2_mismatch_loss', 2 ); data.SetNumber( 'subarray2_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray2_dcwiring_loss', 2 ); data.SetNumber( 'subarray2_tracking_loss', 0 ); data.SetNumber( 'subarray2_nameplate_loss', 0 ); data.SetNumber( 'subarray3_mismatch_loss', 2 ); data.SetNumber( 'subarray3_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray3_dcwiring_loss', 2 ); data.SetNumber( 'subarray3_tracking_loss', 0 ); data.SetNumber( 'subarray3_nameplate_loss', 0 ); data.SetNumber( 'subarray4_mismatch_loss', 2 ); data.SetNumber( 'subarray4_diodeconn_loss', 0.5 ); data.SetNumber( 'subarray4_dcwiring_loss', 2 ); data.SetNumber( 'subarray4_tracking_loss', 0 ); data.SetNumber( 'subarray4_nameplate_loss', 0 ); data.SetNumber( 'acwiring_loss', 1 ); data.SetNumber( 'transformer_loss', 0 ); data.SetNumber( 'subarray1_mod_orient', 0 ); data.SetNumber( 'subarray1_nmodx', 9 ); data.SetNumber( 'subarray1_nmody', 2 ); data.SetNumber( 'subarray1_backtrack', 0 ); data.SetNumber( 'subarray2_enable', 0 ); data.SetNumber( 'subarray2_nstrings', 0 ); data.SetNumber( 'subarray2_tilt', 20 ); data.SetNumber( 'subarray2_tilt_eq_lat', 0 ); data.SetNumber( 'subarray2_azimuth', 180 ); data.SetNumber( 'subarray2_track_mode', 0 ); data.SetNumber( 'subarray2_rotlim', 45 ); data.SetNumber( 'subarray2_shade_mode', 1 ); data.SetNumber( 'subarray2_gcr', 0.3 ); data.SetArray( 'subarray2_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray2_dcloss', 4.4402 ); data.SetNumber( 'subarray2_mod_orient', 0 ); data.SetNumber( 'subarray2_nmodx', 9 ); data.SetNumber( 'subarray2_nmody', 2 ); data.SetNumber( 'subarray2_backtrack', 0 ); data.SetNumber( 'subarray3_enable', 0 ); data.SetNumber( 'subarray3_nstrings', 0 ); data.SetNumber( 'subarray3_tilt', 20 ); data.SetNumber( 'subarray3_tilt_eq_lat', 0 ); data.SetNumber( 'subarray3_azimuth', 180 ); data.SetNumber( 'subarray3_track_mode', 0 ); data.SetNumber( 'subarray3_rotlim', 45 ); data.SetNumber( 'subarray3_shade_mode', 1 ); data.SetNumber( 'subarray3_gcr', 0.3 ); data.SetArray( 'subarray3_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray3_dcloss', 4.4402 ); data.SetNumber( 'subarray3_mod_orient', 0 ); data.SetNumber( 'subarray3_nmodx', 9 ); data.SetNumber( 'subarray3_nmody', 2 ); data.SetNumber( 'subarray3_backtrack', 0 ); data.SetNumber( 'subarray4_enable', 0 ); data.SetNumber( 'subarray4_nstrings', 0 ); data.SetNumber( 'subarray4_tilt', 20 ); data.SetNumber( 'subarray4_tilt_eq_lat', 0 ); data.SetNumber( 'subarray4_azimuth', 180 ); data.SetNumber( 'subarray4_track_mode', 0 ); data.SetNumber( 'subarray4_rotlim', 45 ); data.SetNumber( 'subarray4_shade_mode', 1 ); data.SetNumber( 'subarray4_gcr', 0.3 ); data.SetArray( 'subarray4_soiling', [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ); data.SetNumber( 'subarray4_dcloss', 4.4402 ); data.SetNumber( 'subarray4_mod_orient', 0 ); data.SetNumber( 'subarray4_nmodx', 9 ); data.SetNumber( 'subarray4_nmody', 2 ); data.SetNumber( 'subarray4_backtrack', 0 ); data.SetNumber( 'module_model', 1 ); data.SetNumber( 'spe_area', 0.74074 ); data.SetNumber( 'spe_rad0', 200 ); data.SetNumber( 'spe_rad1', 400 ); data.SetNumber( 'spe_rad2', 600 ); data.SetNumber( 'spe_rad3', 800 ); data.SetNumber( 'spe_rad4', 1000 ); data.SetNumber( 'spe_eff0', 13.5 ); data.SetNumber( 'spe_eff1', 13.5 ); data.SetNumber( 'spe_eff2', 13.5 ); data.SetNumber( 'spe_eff3', 13.5 ); data.SetNumber( 'spe_eff4', 13.5 ); data.SetNumber( 'spe_reference', 4 ); data.SetNumber( 'spe_module_structure', 0 ); data.SetNumber( 'spe_a', -3.56 ); data.SetNumber( 'spe_b', -0.075 ); data.SetNumber( 'spe_dT', 3 ); data.SetNumber( 'spe_temp_coeff', -0.5 ); data.SetNumber( 'spe_fd', 1 ); data.SetNumber( 'cec_area', 1.244 ); data.SetNumber( 'cec_a_ref', 1.9816 ); data.SetNumber( 'cec_adjust', 20.8 ); data.SetNumber( 'cec_alpha_sc', 0.002651 ); data.SetNumber( 'cec_beta_oc', -0.14234 ); data.SetNumber( 'cec_gamma_r', -0.407 ); data.SetNumber( 'cec_i_l_ref', 5.754 ); data.SetNumber( 'cec_i_mp_ref', 5.25 ); data.SetNumber( 'cec_i_o_ref', 1.919e-010 ); data.SetNumber( 'cec_i_sc_ref', 5.75 ); data.SetNumber( 'cec_n_s', 72 ); data.SetNumber( 'cec_r_s', 0.105 ); data.SetNumber( 'cec_r_sh_ref', 160.48 ); data.SetNumber( 'cec_t_noct', 49.2 ); data.SetNumber( 'cec_v_mp_ref', 41 ); data.SetNumber( 'cec_v_oc_ref', 47.7 ); data.SetNumber( 'cec_temp_corr_mode', 0 ); data.SetNumber( 'cec_standoff', 6 ); data.SetNumber( 'cec_height', 0 ); data.SetNumber( 'cec_mounting_config', 0 ); data.SetNumber( 'cec_heat_transfer', 0 ); data.SetNumber( 'cec_mounting_orientation', 0 ); data.SetNumber( 'cec_gap_spacing', 0.05 ); data.SetNumber( 'cec_module_width', 1 ); data.SetNumber( 'cec_module_length', 1.244 ); data.SetNumber( 'cec_array_rows', 1 ); data.SetNumber( 'cec_array_cols', 10 ); data.SetNumber( 'cec_backside_temp', 20 ); data.SetNumber( '6par_celltech', 1 ); data.SetNumber( '6par_vmp', 30 ); data.SetNumber( '6par_imp', 6 ); data.SetNumber( '6par_voc', 37 ); data.SetNumber( '6par_isc', 7 ); data.SetNumber( '6par_bvoc', -0.11 ); data.SetNumber( '6par_aisc', 0.004 ); data.SetNumber( '6par_gpmp', -0.41 ); data.SetNumber( '6par_nser', 60 ); data.SetNumber( '6par_area', 1.3 ); data.SetNumber( '6par_tnoct', 46 ); data.SetNumber( '6par_standoff', 6 ); data.SetNumber( '6par_mounting', 0 ); data.SetNumber( 'snl_module_structure', 0 ); data.SetNumber( 'snl_a', -3.62 ); data.SetNumber( 'snl_b', -0.075 ); data.SetNumber( 'snl_dtc', 3 ); data.SetNumber( 'snl_ref_a', -3.62 ); data.SetNumber( 'snl_ref_b', -0.075 ); data.SetNumber( 'snl_ref_dT', 3 ); data.SetNumber( 'snl_fd', 1 ); data.SetNumber( 'snl_a0', 0.94045 ); data.SetNumber( 'snl_a1', 0.052641 ); data.SetNumber( 'snl_a2', -0.0093897 ); data.SetNumber( 'snl_a3', 0.00072623 ); data.SetNumber( 'snl_a4', -1.9938e-005 ); data.SetNumber( 'snl_aimp', -0.00038 ); data.SetNumber( 'snl_aisc', 0.00061 ); data.SetNumber( 'snl_area', 1.244 ); data.SetNumber( 'snl_b0', 1 ); data.SetNumber( 'snl_b1', -0.002438 ); data.SetNumber( 'snl_b2', 0.0003103 ); data.SetNumber( 'snl_b3', -1.246e-005 ); data.SetNumber( 'snl_b4', 2.11e-007 ); data.SetNumber( 'snl_b5', -1.36e-009 ); data.SetNumber( 'snl_bvmpo', -0.139 ); data.SetNumber( 'snl_bvoco', -0.136 ); data.SetNumber( 'snl_c0', 1.0039 ); data.SetNumber( 'snl_c1', -0.0039 ); data.SetNumber( 'snl_c2', 0.291066 ); data.SetNumber( 'snl_c3', -4.73546 ); data.SetNumber( 'snl_c4', 0.9942 ); data.SetNumber( 'snl_c5', 0.0058 ); data.SetNumber( 'snl_c6', 1.0723 ); data.SetNumber( 'snl_c7', -0.0723 ); data.SetNumber( 'snl_impo', 5.25 ); data.SetNumber( 'snl_isco', 5.75 ); data.SetNumber( 'snl_ixo', 5.65 ); data.SetNumber( 'snl_ixxo', 3.85 ); data.SetNumber( 'snl_mbvmp', 0 ); data.SetNumber( 'snl_mbvoc', 0 ); data.SetNumber( 'snl_n', 1.221 ); data.SetNumber( 'snl_series_cells', 72 ); data.SetNumber( 'snl_vmpo', 40 ); data.SetNumber( 'snl_voco', 47.7 ); data.SetNumber( 'inverter_model', 0 ); data.SetNumber( 'inv_snl_c0', -6.57929e-006 ); data.SetNumber( 'inv_snl_c1', 4.72925e-005 ); data.SetNumber( 'inv_snl_c2', 0.00202195 ); data.SetNumber( 'inv_snl_c3', 0.000285321 ); data.SetNumber( 'inv_snl_paco', 4000 ); data.SetNumber( 'inv_snl_pdco', 4186 ); data.SetNumber( 'inv_snl_pnt', 0.17 ); data.SetNumber( 'inv_snl_pso', 19.7391 ); data.SetNumber( 'inv_snl_vdco', 310.67 ); data.SetNumber( 'inv_snl_vdcmax', 600 ); data.SetNumber( 'inv_ds_paco', 4000 ); data.SetNumber( 'inv_ds_eff', 96 ); data.SetNumber( 'inv_ds_pnt', 1 ); data.SetNumber( 'inv_ds_pso', 0 ); data.SetNumber( 'inv_ds_vdco', 310 ); data.SetNumber( 'inv_ds_vdcmax', 600 ); data.SetNumber( 'inv_pd_paco', 4000 ); data.SetNumber( 'inv_pd_pdco', 4210.53 ); data.SetArray( 'inv_pd_partload', [ 0, 0.404, 0.808, 1.212, 1.616, 2.02, 2.424, 2.828, 3.232, 3.636, 4.04, 4.444, 4.848, 5.252, 5.656, 6.06, 6.464, 6.868, 7.272, 7.676, 8.08, 8.484, 8.888, 9.292, 9.696, 10.1, 10.504, 10.908, 11.312, 11.716, 12.12, 12.524, 12.928, 13.332, 13.736, 14.14, 14.544, 14.948, 15.352, 15.756, 16.16, 16.564, 16.968, 17.372, 17.776, 18.18, 18.584, 18.988, 19.392, 19.796, 20.2, 20.604, 21.008, 21.412, 21.816, 22.22, 22.624, 23.028, 23.432, 23.836, 24.24, 24.644, 25.048, 25.452, 25.856, 26.26, 26.664, 27.068, 27.472, 27.876, 28.28, 28.684, 29.088, 29.492, 29.896, 30.3, 30.704, 31.108, 31.512, 31.916, 32.32, 32.724, 33.128, 33.532, 33.936, 34.34, 34.744, 35.148, 35.552, 35.956, 36.36, 36.764, 37.168, 37.572, 37.976, 38.38, 38.784, 39.188, 39.592, 39.996, 40.4, 40.804, 41.208, 41.612, 42.016, 42.42, 42.824, 43.228, 43.632, 44.036, 44.44, 44.844, 45.248, 45.652, 46.056, 46.46, 46.864, 47.268, 47.672, 48.076, 48.48, 48.884, 49.288, 49.692, 50.096, 50.5, 50.904, 51.308, 51.712, 52.116, 52.52, 52.924, 53.328, 53.732, 54.136, 54.54, 54.944, 55.348, 55.752, 56.156, 56.56, 56.964, 57.368, 57.772, 58.176, 58.58, 58.984, 59.388, 59.792, 60.196, 60.6, 61.004, 61.408, 61.812, 62.216, 62.62, 63.024, 63.428, 63.832, 64.236, 64.64, 65.044, 65.448, 65.852, 66.256, 66.66, 67.064, 67.468, 67.872, 68.276, 68.68, 69.084, 69.488, 69.892, 70.296, 70.7, 71.104, 71.508, 71.912, 72.316, 72.72, 73.124, 73.528, 73.932, 74.336, 74.74, 75.144, 75.548, 75.952, 76.356, 76.76, 77.164, 77.568, 77.972, 78.376, 78.78, 79.184, 79.588, 79.992, 80.396, 80.8, 81.204, 81.608, 82.012, 82.416, 82.82, 83.224, 83.628, 84.032, 84.436, 84.84, 85.244, 85.648, 86.052, 86.456, 86.86, 87.264, 87.668, 88.072, 88.476, 88.88, 89.284, 89.688, 90.092, 90.496, 90.9, 91.304, 91.708, 92.112, 92.516, 92.92, 93.324, 93.728, 94.132, 94.536, 94.94, 95.344, 95.748, 96.152, 96.556, 96.96, 97.364, 97.768, 98.172, 98.576, 98.98, 99.384, 99.788, 100.192, 100.596, 101 ] ); data.SetArray( 'inv_pd_efficiency', [ 0, 0, 34.42, 55.2, 65.59, 71.82, 75.97, 78.94, 81.17, 82.9, 84.28, 85.42, 86.36, 87.16, 87.84, 88.44, 88.95, 89.41, 89.82, 90.18, 90.51, 90.81, 91.08, 91.32, 91.55, 91.75, 91.95, 92.12, 92.29, 92.44, 92.58, 92.72, 92.84, 92.96, 93.07, 93.17, 93.27, 93.37, 93.45, 93.54, 93.62, 93.69, 93.76, 93.83, 93.9, 93.96, 94.02, 94.08, 94.13, 94.18, 94.23, 94.28, 94.33, 94.37, 94.42, 94.46, 94.5, 94.54, 94.57, 94.61, 94.64, 94.68, 94.71, 94.74, 94.77, 94.8, 94.83, 94.86, 94.89, 94.91, 94.94, 94.96, 94.98, 95.01, 95.03, 95.05, 95.07, 95.09, 95.11, 95.13, 95.15, 95.17, 95.19, 95.21, 95.23, 95.24, 95.26, 95.28, 95.29, 95.31, 95.32, 95.34, 95.35, 95.36, 95.38, 95.39, 95.4, 95.42, 95.43, 95.44, 95.45, 95.47, 95.48, 95.49, 95.5, 95.51, 95.52, 95.53, 95.54, 95.55, 95.56, 95.57, 95.58, 95.59, 95.6, 95.61, 95.62, 95.63, 95.64, 95.64, 95.65, 95.66, 95.67, 95.68, 95.68, 95.69, 95.7, 95.71, 95.71, 95.72, 95.73, 95.73, 95.74, 95.75, 95.75, 95.76, 95.77, 95.77, 95.78, 95.78, 95.79, 95.8, 95.8, 95.81, 95.81, 95.82, 95.82, 95.83, 95.83, 95.84, 95.84, 95.85, 95.85, 95.86, 95.86, 95.87, 95.87, 95.88, 95.88, 95.89, 95.89, 95.89, 95.9, 95.9, 95.91, 95.91, 95.91, 95.92, 95.92, 95.93, 95.93, 95.93, 95.94, 95.94, 95.94, 95.95, 95.95, 95.96, 95.96, 95.96, 95.97, 95.97, 95.97, 95.98, 95.98, 95.98, 95.98, 95.99, 95.99, 95.99, 96, 96, 96, 96.01, 96.01, 96.01, 96.01, 96.02, 96.02, 96.02, 96.02, 96.03, 96.03, 96.03, 96.03, 96.04, 96.04, 96.04, 96.04, 96.05, 96.05, 96.05, 96.05, 96.06, 96.06, 96.06, 96.06, 96.06, 96.07, 96.07, 96.07, 96.07, 96.07, 96.08, 96.08, 96.08, 96.08, 96.08, 96.09, 96.09, 96.09, 96.09, 96.09, 96.09, 96.1, 96.1, 96.1, 96.1, 96.1, 96.1, 96.11, 96.11, 96.11, 96.11, 96.11, 96.11, 96.12, 96.12, 96.12, 96.12, 96.12 ] ); data.SetNumber( 'inv_pd_pnt', 0 ); data.SetNumber( 'inv_pd_vdco', 310 ); data.SetNumber( 'inv_pd_vdcmax', 600 ); data.SetNumber( 'adjust:factor', 1 ); module = SSC.Module('pvsamv1'); if (module.Exec(data)) enet = data.GetNumber('annual_energy'); cf = data.GetNumber('capacity_factor'); kWhperkW = data.GetNumber('kwh_per_kw'); names{end+1} = sprintf('Annual energy : %g kWh', enet); names{end+1} = sprintf('Capacity factor : %g %%', cf); names{end+1} = sprintf('First year kWhAC/kWDC : %g ', kWhperkW); names{end+1} = 'PVSamV1 test OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'pvsamv1 example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in btnBelpe. function btnBelpe_Callback(hObject, eventdata, handles) % hObject handle to btnBelpe (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % belpe compute module call from 2014.11.24 "Photovoltaic, Residential" configuration names={}; data = SSC.Data(); data.SetNumber( 'en_belpe', 0 ); data.SetArray( 'e_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetArray( 'p_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetString( 'solar_resource_file', '../../examples/USA AZ Phoenix (TMY2).csv' ); data.SetNumber( 'floor_area', 2000 ); data.SetNumber( 'Stories', 2 ); data.SetNumber( 'YrBuilt', 1980 ); data.SetNumber( 'Retrofits', 0 ); data.SetNumber( 'Occupants', 4 ); data.SetArray( 'Occ_Schedule', [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ); data.SetNumber( 'THeat', 68 ); data.SetNumber( 'TCool', 76 ); data.SetNumber( 'THeatSB', 68 ); data.SetNumber( 'TCoolSB', 76 ); data.SetArray( 'T_Sched', [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ); data.SetNumber( 'en_heat', 1 ); data.SetNumber( 'en_cool', 1 ); data.SetNumber( 'en_fridge', 1 ); data.SetNumber( 'en_range', 1 ); data.SetNumber( 'en_dish', 1 ); data.SetNumber( 'en_wash', 1 ); data.SetNumber( 'en_dry', 1 ); data.SetNumber( 'en_mels', 1 ); data.SetArray( 'Monthly_util', [ 725, 630, 665, 795, 1040, 1590, 1925, 1730, 1380, 1080, 635, 715 ] ); module = SSC.Module('belpe'); if (module.Exec(data)) pload = data.GetArray('p_load'); eload = data.GetArray('e_load'); for i = 1:size(eload) names{end+1} = sprintf('[%d]: %g kWh', i,eload(i)); end for i = 1:size(pload) names{end+1} = sprintf('[%d]: %g kW', i,pload(i)); end names{end+1} = 'belpe test OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'belpe example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in btnUtilityRate3. function btnUtilityRate3_Callback(hObject, eventdata, handles) % hObject handle to btnUtilityRate3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %utilityrate3 compute module call from 2014.11.24 "Photovoltaic, Residential" configuration names={}; data = SSC.Data(); data.SetNumber( 'analysis_period', 25 ); data.SetArray( 'hourly_energy', [ -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.237892, 1.55848, 2.07121, 2.54933, 2.77945, 2.42071, 1.25773, 0.593002, 0.235599, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0131131, 0.701084, 1.32711, 1.76305, 2.5502, 2.29087, 1.83336, 2.01766, 0.881524, 0.298536, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00528433, 0.737449, 1.51351, 2.14093, 2.39439, 2.32012, 1.83616, 0.712188, 0.32981, 0.087085, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.163208, 0.438056, 0.343575, 1.18182, 1.85202, 1.85609, 0.842696, 0.641464, 0.260647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298244, 0.0723487, 0.189837, 0.2028, 0.559363, 0.610891, 0.424415, 0.21567, 0.0438746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228363, 0.399806, 1.6819, 2.36102, 2.50324, 2.37421, 1.99454, 1.55301, 0.560049, 0.012407, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257482, 1.26562, 1.75789, 2.28831, 1.9963, 2.05102, 1.71107, 1.21754, 0.264943, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.531982, 1.2253, 1.74739, 2.31801, 2.38827, 2.23093, 1.90488, 1.21141, 0.498004, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00198372, 0.593078, 1.31965, 2.07685, 2.40343, 2.53277, 2.29068, 2.13211, 1.5245, 0.603361, 0.0113138, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0032201, 0.661057, 1.43, 2.03944, 2.29233, 2.56232, 2.47674, 2.22701, 1.32747, 0.482224, 0.0189405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.14109, 0.281369, 0.61837, 1.17956, 1.35886, 1.24448, 0.674592, 0.60305, 0.306165, 0.0125432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00466503, 0.668332, 1.4492, 2.1348, 2.45217, 2.67319, 2.67974, 2.32841, 1.71872, 0.753559, 0.0235207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.031651, 0.710846, 1.51631, 2.0761, 2.59069, 2.73589, 2.61101, 2.27566, 1.28793, 0.596088, 0.0825364, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0251314, 0.674564, 1.48159, 2.16343, 2.52639, 2.6672, 2.58934, 2.19609, 1.67186, 0.858018, 0.0881195, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.207666, 0.579903, 0.912926, 1.00532, 0.884244, 0.696492, 0.608002, 0.459878, 0.217412, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188015, 0.714458, 1.06288, 1.94864, 2.57486, 2.31493, 1.9987, 1.61288, 0.662761, 0.0476338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803296, 0.341384, 0.735301, 0.726501, 0.711979, 1.14964, 1.19626, 0.328706, 0.0181347, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0305592, 0.156043, 0.341021, 0.474378, 0.914521, 0.580048, 0.433983, 0.686068, 0.103174, 0.0121079, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0060497, 0.703844, 1.48762, 2.17949, 2.59902, 2.78725, 2.62568, 2.43746, 1.82643, 0.823967, 0.0825833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0158048, 0.702795, 1.61301, 2.33222, 2.67688, 2.8999, 2.90041, 2.53403, 1.93685, 0.855748, 0.0747284, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.523808, 1.61883, 2.32098, 2.57078, 2.77892, 2.55405, 2.36358, 1.7967, 0.825932, 0.0744693, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179379, 0.743217, 1.67058, 2.40603, 2.83378, 2.95908, 2.8987, 2.57699, 1.95782, 0.894908, 0.0864452, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0209617, 0.775254, 1.67189, 2.35763, 2.71016, 2.76434, 2.74124, 2.41092, 1.87865, 0.848176, 0.0809343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0518558, 0.766187, 1.66598, 2.2831, 2.66382, 2.84186, 2.73265, 2.48005, 1.87026, 1.04913, 0.183123, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.02225, 0.799729, 1.69815, 1.74506, 2.89107, 3.02621, 2.94313, 2.62588, 1.87551, 0.951237, 0.112167, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0256666, 0.747031, 1.61328, 2.20768, 2.59202, 2.81236, 2.77996, 2.41353, 1.92279, 0.651178, 0.124277, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00617361, 0.636098, 1.20967, 2.07618, 2.11638, 2.66892, 2.49594, 1.6139, 0.809756, 0.322557, 0.0374598, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3227, 1.28248, 2.55227, 2.75435, 2.56264, 1.83712, 2.17066, 1.50979, 0.754942, 0.137741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0211536, 0.731656, 1.56781, 2.22288, 2.54379, 2.73358, 2.61749, 2.25027, 1.58404, 0.641335, 0.0444765, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120561, 0.753942, 1.58639, 2.09348, 2.40988, 2.82317, 2.74801, 2.46944, 1.86985, 0.945149, 0.207441, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0464183, 0.69387, 1.56588, 2.09747, 2.1085, 1.67782, 1.826, 2.01889, 0.981731, 0.438836, 0.136136, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0521473, 0.773615, 1.65551, 2.26765, 2.6259, 2.82139, 2.72325, 2.49335, 1.8784, 1.07924, 0.227448, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0671193, 0.830364, 1.72201, 2.35263, 2.75282, 2.91385, 2.75284, 2.48439, 1.91677, 1.14569, 0.260342, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0473347, 0.585262, 1.62684, 2.28808, 1.7178, 2.71214, 2.29105, 0.924231, 1.16708, 0.272148, 0.0880208, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0342007, 0.638932, 1.42686, 1.88306, 2.20658, 1.79152, 1.62162, 0.690246, 0.524674, 0.310858, 0.0494554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.060942, 0.64943, 1.43918, 2.28859, 2.4677, 2.61078, 2.8912, 2.31511, 1.93241, 1.16167, 0.222327, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0556933, 0.690716, 1.47685, 2.1498, 2.60054, 2.8157, 2.71164, 2.45462, 1.72675, 0.820188, 0.175575, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0746355, 0.51225, 0.809798, 0.77761, 0.967812, 1.14769, 1.38166, 1.2552, 1.21951, 0.630871, 0.119638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0667311, 0.786457, 1.6966, 2.31386, 2.71669, 2.78051, 2.73365, 2.54435, 1.94229, 1.16229, 0.281953, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065812, 0.845292, 1.76217, 2.41753, 2.77411, 2.88281, 2.15553, 0.793721, 0.484992, 0.441506, 0.13502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0599431, 0.612415, 1.70107, 2.26915, 1.88099, 2.59508, 2.5845, 2.19306, 2.00529, 0.731647, 0.297952, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0790636, 0.811192, 1.61865, 2.18342, 2.67058, 2.76951, 2.84814, 2.54805, 1.98559, 1.19967, 0.30857, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0906775, 0.789972, 1.70023, 2.00477, 2.46167, 2.65024, 1.74838, 1.41502, 1.72101, 0.938604, 0.28449, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0724386, 0.702447, 0.868642, 0.546874, 2.14543, 1.31574, 0.82919, 1.22686, 0.897264, 0.500842, 0.0736991, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0201163, 0.128451, 0.300408, 0.76382, 0.915334, 1.68752, 1.28516, 2.06155, 1.53318, 0.94012, 0.167664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0389222, 0.180573, 0.613588, 0.758888, 0.51899, 1.17105, 1.06341, 0.93313, 0.73764, 0.569722, 0.0709034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0658192, 0.431479, 1.19453, 2.24483, 2.40198, 3.02736, 2.91366, 2.58129, 1.9729, 1.13816, 0.27833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.114606, 0.925966, 1.84552, 2.36439, 2.87467, 2.91533, 2.80996, 2.61612, 2.1303, 1.26343, 0.359798, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129498, 0.933003, 1.73591, 2.48908, 2.81416, 3.01391, 2.84047, 2.65169, 2.12741, 1.30098, 0.374405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.157235, 1.02468, 1.90783, 2.65349, 2.98748, 3.06543, 2.94032, 2.64438, 2.18112, 1.37498, 0.390754, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822836, 0.897545, 1.82385, 2.05875, 2.70064, 2.67203, 2.56134, 2.32863, 1.99009, 1.31135, 0.349636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0811695, 0.920532, 1.56637, 2.43379, 2.65679, 3.13148, 3.25006, 2.87731, 1.17271, 0.480157, 0.1948, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181889, 1.03881, 2.03771, 2.65972, 3.12291, 3.27627, 3.2033, 2.83183, 2.18556, 1.43695, 0.461076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.183358, 1.07588, 1.96893, 2.63122, 3.01158, 3.06493, 3.0246, 2.80486, 2.22148, 1.39715, 0.455539, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.196156, 1.08146, 1.94145, 2.36668, 2.99154, 3.0687, 2.70037, 2.68487, 2.10532, 1.31872, 0.456283, 0.000657285, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113946, 0.551505, 1.65781, 2.18213, 2.14962, 2.72893, 2.81724, 2.40752, 1.84958, 1.05666, 0.245989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155523, 0.86744, 1.74231, 2.24297, 2.90425, 3.00904, 2.88222, 2.52595, 2.01596, 1.2348, 0.370649, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.20253, 1.08269, 1.98556, 2.13004, 2.4654, 2.72754, 2.38109, 2.11288, 1.52105, 1.14451, 0.333204, 0.00459637, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.154559, 0.95803, 1.79215, 2.42852, 2.78651, 2.78852, 2.7031, 2.42729, 2.00225, 1.21656, 0.385532, 0.00223397, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0916559, 0.549396, 0.75385, 2.22277, 2.12315, 1.40701, 1.31119, 1.46777, 1.35661, 0.926233, 0.34359, 0.0106012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0397063, 0.327252, 0.392382, 0.483877, 1.00748, 1.03345, 2.16925, 2.29605, 1.59847, 0.773749, 0.33413, 0.00651965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0787509, 0.506391, 0.831606, 1.75896, 2.63316, 2.87503, 2.59263, 2.69132, 2.15608, 1.3304, 0.424729, 0.00319275, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.261674, 1.15784, 2.05384, 2.69619, 3.02786, 3.19709, 3.17375, 2.86824, 2.30189, 1.48386, 0.534188, 0.0138144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.256328, 1.18148, 2.04045, 2.65444, 2.91485, 3.11753, 3.0243, 2.68981, 2.18902, 1.41382, 0.494521, 0.0134833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.244045, 1.13313, 1.99179, 2.58184, 2.93921, 3.1217, 3.05008, 2.56994, 2.0232, 1.28437, 0.402903, 0.0178204, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266809, 1.15784, 1.91754, 2.55805, 2.88242, 2.99619, 3.00307, 2.5902, 1.81057, 1.19422, 0.47619, 0.0185877, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.040466, 0.230568, 0.309243, 0.582696, 0.646274, 0.6753, 1.33353, 0.569191, 0.482061, 0.317662, 0.116617, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.080749, 0.451759, 0.425689, 0.642428, 1.19467, 2.38699, 2.79147, 2.29211, 0.50947, 0.513716, 0.394361, 0.0107271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.317282, 1.21208, 2.12014, 2.62569, 3.00869, 3.21302, 3.1563, 2.79564, 2.2559, 1.48345, 0.545944, 0.0202432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.26923, 1.13371, 1.96823, 2.55829, 2.69989, 2.88385, 2.65694, 2.32741, 1.81625, 1.2666, 0.331561, 0.0241534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.220531, 0.779394, 1.62667, 2.23521, 2.55763, 2.69444, 3.02501, 2.382, 1.97013, 1.29111, 0.297147, 0.0292915, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.336994, 1.20974, 1.86143, 2.32418, 2.49948, 2.82045, 2.32595, 2.59306, 2.10933, 1.43306, 0.535486, 0.0210137, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3127, 1.18289, 1.90734, 2.46451, 2.91878, 3.01669, 2.93144, 2.41273, 2.14119, 1.30841, 0.485927, 0.024567, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.378011, 1.30699, 2.11861, 2.68462, 3.05483, 3.06153, 3.09706, 2.75535, 2.19957, 1.45378, 0.5578, 0.0276917, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.347243, 1.2271, 2.04089, 2.6192, 2.92527, 3.0189, 2.89591, 2.66876, 2.10579, 1.40257, 0.473208, 0.0229249, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000403494, 0.337658, 1.16051, 1.82589, 2.45538, 2.57733, 2.89009, 2.76417, 2.60689, 1.98839, 1.30573, 0.483454, 0.0211595, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00808479, 0.314223, 0.910464, 1.80632, 2.46236, 2.27492, 2.75766, 2.39879, 2.29447, 1.39087, 1.0941, 0.337407, 0.0271273, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00172127, 0.109056, 0.179196, 0.37062, 1.20613, 2.08287, 0.705299, 0.906088, 1.19809, 0.679673, 0.796208, 0.283034, 0.0252436, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0649632, 0.368292, 0.792937, 0.993877, 1.09533, 1.2053, 1.20991, 1.34161, 0.955249, 1.14, 0.382964, 0.0161921, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00881097, 0.207262, 0.916083, 1.71332, 2.83532, 2.64491, 3.34268, 3.15964, 2.65037, 2.11147, 1.3217, 0.547824, 0.034669, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011599, 0.440098, 1.35861, 2.09894, 2.4451, 3.05401, 2.942, 2.68885, 2.75181, 2.17083, 1.51662, 0.59046, 0.0282801, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177853, 0.405087, 1.21104, 2.01975, 2.36418, 3.00371, 2.9622, 2.21349, 1.44564, 1.52112, 0.816214, 0.483528, 0.0346759, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112733, 0.467786, 1.38389, 2.12949, 2.741, 2.73288, 3.15948, 3.11531, 2.77932, 2.24467, 1.48522, 0.587207, 0.0326499, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0141428, 0.43465, 1.31316, 2.09238, 2.6159, 2.90832, 3.01194, 2.95357, 2.65734, 2.14486, 1.33686, 0.483806, 0.0326749, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00889213, 0.315005, 0.958325, 0.798187, 1.93203, 0.912173, 1.94889, 3.20138, 2.51446, 2.19894, 1.45864, 0.60054, 0.0355296, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0288925, 0.471801, 1.37805, 2.13256, 2.53429, 2.89463, 3.05365, 3.09967, 2.81197, 2.29455, 1.39346, 0.577399, 0.0359271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0184371, 0.510202, 1.42878, 2.15722, 2.72898, 3.09284, 3.229, 3.03457, 2.75948, 2.17573, 1.49261, 0.585832, 0.0395015, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148868, 0.536923, 1.45241, 2.2231, 2.77469, 3.1491, 3.1734, 3.02611, 2.55435, 2.09986, 1.31292, 0.554965, 0.0475305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0236629, 0.502378, 1.33382, 2.05257, 2.53122, 2.77383, 3.06528, 2.91351, 2.50308, 1.76945, 1.12408, 0.538006, 0.0450965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266797, 0.533507, 1.4479, 2.26204, 2.84049, 3.17678, 3.32571, 3.23657, 2.90545, 2.31084, 1.52298, 0.5994, 0.0447657, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0253841, 0.565154, 1.43935, 2.16465, 2.61938, 3.00398, 3.04388, 2.90682, 2.64879, 2.16171, 1.44131, 0.586497, 0.0399844, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0392779, 0.529717, 1.41222, 2.13948, 2.64051, 2.93131, 3.02475, 2.92114, 2.66524, 2.14606, 1.40554, 0.509182, 0.0440143, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0399866, 0.537241, 1.40124, 2.12679, 2.60461, 2.99403, 3.15687, 3.07992, 2.74554, 2.20116, 1.41404, 0.565366, 0.0478372, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0322141, 0.608073, 1.52175, 2.30897, 2.89622, 3.20449, 3.33122, 3.15288, 2.69974, 2.00487, 1.1623, 0.437806, 0.0718506, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0354949, 0.630341, 1.56012, 2.32286, 2.83081, 3.07942, 3.23508, 3.10054, 2.5652, 1.89407, 1.14653, 0.584859, 0.0707731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0548709, 0.536024, 1.46114, 2.27397, 2.7781, 3.06547, 3.13765, 3.03407, 2.74069, 2.18397, 1.44939, 0.588229, 0.0489847, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0405229, 0.652224, 1.57546, 2.31813, 2.79927, 3.11065, 3.19751, 3.08447, 2.77844, 2.17496, 1.30624, 0.50788, 0.0664955, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0609572, 0.626741, 1.46374, 2.06884, 2.60626, 2.92929, 3.04597, 2.93743, 2.6767, 2.1617, 1.42157, 0.575155, 0.0537245, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0569194, 0.536364, 1.20958, 1.88815, 2.1139, 2.11402, 2.28908, 2.19308, 2.07061, 1.81591, 1.23062, 0.518255, 0.0506118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0750783, 0.526686, 1.51303, 2.24141, 2.70579, 3.07067, 3.22044, 3.13129, 2.79936, 2.24669, 1.48998, 0.610699, 0.0526024, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.058005, 0.659603, 1.54682, 2.25896, 2.74218, 3.10186, 3.23616, 3.14822, 2.83675, 2.28725, 1.52222, 0.625084, 0.0534571, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0650978, 0.653472, 1.53213, 2.25282, 2.72627, 3.02882, 3.1423, 3.03596, 2.75289, 2.22356, 1.46622, 0.599287, 0.0587027, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0647384, 0.682668, 1.55742, 2.2204, 2.51572, 2.73816, 2.79876, 2.69893, 2.63468, 2.20494, 1.48071, 0.617379, 0.0542741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0662758, 0.662644, 1.19351, 2.20201, 2.62177, 2.00008, 1.98446, 2.13843, 1.45937, 0.979667, 0.76762, 0.360797, 0.0794803, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0708823, 0.438068, 1.4136, 1.21455, 1.94576, 2.67061, 2.94195, 2.90573, 2.49822, 1.98532, 1.3096, 0.596536, 0.074317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0676154, 0.66044, 1.48344, 2.20409, 2.68566, 2.95263, 2.99171, 2.89686, 2.62648, 1.85678, 0.762592, 0.256873, 0.0516922, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735763, 0.681711, 1.53943, 2.26025, 2.76668, 3.08078, 3.18449, 3.07735, 2.76899, 2.21142, 1.45044, 0.576247, 0.0675459, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722196, 0.715952, 1.60383, 2.36278, 2.90965, 3.24567, 3.36799, 3.25055, 2.90777, 2.31158, 1.53354, 0.645628, 0.0574003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0858675, 0.71055, 1.44588, 1.61342, 1.61347, 2.65035, 3.17898, 2.99356, 2.18792, 1.23177, 0.625731, 0.388882, 0.0685941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0700062, 0.790228, 1.69931, 2.43393, 2.91848, 3.16941, 3.28006, 3.11227, 2.57059, 1.69833, 1.05156, 0.607487, 0.0504325, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0981146, 0.624676, 1.08738, 1.20998, 1.65829, 2.14022, 2.58157, 2.60387, 2.26207, 1.68797, 1.39096, 0.578985, 0.0590457, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.085902, 0.808598, 1.72312, 2.40023, 2.80219, 3.0116, 3.07193, 3.0028, 2.72769, 1.82679, 0.928683, 0.470704, 0.0869378, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0962456, 0.774851, 1.63656, 2.27717, 2.64756, 2.91136, 2.75283, 2.51511, 2.12374, 1.5262, 1.22164, 0.637387, 0.0651746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12208, 0.772775, 1.65919, 2.3125, 2.75844, 2.94242, 3.10179, 2.57348, 2.18172, 2.09362, 1.22624, 0.607346, 0.0558773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.109762, 0.757301, 1.60192, 2.2786, 2.69139, 3.01823, 3.1452, 3.0452, 2.72662, 2.1803, 1.43945, 0.612033, 0.049229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.10675, 0.797373, 1.66938, 2.37582, 2.85356, 3.12765, 3.17581, 3.02977, 2.73167, 2.20776, 1.48555, 0.641002, 0.0602119, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116645, 0.755499, 1.55861, 2.26803, 2.79243, 2.84688, 2.24335, 2.08348, 2.20779, 1.98175, 1.19437, 0.601086, 0.0864918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.122241, 0.797115, 1.67095, 2.35005, 2.87278, 3.0651, 3.12155, 2.75254, 2.28834, 1.7754, 1.06189, 0.450902, 0.0717686, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101894, 0.831542, 1.70191, 2.40867, 2.90902, 3.1729, 3.22909, 3.06804, 2.75855, 2.23902, 1.52088, 0.66733, 0.0509003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.112582, 0.831971, 1.69128, 2.37716, 2.84981, 3.08773, 3.13156, 2.98066, 2.70612, 2.20559, 1.49668, 0.654666, 0.0565775, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129145, 0.807537, 1.64849, 2.32647, 2.81199, 2.84717, 3.11578, 2.7647, 2.5865, 2.06058, 1.38171, 0.610986, 0.0972929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.159398, 0.763961, 1.65229, 2.11526, 2.45448, 2.65856, 2.80733, 2.65771, 1.82989, 1.87144, 1.247, 0.619683, 0.0779092, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.143521, 0.787479, 1.60701, 2.26644, 2.71265, 2.98539, 3.05393, 2.92063, 2.63169, 2.12654, 1.42543, 0.623454, 0.0836456, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127846, 0.832122, 1.65227, 2.30008, 2.75441, 3.05248, 3.14783, 3.04817, 2.72575, 2.20136, 1.49123, 0.662025, 0.0608644, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12921, 0.753355, 1.50469, 2.1567, 2.62023, 2.66214, 2.84622, 1.51219, 2.16284, 2.07225, 1.36593, 0.575431, 0.130153, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135647, 0.84252, 1.66633, 2.33516, 2.81382, 3.13956, 3.25637, 3.14925, 2.81955, 2.28168, 1.54681, 0.688536, 0.0682094, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00165914, 0.158257, 0.891535, 1.66063, 2.23236, 2.66644, 2.51164, 3.19894, 2.67346, 2.46674, 2.03028, 1.1353, 0.563678, 0.144014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228252, 0.770962, 1.51878, 2.20541, 2.39687, 2.99418, 2.49508, 2.81298, 1.57403, 1.35384, 0.859823, 0.5316, 0.160225, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00210359, 0.171357, 0.682981, 1.72554, 2.33712, 2.65495, 3.01422, 2.80369, 2.85166, 2.50521, 2.07613, 0.927183, 0.535246, 0.121822, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00470825, 0.208109, 0.697719, 1.38214, 2.27311, 2.67732, 2.93912, 3.02113, 2.939, 2.69761, 2.21605, 1.53427, 0.689161, 0.0700752, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188575, 0.812971, 1.58373, 2.18966, 2.4398, 2.52119, 2.74827, 2.16702, 2.28575, 1.1059, 0.951395, 0.463407, 0.130058, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00103133, 0.208934, 0.529844, 1.34709, 1.71067, 1.74444, 2.15295, 2.6936, 3.02927, 2.71354, 2.16063, 1.31071, 0.637204, 0.10814, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00411861, 0.173495, 0.857579, 1.5912, 1.88548, 2.54273, 2.91239, 3.03047, 2.85125, 2.67845, 2.08782, 1.44804, 0.680682, 0.141815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00298558, 0.208136, 0.77388, 1.51529, 1.96781, 2.68107, 2.91423, 2.9837, 3.02686, 2.70103, 2.16625, 1.4457, 0.651117, 0.119267, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00420348, 0.177532, 0.869816, 1.67987, 2.33923, 2.75394, 3.01352, 3.07211, 2.9521, 2.68093, 2.17199, 1.48601, 0.688324, 0.102701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00037804, 0.161727, 0.911264, 1.74062, 2.39848, 2.84942, 3.10467, 3.17958, 3.03841, 2.74816, 2.25293, 1.54944, 0.712441, 0.082845, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00722287, 0.18654, 0.846172, 1.63269, 2.28621, 2.76518, 3.02561, 3.08418, 2.94445, 2.64137, 2.13936, 1.45237, 0.669704, 0.107472, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0073604, 0.195552, 0.869899, 1.60564, 2.34285, 2.72922, 3.00171, 2.54619, 2.80817, 2.37255, 2.14998, 1.47301, 0.647853, 0.136282, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00998686, 0.195464, 0.817284, 1.58321, 2.21867, 2.63865, 2.90441, 2.97468, 2.86389, 2.54656, 2.04225, 1.37826, 0.638302, 0.125642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0100893, 0.212461, 0.846209, 1.40114, 1.66376, 2.51259, 2.52983, 2.91774, 2.75677, 2.36695, 2.01823, 1.43843, 0.625016, 0.0875731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103211, 0.189596, 0.836327, 1.5929, 2.22834, 2.64641, 2.94496, 3.05147, 2.94914, 2.62605, 2.11873, 1.42873, 0.668804, 0.119774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00844064, 0.172512, 0.855141, 1.66765, 2.39908, 2.95615, 3.2106, 3.22918, 3.0931, 2.76159, 2.23, 1.52843, 0.72178, 0.105405, 0.00102409, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00879042, 0.172649, 0.908936, 1.72547, 2.35728, 2.77699, 3.0702, 3.17186, 3.07619, 2.75136, 2.24379, 1.55093, 0.734365, 0.0976701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00902068, 0.20316, 0.844992, 1.61049, 2.24806, 2.67335, 2.92833, 2.99831, 2.8712, 2.64821, 2.1726, 1.47415, 0.674886, 0.134395, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0105429, 0.169243, 0.889637, 1.68158, 2.2973, 2.66564, 2.95568, 3.0882, 3.00275, 2.6882, 2.19767, 1.5189, 0.72323, 0.0961988, 0.00138465, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103563, 0.174803, 0.888596, 1.67499, 2.2963, 2.70371, 2.92538, 2.97835, 2.84461, 2.57913, 2.11434, 1.47324, 0.70742, 0.0996139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00858938, 0.176313, 0.882133, 1.6595, 2.25836, 2.64365, 2.91095, 3.01304, 2.9115, 2.62185, 2.1453, 1.48293, 0.707107, 0.0985141, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0099618, 0.164097, 0.882342, 1.65443, 2.25296, 2.6526, 2.9143, 2.997, 2.915, 2.58918, 2.1007, 1.4532, 0.710263, 0.0926265, 0.00264106, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116669, 0.251722, 0.807634, 1.5043, 1.76167, 2.75289, 2.79941, 2.8398, 2.87009, 2.59008, 2.11509, 1.46723, 0.711563, 0.100572, 0.00270279, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.01159, 0.190915, 0.83593, 1.59379, 2.21854, 2.65663, 2.94373, 3.01026, 2.93374, 2.62922, 2.13328, 1.46042, 0.701619, 0.126912, 0.00279454, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116828, 0.167594, 0.886378, 1.66619, 2.27667, 2.68944, 2.93343, 2.98996, 2.87565, 2.63117, 2.17394, 1.52046, 0.740498, 0.101754, 0.00455638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0119045, 0.192339, 0.832221, 1.60926, 2.2468, 2.70341, 2.81328, 3.10612, 2.9649, 2.56929, 2.13696, 1.48744, 0.719687, 0.131981, 0.00328923, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012033, 0.168196, 0.884494, 1.64345, 2.29716, 2.74529, 2.95001, 3.08466, 2.99608, 2.49645, 2.18943, 1.54902, 0.718758, 0.154761, 0.00916451, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103788, 0.173905, 0.85883, 1.6208, 2.21073, 2.66578, 2.88199, 2.97622, 2.8997, 2.66386, 2.14788, 1.5366, 0.760603, 0.11681, 0.00310701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0169434, 0.206844, 0.839549, 1.58902, 2.22687, 2.60443, 2.90569, 2.96443, 2.84728, 2.45616, 2.05874, 1.4573, 0.709309, 0.15923, 0.00707017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018367, 0.191745, 0.792261, 1.54615, 2.10934, 2.62511, 2.82193, 2.79861, 2.74191, 2.53946, 2.06565, 1.44359, 0.609218, 0.19961, 0.00678988, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0194048, 0.264724, 0.792298, 1.41527, 2.05339, 2.31867, 2.19959, 2.78049, 2.63426, 1.91259, 1.60584, 0.66961, 0.370011, 0.140473, 0.00520895, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0262043, 0.203434, 0.844303, 1.32285, 2.17294, 2.38622, 2.77567, 2.83142, 2.90035, 2.43399, 2.07689, 1.47882, 0.716914, 0.122516, 0.00419636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179313, 0.206407, 0.782456, 1.50386, 2.09514, 2.49642, 2.74182, 2.80607, 2.69275, 2.49633, 2.00002, 1.32843, 0.674167, 0.160247, 0.00962815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0149655, 0.196164, 0.807138, 1.54556, 2.11172, 2.56236, 2.79263, 2.66943, 2.59856, 2.43957, 2.05922, 1.44283, 0.71322, 0.172421, 0.0111287, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193062, 0.205699, 0.782122, 1.49777, 2.00565, 2.48795, 2.85162, 2.79092, 2.78895, 2.51879, 2.07275, 1.44178, 0.70049, 0.160372, 0.00998491, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0102114, 0.176229, 0.807035, 1.44791, 2.13029, 2.39885, 2.26312, 2.74658, 2.52566, 2.11521, 1.85449, 1.38553, 0.617648, 0.245118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0152172, 0.19409, 0.37733, 0.885839, 0.954922, 0.578682, 0.997392, 0.728898, 1.19001, 1.04847, 0.563794, 0.716207, 0.435781, 0.175336, 0.0129026, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000959363, 0.144046, 0.789758, 1.52023, 1.76547, 0.602784, 0.615986, 1.4068, 2.45622, 1.96302, 1.44963, 1.00825, 0.643477, 0.151699, 0.00977678, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012024, 0.200452, 0.806475, 1.57281, 2.20809, 2.69486, 2.94436, 3.02981, 2.97768, 2.62376, 2.16768, 1.50908, 0.743206, 0.166434, 0.0121462, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0186774, 0.204083, 0.800783, 1.53792, 2.17033, 2.62381, 2.82746, 2.99521, 2.94267, 2.59681, 2.15403, 1.51751, 0.746394, 0.175029, 0.012288, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.015982, 0.192937, 0.843708, 1.61476, 2.22945, 2.71503, 2.97106, 3.06964, 2.9321, 2.6283, 2.14969, 1.50665, 0.763926, 0.163346, 0.0107528, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120422, 0.182313, 0.83598, 1.60237, 2.21205, 2.67347, 2.84206, 2.98217, 2.84642, 2.60202, 2.1484, 1.53139, 0.770039, 0.156446, 0.00886176, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011909, 0.181566, 0.823898, 1.56355, 2.16596, 2.59199, 2.83048, 2.9171, 2.86701, 2.59527, 2.1337, 1.50122, 0.755798, 0.156411, 0.0101431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00743233, 0.160124, 0.828795, 1.62435, 2.26407, 2.70487, 2.97282, 3.08021, 2.95172, 2.6151, 2.2121, 1.57448, 0.794359, 0.142596, 0.00649177, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116903, 0.172864, 0.80786, 1.59841, 2.20876, 2.60883, 2.94353, 3.01587, 2.85442, 2.59657, 2.11983, 1.44909, 0.742567, 0.15165, 0.00845716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0167364, 0.164264, 0.810215, 1.58212, 2.23312, 2.54221, 2.98027, 3.03752, 2.93603, 2.65803, 2.15811, 1.53454, 0.778381, 0.140829, 0.00348851, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0146709, 0.192459, 0.752904, 1.4679, 2.12887, 2.58938, 2.89436, 2.98953, 2.888, 2.57102, 2.08723, 1.44693, 0.726154, 0.177611, 0.0144642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00189165, 0.141457, 0.809742, 1.59418, 2.24783, 2.72107, 2.99185, 3.04199, 2.95036, 2.65736, 2.20351, 1.55265, 0.790919, 0.137065, 0.00282834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0113361, 0.168559, 0.782321, 1.52319, 2.15272, 2.59735, 2.80849, 2.95386, 2.78169, 2.50632, 2.0844, 1.28559, 0.802357, 0.194668, 0.0114317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00575232, 0.144693, 0.798239, 1.5453, 2.08986, 2.54933, 2.85062, 2.91108, 2.85599, 2.60716, 2.14469, 1.5195, 0.778154, 0.145614, 0.00600712, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00576718, 0.146662, 0.787946, 1.53978, 2.11139, 2.58464, 2.73414, 2.84743, 2.89168, 2.60069, 2.12416, 1.50686, 0.780478, 0.146872, 0.00599902, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00960108, 0.162909, 0.753287, 1.46066, 2.02865, 2.43624, 2.70678, 2.8761, 2.79907, 2.5512, 2.07405, 1.46719, 0.748012, 0.161994, 0.0108115, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0143567, 0.168607, 0.755387, 1.42058, 2.08245, 2.50489, 2.84611, 2.86617, 2.82978, 2.56332, 2.117, 1.49347, 0.767142, 0.147512, 0.00590247, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00188139, 0.130137, 0.775081, 1.54065, 2.13983, 2.54417, 2.74039, 2.93018, 2.81115, 2.5921, 2.1365, 1.51411, 0.78615, 0.141675, 0.00892945, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00254457, 0.13345, 0.753354, 1.50679, 1.89094, 2.42934, 2.78811, 2.84742, 2.87708, 2.44763, 2.01129, 1.44028, 0.828007, 0.201246, 0.0188561, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112877, 0.185095, 0.481712, 1.25281, 2.15442, 2.43126, 2.68642, 2.88882, 2.85456, 2.62765, 2.14612, 1.53909, 0.654715, 0.198077, 0.00660839, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168889, 0.523702, 0.716119, 1.26213, 1.78503, 2.11363, 2.54066, 2.5202, 2.30744, 2.10412, 1.36478, 0.790438, 0.0845819, 0.00253886, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0041946, 0.127578, 0.538535, 0.663227, 1.6302, 2.47425, 2.53213, 2.63215, 2.62422, 2.4561, 1.55462, 0.707734, 0.454021, 0.202391, 0.0041337, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.119956, 0.773787, 1.52834, 2.18996, 2.63159, 2.83895, 3.03025, 2.86949, 2.62024, 2.13344, 1.56567, 0.806336, 0.142918, 0.00295997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00707657, 0.178483, 0.715089, 1.53483, 2.22085, 2.63643, 2.82946, 3.00663, 2.94075, 2.65689, 2.17547, 1.56169, 0.808193, 0.186895, 0.00292767, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00874176, 0.159874, 0.78601, 1.50691, 2.15549, 2.29186, 2.6201, 3.0004, 2.89487, 2.30353, 2.16453, 1.52014, 0.790991, 0.173974, 0.010301, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00150322, 0.120923, 0.645635, 0.904701, 1.1991, 1.79465, 2.02966, 2.18285, 2.61717, 2.1586, 2.07884, 1.47669, 0.732479, 0.204133, 0.0117017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00655917, 0.142552, 0.715533, 1.42854, 2.07253, 2.52103, 2.7711, 2.76447, 2.77237, 2.50935, 2.01069, 1.45613, 0.768901, 0.170406, 0.0110594, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00161599, 0.127996, 0.699287, 1.45847, 2.10445, 2.47082, 2.81339, 2.80009, 2.82546, 2.57653, 2.14616, 1.52376, 0.786867, 0.156082, 0.00606573, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00478923, 0.170454, 0.625092, 1.44531, 2.09083, 2.54226, 2.73922, 2.86666, 2.70376, 2.51737, 2.09586, 1.48395, 0.769685, 0.198551, 0.012664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181651, 0.703232, 1.40852, 1.95084, 2.44953, 2.76794, 2.87566, 2.83908, 2.54569, 2.10007, 1.50861, 0.806428, 0.225536, 0.015461, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0062447, 0.151059, 0.677188, 1.36565, 2.04982, 2.50734, 2.65012, 2.92033, 2.7558, 2.49916, 2.06071, 1.44766, 0.73727, 0.181134, 0.0126815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.16457, 0.67161, 1.36785, 2.00689, 2.48041, 2.76038, 2.79268, 2.84055, 2.5241, 2.03042, 1.41445, 0.730137, 0.192148, 0.0142135, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00571395, 0.139913, 0.689706, 1.40722, 1.97493, 2.48386, 2.75286, 2.80076, 2.85889, 2.55625, 2.09031, 1.48889, 0.739887, 0.169346, 0.00864832, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00166953, 0.158131, 0.691401, 1.43124, 2.04207, 2.4929, 2.81061, 2.87438, 2.82588, 2.53593, 2.11409, 1.48313, 0.760553, 0.174872, 0.0113274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.167249, 0.715641, 1.45302, 2.03157, 2.45238, 2.6749, 2.79958, 2.73873, 2.5032, 2.07806, 1.47464, 0.753314, 0.171313, 0.00345076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168119, 0.680728, 1.39575, 1.94944, 2.37446, 2.7018, 2.90588, 2.76537, 2.62063, 2.11547, 1.49524, 0.761582, 0.166064, 0.00556377, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00175971, 0.142055, 0.672208, 1.38489, 1.92688, 2.25374, 2.91391, 2.96268, 2.86009, 2.62511, 2.13615, 1.44862, 0.624081, 0.201465, 0.0139778, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0942829, 0.664684, 1.40883, 2.05587, 2.52003, 2.80878, 2.81603, 2.86036, 2.58954, 2.14468, 1.49567, 0.747873, 0.195261, 0.0066746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.131579, 0.683109, 1.38844, 2.07232, 2.53207, 2.84633, 2.87893, 2.83407, 2.58916, 2.12816, 1.483, 0.757693, 0.169989, 0.0100503, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.128115, 0.673371, 1.42376, 2.0583, 2.53754, 2.80192, 2.82906, 2.82699, 2.60079, 2.07233, 1.50145, 0.756233, 0.169976, 0.0085701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.133724, 0.587952, 1.33759, 1.96659, 2.35405, 2.60623, 2.68242, 2.51227, 2.3902, 1.58646, 1.38298, 0.521305, 0.171031, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.146961, 0.628935, 1.22642, 1.89497, 2.49727, 2.77543, 2.96307, 2.8014, 2.55317, 2.096, 1.43624, 0.729116, 0.183544, 0.0103431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127469, 0.653814, 1.39269, 2.05353, 2.54031, 2.81355, 2.6474, 2.67485, 2.30994, 1.27007, 1.18552, 0.701357, 0.201486, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.124022, 0.655698, 1.39615, 2.06531, 2.56278, 2.84877, 2.93388, 2.87197, 2.55063, 2.11825, 1.48594, 0.751302, 0.161569, 0.00656647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.102619, 0.553095, 1.36301, 1.99205, 2.48061, 2.57212, 2.20375, 2.28307, 2.58216, 2.07553, 1.43113, 0.720885, 0.180626, 0.00335261, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.162652, 0.459857, 1.35947, 1.90372, 2.03607, 2.35772, 2.88379, 2.86554, 2.54593, 2.02175, 1.48485, 0.544905, 0.182212, 0.0156003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.136938, 0.622721, 1.33026, 1.96376, 2.4275, 2.77337, 2.86327, 2.74461, 2.51973, 2.09937, 1.3309, 0.561994, 0.148311, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.161601, 0.590961, 1.19234, 1.90159, 2.34499, 2.57277, 2.83035, 2.63856, 2.51683, 2.15067, 1.5086, 0.751578, 0.169159, 0.00381326, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.141244, 0.530304, 0.89178, 1.91016, 2.12185, 1.06686, 1.25686, 1.14955, 1.97719, 2.07733, 1.19934, 0.76792, 0.195926, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.126832, 0.348834, 0.943124, 1.31568, 1.63363, 1.70356, 2.03719, 2.8068, 2.49034, 2.0989, 1.41598, 0.695838, 0.196975, 0.00995171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.074258, 0.668474, 1.42878, 2.04092, 2.46363, 2.77568, 2.90789, 2.85667, 2.58875, 2.14697, 1.51457, 0.756549, 0.115954, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116311, 0.609867, 1.33565, 1.95423, 2.37513, 2.67292, 2.7793, 2.71764, 2.44125, 1.99745, 1.38292, 0.683056, 0.151377, 0.00207918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874647, 0.667945, 1.44877, 2.06774, 2.46837, 2.79869, 2.94288, 2.88513, 2.59199, 2.11564, 1.47901, 0.740747, 0.124008, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0837679, 0.660728, 1.45207, 2.11303, 2.60186, 2.86842, 2.95123, 2.84262, 2.57428, 2.12009, 1.4934, 0.763431, 0.165689, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0866459, 0.226084, 0.570371, 0.980998, 1.294, 2.67212, 2.635, 2.7611, 2.39714, 2.08126, 1.41069, 0.69347, 0.160871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0961693, 0.648319, 1.24623, 2.00136, 2.40963, 2.39268, 2.76356, 2.80613, 2.44237, 2.05332, 1.53094, 0.684592, 0.158903, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.107103, 0.559653, 1.29924, 2.00332, 2.48873, 2.78445, 2.90023, 2.79688, 2.49159, 1.49476, 1.24237, 0.446324, 0.11537, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0718186, 0.655328, 1.4323, 2.05811, 2.49211, 2.81462, 2.94748, 2.89598, 2.61428, 1.98258, 1.34663, 0.704698, 0.140171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113979, 0.656228, 1.35447, 1.8262, 1.85056, 2.65712, 2.74365, 2.72849, 2.51911, 2.09129, 1.48118, 0.67837, 0.138897, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.082063, 0.632873, 1.39298, 2.04155, 2.48638, 2.77315, 2.90779, 2.84828, 2.58512, 2.11506, 1.46526, 0.674334, 0.127982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0967313, 0.592045, 1.34506, 1.99766, 2.49584, 2.79458, 2.90237, 2.82153, 2.55896, 2.03803, 1.25243, 0.620439, 0.108661, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0827799, 0.603722, 1.36288, 2.04741, 2.48221, 2.62087, 2.95841, 2.78688, 2.50242, 2.10942, 1.24134, 0.521986, 0.140146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803725, 0.599322, 1.27525, 1.84746, 2.55023, 2.84104, 2.91807, 2.82879, 2.50682, 2.01673, 1.37841, 0.645786, 0.118179, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135877, 0.519114, 1.18995, 1.29106, 1.68406, 2.42739, 2.95309, 2.7228, 2.41363, 1.81214, 1.38203, 0.643829, 0.0844544, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822091, 0.607307, 1.38766, 2.09281, 2.6312, 2.93997, 3.04618, 2.93628, 2.62591, 2.1242, 1.4373, 0.661784, 0.104471, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.076813, 0.558857, 1.32431, 1.96676, 2.52178, 2.58148, 2.7145, 2.5459, 2.46563, 1.99722, 1.40924, 0.626723, 0.105159, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0988024, 0.564332, 1.58078, 1.222, 2.09311, 2.74267, 2.84595, 2.64055, 1.51563, 1.59465, 1.046, 0.602529, 0.0911578, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.110205, 0.47868, 1.10258, 1.79473, 2.56823, 2.72574, 2.9249, 2.89164, 2.56855, 2.05315, 1.50018, 0.694648, 0.0838305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0685451, 0.638703, 1.40727, 1.96904, 2.52822, 2.88186, 3.06141, 2.93239, 1.47515, 1.86506, 0.926577, 0.452191, 0.0782871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722847, 0.41796, 1.24803, 1.84907, 2.33735, 2.73996, 2.88481, 2.80795, 2.5008, 2.00368, 1.32932, 0.585382, 0.0934257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0620534, 0.637852, 1.44444, 2.11819, 2.60091, 2.91, 3.02803, 2.93445, 2.63447, 2.12679, 1.44275, 0.642491, 0.0657356, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0635102, 0.631902, 1.44423, 2.11787, 2.56464, 2.86377, 2.96015, 2.86964, 2.57534, 2.10331, 1.42479, 0.625264, 0.0677029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0554671, 0.647978, 1.47487, 2.15173, 2.61273, 2.91647, 3.02239, 2.92615, 2.63165, 2.16127, 1.47707, 0.649939, 0.0625764, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0503483, 0.649665, 1.47861, 2.16345, 2.64379, 2.94089, 3.04917, 2.95254, 2.6485, 2.17476, 1.48682, 0.672714, 0.0733716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0627893, 0.636756, 1.47251, 2.18105, 2.67914, 2.98696, 3.08861, 2.97281, 2.45133, 2.03769, 1.12903, 0.635381, 0.0789128, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530097, 0.530287, 1.09529, 1.53273, 2.31613, 2.64565, 2.90371, 2.80079, 2.42539, 2.00568, 1.24904, 0.545514, 0.0717802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0747693, 0.590976, 1.40428, 2.18842, 2.19527, 2.87198, 3.03146, 2.88684, 2.53442, 2.07439, 1.39176, 0.599792, 0.0487012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0812483, 0.338995, 0.943231, 1.71032, 1.54293, 1.45803, 1.49048, 1.18458, 1.45548, 1.48231, 0.726116, 0.370422, 0.074907, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0706397, 0.298608, 0.693437, 0.868068, 1.057, 1.05774, 1.41603, 1.21317, 1.03131, 1.5055, 0.944799, 0.470658, 0.0560533, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0636706, 0.545125, 1.33769, 1.97976, 2.51285, 2.80972, 2.92788, 2.85001, 2.49735, 1.98661, 1.30084, 0.535294, 0.0551447, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0630137, 0.594556, 1.38777, 2.0452, 2.45512, 2.79113, 2.91576, 2.85015, 2.53687, 2.03114, 1.32904, 0.522692, 0.0458542, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0921235, 0.550202, 1.40824, 2.19814, 2.66854, 2.94437, 2.94621, 2.95156, 2.61668, 2.07645, 1.39212, 0.555749, 0.052243, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0598607, 0.607197, 1.49603, 2.15983, 2.53775, 2.78569, 3.0271, 2.80046, 2.55025, 1.98426, 1.28284, 0.504204, 0.0643534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0488327, 0.234015, 1.13492, 1.50114, 1.49683, 1.58395, 1.77712, 1.48984, 1.15918, 0.698794, 0.381561, 0.177318, 0.0259773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0543459, 0.251085, 0.70347, 1.37035, 1.9359, 1.47011, 1.26154, 1.28883, 1.05902, 0.712481, 0.460393, 0.316435, 0.0371834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0546598, 0.589425, 1.43735, 1.99533, 2.61962, 2.94395, 2.97196, 2.94451, 2.6119, 2.0532, 1.37468, 0.52678, 0.0285464, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0491086, 0.640628, 1.48563, 2.12463, 2.63875, 2.57606, 2.90398, 2.89757, 2.51515, 2.08991, 1.36151, 0.52707, 0.0291493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.057458, 0.599789, 1.43109, 2.09432, 2.56615, 2.83044, 2.93551, 2.74055, 2.51022, 1.9941, 1.2709, 0.48947, 0.0341722, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495198, 0.551152, 1.35478, 1.92729, 2.50128, 2.77097, 2.86863, 2.72813, 2.33305, 1.32508, 0.869809, 0.401135, 0.0315517, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0472957, 0.626293, 1.47185, 2.06796, 2.63572, 2.86345, 2.97356, 2.85752, 2.48992, 1.949, 1.21548, 0.386919, 0.0444566, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0480247, 0.626677, 1.48318, 2.13373, 2.62443, 2.78464, 3.02881, 2.79645, 2.48874, 2.01162, 1.27846, 0.473634, 0.0176231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0485813, 0.625041, 1.47403, 2.1493, 2.57962, 2.7032, 2.81884, 2.79439, 2.46861, 1.98177, 1.16985, 0.444661, 0.0138774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0476938, 0.626477, 1.46485, 2.18222, 2.53089, 2.88338, 2.57247, 2.82883, 2.42714, 1.91793, 1.26719, 0.451424, 0.0136338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.062744, 0.534313, 1.28908, 1.39367, 1.70953, 1.92528, 1.4979, 1.25709, 1.56851, 0.460231, 0.433218, 0.271935, 0.0113341, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0507544, 0.631655, 1.52463, 2.23636, 2.61679, 2.77275, 3.09677, 2.90242, 2.5384, 1.98708, 1.26822, 0.444385, 0.0102497, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0467404, 0.631289, 1.49475, 2.21925, 2.67279, 3.02542, 3.0069, 2.88931, 2.55148, 1.86613, 0.98586, 0.306098, 0.0141028, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0468918, 0.63682, 1.48818, 1.91572, 2.57634, 2.86028, 3.12595, 2.93237, 2.02971, 1.53111, 0.970641, 0.292872, 0.00954183, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530691, 0.278596, 0.710307, 1.75494, 1.93369, 2.59395, 2.1474, 2.08441, 2.4093, 1.64794, 0.707985, 0.176968, 0.00942944, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0225823, 0.257623, 1.15898, 1.27103, 1.36994, 2.44283, 2.53714, 2.57301, 2.45846, 1.71717, 1.21014, 0.384109, 0.0100996, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0490136, 0.619481, 1.40951, 2.07362, 2.59631, 2.93212, 2.88774, 2.88589, 2.44332, 1.34616, 1.01079, 0.360483, 0.0050239, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0477879, 0.557428, 1.40343, 2.0607, 2.529, 2.86509, 2.8957, 2.84587, 2.49531, 1.90849, 1.15014, 0.347369, 0.00786638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0456306, 0.566433, 1.40548, 2.08079, 2.53726, 2.90473, 2.90334, 2.7544, 2.48315, 1.90071, 1.13627, 0.333313, 0.00432551, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0411426, 0.538448, 1.31635, 2.06374, 2.55512, 2.7784, 2.76667, 2.7161, 2.37434, 1.75785, 1.05782, 0.298046, 0.00444154, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0398027, 0.506552, 1.31496, 2.01258, 2.50915, 2.80087, 2.82082, 2.68585, 2.31933, 1.75225, 1.01731, 0.276147, 0.0024794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0378068, 0.516439, 1.3237, 1.9844, 2.48721, 2.73089, 2.7913, 2.6349, 2.30522, 1.73333, 1.0191, 0.272984, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0326045, 0.486301, 1.28177, 1.99039, 2.5537, 2.84249, 2.90591, 2.75151, 2.37631, 1.76779, 0.997124, 0.25585, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.034152, 0.544521, 1.38959, 2.12458, 2.64752, 2.8682, 2.93068, 2.73509, 2.34177, 1.81129, 1.05311, 0.272257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298425, 0.51395, 1.34332, 2.03626, 2.5163, 2.78393, 2.88142, 2.71087, 2.24621, 1.71637, 0.989168, 0.248125, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0297438, 0.547156, 1.38585, 2.06845, 2.59857, 2.76403, 2.71168, 2.56308, 2.34846, 1.81275, 1.01775, 0.254424, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0312677, 0.571942, 1.41337, 2.14682, 2.61529, 2.81236, 2.83486, 2.69556, 2.38026, 1.80964, 1.02306, 0.258667, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.025711, 0.487116, 1.31046, 2.05953, 2.54594, 2.74182, 2.6669, 2.61398, 2.20409, 1.68644, 0.926109, 0.210592, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266587, 0.500527, 1.33064, 2.02234, 2.46859, 2.79064, 2.89275, 2.76506, 2.38655, 1.77078, 0.957321, 0.203554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0307606, 0.608462, 1.48234, 2.14578, 2.53649, 2.83935, 2.79254, 2.67611, 2.32918, 1.37529, 0.718783, 0.102789, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257399, 0.596151, 0.618198, 0.932307, 1.11627, 1.80471, 1.49932, 1.98548, 1.62123, 0.887383, 0.216274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0218172, 0.442436, 1.28418, 1.65119, 2.06324, 2.8153, 2.87248, 2.75972, 2.4213, 1.78608, 0.980408, 0.198545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0261191, 0.559828, 1.43129, 2.15606, 2.61832, 2.88192, 2.93259, 2.76611, 2.39472, 1.80714, 1.00123, 0.201638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0181092, 0.47691, 1.32138, 2.04737, 2.53287, 2.77984, 2.81653, 2.61895, 2.24942, 1.65811, 0.875438, 0.157701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0224252, 0.553886, 1.43116, 2.15292, 2.63295, 2.90992, 2.92236, 2.72355, 2.36874, 1.7821, 0.978402, 0.182788, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0217243, 0.557375, 1.43813, 2.14048, 2.6066, 2.9011, 2.9703, 2.81987, 2.40951, 1.79145, 0.982079, 0.183358, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0222415, 0.406559, 1.16532, 1.92261, 2.62899, 2.27091, 2.51093, 2.55803, 1.87459, 1.23276, 0.82378, 0.132736, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0030839, 0.273125, 0.612674, 1.10182, 0.97749, 2.44962, 2.69463, 2.61196, 2.31239, 1.52616, 0.695026, 0.131059, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193046, 0.535548, 1.32908, 1.89231, 2.3344, 2.66934, 2.69401, 2.40107, 1.63853, 1.07633, 0.414617, 0.09089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148048, 0.503641, 1.36696, 2.09054, 2.58528, 2.83094, 2.85524, 2.6491, 2.2908, 1.68113, 0.87983, 0.142065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0159944, 0.537966, 1.41211, 2.11186, 2.56962, 2.81613, 2.8463, 2.66543, 2.29324, 1.70013, 0.89981, 0.151597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177827, 0.533898, 1.39741, 2.08388, 2.52496, 2.7959, 2.86384, 2.70967, 2.2359, 1.66843, 0.830887, 0.108993, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0173678, 0.539237, 1.43478, 2.19422, 2.72179, 3.00315, 3.06528, 2.91423, 2.48262, 1.82169, 0.950397, 0.155545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0122137, 0.506213, 1.25484, 2.02289, 2.60949, 2.828, 2.9454, 2.79542, 2.39521, 1.74633, 0.90908, 0.140715, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00567717, 0.447616, 1.32529, 2.10601, 2.644, 2.91506, 2.93069, 2.71282, 2.28833, 1.62227, 0.781972, 0.100374, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0071703, 0.516888, 1.41596, 2.15612, 2.68517, 2.92569, 2.94525, 2.7262, 2.31116, 1.67819, 0.854201, 0.123207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101196, 0.434654, 0.545021, 0.794965, 0.95079, 0.92709, 0.86511, 0.88412, 0.920948, 0.403239, 0.0604237, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0050214, 0.489133, 1.41237, 2.13215, 2.58094, 2.80843, 2.81482, 2.65557, 2.31325, 1.70511, 0.860183, 0.115029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.442254, 1.32365, 2.05354, 2.53987, 2.80283, 2.83081, 2.63549, 2.22141, 1.58247, 0.752964, 0.0838618, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00183713, 0.487195, 1.38542, 2.0931, 2.56246, 2.79964, 2.82016, 2.62423, 2.25969, 1.64835, 0.807354, 0.0929453, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.471791, 1.36802, 2.08122, 2.55913, 2.79546, 2.81959, 2.62288, 2.23868, 1.62149, 0.790018, 0.0881965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.393166, 1.12901, 2.05863, 2.55846, 2.80809, 2.81336, 2.58996, 2.18519, 1.55474, 0.741281, 0.0721062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.407826, 1.25917, 1.96763, 2.44053, 2.6883, 2.72273, 2.52256, 2.1136, 1.49186, 0.692521, 0.058705, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.398361, 1.16024, 2.08848, 2.55007, 2.80598, 2.5823, 2.44332, 2.02995, 1.34985, 0.640321, 0.0593084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.376962, 1.23655, 1.94699, 2.42332, 2.67406, 2.67149, 2.46828, 2.08312, 1.4677, 0.65628, 0.0459148, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.312774, 1.12192, 1.86186, 2.36585, 2.62563, 2.65369, 2.44513, 2.01941, 1.36887, 0.56475, 0.0318932, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.420878, 1.31407, 2.0436, 2.53299, 2.77703, 2.77311, 2.56259, 2.16614, 1.54495, 0.69607, 0.0605146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.186864, 0.776643, 1.11296, 1.3613, 1.4029, 1.32843, 0.84702, 1.60913, 1.53424, 0.585114, 0.0554989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.405553, 1.3055, 2.02312, 2.24511, 2.5698, 2.76645, 2.55523, 2.06375, 1.4647, 0.526674, 0.0397479, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.358718, 1.23943, 1.99361, 2.49416, 2.76228, 2.78153, 2.57349, 2.14329, 1.48199, 0.642622, 0.0408724, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.417752, 1.32241, 2.07576, 2.56725, 2.80036, 2.78979, 2.56726, 2.19757, 1.56693, 0.714042, 0.0545929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.380177, 1.26324, 1.99454, 2.49506, 2.74882, 2.76952, 2.57879, 2.18151, 1.55321, 0.697511, 0.048516, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.339274, 1.22219, 1.98614, 2.51212, 2.75552, 2.75325, 2.50671, 1.82336, 1.3368, 0.35014, 0.0265505, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155406, 0.709141, 1.46824, 1.72778, 1.40264, 2.32384, 1.24471, 0.905223, 0.825468, 0.25404, 0.0238229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.234547, 0.524141, 1.01198, 1.96367, 1.48455, 1.53361, 1.54547, 1.45455, 1.49171, 0.69226, 0.0497781, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.314568, 1.17814, 1.95047, 2.48708, 2.7567, 2.80329, 2.61153, 2.13997, 1.45941, 0.615436, 0.034016, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.319608, 1.18896, 1.95159, 2.4745, 2.74224, 2.76041, 2.55106, 2.12011, 1.45609, 0.621564, 0.0360139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.176389, 1.09475, 1.54706, 2.09934, 2.58656, 2.63709, 2.304, 1.8956, 1.24311, 0.555996, 0.0408867, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.337718, 1.22406, 1.99613, 2.48105, 2.75383, 2.76308, 2.5516, 2.14704, 1.49931, 0.652349, 0.0375473, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.268122, 1.11687, 1.92691, 2.39495, 2.63416, 2.50656, 2.31362, 1.96494, 1.45167, 0.606942, 0.0353997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.169034, 0.70711, 1.51291, 1.79509, 2.33705, 2.31565, 1.96247, 1.80294, 1.13287, 0.410915, 0.00828084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.209215, 0.99918, 1.68423, 2.37275, 2.6411, 2.68122, 2.4777, 2.01814, 1.36275, 0.56725, 0.0178318, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.274335, 1.13971, 1.89173, 2.36404, 2.61083, 2.65488, 2.45541, 1.94482, 1.26782, 0.435059, 0.0113625, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266063, 1.13902, 1.89011, 2.35685, 2.63245, 2.65567, 2.46624, 2.06783, 1.41222, 0.568892, 0.0187401, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.103242, 0.449287, 0.641768, 1.14698, 2.02601, 2.09943, 1.83827, 1.45379, 0.647278, 0.29229, 0.0118034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.158775, 0.965937, 1.65126, 2.18431, 2.45956, 2.49522, 2.29052, 1.89838, 1.24009, 0.444249, 0.00576343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.267949, 1.13874, 1.88622, 2.37224, 2.63115, 2.66375, 2.46568, 2.06571, 1.42709, 0.600795, 0.0199062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.200155, 1.0388, 1.80604, 2.31109, 2.5976, 2.48462, 2.37419, 1.93498, 1.31213, 0.490937, 0.00187941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.211218, 1.07113, 1.84205, 2.32768, 2.61495, 2.65447, 2.46488, 2.06518, 1.40297, 0.562, 0.0096666, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495723, 0.316007, 0.705406, 0.925945, 1.36558, 1.20527, 1.13828, 0.798454, 0.490275, 0.207794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0960258, 0.461797, 0.799314, 1.66444, 1.83744, 2.17274, 1.99765, 1.33448, 1.17342, 0.390065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0410012, 0.253314, 0.44846, 0.542014, 1.00671, 1.72451, 1.56988, 1.37945, 1.0103, 0.221834, 0.00297818, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.193052, 1.01274, 1.74808, 2.14129, 2.26798, 2.31485, 1.7443, 1.82873, 1.30264, 0.558156, 0.003089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.177427, 0.960579, 1.69027, 2.31174, 2.53894, 2.53478, 2.26277, 1.94876, 1.36808, 0.552443, 0.0030694, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735695, 0.386191, 0.500033, 1.01997, 1.82284, 1.64211, 2.22032, 1.45944, 0.817895, 0.211683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0270115, 0.330469, 0.704482, 1.15311, 1.11017, 1.43845, 1.42385, 0.787482, 0.418198, 0.208425, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874109, 0.518723, 0.764813, 1.62588, 2.18347, 2.48146, 2.49381, 1.50128, 0.695467, 0.102454, 0.00175785, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.125392, 0.815936, 1.61683, 2.20125, 2.51928, 2.58707, 2.39184, 1.96382, 1.26507, 0.433267, 0.00343493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.139731, 0.906014, 1.5118, 2.05165, 2.4631, 2.50325, 2.19475, 1.98331, 1.0871, 0.373263, 0.00635676, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0840508, 0.89122, 1.67306, 2.2444, 2.55379, 2.54926, 2.38309, 2.01112, 1.37717, 0.385584, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0806627, 0.896134, 1.6722, 2.09143, 2.50926, 2.6095, 2.49229, 2.09575, 1.43002, 0.419231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0674048, 0.826869, 1.53305, 2.15252, 2.55022, 2.69385, 2.43524, 2.12164, 1.47643, 0.406549, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0728229, 0.93033, 1.65307, 2.36954, 2.72635, 2.78009, 2.54611, 2.13136, 1.445, 0.335429, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065983, 0.836743, 1.66307, 2.02002, 2.25217, 2.04728, 1.31683, 1.44705, 0.520483, 0.152014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0672768, 0.8701, 1.62945, 2.06665, 2.52923, 2.57851, 2.53364, 2.1891, 1.49987, 0.408982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0704926, 0.921662, 1.80945, 2.36019, 2.69131, 2.71485, 2.49763, 2.13633, 1.12458, 0.159082, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018072, 0.441738, 1.31287, 2.26044, 2.59563, 2.74967, 2.3883, 1.45722, 1.17082, 0.486192, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0575502, 0.862923, 1.75224, 2.23236, 2.565, 2.61853, 2.42698, 2.08496, 1.43983, 0.426276, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0486084, 0.85129, 1.63782, 2.22145, 2.54094, 2.59651, 2.40314, 2.05572, 1.44303, 0.391974, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.05928, 0.767469, 1.5819, 2.16771, 2.36594, 1.4439, 2.29927, 1.77709, 1.22857, 0.44854, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.191902, 0.442925, 1.05556, 1.56482, 0.916337, 0.894296, 0.307147, 0.350279, 0.0507144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.081911, 0.809343, 1.41589, 2.16322, 2.55162, 2.42665, 2.39785, 1.86343, 0.861136, 0.301437, 0.00740766, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0228486, 0.596429, 1.41305, 2.01139, 1.54031, 2.31804, 2.13488, 1.45011, 1.14562, 0.302929, 0.00178418, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0043009, 0.190437, 0.456663, 0.774345, 0.706195, 0.750254, 0.227952, 0.347005, 0.296926, 0.0424597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00197333, 0.204573, 0.438987, 0.817599, 1.39033, 1.58748, 2.36097, 1.58063, 0.643465, 0.153036, 0.00123386, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0478906, 0.617714, 1.44506, 2.22169, 2.64015, 2.76753, 2.72533, 2.10653, 1.48583, 0.624074, 0.0140018, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0684115, 0.831108, 1.64862, 2.11006, 2.23473, 2.5439, 2.41996, 2.1085, 1.3753, 0.551184, 0.0141597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0621342, 0.801802, 1.66097, 2.2744, 2.58507, 2.64147, 2.53203, 2.11848, 1.42249, 0.600005, 0.00850035, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0155231, 0.581836, 0.296733, 0.422429, 0.374893, 0.551731, 0.39159, 0.319519, 0.185209, 0.0673856, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.046428, 0.266905, 0.385405, 0.835716, 1.0922, 0.852107, 0.495775, 1.37224, 0.59438, 0.136954, 0.0061824, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0249813, 0.69457, 1.55655, 2.11814, 2.63947, 2.31963, 2.51107, 2.05978, 1.4301, 0.580408, 0.016515, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0273457, 0.710806, 1.58519, 2.29257, 2.6472, 2.72238, 2.59093, 2.1224, 1.29532, 0.587764, 0.00953753, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0460713, 0.376908, 1.00585, 1.95558, 1.64906, 2.57991, 2.60255, 2.28628, 1.63853, 0.765819, 0.0403367, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00573357, 0.652154, 1.14825, 1.76315, 2.42017, 2.11687, 1.3265, 1.52103, 1.42792, 0.669677, 0.0299071, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0651526, 0.831276, 1.56939, 2.111, 2.42803, 2.39902, 2.57196, 2.28312, 1.63737, 0.744143, 0.0352433, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193468, 0.415173, 1.3696, 1.41055, 1.83304, 2.2093, 1.35684, 1.81534, 1.26016, 0.453816, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0834133, 0.308908, 0.683149, 0.688705, 0.62197, 0.67926, 0.485344, 0.312526, 0.0695502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0997101, 0.24553, 0.292913, 1.14435, 0.989543, 0.57329, 1.26016, 0.542071, 0.171351, 0.00539238, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0481958, 0.778754, 1.47179, 2.1002, 2.02692, 2.59275, 2.56468, 2.08318, 1.48502, 0.770173, 0.0568852, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.016664, 0.620281, 1.46676, 1.97059, 2.4413, 2.57254, 2.42621, 2.0301, 1.42493, 0.617651, 0.025802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683 ] ); data.SetArray( 'e_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetArray ('p_load', [ 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443528, 0.54868, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.445894, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.448604, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.36106, 0.453922, 0.552684, 0.481042, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327479, 0.360103, 0.452804, 0.560332, 0.484224, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.449004, 0.556854, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359534, 0.452218, 0.557827, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.444978, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443328, 0.548196, 0.480997, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408648, 0.357441, 0.342144, 0.337044, 0.327441, 0.359645, 0.443928, 0.549341, 0.482851, 0.386304, 0.378283, 0.377475, 0.374345, 0.381314, 0.395735, 0.42627, 0.532543, 0.715238, 0.878051, 0.872057, 0.836114, 0.774817, 0.646085, 0.531682, 0.408319, 0.357241, 0.342024, 0.336944, 0.32728, 0.359345, 0.443692, 0.548196, 0.480997, 0.384159, 0.376266, 0.375778, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.408319, 0.358775, 0.346524, 0.345206, 0.337834, 0.370719, 0.453507, 0.558001, 0.487197, 0.384159, 0.376266, 0.375708, 0.372778, 0.37981, 0.394452, 0.425067, 0.531289, 0.713878, 0.87626, 0.869992, 0.834284, 0.773291, 0.645058, 0.531056, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438747, 0.535827, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.338899, 0.331722, 0.367745, 0.452437, 0.54083, 0.46115, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.36961, 0.38502, 0.409655, 0.497094, 0.665243, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.536208, 0.414395, 0.366777, 0.352152, 0.348049, 0.339006, 0.37352, 0.446792, 0.547914, 0.469749, 0.381656, 0.372466, 0.372092, 0.36738, 0.371237, 0.383115, 0.407876, 0.495963, 0.656995, 0.81447, 0.854594, 0.841791, 0.777129, 0.646707, 0.537534, 0.416634, 0.369437, 0.35596, 0.353205, 0.34485, 0.379883, 0.463719, 0.550334, 0.471992, 0.377736, 0.367144, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.410278, 0.363979, 0.351696, 0.349921, 0.342513, 0.377718, 0.462214, 0.549667, 0.470942, 0.377251, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.329617, 0.365786, 0.449081, 0.538584, 0.462417, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409404, 0.358931, 0.342639, 0.337521, 0.327867, 0.362429, 0.438563, 0.534538, 0.461767, 0.373918, 0.367153, 0.366345, 0.363189, 0.370204, 0.384399, 0.40908, 0.497216, 0.653869, 0.816261, 0.856659, 0.843621, 0.778655, 0.647508, 0.534843, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.409075, 0.358731, 0.34252, 0.337421, 0.327706, 0.362129, 0.437962, 0.533394, 0.459913, 0.371772, 0.365136, 0.364578, 0.361623, 0.3687, 0.383115, 0.407876, 0.495963, 0.652509, 0.81447, 0.854594, 0.841791, 0.777129, 0.646481, 0.534216, 0.398183, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.469714, 0.39834, 0.334379, 0.329953, 0.329628, 0.327972, 0.334696, 0.345632, 0.365711, 0.436386, 0.572133, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.499415, 0.384721, 0.339434, 0.324983, 0.321306, 0.313578, 0.343259, 0.401901, 0.47422, 0.404362, 0.341544, 0.336823, 0.335624, 0.330436, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333334, 0.318994, 0.317108, 0.310374, 0.340977, 0.40822, 0.474162, 0.3998, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.395501, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.602006, 0.75647, 0.818476, 0.829153, 0.738273, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.611157, 0.765254, 0.834583, 0.81613, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.357397, 0.404544, 0.494667, 0.670041, 0.817524, 0.865728, 0.863081, 0.77661, 0.627439, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.438667, 0.629427, 0.787909, 0.815933, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.350237, 0.39762, 0.49925, 0.694919, 0.833703, 0.868755, 0.875108, 0.790307, 0.623617, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.376299, 0.427062, 0.520065, 0.703691, 0.833902, 0.873894, 0.888821, 0.795725, 0.641728, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.562158, 0.70614, 0.763315, 0.786711, 0.726687, 0.605, 0.499153, 0.38106, 0.333464, 0.317288, 0.312374, 0.303807, 0.334115, 0.395238, 0.469662, 0.400194, 0.336524, 0.33197, 0.331014, 0.32879, 0.334873, 0.344847, 0.364538, 0.436284, 0.589936, 0.747133, 0.815953, 0.840967, 0.742809, 0.605, 0.499153, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.380732, 0.333264, 0.317169, 0.312274, 0.303646, 0.333815, 0.394638, 0.468517, 0.39834, 0.334379, 0.329953, 0.329248, 0.327224, 0.33337, 0.343564, 0.363335, 0.435031, 0.560799, 0.704349, 0.76125, 0.784881, 0.725162, 0.603973, 0.498526, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.360389, 0.41866, 0.510712, 0.603558, 0.641218, 0.726532, 0.726017, 0.60402, 0.496822, 0.38027, 0.333899, 0.316815, 0.311927, 0.304585, 0.335493, 0.404782, 0.478216, 0.407159, 0.335133, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.396434, 0.476178, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.509352, 0.601767, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.453999, 0.71901, 0.800053, 0.83118, 0.898894, 0.864448, 0.677888, 0.528186, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.414684, 0.573169, 0.88942, 0.925909, 0.9269, 0.975585, 0.924947, 0.732958, 0.564517, 0.407908, 0.337915, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.379214, 0.457428, 0.552271, 0.679566, 0.952318, 0.983809, 0.971108, 1.00572, 0.952239, 0.753769, 0.594017, 0.434179, 0.348291, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.342673, 0.402843, 0.473183, 0.574512, 0.683771, 0.933852, 0.971847, 0.955355, 0.987042, 0.910684, 0.749038, 0.574799, 0.414862, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.418811, 0.521199, 0.674591, 0.748825, 0.639153, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.417407, 0.529268, 0.662346, 0.710624, 0.800808, 0.786764, 0.630756, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.445033, 0.661862, 0.756149, 0.785842, 0.861367, 0.851822, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.35563, 0.449034, 0.584447, 0.832613, 0.885258, 0.886761, 0.944543, 0.888961, 0.729827, 0.584703, 0.424866, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.364627, 0.470051, 0.663936, 0.759336, 0.684464, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.375388, 0.509013, 0.71065, 0.775532, 0.769473, 0.825455, 0.79818, 0.64949, 0.517176, 0.38027, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.334502, 0.344452, 0.41173, 0.535697, 0.726661, 0.814088, 0.836925, 0.904863, 0.863461, 0.708433, 0.559691, 0.403279, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.425246, 0.571512, 0.856183, 0.915321, 0.922307, 0.95831, 0.906313, 0.741557, 0.569676, 0.379942, 0.345671, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.335378, 0.366381, 0.424588, 0.493196, 0.567304, 0.716274, 0.968304, 1.0072, 0.982634, 1.01415, 0.965839, 0.786999, 0.633128, 0.468883, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.375412, 0.448538, 0.554505, 0.747261, 0.815435, 0.821566, 0.724702, 0.724492, 0.602993, 0.496195, 0.379942, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.412878, 0.533943, 0.720735, 0.807386, 0.820158, 0.865961, 0.835055, 0.67827, 0.527469, 0.382628, 0.333899, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.329593, 0.328883, 0.326862, 0.332999, 0.343169, 0.359186, 0.478933, 0.720052, 0.804285, 0.834899, 0.90031, 0.862425, 0.643487, 0.496195, 0.379942, 0.334099, 0.316934, 0.312027, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.336669, 0.33161, 0.33065, 0.328428, 0.375042, 0.469011, 0.562546, 0.671661, 0.931847, 0.982036, 0.974358, 1.01692, 0.987886, 0.816602, 0.638337, 0.472116, 0.396951, 0.352323, 0.331209, 0.304886, 0.333389, 0.396261, 0.475488, 0.416388, 0.390637, 0.452328, 0.486664, 0.54526, 0.586239, 0.621162, 0.709411, 0.795131, 1.08531, 1.08199, 1.02, 1.07521, 1.04398, 0.875179, 0.710333, 0.536417, 0.461471, 0.40293, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.434662, 0.425249, 0.456785, 0.475851, 0.495328, 0.51316, 0.569816, 0.618165, 0.719132, 0.946958, 0.980112, 0.971659, 1.01052, 0.966096, 0.786056, 0.558216, 0.401607, 0.386109, 0.360721, 0.3462, 0.322604, 0.350152, 0.395661, 0.498141, 0.430621, 0.425281, 0.450509, 0.468097, 0.490318, 0.527381, 0.61332, 0.700302, 0.835008, 1.1137, 1.11795, 1.10274, 1.13033, 1.05076, 0.865028, 0.703118, 0.509297, 0.414269, 0.350087, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.406521, 0.368713, 0.41347, 0.464257, 0.495102, 0.554194, 0.63868, 0.755792, 0.917385, 1.21814, 1.20695, 1.16335, 1.1921, 1.08238, 0.878389, 0.714358, 0.550648, 0.473959, 0.412749, 0.387195, 0.357666, 0.371635, 0.42205, 0.507008, 0.454948, 0.436646, 0.470486, 0.496156, 0.53046, 0.592206, 0.654079, 0.761455, 0.884849, 1.15372, 1.12442, 1.05778, 1.07038, 1.02458, 0.83737, 0.670973, 0.505557, 0.334189, 0.316815, 0.311927, 0.303314, 0.333089, 0.395661, 0.474344, 0.403942, 0.334524, 0.36697, 0.3912, 0.413256, 0.472293, 0.52841, 0.615687, 0.769263, 0.994545, 1.01599, 0.997795, 1.02398, 0.977972, 0.796097, 0.58021, 0.423608, 0.393547, 0.349354, 0.315723, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.363882, 0.404207, 0.413531, 0.439651, 0.47348, 0.526614, 0.61306, 0.757735, 1.00553, 1.04596, 1.03441, 1.08031, 1.01339, 0.826657, 0.659029, 0.482668, 0.402434, 0.361861, 0.323505, 0.303475, 0.333389, 0.396261, 0.475488, 0.405796, 0.375196, 0.411371, 0.425082, 0.458505, 0.490827, 0.562117, 0.648698, 0.789489, 0.998131, 1.04927, 1.02697, 1.07225, 1.02746, 0.853135, 0.692709, 0.523708, 0.437409, 0.356623, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.402843, 0.40547, 0.42773, 0.442327, 0.465891, 0.490691, 0.537733, 0.617266, 0.760861, 1.00593, 1.02623, 0.9927, 1.02819, 1.00892, 0.797109, 0.65617, 0.389883, 0.393088, 0.356512, 0.327895, 0.303213, 0.332842, 0.38934, 0.469821, 0.410722, 0.421552, 0.452798, 0.475088, 0.501958, 0.545307, 0.619378, 0.722742, 0.863456, 1.15751, 1.1431, 1.10791, 1.12016, 1.07806, 0.910503, 0.72398, 0.566084, 0.383022, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.386872, 0.364893, 0.427091, 0.485226, 0.528767, 0.575467, 0.638387, 0.713314, 0.882232, 1.06725, 1.01206, 0.960383, 0.99729, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357504, 0.406249, 0.467088, 0.476321, 0.501639, 0.592284, 0.634804, 0.700376, 0.731642, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.413365, 0.501639, 0.612844, 0.611982, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333745, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.333946, 0.368118, 0.410317, 0.462173, 0.572252, 0.695067, 0.804002, 0.813783, 0.85252, 0.868564, 0.704084, 0.565321, 0.413496, 0.33911, 0.316856, 0.311941, 0.303374, 0.333142, 0.38994, 0.456493, 0.387394, 0.330513, 0.32758, 0.326625, 0.33647, 0.37309, 0.410321, 0.443985, 0.52721, 0.607128, 0.707119, 0.712546, 0.770366, 0.791947, 0.64807, 0.510452, 0.380909, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.32898, 0.339174, 0.355227, 0.439648, 0.504149, 0.62723, 0.60626, 0.681201, 0.714372, 0.602805, 0.497445, 0.38058, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.324858, 0.322834, 0.357728, 0.420461, 0.497799, 0.623099, 0.834772, 0.887343, 0.898941, 0.936812, 0.941006, 0.779539, 0.615337, 0.46191, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.325563, 0.327535, 0.382654, 0.450396, 0.549839, 0.647029, 0.807079, 1.0907, 1.11004, 1.08929, 1.09789, 1.03361, 0.865642, 0.714878, 0.533972, 0.438829, 0.389963, 0.366352, 0.336082, 0.355143, 0.38934, 0.49351, 0.434931, 0.427671, 0.453873, 0.476351, 0.510214, 0.581409, 0.669784, 0.795414, 0.98356, 1.26772, 1.23969, 1.19244, 1.16407, 1.13852, 0.925547, 0.756889, 0.569503, 0.385991, 0.379908, 0.32495, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.402531, 0.450624, 0.489732, 0.548241, 0.628249, 0.714837, 0.871484, 1.07456, 1.40605, 1.45958, 1.36614, 1.29882, 1.23626, 1.05648, 0.884984, 0.694651, 0.610053, 0.528643, 0.450834, 0.423996, 0.416204, 0.480633, 0.576337, 0.519964, 0.52059, 0.568327, 0.595111, 0.623996, 0.677966, 0.776525, 0.871406, 1.06771, 1.37917, 1.37055, 1.29803, 1.26655, 1.2005, 0.983109, 0.787978, 0.593799, 0.488977, 0.427647, 0.397321, 0.369046, 0.39437, 0.43041, 0.53535, 0.496506, 0.492986, 0.538484, 0.594937, 0.652217, 0.752011, 0.895904, 1.01945, 1.26539, 1.63534, 1.58037, 1.4837, 1.34313, 1.25546, 1.05822, 0.89028, 0.675319, 0.573457, 0.478577, 0.372951, 0.303213, 0.332842, 0.38934, 0.455349, 0.487662, 0.503989, 0.557374, 0.608721, 0.679382, 0.762974, 0.880009, 1.03245, 1.23266, 1.5921, 1.54055, 1.44404, 1.37466, 1.2283, 1.02923, 0.854145, 0.659364, 0.556787, 0.502855, 0.450732, 0.406937, 0.426951, 0.469668, 0.568049, 0.508819, 0.515067, 0.557387, 0.606203, 0.665514, 0.745391, 0.847361, 0.996797, 1.167, 1.48161, 1.44043, 1.34722, 1.29467, 1.20697, 0.999134, 0.821021, 0.642151, 0.559684, 0.501376, 0.41783, 0.39075, 0.332842, 0.38934, 0.455349, 0.481877, 0.487622, 0.537571, 0.577071, 0.61833, 0.69476, 0.797794, 0.940736, 1.10948, 1.40272, 1.41301, 1.36308, 1.34001, 1.18883, 0.993757, 0.819901, 0.64014, 0.546746, 0.493894, 0.468052, 0.44548, 0.475793, 0.547236, 0.627789, 0.565599, 0.548521, 0.598264, 0.656739, 0.689322, 0.736619, 0.834482, 0.913129, 1.0916, 1.40089, 1.37049, 1.21309, 1.16406, 1.03557, 0.842823, 0.695214, 0.535809, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.328368, 0.329728, 0.402112, 0.438536, 0.478247, 0.547143, 0.592613, 0.73375, 0.960172, 1.02211, 1.02507, 1.07279, 1.07578, 0.909534, 0.73689, 0.582334, 0.474598, 0.444047, 0.403098, 0.381196, 0.414563, 0.479681, 0.566013, 0.500352, 0.477219, 0.506651, 0.544638, 0.589032, 0.658865, 0.731162, 0.830216, 0.930286, 1.21334, 1.20983, 1.15848, 1.15019, 1.10625, 0.94046, 0.776323, 0.602115, 0.494473, 0.443771, 0.408969, 0.38533, 0.403208, 0.45487, 0.554159, 0.508445, 0.50142, 0.557493, 0.586889, 0.629242, 0.686111, 0.788333, 0.890077, 1.02136, 1.40713, 1.33868, 1.27305, 1.23122, 1.17802, 0.996453, 0.816816, 0.63944, 0.549147, 0.415191, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.397265, 0.434396, 0.467775, 0.495065, 0.543854, 0.607688, 0.702481, 0.875852, 1.10061, 1.13711, 1.09265, 1.06706, 1.02944, 0.86358, 0.713446, 0.521764, 0.447775, 0.391531, 0.360685, 0.342865, 0.356541, 0.427775, 0.507186, 0.452731, 0.443061, 0.46911, 0.493138, 0.542067, 0.596083, 0.67851, 0.745737, 0.923236, 1.17481, 1.18724, 1.12563, 1.14104, 1.08969, 0.892395, 0.730159, 0.559803, 0.453958, 0.386459, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.386575, 0.440945, 0.48773, 0.511943, 0.574106, 0.665338, 0.815506, 0.975273, 1.27251, 1.22372, 1.13521, 1.10261, 1.05275, 0.885679, 0.725469, 0.543942, 0.465204, 0.405211, 0.364638, 0.334028, 0.357475, 0.38934, 0.49752, 0.442252, 0.426279, 0.447653, 0.47812, 0.50937, 0.557744, 0.619596, 0.720945, 0.880996, 1.10195, 1.12569, 1.08996, 1.09972, 1.0531, 0.88584, 0.725685, 0.544611, 0.426678, 0.365688, 0.339558, 0.317383, 0.336736, 0.384414, 0.467376, 0.412209, 0.40166, 0.438079, 0.477886, 0.525514, 0.612333, 0.702767, 0.849341, 1.0378, 1.37871, 1.31041, 1.24383, 1.23266, 1.13105, 0.971406, 0.777334, 0.600593, 0.49717, 0.44628, 0.405351, 0.364868, 0.386822, 0.426622, 0.522642, 0.467145, 0.467857, 0.513875, 0.57839, 0.654466, 0.734774, 0.851596, 0.962622, 1.112, 1.45313, 1.39661, 1.32028, 1.27975, 1.19339, 0.983961, 0.778736, 0.606468, 0.515114, 0.451768, 0.407132, 0.369989, 0.382074, 0.405329, 0.507183, 0.456579, 0.45002, 0.492504, 0.519954, 0.555721, 0.622774, 0.711689, 0.826546, 0.982388, 1.29644, 1.286, 1.18025, 1.11945, 1.08637, 0.906443, 0.731936, 0.548244, 0.484123, 0.372696, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.366285, 0.413709, 0.436637, 0.46919, 0.527733, 0.594039, 0.693868, 0.848464, 1.10444, 1.11449, 1.05697, 1.05058, 1.02909, 0.857897, 0.700157, 0.473812, 0.434013, 0.383046, 0.353446, 0.323985, 0.345773, 0.38934, 0.487772, 0.420183, 0.399352, 0.419845, 0.429886, 0.458384, 0.492551, 0.560922, 0.637737, 0.77959, 1.01925, 1.04984, 1.03321, 1.05043, 1.01313, 0.852143, 0.704707, 0.520491, 0.333545, 0.316737, 0.311841, 0.303213, 0.332842, 0.38934, 0.455349, 0.38554, 0.336638, 0.367928, 0.410081, 0.455218, 0.507048, 0.587875, 0.694751, 0.868463, 1.15466, 1.1817, 1.143, 1.15313, 1.11355, 0.941368, 0.776374, 0.603538, 0.484315, 0.437785, 0.407558, 0.380681, 0.397538, 0.447956, 0.533907, 0.489251, 0.495005, 0.559565, 0.598573, 0.658403, 0.739495, 0.839406, 0.94728, 1.08631, 1.31491, 1.30431, 1.24657, 1.1937, 1.15326, 0.999802, 0.78341, 0.626419, 0.533288, 0.472681, 0.442605, 0.412454, 0.432296, 0.469281, 0.565883, 0.521944, 0.538971, 0.571806, 0.600394, 0.65253, 0.75814, 0.871526, 1.00698, 1.13184, 1.38078, 1.34393, 1.23905, 1.17436, 1.11927, 0.956789, 0.788576, 0.625276, 0.529248, 0.477109, 0.447051, 0.425047, 0.440648, 0.515271, 0.593734, 0.546109, 0.55623, 0.616704, 0.669114, 0.737616, 0.80873, 0.898384, 1.03308, 1.22981, 1.57277, 1.49733, 1.40481, 1.29619, 1.23293, 1.08393, 0.899426, 0.710603, 0.611738, 0.555445, 0.527683, 0.503471, 0.514202, 0.595792, 0.675029, 0.639102, 0.656511, 0.703063, 0.768546, 0.81763, 0.881552, 1.00952, 1.16825, 1.35869, 1.67159, 1.59252, 1.47522, 1.41535, 1.32938, 1.14256, 0.965485, 0.766843, 0.653727, 0.580803, 0.530972, 0.485454, 0.49835, 0.563713, 0.636062, 0.59204, 0.613219, 0.662111, 0.699472, 0.76044, 0.827909, 0.956566, 1.09353, 1.27504, 1.61014, 1.49921, 1.39705, 1.31647, 1.2545, 1.05457, 0.885619, 0.69711, 0.581147, 0.506498, 0.468004, 0.421701, 0.43739, 0.508303, 0.592598, 0.536007, 0.537363, 0.584304, 0.61306, 0.672175, 0.788828, 0.892231, 1.04407, 1.20532, 1.55179, 1.47755, 1.39694, 1.33344, 1.26006, 1.06192, 0.883886, 0.6833, 0.577284, 0.510368, 0.473615, 0.4407, 0.434869, 0.498896, 0.592671, 0.542288, 0.569972, 0.597836, 0.677461, 0.753548, 0.838995, 0.945714, 1.07924, 1.27022, 1.58499, 1.57479, 1.45256, 1.35167, 1.28747, 1.08213, 0.88529, 0.702424, 0.5844, 0.506312, 0.461267, 0.42868, 0.438199, 0.488959, 0.565137, 0.517253, 0.541709, 0.601793, 0.649288, 0.688051, 0.779838, 0.868591, 0.98253, 1.12897, 1.36801, 1.31791, 1.23483, 1.19987, 1.15214, 0.991842, 0.822457, 0.626742, 0.534377, 0.481461, 0.443263, 0.353441, 0.370308, 0.364489, 0.512086, 0.505909, 0.524417, 0.581375, 0.626117, 0.674919, 0.773565, 0.866579, 0.98666, 1.16656, 1.49511, 1.46928, 1.37485, 1.29134, 1.23871, 1.05584, 0.822464, 0.613486, 0.525346, 0.478639, 0.444652, 0.402524, 0.424943, 0.490333, 0.568985, 0.548293, 0.570251, 0.638572, 0.695163, 0.773286, 0.870392, 0.975206, 1.06344, 1.2774, 1.56525, 1.54504, 1.44848, 1.35504, 1.27495, 1.07309, 0.874206, 0.688736, 0.581574, 0.515072, 0.485694, 0.446794, 0.456458, 0.525676, 0.607349, 0.565528, 0.624978, 0.70863, 0.8092, 0.878207, 0.979834, 1.1141, 1.22353, 1.48793, 1.88685, 1.83741, 1.68448, 1.57323, 1.43842, 1.19625, 0.980139, 0.781834, 0.662401, 0.566063, 0.536022, 0.485459, 0.496841, 0.558586, 0.627856, 0.587124, 0.643369, 0.741837, 0.846906, 0.977749, 1.11357, 1.29013, 1.44811, 1.64274, 1.94137, 1.91138, 1.77808, 1.65696, 1.50476, 1.23809, 1.04481, 0.794737, 0.679132, 0.600979, 0.563722, 0.51542, 0.51099, 0.576968, 0.646335, 0.59976, 0.644583, 0.738554, 0.804278, 0.891711, 0.998052, 1.16114, 1.33192, 1.50155, 1.92689, 1.84221, 1.6933, 1.58244, 1.48534, 1.22878, 1.00682, 0.7961, 0.665449, 0.607539, 0.543615, 0.49514, 0.503803, 0.581883, 0.66181, 0.614986, 0.654388, 0.755078, 0.846962, 0.928176, 1.07837, 1.22393, 1.38893, 1.59795, 1.9266, 1.9038, 1.74798, 1.65512, 1.55697, 1.3115, 1.06842, 0.849174, 0.721934, 0.651847, 0.615361, 0.545757, 0.560638, 0.631917, 0.695098, 0.664336, 0.695536, 0.784979, 0.887596, 0.975481, 1.09523, 1.2429, 1.4317, 1.57721, 1.9583, 1.94592, 1.81314, 1.69705, 1.59292, 1.34738, 1.07765, 0.865334, 0.722944, 0.637495, 0.589226, 0.537345, 0.549453, 0.608206, 0.680584, 0.658411, 0.703382, 0.810126, 0.912498, 1.01193, 1.10672, 1.20464, 1.31226, 1.5701, 1.94089, 1.90498, 1.77349, 1.61565, 1.53019, 1.30282, 1.06793, 0.941884, 0.886866, 0.73843, 0.655615, 0.607181, 0.635175, 0.736507, 0.802327, 0.73104, 0.750549, 0.861287, 0.928216, 1.03211, 1.17343, 1.28319, 1.42057, 1.65867, 1.94218, 1.92411, 1.8277, 1.70522, 1.55403, 1.28009, 1.05037, 0.832798, 0.707323, 0.64733, 0.581508, 0.539057, 0.533984, 0.602438, 0.670782, 0.645331, 0.703989, 0.782067, 0.884299, 0.953101, 1.08114, 1.20297, 1.31664, 1.53898, 1.90263, 1.78705, 1.67043, 1.56107, 1.44808, 1.19996, 0.985544, 0.75309, 0.63081, 0.575106, 0.518831, 0.473103, 0.477542, 0.502867, 0.615388, 0.581428, 0.616459, 0.692561, 0.764849, 0.852492, 0.956117, 1.13076, 1.27731, 1.53614, 1.90359, 1.78439, 1.63859, 1.52727, 1.43742, 1.19464, 0.965198, 0.769853, 0.653642, 0.575591, 0.517859, 0.47211, 0.476972, 0.532522, 0.615439, 0.58387, 0.620902, 0.695694, 0.781995, 0.873382, 1.0049, 1.14657, 1.31389, 1.48199, 1.88762, 1.80117, 1.63248, 1.52276, 1.4167, 1.17274, 0.975411, 0.746799, 0.636084, 0.561829, 0.518101, 0.474123, 0.48763, 0.547058, 0.617215, 0.563343, 0.572515, 0.656539, 0.740393, 0.848855, 0.941174, 1.09751, 1.24677, 1.4269, 1.86815, 1.71738, 1.59921, 1.50021, 1.39157, 1.15287, 0.942382, 0.737554, 0.619468, 0.548102, 0.498726, 0.44921, 0.467722, 0.551841, 0.618005, 0.572389, 0.602482, 0.714801, 0.769726, 0.851806, 0.939538, 1.06398, 1.24736, 1.35751, 1.78926, 1.68412, 1.56619, 1.45205, 1.37519, 1.18968, 1.00168, 0.814558, 0.696265, 0.631804, 0.590936, 0.532042, 0.543255, 0.621982, 0.679727, 0.641499, 0.700667, 0.805706, 0.881816, 0.969422, 1.09821, 1.22021, 1.36723, 1.55092, 1.94127, 1.91376, 1.82836, 1.75604, 1.5678, 1.37535, 1.18054, 0.961694, 0.822385, 0.731987, 0.674934, 0.61794, 0.611474, 0.708376, 0.757851, 0.712613, 0.750285, 0.828021, 0.892912, 0.920378, 1.04827, 1.12173, 1.2702, 1.40168, 1.72971, 1.62335, 1.48509, 1.42418, 1.38267, 1.17047, 0.978323, 0.804916, 0.693363, 0.629352, 0.589951, 0.55285, 0.566872, 0.631578, 0.719, 0.684335, 0.706505, 0.760142, 0.800905, 0.878932, 0.979048, 1.09634, 1.20863, 1.43137, 1.87864, 1.83081, 1.34045, 1.31415, 1.32792, 1.15509, 0.97737, 0.779835, 0.689415, 0.620262, 0.575416, 0.53688, 0.558794, 0.672399, 0.717659, 0.702155, 0.749468, 0.826034, 0.885616, 0.968141, 1.07939, 1.25207, 1.42678, 1.62521, 1.95885, 2.00274, 1.8832, 1.76938, 1.6581, 1.40722, 1.16403, 0.988891, 0.846818, 0.761111, 0.703632, 0.654117, 0.664161, 0.751902, 0.793822, 0.758204, 0.81641, 0.884374, 1.00574, 1.08429, 1.22367, 1.38359, 1.52675, 1.70458, 1.97335, 2.032, 1.92177, 1.82724, 1.69218, 1.43478, 1.22049, 1.02095, 0.909411, 0.821079, 0.768917, 0.711882, 0.701364, 0.804064, 0.839969, 0.778109, 0.754427, 0.812901, 0.844483, 0.921302, 1.02306, 1.16464, 1.25117, 1.44466, 1.80971, 1.72668, 1.59418, 1.52801, 1.49006, 1.32067, 1.1381, 0.952234, 0.843638, 0.776953, 0.71914, 0.673848, 0.693766, 0.767057, 0.827529, 0.749331, 0.724022, 0.787105, 0.848168, 0.844983, 0.847996, 0.862018, 0.926336, 0.959222, 1.15966, 1.1552, 1.10263, 1.12874, 1.13791, 0.995358, 0.837725, 0.667282, 0.577966, 0.525995, 0.500322, 0.471182, 0.492215, 0.571269, 0.646783, 0.602613, 0.604283, 0.692406, 0.7624, 0.825179, 0.886345, 0.987503, 1.10949, 1.28834, 1.66026, 1.56597, 1.50297, 1.46777, 1.40151, 1.22399, 1.03679, 0.844048, 0.733395, 0.666291, 0.621563, 0.579863, 0.612483, 0.714861, 0.790287, 0.684174, 0.638964, 0.658973, 0.70614, 0.870134, 1.0162, 1.12642, 1.24024, 1.46038, 1.7687, 1.68431, 1.59669, 1.56777, 1.52209, 1.35863, 1.11277, 0.982875, 0.867043, 0.798158, 0.726968, 0.667973, 0.678924, 0.765662, 0.855697, 0.812579, 0.87465, 0.968212, 1.07333, 1.12179, 1.2254, 1.38691, 1.4909, 1.69779, 1.95965, 1.96293, 1.83471, 1.61472, 1.55818, 1.35034, 1.11268, 0.927341, 0.779668, 0.672928, 0.641729, 0.591778, 0.610546, 0.711365, 0.786127, 0.749445, 0.786174, 0.820393, 0.886592, 0.976907, 1.08013, 1.20071, 1.37184, 1.59334, 1.94047, 1.89447, 1.75106, 1.66374, 1.53505, 1.34112, 1.11892, 0.945, 0.807533, 0.753549, 0.682998, 0.603512, 0.624005, 0.728048, 0.780784, 0.735373, 0.784775, 0.865371, 0.921496, 0.990992, 1.10942, 1.23051, 1.40274, 1.58495, 1.90885, 1.88282, 1.74645, 1.66666, 1.58134, 1.3639, 1.14409, 0.945029, 0.834521, 0.756546, 0.710164, 0.681594, 0.705605, 0.779028, 0.864176, 0.82422, 0.857272, 0.9746, 1.08945, 1.17328, 1.2985, 1.39819, 1.55584, 1.7572, 1.95817, 1.99277, 1.87651, 1.78414, 1.68108, 1.43156, 1.20583, 0.98869, 0.869636, 0.797203, 0.734764, 0.686459, 0.694695, 0.795594, 0.830707, 0.782171, 0.828117, 0.899796, 0.982936, 1.04598, 1.20605, 1.34274, 1.44733, 1.68951, 1.95788, 1.96817, 1.83783, 1.71967, 1.6327, 1.4268, 1.21144, 1.03069, 0.90632, 0.836169, 0.806072, 0.737993, 0.743274, 0.831641, 0.876878, 0.833192, 0.874187, 0.930366, 0.999614, 1.11007, 1.16874, 1.3093, 1.4675, 1.6377, 1.94227, 1.92764, 1.83491, 1.79198, 1.69364, 1.5003, 1.30073, 1.11689, 0.983967, 0.88754, 0.818608, 0.742926, 0.747268, 0.852914, 0.903902, 0.863091, 0.905521, 1.02801, 1.06595, 1.16507, 1.27203, 1.4062, 1.53956, 1.77028, 1.96168, 2.02744, 1.97876, 1.8363, 1.76504, 1.56105, 1.311, 1.11797, 0.985126, 0.87385, 0.812404, 0.762053, 0.768155, 0.87758, 0.924829, 0.889464, 0.980491, 1.05052, 1.10875, 1.18183, 1.28713, 1.4031, 1.55167, 1.76106, 1.89856, 1.79977, 1.64654, 1.59401, 1.57102, 1.35267, 1.15676, 0.946354, 0.807977, 0.732262, 0.671922, 0.625639, 0.644499, 0.71727, 0.809249, 0.762101, 0.791847, 0.883118, 0.937023, 1.02209, 1.09917, 1.23215, 1.37754, 1.56456, 1.87982, 1.53162, 1.3199, 1.31833, 1.29881, 1.16398, 0.99804, 0.782675, 0.67679, 0.626743, 0.588201, 0.542789, 0.564096, 0.637577, 0.717993, 0.670676, 0.698035, 0.764783, 0.843288, 0.895892, 0.967268, 1.05009, 1.17584, 1.35539, 1.70222, 1.65092, 1.56976, 1.5297, 1.49372, 1.30142, 1.11318, 0.909002, 0.804616, 0.720849, 0.649887, 0.603865, 0.621828, 0.723908, 0.787428, 0.742766, 0.787058, 0.871316, 0.949701, 1.04167, 1.10852, 1.27436, 1.34736, 1.57319, 1.91013, 1.81687, 1.69406, 1.61989, 1.52421, 1.31689, 1.08199, 0.84391, 0.7293, 0.660748, 0.605806, 0.574246, 0.577531, 0.627815, 0.71047, 0.67579, 0.742496, 0.850624, 0.942905, 1.10671, 1.22534, 1.33924, 1.43277, 1.56416, 1.94011, 1.86902, 1.7703, 1.684, 1.60022, 1.34349, 1.13867, 0.909029, 0.780752, 0.696332, 0.64782, 0.597383, 0.604143, 0.697005, 0.769372, 0.728826, 0.781698, 0.871055, 0.974185, 1.09627, 1.24353, 1.39555, 1.56245, 1.75419, 1.97213, 2.03029, 1.96619, 1.87856, 1.7145, 1.44658, 1.20741, 0.978807, 0.840007, 0.748785, 0.693023, 0.634648, 0.640399, 0.725315, 0.765458, 0.728327, 0.791546, 0.893479, 0.995432, 1.08884, 1.2633, 1.43548, 1.54009, 1.81149, 1.95887, 2.03293, 1.9539, 1.8554, 1.71616, 1.47341, 1.23633, 1.00482, 0.864022, 0.770679, 0.71883, 0.645591, 0.648969, 0.735254, 0.775881, 0.74828, 0.820769, 0.903894, 1.01343, 1.13188, 1.30016, 1.46984, 1.66588, 1.8756, 2.00546, 2.08104, 2.05991, 1.93925, 1.78397, 1.52998, 1.32897, 1.0935, 0.976617, 0.859647, 0.798114, 0.750772, 0.767597, 0.86448, 0.898693, 0.777167, 0.778924, 0.883419, 0.974834, 1.01312, 1.08984, 1.22737, 1.34338, 1.54636, 1.71044, 1.8552, 1.76658, 1.73961, 1.69525, 1.48977, 1.23389, 1.01659, 0.894289, 0.809369, 0.714374, 0.674768, 0.681822, 0.781819, 0.867358, 0.752609, 0.706363, 0.744709, 0.797828, 0.896926, 0.95634, 1.07679, 1.17665, 1.3252, 1.621, 1.54602, 1.46538, 1.43097, 1.39351, 1.22589, 1.02294, 0.824148, 0.705983, 0.64275, 0.59232, 0.562977, 0.577223, 0.659678, 0.743122, 0.721561, 0.766296, 0.841469, 0.889017, 0.972578, 1.03724, 1.1946, 1.29156, 1.52426, 1.88093, 1.8284, 1.71556, 1.68055, 1.53588, 1.24485, 1.08134, 0.948333, 0.832435, 0.705297, 0.641936, 0.600347, 0.609547, 0.688909, 0.773797, 0.726839, 0.690958, 0.780658, 0.880855, 0.994825, 1.1126, 1.21881, 1.44139, 1.65271, 1.94369, 1.34326, 1.2052, 1.20709, 1.21645, 1.08714, 0.929456, 0.763845, 0.679009, 0.635068, 0.611132, 0.590472, 0.621564, 0.716375, 0.793847, 0.738936, 0.788256, 0.890963, 0.978535, 1.0514, 1.17846, 1.32884, 1.45619, 1.68818, 1.93066, 2.01975, 1.94207, 1.84298, 1.73546, 1.50284, 1.24556, 1.02852, 0.896158, 0.801286, 0.748997, 0.689876, 0.693527, 0.765598, 0.8586, 0.807141, 0.887357, 0.991577, 1.09577, 1.21152, 1.32945, 1.43944, 1.59043, 1.78697, 1.94458, 2.00543, 1.93712, 1.88708, 1.79448, 1.56394, 1.33268, 1.1249, 0.962569, 0.877855, 0.823019, 0.758942, 0.760298, 0.869052, 0.911376, 0.853671, 0.904626, 1.00244, 1.12907, 1.19983, 1.28968, 1.42681, 1.60561, 1.86214, 1.97682, 2.03776, 2.00363, 1.87941, 1.77946, 1.55284, 1.29718, 1.14039, 0.993058, 0.887483, 0.821562, 0.781474, 0.773539, 0.881796, 0.920609, 0.859715, 0.909196, 0.985137, 1.04509, 1.16429, 1.2523, 1.38736, 1.55627, 1.78044, 1.96058, 2.05034, 2.02502, 1.93164, 1.8614, 1.58942, 1.27942, 1.06642, 0.904282, 0.829712, 0.787408, 0.737356, 0.72735, 0.805756, 0.922522, 0.865141, 0.850437, 0.968512, 1.01122, 1.09814, 1.19883, 1.33557, 1.50278, 1.73823, 1.96034, 1.99889, 1.69013, 1.62827, 1.60324, 1.43828, 1.23703, 0.963083, 0.845764, 0.783195, 0.736806, 0.656763, 0.660221, 0.753918, 0.835109, 0.746595, 0.745899, 0.870179, 0.937378, 1.02391, 1.12763, 1.23774, 1.43034, 1.59601, 1.91125, 1.88512, 1.78573, 1.72342, 1.65558, 1.44404, 1.24299, 1.02553, 0.907614, 0.836695, 0.773756, 0.725407, 0.744502, 0.838041, 0.864879, 0.801896, 0.756896, 0.880754, 0.973884, 1.02762, 1.14327, 1.25626, 1.38472, 1.58491, 1.91127, 1.78581, 1.58311, 1.53208, 1.49614, 1.31825, 1.13269, 0.938845, 0.807723, 0.737401, 0.690928, 0.648592, 0.647756, 0.744125, 0.830885, 0.758624, 0.811901, 0.863314, 0.937648, 1.00545, 1.09473, 1.17475, 1.3437, 1.48389, 1.83484, 1.74497, 1.57985, 1.51301, 1.44801, 1.26526, 1.07815, 0.901663, 0.793343, 0.729506, 0.684285, 0.645202, 0.644543, 0.76123, 0.814054, 0.747823, 0.753304, 0.859466, 0.978436, 1.03407, 1.11369, 1.21462, 1.37617, 1.57145, 1.89874, 1.84554, 1.63562, 1.43133, 1.22468, 1.05694, 0.874864, 0.679929, 0.582165, 0.537789, 0.515825, 0.491014, 0.523411, 0.599689, 0.683769, 0.608552, 0.553385, 0.558719, 0.604852, 0.671863, 0.75061, 0.866096, 0.996778, 1.19272, 1.49229, 1.45323, 1.41133, 1.39603, 1.3785, 1.2173, 1.02432, 0.853141, 0.751315, 0.675458, 0.644321, 0.607055, 0.631195, 0.728253, 0.788016, 0.695267, 0.674372, 0.756976, 0.835029, 0.892723, 0.946865, 1.03387, 1.09385, 1.14557, 1.3994, 1.36472, 1.2696, 1.2534, 1.24616, 1.11181, 0.962471, 0.803437, 0.725621, 0.685888, 0.666724, 0.648269, 0.66988, 0.75831, 0.83483, 0.779452, 0.827737, 0.943199, 1.00054, 1.05681, 1.15344, 1.28457, 1.45479, 1.68004, 1.93589, 1.99804, 2.00842, 1.97144, 1.87545, 1.64275, 1.43033, 1.18408, 1.02592, 0.933783, 0.872487, 0.822545, 0.810532, 0.924993, 1.01024, 0.90216, 0.919353, 0.967382, 1.01315, 1.04442, 1.08546, 1.21374, 1.28478, 1.38462, 1.7578, 1.68972, 1.62399, 1.59141, 1.56755, 1.32952, 1.15348, 0.963524, 0.853013, 0.800101, 0.772063, 0.725959, 0.704152, 0.780686, 0.833757, 0.749027, 0.702065, 0.793691, 0.863682, 0.918146, 1.01116, 1.12499, 1.2744, 1.47741, 1.84628, 1.80199, 1.7416, 1.70587, 1.60309, 1.38918, 1.19535, 0.979657, 0.864335, 0.782756, 0.736543, 0.679082, 0.673066, 0.777978, 0.838847, 0.777052, 0.818458, 0.887776, 0.963907, 1.01858, 1.12566, 1.23368, 1.36371, 1.52693, 1.88644, 1.86988, 1.79001, 1.74606, 1.64165, 1.40129, 1.21693, 1.0166, 0.902871, 0.817401, 0.779959, 0.740269, 0.749751, 0.884712, 0.924249, 0.840441, 0.872904, 0.922681, 1.0122, 1.08619, 1.1609, 1.27907, 1.41055, 1.58756, 1.90435, 1.91202, 1.83946, 1.78992, 1.65317, 1.38456, 1.17449, 0.972326, 0.884461, 0.818802, 0.769676, 0.666448, 0.666342, 0.756768, 0.82909, 0.790283, 0.840694, 0.929895, 1.01319, 1.10945, 1.20076, 1.33434, 1.48327, 1.69605, 1.94963, 1.97626, 1.90858, 1.85835, 1.69134, 1.43592, 1.24212, 1.0409, 0.922274, 0.791515, 0.745591, 0.700958, 0.720394, 0.767622, 0.843778, 0.81823, 0.87912, 0.972726, 1.079, 1.19351, 1.34131, 1.47715, 1.64208, 1.84236, 1.97961, 2.0605, 2.03827, 1.94836, 1.74189, 1.49442, 1.32401, 1.06843, 0.924179, 0.847701, 0.811695, 0.764948, 0.77273, 0.850262, 0.930628, 0.90873, 0.975242, 1.08469, 1.16222, 1.26038, 1.35413, 1.4705, 1.61724, 1.81256, 1.96536, 2.06101, 2.04198, 1.87209, 1.74781, 1.54113, 1.31428, 1.1029, 0.996847, 0.920744, 0.850559, 0.794858, 0.800229, 0.901299, 0.931579, 0.866927, 0.813185, 0.89608, 0.980752, 1.04195, 1.17081, 1.31507, 1.44824, 1.6323, 1.93386, 1.95979, 1.91584, 1.90222, 1.84803, 1.43634, 1.19937, 0.980383, 0.798335, 0.751011, 0.705294, 0.663395, 0.681652, 0.784182, 0.836353, 0.765758, 0.781951, 0.865726, 0.924929, 1.01282, 1.09439, 1.23668, 1.4168, 1.62456, 1.93508, 1.96662, 1.47386, 1.50891, 1.52399, 1.29997, 1.15849, 1.00344, 0.913593, 0.796548, 0.742819, 0.676235, 0.695011, 0.785936, 0.880389, 0.825522, 0.842298, 0.967216, 1.06809, 1.15582, 1.32519, 1.44784, 1.56721, 1.69376, 1.94916, 2.00785, 1.93277, 1.78615, 1.70114, 1.44519, 1.21952, 1.04921, 0.883911, 0.798435, 0.743772, 0.707544, 0.711598, 0.787763, 0.855115, 0.796909, 0.834946, 0.93217, 1.01479, 1.07151, 1.15756, 1.28317, 1.41366, 1.56289, 1.8913, 1.79777, 1.69711, 1.68174, 1.61433, 1.4146, 1.19088, 0.973624, 0.814098, 0.723829, 0.684307, 0.650458, 0.665513, 0.747332, 0.799492, 0.729105, 0.716982, 0.796891, 0.83908, 0.912508, 0.980652, 1.10128, 1.23389, 1.38867, 1.71743, 1.65697, 1.57344, 1.52463, 1.47567, 1.25096, 0.953524, 0.71527, 0.612512, 0.561105, 0.536348, 0.508507, 0.526147, 0.585706, 0.656513, 0.573489, 0.49252, 0.516753, 0.575119, 0.650172, 0.726338, 0.83053, 0.922651, 1.05334, 1.38875, 1.37023, 1.32845, 1.35162, 1.33638, 1.12732, 0.956178, 0.772581, 0.6616, 0.601119, 0.558206, 0.520662, 0.529133, 0.597126, 0.663917, 0.609759, 0.645249, 0.724554, 0.776235, 0.830357, 0.927132, 1.04944, 1.16639, 1.31641, 1.62856, 1.55373, 1.46736, 1.46255, 1.38338, 1.18183, 0.98619, 0.775918, 0.682325, 0.589149, 0.544745, 0.496553, 0.501803, 0.557588, 0.628471, 0.577506, 0.596323, 0.675217, 0.727824, 0.782591, 0.874077, 0.968706, 1.114, 1.2514, 1.58367, 1.50026, 1.44189, 1.40877, 1.34913, 1.09188, 0.875273, 0.713641, 0.630005, 0.567378, 0.5132, 0.467389, 0.475625, 0.525862, 0.59971, 0.545542, 0.568114, 0.650479, 0.705722, 0.804917, 0.886508, 1.01084, 1.20103, 1.3417, 1.70882, 1.62468, 1.5043, 1.44735, 1.34913, 1.06279, 0.913954, 0.675415, 0.566741, 0.489603, 0.45795, 0.430336, 0.447072, 0.495917, 0.573091, 0.524239, 0.549594, 0.638958, 0.718586, 0.805827, 0.888851, 1.01331, 1.14906, 1.25896, 1.5394, 1.47284, 1.38896, 1.33492, 1.25416, 1.05783, 0.876356, 0.691222, 0.618058, 0.576278, 0.526838, 0.499676, 0.503087, 0.563615, 0.640715, 0.584468, 0.619311, 0.682496, 0.71404, 0.763438, 0.824287, 0.927842, 1.02753, 1.17405, 1.4847, 1.45226, 1.39624, 1.35751, 1.31477, 1.08374, 0.907117, 0.719225, 0.61491, 0.546019, 0.529542, 0.481388, 0.489297, 0.545537, 0.63431, 0.5837, 0.597004, 0.664233, 0.698967, 0.759008, 0.840027, 0.93179, 1.05623, 1.20237, 1.48489, 1.4704, 1.39054, 1.35146, 1.26407, 1.07002, 0.876419, 0.681914, 0.579714, 0.518167, 0.501072, 0.402513, 0.437443, 0.504784, 0.585868, 0.5554, 0.573937, 0.640562, 0.717028, 0.814172, 0.914569, 1.04323, 1.19011, 1.35927, 1.70277, 1.67073, 1.59301, 1.53455, 1.39694, 1.17764, 0.94967, 0.750575, 0.660354, 0.574815, 0.534577, 0.493358, 0.532233, 0.593335, 0.669599, 0.612298, 0.628202, 0.682351, 0.776344, 0.849388, 0.958592, 1.09218, 1.20948, 1.38094, 1.74073, 1.6488, 1.53215, 1.4937, 1.38826, 1.19003, 1.01244, 0.834862, 0.749247, 0.672884, 0.624826, 0.623993, 0.629066, 0.726094, 0.798493, 0.728537, 0.698731, 0.732917, 0.78414, 0.816081, 0.842234, 0.878553, 0.913549, 0.997725, 1.25297, 1.2439, 1.23568, 1.27614, 1.27945, 1.07027, 0.914989, 0.745943, 0.66787, 0.62028, 0.598718, 0.568773, 0.589175, 0.675136, 0.755705, 0.681173, 0.67173, 0.750172, 0.807304, 0.864597, 0.92848, 0.944438, 0.868214, 1.01098, 1.13257, 1.2178, 1.17252, 1.18007, 1.16555, 0.992407, 0.850727, 0.670911, 0.581841, 0.539548, 0.514374, 0.462092, 0.485183, 0.544834, 0.648534, 0.599002, 0.600598, 0.67683, 0.716176, 0.793267, 0.873424, 0.962282, 1.10736, 1.27531, 1.62842, 1.60195, 1.5367, 1.50177, 1.40337, 1.19217, 0.993597, 0.808373, 0.70589, 0.656233, 0.607708, 0.560715, 0.582604, 0.664983, 0.733003, 0.686231, 0.722229, 0.801223, 0.865994, 0.970797, 1.0583, 1.18942, 1.27962, 1.47586, 1.78469, 1.72205, 1.57678, 1.53984, 1.47824, 1.2792, 1.02033, 0.82322, 0.717484, 0.643465, 0.616668, 0.589613, 0.597415, 0.684527, 0.745334, 0.684248, 0.722377, 0.800421, 0.872185, 0.959561, 1.08432, 1.22868, 1.40015, 1.57748, 1.90371, 1.84274, 1.74986, 1.6688, 1.53, 1.26892, 1.09101, 0.89874, 0.763198, 0.705383, 0.630705, 0.585645, 0.587448, 0.66787, 0.749098, 0.707544, 0.732759, 0.825044, 0.898682, 0.950078, 1.05755, 1.18878, 1.34899, 1.51427, 1.87168, 1.79268, 1.67233, 1.65242, 1.56192, 1.31473, 1.10328, 0.907207, 0.823789, 0.750565, 0.707019, 0.661917, 0.632937, 0.709796, 0.784747, 0.704949, 0.731261, 0.822111, 0.913352, 0.973724, 1.06703, 1.18693, 1.30829, 1.45651, 1.77661, 1.71546, 1.58511, 1.54914, 1.48523, 1.2673, 1.0514, 0.845491, 0.750982, 0.645556, 0.59839, 0.55128, 0.563789, 0.633052, 0.708571, 0.637579, 0.660802, 0.729414, 0.788521, 0.865476, 0.936511, 1.04434, 1.19883, 1.33007, 1.68549, 1.62923, 1.54192, 1.41626, 1.36091, 1.17736, 0.988597, 0.781298, 0.677342, 0.627992, 0.547396, 0.506494, 0.521982, 0.594647, 0.667599, 0.606966, 0.603089, 0.678485, 0.745632, 0.813685, 0.901969, 0.999976, 1.13786, 1.26266, 1.5667, 1.51926, 1.40325, 1.2988, 1.2073, 1.03996, 0.892698, 0.740277, 0.671587, 0.638934, 0.626382, 0.619177, 0.63707, 0.721392, 0.848441, 0.758686, 0.769747, 0.839309, 0.919692, 0.981786, 1.09703, 1.23541, 1.3899, 1.51119, 1.9145, 1.86965, 1.73521, 1.65686, 1.50187, 1.27969, 1.08864, 0.880969, 0.761869, 0.69912, 0.656878, 0.619293, 0.622608, 0.731306, 0.814658, 0.760803, 0.793124, 0.88907, 0.939257, 1.01977, 1.10147, 1.21317, 1.38668, 1.46704, 1.80098, 1.7807, 1.66565, 1.66933, 1.52748, 1.28234, 1.07396, 0.895009, 0.789048, 0.727346, 0.659253, 0.5987, 0.617926, 0.703988, 0.795683, 0.71898, 0.661581, 0.742358, 0.80053, 0.838345, 0.892463, 0.947598, 1.06497, 1.16696, 1.42931, 1.44902, 1.41925, 1.37712, 1.24747, 1.05887, 0.878284, 0.715659, 0.636455, 0.58394, 0.559481, 0.530803, 0.558636, 0.629295, 0.727047, 0.656406, 0.59368, 0.635599, 0.69648, 0.724065, 0.801078, 0.882505, 0.981285, 1.06266, 1.3073, 1.32735, 1.28261, 1.31296, 1.21558, 1.0372, 0.860955, 0.684243, 0.601725, 0.54117, 0.507716, 0.489528, 0.511936, 0.598786, 0.690334, 0.623399, 0.618792, 0.662927, 0.70546, 0.757716, 0.843787, 0.930583, 1.03212, 1.16895, 1.44944, 1.44244, 1.39881, 1.42149, 1.30944, 1.13061, 0.947127, 0.750743, 0.652939, 0.593259, 0.557985, 0.516167, 0.525189, 0.578137, 0.663278, 0.622733, 0.614929, 0.682233, 0.767892, 0.848498, 0.940858, 1.04614, 1.17223, 1.29197, 1.5557, 1.52247, 1.43534, 1.42833, 1.30528, 1.109, 0.923539, 0.728664, 0.629014, 0.573256, 0.528259, 0.493066, 0.502347, 0.578583, 0.674637, 0.597815, 0.58287, 0.651311, 0.734215, 0.813423, 0.893323, 0.992046, 1.10533, 1.25159, 1.57147, 1.53293, 1.43904, 1.40389, 1.24585, 1.04093, 0.861425, 0.694449, 0.578006, 0.51518, 0.48683, 0.420574, 0.400299, 0.439437, 0.495487, 0.546465, 0.559109, 0.622337, 0.675778, 0.807957, 0.8987, 1.02855, 1.17911, 1.27383, 1.58825, 1.5673, 1.47236, 1.43451, 1.27, 1.07519, 0.878838, 0.687424, 0.602144, 0.531737, 0.489328, 0.455935, 0.467095, 0.535621, 0.630476, 0.572906, 0.556419, 0.604765, 0.688559, 0.77148, 0.919457, 1.10785, 1.23217, 1.41367, 1.74473, 1.71608, 1.58044, 1.51745, 1.34993, 1.12143, 0.913814, 0.716258, 0.616936, 0.560774, 0.516342, 0.475102, 0.490025, 0.545972, 0.649642, 0.588983, 0.586616, 0.655491, 0.740042, 0.86305, 0.991134, 1.15731, 1.33704, 1.47015, 1.85263, 1.75321, 1.61557, 1.58002, 1.41434, 1.19554, 0.995003, 0.768786, 0.663532, 0.602323, 0.54589, 0.500818, 0.514299, 0.559201, 0.606844, 0.58977, 0.58088, 0.683682, 0.738133, 0.863349, 0.975293, 1.11484, 1.29969, 1.4275, 1.79462, 1.72696, 1.58164, 1.51986, 1.35004, 1.12528, 0.917501, 0.718974, 0.619649, 0.53772, 0.491502, 0.444242, 0.474004, 0.553281, 0.638637, 0.581949, 0.567465, 0.675434, 0.74085, 0.797136, 0.894864, 0.993953, 1.14679, 1.26498, 1.51449, 1.51213, 1.45844, 1.46907, 1.354, 1.14704, 0.998444, 0.781641, 0.673299, 0.605885, 0.584487, 0.543512, 0.550905, 0.631749, 0.71964, 0.630424, 0.591518, 0.625669, 0.670675, 0.729371, 0.751101, 0.812189, 0.901686, 0.99107, 1.16669, 1.18417, 1.15488, 1.16139, 1.06792, 0.897375, 0.74215, 0.541095, 0.488408, 0.440369, 0.407254, 0.380929, 0.39098, 0.436323, 0.524759, 0.483314, 0.462314, 0.50343, 0.527011, 0.579654, 0.632123, 0.712954, 0.814174, 0.922757, 1.11832, 1.17451, 1.16167, 1.18462, 1.09481, 0.925337, 0.767204, 0.587015, 0.459124, 0.414073, 0.329619, 0.317069, 0.302502, 0.365463, 0.44764, 0.399703, 0.435014, 0.506051, 0.576232, 0.632157, 0.720629, 0.809406, 0.912491, 1.05599, 1.3213, 1.33475, 1.28301, 1.27506, 1.1679, 1.00048, 0.827565, 0.636389, 0.554911, 0.497511, 0.459431, 0.424439, 0.449211, 0.51104, 0.588399, 0.534276, 0.518859, 0.574128, 0.616894, 0.685174, 0.774944, 0.857584, 0.963496, 1.092, 1.33913, 1.34345, 1.30306, 1.30051, 1.17571, 0.984993, 0.820585, 0.640289, 0.550704, 0.500546, 0.476378, 0.448318, 0.456667, 0.526732, 0.613371, 0.549785, 0.493545, 0.541586, 0.59627, 0.643932, 0.728227, 0.809345, 0.918372, 1.02419, 1.27917, 1.26804, 1.21618, 1.22985, 1.12897, 0.953924, 0.767319, 0.590485, 0.47058, 0.425487, 0.350714, 0.311388, 0.302502, 0.365463, 0.44764, 0.424517, 0.4972, 0.536756, 0.604822, 0.673816, 0.762251, 0.867865, 0.953355, 1.05989, 1.3016, 1.30583, 1.26212, 1.26048, 1.17646, 1.00458, 0.834015, 0.645644, 0.557639, 0.507571, 0.483881, 0.457458, 0.465822, 0.535588, 0.626693, 0.579561, 0.572594, 0.631888, 0.701413, 0.775807, 0.87009, 0.986439, 1.11927, 1.23937, 1.50606, 1.47526, 1.36491, 1.33881, 1.22163, 1.02603, 0.851012, 0.669354, 0.577951, 0.526844, 0.460539, 0.383968, 0.371978, 0.433591, 0.516963, 0.546301, 0.541363, 0.604955, 0.689842, 0.768714, 0.896028, 1.0477, 1.17619, 1.28592, 1.50102, 1.51466, 1.42845, 1.38168, 1.25837, 1.07367, 0.90526, 0.740743, 0.627199, 0.561983, 0.526057, 0.50126, 0.518893, 0.596538, 0.673893, 0.605657, 0.598307, 0.660181, 0.73034, 0.796341, 0.895647, 0.999993, 1.1081, 1.17349, 1.41122, 1.39172, 1.33521, 1.37034, 1.1843, 1.00873, 0.859716, 0.692997, 0.604773, 0.55988, 0.527835, 0.495305, 0.493433, 0.540576, 0.673079, 0.625045, 0.617381, 0.683853, 0.755656, 0.737867, 0.845243, 0.943445, 1.0663, 1.12015, 1.1341, 1.08812, 1.00905, 1.0557, 0.99815, 0.844429, 0.7017, 0.540321, 0.457767, 0.422487, 0.39096, 0.369854, 0.398272, 0.465037, 0.5895, 0.519762, 0.458723, 0.458764, 0.441738, 0.517997, 0.593657, 0.696367, 0.80952, 0.893177, 1.12626, 1.17812, 1.16, 1.1968, 1.0769, 0.922877, 0.761917, 0.610206, 0.513531, 0.464017, 0.440985, 0.409288, 0.436981, 0.49918, 0.5953, 0.565478, 0.535564, 0.564545, 0.596482, 0.659294, 0.742706, 0.844212, 0.952978, 1.03257, 1.22806, 1.26326, 1.23706, 1.24768, 1.16102, 0.991276, 0.819192, 0.655332, 0.566292, 0.516268, 0.475954, 0.44593, 0.38818, 0.525979, 0.623821, 0.578514, 0.569844, 0.619855, 0.687641, 0.755286, 0.850464, 0.930629, 1.04185, 1.14664, 1.3975, 1.34812, 1.29217, 1.30671, 1.21487, 1.02377, 0.855319, 0.682043, 0.58173, 0.528156, 0.495831, 0.464896, 0.483861, 0.559818, 0.64358, 0.579052, 0.554933, 0.617551, 0.688372, 0.770539, 0.873312, 0.985586, 1.09092, 1.18558, 1.42951, 1.40902, 1.35418, 1.36603, 1.24515, 1.07707, 0.898199, 0.720622, 0.607674, 0.550968, 0.514878, 0.482924, 0.486576, 0.506727, 0.585952, 0.559621, 0.562133, 0.635777, 0.720025, 0.808614, 0.90338, 1.01613, 1.14567, 1.2294, 1.50372, 1.45361, 1.38904, 1.37342, 1.22696, 1.0469, 0.875782, 0.707547, 0.606074, 0.551262, 0.508304, 0.474524, 0.485037, 0.571306, 0.675852, 0.593041, 0.556375, 0.624382, 0.703457, 0.811146, 0.907086, 1.0291, 1.15457, 1.25643, 1.52711, 1.47191, 1.38772, 1.36106, 1.2707, 1.09538, 0.913621, 0.7029, 0.614317, 0.568408, 0.535753, 0.51235, 0.523274, 0.580108, 0.681766, 0.625596, 0.633737, 0.716438, 0.789325, 0.885112, 1.00296, 1.11209, 1.29969, 1.41558, 1.69842, 1.63919, 1.5013, 1.47073, 1.34561, 1.14629, 0.959799, 0.765005, 0.656201, 0.588358, 0.541493, 0.505012, 0.51378, 0.600648, 0.677313, 0.617129, 0.62767, 0.693469, 0.747202, 0.824007, 0.915744, 1.00622, 1.09504, 1.20256, 1.48049, 1.43316, 1.36084, 1.37044, 1.25524, 1.06312, 0.882882, 0.695172, 0.607295, 0.544475, 0.502331, 0.463114, 0.48343, 0.546491, 0.668165, 0.60278, 0.576156, 0.641863, 0.718919, 0.813308, 0.910808, 0.990257, 1.14484, 1.28187, 1.57436, 1.5119, 1.43206, 1.35416, 1.24319, 1.02836, 0.846622, 0.666083, 0.562858, 0.451884, 0.410872, 0.290438, 0.319932, 0.392995, 0.491533, 0.43194, 0.483747, 0.574203, 0.650574, 0.713139, 0.825804, 0.933587, 1.08809, 1.22707, 1.56833, 1.51795, 1.42304, 1.3638, 1.22106, 1.02375, 0.854398, 0.677931, 0.598179, 0.549056, 0.510634, 0.472775, 0.486291, 0.579244, 0.680014, 0.624117, 0.59608, 0.597089, 0.640365, 0.682208, 0.679806, 0.756302, 0.748746, 0.798528, 1.00129, 1.05651, 1.04362, 1.06805, 0.977159, 0.834698, 0.698113, 0.549502, 0.483485, 0.446972, 0.427632, 0.412802, 0.449654, 0.521598, 0.636013, 0.55504, 0.45011, 0.450112, 0.47042, 0.492389, 0.491459, 0.504835, 0.520397, 0.596871, 0.692837, 0.882183, 0.942518, 0.966425, 0.896212, 0.755466, 0.623881, 0.47965, 0.413074, 0.384694, 0.373335, 0.361714, 0.396459, 0.498433, 0.606718, 0.523868, 0.437573, 0.495765, 0.538805, 0.557897, 0.658203, 0.750944, 0.829519, 0.924163, 1.08426, 1.07291, 1.1017, 1.10345, 0.997843, 0.838093, 0.68293, 0.524012, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.344773, 0.430668, 0.487439, 0.552967, 0.630758, 0.739018, 0.829741, 0.967289, 1.20892, 1.2397, 1.23056, 1.21893, 1.08709, 0.911278, 0.729807, 0.549148, 0.474194, 0.423322, 0.389849, 0.368419, 0.399881, 0.443293, 0.584525, 0.521866, 0.478871, 0.529643, 0.583512, 0.650755, 0.741932, 0.848445, 0.941117, 1.05294, 1.29618, 1.31878, 1.29247, 1.24652, 1.12371, 0.938032, 0.766085, 0.592559, 0.50126, 0.452109, 0.413024, 0.384669, 0.414526, 0.471802, 0.605247, 0.553627, 0.5313, 0.612425, 0.690301, 0.796117, 0.898798, 1.02204, 1.12455, 1.20486, 1.43618, 1.41146, 1.36461, 1.29515, 1.16626, 0.965075, 0.789384, 0.615682, 0.480138, 0.381163, 0.320842, 0.290438, 0.319932, 0.392995, 0.491533, 0.437472, 0.51488, 0.605497, 0.687222, 0.786602, 0.889736, 1.02119, 1.15171, 1.23227, 1.50693, 1.43363, 1.3633, 1.28011, 1.13405, 0.954064, 0.781526, 0.603338, 0.518234, 0.46498, 0.435599, 0.408649, 0.427222, 0.493985, 0.593249, 0.571489, 0.528704, 0.597046, 0.689449, 0.811516, 0.939966, 1.06393, 1.21232, 1.30171, 1.60164, 1.51872, 1.42336, 1.35304, 1.19912, 0.999915, 0.822078, 0.640133, 0.551178, 0.478527, 0.418101, 0.318166, 0.382681, 0.392995, 0.491533, 0.42604, 0.511008, 0.600644, 0.693769, 0.780172, 0.927741, 1.079, 1.16434, 1.24934, 1.49385, 1.46179, 1.38754, 1.32469, 1.1895, 0.982737, 0.815664, 0.625218, 0.545304, 0.489946, 0.459547, 0.432122, 0.450185, 0.514277, 0.614595, 0.581624, 0.540266, 0.612902, 0.696005, 0.781448, 0.888155, 0.999138, 1.16104, 1.24834, 1.51641, 1.46602, 1.38483, 1.3226, 1.17458, 0.979047, 0.8056, 0.625397, 0.539604, 0.447218, 0.33775, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.490588, 0.57375, 0.667958, 0.77801, 0.905184, 1.05531, 1.17328, 1.28371, 1.51672, 1.48205, 1.38601, 1.32005, 1.18425, 0.999907, 0.84381, 0.653506, 0.550281, 0.49288, 0.462493, 0.428412, 0.451384, 0.499452, 0.604581, 0.570801, 0.548442, 0.621336, 0.729011, 0.833302, 0.927471, 1.05479, 1.16142, 1.25708, 1.48745, 1.43234, 1.34621, 1.28284, 1.15196, 0.959732, 0.788226, 0.607409, 0.514456, 0.460247, 0.420815, 0.396878, 0.420453, 0.477449, 0.601873, 0.534802, 0.489659, 0.506887, 0.572197, 0.629002, 0.701582, 0.802181, 0.883083, 0.966012, 1.13797, 1.17462, 1.16419, 1.13892, 1.02893, 0.862423, 0.707838, 0.538948, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.42077, 0.520526, 0.616385, 0.724267, 0.818053, 0.912958, 1.13052, 1.14552, 1.13401, 1.10098, 1.01069, 0.813692, 0.621691, 0.379344, 0.419694, 0.388626, 0.35691, 0.333792, 0.365598, 0.404879, 0.501585, 0.484261, 0.42677, 0.478722, 0.536856, 0.593162, 0.716966, 0.804109, 0.905173, 1.02655, 1.23419, 1.2361, 1.20301, 1.14915, 1.03495, 0.867387, 0.712156, 0.55556, 0.331284, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.40658, 0.483747, 0.558174, 0.630786, 0.712606, 0.808286, 0.909534, 1.00085, 1.19699, 1.21589, 1.19361, 1.14238, 1.03086, 0.864758, 0.641734, 0.442692, 0.438372, 0.410578, 0.387943, 0.363063, 0.389836, 0.485061, 0.556533, 0.507962, 0.45739, 0.497814, 0.549671, 0.600756, 0.655185, 0.725079, 0.770343, 0.861013, 1.04413, 1.1041, 1.11287, 1.10778, 0.997877, 0.826365, 0.689725, 0.532171, 0.463538, 0.328817, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.373429, 0.478092, 0.515208, 0.588417, 0.674945, 0.729353, 0.803368, 0.952135, 1.02145, 1.04136, 0.943834, 0.792047, 0.588792, 0.47997, 0.36497, 0.39259, 0.374248, 0.358303, 0.340404, 0.375283, 0.471888, 0.536553, 0.503037, 0.406655, 0.411038, 0.468094, 0.501914, 0.543145, 0.575438, 0.581924, 0.574536, 0.589138, 0.823992, 0.887916, 0.91157, 0.835325, 0.687335, 0.557499, 0.415302, 0.349985, 0.317837, 0.302408, 0.290599, 0.320232, 0.418572, 0.492677, 0.455041, 0.40687, 0.446717, 0.494635, 0.544871, 0.610324, 0.691945, 0.788493, 0.872065, 1.00455, 1.08195, 1.10787, 1.09763, 1.00278, 0.840042, 0.679925, 0.51509, 0.320173, 0.370187, 0.364628, 0.346392, 0.370871, 0.471204, 0.491533, 0.425624, 0.340042, 0.345194, 0.471518, 0.57628, 0.661198, 0.752057, 0.861957, 0.951404, 1.1298, 1.16278, 1.16387, 1.13525, 0.984776, 0.814931, 0.57388, 0.405798, 0.427452, 0.394525, 0.375484, 0.340919, 0.367099, 0.411273, 0.508742, 0.491984, 0.450885, 0.496654, 0.561712, 0.630277, 0.716917, 0.812864, 0.91332, 0.997978, 1.14806, 1.17422, 1.17435, 1.14415, 1.03071, 0.853119, 0.696619, 0.530071, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.386563, 0.454187, 0.496387, 0.521399, 0.590952, 0.664849, 0.73892, 0.691388, 0.777862, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.354829, 0.396793, 0.43586, 0.50151, 0.578656, 0.647027, 0.731381, 0.868673, 0.911799, 0.915947, 0.832832, 0.67876, 0.540578, 0.39441, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.334005, 0.343797, 0.438621, 0.525731, 0.579009, 0.69708, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.332993, 0.362203, 0.412593, 0.483295, 0.556793, 0.63881, 0.707578, 0.782065, 0.901298, 0.931542, 0.926279, 0.839552, 0.674953, 0.536227, 0.391715, 0.375401, 0.320373, 0.303329, 0.298708, 0.290599, 0.320232, 0.393596, 0.492677, 0.427478, 0.342188, 0.38019, 0.425977, 0.467385, 0.533002, 0.591547, 0.599736, 0.639466, 0.687873, 0.833629, 0.87892, 0.88517, 0.806029, 0.658611, 0.519684, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.330976, 0.33039, 0.328311, 0.385822, 0.423972, 0.484197, 0.508901, 0.540701, 0.671497, 0.732774, 0.7615, 0.702169, 0.584006, 0.47997, 0.36497, 0.320173, 0.30321, 0.298608, 0.290438, 0.319932, 0.392995, 0.491533, 0.425624, 0.340042, 0.355764, 0.413664, 0.469685, 0.536236, 0.57861, 0.581932, 0.654049, 0.732528, 0.875976, 0.923952, 0.931838, 0.854435, 0.709721, 0.576463, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.36542, 0.318808, 0.301911, 0.297309, 0.289238, 0.319148, 0.383196, 0.468718, 0.413486, 0.34055, 0.334266, 0.33343, 0.331153, 0.336755, 0.351105, 0.385982, 0.494346, 0.666908, 0.806116, 0.780231, 0.762566, 0.704636, 0.583176, 0.479083, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.365091, 0.318608, 0.301791, 0.297209, 0.289077, 0.318848, 0.382596, 0.467573, 0.411632, 0.338405, 0.332249, 0.331663, 0.329587, 0.335251, 0.349821, 0.384779, 0.493093, 0.665548, 0.804325, 0.778165, 0.760736, 0.703111, 0.582149, 0.478456, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.755225, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32622, 0.362073, 0.448808, 0.54347, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.326741, 0.362719, 0.451756, 0.544794, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.44236, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.326512, 0.361804, 0.450748, 0.554467, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.360975, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.442608, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.4417, 0.544189, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.435202, 0.533402, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.442222, 0.541784, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.404652, 0.356811, 0.339201, 0.334394, 0.324457, 0.357748, 0.441489, 0.541371, 0.462462, 0.369454, 0.362723, 0.364218, 0.362932, 0.369685, 0.388925, 0.428305, 0.551154, 0.742857, 0.879138, 0.830714, 0.814991, 0.759099, 0.633621, 0.526276, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.444422, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.4078, 0.358452, 0.340295, 0.335214, 0.32555, 0.36021, 0.440128, 0.541883, 0.477105, 0.386148, 0.37791, 0.377351, 0.374422, 0.381453, 0.398776, 0.437608, 0.560869, 0.754355, 0.896671, 0.852088, 0.833073, 0.773205, 0.643069, 0.532439, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066, 0.408129, 0.358652, 0.340414, 0.335314, 0.325711, 0.36051, 0.440728, 0.543027, 0.478959, 0.388294, 0.379927, 0.379118, 0.375988, 0.382957, 0.40006, 0.438811, 0.562122, 0.755715, 0.898462, 0.854154, 0.834903, 0.77473, 0.644096, 0.533066 ] ); data.SetNumber( 'inflation_rate', 2.5 ); data.SetArray( 'degradation', [ 0.5 ] ); data.SetArray( 'load_escalation', [ 0 ] ); data.SetArray( 'rate_escalation', [ 0 ] ); data.SetNumber( 'ur_enable_net_metering', 1 ); data.SetNumber( 'ur_nm_yearend_sell_rate', 0.02789 ); data.SetNumber( 'ur_monthly_fixed_charge', 16.68 ); data.SetNumber( 'ur_flat_buy_rate', 0 ); data.SetNumber( 'ur_flat_sell_rate', 0 ); data.SetNumber( 'ur_monthly_min_charge', 0 ); data.SetNumber( 'ur_annual_min_charge', 0 ); data.SetNumber( 'ur_ec_enable', 1 ); data.SetMatrix( 'ur_ec_sched_weekday',[ 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 4 4 4 ] ); data.SetMatrix( 'ur_ec_sched_weekend', [ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ; 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ] ); data.SetNumber( 'ur_ec_p1_t1_br', 0.26687 ); data.SetNumber( 'ur_ec_p1_t1_sr', 0 ); data.SetNumber( 'ur_ec_p1_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t2_br', 0 ); data.SetNumber( 'ur_ec_p1_t2_sr', 0 ); data.SetNumber( 'ur_ec_p1_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t3_br', 0 ); data.SetNumber( 'ur_ec_p1_t3_sr', 0 ); data.SetNumber( 'ur_ec_p1_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t4_br', 0 ); data.SetNumber( 'ur_ec_p1_t4_sr', 0 ); data.SetNumber( 'ur_ec_p1_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t5_br', 0 ); data.SetNumber( 'ur_ec_p1_t5_sr', 0 ); data.SetNumber( 'ur_ec_p1_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p1_t6_br', 0 ); data.SetNumber( 'ur_ec_p1_t6_sr', 0 ); data.SetNumber( 'ur_ec_p1_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t1_br', 0.08328 ); data.SetNumber( 'ur_ec_p2_t1_sr', 0 ); data.SetNumber( 'ur_ec_p2_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t2_br', 0 ); data.SetNumber( 'ur_ec_p2_t2_sr', 0 ); data.SetNumber( 'ur_ec_p2_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t3_br', 0 ); data.SetNumber( 'ur_ec_p2_t3_sr', 0 ); data.SetNumber( 'ur_ec_p2_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t4_br', 0 ); data.SetNumber( 'ur_ec_p2_t4_sr', 0 ); data.SetNumber( 'ur_ec_p2_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t5_br', 0 ); data.SetNumber( 'ur_ec_p2_t5_sr', 0 ); data.SetNumber( 'ur_ec_p2_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p2_t6_br', 0 ); data.SetNumber( 'ur_ec_p2_t6_sr', 0 ); data.SetNumber( 'ur_ec_p2_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t1_br', 0.22057 ); data.SetNumber( 'ur_ec_p3_t1_sr', 0 ); data.SetNumber( 'ur_ec_p3_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t2_br', 0 ); data.SetNumber( 'ur_ec_p3_t2_sr', 0 ); data.SetNumber( 'ur_ec_p3_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t3_br', 0 ); data.SetNumber( 'ur_ec_p3_t3_sr', 0 ); data.SetNumber( 'ur_ec_p3_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t4_br', 0 ); data.SetNumber( 'ur_ec_p3_t4_sr', 0 ); data.SetNumber( 'ur_ec_p3_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t5_br', 0 ); data.SetNumber( 'ur_ec_p3_t5_sr', 0 ); data.SetNumber( 'ur_ec_p3_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p3_t6_br', 0 ); data.SetNumber( 'ur_ec_p3_t6_sr', 0 ); data.SetNumber( 'ur_ec_p3_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t1_br', 0.08326 ); data.SetNumber( 'ur_ec_p4_t1_sr', 0 ); data.SetNumber( 'ur_ec_p4_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t2_br', 0 ); data.SetNumber( 'ur_ec_p4_t2_sr', 0 ); data.SetNumber( 'ur_ec_p4_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t3_br', 0 ); data.SetNumber( 'ur_ec_p4_t3_sr', 0 ); data.SetNumber( 'ur_ec_p4_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t4_br', 0 ); data.SetNumber( 'ur_ec_p4_t4_sr', 0 ); data.SetNumber( 'ur_ec_p4_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t5_br', 0 ); data.SetNumber( 'ur_ec_p4_t5_sr', 0 ); data.SetNumber( 'ur_ec_p4_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p4_t6_br', 0 ); data.SetNumber( 'ur_ec_p4_t6_sr', 0 ); data.SetNumber( 'ur_ec_p4_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t1_br', 0 ); data.SetNumber( 'ur_ec_p5_t1_sr', 0 ); data.SetNumber( 'ur_ec_p5_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t2_br', 0 ); data.SetNumber( 'ur_ec_p5_t2_sr', 0 ); data.SetNumber( 'ur_ec_p5_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t3_br', 0 ); data.SetNumber( 'ur_ec_p5_t3_sr', 0 ); data.SetNumber( 'ur_ec_p5_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t4_br', 0 ); data.SetNumber( 'ur_ec_p5_t4_sr', 0 ); data.SetNumber( 'ur_ec_p5_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t5_br', 0 ); data.SetNumber( 'ur_ec_p5_t5_sr', 0 ); data.SetNumber( 'ur_ec_p5_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p5_t6_br', 0 ); data.SetNumber( 'ur_ec_p5_t6_sr', 0 ); data.SetNumber( 'ur_ec_p5_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t1_br', 0 ); data.SetNumber( 'ur_ec_p6_t1_sr', 0 ); data.SetNumber( 'ur_ec_p6_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t2_br', 0 ); data.SetNumber( 'ur_ec_p6_t2_sr', 0 ); data.SetNumber( 'ur_ec_p6_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t3_br', 0 ); data.SetNumber( 'ur_ec_p6_t3_sr', 0 ); data.SetNumber( 'ur_ec_p6_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t4_br', 0 ); data.SetNumber( 'ur_ec_p6_t4_sr', 0 ); data.SetNumber( 'ur_ec_p6_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t5_br', 0 ); data.SetNumber( 'ur_ec_p6_t5_sr', 0 ); data.SetNumber( 'ur_ec_p6_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p6_t6_br', 0 ); data.SetNumber( 'ur_ec_p6_t6_sr', 0 ); data.SetNumber( 'ur_ec_p6_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t1_br', 0 ); data.SetNumber( 'ur_ec_p7_t1_sr', 0 ); data.SetNumber( 'ur_ec_p7_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t2_br', 0 ); data.SetNumber( 'ur_ec_p7_t2_sr', 0 ); data.SetNumber( 'ur_ec_p7_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t3_br', 0 ); data.SetNumber( 'ur_ec_p7_t3_sr', 0 ); data.SetNumber( 'ur_ec_p7_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t4_br', 0 ); data.SetNumber( 'ur_ec_p7_t4_sr', 0 ); data.SetNumber( 'ur_ec_p7_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t5_br', 0 ); data.SetNumber( 'ur_ec_p7_t5_sr', 0 ); data.SetNumber( 'ur_ec_p7_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p7_t6_br', 0 ); data.SetNumber( 'ur_ec_p7_t6_sr', 0 ); data.SetNumber( 'ur_ec_p7_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t1_br', 0 ); data.SetNumber( 'ur_ec_p8_t1_sr', 0 ); data.SetNumber( 'ur_ec_p8_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t2_br', 0 ); data.SetNumber( 'ur_ec_p8_t2_sr', 0 ); data.SetNumber( 'ur_ec_p8_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t3_br', 0 ); data.SetNumber( 'ur_ec_p8_t3_sr', 0 ); data.SetNumber( 'ur_ec_p8_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t4_br', 0 ); data.SetNumber( 'ur_ec_p8_t4_sr', 0 ); data.SetNumber( 'ur_ec_p8_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t5_br', 0 ); data.SetNumber( 'ur_ec_p8_t5_sr', 0 ); data.SetNumber( 'ur_ec_p8_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p8_t6_br', 0 ); data.SetNumber( 'ur_ec_p8_t6_sr', 0 ); data.SetNumber( 'ur_ec_p8_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t1_br', 0 ); data.SetNumber( 'ur_ec_p9_t1_sr', 0 ); data.SetNumber( 'ur_ec_p9_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t2_br', 0 ); data.SetNumber( 'ur_ec_p9_t2_sr', 0 ); data.SetNumber( 'ur_ec_p9_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t3_br', 0 ); data.SetNumber( 'ur_ec_p9_t3_sr', 0 ); data.SetNumber( 'ur_ec_p9_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t4_br', 0 ); data.SetNumber( 'ur_ec_p9_t4_sr', 0 ); data.SetNumber( 'ur_ec_p9_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t5_br', 0 ); data.SetNumber( 'ur_ec_p9_t5_sr', 0 ); data.SetNumber( 'ur_ec_p9_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p9_t6_br', 0 ); data.SetNumber( 'ur_ec_p9_t6_sr', 0 ); data.SetNumber( 'ur_ec_p9_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t1_br', 0 ); data.SetNumber( 'ur_ec_p10_t1_sr', 0 ); data.SetNumber( 'ur_ec_p10_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t2_br', 0 ); data.SetNumber( 'ur_ec_p10_t2_sr', 0 ); data.SetNumber( 'ur_ec_p10_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t3_br', 0 ); data.SetNumber( 'ur_ec_p10_t3_sr', 0 ); data.SetNumber( 'ur_ec_p10_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t4_br', 0 ); data.SetNumber( 'ur_ec_p10_t4_sr', 0 ); data.SetNumber( 'ur_ec_p10_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t5_br', 0 ); data.SetNumber( 'ur_ec_p10_t5_sr', 0 ); data.SetNumber( 'ur_ec_p10_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p10_t6_br', 0 ); data.SetNumber( 'ur_ec_p10_t6_sr', 0 ); data.SetNumber( 'ur_ec_p10_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t1_br', 0 ); data.SetNumber( 'ur_ec_p11_t1_sr', 0 ); data.SetNumber( 'ur_ec_p11_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t2_br', 0 ); data.SetNumber( 'ur_ec_p11_t2_sr', 0 ); data.SetNumber( 'ur_ec_p11_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t3_br', 0 ); data.SetNumber( 'ur_ec_p11_t3_sr', 0 ); data.SetNumber( 'ur_ec_p11_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t4_br', 0 ); data.SetNumber( 'ur_ec_p11_t4_sr', 0 ); data.SetNumber( 'ur_ec_p11_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t5_br', 0 ); data.SetNumber( 'ur_ec_p11_t5_sr', 0 ); data.SetNumber( 'ur_ec_p11_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p11_t6_br', 0 ); data.SetNumber( 'ur_ec_p11_t6_sr', 0 ); data.SetNumber( 'ur_ec_p11_t6_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t1_br', 0 ); data.SetNumber( 'ur_ec_p12_t1_sr', 0 ); data.SetNumber( 'ur_ec_p12_t1_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t2_br', 0 ); data.SetNumber( 'ur_ec_p12_t2_sr', 0 ); data.SetNumber( 'ur_ec_p12_t2_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t3_br', 0 ); data.SetNumber( 'ur_ec_p12_t3_sr', 0 ); data.SetNumber( 'ur_ec_p12_t3_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t4_br', 0 ); data.SetNumber( 'ur_ec_p12_t4_sr', 0 ); data.SetNumber( 'ur_ec_p12_t4_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t5_br', 0 ); data.SetNumber( 'ur_ec_p12_t5_sr', 0 ); data.SetNumber( 'ur_ec_p12_t5_ub', 1e+038 ); data.SetNumber( 'ur_ec_p12_t6_br', 0 ); data.SetNumber( 'ur_ec_p12_t6_sr', 0 ); data.SetNumber( 'ur_ec_p12_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_enable', 0 ); data.SetMatrix( 'ur_dc_sched_weekday', [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ); data.SetMatrix( 'ur_dc_sched_weekend', [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ); data.SetNumber( 'ur_dc_p1_t1_dc', 0 ); data.SetNumber( 'ur_dc_p1_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t2_dc', 0 ); data.SetNumber( 'ur_dc_p1_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t3_dc', 0 ); data.SetNumber( 'ur_dc_p1_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t4_dc', 0 ); data.SetNumber( 'ur_dc_p1_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t5_dc', 0 ); data.SetNumber( 'ur_dc_p1_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p1_t6_dc', 0 ); data.SetNumber( 'ur_dc_p1_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t1_dc', 0 ); data.SetNumber( 'ur_dc_p2_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t2_dc', 0 ); data.SetNumber( 'ur_dc_p2_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t3_dc', 0 ); data.SetNumber( 'ur_dc_p2_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t4_dc', 0 ); data.SetNumber( 'ur_dc_p2_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t5_dc', 0 ); data.SetNumber( 'ur_dc_p2_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p2_t6_dc', 0 ); data.SetNumber( 'ur_dc_p2_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t1_dc', 0 ); data.SetNumber( 'ur_dc_p3_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t2_dc', 0 ); data.SetNumber( 'ur_dc_p3_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t3_dc', 0 ); data.SetNumber( 'ur_dc_p3_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t4_dc', 0 ); data.SetNumber( 'ur_dc_p3_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t5_dc', 0 ); data.SetNumber( 'ur_dc_p3_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p3_t6_dc', 0 ); data.SetNumber( 'ur_dc_p3_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t1_dc', 0 ); data.SetNumber( 'ur_dc_p4_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t2_dc', 0 ); data.SetNumber( 'ur_dc_p4_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t3_dc', 0 ); data.SetNumber( 'ur_dc_p4_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t4_dc', 0 ); data.SetNumber( 'ur_dc_p4_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t5_dc', 0 ); data.SetNumber( 'ur_dc_p4_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p4_t6_dc', 0 ); data.SetNumber( 'ur_dc_p4_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t1_dc', 0 ); data.SetNumber( 'ur_dc_p5_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t2_dc', 0 ); data.SetNumber( 'ur_dc_p5_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t3_dc', 0 ); data.SetNumber( 'ur_dc_p5_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t4_dc', 0 ); data.SetNumber( 'ur_dc_p5_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t5_dc', 0 ); data.SetNumber( 'ur_dc_p5_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p5_t6_dc', 0 ); data.SetNumber( 'ur_dc_p5_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t1_dc', 0 ); data.SetNumber( 'ur_dc_p6_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t2_dc', 0 ); data.SetNumber( 'ur_dc_p6_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t3_dc', 0 ); data.SetNumber( 'ur_dc_p6_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t4_dc', 0 ); data.SetNumber( 'ur_dc_p6_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t5_dc', 0 ); data.SetNumber( 'ur_dc_p6_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p6_t6_dc', 0 ); data.SetNumber( 'ur_dc_p6_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t1_dc', 0 ); data.SetNumber( 'ur_dc_p7_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t2_dc', 0 ); data.SetNumber( 'ur_dc_p7_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t3_dc', 0 ); data.SetNumber( 'ur_dc_p7_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t4_dc', 0 ); data.SetNumber( 'ur_dc_p7_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t5_dc', 0 ); data.SetNumber( 'ur_dc_p7_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p7_t6_dc', 0 ); data.SetNumber( 'ur_dc_p7_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t1_dc', 0 ); data.SetNumber( 'ur_dc_p8_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t2_dc', 0 ); data.SetNumber( 'ur_dc_p8_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t3_dc', 0 ); data.SetNumber( 'ur_dc_p8_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t4_dc', 0 ); data.SetNumber( 'ur_dc_p8_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t5_dc', 0 ); data.SetNumber( 'ur_dc_p8_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p8_t6_dc', 0 ); data.SetNumber( 'ur_dc_p8_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t1_dc', 0 ); data.SetNumber( 'ur_dc_p9_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t2_dc', 0 ); data.SetNumber( 'ur_dc_p9_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t3_dc', 0 ); data.SetNumber( 'ur_dc_p9_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t4_dc', 0 ); data.SetNumber( 'ur_dc_p9_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t5_dc', 0 ); data.SetNumber( 'ur_dc_p9_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p9_t6_dc', 0 ); data.SetNumber( 'ur_dc_p9_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t1_dc', 0 ); data.SetNumber( 'ur_dc_p10_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t2_dc', 0 ); data.SetNumber( 'ur_dc_p10_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t3_dc', 0 ); data.SetNumber( 'ur_dc_p10_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t4_dc', 0 ); data.SetNumber( 'ur_dc_p10_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t5_dc', 0 ); data.SetNumber( 'ur_dc_p10_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p10_t6_dc', 0 ); data.SetNumber( 'ur_dc_p10_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t1_dc', 0 ); data.SetNumber( 'ur_dc_p11_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t2_dc', 0 ); data.SetNumber( 'ur_dc_p11_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t3_dc', 0 ); data.SetNumber( 'ur_dc_p11_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t4_dc', 0 ); data.SetNumber( 'ur_dc_p11_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t5_dc', 0 ); data.SetNumber( 'ur_dc_p11_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p11_t6_dc', 0 ); data.SetNumber( 'ur_dc_p11_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t1_dc', 0 ); data.SetNumber( 'ur_dc_p12_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t2_dc', 0 ); data.SetNumber( 'ur_dc_p12_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t3_dc', 0 ); data.SetNumber( 'ur_dc_p12_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t4_dc', 0 ); data.SetNumber( 'ur_dc_p12_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t5_dc', 0 ); data.SetNumber( 'ur_dc_p12_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_p12_t6_dc', 0 ); data.SetNumber( 'ur_dc_p12_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t1_dc', 0 ); data.SetNumber( 'ur_dc_jan_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t2_dc', 0 ); data.SetNumber( 'ur_dc_jan_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t3_dc', 0 ); data.SetNumber( 'ur_dc_jan_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t4_dc', 0 ); data.SetNumber( 'ur_dc_jan_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t5_dc', 0 ); data.SetNumber( 'ur_dc_jan_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_jan_t6_dc', 0 ); data.SetNumber( 'ur_dc_jan_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t1_dc', 0 ); data.SetNumber( 'ur_dc_feb_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t2_dc', 0 ); data.SetNumber( 'ur_dc_feb_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t3_dc', 0 ); data.SetNumber( 'ur_dc_feb_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t4_dc', 0 ); data.SetNumber( 'ur_dc_feb_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t5_dc', 0 ); data.SetNumber( 'ur_dc_feb_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_feb_t6_dc', 0 ); data.SetNumber( 'ur_dc_feb_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t1_dc', 0 ); data.SetNumber( 'ur_dc_mar_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t2_dc', 0 ); data.SetNumber( 'ur_dc_mar_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t3_dc', 0 ); data.SetNumber( 'ur_dc_mar_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t4_dc', 0 ); data.SetNumber( 'ur_dc_mar_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t5_dc', 0 ); data.SetNumber( 'ur_dc_mar_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_mar_t6_dc', 0 ); data.SetNumber( 'ur_dc_mar_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t1_dc', 0 ); data.SetNumber( 'ur_dc_apr_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t2_dc', 0 ); data.SetNumber( 'ur_dc_apr_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t3_dc', 0 ); data.SetNumber( 'ur_dc_apr_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t4_dc', 0 ); data.SetNumber( 'ur_dc_apr_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t5_dc', 0 ); data.SetNumber( 'ur_dc_apr_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_apr_t6_dc', 0 ); data.SetNumber( 'ur_dc_apr_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t1_dc', 0 ); data.SetNumber( 'ur_dc_may_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t2_dc', 0 ); data.SetNumber( 'ur_dc_may_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t3_dc', 0 ); data.SetNumber( 'ur_dc_may_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t4_dc', 0 ); data.SetNumber( 'ur_dc_may_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t5_dc', 0 ); data.SetNumber( 'ur_dc_may_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_may_t6_dc', 0 ); data.SetNumber( 'ur_dc_may_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t1_dc', 0 ); data.SetNumber( 'ur_dc_jun_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t2_dc', 0 ); data.SetNumber( 'ur_dc_jun_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t3_dc', 0 ); data.SetNumber( 'ur_dc_jun_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t4_dc', 0 ); data.SetNumber( 'ur_dc_jun_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t5_dc', 0 ); data.SetNumber( 'ur_dc_jun_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_jun_t6_dc', 0 ); data.SetNumber( 'ur_dc_jun_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t1_dc', 0 ); data.SetNumber( 'ur_dc_jul_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t2_dc', 0 ); data.SetNumber( 'ur_dc_jul_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t3_dc', 0 ); data.SetNumber( 'ur_dc_jul_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t4_dc', 0 ); data.SetNumber( 'ur_dc_jul_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t5_dc', 0 ); data.SetNumber( 'ur_dc_jul_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_jul_t6_dc', 0 ); data.SetNumber( 'ur_dc_jul_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t1_dc', 0 ); data.SetNumber( 'ur_dc_aug_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t2_dc', 0 ); data.SetNumber( 'ur_dc_aug_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t3_dc', 0 ); data.SetNumber( 'ur_dc_aug_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t4_dc', 0 ); data.SetNumber( 'ur_dc_aug_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t5_dc', 0 ); data.SetNumber( 'ur_dc_aug_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_aug_t6_dc', 0 ); data.SetNumber( 'ur_dc_aug_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t1_dc', 0 ); data.SetNumber( 'ur_dc_sep_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t2_dc', 0 ); data.SetNumber( 'ur_dc_sep_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t3_dc', 0 ); data.SetNumber( 'ur_dc_sep_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t4_dc', 0 ); data.SetNumber( 'ur_dc_sep_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t5_dc', 0 ); data.SetNumber( 'ur_dc_sep_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_sep_t6_dc', 0 ); data.SetNumber( 'ur_dc_sep_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t1_dc', 0 ); data.SetNumber( 'ur_dc_oct_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t2_dc', 0 ); data.SetNumber( 'ur_dc_oct_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t3_dc', 0 ); data.SetNumber( 'ur_dc_oct_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t4_dc', 0 ); data.SetNumber( 'ur_dc_oct_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t5_dc', 0 ); data.SetNumber( 'ur_dc_oct_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_oct_t6_dc', 0 ); data.SetNumber( 'ur_dc_oct_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t1_dc', 0 ); data.SetNumber( 'ur_dc_nov_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t2_dc', 0 ); data.SetNumber( 'ur_dc_nov_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t3_dc', 0 ); data.SetNumber( 'ur_dc_nov_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t4_dc', 0 ); data.SetNumber( 'ur_dc_nov_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t5_dc', 0 ); data.SetNumber( 'ur_dc_nov_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_nov_t6_dc', 0 ); data.SetNumber( 'ur_dc_nov_t6_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t1_dc', 0 ); data.SetNumber( 'ur_dc_dec_t1_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t2_dc', 0 ); data.SetNumber( 'ur_dc_dec_t2_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t3_dc', 0 ); data.SetNumber( 'ur_dc_dec_t3_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t4_dc', 0 ); data.SetNumber( 'ur_dc_dec_t4_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t5_dc', 0 ); data.SetNumber( 'ur_dc_dec_t5_ub', 1e+038 ); data.SetNumber( 'ur_dc_dec_t6_dc', 0 ); data.SetNumber( 'ur_dc_dec_t6_ub', 1e+038 ); module = SSC.Module('utilityrate3'); if (module.Exec(data)) salespurchases = data.GetArray('year1_monthly_salespurchases'); ns = data.GetNumber('savings_year1'); names{end+1} = 'ear 1 monthly sales/purchases with system : '; for i = 1:size(salespurchases) names{end+1} = sprintf('[%d]: $%g', i,salespurchases(i)); end names{end+1} = sprintf('Net savings : $%g', ns); names{end+1} = 'UtilityRate3 example OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'UtilityRate3 example failed'; end set(handles.txtData,'String',names); % --- Executes on button press in btnCashLoan. function btnCashLoan_Callback(hObject, eventdata, handles) % hObject handle to btnCashLoan (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %cashloan compute module call from 2014.11.24 "Photovoltaic, Residential" configuration names={}; data = SSC.Data(); data.SetNumber( 'analysis_period', 25 ); data.SetNumber( 'federal_tax_rate', 30 ); data.SetNumber( 'state_tax_rate', 7 ); data.SetNumber( 'property_tax_rate', 1 ); data.SetNumber( 'prop_tax_cost_assessed_percent', 100 ); data.SetNumber( 'prop_tax_assessed_decline', 0 ); data.SetNumber( 'sales_tax_rate', 5 ); data.SetNumber( 'real_discount_rate', 5.5 ); data.SetNumber( 'inflation_rate', 2.5 ); data.SetNumber( 'insurance_rate', 1 ); data.SetNumber( 'system_capacity', 3.8745 ); data.SetNumber( 'loan_term', 25 ); data.SetNumber( 'loan_rate', 5 ); data.SetNumber( 'debt_fraction', 100 ); data.SetArray( 'om_fixed', [ 0 ] ); data.SetNumber( 'om_fixed_escal', 0 ); data.SetArray( 'om_production', [ 0 ] ); data.SetNumber( 'om_production_escal', 0 ); data.SetArray( 'om_capacity', [ 20 ] ); data.SetNumber( 'om_capacity_escal', 0 ); data.SetArray( 'om_fuel_cost', [ 0 ] ); data.SetNumber( 'om_fuel_cost_escal', 0 ); data.SetNumber( 'itc_fed_amount', 0 ); data.SetNumber( 'itc_fed_amount_deprbas_fed', 1 ); data.SetNumber( 'itc_fed_amount_deprbas_sta', 1 ); data.SetNumber( 'itc_sta_amount', 0 ); data.SetNumber( 'itc_sta_amount_deprbas_fed', 0 ); data.SetNumber( 'itc_sta_amount_deprbas_sta', 0 ); data.SetNumber( 'itc_fed_percent', 30 ); data.SetNumber( 'itc_fed_percent_maxvalue', 1e+038 ); data.SetNumber( 'itc_fed_percent_deprbas_fed', 1 ); data.SetNumber( 'itc_fed_percent_deprbas_sta', 1 ); data.SetNumber( 'itc_sta_percent', 25 ); data.SetNumber( 'itc_sta_percent_maxvalue', 1e+038 ); data.SetNumber( 'itc_sta_percent_deprbas_fed', 0 ); data.SetNumber( 'itc_sta_percent_deprbas_sta', 0 ); data.SetArray( 'ptc_fed_amount', [ 0 ] ); data.SetNumber( 'ptc_fed_term', 10 ); data.SetNumber( 'ptc_fed_escal', 0 ); data.SetArray( 'ptc_sta_amount', [ 0 ] ); data.SetNumber( 'ptc_sta_term', 10 ); data.SetNumber( 'ptc_sta_escal', 0 ); data.SetNumber( 'ibi_fed_amount', 0 ); data.SetNumber( 'ibi_fed_amount_tax_fed', 1 ); data.SetNumber( 'ibi_fed_amount_tax_sta', 1 ); data.SetNumber( 'ibi_fed_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_fed_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_sta_amount', 0 ); data.SetNumber( 'ibi_sta_amount_tax_fed', 1 ); data.SetNumber( 'ibi_sta_amount_tax_sta', 1 ); data.SetNumber( 'ibi_sta_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_sta_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_uti_amount', 0 ); data.SetNumber( 'ibi_uti_amount_tax_fed', 1 ); data.SetNumber( 'ibi_uti_amount_tax_sta', 1 ); data.SetNumber( 'ibi_uti_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_uti_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_oth_amount', 0 ); data.SetNumber( 'ibi_oth_amount_tax_fed', 1 ); data.SetNumber( 'ibi_oth_amount_tax_sta', 1 ); data.SetNumber( 'ibi_oth_amount_deprbas_fed', 0 ); data.SetNumber( 'ibi_oth_amount_deprbas_sta', 0 ); data.SetNumber( 'ibi_fed_percent', 0 ); data.SetNumber( 'ibi_fed_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_fed_percent_tax_fed', 1 ); data.SetNumber( 'ibi_fed_percent_tax_sta', 1 ); data.SetNumber( 'ibi_fed_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_fed_percent_deprbas_sta', 0 ); data.SetNumber( 'ibi_sta_percent', 0 ); data.SetNumber( 'ibi_sta_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_sta_percent_tax_fed', 1 ); data.SetNumber( 'ibi_sta_percent_tax_sta', 1 ); data.SetNumber( 'ibi_sta_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_sta_percent_deprbas_sta', 0 ); data.SetNumber( 'ibi_uti_percent', 0 ); data.SetNumber( 'ibi_uti_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_uti_percent_tax_fed', 1 ); data.SetNumber( 'ibi_uti_percent_tax_sta', 1 ); data.SetNumber( 'ibi_uti_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_uti_percent_deprbas_sta', 0 ); data.SetNumber( 'ibi_oth_percent', 0 ); data.SetNumber( 'ibi_oth_percent_maxvalue', 1e+038 ); data.SetNumber( 'ibi_oth_percent_tax_fed', 1 ); data.SetNumber( 'ibi_oth_percent_tax_sta', 1 ); data.SetNumber( 'ibi_oth_percent_deprbas_fed', 0 ); data.SetNumber( 'ibi_oth_percent_deprbas_sta', 0 ); data.SetNumber( 'cbi_fed_amount', 0 ); data.SetNumber( 'cbi_fed_maxvalue', 1e+038 ); data.SetNumber( 'cbi_fed_tax_fed', 1 ); data.SetNumber( 'cbi_fed_tax_sta', 1 ); data.SetNumber( 'cbi_fed_deprbas_fed', 0 ); data.SetNumber( 'cbi_fed_deprbas_sta', 0 ); data.SetNumber( 'cbi_sta_amount', 0 ); data.SetNumber( 'cbi_sta_maxvalue', 1e+038 ); data.SetNumber( 'cbi_sta_tax_fed', 1 ); data.SetNumber( 'cbi_sta_tax_sta', 1 ); data.SetNumber( 'cbi_sta_deprbas_fed', 0 ); data.SetNumber( 'cbi_sta_deprbas_sta', 0 ); data.SetNumber( 'cbi_uti_amount', 0 ); data.SetNumber( 'cbi_uti_maxvalue', 1e+038 ); data.SetNumber( 'cbi_uti_tax_fed', 1 ); data.SetNumber( 'cbi_uti_tax_sta', 1 ); data.SetNumber( 'cbi_uti_deprbas_fed', 0 ); data.SetNumber( 'cbi_uti_deprbas_sta', 0 ); data.SetNumber( 'cbi_oth_amount', 0 ); data.SetNumber( 'cbi_oth_maxvalue', 1e+038 ); data.SetNumber( 'cbi_oth_tax_fed', 1 ); data.SetNumber( 'cbi_oth_tax_sta', 1 ); data.SetNumber( 'cbi_oth_deprbas_fed', 0 ); data.SetNumber( 'cbi_oth_deprbas_sta', 0 ); data.SetArray( 'pbi_fed_amount', [ 0 ] ); data.SetNumber( 'pbi_fed_term', 0 ); data.SetNumber( 'pbi_fed_escal', 0 ); data.SetNumber( 'pbi_fed_tax_fed', 1 ); data.SetNumber( 'pbi_fed_tax_sta', 1 ); data.SetArray( 'pbi_sta_amount', [ 0 ] ); data.SetNumber( 'pbi_sta_term', 0 ); data.SetNumber( 'pbi_sta_escal', 0 ); data.SetNumber( 'pbi_sta_tax_fed', 1 ); data.SetNumber( 'pbi_sta_tax_sta', 1 ); data.SetArray( 'pbi_uti_amount', [ 0 ] ); data.SetNumber( 'pbi_uti_term', 0 ); data.SetNumber( 'pbi_uti_escal', 0 ); data.SetNumber( 'pbi_uti_tax_fed', 1 ); data.SetNumber( 'pbi_uti_tax_sta', 1 ); data.SetArray( 'pbi_oth_amount', [ 0 ] ); data.SetNumber( 'pbi_oth_term', 0 ); data.SetNumber( 'pbi_oth_escal', 0 ); data.SetNumber( 'pbi_oth_tax_fed', 1 ); data.SetNumber( 'pbi_oth_tax_sta', 1 ); data.SetNumber( 'market', 0 ); data.SetNumber( 'mortgage', 1 ); data.SetNumber( 'total_installed_cost', 12746.7 ); data.SetNumber( 'salvage_percentage', 0 ); data.SetArray( 'annual_energy_value', [ 812.892, 832.234, 852.04, 872.322, 892.814, 913.738, 935.158, 957.085, 979.531, 1002.51, 1026.03, 1050.11, 1074.76, 1100, 1125.83, 1152.28, 1179.35, 1207.07, 1235.44, 1264.49, 1294.22, 1324.67, 1355.83, 1387.74, 1428.58 ] ); data.SetArray( 'hourly_energy', [ -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.237892, 1.55848, 2.07121, 2.54933, 2.77945, 2.42071, 1.25773, 0.593002, 0.235599, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0131131, 0.701084, 1.32711, 1.76305, 2.5502, 2.29087, 1.83336, 2.01766, 0.881524, 0.298536, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00528433, 0.737449, 1.51351, 2.14093, 2.39439, 2.32012, 1.83616, 0.712188, 0.32981, 0.087085, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.163208, 0.438056, 0.343575, 1.18182, 1.85202, 1.85609, 0.842696, 0.641464, 0.260647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298244, 0.0723487, 0.189837, 0.2028, 0.559363, 0.610891, 0.424415, 0.21567, 0.0438746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228363, 0.399806, 1.6819, 2.36102, 2.50324, 2.37421, 1.99454, 1.55301, 0.560049, 0.012407, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257482, 1.26562, 1.75789, 2.28831, 1.9963, 2.05102, 1.71107, 1.21754, 0.264943, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.531982, 1.2253, 1.74739, 2.31801, 2.38827, 2.23093, 1.90488, 1.21141, 0.498004, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00198372, 0.593078, 1.31965, 2.07685, 2.40343, 2.53277, 2.29068, 2.13211, 1.5245, 0.603361, 0.0113138, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0032201, 0.661057, 1.43, 2.03944, 2.29233, 2.56232, 2.47674, 2.22701, 1.32747, 0.482224, 0.0189405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.14109, 0.281369, 0.61837, 1.17956, 1.35886, 1.24448, 0.674592, 0.60305, 0.306165, 0.0125432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00466503, 0.668332, 1.4492, 2.1348, 2.45217, 2.67319, 2.67974, 2.32841, 1.71872, 0.753559, 0.0235207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.031651, 0.710846, 1.51631, 2.0761, 2.59069, 2.73589, 2.61101, 2.27566, 1.28793, 0.596088, 0.0825364, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0251314, 0.674564, 1.48159, 2.16343, 2.52639, 2.6672, 2.58934, 2.19609, 1.67186, 0.858018, 0.0881195, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.207666, 0.579903, 0.912926, 1.00532, 0.884244, 0.696492, 0.608002, 0.459878, 0.217412, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188015, 0.714458, 1.06288, 1.94864, 2.57486, 2.31493, 1.9987, 1.61288, 0.662761, 0.0476338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803296, 0.341384, 0.735301, 0.726501, 0.711979, 1.14964, 1.19626, 0.328706, 0.0181347, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0305592, 0.156043, 0.341021, 0.474378, 0.914521, 0.580048, 0.433983, 0.686068, 0.103174, 0.0121079, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0060497, 0.703844, 1.48762, 2.17949, 2.59902, 2.78725, 2.62568, 2.43746, 1.82643, 0.823967, 0.0825833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0158048, 0.702795, 1.61301, 2.33222, 2.67688, 2.8999, 2.90041, 2.53403, 1.93685, 0.855748, 0.0747284, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.523808, 1.61883, 2.32098, 2.57078, 2.77892, 2.55405, 2.36358, 1.7967, 0.825932, 0.0744693, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179379, 0.743217, 1.67058, 2.40603, 2.83378, 2.95908, 2.8987, 2.57699, 1.95782, 0.894908, 0.0864452, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0209617, 0.775254, 1.67189, 2.35763, 2.71016, 2.76434, 2.74124, 2.41092, 1.87865, 0.848176, 0.0809343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0518558, 0.766187, 1.66598, 2.2831, 2.66382, 2.84186, 2.73265, 2.48005, 1.87026, 1.04913, 0.183123, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.02225, 0.799729, 1.69815, 1.74506, 2.89107, 3.02621, 2.94313, 2.62588, 1.87551, 0.951237, 0.112167, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0256666, 0.747031, 1.61328, 2.20768, 2.59202, 2.81236, 2.77996, 2.41353, 1.92279, 0.651178, 0.124277, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00617361, 0.636098, 1.20967, 2.07618, 2.11638, 2.66892, 2.49594, 1.6139, 0.809756, 0.322557, 0.0374598, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3227, 1.28248, 2.55227, 2.75435, 2.56264, 1.83712, 2.17066, 1.50979, 0.754942, 0.137741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0211536, 0.731656, 1.56781, 2.22288, 2.54379, 2.73358, 2.61749, 2.25027, 1.58404, 0.641335, 0.0444765, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120561, 0.753942, 1.58639, 2.09348, 2.40988, 2.82317, 2.74801, 2.46944, 1.86985, 0.945149, 0.207441, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0464183, 0.69387, 1.56588, 2.09747, 2.1085, 1.67782, 1.826, 2.01889, 0.981731, 0.438836, 0.136136, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0521473, 0.773615, 1.65551, 2.26765, 2.6259, 2.82139, 2.72325, 2.49335, 1.8784, 1.07924, 0.227448, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0671193, 0.830364, 1.72201, 2.35263, 2.75282, 2.91385, 2.75284, 2.48439, 1.91677, 1.14569, 0.260342, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0473347, 0.585262, 1.62684, 2.28808, 1.7178, 2.71214, 2.29105, 0.924231, 1.16708, 0.272148, 0.0880208, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0342007, 0.638932, 1.42686, 1.88306, 2.20658, 1.79152, 1.62162, 0.690246, 0.524674, 0.310858, 0.0494554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.060942, 0.64943, 1.43918, 2.28859, 2.4677, 2.61078, 2.8912, 2.31511, 1.93241, 1.16167, 0.222327, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0556933, 0.690716, 1.47685, 2.1498, 2.60054, 2.8157, 2.71164, 2.45462, 1.72675, 0.820188, 0.175575, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0746355, 0.51225, 0.809798, 0.77761, 0.967812, 1.14769, 1.38166, 1.2552, 1.21951, 0.630871, 0.119638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0667311, 0.786457, 1.6966, 2.31386, 2.71669, 2.78051, 2.73365, 2.54435, 1.94229, 1.16229, 0.281953, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065812, 0.845292, 1.76217, 2.41753, 2.77411, 2.88281, 2.15553, 0.793721, 0.484992, 0.441506, 0.13502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0599431, 0.612415, 1.70107, 2.26915, 1.88099, 2.59508, 2.5845, 2.19306, 2.00529, 0.731647, 0.297952, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0790636, 0.811192, 1.61865, 2.18342, 2.67058, 2.76951, 2.84814, 2.54805, 1.98559, 1.19967, 0.30857, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0906775, 0.789972, 1.70023, 2.00477, 2.46167, 2.65024, 1.74838, 1.41502, 1.72101, 0.938604, 0.28449, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0724386, 0.702447, 0.868642, 0.546874, 2.14543, 1.31574, 0.82919, 1.22686, 0.897264, 0.500842, 0.0736991, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0201163, 0.128451, 0.300408, 0.76382, 0.915334, 1.68752, 1.28516, 2.06155, 1.53318, 0.94012, 0.167664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0389222, 0.180573, 0.613588, 0.758888, 0.51899, 1.17105, 1.06341, 0.93313, 0.73764, 0.569722, 0.0709034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0658192, 0.431479, 1.19453, 2.24483, 2.40198, 3.02736, 2.91366, 2.58129, 1.9729, 1.13816, 0.27833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.114606, 0.925966, 1.84552, 2.36439, 2.87467, 2.91533, 2.80996, 2.61612, 2.1303, 1.26343, 0.359798, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129498, 0.933003, 1.73591, 2.48908, 2.81416, 3.01391, 2.84047, 2.65169, 2.12741, 1.30098, 0.374405, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.157235, 1.02468, 1.90783, 2.65349, 2.98748, 3.06543, 2.94032, 2.64438, 2.18112, 1.37498, 0.390754, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822836, 0.897545, 1.82385, 2.05875, 2.70064, 2.67203, 2.56134, 2.32863, 1.99009, 1.31135, 0.349636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0811695, 0.920532, 1.56637, 2.43379, 2.65679, 3.13148, 3.25006, 2.87731, 1.17271, 0.480157, 0.1948, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181889, 1.03881, 2.03771, 2.65972, 3.12291, 3.27627, 3.2033, 2.83183, 2.18556, 1.43695, 0.461076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.183358, 1.07588, 1.96893, 2.63122, 3.01158, 3.06493, 3.0246, 2.80486, 2.22148, 1.39715, 0.455539, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.196156, 1.08146, 1.94145, 2.36668, 2.99154, 3.0687, 2.70037, 2.68487, 2.10532, 1.31872, 0.456283, 0.000657285, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113946, 0.551505, 1.65781, 2.18213, 2.14962, 2.72893, 2.81724, 2.40752, 1.84958, 1.05666, 0.245989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155523, 0.86744, 1.74231, 2.24297, 2.90425, 3.00904, 2.88222, 2.52595, 2.01596, 1.2348, 0.370649, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.20253, 1.08269, 1.98556, 2.13004, 2.4654, 2.72754, 2.38109, 2.11288, 1.52105, 1.14451, 0.333204, 0.00459637, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.154559, 0.95803, 1.79215, 2.42852, 2.78651, 2.78852, 2.7031, 2.42729, 2.00225, 1.21656, 0.385532, 0.00223397, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0916559, 0.549396, 0.75385, 2.22277, 2.12315, 1.40701, 1.31119, 1.46777, 1.35661, 0.926233, 0.34359, 0.0106012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0397063, 0.327252, 0.392382, 0.483877, 1.00748, 1.03345, 2.16925, 2.29605, 1.59847, 0.773749, 0.33413, 0.00651965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0787509, 0.506391, 0.831606, 1.75896, 2.63316, 2.87503, 2.59263, 2.69132, 2.15608, 1.3304, 0.424729, 0.00319275, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.261674, 1.15784, 2.05384, 2.69619, 3.02786, 3.19709, 3.17375, 2.86824, 2.30189, 1.48386, 0.534188, 0.0138144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.256328, 1.18148, 2.04045, 2.65444, 2.91485, 3.11753, 3.0243, 2.68981, 2.18902, 1.41382, 0.494521, 0.0134833, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.244045, 1.13313, 1.99179, 2.58184, 2.93921, 3.1217, 3.05008, 2.56994, 2.0232, 1.28437, 0.402903, 0.0178204, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266809, 1.15784, 1.91754, 2.55805, 2.88242, 2.99619, 3.00307, 2.5902, 1.81057, 1.19422, 0.47619, 0.0185877, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.040466, 0.230568, 0.309243, 0.582696, 0.646274, 0.6753, 1.33353, 0.569191, 0.482061, 0.317662, 0.116617, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.080749, 0.451759, 0.425689, 0.642428, 1.19467, 2.38699, 2.79147, 2.29211, 0.50947, 0.513716, 0.394361, 0.0107271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.317282, 1.21208, 2.12014, 2.62569, 3.00869, 3.21302, 3.1563, 2.79564, 2.2559, 1.48345, 0.545944, 0.0202432, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.26923, 1.13371, 1.96823, 2.55829, 2.69989, 2.88385, 2.65694, 2.32741, 1.81625, 1.2666, 0.331561, 0.0241534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.220531, 0.779394, 1.62667, 2.23521, 2.55763, 2.69444, 3.02501, 2.382, 1.97013, 1.29111, 0.297147, 0.0292915, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.336994, 1.20974, 1.86143, 2.32418, 2.49948, 2.82045, 2.32595, 2.59306, 2.10933, 1.43306, 0.535486, 0.0210137, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.3127, 1.18289, 1.90734, 2.46451, 2.91878, 3.01669, 2.93144, 2.41273, 2.14119, 1.30841, 0.485927, 0.024567, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.378011, 1.30699, 2.11861, 2.68462, 3.05483, 3.06153, 3.09706, 2.75535, 2.19957, 1.45378, 0.5578, 0.0276917, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.347243, 1.2271, 2.04089, 2.6192, 2.92527, 3.0189, 2.89591, 2.66876, 2.10579, 1.40257, 0.473208, 0.0229249, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000403494, 0.337658, 1.16051, 1.82589, 2.45538, 2.57733, 2.89009, 2.76417, 2.60689, 1.98839, 1.30573, 0.483454, 0.0211595, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00808479, 0.314223, 0.910464, 1.80632, 2.46236, 2.27492, 2.75766, 2.39879, 2.29447, 1.39087, 1.0941, 0.337407, 0.0271273, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00172127, 0.109056, 0.179196, 0.37062, 1.20613, 2.08287, 0.705299, 0.906088, 1.19809, 0.679673, 0.796208, 0.283034, 0.0252436, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0649632, 0.368292, 0.792937, 0.993877, 1.09533, 1.2053, 1.20991, 1.34161, 0.955249, 1.14, 0.382964, 0.0161921, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00881097, 0.207262, 0.916083, 1.71332, 2.83532, 2.64491, 3.34268, 3.15964, 2.65037, 2.11147, 1.3217, 0.547824, 0.034669, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011599, 0.440098, 1.35861, 2.09894, 2.4451, 3.05401, 2.942, 2.68885, 2.75181, 2.17083, 1.51662, 0.59046, 0.0282801, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177853, 0.405087, 1.21104, 2.01975, 2.36418, 3.00371, 2.9622, 2.21349, 1.44564, 1.52112, 0.816214, 0.483528, 0.0346759, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112733, 0.467786, 1.38389, 2.12949, 2.741, 2.73288, 3.15948, 3.11531, 2.77932, 2.24467, 1.48522, 0.587207, 0.0326499, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0141428, 0.43465, 1.31316, 2.09238, 2.6159, 2.90832, 3.01194, 2.95357, 2.65734, 2.14486, 1.33686, 0.483806, 0.0326749, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00889213, 0.315005, 0.958325, 0.798187, 1.93203, 0.912173, 1.94889, 3.20138, 2.51446, 2.19894, 1.45864, 0.60054, 0.0355296, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0288925, 0.471801, 1.37805, 2.13256, 2.53429, 2.89463, 3.05365, 3.09967, 2.81197, 2.29455, 1.39346, 0.577399, 0.0359271, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0184371, 0.510202, 1.42878, 2.15722, 2.72898, 3.09284, 3.229, 3.03457, 2.75948, 2.17573, 1.49261, 0.585832, 0.0395015, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148868, 0.536923, 1.45241, 2.2231, 2.77469, 3.1491, 3.1734, 3.02611, 2.55435, 2.09986, 1.31292, 0.554965, 0.0475305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0236629, 0.502378, 1.33382, 2.05257, 2.53122, 2.77383, 3.06528, 2.91351, 2.50308, 1.76945, 1.12408, 0.538006, 0.0450965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266797, 0.533507, 1.4479, 2.26204, 2.84049, 3.17678, 3.32571, 3.23657, 2.90545, 2.31084, 1.52298, 0.5994, 0.0447657, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0253841, 0.565154, 1.43935, 2.16465, 2.61938, 3.00398, 3.04388, 2.90682, 2.64879, 2.16171, 1.44131, 0.586497, 0.0399844, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0392779, 0.529717, 1.41222, 2.13948, 2.64051, 2.93131, 3.02475, 2.92114, 2.66524, 2.14606, 1.40554, 0.509182, 0.0440143, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0399866, 0.537241, 1.40124, 2.12679, 2.60461, 2.99403, 3.15687, 3.07992, 2.74554, 2.20116, 1.41404, 0.565366, 0.0478372, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0322141, 0.608073, 1.52175, 2.30897, 2.89622, 3.20449, 3.33122, 3.15288, 2.69974, 2.00487, 1.1623, 0.437806, 0.0718506, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0354949, 0.630341, 1.56012, 2.32286, 2.83081, 3.07942, 3.23508, 3.10054, 2.5652, 1.89407, 1.14653, 0.584859, 0.0707731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0548709, 0.536024, 1.46114, 2.27397, 2.7781, 3.06547, 3.13765, 3.03407, 2.74069, 2.18397, 1.44939, 0.588229, 0.0489847, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0405229, 0.652224, 1.57546, 2.31813, 2.79927, 3.11065, 3.19751, 3.08447, 2.77844, 2.17496, 1.30624, 0.50788, 0.0664955, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0609572, 0.626741, 1.46374, 2.06884, 2.60626, 2.92929, 3.04597, 2.93743, 2.6767, 2.1617, 1.42157, 0.575155, 0.0537245, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0569194, 0.536364, 1.20958, 1.88815, 2.1139, 2.11402, 2.28908, 2.19308, 2.07061, 1.81591, 1.23062, 0.518255, 0.0506118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0750783, 0.526686, 1.51303, 2.24141, 2.70579, 3.07067, 3.22044, 3.13129, 2.79936, 2.24669, 1.48998, 0.610699, 0.0526024, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.058005, 0.659603, 1.54682, 2.25896, 2.74218, 3.10186, 3.23616, 3.14822, 2.83675, 2.28725, 1.52222, 0.625084, 0.0534571, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0650978, 0.653472, 1.53213, 2.25282, 2.72627, 3.02882, 3.1423, 3.03596, 2.75289, 2.22356, 1.46622, 0.599287, 0.0587027, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0647384, 0.682668, 1.55742, 2.2204, 2.51572, 2.73816, 2.79876, 2.69893, 2.63468, 2.20494, 1.48071, 0.617379, 0.0542741, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0662758, 0.662644, 1.19351, 2.20201, 2.62177, 2.00008, 1.98446, 2.13843, 1.45937, 0.979667, 0.76762, 0.360797, 0.0794803, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0708823, 0.438068, 1.4136, 1.21455, 1.94576, 2.67061, 2.94195, 2.90573, 2.49822, 1.98532, 1.3096, 0.596536, 0.074317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0676154, 0.66044, 1.48344, 2.20409, 2.68566, 2.95263, 2.99171, 2.89686, 2.62648, 1.85678, 0.762592, 0.256873, 0.0516922, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735763, 0.681711, 1.53943, 2.26025, 2.76668, 3.08078, 3.18449, 3.07735, 2.76899, 2.21142, 1.45044, 0.576247, 0.0675459, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722196, 0.715952, 1.60383, 2.36278, 2.90965, 3.24567, 3.36799, 3.25055, 2.90777, 2.31158, 1.53354, 0.645628, 0.0574003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0858675, 0.71055, 1.44588, 1.61342, 1.61347, 2.65035, 3.17898, 2.99356, 2.18792, 1.23177, 0.625731, 0.388882, 0.0685941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0700062, 0.790228, 1.69931, 2.43393, 2.91848, 3.16941, 3.28006, 3.11227, 2.57059, 1.69833, 1.05156, 0.607487, 0.0504325, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0981146, 0.624676, 1.08738, 1.20998, 1.65829, 2.14022, 2.58157, 2.60387, 2.26207, 1.68797, 1.39096, 0.578985, 0.0590457, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.085902, 0.808598, 1.72312, 2.40023, 2.80219, 3.0116, 3.07193, 3.0028, 2.72769, 1.82679, 0.928683, 0.470704, 0.0869378, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0962456, 0.774851, 1.63656, 2.27717, 2.64756, 2.91136, 2.75283, 2.51511, 2.12374, 1.5262, 1.22164, 0.637387, 0.0651746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12208, 0.772775, 1.65919, 2.3125, 2.75844, 2.94242, 3.10179, 2.57348, 2.18172, 2.09362, 1.22624, 0.607346, 0.0558773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.109762, 0.757301, 1.60192, 2.2786, 2.69139, 3.01823, 3.1452, 3.0452, 2.72662, 2.1803, 1.43945, 0.612033, 0.049229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.10675, 0.797373, 1.66938, 2.37582, 2.85356, 3.12765, 3.17581, 3.02977, 2.73167, 2.20776, 1.48555, 0.641002, 0.0602119, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116645, 0.755499, 1.55861, 2.26803, 2.79243, 2.84688, 2.24335, 2.08348, 2.20779, 1.98175, 1.19437, 0.601086, 0.0864918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.122241, 0.797115, 1.67095, 2.35005, 2.87278, 3.0651, 3.12155, 2.75254, 2.28834, 1.7754, 1.06189, 0.450902, 0.0717686, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101894, 0.831542, 1.70191, 2.40867, 2.90902, 3.1729, 3.22909, 3.06804, 2.75855, 2.23902, 1.52088, 0.66733, 0.0509003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.112582, 0.831971, 1.69128, 2.37716, 2.84981, 3.08773, 3.13156, 2.98066, 2.70612, 2.20559, 1.49668, 0.654666, 0.0565775, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.129145, 0.807537, 1.64849, 2.32647, 2.81199, 2.84717, 3.11578, 2.7647, 2.5865, 2.06058, 1.38171, 0.610986, 0.0972929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.159398, 0.763961, 1.65229, 2.11526, 2.45448, 2.65856, 2.80733, 2.65771, 1.82989, 1.87144, 1.247, 0.619683, 0.0779092, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.143521, 0.787479, 1.60701, 2.26644, 2.71265, 2.98539, 3.05393, 2.92063, 2.63169, 2.12654, 1.42543, 0.623454, 0.0836456, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127846, 0.832122, 1.65227, 2.30008, 2.75441, 3.05248, 3.14783, 3.04817, 2.72575, 2.20136, 1.49123, 0.662025, 0.0608644, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.12921, 0.753355, 1.50469, 2.1567, 2.62023, 2.66214, 2.84622, 1.51219, 2.16284, 2.07225, 1.36593, 0.575431, 0.130153, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135647, 0.84252, 1.66633, 2.33516, 2.81382, 3.13956, 3.25637, 3.14925, 2.81955, 2.28168, 1.54681, 0.688536, 0.0682094, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00165914, 0.158257, 0.891535, 1.66063, 2.23236, 2.66644, 2.51164, 3.19894, 2.67346, 2.46674, 2.03028, 1.1353, 0.563678, 0.144014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.228252, 0.770962, 1.51878, 2.20541, 2.39687, 2.99418, 2.49508, 2.81298, 1.57403, 1.35384, 0.859823, 0.5316, 0.160225, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00210359, 0.171357, 0.682981, 1.72554, 2.33712, 2.65495, 3.01422, 2.80369, 2.85166, 2.50521, 2.07613, 0.927183, 0.535246, 0.121822, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00470825, 0.208109, 0.697719, 1.38214, 2.27311, 2.67732, 2.93912, 3.02113, 2.939, 2.69761, 2.21605, 1.53427, 0.689161, 0.0700752, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.188575, 0.812971, 1.58373, 2.18966, 2.4398, 2.52119, 2.74827, 2.16702, 2.28575, 1.1059, 0.951395, 0.463407, 0.130058, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00103133, 0.208934, 0.529844, 1.34709, 1.71067, 1.74444, 2.15295, 2.6936, 3.02927, 2.71354, 2.16063, 1.31071, 0.637204, 0.10814, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00411861, 0.173495, 0.857579, 1.5912, 1.88548, 2.54273, 2.91239, 3.03047, 2.85125, 2.67845, 2.08782, 1.44804, 0.680682, 0.141815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00298558, 0.208136, 0.77388, 1.51529, 1.96781, 2.68107, 2.91423, 2.9837, 3.02686, 2.70103, 2.16625, 1.4457, 0.651117, 0.119267, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00420348, 0.177532, 0.869816, 1.67987, 2.33923, 2.75394, 3.01352, 3.07211, 2.9521, 2.68093, 2.17199, 1.48601, 0.688324, 0.102701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00037804, 0.161727, 0.911264, 1.74062, 2.39848, 2.84942, 3.10467, 3.17958, 3.03841, 2.74816, 2.25293, 1.54944, 0.712441, 0.082845, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00722287, 0.18654, 0.846172, 1.63269, 2.28621, 2.76518, 3.02561, 3.08418, 2.94445, 2.64137, 2.13936, 1.45237, 0.669704, 0.107472, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0073604, 0.195552, 0.869899, 1.60564, 2.34285, 2.72922, 3.00171, 2.54619, 2.80817, 2.37255, 2.14998, 1.47301, 0.647853, 0.136282, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00998686, 0.195464, 0.817284, 1.58321, 2.21867, 2.63865, 2.90441, 2.97468, 2.86389, 2.54656, 2.04225, 1.37826, 0.638302, 0.125642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0100893, 0.212461, 0.846209, 1.40114, 1.66376, 2.51259, 2.52983, 2.91774, 2.75677, 2.36695, 2.01823, 1.43843, 0.625016, 0.0875731, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103211, 0.189596, 0.836327, 1.5929, 2.22834, 2.64641, 2.94496, 3.05147, 2.94914, 2.62605, 2.11873, 1.42873, 0.668804, 0.119774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00844064, 0.172512, 0.855141, 1.66765, 2.39908, 2.95615, 3.2106, 3.22918, 3.0931, 2.76159, 2.23, 1.52843, 0.72178, 0.105405, 0.00102409, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00879042, 0.172649, 0.908936, 1.72547, 2.35728, 2.77699, 3.0702, 3.17186, 3.07619, 2.75136, 2.24379, 1.55093, 0.734365, 0.0976701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00902068, 0.20316, 0.844992, 1.61049, 2.24806, 2.67335, 2.92833, 2.99831, 2.8712, 2.64821, 2.1726, 1.47415, 0.674886, 0.134395, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0105429, 0.169243, 0.889637, 1.68158, 2.2973, 2.66564, 2.95568, 3.0882, 3.00275, 2.6882, 2.19767, 1.5189, 0.72323, 0.0961988, 0.00138465, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103563, 0.174803, 0.888596, 1.67499, 2.2963, 2.70371, 2.92538, 2.97835, 2.84461, 2.57913, 2.11434, 1.47324, 0.70742, 0.0996139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00858938, 0.176313, 0.882133, 1.6595, 2.25836, 2.64365, 2.91095, 3.01304, 2.9115, 2.62185, 2.1453, 1.48293, 0.707107, 0.0985141, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0099618, 0.164097, 0.882342, 1.65443, 2.25296, 2.6526, 2.9143, 2.997, 2.915, 2.58918, 2.1007, 1.4532, 0.710263, 0.0926265, 0.00264106, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116669, 0.251722, 0.807634, 1.5043, 1.76167, 2.75289, 2.79941, 2.8398, 2.87009, 2.59008, 2.11509, 1.46723, 0.711563, 0.100572, 0.00270279, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.01159, 0.190915, 0.83593, 1.59379, 2.21854, 2.65663, 2.94373, 3.01026, 2.93374, 2.62922, 2.13328, 1.46042, 0.701619, 0.126912, 0.00279454, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116828, 0.167594, 0.886378, 1.66619, 2.27667, 2.68944, 2.93343, 2.98996, 2.87565, 2.63117, 2.17394, 1.52046, 0.740498, 0.101754, 0.00455638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0119045, 0.192339, 0.832221, 1.60926, 2.2468, 2.70341, 2.81328, 3.10612, 2.9649, 2.56929, 2.13696, 1.48744, 0.719687, 0.131981, 0.00328923, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012033, 0.168196, 0.884494, 1.64345, 2.29716, 2.74529, 2.95001, 3.08466, 2.99608, 2.49645, 2.18943, 1.54902, 0.718758, 0.154761, 0.00916451, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0103788, 0.173905, 0.85883, 1.6208, 2.21073, 2.66578, 2.88199, 2.97622, 2.8997, 2.66386, 2.14788, 1.5366, 0.760603, 0.11681, 0.00310701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0169434, 0.206844, 0.839549, 1.58902, 2.22687, 2.60443, 2.90569, 2.96443, 2.84728, 2.45616, 2.05874, 1.4573, 0.709309, 0.15923, 0.00707017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018367, 0.191745, 0.792261, 1.54615, 2.10934, 2.62511, 2.82193, 2.79861, 2.74191, 2.53946, 2.06565, 1.44359, 0.609218, 0.19961, 0.00678988, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0194048, 0.264724, 0.792298, 1.41527, 2.05339, 2.31867, 2.19959, 2.78049, 2.63426, 1.91259, 1.60584, 0.66961, 0.370011, 0.140473, 0.00520895, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0262043, 0.203434, 0.844303, 1.32285, 2.17294, 2.38622, 2.77567, 2.83142, 2.90035, 2.43399, 2.07689, 1.47882, 0.716914, 0.122516, 0.00419636, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0179313, 0.206407, 0.782456, 1.50386, 2.09514, 2.49642, 2.74182, 2.80607, 2.69275, 2.49633, 2.00002, 1.32843, 0.674167, 0.160247, 0.00962815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0149655, 0.196164, 0.807138, 1.54556, 2.11172, 2.56236, 2.79263, 2.66943, 2.59856, 2.43957, 2.05922, 1.44283, 0.71322, 0.172421, 0.0111287, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193062, 0.205699, 0.782122, 1.49777, 2.00565, 2.48795, 2.85162, 2.79092, 2.78895, 2.51879, 2.07275, 1.44178, 0.70049, 0.160372, 0.00998491, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0102114, 0.176229, 0.807035, 1.44791, 2.13029, 2.39885, 2.26312, 2.74658, 2.52566, 2.11521, 1.85449, 1.38553, 0.617648, 0.245118, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0152172, 0.19409, 0.37733, 0.885839, 0.954922, 0.578682, 0.997392, 0.728898, 1.19001, 1.04847, 0.563794, 0.716207, 0.435781, 0.175336, 0.0129026, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.000959363, 0.144046, 0.789758, 1.52023, 1.76547, 0.602784, 0.615986, 1.4068, 2.45622, 1.96302, 1.44963, 1.00825, 0.643477, 0.151699, 0.00977678, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.012024, 0.200452, 0.806475, 1.57281, 2.20809, 2.69486, 2.94436, 3.02981, 2.97768, 2.62376, 2.16768, 1.50908, 0.743206, 0.166434, 0.0121462, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0186774, 0.204083, 0.800783, 1.53792, 2.17033, 2.62381, 2.82746, 2.99521, 2.94267, 2.59681, 2.15403, 1.51751, 0.746394, 0.175029, 0.012288, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.015982, 0.192937, 0.843708, 1.61476, 2.22945, 2.71503, 2.97106, 3.06964, 2.9321, 2.6283, 2.14969, 1.50665, 0.763926, 0.163346, 0.0107528, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0120422, 0.182313, 0.83598, 1.60237, 2.21205, 2.67347, 2.84206, 2.98217, 2.84642, 2.60202, 2.1484, 1.53139, 0.770039, 0.156446, 0.00886176, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.011909, 0.181566, 0.823898, 1.56355, 2.16596, 2.59199, 2.83048, 2.9171, 2.86701, 2.59527, 2.1337, 1.50122, 0.755798, 0.156411, 0.0101431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00743233, 0.160124, 0.828795, 1.62435, 2.26407, 2.70487, 2.97282, 3.08021, 2.95172, 2.6151, 2.2121, 1.57448, 0.794359, 0.142596, 0.00649177, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0116903, 0.172864, 0.80786, 1.59841, 2.20876, 2.60883, 2.94353, 3.01587, 2.85442, 2.59657, 2.11983, 1.44909, 0.742567, 0.15165, 0.00845716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0167364, 0.164264, 0.810215, 1.58212, 2.23312, 2.54221, 2.98027, 3.03752, 2.93603, 2.65803, 2.15811, 1.53454, 0.778381, 0.140829, 0.00348851, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0146709, 0.192459, 0.752904, 1.4679, 2.12887, 2.58938, 2.89436, 2.98953, 2.888, 2.57102, 2.08723, 1.44693, 0.726154, 0.177611, 0.0144642, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00189165, 0.141457, 0.809742, 1.59418, 2.24783, 2.72107, 2.99185, 3.04199, 2.95036, 2.65736, 2.20351, 1.55265, 0.790919, 0.137065, 0.00282834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0113361, 0.168559, 0.782321, 1.52319, 2.15272, 2.59735, 2.80849, 2.95386, 2.78169, 2.50632, 2.0844, 1.28559, 0.802357, 0.194668, 0.0114317, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00575232, 0.144693, 0.798239, 1.5453, 2.08986, 2.54933, 2.85062, 2.91108, 2.85599, 2.60716, 2.14469, 1.5195, 0.778154, 0.145614, 0.00600712, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00576718, 0.146662, 0.787946, 1.53978, 2.11139, 2.58464, 2.73414, 2.84743, 2.89168, 2.60069, 2.12416, 1.50686, 0.780478, 0.146872, 0.00599902, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00960108, 0.162909, 0.753287, 1.46066, 2.02865, 2.43624, 2.70678, 2.8761, 2.79907, 2.5512, 2.07405, 1.46719, 0.748012, 0.161994, 0.0108115, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0143567, 0.168607, 0.755387, 1.42058, 2.08245, 2.50489, 2.84611, 2.86617, 2.82978, 2.56332, 2.117, 1.49347, 0.767142, 0.147512, 0.00590247, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00188139, 0.130137, 0.775081, 1.54065, 2.13983, 2.54417, 2.74039, 2.93018, 2.81115, 2.5921, 2.1365, 1.51411, 0.78615, 0.141675, 0.00892945, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00254457, 0.13345, 0.753354, 1.50679, 1.89094, 2.42934, 2.78811, 2.84742, 2.87708, 2.44763, 2.01129, 1.44028, 0.828007, 0.201246, 0.0188561, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0112877, 0.185095, 0.481712, 1.25281, 2.15442, 2.43126, 2.68642, 2.88882, 2.85456, 2.62765, 2.14612, 1.53909, 0.654715, 0.198077, 0.00660839, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168889, 0.523702, 0.716119, 1.26213, 1.78503, 2.11363, 2.54066, 2.5202, 2.30744, 2.10412, 1.36478, 0.790438, 0.0845819, 0.00253886, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0041946, 0.127578, 0.538535, 0.663227, 1.6302, 2.47425, 2.53213, 2.63215, 2.62422, 2.4561, 1.55462, 0.707734, 0.454021, 0.202391, 0.0041337, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.119956, 0.773787, 1.52834, 2.18996, 2.63159, 2.83895, 3.03025, 2.86949, 2.62024, 2.13344, 1.56567, 0.806336, 0.142918, 0.00295997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00707657, 0.178483, 0.715089, 1.53483, 2.22085, 2.63643, 2.82946, 3.00663, 2.94075, 2.65689, 2.17547, 1.56169, 0.808193, 0.186895, 0.00292767, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00874176, 0.159874, 0.78601, 1.50691, 2.15549, 2.29186, 2.6201, 3.0004, 2.89487, 2.30353, 2.16453, 1.52014, 0.790991, 0.173974, 0.010301, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00150322, 0.120923, 0.645635, 0.904701, 1.1991, 1.79465, 2.02966, 2.18285, 2.61717, 2.1586, 2.07884, 1.47669, 0.732479, 0.204133, 0.0117017, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00655917, 0.142552, 0.715533, 1.42854, 2.07253, 2.52103, 2.7711, 2.76447, 2.77237, 2.50935, 2.01069, 1.45613, 0.768901, 0.170406, 0.0110594, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00161599, 0.127996, 0.699287, 1.45847, 2.10445, 2.47082, 2.81339, 2.80009, 2.82546, 2.57653, 2.14616, 1.52376, 0.786867, 0.156082, 0.00606573, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00478923, 0.170454, 0.625092, 1.44531, 2.09083, 2.54226, 2.73922, 2.86666, 2.70376, 2.51737, 2.09586, 1.48395, 0.769685, 0.198551, 0.012664, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.181651, 0.703232, 1.40852, 1.95084, 2.44953, 2.76794, 2.87566, 2.83908, 2.54569, 2.10007, 1.50861, 0.806428, 0.225536, 0.015461, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0062447, 0.151059, 0.677188, 1.36565, 2.04982, 2.50734, 2.65012, 2.92033, 2.7558, 2.49916, 2.06071, 1.44766, 0.73727, 0.181134, 0.0126815, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.16457, 0.67161, 1.36785, 2.00689, 2.48041, 2.76038, 2.79268, 2.84055, 2.5241, 2.03042, 1.41445, 0.730137, 0.192148, 0.0142135, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00571395, 0.139913, 0.689706, 1.40722, 1.97493, 2.48386, 2.75286, 2.80076, 2.85889, 2.55625, 2.09031, 1.48889, 0.739887, 0.169346, 0.00864832, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00166953, 0.158131, 0.691401, 1.43124, 2.04207, 2.4929, 2.81061, 2.87438, 2.82588, 2.53593, 2.11409, 1.48313, 0.760553, 0.174872, 0.0113274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.167249, 0.715641, 1.45302, 2.03157, 2.45238, 2.6749, 2.79958, 2.73873, 2.5032, 2.07806, 1.47464, 0.753314, 0.171313, 0.00345076, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.168119, 0.680728, 1.39575, 1.94944, 2.37446, 2.7018, 2.90588, 2.76537, 2.62063, 2.11547, 1.49524, 0.761582, 0.166064, 0.00556377, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00175971, 0.142055, 0.672208, 1.38489, 1.92688, 2.25374, 2.91391, 2.96268, 2.86009, 2.62511, 2.13615, 1.44862, 0.624081, 0.201465, 0.0139778, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0942829, 0.664684, 1.40883, 2.05587, 2.52003, 2.80878, 2.81603, 2.86036, 2.58954, 2.14468, 1.49567, 0.747873, 0.195261, 0.0066746, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.131579, 0.683109, 1.38844, 2.07232, 2.53207, 2.84633, 2.87893, 2.83407, 2.58916, 2.12816, 1.483, 0.757693, 0.169989, 0.0100503, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.128115, 0.673371, 1.42376, 2.0583, 2.53754, 2.80192, 2.82906, 2.82699, 2.60079, 2.07233, 1.50145, 0.756233, 0.169976, 0.0085701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.133724, 0.587952, 1.33759, 1.96659, 2.35405, 2.60623, 2.68242, 2.51227, 2.3902, 1.58646, 1.38298, 0.521305, 0.171031, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.146961, 0.628935, 1.22642, 1.89497, 2.49727, 2.77543, 2.96307, 2.8014, 2.55317, 2.096, 1.43624, 0.729116, 0.183544, 0.0103431, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.127469, 0.653814, 1.39269, 2.05353, 2.54031, 2.81355, 2.6474, 2.67485, 2.30994, 1.27007, 1.18552, 0.701357, 0.201486, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.124022, 0.655698, 1.39615, 2.06531, 2.56278, 2.84877, 2.93388, 2.87197, 2.55063, 2.11825, 1.48594, 0.751302, 0.161569, 0.00656647, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.102619, 0.553095, 1.36301, 1.99205, 2.48061, 2.57212, 2.20375, 2.28307, 2.58216, 2.07553, 1.43113, 0.720885, 0.180626, 0.00335261, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.162652, 0.459857, 1.35947, 1.90372, 2.03607, 2.35772, 2.88379, 2.86554, 2.54593, 2.02175, 1.48485, 0.544905, 0.182212, 0.0156003, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.136938, 0.622721, 1.33026, 1.96376, 2.4275, 2.77337, 2.86327, 2.74461, 2.51973, 2.09937, 1.3309, 0.561994, 0.148311, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.161601, 0.590961, 1.19234, 1.90159, 2.34499, 2.57277, 2.83035, 2.63856, 2.51683, 2.15067, 1.5086, 0.751578, 0.169159, 0.00381326, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.141244, 0.530304, 0.89178, 1.91016, 2.12185, 1.06686, 1.25686, 1.14955, 1.97719, 2.07733, 1.19934, 0.76792, 0.195926, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.126832, 0.348834, 0.943124, 1.31568, 1.63363, 1.70356, 2.03719, 2.8068, 2.49034, 2.0989, 1.41598, 0.695838, 0.196975, 0.00995171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.074258, 0.668474, 1.42878, 2.04092, 2.46363, 2.77568, 2.90789, 2.85667, 2.58875, 2.14697, 1.51457, 0.756549, 0.115954, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.116311, 0.609867, 1.33565, 1.95423, 2.37513, 2.67292, 2.7793, 2.71764, 2.44125, 1.99745, 1.38292, 0.683056, 0.151377, 0.00207918, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874647, 0.667945, 1.44877, 2.06774, 2.46837, 2.79869, 2.94288, 2.88513, 2.59199, 2.11564, 1.47901, 0.740747, 0.124008, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0837679, 0.660728, 1.45207, 2.11303, 2.60186, 2.86842, 2.95123, 2.84262, 2.57428, 2.12009, 1.4934, 0.763431, 0.165689, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0866459, 0.226084, 0.570371, 0.980998, 1.294, 2.67212, 2.635, 2.7611, 2.39714, 2.08126, 1.41069, 0.69347, 0.160871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0961693, 0.648319, 1.24623, 2.00136, 2.40963, 2.39268, 2.76356, 2.80613, 2.44237, 2.05332, 1.53094, 0.684592, 0.158903, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.107103, 0.559653, 1.29924, 2.00332, 2.48873, 2.78445, 2.90023, 2.79688, 2.49159, 1.49476, 1.24237, 0.446324, 0.11537, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0718186, 0.655328, 1.4323, 2.05811, 2.49211, 2.81462, 2.94748, 2.89598, 2.61428, 1.98258, 1.34663, 0.704698, 0.140171, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.113979, 0.656228, 1.35447, 1.8262, 1.85056, 2.65712, 2.74365, 2.72849, 2.51911, 2.09129, 1.48118, 0.67837, 0.138897, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.082063, 0.632873, 1.39298, 2.04155, 2.48638, 2.77315, 2.90779, 2.84828, 2.58512, 2.11506, 1.46526, 0.674334, 0.127982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0967313, 0.592045, 1.34506, 1.99766, 2.49584, 2.79458, 2.90237, 2.82153, 2.55896, 2.03803, 1.25243, 0.620439, 0.108661, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0827799, 0.603722, 1.36288, 2.04741, 2.48221, 2.62087, 2.95841, 2.78688, 2.50242, 2.10942, 1.24134, 0.521986, 0.140146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0803725, 0.599322, 1.27525, 1.84746, 2.55023, 2.84104, 2.91807, 2.82879, 2.50682, 2.01673, 1.37841, 0.645786, 0.118179, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.135877, 0.519114, 1.18995, 1.29106, 1.68406, 2.42739, 2.95309, 2.7228, 2.41363, 1.81214, 1.38203, 0.643829, 0.0844544, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0822091, 0.607307, 1.38766, 2.09281, 2.6312, 2.93997, 3.04618, 2.93628, 2.62591, 2.1242, 1.4373, 0.661784, 0.104471, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.076813, 0.558857, 1.32431, 1.96676, 2.52178, 2.58148, 2.7145, 2.5459, 2.46563, 1.99722, 1.40924, 0.626723, 0.105159, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0988024, 0.564332, 1.58078, 1.222, 2.09311, 2.74267, 2.84595, 2.64055, 1.51563, 1.59465, 1.046, 0.602529, 0.0911578, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.110205, 0.47868, 1.10258, 1.79473, 2.56823, 2.72574, 2.9249, 2.89164, 2.56855, 2.05315, 1.50018, 0.694648, 0.0838305, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0685451, 0.638703, 1.40727, 1.96904, 2.52822, 2.88186, 3.06141, 2.93239, 1.47515, 1.86506, 0.926577, 0.452191, 0.0782871, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0722847, 0.41796, 1.24803, 1.84907, 2.33735, 2.73996, 2.88481, 2.80795, 2.5008, 2.00368, 1.32932, 0.585382, 0.0934257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0620534, 0.637852, 1.44444, 2.11819, 2.60091, 2.91, 3.02803, 2.93445, 2.63447, 2.12679, 1.44275, 0.642491, 0.0657356, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0635102, 0.631902, 1.44423, 2.11787, 2.56464, 2.86377, 2.96015, 2.86964, 2.57534, 2.10331, 1.42479, 0.625264, 0.0677029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0554671, 0.647978, 1.47487, 2.15173, 2.61273, 2.91647, 3.02239, 2.92615, 2.63165, 2.16127, 1.47707, 0.649939, 0.0625764, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0503483, 0.649665, 1.47861, 2.16345, 2.64379, 2.94089, 3.04917, 2.95254, 2.6485, 2.17476, 1.48682, 0.672714, 0.0733716, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0627893, 0.636756, 1.47251, 2.18105, 2.67914, 2.98696, 3.08861, 2.97281, 2.45133, 2.03769, 1.12903, 0.635381, 0.0789128, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530097, 0.530287, 1.09529, 1.53273, 2.31613, 2.64565, 2.90371, 2.80079, 2.42539, 2.00568, 1.24904, 0.545514, 0.0717802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0747693, 0.590976, 1.40428, 2.18842, 2.19527, 2.87198, 3.03146, 2.88684, 2.53442, 2.07439, 1.39176, 0.599792, 0.0487012, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0812483, 0.338995, 0.943231, 1.71032, 1.54293, 1.45803, 1.49048, 1.18458, 1.45548, 1.48231, 0.726116, 0.370422, 0.074907, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0706397, 0.298608, 0.693437, 0.868068, 1.057, 1.05774, 1.41603, 1.21317, 1.03131, 1.5055, 0.944799, 0.470658, 0.0560533, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0636706, 0.545125, 1.33769, 1.97976, 2.51285, 2.80972, 2.92788, 2.85001, 2.49735, 1.98661, 1.30084, 0.535294, 0.0551447, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0630137, 0.594556, 1.38777, 2.0452, 2.45512, 2.79113, 2.91576, 2.85015, 2.53687, 2.03114, 1.32904, 0.522692, 0.0458542, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0921235, 0.550202, 1.40824, 2.19814, 2.66854, 2.94437, 2.94621, 2.95156, 2.61668, 2.07645, 1.39212, 0.555749, 0.052243, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0598607, 0.607197, 1.49603, 2.15983, 2.53775, 2.78569, 3.0271, 2.80046, 2.55025, 1.98426, 1.28284, 0.504204, 0.0643534, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0488327, 0.234015, 1.13492, 1.50114, 1.49683, 1.58395, 1.77712, 1.48984, 1.15918, 0.698794, 0.381561, 0.177318, 0.0259773, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0543459, 0.251085, 0.70347, 1.37035, 1.9359, 1.47011, 1.26154, 1.28883, 1.05902, 0.712481, 0.460393, 0.316435, 0.0371834, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0546598, 0.589425, 1.43735, 1.99533, 2.61962, 2.94395, 2.97196, 2.94451, 2.6119, 2.0532, 1.37468, 0.52678, 0.0285464, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0491086, 0.640628, 1.48563, 2.12463, 2.63875, 2.57606, 2.90398, 2.89757, 2.51515, 2.08991, 1.36151, 0.52707, 0.0291493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.057458, 0.599789, 1.43109, 2.09432, 2.56615, 2.83044, 2.93551, 2.74055, 2.51022, 1.9941, 1.2709, 0.48947, 0.0341722, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495198, 0.551152, 1.35478, 1.92729, 2.50128, 2.77097, 2.86863, 2.72813, 2.33305, 1.32508, 0.869809, 0.401135, 0.0315517, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0472957, 0.626293, 1.47185, 2.06796, 2.63572, 2.86345, 2.97356, 2.85752, 2.48992, 1.949, 1.21548, 0.386919, 0.0444566, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0480247, 0.626677, 1.48318, 2.13373, 2.62443, 2.78464, 3.02881, 2.79645, 2.48874, 2.01162, 1.27846, 0.473634, 0.0176231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0485813, 0.625041, 1.47403, 2.1493, 2.57962, 2.7032, 2.81884, 2.79439, 2.46861, 1.98177, 1.16985, 0.444661, 0.0138774, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0476938, 0.626477, 1.46485, 2.18222, 2.53089, 2.88338, 2.57247, 2.82883, 2.42714, 1.91793, 1.26719, 0.451424, 0.0136338, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.062744, 0.534313, 1.28908, 1.39367, 1.70953, 1.92528, 1.4979, 1.25709, 1.56851, 0.460231, 0.433218, 0.271935, 0.0113341, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0507544, 0.631655, 1.52463, 2.23636, 2.61679, 2.77275, 3.09677, 2.90242, 2.5384, 1.98708, 1.26822, 0.444385, 0.0102497, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0467404, 0.631289, 1.49475, 2.21925, 2.67279, 3.02542, 3.0069, 2.88931, 2.55148, 1.86613, 0.98586, 0.306098, 0.0141028, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0468918, 0.63682, 1.48818, 1.91572, 2.57634, 2.86028, 3.12595, 2.93237, 2.02971, 1.53111, 0.970641, 0.292872, 0.00954183, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0530691, 0.278596, 0.710307, 1.75494, 1.93369, 2.59395, 2.1474, 2.08441, 2.4093, 1.64794, 0.707985, 0.176968, 0.00942944, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0225823, 0.257623, 1.15898, 1.27103, 1.36994, 2.44283, 2.53714, 2.57301, 2.45846, 1.71717, 1.21014, 0.384109, 0.0100996, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0490136, 0.619481, 1.40951, 2.07362, 2.59631, 2.93212, 2.88774, 2.88589, 2.44332, 1.34616, 1.01079, 0.360483, 0.0050239, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0477879, 0.557428, 1.40343, 2.0607, 2.529, 2.86509, 2.8957, 2.84587, 2.49531, 1.90849, 1.15014, 0.347369, 0.00786638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0456306, 0.566433, 1.40548, 2.08079, 2.53726, 2.90473, 2.90334, 2.7544, 2.48315, 1.90071, 1.13627, 0.333313, 0.00432551, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0411426, 0.538448, 1.31635, 2.06374, 2.55512, 2.7784, 2.76667, 2.7161, 2.37434, 1.75785, 1.05782, 0.298046, 0.00444154, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0398027, 0.506552, 1.31496, 2.01258, 2.50915, 2.80087, 2.82082, 2.68585, 2.31933, 1.75225, 1.01731, 0.276147, 0.0024794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0378068, 0.516439, 1.3237, 1.9844, 2.48721, 2.73089, 2.7913, 2.6349, 2.30522, 1.73333, 1.0191, 0.272984, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0326045, 0.486301, 1.28177, 1.99039, 2.5537, 2.84249, 2.90591, 2.75151, 2.37631, 1.76779, 0.997124, 0.25585, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.034152, 0.544521, 1.38959, 2.12458, 2.64752, 2.8682, 2.93068, 2.73509, 2.34177, 1.81129, 1.05311, 0.272257, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0298425, 0.51395, 1.34332, 2.03626, 2.5163, 2.78393, 2.88142, 2.71087, 2.24621, 1.71637, 0.989168, 0.248125, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0297438, 0.547156, 1.38585, 2.06845, 2.59857, 2.76403, 2.71168, 2.56308, 2.34846, 1.81275, 1.01775, 0.254424, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0312677, 0.571942, 1.41337, 2.14682, 2.61529, 2.81236, 2.83486, 2.69556, 2.38026, 1.80964, 1.02306, 0.258667, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.025711, 0.487116, 1.31046, 2.05953, 2.54594, 2.74182, 2.6669, 2.61398, 2.20409, 1.68644, 0.926109, 0.210592, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0266587, 0.500527, 1.33064, 2.02234, 2.46859, 2.79064, 2.89275, 2.76506, 2.38655, 1.77078, 0.957321, 0.203554, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0307606, 0.608462, 1.48234, 2.14578, 2.53649, 2.83935, 2.79254, 2.67611, 2.32918, 1.37529, 0.718783, 0.102789, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.257399, 0.596151, 0.618198, 0.932307, 1.11627, 1.80471, 1.49932, 1.98548, 1.62123, 0.887383, 0.216274, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0218172, 0.442436, 1.28418, 1.65119, 2.06324, 2.8153, 2.87248, 2.75972, 2.4213, 1.78608, 0.980408, 0.198545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0261191, 0.559828, 1.43129, 2.15606, 2.61832, 2.88192, 2.93259, 2.76611, 2.39472, 1.80714, 1.00123, 0.201638, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0181092, 0.47691, 1.32138, 2.04737, 2.53287, 2.77984, 2.81653, 2.61895, 2.24942, 1.65811, 0.875438, 0.157701, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0224252, 0.553886, 1.43116, 2.15292, 2.63295, 2.90992, 2.92236, 2.72355, 2.36874, 1.7821, 0.978402, 0.182788, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0217243, 0.557375, 1.43813, 2.14048, 2.6066, 2.9011, 2.9703, 2.81987, 2.40951, 1.79145, 0.982079, 0.183358, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0222415, 0.406559, 1.16532, 1.92261, 2.62899, 2.27091, 2.51093, 2.55803, 1.87459, 1.23276, 0.82378, 0.132736, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0030839, 0.273125, 0.612674, 1.10182, 0.97749, 2.44962, 2.69463, 2.61196, 2.31239, 1.52616, 0.695026, 0.131059, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193046, 0.535548, 1.32908, 1.89231, 2.3344, 2.66934, 2.69401, 2.40107, 1.63853, 1.07633, 0.414617, 0.09089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0148048, 0.503641, 1.36696, 2.09054, 2.58528, 2.83094, 2.85524, 2.6491, 2.2908, 1.68113, 0.87983, 0.142065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0159944, 0.537966, 1.41211, 2.11186, 2.56962, 2.81613, 2.8463, 2.66543, 2.29324, 1.70013, 0.89981, 0.151597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0177827, 0.533898, 1.39741, 2.08388, 2.52496, 2.7959, 2.86384, 2.70967, 2.2359, 1.66843, 0.830887, 0.108993, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0173678, 0.539237, 1.43478, 2.19422, 2.72179, 3.00315, 3.06528, 2.91423, 2.48262, 1.82169, 0.950397, 0.155545, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0122137, 0.506213, 1.25484, 2.02289, 2.60949, 2.828, 2.9454, 2.79542, 2.39521, 1.74633, 0.90908, 0.140715, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00567717, 0.447616, 1.32529, 2.10601, 2.644, 2.91506, 2.93069, 2.71282, 2.28833, 1.62227, 0.781972, 0.100374, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0071703, 0.516888, 1.41596, 2.15612, 2.68517, 2.92569, 2.94525, 2.7262, 2.31116, 1.67819, 0.854201, 0.123207, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.101196, 0.434654, 0.545021, 0.794965, 0.95079, 0.92709, 0.86511, 0.88412, 0.920948, 0.403239, 0.0604237, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0050214, 0.489133, 1.41237, 2.13215, 2.58094, 2.80843, 2.81482, 2.65557, 2.31325, 1.70511, 0.860183, 0.115029, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.442254, 1.32365, 2.05354, 2.53987, 2.80283, 2.83081, 2.63549, 2.22141, 1.58247, 0.752964, 0.0838618, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00183713, 0.487195, 1.38542, 2.0931, 2.56246, 2.79964, 2.82016, 2.62423, 2.25969, 1.64835, 0.807354, 0.0929453, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.471791, 1.36802, 2.08122, 2.55913, 2.79546, 2.81959, 2.62288, 2.23868, 1.62149, 0.790018, 0.0881965, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.393166, 1.12901, 2.05863, 2.55846, 2.80809, 2.81336, 2.58996, 2.18519, 1.55474, 0.741281, 0.0721062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.407826, 1.25917, 1.96763, 2.44053, 2.6883, 2.72273, 2.52256, 2.1136, 1.49186, 0.692521, 0.058705, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.398361, 1.16024, 2.08848, 2.55007, 2.80598, 2.5823, 2.44332, 2.02995, 1.34985, 0.640321, 0.0593084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.376962, 1.23655, 1.94699, 2.42332, 2.67406, 2.67149, 2.46828, 2.08312, 1.4677, 0.65628, 0.0459148, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.312774, 1.12192, 1.86186, 2.36585, 2.62563, 2.65369, 2.44513, 2.01941, 1.36887, 0.56475, 0.0318932, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.420878, 1.31407, 2.0436, 2.53299, 2.77703, 2.77311, 2.56259, 2.16614, 1.54495, 0.69607, 0.0605146, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.186864, 0.776643, 1.11296, 1.3613, 1.4029, 1.32843, 0.84702, 1.60913, 1.53424, 0.585114, 0.0554989, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.405553, 1.3055, 2.02312, 2.24511, 2.5698, 2.76645, 2.55523, 2.06375, 1.4647, 0.526674, 0.0397479, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.358718, 1.23943, 1.99361, 2.49416, 2.76228, 2.78153, 2.57349, 2.14329, 1.48199, 0.642622, 0.0408724, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.417752, 1.32241, 2.07576, 2.56725, 2.80036, 2.78979, 2.56726, 2.19757, 1.56693, 0.714042, 0.0545929, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.380177, 1.26324, 1.99454, 2.49506, 2.74882, 2.76952, 2.57879, 2.18151, 1.55321, 0.697511, 0.048516, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.339274, 1.22219, 1.98614, 2.51212, 2.75552, 2.75325, 2.50671, 1.82336, 1.3368, 0.35014, 0.0265505, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.155406, 0.709141, 1.46824, 1.72778, 1.40264, 2.32384, 1.24471, 0.905223, 0.825468, 0.25404, 0.0238229, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.234547, 0.524141, 1.01198, 1.96367, 1.48455, 1.53361, 1.54547, 1.45455, 1.49171, 0.69226, 0.0497781, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.314568, 1.17814, 1.95047, 2.48708, 2.7567, 2.80329, 2.61153, 2.13997, 1.45941, 0.615436, 0.034016, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.319608, 1.18896, 1.95159, 2.4745, 2.74224, 2.76041, 2.55106, 2.12011, 1.45609, 0.621564, 0.0360139, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.176389, 1.09475, 1.54706, 2.09934, 2.58656, 2.63709, 2.304, 1.8956, 1.24311, 0.555996, 0.0408867, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.337718, 1.22406, 1.99613, 2.48105, 2.75383, 2.76308, 2.5516, 2.14704, 1.49931, 0.652349, 0.0375473, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.268122, 1.11687, 1.92691, 2.39495, 2.63416, 2.50656, 2.31362, 1.96494, 1.45167, 0.606942, 0.0353997, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.169034, 0.70711, 1.51291, 1.79509, 2.33705, 2.31565, 1.96247, 1.80294, 1.13287, 0.410915, 0.00828084, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.209215, 0.99918, 1.68423, 2.37275, 2.6411, 2.68122, 2.4777, 2.01814, 1.36275, 0.56725, 0.0178318, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.274335, 1.13971, 1.89173, 2.36404, 2.61083, 2.65488, 2.45541, 1.94482, 1.26782, 0.435059, 0.0113625, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.266063, 1.13902, 1.89011, 2.35685, 2.63245, 2.65567, 2.46624, 2.06783, 1.41222, 0.568892, 0.0187401, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.103242, 0.449287, 0.641768, 1.14698, 2.02601, 2.09943, 1.83827, 1.45379, 0.647278, 0.29229, 0.0118034, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.158775, 0.965937, 1.65126, 2.18431, 2.45956, 2.49522, 2.29052, 1.89838, 1.24009, 0.444249, 0.00576343, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.267949, 1.13874, 1.88622, 2.37224, 2.63115, 2.66375, 2.46568, 2.06571, 1.42709, 0.600795, 0.0199062, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.200155, 1.0388, 1.80604, 2.31109, 2.5976, 2.48462, 2.37419, 1.93498, 1.31213, 0.490937, 0.00187941, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.211218, 1.07113, 1.84205, 2.32768, 2.61495, 2.65447, 2.46488, 2.06518, 1.40297, 0.562, 0.0096666, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0495723, 0.316007, 0.705406, 0.925945, 1.36558, 1.20527, 1.13828, 0.798454, 0.490275, 0.207794, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0960258, 0.461797, 0.799314, 1.66444, 1.83744, 2.17274, 1.99765, 1.33448, 1.17342, 0.390065, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0410012, 0.253314, 0.44846, 0.542014, 1.00671, 1.72451, 1.56988, 1.37945, 1.0103, 0.221834, 0.00297818, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.193052, 1.01274, 1.74808, 2.14129, 2.26798, 2.31485, 1.7443, 1.82873, 1.30264, 0.558156, 0.003089, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.177427, 0.960579, 1.69027, 2.31174, 2.53894, 2.53478, 2.26277, 1.94876, 1.36808, 0.552443, 0.0030694, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0735695, 0.386191, 0.500033, 1.01997, 1.82284, 1.64211, 2.22032, 1.45944, 0.817895, 0.211683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0270115, 0.330469, 0.704482, 1.15311, 1.11017, 1.43845, 1.42385, 0.787482, 0.418198, 0.208425, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0874109, 0.518723, 0.764813, 1.62588, 2.18347, 2.48146, 2.49381, 1.50128, 0.695467, 0.102454, 0.00175785, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.125392, 0.815936, 1.61683, 2.20125, 2.51928, 2.58707, 2.39184, 1.96382, 1.26507, 0.433267, 0.00343493, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.139731, 0.906014, 1.5118, 2.05165, 2.4631, 2.50325, 2.19475, 1.98331, 1.0871, 0.373263, 0.00635676, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0840508, 0.89122, 1.67306, 2.2444, 2.55379, 2.54926, 2.38309, 2.01112, 1.37717, 0.385584, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0806627, 0.896134, 1.6722, 2.09143, 2.50926, 2.6095, 2.49229, 2.09575, 1.43002, 0.419231, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0674048, 0.826869, 1.53305, 2.15252, 2.55022, 2.69385, 2.43524, 2.12164, 1.47643, 0.406549, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0728229, 0.93033, 1.65307, 2.36954, 2.72635, 2.78009, 2.54611, 2.13136, 1.445, 0.335429, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.065983, 0.836743, 1.66307, 2.02002, 2.25217, 2.04728, 1.31683, 1.44705, 0.520483, 0.152014, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0672768, 0.8701, 1.62945, 2.06665, 2.52923, 2.57851, 2.53364, 2.1891, 1.49987, 0.408982, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0704926, 0.921662, 1.80945, 2.36019, 2.69131, 2.71485, 2.49763, 2.13633, 1.12458, 0.159082, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.018072, 0.441738, 1.31287, 2.26044, 2.59563, 2.74967, 2.3883, 1.45722, 1.17082, 0.486192, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0575502, 0.862923, 1.75224, 2.23236, 2.565, 2.61853, 2.42698, 2.08496, 1.43983, 0.426276, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0486084, 0.85129, 1.63782, 2.22145, 2.54094, 2.59651, 2.40314, 2.05572, 1.44303, 0.391974, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.05928, 0.767469, 1.5819, 2.16771, 2.36594, 1.4439, 2.29927, 1.77709, 1.22857, 0.44854, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.191902, 0.442925, 1.05556, 1.56482, 0.916337, 0.894296, 0.307147, 0.350279, 0.0507144, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.081911, 0.809343, 1.41589, 2.16322, 2.55162, 2.42665, 2.39785, 1.86343, 0.861136, 0.301437, 0.00740766, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0228486, 0.596429, 1.41305, 2.01139, 1.54031, 2.31804, 2.13488, 1.45011, 1.14562, 0.302929, 0.00178418, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0043009, 0.190437, 0.456663, 0.774345, 0.706195, 0.750254, 0.227952, 0.347005, 0.296926, 0.0424597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00197333, 0.204573, 0.438987, 0.817599, 1.39033, 1.58748, 2.36097, 1.58063, 0.643465, 0.153036, 0.00123386, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0478906, 0.617714, 1.44506, 2.22169, 2.64015, 2.76753, 2.72533, 2.10653, 1.48583, 0.624074, 0.0140018, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0684115, 0.831108, 1.64862, 2.11006, 2.23473, 2.5439, 2.41996, 2.1085, 1.3753, 0.551184, 0.0141597, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0621342, 0.801802, 1.66097, 2.2744, 2.58507, 2.64147, 2.53203, 2.11848, 1.42249, 0.600005, 0.00850035, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0155231, 0.581836, 0.296733, 0.422429, 0.374893, 0.551731, 0.39159, 0.319519, 0.185209, 0.0673856, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.046428, 0.266905, 0.385405, 0.835716, 1.0922, 0.852107, 0.495775, 1.37224, 0.59438, 0.136954, 0.0061824, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0249813, 0.69457, 1.55655, 2.11814, 2.63947, 2.31963, 2.51107, 2.05978, 1.4301, 0.580408, 0.016515, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0273457, 0.710806, 1.58519, 2.29257, 2.6472, 2.72238, 2.59093, 2.1224, 1.29532, 0.587764, 0.00953753, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0460713, 0.376908, 1.00585, 1.95558, 1.64906, 2.57991, 2.60255, 2.28628, 1.63853, 0.765819, 0.0403367, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.00573357, 0.652154, 1.14825, 1.76315, 2.42017, 2.11687, 1.3265, 1.52103, 1.42792, 0.669677, 0.0299071, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0651526, 0.831276, 1.56939, 2.111, 2.42803, 2.39902, 2.57196, 2.28312, 1.63737, 0.744143, 0.0352433, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0193468, 0.415173, 1.3696, 1.41055, 1.83304, 2.2093, 1.35684, 1.81534, 1.26016, 0.453816, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0834133, 0.308908, 0.683149, 0.688705, 0.62197, 0.67926, 0.485344, 0.312526, 0.0695502, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0997101, 0.24553, 0.292913, 1.14435, 0.989543, 0.57329, 1.26016, 0.542071, 0.171351, 0.00539238, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.0481958, 0.778754, 1.47179, 2.1002, 2.02692, 2.59275, 2.56468, 2.08318, 1.48502, 0.770173, 0.0568852, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, 0.016664, 0.620281, 1.46676, 1.97059, 2.4413, 2.57254, 2.42621, 2.0301, 1.42493, 0.617651, 0.025802, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683, -0.0001683 ] ); data.SetArray( 'degradation', [ 0.5 ] ); data.SetNumber( 'system_use_lifetime_output', 0 ); module = SSC.Module('cashloan'); if (module.Exec(data)) lcoe = data.GetNumber('lcoe_nom'); npv = data.GetNumber('npv'); names{end+1} = sprintf('Levelized COE (nominal) : %g cents/kWh', lcoe); names{end+1} = sprintf('Net present value : $%g', npv); names{end+1} = 'CashLoan example OK'; else idx = 0; [result, msg, type, time] = module.Log(idx); while (result) names{end+1} = sprintf('[%s at time:%g ]: %s', type, time, msg); idx = idx + 1; [result, msg, type, time] = module.Log(idx); end names{end+1} = 'CashLoan example failed'; end set(handles.txtData,'String',names);
github
sergiocastellanos/switch_mexico_data-master
ssccall.m
.m
switch_mexico_data-master/SAM/SDK/languages/matlab/+SSC/ssccall.m
8,963
utf_8
61a4af2373d48538fcfc4a2dd42eda7c
function [result] = ssccall(action, arg0, arg1, arg2 ) % SAM Simulation Core (SSC) MATLAB API % Copyright (c) 2012 National Renewable Energy Laboratory % author: Aron P. Dobos and Steven H. Janzou % automatically detect architecture to load proper dll. [pathstr, fn, fext] = fileparts(mfilename('fullpath')); if ( strcmp(computer(), 'PCWIN') ) % Windows 32-bit ssclibpath = '../../../win32/'; ssclib = 'ssc'; elseif ( strcmp(computer(), 'PCWIN64') ) % Windows 64-bit ssclibpath = '../../../win64/'; ssclib = 'ssc'; elseif ( strcmp(computer(), 'MACI64') ) % Mac Intel 64-bit ssclibpath = '../../../osx64/'; ssclib = 'ssc'; elseif ( strcmp(computer(), 'GLNXA64') ) % Linux 64-bit ssclibpath = '../../../linux64/'; ssclib = 'ssc'; end % load proper ssc library for all functions if ~libisloaded(ssclib) oldFolder = cd(pathstr); loadlibrary(strcat(ssclibpath,ssclib),strcat(ssclibpath,'../sscapi.h')); cd(oldFolder); end if strcmp(action,'load') if ~libisloaded(ssclib) oldFolder = cd(pathstr); loadlibrary(strcat(ssclibpath,ssclib),strcat(ssclibpath,'../sscapi.h')); cd(oldFolder); end elseif strcmp(action,'unload') if libisloaded(ssclib) unloadlibrary(ssclib) end elseif strcmp(action,'version') result = calllib(ssclib,'ssc_version'); elseif strcmp(action,'build_info') result = calllib(ssclib, 'ssc_build_info'); elseif strcmp(action,'data_create') result = calllib(ssclib, 'ssc_data_create'); if ( isnullpointer(result) ) result = 0; end elseif strcmp(action,'data_free') result = calllib(ssclib, 'ssc_data_free', arg0); elseif strcmp(action,'data_unassign') result = calllib(ssclib, 'ssc_data_unassign', arg0, arg1); elseif strcmp(action,'data_query') result = calllib(ssclib, 'ssc_data_query', arg0, arg1 ); elseif strcmp(action,'data_first') result = calllib(ssclib, 'ssc_data_first', arg0 ); elseif strcmp(action,'data_next') result = calllib(ssclib, 'ssc_data_next', arg0 ); elseif strcmp(action,'data_set_string') result = calllib(ssclib, 'ssc_data_set_string', arg0, arg1, arg2 ); elseif strcmp(action,'data_set_number') result = calllib(ssclib, 'ssc_data_set_number', arg0, arg1, single(arg2) ); elseif strcmp(action,'data_set_array') len = length(arg2); arr = libpointer( 'singlePtr', arg2 ); result = calllib(ssclib,'ssc_data_set_array',arg0,arg1,arr,len); elseif strcmp(action,'data_set_matrix') [nr nc] = size(arg2); mat = zeros(nr*nc, 1); ii = 1; for r=1:nr, for c=1:nc, mat(ii) = arg2(r,c); ii=ii+1; end end arr = libpointer( 'singlePtr', mat ); result = calllib(ssclib,'ssc_data_set_matrix',arg0,arg1,arr,nr,nc); elseif strcmp(action,'data_set_table') result = calllib(ssclib,'ssc_data_set_table',arg0,arg1,arg2); elseif strcmp(action,'data_get_string') result = calllib(ssclib,'ssc_data_get_string',arg0,arg1); elseif strcmp(action,'data_get_number') p = libpointer('singlePtr',0); calllib(ssclib,'ssc_data_get_number', arg0,arg1,p); result = get(p,'Value'); elseif strcmp(action,'data_get_array') p_count = libpointer('int32Ptr',0); [xobj] = calllib(ssclib,'ssc_data_get_array',arg0,arg1,p_count); setdatatype(xobj,'int32Ptr',p_count.Value,1); len = p_count.Value; result = zeros( len, 1 ); for i=1:len, pidx = xobj+(i-1); setdatatype(pidx,'singlePtr',1,1); result(i) = pidx.Value; end elseif strcmp(action,'data_get_matrix') p_rows = libpointer('int32Ptr',0); p_cols = libpointer('int32Ptr',0); [xobj] = calllib(ssclib,'ssc_data_get_matrix',arg0,arg1,p_rows,p_cols); setdatatype(xobj,'int32Ptr',p_rows.Value*p_cols.Value,1); nrows = p_rows.Value; ncols = p_cols.Value; if ( nrows*ncols > 0 ) result = zeros( nrows, ncols ); ii=1; for r=1:nrows, for c=1:ncols, pidx = xobj+(ii-1); setdatatype(pidx,'singlePtr',1,1); result(r,c) = pidx.Value; ii=ii+1; end end end elseif strcmp(action,'data_get_table') result = calllib(ssclib,'ssc_data_get_table',arg0,arg1); elseif strcmp(action,'module_entry') result = calllib(ssclib,'ssc_module_entry',arg0); if isnullpointer( result ), result = 0; end elseif strcmp(action,'entry_name') result = calllib(ssclib,'ssc_entry_name',arg0); elseif strcmp(action,'entry_description') result = calllib(ssclib,'ssc_entry_description',arg0); elseif strcmp(action,'entry_version') result = calllib(ssclib,'ssc_entry_version',arg0); elseif strcmp(action,'module_var_info') result = calllib(ssclib,'ssc_module_var_info',arg0,arg1); if isnullpointer( result ), result = 0; end elseif strcmp(action,'info_var_type') ty = calllib(ssclib,'ssc_info_var_type',arg0); if (ty == 1) result = 'input'; elseif ( ty==2 ) result = 'output'; else result = 'inout'; end elseif strcmp(action,'info_data_type') dt = calllib(ssclib,'ssc_info_data_type',arg0); if (dt == 1) result = 'string'; elseif (dt == 2) result = 'number'; elseif (dt == 3) result = 'array'; elseif (dt == 4) result = 'matrix'; elseif (dt == 5) result = 'table'; else result = 'invalid'; end elseif strcmp(action,'info_name') result = calllib(ssclib,'ssc_info_name',arg0); elseif strcmp(action,'info_label') result = calllib(ssclib,'ssc_info_label',arg0); elseif strcmp(action,'info_units') result = calllib(ssclib,'ssc_info_units',arg0); elseif strcmp(action,'info_meta') result = calllib(ssclib,'ssc_info_meta',arg0); elseif strcmp(action,'info_group') result = calllib(ssclib,'ssc_info_group',arg0); elseif strcmp(action,'info_required') result = calllib(ssclib,'ssc_info_required',arg0); elseif strcmp(action,'info_constraints') result = calllib(ssclib,'ssc_info_constraints',arg0); elseif strcmp(action,'info_uihint') result = calllib(ssclib,'ssc_info_uihint',arg0); elseif strcmp(action,'exec_simple') result = calllib(ssclib,'ssc_module_exec_simple',arg0,arg1); elseif strcmp(action,'exec_simple_nothread') result = calllib(ssclib,'ssc_module_exec_simple_nothread',arg0,arg1); elseif strcmp(action,'module_create') result = calllib(ssclib,'ssc_module_create',arg0); if ( isnullpointer(result) ) result = 0; end elseif strcmp(action,'module_free') result = calllib(ssclib,'ssc_module_free',arg0); elseif strcmp(action,'module_exec') result = calllib(ssclib,'ssc_module_exec',arg0,arg1); elseif strcmp(action,'module_log') p_type = libpointer('int32Ptr',1); p_time = libpointer('singlePtr',1); result = calllib(ssclib,'ssc_module_log', arg0, arg1, p_type, p_time); elseif strcmp(action,'module_log_detailed') p_type = libpointer('int32Ptr',1); p_time = libpointer('singlePtr',1); text = calllib(ssclib,'ssc_module_log', arg0, arg1, p_type, p_time); typetext = 'notice'; if (p_type.Value == 2) typetext = 'warning'; elseif (p_type.Value == 3) typetext = 'error'; end if ( strcmp(text,'') ) result = 0; else result = {text , typetext , p_time.Value}; end else disp( sprintf('ssccall: invalid action %s', action) ); result = 0; end end function bb = isnullpointer(p) bb = false; try setdatatype(p, 'voidPtr', 1, 1); deref = get(p); catch e = lasterror(); if strcmp(e.identifier, 'MATLAB:libpointer:ValueNotDefined') bb = true; end end end
github
fizyr-forks/caffe-master
classification_demo.m
.m
caffe-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
nmovshov/CMS-planet-master
CMSPlanet.m
.m
CMS-planet-master/CMSPlanet.m
45,067
utf_8
5572d78661126b36c626c37bf3e4baf2
classdef CMSPlanet < handle %CMSPLANET Interior model of rotating fluid planet. % This class implements a model of a rotating fluid planet using % Concentric Maclaurin Spheroids to calculate the hydrostatic equilibrium % shape and resulting gravity field. A CMSPlanet object is defined by a % densiy profile rho(a), supplied by the user and stored in the column % vectors obj.ai and obj.rhoi, indexed from the surface in. To complete % the definition the user must also specify a mass, equatorial radius, % and rotation period. With these a gravity field and equilibrium shape % can be determined, with a call to obj.relax_to_HE(). Note, however, % that the oblate shape calculated with obj.relax_to_HE() preserves the % equatorial radius of the planet, but not the total mass. A call to % obj.renormalize() will multiply obj.rhoi by a constant to yield the % correct reference mass at the cost of modifying the assigned density. % It is not possible to define mass, radius, and density simultaneously. % % Alternatively the user may supply a barotrope object, stored in % obj.eos, and call obj.relax_to_barotrope() to iteratively find a % density profile consistent with the calculated equilibrium pressure. To % this end a boundary pressure must also be given, in obj.P0, and an % initial density profile guess is still required (can be a simple one). % Again, we can't simultaneously impose an exact mass, radius, and % barotrope. By default the reference mass and radius will be honored, by % renormalizing the converged density profile, and this will modify the % _effective_ barotrope (to override set obj.opts.renorm=false). %% Properties properties name % model name mass % reference mass radius % reference radius (equatorial!) period % refernce rotation period P0 % reference pressure ai % vector of equatorial radii (top down, a0=ai(1) is outer radius) rhoi % vector of layer densities eos % barotrope(s) (tip: help barotropes for options) bgeos % optional background barotrope fgeos % optional foreground barotrope opts % holds user configurable options (tip: help cmsset) end properties (SetAccess = private) N % convenience name for length(obj.ai) CMS % spheroid shape and other information returned by cms.m Js % external gravity coefficients (returned by cms.m) betam % mass renormalization factor returned by obj.renormalize() alfar % radius renormalization factor returned by obj.renormalize() end properties (Dependent) M % calculated mass (equal to mass *after* renorm) mi % cumulative mass below ai a0 % another name for obj.ai(1) s0 % calculated mean radius, another name for obj.si(1) si % calculated spheroid mean radii rhobar % calculated mean density wrot % rotation frequency, 2pi/period qrot % rotation parameter wrot^2a0^3/GM mrot % rotation parameter, wrot^2s0^3/GM J2 % convenience alias to obj.Js(2) J4 % convenience alias to obj.Js(3) J6 % convenience alias to obj.Js(4) J8 % convenience alias to obj.Js(5) end properties (GetAccess = private) G % Gravitational constant end %% A simple constructor methods function obj = CMSPlanet(varargin) % A simple constructor of CMSPlanet objects. % CMSPlanet('OPTION1', VALUE, 'OPTION2', VALUE2,...) % Populate options struct obj.opts = cmsset(varargin{:}); % Init privates obj.G = 6.67430e-11; % m^3 kg^-1 s^-2 (2018 NIST reference) end end % End of constructor block %% Public methods methods (Access = public) function obj = set_J_guess(obj, jlike) % Use with caution obj.CMS.JLike = jlike; end function obj = set_observables(obj, obs) % Copy physical properties from an +observables struct. obj.mass = obs.M; obj.radius = obs.a0; obj.period = obs.P; obj.P0 = obs.P0; try obj.bgeos = obs.bgeos; obj.fgeos = obs.fgeos; catch end end function ET = relax_to_barotrope(obj) % Relax equilibrium shape, Js, and density simultaneously. % First some checks. if isempty(obj.eos) warning('CMSPLANET:assertion',... 'Set valid barotrope first (<obj>.eos = <barotrope>).') return end if numel(obj.renormalize()) < 2 warning('CMSPLANET:assertion',... 'First set reference mass and equatorial radius.') return end if isempty(obj.qrot) warning('CMSPLANET:assertion',... 'First set rotation period (<obj>.period).') return end if isempty(obj.P0) warning('CMSPLANET:P0',... 'First set reference pressure (<obj>.P0).') return end % Optional communication verb = obj.opts.verbosity; if (verb > 0) fprintf('Relaxing to desired barotrope...\n\n') end % Ready, set,... warning('off','CMS:maxiter') t_rlx = tic; % Main loop iter = 1; while (iter <= obj.opts.MaxIterBar) t_pass = tic; if (verb > 0) fprintf('Baropass %d (of max %d)...\n',... iter, obj.opts.MaxIterBar) end old_Js = obj.Js; old_Js(abs(old_Js) < 1e-12) = 0; % a hack for nonrotating planets if isempty(old_Js) old_Js = [-1,zeros(1,15)]; end old_ro = obj.rhoi; % Call the cms algorithm if isempty(obj.CMS), obj.CMS.JLike = struct(); end [obj.Js, obj.CMS] = cms(obj.ai, obj.rhoi, obj.qrot,... 'tol',obj.opts.dJtol, 'maxiter',obj.opts.MaxIterHE,... 'xlayers', obj.opts.xlayers, 'J0s', obj.CMS.JLike,... 'prerat', obj.opts.prerat); % Update density from barotrope and renormalize obj.update_densities(); obj.renormalize(); % Calculate changes in shape/density dJs = abs((obj.Js - old_Js)./old_Js); dJs = max(dJs(isfinite(dJs(1:6)))); dro = obj.rhoi./old_ro; dro = var(dro(isfinite(dro))); if (verb > 0) fprintf('Baropass %d (of max %d)...done. (%g sec)\n',... iter, obj.opts.MaxIterBar, toc(t_pass)) fprintf('var(drho) = %g (%g required); dJ = %g (%g required).\n\n',... dro, obj.opts.drhotol, dJs, obj.opts.dJtol) end % The stopping criterion is to satisfy both J and rho tolerance if (dro < obj.opts.drhotol) && dJs < obj.opts.dJtol break end % end the main loop iter = iter + 1; end ET = toc(t_rlx); if iter > obj.opts.MaxIterBar warning('CMSPLANET:maxiter','Pressure/density may not be fully converged.') end % Renorm and record factors % TODO: if we still need betam we must fix this renorms = obj.renormalize(); obj.alfar = renorms(1); obj.betam = renorms(2); % Some clean up warning('on','CMS:maxiter') % Optional communication if (verb > 0) fprintf('Relaxing to desired barotrope...done.\n') fprintf('Total elapsed time %s\n',lower(seconds2human(ET))) end end function [ET, dJ] = relax_to_HE(obj) % Call cms to obtain equilibrium shape and gravity. if (obj.opts.verbosity > 1) fprintf(' Relaxing to hydrostatic equilibrium...\n') end t_rlx = tic; zvec = obj.ai/obj.ai(1); dvec = obj.rhoi/obj.rhoi(end); if isempty(obj.CMS), obj.CMS.JLike = struct(); end [obj.Js, obj.CMS] = cms(zvec, dvec, obj.qrot,... 'tol',obj.opts.dJtol, 'maxiter',obj.opts.MaxIterHE,... 'xlayers',obj.opts.xlayers, 'J0s',obj.CMS.JLike,... 'prerat', obj.opts.prerat); ET = toc(t_rlx); dJ = obj.CMS.dJs; if (obj.opts.verbosity > 1) fprintf(' Relaxing to hydrostatic equilibrium...done.\n') fprintf(' Elapsed time %s\n',lower(seconds2human(ET))) end end function dro = update_densities(obj) % Set layer densities to match prescribed barotrope. if isempty(obj.eos) error('CMSPLANET:noeos','Make sure input barotrope (<obj>.eos) is set.') end t_rho = tic; verb = obj.opts.verbosity; if (verb > 1) fprintf(' Updating layer densities...') end P = obj.P_mid(); if isscalar(obj.eos) newro = obj.eos.density(P); else newro = repmat(obj.rhoi(1), obj.N, 1); for k=1:length(newro) newro(k) = obj.eos(k).density(P(k)); end end dro = ((newro - obj.rhoi)./obj.rhoi); if (verb > 2) fprintf('done. (%g sec)\n', toc(t_rho)) elseif (verb > 1) fprintf('done.\n') end obj.rhoi = newro; end function P_m = P_mid(obj) % Mid-layer pressure (by interpolation) P = obj.Pi; r = obj.ai; P_m = NaN(size(P)); switch obj.opts.prsmeth case 'linear' P_m(1:end-1) = (P(1:end-1) + P(2:end))/2; P_m(end) = P(end) + ... (P(end) - P(end-1))/(r(end-1) - r(end))*(r(end)/2); case 'spline' otherwise error('Unknown prsmeth; check cmsset for options.') end end function P_c = P_center(obj) % Central pressure (by extrapolation) try P_c = spline(obj.CMS.lambdas, obj.Pi, 0); catch P_c = []; end end function ab = renormalize(obj) % Match input and calculated mass and equatorial radius. try a = obj.radius/obj.a0; obj.ai = obj.ai*a; catch a = []; end try b = obj.mass/obj.M; obj.rhoi = obj.rhoi*b; catch b = []; end ab = [a, b]; end function obj = fix_radius(obj) % Resize planet to match equatorial radius to observed value. if isempty(obj.radius) || isempty(obj.a0) || isempty(obj.ai) warning('CMP:noref','Missing information; no action.') return end obj.ai = obj.ai*obj.radius/obj.a0; end function obj = fix_mass(obj) % Rescale density to match planet mass to observed value. if isempty(obj.mass) || isempty(obj.rhoi) warning('CMP:noref','Missing information; no action.') return end obj.rhoi = obj.rhoi*obj.mass/obj.M; end function I = NMoI(obj, reduce) % C/Ma^2, see eq. 5 in Hubbard & Militzer 2016 if nargin < 2 || isempty(reduce), reduce = 'sum'; end reduce = validatestring(reduce, {'sum', 'csum', 'none'}); if isempty(obj.CMS) deltas = [obj.rhoi(1); diff(obj.rhoi)]; lambdas = obj.ai/obj.a0; zetas = ones(obj.N, obj.opts.nangles); else deltas = obj.CMS.deltas; lambdas = obj.CMS.lambdas; zetas = obj.CMS.zetas; end [mus, gws] = gauleg(0, 1, obj.opts.nangles); % Abscissas and weights for Gauss-quad p2term = 1 - Pn(2, mus); num(obj.N) = 0; den = 0; for j=1:obj.N fun1 = deltas(j)*((zetas(j,:)*lambdas(j)).^5).*p2term; fun2 = deltas(j)*((zetas(j,:)*lambdas(j)).^3); num(j) = fun1*gws'; den = den + fun2*gws'; end if isequal(reduce, 'none'), I = (2/5)*(num/den); end if isequal(reduce, 'sum'), I = (2/5)*sum(num)/den; end if isequal(reduce, 'csum'), I = (2/5)*cumsum(num)/den; end end end % End of public methods block %% Visualizers methods (Access = public) function [ah, lh] = plot_rho_of_r(obj, varargin) % Plot rho(r) where r is equatorial radius. % Don't bother if uninitialized if isempty(obj.ai) || isempty(obj.rhoi) warning('Uninitialized object.') return end % Input parsing p = inputParser; p.addParameter('axes', [], @(x)isscalar(x) && isgraphics(x, 'axes')) p.addParameter('plottype', 'line', @(x)isrow(x) && ischar(x)) p.parse(varargin{:}) pr = p.Results; % Prepare the canvas if isempty(pr.axes) fh = figure; set(fh, 'defaultTextInterpreter', 'latex') set(fh, 'defaultLegendInterpreter', 'latex') ah = axes; hold(ah, 'on') else ah = pr.axes; hold(ah, 'on') end % Prepare the data x = [obj.ai/obj.a0; 0]; y = [obj.rhoi; obj.rhoi(end)]; % Plot the lines (density in 1000 kg/m^3) if isequal(lower(pr.plottype), 'stairs') lh = stairs(x, y/1000); elseif isequal(lower(pr.plottype), 'line') lh = line(x, y/1000); else error('Unknown value of parameter plottype.') %#ok<*ERTAG> end lh.LineWidth = 2; if isempty(pr.axes) lh.Color = [0.31, 0.31, 0.31]; end if isempty(obj.name) lh.DisplayName = 'CMS model'; else lh.DisplayName = obj.name; end % Style and annotate axes if isempty(pr.axes) ah.Box = 'on'; xlabel('Level surface equatorial radius, $a/a_0$', 'fontsize', 12) ylabel('$\rho$ [1000 kg/m$^3$]', 'fontsize', 12) else xlim('auto') end end function [ah, lh] = plot_barotrope(obj, varargin) % Plot P(rho) of current model and optionally of input barotrope. % Don't bother if there is no pressure if isempty(obj.Pi) warning('Uninitialized object. Remember to set obj.P0?') return end % Input parsing p = inputParser; p.addParameter('axes', [],... @(x)isscalar(x) && isgraphics(x,'axes') && isvalid(x)); p.addParameter('showinput', false,... @(x)isscalar(x) && islogical(x)); p.addParameter('showscaledinput', false,... @(x)isscalar(x) && islogical(x)); p.addParameter('includecore', false,... @(x)isscalar(x) && islogical(x)); p.parse(varargin{:}) pr = p.Results; % Prepare the canvas if isempty(pr.axes) fh = figure; set(fh, 'defaultTextInterpreter', 'latex') set(fh, 'defaultLegendInterpreter', 'latex') ah = axes; hold(ah, 'on') else ah = pr.axes; hold(ah, 'on') end % Prepare the data: model x_cms = obj.rhoi; y_cms = obj.P_mid(); % Prepare the data: input if pr.showinput && ~isempty(obj.eos) && (range(x_cms) > 0) x_bar = linspace(min(x_cms), max(x_cms)); if isscalar(obj.eos) y_bar = double(obj.eos.pressure(x_bar)); else v = 1:length(unique(x_cms)); ind = interp1(unique(x_cms), v, x_bar, 'nearest', 'extrap'); y_bar = nan(size(x_bar)); for k=1:length(x_bar) y_bar(k) = double(obj.eos(ind(k)).pressure(x_bar(k))); end end else y_bar = NaN; end % Prepare the data: scaled input if pr.showscaledinput && ~isempty(obj.eos) && (range(x_cms) > 0) x_bar = linspace(min(x_cms), max(x_cms)); bnorm = obj.betam; % the mass renorm factor anorm = obj.alfar; % the radius renorm factor if isempty(bnorm), bnorm = nan; end if isempty(anorm), anorm = nan; end if isscalar(obj.eos) y_bar_scl = double(bnorm/anorm*obj.eos.pressure(x_bar/bnorm)); else v = 1:length(unique(x_cms)); ind = interp1(unique(x_cms), v, x_bar, 'nearest', 'extrap'); y_bar_scl = nan(size(x_bar)); for k=1:length(x_bar) y_bar_scl(k) = double(... bnorm/anorm*obj.eos(ind(k)).pressure(x_bar(k)/bnorm)); end end else y_bar_scl = NaN; end % Plot the lines (pressure in GPa) lh(1) = stairs(x_cms, y_cms/1e9); lh(1).LineWidth = 2; if isempty(pr.axes) lh(1).Color = [0.31, 0.31, 0.31]; end if isempty(obj.name) lh(1).DisplayName = 'CMS model'; else lh(1).DisplayName = obj.name; end if pr.showinput && any(isfinite(y_bar)) lh(end+1) = line(x_bar, y_bar/1e9); lh(end).Color = 'r'; lh(end).LineStyle = '--'; lh(end).DisplayName = 'input barotrope'; end if pr.showscaledinput && any(isfinite(y_bar_scl)) lh(end+1) = line(x_bar, y_bar_scl/1e9); lh(end).Color = [0, 0.5, 0]; lh(end).LineStyle = '--'; lh(end).DisplayName = 'input barotrope ($\frac{\beta}{\alpha}$-scaled)'; end % Style and annotate axes if isempty(pr.axes) ah.Box = 'on'; if (range(x_cms) > 0) xlim([min(x_cms),max(x_cms)]) end xlabel('$\rho$ [kg/m$^3$]') ylabel('$P$ [GPa]') else xlim('auto') end % Legend legend(ah, 'off') gh = legend(ah, 'show','location','nw'); gh.FontSize = 11; end function [ah, lh] = plot_spheroid_J_contributions(obj, n, varargin) % Plot relative weights of *spheroids* contribution to Js. % Input parsing if nargin < 2 fprintf('Usage:\n\tCMP.plot_spheroid_J_contributions([2,4,...]).\n') return end validateattributes(n,{'numeric'},{'row','nonnegative','integer','even'}) p = inputParser; p.addParameter('axes',[],@(x)isscalar(x)&&isgraphics(x, 'axes')) p.addParameter('cumulative',false,@(x)isscalar(x)&&islogical(x)) p.addParameter('noisecancel',false,@(x)isscalar(x)&&islogical(x)) p.parse(varargin{:}) pr = p.Results; % Prepare the data x = obj.ai/obj.a0; y = nan(obj.N, length(n)); for k=1:length(n) cJi = cumsum(obj.CMS.JLike.fulltilde(:,n(k)+1).*obj.CMS.lambdas.^n(k)); dJi = sdderiv(obj.CMS.lambdas, cJi); if pr.cumulative y(:,k) = cJi/cJi(end); else if pr.noisecancel dJi(x > 0.99) = nan; end y(:,k) = abs(dJi)/max(abs(dJi)); end end % Prepare the canvas if isempty(pr.axes) fh = figure; set(fh, 'defaultTextInterpreter', 'latex') set(fh, 'defaultLegendInterpreter', 'latex') ah = axes; else ah = pr.axes; axes(ah) end hold(ah, 'on') % Plot the lines lh = gobjects(1,length(n)); for k=1:length(n) lh(k) = plot(obj.CMS.lambdas, y(:,k), 'LineWidth',2); lh(k).DisplayName = sprintf('$J_{%i}$',n(k)); end % Style and annotate axes if isempty(pr.axes) ah.Box = 'on'; xlabel('Spheroid normalized equatorial radius, $\lambda$', 'fontsize', 12) if pr.cumulative ylabel('$|J_n(\lambda>\lambda_i)|$ [normalized]', 'fontsize', 12) else ylabel('$|J_n(\lambda_i)|$ [normalized]', 'fontsize', 12) end end % Legend legend(ah, 'off') gh = legend(ah, flipud(lh)); if pr.cumulative gh.Location = 'southwest'; else gh.Location = 'northwest'; end gh.FontSize = 11; end function [ah, lh] = plot_moi_contribution(obj, varargin) % Plot relative contribution to MoI by depth. p = inputParser; p.addParameter('axes',[],@(x)isscalar(x)&&isgraphics(x, 'axes')) p.addParameter('cumulative',false,@(x)isscalar(x)&&islogical(x)) p.addParameter('noisecancel',false,@(x)isscalar(x)&&islogical(x)) p.parse(varargin{:}) pr = p.Results; % Prepare the data x = obj.ai/obj.a0; if pr.cumulative y = obj.NMoI('csum'); y = y/y(end); else y = obj.NMoI('none'); if pr.noisecancel y(x > 0.99) = nan; % the top is always noise end y = y/max(abs(y)); end % Prepare the canvas if isempty(pr.axes) fh = figure; set(fh, 'defaultTextInterpreter', 'latex') set(fh, 'defaultLegendInterpreter', 'latex') ah = axes; else ah = pr.axes; axes(ah) end hold(ah, 'on') % Plot the lines lh = plot(x, y, 'LineWidth',2); % Style and annotate axes if isempty(pr.axes) ah.Box = 'on'; xlabel('Spheroid normalized equatorial radius, $\lambda$', 'fontsize', 12) if pr.cumulative ylabel('$I(\lambda>\lambda_i)$ [normalized]', 'fontsize', 12) else ylabel('$I(\lambda_i)$ [normalized]', 'fontsize', 12) end end end end % End of visulaizers block %% Reporters/exporters methods (Access = public) function T = report_card(obj, obs) % REPORT_CARD Table summary of model's vital statistics. % Minimal checks narginchk(1,2); try obj.J2; catch warning('Uncooked object.') %#ok<*WNTAG> return end % Basic table vitals = {'Mass [kg]'; 'R_eq [km]'; 'J2'; 'J4'; 'J6'; 'J8'; 'NMoI'}; CMP1 = [obj.M; obj.a0/1e3; obj.J2; obj.J4; obj.J6; obj.J8; obj.NMoI]; T = table(CMP1, 'RowNames', vitals); if ~isempty(obj.name) vname = matlab.lang.makeValidName(obj.name); T.Properties.VariableNames{'CMP1'} = vname; end if nargin == 1, return, end % Optionally compare with something try oM = obs.M; catch oM = NaN; end try oa0 = obs.a0/1e3; catch oa0 = NaN; end try oJ2 = obs.J2; oJ4 = obs.J4; oJ6 = obs.J6; oJ8 = obs.J8; catch oJ2 = NaN; oJ4 = NaN; oJ6 = NaN; oJ8 = NaN; end try oNMoI = obs.NMoI; catch oNMoI = NaN; end try oname = obs.name; catch oname = []; end OBS1 = [oM; oa0; oJ2; oJ4; oJ6; oJ8; oNMoI]; OBS1 = double(OBS1); T = [T table(OBS1)]; if ~isempty(oname) vname = matlab.lang.makeValidName(obs.name); try T.Properties.VariableNames{'OBS1'} = vname; catch T.Properties.VariableNames{'OBS1'} = ['x_',vname]; end end DIFF = (CMP1 - OBS1)./CMP1; T = [T table(DIFF, 'VariableNames', {'frac_diff'})]; end function s = to_struct(obj, rdc, keepjlike) % Convert object to static struct keeping only essential fields. if nargin < 2, rdc = 1; end % 0=none, 1=to double, 2=to single, 3=to scalars if nargin < 3, keepjlike = false; end % keep JLike e.g. to help re-relaxing s.name = obj.name; s.M = obj.M; s.s0 = obj.s0; s.a0 = obj.a0; s.rhobar = obj.rhobar; s.mrot = obj.mrot; s.qrot = obj.qrot; s.J2 = obj.J2; s.J4 = obj.J4; s.J6 = obj.J6; s.J8 = obj.J8; s.J10 = obj.Js(6); s.J12 = obj.Js(7); s.J14 = obj.Js(8); s.NMoI = obj.NMoI; s.si = obj.si; s.ai = obj.ai; s.rhoi = obj.rhoi; s.Pi = obj.Pi; s.mi = obj.mi; if rdc > 0 s = structfun(@double, s, 'UniformOutput', false); s.name = obj.name; end if rdc > 1 s = structfun(@single, s, 'UniformOutput', false); s.name = obj.name; end if rdc > 2 s.si = []; s.ai = []; s.rhoi = []; s.Pi = []; s.mi = []; end try s.eos = obj.eos.name; catch s.eos = ''; end try s.bgeos = obj.bgeos.name; catch s.bgeos = ''; end try s.fgeos = obj.fgeos.name; catch s.fgeos = ''; end if keepjlike s.CMS.JLike = obj.CMS.JLike; else s.CMS.JLike = []; end end function T = to_table(obj) % Return a table of critical quantities. T = table; T.ai = double(obj.ai); T.si = double(obj.si); T.rhoi = double(obj.rhoi); T.Pi = double(obj.Pi); T.mi = double(obj.mi); end function to_ascii(obj, fname) % Export the state of the model as ascii file. % File name if nargin < 2 fprintf('Usage:\n\tcmp.to_ascii(filename)\n') return end validateattributes(fname, {'char'}, {'row'}, '', 'fname', 1) % Open file fid = fopen(fname,'wt'); cleanup = onCleanup(@()fclose(fid)); % Write the header fprintf(fid,'# Rotating fluid planet modeled by Concentric Maclaurin Spheroids.\n'); fprintf(fid,'#\n'); fprintf(fid,'# Model name: %s\n', obj.name); fprintf(fid,'#\n'); fprintf(fid,'# Scalar quantities:\n'); fprintf(fid,'# N layers = %d\n',obj.N); fprintf(fid,'# Mass M = %g kg\n', obj.M); fprintf(fid,'# Mean radius s0 = %0.6e m\n', obj.s0); fprintf(fid,'# Equatorial radius a0 = %0.6e m\n', obj.a0); fprintf(fid,'# Rotation period P = %0.6g s\n', obj.period); fprintf(fid,'# Rotation parameter m = %0.6f\n', obj.mrot); fprintf(fid,'# Rotation parameter q = %0.6f\n', obj.qrot); fprintf(fid,'#\n'); fprintf(fid,'# Calculated gravity zonal harmonics (x 10^6):\n'); fprintf(fid,'# J2 = %12.6f\n', obj.J2*1e6); fprintf(fid,'# J4 = %12.6f\n', obj.J4*1e6); fprintf(fid,'# J6 = %12.6f\n', obj.J6*1e6); fprintf(fid,'# J8 = %12.6f\n', obj.J8*1e6); fprintf(fid,'#\n'); fprintf(fid,'# Column data description (MKS):\n'); fprintf(fid,'# i - level surface index (increasing with depth)\n'); fprintf(fid,'# s_i - mean radius of level surface i\n'); fprintf(fid,'# a_i - equatorial radius of level surface i\n'); fprintf(fid,'# rho_i - density on level surfaces i\n'); fprintf(fid,'# P_i - pressure on level surface i\n'); fprintf(fid,'# m_i - mass below level surface i\n'); fprintf(fid,'#\n'); % Write the data fprintf(fid,'# Column data:\n'); fprintf(fid,'# %-4s ','i'); fprintf(fid,'%-10s ','s_i','a_i'); fprintf(fid,'%-7s ','rho_i'); fprintf(fid,'%-10s ','P_i','m_i'); fprintf(fid,'\n'); for k=1:obj.N fprintf(fid,' %-4d ',k); fprintf(fid,'%10.4e ', obj.si(k)); fprintf(fid,'%10.4e ', obj.ai(k)); fprintf(fid,'%7.1f ', obj.rhoi(k)); fprintf(fid,'%10.4e ', obj.Pi(k), obj.mi(k)); fprintf(fid,'\n'); end end end % End of reporters/exporters block %% Private (or obsolete) methods methods (Access = private) function Upu = calc_equipotential_Upu(obj) % See ./notes/cms.pdf eqs. 49 and 51 Upu = NaN(obj.N,1); lam = obj.CMS.lambdas; til = obj.CMS.JLike.tilde; tilp = obj.CMS.JLike.tildeprime; tilpp = obj.CMS.JLike.tildeprimeprime; q = obj.qrot; zet = obj.CMS.zetas(:,2); % 2 for no reason, could pick any angle P2k = obj.CMS.Ps.Pnmu(:,2); n = (0:obj.opts.kmax)'; xind = obj.CMS.xind; xlam = lam(xind); nx = length(xind); for j=1:obj.N U = 0; xj = find(xlam <= lam(j), 1); if isempty(xj), xj = nx + 1; end % if no xplicit layer below jth for i=xj:nx U = U + sum((xlam(i)/lam(j)).^n.*til(i,:)'.*zet(j).^-n.*P2k(:)); end for i=1:xj-1 U = U + sum((lam(j)/xlam(i)).^(n+1).*tilp(i,:)'.*zet(j).^(n+1).*P2k(:)); U = U + (lam(j)/xlam(i))^3*tilpp(i)*zet(j)^3; end U = U*(-1/(lam(j)*zet(j))); U = U + (1/3)*q*lam(j)^2*zet(j)^2*(1 - P2k(3)); % add rotation Upu(j) = U; end end function val = mzi(obj) % heavy element mass below level i z = obj.zi; if isempty(obj.ai) || isempty(obj.rhoi) || isempty(z) val = []; else val = NaN; %TODO: implement end end function val = zi(obj) % heavy element mass fraction in layer i P = obj.Pi; if isempty(obj.bgeos) || isempty(obj.fgeos) || isempty(P) val = []; else roxy = obj.bgeos.density(P); roz = obj.fgeos.density(P); ro = obj.rhoi; val = (1./ro - 1./roxy)./(1./roz - 1./roxy); val(~isfinite(val)) = 0; end end function val = M_Z(obj) try val = obj.mzi(1); catch val = []; end end end %% Access and pseudo-access methods methods function set.name(obj,val) if ~isempty(val) validateattributes(val, {'char'}, {'row'}) end obj.name = val; end function set.mass(obj,val) validateattributes(val,{'numeric'},{'positive','scalar'}) obj.mass = val; end function set.radius(obj,val) validateattributes(val,{'numeric'},{'positive','scalar'}) obj.radius = val; end function set.ai(obj, val) assert(isnumeric(val) && isvector(val) && ~any(val<0),... 'obj.ai must be a nonnegative vector.') assert(all(diff(val)<=0),'obj.ai must be non-ascending.') obj.ai = val(:); end function set.rhoi(obj, val) assert(isnumeric(val) && isvector(val),... 'obj.rhoi must be a nonnegative vector.') if any(val<0) warning('CMSPLANET:assertion','negative density. Is this on purpose?') end obj.rhoi = val(:); end function set.eos(obj,val) if isempty(val) obj.eos = []; return end if ~isa(val,'barotropes.Barotrope') error('eos must be a valid instance of class Barotrope') end obj.eos = val(:); end function set.bgeos(obj,val) if isempty(val) obj.bgeos = []; return end if ~isa(val,'barotropes.Barotrope') error('bgeos must be a valid instance of class Barotrope') end obj.bgeos = val; end function set.fgeos(obj,val) if isempty(val) obj.fgeos = []; return end if ~isa(val,'barotropes.Barotrope') error('fgeos must be a valid instance of class Barotrope') end obj.fgeos = val; end function val = get.a0(obj) if isempty(obj.ai) val = []; else val = obj.ai(1); end end function val = get.N(obj) if isempty(obj.ai) || isempty(obj.rhoi) val = 0; elseif length(obj.ai) == length(obj.rhoi) val = length(obj.ai); else error('length(ai) = %g ~= length(rhoi) = %g',... length(obj.ai),length(obj.rhoi)) end end function val = Ui(obj, ind) try val = (obj.G*obj.mass/obj.radius)*obj.calc_equipotential_Upu(); if nargin > 1 val = val(ind); end catch val = []; end end function val = Pi(obj, ind) try U = obj.Ui; rho = obj.rhoi; val = zeros(obj.N,1); val(1) = obj.P0; val(2:end) = val(1) + cumsum(rho(1:end-1).*diff(U)); if nargin > 1 val = val(ind); end catch val = []; end end function val = get.M(obj) try drho = [obj.rhoi(1); diff(obj.rhoi)]; if isempty(obj.si) val = (4*pi/3)*sum(drho.*obj.ai.^3); else val = (4*pi/3)*sum(drho.*obj.si.^3); end catch val = []; end end function val = get.mi(obj) % mass _below_ level i if isempty(obj.ai) || isempty(obj.rhoi) val = []; else rho = obj.rhoi; s = obj.si; n = obj.N; val(n) = 4*pi/3*rho(n)*s(n)^3; for k=n-1:-1:1 val(k) = val(k+1) + 4*pi/3*rho(k)*(s(k)^3 - s(k+1)^3); end val = val'; end end function val = get.rhobar(obj) if isempty(obj.M) || isempty(obj.si) val = []; else val = obj.M/(4*pi/3*obj.s0^3); end end function val = get.wrot(obj) val = 2*pi./obj.period; end function val = get.qrot(obj) GM = obj.G*obj.mass; val = obj.wrot^2.*obj.radius^3./GM; end function val = get.mrot(obj) GM = obj.G*obj.mass; val = obj.wrot^2.*obj.s0^3./GM; end function set.qrot(~,~) error('CMSPLANET:deprecation',... 'Setting qrot is deprecated; set a reference period instead.') end function val = get.si(obj) try Vs = NaN(size(obj.CMS.lambdas)); for j=1:obj.N Vs(j) = obj.CMS.lambdas(j)^3*(obj.CMS.zetas(j,:).^3)*(obj.CMS.gws'); end val = obj.a0*Vs.^(1/3); catch val = []; end end function val = get.s0(obj) try val = obj.si(1); catch val = []; end end function val = get.J2(obj) if isempty(obj.Js) val = 0; else val = obj.Js(2); end end function val = get.J4(obj) if isempty(obj.Js) val = 0; else val = obj.Js(3); end end function val = get.J6(obj) if isempty(obj.Js) val = 0; else val = obj.Js(4); end end function val = get.J8(obj) if isempty(obj.Js) val = 0; else val = obj.Js(5); end end end % End of access methods block %% Static methods methods (Static) end % End of static methods block end % End of classdef %% Class-related functions function [x,w] = gauleg(x1,x2,n) %GAULEG Calculate abscissas and weights for Gauss-Legendre n-point quadrature. % [x,w] = GAULEG(x1,x2,n) returns the abscissas x and weights w that can be % used to evaluate the definite integral, I, of a function well approximated % by an (2n - 1) degree polynomial in the interval [x1,x2] using the % Gauss-Legendre formula: % % I = sum(w.*f(x)) % % Algorithm % This function is based on the C++ implementation of a routine with the % same name in Numerical Recipes, 3rd Edition. But in several places I opt % for readability over performance, on the assumption that this function is % most likely to be called in a setup routine rather than in an inner-loop % computation. % % Example % fun = @(x)sin(x); % [x,w] = gauleg(0,pi,6); % I_adaptive = integral(fun,0,pi) % I_gaussleg = sum(w.*fun(x)) % % Author: Naor Movshovitz (nmovshov at google dot com) % Earth and Planetary Sciences, UC Santa Cruz % % Reference: William H. Press, Saul A. Teukolsky, William T. Vetterling, and % Brian P. Flannery. 2007. Numerical Recipes 3rd Edition: The Art of Scientific % Computing (3 ed.). Cambridge University Press, New York, NY, USA. % Input parsing and minimal assertions narginchk(3,3) nargoutchk(2,2) validateattributes(x1,{'numeric'},{'scalar','finite','real'},1) validateattributes(x2,{'numeric'},{'scalar','finite','real'},2) validateattributes(n,{'numeric'},{'scalar','finite','integer','>=',2},3) assert(x2 > x1, 'Interval must be positive.'); % Local variables tol = 1e-14; m = ceil(n/2); xmid = (x1 + x2)/2; dx = (x2 - x1); x = NaN(1,n); w = NaN(1,n); % Main loop for j=1:m % Get j-th root of Legendre polynomial Pn, along with Pn' value there. z = cos(pi*((j - 1) + 0.75)/(n + 0.5)); % initial guess for j-th root while true % Calculate Pn(z) and Pn-1(z) and Pn'(z) p = NaN(1,n+1); p(1) = 1; p(2) = z; for k=2:n pkm1 = p(k); pkm2 = p(k-1); pk = (1/k)*((2*k - 1)*z*pkm1 - (k - 1)*pkm2); p(k+1) = pk; end pn = p(end); pp = (n*p(end-1) - n*z*p(end))/(1 - z^2); % And now Newton's method (we are hopefully very near j-th root) oldz = z; z = z - pn/pp; if abs(z - oldz) < tol, break, end end % Now use j-th root to get 2 abscissas and weights x(j) = xmid - z*dx/2; % Scaled abscissa left of center x(n+1-j) = xmid + z*dx/2; % Scaled abscissa right of center w(j) = dx/((1 - z^2)*pp^2); w(n+1-j) = w(j); end % Verify and return assert(all(isfinite(x))) assert(all(isfinite(w))) end function y = Pn(n,x) % Fast implementation of ordinary Legendre polynomials of low degree. switch n case 0 y = ones(size(x)); case 1 y = x; case 2 y = 0.5*(3*x.^2 - 1); case 3 y = 0.5*(5*x.^3 - 3*x); case 4 y = (1/8)*(35*x.^4 - 30*x.^2 + 3); case 5 y = (1/8)*(63*x.^5 - 70*x.^3 + 15*x); case 6 y = (1/16)*(231*x.^6 - 315*x.^4 + 105*x.^2 - 5); case 7 y = (1/16)*(429*x.^7 - 693*x.^5 + 315*x.^3 - 35*x); case 8 y = (1/128)*(6435*x.^8 - 12012*x.^6 + 6930*x.^4 - 1260*x.^2 + 35); case 9 y = (1/128)*(12155*x.^9 - 25740*x.^7 + 18018*x.^5 - 4620*x.^3 + 315*x); case 10 y = (1/256)*(46189*x.^10 - 109395*x.^8 + 90090*x.^6 - 30030*x.^4 + 3465*x.^2 - 63); case 11 y = (1/256)*(88179*x.^11 - 230945*x.^9 + 218790*x.^7 - 90090*x.^5 + 15015*x.^3 - 693*x); case 12 y = (1/1024)*(676039*x.^12 - 1939938*x.^10 + 2078505*x.^8 - 1021020*x.^6 + 225225*x.^4 - 18018*x.^2 + 231); otherwise assert(isvector(x)) Pnm = legendre(n,x); y = Pnm(1,:); if ~isrow(x), y = y'; end end end
github
nmovshov/CMS-planet-master
cmsset.m
.m
CMS-planet-master/cmsset.m
2,632
utf_8
7a832d5c0ef8fe7bcac0c07172e51730
function options = cmsset(varargin) %CMSSET Create options structure used by CMSPlanet class methods. % OPTIONS = CMSSET('NAME1',VALUE1,'NAME2',VALUE2,...) creates an options % structure OPTIONS in which the named properties have the specified values. % Any unspecified properties have default values. Case is ignored for property % names and unique partials are allowed. % % CMSSET with no input or output arguments displays all property names and % their possible values. % %KNOWN PROPERTIES % %dJtol - Convergence tolerance for gravity coefficients [ positive real {1e-8} ] %drhotol - Convergence tolerance for density adjustment [ positive real {1e-6} ] %MaxIterBar - Number of iterations allowed for relaxation to barotrope [ positive integer {60} ] %MaxIterHE - Number of iterations allowed for relaxation to equilibrium shape [ positive integer {60} ] %xlayers - Solve shape functions on xlayers and spline the rest [ integer scalar or vector (-1 to disable) {-1} ] %verbosity - Level of runtime messages [0 {1} 2 3 4] %prerat - Precalculate powers of ratios of lambdas (trades memory for speed) [ {true} | false ] % If no arguments print usage and return. if (nargin == 0) && (nargout == 0) print_usage() return end % Define name-value pairs. p = inputParser; p.FunctionName = mfilename; p.addParameter('dJtol',1e-8,@isposscalar) p.addParameter('drhotol',1e-6,@isposscalar) p.addParameter('MaxIterBar',60,@isposintscalar) p.addParameter('MaxIterHE',60,@isposintscalar) p.addParameter('xlayers',-1,@(x)validateattributes(x,{'numeric'},{'vector','integer'})) p.addParameter('verbosity',1,@isnonnegintscalar) p.addParameter('prerat',true,@islogicalscalar) % undocumented or obsolete options p.addParameter('prsmeth','linear'); % undocumented pressure interpolation method p.addParameter('moimeth','midlayerz'); % undocumented moi integral method p.addParameter('nangles',48,@isposintscalar)% #colatitudes used to define level surface p.addParameter('kmax',30,@isposintscalar) % degree to carry out gravity mulitpole expansion p.addParameter('TolX',1e-13,@isposscalar) % termination tolerance for root finding % Parse name-value pairs and return. p.parse(varargin{:}) options = p.Results; end function isposscalar(x) validateattributes(x,{'numeric'},{'positive','scalar'}) end function islogicalscalar(x) validateattributes(x,{'logical'},{'scalar'}) end function isposintscalar(x) validateattributes(x,{'numeric'},{'positive','integer','scalar'}) end function isnonnegintscalar(x) validateattributes(x,{'numeric'},{'nonnegative','integer','scalar'}) end function print_usage() help(mfilename) end
github
nmovshov/CMS-planet-master
cms.m
.m
CMS-planet-master/cms.m
17,189
utf_8
f23b04b52e20488a26fc3db9df9258ec
function [Js, out] = cms(zvec, dvec, qrot, varargin) %CMS Concentric Maclaurin Spheroids equilibrium shape and gravity. % Js = CMS(zvec, dvec, qrot) returns 1-by-16 vector Js of gravity % coefficients J0 through J30 of a rotating fluid planet in hydrostatic % equilibrium. Coefficients are stored in ascending order so that Js(1) is % J0, Js(2) is J2, Js(3) is J4, etc. The mandatory inputs are a vector of % equatorial radii zvec, vector of corresponding layer densities dvec, and % rotation parameter qrot, assumed normalized to the outer layer's equatorial % radius (to zvec(1)). % % [Js, out] = CMS(zvec, dvec, qrot, 'NAME1',VALUE1, 'NAME2',VALUE2,...) % accepts additional parameters as NAME/VALUE pairs, and also returns an % output struct holding diagnostic values and additional derived quantities, % including the full hydrostatic spheroid shapes. % % Inputs, required % ---------------- % zvec : 1d array, positive real % Equatorial radii of constant density layers, indexed from the outside in, % i.e., zvec(1)=a0 is the outer radius of the outermost layer, zvec(2) is % the inner radius of the outermost layer as well as the outer radius of % the next layer, etc. The innermost layer extends all the way to the % center, so that zvec(end) is the outer radius of a central spheroid % layer. Units of zvec are unimportant as values will be normalized to % outer radius. % dvec : 1d array, positive real % Layer densities. The layer lying between zvec(i) and zvec(i+1) has % constant density dvec(i). Units are unimportant as values will be % normalized to the mean (bulk) density. The density should be % monotonically non-increasing with zvec, but this is not enforced. (Note: % these are layer densities and NOT the density "deltas" of concentric % spheroids.) % qrot : scalar, nonnegative % Dimensionless rotation parameter. Recall q = w^2a0^3/GM. % % Inputs, NAME/VALUE pairs % tol : scalar, positive, (tol=1e-6) % Convergence tolerance on fractional change in Js in successive iterations. % maxiter : scalar, positive, integer, (maxiter=60) % Maximum number of iterations of CMS algorithm. % xlayers : scalar or vector, nonnegative, integer (xlayers=-1) % Layers whose shape will be explicitly calculated. The shape functions % (zetas) will be explicitly calculated for these layers, and % spline-interpolated in between. This can result in significant speedup % with minimal loss of precision, if the xlayers are chosen by trial and % error to fit the required precision and the spacing of density layers. A % scalar value is interpreted as a number of xlayers to be uniformaly % distributed among the density layers. For example, a smooth-density % 1024-layer model can benefit from almost 16x-speedup by specifying % xlayers=64 while retaining a 10^-6 relative precision on J2. A vector % value is interpreted as indices of layers to be used as xlayers. (A % negative value is a shortcut to flag a full calculation instead of % skip-n-spline.) % J0s : struct % J-like values representing initial state. This is not just for speeding % up convergence. Mostly it's a mechanism to preserve state between calls. % % Outputs % ------- % Js : 1-by-16 vector, real % Even harmonic gravity coefficients J0 to J30. Typically only J2 to J10 % are helpful. J0 is included as a sanity check and test of convergence. % out : struct % A structure holding other quantities calculated in the course of running % cms. Including out.zetas and out.JLike that together define the converged % hydrostatic shape. % % Algorithm % --------- % Concentric Maclaurin Spheroids from Hubbard 2012, 2013 ApJ/ApJL. %% Input parsing % Zero inputs case, usage only if nargin == 0 print_usage() return end narginchk(3,inf); % Mandatory inputs validateattributes(zvec,{'numeric'},{'finite','nonnegative','vector'},'','zvec',1) validateattributes(dvec,{'numeric'},{'finite','nonnegative','vector'},'','dvec',2) validateattributes(qrot,{'numeric'},{'finite','nonnegative','scalar'},'','qrot',3) assert(length(zvec) == length(dvec),... 'length(zvec)=%d~=%d=length(dvec)',length(zvec),length(dvec)) [zvec, I] = sort(zvec); dvec = dvec(I); zvec = flipud(zvec(:)); % now it's a column for sure dvec = flipud(dvec(:)); % now it's a column for sure if zvec(end) == 0, zvec(end) = eps; end % Optional arguments opts = parsem(varargin{:}); % Normalize radii and density dro = [dvec(1); diff(dvec)]; m = sum(dro.*zvec.^3); robar = m/zvec(1)^3; zvec = zvec/zvec(1); dvec = dvec/robar; %% Define and initialize local variables (in CMS notation) lambdas = zvec; deltas = [dvec(1); diff(dvec)]; nlay = length(lambdas); nangles = opts.nangles; kmax = opts.kmax; % Define down-sampled variabels (for skip-n-spline) if isscalar(opts.xlayers) if opts.xlayers > 0 sskip = max(fix(nlay/opts.xlayers), 1); xind = 1:sskip:nlay; else xind = 1:nlay; end else warning('CMS:xind','Experimental feature, use with care.') xind = opts.xlayers; end xlambdas = lambdas(xind); xdvec = dvec(xind); xdeltas = [xdvec(1); diff(xdvec)]; nxlay = length(xlambdas); % Initialize spherical layer shapes zetas = NaN(nlay,nangles); xzetas = ones(nxlay, nangles); % Initialize J-like quantities for spherical planet if isempty(fieldnames(opts.J0s)) Jlike = allocate_spherical_Js(nxlay, kmax, xlambdas, xdeltas); else Jlike = opts.J0s; end % Abscissas and weights for Gaussian quadrature [mus, gws] = gauleg(0, 1, nangles); % Precompute Legendre polynomials for fixed colatitudes (for gauss quad) Ps.Pnmu(kmax+1,nangles) = 0; Ps.Pnzero(kmax+1,1) = 0; for k=0:kmax Ps.Pnmu(k+1,1:nangles) = Pn(k, mus); Ps.Pnzero(k+1,1) = Pn(k, 0); end % Precompute powers of ratios of lambdas (only for explicit layers) if opts.prerat lamratpow = nan(kmax+2,nxlay,nxlay); for ii=1:nxlay for jj=1:nxlay for kk=1:kmax+2 lamratpow(kk,ii,jj) = ... (xlambdas(ii)/xlambdas(jj))^(kk-1); end end end else lamratpow = @(kk,ii,jj)(xlambdas(ii)./xlambdas(jj)).^(kk-1); end %% The loop (see Hubbard, 2012 and ./notes/CMS.pdf) Js = Jlike.Jn; for iter=1:opts.maxiter % Update shape with current gravity new_xzetas = update_zetas(Jlike, Ps, lamratpow, qrot, xzetas); for alfa = 1:nangles zetas(:,alfa) = spline(xlambdas, new_xzetas(:,alfa), lambdas); end % Update gravity with current shape new_Jlike = update_Js(lambdas, deltas, zetas, xind, Ps, gws); new_Js = new_Jlike.Jn; % Check for convergence of J0-J8 to terminate... dJs = abs(Js - new_Js)./abs(Js+eps); dJs(abs(new_Js) < 1e-12) = 0; % a hack for nonrotating planets if all(dJs(1:5) < opts.tol), break, end % ... or update to new values and continue Jlike = new_Jlike; Js = new_Js; xzetas = new_xzetas; end % It's not always a disaster if maxiter is reached, but we'd like to know if iter == opts.maxiter warning('CMS:maxiter','Shape may not be fully converged.') end %% Return Js = new_Js; % may as well use the latest... out.dJs = dJs; out.iter = iter; out.zetas = zetas; out.lambdas = lambdas; out.deltas = deltas; out.JLike = new_Jlike; out.mus = mus; out.gws = gws; out.Ps = Ps; out.xind = xind; end %% Helper functions function print_usage() fprintf('Usage:\n\tcms(zvec,dvec,qrot,''name'',value)\n') fprintf('Name-Value pair arguments:\n') fprintf('tol - Convergence tolerance for gravity coefficients [ positive real {1e-6} ]\n') fprintf('maxiter - Number of iterations allowed for relaxation to equilibrium shape [ positive integer {60} ]\n') fprintf('xlayers - Solve shape functions on xlayers and spline the rest [ integer scalar or vector {-1} ]\n') fprintf('prerat - Precalculate powers of ratios of lambdas (trades memory for speed) [ {true} | false ]\n') fprintf('J0s - J-like values representing initial state [ scalar struct {[]} ]\n') end function options = parsem(varargin) p = inputParser; p.FunctionName = 'cms.m'; p.addParameter('tol',1e-6,@(x)isscalar(x)&&isreal(x)&&x>0) p.addParameter('maxiter',60,@(x)isscalar(x)&&isreal(x)&&x>0&&mod(x,1)==0) p.addParameter('xlayers',-1,@(x)validateattributes(x,{'numeric'},{'vector','integer'})) p.addParameter('prerat',true,@(x)isscalar(x)&&islogical(x)) p.addParameter('J0s',struct(),@(x)isscalar(x)&&isstruct(x)) % undocumented or obsolete options p.addParameter('nangles',48,@(x)isscalar(x)&&(x>0)&&(mod(x,1)==0)) % colatitudes defining level surface p.addParameter('kmax',30,@(x)isscalar(x)&&(x>6)&&(mod(x,2)==0)) % degree to cut mulitpole expansion p.addParameter('TolX',1e-12,@(x)isscalar(x)&&(x>0)) % termination tolerance for root finding % Parse name-value pairs and return p.parse(varargin{:}) options = p.Results; end function Js = allocate_spherical_Js(nlay,nmom,lambdas,deltas) Js.tilde = zeros(nlay,(nmom+1)); Js.tildeprime = zeros(nlay,(nmom+1)); Js.tildeprimeprime = zeros(nlay,1); Js.Jn = zeros(1,nmom/2+1); den = sum(deltas.*lambdas.^3); Js.tilde(:,1) = -1*(deltas.*lambdas.^3)/den; Js.tildeprime(:,1) = -1.5*(deltas.*lambdas.^3)/den; Js.tildeprimeprime(:) = 0.5*(deltas.*lambdas.^3)/den; Js.Jn(1) = sum(Js.tilde(:,1)); end function y = Pn(n,x) % Fast implementation of ordinary Legendre polynomials of low degree. switch n case 0 y = ones(size(x)); case 1 y = x; case 2 y = 0.5*(3*x.^2 - 1); case 3 y = 0.5*(5*x.^3 - 3*x); case 4 y = (1/8)*(35*x.^4 - 30*x.^2 + 3); case 5 y = (1/8)*(63*x.^5 - 70*x.^3 + 15*x); case 6 y = (1/16)*(231*x.^6 - 315*x.^4 + 105*x.^2 - 5); case 7 y = (1/16)*(429*x.^7 - 693*x.^5 + 315*x.^3 - 35*x); case 8 y = (1/128)*(6435*x.^8 - 12012*x.^6 + 6930*x.^4 - 1260*x.^2 + 35); case 9 y = (1/128)*(12155*x.^9 - 25740*x.^7 + 18018*x.^5 - 4620*x.^3 + 315*x); case 10 y = (1/256)*(46189*x.^10 - 109395*x.^8 + 90090*x.^6 - 30030*x.^4 + 3465*x.^2 - 63); case 11 y = (1/256)*(88179*x.^11 - 230945*x.^9 + 218790*x.^7 - 90090*x.^5 + 15015*x.^3 - 693*x); case 12 y = (1/1024)*(676039*x.^12 - 1939938*x.^10 + 2078505*x.^8 - 1021020*x.^6 + 225225*x.^4 - 18018*x.^2 + 231); otherwise assert(isvector(x)) Pnm = legendre(n,x); y = Pnm(1,:); if ~isrow(x), y = y'; end end end function [x,w] = gauleg(x1,x2,n) %GAULEG Calculate abscissas and weights for Gauss-Legendre n-point quadrature. % [x,w] = GAULEG(x1,x2,n) returns the abscissas x and weights w that can be % used to evaluate the definite integral, I, of a function well approximated % by an (2n - 1) degree polynomial in the interval [x1,x2] using the % Gauss-Legendre formula: % % I = sum(w.*f(x)) % % Algorithm % This function is based on the C++ implementation of a routine with the % same name in Numerical Recipes, 3rd Edition. But in several places I opt % for readability over performance, on the assumption that this function is % most likely to be called in a setup routine rather than in an inner-loop % computation. % % Example % fun = @(x)sin(x); % [x,w] = gauleg(0,pi,6); % I_adaptive = integral(fun,0,pi) % I_gaussleg = sum(w.*fun(x)) % % Author: Naor Movshovitz (nmovshov at google dot com) % Earth and Planetary Sciences, UC Santa Cruz % % Reference: William H. Press, Saul A. Teukolsky, William T. Vetterling, and % Brian P. Flannery. 2007. Numerical Recipes 3rd Edition: The Art of Scientific % Computing (3 ed.). Cambridge University Press, New York, NY, USA. % Input parsing and minimal assertions narginchk(3,3) nargoutchk(2,2) validateattributes(x1,{'numeric'},{'scalar','finite','real'},1) validateattributes(x2,{'numeric'},{'scalar','finite','real'},2) validateattributes(n,{'numeric'},{'scalar','finite','integer','>=',2},3) assert(x2 > x1, 'Interval must be positive.'); % Local variables tol = 1e-14; m = ceil(n/2); xmid = (x1 + x2)/2; dx = (x2 - x1); x = NaN(1,n); w = NaN(1,n); % Main loop for j=1:m % Get j-th root of Legendre polynomial Pn, along with Pn' value there. z = cos(pi*((j - 1) + 0.75)/(n + 0.5)); % initial guess for j-th root while true % Calculate Pn(z) and Pn-1(z) and Pn'(z) p = NaN(1,n+1); p(1) = 1; p(2) = z; for k=2:n pkm1 = p(k); pkm2 = p(k-1); pk = (1/k)*((2*k - 1)*z*pkm1 - (k - 1)*pkm2); p(k+1) = pk; end pn = p(end); pp = (n*p(end-1) - n*z*p(end))/(1 - z^2); % And now Newton's method (we are hopefully very near j-th root) oldz = z; z = z - pn/pp; if abs(z - oldz) < tol, break, end end % Now use j-th root to get 2 abscissas and weights x(j) = xmid - z*dx/2; % Scaled abscissa left of center x(n+1-j) = xmid + z*dx/2; % Scaled abscissa right of center w(j) = dx/((1 - z^2)*pp^2); w(n+1-j) = w(j); end % Verify and return assert(all(isfinite(x))) assert(all(isfinite(w))) end function newzetas = update_zetas(Js, Ps, lamrats, qrot, oldzetas) % Update level surfaces using current value of Js. % Loop over layers (outer) and colatitudes (inner) nlay = size(oldzetas, 1); nangles = size(oldzetas, 2); newzetas = NaN(nlay,nangles); for j=1:nlay for alfa=1:nangles oldzeta = oldzetas(j,alfa); newzetas(j,alfa) = zeta_j_of_alfa(j, alfa, Js, Ps, lamrats, qrot, oldzeta); end end end function newJs = update_Js(lambdas, deltas, zetas, xind, Ps, gws) % Single-pass update of gravitational moments by Gaussian quad. nlay = length(lambdas); kmax = length(Ps.Pnzero)-1; xlambdas = lambdas(xind); dvec = cumsum(deltas); xdvec = dvec(xind); xdeltas = [xdvec(1); diff(xdvec)]; xzetas = zetas(xind, :); nxlay = length(xlambdas); % Do common denominator in eqs. (48) (USING FULL DENSITY PROFILE) denom = 0; for j=1:nlay fun = zetas(j,:).^3; I = gws*fun'; % gauss quad formula denom = denom + deltas(j)*lambdas(j)^3*I; end % Do J tilde, eq. (48a) new_tilde = zeros(nxlay,kmax+1); for ii=1:nxlay for kk=0:kmax if rem(kk, 2), continue, end fun = Ps.Pnmu(kk+1,:).*xzetas(ii,:).^(kk+3); I = gws*fun'; % gauss quad formula new_tilde(ii,kk+1) = -(3/(kk + 3))*xdeltas(ii)*xlambdas(ii)^3*I/denom; end end % Do J tilde prime, eqs. (48b and 48c) new_tprime = zeros(nxlay,kmax+1); for ii=1:nxlay for kk=0:kmax if rem(kk, 2), continue, end if kk == 2 % eq. (48c) fun = Ps.Pnmu(3,:).*log(xzetas(ii,:)); I = gws*fun'; % gauss quad formula new_tprime(ii,kk+1) = -3*xdeltas(ii)*xlambdas(ii)^3*I/denom; else % eq. (48b) fun = Ps.Pnmu(kk+1,:).*xzetas(ii,:).^(2 - kk); I = gws*fun'; % gauss quad formula new_tprime(ii,kk+1) = -(3/(2 - kk))*xdeltas(ii)*xlambdas(ii)^3*I/denom; end end end % Do J tilde double prime, eq. (48d) new_tpprime = zeros(nxlay,1); for ii=1:nxlay new_tpprime(ii) = 0.5*xdeltas(ii)*xlambdas(ii)^3/denom; end % And finally, the external Js deserve full grid resolution full_tilde = zeros(nlay,kmax+1); for ii=1:nlay for kk=0:kmax if rem(kk, 2), continue, end fun = Ps.Pnmu(kk+1,:).*zetas(ii,:).^(kk+3); I = gws*fun'; % gauss quad formula full_tilde(ii,kk+1) = -(3/(kk + 3))*deltas(ii)*lambdas(ii)^3*I/denom; end end % Return updated Js struct newJs.tilde = new_tilde; newJs.tildeprime = new_tprime; newJs.tildeprimeprime = new_tpprime; newJs.fulltilde = full_tilde; n = 0:2:kmax; for k=1:length(n) newJs.Jn(k) = dot(full_tilde(:,n(k)+1),lambdas.^n(k)); end end function y = zeta_j_of_alfa(j, alfa, Js, Ps, lamrats, qrot, oldzeta) persistent os if isempty(os), os = optimset('TolX',1e-12); end fun = @(x)eq52(x,j,alfa,Js,Ps,lamrats,qrot); y = fzero(fun, oldzeta, os); end function y = eq52(zja, jl, alfa, Js, Ps, lamrats, qrot) % locals nlay = size(Js.tilde,1); kmax = length(Ps.Pnzero)-1; Jt = Js.tilde; Jtp = Js.tildeprime; Jtpp = Js.tildeprimeprime; lamj3 = lamrats(4,jl,1); q = qrot; P0 = Ps.Pnzero; Pmu = Ps.Pnmu(:,alfa); zetpow = zja.^(0:kmax+1); zetipow = zja.^-(0:kmax+1); % first double sum y1 = 0; for ii=jl:nlay for kk=0:2:kmax y1 = y1 + lamrats(kk+1,ii,jl)*Jt(ii,kk+1)*zetipow(kk+1)*Pmu(kk+1); end end % second double sum y2 = 0; for ii=jl:nlay for kk=0:2:kmax y2 = y2 + lamrats(kk+1,ii,jl)*Jt(ii,kk+1)*P0(kk+1); end end % third double sum y3 = 0; for ii=1:jl-1 for kk=0:2:kmax y3 = y3 + lamrats(kk+2,jl,ii)*Jtp(ii,kk+1)*(zetpow(kk+2))*Pmu(kk+1); end end % and forth double sum y4 = 0; for ii=1:jl-1 for kk=0:2:kmax y4 = y4 + lamrats(kk+2,jl,ii)*Jtp(ii,kk+1)*P0(kk+1); end end % a single sum y5 = 0; for ii=1:jl-1 y5 = y5 + lamrats(4,jl,ii)*Jtpp(ii,1)*zetpow(4); end % another single sum y6 = 0; for ii=1:jl-1 y6 = y6 + lamrats(4,jl,ii)*Jtpp(ii,1); end % and the rotation term y7 = -(1/3)*q*lamj3*zja^2*(1 - Pmu(3)) + (1/2)*q*lamj3; % Now combine y = (1/zja)*(y1 + y3 + y5) - y2 - y4 - y6 + y7; end
github
nmovshov/CMS-planet-master
Polytrope.m
.m
CMS-planet-master/+barotropes/Polytrope.m
1,505
utf_8
5def90a212dafec35c75aed8b89395ce
classdef Polytrope < barotropes.Barotrope %POLYTROPE A barotrope of the form P = K*rho^(1 + 1/n). %% Properties properties (SetAccess = private) K % polytropic constant, dimensions depend on index n % polytropic index, dimensionless alpha % 1 + 1/n end %% The constructor methods function obj = Polytrope(K, n) if (nargin == 0) if nargout > 0, return, end print_usage() clear obj return end try narginchk(2,2) assert(isnumeric(K) && isscalar(K) && double(K) > 0) assert(isnumeric(n) && isscalar(n) && double(n) > 0) catch ME print_usage() rethrow(ME) end obj.K = K; obj.n = n; obj.alpha = 1 + 1/n; end end %% Required barotrope methods methods function PF = test(~) PF = true; end function P = pressure(obj,rho) P = obj.K*rho.^(obj.alpha); end function rho = density(obj,P) rho = (P/obj.K).^(1/obj.alpha); end end end %% Usage message function print_usage() fprintf('Usage: barotropes.Polytrope(K, n)\n') fprintf('positional arguments:\n') fprintf(' K polytropic constant (positive real scalar)\n') fprintf(' n polytropic index (positive real scalar)\n') end
github
nmovshov/CMS-planet-master
Tabular.m
.m
CMS-planet-master/+barotropes/Tabular.m
2,338
utf_8
3d41e90db26d52cbd5eacc4521c5a1af
classdef Tabular < barotropes.Barotrope %TABULAR A base class for a generic table barotrope. %% Properties properties (SetAccess = protected) P_vals % a vector of pressure values rho_vals % a vector of density values end properties (Access = public) interpolation_method extrapolation_method meta end %% The constructor methods function obj = Tabular(P, rho, intm, extm) if (nargin == 0) if nargout > 0, return, end print_usage() clear obj return end try narginchk(2,4) if nargin < 4, extm = 'extrap'; end if nargin < 3, intm = 'linear'; end assert(isnumeric(P) && isvector(P) && all(double(P) >= 0)) assert(isnumeric(rho) && isvector(rho) && all(double(rho) >= 0)) assert(length(P) == length(rho),... 'len(P) = %i ~= %i = len(rho)', length(P), length(rho)) assert(interp1(P, rho, P(1), intm, extm) == rho(1)) catch ME print_usage() rethrow(ME) end obj.P_vals = P; obj.rho_vals = rho; obj.interpolation_method = intm; obj.extrapolation_method = extm; end end %% Required barotrope methods methods function PF = test(~) PF = true; end function P = pressure(obj,rho) P = interp1(obj.rho_vals, obj.P_vals, rho, obj.interpolation_method, obj.extrapolation_method); end function rho = density(obj,P) rho = interp1(obj.P_vals, obj.rho_vals, P, obj.interpolation_method, obj.extrapolation_method); end end end %% Usage message function print_usage() fprintf('Usage: barotropes.tabular(P, rho, intm, extm)\n') fprintf('positional arguments:\n') fprintf(' P a vector of pressure values [ real nonnegative ]\n') fprintf(' rho a vector of density values [ real nonnegative ]\n') fprintf(' intm (optional) interpolation method [ {''linear''} | ''nearest'' | ''spline'' | ''pchip'' ]\n') fprintf(' extm (optional) extrapolation strategy [ ''extrap'' | scalar value | {NaN} ]\n') end
github
mcyeh/aaltd16_fusion-master
trainTask1Classifier.m
.m
aaltd16_fusion-master/trainTask1Classifier.m
3,952
utf_8
4a9e5c59630def2d8883663ac78df516
% Train the classifier using the training data % Chin-Chia Michael Yeh 05/28/2016 % % trainTask1Classifier(dataPath, classPath, dicNum, spletLen, spletNum) % Input: % dataPath: path to the training data (string) % classPath: path to the output directory (string) % dicNum: number of dictionary element for sparse coding (scalar) % spletLen: shaplet length (scalar) % spletNum: number of shapelet (scalar) % function trainTask1Classifier(dataPath, classPath, dicNum, spletLen, spletNum) %% check if the classifier is already train fname = sprintf('dn%d__sl%d__sn%d.mat', dicNum, spletLen, spletNum); fname = fullfile(classPath, fname); if exist(fname, 'file') return end %% load data fprintf('Loading data ... '); tTemp = tic(); info = hdf5info(dataPath); lab = hdf5read(info.GroupHierarchy.Datasets(1)); dataOrg = hdf5read(info.GroupHierarchy.Datasets(2)); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% organize data fprintf('Organizing data ... '); tTemp = tic(); dataDim = size(dataOrg, 1); dataLen = size(dataOrg, 2); dataNum = size(dataOrg, 3); dataOrg2 = cell(dataDim, 1); for i = 1:dataDim dataOrg2{i} = squeeze(dataOrg(i, :, :))'; end dataRS = cell(dataNum, 1); dataSC = cell(dataNum, 1); lab = double(lab); for i = 1:dataNum dataRS{i} = zeros(dataDim, dataLen); for k = 1:dataDim dataRS{i}(k, :) = dataOrg2{k}(i, :); end dataSC{i} = normalizeData(dataRS{i}); end dataRSLen = size(dataRS{1}, 2); dataSCLen = size(dataSC{1}, 2); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% extract shapelet fprintf('Dictionary training ... '); tTemp = tic(); splet = randSpletSele(dataRS, spletLen, spletNum); dic = learnDic(dataSC, dicNum); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% shapelet trainsform fprintf('Shapelet transform and sparse coding ... '); tTemp = tic(); featRS = cell(dataNum, 1); featSC = cell(dataNum, 1); for i = 1:dataNum featRS{i} = spletTran(dataRS{i}, splet); featSC{i} = sparseCodeTran(dataSC{i}, dic); end featRS = cell2mat(featRS); featSC = cell2mat(featSC); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% normalization fprintf('Normalize feature ... '); tTemp = tic(); featMean = mean(featRS, 1); featStd = std(featRS, 1, 1); featRS = featRS - repmat(featMean, dataNum, 1); featRS = featRS ./ repmat(featStd, dataNum, 1); featRS = full(featRS); featSC = full(featSC); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% cv for svm parameter fprintf('Cross validation for SVM parameter (random shapelet) ...\n'); tTemp = tic(); svmCs = 2 .^ (-5:2:5); bestAccRS = 0; bestCRS = 1; for i = 1:length(svmCs) svmC = svmCs(i); svmOption = ['-q -v 5 -t 0 -c ', num2str(svmC)]; accTemp = svmtrain2(lab, featRS, svmOption); if accTemp >= bestAccRS bestCRS = svmC; bestAccRS = accTemp; end end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% cv for svm parameter fprintf('Cross validation for SVM parameter (sparse coding) ...\n'); tTemp = tic(); svmCs = 2 .^ (-5:2:5); bestAccSC = 0; bestCSC = 1; for i = 1:length(svmCs) svmC = svmCs(i); svmOption = ['-q -v 5 -t 0 -c ', num2str(svmC)]; accTemp = svmtrain2(lab, featSC, svmOption); if accTemp >= bestAccSC bestCSC = svmC; bestAccSC = accTemp; end end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% train svm model fprintf('Train SVM model (random shapelet) ... '); tTemp = tic(); svmOption = ['-q -t 0 -b 1 -c ', num2str(bestCRS)]; svmModelRS = svmtrain2(lab, featRS, svmOption); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% train svm model fprintf('Train SVM model (sparse coding) ... '); tTemp = tic(); svmOption = ['-q -t 0 -b 1 -c ', num2str(bestCSC)]; svmModelSC = svmtrain2(lab, featSC, svmOption); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% save model save(fname, 'dataRSLen', 'dataSCLen', 'splet', 'dic', 'featMean', 'featStd', ... 'svmModelRS', 'svmModelSC', 'bestAccRS', 'bestAccSC');
github
mcyeh/aaltd16_fusion-master
applyTask1Classifier.m
.m
aaltd16_fusion-master/applyTask1Classifier.m
2,991
utf_8
67f695bc5e1a7e7b708106cc2b1acfdc
% Apply the classifier to task 1's test data % Chin-Chia Michael Yeh 05/28/2016 % % applyTask1Classifier(dataPath, classPath, dicNum, spletLen, spletNum) % Input: % dataPath: path to task 1's test data (string) % classPath: path to the output directory (string) % dicNum: number of dictionary element for sparse coding (scalar) % spletLen: shaplet length (scalar) % spletNum: number of shapelet (scalar) % function applyTask1Classifier(dataPath, classPath, dicNum, spletLen, spletNum) %% check if the prediction is already done fnameOut = sprintf('dn%d__sl%d__sn%d__task1.txt', dicNum, spletLen, spletNum); fnameOut = fullfile(classPath, fnameOut); if exist(fnameOut, 'file') return end %% load classifier fnameClass = sprintf('dn%d__sl%d__sn%d.mat', dicNum, spletLen, spletNum); fnameClass = fullfile(classPath, fnameClass); load(fnameClass); %% load data fprintf('Loading data ... '); tTemp = tic(); info = hdf5info(dataPath); dataOrg = hdf5read(info.GroupHierarchy.Datasets(1)); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% organize data fprintf('Organizing data ... '); tTemp = tic(); dataDim = size(dataOrg, 1); dataLen = size(dataOrg, 2); dataNum = size(dataOrg, 3); dataOrg2 = cell(dataDim, 1); for i = 1:dataDim dataOrg2{i} = squeeze(dataOrg(i, :, :))'; end dataRS = cell(dataNum, 1); dataSC = cell(dataNum, 1); lab = double(ones(dataNum, 1)); for i = 1:dataNum dataRS{i} = zeros(dataDim, dataLen); for k = 1:dataDim dataRS{i}(k, :) = dataOrg2{k}(i, :); end dataSC{i} = normalizeData(dataRS{i}); end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% shapelet trainsform fprintf('Shapelet transform and sparse coding ... '); tTemp = tic(); featRS = cell(dataNum, 1); featSC = cell(dataNum, 1); for i = 1:dataNum featRS{i} = spletTran(dataRS{i}, splet); featSC{i} = sparseCodeTran(dataSC{i}, dic); end featRS = cell2mat(featRS); featSC = cell2mat(featSC); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% normalization fprintf('Normalize feature ... '); tTemp = tic(); featRS = featRS - repmat(featMean, dataNum, 1); featRS = featRS ./ repmat(featStd, dataNum, 1); featRS = full(featRS); featSC = full(featSC); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% apply svm model fprintf('Apply SVM model ...\n'); tTemp = tic(); [~, ~, probRSTemp] = svmpredict2(lab, featRS, svmModelRS, '-b 1'); probRS = zeros(size(probRSTemp)); probRS(:, svmModelRS.Label) = probRSTemp; [~, ~, probSCTemp] = svmpredict2(lab, featSC, svmModelSC, '-b 1'); probSC = zeros(size(probSCTemp)); probSC(:, svmModelSC.Label) = probSCTemp; tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% fuse result fprintf('Fusion ... '); tTemp = tic(); probFus = probSC*bestAccSC + probRS*bestAccRS; labPr = zeros(dataNum, 1); for j = 1:dataNum [~, labPr(j)] = max(probFus(j, :)); end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% output predicted label fileID = fopen(fnameOut,'w'); fprintf(fileID, '%d\n',labPr); fclose(fileID);
github
mcyeh/aaltd16_fusion-master
distanceProfile.m
.m
aaltd16_fusion-master/distanceProfile.m
1,179
utf_8
9014f01902d4f8d1c7e8a7d385eddce7
% Compute the distance profile on a given time series with the query % Modify by Chin-Chia Michael Yeh 05/28/2016 % Original from http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html % % dist = distanceProfile(data, query) % Output: % dist: distance profile (vector) % Input: % data: the time series (vector) % query: the query (vector) % function dist = distanceProfile(x,y) %% x is the data, y is the query if length(x) == size(x, 2) x = x'; end if length(y) == size(y, 2) y = y'; end %% prepaire data n = length(x); meany = mean(y); sigmay = std(y,1); m = length(y); x(n+1:2*n) = 0; y = y(end:-1:1); %Reverse the query y(m+1:2*n) = 0; %% The main trick of getting dot products in O(n log n) time X = fft(x); Y = fft(y); Z = X.*Y; z = ifft(Z); %% compute x stats -- O(n) cum_sumx = cumsum(x); cum_sumx2 = cumsum(x.^2); sumx2 = cum_sumx2(m:n)-[0;cum_sumx2(1:n-m)]; sumx = cum_sumx(m:n)-[0;cum_sumx(1:n-m)]; meanx = sumx./m; sigmax2 = (sumx2./m)-(meanx.^2); sigmax = sqrt(sigmax2); %% computing the distances -- O(n) time dist = 2*m*(1-(z(m:n)-m*meanx*meany)./(m*sigmax*sigmay)); dist = sqrt(dist); dist = real(dist);
github
mcyeh/aaltd16_fusion-master
randSpletSele.m
.m
aaltd16_fusion-master/randSpletSele.m
1,001
utf_8
643d94e985a0e1f00e0247ef204aee2c
% Randomly select shapelet from the dataset % Chin-Chia Michael Yeh 06/16/2016 % % splet = randSpletSele(data, spletLen, spletNum) % Output: % splet: shaplet set, each row is a shapelet (matrix) % Input: % data: training set, each row is a training data (cell) % spletLen: shaplet length (scalar) % spletNum: number of shapelet (scalar) % function splet = randSpletSele(data, spletLen, spletNum) %% extract stat data = cell2mat(data); dataNum = size(data, 1); dataLen = size(data, 2); %% select shapelet splet = zeros(spletNum, spletLen); randIdx = randi([1, dataNum], spletNum, 1); for i = 1:spletNum isHozLine = true; while isHozLine % generate random length and postiion randPos = randi([1, dataLen - spletLen + 1]); % extract shapelet splet(i, :) = data(randIdx(i), randPos:randPos+spletLen-1); % check if the selected shapelet is valid if std(splet(i, :), 1) > eps isHozLine = false; end end end
github
mcyeh/aaltd16_fusion-master
normalizeData.m
.m
aaltd16_fusion-master/normalizeData.m
674
utf_8
9f72db7df8188f8f8df2ef7acbd233dc
% Perform power normalization (cube root), consecutive frame concatenation, and % unit-norm normalize to the input data % Chin-Chia Michael Yeh 05/28/2016 % % data = normalizeData(data) % Output: % data: the normalized multi dimensional time series (matrix) % Input: % data: the multi dimensional time series (matrix) % function data = normalizeData(data) dataTemp = nthroot(data, 3); canNum = 16; data = zeros(canNum*size(dataTemp, 1), size(dataTemp, 2)-canNum+1); for i = 1:canNum data((i-1)*size(dataTemp, 1)+1:i*size(dataTemp, 1), :) = ... dataTemp(:, i:end-canNum+i); end for i = 1:size(data, 2) data(:, i) = data(:, i) / norm(data(:, i)); end
github
mcyeh/aaltd16_fusion-master
learnDic.m
.m
aaltd16_fusion-master/learnDic.m
622
utf_8
c4bea5eda0b8d68bd85e4f5ec0781ce0
% Learn dictionary from the dataset % Chin-Chia Michael Yeh 05/30/2016 % % dic = learnDic(data, dicNum) % Output: % dic: dictionary, each column is a dictionary element (matrix) % Input: % data: training set, each row is a training data (cell) % dicNum: number of dictionary element (scalar) % function dic = learnDic(data, dicNum) %% convert to matrix data = cell2mat(data'); %% extract stat dataDim = size(data, 1); dataNum = size(data, 2); %% learning parameter param.K = dicNum; param.lambda = 1/sqrt(dataDim); param.iter = round(dataNum*10 / 512); %% dictionary learning dic = mexTrainDL(data, param);
github
mcyeh/aaltd16_fusion-master
applyTask2Classifier.m
.m
aaltd16_fusion-master/applyTask2Classifier.m
5,954
utf_8
c02a19b80fb4b73c15134ef9a2df4125
% Apply the classifier to task 2's test data % Chin-Chia Michael Yeh 05/28/2016 % % applyTask1Classifier(dataPath, classPath, dicNum, spletLen, spletNum) % Input: % dataPath: path to task 2's test data (string) % classPath: path to the output directory (string) % dicNum: number of dictionary element for sparse coding (scalar) % spletLen: shaplet length (scalar) % spletNum: number of shapelet (scalar) % function applyTask2Classifier(dataPath, classPath, dicNum, spletLen, spletNum) %% check if the prediction is already done fnameOut = sprintf('dn%d__sl%d__sn%d__task2.txt', dicNum, spletLen, spletNum); fnameOut = fullfile(classPath, fnameOut); if exist(fnameOut, 'file') return end %% initialization for parfor fprintf('Initialize for parfor ... \n'); tTemp = tic(); workerNum = 4; if isempty(which('parpool')) if matlabpool('size') <= 0 %#ok<*DPOOL> matlabpool(workerNum); elseif matlabpool('size')~= workerNum matlabpool('close'); matlabpool(workerNum); end else parProfile = gcp('nocreate'); if isempty(gcp('nocreate')) parpool(workerNum); elseif parProfile.NumWorkers ~= workerNum delete(gcp('nocreate')); parpool(workerNum); end end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% load classifier fnameClass = sprintf('dn%d__sl%d__sn%d.mat', dicNum, spletLen, spletNum); fnameClass = fullfile(classPath, fnameClass); dataRSLen = []; dataSCLen = []; splet = []; dic = []; svmModelRS = []; svmModelSC = []; featMean = []; featStd = []; load(fnameClass); %% load data fprintf('Loading data ... '); tTemp = tic(); info = hdf5info(dataPath); dataOrg = hdf5read(info.GroupHierarchy.Datasets(1)); tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% organize data fprintf('Organizing data ... '); tTemp = tic(); dataDim = size(dataOrg, 1); dataLen = size(dataOrg, 2); dataNum = size(dataOrg, 3); dataOrg2 = cell(dataDim, 1); for i = 1:dataDim dataOrg2{i} = squeeze(dataOrg(i, :, :))'; end dataRS = cell(dataNum, 1); dataSC = cell(dataNum, 1); for i = 1:dataNum dataRS{i} = zeros(dataDim, dataLen); for k = 1:dataDim dataRS{i}(k, :) = dataOrg2{k}(i, :); end dataRS{i} = [dataRS{i}, repmat(dataRS{i}(:, end), 1, 50)]; dataSC{i} = normalizeData(dataRS{i}); end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% compute prediction curve fprintf('Generate prediction curve (random shapelet) ...\n'); tTemp = tic(); probPrRS = cell(dataNum, 1); parfor i = 1:dataNum [~, probPrRS{i}] = applySlidingWindowRS(dataRS{i}, dataRSLen, ... splet, featMean, featStd, svmModelRS); end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% compute prediction curve fprintf('Generate prediction curve (sparse coding) ...\n'); tTemp = tic(); probPrSC = cell(dataNum, 1); parfor i = 1:dataNum [~, probPrSC{i}] = applySlidingWindowSC(dataSC{i}, dataSCLen, ... dic, svmModelSC); end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% post process the curve probPr = cell(size(probPrRS)); labPr = cell(size(probPrRS)); for i = 1:length(probPr) for j = 1:size(probPrRS{i}, 1) probPrRS{i}(j, :) = smooth(probPrRS{i}(j, :), 51); end probPr{i} = probPrRS{i} * bestAccRS + probPrSC{i} * bestAccSC; labPr{i} = zeros(1, size(probPr{i}, 2)); for j = 1:size(probPr{i}, 2) probPr{i}(:, j) = probPr{i}(:, j) / sum(probPr{i}(:, j)); [~, labPr{i}(j)] = max(probPr{i}(:, j)); end end %% find start and end fprintf('Find label, start points, and end points ... '); tTemp = tic(); stLoc = zeros(dataNum, 6); edLoc = zeros(dataNum, 6); lab = zeros(dataNum, 6); for i = 1:dataNum for j = 1:6 stLocLeft = max(1, (j-1)*51-24); stLocRight = min(306, (j-1)*51+26); lab(i,j) = mode(labPr{i}(stLocLeft:stLocRight)); [~, stLoc(i,j)] = max(probPr{i}(lab(i,j), stLocLeft:stLocRight)); stLoc(i,j) = stLoc(i,j) + stLocLeft - 1; end for j = 1:6 edLocLeft = stLoc(i,j); if j == 6 edLocRight = 306; else edLocRight = stLoc(i,j+1)-1; end [~, edLoc(i,j)] = min(probPr{i}(lab(i,j), edLocLeft:edLocRight)); edLoc(i,j) = edLoc(i,j) + edLocLeft - 1; if j < 6 && stLoc(i,j+1)-edLoc(i,j)>20 stLoc(i,j+1) = edLoc(i,j) + 1; end end edLoc(i,6) = 306; end tTemp = toc(tTemp); fprintf('%5.3f s\n', tTemp); %% output predicted label fileID = fopen(fnameOut,'w'); for i = 1:dataNum for j = 1:6 fprintf(fileID, '%d:%d-%d ', lab(i,j), stLoc(i,j)-1, edLoc(i,j)-1); end fprintf(fileID, '\n'); end fclose(fileID); function [labPr, probPr] = applySlidingWindowRS(data, slLen, splet, ... featMean, featStd, svmModel) %% initialization dataLen = size(data, 2); slNum = dataLen - slLen + 1; %% extract subsequences feat = cell(slNum, 1); for j = 1:slNum feat{j} = spletTran(data(:, j:j+slLen-1), splet); end feat = cell2mat(feat); feat = feat - repmat(featMean, slNum, 1); feat = feat ./ repmat(featStd, slNum, 1); feat = full(feat); %% apply svm model lab = double(ones(slNum, 1)); [labPr, ~, probPr] = svmpredict2(lab, feat, svmModel, '-b 1'); %% reorder svm model labPr = labPr'; probPrRe = zeros(size(probPr))'; for i = 1:length(svmModel.Label) probPrRe(svmModel.Label(i), :) = probPr(:, i); end probPr = probPrRe; function [labPr, probPr] = applySlidingWindowSC(data, slLen, dic, svmModel) %% initialization dataLen = size(data, 2); slNum = dataLen - slLen + 1; %% extract subsequences feat = cell(slNum, 1); for j = 1:slNum feat{j} = sparseCodeTran(data(:, j:j+slLen-1), dic); end feat = cell2mat(feat); feat = full(feat); %% apply svm model lab = double(ones(slNum, 1)); [labPr, ~, probPr] = svmpredict2(lab, feat, svmModel, '-b 1'); %% reorder svm model labPr = labPr'; probPrRe = zeros(size(probPr))'; for i = 1:length(svmModel.Label) probPrRe(svmModel.Label(i), :) = probPr(:, i); end probPr = probPrRe;
github
mcyeh/aaltd16_fusion-master
sparseCodeTran.m
.m
aaltd16_fusion-master/sparseCodeTran.m
663
utf_8
451fab4e711dc77f697c0f828b7bcb37
% Compute the sparse coding of the input data, pool the sparse coding result % with mean, and power normalized (cube root) the pooled result % Chin-Chia Michael Yeh 05/28/2016 % % feat = sparseCodeTran(data, dic) % Output: % feat: pooled and normalized sparse coding output (vector) % Input: % data: the multi dimensional time series (matrix) % dic: dictionary, each column is a dictionary element (matrix) % function feat = sparseCodeTran(data, dic) %% sparse coding param.lambda = 1/sqrt(size(data, 1)); code = mexLasso(data, dic, param); code = full(code); %% pooling code = mean(code, 2); code = abs(code); feat = nthroot(code, 3); feat = feat';
github
mcyeh/aaltd16_fusion-master
spletTran.m
.m
aaltd16_fusion-master/spletTran.m
707
utf_8
60f253335139479b25221db4188f7d66
% Shapelet transform and power normalized (square root) the output % Chin-Chia Michael Yeh 05/28/2016 % % dataTran = spletTran(data, splet) % Output: % dataTran: shapelet trasformation output (vector) % Input: % data: the multi dimensional time series (matrix) % splet: shaplet set, each row is a shapelet (matrix) % function dataTran = spletTran(data, splet) %% perform the transform spletNum = size(splet, 1); dataDim = size(data, 1); dataTran = cell(1, dataDim); for i = 1:dataDim dataTran{i} = zeros(1, spletNum); for j = 1:spletNum dist = distanceProfile(data(i, :)', splet(j, :)'); dataTran{i}(j) = nthroot(min(dist), 2); end end dataTran = cell2mat(dataTran);
github
swag-kaust/ASOFI3D-master
write_asofi3D_json.m
.m
ASOFI3D-master/mfiles/write_asofi3D_json.m
1,074
utf_8
0cc977a208c79a5d7a0c858fd57fa85e
function write_asofi3D_json(filename, config) % writes to json file %% make all numbers strings field_list = fieldnames(config); for field_n = 1:length(field_list) config.(field_list{field_n}) = ... num2str(config.(field_list{field_n})); end %% encode to json bb = jsonencode(config); % replace manually the field names altered by MATLAB bb = replace(bb, '"REFRECX_REFRECY_REFRECZ"','"REFRECX, REFRECY, REFRECZ"'); bb = replace(bb,'"XREC1_YREC1_ZREC1"','"XREC1,YREC1, ZREC1"'); bb = replace(bb,'"XREC2_YREC2_ZREC2"','"XREC2,YREC2, ZREC2"'); bb = replace(bb, '"SOURCE_ALPHA_SOURCE_BETA"', '"SOURCE_ALPHA, SOURCE_BETA"'); bb = replace(bb, '"AMON_STR_DIP_RAKE"', '"AMON, STR, DIP, RAKE"'); bb = replace(bb, '"AMON_M11_M12_M13_M22_M23_M33"',... '"AMON, M11, M12, M13, M22, M23, M33"'); bb = replace(bb, '","', ['",', newline,'"']); bb = sprintf(bb); bb = replace(bb, '"NDT_NDTSHIFT"', '"NDT, NDTSHIFT"'); filewrite(filename,bb); end function filewrite(file_name, text) fid = fopen(file_name,'wt'); fprintf(fid, '%s', text); fclose(fid); end
github
swag-kaust/ASOFI3D-master
plot_2Dslices.m
.m
ASOFI3D-master/mfiles/plot_2Dslices.m
25,867
utf_8
315f4f842972061d8c2b83ae1947f73f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---script for the visualization of snapshots gained from the ASOFI simulation %---most parameters are as specified in ASOFI parameter-file, e.g. sofi3D.json %---Please note : y denotes the vertical axis!! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %close all; clearvars; clc; addpath('./utils'); % User-defined parameters. % Directory name with the simulation input and output, relative to this script. plot_opts.par_folder = '../par'; % % Path to configuration file, relative to par_folder. plot_opts.config_file='./in_and_out/sofi3D.json'; plot_opts.file_out = [plot_opts.par_folder, '/figures']; plot_opts.file_ext = '.bin.div'; for phi2=0:15:90 plot_opts.phi2 = phi2; snap3D_ASOFI_fun(plot_opts); end function snap3D_ASOFI_fun(plot_opts) phi2 = plot_opts.phi2; par_folder = plot_opts.par_folder; config_file = plot_opts.config_file; %% Read from json to opts. opts = read_asofi3D_json([par_folder, '/', config_file]); %% merge snapshots if they were not merged before oldpwd = pwd; cd(par_folder) snap_name_full = [opts.SNAP_FILE,'.bin.div']; dir_Full = dir(snap_name_full); dir_000 = dir([opts.SNAP_FILE,'.bin.div.0.0.0']); if ~exist(snap_name_full,'file') system('../bin/snapmerge ./in_and_out/sofi3D.json'); elseif dir_Full.datenum < dir_000.datenum system('../bin/snapmerge ./in_and_out/sofi3D.json'); end cd(oldpwd) %% prepare colormap create_colormaps; %% read parameters from json nx = str2num(opts.NX); ny = str2num(opts.NY); nz = str2num(opts.NZ); outx = str2num(opts.IDX); outy = str2num(opts.IDY); outz = str2num(opts.IDZ); dh = str2num(opts.DX); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---input, output files %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Choose number of input files (1 or 2), only for 2D plots % For the 3D plot (image_switch=2) only file_inp1 is used by default num_switch=2; % Input file1 (snapshot file1) file_inp1 = [par_folder,'/snap/test.bin.div']; % Input file2 (snapshot file2) file_inp2 = [par_folder,'/snap/test.bin.curl']; % Model file (for single display or contour plot ontop of snapshot) file_mod = [par_folder,'/model/test.SOFI3D.rho']; % Output file % switch for saving snapshots to picture file 1=yes (jpg) 2= yes (png) other=no filesave=1; % base name of picture file output, will be expanded by extension jpg/png file_out=plot_opts.file_out; % title strings for each sub-figure title_inp1='\nabla \cdot u'; title_inp2='S-wave field (curl)'; title_mod='Density model'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---variety of switches %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % switch for contour of model overlaying the model or snapshot file % 1=yes other=no cont_switch=1; % number of contours for the contour-plot numbOFcont=8; % Choose model or snapshot plot (model-->1; snapshot-->2) type_switch=2; % Choose 2D slice or 3D surf plot image_switch=2; % 1 = 2D; 2 = 3D; % Choose slice geometry and postion (for 2-D plots) slice_switch=1; % horizontal(zx)=1; vertical (yx)=2; vertical (yz)=3; % slice definition, where to slice trough the 3-D space nx=nx/outx;ny=ny/outy;nz=nz/outz; zslice=nz/2; % for xy plane yslice=ny/2; % for xz plane xslice=nx/2; % for yz plane in grid points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---Snapshot definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % time increment for snapshots: TSNAP1=0.8; TSNAPINC=0.2; % firts and last snapshot that is considered for displayin firstframe=1; lastframe=3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---3D definitions: defines two rotating planes (xz, yz plane) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% phi1=0; % a horizontal plane (x-z plane) is rotated by phi1 with respect to the rotpoint %phi2=90; % a horizontal plane (x-z plane) is rotated by phi2 with respect to the rotpoint % rotaxis and rotpoint refers to the rotation of the 2D-slices within the 3D volume % direction rotation axes [0,1,0] rotation of plane around vertical axis % [1,0,0] rotation of plane around x-axis rotaxis=[0,1,0]; % defines point for rotation of the 2D slices [x y z] in meter % values are defined as difference to the center of the model/snaphot % in case of rotpoint=[0,0,0], this point is excatly the center of the model/snaphot rotpoint=[0 0 0]; % defines angles of perspective for the 3-D view % i.e. it rotates the plot to favorable perspective viewpoint=[1,4,1]; file_out = [file_out, num2str(phi2)]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---axis limits for 2D and 3D visualization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % colorbar boundaries for cropping the snapshot value range % only used if type_switch=2 auto_scaling=1; % 1= automatic determination of boundaries, 2= constant values caxis_value , 3= no scaling caxis_value_1=5e-11; caxis_value_2=caxis_value_1; % only used if num_switch=2 % use custom axis limits if axisoverwrite==1, otherwise matlab will % determine axis limits automatically axisoverwrite=0; newaxis=[35 65 35 65]; % delay between the display of each snaphot in s pause4display=0.2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---end of input parameter definition %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---creation of model vectors and loading file data---- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plot range and increment xp1=dh; xp2=nx*dh; yp1=dh; yp2=ny*dh; zp1=dh; zp2=nz*dh; % Computing range for axis and subscript range for the movie x=xp1:dh*outx:xp2*outx; y=yp1:dh*outy:yp2*outy; % vertical axis z=zp1:dh*outz:zp2*outz; % if model is plotted, than there is only one snapshot % loop over # of snapshots will terminate after one iteration if type_switch==1 firstframe=1 lastframe=1; num_switch=1; end % if 3D snaphot visualization is chosen, the number of snapshots for % simultaneous display is set to 1 if image_switch==2 num_switch=1; end % load model file ; Format ieee-be for Sun or Workstation, -le for PC if (cont_switch==1) | (type_switch==1) % opening file and reading disp(['Loading file ' file_mod]); fid_mod=fopen(file_mod,'r','ieee-le'); mod_data=fread(fid_mod,'float'); mod_data=reshape(mod_data,ny,nx,nz); mod_data=permute(mod_data,[2,3,1]); fclose(fid_mod); if (slice_switch==1) % z-x-plane (horizontal) mod_data=squeeze(mod_data(:,:,yslice)); mod_data=permute(mod_data,[2,1]); end if (slice_switch==2) % y-x-plane (vertical) mod_data=squeeze(mod_data(:,zslice,:)); mod_data=permute(mod_data,[2,1]); end if (slice_switch==3) % y-z-plane (vertical) mod_data=squeeze(mod_data(xslice,:,:)); mod_data=permute(mod_data,[2,1]); end end % open snapshot data of 1st input file disp(['Loading snap shot file ' file_inp1]); fid_file1=fopen(file_inp1,'r','ieee-le'); if num_switch==2; % open snapshot data of 2nd input file disp(['Loading snap shot file ' file_inp2]); fid_file2=fopen(file_inp2,'r','ieee-le'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---2D display of snapshot data (Slices ) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% disp([' ']); if image_switch==1 % in case of snapshot files use seismic colormap if type_switch==2 myMap = colormap(load('./srgb.map')); end % creating variables for snapshot content % file1_data (and file2_data) depending on number of snapshots % displayed simultaneously (switch num_switch) % selected slice of y-x-plane (vertical plane) if(slice_switch==2) % allocate memory for 1st snapshot file file1_data=zeros(ny,nx); if num_switch==2 % allocate memory for 2nd snapshot file file2_data=zeros(ny,nx); end end % selected slice of z-x-plane (horizontal plane) if(slice_switch==1) % allocate memory for 1st snapshot file file1_data2=zeros(nz,nx); if num_switch==2 % allocate memory for 2nd snapshot file file2_data2=zeros(nz,nx); end end % selected slice of y-z-plane (vertical plane) if(slice_switch==3) % allocate memory for 1st snapshot file file1_data2=zeros(ny,nz); if num_switch==2 % allocate memory for 2nd snapshot file file2_data2=zeros(ny,nz); end end % determing imaging vectors (for contour and imagesc) and labels % according to chosen image plane if slice_switch==1 image_vect1=x; image_vect2=z; labelstring1='x in m'; labelstring2='z in m (horizontal)'; end if slice_switch==2 image_vect1=x; image_vect2=y; labelstring1='x in m'; labelstring2='y in m (vertical)'; end if slice_switch==3 image_vect1=z; image_vect2=y; labelstring1='z in m'; labelstring2='y in m (vertical)'; end h1=figure(1); % determination of screen size scrsz = get(0,'ScreenSize'); % determination size of window for plotting %set(h1,'Position',[1 scrsz(4)*2/3 scrsz(3)*1/4 scrsz(4)*2/3]); %creating subfigure handles if 2 snapshots are displayed simultaneously if num_switch==2 ax1=subplot('Position',[0.05 0.3 0.4 0.4]); ax2=subplot('Position',[0.55 0.3 0.4 0.4]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---loop over timesteps (2D snapshots) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=firstframe:1:lastframe; %calculating time of snapshot tsnap=(i-1)*TSNAPINC+TSNAP1; disp(['Loading snapshot no ',int2str(i),' at time=',num2str(tsnap),' s.']); % loading data: if(slice_switch==2) % y-x-plane (vertical) % since the models are stores as a series of yx-slices % we just have to seek/jump to the mid-slice and load the data offset=4*nx*ny*(zslice-1)+4*nx*ny*nz*(i-1); fseek(fid_file1,offset,-1); if num_switch==2 fseek(fid_file2,offset,-1); end file1_data(:,:)=fread(fid_file1,[ny,nx],'float'); if num_switch==2 file2_data(:,:)=fread(fid_file2,[ny,nx],'float'); end else % z-x-plane (horizontal) and %y-z-plane (vertical) % to display slices in any other plane besides y-x, we have to load % each single yx slice and extract a single line and put them together for l=1:nz file1_data=fread(fid_file1,[ny,nx],'float'); if num_switch==2 file2_data=fread(fid_file2,[ny,nx],'float'); end if(slice_switch==1) % z-x plane (horizontal) file1_data2(l,:)=file1_data(yslice,:); if num_switch==2 file2_data2(l,:)=file2_data(yslice,:); end end if(slice_switch==3) % y-z-plane (vertical) file1_data2(:,l)=file1_data(:,xslice); if num_switch==2 file2_data2(:,l)=file2_data(:,xslice); end end end file1_data=file1_data2; clear file1_data2; if num_switch==2 file2_data=file2_data2; clear file2_data2; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---plotting 2D slices %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % switch for loading 1 or 2 input files if num_switch==2 % now switching to secondary subplot axes(ax2); imagesc(image_vect1,image_vect2,file2_data); % determing maximum amplitude of plot file2max=max(max(abs(file2_data))); % switch whether model contour should be plotted if cont_switch==1 hold on contour(image_vect1,image_vect2,mod_data,numbOFcont,'k-','LineWidth',1); hold off end % formatting the 2nd sub-figure colorbar xlabel(labelstring1); ylabel(labelstring2); title(title_inp2); set(gca,'DataAspectRatio',[1 1 1]); set(get(gca,'title'),'FontSize',12,'FontWeight','bold'); set(get(gca,'Ylabel'),'FontSize',12,'FontWeight','bold'); set(get(gca,'Xlabel'),'FontSize',12,'FontWeight','bold'); set(gca,'FontSize',12,'FontWeight','bold'); set(gca,'Linewidth',1.0); set(gca,'Box','on'); if axisoverwrite==1 axis(newaxis); end % limiting the colorbar to specified range switch auto_scaling case 1 caxis([-file2max/10 file2max/10]); case 2 caxis([-caxis_value_2 caxis_value_2]) otherwise end % now switching to primary subplot axes(ax1); end % plot 1st input file if type_switch==2 % plot snapshot file imagesc(image_vect1,image_vect2,file1_data); end if type_switch==1 % plot model file imagesc(image_vect1,image_vect2,mod_data); end colorbar if type_switch==2 title(title_inp1); end if type_switch==1 title(title_mod); end % determing maximum amplitude of plot file1max=max(max(abs(file1_data))); % switch whether model contour should be plotted if cont_switch==1 hold on contour(image_vect1,image_vect2,mod_data,numbOFcont,'k-','LineWidth',1); hold off end % formating the 1st sub-figure xlabel(labelstring1); ylabel(labelstring2); set(gca,'DataAspectRatio',[1 1 1]); set(get(gca,'title'),'FontSize',12,'FontWeight','bold'); set(get(gca,'Ylabel'),'FontSize',12,'FontWeight','bold'); set(get(gca,'Xlabel'),'FontSize',12,'FontWeight','bold'); set(gca,'FontSize',12,'FontWeight','bold'); set(gca,'Linewidth',1.0); set(gca,'Box','on'); if axisoverwrite==1 axis(newaxis); end if type_switch==2 % in case of snapshot: % display maximum amplitude of sub-figures to command window if num_switch==2 disp([' Maximum amplitude of ',title_inp2,'-snapshot: ', num2str(file2max)]); end disp([' Maximum amplitude of ',title_inp1,'-snapshot: ', num2str(file1max)]); % limiting the colorbar to specified range switch auto_scaling case 1 caxis([-file1max/10 file1max/10]); case 2 caxis([-caxis_value_1 caxis_value_1]); otherwise end % adding text string for timestep of snapshot set(text(7000,7000,['T2= ',sprintf('%2.4f',tsnap), 's']),'FontSize',14,'FontWeight','bold','Color','black'); end % delay the display of snapshots by frictions of seconds pause(pause4display); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---Saving the snapshot to file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (filesave~=0) % generating filename string if i<10 imagefile=[file_out,'2D_00',int2str(i)]; else if i<100 imagefile=[file_out,'2D_0',int2str(i)]; else imagefile=[file_out,'2D_',int2str(i)]; end end % output as jpg graphic (or eps) via print command if filesave==1 eval(['print -djpeg100 ' [imagefile,'.jpg']]); % eval(['print -depsc '[imagefile2,'.eps']]); end % output as png graphic via additional matlab function if filesave==2 savefig([imagefile], 'png', '-rgb', '-c0', '-r250'); end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---3D display of snapshot data (single snapshot only) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if image_switch==2 if type_switch==1 % loading model data fid=fopen(file_mod,'r','ieee-le'); lastframe=1; if cont_switch==1 fid_mod=fopen(file_mod,'r','ieee-le'); mod_data=fread(fid_mod,(nx*ny*nz),'float'); mod_data=reshape(mod_data,ny,nx,nz); mod_data=permute(mod_data,[3,2,1]); fclose(fid_mod); end end if type_switch==2 % loading snapshot data of input1 fid=fopen(file_inp1,'r','ieee-le'); colormap(load('./srgb.map')); % adding contour of model to snapshot data if cont_switch==1 fid_mod=fopen(file_mod,'r','ieee-le'); mod_data=fread(fid_mod,(nx*ny*nz),'float'); mod_data=reshape(mod_data,ny,nx,nz); mod_data=permute(mod_data,[3,2,1]); fclose(fid_mod); end end % loop over number of snaphsots for i=firstframe:lastframe % calculating time of snapshot tsnap=(i-1)*TSNAPINC+TSNAP1; disp(['Loading snapshot no ',int2str(i),' at time=',num2str(tsnap),' s.']); % loading data (model or snapshot) % calculate offset in order to jump to specific snapshot within file offset=4*nx*ny*nz*(i-1); fseek(fid,offset,-1); file1_data=fread(fid,(nx*ny*nz),'float'); file1_data=reshape(file1_data,ny,nx,nz); file1_data=permute(file1_data,[3,2,1]); D = merge_snapshots(par_folder, plot_opts.file_ext); file1_data = D(:,:,:,i); % creating a grid [X,Z,Y]=meshgrid(x,z,y); %surface height of horizontal y-x plane xyplane=zeros(ny,nx); xyplane(:,:)=(nz*dh*outy)/2+rotpoint(2); % creating a vertical slice plane in y-x plane hslice = surf(x,y,xyplane); % rotate slice plane with, with respect to a point from which rotation is defined % in case of rotpoint=[0,0,0], this point is the center of the model/snaphot rotate(hslice,rotaxis,phi1,[mean(x)-rotpoint(1),mean(y)-rotpoint(2),mean(mean(xyplane))-rotpoint(3)]); % get boundaries of rotated plane xd = get(hslice,'XData'); yd = get(hslice,'YData'); zd = get(hslice,'ZData'); % remove plane, only limits are further used delete(hslice); % creating a horizontal slice plane in z-x plane hslice2 = surf(x,y,xyplane); % rotate slice plane with, with respect to a point from which rotation is defined % in case of rotpoint=[0,0,0], this point is the center of the model/snaphot rotate(hslice2,rotaxis,phi2,[mean(x)-rotpoint(1),mean(y)-rotpoint(2),mean(mean(xyplane))-rotpoint(3)]); % get boundaries of rotated plane xd2 = get(hslice2,'XData'); yd2 = get(hslice2,'YData'); zd2 = get(hslice2,'ZData'); % remove plane, only limits are further used delete(hslice2); % display sliced and rotated plane h1=figure(1); % determination of screen size scrsz = get(0,'ScreenSize'); % determination size of window for plotting %set(h1,'Position',[1 scrsz(4)*2/3 scrsz(3)*1/4 scrsz(4)*2/3]); axis equal % strict vertical slice, no rotation applied % h = slice(Y,X,Z,file1_data,[],yslice*dh*outy-1,[]); % rotated vertical slice % !!! note that taking sclices from a homogeneous model is - for some % reason not working, please use 2-D visualization instead !!! h = slice(X,Z,Y,file1_data,xd,zd,yd); set(h,'FaceColor','interp','EdgeColor','none','DiffuseStrength',.8,'FaceAlpha',0.5); hold on % strict horizontal, no rotation applied % h2 = slice(Y,X,Z,file1_data,[],[],zslice*dh*outz); % this is strict vertical, no rotation applied % rotated horizontal slice h2 = slice(X,Z,Y,file1_data,xd2,zd2,yd2); set(h2,'FaceColor','interp','EdgeColor','none','DiffuseStrength',.8,'FaceAlpha',0.5); axis equal % vertical slice at model boundary % h3 = slice(X,Z,Y,file1_data,10,[],[]); % set(h3,'FaceColor','interp','EdgeColor','none','DiffuseStrength',.8); % % black outline of the vertical slice % plot3([0 max(max(xd))],[max(max(zd)) max(max(zd))],[0 0],'-black','LineWidth',2); % plot3([max(max(xd)) max(max(xd))],[max(max(zd)) max(max(zd))],[0 max(max(yd))],'-black','LineWidth',2); % plot3([max(max(xd)) 0],[max(max(zd)) max(max(zd))],[max(max(yd)) max(max(yd))],'-black','LineWidth',2); % plot3([0 0],[max(max(zd)) max(max(zd))],[0 max(max(yd))],'-black','LineWidth',2); % % % black outline of the horizontal slice % plot3([0 max(max(xd2))],[max(max(zd2)) max(max(zd2))],[max(max(yd2)) min(min(yd2))],'-black','LineWidth',2); % plot3([max(max(xd2)) max(max(xd2))],[max(max(zd2)) 0],[max(max(yd2)) max(max(yd2))],'-black','LineWidth',2); % plot3([max(max(xd2)) 0],[0 0],[max(max(yd2)) min(min(yd2))],'-black','LineWidth',2); % plot3([0 0],[0 max(max(zd2))],[max(max(yd2)) max(max(yd2))],'-black','LineWidth',2); if cont_switch==1 % vertical contour slice h=contourslice(X,Z,Y,mod_data,xd,zd,yd,numbOFcont); set(h,'FaceColor','black','EdgeColor','black'); % horizontal contour slice h2=contourslice(X,Z,Y,mod_data,xd2,zd2,yd2,numbOFcont); set(h2,'FaceColor','black','EdgeColor','black'); end hold off % formating figure %daspect([1,1,1]); axis tight box on % set viewpoint within 3-D space % (rotate 3-D figure plot to favorable perspective) view(viewpoint); camproj perspective % lightangle(-45,45); set(gcf,'Renderer','zbuffer'); %colorbar xlabel('x in m'); ylabel('y in m'); zlabel('Depth z in m'); % adding title string to plot if type_switch==2 title(title_inp1); end if type_switch==1 title(title_mod); end set(get(gca,'title'),'FontSize',13); set(get(gca,'title'),'FontWeight','bold'); set(get(gca,'Ylabel'),'FontSize',12); set(get(gca,'Ylabel'),'FontWeight','bold'); set(get(gca,'Xlabel'),'FontSize',12); set(get(gca,'Xlabel'),'FontWeight','bold'); set(get(gca,'Zlabel'),'FontSize',12); set(get(gca,'Zlabel'),'FontWeight','bold'); set(gca, 'ZDir', 'reverse') set(gca, 'YDir','reverse') set(gca,'FontSize',12); set(gca,'FontWeight','bold'); set(gca,'Linewidth',1.0); set(gca,'Box','on'); % determing maximum amplitude of plot file1max=max(max(max(abs(file1_data)))); % display maximum amplitude to command window disp([' Maximum amplitude of ',title_inp1,'-snapshot: ', num2str(file1max)]); % cropping model/snapshot dimensions ylim([0 nz*dh*outz+0.1]) xlim([0 nx*dh*outx+0.1]) zlim([0 ny*dh*outy+1.1]) % for snapshot input files if type_switch==2 % limiting the colorbar to specified range switch auto_scaling case 1 caxis([-file1max/5 file1max/5]); case 2 caxis([-caxis_value_1 caxis_value_1]); otherwise end % adding text string for timestep of snapshot set(text(3500,-1000,['T= ',sprintf('%2.4f',tsnap), 's']),'FontSize',12,'FontWeight','bold','Color','black'); pause(pause4display); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---Saving the snapshot to file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (filesave~=0) % generating filename string if i<10 imagefile=[file_out,'3D_00',int2str(i)]; else if i<100 imagefile=[file_out,'3D_0',int2str(i)]; else imagefile=[file_out,'3D_',int2str(i)]; end end % output as jpg graphic (or eps) via print command if filesave==1 eval(['print -djpeg100 ' [imagefile,'.jpg']]); % eval(['print -depsc '[imagefile2,'.eps']]); end % output as png graphic via additional matlab function if filesave==2 savefig([imagefile], 'png', '-rgb', '-c0', '-r250'); end end end end end disp([' ']); disp(['Script ended...']); end
github
swag-kaust/ASOFI3D-master
read_asofi3D_json.m
.m
ASOFI3D-master/mfiles/read_asofi3D_json.m
922
utf_8
572c5ceb8ee2a49a9b110240dbf26c43
function config = read_asofi3D_json(filename) %READ_ASOFI3D_JSON Read configuration file into `struct`. % json_config = read_asofi3D_json('in_and_out/sofi3D.json') reads file % 'in_and_out/sofi3D.json' relative to the current directory. json_text = fileread(filename); i = find(json_text=='{'); j = find(json_text=='}'); b = json_text(i:j); config = jsondecode(b); % ASOFI3D JSON parameter file contains all variables in string datatype. % We convert numerical parameters to double datatype, this does not over % parsing field_list = fieldnames(config); for field_n = 1:length(field_list) config.(field_list{field_n}) = ... str2num_if_num(config.(field_list{field_n})); end %write_asofi3D_json([filename, '_snap'], config); end function numval = str2num_if_num(strval) %makes double from string only if it is a number numval = str2double(strval); if isnan(numval) numval = strval; end end
github
swag-kaust/ASOFI3D-master
snap3D_ASOFI.m
.m
ASOFI3D-master/mfiles/snap3D_ASOFI.m
16,756
utf_8
ae3f6d8fa159ce4bda3d5aef9588f3d6
function [opts, plot_opts, D] = snap3D_ASOFI(folder_out, diffFlag, config_file) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---script for the visualization of snapshots gained from the ASOFI simulation %---most parameters are as specified in ASOFI parameter-file, e.g. sofi3D.json %---Please note : y denotes the vertical axis!! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clc; % by default the figures will be saved to the figures folder without any % subfolder structure defval('folder_out', '.'); defval('diffFlag', false); defval('config_file','./in_and_out/asofi3D.json'); %% check MATLAB MATLAB_MIN_VERSION = 'R2016b'; if verLessThan('matlab', MATLAB_MIN_VERSION) fprintf('ERROR: The minimal supported version of MATLAB is %s.\n', ... MATLAB_MIN_VERSION); return; end %% addpath('./utils'); % User-defined parameters. % Directory name with the simulation input and output, relative to this script. plot_opts.par_folder = '../par'; % % Path to configuration file, relative to par_folder. plot_opts.config_file = config_file; plot_opts.file_ext = '.bin.curl'; plot_opts.file_out = [plot_opts.par_folder, '/figures/',folder_out,'/']; mkdir(plot_opts.file_out); plot_opts.diffFlag = diffFlag; for phi2=90:90 plot_opts.phi2 = phi2; [opts, D] = snap3D_asofi3D_func(plot_opts); end disp(' '); disp('Script ended...'); end function [opts, D] = snap3D_asofi3D_func(plot_opts) phi2 = plot_opts.phi2; par_folder = plot_opts.par_folder; config_file = plot_opts.config_file; %% Read from json to opts. opts = read_asofi3D_json([par_folder, '/', config_file]); %% merge snapshots if they were not merged before oldpwd = pwd; cd(par_folder) snap_name_full = [opts.SNAP_FILE,'.bin.div']; dir_Full = dir(snap_name_full); dir_000 = dir([opts.SNAP_FILE,'.bin.div.0.0.0']); if ~exist(snap_name_full,'file') system(['../bin/snapmerge ' config_file]); elseif dir_Full.datenum < dir_000.datenum system(['../bin/snapmerge ' config_file]); end cd(oldpwd) %% prepare colormap create_colormaps; %% read parameters from json nx = opts.NX; ny = opts.NY; nz = opts.NZ; outx = opts.IDX; outy = opts.IDY; outz = opts.IDZ; % TODO: Why we think that DX is the same as DY or DZ? dh = opts.DX; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---input, output files %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Input file1 (snapshot file1) file_inp1 = [par_folder '/' opts.SNAP_FILE '.bin.div']; % Model file (for single display or contour plot ontop of snapshot) file_mod = fullfile(par_folder, [opts.MFILE '.SOFI3D.rho']); % Output file % switch for saving snapshots to picture file 1=yes (jpg) 2= yes (png) other=no file_save=1; % base name of picture file output, will be expanded by extension jpg/png file_out=plot_opts.file_out; % title strings for each sub-figure title_inp1='|\nabla \times u|'; title_mod='Density model'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---variety of switches %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % switch for contour of model overlaying the model or snapshot file % 1=yes other=no cont_switch=1; % number of contours for the contour-plot numbOFcont=8; % Choose model or snapshot plot (model-->1; snapshot-->2) type_switch=2; % Choose slice geometry and postion (for 2-D plots) slice_switch=1; % horizontal(zx)=1; vertical (yx)=2; vertical (yz)=3; % slice definition, where to slice trough the 3-D space nx=nx/outx;ny=ny/outy;nz=nz/outz; zslice=nz/2; % for xy plane yslice=ny/2; % for xz plane xslice=nx/2; % for yz plane in grid points %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---Snapshot definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % time increment for snapshots. TSNAP1=opts.TSNAP1; TSNAP2=opts.TSNAP2; TIME = opts.TIME; TSNAPINC=opts.TSNAPINC; if TSNAP2 > TIME fprintf(['WARNING: TSNAP2 = %f is larger than TIME = %f. ' ... 'Set TSNAP2 = TIME.\n'], ... TSNAP2, TIME); TSNAP2 = TIME; end nsnap = 1+floor(10*eps+(TSNAP2 - TSNAP1) / TSNAPINC); % first and last snapshot that is considered for displayin firstframe=1; lastframe=3; if lastframe > nsnap fprintf(['WARNING: Number of snapshots (nsnap = %d) is ' ... 'larger than the last snapshot number (lastframe = %d). ' ... 'Set lastframe = nsnap.\n'], ... nsnap, lastframe); lastframe = nsnap; end if firstframe > nsnap error('snap3D_ASOFI:incorrectFirstFrame', ... ['ERROR: First snapshot number (firstframe = %d) is ' ... 'larger than the number of snapshots (nsnap = %d).\n'], ... firstframe, nsnap); end if lastframe < firstframe fprintf(['WARNING: First snapshot number (firstframe = %d) is ' ... 'larger than the last snapshot number (lastframe = %d). ' ... 'Set lastframe = firstframe\n'], ... firstframe, lastframe); lastframe = firstframe; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---3D definitions: defines two rotating planes (xz, yz plane) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% phi1=0; % a horizontal plane (x-z plane) is rotated by phi1 with respect to the rotpoint %phi2=90; % a horizontal plane (x-z plane) is rotated by phi2 with respect to the rotpoint % rotaxis and rotpoint refers to the rotation of the 2D-slices within the 3D volume % direction rotation axes [0,1,0] rotation of plane around vertical axis % [1,0,0] rotation of plane around x-axis rotaxis=[0,1,0]; % defines point for rotation of the 2D slices [x y z] in meter % values are defined as difference to the center of the model/snaphot % in case of rotpoint=[0,0,0], this point is excatly the center of the model/snaphot rotpoint=[0 0 0]; % defines angles of perspective for the 3-D view % i.e. it rotates the plot to favorable perspective viewpoint=0.8*[1,4,1]; file_out = [file_out, num2str(phi2)]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---axis limits for 2D and 3D visualization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % colorbar boundaries for cropping the snapshot value range % only used if type_switch=2 auto_scaling=1; % 1= automatic determination of boundaries, 2= constant values caxis_value , 3= no scaling caxis_value_1=5e-11; % delay between the display of each snaphot in s pause4display=0.2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---end of input parameter definition %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---creation of model vectors and loading file data---- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plot range and increment xp1=dh; xp2=nx*dh; yp1=dh; yp2=ny*dh; zp1=dh; zp2=nz*dh; % Computing range for axis and subscript range for the movie x=xp1:dh*outx:xp2*outx; y=yp1:dh*outy:yp2*outy; % vertical axis z=zp1:dh*outz:zp2*outz; % if model is plotted, than there is only one snapshot % loop over # of snapshots will terminate after one iteration if type_switch==1 firstframe=1; lastframe=1; end % load model file ; Format ieee-be for Sun or Workstation, -le for PC if (cont_switch==1) || (type_switch==1) % opening file and reading disp(['Loading file ' file_mod]); [fid_mod, err_msg] = fopen(file_mod, 'r', 'ieee-le'); if fid_mod == -1 disp(['Cannot open file ' file_mod]); disp(['Reason: ' err_msg]); disp('Now exiting'); return; end mod_data=fread(fid_mod,'float'); mod_data=reshape(mod_data,ny,nx,nz); mod_data=permute(mod_data,[2,3,1]); fclose(fid_mod); if (slice_switch==1) % z-x-plane (horizontal) mod_data=squeeze(mod_data(:,:,yslice)); mod_data=permute(mod_data,[2,1]); end if (slice_switch==2) % y-x-plane (vertical) mod_data=squeeze(mod_data(:,zslice,:)); mod_data=permute(mod_data,[2,1]); end if (slice_switch==3) % y-z-plane (vertical) mod_data=squeeze(mod_data(xslice,:,:)); mod_data=permute(mod_data,[2,1]); end end % open snapshot data of 1st input file disp(['Loading snapshot file ' file_inp1]); fid_file1=fopen(file_inp1,'r','ieee-le'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---3D display of snapshot data (single snapshot only) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if type_switch==1 % loading model data fid=fopen(file_mod,'r','ieee-le'); lastframe=1; if cont_switch==1 fid_mod=fopen(file_mod,'r','ieee-le'); mod_data=fread(fid_mod,(nx*ny*nz),'float'); mod_data=reshape(mod_data,ny,nx,nz); mod_data=permute(mod_data,[3,2,1]); fclose(fid_mod); end end if type_switch==2 % loading snapshot data of input1 fid=fopen(file_inp1,'r','ieee-le'); colormap(rdbuMap()); % adding contour of model to snapshot data if cont_switch==1 fid_mod=fopen(file_mod,'r','ieee-le'); mod_data=fread(fid_mod,(nx*ny*nz),'float'); mod_data=reshape(mod_data,ny,nx,nz); mod_data=permute(mod_data,[3,2,1]); fclose(fid_mod); end end if plot_opts.diffFlag load('D_hom','D'); D_hom = D; D = merge_snapshots(plot_opts, opts); D = D-D_hom; else D = merge_snapshots(plot_opts, opts); end % loop over number of snaphsots for i=firstframe:lastframe % calculating time of snapshot tsnap=(i-1)*TSNAPINC+TSNAP1; disp(['Displaying snapshot no ',int2str(i),' at time=',num2str(tsnap),' s.']); file1_data = D(:,:,:,i); % creating a grid [X,Z,Y]=meshgrid(x,z,y); %surface height of horizontal y-x plane xyplane=zeros(ny,nx); xyplane(:,:)=(nz*dh*outy)/2+rotpoint(2); % creating a vertical slice plane in y-x plane hslice = surf(x,y,xyplane); % rotate slice plane with, with respect to a point from which rotation is defined % in case of rotpoint=[0,0,0], this point is the center of the model/snaphot rotate(hslice,rotaxis,phi1,[mean(x)-rotpoint(1),mean(y)-rotpoint(2),mean(mean(xyplane))-rotpoint(3)]); % get boundaries of rotated plane xd = get(hslice,'XData'); yd = get(hslice,'YData'); zd = get(hslice,'ZData'); % remove plane, only limits are further used delete(hslice); % creating a horizontal slice plane in z-x plane hslice2 = surf(x,y,xyplane); % rotate slice plane with, with respect to a point from which rotation is defined % in case of rotpoint=[0,0,0], this point is the center of the model/snaphot rotate(hslice2,rotaxis,phi2,[mean(x)-rotpoint(1),mean(y)-rotpoint(2),mean(mean(xyplane))-rotpoint(3)]); % get boundaries of rotated plane xd2 = get(hslice2,'XData'); yd2 = get(hslice2,'YData'); zd2 = get(hslice2,'ZData'); % remove plane, only limits are further used delete(hslice2); % display sliced and rotated plane figure(1); % determination of screen size get(0,'ScreenSize'); % determination size of window for plotting %set(h1,'Position',[1 scrsz(4)*2/3 scrsz(3)*1/4 scrsz(4)*2/3]); axis equal % strict vertical slice, no rotation applied % h = slice(Y,X,Z,file1_data,[],yslice*dh*outy-1,[]); % rotated vertical slice % !!! note that taking sclices from a homogeneous model is - for some % reason not working, please use 2-D visualization instead !!! h = slice(X,Z,Y,file1_data,xd,zd,yd); set(h,'FaceColor','interp','EdgeColor','none','DiffuseStrength',.8,'FaceAlpha',0.5); hold on % strict horizontal, no rotation applied % h2 = slice(Y,X,Z,file1_data,[],[],zslice*dh*outz); % this is strict vertical, no rotation applied % rotated horizontal slice h2 = slice(X,Z,Y,file1_data,xd2,zd2,yd2); set(h2,'FaceColor','interp','EdgeColor','none','DiffuseStrength',.8,'FaceAlpha',0.5); axis equal if cont_switch==1 % vertical contour slice h=contourslice(X,Z,Y,mod_data,xd,zd,yd,numbOFcont); set(h,'FaceColor','black','EdgeColor','black'); % horizontal contour slice h2=contourslice(X,Z,Y,mod_data,xd2,zd2,yd2,numbOFcont); set(h2,'FaceColor','black','EdgeColor','black'); end %% 3D scatter snapshot visualization if plot_opts.diffFlag scatter_plot(file1_data, opts); end hold off %% formating figure %daspect([1,1,1]); axis tight box on % set viewpoint within 3-D space % (rotate 3-D figure plot to favorable perspective) view(viewpoint); camproj perspective % lightangle(-45,45); set(gcf,'Renderer','zbuffer'); %colorbar xlabel('x(m)'); ylabel('y(m)'); zlabel('z(m)'); % adding title string to plot if type_switch==2 title(title_inp1); end if type_switch==1 title(title_mod); end % set(get(gca,'title'),'FontSize',13); set(get(gca,'title'),'FontWeight','bold'); set(get(gca,'Ylabel'),'FontSize',12); set(get(gca,'Ylabel'),'FontWeight','bold'); set(get(gca,'Xlabel'),'FontSize',12); set(get(gca,'Xlabel'),'FontWeight','bold'); set(get(gca,'Zlabel'),'FontSize',12); set(get(gca,'Zlabel'),'FontWeight','bold'); set(gca, 'ZDir', 'reverse') set(gca, 'YDir','reverse') set(gca,'FontSize',12); set(gca,'FontWeight','bold'); set(gca,'Linewidth',1.0); set(gca,'Box','on'); %% % determing maximum amplitude of plot file1max=max(max(max(abs(file1_data)))); % display maximum amplitude to command window disp([' Maximum amplitude of ',title_inp1,'-snapshot: ', num2str(file1max)]); % cropping model/snapshot dimensions ylim([0 nz*dh*outz]) xlim([0 nx*dh*outx]) zlim([0 ny*dh*outy]) % for snapshot input files if type_switch==2 % limiting the colorbar to specified range switch auto_scaling case 1 caxis([-file1max/5 file1max/5]); case 2 caxis([-caxis_value_1 caxis_value_1]); otherwise end % adding text string for timestep of snapshot %set(text(3500,-1000,['T= ',sprintf('%2.4f',tsnap), 's']),'FontSize',12,'FontWeight','bold','Color','black'); pause(pause4display); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %---Saving the snapshot to file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% save_snap(file_save, file_out, i) end end end function scatter_plot(last_snap, config) %% [Y, X, Z] = ndgrid(0:size(last_snap,1)-1, ... 0:size(last_snap,2)-1, ... 0:size(last_snap,3)-1); X = config.IDX * config.DX * X; Y = config.IDY * config.DY * Y; Z = config.IDZ * config.DZ * Z; mask_3D = (abs(last_snap(:)) > max(abs(last_snap(:)))*0.2);% .* (Z(:)<(config.DH1-100)); mask_3D = logical(mask_3D); h = scatter3(X(mask_3D), Y(mask_3D), Z(mask_3D), 100*abs(last_snap(mask_3D))./max(last_snap(:))+eps, last_snap(mask_3D), 'filled'); alpha = 0.5; set(h, 'MarkerFaceAlpha',alpha, 'MarkerEdgeAlpha', alpha) end function save_snap(file_save, file_out, i) %% if (file_save~=0) % generating filename string if i<10 imagefile=[file_out,'3D_00',int2str(i)]; elseif i<100 imagefile=[file_out,'3D_0',int2str(i)]; else imagefile=[file_out,'3D_',int2str(i)]; end % output as jpg graphic (or eps) via print command if file_save==1 fig2 = gcf; fig2.PaperPosition = [0 0 8 4.5]; eval(['print -djpeg100 ' [imagefile,'.jpg']]); %eval(['print -depsc ' [imagefile,'.eps']]); end % output as png graphic via additional matlab function if file_save==2 savefig(imagefile, 'png', '-rgb', '-c0', '-r250'); end end end
github
swag-kaust/ASOFI3D-master
run_and_snap.m
.m
ASOFI3D-master/mfiles/run_and_snap.m
3,456
utf_8
3260c20b15fe9a0556b9050e371101a5
function run_and_snap %% run modeling % load config config = read_asofi3D_json('../par/in_and_out/asofi3D_hom.json'); jsonPath = '../par/in_and_out/asofi3D.json'; config.jsonPath = jsonPath; config_hom = config; %% generate homogeneous data config.DH1 = 1e6; write_asofi3D_json(jsonPath, config); % run modeling run_asofi3D(config_hom); %% show snapshots [opts, plot_opts, D] = snap3D_ASOFI('hom'); save('D_hom','D','-v7.3'); %% % isotropic parameters are perturbed by 5% iso_par = {'VPV2', 'VSV2', 'RHO2'}; for i = 1:length(iso_par) config = config_hom; config.(iso_par{i}) = 1.1 * config.(iso_par{i}); config.folderOut = iso_par{i}; last_snap = create_snapshots(config); last_snap_collection(i, :) = last_snap(:); end %% anisotropic deviation parameters are perturbed by 0.1 aniso_par = {'EPSX2', 'EPSY2', 'DELX2', 'DELY2', 'DELXY2', 'GAMX2', 'GAMY2'}; for i = 1:length(aniso_par) config = config_hom; % perturb parameter config.(aniso_par{i}) = 0.1; % saving figure to folderOut config.folderOut = aniso_par{i}; last_snap = create_snapshots(config); last_snap_collection(i+3, :) = last_snap(:); end %% SVD [U, S, V] = svd(last_snap_collection(:,:),'econ'); figure(777); S = diag(S); semilogy(S/max(S)); ylim([10^-2 1]); %semilogy((S(1:end-1)-S(2:end))/max(S)); %imagesc(U); %% full model write_asofi3D_json(jsonPath, config_hom); end %% function run_asofi3D(config) % write config to jsonPath write_asofi3D_json(config.jsonPath, config); %% run modeling % find number of processors NP to run on NP = config.NPROCX * config.NPROCY * config.NPROCZ; NP_max = feature('numcores'); if NP > NP_max error('ASOFI3D:NP_MAX', ... ['Required number of MPI processes %d is larger ' ... 'than available %d'], ... NP, NP_max); end cd ../ system(['./run_asofi3D.sh ', num2str(NP)]) cd mfiles end function last_snap = create_snapshots(config) % runs asofi3D, then generates snapshots run_asofi3D(config); [opts, plot_opts, D] = snap3D_ASOFI(config.folderOut, true); caxis(caxis()); save('D_diff','D','-v7.3'); %% last_snap = squeeze(D(:,:,:,3)); [M, I] = max(abs(last_snap), [], 3); [ind_1, ind_2] = ndgrid(1:size(I,1), 1:size(I,2)); I_linear = sub2ind(size(last_snap), ind_1(:), ind_2(:), I(:)); figure; surf(I, reshape(last_snap(I_linear),size(I))); set(gca,'Zdir','reverse') colormap(rdbuMap()); title('Max along Z'); %% M = M(:); mask_wave = M > max(M)/10; K = abs(last_snap(I_linear)); figure; scatter3(ind_1(mask_wave), ind_2(mask_wave), I(mask_wave), (K(mask_wave)./max(K))+eps); set(gca,'Zdir','reverse') axis equal xlim([0 size(last_snap,1)]) ylim([0 size(last_snap,2)]) zlim([0 size(last_snap,3)]) %% 3D scatter snapshot visualization last_snap = squeeze(D(:,:,:,3)); [Y, X, Z] = ndgrid(0:size(last_snap,1)-1, ... 0:size(last_snap,2)-1, ... 0:size(last_snap,3)-1); X = config.IDX * config.DX * X; Y = config.IDY * config.DY * Y; Z = config.IDZ * config.DZ * Z; mask_3D = (abs(last_snap(:)) > max(abs(last_snap(:)))*0.2);% .* (Z(:)<config.DH1); mask_3D = logical(mask_3D); figure; scatter3(X(mask_3D), Y(mask_3D), Z(mask_3D), 100*abs(last_snap(mask_3D))./max(last_snap(:))+eps, last_snap(mask_3D), 'filled'); axis equal xlim([0 max(X(:))]) xlabel X ylim([0 max(Y(:))]) ylabel Y zlim([0 max(Z(:))]) zlabel Z colormap(rdbuMap()); colorbar title(config.folderOut); caxis(caxis()/10); set(gca,'Zdir','reverse') end
github
swag-kaust/ASOFI3D-master
savefig.m
.m
ASOFI3D-master/mfiles/utils/savefig.m
13,343
utf_8
5e55383fee448146f66f14d4c342b027
function savefig(fname, varargin) % Usage: savefig(filename, fighdl, options) % % Saves a pdf, eps, png, jpeg, and/or tiff of the contents of the fighandle's (or current) figure. % It saves an eps of the figure and the uses Ghostscript to convert to the other formats. % The result is a cropped, clean picture. There are options for using rgb or cmyk colours, % or grayscale. You can also choose the resolution. % % The advantage of savefig is that there is very little empty space around the figure in the % resulting files, you can export to more than one format at once, and Ghostscript generates % trouble-free files. % % If you find any errors, please let me know! (peder at axensten dot se) % % filename: File name without suffix. % % fighdl: (default: gcf) Integer handle to figure. % % options: (default: '-r300', '-lossless', '-rgb') You can define your own % defaults in a global variable savefig_defaults, if you want to, i.e. % savefig_defaults= {'-r200','-gray'};. % 'eps': Output in Encapsulated Post Script (no preview yet). % 'pdf': Output in (Adobe) Portable Document Format. % 'png': Output in Portable Network Graphics. % 'jpeg': Output in Joint Photographic Experts Group format. % 'tiff': Output in Tagged Image File Format (no compression: huge files!). % '-rgb': Output in rgb colours. % '-cmyk': Output in cmyk colours (not yet 'png' or 'jpeg' -- '-rgb' is used). % '-gray': Output in grayscale (not yet 'eps' -- '-rgb' is used). % '-fonts': Include fonts in eps or pdf. Includes only the subset needed. % '-lossless': Use lossless compression, works on most formats. same as '-c0', below. % '-c<float>': Set compression for non-indexed bitmaps in PDFs - % 0: lossless; 0.1: high quality; 0.5: medium; 1: high compression. % '-r<integer>': Set resolution. % '-crop': Removes points and line segments outside the viewing area -- permanently. % Only use this on figures where many points and/or line segments are outside % the area zoomed in to. This option will result in smaller vector files (has no % effect on pixel files). % '-dbg': Displays gs command line(s). % % EXAMPLE: % savefig('nicefig', 'pdf', 'jpeg', '-cmyk', '-c0.1', '-r250'); % Saves the current figure to nicefig.pdf and nicefig.png, both in cmyk and at 250 dpi, % with high quality lossy compression. % % REQUIREMENT: Ghostscript. Version 8.57 works, probably older versions too, but '-dEPSCrop' % must be supported. I think version 7.32 or newer is ok. % % HISTORY: % Version 1.0, 2006-04-20. % Version 1.1, 2006-04-27: % - No 'epstopdf' stuff anymore! Using '-dEPSCrop' option in gs instead! % Version 1.2, 2006-05-02: % - Added a '-dbg' option (see options, above). % - Now looks for a global variable 'savefig_defaults' (see options, above). % - More detailed Ghostscript options (user will not really notice). % - Warns when there is no device for a file-type/color-model combination. % Version 1.3, 2006-06-06: % - Added a check to see if there actually is a figure handle. % - Now works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too). % - Now compatible with Ghostscript 8.54, released 2006-06-01. % Version 1.4, 2006-07-20: % - Added an option '-soft' that enables anti-aliasing on pixel graphics (on by default). % - Added an option '-hard' that don't do anti-aliasing on pixel graphics. % Version 1.5, 2006-07-27: % - Fixed a bug when calling with a figure handle argument. % Version 1.6, 2006-07-28: % - Added a crop option, see above. % Version 1.7, 2007-03-31: % - Fixed bug: calling print with invalid renderer value '-none'. % - Removed GhostScript argument '-dUseCIEColor' as it sometimes discoloured things. % Version 1.8, 2008-01-03: % - Added MacIntel: 'MACI'. % - Added 64bit PC (I think, can't test it myself). % - Added option '-nointerpolate' (use it to prevent blurring of pixelated). % - Removed '-hard' and '-soft'. Use '-nointerpolate' for '-hard', default for '-soft'. % - Fixed the gs 8.57 warning on UseCIEColor (it's now set). % - Added '-gray' for pdf, but gs 8.56 or newer is needed. % - Added '-gray' and '-cmyk' for eps, but you a fairly recent gs might be needed. % Version 1.9, 2008-07-27: % - Added lossless compression, see option '-lossless', above. Works on most formats. % - Added lossy compression, see options '-c<float>...', above. Works on 'pdf'. % Thanks to Olly Woodford for idea and implementation! % - Removed option '-nointerpolate' -- now savefig never interpolates. % - Fixed a few small bugs and removed some mlint comments. % Version 2.0, 2008-11-07: % - Added the possibility to include fonts into eps or pdf. % % TO DO: (Need Ghostscript support for these, so don't expect anything soon...) % - svg output. % - '-cmyk' for 'jpeg' and 'png'. % - Preview in 'eps'. % - Embedded vector fonts, not bitmap, in 'eps'. % % Copyright (C) Peder Axensten (peder at axensten dot se), 2006. % KEYWORDS: eps, pdf, jpg, jpeg, png, tiff, eps2pdf, epstopdf, ghostscript % % INSPIRATION: eps2pdf (5782), eps2xxx (6858) % % REQUIREMENTS: Works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% op_dbg= false; % Default value. % Compression compr= [' -dUseFlateCompression=true -dLZWEncodePages=true -dCompatibilityLevel=1.6' ... ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false ' ... ' -dColorImageFilter=%s -dGrayImageFilter=%s']; % Compression. lossless= sprintf (compr, '/FlateEncode', '/FlateEncode'); lossy= sprintf (compr, '/DCTEncode', '/DCTEncode' ); lossy= [lossy ' -c ".setpdfwrite << /ColorImageDict << /QFactor %g ' ... '/Blend 1 /HSample [%s] /VSample [%s] >> >> setdistillerparams"']; % Create gs command. cmdEnd= ' -sDEVICE=%s -sOutputFile="%s"'; % Essential. epsCmd= ''; epsCmd= [epsCmd ' -dSubsetFonts=true -dNOPLATFONTS']; % Future support? epsCmd= [epsCmd ' -dUseCIEColor=true -dColorConversionStrategy=/UseDeviceIndependentColor']; epsCmd= [epsCmd ' -dProcessColorModel=/%s']; % Color conversion. pdfCmd= [epsCmd ' -dAntiAliasColorImages=false' cmdEnd]; epsCmd= [epsCmd cmdEnd]; % Get file name. if((nargin < 1) || isempty(fname) || ~ischar(fname)) % Check file name. error('No file name specified.'); end [pathstr, namestr] = fileparts(fname); if(isempty(pathstr)), fname= fullfile(cd, namestr); end % Get handle. fighdl= get(0, 'CurrentFigure'); % See gcf. % Get figure handle. if((nargin >= 2) && (numel(varargin{1}) == 1) && isnumeric(varargin{1})) fighdl= varargin{1}; varargin= {varargin{2:end}}; end if(isempty(fighdl)), error('There is no figure to save!?'); end set(fighdl, 'Units', 'centimeters') % Set paper stuff. sz= get(fighdl, 'Position'); sz(1:2)= 0; set(fighdl, 'PaperUnits', 'centimeters', 'PaperSize', sz(3:4), 'PaperPosition', sz); % Set up the various devices. % Those commented out are not yet supported by gs (nor by savefig). % pdf-cmyk works due to the Matlab '-cmyk' export being carried over from eps to pdf. device.eps.rgb= sprintf(epsCmd, 'DeviceRGB', 'epswrite', [fname '.eps']); device.jpeg.rgb= sprintf(cmdEnd, 'jpeg', [fname '.jpeg']); % device.jpeg.cmyk= sprintf(cmdEnd, 'jpegcmyk', [fname '.jpeg']); device.jpeg.gray= sprintf(cmdEnd, 'jpeggray', [fname '.jpeg']); device.pdf.rgb= sprintf(pdfCmd, 'DeviceRGB', 'pdfwrite', [fname '.pdf']); device.pdf.cmyk= sprintf(pdfCmd, 'DeviceCMYK', 'pdfwrite', [fname '.pdf']); device.pdf.gray= sprintf(pdfCmd, 'DeviceGray', 'pdfwrite', [fname '.pdf']); device.png.rgb= sprintf(cmdEnd, 'png16m', [fname '.png']); % device.png.cmyk= sprintf(cmdEnd, 'png???', [fname '.png']); device.png.gray= sprintf(cmdEnd, 'pnggray', [fname '.png']); device.tiff.rgb= sprintf(cmdEnd, 'tiff24nc', [fname '.tiff']); device.tiff.cmyk= sprintf(cmdEnd, 'tiff32nc', [fname '.tiff']); device.tiff.gray= sprintf(cmdEnd, 'tiffgray', [fname '.tiff']); % Get options. global savefig_defaults; % Add global defaults. if( iscellstr(savefig_defaults)), varargin= {savefig_defaults{:}, varargin{:}}; elseif(ischar(savefig_defaults)), varargin= {savefig_defaults, varargin{:}}; end varargin= {'-r300', '-lossless', '-rgb', varargin{:}}; % Add defaults. res= ''; types= {}; fonts= 'false'; crop= false; for n= 1:length(varargin) % Read options. if(ischar(varargin{n})) switch(lower(varargin{n})) case {'eps','jpeg','pdf','png','tiff'}, types{end+1}= lower(varargin{n}); case '-rgb', color= 'rgb'; deps= {'-depsc2'}; case '-cmyk', color= 'cmyk'; deps= {'-depsc2', '-cmyk'}; case '-gray', color= 'gray'; deps= {'-deps2'}; case '-fonts', fonts= 'true'; case '-lossless', comp= 0; case '-crop', crop= true; case '-dbg', op_dbg= true; otherwise if(regexp(varargin{n}, '^\-r[0-9]+$')), res= varargin{n}; elseif(regexp(varargin{n}, '^\-c[0-9.]+$')), comp= str2double(varargin{n}(3:end)); else warning('pax:savefig:inputError', 'Unknown option in argument: ''%s''.', varargin{n}); end end else warning('pax:savefig:inputError', 'Wrong type of argument: ''%s''.', class(varargin{n})); end end types= unique(types); if(isempty(types)), error('No output format given.'); end if (comp == 0) % Lossless compression gsCompr= lossless; elseif (comp <= 0.1) % High quality lossy gsCompr= sprintf(lossy, comp, '1 1 1 1', '1 1 1 1'); else % Normal lossy gsCompr= sprintf(lossy, comp, '2 1 1 2', '2 1 1 2'); end % Generate the gs command. switch(computer) % Get gs command. case {'MAC','MACI'}, gs= '/usr/local/bin/gs'; case {'PCWIN','PCWIN64'}, gs= 'gswin32c.exe'; otherwise, gs= 'gs'; end gs= [gs ' -q -dNOPAUSE -dBATCH -dEPSCrop']; % Essential. gs= [gs ' -dPDFSETTINGS=/prepress -dEmbedAllFonts=' fonts]; % Must be first? gs= [gs ' -dUseFlateCompression=true']; % Useful stuff. gs= [gs ' -dAutoRotatePages=/None']; % Probably good. gs= [gs ' -dHaveTrueTypes']; % Probably good. gs= [gs ' ' res]; % Add resolution to cmd. if(crop && ismember(types, {'eps', 'pdf'})) % Crop the figure. fighdl= do_crop(fighdl); end % Output eps from Matlab. renderer= ['-' lower(get(fighdl, 'Renderer'))]; % Use same as in figure. if(strcmpi(renderer, '-none')), renderer= '-painters'; end % We need a valid renderer. print(fighdl, deps{:}, '-noui', renderer, res, [fname '-temp']); % Output the eps. % Convert to other formats. for n= 1:length(types) % Output them. if(isfield(device.(types{n}), color)) cmd= device.(types{n}).(color); % Colour model exists. else cmd= device.(types{n}).rgb; % Use alternative. if(~strcmp(types{n}, 'eps')) % It works anyways for eps (VERY SHAKY!). warning('pax:savefig:deviceError', ... 'No device for %s using %s. Using rgb instead.', types{n}, color); end end cmp= lossless; if (strcmp(types{n}, 'pdf')), cmp= gsCompr; end % Lossy compr only for pdf. if (strcmp(types{n}, 'eps')), cmp= ''; end % eps can't use lossless. cmd= sprintf('%s %s %s -f "%s-temp.eps"', gs, cmd, cmp, fname);% Add up. status= system(cmd); % Run Ghostscript. if (op_dbg || status), display (cmd), end end delete([fname '-temp.eps']); % Clean up. end function fig= do_crop(fig) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Remove line segments that are outside the view. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% haxes= findobj(fig, 'Type', 'axes', '-and', 'Tag', ''); for n=1:length(haxes) xl= get(haxes(n), 'XLim'); yl= get(haxes(n), 'YLim'); lines= findobj(haxes(n), 'Type', 'line'); for m=1:length(lines) x= get(lines(m), 'XData'); y= get(lines(m), 'YData'); inx= (xl(1) <= x) & (x <= xl(2)); % Within the x borders. iny= (yl(1) <= y) & (y <= yl(2)); % Within the y borders. keep= inx & iny; % Within the box. if(~strcmp(get(lines(m), 'LineStyle'), 'none')) crossx= ((x(1:end-1) < xl(1)) & (xl(1) < x(2:end))) ... % Crossing border x1. | ((x(1:end-1) < xl(2)) & (xl(2) < x(2:end))) ... % Crossing border x2. | ((x(1:end-1) > xl(1)) & (xl(1) > x(2:end))) ... % Crossing border x1. | ((x(1:end-1) > xl(2)) & (xl(2) > x(2:end))); % Crossing border x2. crossy= ((y(1:end-1) < yl(1)) & (yl(1) < y(2:end))) ... % Crossing border y1. | ((y(1:end-1) < yl(2)) & (yl(2) < y(2:end))) ... % Crossing border y2. | ((y(1:end-1) > yl(1)) & (yl(1) > y(2:end))) ... % Crossing border y1. | ((y(1:end-1) > yl(2)) & (yl(2) > y(2:end))); % Crossing border y2. crossp= [( (crossx & iny(1:end-1) & iny(2:end)) ... % Crossing a x border within y limits. | (crossy & inx(1:end-1) & inx(2:end)) ... % Crossing a y border within x limits. | crossx & crossy ... % Crossing a x and a y border (corner). ), false ... ]; crossp(2:end)= crossp(2:end) | crossp(1:end-1); % Add line segment's secont end point. keep= keep | crossp; end set(lines(m), 'XData', x(keep)) set(lines(m), 'YData', y(keep)) end end end
github
swag-kaust/ASOFI3D-master
rdbuMap.m
.m
ASOFI3D-master/mfiles/utils/rdbuMap.m
220
utf_8
a4b9788f7d2378e6472061570a33ad37
% creates colormap blue-white-red % (c) Vladimir Kazei, 2019 function a = rdbuMap() a = zeros(2001,3); a(:,:) = NaN; a(1,:) = [0 0 1]; a(1001,:) = [0.85 0.95 0.85]; a(2001,:) = [1 0 0]; a = fillmissing(a,'linear',1); end
github
swag-kaust/ASOFI3D-master
qgsls.m
.m
ASOFI3D-master/mfiles/attenuation_tools/qgsls.m
419
utf_8
ee9ed1e0880ff718c9e25bbb36e746d2
function q=qgsls(te,ts,L,w) % Q fuer den L-fachen standard linear solid: sumzQ=0;sumnQ=0; for l=1:L, d=1.0+w.*w*ts(l)*ts(l); sumzQ=((1.0+w.*w*te(l)*ts(l))./d)+sumzQ; sumnQ=(w*(te(l)-ts(l))./d)+sumnQ; end % Qualitaetsfaktor als Funktion der Frequenz fuer dem L-fachen SLS q=(1.0-L+sumzQ)./sumnQ;
github
swag-kaust/ASOFI3D-master
qflt.m
.m
ASOFI3D-master/mfiles/attenuation_tools/qflt.m
698
utf_8
0fced6eb730fe5fed0ef8e9d9957c78d
% This function computes the difference between a % frequency indepent quality factor and Q as function of % relaxation frequencies and tau (written for optimization with leastsq). function delta=qstd(x) global L w Qf1 Qf2 fl=x(1:L); t=x(L+1); % computing telaxation times and relaxation frequencies ts=1./(2*pi*fl); % Q for a generalized standard linear solid: sumzQ=0;sumnQ=0; for l=1:L, d=1+w.*w*ts(l)*ts(l); sumnQ=(w*ts(l)*t./d)+sumnQ; sumzQ=((w.*w*ts(l)*ts(l)*t)./d)+sumzQ; end Qf2=(1+sumzQ)./sumnQ; delta=(Qf2-Qf1);
github
swag-kaust/ASOFI3D-master
source.m
.m
ASOFI3D-master/mfiles/old_scripts/source.m
1,269
utf_8
e4b570daa2f489f0dac5304bd6462abc
% The function computes amplitude spectrum of a Ricker, Fumue % or extern source wavelet (central frequency: fs, spectral sampling: df) function [amp,f]=source(s,fp1,fp2,df,fs) if ~strcmp(s,'from_file'), tsour=1/fs; dt=tsour/256; k=5; tbeg=0; tend=k*tsour; t=[tbeg:dt:tend]; n=length(t); lsour=tsour/dt; if strcmp(s,'fumue'), % FUCHS-MUELLER-SIGNAL w1=2*pi/tsour; ft=sin(w1*(t-tsour))-0.5*sin(2*w1*(t-tsour)); ft(1:(k/2-0.5)*n/k)=0.0; ft((k/2+0.5)*n/k:n)=0.0; elseif strcmp(s,'ricker'), % RICKER-SIGNAL: t0=tsour*1.5; T0=tsour*1.5; tau=pi*(t-t0)/T0; a=4; ft=(1-a*tau.*tau).*exp(-2*tau.*tau); end else load wavelet.dat ft=wavelet(2:size(wavelet,1))'; dt=1/fs; end ft=ft-mean(ft); % Graphische Darstellung der eingelesenen Zeitreihe figure; plot(t,ft) title(['Eingelesene Zeitreihe']); xlabel('Zeit [s]'); ylabel('Amplitude'); fnyq=1/(2*dt); nfft=2^nextpow2(length(ft)) %FFT y=fftshift(fft(ft,nfft)); amp=abs(y); amp=amp/max(amp); f=fnyq*(-nfft/2:nfft/2-1)/(nfft/2); nn1=(nfft/2+1)+(fp1/fnyq)*nfft/2 ; nn2=(nfft/2+1)+(fp2/fnyq)*nfft/2; figure; plot(f(nn1:nn2),amp(nn1:nn2)) title('Amplitudenspektrum') xlabel('Frequenz [Hz]') ylabel('Amplitude');
github
benoitberanger/FunctionalLocalizer-master
FunctionalLocalizer_GUI.m
.m
FunctionalLocalizer-master/FunctionalLocalizer_GUI.m
28,972
utf_8
95aa8b0810a0f3270a2d22ed06e28883
function varargout = FunctionalLocalizer_GUI % global handles %% Open a singleton figure % Is the GUI already open ? figPtr = findall(0,'Tag',mfilename); if isempty(figPtr) % Create the figure clc % Create a figure figHandle = figure( ... 'HandleVisibility', 'off',... % close all does not close the figure 'MenuBar' , 'none' , ... 'Toolbar' , 'none' , ... 'Name' , mfilename , ... 'NumberTitle' , 'off' , ... 'Units' , 'Normalized' , ... 'Position' , [0.05, 0.05, 0.50, 0.90] , ... 'Tag' , mfilename ); figureBGcolor = [0.9 0.9 0.9]; set(figHandle,'Color',figureBGcolor); buttonBGcolor = figureBGcolor - 0.1; editBGcolor = [1.0 1.0 1.0]; % Create GUI handles : pointers to access the graphic objects handles = guihandles(figHandle); %% Panel proportions panelProp.xposP = 0.05; % xposition of panel normalized : from 0 to 1 panelProp.wP = 1 - panelProp.xposP * 2; panelProp.vect = ... [1 1 2 2 1 1 2]; % relative proportions of each panel, from bottom to top panelProp.vectLength = length(panelProp.vect); panelProp.vectTotal = sum(panelProp.vect); panelProp.adjustedTotal = panelProp.vectTotal + 1; panelProp.unitWidth = 1/panelProp.adjustedTotal; panelProp.interWidth = panelProp.unitWidth/panelProp.vectLength; panelProp.countP = panelProp.vectLength + 1; panelProp.yposP = @(countP) panelProp.unitWidth*sum(panelProp.vect(1:countP-1)) + 1*countP*panelProp.interWidth; %% Panel : Subject & Run p_sr.x = panelProp.xposP; p_sr.w = panelProp.wP; panelProp.countP = panelProp.countP - 1; p_sr.y = panelProp.yposP(panelProp.countP); p_sr.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_SubjectRun = uipanel(handles.(mfilename),... 'Title','Subject & Run',... 'Units', 'Normalized',... 'Position',[p_sr.x p_sr.y p_sr.w p_sr.h],... 'BackgroundColor',figureBGcolor); p_sr.nbO = 3; % Number of objects p_sr.Ow = 1/(p_sr.nbO + 1); % Object width p_sr.countO = 0; % Object counter p_sr.xposO = @(countO) p_sr.Ow/(p_sr.nbO+1)*countO + (countO-1)*p_sr.Ow; p_sr.yposOmain = 0.1; p_sr.hOmain = 0.6; p_sr.yposOhdr = 0.7; p_sr.hOhdr = 0.2; % --------------------------------------------------------------------- % Edit : Subject ID p_sr.countO = p_sr.countO + 1; e_sid.x = p_sr.xposO(p_sr.countO); e_sid.y = p_sr.yposOmain ; e_sid.w = p_sr.Ow; e_sid.h = p_sr.hOmain; handles.edit_SubjectID = uicontrol(handles.uipanel_SubjectRun,... 'Style','edit',... 'Units', 'Normalized',... 'Position',[e_sid.x e_sid.y e_sid.w e_sid.h],... 'BackgroundColor',editBGcolor,... 'String',''); % --------------------------------------------------------------------- % Text : Subject ID t_sid.x = p_sr.xposO(p_sr.countO); t_sid.y = p_sr.yposOhdr ; t_sid.w = p_sr.Ow; t_sid.h = p_sr.hOhdr; handles.text_SubjectID = uicontrol(handles.uipanel_SubjectRun,... 'Style','text',... 'Units', 'Normalized',... 'Position',[t_sid.x t_sid.y t_sid.w t_sid.h],... 'String','Subject ID',... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % Pushbutton : Check SubjectID data p_sr.countO = p_sr.countO + 1; b_csidd.x = p_sr.xposO(p_sr.countO); b_csidd.y = p_sr.yposOmain; b_csidd.w = p_sr.Ow; b_csidd.h = p_sr.hOmain; handles.pushbutton_Check_SubjectID_data = uicontrol(handles.uipanel_SubjectRun,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_csidd.x b_csidd.y b_csidd.w b_csidd.h],... 'String','Check SubjectID data',... 'BackgroundColor',buttonBGcolor,... 'TooltipString','Display in Command Window the content of data/(SubjectID)',... 'Callback',@(hObject,eventdata)GUI.Pushbutton_Check_SubjectID_data_Callback(handles.edit_SubjectID,eventdata)); % --------------------------------------------------------------------- % Text : Last file name annoucer p_sr.countO = p_sr.countO + 1; t_lfna.x = p_sr.xposO(p_sr.countO); t_lfna.y = p_sr.yposOhdr ; t_lfna.w = p_sr.Ow; t_lfna.h = p_sr.hOhdr; handles.text_LastFileNameAnnouncer = uicontrol(handles.uipanel_SubjectRun,... 'Style','text',... 'Units', 'Normalized',... 'Position',[t_lfna.x t_lfna.y t_lfna.w t_lfna.h],... 'String','Last file name',... 'BackgroundColor',figureBGcolor,... 'Visible','Off'); % --------------------------------------------------------------------- % Text : Last file name t_lfn.x = p_sr.xposO(p_sr.countO); t_lfn.y = p_sr.yposOmain ; t_lfn.w = p_sr.Ow; t_lfn.h = p_sr.hOmain; handles.text_LastFileName = uicontrol(handles.uipanel_SubjectRun,... 'Style','text',... 'Units', 'Normalized',... 'Position',[t_lfn.x t_lfn.y t_lfn.w t_lfn.h],... 'String','',... 'BackgroundColor',figureBGcolor,... 'Visible','Off'); %% Panel : Save mode p_sm.x = panelProp.xposP; p_sm.w = panelProp.wP; panelProp.countP = panelProp.countP - 1; p_sm.y = panelProp.yposP(panelProp.countP); p_sm.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_SaveMode = uibuttongroup(handles.(mfilename),... 'Title','Save mode',... 'Units', 'Normalized',... 'Position',[p_sm.x p_sm.y p_sm.w p_sm.h],... 'BackgroundColor',figureBGcolor); p_sm.nbO = 2; % Number of objects p_sm.Ow = 1/(p_sm.nbO + 1); % Object width p_sm.countO = 0; % Object counter p_sm.xposO = @(countO) p_sm.Ow/(p_sm.nbO+1)*countO + (countO-1)*p_sm.Ow; % --------------------------------------------------------------------- % RadioButton : Save Data p_sm.countO = p_sm.countO + 1; r_sd.x = p_sm.xposO(p_sm.countO); r_sd.y = 0.1 ; r_sd.w = p_sm.Ow; r_sd.h = 0.8; r_sd.tag = 'radiobutton_SaveData'; handles.(r_sd.tag) = uicontrol(handles.uipanel_SaveMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_sd.x r_sd.y r_sd.w r_sd.h],... 'String','Save data',... 'TooltipString','Save data to : /data/SubjectID/SubjectID_Task_RunNumber',... 'HorizontalAlignment','Center',... 'Tag',r_sd.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % RadioButton : No save p_sm.countO = p_sm.countO + 1; r_ns.x = p_sm.xposO(p_sm.countO); r_ns.y = 0.1 ; r_ns.w = p_sm.Ow; r_ns.h = 0.8; r_ns.tag = 'radiobutton_NoSave'; handles.(r_ns.tag) = uicontrol(handles.uipanel_SaveMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_ns.x r_ns.y r_ns.w r_ns.h],... 'String','No save',... 'TooltipString','In Acquisition mode, Save mode must be engaged',... 'HorizontalAlignment','Center',... 'Tag',r_ns.tag,... 'BackgroundColor',figureBGcolor); %% Panel : Environement p_env.x = panelProp.xposP; p_env.w = panelProp.wP; panelProp.countP = panelProp.countP - 1; p_env.y = panelProp.yposP(panelProp.countP); p_env.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_Environement = uibuttongroup(handles.(mfilename),... 'Title','Environement',... 'Units', 'Normalized',... 'Position',[p_env.x p_env.y p_env.w p_env.h],... 'BackgroundColor',figureBGcolor); p_env.nbO = 2; % Number of objects p_env.Ow = 1/(p_env.nbO + 1); % Object width p_env.countO = 0; % Object counter p_env.xposO = @(countO) p_env.Ow/(p_env.nbO+1)*countO + (countO-1)*p_env.Ow; % --------------------------------------------------------------------- % RadioButton : MRI p_env.countO = p_env.countO + 1; r_mri.x = p_env.xposO(p_env.countO); r_mri.y = 0.1 ; r_mri.w = p_env.Ow; r_mri.h = 0.8; r_mri.tag = 'radiobutton_MRI'; handles.(r_mri.tag) = uicontrol(handles.uipanel_Environement,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_mri.x r_mri.y r_mri.w r_mri.h],... 'String','MRI',... 'TooltipString','fMRI task',... 'HorizontalAlignment','Center',... 'Tag',(r_mri.tag),... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % RadioButton : Training p_env.countO = p_env.countO + 1; r_tain.x = p_env.xposO(p_env.countO); r_tain.y = 0.1 ; r_tain.w = p_env.Ow; r_tain.h = 0.8; r_tain.tag = 'radiobutton_Training'; handles.(r_tain.tag) = uicontrol(handles.uipanel_Environement,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_tain.x r_tain.y r_tain.w r_tain.h],... 'String','Training',... 'TooltipString','Training inside the MRI, just before the scan',... 'HorizontalAlignment','Center',... 'Tag',(r_tain.tag),... 'BackgroundColor',figureBGcolor); %% Panel : Eyelink mode el_shift = 0.30; p_el.x = panelProp.xposP + el_shift; p_el.w = panelProp.wP - el_shift ; panelProp.countP = panelProp.countP - 1; p_el.y = panelProp.yposP(panelProp.countP); p_el.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_EyelinkMode = uibuttongroup(handles.(mfilename),... 'Title','Eyelink mode',... 'Units', 'Normalized',... 'Position',[p_el.x p_el.y p_el.w p_el.h],... 'BackgroundColor',figureBGcolor,... 'SelectionChangeFcn',@uipanel_EyelinkMode_SelectionChangeFcn); % --------------------------------------------------------------------- % Checkbox : Windowed screen c_ws.x = panelProp.xposP; c_ws.w = el_shift - panelProp.xposP; c_ws.y = panelProp.yposP(panelProp.countP) ; c_ws.h = p_el.h * 0.3; handles.checkbox_WindowedScreen = uicontrol(handles.(mfilename),... 'Style','checkbox',... 'Units', 'Normalized',... 'Position',[c_ws.x c_ws.y c_ws.w c_ws.h],... 'String','Windowed screen',... 'HorizontalAlignment','Center',... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % Listbox : Screens l_sc.x = panelProp.xposP; l_sc.w = el_shift - panelProp.xposP; l_sc.y = c_ws.y + c_ws.h ; l_sc.h = p_el.h * 0.5; handles.listbox_Screens = uicontrol(handles.(mfilename),... 'Style','listbox',... 'Units', 'Normalized',... 'Position',[l_sc.x l_sc.y l_sc.w l_sc.h],... 'String',{'a' 'b' 'c'},... 'TooltipString','Select the display mode PTB : 0 for extended display (over all screens) , 1 for screen 1 , 2 for screen 2 , etc.',... 'HorizontalAlignment','Center',... 'CreateFcn',@GUI.Listbox_Screens_CreateFcn); % --------------------------------------------------------------------- % Text : ScreenMode t_sm.x = panelProp.xposP; t_sm.w = el_shift - panelProp.xposP; t_sm.y = l_sc.y + l_sc.h ; t_sm.h = p_el.h * 0.15; handles.text_ScreenMode = uicontrol(handles.(mfilename),... 'Style','text',... 'Units', 'Normalized',... 'Position',[t_sm.x t_sm.y t_sm.w t_sm.h],... 'String','Screen mode selection',... 'TooltipString','Output of Screen(''Screens'') Use ''Screen Screens?'' in Command window for help',... 'HorizontalAlignment','Center',... 'BackgroundColor',figureBGcolor); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p_el_up.nbO = 6; % Number of objects p_el_up.Ow = 1/(p_el_up.nbO + 1); % Object width p_el_up.countO = 0; % Object counter p_el_up.xposO = @(countO) p_el_up.Ow/(p_el_up.nbO+1)*countO + (countO-1)*p_el_up.Ow; p_el_up.y = 0.6; p_el_up.h = 0.3; % --------------------------------------------------------------------- % RadioButton : Eyelink ON p_el_up.countO = p_el_up.countO + 1; r_elon.x = p_el_up.xposO(p_el_up.countO); r_elon.y = p_el_up.y ; r_elon.w = p_el_up.Ow; r_elon.h = p_el_up.h; r_elon.tag = 'radiobutton_EyelinkOn'; handles.(r_elon.tag) = uicontrol(handles.uipanel_EyelinkMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_elon.x r_elon.y r_elon.w r_elon.h],... 'String','On',... 'HorizontalAlignment','Center',... 'Tag',r_elon.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % RadioButton : Eyelink OFF p_el_up.countO = p_el_up.countO + 1; r_eloff.x = p_el_up.xposO(p_el_up.countO); r_eloff.y = p_el_up.y ; r_eloff.w = p_el_up.Ow; r_eloff.h = p_el_up.h; r_eloff.tag = 'radiobutton_EyelinkOff'; handles.(r_eloff.tag) = uicontrol(handles.uipanel_EyelinkMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_eloff.x r_eloff.y r_eloff.w r_eloff.h],... 'String','Off',... 'HorizontalAlignment','Center',... 'Tag',r_eloff.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % Checkbox : Parallel port p_el_up.countO = p_el_up.countO + 1; c_pp.x = p_el_up.xposO(p_el_up.countO); c_pp.y = p_el_up.y ; c_pp.w = p_el_up.Ow*2; c_pp.h = p_el_up.h; handles.checkbox_ParPort = uicontrol(handles.uipanel_EyelinkMode,... 'Style','checkbox',... 'Units', 'Normalized',... 'Position',[c_pp.x c_pp.y c_pp.w c_pp.h],... 'String','Parallel port',... 'HorizontalAlignment','Center',... 'TooltipString','Send messages via parallel port : useful for Eyelink',... 'BackgroundColor',figureBGcolor,... 'Value',1,... 'Callback',@GUI.Checkbox_ParPort_Callback,... 'CreateFcn',@GUI.Checkbox_ParPort_Callback); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p_el_dw.nbO = 3; % Number of objects p_el_dw.Ow = 1/(p_el_dw.nbO + 1); % Object width p_el_dw.countO = 0; % Object counter p_el_dw.xposO = @(countO) p_el_dw.Ow/(p_el_dw.nbO+1)*countO + (countO-1)*p_el_dw.Ow; p_el_dw.y = 0.1; p_el_dw.h = 0.4 ; % --------------------------------------------------------------------- % Pushbutton : Eyelink Initialize p_el_dw.countO = p_el_dw.countO + 1; b_init.x = p_el_dw.xposO(p_el_dw.countO); b_init.y = p_el_dw.y ; b_init.w = p_el_dw.Ow; b_init.h = p_el_dw.h; handles.pushbutton_Initialize = uicontrol(handles.uipanel_EyelinkMode,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_init.x b_init.y b_init.w b_init.h],... 'String','Initialize',... 'BackgroundColor',buttonBGcolor,... 'Callback','Eyelink.Initialize'); % --------------------------------------------------------------------- % Pushbutton : Eyelink IsConnected p_el_dw.countO = p_el_dw.countO + 1; b_isco.x = p_el_dw.xposO(p_el_dw.countO); b_isco.y = p_el_dw.y ; b_isco.w = p_el_dw.Ow; b_isco.h = p_el_dw.h; handles.pushbutton_IsConnected = uicontrol(handles.uipanel_EyelinkMode,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_isco.x b_isco.y b_isco.w b_isco.h],... 'String','IsConnected',... 'BackgroundColor',buttonBGcolor,... 'Callback','Eyelink.IsConnected'); % --------------------------------------------------------------------- % Pushbutton : Eyelink Calibration p_el_dw.countO = p_el_dw.countO + 1; b_cal.x = p_el_dw.xposO(p_el_dw.countO); b_cal.y = p_el_dw.y ; b_cal.w = p_el_dw.Ow; b_cal.h = p_el_dw.h; b_cal.tag = 'pushbutton_EyelinkCalibration'; handles.(b_cal.tag) = uicontrol(handles.uipanel_EyelinkMode,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_cal.x b_cal.y b_cal.w b_cal.h],... 'String','Calibration',... 'BackgroundColor',buttonBGcolor,... 'Tag',b_cal.tag,... 'Callback',@FunctionalLocalizer_main); % --------------------------------------------------------------------- % Pushbutton : Eyelink force shutdown b_fsd.x = c_pp.x + c_pp.h; b_fsd.y = p_el_up.y ; b_fsd.w = p_el_dw.Ow*1.25; b_fsd.h = p_el_dw.h; handles.pushbutton_ForceShutDown = uicontrol(handles.uipanel_EyelinkMode,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_fsd.x b_fsd.y b_fsd.w b_fsd.h],... 'String','ForceShutDown',... 'BackgroundColor',buttonBGcolor,... 'Callback','Eyelink.ForceShutDown'); %% Panel : Task p_tk.x = panelProp.xposP; p_tk.w = panelProp.wP; panelProp.countP = panelProp.countP - 1; p_tk.y = panelProp.yposP(panelProp.countP); p_tk.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_Task = uibuttongroup(handles.(mfilename),... 'Title','Task',... 'Units', 'Normalized',... 'Position',[p_tk.x p_tk.y p_tk.w p_tk.h],... 'BackgroundColor',figureBGcolor); p_tk.nbO = 4; % Number of objects p_tk.Ow = 1/(p_tk.nbO + 1); % Object width p_tk.countO = 0; % Object counter p_tk.xposO = @(countO) p_tk.Ow/(p_tk.nbO+1)*countO + (countO-1)*p_tk.Ow; buttun_y = 0.20; buttun_h = 0.60; % --------------------------------------------------------------------- % Pushbutton : Calibration p_tk.countO = p_tk.countO + 1; b_cal.x = p_tk.xposO(p_tk.countO); b_cal.y = buttun_y; b_cal.w = p_tk.Ow; b_cal.h = buttun_h; b_cal.tag = 'pushbutton_Calibration'; handles.(b_cal.tag) = uicontrol(handles.uipanel_Task,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_cal.x b_cal.y b_cal.w b_cal.h],... 'String','Calibration',... 'BackgroundColor',buttonBGcolor,... 'Tag',b_cal.tag,... 'Callback',@FunctionalLocalizer_main); % --------------------------------------------------------------------- % Pushbutton : Instructions p_tk.countO = p_tk.countO + 1; b_inst.x = p_tk.xposO(p_tk.countO); b_inst.y = buttun_y; b_inst.w = p_tk.Ow; b_inst.h = buttun_h; b_inst.tag = 'pushbutton_Instructions'; handles.(b_inst.tag) = uicontrol(handles.uipanel_Task,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_inst.x b_inst.y b_inst.w b_inst.h],... 'String','Instructions',... 'BackgroundColor',buttonBGcolor,... 'Tag',b_inst.tag,... 'Callback',@FunctionalLocalizer_main); % --------------------------------------------------------------------- % Pushbutton : Session p_tk.countO = p_tk.countO + 1; b_sess.x = p_tk.xposO(p_tk.countO); b_sess.y = buttun_y; b_sess.w = p_tk.Ow*2; b_sess.h = buttun_h; b_sess.tag = 'pushbutton_Session'; handles.(b_sess.tag) = uicontrol(handles.uipanel_Task,... 'Style','pushbutton',... 'Units', 'Normalized',... 'Position',[b_sess.x b_sess.y b_sess.w b_sess.h],... 'String','Session',... 'BackgroundColor',buttonBGcolor,... 'Tag',b_sess.tag,... 'Callback',@FunctionalLocalizer_main); %% Panel : Record video p_rv.x = panelProp.xposP; p_rv.w = panelProp.wP; panelProp.countP = panelProp.countP - 1; p_rv.y = panelProp.yposP(panelProp.countP); p_rv.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_RecordVideo = uibuttongroup(handles.(mfilename),... 'Title','Record mode',... 'Units', 'Normalized',... 'Position',[p_rv.x p_rv.y p_rv.w p_rv.h],... 'BackgroundColor',figureBGcolor,... 'SelectionChangeFcn',@uipanel_RecordVideo_SelectionChangeFcn,... 'Visible','Off'); p_rv.nbO = 3; % Number of objects p_rv.Ow = 1/(p_rv.nbO + 1); % Object width p_rv.countO = 0; % Object counter p_rv.xposO = @(countO) p_rv.Ow/(p_rv.nbO+1)*countO + (countO-1)*p_rv.Ow; % --------------------------------------------------------------------- % RadioButton : Record video OFF p_rv.countO = p_rv.countO + 1; r_rvoff.x = p_rv.xposO(p_rv.countO); r_rvoff.y = 0.1 ; r_rvoff.w = p_rv.Ow; r_rvoff.h = 0.8; r_rvoff.tag = 'radiobutton_RecordOff'; handles.(r_rvoff.tag) = uicontrol(handles.uipanel_RecordVideo,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_rvoff.x r_rvoff.y r_rvoff.w r_rvoff.h],... 'String','Off',... 'HorizontalAlignment','Center',... 'Tag',r_rvoff.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % RadioButton : Record video ON p_rv.countO = p_rv.countO + 1; r_rvon.x = p_rv.xposO(p_rv.countO); r_rvon.y = 0.1 ; r_rvon.w = p_rv.Ow; r_rvon.h = 0.8; r_rvon.tag = 'radiobutton_RecordOn'; handles.(r_rvon.tag) = uicontrol(handles.uipanel_RecordVideo,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_rvon.x r_rvon.y r_rvon.w r_rvon.h],... 'String','On',... 'HorizontalAlignment','Center',... 'Tag',r_rvon.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % Text : File name t_fn.x = p_rv.xposO(p_rv.countO) + p_rv.Ow/2; t_fn.y = 0.2 ; t_fn.w = p_rv.Ow; t_fn.h = 0.4; handles.text_RecordName = uicontrol(handles.uipanel_RecordVideo,... 'Style','text',... 'Units', 'Normalized',... 'Position',[t_fn.x t_fn.y t_fn.w t_fn.h],... 'String','File name : ',... 'HorizontalAlignment','Center',... 'Visible','Off',... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % Edit : File name p_rv.countO = p_rv.countO + 1; e_fn.x = p_rv.xposO(p_rv.countO); e_fn.y = 0.1 ; e_fn.w = p_rv.Ow; e_fn.h = 0.8; handles.edit_RecordName = uicontrol(handles.uipanel_RecordVideo,... 'Style','edit',... 'Units', 'Normalized',... 'Position',[e_fn.x e_fn.y e_fn.w e_fn.h],... 'String','',... 'Visible','Off',... 'BackgroundColor',editBGcolor,... 'HorizontalAlignment','Center'); %% Panel : Operation mode p_op.x = panelProp.xposP; p_op.w = panelProp.wP; panelProp.countP = panelProp.countP - 1; p_op.y = panelProp.yposP(panelProp.countP); p_op.h = panelProp.unitWidth*panelProp.vect(panelProp.countP); handles.uipanel_OperationMode = uibuttongroup(handles.(mfilename),... 'Title','Operation mode',... 'Units', 'Normalized',... 'Position',[p_op.x p_op.y p_op.w p_op.h],... 'BackgroundColor',figureBGcolor); p_op.nbO = 3; % Number of objects p_op.Ow = 1/(p_op.nbO + 1); % Object width p_op.countO = 0; % Object counter p_op.xposO = @(countO) p_op.Ow/(p_op.nbO+1)*countO + (countO-1)*p_op.Ow; % --------------------------------------------------------------------- % RadioButton : Acquisition p_op.countO = p_op.countO + 1; r_aq.x = p_op.xposO(p_op.countO); r_aq.y = 0.1 ; r_aq.w = p_op.Ow; r_aq.h = 0.8; r_aq.tag = 'radiobutton_Acquisition'; handles.(r_aq.tag) = uicontrol(handles.uipanel_OperationMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_aq.x r_aq.y r_aq.w r_aq.h],... 'String','Acquisition',... 'TooltipString','Should be used for all the environements',... 'HorizontalAlignment','Center',... 'Tag',r_aq.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % RadioButton : FastDebug p_op.countO = p_op.countO + 1; r_fd.x = p_op.xposO(p_op.countO); r_fd.y = 0.1 ; r_fd.w = p_op.Ow; r_fd.h = 0.8; r_fd.tag = 'radiobutton_FastDebug'; handles.radiobutton_FastDebug = uicontrol(handles.uipanel_OperationMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_fd.x r_fd.y r_fd.w r_fd.h],... 'String','FastDebug',... 'TooltipString','Only to work on the scripts',... 'HorizontalAlignment','Center',... 'Tag',r_fd.tag,... 'BackgroundColor',figureBGcolor); % --------------------------------------------------------------------- % RadioButton : RealisticDebug p_op.countO = p_op.countO + 1; r_rd.x = p_op.xposO(p_op.countO); r_rd.y = 0.1 ; r_rd.w = p_op.Ow; r_rd.h = 0.8; r_rd.tag = 'radiobutton_RealisticDebug'; handles.(r_rd.tag) = uicontrol(handles.uipanel_OperationMode,... 'Style','radiobutton',... 'Units', 'Normalized',... 'Position',[r_rd.x r_rd.y r_rd.w r_rd.h],... 'String','RealisticDebug',... 'TooltipString','Only to work on the scripts',... 'HorizontalAlignment','Center',... 'Tag',r_rd.tag,... 'BackgroundColor',figureBGcolor); %% End of opening % IMPORTANT guidata(figHandle,handles) % After creating the figure, dont forget the line % guidata(figHandle,handles) . It allows smart retrive like % handles=guidata(hObject) % assignin('base','handles',handles) % disp(handles) figPtr = figHandle; else % Figure exists so brings it to the focus figure(figPtr); % close(figPtr); % FunctionalLocalizer_GUI; end if nargout > 0 varargout{1} = guidata(figPtr); end end % function %% GUI Functions % ------------------------------------------------------------------------- function uipanel_RecordVideo_SelectionChangeFcn(hObject, eventdata) handles = guidata(hObject); switch get(eventdata.NewValue,'Tag') % Get Tag of selected object. case 'radiobutton_RecordOn' set(handles.text_RecordName,'Visible','On') set(handles.edit_RecordName,'Visible','On') case 'radiobutton_RecordOff' set(handles.text_RecordName,'Visible','off') set(handles.edit_RecordName,'Visible','off') end end % function % ------------------------------------------------------------------------- function edit_SessionNumber_Callback(hObject, ~) block = str2double(get(hObject,'String')); if block ~= round(block) || block < 1 || block > 4 set(hObject,'String','1'); error('Session number must be from 1 to 4') end end % function % ------------------------------------------------------------------------- function uipanel_EyelinkMode_SelectionChangeFcn(hObject, eventdata) handles = guidata(hObject); switch get(eventdata.NewValue,'Tag') % Get Tag of selected object. case 'radiobutton_EyelinkOff' set(handles.pushbutton_EyelinkCalibration,'Visible','off') set(handles.pushbutton_IsConnected ,'Visible','off') set(handles.pushbutton_ForceShutDown ,'Visible','off') set(handles.pushbutton_Initialize ,'Visible','off') case 'radiobutton_EyelinkOn' set(handles.pushbutton_EyelinkCalibration,'Visible','on') set(handles.pushbutton_IsConnected ,'Visible','on') set(handles.pushbutton_ForceShutDown ,'Visible','on') set(handles.pushbutton_Initialize ,'Visible','on') end end % function
github
thomaspingel/mackskill-matlab-master
mackskill.m
.m
mackskill-matlab-master/mackskill.m
11,461
utf_8
db972920708c5fc02fcf0833526bf16f
% The Mack-Skillings Statistical Test % A nonparametric two-way ANOVA used for unbalanced incomplete block % designs, when the number of observations in each treatment/block pair is % one or greater. The test is equivalent to the Friedman test when % balanced and there are no missing observations. % % Syntax: % [p stats] = mackskill(response, treatments, blocks) % [p stats] = mackskill(M, reps) % This version assumes M is structured similar to a table in the function % friedman(), where columns are treatments (k) (the variable of interest), % and rows are blocks (n) (a nuisance variable). Reps (c) % corresponds to the maximum number of repeated observations. % The M matrix should therefore have k columns and n*c rows. % % Example: % % The friedman() function uses popcorn data originally published by Hogg % (1987). From the text of that function: % "The columns of the matrix popcorn are brands (Gourmet, National, % and Generic). The rows are popper type (Oil and Air). The study popped % a batch of each brand three times with each popper. The values are the % yield in cups of popped popcorn." Given that the data is structured this % way, we must be asking "Which brand of popcorn pops the best, apart from % the type of popper it is popped in." k=3,n=2,c=3. % % load popcorn % [p table stats] = friedman(popcorn,3); % % chisq = 13.76 % % p = 0.001 % % If there are missing observations, use the Mack-Skilling test: % % popcorn(5) = NaN; % [p stats] = mackskill(popcorn,3); % stats.T = 8.5856 % stats.p = 0.0137 % % % Example: % % Hollander and Wolfe (1999) describe the Mack-Skillings test in their % example 7.9 "Determination of Niacin in Bran Flakes" on page 331, from % data originally published in Campbell & Pelletier (1962). % % % Table 7.20 Amount of Niacin in Enriched Bran Flakes % % % % Enrichment (mg/100g of Bran Flakes) % % 1 4 8 % M = [7.58 11.63 15.00; ... % lab 1 % 7.87 11.87 15.92; ... % 7.71 11.40 15.58; ... % 8.00 12.20 16.60; ... % lab 2 % 8.27 11.70 16.40; ... % 8.00 11.80 15.90; ... % 7.60 11.04 15.87; ... % lab 3 % 7.30 11.50 15.91; ... % 7.82 11.49 16.28; ... % 8.03 11.50 15.10; ... % lab 4 % 7.35 10.10 14.80; ... % 7.66 11.70 15.70]; % % % However, we want to know whether the _labs_ are different, apart from the % amount of niacin enrichment, or as Hollander and Wolfe put it, "Of % primary interest here is the precision of the laboratory procedure for % determining niacin content in bran flakes." Our table is therefore not % formatted correctly to call mackskill(M,3), as this would tell us whether % our columns were notably different, apart from rows. % % We can reformat our data this way: % % [row enrichment niacin] = find(sparse(M)); % lab = ceil(row/3); % 3, since there are 3 repetitions % response = niacin; treatment = lab; block = enrichment; % % [p stats] = mackskill(response,treatment,block) % % stats.T = 12.9274 % stats.df = 3 % stats.p = 0.0048 % % These results are equivalent to the test statistic in Hollander & Wolfe % (1999), MS = 12.93 (page 332). % % % The algorithm uses the chi-squared approximation for the p-value, which % should not be used when there are very few observations. Please refer to % the original text for a complete description. % % References: % Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd ed.). New York: Wiley. % Mack, G. A., & Skillings, J. H. (1980). A Friedman-Type Rank Test for Main Effects in a 2-Factor Anova. Journal of the American Statistical Association, 75(372), 947-951. % Skillings, J. H., & Mack, G. A. (1981). On the Use of a Friedman-Type Statistic in Balanced and Unbalanced Block Designs. Technometrics, 23(2), 171-177. % % The code was tested against several published datasets. For a copy of % these datasets and other code written by the author, please see: % http://www.geog.ucsb.edu/~pingel/matlabCode/index.html % % Use of this code for any non-commercial purpose is granted under the GNU % Public License. % % Author: % Thomas J. Pingel % Department of Geography % University of California, Santa Barbara % 11 November 2010 function [p stats rankedobs] = mackskill(M, treatments,blocks) % load popcorn % M = popcorn; % reps = 3; if nargin<3 % This section reformats matrix M into: % X (observations in the matrix M) % treatments (columns of M, and the variable of interest) % blocks (rows of M, and the nuisance variable) % Second argument is assumed to be reps % Pick apart the observations reps = treatments; X = reshape(M,numel(M),1); % Since input is a matrix, define the levels. treatmentlevels = [1:size(M,2)]; % Columns blocklevels = size(M,1)/reps; % Rows blocklevels = [1:blocklevels]; % treatmentlevels = ([1:size(M,2)]'); % Columns % blocklevels = ([1:size(M,1)]'); % Rows k = length(treatmentlevels); n = length(blocklevels); % Create a vector of treatment and observation levels. treatmentsMatrix = repmat(treatmentlevels,n*reps,1); treatments = reshape(treatmentsMatrix,numel(X),1); blocksMatrix = repmat(reshape(repmat(blocklevels,reps,1),n*reps,1),1,k); blocks = reshape(blocksMatrix,numel(X),1); % blocks = reshape(repmat(reshape(repmat([1:n],k,1),n*reps,1),1,k),numel(M),1); stats.treatmentsMatrix = treatmentsMatrix; stats.blocksMatrix = blocksMatrix; %% For testing, keep these handy in double form tr = treatments; br = blocks; % Get rid of extraneous information, as this will be redefined in the next % section anyway. clear treatmentlevels blocklevels k n; end %% % This section applies to if the preferred format is supplied % skillmack(X,treatments,blocks) where X is a vector (double) and % treatments and blocks are cell arrays. % X is now the first argument, input as M if nargin==3 X = M; end % First, convert to a cell array from matrix if necessary if ~iscell(treatments) treatments2 = cell(size(treatments)); for i=1:length(treatments) treatments2{i,1} = treatments(i); end treatments = treatments2; clear treatments2 i; end if ~iscell(blocks) blocks2 = cell(size(blocks)); for i=1:length(blocks) blocks2{i,1} = blocks(i); end blocks = blocks2; clear blocks2 i; end %% % Change to cell array of strings, for standardization. for i=1:length(blocks) blocks{i,1} = num2str(blocks{i}); treatments{i,1} = num2str(treatments{i}); end clear i; %% Remove NaNs from cell array indx = find(isnan(X)); X(indx) = []; blocks(indx) = []; treatments(indx) = []; %% % Determine unique levels treatmentlevels = unique(treatments); blocklevels = unique(blocks); %% % Check to see if any block has only one observation. If so, for now just % issue a warning. Technically, this block should be removed. % [this isn't the case for mack-skill, but leave in for later % errorchecking] % for i=1:length(blocklevels) % indx = find(strcmp(blocks,blocklevels{i})); % if length(indx) <= 1 % disp(['Block ',num2str(blocklevels{i}),' has an insufficient number of observations.']); % end % end % clear i indx; %% Balance the observations % See if the results improve if 'unbalanced' setups are replaced with NaNs %% % Create a vector to hold ranked observations rankedobs = nan(size(X)); % disp(num2str(size(X))); % disp(num2str(length(blocklevels))); for i=1:length(blocklevels) % Step II % Within each block, rank the observations from 1 to ki, where ki is the % number of treatments present in block i. If ties occur, use average % ranks. % Grab the blocks at level i indx = find(strcmp(blocks,blocklevels{i})); % r holds the ranks for that block. NaNs in empty values. r = tiedrank(X(indx)); for j=1:length(indx) rankedobs(indx(j)) = r(j); end end clear i j indx indx2 r replacementr % disp(num2str(rankedobs)); stats.rankedobs = rankedobs; % stats.rankedobs2 = reshape(rankedobs,size(M)); %% Sum the ranks for each treatment and block I = length(blocklevels); J = length(treatmentlevels); rankblock = nan(I,J); for i=1:I % rows, blocks for j=1:J % treatments, columns indx = intersect(find(strcmp(treatments,treatmentlevels{j})),find(strcmp(blocks,blocklevels{i}))); rankblock(i,j) = sum(rankedobs(indx)); end end clear i j indx; stats.rankblock = rankblock; % stats.rankblock2 = reshape(rankblock,size(M)); %% Modify these by treatment I = length(blocklevels); J = length(treatmentlevels); Rj = nan(J,1); for j=1:J % column, treatment s = 0; for i=1:I % row, blocks s = s + (rankblock(i,j) / length(find(strcmp(blocks,blocklevels{i})))); end Rj(j) = s; clear s; end R = Rj - mean(Rj); clear s j i %% Calculate sigma I = length(blocklevels); J = length(treatmentlevels); sigma = nan(J,J); for t=1:J % treatments, columns for j=1:J % also treatments, columns s = 0; for i = 1:I % blocks, rows nij = length(intersect(find(strcmp(treatments,treatmentlevels{j})),find(strcmp(blocks,blocklevels{i})))); nit = length(intersect(find(strcmp(treatments,treatmentlevels{t})),find(strcmp(blocks,blocklevels{i})))); ni = length(find(strcmp(blocks,blocklevels{i}))); s = s + ((nij*nit*(ni+1))/(12*(ni^2))); % clear nij nit ni; end sigma(t,j) = -s; % clear s end end clear t j i for i=1:J sigma(i,i) = 0; sigma(i,i) = abs(sum(sigma(i,:))); end %% Let's try step 4: Calculating weights. % A = nan(length(treatmentlevels),1); % maxrank = nan(size(rankedobs)); % frontweight = nan(size(rankedobs)); % backweight = nan(size(rankedobs)); % totalweight = nan(size(rankedobs)); % % Calculate front and back weights % for i=1:numel(X) % maxrank(i) = max(rankedobs(find(strcmp(blocks,blocks{i})))); % frontweight(i) = sqrt(12/(maxrank(i)+1)); % backweight(i) = rankedobs(i) - ((maxrank(i) + 1)/2); % end % % % Multiply them together to get total weights % totalweight = frontweight.*backweight; % % Sum each treatment. % for i=1:length(A) % indx = find(strcmp(treatments,treatmentlevels{i})); % A(i) = sum(totalweight(indx)); % end % clear i totalweight frontweight backweight maxrank indx; % % disp(num2str(A)); % % %% Create sigma matrix % sigma = nan(length(treatmentlevels),length(treatmentlevels)); % k = length(treatmentlevels); % for i=1:k % row % for j=1:k % column % indxi = intersect(find(strcmp(treatments,treatmentlevels{i})),find(isfinite(X)==1)); % indxj = intersect(find(strcmp(treatments,treatmentlevels{j})),find(isfinite(X)==1)); % % indxk = intersect(indxi,indxj); % sigma(i,j) = -length(intersect([blocks{indxi}],[blocks{indxj}])); % end % end % for i=1:length(treatmentlevels) % j = setdiff([1:length(treatmentlevels)],i); % sigma(i,i) = sum(abs(sigma(i,j))); % end % %% Calculate the final statistic. T = R' * pinv(sigma) * R; df = length(treatmentlevels)-1; p = 1 - chi2cdf(T,df); stats.T = T; stats.df = df; stats.p = p; stats.labels = treatmentlevels; stats.meanranks = Rj'; stats.source = 'mackskill'; stats.n = df; stats.rankblock = rankblock; stats.X = X; stats.blocks = blocks; stats.treatments = treatments;
github
GYZHikari/Semantic-Cosegmentation-master
imagesAlign.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/videos/imagesAlign.m
8,167
utf_8
d125eb5beb502d940be5bd145521f34b
function [H,Ip] = imagesAlign( I, Iref, varargin ) % Fast and robust estimation of homography relating two images. % % The algorithm for image alignment is a simple but effective variant of % the inverse compositional algorithm. For a thorough overview, see: % "Lucas-kanade 20 years on A unifying framework," % S. Baker and I. Matthews. IJCV 2004. % The implementation is optimized and can easily run at 20-30 fps. % % type may take on the following values: % 'translation' - translation only % 'rigid' - translation and rotation % 'similarity' - translation, rotation and scale % 'affine' - 6 parameter affine transform % 'rotation' - pure rotation (about x, y and z) % 'projective' - full 8 parameter homography % Alternatively, type may be a vector of ids between 1 and 8, specifying % exactly the types of transforms allowed. The ids correspond, to: 1: % translate-x, 2: translate-y, 3: uniform scale, 4: shear, 5: non-uniform % scale, 6: rotate-z, 7: rotate-x, 8: rotate-y. For example, to specify % translation use type=[1,2]. If the transforms don't form a group, the % returned homography may have more degrees of freedom than expected. % % Parameters (in rough order of importance): [resample] controls image % downsampling prior to computing H. Runtime is proportional to area, so % using resample<1 can dramatically speed up alignment, and in general not % degrade performance much. [sig] controls image smoothing, sig=2 gives % good performance, setting sig too low causes loss of information and too % high will violate the linearity assumption. [epsilon] defines the % stopping criteria, use to adjust performance versus speed tradeoff. % [lambda] is a regularization term that causes small transforms to be % favored, in general any small non-zero setting of lambda works well. % [outThr] is a threshold beyond which pixels are considered outliers, be % careful not to set too low. [minArea] determines coarsest scale beyond % which the image is not downsampled (should not be set too low). [H0] can % be used to specify an initial alignment. Use [show] to display results. % % USAGE % [H,Ip] = imagesAlign( I, Iref, varargin ) % % INPUTS % I - transformed version of I % Iref - reference grayscale double image % varargin - additional params (struct or name/value pairs) % .type - ['projective'] see above for options % .resample - [1] image resampling prior to homography estimation % .sig - [2] amount of Gaussian spatial smoothing to apply % .epsilon - [1e-3] stopping criteria (min change in error) % .lambda - [1e-6] regularization term favoring small transforms % .outThr - [inf] outlier threshold % .minArea - [4096] minimum image area in coarse to fine search % .H0 - [eye(3)] optional initial homography estimate % .show - [0] optionally display results in figure show % % OUTPUTS % H - estimated homography to transform I into Iref % Ip - tranformed version of I (slow to compute) % % EXAMPLE % Iref = double(imread('cameraman.tif'))/255; % H0 = [eye(2)+randn(2)*.1 randn(2,1)*10; randn(1,2)*1e-3 1]; % I = imtransform2(Iref,H0^-1,'pad','replicate'); % o=50; P=ones(o)*1; I(150:149+o,150:149+o)=P; % prmAlign={'outThr',.1,'resample',.5,'type',1:8,'show'}; % [H,Ip]=imagesAlign(I,Iref,prmAlign{:},1); % tic, for i=1:30, H=imagesAlign(I,Iref,prmAlign{:},0); end; % t=toc; fprintf('average fps: %f\n',30/t) % % See also imTransform2 % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get parameters dfs={'type','projective','resample',1,'sig',2,'epsilon',1e-3,... 'lambda',1e-6,'outThr',inf,'minArea',4096,'H0',eye(3),'show',0}; [type,resample,sig,epsilon,lambda,outThr,minArea,H0,show] = ... getPrmDflt(varargin,dfs,1); filt = filterGauss(2*ceil(sig*2.5)+1,[],sig^2); % determine type of transformation to recover if(isnumeric(type)), assert(length(type)<=8); else id=find(strcmpi(type,{'translation','rigid','similarity','affine',... 'rotation','projective'})); msgId='piotr:imagesAlign'; if(isempty(id)), error(msgId,'unknown type: %s',type); end type={1:2,[1:2 6],[1:3 6],1:6,6:8,1:8}; type=type{id}; end; keep=zeros(1,8); keep(type)=1; keep=keep>0; % compute image alignment (optionally resample first) prm={keep,filt,epsilon,H0,minArea,outThr,lambda}; if( resample==1 ), H=imagesAlign1(I,Iref,prm); else S=eye(3); S([1 5])=resample; H0=S*H0*S^-1; prm{4}=H0; I1=imResample(I,resample); Iref1=imResample(Iref,resample); H=imagesAlign1(I1,Iref1,prm); H=S^-1*H*S; end % optionally rectify I and display results (can be expensive) if(nargout==1 && show==0), return; end Ip = imtransform2(I,H,'pad','replicate'); if(show), figure(show); clf; s=@(i) subplot(2,3,i); Is=[I Iref Ip]; ri=[min(Is(:)) max(Is(:))]; D0=abs(I-Iref); D1=abs(Ip-Iref); Ds=[D0 D1]; di=[min(Ds(:)) max(Ds(:))]; s(1); im(I,ri,0); s(2); im(Iref,ri,0); s(3); im(D0,di,0); s(4); im(Ip,ri,0); s(5); im(Iref,ri,0); s(6); im(D1,di,0); s(3); title('|I-Iref|'); s(6); title('|Ip-Iref|'); end end function H = imagesAlign1( I, Iref, prm ) % apply recursively if image large [keep,filt,epsilon,H0,minArea,outThr,lambda]=deal(prm{:}); [h,w]=size(I); hc=mod(h,2); wc=mod(w,2); if( w*h<minArea ), H=H0; else I1=imResample(I(1:(h-hc),1:(w-wc)),.5); Iref1=imResample(Iref(1:(h-hc),1:(w-wc)),.5); S=eye(3); S([1 5])=2; H0=S^-1*H0*S; prm{4}=H0; H=imagesAlign1(I1,Iref1,prm); H=S*H*S^-1; end % smooth images (pad first so dimensions unchanged) O=ones(1,(length(filt)-1)/2); hs=[O 1:h h*O]; ws=[O 1:w w*O]; Iref=conv2(conv2(Iref(hs,ws),filt','valid'),filt,'valid'); I=conv2(conv2(I(hs,ws),filt','valid'),filt,'valid'); % pad images with nan so later can determine valid regions hs=[1 1 1:h h h]; ws=[1 1 1:w w w]; I=I(hs,ws); Iref=Iref(hs,ws); hs=[1:2 h+3:h+4]; I(hs,:)=nan; Iref(hs,:)=nan; ws=[1:2 w+3:w+4]; I(:,ws)=nan; Iref(:,ws)=nan; % convert weights hardcoded for 128x128 image to given image dims wts=[1 1 1.0204 .03125 1.0313 0.0204 .00055516 .00055516]; s=sqrt(numel(Iref))/128; wts=[wts(1:2) wts(3)^(1/s) wts(4)/s wts(5)^(1/s) wts(6)/s wts(7:8)/(s*s)]; % prepare subspace around Iref [~,Hs]=ds2H(-ones(1,8),wts); Hs=Hs(:,:,keep); K=size(Hs,3); [h,w]=size(Iref); Ts=zeros(h,w,K); k=0; if(keep(1)), k=k+1; Ts(:,1:end-1,k)=Iref(:,2:end); end if(keep(2)), k=k+1; Ts(1:end-1,:,k)=Iref(2:end,:); end pTransf={'method','bilinear','pad','none','useCache'}; for i=k+1:K, Ts(:,:,i)=imtransform2(Iref,Hs(:,:,i),pTransf{:},1); end Ds=Ts-Iref(:,:,ones(1,K)); Mref = ~any(isnan(Ds),3); if(0), figure(10); montage2(Ds); end Ds = reshape(Ds,[],size(Ds,3)); % iteratively project Ip onto subspace, storing transformation lambda=lambda*w*h*eye(K); ds=zeros(1,8); err=inf; for i=1:100 s=svd(H); if(s(3)<=1e-4*s(1)), H=eye(3); return; end Ip=imtransform2(I,H,pTransf{:},0); dI=Ip-Iref; dI0=abs(dI); M=Mref & ~isnan(Ip); M0=M; if(outThr<inf), M=M & dI0<outThr; end M1=find(M); D=Ds(M1,:); ds1=(D'*D + lambda)^(-1)*(D'*dI(M1)); if(any(isnan(ds1))), ds1=zeros(K,1); end ds(keep)=ds1; H1=ds2H(ds,wts); H=H*H1; H=H/H(9); err0=err; err=dI0; err(~M0)=0; err=mean2(err); del=err0-err; if(0), fprintf('i=%03i err=%e del=%e\n',i,err,del); end if( del<epsilon ), break; end end end function [H,Hs] = ds2H( ds, wts ) % compute homography from offsets ds Hs=eye(3); Hs=Hs(:,:,ones(1,8)); Hs(2,3,1)=wts(1)*ds(1); % 1 x translation Hs(1,3,2)=wts(2)*ds(2); % 2 y translation Hs(1:2,1:2,3)=eye(2)*wts(3)^ds(3); % 3 scale Hs(2,1,4)=wts(4)*ds(4); % 4 shear Hs(1,1,5)=wts(5)^ds(5); % 5 scale non-uniform ct=cos(wts(6)*ds(6)); st=sin(wts(6)*ds(6)); Hs(1:2,1:2,6)=[ct -st; st ct]; % 6 rotation about z ct=cos(wts(7)*ds(7)); st=sin(wts(7)*ds(7)); Hs([1 3],[1 3],7)=[ct -st; st ct]; % 7 rotation about x ct=cos(wts(8)*ds(8)); st=sin(wts(8)*ds(8)); Hs(2:3,2:3,8)=[ct -st; st ct]; % 8 rotation about y H=eye(3); for i=1:8, H=Hs(:,:,i)*H; end end
github
GYZHikari/Semantic-Cosegmentation-master
opticalFlow.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/videos/opticalFlow.m
7,385
utf_8
0fdca13d3caa4421fc488d0031e7838c
function [Vx,Vy,reliab] = opticalFlow( I1, I2, varargin ) % Coarse-to-fine optical flow using Lucas&Kanade or Horn&Schunck. % % Implemented 'type' of optical flow estimation: % LK: http://en.wikipedia.org/wiki/Lucas-Kanade_method % HS: http://en.wikipedia.org/wiki/Horn-Schunck_method % SD: Simple block-based sum of absolute differences flow % LK is a local, fast method (the implementation is fully vectorized). % HS is a global, slower method (an SSE implementation is provided). % SD is a simple but potentially expensive approach. % % Common parameters: 'smooth' determines smoothing prior to computing flow % and can make flow estimation more robust. 'filt' determines amount of % median filtering of the computed flow field which improves results but is % costly. 'minScale' and 'maxScale' control image scales in the pyramid. % Setting 'maxScale'<1 results in faster but lower quality results, e.g. % maxScale=.5 makes flow computation about 4x faster. Method specific % parameters: 'radius' controls window size (and smoothness of flow) for LK % and SD. 'nBlock' determines number of blocks tested in each direction for % SD, computation time is O(nBlock^2). For HS, 'alpha' controls tradeoff % between data and smoothness term (and smoothness of flow) and 'nIter' % determines number of gradient decent steps. % % USAGE % [Vx,Vy,reliab] = opticalFlow( I1, I2, pFlow ) % % INPUTS % I1, I2 - input images to calculate flow between % pFlow - parameters (struct or name/value pairs) % .type - ['LK'] may be 'LK', 'HS' or 'SD' % .smooth - [1] smoothing radius for triangle filter (may be 0) % .filt - [0] median filtering radius for smoothing flow field % .minScale - [1/64] minimum pyramid scale (must be a power of 2) % .maxScale - [1] maximum pyramid scale (must be a power of 2) % .radius - [10] integration radius for weighted window [LK/SD only] % .nBlock - [5] number of tested blocks [SD only] % .alpha - [1] smoothness constraint [HS only] % .nIter - [250] number of iterations [HS only] % % OUTPUTS % Vx, Vy - x,y components of flow [Vx>0->right, Vy>0->down] % reliab - reliability of flow in given window % % EXAMPLE - compute LK flow on test images % load opticalFlowTest; % [Vx,Vy]=opticalFlow(I1,I2,'smooth',1,'radius',10,'type','LK'); % figure(1); im(I1); figure(2); im(I2); % figure(3); im([Vx Vy]); colormap jet; % % EXAMPLE - rectify I1 to I2 using computed flow % load opticalFlowTest; % [Vx,Vy]=opticalFlow(I1,I2,'smooth',1,'radius',10,'type','LK'); % I1=imtransform2(I1,[],'vs',-Vx,'us',-Vy,'pad','replicate'); % figure(1); im(I1); figure(2); im(I2); % % EXAMPLE - compare LK/HS/SD flows % load opticalFlowTest; % prm={'smooth',1,'radius',10,'alpha',20,'nIter',250,'type'}; % tic, [Vx1,Vy1]=opticalFlow(I1,I2,prm{:},'LK'); toc % tic, [Vx2,Vy2]=opticalFlow(I1,I2,prm{:},'HS'); toc % tic, [Vx3,Vy3]=opticalFlow(I1,I2,prm{:},'SD','minScale',1); toc % figure(1); im([Vx1 Vy1; Vx2 Vy2; Vx3 Vy3]); colormap jet; % % See also convTri, imtransform2, medfilt2 % % Piotr's Computer Vision Matlab Toolbox Version NEW % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get default parameters and do error checking dfs={ 'type','LK', 'smooth',1, 'filt',0, 'minScale',1/64, ... 'maxScale',1, 'radius',10, 'nBlock',5, 'alpha',1, 'nIter',250 }; [type,smooth,filt,minScale,maxScale,radius,nBlock,alpha,nIter] = ... getPrmDflt(varargin,dfs,1); assert(any(strcmp(type,{'LK','HS','SD'}))); if( ~ismatrix(I1) || ~ismatrix(I2) || any(size(I1)~=size(I2)) ) error('Input images must be 2D and have same dimensions.'); end % run optical flow in coarse to fine fashion if(~isa(I1,'single')), I1=single(I1); I2=single(I2); end [h,w]=size(I1); nScales=max(1,floor(log2(min([h w 1/minScale])))+1); for s=1:max(1,nScales + round(log2(maxScale))) % get current scale and I1s and I2s at given scale scale=2^(nScales-s); h1=round(h/scale); w1=round(w/scale); if( scale==1 ), I1s=I1; I2s=I2; else I1s=imResample(I1,[h1 w1]); I2s=imResample(I2,[h1 w1]); end % initialize Vx,Vy or upsample from previous scale if(s==1), Vx=zeros(h1,w1,'single'); Vy=Vx; else r=sqrt(h1*w1/numel(Vx)); Vx=imResample(Vx,[h1 w1])*r; Vy=imResample(Vy,[h1 w1])*r; end % transform I2s according to current estimate of Vx and Vy if(s>1), I2s=imtransform2(I2s,[],'pad','replciate','vs',Vx,'us',Vy); end % smooth images I1s=convTri(I1s,smooth); I2s=convTri(I2s,smooth); % run optical flow on current scale switch type case 'LK', [Vx1,Vy1,reliab]=opticalFlowLk(I1s,I2s,radius); case 'HS', [Vx1,Vy1,reliab]=opticalFlowHs(I1s,I2s,alpha,nIter); case 'SD', [Vx1,Vy1,reliab]=opticalFlowSd(I1s,I2s,radius,nBlock,1); end Vx=Vx+Vx1; Vy=Vy+Vy1; % finally median filter the resulting flow field if(filt), Vx=medfilt2(Vx,[filt filt],'symmetric'); end if(filt), Vy=medfilt2(Vy,[filt filt],'symmetric'); end end r=sqrt(h*w/numel(Vx)); if(r~=1), Vx=imResample(Vx,[h w])*r; Vy=imResample(Vy,[h w])*r; end if(r~=1 && nargout==3), reliab=imResample(reliab,[h w]); end end function [Vx,Vy,reliab] = opticalFlowLk( I1, I2, radius ) % Compute elements of A'A and also of A'b radius=min(radius,floor(min(size(I1,1),size(I1,2))/2)-1); [Ix,Iy]=gradient2(I1); It=I2-I1; AAxy=convTri(Ix.*Iy,radius); AAxx=convTri(Ix.^2,radius)+1e-5; ABxt=convTri(-Ix.*It,radius); AAyy=convTri(Iy.^2,radius)+1e-5; AByt=convTri(-Iy.*It,radius); % Find determinant and trace of A'A AAdet=AAxx.*AAyy-AAxy.^2; AAdeti=1./AAdet; AAdeti(isinf(AAdeti))=0; AAtr=AAxx+AAyy; % Compute components of velocity vectors (A'A)^-1 * A'b Vx = AAdeti .* ( AAyy.*ABxt - AAxy.*AByt); Vy = AAdeti .* (-AAxy.*ABxt + AAxx.*AByt); % Check for ill conditioned second moment matrices reliab = 0.5*AAtr - 0.5*sqrt(AAtr.^2-4*AAdet); end function [Vx,Vy,reliab] = opticalFlowHs( I1, I2, alpha, nIter ) % compute derivatives (averaging over 2x2 neighborhoods) pad = @(I,p) imPad(I,p,'replicate'); crop = @(I,c) I(1+c:end-c,1+c:end-c); Ex = I1(:,2:end)-I1(:,1:end-1) + I2(:,2:end)-I2(:,1:end-1); Ey = I1(2:end,:)-I1(1:end-1,:) + I2(2:end,:)-I2(1:end-1,:); Ex = Ex/4; Ey = Ey/4; Et = (I2-I1)/4; Ex = pad(Ex,[1 1 1 2]) + pad(Ex,[0 2 1 2]); Ey = pad(Ey,[1 2 1 1]) + pad(Ey,[1 2 0 2]); Et=pad(Et,[0 2 1 1])+pad(Et,[1 1 1 1])+pad(Et,[1 1 0 2])+pad(Et,[0 2 0 2]); Z=1./(alpha*alpha + Ex.*Ex + Ey.*Ey); reliab=crop(Z,1); % iterate updating Ux and Vx in each iter if( 1 ) [Vx,Vy]=opticalFlowHsMex(Ex,Ey,Et,Z,nIter); Vx=crop(Vx,1); Vy=crop(Vy,1); else Ex=crop(Ex,1); Ey=crop(Ey,1); Et=crop(Et,1); Z=crop(Z,1); Vx=zeros(size(I1),'single'); Vy=Vx; f=single([0 1 0; 1 0 1; 0 1 0])/4; for i = 1:nIter Mx=conv2(Vx,f,'same'); My=conv2(Vy,f,'same'); m=(Ex.*Mx+Ey.*My+Et).*Z; Vx=Mx-Ex.*m; Vy=My-Ey.*m; end end end function [Vx,Vy,reliab] = opticalFlowSd( I1, I2, radius, nBlock, step ) % simple block-based sum of absolute differences flow [h,w]=size(I1); k=2*nBlock+1; k=k*k; D=zeros(h,w,k,'single'); k=1; rng = @(x,w) max(1+x*step,1):min(w+x*step,w); for x=-nBlock:nBlock, xs0=rng(x,w); xs1=rng(-x,w); for y=-nBlock:nBlock, ys0=rng(y,h); ys1=rng(-y,h); D(ys0,xs0,k)=abs(I1(ys0,xs0)-I2(ys1,xs1)); k=k+1; end end D=convTri(D,radius); [reliab,D]=min(D,[],3); k=2*nBlock+1; Vy=mod(D-1,k)+1; Vx=(D-Vy)/k+1; Vy=(nBlock+1-Vy)*step; Vx=(nBlock+1-Vx)*step; end
github
GYZHikari/Semantic-Cosegmentation-master
seqWriterPlugin.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/videos/seqWriterPlugin.m
8,280
utf_8
597792f79fff08b8bb709313267c3860
function varargout = seqWriterPlugin( cmd, h, varargin ) % Plugin for seqIo and videoIO to allow writing of seq files. % % Do not call directly, use as plugin for seqIo or videoIO instead. % The following is a list of commands available (swp=seqWriterPlugin): % h=swp('open',h,fName,info) % Open a seq file for writing (h ignored). % h=swp('close',h) % Close seq file (output h is -1). % swp('addframe',h,I,[ts]) % Writes video frame (and timestamp). % swp('addframeb',h,I,[ts]) % Writes video frame with no encoding. % info = swp('getinfo',h) % Return struct with info about video. % % The following params must be specified in struct 'info' upon opening: % width - frame width % height - frame height % fps - frames per second % quality - [80] compression quality (0 to 100) % codec - string representing codec, options include: % 'monoraw'/'imageFormat100' - black/white uncompressed % 'raw'/'imageFormat200' - color (BGR) uncompressed % 'monojpg'/'imageFormat102' - black/white jpg compressed % 'jpg'/'imageFormat201' - color jpg compressed % 'monopng'/'imageFormat001' - black/white png compressed % 'png'/'imageFormat002' - color png compressed % % USAGE % varargout = seqWriterPlugin( cmd, h, varargin ) % % INPUTS % cmd - string indicating operation to perform % h - unique identifier for open seq file % varargin - additional options (vary according to cmd) % % OUTPUTS % varargout - output (varies according to cmd) % % EXAMPLE % % See also SEQIO, SEQREADERPLUGIN % % Piotr's Computer Vision Matlab Toolbox Version 2.66 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % persistent variables to keep track of all loaded .seq files persistent h1 hs fids infos tNms; if(isempty(h1)), h1=int32(now); hs=int32([]); infos={}; tNms={}; end nIn=nargin-2; in=varargin; o1=[]; cmd=lower(cmd); % open seq file if(strcmp(cmd,'open')) chk(nIn,2); h=length(hs)+1; hs(h)=h1; varargout={h1}; h1=h1+1; [pth,name]=fileparts(in{1}); if(isempty(pth)), pth='.'; end fName=[pth filesep name]; [infos{h},fids(h),tNms{h}]=open(fName,in{2}); return; end % Get the handle for this instance [v,h]=ismember(h,hs); if(~v), error('Invalid load plugin handle'); end fid=fids(h); info=infos{h}; tNm=tNms{h}; % close seq file if(strcmp(cmd,'close')) writeHeader(fid,info); chk(nIn,0); varargout={-1}; fclose(fid); kp=[1:h-1 h+1:length(hs)]; hs=hs(kp); fids=fids(kp); infos=infos(kp); tNms=tNms(kp); if(exist(tNm,'file')), delete(tNm); end; return; end % perform appropriate operation switch( cmd ) case 'addframe', chk(nIn,1,2); info=addFrame(fid,info,tNm,1,in{:}); case 'addframeb', chk(nIn,1,2); info=addFrame(fid,info,tNm,0,in{:}); case 'getinfo', chk(nIn,0); o1=info; otherwise, error(['Unrecognized command: "' cmd '"']); end infos{h}=info; varargout={o1}; end function chk(nIn,nMin,nMax) if(nargin<3), nMax=nMin; end if(nIn>0 && nMin==0 && nMax==0), error(['"' cmd '" takes no args.']); end if(nIn<nMin||nIn>nMax), error(['Incorrect num args for "' cmd '".']); end end function success = getImgFile( fName ) % create local copy of fName which is in a imagesci/private fName = [fName '.' mexext]; s = filesep; success = 1; sName = [fileparts(which('imread.m')) s 'private' s fName]; tName = [fileparts(mfilename('fullpath')) s 'private' s fName]; if(~exist(tName,'file')), success=copyfile(sName,tName); end end function [info, fid, tNm] = open( fName, info ) % open video for writing, create space for header t=[fName '.seq']; if(exist(t,'file')), delete(t); end t=[fName '-seek.mat']; if(exist(t,'file')), delete(t); end fid=fopen([fName '.seq'],'w','l'); assert(fid~=-1); fwrite(fid,zeros(1,1024),'uint8'); % initialize info struct (w all fields necessary for writeHeader) assert(isfield2(info,{'width','height','fps','codec'},1)); switch(info.codec) case {'monoraw', 'imageFormat100'}, frmt=100; nCh=1; ext='raw'; case {'raw', 'imageFormat200'}, frmt=200; nCh=3; ext='raw'; case {'monojpg', 'imageFormat102'}, frmt=102; nCh=1; ext='jpg'; case {'jpg', 'imageFormat201'}, frmt=201; nCh=3; ext='jpg'; case {'monopng', 'imageFormat001'}, frmt=001; nCh=1; ext='png'; case {'png', 'imageFormat002'}, frmt=002; nCh=3; ext='png'; otherwise, error('unknown format'); end; s=1; if(strcmp(ext,'jpg')), s=getImgFile('wjpg8c'); end if(strcmp(ext,'png')), s=getImgFile('png'); if(s), info.writeImg=@(p) png('write',p{:}); end; end if(strcmp(ext,'png') && ~s), s=getImgFile('pngwritec'); if(s), info.writeImg=@(p) pngwritec(p{:}); end; end if(~s), error('Cannot find Matlab''s source image writer'); end info.imageFormat=frmt; info.ext=ext; if(any(strcmp(ext,{'jpg','png'}))), info.seek=1024; info.seekNm=t; end if(~isfield2(info,'quality')), info.quality=80; end info.imageBitDepth=8*nCh; info.imageBitDepthReal=8; nByte=info.width*info.height*nCh; info.imageSizeBytes=nByte; info.numFrames=0; info.trueImageSize=nByte+6+512-mod(nByte+6,512); % generate unique temporary name [~,tNm]=fileparts(fName); t=clock; t=mod(t(end),1); tNm=sprintf('tmp_%s_%15i.%s',tNm,round((t+rand)/2*1e15),ext); end function info = addFrame( fid, info, tNm, encode, I, ts ) % write frame nCh=info.imageBitDepth/8; ext=info.ext; c=info.numFrames+1; if( encode ) siz = [info.height info.width nCh]; assert(size(I,1)==siz(1) && size(I,2)==siz(2) && size(I,3)==siz(3)); end switch ext case 'raw' % write an uncompressed image (assume imageBitDepthReal==8) if( ~encode ), assert(numel(I)==info.imageSizeBytes); else if(nCh==3), t=I(:,:,3); I(:,:,3)=I(:,:,1); I(:,:,1)=t; end if(nCh==1), I=I'; else I=permute(I,[3,2,1]); end end fwrite(fid,I(:),'uint8'); pad=info.trueImageSize-info.imageSizeBytes-6; case 'jpg' if( encode ) % write/read to/from temporary .jpg (not that much overhead) p=struct('quality',info.quality,'comment',{{}},'mode','lossy'); for t=0:99, try wjpg8c(I,tNm,p); fr=fopen(tNm,'r'); assert(fr>0); break; catch, pause(.01); fr=-1; end; end %#ok<CTCH> if(fr<0), error(['write fail: ' tNm]); end; I=fread(fr); fclose(fr); end assert(I(1)==255 && I(2)==216 && I(end-1)==255 && I(end)==217); % JPG fwrite(fid,numel(I)+4,'uint32'); fwrite(fid,I); pad=10; case 'png' if( encode ) % write/read to/from temporary .png (not that much overhead) p=cell(1,17); if(nCh==1), p{4}=0; else p{4}=2; end p{1}=I; p{3}=tNm; p{5}=8; p{8}='none'; p{16}=cell(0,2); for t=0:99, try info.writeImg(p); fr=fopen(tNm,'r'); assert(fr>0); break; catch, pause(.01); fr=-1; end; end %#ok<CTCH> if(fr<0), error(['write fail: ' tNm]); end; I=fread(fr); fclose(fr); end fwrite(fid,numel(I)+4,'uint32'); fwrite(fid,I); pad=10; otherwise, assert(false); end % store seek info if(any(strcmp(ext,{'jpg','png'}))) if(length(info.seek)<c+1), info.seek=[info.seek; zeros(c,1)]; end info.seek(c+1)=info.seek(c)+numel(I)+10+pad; end % write timestamp if(nargin<6),ts=(c-1)/info.fps; end; s=floor(ts); ms=round(mod(ts,1)*1000); fwrite(fid,s,'int32'); fwrite(fid,ms,'uint16'); info.numFrames=c; % pad with zeros if(pad>0), fwrite(fid,zeros(1,pad),'uint8'); end end function writeHeader( fid, info ) fseek(fid,0,'bof'); % first 4 bytes store OxFEED, next 24 store 'Norpix seq ' fwrite(fid,hex2dec('FEED'),'uint32'); fwrite(fid,['Norpix seq' 0 0],'uint16'); % next 8 bytes for version (3) and header size (1024), then 512 for descr fwrite(fid,[3 1024],'int32'); if(isfield(info,'descr')), d=info.descr(:); else d=('No Description')'; end d=[d(1:min(256,end)); zeros(256-length(d),1)]; fwrite(fid,d,'uint16'); % write remaining info vals=[info.width info.height info.imageBitDepth info.imageBitDepthReal ... info.imageSizeBytes info.imageFormat info.numFrames 0 ... info.trueImageSize]; fwrite(fid,vals,'uint32'); % store frame rate and pad with 0's fwrite(fid,info.fps,'float64'); fwrite(fid,zeros(1,432),'uint8'); % write seek info for compressed images to disk if(any(strcmp(info.ext,{'jpg','png'}))) seek=info.seek(1:info.numFrames); %#ok<NASGU> try save(info.seekNm,'seek'); catch; end %#ok<CTCH> end end
github
GYZHikari/Semantic-Cosegmentation-master
kernelTracker.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/videos/kernelTracker.m
9,315
utf_8
4a7d0235f1e518ab5f1c9f1b5450b3f0
function [allRct, allSim, allIc] = kernelTracker( I, prm ) % Kernel Tracker from Comaniciu, Ramesh and Meer PAMI 2003. % % Implements the algorithm described in "Kernel-Based Object Tracking" by % Dorin Comaniciu, Visvanathan Ramesh and Peter Meer, PAMI 25, 564-577, % 2003. This is a fast tracking algorithm that utilizes a histogram % representation of an object (in this implementation we use color % histograms, as in the original work). The idea is given a histogram q in % frame t, find histogram p in frame t+1 that is most similar to q. It % turns out that this can be formulated as a mean shift problem. Here, the % kernel is fixed to the Epanechnikov kernel. % % This implementation uses mex files to optimize speed, it is significantly % faster than real time for a single object on a 2GHz standard laptop (as % of 2007). % % If I==[], toy data is created. If rctS==0, the user is queried to % specify the first rectangle. rctE, denoting the object location in the % last frame, can optionally be specified. If rctE is given, the model % histogram at fraction r of the video is (1-r)*histS+r*histE where histS % and histE are the model histograms from the first and last frame. If % rctE==0 rectangle in final frame is queried, if rectE==-1 it is not used. % % Let T denote the length of the video. Returned values are of length t, % where t==T if the object was tracked through the whole sequence (ie sim % does not fall below simThr), otherwise t<=T is equal to the last frame in % which obj was found. You can test if the object was tracked using: % success = (size(allRct,1)==size(I,4)); % % USAGE % [allRct, allIc, allSim] = kernelTracker( [I], [prm] ) % % INPUTS % I - MxNx3xT input video % [prm] % .rctS - [0] rectangle denoting initial object location % .rctE - [-1] rectangle denoting final object location % .dispFlag - [1] show interactive display % .scaleSrch - [1] if true search over scale % .nBit - [4] n=2^nBit, color histograms are [n x n x n] % .simThr - [.7] sim thr for when obj is considered lost % .scaleDel - [.9] multiplicative diff between consecutive scales % % OUTPUTS % allRct - [t x 4] array of t locations [x,y,wd,ht] % allSim - [1 x t] array of similarity measures during tracking % allIc - [1 x t] cell array of cropped windows containing obj % % EXAMPLE % disp('Select a rectangular region for tracking'); % [allRct,allSim,allIc] = kernelTracker(); % figure(2); clf; plot(allRct); % figure(3); clf; montage2(allIc,struct('hasChn',true)); % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.22 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %%% get parameters (set defaults) if( nargin<1 ); I=[]; end; if( nargin<2 ); prm=struct(); end; dfs = {'scaleSrch',1, 'nBit',4, 'simThr',.7, ... 'dispFlag',1, 'scaleDel',.9, 'rctS',0, 'rctE',-1 }; prm = getPrmDflt( prm, dfs ); scaleSrch=prm.scaleSrch; nBit=prm.nBit; simThr=prm.simThr; dispFlag=prm.dispFlag; scaleDel=prm.scaleDel; rctS=prm.rctS; rctE=prm.rctE; if(isempty(I)); I=toyData(100,1); end; %%% get rctS and rectE if necessary rctProp = {'EdgeColor','g','Curvature',[1 1],'LineWidth',2}; if(rctS==0); figure(1); clf; imshow(I(:,:,:,1)); rctS=getrect; end if(rctE==0); figure(1); clf; imshow(I(:,:,:,end)); rctE=getrect; end %%% precompute kernels for all relevant scales rctS=round(rctS); rctS(3:4)=rctS(3:4)-mod(rctS(3:4),2); pos1 = rctS(1:2)+rctS(3:4)/2; wd=rctS(3); ht=rctS(4); [mRows,nCols,~,nFrame] = size(I); nScaleSm = max(1,floor(log(max(10/wd,10/ht))/log(scaleDel))); nScaleLr = max(1,floor(-log(min(nCols/wd,mRows/ht)/2)/log(scaleDel))); nScale = nScaleSm+nScaleLr+1; scale = nScaleSm+1; kernel = repmat( buildKernel(wd,ht), [1 nScale] ); for s=1:nScale r = power(scaleDel,s-1-nScaleSm); kernel(s) = buildKernel( wd/r, ht/r ); end %%% build model histogram for rctS [Ic,Qc] = cropWindow( I(:,:,:,1), nBit, pos1, wd, ht ); qS = buildHist( Qc, kernel(scale), nBit ); %%% optionally build model histogram for rctE if(length(rctE)==4); rctE=round(rctE); rctE(3:4)=rctE(3:4)-mod(rctE(3:4),2); posE = rctE(1:2)+rctE(3:4)/2; wdE=rctE(3); htE=rctE(4); kernelE = buildKernel(wdE,htE); [Ic,Qc] = cropWindow( I(:,:,:,end), nBit, posE, wdE, htE ); %end qE = buildHist( Qc, kernelE, nBit ); else qE = qS; end %%% setup display if( dispFlag ) figure(1); clf; hImg=imshow(I(:,:,:,1)); hR = rectangle('Position', rctS, rctProp{:} ); pause(.1); end %%% main loop pos = pos1; allRct = zeros(nFrame,4); allRct(1,:)=rctS; allIc = cell(1,nFrame); allIc{1}=Ic; allSim = zeros(1,nFrame); for frm = 1:nFrame Icur = I(:,:,:,frm); % current model (linearly interpolate) r=(frm-1)/nFrame; q = qS*(1-r) + qE*r; if( scaleSrch ) % search over scale best={}; bestSim=-1; pos1=pos; for s=max(1,scale-1):min(nScale,scale+1) [p,pos,Ic,sim]=kernelTracker1(Icur,q,pos1,kernel(s),nBit); if( sim>bestSim ); best={p,pos,Ic,s}; bestSim=sim; end; end [~,pos,Ic,scale]=deal(best{:}); wd=kernel(scale).wd; ht=kernel(scale).ht; else % otherwise just do meanshift once [~,pos,Ic,bestSim]=kernelTracker1(Icur,q,pos,kernel(scale),nBit); end % record results if( bestSim<simThr ); break; end; rctC=[pos(1)-wd/2 pos(2)-ht/2 wd, ht ]; allIc{frm}=Ic; allRct(frm,:)=rctC; allSim(frm)=bestSim; % display if( dispFlag ) set(hImg,'CData',Icur); title(['bestSim=' num2str(bestSim)]); delete(hR); hR=rectangle('Position', rctC, rctProp{:} ); if(0); waitforbuttonpress; else drawnow; end end end %%% finalize & display if( bestSim<simThr ); frm=frm-1; end; allIc=allIc(1:frm); allRct=allRct(1:frm,:); allSim=allSim(1:frm); if( dispFlag ) if( bestSim<simThr ); disp('lost target'); end disp( ['final sim = ' num2str(bestSim) ] ); end end function [p,pos,Ic,sim] = kernelTracker1( I, q, pos, kernel, nBit ) mRows=size(I,1); nCols=size(I,2); wd=kernel.wd; wd2=wd/2; ht=kernel.ht; ht2=ht/2; xs=kernel.xs; ys=kernel.ys; for iter=1:1000 posPrev = pos; % check if pos in bounds rct = [pos(1)-wd/2 pos(2)-ht/2 wd, ht ]; if( rct(1)<1 || rct(2)<1 || (rct(1)+wd)>nCols || (rct(2)+ht)>mRows ) pos=posPrev; p=[]; Ic=[]; sim=eps; return; end % crop window / compute histogram [Ic,Qc] = cropWindow( I, nBit, pos, wd, ht ); p = buildHist( Qc, kernel, nBit ); if( iter==20 ); break; end; % compute meanshift step w = ktComputeW_c( Qc, q, p, nBit ); posDel = [sum(xs.*w)*wd2, sum(ys.*w)*ht2] / (sum(w)+eps); posDel = round(posDel+.1); if(all(posDel==0)); break; end; pos = pos + posDel; end locs=p>0; sim=sum( sqrt(q(locs).*p(locs)) ); end function kernel = buildKernel( wd, ht ) wd = round(wd/2)*2; xs = linspace(-1,1,wd); ht = round(ht/2)*2; ys = linspace(-1,1,ht); [ys,xs] = ndgrid(ys,xs); xs=xs(:); ys=ys(:); xMag = ys.*ys + xs.*xs; xMag(xMag>1) = 1; K = 2/pi * (1-xMag); sumK=sum(K); kernel = struct( 'K',K, 'sumK',sumK, 'xs',xs, 'ys',ys, 'wd',wd, 'ht',ht ); end function p = buildHist( Qc, kernel, nBit ) p = ktHistcRgb_c( Qc, kernel.K, nBit ) / kernel.sumK; if(0); p=gaussSmooth(p,.5,'same',2); p=p*(1/sum(p(:))); end; end function [Ic,Qc] = cropWindow( I, nBit, pos, wd, ht ) row = pos(2)-ht/2; col = pos(1)-wd/2; Ic = I(row:row+ht-1,col:col+wd-1,:); if(nargout==2); Qc=bitshift(reshape(Ic,[],3),nBit-8); end; end function I = toyData( n, sigma ) I1 = imresize(imread('peppers.png'),[256 256],'bilinear'); I=ones(512,512,3,n,'uint8')*100; pos = round(gaussSmooth(randn(2,n)*80,[0 4]))+128; for i=1:n I((1:256)+pos(1,i),(1:256)+pos(2,i),:,i)=I1; I1 = uint8(double(I1) + randn(size(I1))*sigma); end; I=I((1:256)+128,(1:256)+128,:,:); end % % debugging code % if( debug ) % figure(1); % subplot(2,3,2); image( Ic ); subplot(2,3,1); image(Icur); % rectangle('Position', posToRct(pos0,wd,ht), rctProp{:} ); % subplot(2,3,3); imagesc( reshape(w,wd,ht), [0 5] ); colormap gray; % subplot(2,3,4); montage2( q ); subplot(2,3,5); montage2( p1 ); % waitforbuttonpress; % end % % search over 9 locations (with fixed scale) % if( locSrch ) % best={}; bestSim=0.0; pos1=pos; % for lr=-1:1 % for ud=-1:1 % posSt = pos1 + [wd*lr ht*ud]; % [p,pos,Ic,sim] = kernelTracker1(Icur,q,posSt,kernel(scale),nBit); % if( sim>bestSim ); best={p,pos,Ic}; bestSim=sim; end; % end % end % [p,pos,Ic]=deal(best{:}); % end %%% background histogram -- seems kind of useless, removed % if( 0 ) % bgSiz = 3; bgImp = 2; % rctBgStr = max([1 1],rctS(1:2)-rctS(3:4)*(bgSiz/2-.5)); % rctBgEnd = min([nCols mRows],rctS(1:2)+rctS(3:4)*(bgSiz/2+.5)); % rctBg = [rctBgStr rctBgEnd-rctBgStr+1]; % posBg = rctBg(1:2)+rctBg(3:4)/2; wdBg=rctBg(3); htBg=rctBg(4); % [IcBg,QcBg] = cropWindow( I(:,:,:,1), nBit, posBg, wdBg, htBg ); % wtBg = double( reshape(kernel.K,ht,wd)==0 ); % pre=rctS(1:2)-rctBg(1:2); pst=rctBg(3:4)-rctS(3:4)-pre; % wtBg = padarray( wtBg, fliplr(pre), 1, 'pre' ); % wtBg = padarray( wtBg, fliplr(pst), 1, 'post' ); % pBg = buildHist( QcBg, wtBg, [], nBit ); % pWts = min( 1, max(pBg(:))/bgImp./pBg ); % if(0); montage2(pWts); impixelinfo; return; end % else % pWts=[]; % end; % if(~isempty(pWts)); p = p .* pWts; end; % in buildHistogram
github
GYZHikari/Semantic-Cosegmentation-master
seqIo.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/videos/seqIo.m
17,019
utf_8
9c631b324bb527372ec3eed3416c5dcc
function out = seqIo( fName, action, varargin ) % Utilities for reading and writing seq files. % % A seq file is a series of concatentated image frames with a fixed size % header. It is essentially the same as merging a directory of images into % a single file. seq files are convenient for storing videos because: (1) % no video codec is required, (2) seek is instant and exact, (3) seq files % can be read on any operating system. The main drawback is that each frame % is encoded independently, resulting in increased file size. The advantage % over storing as a directory of images is that a single large file is % created. Currently, either uncompressed, jpg or png compressed frames % are supported. The seq file format is modeled after the Norpix seq format % (in fact this reader can be used to read some Norpix seq files). The % actual work of reading/writing seq files is done by seqReaderPlugin and % seqWriterPlugin (there is no need to call those functions directly). % % seqIo contains a number of utility functions for working with seq files. % The format for accessing the various utility functions is: % out = seqIo( fName, 'action', inputs ); % The list of functions and help for each is given below. Also, help on % individual subfunctions can be accessed by: "help seqIo>action". % % Create interface sr for reading seq files. % sr = seqIo( fName, 'reader', [cache] ) % Create interface sw for writing seq files. % sw = seqIo( fName, 'writer', info ) % Get info about seq file. % info = seqIo( fName, 'getInfo' ) % Crop sub-sequence from seq file. % seqIo( fName, 'crop', tName, frames ) % Extract images from seq file to target directory or array. % Is = seqIo( fName, 'toImgs', [tDir], [skip], [f0], [f1], [ext] ) % Create seq file from an array or directory of images or from an AVI file. % seqIo( fName, 'frImgs', info, varargin ) % Convert seq file by applying imgFun(I) to each frame I. % seqIo( fName, 'convert', tName, imgFun, varargin ) % Replace header of seq file with provided info. % seqIo( fName, 'newHeader', info ) % Create interface sr for reading dual seq files. % sr = seqIo( fNames, 'readerDual', [cache] ) % % USAGE % out = seqIo( fName, action, varargin ) % % INPUTS % fName - seq file to open % action - controls action (see above) % varargin - additional inputs (see above) % % OUTPUTS % out - depends on action (see above) % % EXAMPLE % % See also seqIo>reader, seqIo>writer, seqIo>getInfo, seqIo>crop, % seqIo>toImgs, seqIo>frImgs, seqIo>convert, seqIo>newHeader, % seqIo>readerDual, seqPlayer, seqReaderPlugin, seqWriterPlugin % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] switch lower(action) case {'reader','r'}, out = reader( fName, varargin{:} ); case {'writer','w'}, out = writer( fName, varargin{:} ); case 'getinfo', out = getInfo( fName ); case 'crop', crop( fName, varargin{:} ); out=1; case 'toimgs', out = toImgs( fName, varargin{:} ); case 'frimgs', frImgs( fName, varargin{:} ); out=1; case 'convert', convert( fName, varargin{:} ); out=1; case 'newheader', newHeader( fName, varargin{:} ); out=1; case {'readerdual','rdual'}, out=readerDual(fName,varargin{:}); otherwise, error('seqIo unknown action: ''%s''',action); end end function sr = reader( fName, cache ) % Create interface sr for reading seq files. % % Create interface sr to seq file with the following commands: % sr.close(); % Close seq file (sr is useless after). % [I,ts]=sr.getframe(); % Get current frame (returns [] if invalid). % [I,ts]=sr.getframeb(); % Get current frame with no decoding. % ts = sr.getts(); % Return timestamps for all frames. % info = sr.getinfo(); % Return struct with info about video. % [I,ts]=sr.getnext(); % Shortcut for next() followed by getframe(). % out = sr.next(); % Go to next frame (out=0 on fail). % out = sr.seek(frame); % Go to specified frame (out=0 on fail). % out = sr.step(delta); % Go to current frame+delta (out=0 on fail). % % If cache>0, reader() will cache frames in memory, so that calls to % getframe() can avoid disk IO for cached frames (note that only frames % returned by getframe() are cached). This is useful if the same frames are % accessed repeatedly. When the cache is full, the frame in the cache % accessed least recently is discarded. Memory requirements are % proportional to cache size. % % USAGE % sr = seqIo( fName, 'reader', [cache] ) % % INPUTS % fName - seq file name % cache - [0] size of cache % % OUTPUTS % sr - interface for reading seq file % % EXAMPLE % % See also seqIo, seqReaderPlugin if(nargin<2 || isempty(cache)), cache=0; end if( cache>0 ), [as, fs, Is, ts, inds]=deal([]); end r=@seqReaderPlugin; s=r('open',int32(-1),fName); sr = struct( 'close',@() r('close',s), 'getframe',@getframe, ... 'getframeb',@() r('getframeb',s), 'getts',@() r('getts',s), ... 'getinfo',@() r('getinfo',s), 'getnext',@() r('getnext',s), ... 'next',@() r('next',s), 'seek',@(f) r('seek',s,f), ... 'step',@(d) r('step',s,d)); function [I,t] = getframe() % if not using cache simply call 'getframe' and done if(cache<=0), [I,t]=r('getframe',s); return; end % if cache initialized and frame in cache perform lookup f=r('getinfo',s); f=f.curFrame; i=find(f==fs,1); if(i), as=as+1; as(i)=0; t=ts(i); I=Is(inds{:},i); return; end % if image not in cache add (and possibly initialize) [I,t]=r('getframe',s); if(0), fprintf('reading frame %i\n',f); end if(isempty(Is)), Is=zeros([size(I) cache],class(I)); as=ones(1,cache); fs=-as; ts=as; inds=repmat({':'},1,ndims(I)); end [~,i]=max(as); as(i)=0; fs(i)=f; ts(i)=t; Is(inds{:},i)=I; end end function sw = writer( fName, info ) % Create interface sw for writing seq files. % % Create interface sw to seq file with the following commands: % sw.close(); % Close seq file (sw is useless after). % sw.addframe(I,[ts]); % Writes video frame (and timestamp) % sw.addframeb(bytes); % Writes video frame with no encoding. % info = sw.getinfo(); % Return struct with info about video. % % The following params must be specified in struct 'info' upon opening: % width - frame width % height - frame height % fps - frames per second % quality - [80] compression quality (0 to 100) % codec - string representing codec, options include: % 'monoraw'/'imageFormat100' - black/white uncompressed % 'raw'/'imageFormat200' - color (BGR) uncompressed % 'monojpg'/'imageFormat102' - black/white jpg compressed % 'jpg'/'imageFormat201' - color jpg compressed % 'monopng'/'imageFormat001' - black/white png compressed % 'png'/'imageFormat002' - color png compressed % % USAGE % sw = seqIo( fName, 'writer', info ) % % INPUTS % fName - seq file name % info - see above % % OUTPUTS % sw - interface for writing seq file % % EXAMPLE % % See also seqIo, seqWriterPlugin w=@seqWriterPlugin; s=w('open',int32(-1),fName,info); sw = struct( 'close',@() w('close',s), 'getinfo',@() w('getinfo',s), ... 'addframe',@(varargin) w('addframe',s,varargin{:}), ... 'addframeb',@(varargin) w('addframeb',s,varargin{:}) ); end function info = getInfo( fName ) % Get info about seq file. % % USAGE % info = seqIo( fName, 'getInfo' ) % % INPUTS % fName - seq file name % % OUTPUTS % info - information struct % % EXAMPLE % % See also seqIo sr=reader(fName); info=sr.getinfo(); sr.close(); end function crop( fName, tName, frames ) % Crop sub-sequence from seq file. % % Frame indices are 0 indexed. frames need not be consecutive and can % contain duplicates. An index of -1 indicates a blank (all 0) frame. If % contiguous subset of frames is cropped timestamps are preserved. % % USAGE % seqIo( fName, 'crop', tName, frames ) % % INPUTS % fName - seq file name % tName - cropped seq file name % frames - frame indices (0 indexed) % % OUTPUTS % % EXAMPLE % % See also seqIo sr=reader(fName); info=sr.getinfo(); sw=writer(tName,info); frames=frames(:)'; pad=sr.getnext(); pad(:)=0; kp=frames>=0 & frames<info.numFrames; if(~all(kp)), frames=frames(kp); warning('piotr:seqIo:crop','%i out of bounds frames',sum(~kp)); end ordered=all(frames(2:end)==frames(1:end-1)+1); n=length(frames); k=0; tid=ticStatus; for f=frames if(f<0), sw.addframe(pad); continue; end sr.seek(f); [I,ts]=sr.getframeb(); k=k+1; tocStatus(tid,k/n); if(ordered), sw.addframeb(I,ts); else sw.addframeb(I); end end; sw.close(); sr.close(); end function Is = toImgs( fName, tDir, skip, f0, f1, ext ) % Extract images from seq file to target directory or array. % % USAGE % Is = seqIo( fName, 'toImgs', [tDir], [skip], [f0], [f1], [ext] ) % % INPUTS % fName - seq file name % tDir - [] target directory (if empty extract images to array) % skip - [1] skip between written frames % f0 - [0] first frame to write % f1 - [numFrames-1] last frame to write % ext - [] optionally save as given type (slow, reconverts) % % OUTPUTS % Is - if isempty(tDir) outputs image array (else Is=[]) % % EXAMPLE % % See also seqIo if(nargin<2 || isempty(tDir)), tDir=[]; end if(nargin<3 || isempty(skip)), skip=1; end if(nargin<4 || isempty(f0)), f0=0; end if(nargin<5 || isempty(f1)), f1=inf; end if(nargin<6 || isempty(ext)), ext=''; end sr=reader(fName); info=sr.getinfo(); f1=min(f1,info.numFrames-1); frames=f0:skip:f1; n=length(frames); tid=ticStatus; k=0; % output images to array if(isempty(tDir)) I=sr.getnext(); d=ndims(I); assert(d==2 || d==3); try Is=zeros([size(I) n],class(I)); catch e; sr.close(); throw(e); end for k=1:n, sr.seek(frames(k)); I=sr.getframe(); tocStatus(tid,k/n); if(d==2), Is(:,:,k)=I; else Is(:,:,:,k)=I; end; end sr.close(); return; end % output images to directory if(~exist(tDir,'dir')), mkdir(tDir); end; Is=[]; for frame=frames f=[tDir '/I' int2str2(frame,5) '.']; sr.seek(frame); if(~isempty(ext)), I=sr.getframe(); imwrite(I,[f ext]); else I=sr.getframeb(); f=fopen([f info.ext],'w'); if(f<=0), sr.close(); assert(false); end fwrite(f,I); fclose(f); end; k=k+1; tocStatus(tid,k/n); end; sr.close(); end function frImgs( fName, info, varargin ) % Create seq file from an array or directory of images or from an AVI file. % % For info, if converting from array, only codec (e.g., 'jpg') and fps must % be specified while width and height and determined automatically. If % converting from AVI, fps is also determined automatically. % % USAGE % seqIo( fName, 'frImgs', info, varargin ) % % INPUTS % fName - seq file name % info - defines codec, etc, see seqIo>writer % varargin - additional params (struct or name/value pairs) % .aviName - [] if specified create seq from avi file % .Is - [] if specified create seq from image array % .sDir - [] source directory % .skip - [1] skip between frames % .name - ['I'] base name of images % .nDigits - [5] number of digits for filename index % .f0 - [0] first frame to read % .f1 - [10^6] last frame to read % % OUTPUTS % % EXAMPLE % % See also seqIo, seqIo>writer dfs={'aviName','','Is',[],'sDir',[],'skip',1,'name','I',... 'nDigits',5,'f0',0,'f1',10^6}; [aviName,Is,sDir,skip,name,nDigits,f0,f1] ... = getPrmDflt(varargin,dfs,1); if(~isempty(aviName)) if(exist('mmread.m','file')==2) % use external mmread function % mmread requires full pathname, which is obtained via 'which'. But, % 'which' can fail (maltab bug), so best to just pass in full pathname t=which(aviName); if(~isempty(t)), aviName=t; end V=mmread(aviName); n=V.nrFramesTotal; info.height=V.height; info.width=V.width; info.fps=V.rate; sw=writer(fName,info); tid=ticStatus('creating seq from avi'); for f=1:n, sw.addframe(V.frames(f).cdata); tocStatus(tid,f/n); end sw.close(); else % use matlab mmreader function emsg=['mmreader.m failed to load video. In general mmreader.m is ' ... 'known to have many issues, especially on Linux. I suggest ' ... 'installing the similarly named mmread toolbox from Micah ' ... 'Richert, available at Matlab Central. If mmread is installed, ' ... 'seqIo will automatically use mmread instead of mmreader.']; try V=mmreader(aviName); catch %#ok<DMMR,CTCH> error('piotr:seqIo:frImgs',emsg); end; n=V.NumberOfFrames; info.height=V.Height; info.width=V.Width; info.fps=V.FrameRate; sw=writer(fName,info); tid=ticStatus('creating seq from avi'); for f=1:n, sw.addframe(read(V,f)); tocStatus(tid,f/n); end sw.close(); end elseif( isempty(Is) ) assert(exist(sDir,'dir')==7); sw=writer(fName,info); info=sw.getinfo(); frmStr=sprintf('%s/%s%%0%ii.%s',sDir,name,nDigits,info.ext); for frame = f0:skip:f1 f=sprintf(frmStr,frame); if(~exist(f,'file')), break; end f=fopen(f,'r'); if(f<=0), sw.close(); assert(false); end I=fread(f); fclose(f); sw.addframeb(I); end; sw.close(); if(frame==f0), warning('No images found.'); end %#ok<WNTAG> else nd=ndims(Is); if(nd==2), nd=3; end; assert(nd<=4); nFrm=size(Is,nd); info.height=size(Is,1); info.width=size(Is,2); sw=writer(fName,info); if(nd==3), for f=1:nFrm, sw.addframe(Is(:,:,f)); end; end if(nd==4), for f=1:nFrm, sw.addframe(Is(:,:,:,f)); end; end sw.close(); end end function convert( fName, tName, imgFun, varargin ) % Convert seq file by applying imgFun(I) to each frame I. % % USAGE % seqIo( fName, 'convert', tName, imgFun, varargin ) % % INPUTS % fName - seq file name % tName - converted seq file name % imgFun - function to apply to each image % varargin - additional params (struct or name/value pairs) % .info - [] info for target seq file % .skip - [1] skip between frames % .f0 - [0] first frame to read % .f1 - [inf] last frame to read % % OUTPUTS % % EXAMPLE % % See also seqIo dfs={'info',[],'skip',1,'f0',0,'f1',inf}; [info,skip,f0,f1]=getPrmDflt(varargin,dfs,1); assert(~strcmp(tName,fName)); sr=reader(fName); infor=sr.getinfo(); if(isempty(info)), info=infor; end; n=infor.numFrames; f1=min(f1,n-1); I=sr.getnext(); I=imgFun(I); info.width=size(I,2); info.height=size(I,1); sw=writer(tName,info); tid=ticStatus('converting seq'); frames=f0:skip:f1; n=length(frames); k=0; for f=frames, sr.seek(f); [I,ts]=sr.getframe(); I=imgFun(I); if(skip==1), sw.addframe(I,ts); else sw.addframe(I); end k=k+1; tocStatus(tid,k/n); end; sw.close(); sr.close(); end function newHeader( fName, info ) % Replace header of seq file with provided info. % % Can be used if the file fName has a corrupt header. Automatically tries % to compute number of frames in fName. No guarantees that it will work. % % USAGE % seqIo( fName, 'newHeader', info ) % % INPUTS % fName - seq file name % info - info for target seq file % % OUTPUTS % % EXAMPLE % % See also seqIo [d,n]=fileparts(fName); if(isempty(d)), d='.'; end fName=[d '/' n]; tName=[fName '-new' datestr(now,30)]; if(exist([fName '-seek.mat'],'file')); delete([fName '-seek.mat']); end srp=@seqReaderPlugin; hr=srp('open',int32(-1),fName,info); tid=ticStatus; info=srp('getinfo',hr); sw=writer(tName,info); n=info.numFrames; for f=1:n, srp('next',hr); [I,ts]=srp('getframeb',hr); sw.addframeb(I,ts); tocStatus(tid,f/n); end srp('close',hr); sw.close(); end function sr = readerDual( fNames, cache ) % Create interface sr for reading dual seq files. % % Wrapper for two seq files of the same image dims and roughly the same % frame counts that are treated as a single reader object. getframe() % returns the concatentation of the two frames. For videos of different % frame counts, the first video serves as the "dominant" video and the % frame count of the second video is adjusted accordingly. Same general % usage as in reader, but the only supported operations are: close(), % getframe(), getinfo(), and seek(). % % USAGE % sr = seqIo( fNames, 'readerDual', [cache] ) % % INPUTS % fNames - two seq file names % cache - [0] size of cache (see seqIo>reader) % % OUTPUTS % sr - interface for reading seq file % % EXAMPLE % % See also seqIo, seqIo>reader if(nargin<2 || isempty(cache)), cache=0; end s1=reader(fNames{1}, cache); i1=s1.getinfo(); s2=reader(fNames{2}, cache); i2=s2.getinfo(); info=i1; info.width=i1.width+i2.width; if( i1.width~=i2.width || i1.height~=i2.height ) s1.close(); s2.close(); error('Mismatched videos'); end if( i1.numFrames~=i2.numFrames ) warning('seq files of different lengths'); end %#ok<WNTAG> frame2=@(f) round(f/(i1.numFrames-1)*(i2.numFrames-1)); sr=struct('close',@() min(s1.close(),s2.close()), ... 'getframe',@getframe, 'getinfo',@() info, ... 'seek',@(f) s1.seek(f) & s2.seek(frame2(f)) ); function [I,t] = getframe() [I1,t]=s1.getframe(); I2=s2.getframe(); I=[I1 I2]; end end
github
GYZHikari/Semantic-Cosegmentation-master
seqReaderPlugin.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/videos/seqReaderPlugin.m
9,617
utf_8
ad8f912634cafe13df6fc7d67aeff05a
function varargout = seqReaderPlugin( cmd, h, varargin ) % Plugin for seqIo and videoIO to allow reading of seq files. % % Do not call directly, use as plugin for seqIo or videoIO instead. % The following is a list of commands available (srp=seqReaderPlugin): % h = srp('open',h,fName) % Open a seq file for reading (h ignored). % h = srp('close',h); % Close seq file (output h is -1). % [I,ts] =srp('getframe',h) % Get current frame (returns [] if invalid). % [I,ts] =srp('getframeb',h) % Get current frame with no decoding. % ts = srp('getts',h) % Return timestamps for all frames. % info = srp('getinfo',h) % Return struct with info about video. % [I,ts] =srp('getnext',h) % Shortcut for 'next' followed by 'getframe'. % out = srp('next',h) % Go to next frame (out=0 on fail). % out = srp('seek',h,frame) % Go to specified frame (out=0 on fail). % out = srp('step',h,delta) % Go to current frame+delta (out=0 on fail). % % USAGE % varargout = seqReaderPlugin( cmd, h, varargin ) % % INPUTS % cmd - string indicating operation to perform % h - unique identifier for open seq file % varargin - additional options (vary according to cmd) % % OUTPUTS % varargout - output (varies according to cmd) % % EXAMPLE % % See also SEQIO, SEQWRITERPLUGIN % % Piotr's Computer Vision Matlab Toolbox Version 3.10 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % persistent variables to keep track of all loaded .seq files persistent h1 hs cs fids infos tNms; if(isempty(h1)), h1=int32(now); hs=int32([]); infos={}; tNms={}; end nIn=nargin-2; in=varargin; o2=[]; cmd=lower(cmd); % open seq file if(strcmp(cmd,'open')) chk(nIn,1,2); h=length(hs)+1; hs(h)=h1; varargout={h1}; h1=h1+1; [pth,name]=fileparts(in{1}); if(isempty(pth)), pth='.'; end if(nIn==1), info=[]; else info=in{2}; end fName=[pth filesep name]; cs(h)=-1; [infos{h},fids(h),tNms{h}]=open(fName,info); return; end % Get the handle for this instance [v,h]=ismember(h,hs); if(~v), error('Invalid load plugin handle'); end c=cs(h); fid=fids(h); info=infos{h}; tNm=tNms{h}; % close seq file if(strcmp(cmd,'close')) chk(nIn,0); varargout={-1}; fclose(fid); kp=[1:h-1 h+1:length(hs)]; hs=hs(kp); cs=cs(kp); fids=fids(kp); infos=infos(kp); tNms=tNms(kp); if(exist(tNm,'file')), delete(tNm); end; return; end % perform appropriate operation switch( cmd ) case 'getframe', chk(nIn,0); [o1,o2]=getFrame(c,fid,info,tNm,1); case 'getframeb', chk(nIn,0); [o1,o2]=getFrame(c,fid,info,tNm,0); case 'getts', chk(nIn,0); o1=getTs(0:info.numFrames-1,fid,info); case 'getinfo', chk(nIn,0); o1=info; o1.curFrame=c; case 'getnext', chk(nIn,0); c=c+1; [o1,o2]=getFrame(c,fid,info,tNm,1); case 'next', chk(nIn,0); [c,o1]=valid(c+1,info); case 'seek', chk(nIn,1); [c,o1]=valid(in{1},info); case 'step', chk(nIn,1); [c,o1]=valid(c+in{1},info); otherwise, error(['Unrecognized command: "' cmd '"']); end cs(h)=c; varargout={o1,o2}; end function chk(nIn,nMin,nMax) if(nargin<3), nMax=nMin; end if(nIn>0 && nMin==0 && nMax==0), error(['"' cmd '" takes no args.']); end if(nIn<nMin||nIn>nMax), error(['Incorrect num args for "' cmd '".']); end end function success = getImgFile( fName ) % create local copy of fName which is in a imagesci/private fName = [fName '.' mexext]; s = filesep; success = 1; sName = [fileparts(which('imread.m')) s 'private' s fName]; tName = [fileparts(mfilename('fullpath')) s 'private' s fName]; if(~exist(tName,'file')), success=copyfile(sName,tName); end end function [info, fid, tNm] = open( fName, info ) % open video for reading, get header if(exist([fName '.seq'],'file')==0) error('seq file not found: %s.seq',fName); end fid=fopen([fName '.seq'],'r','l'); if(isempty(info)), info=readHeader(fid); else info.numFrames=0; fseek(fid,1024,'bof'); end switch(info.imageFormat) case {100,200}, ext='raw'; case {101 }, ext='brgb8'; case {102,201}, ext='jpg'; case {103 }, ext ='jbrgb'; case {001,002}, ext='png'; otherwise, error('unknown format'); end; info.ext=ext; s=1; if(any(strcmp(ext,{'jpg','jbrgb'}))), s=getImgFile('rjpg8c'); end if(strcmp(ext,'png')), s=getImgFile('png'); if(s), info.readImg=@(nm) png('read',nm,[]); end; end if(strcmp(ext,'png') && ~s), s=getImgFile('pngreadc'); if(s), info.readImg=@(nm) pngreadc(nm,[],false); end; end if(~s), error('Cannot find Matlab''s source image reader'); end % generate unique temporary name [~,tNm]=fileparts(fName); t=clock; t=mod(t(end),1); tNm=sprintf('tmp_%s_%15i.%s',tNm,round((t+rand)/2*1e15),ext); % compute seek info for compressed images if(any(strcmp(ext,{'raw','brgb8'}))), assert(info.numFrames>0); else oName=[fName '-seek.mat']; n=info.numFrames; if(n==0), n=10^7; end if(exist(oName,'file')==2), load(oName); info.seek=seek; else %#ok<NODEF> tid=ticStatus('loading seek info',.1,5); seek=zeros(n,1); seek(1)=1024; extra=8; % extra bytes after image data (8 for ts, then 0 or 8 empty) for i=2:n s=seek(i-1)+fread(fid,1,'uint32')+extra; valid=fseek(fid,s,'bof')==0; if(i==2 && valid), if(fread(fid,1,'uint32')~=0), fseek(fid,-4,'cof'); else extra=extra+8; s=s+8; valid=fseek(fid,s,'bof')==0; end; end if(valid), seek(i)=s; tocStatus(tid,i/n); else n=i-1; seek=seek(1:n); tocStatus(tid,1); break; end end; if(info.numFrames==0), info.numFrames=n; end try save(oName,'seek'); catch; end; info.seek=seek; %#ok<CTCH> end end % compute frame rate from timestamps as stored fps may be incorrect n=min(100,info.numFrames); if(n==1), return; end ts = getTs( 0:(n-1), fid, info ); ds=ts(2:end)-ts(1:end-1); ds=ds(abs(ds-median(ds))<.005); if(~isempty(ds)), info.fps=1/mean(ds); end end function [frame,v] = valid( frame, info ) v=(frame>=0 && frame<info.numFrames); end function [I,ts] = getFrame( frame, fid, info, tNm, decode ) % get frame image (I) and timestamp (ts) at which frame was recorded nCh=info.imageBitDepth/8; ext=info.ext; if(frame<0 || frame>=info.numFrames), I=[]; ts=[]; return; end switch ext case {'raw','brgb8'} % read in an uncompressed image (assume imageBitDepthReal==8) fseek(fid,1024+frame*info.trueImageSize,'bof'); I = fread(fid,info.imageSizeBytes,'*uint8'); if( decode ) % reshape appropriately for mxn or mxnx3 RGB image siz = [info.height info.width nCh]; if(nCh==1), I=reshape(I,siz(2),siz(1))'; else I = permute(reshape(I,siz(3),siz(2),siz(1)),[3,2,1]); end if(nCh==3), t=I(:,:,3); I(:,:,3)=I(:,:,1); I(:,:,1)=t; end if(strcmp(ext,'brgb8')), I=demosaic(I,'bggr'); end end case {'jpg','jbrgb'} fseek(fid,info.seek(frame+1),'bof'); nBytes=fread(fid,1,'uint32'); I = fread(fid,nBytes-4,'*uint8'); if( decode ) % write/read to/from temporary .jpg (not that much overhead) assert(I(1)==255 && I(2)==216 && I(end-1)==255 && I(end)==217); % JPG for t=0:99, fw=fopen(tNm,'w'); if(fw>=0), break; end; pause(.01); end if(fw==-1), error(['unable to write: ' tNm]); end fwrite(fw,I); fclose(fw); I=rjpg8c(tNm); if(strcmp(ext,'jbrgb')), I=demosaic(I,'bggr'); end end case 'png' fseek(fid,info.seek(frame+1),'bof'); nBytes=fread(fid,1,'uint32'); I = fread(fid,nBytes-4,'*uint8'); if( decode ) % write/read to/from temporary .png (not that much overhead) for t=0:99, fw=fopen(tNm,'w'); if(fw>=0), break; end; pause(.01); end if(fw==-1), error(['unable to write: ' tNm]); end fwrite(fw,I); fclose(fw); I=info.readImg(tNm); I=permute(I,ndims(I):-1:1); end otherwise, assert(false); end if(nargout==2), ts=fread(fid,1,'uint32')+fread(fid,1,'uint16')/1000; end end function ts = getTs( frames, fid, info ) % get timestamps (ts) at which frames were recorded n=length(frames); ts=nan(1,n); for i=1:n, frame=frames(i); if(frame<0 || frame>=info.numFrames), continue; end switch info.ext case {'raw','brgb8'} % uncompressed fseek(fid,1024+frame*info.trueImageSize+info.imageSizeBytes,'bof'); case {'jpg','png','jbrgb'} % compressed fseek(fid,info.seek(frame+1),'bof'); fseek(fid,fread(fid,1,'uint32')-4,'cof'); otherwise, assert(false); end ts(i)=fread(fid,1,'uint32')+fread(fid,1,'uint16')/1000; end end function info = readHeader( fid ) % see streampix manual for info on header fseek(fid,0,'bof'); % check that header is not all 0's (a common error) [tmp,n]=fread(fid,1024); if(n<1024), error('no header'); end if(all(tmp==0)), error('fully empty header'); end; fseek(fid,0,'bof'); % first 4 bytes store OxFEED, next 24 store 'Norpix seq ' if( ~strcmp(sprintf('%X',fread(fid,1,'uint32')),'FEED') || ... ~strcmp(char(fread(fid,10,'uint16'))','Norpix seq') ) %#ok<FREAD> error('invalid header'); end; fseek(fid,4,'cof'); % next 8 bytes for version and header size (1024), then 512 for descr version=fread(fid,1,'int32'); assert(fread(fid,1,'uint32')==1024); descr=char(fread(fid,256,'uint16'))'; %#ok<FREAD> % read in more info tmp=fread(fid,9,'uint32'); assert(tmp(8)==0); fps = fread(fid,1,'float64'); codec=['imageFormat' int2str2(tmp(6),3)]; % store information in info struct info=struct( 'width',tmp(1), 'height',tmp(2), 'imageBitDepth',tmp(3), ... 'imageBitDepthReal',tmp(4), 'imageSizeBytes',tmp(5), ... 'imageFormat',tmp(6), 'numFrames',tmp(7), 'trueImageSize', tmp(9),... 'fps',fps, 'seqVersion',version, 'codec',codec, 'descr',descr, ... 'nHiddenFinalFrames',0 ); assert(info.imageBitDepthReal==8); % seek to end of header fseek(fid,432,'cof'); end
github
GYZHikari/Semantic-Cosegmentation-master
pcaApply.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/pcaApply.m
3,320
utf_8
a06fc0e54d85930cbc0536c874ac63b7
function varargout = pcaApply( X, U, mu, k ) % Companion function to pca. % % Use pca.m to retrieve the principal components U and the mean mu from a % set of vectors x, then use pcaApply to get the first k coefficients of % x in the space spanned by the columns of U. See pca for general usage. % % If x is large, pcaApply first splits and processes x in parts. This % allows pcaApply to work even for very large arrays. % % This may prove useful: % siz=size(X); k=100; Uim=reshape(U(:,1:k),[siz(1:end-1) k ]); % % USAGE % [ Yk, Xhat, avsq ] = pcaApply( X, U, mu, k ) % % INPUTS % X - data for which to get PCA coefficients % U - returned by pca.m % mu - returned by pca.m % k - number of principal coordinates to approximate X with % % OUTPUTS % Yk - first k coordinates of X in column space of U % Xhat - approximation of X corresponding to Yk % avsq - measure of squared error normalized to fall between [0,1] % % EXAMPLE % % See also PCA, PCAVISUALIZE % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % sizes / dimensions siz = size(X); nd = ndims(X); [D,r] = size(U); if(D==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end n = siz(end); % some error checking if(prod(siz(1:end-1))~=D); error('incorrect size for X or U'); end if(isa(X,'uint8')); X = double(X); end if(k>r); warning(['k set to ' int2str(r)]); k=r; end; %#ok<WNTAG> % If X is small simply call pcaApply1 once. % OW break up X and call pcaApply1 multiple times and recombine. maxWidth = ceil( (10^7) / D ); if( maxWidth > n ) varargout = cell(1,nargout); [varargout{:}] = pcaApply1( X, U, mu, k ); else inds = {':'}; inds = inds(:,ones(1,nd-1)); Yk = zeros( k, n ); Xhat = zeros( siz ); avsq = 0; avsqOrig = 0; last = 0; if( nargout==3 ); out=cell(1,4); else out=cell(1,nargout); end; while(last < n) first=last+1; last=min(first+maxWidth-1,n); Xi = X(inds{:}, first:last); [out{:}] = pcaApply1( Xi, U, mu, k ); Yk(:,first:last) = out{1}; if( nargout>=2 ); Xhat(inds{:},first:last)=out{2}; end; if( nargout>=3 ); avsq=avsq+out{3}; avsqOrig=avsqOrig+out{4}; end; end; varargout = {Yk, Xhat, avsq/avsqOrig}; end function [ Yk, Xhat, avsq, avsqOrig ] = pcaApply1( X, U, mu, k ) % sizes / dimensions siz = size(X); nd = ndims(X); [D,r] = size(U); if(D==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end n = siz(end); % subtract mean, then flatten X Xorig = X; muRep = repmat(mu, [ones(1,nd-1), n ] ); X = X - muRep; X = reshape( X, D, n ); % Find Yk, the first k coefficients of X in the new basis if( r<=k ); Uk=U; else Uk=U(:,1:k); end; Yk = Uk' * X; % calculate Xhat - the approx of X using the first k princ components if( nargout>1 ) Xhat = Uk * Yk; Xhat = reshape( Xhat, siz ); Xhat = Xhat + muRep; end % caclulate average value of (Xhat-Xorig).^2 compared to average value % of X.^2, where X is Xorig without the mean. This is equivalent to % what fraction of the variance is captured by Xhat. if( nargout>2 ) avsq = Xhat - Xorig; avsq = dot(avsq(:),avsq(:)); avsqOrig = dot(X(:),X(:)); if( nargout==3 ); avsq=avsq/avsqOrig; end end
github
GYZHikari/Semantic-Cosegmentation-master
forestTrain.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/forestTrain.m
6,138
utf_8
de534e2a010f452a7b13167dbf9df239
function forest = forestTrain( data, hs, varargin ) % Train random forest classifier. % % Dimensions: % M - number trees % F - number features % N - number input vectors % H - number classes % % USAGE % forest = forestTrain( data, hs, [varargin] ) % % INPUTS % data - [NxF] N length F feature vectors % hs - [Nx1] or {Nx1} target output labels in [1,H] % varargin - additional params (struct or name/value pairs) % .M - [1] number of trees to train % .H - [max(hs)] number of classes % .N1 - [5*N/M] number of data points for training each tree % .F1 - [sqrt(F)] number features to sample for each node split % .split - ['gini'] options include 'gini', 'entropy' and 'twoing' % .minCount - [1] minimum number of data points to allow split % .minChild - [1] minimum number of data points allowed at child nodes % .maxDepth - [64] maximum depth of tree % .dWts - [] weights used for sampling and weighing each data point % .fWts - [] weights used for sampling features % .discretize - [] optional function mapping structured to class labels % format: [hsClass,hBest] = discretize(hsStructured,H); % % OUTPUTS % forest - learned forest model struct array w the following fields % .fids - [Kx1] feature ids for each node % .thrs - [Kx1] threshold corresponding to each fid % .child - [Kx1] index of child for each node % .distr - [KxH] prob distribution at each node % .hs - [Kx1] or {Kx1} most likely label at each node % .count - [Kx1] number of data points at each node % .depth - [Kx1] depth of each node % % EXAMPLE % N=10000; H=5; d=2; [xs0,hs0,xs1,hs1]=demoGenData(N,N,H,d,1,1); % xs0=single(xs0); xs1=single(xs1); % pTrain={'maxDepth',50,'F1',2,'M',150,'minChild',5}; % tic, forest=forestTrain(xs0,hs0,pTrain{:}); toc % hsPr0 = forestApply(xs0,forest); % hsPr1 = forestApply(xs1,forest); % e0=mean(hsPr0~=hs0); e1=mean(hsPr1~=hs1); % fprintf('errors trn=%f tst=%f\n',e0,e1); figure(1); % subplot(2,2,1); visualizeData(xs0,2,hs0); % subplot(2,2,2); visualizeData(xs0,2,hsPr0); % subplot(2,2,3); visualizeData(xs1,2,hs1); % subplot(2,2,4); visualizeData(xs1,2,hsPr1); % % See also forestApply, fernsClfTrain % % Piotr's Computer Vision Matlab Toolbox Version 3.24 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get additional parameters and fill in remaining parameters dfs={ 'M',1, 'H',[], 'N1',[], 'F1',[], 'split','gini', 'minCount',1, ... 'minChild',1, 'maxDepth',64, 'dWts',[], 'fWts',[], 'discretize','' }; [M,H,N1,F1,splitStr,minCount,minChild,maxDepth,dWts,fWts,discretize] = ... getPrmDflt(varargin,dfs,1); [N,F]=size(data); assert(length(hs)==N); discr=~isempty(discretize); minChild=max(1,minChild); minCount=max([1 minCount minChild]); if(isempty(H)), H=max(hs); end; assert(discr || all(hs>0 & hs<=H)); if(isempty(N1)), N1=round(5*N/M); end; N1=min(N,N1); if(isempty(F1)), F1=round(sqrt(F)); end; F1=min(F,F1); if(isempty(dWts)), dWts=ones(1,N,'single'); end; dWts=dWts/sum(dWts); if(isempty(fWts)), fWts=ones(1,F,'single'); end; fWts=fWts/sum(fWts); split=find(strcmpi(splitStr,{'gini','entropy','twoing'}))-1; if(isempty(split)), error('unknown splitting criteria: %s',splitStr); end % make sure data has correct types if(~isa(data,'single')), data=single(data); end if(~isa(hs,'uint32') && ~discr), hs=uint32(hs); end if(~isa(fWts,'single')), fWts=single(fWts); end if(~isa(dWts,'single')), dWts=single(dWts); end % train M random trees on different subsets of data prmTree = {H,F1,minCount,minChild,maxDepth,fWts,split,discretize}; for i=1:M if(N==N1), data1=data; hs1=hs; dWts1=dWts; else d=wswor(dWts,N1,4); data1=data(d,:); hs1=hs(d); dWts1=dWts(d); dWts1=dWts1/sum(dWts1); end tree = treeTrain(data1,hs1,dWts1,prmTree); if(i==1), forest=tree(ones(M,1)); else forest(i)=tree; end end end function tree = treeTrain( data, hs, dWts, prmTree ) % Train single random tree. [H,F1,minCount,minChild,maxDepth,fWts,split,discretize]=deal(prmTree{:}); N=size(data,1); K=2*N-1; discr=~isempty(discretize); thrs=zeros(K,1,'single'); distr=zeros(K,H,'single'); fids=zeros(K,1,'uint32'); child=fids; count=fids; depth=fids; hsn=cell(K,1); dids=cell(K,1); dids{1}=uint32(1:N); k=1; K=2; while( k < K ) % get node data and store distribution dids1=dids{k}; dids{k}=[]; hs1=hs(dids1); n1=length(hs1); count(k)=n1; if(discr), [hs1,hsn{k}]=feval(discretize,hs1,H); hs1=uint32(hs1); end if(discr), assert(all(hs1>0 & hs1<=H)); end; pure=all(hs1(1)==hs1); if(~discr), if(pure), distr(k,hs1(1))=1; hsn{k}=hs1(1); else distr(k,:)=histc(hs1,1:H)/n1; [~,hsn{k}]=max(distr(k,:)); end; end % if pure node or insufficient data don't train split if( pure || n1<=minCount || depth(k)>maxDepth ), k=k+1; continue; end % train split and continue fids1=wswor(fWts,F1,4); data1=data(dids1,fids1); [~,order1]=sort(data1); order1=uint32(order1-1); [fid,thr,gain]=forestFindThr(data1,hs1,dWts(dids1),order1,H,split); fid=fids1(fid); left=data(dids1,fid)<thr; count0=nnz(left); if( gain>1e-10 && count0>=minChild && (n1-count0)>=minChild ) child(k)=K; fids(k)=fid-1; thrs(k)=thr; dids{K}=dids1(left); dids{K+1}=dids1(~left); depth(K:K+1)=depth(k)+1; K=K+2; end; k=k+1; end % create output model struct K=1:K-1; if(discr), hsn={hsn(K)}; else hsn=[hsn{K}]'; end tree=struct('fids',fids(K),'thrs',thrs(K),'child',child(K),... 'distr',distr(K,:),'hs',hsn,'count',count(K),'depth',depth(K)); end function ids = wswor( prob, N, trials ) % Fast weighted sample without replacement. Alternative to: % ids=datasample(1:length(prob),N,'weights',prob,'replace',false); M=length(prob); assert(N<=M); if(N==M), ids=1:N; return; end if(all(prob(1)==prob)), ids=randperm(M,N); return; end cumprob=min([0 cumsum(prob)],1); assert(abs(cumprob(end)-1)<.01); cumprob(end)=1; [~,ids]=histc(rand(N*trials,1),cumprob); [s,ord]=sort(ids); K(ord)=[1; diff(s)]~=0; ids=ids(K); if(length(ids)<N), ids=wswor(cumprob,N,trials*2); end ids=ids(1:N)'; end
github
GYZHikari/Semantic-Cosegmentation-master
fernsRegTrain.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/fernsRegTrain.m
5,914
utf_8
b9ed2d87a22cb9cbb1e2632495ddaf1d
function [ferns,ysPr] = fernsRegTrain( data, ys, varargin ) % Train boosted fern regressor. % % Boosted regression using random ferns as the weak regressor. See "Greedy % function approximation: A gradient boosting machine", Friedman, Annals of % Statistics 2001, for more details on boosted regression. % % A few notes on the parameters: 'type' should in general be set to 'res' % (the 'ave' version is an undocumented variant that only performs well % under limited conditions). 'loss' determines the loss function being % optimized, in general the 'L2' version is the most robust and effective. % 'reg' is a regularization term for the ferns, a low value such as .01 can % improve results. Setting the learning rate 'eta' is crucial in order to % achieve good performance, especially on noisy data. In general, eta % should decreased as M is increased. % % Dimensions: % M - number ferns % R - number repeats % S - fern depth % N - number samples % F - number features % % USAGE % [ferns,ysPr] = fernsRegTrain( data, hs, [varargin] ) % % INPUTS % data - [NxF] N length F feature vectors % ys - [Nx1] target output values % varargin - additional params (struct or name/value pairs) % .type - ['res'] options include {'res','ave'} % .loss - ['L2'] options include {'L1','L2','exp'} % .S - [2] fern depth (ferns are exponential in S) % .M - [50] number ferns (same as number phases) % .R - [10] number repetitions per fern % .thrr - [0 1] range for randomly generated thresholds % .reg - [0.01] fern regularization term in [0,1] % .eta - [1] learning rate in [0,1] (not used if type='ave') % .verbose - [0] if true output info to display % % OUTPUTS % ferns - learned fern model w the following fields % .fids - [MxS] feature ids for each fern for each depth % .thrs - [MxS] threshold corresponding to each fid % .ysFern - [2^SxM] stored values at fern leaves % .loss - loss(ys,ysGt) computes loss of ys relateive to ysGt % ysPr - [Nx1] predicted output values % % EXAMPLE % %% generate toy data % N=1000; sig=.5; f=@(x) cos(x*pi*4)+(x+1).^2; % xs0=rand(N,1); ys0=f(xs0)+randn(N,1)*sig; % xs1=rand(N,1); ys1=f(xs1)+randn(N,1)*sig; % %% train and apply fern regressor % prm=struct('type','res','loss','L2','eta',.05,... % 'thrr',[-1 1],'reg',.01,'S',2,'M',1000,'R',3,'verbose',0); % tic, [ferns,ysPr0] = fernsRegTrain(xs0,ys0,prm); toc % tic, ysPr1 = fernsRegApply( xs1, ferns ); toc % fprintf('errors train=%f test=%f\n',... % ferns.loss(ysPr0,ys0),ferns.loss(ysPr1,ys1)); % %% visualize results % figure(1); clf; hold on; plot(xs0,ys0,'.b'); plot(xs0,ysPr0,'.r'); % figure(2); clf; hold on; plot(xs1,ys1,'.b'); plot(xs1,ysPr1,'.r'); % % See also fernsRegApply, fernsInds % % Piotr's Computer Vision Matlab Toolbox Version 2.50 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get/check parameters dfs={'type','res','loss','L2','S',2,'M',50,'R',10,'thrr',[0 1],... 'reg',0.01,'eta',1,'verbose',0}; [type,loss,S,M,R,thrr,reg,eta,verbose]=getPrmDflt(varargin,dfs,1); type=type(1:3); assert(any(strcmp(type,{'res','ave'}))); assert(any(strcmp(loss,{'L1','L2','exp'}))); N=length(ys); if(strcmp(type,'ave')), eta=1; end % train stagewise regressor (residual or average) fids=zeros(M,S,'uint32'); thrs=zeros(M,S); ysSum=zeros(N,1); ysFern=zeros(2^S,M); for m=1:M % train R random ferns using different losses, keep best if(strcmp(type,'ave')), d=m; else d=1; end ysTar=d*ys-ysSum; best={}; if(strcmp(loss,'L1')), e=sum(abs(ysTar)); for r=1:R [fids1,thrs1,ysFern1,ys1]=trainFern(data,sign(ysTar),S,thrr,reg); a=medianw(ysTar./ys1,abs(ys1)); ysFern1=ysFern1*a; ys1=ys1*a; e1=sum(abs(ysTar-ys1)); if(e1<=e), e=e1; best={fids1,thrs1,ysFern1,ys1}; end end elseif(strcmp(loss,'L2')), e=sum(ysTar.^2); for r=1:R [fids1,thrs1,ysFern1,ys1]=trainFern(data,ysTar,S,thrr,reg); e1=sum((ysTar-ys1).^2); if(e1<=e), e=e1; best={fids1,thrs1,ysFern1,ys1}; end end elseif(strcmp(loss,'exp')), e=sum(exp(ysTar/d)+exp(-ysTar/d)); ysDeriv=exp(ysTar/d)-exp(-ysTar/d); for r=1:R [fids1,thrs1,ysFern1,ys1]=trainFern(data,ysDeriv,S,thrr,reg); e1=inf; if(m==1), aBst=1; end; aMin=aBst/5; aMax=aBst*5; for phase=1:3, aDel=(aMax-aMin)/10; for a=aMin:aDel:aMax eTmp=sum(exp((ysTar-a*ys1)/d)+exp((a*ys1-ysTar)/d)); if(eTmp<e1), a1=a; e1=eTmp; end end; aMin=a1-aDel; aMax=a1+aDel; end; ysFern1=ysFern1*a1; ys1=ys1*a1; if(e1<=e), e=e1; aBst=a1; best={fids1,thrs1,ysFern1,ys1}; end end end % store results and update sums assert(~isempty(best)); [fids1,thrs1,ysFern1,ys1]=deal(best{:}); fids(m,:)=fids1; thrs(m,:)=thrs1; ysFern(:,m)=ysFern1*eta; ysSum=ysSum+ys1*eta; if(verbose), fprintf('phase=%i error=%f\n',m,e); end end % create output struct if(strcmp(type,'ave')), d=M; else d=1; end; clear data; ferns=struct('fids',fids,'thrs',thrs,'ysFern',ysFern/d); ysPr=ysSum/d; switch loss case 'L1', ferns.loss=@(ys,ysGt) mean(abs(ys-ysGt)); case 'L2', ferns.loss=@(ys,ysGt) mean((ys-ysGt).^2); case 'exp', ferns.loss=@(ys,ysGt) mean(exp(ys-ysGt)+exp(ysGt-ys))-2; end end function [fids,thrs,ysFern,ysPr] = trainFern( data, ys, S, thrr, reg ) % Train single random fern regressor. [N,F]=size(data); mu=sum(ys)/N; ys=ys-mu; fids = uint32(floor(rand(1,S)*F+1)); thrs = rand(1,S)*(thrr(2)-thrr(1))+thrr(1); inds = fernsInds(data,fids,thrs); ysFern=zeros(2^S,1); cnts=zeros(2^S,1); for n=1:N, ind=inds(n); ysFern(ind)=ysFern(ind)+ys(n); cnts(ind)=cnts(ind)+1; end ysFern = ysFern ./ max(cnts+reg*N,eps) + mu; ysPr = ysFern(inds); end function m = medianw(x,w) % Compute weighted median of x. [x,ord]=sort(x(:)); w=w(ord); [~,ind]=max(cumsum(w)>=sum(w)/2); m = x(ind); end
github
GYZHikari/Semantic-Cosegmentation-master
rbfDemo.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/rbfDemo.m
2,929
utf_8
14cc64fb77bcac3edec51cf6b84ab681
function rbfDemo( dataType, noiseSig, scale, k, cluster, show ) % Demonstration of rbf networks for regression. % % See rbfComputeBasis for discussion of rbfs. % % USAGE % rbfDemo( dataType, noiseSig, scale, k, cluster, show ) % % INPUTS % dataType - 0: 1D sinusoid % 1: 2D sinusoid % 2: 2D stretched sinusoid % noiseSig - std of idd gaussian noise % scale - see rbfComputeBasis % k - see rbfComputeBasis % cluster - see rbfComputeBasis % show - figure to use for display (no display if == 0) % % OUTPUTS % % EXAMPLE % rbfDemo( 0, .2, 2, 5, 0, 1 ); % rbfDemo( 1, .2, 2, 50, 0, 3 ); % rbfDemo( 2, .2, 5, 50, 0, 5 ); % % See also RBFCOMPUTEBASIS, RBFCOMPUTEFTRS % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %%% generate trn/tst data if( 1 ) [Xtrn,ytrn] = rbfToyData( 500, noiseSig, dataType ); [Xtst,ytst] = rbfToyData( 100, noiseSig, dataType ); end; %%% trn/apply rbfs rbfBasis = rbfComputeBasis( Xtrn, k, cluster, scale, show ); rbfWeight = rbfComputeFtrs(Xtrn,rbfBasis) \ ytrn; yTrnRes = rbfComputeFtrs(Xtrn,rbfBasis) * rbfWeight; yTstRes = rbfComputeFtrs(Xtst,rbfBasis) * rbfWeight; %%% get relative errors fracErrorTrn = sum((ytrn-yTrnRes).^2) / sum(ytrn.^2); fracErrorTst = sum((ytst-yTstRes).^2) / sum(ytst.^2); %%% display output display(fracErrorTst); display(fracErrorTrn); display(rbfBasis); %%% visualize surface minX = min([Xtrn; Xtst],[],1); maxX = max([Xtrn; Xtst],[],1); if( size(Xtrn,2)==1 ) xs = linspace( minX, maxX, 1000 )'; ys = rbfComputeFtrs(xs,rbfBasis) * rbfWeight; figure(show+1); clf; hold on; plot( xs, ys ); plot( Xtrn, ytrn, '.b' ); plot( Xtst, ytst, '.r' ); elseif( size(Xtrn,2)==2 ) xs1 = linspace(minX(1),maxX(1),25); xs2 = linspace(minX(2),maxX(2),25); [xs1,xs2] = ndgrid( xs1, xs2 ); ys = rbfComputeFtrs([xs1(:) xs2(:)],rbfBasis) * rbfWeight; figure(show+1); clf; surf( xs1, xs2, reshape(ys,size(xs1)) ); hold on; plot3( Xtrn(:,1), Xtrn(:,2), ytrn, '.b' ); plot3( Xtst(:,1), Xtst(:,2), ytst, '.r' ); end function [X,y] = rbfToyData( N, noiseSig, dataType ) % Toy data for rbfDemo. % % USAGE % [X,y] = rbfToyData( N, noiseSig, dataType ) % % INPUTS % N - number of points % dataType - 0: 1D sinusoid % 1: 2D sinusoid % 2: 2D stretched sinusoid % noiseSig - std of idd gaussian noise % % OUTPUTS % X - [N x d] N points of d dimensions each % y - [1 x N] value at example i %%% generate data if( dataType==0 ) X = rand( N, 1 ) * 10; y = sin( X ); elseif( dataType==1 ) X = rand( N, 2 ) * 10; y = sin( X(:,1)+X(:,2) ); elseif( dataType==2 ) X = rand( N, 2 ) * 10; y = sin( X(:,1)+X(:,2) ); X(:,2) = X(:,2) * 5; else error('unknown dataType'); end y = y + randn(size(y))*noiseSig;
github
GYZHikari/Semantic-Cosegmentation-master
pdist2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/pdist2.m
5,162
utf_8
768ff9e8818251f756c8325368ee7d90
function D = pdist2( X, Y, metric ) % Calculates the distance between sets of vectors. % % Let X be an m-by-p matrix representing m points in p-dimensional space % and Y be an n-by-p matrix representing another set of points in the same % space. This function computes the m-by-n distance matrix D where D(i,j) % is the distance between X(i,:) and Y(j,:). This function has been % optimized where possible, with most of the distance computations % requiring few or no loops. % % The metric can be one of the following: % % 'euclidean' / 'sqeuclidean': % Euclidean / SQUARED Euclidean distance. Note that 'sqeuclidean' % is significantly faster. % % 'chisq' % The chi-squared distance between two vectors is defined as: % d(x,y) = sum( (xi-yi)^2 / (xi+yi) ) / 2; % The chi-squared distance is useful when comparing histograms. % % 'cosine' % Distance is defined as the cosine of the angle between two vectors. % % 'emd' % Earth Mover's Distance (EMD) between positive vectors (histograms). % Note for 1D, with all histograms having equal weight, there is a simple % closed form for the calculation of the EMD. The EMD between histograms % x and y is given by the sum(abs(cdf(x)-cdf(y))), where cdf is the % cumulative distribution function (computed simply by cumsum). % % 'L1' % The L1 distance between two vectors is defined as: sum(abs(x-y)); % % % USAGE % D = pdist2( X, Y, [metric] ) % % INPUTS % X - [m x p] matrix of m p-dimensional vectors % Y - [n x p] matrix of n p-dimensional vectors % metric - ['sqeuclidean'], 'chisq', 'cosine', 'emd', 'euclidean', 'L1' % % OUTPUTS % D - [m x n] distance matrix % % EXAMPLE % % simple example where points cluster well % [X,IDX] = demoGenData(100,0,5,4,10,2,0); % D = pdist2( X, X, 'sqeuclidean' ); % distMatrixShow( D, IDX ); % % comparison to pdist % n=500; d=200; r=100; X=rand(n,d); % tic, for i=1:r, D1 = pdist( X, 'euclidean' ); end, toc % tic, for i=1:r, D2 = pdist2( X, X, 'euclidean' ); end, toc % D1=squareform(D1); del=D1-D2; sum(abs(del(:))) % % See also pdist, distMatrixShow % % Piotr's Computer Vision Matlab Toolbox Version 2.52 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<3 || isempty(metric) ); metric=0; end; switch metric case {0,'sqeuclidean'} D = distEucSq( X, Y ); case 'euclidean' D = sqrt(distEucSq( X, Y )); case 'L1' D = distL1( X, Y ); case 'cosine' D = distCosine( X, Y ); case 'emd' D = distEmd( X, Y ); case 'chisq' D = distChiSq( X, Y ); otherwise error(['pdist2 - unknown metric: ' metric]); end D = max(0,D); end function D = distL1( X, Y ) m = size(X,1); n = size(Y,1); mOnes = ones(1,m); D = zeros(m,n); for i=1:n yi = Y(i,:); yi = yi( mOnes, : ); D(:,i) = sum( abs( X-yi),2 ); end end function D = distCosine( X, Y ) p=size(X,2); XX = sqrt(sum(X.*X,2)); X = X ./ XX(:,ones(1,p)); YY = sqrt(sum(Y.*Y,2)); Y = Y ./ YY(:,ones(1,p)); D = 1 - X*Y'; end function D = distEmd( X, Y ) Xcdf = cumsum(X,2); Ycdf = cumsum(Y,2); m = size(X,1); n = size(Y,1); mOnes = ones(1,m); D = zeros(m,n); for i=1:n ycdf = Ycdf(i,:); ycdfRep = ycdf( mOnes, : ); D(:,i) = sum(abs(Xcdf - ycdfRep),2); end end function D = distChiSq( X, Y ) % note: supposedly it's possible to implement this without a loop! m = size(X,1); n = size(Y,1); mOnes = ones(1,m); D = zeros(m,n); for i=1:n yi = Y(i,:); yiRep = yi( mOnes, : ); s = yiRep + X; d = yiRep - X; D(:,i) = sum( d.^2 ./ (s+eps), 2 ); end D = D/2; end function D = distEucSq( X, Y ) Yt = Y'; XX = sum(X.*X,2); YY = sum(Yt.*Yt,1); D = bsxfun(@plus,XX,YY)-2*X*Yt; end %%%% code from Charles Elkan with variables renamed % function D = distEucSq( X, Y ) % m = size(X,1); n = size(Y,1); % D = sum(X.^2, 2) * ones(1,n) + ones(m,1) * sum(Y.^2, 2)' - 2.*X*Y'; % end %%% LOOP METHOD - SLOW % [m p] = size(X); % [n p] = size(Y); % D = zeros(m,n); % onesM = ones(m,1); % for i=1:n % y = Y(i,:); % d = X - y(onesM,:); % D(:,i) = sum( d.*d, 2 ); % end %%% PARALLEL METHOD THAT IS SUPER SLOW (slower than loop)! % % From "MATLAB array manipulation tips and tricks" by Peter J. Acklam % Xb = permute(X, [1 3 2]); % Yb = permute(Y, [3 1 2]); % D = sum( (Xb(:,ones(1,n),:) - Yb(ones(1,m),:,:)).^2, 3); %%% USELESS FOR EVEN VERY LARGE ARRAYS X=16000x1000!! and Y=100x1000 % call recursively to save memory % if( (m+n)*p > 10^5 && (m>1 || n>1)) % if( m>n ) % X1 = X(1:floor(end/2),:); % X2 = X((floor(end/2)+1):end,:); % D1 = distEucSq( X1, Y ); % D2 = distEucSq( X2, Y ); % D = cat( 1, D1, D2 ); % else % Y1 = Y(1:floor(end/2),:); % Y2 = Y((floor(end/2)+1):end,:); % D1 = distEucSq( X, Y1 ); % D2 = distEucSq( X, Y2 ); % D = cat( 2, D1, D2 ); % end % return; % end %%% L1 COMPUTATION WITH LOOP OVER p, FAST FOR SMALL p. % function D = distL1( X, Y ) % % m = size(X,1); n = size(Y,1); p = size(X,2); % mOnes = ones(1,m); nOnes = ones(1,n); D = zeros(m,n); % for i=1:p % yi = Y(:,i); yi = yi( :, mOnes ); % xi = X(:,i); xi = xi( :, nOnes ); % D = D + abs( xi-yi' ); % end
github
GYZHikari/Semantic-Cosegmentation-master
pca.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/pca.m
3,244
utf_8
848f2eb05c18a6e448e9d22af27b9422
function [U,mu,vars] = pca( X ) % Principal components analysis (alternative to princomp). % % A simple linear dimensionality reduction technique. Use to create an % orthonormal basis for the points in R^d such that the coordinates of a % vector x in this basis are of decreasing importance. Instead of using all % d basis vectors to specify the location of x, using only the first k<d % still gives a vector xhat that is close to x. % % This function operates on arrays of arbitrary dimension, by first % converting the arrays to vectors. If X is m+1 dimensional, say of size % [d1 x d2 x...x dm x n], then the first m dimensions of X are combined. X % is flattened to be 2 dimensional: [dxn], with d=prod(di). Once X is % converted to 2 dimensions of size dxn, each column represents a single % observation, and each row is a different variable. Note that this is the % opposite of many matlab functions such as princomp. If X is MxNxn, then % X(:,:,i) represents the ith observation (useful for stack of n images), % likewise for n videos X is MxNxKxn. If X is very large, it is sampled % before running PCA. Use this function to retrieve the basis U. Use % pcaApply to retrieve that basis coefficients for a novel vector x. Use % pcaVisualize(X,...) for visualization of approximated X. % % To calculate residuals: % residuals = cumsum(vars/sum(vars)); plot(residuals,'-.') % % USAGE % [U,mu,vars] = pca( X ) % % INPUTS % X - [d1 x ... x dm x n], treated as n [d1 x ... x dm] elements % % OUTPUTS % U - [d x r], d=prod(di), each column is a principal component % mu - [d1 x ... x dm] mean of X % vars - sorted eigenvalues corresponding to eigenvectors in U % % EXAMPLE % load pcaData; % [U,mu,vars] = pca( I3D1(:,:,1:12) ); % [Y,Xhat,avsq] = pcaApply( I3D1(:,:,1), U, mu, 5 ); % pcaVisualize( U, mu, vars, I3D1, 13, [0:12], [], 1 ); % Xr = pcaRandVec( U, mu, vars, 1, 25, 0, 3 ); % % See also princomp, pcaApply, pcaVisualize, pcaRandVec, visualizeData % % Piotr's Computer Vision Matlab Toolbox Version 3.24 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % set X to be zero mean, then flatten d=size(X); n=d(end); d=prod(d(1:end-1)); if(~isa(X,'double')), X=double(X); end if(n==1); mu=X; U=zeros(d,1); vars=0; return; end mu = mean( X, ndims(X) ); X = bsxfun(@minus,X,mu)/sqrt(n-1); X = reshape( X, d, n ); % make sure X not too large or SVD slow O(min(d,n)^2.5) m=2500; if( min(d,n)>m ), X=X(:,randperm(n,m)); n=m; end % get principal components using the SVD of X: X=U*S*V' if( 0 ) [U,S]=svd(X,'econ'); vars=diag(S).^2; elseif( d>n ) [~,SS,V]=robustSvd(X'*X); vars=diag(SS); U = X * V * diag(1./sqrt(vars)); else [~,SS,U]=robustSvd(X*X'); vars=diag(SS); end % discard low variance prinicipal components K=vars>1e-30; vars=vars(K); U=U(:,K); end function [U,S,V] = robustSvd( X, trials ) % Robust version of SVD more likely to always converge. % [Converge issues only seem to appear on Matlab 2013a in Windows.] if(nargin<2), trials=100; end try [U,S,V] = svd(X); catch if(trials<=0), error('svd did not converge'); end n=numel(X); j=randi(n); X(j)=X(j)+eps; [U,S,V]=robustSvd(X,trials-1); end end
github
GYZHikari/Semantic-Cosegmentation-master
kmeans2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/classify/kmeans2.m
5,251
utf_8
f941053f03c3e9eda40389a4cc64ee00
function [ IDX, C, d ] = kmeans2( X, k, varargin ) % Fast version of kmeans clustering. % % Cluster the N x p matrix X into k clusters using the kmeans algorithm. It % returns the cluster memberships for each data point in the N x 1 vector % IDX and the K x p matrix of cluster means in C. % % This function is in some ways less general than Matlab's kmeans.m (for % example it only uses euclidian distance), but it has some options that % the Matlab version does not (for example, it has a notion of outliers and % min-cluster size). It is also many times faster than matlab's kmeans. % General kmeans help can be found in help for the matlab implementation of % kmeans. Note that the although the names and conventions for this % algorithm are taken from Matlab's implementation, there are slight % alterations (for example, IDX==-1 is used to indicate outliers). % % IDX is a n-by-1 vector used to indicated cluster membership. Let X be a % set of n points. Then the ID of X - or IDX is a column vector of length % n, where each element is an integer indicating the cluster membership of % the corresponding element in X. IDX(i)=c indicates that the ith point in % X belongs to cluster c. Cluster labels range from 1 to k, and thus % k=max(IDX) is typically the number of clusters IDX divides X into. The % cluster label "-1" is reserved for outliers. IDX(i)==-1 indicates that % the given point does not belong to any of the discovered clusters. Note % that matlab's version of kmeans does not have outliers. % % USAGE % [ IDX, C, d ] = kmeans2( X, k, [varargin] ) % % INPUTS % X - [n x p] matrix of n p-dim vectors. % k - maximum nuber of clusters (actual number may be smaller) % prm - additional params (struct or name/value pairs) % .k - [] alternate way of specifying k (if not given above) % .nTrial - [1] number random restarts % .maxIter - [100] max number of iterations % .display - [0] Whether or not to display algorithm status % .rndSeed - [] random seed for kmeans; useful for replicability % .outFrac - [0] max frac points that can be treated as outliers % .minCl - [1] min cluster size (smaller clusters get eliminated) % .metric - [] metric for pdist2 % .C0 - [] initial cluster centers for first trial % % OUTPUTS % IDX - [n x 1] cluster membership (see above) % C - [k x p] matrix of centroid locations C(j,:) = mean(X(IDX==j,:)) % d - [1 x k] d(j) is sum of distances from X(IDX==j,:) to C(j,:) % sum(d) is a typical measure of the quality of a clustering % % EXAMPLE % % See also DEMOCLUSTER % % Piotr's Computer Vision Matlab Toolbox Version 3.24 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get input args dfs = {'nTrial',1, 'maxIter',100, 'display',0, 'rndSeed',[],... 'outFrac',0, 'minCl',1, 'metric',[], 'C0',[],'k',k }; [nTrial,maxt,dsp,rndSeed,outFrac,minCl,metric,C0,k] = ... getPrmDflt(varargin,dfs); assert(~isempty(k) && k>0); % error checking if(k<1); error('k must be greater than 1'); end if(~ismatrix(X) || any(size(X)==0)); error('Illegal X'); end if(outFrac<0 || outFrac>=1), error('outFrac must be in [0,1)'); end nOut = floor( size(X,1)*outFrac ); % initialize random seed if specified if(~isempty(rndSeed)); rand('state',rndSeed); end; %#ok<RAND> % run kmeans2main nTrial times bd=inf; t0=clock; for i=1:nTrial, t1=clock; if(i>1), C0=[]; end if(dsp), fprintf('kmeans2 iter %i/%i step: ',i,nTrial); end [IDX,C,d]=kmeans2main(X,k,nOut,minCl,maxt,dsp,metric,C0); if(sum(d)<sum(bd)), bIDX=IDX; bC=C; bd=d; end if(dsp), fprintf(' d=%f t=%fs\n',sum(d),etime(clock,t1)); end end IDX=bIDX; C=bC; d=bd; k=max(IDX); if(dsp), fprintf('k=%i d=%f t=%fs\n',k,sum(d),etime(clock,t0)); end % sort IDX to have biggest clusters have lower indicies cnts = zeros(1,k); for i=1:k; cnts(i) = sum( IDX==i ); end [~,order] = sort( -cnts ); C = C(order,:); d = d(order); IDX2=IDX; for i=1:k; IDX2(IDX==order(i))=i; end; IDX = IDX2; end function [IDX,C,d] = kmeans2main( X, k, nOut, minCl, maxt, dsp, metric, C ) % initialize cluster centers to be k random X points [N,p] = size(X); k = min(k,N); t=0; IDX = ones(N,1); oldIDX = zeros(N,1); if(isempty(C)), C = X(randperm(N,k),:)+randn(k,p)/1e5; end % MAIN LOOP: loop until the cluster assigments do not change if(dsp), nDg=ceil(log10(maxt-1)); fprintf(int2str2(0,nDg)); end while( any(oldIDX~=IDX) && t<maxt ) % assign each point to closest cluster center oldIDX=IDX; D=pdist2(X,C,metric); [mind,IDX]=min(D,[],2); % do not use most distant nOut elements in computation of centers mind1=sort(mind); thr=mind1(end-nOut); IDX(mind>thr)=-1; % Recalculate means based on new assignment, discard small clusters k0=0; C=zeros(k,p); for IDx=1:k ids=find(IDX==IDx); nCl=size(ids,1); if( nCl<minCl ), IDX(ids)=-1; continue; end k0=k0+1; IDX(ids)=k0; C(k0,:)=sum(X(ids,:),1)/nCl; end if(k0>0), k=k0; C=C(1:k,:); else k=1; C=X(randint2(1,1,[1 N]),:); end t=t+1; if(dsp), fprintf([repmat('\b',[1 nDg]) int2str2(t,nDg)]); end end % record within-cluster sums of point-to-centroid distances d=zeros(1,k); for i=1:k, d(i)=sum(mind(IDX==i)); end end
github
GYZHikari/Semantic-Cosegmentation-master
acfModify.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/detector/acfModify.m
4,202
utf_8
7a49406d51e7a9431b8fd472be0476e8
function detector = acfModify( detector, varargin ) % Modify aggregate channel features object detector. % % Takes an object detector trained by acfTrain() and modifies it. Only % certain modifications are allowed to the detector and the detector should % never be modified directly (this may cause the detector to be invalid and % cause segmentation faults). Any valid modification to a detector after it % is trained should be performed using acfModify(). % % The parameters 'nPerOct', 'nOctUp', 'nApprox', 'lambdas', 'pad', 'minDs' % modify the channel feature pyramid created (see help of chnsPyramid.m for % more details) and primarily control the scales used. The parameters % 'pNms', 'stride', 'cascThr' and 'cascCal' modify the detector behavior % (see help of acfTrain.m for more details). Finally, 'rescale' can be % used to rescale the trained detector (this change is irreversible). % % USAGE % detector = acfModify( detector, pModify ) % % INPUTS % detector - detector trained via acfTrain % pModify - parameters (struct or name/value pairs) % .nPerOct - [] number of scales per octave % .nOctUp - [] number of upsampled octaves to compute % .nApprox - [] number of approx. scales to use % .lambdas - [] coefficients for power law scaling (see BMVC10) % .pad - [] amount to pad channels (along T/B and L/R) % .minDs - [] minimum image size for channel computation % .pNms - [] params for non-maximal suppression (see bbNms.m) % .stride - [] spatial stride between detection windows % .cascThr - [] constant cascade threshold (affects speed/accuracy) % .cascCal - [] cascade calibration (affects speed/accuracy) % .rescale - [] rescale entire detector by given ratio % % OUTPUTS % detector - modified object detector % % EXAMPLE % % See also chnsPyramid, bbNms, acfTrain, acfDetect % % Piotr's Computer Vision Matlab Toolbox Version 3.20 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get parameters (and copy to detector and pPyramid structs) opts=detector.opts; p=opts.pPyramid; dfs={ 'nPerOct',p.nPerOct, 'nOctUp',p.nOctUp, 'nApprox',p.nApprox, ... 'lambdas',p.lambdas, 'pad',p.pad, 'minDs',p.minDs, 'pNms',opts.pNms, ... 'stride',opts.stride,'cascThr',opts.cascThr,'cascCal',0,'rescale',1 }; [p.nPerOct,p.nOctUp,p.nApprox,p.lambdas,p.pad,p.minDs,opts.pNms,... opts.stride,opts.cascThr,cascCal,rescale] = getPrmDflt(varargin,dfs,1); % finalize pPyramid and opts p.complete=0; p.pChns.complete=0; p=chnsPyramid([],p); p=p.pPyramid; p.complete=1; p.pChns.complete=1; shrink=p.pChns.shrink; opts.stride=max(1,round(opts.stride/shrink))*shrink; opts.pPyramid=p; detector.opts=opts; % calibrate and rescale detector detector.clf.hs = detector.clf.hs+cascCal; if(rescale~=1), detector=detectorRescale(detector,rescale); end end function detector = detectorRescale( detector, rescale ) % Rescale detector by ratio rescale. opts=detector.opts; shrink=opts.pPyramid.pChns.shrink; bh=opts.modelDsPad(1)/shrink; bw=opts.modelDsPad(2)/shrink; opts.stride=max(1,round(opts.stride*rescale/shrink))*shrink; modelDsPad=round(opts.modelDsPad*rescale/shrink)*shrink; rescale=modelDsPad./opts.modelDsPad; opts.modelDsPad=modelDsPad; opts.modelDs=round(opts.modelDs.*rescale); detector.opts=opts; bh1=opts.modelDsPad(1)/shrink; bw1=opts.modelDsPad(2)/shrink; % move 0-indexed (x,y) location of each lookup feature clf=detector.clf; fids=clf.fids; is=find(clf.child>0); fids=double(fids(is)); n=length(fids); loc=zeros(n,3); loc(:,3)=floor(fids/bh/bw); fids=fids-loc(:,3)*bh*bw; loc(:,2)=floor(fids/bh); fids=fids-loc(:,2)*bh; loc(:,1)=fids; loc(:,1)=min(bh1-1,round(loc(:,1)*rescale(1))); loc(:,2)=min(bw1-1,round(loc(:,2)*rescale(2))); fids = loc(:,3)*bh1*bw1 + loc(:,2)*bh1 + loc(:,1); clf.fids(is)=int32(fids); % rescale thrs for all features (fpdw trick) nChns=[detector.info.nChns]; assert(max(loc(:,3))<sum(nChns)); k=[]; for i=1:length(nChns), k=[k ones(1,nChns(i))*i]; end %#ok<AGROW> lambdas=opts.pPyramid.lambdas; lambdas=sqrt(prod(rescale)).^-lambdas(k); clf.thrs(is)=clf.thrs(is).*lambdas(loc(:,3)+1)'; detector.clf=clf; end
github
GYZHikari/Semantic-Cosegmentation-master
acfDetect.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/detector/acfDetect.m
3,659
utf_8
cf1384311b16371be6fa4715140e5c81
function bbs = acfDetect( I, detector, fileName ) % Run aggregate channel features object detector on given image(s). % % The input 'I' can either be a single image (or filename) or a cell array % of images (or filenames). In the first case, the return is a set of bbs % where each row has the format [x y w h score] and score is the confidence % of detection. If the input is a cell array, the output is a cell array % where each element is a set of bbs in the form above (in this case a % parfor loop is used to speed execution). If 'fileName' is specified, the % bbs are saved to a comma separated text file and the output is set to % bbs=1. If saving detections for multiple images the output is stored in % the format [imgId x y w h score] and imgId is a one-indexed image id. % % A cell of detectors trained with the same channels can be specified, % detected bbs from each detector are concatenated. If using multiple % detectors and opts.pNms.separate=1 then each bb has a sixth element % bbType=j, where j is the j-th detector, see bbNms.m for details. % % USAGE % bbs = acfDetect( I, detector, [fileName] ) % % INPUTS % I - input image(s) of filename(s) of input image(s) % detector - detector(s) trained via acfTrain % fileName - [] target filename (if specified return is 1) % % OUTPUTS % bbs - [nx5] array of bounding boxes or cell array of bbs % % EXAMPLE % % See also acfTrain, acfModify, bbGt>loadAll, bbNms % % Piotr's Computer Vision Matlab Toolbox Version 3.40 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % run detector on every image if(nargin<3), fileName=''; end; multiple=iscell(I); if(~isempty(fileName) && exist(fileName,'file')), bbs=1; return; end if(~multiple), bbs=acfDetectImg(I,detector); else n=length(I); bbs=cell(n,1); parfor i=1:n, bbs{i}=acfDetectImg(I{i},detector); end end % write results to disk if fileName specified if(isempty(fileName)), return; end d=fileparts(fileName); if(~isempty(d)&&~exist(d,'dir')), mkdir(d); end if( multiple ) % add image index to each bb and flatten result for i=1:n, bbs{i}=[ones(size(bbs{i},1),1)*i bbs{i}]; end bbs=cell2mat(bbs); end dlmwrite(fileName,bbs); bbs=1; end function bbs = acfDetectImg( I, detector ) % Run trained sliding-window object detector on given image. Ds=detector; if(~iscell(Ds)), Ds={Ds}; end; nDs=length(Ds); opts=Ds{1}.opts; pPyramid=opts.pPyramid; pNms=opts.pNms; imreadf=opts.imreadf; imreadp=opts.imreadp; shrink=pPyramid.pChns.shrink; pad=pPyramid.pad; separate=nDs>1 && isfield(pNms,'separate') && pNms.separate; % read image and compute features (including optionally applying filters) if(all(ischar(I))), I=feval(imreadf,I,imreadp{:}); end P=chnsPyramid(I,pPyramid); bbs=cell(P.nScales,nDs); if(isfield(opts,'filters') && ~isempty(opts.filters)), shrink=shrink*2; for i=1:P.nScales, fs=opts.filters; C=repmat(P.data{i},[1 1 size(fs,4)]); for j=1:size(C,3), C(:,:,j)=conv2(C(:,:,j),fs(:,:,j),'same'); end P.data{i}=imResample(C,.5); end end % apply sliding window classifiers for i=1:P.nScales for j=1:nDs, opts=Ds{j}.opts; modelDsPad=opts.modelDsPad; modelDs=opts.modelDs; bb = acfDetect1(P.data{i},Ds{j}.clf,shrink,... modelDsPad(1),modelDsPad(2),opts.stride,opts.cascThr); shift=(modelDsPad-modelDs)/2-pad; bb(:,1)=(bb(:,1)+shift(2))/P.scaleshw(i,2); bb(:,2)=(bb(:,2)+shift(1))/P.scaleshw(i,1); bb(:,3)=modelDs(2)/P.scales(i); bb(:,4)=modelDs(1)/P.scales(i); if(separate), bb(:,6)=j; end; bbs{i,j}=bb; end end; bbs=cat(1,bbs{:}); if(~isempty(pNms)), bbs=bbNms(bbs,pNms); end end
github
GYZHikari/Semantic-Cosegmentation-master
acfSweeps.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/detector/acfSweeps.m
10,730
utf_8
78d640ed4b5b62600dd5164118a15408
function acfSweeps % Parameter sweeps for ACF pedestrian detector. % % Running the parameter sweeps requires altering internal flags. % The sweeps are not well documented, use at your own discretion. % % Piotr's Computer Vision Matlab Toolbox Version NEW % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % specify type and location of cluster (see fevalDistr.m) rtDir=[fileparts(fileparts(fileparts(mfilename('fullpath')))) '/data/']; pDistr={'type','parfor'}; if(0), matlabpool('open',11); end % define all parameter sweeps expNms = {'FtrsColorSpace','FtrsChnTypes','FtrsGradColorChn',... 'FtrsGradNormRad','FtrsGradNormConst','FtrsGradOrients',... 'FtrsGradSoftBins','FtrsSmoothIm','FtrsSmoothChns','FtrsShrink',... 'DetModelDs','DetModelDsPad','DetStride','DetNumOctaves',... 'DetNumApprox','DetLambda','DetCascThr','DetCascCal','DetNmsThr',... 'TrnNumWeak','TrnNumBoot','TrnDepth','TrnNumBins','TrnFracFtrs',... 'DataNumPos','DataNumNeg','DataNumNegAcc','DataNumNegPer',... 'DataNumPosStump','DataJitterTran','DataJitterRot'}; expNms=expNms(:); T = 10; [opts,lgd,lbl]=createExp(rtDir,expNms); % run training and testing jobs [jobsTrn,jobsTst] = createJobs( rtDir, opts, T ); N=length(expNms); fprintf('nTrain = %i; nTest = %i\n',length(jobsTrn),length(jobsTst)); tic, s=fevalDistr('acfTrain',jobsTrn,pDistr); assert(s==1); toc tic, s=fevalDistr('acfTest',jobsTst,pDistr); assert(s==1); toc % create plots for all experiments for e=1:N, plotExps(rtDir,expNms{e},opts{e},lgd{e},lbl{e},T); end end function plotExps( rtDir, expNm, opts, lgd, lbl, T ) % data location and parameters for plotting plDir=[rtDir 'sweeps/plots/']; if(~exist(plDir,'dir')), mkdir(plDir); end diary([plDir 'sweeps.txt']); disp([expNm ' [' lbl ']']); N=length(lgd); pLoad=struct('squarify',{{3,.41}},'hRng',[0 inf]); pTest=struct('name','', 'imgDir',[rtDir 'Inria/test/pos'],... 'gtDir',[rtDir 'Inria/test/posGt'], 'pLoad',pLoad); pTest=repmat(pTest,N,T); for e=1:N, for t=1:T, pTest(e,t).name=[opts(e).name 'T' int2str2(t,2)]; end; end % get all miss rates and display error miss=zeros(N,T); parfor e=1:N*T, miss(e)=acfTest(pTest(e)); end stds=std(miss,0,2); R=mean(miss,2); msg=' %.2f +/- %.2f [%s]\n'; for e=1:N, fprintf(msg,R(e)*100,stds(e)*100,lgd{e}); end % plot sweeps figPrp = {'Units','Pixels','Position',[800 600 800 400]}; figure(1); clf; set(1,figPrp{:}); set(gca,'FontSize',24); clr=[0 .69 .94]; pPl1={'LineWidth',3,'MarkerSize',15,'Color',clr,'MarkerFaceColor',clr}; pPl2=pPl1; clr=[1 .75 0]; pPl2{6}=clr; pPl2{8}=clr; for e=1:N, if(lgd{e}(end)=='*'), def=e; end; end; lgd{def}(end)=[]; plot(R,'-d',pPl1{:}); hold on; plot(def,R(def),'d',pPl2{:}); e=.001; ylabel('MR'); axis([.5 N+.5 min([R; .15]) max([R; .3])+e]); if(isempty(lbl)), imLabel(lgd,'bottom',30,{'FontSize',24}); lgd=[]; end xlabel(lbl); set(gca,'XTick',1:N,'XTickLabel',lgd); % save plot fFig=[plDir expNm]; diary('off'); for t=1:25, try savefig(fFig,1,'png'); break; catch, pause(1), end; end end function [jobsTrn,jobsTst] = createJobs( rtDir, opts, T ) % Prepare all jobs (one train and one test job per set of opts). opts=[opts{:}]; N=length(opts); NT=N*T; opts=repmat(opts,1,T); nms=cell(1,NT); jobsTrn=cell(1,NT); doneTrn=zeros(1,NT); jobsTst=cell(1,NT); doneTst=zeros(1,NT); pLoad=struct('squarify',{{3,.41}},'hRng',[0 inf]); pTest=struct('name','', 'imgDir',[rtDir 'Inria/test/pos'],... 'gtDir',[rtDir 'Inria/test/posGt'], 'pLoad',pLoad); for e=1:NT t=ceil(e/N); opts(e).seed=(t-1)*100000+1; nm=[opts(e).name 'T' int2str2(t,2)]; opts(e).name=nm; pTest.name=nm; nms{e}=nm; doneTrn(e)=exist([nm 'Detector.mat'],'file')==2; jobsTrn{e}={opts(e)}; doneTst(e)=exist([nm 'Dets.txt'],'file')==2; jobsTst{e}={pTest}; end [~,kp]=unique(nms,'stable'); doneTrn=doneTrn(kp); jobsTrn=jobsTrn(kp); jobsTrn=jobsTrn(~doneTrn); doneTst=doneTst(kp); jobsTst=jobsTst(kp); jobsTst=jobsTst(~doneTst); end function [opts,lgd,lbl] = createExp( rtDir, expNm ) % if expNm is a cell, call recursively and return if( iscell(expNm) ) N=length(expNm); opts=cell(1,N); lgd=cell(1,N); lbl=lgd; for e=1:N, [opts{e},lgd{e},lbl{e}]=createExp(rtDir,expNm{e}); end; return end % default params for detectorTrain.m dataDir=[rtDir 'Inria/']; opts=acfTrain(); opts.modelDs=[100 41]; opts.modelDsPad=[128 64]; opts.posGtDir=[dataDir 'train/posGt']; opts.nWeak=[32 128 512 2048]; opts.posImgDir=[dataDir 'train/pos']; opts.pJitter=struct('flip',1); opts.negImgDir=[dataDir 'train/neg']; opts.pBoost.pTree.fracFtrs=1/16; if(~exist([rtDir 'sweeps/res/'],'dir')), mkdir([rtDir 'sweeps/res/']); end opts.pBoost.pTree.nThreads=1; % setup experiments (N sets of params) optsDefault=opts; N=100; lgd=cell(1,N); ss=lgd; lbl=''; O=ones(1,N); pChns=opts.pPyramid.pChns(O); pPyramid=opts.pPyramid(O); opts=opts(O); switch expNm case 'FtrsColorSpace' N=8; clrs={'Gray','rgb','hsv','luv'}; for e=1:N, pChns(e).pColor.colorSpace=clrs{mod(e-1,4)+1}; end for e=5:N, pChns(e).pGradMag.enabled=0; end for e=5:N, pChns(e).pGradHist.enabled=0; end ss=[clrs clrs]; for e=1:4, ss{e}=[ss{e} '+G+H']; end ss=upper(ss); lgd=ss; case 'FtrsChnTypes' nms={'LUV+','G+','H+'}; N=7; for e=1:N en=false(1,3); for i=1:3, en(i)=bitget(uint8(e),i); end pChns(e).pColor.enabled=en(1); pChns(e).pGradMag.enabled=en(2); pChns(e).pGradHist.enabled=en(3); nm=[nms{en}]; nm=nm(1:end-1); lgd{e}=nm; ss{e}=nm; end case 'FtrsGradColorChn' lbl='gradient color channel'; N=4; ss={'Max','L','U','V'}; lgd=ss; for e=1:N, pChns(e).pGradMag.colorChn=e-1; end case 'FtrsGradNormRad' lbl='norm radius'; vs=[0 1 2 5 10]; N=length(vs); for e=1:N, pChns(e).pGradMag.normRad=vs(e); end case 'FtrsGradNormConst' lbl='norm constant x 10^3'; vs=[1 2 5 10 20 50 100]; N=length(vs); for e=1:N, pChns(e).pGradMag.normConst=vs(e)/1000; end case 'FtrsGradOrients' lbl='# orientations'; vs=[2 4 6 8 10 12]; N=length(vs); for e=1:N, pChns(e).pGradHist.nOrients=vs(e); end case 'FtrsGradSoftBins' lbl='use soft bins'; vs=[0 1]; N=length(vs); for e=1:N, pChns(e).pGradHist.softBin=vs(e); end case 'FtrsSmoothIm' lbl='image smooth radius'; vs=[0 50 100 200]; N=length(vs); for e=1:N, pChns(e).pColor.smooth=vs(e)/100; end for e=1:N, lgd{e}=num2str(vs(e)/100); end case 'FtrsSmoothChns' lbl='channel smooth radius'; vs=[0 50 100 200]; N=length(vs); for e=1:N, pPyramid(e).smooth=vs(e)/100; end for e=1:N, lgd{e}=num2str(vs(e)/100); end case 'FtrsShrink' lbl='channel shrink'; vs=2.^(1:4); N=length(vs); for e=1:N, pChns(e).shrink=vs(e); end case 'DetModelDs' lbl='model height'; rs=1.1.^(-2:2); vs=round(100*rs); ws=round(41*rs); N=length(vs); for e=1:N, opts(e).modelDs=[vs(e) ws(e)]; end for e=1:N, opts(e).modelDsPad=opts(e).modelDs+[28 23]; end case 'DetModelDsPad' lbl='padded model height'; rs=1.1.^(-2:2); vs=round(128*rs); ws=round(64*rs); N=length(vs); for e=1:N, opts(e).modelDsPad=[vs(e) ws(e)]; end case 'DetStride' lbl='detector stride'; vs=4:4:16; N=length(vs); for e=1:N, opts(e).stride=vs(e); end case 'DetNumOctaves' lbl='# scales per octave'; vs=2.^(0:5); N=length(vs); for e=1:N, pPyramid(e).nPerOct=vs(e); pPyramid(e).nApprox=vs(e)-1; end case 'DetNumApprox' lbl='# approx scales'; vs=2.^(0:5)-1; N=length(vs); for e=1:N, pPyramid(e).nApprox=vs(e); end case 'DetLambda' lbl='lambda x 100'; vs=-45:15:70; N=length(vs); for e=[1:4 6:N], pPyramid(e).lambdas=[0 vs(e) vs(e)]/100; end for e=1:N, lgd{e}=int2str(vs(e)); end; vs=vs+100; case 'DetCascThr' lbl='cascade threshold'; vs=[-.5 -1 -2 -5 -10]; N=length(vs); for e=1:N, opts(e).cascThr=vs(e); end for e=1:N, lgd{e}=num2str(vs(e)); end; vs=vs*-10; case 'DetCascCal' lbl='cascade offset x 10^4'; vs=[5 10 20 50 100 200 500]; N=length(vs); for e=1:N, opts(e).cascCal=vs(e)/1e4; end case 'DetNmsThr' lbl='nms overlap'; vs=25:10:95; N=length(vs); for e=1:N, opts(e).pNms.overlap=vs(e)/1e2; end for e=1:N, lgd{e}=['.' num2str(vs(e))]; end case 'TrnNumWeak' lbl='# decision trees / x'; vs=2.^(0:3); N=length(vs); for e=1:N, opts(e).nWeak=opts(e).nWeak/vs(e); end case 'TrnNumBoot' lbl='bootstrap schedule'; vs={5:1:11,5:2:11,3:1:11,3:2:11}; N=length(vs); ss={'5-1-11','5-2-11','3-1-11','3-2-11'}; lgd=ss; for e=1:N, opts(e).nWeak=2.^vs{e}; end case 'TrnDepth' lbl='tree depth'; vs=1:5; N=length(vs); for e=1:N, opts(e).pBoost.pTree.maxDepth=vs(e); end case 'TrnNumBins' lbl='# bins'; vs=2.^(4:8); N=length(vs); for e=1:N, opts(e).pBoost.pTree.nBins=vs(e); end case 'TrnFracFtrs' lbl='fraction features'; vs=2.^(1:8); N=length(vs); for e=1:N, opts(e).pBoost.pTree.fracFtrs=1/vs(e); end case 'DataNumPos' lbl='# pos examples'; vs=[2.^(6:9) inf]; N=length(vs); for e=1:N-1, opts(e).nPos=vs(e); end case 'DataNumNeg' lbl='# neg examples'; vs=[5 10 25 50 100 250]*100; N=length(vs); for e=1:N, opts(e).nNeg=vs(e); end case 'DataNumNegAcc' lbl='# neg examples total'; vs=[25 50 100 250 500]*100; N=length(vs); for e=1:N, opts(e).nAccNeg=vs(e); end case 'DataNumNegPer' lbl='# neg example / image'; vs=[5 10 25 50 100]; N=length(vs); for e=1:N, opts(e).nPerNeg=vs(e); end case 'DataNumPosStump' lbl='# pos examples (stumps)'; vs=[2.^(6:9) 1237 1237]; N=length(vs); lgd{N}='1237*'; for e=1:N-1, opts(e).nPos=vs(e); opts(e).pBoost.pTree.maxDepth=1; end case 'DataJitterTran' lbl='translational jitter'; vs=[0 1 2 4]; N=length(vs); opts(1).pJitter=struct('flip',1); for e=2:N, opts(e).pJitter=struct('flip',1,'nTrn',3,'mTrn',vs(e)); end for e=1:N, lgd{e}=['+/-' int2str(vs(e))]; end case 'DataJitterRot' lbl='rotational jitter'; vs=[0 2 4 8]; N=length(vs); for e=2:N, opts(e).pJitter=struct('flip',1,'nPhi',3,'mPhi',vs(e)); end for e=1:N, lgd{e}=['+/-' int2str(vs(e))]; end otherwise, error('invalid exp: %s',expNm); end % produce final set of opts and find default opts for e=1:N, if(isempty(lgd{e})), lgd{e}=int2str(vs(e)); end; end for e=1:N, if(isempty(ss{e})), ss{e}=int2str2(vs(e),5); end; end O=1:N; opts=opts(O); lgd=lgd(O); ss=ss(O); d=0; for e=1:N, pPyramid(e).pChns=pChns(e); opts(e).pPyramid=pPyramid(e); end for e=1:N, if(isequal(optsDefault,opts(e))), d=e; break; end; end if(d==0), disp(expNm); assert(false); end for e=1:N, opts(e).name=[rtDir 'sweeps/res/' expNm ss{e}]; end lgd{d}=[lgd{d} '*']; opts(d).name=[rtDir 'sweeps/res/Default']; if(0), disp([ss' lgd']'); end end
github
GYZHikari/Semantic-Cosegmentation-master
bbGt.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/detector/bbGt.m
34,046
utf_8
69e66c9a0cc143fb9a794fbc9233246e
function varargout = bbGt( action, varargin ) % Bounding box (bb) annotations struct, evaluation and sampling routines. % % bbGt gives access to two types of routines: % (1) Data structure for storing bb image annotations. % (2) Routines for evaluating the Pascal criteria for object detection. % % The bb annotation stores bb for objects of interest with additional % information per object, such as occlusion information. The underlying % data structure is simply a Matlab stuct array, one struct per object. % This annotation format is an alternative to the annotation format used % for the PASCAL object challenges (in addition routines for loading PASCAL % format data are provided, see bbLoad()). % % Each object struct has the following fields: % lbl - a string label describing object type (eg: 'pedestrian') % bb - [l t w h]: bb indicating predicted object extent % occ - 0/1 value indicating if bb is occluded % bbv - [l t w h]: bb indicating visible region (may be [0 0 0 0]) % ign - 0/1 value indicating bb was marked as ignore % ang - [0-360] orientation of bb in degrees % % Note: although orientation (angle) is stored for each bb, for now it is % not being used during evaluation or sampling. % % bbGt contains a number of utility functions, accessed using: % outputs = bbGt( 'action', inputs ); % The list of functions and help for each is given below. Also, help on % individual subfunctions can be accessed by: "help bbGt>action". % %%% (1) Data structure for storing bb image annotations. % Create annotation of n empty objects. % objs = bbGt( 'create', [n] ); % Save bb annotation to text file. % objs = bbGt( 'bbSave', objs, fName ) % Load bb annotation from text file and filter. % [objs,bbs] = bbGt( 'bbLoad', fName, [pLoad] ) % Get object property 'name' (in a standard array). % vals = bbGt( 'get', objs, name ) % Set object property 'name' (with a standard array). % objs = bbGt( 'set', objs, name, vals ) % Draw an ellipse for each labeled object. % hs = draw( objs, pDraw ) % %%% (2) Routines for evaluating the Pascal criteria for object detection. % Get all corresponding files in given directories. % [fs,fs0] = bbGt('getFiles', dirs, [f0], [f1] ) % Copy corresponding files into given directories. % fs = bbGt( 'copyFiles', fs, dirs ) % Load all ground truth and detection bbs in given directories. % [gt0,dt0] = bbGt( 'loadAll', gtDir, [dtDir], [pLoad] ) % Evaluates detections against ground truth data. % [gt,dt] = bbGt( 'evalRes', gt0, dt0, [thr], [mul] ) % Display evaluation results for given image. % [hs,hImg] = bbGt( 'showRes' I, gt, dt, varargin ) % Compute ROC or PR based on outputs of evalRes on multiple images. % [xs,ys,ref] = bbGt( 'compRoc', gt, dt, roc, ref ) % Extract true or false positives or negatives for visualization. % [Is,scores,imgIds] = bbGt( 'cropRes', gt, dt, imFs, varargin ) % Computes (modified) overlap area between pairs of bbs. % oa = bbGt( 'compOas', dt, gt, [ig] ) % Optimized version of compOas for a single pair of bbs. % oa = bbGt( 'compOa', dt, gt, ig ) % % USAGE % varargout = bbGt( action, varargin ); % % INPUTS % action - string specifying action % varargin - depends on action, see above % % OUTPUTS % varargout - depends on action, see above % % EXAMPLE % % See also bbApply, bbLabeler, bbGt>create, bbGt>bbSave, bbGt>bbLoad, % bbGt>get, bbGt>set, bbGt>draw, bbGt>getFiles, bbGt>copyFiles, % bbGt>loadAll, bbGt>evalRes, bbGt>showRes, bbGt>compRoc, bbGt>cropRes, % bbGt>compOas, bbGt>compOa % % Piotr's Computer Vision Matlab Toolbox Version 3.26 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %#ok<*DEFNU> varargout = cell(1,max(1,nargout)); [varargout{:}] = feval(action,varargin{:}); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function objs = create( n ) % Create annotation of n empty objects. % % USAGE % objs = bbGt( 'create', [n] ) % % INPUTS % n - [1] number of objects to create % % OUTPUTS % objs - annotation of n 'empty' objects % % EXAMPLE % objs = bbGt('create') % % See also bbGt o=struct('lbl','','bb',[0 0 0 0],'occ',0,'bbv',[0 0 0 0],'ign',0,'ang',0); if(nargin<1 || n==1), objs=o; return; end; objs=o(ones(n,1)); end function objs = bbSave( objs, fName ) % Save bb annotation to text file. % % USAGE % objs = bbGt( 'bbSave', objs, fName ) % % INPUTS % objs - objects to save % fName - name of text file % % OUTPUTS % objs - objects to save % % EXAMPLE % % See also bbGt, bbGt>bbLoad vers=3; fid=fopen(fName,'w'); assert(fid>0); fprintf(fid,'%% bbGt version=%i\n',vers); objs=set(objs,'bb',round(get(objs,'bb'))); objs=set(objs,'bbv',round(get(objs,'bbv'))); objs=set(objs,'ang',round(get(objs,'ang'))); for i=1:length(objs) o=objs(i); bb=o.bb; bbv=o.bbv; fprintf(fid,['%s' repmat(' %i',1,11) '\n'],o.lbl,... bb,o.occ,bbv,o.ign,o.ang); end fclose(fid); end function [objs,bbs] = bbLoad( fName, varargin ) % Load bb annotation from text file and filter. % % FORMAT: Specify 'format' to indicate the format of the ground truth. % format=0 is the default format (created by bbSave/bbLabeler). format=1 is % the PASCAL VOC format. Loading ground truth in this format requires % 'VOCcode/' to be in directory path. It's part of VOCdevkit available from % the PASCAL VOC: http://pascallin.ecs.soton.ac.uk/challenges/VOC/. Objects % labeled as either 'truncated' or 'occluded' using the PASCAL definitions % have the 'occ' flag set to true. Objects labeled as 'difficult' have the % 'ign' flag set to true. 'class' is used for 'lbl'. format=2 is the % ImageNet detection format and requires the ImageNet Dev Kit. % % FILTERING: After loading, the objects can be filtered. First, only % objects with lbl in lbls or ilbls or returned. For each object, obj.ign % is set to 1 if it was already at 1, if its label was in ilbls, or if any % object property is outside of the specified range. The ignore flag is % used during training and testing so that objects with certain properties % (such as very small or heavily occluded objects) are excluded. The range % for each property is a two element vector, [0 inf] by default; a property % value v is inside the range if v>=rng(1) && v<=rng(2). Tested properties % include height (h), width (w), area (a), aspect ratio (ar), orientation % (o), extent x-coordinate (x), extent y-coordinate (y), and fraction % visible (v). The last property is computed as the visible object area % divided by the total area, except if o.occ==0, in which case v=1, or % all(o.bbv==o.bb), which indicates the object may be barely visible, in % which case v=0 (note that v~=1 in this case). % % RETURN: In addition to outputting the objs, bbLoad() can return the % corresponding bounding boxes (bbs) in an [nx5] array where each row is of % the form [x y w h ignore], [x y w h] is the bb and ignore=obj.ign. For % oriented bbs, the extent of the bb is returned, where the extent is the % smallest axis aligned bb containing the oriented bb. If the oriented bb % was labeled as a rectangle as opposed to an ellipse, the tightest bb will % usually increase slightly in size due to the corners of the rectangle % sticking out beyond the ellipse bounds. The 'ellipse' flag controls how % an oriented bb is converted to a regular bb. Specifically, set ellipse=1 % if an ellipse tightly delineates the object and 0 if a rectangle does. % Finally, if 'squarify' is not empty the (non-ignore) bbs are converted to % a fixed aspect ratio using bbs=bbApply('squarify',bbs,squarify{:}). % % USAGE % [objs,bbs] = bbGt( 'bbLoad', fName, [pLoad] ) % % INPUTS % fName - name of text file % pLoad - parameters (struct or name/value pairs) % .format - [0] gt format 0:default, 1:PASCAL, 2:ImageNet % .ellipse - [1] controls how oriented bb is converted to regular bb % .squarify - [] controls optional reshaping of bbs to fixed aspect ratio % .lbls - [] return objs with these labels (or [] to return all) % .ilbls - [] return objs with these labels but set to ignore % .hRng - [] range of acceptable obj heights % .wRng - [] range of acceptable obj widths % .aRng - [] range of acceptable obj areas % .arRng - [] range of acceptable obj aspect ratios % .oRng - [] range of acceptable obj orientations (angles) % .xRng - [] range of x coordinates of bb extent % .yRng - [] range of y coordinates of bb extent % .vRng - [] range of acceptable obj occlusion levels % % OUTPUTS % objs - loaded objects % bbs - [nx5] array containg ground truth bbs [x y w h ignore] % % EXAMPLE % % See also bbGt, bbGt>bbSave % get parameters df={'format',0,'ellipse',1,'squarify',[],'lbls',[],'ilbls',[],'hRng',[],... 'wRng',[],'aRng',[],'arRng',[],'oRng',[],'xRng',[],'yRng',[],'vRng',[]}; [format,ellipse,sqr,lbls,ilbls,hRng,wRng,aRng,arRng,oRng,xRng,yRng,vRng]... = getPrmDflt(varargin,df,1); % load objs if( format==0 ) % load objs stored in default format fId=fopen(fName); if(fId==-1), error(['unable to open file: ' fName]); end; v=0; try v=textscan(fId,'%% bbGt version=%d'); v=v{1}; catch, end %#ok<CTCH> if(isempty(v)), v=0; end % read in annotation (m is number of fields for given version v) if(all(v~=[0 1 2 3])), error('Unknown version %i.',v); end frmt='%s %d %d %d %d %d %d %d %d %d %d %d'; ms=[10 10 11 12]; m=ms(v+1); frmt=frmt(1:2+(m-1)*3); in=textscan(fId,frmt); for i=2:m, in{i}=double(in{i}); end; fclose(fId); % create objs struct from read in fields n=length(in{1}); objs=create(n); for i=1:n, objs(i).lbl=in{1}{i}; objs(i).occ=in{6}(i); end bb=[in{2} in{3} in{4} in{5}]; bbv=[in{7} in{8} in{9} in{10}]; for i=1:n, objs(i).bb=bb(i,:); objs(i).bbv=bbv(i,:); end if(m>=11), for i=1:n, objs(i).ign=in{11}(i); end; end if(m>=12), for i=1:n, objs(i).ang=in{12}(i); end; end elseif( format==1 ) % load objs stored in PASCAL VOC format if(exist('PASreadrecord.m','file')~=2) error('bbLoad() requires the PASCAL VOC code.'); end os=PASreadrecord(fName); os=os.objects; n=length(os); objs=create(n); if(~isfield(os,'occluded')), for i=1:n, os(i).occluded=0; end; end for i=1:n bb=os(i).bbox; bb(3)=bb(3)-bb(1); bb(4)=bb(4)-bb(2); objs(i).bb=bb; objs(i).lbl=os(i).class; objs(i).ign=os(i).difficult; objs(i).occ=os(i).occluded || os(i).truncated; if(objs(i).occ), objs(i).bbv=bb; end end elseif( format==2 ) if(exist('VOCreadxml.m','file')~=2) error('bbLoad() requires the ImageNet dev code.'); end os=VOCreadxml(fName); os=os.annotation; if(isfield(os,'object')), os=os.object; else os=[]; end n=length(os); objs=create(n); for i=1:n bb=os(i).bndbox; bb=str2double({bb.xmin bb.ymin bb.xmax bb.ymax}); bb(3)=bb(3)-bb(1); bb(4)=bb(4)-bb(2); objs(i).bb=bb; objs(i).lbl=os(i).name; end else error('bbLoad() unknown format: %i',format); end % only keep objects whose lbl is in lbls or ilbls if(~isempty(lbls) || ~isempty(ilbls)), K=true(n,1); for i=1:n, K(i)=any(strcmp(objs(i).lbl,[lbls ilbls])); end objs=objs(K); n=length(objs); end % filter objs (set ignore flags) for i=1:n, objs(i).ang=mod(objs(i).ang,360); end if(~isempty(ilbls)), for i=1:n, v=objs(i).lbl; objs(i).ign = objs(i).ign || any(strcmp(v,ilbls)); end; end if(~isempty(xRng)), for i=1:n, v=objs(i).bb(1); objs(i).ign = objs(i).ign || v<xRng(1) || v>xRng(2); end; end if(~isempty(xRng)), for i=1:n, v=objs(i).bb(1)+objs(i).bb(3); objs(i).ign = objs(i).ign || v<xRng(1) || v>xRng(2); end; end if(~isempty(yRng)), for i=1:n, v=objs(i).bb(2); objs(i).ign = objs(i).ign || v<yRng(1) || v>yRng(2); end; end if(~isempty(yRng)), for i=1:n, v=objs(i).bb(2)+objs(i).bb(4); objs(i).ign = objs(i).ign || v<yRng(1) || v>yRng(2); end; end if(~isempty(wRng)), for i=1:n, v=objs(i).bb(3); objs(i).ign = objs(i).ign || v<wRng(1) || v>wRng(2); end; end if(~isempty(hRng)), for i=1:n, v=objs(i).bb(4); objs(i).ign = objs(i).ign || v<hRng(1) || v>hRng(2); end; end if(~isempty(oRng)), for i=1:n, v=objs(i).ang; if(v>180), v=v-360; end objs(i).ign = objs(i).ign || v<oRng(1) || v>oRng(2); end; end if(~isempty(aRng)), for i=1:n, v=objs(i).bb(3)*objs(i).bb(4); objs(i).ign = objs(i).ign || v<aRng(1) || v>aRng(2); end; end if(~isempty(arRng)), for i=1:n, v=objs(i).bb(3)/objs(i).bb(4); objs(i).ign = objs(i).ign || v<arRng(1) || v>arRng(2); end; end if(~isempty(vRng)), for i=1:n, o=objs(i); bb=o.bb; bbv=o.bbv; %#ok<ALIGN> if(~o.occ || all(bbv==0)), v=1; elseif(all(bbv==bb)), v=0; else v=(bbv(3)*bbv(4))/(bb(3)*bb(4)); end objs(i).ign = objs(i).ign || v<vRng(1) || v>vRng(2); end end % finally get extent of each bounding box (not trivial if ang~=0) if(nargout<=1), return; end; if(n==0), bbs=zeros(0,5); return; end bbs=double([reshape([objs.bb],4,[]); [objs.ign]]'); ign=bbs(:,5)==1; for i=1:n, bbs(i,1:4)=bbExtent(bbs(i,1:4),objs(i).ang,ellipse); end if(~isempty(sqr)), bbs(~ign,:)=bbApply('squarify',bbs(~ign,:),sqr{:}); end function bb = bbExtent( bb, ang, ellipse ) % get bb that fully contains given oriented bb if(~ang), return; end if( ellipse ) % get bb that encompases ellipse (tighter) x=bbApply('getCenter',bb); a=bb(4)/2; b=bb(3)/2; ang=ang-90; rx=(a*cosd(ang))^2+(b*sind(ang))^2; rx=abs(rx/sqrt(rx)); ry=(a*sind(ang))^2+(b*cosd(ang))^2; ry=abs(ry/sqrt(ry)); bb=[x(1)-rx x(2)-ry 2*rx 2*ry]; else % get bb that encompases rectangle (looser) c=cosd(ang); s=sind(ang); R=[c -s; s c]; rs=bb(3:4)/2; x0=-rs(1); x1=rs(1); y0=-rs(2); y1=rs(2); pc=bb(1:2)+rs; p=[x0 y0; x1 y0; x1 y1; x0 y1]*R'+pc(ones(4,1),:); x0=min(p(:,1)); x1=max(p(:,1)); y0=min(p(:,2)); y1=max(p(:,2)); bb=[x0 y0 x1-x0 y1-y0]; end end end function vals = get( objs, name ) % Get object property 'name' (in a standard array). % % USAGE % vals = bbGt( 'get', objs, name ) % % INPUTS % objs - [nx1] struct array of objects % name - property name ('lbl','bb','occ',etc.) % % OUTPUTS % vals - [nxk] array of n values (k=1 or 4) % % EXAMPLE % % See also bbGt, bbGt>set nObj=length(objs); if(nObj==0), vals=[]; return; end switch name case 'lbl', vals={objs.lbl}'; case 'bb', vals=reshape([objs.bb]',4,[])'; case 'occ', vals=[objs.occ]'; case 'bbv', vals=reshape([objs.bbv]',4,[])'; case 'ign', vals=[objs.ign]'; case 'ang', vals=[objs.ang]'; otherwise, error('unkown type %s',name); end end function objs = set( objs, name, vals ) % Set object property 'name' (with a standard array). % % USAGE % objs = bbGt( 'set', objs, name, vals ) % % INPUTS % objs - [nx1] struct array of objects % name - property name ('lbl','bb','occ',etc.) % vals - [nxk] array of n values (k=1 or 4) % % OUTPUTS % objs - [nx1] struct array of updated objects % % EXAMPLE % % See also bbGt, bbGt>get nObj=length(objs); switch name case 'lbl', for i=1:nObj, objs(i).lbl=vals{i}; end case 'bb', for i=1:nObj, objs(i).bb=vals(i,:); end case 'occ', for i=1:nObj, objs(i).occ=vals(i); end case 'bbv', for i=1:nObj, objs(i).bbv=vals(i,:); end case 'ign', for i=1:nObj, objs(i).ign=vals(i); end case 'ang', for i=1:nObj, objs(i).ang=vals(i); end otherwise, error('unkown type %s',name); end end function hs = draw( objs, varargin ) % Draw an ellipse for each labeled object. % % USAGE % hs = bbGt( 'draw', objs, pDraw ) % % INPUTS % objs - [nx1] struct array of objects % pDraw - parameters (struct or name/value pairs) % .col - ['g'] color or [nx1] array of colors % .lw - [2] line width % .ls - ['-'] line style % % OUTPUTS % hs - [nx1] handles to drawn graphic objects % % EXAMPLE % % See also bbGt dfs={'col',[],'lw',2,'ls','-'}; [col,lw,ls]=getPrmDflt(varargin,dfs,1); n=length(objs); hold on; hs=zeros(n,4); if(isempty(col)), if(n==1), col='g'; else col=hsv(n); end; end tProp={'FontSize',10,'color','w','FontWeight','bold',... 'VerticalAlignment','bottom'}; for i=1:n bb=objs(i).bb; ci=col(i,:); hs(i,1)=text(bb(1),bb(2),objs(i).lbl,tProp{:}); x=bbApply('getCenter',bb); r=bb(3:4)/2; a=objs(i).ang/180*pi-pi/2; [hs(i,2),hs(i,3),hs(i,4)]=plotEllipse(x(2),x(1),r(2),r(1),a,ci,[],lw,ls); end; hold off; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fs,fs0] = getFiles( dirs, f0, f1 ) % Get all corresponding files in given directories. % % The first dir in 'dirs' serves as the baseline dir. getFiles() returns % all files in the baseline dir and all corresponding files in the % remaining dirs to the files in the baseline dir, in the same order. Two % files are in correspondence if they have the same base name (regardless % of extension). For example, given a file named "name.jpg", a % corresponding file may be named "name.txt" or "name.jpg.txt". Every file % in the baseline dir must have a matching file in the remaining dirs. % % USAGE % [fs,fs0] = bbGt('getFiles', dirs, [f0], [f1] ) % % INPUTS % dirs - {1xm} list of m directories % f0 - [1] index of first file in baseline dir to use % f1 - [inf] index of last file in baseline dir to use % % OUTPUTS % fs - {mxn} list of full file names in each dir % fs0 - {1xn} list of file names without path or extensions % % EXAMPLE % % See also bbGt if(nargin<2 || isempty(f0)), f0=1; end if(nargin<3 || isempty(f1)), f1=inf; end m=length(dirs); assert(m>0); sep=filesep; for d=1:m, dir1=dirs{d}; dir1(dir1=='\')=sep; dir1(dir1=='/')=sep; if(dir1(end)==sep), dir1(end)=[]; end; dirs{d}=dir1; end [fs0,fs1] = getFiles0(dirs{1},f0,f1,sep); n1=length(fs0); fs=cell(m,n1); fs(1,:)=fs1; for d=2:m, fs(d,:)=getFiles1(dirs{d},fs0,sep); end function [fs0,fs1] = getFiles0( dir1, f0, f1, sep ) % get fs1 in dir1 (and fs0 without path or extension) fs1=dir([dir1 sep '*']); fs1={fs1.name}; fs1=fs1(3:end); fs1=fs1(f0:min(f1,end)); fs0=fs1; n=length(fs0); if(n==0), error('No files found in baseline dir %s.',dir1); end for i=1:n, fs1{i}=[dir1 sep fs0{i}]; end n=length(fs0); for i=1:n, f=fs0{i}; f(find(f=='.',1,'first'):end)=[]; fs0{i}=f; end end function fs1 = getFiles1( dir1, fs0, sep ) % get fs1 in dir1 corresponding to fs0 n=length(fs0); fs1=cell(1,n); i2=0; i1=0; fs2=dir(dir1); fs2={fs2.name}; n2=length(fs2); eMsg='''%s'' has no corresponding file in %s.'; for i0=1:n, r=length(fs0{i0}); match=0; while(i2<n2), i2=i2+1; if(strcmpi(fs0{i0},fs2{i2}(1:min(end,r)))) i1=i1+1; fs1{i1}=fs2{i2}; match=1; break; end; end if(~match), error(eMsg,fs0{i0},dir1); end end for i1=1:n, fs1{i1}=[dir1 sep fs1{i1}]; end end end function fs = copyFiles( fs, dirs ) % Copy corresponding files into given directories. % % Useful for splitting data into training, validation and testing sets. % See also bbGt>getFiles for obtaining a set of corresponding files. % % USAGE % fs = bbGt( 'copyFiles', fs, dirs ) % % INPUTS % fs - {mxn} list of full file names in each dir % dirs - {1xm} list of m target directories % % OUTPUTS % fs - {mxn} list of full file names of copied files % % EXAMPLE % % See also bbGt, bbGt>getFiles [m,n]=size(fs); assert(numel(dirs)==m); if(n==0), return; end for d=1:m if(~exist(dirs{d},'dir')), mkdir(dirs{d}); end for i=1:n, f=fs{d,i}; j=[0 find(f=='/' | f=='\')]; j=j(end); fs{d,i}=[dirs{d} '/' f(j+1:end)]; copyfile(f,fs{d,i}); end end end function [gt0,dt0] = loadAll( gtDir, dtDir, pLoad ) % Load all ground truth and detection bbs in given directories. % % Loads each ground truth (gt) annotation in gtDir and the corresponding % detection (dt) in dtDir. gt and dt files must correspond according to % getFiles(). Alternatively, dtDir may be a filename of a single text file % that contains the detection results across all images. % % Each dt should be a text file where each row contains 5 numbers % representing a bb (left/top/width/height/score). If dtDir is a text file, % it should contain the detection results across the full set of images. In % this case each row in the text file should have an extra leading column % specifying the image id: (imgId/left/top/width/height/score). % % The output of this function can be used in bbGt>evalRes(). % % USAGE % [gt0,dt0] = bbGt( 'loadAll', gtDir, [dtDir], [pLoad] ) % % INPUTS % gtDir - location of ground truth % dtDir - [] optional location of detections % pLoad - {} params for bbGt>bbLoad() (determine format/filtering) % % OUTPUTS % gt0 - {1xn} loaded ground truth bbs (each is a mx5 array of bbs) % dt0 - {1xn} loaded detections (each is a mx5 array of bbs) % % EXAMPLE % % See also bbGt, bbGt>getFiles, bbGt>evalRes % get list of files if(nargin<2), dtDir=[]; end if(nargin<3), pLoad={}; end if(isempty(dtDir)), fs=getFiles({gtDir}); gtFs=fs(1,:); else dtFile=length(dtDir)>4 && strcmp(dtDir(end-3:end),'.txt'); if(dtFile), dirs={gtDir}; else dirs={gtDir,dtDir}; end fs=getFiles(dirs); gtFs=fs(1,:); if(dtFile), dtFs=dtDir; else dtFs=fs(2,:); end end % load ground truth persistent keyPrv gtPrv; key={gtDir,pLoad}; n=length(gtFs); if(isequal(key,keyPrv)), gt0=gtPrv; else gt0=cell(1,n); for i=1:n, [~,gt0{i}]=bbLoad(gtFs{i},pLoad); end gtPrv=gt0; keyPrv=key; end % load detections if(isempty(dtDir) || nargout<=1), dt0=cell(0); return; end if(iscell(dtFs)), dt0=cell(1,n); for i=1:n, dt1=load(dtFs{i},'-ascii'); if(numel(dt1)==0), dt1=zeros(0,5); end; dt0{i}=dt1(:,1:5); end else dt1=load(dtFs,'-ascii'); if(numel(dt1)==0), dt1=zeros(0,6); end ids=dt1(:,1); assert(max(ids)<=n); dt0=cell(1,n); for i=1:n, dt0{i}=dt1(ids==i,2:6); end end end function [gt,dt] = evalRes( gt0, dt0, thr, mul ) % Evaluates detections against ground truth data. % % Uses modified Pascal criteria that allows for "ignore" regions. The % Pascal criteria states that a ground truth bounding box (gtBb) and a % detected bounding box (dtBb) match if their overlap area (oa): % oa(gtBb,dtBb) = area(intersect(gtBb,dtBb)) / area(union(gtBb,dtBb)) % is over a sufficient threshold (typically .5). In the modified criteria, % the dtBb can match any subregion of a gtBb set to "ignore". Choosing % gtBb' in gtBb that most closely matches dtBb can be done by using % gtBb'=intersect(dtBb,gtBb). Computing oa(gtBb',dtBb) is equivalent to % oa'(gtBb,dtBb) = area(intersect(gtBb,dtBb)) / area(dtBb) % For gtBb set to ignore the above formula for oa is used. % % Highest scoring detections are matched first. Matches to standard, % (non-ignore) gtBb are preferred. Each dtBb and gtBb may be matched at % most once, except for ignore-gtBb which can be matched multiple times. % Unmatched dtBb are false-positives, unmatched gtBb are false-negatives. % Each match between a dtBb and gtBb is a true-positive, except matches % between dtBb and ignore-gtBb which do not affect the evaluation criteria. % % In addition to taking gt/dt results on a single image, evalRes() can take % cell arrays of gt/dt bbs, in which case evaluation proceeds on each % element. Use bbGt>loadAll() to load gt/dt for multiple images. % % Each gt/dt output row has a flag match that is either -1/0/1: % for gt: -1=ignore, 0=fn [unmatched], 1=tp [matched] % for dt: -1=ignore, 0=fp [unmatched], 1=tp [matched] % % USAGE % [gt, dt] = bbGt( 'evalRes', gt0, dt0, [thr], [mul] ) % % INPUTS % gt0 - [mx5] ground truth array with rows [x y w h ignore] % dt0 - [nx5] detection results array with rows [x y w h score] % thr - [.5] the threshold on oa for comparing two bbs % mul - [0] if true allow multiple matches to each gt % % OUTPUTS % gt - [mx5] ground truth results [x y w h match] % dt - [nx6] detection results [x y w h score match] % % EXAMPLE % % See also bbGt, bbGt>compOas, bbGt>loadAll % get parameters if(nargin<3 || isempty(thr)), thr=.5; end if(nargin<4 || isempty(mul)), mul=0; end % if gt0 and dt0 are cell arrays run on each element in turn if( iscell(gt0) && iscell(dt0) ), n=length(gt0); assert(length(dt0)==n); gt=cell(1,n); dt=gt; for i=1:n, [gt{i},dt{i}] = evalRes(gt0{i},dt0{i},thr,mul); end; return; end % check inputs if(isempty(gt0)), gt0=zeros(0,5); end if(isempty(dt0)), dt0=zeros(0,5); end assert( size(dt0,2)==5 ); nd=size(dt0,1); assert( size(gt0,2)==5 ); ng=size(gt0,1); % sort dt highest score first, sort gt ignore last [~,ord]=sort(dt0(:,5),'descend'); dt0=dt0(ord,:); [~,ord]=sort(gt0(:,5),'ascend'); gt0=gt0(ord,:); gt=gt0; gt(:,5)=-gt(:,5); dt=dt0; dt=[dt zeros(nd,1)]; % Attempt to match each (sorted) dt to each (sorted) gt oa = compOas( dt(:,1:4), gt(:,1:4), gt(:,5)==-1 ); for d=1:nd bstOa=thr; bstg=0; bstm=0; % info about best match so far for g=1:ng % if this gt already matched, continue to next gt m=gt(g,5); if( m==1 && ~mul ), continue; end % if dt already matched, and on ignore gt, nothing more to do if( bstm~=0 && m==-1 ), break; end % compute overlap area, continue to next gt unless better match made if(oa(d,g)<bstOa), continue; end % match successful and best so far, store appropriately bstOa=oa(d,g); bstg=g; if(m==0), bstm=1; else bstm=-1; end end; g=bstg; m=bstm; % store type of match for both dt and gt if(m==-1), dt(d,6)=m; elseif(m==1), gt(g,5)=m; dt(d,6)=m; end end end function [hs,hImg] = showRes( I, gt, dt, varargin ) % Display evaluation results for given image. % % USAGE % [hs,hImg] = bbGt( 'showRes', I, gt, dt, varargin ) % % INPUTS % I - image to display, image filename, or [] % gt - first output of evalRes() % dt - second output of evalRes() % varargin - additional parameters (struct or name/value pairs) % .evShow - [1] if true show results of evaluation % .gtShow - [1] if true show ground truth % .dtShow - [1] if true show detections % .cols - ['krg'] colors for ignore/mistake/correct % .gtLs - ['-'] line style for gt bbs % .dtLs - ['--'] line style for dt bbs % .lw - [3] line width % % OUTPUTS % hs - handles to bbs and text labels % hImg - handle for image graphics object % % EXAMPLE % % See also bbGt, bbGt>evalRes dfs={'evShow',1,'gtShow',1,'dtShow',1,'cols','krg',... 'gtLs','-','dtLs','--','lw',3}; [evShow,gtShow,dtShow,cols,gtLs,dtLs,lw]=getPrmDflt(varargin,dfs,1); % optionally display image if(ischar(I)), I=imread(I); end if(~isempty(I)), hImg=im(I,[],0); title(''); end % display bbs with or w/o color coding based on output of evalRes hold on; hs=cell(1,1000); k=0; if( evShow ) if(gtShow), for i=1:size(gt,1), k=k+1; hs{k}=bbApply('draw',gt(i,1:4),cols(gt(i,5)+2),lw,gtLs); end; end if(dtShow), for i=1:size(dt,1), k=k+1; hs{k}=bbApply('draw',dt(i,1:5),cols(dt(i,6)+2),lw,dtLs); end; end else if(gtShow), k=k+1; hs{k}=bbApply('draw',gt(:,1:4),cols(3),lw,gtLs); end if(dtShow), k=k+1; hs{k}=bbApply('draw',dt(:,1:5),cols(3),lw,dtLs); end end hs=[hs{:}]; hold off; end function [xs,ys,score,ref] = compRoc( gt, dt, roc, ref ) % Compute ROC or PR based on outputs of evalRes on multiple images. % % ROC="Receiver operating characteristic"; PR="Precision Recall" % Also computes result at reference points (ref): % which for ROC curves is the *detection* rate at reference *FPPI* % which for PR curves is the *precision* at reference *recall* % Note, FPPI="false positive per image" % % USAGE % [xs,ys,score,ref] = bbGt( 'compRoc', gt, dt, roc, ref ) % % INPUTS % gt - {1xn} first output of evalRes() for each image % dt - {1xn} second output of evalRes() for each image % roc - [1] if 1 compue ROC else compute PR % ref - [] reference points for ROC or PR curve % % OUTPUTS % xs - x coords for curve: ROC->FPPI; PR->recall % ys - y coords for curve: ROC->TP; PR->precision % score - detection scores corresponding to each (x,y) % ref - recall or precision at each reference point % % EXAMPLE % % See also bbGt, bbGt>evalRes % get additional parameters if(nargin<3 || isempty(roc)), roc=1; end if(nargin<4 || isempty(ref)), ref=[]; end % convert to single matrix, discard ignore bbs nImg=length(gt); assert(length(dt)==nImg); gt=cat(1,gt{:}); gt=gt(gt(:,5)~=-1,:); dt=cat(1,dt{:}); dt=dt(dt(:,6)~=-1,:); % compute results if(size(dt,1)==0), xs=0; ys=0; score=0; ref=ref*0; return; end m=length(ref); np=size(gt,1); score=dt(:,5); tp=dt(:,6); [score,order]=sort(score,'descend'); tp=tp(order); fp=double(tp~=1); fp=cumsum(fp); tp=cumsum(tp); if( roc ) xs=fp/nImg; ys=tp/np; xs1=[-inf; xs]; ys1=[0; ys]; for i=1:m, j=find(xs1<=ref(i)); ref(i)=ys1(j(end)); end else xs=tp/np; ys=tp./(fp+tp); xs1=[xs; inf]; ys1=[ys; 0]; for i=1:m, j=find(xs1>=ref(i)); ref(i)=ys1(j(1)); end end end function [Is,scores,imgIds] = cropRes( gt, dt, imFs, varargin ) % Extract true or false positives or negatives for visualization. % % USAGE % [Is,scores,imgIds] = bbGt( 'cropRes', gt, dt, imFs, varargin ) % % INPUTS % gt - {1xN} first output of evalRes() for each image % dt - {1xN} second output of evalRes() for each image % imFs - {1xN} name of each image % varargin - additional parameters (struct or name/value pairs) % .dims - ['REQ'] target dimensions for extracted windows % .pad - [0] padding amount for cropping % .type - ['fp'] one of: 'fp', 'fn', 'tp', 'dt' % .n - [100] max number of windows to extract % .show - [1] figure for displaying results (or 0) % .fStr - ['%0.1f'] label{i}=num2str(score(i),fStr) % .embed - [0] if true embed dt/gt bbs into cropped windows % % OUTPUTS % Is - [dimsxn] extracted image windows % scores - [1xn] detection score for each bb unless 'fn' % imgIds - [1xn] image id for each cropped window % % EXAMPLE % % See also bbGt, bbGt>evalRes dfs={'dims','REQ','pad',0,'type','fp','n',100,... 'show',1,'fStr','%0.1f','embed',0}; [dims,pad,type,n,show,fStr,embed]=getPrmDflt(varargin,dfs,1); N=length(imFs); assert(length(gt)==N && length(dt)==N); % crop patches either in gt or dt according to type switch type case 'fn', bbs=gt; keep=@(bbs) bbs(:,5)==0; case 'fp', bbs=dt; keep=@(bbs) bbs(:,6)==0; case 'tp', bbs=dt; keep=@(bbs) bbs(:,6)==1; case 'dt', bbs=dt; keep=@(bbs) bbs(:,6)>=0; otherwise, error('unknown type: %s',type); end % create ids that will map each bb to correct name ms=zeros(1,N); for i=1:N, ms(i)=size(bbs{i},1); end; cms=[0 cumsum(ms)]; ids=zeros(1,sum(ms)); for i=1:N, ids(cms(i)+1:cms(i+1))=i; end % flatten bbs and keep relevent subset bbs=cat(1,bbs{:}); K=keep(bbs); bbs=bbs(K,:); ids=ids(K); n=min(n,sum(K)); % reorder bbs appropriately if(~strcmp(type,'fn')), [~,ord]=sort(bbs(:,5),'descend'); else if(size(bbs,1)<n), ord=randperm(size(bbs,1)); else ord=1:n; end; end bbs=bbs(ord(1:n),:); ids=ids(ord(1:n)); % extract patches from each image if(n==0), Is=[]; scores=[]; imgIds=[]; return; end; Is=cell(1,n); scores=zeros(1,n); imgIds=zeros(1,n); if(any(pad>0)), dims1=dims.*(1+pad); rs=dims1./dims; dims=dims1; end if(any(pad>0)), bbs=bbApply('resize',bbs,rs(1),rs(2)); end for i=1:N locs=find(ids==i); if(isempty(locs)), continue; end; I=imread(imFs{i}); if( embed ) if(any(strcmp(type,{'fp','dt'}))), bbs1=gt{i}; else bbs1=dt{i}(:,[1:4 6]); end I=bbApply('embed',I,bbs1(bbs1(:,5)==0,1:4),'col',[255 0 0]); I=bbApply('embed',I,bbs1(bbs1(:,5)==1,1:4),'col',[0 255 0]); end Is1=bbApply('crop',I,bbs(locs,1:4),'replicate',dims); for j=1:length(locs), Is{locs(j)}=Is1{j}; end; scores(locs)=bbs(locs,5); imgIds(locs)=i; end; Is=cell2array(Is); % optionally display if(~show), return; end; figure(show); pMnt={'hasChn',size(Is1{1},3)>1}; if(isempty(fStr)), montage2(Is,pMnt); title(type); return; end ls=cell(1,n); for i=1:n, ls{i}=int2str2(imgIds(i)); end if(~strcmp(type,'fn')) for i=1:n, ls{i}=[ls{i} '/' num2str(scores(i),fStr)]; end; end montage2(Is,[pMnt 'labels' {ls}]); title(type); end function oa = compOas( dt, gt, ig ) % Computes (modified) overlap area between pairs of bbs. % % Uses modified Pascal criteria with "ignore" regions. The overlap area % (oa) of a ground truth (gt) and detected (dt) bb is defined as: % oa(gt,dt) = area(intersect(dt,dt)) / area(union(gt,dt)) % In the modified criteria, a gt bb may be marked as "ignore", in which % case the dt bb can can match any subregion of the gt bb. Choosing gt' in % gt that most closely matches dt can be done using gt'=intersect(dt,gt). % Computing oa(gt',dt) is equivalent to: % oa'(gt,dt) = area(intersect(gt,dt)) / area(dt) % % USAGE % oa = bbGt( 'compOas', dt, gt, [ig] ) % % INPUTS % dt - [mx4] detected bbs % gt - [nx4] gt bbs % ig - [nx1] 0/1 ignore flags (0 by default) % % OUTPUTS % oas - [m x n] overlap area between each gt and each dt bb % % EXAMPLE % dt=[0 0 10 10]; gt=[0 0 20 20]; % oa0 = bbGt('compOas',dt,gt,0) % oa1 = bbGt('compOas',dt,gt,1) % % See also bbGt, bbGt>evalRes m=size(dt,1); n=size(gt,1); oa=zeros(m,n); if(nargin<3), ig=zeros(n,1); end de=dt(:,[1 2])+dt(:,[3 4]); da=dt(:,3).*dt(:,4); ge=gt(:,[1 2])+gt(:,[3 4]); ga=gt(:,3).*gt(:,4); for i=1:m for j=1:n w=min(de(i,1),ge(j,1))-max(dt(i,1),gt(j,1)); if(w<=0), continue; end h=min(de(i,2),ge(j,2))-max(dt(i,2),gt(j,2)); if(h<=0), continue; end t=w*h; if(ig(j)), u=da(i); else u=da(i)+ga(j)-t; end; oa(i,j)=t/u; end end end function oa = compOa( dt, gt, ig ) % Optimized version of compOas for a single pair of bbs. % % USAGE % oa = bbGt( 'compOa', dt, gt, ig ) % % INPUTS % dt - [1x4] detected bb % gt - [1x4] gt bb % ig - 0/1 ignore flag % % OUTPUTS % oa - overlap area between gt and dt bb % % EXAMPLE % dt=[0 0 10 10]; gt=[0 0 20 20]; % oa0 = bbGt('compOa',dt,gt,0) % oa1 = bbGt('compOa',dt,gt,1) % % See also bbGt, bbGt>compOas w=min(dt(3)+dt(1),gt(3)+gt(1))-max(dt(1),gt(1)); if(w<=0),oa=0; return; end h=min(dt(4)+dt(2),gt(4)+gt(2))-max(dt(2),gt(2)); if(h<=0),oa=0; return; end i=w*h; if(ig),u=dt(3)*dt(4); else u=dt(3)*dt(4)+gt(3)*gt(4)-i; end; oa=i/u; end
github
GYZHikari/Semantic-Cosegmentation-master
bbApply.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/detector/bbApply.m
21,195
utf_8
8c02a6999a84bfb5fcbf2274b8b91a97
function varargout = bbApply( action, varargin ) % Functions for manipulating bounding boxes (bb). % % A bounding box (bb) is also known as a position vector or a rectangle % object. It is a four element vector with the fields: [x y w h]. A set of % n bbs can be stores as an [nx4] array, most funcitons below can handle % either a single or multiple bbs. In addtion, typically [nxm] inputs with % m>4 are ok (with the additional columns ignored/copied to the output). % % bbApply contains a number of utility functions for working with bbs. The % format for accessing the various utility functions is: % outputs = bbApply( 'action', inputs ); % The list of functions and help for each is given below. Also, help on % individual subfunctions can be accessed by: "help bbApply>action". % % Compute area of bbs. % bb = bbApply( 'area', bb ) % Shift center of bbs. % bb = bbApply( 'shift', bb, xdel, ydel ) % Get center of bbs. % cen = bbApply( 'getCenter', bb ) % Get bb at intersection of bb1 and bb2 (may be empty). % bb = bbApply( 'intersect', bb1, bb2 ) % Get bb that is union of bb1 and bb2 (smallest bb containing both). % bb = bbApply( 'union', bb1, bb2 ) % Resize the bbs (without moving their centers). % bb = bbApply( 'resize', bb, hr, wr, [ar] ) % Fix bb aspect ratios (without moving the bb centers). % bbr = bbApply( 'squarify', bb, flag, [ar] ) % Draw single or multiple bbs to image (calls rectangle()). % hs = bbApply( 'draw', bb, [col], [lw], [ls], [prop], [ids] ) % Embed single or multiple bbs directly into image. % I = bbApply( 'embed', I, bb, [varargin] ) % Crop image regions from I encompassed by bbs. % [patches, bbs] = bbApply('crop',I,bb,[padEl],[dims]) % Convert bb relative to absolute coordinates and vice-versa. % bb = bbApply( 'convert', bb, bbRef, isAbs ) % Randomly generate bbs that fall in a specified region. % bbs = bbApply( 'random', pRandom ) % Convert weighted mask to bbs. % bbs = bbApply('frMask',M,bbw,bbh,[thr]) % Create weighted mask encoding bb centers (or extent). % M = bbApply('toMask',bbs,w,h,[fill],[bgrd]) % % USAGE % varargout = bbApply( action, varargin ); % % INPUTS % action - string specifying action % varargin - depends on action, see above % % OUTPUTS % varargout - depends on action, see above % % EXAMPLE % % See also bbApply>area bbApply>shift bbApply>getCenter bbApply>intersect % bbApply>union bbApply>resize bbApply>squarify bbApply>draw bbApply>crop % bbApply>convert bbApply>random bbApply>frMask bbApply>toMask % % Piotr's Computer Vision Matlab Toolbox Version 3.30 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] %#ok<*DEFNU> varargout = cell(1,max(1,nargout)); [varargout{:}] = feval(action,varargin{:}); end function a = area( bb ) % Compute area of bbs. % % USAGE % bb = bbApply( 'area', bb ) % % INPUTS % bb - [nx4] original bbs % % OUTPUTS % a - [nx1] area of each bb % % EXAMPLE % a = bbApply('area', [0 0 10 10]) % % See also bbApply a=prod(bb(:,3:4),2); end function bb = shift( bb, xdel, ydel ) % Shift center of bbs. % % USAGE % bb = bbApply( 'shift', bb, xdel, ydel ) % % INPUTS % bb - [nx4] original bbs % xdel - amount to shift x coord of each bb left % ydel - amount to shift y coord of each bb up % % OUTPUTS % bb - [nx4] shifted bbs % % EXAMPLE % bb = bbApply('shift', [0 0 10 10], 1, 2) % % See also bbApply bb(:,1)=bb(:,1)-xdel; bb(:,2)=bb(:,2)-ydel; end function cen = getCenter( bb ) % Get center of bbs. % % USAGE % cen = bbApply( 'getCenter', bb ) % % INPUTS % bb - [nx4] original bbs % % OUTPUTS % cen - [nx1] centers of bbs % % EXAMPLE % cen = bbApply('getCenter', [0 0 10 10]) % % See also bbApply cen=bb(:,1:2)+bb(:,3:4)/2; end function bb = intersect( bb1, bb2 ) % Get bb at intersection of bb1 and bb2 (may be empty). % % USAGE % bb = bbApply( 'intersect', bb1, bb2 ) % % INPUTS % bb1 - [nx4] first set of bbs % bb2 - [nx4] second set of bbs % % OUTPUTS % bb - [nx4] intersection of bbs % % EXAMPLE % bb = bbApply('intersect', [0 0 10 10], [5 5 10 10]) % % See also bbApply bbApply>union n1=size(bb1,1); n2=size(bb2,1); if(n1==0 || n2==0), bb=zeros(0,4); return, end if(n1==1 && n2>1), bb1=repmat(bb1,n2,1); n1=n2; end if(n2==1 && n1>1), bb2=repmat(bb2,n1,1); n2=n1; end assert(n1==n2); lcsE=min(bb1(:,1:2)+bb1(:,3:4),bb2(:,1:2)+bb2(:,3:4)); lcsS=max(bb1(:,1:2),bb2(:,1:2)); empty=any(lcsE<lcsS,2); bb=[lcsS lcsE-lcsS]; bb(empty,:)=0; end function bb = union( bb1, bb2 ) % Get bb that is union of bb1 and bb2 (smallest bb containing both). % % USAGE % bb = bbApply( 'union', bb1, bb2 ) % % INPUTS % bb1 - [nx4] first set of bbs % bb2 - [nx4] second set of bbs % % OUTPUTS % bb - [nx4] intersection of bbs % % EXAMPLE % bb = bbApply('union', [0 0 10 10], [5 5 10 10]) % % See also bbApply bbApply>intersect n1=size(bb1,1); n2=size(bb2,1); if(n1==0 || n2==0), bb=zeros(0,4); return, end if(n1==1 && n2>1), bb1=repmat(bb1,n2,1); n1=n2; end if(n2==1 && n1>1), bb2=repmat(bb2,n1,1); n2=n1; end assert(n1==n2); lcsE=max(bb1(:,1:2)+bb1(:,3:4),bb2(:,1:2)+bb2(:,3:4)); lcsS=min(bb1(:,1:2),bb2(:,1:2)); bb=[lcsS lcsE-lcsS]; end function bb = resize( bb, hr, wr, ar ) % Resize the bbs (without moving their centers). % % If wr>0 or hr>0, the w/h of each bb is adjusted in the following order: % if(hr~=0), h=h*hr; end % if(wr~=0), w=w*wr; end % if(hr==0), h=w/ar; end % if(wr==0), w=h*ar; end % Only one of hr/wr may be set to 0, and then only if ar>0. If, however, % hr=wr=0 and ar>0 then resizes bbs such that areas and centers are % preserved but aspect ratio becomes ar. % % USAGE % bb = bbApply( 'resize', bb, hr, wr, [ar] ) % % INPUTS % bb - [nx4] original bbs % hr - ratio by which to multiply height (or 0) % wr - ratio by which to multiply width (or 0) % ar - [0] target aspect ratio (used only if hr=0 or wr=0) % % OUTPUT % bb - [nx4] the output resized bbs % % EXAMPLE % bb = bbApply('resize',[0 0 1 1],1.2,0,.5) % h'=1.2*h; w'=h'/2; % % See also bbApply, bbApply>squarify if(nargin<4), ar=0; end; assert(size(bb,2)>=4); assert((hr>0&&wr>0)||ar>0); % preserve area and center, set aspect ratio if(hr==0 && wr==0), a=sqrt(bb(:,3).*bb(:,4)); ar=sqrt(ar); d=a*ar-bb(:,3); bb(:,1)=bb(:,1)-d/2; bb(:,3)=bb(:,3)+d; d=a/ar-bb(:,4); bb(:,2)=bb(:,2)-d/2; bb(:,4)=bb(:,4)+d; return; end % possibly adjust h/w based on hr/wr if(hr~=0), d=(hr-1)*bb(:,4); bb(:,2)=bb(:,2)-d/2; bb(:,4)=bb(:,4)+d; end if(wr~=0), d=(wr-1)*bb(:,3); bb(:,1)=bb(:,1)-d/2; bb(:,3)=bb(:,3)+d; end % possibly adjust h/w based on ar and NEW h/w if(~hr), d=bb(:,3)/ar-bb(:,4); bb(:,2)=bb(:,2)-d/2; bb(:,4)=bb(:,4)+d; end if(~wr), d=bb(:,4)*ar-bb(:,3); bb(:,1)=bb(:,1)-d/2; bb(:,3)=bb(:,3)+d; end end function bbr = squarify( bb, flag, ar ) % Fix bb aspect ratios (without moving the bb centers). % % The w or h of each bb is adjusted so that w/h=ar. % The parameter flag controls whether w or h should change: % flag==0: expand bb to given ar % flag==1: shrink bb to given ar % flag==2: use original w, alter h % flag==3: use original h, alter w % flag==4: preserve area, alter w and h % If ar==1 (the default), always converts bb to a square, hence the name. % % USAGE % bbr = bbApply( 'squarify', bb, flag, [ar] ) % % INPUTS % bb - [nx4] original bbs % flag - controls whether w or h should change % ar - [1] desired aspect ratio % % OUTPUT % bbr - the output 'squarified' bbs % % EXAMPLE % bbr = bbApply('squarify',[0 0 1 2],0) % % See also bbApply, bbApply>resize if(nargin<3 || isempty(ar)), ar=1; end; bbr=bb; if(flag==4), bbr=resize(bb,0,0,ar); return; end for i=1:size(bb,1), p=bb(i,1:4); usew = (flag==0 && p(3)>p(4)*ar) || (flag==1 && p(3)<p(4)*ar) || flag==2; if(usew), p=resize(p,0,1,ar); else p=resize(p,1,0,ar); end; bbr(i,1:4)=p; end end function hs = draw( bb, col, lw, ls, prop, ids ) % Draw single or multiple bbs to image (calls rectangle()). % % To draw bbs aligned with pixel boundaries, subtract .5 from the x and y % coordinates (since pixel centers are located at integer locations). % % USAGE % hs = bbApply( 'draw', bb, [col], [lw], [ls], [prop], [ids] ) % % INPUTS % bb - [nx4] standard bbs or [nx5] weighted bbs % col - ['g'] color or [kx1] array of colors % lw - [2] LineWidth for rectangle % ls - ['-'] LineStyle for rectangle % prop - [] other properties for rectangle % ids - [ones(1,n)] id in [1,k] for each bb into colors array % % OUTPUT % hs - [nx1] handles to drawn rectangles (and labels) % % EXAMPLE % im(rand(3)); bbApply('draw',[1.5 1.5 1 1 .5],'g'); % % See also bbApply, bbApply>embed, rectangle [n,m]=size(bb); if(n==0), hs=[]; return; end if(nargin<2 || isempty(col)), col=[]; end if(nargin<3 || isempty(lw)), lw=2; end if(nargin<4 || isempty(ls)), ls='-'; end if(nargin<5 || isempty(prop)), prop={}; end if(nargin<6 || isempty(ids)), ids=ones(1,n); end % prepare display properties prop=['LineWidth' lw 'LineStyle' ls prop 'EdgeColor']; tProp={'FontSize',10,'color','w','FontWeight','bold',... 'VerticalAlignment','bottom'}; k=max(ids); if(isempty(col)), if(k==1), col='g'; else col=hsv(k); end; end if(size(col,1)<k), ids=ones(1,n); end; hs=zeros(1,n); % draw rectangles and optionally labels for b=1:n, hs(b)=rectangle('Position',bb(b,1:4),prop{:},col(ids(b),:)); end if(m==4), return; end; hs=[hs zeros(1,n)]; bb=double(bb); for b=1:n, hs(b+n)=text(bb(b,1),bb(b,2),num2str(bb(b,5),4),tProp{:}); end end function I = embed( I, bb, varargin ) % Embed single or multiple bbs directly into image. % % USAGE % I = bbApply( 'embed', I, bb, varargin ) % % INPUTS % I - input image % bb - [nx4] or [nx5] input bbs % varargin - additional params (struct or name/value pairs) % .col - [0 255 0] color for rectangle or nx3 array of colors % .lw - [3] width for rectangle in pixels % .fh - [35] font height (if displaying weight), may be 0 % .fcol - [255 0 0] font color or nx3 array of colors % % OUTPUT % I - output image % % EXAMPLE % I=imResample(imread('cameraman.tif'),2); bb=[200 70 70 90 0.25]; % J=bbApply('embed',I,bb,'col',[0 0 255],'lw',8,'fh',30); figure(1); im(J) % K=bbApply('embed',J,bb,'col',[0 255 0],'lw',2,'fh',30); figure(2); im(K) % % See also bbApply, bbApply>draw, char2img % get additional parameters dfs={'col',[0 255 0],'lw',3,'fh',35,'fcol',[255 0 0]}; [col,lw,fh,fcol]=getPrmDflt(varargin,dfs,1); n=size(bb,1); bb(:,1:4)=round(bb(:,1:4)); if(size(col,1)==1), col=col(ones(1,n),:); end if(size(fcol,1)==1), fcol=fcol(ones(1,n),:); end if( ismatrix(I) ), I=I(:,:,[1 1 1]); end % embed each bb x0=bb(:,1); x1=x0+bb(:,3)-1; y0=bb(:,2); y1=y0+bb(:,4)-1; j0=floor((lw-1)/2); j1=ceil((lw-1)/2); h=size(I,1); w=size(I,2); x00=max(1,x0-j0); x01=min(x0+j1,w); x10=max(1,x1-j0); x11=min(x1+j1,w); y00=max(1,y0-j0); y01=min(y0+j1,h); y10=max(1,y1-j0); y11=min(y1+j1,h); for b=1:n for c=1:3, I([y00(b):y01(b) y10(b):y11(b)],x00(b):x11(b),c)=col(b,c); end for c=1:3, I(y00(b):y11(b),[x00(b):x01(b) x10(b):x11(b)],c)=col(b,c); end end % embed text displaying bb score (inside upper-left bb corner) if(size(bb,2)<5 || fh==0), return; end bb(:,1:4)=intersect(bb(:,1:4),[1 1 w h]); for b=1:n M=char2img(sprintf('%.4g',bb(b,5)),fh); M=M{1}==0; [h,w]=size(M); y0=bb(b,2); y1=y0+h-1; x0=bb(b,1); x1=x0+w-1; if( x0>=1 && y0>=1 && x1<=size(I,2) && y1<=size(I,1)) Ir=I(y0:y1,x0:x1,1); Ig=I(y0:y1,x0:x1,2); Ib=I(y0:y1,x0:x1,3); Ir(M)=fcol(b,1); Ig(M)=fcol(b,2); Ib(M)=fcol(b,3); I(y0:y1,x0:x1,:)=cat(3,Ir,Ig,Ib); end end end function [patches, bbs] = crop( I, bbs, padEl, dims ) % Crop image regions from I encompassed by bbs. % % The only subtlety is that a pixel centered at location (i,j) would have a % bb of [j-1/2,i-1/2,1,1]. The -1/2 is because pixels are located at % integer locations. This is a Matlab convention, to confirm use: % im(rand(3)); bbApply('draw',[1.5 1.5 1 1],'g') % If bb contains all integer entries cropping is straightforward. If % entries are not integers, x=round(x+.499) is used, eg 1.2 actually goes % to 2 (since it is closer to 1.5 then .5), and likewise for y. % % If ~isempty(padEl), image is padded so can extract full bb region (no % actual padding is done, this is fast). Otherwise bb is intersected with % the image bb prior to cropping. If padEl is a string ('circular', % 'replicate', or 'symmetric'), uses padarray to do actual padding (slow). % % USAGE % [patches, bbs] = bbApply('crop',I,bb,[padEl],[dims]) % % INPUTS % I - image from which to crop patches % bbs - bbs that indicate regions to crop % padEl - [0] value to pad I or [] to indicate no padding (see above) % dims - [] if specified resize each cropped patch to [w h] % % OUTPUTS % patches - [1xn] cell of cropped image regions % bbs - actual integer-valued bbs used to crop % % EXAMPLE % I=imread('cameraman.tif'); bb=[-10 -10 100 100]; % p1=bbApply('crop',I,bb); p2=bbApply('crop',I,bb,'replicate'); % figure(1); im(I); figure(2); im(p1{1}); figure(3); im(p2{1}); % % See also bbApply, ARRAYCROP, PADARRAY, IMRESAMPLE % get padEl, bound bb to visible region if empty if( nargin<3 ), padEl=0; end; h=size(I,1); w=size(I,2); if( nargin<4 ), dims=[]; end; if(isempty(padEl)), bbs=intersect([.5 .5 w h],bbs); end % crop each patch in turn n=size(bbs,1); patches=cell(1,n); for i=1:n, [patches{i},bbs(i,1:4)]=crop1(bbs(i,1:4)); end function [patch, bb] = crop1( bb ) % crop single patch (use arrayCrop only if necessary) lcsS=round(bb([2 1])+.5-.001); lcsE=lcsS+round(bb([4 3]))-1; if( any(lcsS<1) || lcsE(1)>h || lcsE(2)>w ) if( ischar(padEl) ) pt=max(0,1-lcsS(1)); pb=max(0,lcsE(1)-h); pl=max(0,1-lcsS(2)); pr=max(0,lcsE(2)-w); lcsS1=max(1,lcsS); lcsE1=min(lcsE,[h w]); patch = I(lcsS1(1):lcsE1(1),lcsS1(2):lcsE1(2),:); patch = padarray(patch,[pt pl],padEl,'pre'); patch = padarray(patch,[pb pr],padEl,'post'); else if(ndims(I)==3); lcsS=[lcsS 1]; lcsE=[lcsE 3]; end patch = arrayCrop(I,lcsS,lcsE,padEl); end else patch = I(lcsS(1):lcsE(1),lcsS(2):lcsE(2),:); end bb = [lcsS([2 1]) lcsE([2 1])-lcsS([2 1])+1]; if(~isempty(dims)), patch=imResample(patch,[dims(2),dims(1)]); end end end function bb = convert( bb, bbRef, isAbs ) % Convert bb relative to absolute coordinates and vice-versa. % % If isAbs==1, bb is assumed to be given in absolute coords, and the output % is given in coords relative to bbRef. Otherwise, if isAbs==0, bb is % assumed to be given in coords relative to bbRef and the output is given % in absolute coords. % % USAGE % bb = bbApply( 'convert', bb, bbRef, isAbs ) % % INPUTS % bb - original bb, either in abs or rel coords % bbRef - reference bb % isAbs - 1: bb is in abs coords, 0: bb is in rel coords % % OUTPUTS % bb - converted bb % % EXAMPLE % bbRef=[5 5 15 15]; bba=[10 10 5 5]; % bbr = bbApply( 'convert', bba, bbRef, 1 ) % bba2 = bbApply( 'convert', bbr, bbRef, 0 ) % % See also bbApply if( isAbs ) bb(1:2)=bb(1:2)-bbRef(1:2); bb=bb./bbRef([3 4 3 4]); else bb=bb.*bbRef([3 4 3 4]); bb(1:2)=bb(1:2)+bbRef(1:2); end end function bbs = random( varargin ) % Randomly generate bbs that fall in a specified region. % % The vector dims defines the region in which bbs are generated. Specify % dims=[height width] to generate bbs=[x y w h] such that: 1<=x<=width, % 1<=y<=height, x+w-1<=width, y+h-1<=height. The biggest bb generated can % be bb=[1 1 width height]. If dims is a three element vector the third % coordinate is the depth, in this case bbs=[x y w h d] where 1<=d<=depth. % % A number of constraints can be specified that control the size and other % characteristics of the generated bbs. Note that if incompatible % constraints are specified (e.g. if the maximum width and height are both % 5 while the minimum area is 100) no bbs will be generated. More % generally, if fewer than n bbs are generated a warning is displayed. % % USAGE % bbs = bbApply( 'random', pRandom ) % % INPUTS % pRandom - parameters (struct or name/value pairs) % .n - ['REQ'] number of bbs to generate % .dims - ['REQ'] region in which to generate bbs [height,width] % .wRng - [1 inf] range for width of bbs (or scalar value) % .hRng - [1 inf] range for height of bbs (or scalar value) % .aRng - [1 inf] range for area of bbs % .arRng - [0 inf] range for aspect ratio (width/height) of bbs % .unique - [1] if true generate unique bbs % .maxOverlap - [1] max overlap (intersection/union) between bbs % .maxIter - [100] max iterations to go w/o changes before giving up % .show - [0] if true show sample generated bbs % % OUTPUTS % bbs - [nx4] array of randomly generated integer bbs % % EXAMPLE % bbs=bbApply('random','n',50,'dims',[20 20],'arRng',[.5 .5],'show',1); % % See also bbApply % get parameters rng=[1 inf]; dfs={ 'n','REQ', 'dims','REQ', 'wRng',rng, 'hRng',rng, ... 'aRng',rng, 'arRng',[0 inf], 'unique',1, 'maxOverlap',1, ... 'maxIter',100, 'show',0 }; [n,dims,wRng,hRng,aRng,arRng,uniqueOnly,maxOverlap,maxIter,show] ... = getPrmDflt(varargin,dfs,1); if(length(hRng)==1), hRng=[hRng hRng]; end if(length(wRng)==1), wRng=[wRng wRng]; end if(length(dims)==3), d=5; else d=4; end % generate random bbs satisfying constraints bbs=zeros(0,d); ids=zeros(0,1); n1=min(n*10,1000); M=max(dims)+1; M=M.^(0:d-1); iter=0; k=0; tid=ticStatus('generating random bbs',1,2); while( k<n && iter<maxIter ) ys=1+floor(rand(2,n1)*dims(1)); ys0=min(ys); ys1=max(ys); hs=ys1-ys0+1; xs=1+floor(rand(2,n1)*dims(2)); xs0=min(xs); xs1=max(xs); ws=xs1-xs0+1; if(d==5), ds=1+floor(rand(1,n1)*dims(3)); else ds=zeros(0,n1); end if(arRng(1)==arRng(2)), ws=hs.*arRng(1); end ars=ws./hs; ws=round(ws); xs1=xs0+ws-1; as=ws.*hs; kp = ys0>0 & xs0>0 & ys1<=dims(1) & xs1<=dims(2) & ... hs>=hRng(1) & hs<=hRng(2) & ws>=wRng(1) & ws<=wRng(2) & ... as>=aRng(1) & as<=aRng(2) & ars>=arRng(1) & ars<=arRng(2); bbs1=[xs0' ys0' ws' hs' ds']; bbs1=bbs1(kp,:); k0=k; bbs=[bbs; bbs1]; k=size(bbs,1); %#ok<AGROW> if( maxOverlap<1 && k ), bbs=bbs(1:k0,:); for j=1:size(bbs1,1), bbs0=bbs; bb=bbs1(j,:); if(d==5), bbs=bbs(bbs(:,5)==bb(5),:); end if(isempty(bbs)), bbs=[bbs0; bb]; continue; end ws1=min(bbs(:,1)+bbs(:,3),bb(1)+bb(3))-max(bbs(:,1),bb(1)); hs1=min(bbs(:,2)+bbs(:,4),bb(2)+bb(4))-max(bbs(:,2),bb(2)); o=max(0,ws1).*max(0,hs1); o=o./(bbs(:,3).*bbs(:,4)+bb(3).*bb(4)-o); if(max(o)<=maxOverlap), bbs=[bbs0; bb]; else bbs=bbs0; end end elseif( uniqueOnly && k ) ids=[ids; sum(bbs1.*M(ones(1,size(bbs1,1)),:),2)]; %#ok<AGROW> [ids,o]=sort(ids); bbs=bbs(o,:); kp=[ids(1:end-1)~=ids(2:end); true]; bbs=bbs(kp,:); ids=ids(kp,:); end k=size(bbs,1); if(k0==k), iter=iter+1; else iter=0; end if(k>n), bbs=bbs(randSample(k,n),:); k=n; end; tocStatus(tid,max(k/n,iter/maxIter)); end if( k<n ), warning('only generated %i of %i bbs',k,n); n=k; end %#ok<WNTAG> % optionally display a few bbs if( show ) k=8; figure(show); im(zeros(dims)); cs=uniqueColors(1,k,0,0); if(n>k), bbs1=bbs(randsample(n,k),:); else bbs1=bbs; end bbs1(:,1:2)=bbs1(:,1:2)-.5; for i=1:min(k,n), rectangle('Position',bbs1(i,:),... 'EdgeColor',cs(i,:),'LineStyle','--'); end end end function bbs = frMask( M, bbw, bbh, thr ) % Convert weighted mask to bbs. % % Pixels in mask above given threshold (thr) indicate bb centers. % % USAGE % bbs = bbApply('frMask',M,bbw,bbh,[thr]) % % INPUTS % M - mask % bbw - bb target width % bbh - bb target height % thr - [0] mask threshold % % OUTPUTS % bbs - bounding boxes % % EXAMPLE % w=20; h=10; bbw=5; bbh=8; M=double(rand(h,w)); M(M<.95)=0; % bbs=bbApply('frMask',M,bbw,bbh); M2=bbApply('toMask',bbs,w,h); % sum(abs(M(:)-M2(:))) % % See also bbApply, bbApply>toMask if(nargin<4), thr=0; end ids=find(M>thr); ids=ids(:); h=size(M,1); if(isempty(ids)), bbs=zeros(0,5); return; end xs=floor((ids-1)/h); ys=ids-xs*h; xs=xs+1; bbs=[xs-floor(bbw/2) ys-floor(bbh/2)]; bbs(:,3)=bbw; bbs(:,4)=bbh; bbs(:,5)=M(ids); end function M = toMask( bbs, w, h, fill, bgrd ) % Create weighted mask encoding bb centers (or extent). % % USAGE % M = bbApply('toMask',bbs,w,h,[fill],[bgrd]) % % INPUTS % bbs - bounding boxes % w - mask target width % h - mask target height % fill - [0] if 1 encodes extent of bbs % bgrd - [0] default value for background pixels % % OUTPUTS % M - hxw mask % % EXAMPLE % % See also bbApply, bbApply>frMask if(nargin<4||isempty(fill)), fill=0; end if(nargin<5||isempty(bgrd)), bgrd=0; end if(size(bbs,2)==4), bbs(:,5)=1; end M=zeros(h,w); B=true(h,w); n=size(bbs,1); if( fill==0 ) p=floor(getCenter(bbs)); p=sub2ind([h w],p(:,2),p(:,1)); for i=1:n, M(p(i))=M(p(i))+bbs(i,5); end if(bgrd~=0), B(p)=0; end else bbs=[intersect(round(bbs),[1 1 w h]) bbs(:,5)]; n=size(bbs,1); x0=bbs(:,1); x1=x0+bbs(:,3)-1; y0=bbs(:,2); y1=y0+bbs(:,4)-1; for i=1:n, y=y0(i):y1(i); x=x0(i):x1(i); M(y,x)=M(y,x)+bbs(i,5); B(y,x)=0; end end if(bgrd~=0), M(B)=bgrd; end end
github
GYZHikari/Semantic-Cosegmentation-master
imwrite2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/images/imwrite2.m
5,086
utf_8
c98d66c2cddd9ec90beb9b1bbde31fe0
function I = imwrite2( I, mulFlag, imagei, path, ... name, ext, nDigits, nSplits, spliti, varargin ) % Similar to imwrite, except follows a strict naming convention. % % Wrapper for imwrite that writes file to the filename: % fName = [path name int2str2(i,nDigits) '.' ext]; % Using imwrite: % imwrite( I, fName, writePrms ) % If I represents a stack of images, the ith image is written to: % fNamei = [path name int2str2(i+imagei-1,nDigits) '.' ext]; % If I=[], then imwrite2 will attempt to read images from disk instead. % If dir spec. by 'path' does not exist, imwrite2 attempts to create it. % % mulFlag controls how I is interpreted. If mulFlag==0, then I is % intrepreted as a single image, otherwise I is interpreted as a stack of % images, where I(:,:,...,j) represents the jth image (see fevalArrays for % more info). % % If nSplits>1, writes/reads images into/from multiple directories. This is % useful since certain OS handle very large directories (of say >20K % images) rather poorly (I'm talking to you Bill). Thus, can take 100K % images, and write into 5 separate dirs, then read them back in. % % USAGE % I = imwrite2( I, mulFlag, imagei, path, ... % [name], [ext], [nDigits], [nSplits], [spliti], [varargin] ) % % INPUTS % I - image or array or cell of images (if [] reads else writes) % mulFlag - set to 1 if I represents a stack of images % imagei - first image number % path - directory where images are % name - ['I'] base name of images % ext - ['png'] extension of image % nDigits - [5] number of digits for filename index % nSplits - [1] number of dirs to break data into % spliti - [0] first split (dir) number % writePrms - [varargin] parameters to imwrite % % OUTPUTS % I - image or images (read from disk if input I=[]) % % EXAMPLE % load images; I=images(:,:,1:10); clear IDXi IDXv t video videos images; % imwrite2( I(:,:,1), 0, 0, 'rats/', 'rats', 'png', 5 ); % write 1 % imwrite2( I, 1, 0, 'rats/', 'rats', 'png', 5 ); % write 5 % I2 = imwrite2( [], 1, 0, 'rats/', 'rats', 'png', 5 ); % read 5 % I3 = fevalImages(@(x) x,{},'rats/','rats','png',0,4,5); % read 5 % % EXAMPLE - multiple splits % load images; I=images(:,:,1:10); clear IDXi IDXv t video videos images; % imwrite2( I, 1, 0, 'rats', 'rats', 'png', 5, 2, 0 ); % write 10 % I2=imwrite2( [], 1, 0, 'rats', 'rats', 'png', 5, 2, 0 ); % read 10 % % See also FEVALIMAGES, FEVALARRAYS % % Piotr's Computer Vision Matlab Toolbox Version 2.30 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<5 || isempty(name) ); name='I'; end; if( nargin<6 || isempty(ext) ); ext='png'; end; if( nargin<7 || isempty(nDigits) ); nDigits=5; end; if( nargin<8 || isempty(nSplits) ); nSplits=1; end; if( nargin<9 || isempty(spliti) ); spliti=0; end; n = size(I,3); if(isempty(I)); n=0; end % multiple splits -- call imwrite2 recursively if( nSplits>1 ) write2inp = [ {name, ext, nDigits, 1, 0} varargin ]; if(n>0); nSplits=min(n,nSplits); end; for s=1:nSplits pathS = [path int2str2(s-1+spliti,2)]; if( n>0 ) % write nPerDir = ceil( n / nSplits ); ISplit = I(:,:,1:min(end,nPerDir)); imwrite2( ISplit, nPerDir>1, 0, pathS, write2inp{:} ); if( s~=nSplits ); I = I(:,:,(nPerDir+1):end); end else % read ISplit = imwrite2( [], 1, 0, pathS, write2inp{:} ); I = cat(3,I,ISplit); end end return; end % if I is empty read from disk if( n==0 ) I = fevalImages( @(x) x, {}, path, name, ext, imagei, [], nDigits ); return; end % Check if path exists (create if not) and add '/' at end if needed if( ~isempty(path) ) if(~exist(path,'dir')) warning( ['creating directory: ' path] ); %#ok<WNTAG> mkdir( path ); end; if( path(end)~='\' && path(end)~='/' ); path(end+1) = '/'; end end % Write images using one of the two subfunctions params = varargin; if( mulFlag ) imwrite2m( [], 'init', imagei, path, name, ext, nDigits, params ); if( ~iscell(I) ) fevalArrays( I, @imwrite2m, 'write' ); else fevalArrays( I, @(x) imwrite2m(x{1},'write') ); end else if( ~iscell(I) ) imwrite2s( I, imagei, path, name, ext, nDigits, params ); else imwrite2s( I{1}, imagei, path, name, ext, nDigits, params ); end; end function varargout = imwrite2m( I, type, varargin ) % helper for writing multiple images (passed to fevalArrays) persistent imagei path name ext nDigits params switch type case 'init' narginchk(8,8); [nstart, path, name, ext, nDigits, params] = deal(varargin{:}); if(isempty(nstart)); imagei=0; else imagei=nstart; end varargout = {[]}; case 'write' narginchk(2,2); imwrite2s( I, imagei, path, name, ext, nDigits, params ); imagei = imagei+1; varargout = {[]}; end function imwrite2s( I, imagei, path, name, ext, nDigits, params ) % helper for writing a single image fullname = [path name int2str2(imagei,nDigits) '.' ext]; imwrite( I, fullname, params{:} );
github
GYZHikari/Semantic-Cosegmentation-master
convnFast.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/images/convnFast.m
9,102
utf_8
03d05e74bb7ae2ecb0afd0ac115fda39
function C = convnFast( A, B, shape ) % Fast convolution, replacement for both conv2 and convn. % % See conv2 or convn for more information on convolution in general. % % This works as a replacement for both conv2 and convn. Basically, % performs convolution in either the frequency or spatial domain, depending % on which it thinks will be faster (see below). In general, if A is much % bigger then B then spatial convolution will be faster, but if B is of % similar size to A and both are fairly big (such as in the case of % correlation), convolution as multiplication in the frequency domain will % tend to be faster. % % The shape flag can take on 1 additional value which is 'smooth'. This % flag is intended for use with smoothing kernels. The returned matrix C % is the same size as A with boundary effects handled in a special manner. % That is instead of A being zero padded before being convolved with B; % near the boundaries a cropped version of the matrix B is used, and the % results is scaled by the fraction of the weight found in the cropped % version of B. In this case each dimension of B must be odd, and all % elements of B must be positive. There are other restrictions on when % this flag can be used, and in general it is only useful for smoothing % kernels. For 2D filtering it does not have much overhead, for 3D it has % more and for higher dimensions much much more. % % For optimal performance some timing constants must be set to choose % between doing convolution in the spatial and frequency domains, for more % info see timeConv below. % % USAGE % C = convnFast( A, B, [shape] ) % % INPUTS % A - d dimensional input matrix % B - d dimensional matrix to convolve with A % shape - ['full'] 'valid', 'full', 'same', or 'smooth' % % OUTPUTS % C - result of convolution % % EXAMPLE % % See also CONV2, CONVN % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<3 || isempty(shape)); shape='full'; end if( ~any(strcmp(shape,{'same', 'valid', 'full', 'smooth'})) ) error( 'convnFast: unknown shape flag' ); end shapeorig = shape; smoothFlag = (strcmp(shape,'smooth')); if( smoothFlag ); shape = 'same'; end; % get dimensions of A and B ndA = ndims(A); ndB = ndims(B); nd = max(ndA,ndB); sizA = size(A); sizB = size(B); if (ndA>ndB); sizB = [sizB ones(1,ndA-ndB)]; end if (ndA<ndB); sizA = [sizA ones(1,ndB-ndA)]; end % ERROR CHECK if smoothflag if( smoothFlag ) if( ~all( mod(sizB,2)==1 ) ) error('If flag==''smooth'' then must have odd sized mask'); end; if( ~all( B>0 ) ) error('If flag==''smooth'' then mask must have >0 values.'); end; if( any( (sizB-1)/2>sizA ) ) error('B is more then twice as big as A, cannot use flag==''smooth'''); end; end % OPTIMIZATION for 3D conv when B is actually 2D - calls (spatial) conv2 % repeatedly on 2D slices of A. Note that may need to rearange A and B % first and use recursion. The benefits carry over to convnBound % (which is faster for 2D arrays). if( ndA==3 && ndB==3 && (sizB(1)==1 || sizB(2)==1) ) if (sizB(1)==1) A = permute( A, [2 3 1]); B = permute( B, [2 3 1]); C = convnFast( A, B, shapeorig ); C = permute( C, [3 1 2] ); elseif (sizB(2)==1) A = permute( A, [3 1 2]); B = permute( B, [3 1 2]); C = convnFast( A, B, shapeorig ); C = permute( C, [2 3 1] ); end return; elseif( ndA==3 && ndB==2 ) C1 = conv2( A(:,:,1), B, shape ); C = zeros( [size(C1), sizA(3)] ); C(:,:,1) = C1; for i=2:sizA(3); C(:,:,i) = conv2( A(:,:,i), B, shape ); end if (smoothFlag) for i=1:sizA(3) C(:,:,i) = convnBound(A(:,:,i),B,C(:,:,i),sizA(1:2),sizB(1:2)); end end return; end % get predicted time of convolution in frequency and spatial domain % constants taken from timeConv sizfft = 2.^ceil(real(log2(sizA+sizB-1))); psizfft=prod(sizfft); frequenPt = 3 * 1e-7 * psizfft * log(psizfft); if (nd==2) spatialPt = 5e-9 * sizA(1) * sizA(2) * sizB(1) * sizB(2); else spatialPt = 5e-8 * prod(sizA) * prod(sizB); end % perform convolution if ( spatialPt < frequenPt ) if (nd==2) C = conv2( A, B, shape ); else C = convn( A, B, shape ); end else C = convnFreq( A, B, sizA, sizB, shape ); end; % now correct boundary effects (if shape=='smooth') if( ~smoothFlag ); return; end; C = convnBound( A, B, C, sizA, sizB ); function C = convnBound( A, B, C, sizA, sizB ) % calculate boundary values for C in spatial domain nd = length(sizA); radii = (sizB-1)/2; % flip B appropriately (conv flips B) for d=1:nd; B = flipdim(B,d); end % accelerated case for 1D mask B if( nd==2 && sizB(1)==1 ) sumB=sum(B(:)); r=radii(2); O=ones(1,sizA(1)); for i=1:r Ai=A(:,1:r+i); Bi=B(r+2-i:end); C(:,i)=sum(Ai.*Bi(O,:),2)/sum(Bi)*sumB; Ai=A(:,end+1-r-i:end); Bi=B(1:(end-r+i-1)); C(:,end-i+1)=sum(Ai.*Bi(O,:),2)/sum(Bi)*sumB; end; return; elseif( nd==2 && sizB(2)==1 ) sumB=sum(B(:)); r=radii(1); O=ones(1,sizA(2)); for i=1:r Ai=A(1:r+i,:); Bi=B(r+2-i:end); C(i,:)=sum(Ai.*Bi(:,O),1)/sum(Bi)*sumB; Ai=A(end+1-r-i:end,:); Bi=B(1:(end-r+i-1)); C(end-i+1,:)=sum(Ai.*Bi(:,O),1)/sum(Bi)*sumB; end; return; end % get location that need to be updated inds = {':'}; inds = inds(:,ones(1,nd)); Dind = zeros( sizA ); for d=1:nd inds1 = inds; inds1{ d } = 1:radii(d); inds2 = inds; inds2{ d } = sizA(d)-radii(d)+1:sizA(d); Dind(inds1{:}) = 1; Dind(inds2{:}) = 1; end Dind = find( Dind ); Dndx = ind2sub2( sizA, Dind ); nlocs = length(Dind); % get cuboid dimensions for all the boundary regions sizeArep = repmat( sizA, [nlocs,1] ); radiiRep = repmat( radii, [nlocs,1] ); Astarts = max(1,Dndx-radiiRep); Aends = min( sizeArep, Dndx+radiiRep); Bstarts = Astarts + (1-Dndx+radiiRep); Bends = Bstarts + (Aends-Astarts); % now update these locations vs = zeros( 1, nlocs ); if( nd==2 ) for i=1:nlocs % accelerated for 2D arrays Apart = A( Astarts(i,1):Aends(i,1), Astarts(i,2):Aends(i,2) ); Bpart = B( Bstarts(i,1):Bends(i,1), Bstarts(i,2):Bends(i,2) ); v = (Apart.*Bpart); vs(i) = sum(v(:)) ./ sum(Bpart(:)); end elseif( nd==3 ) % accelerated for 3D arrays for i=1:nlocs Apart = A( Astarts(i,1):Aends(i,1), Astarts(i,2):Aends(i,2), ... Astarts(i,3):Aends(i,3) ); Bpart = B( Bstarts(i,1):Bends(i,1), Bstarts(i,2):Bends(i,2), ... Bstarts(i,3):Bends(i,3) ); za = sum(sum(sum(Apart.*Bpart))); zb=sum(sum(sum(Bpart))); vs(1,i) = za./zb; end else % general case [slow] extract=cell(1,nd); for i=1:nlocs for d=1:nd; extract{d} = Astarts(i,d):Aends(i,d); end Apart = A( extract{:} ); for d=1:nd; extract{d} = Bstarts(i,d):Bends(i,d); end Bpart = B( extract{:} ); v = (Apart.*Bpart); vs(i) = sum(v(:)) ./ sum(Bpart(:)); end end C( Dind ) = vs * sum(B(:)); function C = convnFreq( A, B, sizA, sizB, shape ) % Convolution as multiplication in the frequency domain siz = sizA + sizB - 1; % calculate correlation in frequency domain Fa = fftn(A,siz); Fb = fftn(B,siz); C = ifftn(Fa .* Fb); % make sure output is real if inputs were both real if(isreal(A) && isreal(B)); C = real(C); end % crop to size if(strcmp(shape,'valid')) C = arrayToDims( C, max(0,sizA-sizB+1 ) ); elseif(strcmp(shape,'same')) C = arrayToDims( C, sizA ); elseif(~strcmp(shape,'full')) error('unknown shape'); end function K = timeConv() %#ok<DEFNU> % Function used to calculate constants for prediction of convolution in the % frequency and spatial domains. Method taken from normxcorr2.m % May need to reset K's if placing this on a new machine, however, their % ratio should be about the same.. mintime = 4; switch 3 case 1 % conv2 [[empirically K = 5e-9]] % convolution time = K*prod(size(a))*prod(size(b)) siza = 30; sizb = 200; a = ones(siza); b = ones(sizb); t1 = cputime; t2 = t1; k = 0; while (t2-t1)<mintime; disc = conv2(a,b); k = k + 1; t2 = cputime; %#ok<NASGU> end K = (t2-t1)/k/siza^2/sizb^2; case 2 % convn [[empirically K = 5e-8]] % convolution time = K*prod(size(a))*prod(size(b)) siza = [10 10 10]; sizb = [30 30 10]; a = ones(siza); b = ones(sizb); t1 = cputime; t2 = t1; k = 0; while (t2-t1)<mintime; disc = convn(a,b); k = k + 1; t2 = cputime; %#ok<NASGU> end K = (t2-t1)/k/prod(siza)/prod(sizb); case 3 % fft (one dimensional) [[empirically K = 1e-7]] % fft time = K * n log(n) [if n is power of 2] % Works fastest for powers of 2. (so always zero pad until have % size of power of 2?). 2 dimensional fft has to apply single % dimensional fft to each column, and then signle dimensional fft % to each resulting row. time = K * (mn)log(mn). Likewise for % highter dimensions. convnFreq requires 3 such ffts. n = 2^nextpow2(2^15); vec = complex(rand(n,1),rand(n,1)); t1 = cputime; t2 = t1; k = 0; while (t2-t1) < mintime; disc = fft(vec); k = k + 1; t2 = cputime; %#ok<NASGU> end K = (t2-t1) / k / n / log(n); end
github
GYZHikari/Semantic-Cosegmentation-master
imMlGauss.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/images/imMlGauss.m
5,674
utf_8
56ead1b25fbe356f7912993d46468d02
function varargout = imMlGauss( G, symmFlag, show ) % Calculates max likelihood params of Gaussian that gave rise to image G. % % Suppose G contains an image of a gaussian distribution. One way to % recover the parameters of the gaussian is to threshold the image, and % then estimate the mean/covariance based on the coordinates of the % thresholded points. A better method is to do no thresholding and instead % use all the coordinates, weighted by their value. This function does the % latter, except in a very efficient manner since all computations are done % in parallel over the entire image. % % This function works over 2D or 3D images. It makes most sense when G in % fact contains an image of a single gaussian, but a result will be % returned regardless. All operations are performed on abs(G) in case it % contains negative or complex values. % % symmFlag is an optional flag that if set to 1 then imMlGauss recovers % the maximum likelihood symmetric gaussian. That is the variance in each % direction is equal, and all covariance terms are 0. If symmFlag is set % to 2 and G is 3D, imMlGauss recovers the ML guassian with equal % variance in the 1st 2 dimensions (row and col) and all covariance terms % equal to 0, but a possibly different variance in the 3rd (z or t) % dimension. % % USAGE % varargout = imMlGauss( G, [symmFlag], [show] ) % % INPUTS % G - image of a gaussian (weighted pixels) % symmFlag - [0] see above % show - [0] figure to use for optional display % % OUTPUTS % mu - 2 or 3 element vector specifying the mean [row,col,z] % C - 2x2 or 3x3 covariance matrix [row,col,z] % GR - image of the recovered gaussian (faster if omitted) % logl - log likelihood of G given recov. gaussian (faster if omitted) % % EXAMPLE - 2D % R = rotationMatrix( pi/6 ); C=R'*[10^2 0; 0 20^2]*R; % G = filterGauss( [200, 300], [150,100], C, 0 ); % [mu,C,GR,logl] = imMlGauss( G, 0, 1 ); % mask = maskEllipse( size(G,1), size(G,2), mu, C ); % figure(2); im(mask) % % EXAMPLE - 3D % R = rotationMatrix( [1,1,0], pi/4 ); % C = R'*[5^2 0 0; 0 2^2 0; 0 0 4^2]*R; % G = filterGauss( [50,50,50], [25,25,25], C, 0 ); % [mu,C,GR,logl] = imMlGauss( G, 0, 1 ); % % See also GAUSS2ELLIPSE, PLOTGAUSSELLIPSES, MASKELLIPSE % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<2 || isempty(symmFlag) ); symmFlag=0; end; if( nargin<3 || isempty(show) ); show=0; end; varargout = cell(1,max(nargout,2)); nd = ndims(G); G = abs(G); if( nd==2 ) [varargout{:}] = imMlGauss2D( G, symmFlag, show ); elseif( nd==3 ) [varargout{:}] = imMlGauss3D( G, symmFlag, show ); else error( 'Unsupported dimension for G. G must be 2D or 3D.' ); end function [mu,C,GR,logl] = imMlGauss2D( G, symmFlag, show ) % to be used throughout calculations [ gridCols, gridRows ] = meshgrid( 1:size(G,2), 1:size(G,1) ); sumG = sum(G(:)); if(sumG==0); sumG=1; end; % recover mean muCol = (gridCols .* G); muCol = sum( muCol(:) ) / sumG; muRow = (gridRows .* G); muRow = sum( muRow(:) ) / sumG; mu = [muRow, muCol]; % recover sigma distCols = (gridCols - muCol); distRows = (gridRows - muRow); if( symmFlag==0 ) Ccc = (distCols .^ 2) .* G; Ccc = sum(Ccc(:)) / sumG; Crr = (distRows .^ 2) .* G; Crr = sum(Crr(:)) / sumG; Crc = (distCols .* distRows) .* G; Crc = sum(Crc(:)) / sumG; C = [Crr Crc; Crc Ccc]; elseif( symmFlag==1 ) sigSq = (distCols.^2 + distRows.^2) .* G; sigSq = 1/2 * sum(sigSq(:)) / sumG; C = sigSq*eye(2); else error(['Illegal value for symmFlag: ' num2str(symmFlag)]); end % get the log likelihood of the data if (nargout>2) GR = filterGauss( size(G), mu, C ); probs = GR; probs( probs<realmin ) = realmin; logl = G .* log( probs ); logl = sum( logl(:) ); end % plot ellipses if (show) figure(show); im(G); hold('on'); plotGaussEllipses( mu, C, 2 ); hold('off'); end function [mu,C,GR,logl] = imMlGauss3D( G, symmFlag, show ) % to be used throughout calculations [gridCols,gridRows,gridZs]=meshgrid(1:size(G,2),1:size(G,1),1:size(G,3)); sumG = sum(G(:)); % recover mean muCol = (gridCols .* G); muCol = sum( muCol(:) ) / sumG; muRow = (gridRows .* G); muRow = sum( muRow(:) ) / sumG; muZ = (gridZs .* G); muZ = sum( muZ(:) ) / sumG; mu = [muRow, muCol, muZ]; % recover C distCols = (gridCols - muCol); distRows = (gridRows - muRow); distZs = (gridZs - muZ); if( symmFlag==0 ) distColsG = distCols .* G; distRowsG = distRows .* G; Ccc = distCols .* distColsG; Ccc = sum(Ccc(:)); Crc = distRows .* distColsG; Crc = sum(Crc(:)); Czc = distZs .* distColsG; Czc = sum(Czc(:)); Crr = distRows .* distRowsG; Crr = sum(Crr(:)); Czr = distZs .* distRowsG; Czr = sum(Czr(:)); Czz = distZs .* distZs .* G; Czz = sum(Czz(:)); C = [Crr Crc Czr; Crc Ccc Czc; Czr Czc Czz] / sumG; elseif( symmFlag==1 ) sigSq = (distCols.^2 + distRows.^2 + distZs .^ 2) .* G; sigSq = 1/3 * sum(sigSq(:)); C = [sigSq 0 0; 0 sigSq 0; 0 0 sigSq] / sumG; elseif( symmFlag==2 ) sigSq = (distCols.^2 + distRows.^2) .* G; sigSq = 1/2 * sum(sigSq(:)); tauSq = (distZs .^ 2) .* G; tauSq = sum(tauSq(:)); C = [sigSq 0 0; 0 sigSq 0; 0 0 tauSq] / sumG; else error(['Illegal value for symmFlag: ' num2str(symmFlag)]) end % get the log likelihood of the data if( nargout>2 || (show) ) GR = filterGauss( size(G), mu, C ); probs = GR; probs( probs<realmin ) = realmin; logl = G .* log( probs ); logl = sum( logl(:) ); end % plot G and GR if( show ) figure(show); montage2(G); figure(show+1); montage2(GR); end
github
GYZHikari/Semantic-Cosegmentation-master
montage2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/images/montage2.m
7,484
utf_8
828f57d7b1f67d36eeb6056f06568ebf
function varargout = montage2( IS, prm ) % Used to display collections of images and videos. % % Improved version of montage, with more control over display. % NOTE: Can convert between MxNxT and MxNx3xT image stack via: % I = repmat( I, [1,1,1,3] ); I = permute(I, [1,2,4,3] ); % % USAGE % varargout = montage2( IS, [prm] ) % % INPUTS % IS - MxNxTxR or MxNxCxTxR, where C==1 or C==3, and R may be 1 % or cell vector of MxNxT or MxNxCxT matrices % prm % .showLines - [1] whether to show lines separating the various frames % .extraInfo - [0] if 1 then a colorbar is shown as well as impixelinfo % .cLim - [] cLim = [clow chigh] optional scaling of data % .mm - [] #images/col per montage % .nn - [] #images/row per montage % .labels - [] cell array of labels (strings) (T if R==1 else R) % .perRow - [0] only if R>1 and not cell, alternative displays method % .hasChn - [0] if true assumes IS is MxNxCxTxR else MxNxTxR % .padAmt - [0] only if perRow, amount to pad when in row mode % .padEl - [] pad element, defaults to min value in IS % % OUTPUTS % h - image handle % m - #images/col % nn - #images/row % % EXAMPLE - [3D] show a montage of images % load( 'images.mat' ); clf; montage2( images ); % % EXAMPLE - [3D] show a montage of images with labels % load( 'images.mat' ); % for i=1:50; labels{i}=['I-' int2str2(i,2)]; end % prm = struct('extraInfo',1,'perRow',0,'labels',{labels}); % clf; montage2( images(:,:,1:50), prm ); % % EXAMPLE - [3D] show a montage of images with color boundaries % load( 'images.mat' ); % I3 = repmat(permute(images,[1 2 4 3]),[1,1,3,1]); % add color chnls % prm = struct('padAmt',4,'padEl',[50 180 50],'hasChn',1,'showLines',0); % clf; montage2( I3(:,:,:,1:48), prm ) % % EXAMPLE - [4D] show a montage of several groups of images % for i=1:25; labels{i}=['V-' int2str2(i,2)]; end % prm = struct('labels',{labels}); % load( 'images.mat' ); clf; montage2( videos(:,:,:,1:25), prm ); % % EXAMPLE - [4D] show using 'row' format % load( 'images.mat' ); % prm = struct('perRow',1, 'padAmt',6, 'padEl',255 ); % figure(1); clf; montage2( videos(:,:,:,1:10), prm ); % % See also MONTAGE, PLAYMOVIE, FILMSTRIP % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<2 ); prm=struct(); end varargout = cell(1,nargout); %%% get parameters (set defaults) dfs = {'showLines',1, 'extraInfo',0, 'cLim',[], 'mm',[], 'nn',[],... 'labels',[], 'perRow',false, 'padAmt',0, 'padEl',[], 'hasChn',false }; prm = getPrmDflt( prm, dfs ); extraInfo=prm.extraInfo; labels=prm.labels; perRow=prm.perRow; hasChn=prm.hasChn; %%% If IS is not a cell convert to MxNxCxTxR array if( iscell(IS) && numel(IS)==1 ); IS=IS{1}; end; if( ~iscell(IS) && ~ismatrix(IS) ) siz=size(IS); if( ~hasChn ); IS=reshape(IS,[siz(1:2),1,siz(3:end)]); prm.hasChn = true; end; if(ndims(IS)>5); error('montage2: input too large'); end; end if( ~iscell(IS) && size(IS,5)==1 ) %%% special case call subMontage once [varargout{:}] = subMontage(IS,prm); title(inputname(1)); elseif( perRow ) %%% display each montage in row format if(iscell(IS)); error('montage2: IS cannot be a cell if perRow'); end; siz = size(IS); IS=reshape(permute(IS,[1 2 4 3 5]),siz(1),[],siz(3),siz(5)); if( nargout ); varargout{1}=IS; end prm.perRow = false; prm.hasChn=true; [varargout{2:end}] = subMontage( IS, prm ); title(inputname(1)); else %%% display each montage using subMontage % convert to cell array if( iscell(IS) ) nMontages = numel(IS); else nMontages = size(IS,5); IS = squeeze(mat2cell2( IS, [1 1 1 1 nMontages] )); end % draw each montage clf; nn = ceil( sqrt(nMontages) ); mm = ceil(nMontages/nn); for i=1:nMontages subplot(mm,nn,i); prmSub=prm; prmSub.extraInfo=0; prmSub.labels=[]; if( ~isempty(IS{i}) ) subMontage( IS{i}, prmSub ); else set(gca,'XTick',[]); set(gca,'YTick',[]); end if(~isempty(labels)); title(labels{i}); end end if( extraInfo ); impixelinfo; end; end function varargout = subMontage( IS, prm ) % this function is a generalized version of Matlab's montage.m % get parameters (set defaults) dfs = {'showLines',1, 'extraInfo',0, 'cLim',[], 'mm',[], 'nn',[], ... 'labels',[], 'perRow',false, 'hasChn',false, 'padAmt',0, 'padEl',[] }; prm = getPrmDflt( prm, dfs ); showLines=prm.showLines; extraInfo=prm.extraInfo; cLim=prm.cLim; mm=prm.mm; nn=prm.nn; labels=prm.labels; hasChn=prm.hasChn; padAmt=prm.padAmt; padEl=prm.padEl; if( prm.perRow ); mm=1; end; % get/test image format info and parameters if( hasChn ) if( ndims(IS)>4 || ~any(size(IS,3)==[1 3]) ) error('montage2: unsupported dimension of IS'); end else if( ndims(IS)>3 ); error('montage2: unsupported dimension of IS'); end IS = permute(IS, [1 2 4 3] ); end siz = size(IS); nCh=size(IS,3); nIm = size(IS,4); sizPad=siz+padAmt; if( ~isempty(labels) && nIm~=length(labels) ) error('montage2: incorrect number of labels'); end % set up the padEl correctly (must have same type / nCh as IS) if(isempty(padEl)) if(isempty(cLim)); padEl=min(IS(:)); else padEl=cLim(1); end; end if(length(padEl)==1); padEl=repmat(padEl,[1 nCh]); end; if(length(padEl)~=nCh); error( 'invalid padEl' ); end; padEl = feval( class(IS), padEl ); padEl = reshape( padEl, 1, 1, [] ); padAmt = floor(padAmt/2 + .5)*2; % get layout of images (mm=#images/row, nn=#images/col) if( isempty(mm) || isempty(nn)) if( isempty(mm) && isempty(nn)) nn = min( ceil(sqrt(sizPad(1)*nIm/sizPad(2))), nIm ); mm = ceil( nIm/nn ); elseif( isempty(mm) ) nn = min( nn, nIm ); mm = ceil(nIm/nn); else mm = min( mm, nIm ); nn = ceil(nIm/mm); end % often can shrink dimension further while((mm-1)*nn>=nIm); mm=mm-1; end; while((nn-1)*mm>=nIm); nn=nn-1; end; end % Calculate I (M*mm x N*nn size image) I = repmat(padEl, [mm*sizPad(1), nn*sizPad(2), 1]); rows = 1:siz(1); cols = 1:siz(2); for k=1:nIm rowsK = rows + floor((k-1)/nn)*sizPad(1)+padAmt/2; colsK = cols + mod(k-1,nn)*sizPad(2)+padAmt/2; I(rowsK,colsK,:) = IS(:,:,:,k); end % display I if( ~isempty(cLim)); h=imagesc(I,cLim); else h=imagesc(I); end colormap(gray); axis('image'); if( extraInfo ) colorbar; impixelinfo; else set(gca,'Visible','off') end % draw lines separating frames if( showLines ) montageWd = nn * sizPad(2) + .5; montageHt = mm * sizPad(1) + .5; for i=1:mm-1 ht = i*sizPad(1) +.5; line([.5,montageWd],[ht,ht]); end for i=1:nn-1 wd = i*sizPad(2) +.5; line([wd,wd],[.5,montageHt]); end end % plot text labels textalign = { 'VerticalAlignment','bottom','HorizontalAlignment','left'}; if( ~isempty(labels) ) count=1; for i=1:mm; for j=1:nn if( count<=nIm ) rStr = i*sizPad(1)-padAmt/2; cStr =(j-1+.1)*sizPad(2)+padAmt/2; text(cStr,rStr,labels{count},'color','r',textalign{:}); count = count+1; end end end end % cross out unused frames [nns,mms] = ind2sub( [nn,mm], nIm+1 ); for i=mms-1:mm-1 for j=nns-1:nn-1, rStr = i*sizPad(1)+.5+padAmt/2; rs = [rStr,rStr+siz(1)]; cStr = j*sizPad(2)+.5+padAmt/2; cs = [cStr,cStr+siz(2)]; line( cs, rs ); line( fliplr(cs), rs ); end end % optional output if( nargout>0 ); varargout={h,mm,nn}; end
github
GYZHikari/Semantic-Cosegmentation-master
jitterImage.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/images/jitterImage.m
5,252
utf_8
3310f8412af00fd504c6f94b8c48992c
function IJ = jitterImage( I, varargin ) % Creates multiple, slightly jittered versions of an image. % % Takes an image I, and generates a number of images that are copies of the % original image with slight translation, rotation and scaling applied. If % the input image is actually an MxNxK stack of images then applies op to % each image. Rotations and translations are specified by giving a range % and a max value for each. For example, if mPhi=10 and nPhi=5, then the % actual rotations applied are linspace(-mPhi,mPhi,nPhi)=[-10 -5 0 5 10]. % Likewise if mTrn=3 and nTrn=3 then the translations are [-3 0 3]. Each % tran is applied in the x direction as well as the y direction. Each % combination of rotation, tran in x, tran in y and scale is used (for % example phi=5, transx=-3, transy=0), so the total number of images % generated is R=nTrn*nTrn*nPhi*nScl. Finally, jsiz controls the size of % the cropped images. If jsiz gives a size that's sufficiently smaller than % I then all data in the the final set will come from I. Otherwise, I must % be padded first (by calling padarray with the 'replicate' option). % % USAGE % function IJ = jitterImage( I, varargin ) % % INPUTS % I - image (MxN) or set of K images (MxNxK) % varargin - additional params (struct or name/value pairs) % .maxn - [inf] maximum jitters to generate (prior to flip) % .nPhi - [0] number of rotations % .mPhi - [0] max value for rotation % .nTrn - [0] number of translations % .mTrn - [0] max value for translation % .flip - [0] if true then also adds reflection of each image % .jsiz - [] Final size of each image in IJ % .scls - [1 1] nScl x 2 array of vert/horiz scalings % .method - ['linear'] interpolation method for imtransform2 % .hasChn - [0] if true I is MxNxC or MxNxCxK % % OUTPUTS % IJ - MxNxKxR or MxNxCxKxR set of images, R=(nTrn^2*nPhi*nScl) % % EXAMPLE % load trees; I=imresize(ind2gray(X,map),[41 41]); clear X caption map % % creates 10 (of 7^2*2) images of slight trans % IJ = jitterImage(I,'nTrn',7,'mTrn',3,'maxn',10); montage2(IJ) % % creates 5 images of slight rotations w reflection % IJ = jitterImage(I,'nPhi',5,'mPhi',25,'flip',1); montage2(IJ) % % creates 45 images of both rot and slight trans % IJ = jitterImage(I,'nPhi',5,'mPhi',10,'nTrn',3,'mTrn',2); montage2(IJ) % % additionally create multiple scaled versions % IJ = jitterImage(I,'scls',[1 1; 2 1; 1 2; 2 2]); montage2(IJ) % % example on color image (5 images of slight rotations) % I=imResample(imread('peppers.png'),[100,100]); % IJ=jitterImage(I,'nPhi',5,'mPhi',25,'hasChn',1); % montage2(uint8(IJ),{'hasChn',1}) % % See also imtransform2 % % Piotr's Computer Vision Matlab Toolbox Version 2.65 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get additional parameters siz=size(I); dfs={'maxn',inf, 'nPhi',0, 'mPhi',0, 'nTrn',0, 'mTrn',0, 'flip',0, ... 'jsiz',siz(1:2), 'scls',[1 1], 'method','linear', 'hasChn',0}; [maxn,nPhi,mPhi,nTrn,mTrn,flip,jsiz,scls,method,hasChn] = ... getPrmDflt(varargin,dfs,1); if(nPhi<1), mPhi=0; nPhi=1; end; if(nTrn<1), mTrn=0; nTrn=1; end % I must be big enough to support given ops so grow I if necessary trn=linspace(-mTrn,mTrn,nTrn); [dX,dY]=meshgrid(trn,trn); dY=dY(:)'; dX=dX(:)'; phis=linspace(-mPhi,mPhi,nPhi)/180*pi; siz1=jsiz+2*max(dX); if(nPhi>1), siz1=sqrt(2)*siz1+1; end siz1=[siz1(1)*max(scls(:,1)) siz1(2)*max(scls(:,2))]; pad=(siz1-siz(1:2))/2; pad=max([ceil(pad) 0],0); if(any(pad>0)), I=padarray(I,pad,'replicate','both'); end % jitter each image nScl=size(scls,1); nTrn=length(dX); nPhi=length(phis); nOps=min(maxn,nTrn*nPhi*nScl); if(flip), nOps=nOps*2; end if(hasChn), nd=3; jsiz=[jsiz siz(3)]; else nd=2; end n=size(I,nd+1); IJ=zeros([jsiz nOps n],class(I)); is=repmat({':'},1,nd); prm={method,maxn,jsiz,phis,dX,dY,scls,flip}; for i=1:n, IJ(is{:},:,i)=jitterImage1(I(is{:},i),prm{:}); end end function IJ = jitterImage1( I,method,maxn,jsiz,phis,dX,dY,scls,flip ) % generate list of transformations (HS) nScl=size(scls,1); nTrn=length(dX); nPhi=length(phis); nOps=nTrn*nPhi*nScl; HS=zeros(3,3,nOps); k=0; for s=1:nScl, S=[scls(s,1) 0; 0 scls(s,2)]; for p=1:nPhi, R=rotationMatrix(phis(p)); for t=1:nTrn, k=k+1; HS(:,:,k)=[S*R [dX(t); dY(t)]; 0 0 1]; end end end % apply each transformation HS(:,:,i) to image I if(nOps>maxn), HS=HS(:,:,randSample(nOps,maxn)); nOps=maxn; end siz=size(I); nd=ndims(I); nCh=size(I,3); I1=I; p=(siz-jsiz)/2; IJ=zeros([jsiz nOps],class(I)); for i=1:nOps, H=HS(:,:,i); d=H(1:2,3)'; if( all(all(H(1:2,1:2)==eye(2))) && all(mod(d,1)==0) ) % handle transformation that's just an integer translation s=max(1-d,1); e=min(siz(1:2)-d,siz(1:2)); s1=2-min(1-d,1); e1=e-s+s1; I1(s1(1):e1(1),s1(2):e1(2),:) = I(s(1):e(1),s(2):e(2),:); else % handle general transformations for j=1:nCh, I1(:,:,j)=imtransform2(I(:,:,j),H,'method',method); end end % crop and store result I2 = I1(p(1)+1:end-p(1),p(2)+1:end-p(2),:); if(nd==2), IJ(:,:,i)=I2; else IJ(:,:,:,i)=I2; end end % finally flip each resulting image if(flip), IJ=cat(nd+1,IJ,IJ(:,end:-1:1,:,:)); end end
github
GYZHikari/Semantic-Cosegmentation-master
movieToImages.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/images/movieToImages.m
889
utf_8
28c71798642af276951ee27e2d332540
function I = movieToImages( M ) % Creates a stack of images from a matlab movie M. % % Repeatedly calls frame2im. Useful for playback with playMovie. % % USAGE % I = movieToImages( M ) % % INPUTS % M - a matlab movie % % OUTPUTS % I - MxNxT array (of images) % % EXAMPLE % load( 'images.mat' ); [X,map]=gray2ind(video(:,:,1)); % M = fevalArrays( video, @(x) im2frame(gray2ind(x),map) ); % I = movieToImages(M); playMovie(I); % % See also PLAYMOVIE % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] I = fevalArrays( M, @frame2Ii ); function I = frame2Ii( F ) [I,map] = frame2im( F ); if( isempty(map) ) if( size(I,3)==3 ) classname = class( I ); I = sum(I,3)/3; I = feval( classname, I ); end else I = ind2gray( I, map ); end
github
GYZHikari/Semantic-Cosegmentation-master
toolboxUpdateHeader.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/toolboxUpdateHeader.m
2,255
utf_8
7a5b75e586be48da97c84d20b59887ff
function toolboxUpdateHeader % Update the headers of all the files. % % USAGE % toolboxUpdateHeader % % INPUTS % % OUTPUTS % % EXAMPLE % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.40 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] header={ 'Piotr''s Computer Vision Matlab Toolbox Version 3.40'; ... 'Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]'; ... 'Licensed under the Simplified BSD License [see external/bsd.txt]'}; root=fileparts(fileparts(mfilename('fullpath'))); ds=dir(root); ds=ds([ds.isdir]); ds={ds.name}; ds=ds(3:end); ds=setdiff(ds,{'.git','doc'}); subds = { '/', '/private/' }; exts = {'m','c','cpp','h','hpp'}; omit = {'Contents.m','fibheap.h','fibheap.cpp'}; for i=1:length(ds) for j=1:length(subds) for k=1:length(exts) d=[root '/' ds{i} subds{j}]; if(k==1), comment='%'; else comment='*'; end fs=dir([d '*.' exts{k}]); fs={fs.name}; fs=setdiff(fs,omit); n=length(fs); for f=1:n, fs{f}=[d fs{f}]; end for f=1:n, toolboxUpdateHeader1(fs{f},header,comment); end end end end end function toolboxUpdateHeader1( fName, header, comment ) % set appropriate comment symbol in header m=length(header); for i=1:m, header{i}=[comment ' ' header{i}]; end % read in file and find header disp(fName); lines=readFile(fName); loc = find(not(cellfun('isempty',strfind(lines,header{1}(1:40))))); if(isempty(loc)), error('NO HEADER: %s\n',fName); end; loc=loc(1); % check that header is properly formed, return if up to date for i=1:m; assert(isequal(lines{loc+i-1}(1:10),header{i}(1:10))); end if(~any(strfind(lines{loc},'NEW'))); return; end % update copyright year and overwrite rest of header lines{loc+1}(13:16)=header{2}(13:16); for i=[1 3:m]; lines{loc+i-1}=header{i}; end writeFile( fName, lines ); end function lines = readFile( fName ) fid = fopen( fName, 'rt' ); assert(fid~=-1); lines=cell(10000,1); n=0; while( 1 ) n=n+1; lines{n}=fgetl(fid); if( ~ischar(lines{n}) ), break; end end fclose(fid); n=n-1; lines=lines(1:n); end function writeFile( fName, lines ) fid = fopen( fName, 'w' ); for i=1:length(lines); fprintf( fid, '%s\n', lines{i} ); end fclose(fid); end
github
GYZHikari/Semantic-Cosegmentation-master
toolboxGenDoc.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/toolboxGenDoc.m
3,639
utf_8
4c21fb34fa9b6002a1a98a28ab40c270
function toolboxGenDoc % Generate documentation, must run from dir toolbox. % % 1) Make sure to update and run toolboxUpdateHeader.m % 2) Update history.txt appropriately, including w current version % 3) Update overview.html file with the version/date/link to zip: % edit external/m2html/templates/frame-piotr/overview.html % % USAGE % toolboxGenDoc % % INPUTS % % OUTPUTS % % EXAMPLE % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.40 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % Requires external/m2html to be in path. cd(fileparts(mfilename('fullpath'))); cd('../'); addpath([pwd '/external/m2html']); % delete temporary files that should not be part of release fs={'pngreadc','pngwritec','rjpg8c','wjpg8c','png'}; for i=1:length(fs), delete(['videos/private/' fs{i} '.*']); end delete('detector/models/*Dets.txt'); % delete old doc and run m2html if(exist('doc/','dir')), rmdir('doc/','s'); end dirs={'channels','classify','detector',... 'images','filters','matlab','videos'}; m2html('mfiles',dirs,'htmldir','doc','recursive','on','source','off',... 'template','frame-piotr','index','menu','global','on'); % copy custom menu.html and history file sDir='external/m2html/templates/'; copyfile([sDir 'menu-for-frame-piotr.html'],'doc/menu.html'); copyfile('external/history.txt','doc/history.txt'); % remove links to private/ in the menu.html files and remove private/ dirs for i=1:length(dirs) name = ['doc/' dirs{i} '/menu.html']; fid=fopen(name,'r'); c=fread(fid,'*char')'; fclose(fid); c=regexprep(c,'<li>([^<]*[<]?[^<]*)private([^<]*[<]?[^<]*)</li>',''); fid=fopen(name,'w'); fwrite(fid,c); fclose(fid); name = ['doc/' dirs{i} '/private/']; if(exist(name,'dir')), rmdir(name,'s'); end end % postprocess each html file for d=1:length(dirs) fs=dir(['doc/' dirs{d} '/*.html']); fs={fs.name}; for j=1:length(fs), postProcess(['doc/' dirs{d} '/' fs{j}]); end end end function postProcess( fName ) lines=readFile(fName); assert(strcmp(lines{end-1},'</body>') && strcmp(lines{end},'</html>')); % remove m2html datestamp (if present) assert(strcmp(lines{end-2}(1:22),'<hr><address>Generated')); if( strcmp(lines{end-2}(1:25),'<hr><address>Generated on')) lines{end-2}=regexprep(lines{end-2}, ... '<hr><address>Generated on .* by','<hr><address>Generated by'); end % remove crossreference information is=find(strcmp('<!-- crossreference -->',lines)); if(~isempty(is)), assert(length(is)==2); lines(is(1):is(2))=[]; end % insert Google Analytics snippet to end of file ga={ ''; '<!-- Start of Google Analytics Code -->'; '<script type="text/javascript">'; 'var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");'; 'document.write(unescape("%3Cscript src=''" + gaJsHost + "google-analytics.com/ga.js'' type=''text/javascript''%3E%3C/script%3E"));'; '</script>'; '<script type="text/javascript">'; 'var pageTracker = _gat._getTracker("UA-4884268-1");'; 'pageTracker._initData();'; 'pageTracker._trackPageview();'; '</script>'; '<!-- end of Google Analytics Code -->'; '' }; lines = [lines(1:end-3); ga; lines(end-2:end)]; % write file writeFile( fName, lines ); end function lines = readFile( fName ) fid = fopen( fName, 'rt' ); assert(fid~=-1); lines=cell(10000,1); n=0; while( 1 ) n=n+1; lines{n}=fgetl(fid); if( ~ischar(lines{n}) ), break; end end fclose(fid); n=n-1; lines=lines(1:n); end function writeFile( fName, lines ) fid = fopen( fName, 'w' ); for i=1:length(lines); fprintf( fid, '%s\r\n', lines{i} ); end fclose(fid); end
github
GYZHikari/Semantic-Cosegmentation-master
toolboxHeader.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/toolboxHeader.m
2,391
utf_8
30c24a94fb54ca82622719adcab17903
function [y1,y2] = toolboxHeader( x1, x2, x3, prm ) % One line description of function (will appear in file summary). % % General commments explaining purpose of function [width is 75 % characters]. There may be multiple paragraphs. In special cases some or % all of these guidelines may need to be broken. % % Next come a series of sections, including USAGE, INPUTS, OUTPUTS, % EXAMPLE, and "See also". Each of these fields should always appear, even % if nothing follows (for example no inputs). USAGE should usually be a % copy of the first line of code (which begins with "function"), minus the % word "function". Optional parameters are surrounded by brackets. % Occasionally, there may be more than 1 distinct usage, in this case list % additional usages. In general try to avoid this. INPUTS/OUTPUTS are % self explanatory, however if there are multiple usages can be subdivided % as below. EXAMPLE should list 1 or more useful examples. Main comment % should all appear as one contiguous block. Next a blank comment line, % and then a short comment that includes the toolbox version. % % USAGE % xsum = toolboxHeader( x1, x2, [x3], [prm] ) % [xprod, xdiff] = toolboxHeader( x1, x2, [x3], [prm] ) % % INPUTS % x1 - descr. of variable 1, % x2 - descr. of variable 2, keep spacing like this % if descr. spans multiple lines do this % x3 - [0] indicates an optional variable, put def val in [] % prm - [] param struct % .p1 parameter 1 descr % .p2 parameter 2 descr % % OUTPUTS - and whatever after the dash % xsum - sum of xs % % OUTPUTS - usage 2 % xprod - prod of xs % xdiff - negative sum of xs % % EXAMPLE - and whatever after the dash % y = toolboxHeader( 1, 2 ); % % EXAMPLE - example 2 % y = toolboxHeader( 2, 3 ); % % See also GETPRMDFLT % % Piotr's Computer Vision Matlab Toolbox Version 2.10 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % optional arguments x3 and prm if( nargin<3 || isempty(x3) ), x3=0; end if( nargin<4 || isempty(prm) ), prm=[]; end %#ok<NASGU> % indents should be set with Matlab's "smart indent" (with 2 spaces) if( nargout==1 ) y1 = add(x1,x2) + x3; else y1 = x1 * x2 * x3; y2 = - x1 - x2 - x3; end function s=add(x,y) % optional sub function comment s=x+y;
github
GYZHikari/Semantic-Cosegmentation-master
mdot.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/m2html/mdot.m
2,516
utf_8
34a14428c433e118d1810e23f5a6caf5
function mdot(mmat, dotfile,f) %MDOT - Export a dependency graph into DOT language % MDOT(MMAT, DOTFILE) loads a .mat file generated by M2HTML using option % ('save','on') and writes an ascii file using the DOT language that can % be drawn using <dot> or <neato> . % MDOT(MMAT, DOTFILE,F) builds the graph containing M-file F and its % neighbors only. % See the following page for more details: % <http://www.graphviz.org/> % % Example: % mdot('m2html.mat','m2html.dot'); % !dot -Tps m2html.dot -o m2html.ps % !neato -Tps m2html.dot -o m2html.ps % % See also M2HTML % Copyright (C) 2004 Guillaume Flandin <[email protected]> % $Revision: 1.1 $Date: 2004/05/05 17:14:09 $ error(nargchk(2,3,nargin)); if ischar(mmat) load(mmat); elseif iscell(mmat) hrefs = mmat{1}; names = mmat{2}; options = mmat{3}; if nargin == 3, mfiles = mmat{4}; end mdirs = cell(size(names)); [mdirs{:}] = deal(''); if nargin == 2 & length(mmat) > 3, mdirs = mmat{4}; end; else error('[mdot] Invalid argument: mmat.'); end fid = fopen(dotfile,'wt'); if fid == -1, error(sprintf('[mdot] Cannot open %s.',dotfile)); end fprintf(fid,'/* Created by mdot for Matlab */\n'); fprintf(fid,'digraph m2html {\n'); % if 'names' contains '.' then they should be surrounded by '"' if nargin == 2 for i=1:size(hrefs,1) n = find(hrefs(i,:) == 1); m{i} = n; for j=1:length(n) fprintf(fid,[' ' names{i} ' -> ' names{n(j)} ';\n']); end end %m = unique([m{:}]); fprintf(fid,'\n'); for i=1:size(hrefs,1) fprintf(fid,[' ' names{i} ' [URL="' ... fullurl(mdirs{i},[names{i} options.extension]) '"];\n']); end else i = find(strcmp(f,mfiles)); if length(i) ~= 1 error(sprintf('[mdot] Cannot find %s.',f)); end n = find(hrefs(i,:) == 1); for j=1:length(n) fprintf(fid,[' ' names{i} ' -> ' names{n(j)} ';\n']); end m = find(hrefs(:,i) == 1); for j=1:length(m) if n(j) ~= i fprintf(fid,[' ' names{m(j)} ' -> ' names{i} ';\n']); end end n = unique([n(:)' m(:)']); fprintf(fid,'\n'); for i=1:length(n) fprintf(fid,[' ' names{n(i)} ' [URL="' fullurl(mdirs{i}, ... [names{n(i)} options.extension]) '"];\n']); end end fprintf(fid,'}'); fid = fclose(fid); if fid == -1, error(sprintf('[mdot] Cannot close %s.',dotfile)); end %=========================================================================== function f = fullurl(varargin) %- Build full url from parts (using '/' and not filesep) f = strrep(fullfile(varargin{:}),'\','/');
github
GYZHikari/Semantic-Cosegmentation-master
m2html.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/m2html/m2html.m
49,063
utf_8
472047b4c36a4f8b162012840e31b59b
function m2html(varargin) %M2HTML - Documentation Generator for Matlab M-files and Toolboxes in HTML % M2HTML by itself generates an HTML documentation of the Matlab M-files found % in the direct subdirectories of the current directory. HTML files are % written in a 'doc' directory (created if necessary). All the others options % are set to default (in brackets in the following). % M2HTML('PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2,...) % sets multiple option values. The list of option names and default values is: % o mFiles - Cell array of strings or character array containing the % list of M-files and/or directories of M-files for which an HTML % documentation will be built (use relative paths without backtracking). % Launch M2HTML one directory above the directory your wanting to % generate documentation for [ <all direct subdirectories> ] % o htmlDir - Top level directory for generated HTML files [ 'doc' ] % o recursive - Process subdirectories recursively [ on | {off} ] % o source - Include Matlab source code in the generated documentation % [ {on} | off ] % o download - Add a link to download each M-file separately [ on | {off} ] % o syntaxHighlighting - Source Code Syntax Highlighting [ {on} | off ] % o tabs - Replace '\t' (horizontal tab) in source code by n white space % characters [ 0 ... {4} ... n ] % o globalHypertextLinks - Hypertext links among separate Matlab % directories [ on | {off} ] % o todo - Create a TODO list in each directory summarizing all the % '% TODO %' lines found in Matlab code [ on | {off}] % o graph - Compute a dependency graph using GraphViz [ on | {off}] % 'dot' required, see <http://www.graphviz.org/> % o indexFile - Basename of the HTML index file [ 'index' ] % o extension - Extension of generated HTML files [ '.html' ] % o template - HTML template name to use [ {'blue'} | 'frame' | ... ] % o search - Add a PHP search engine [ on | {off}] - beta version! % o save - Save current state after M-files parsing in 'm2html.mat' % in directory htmlDir [ on | {off}] % o load - Load a previously saved '.mat' M2HTML state to generate HTML % files once again with possibly other options [ <none> ] % o verbose - Verbose mode [ {on} | off ] % % For more information, please read the M2HTML tutorial and FAQ at: % <http://www.artefact.tk/software/matlab/m2html/> % % Examples: % >> m2html('mfiles','matlab', 'htmldir','doc'); % >> m2html('mfiles',{'matlab/signal' 'matlab/image'}, 'htmldir','doc'); % >> m2html('mfiles','matlab', 'htmldir','doc', 'recursive','on'); % >> m2html('mfiles','mytoolbox', 'htmldir','doc', 'source','off'); % >> m2html('mfiles','matlab', 'htmldir','doc', 'global','on'); % >> m2html( ... , 'template','frame', 'index','menu'); % % See also MWIZARD, MDOT, TEMPLATE. % Copyright (C) 2005 Guillaume Flandin <[email protected]> % $Revision: 1.5 $Date: 2005/04/29 16:04:17 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to [email protected] % For tips on how to write Matlab code, see: % * MATLAB Programming Style Guidelines, by R. Johnson: % <http://www.datatool.com/prod02.htm> % * For tips on creating help for your m-files 'type help.m'. % * Matlab documentation on M-file Programming: % <http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/ch_funh8.html> % This function uses the Template class so that you can fully customize % the output. You can modify .tpl files in templates/blue/ or create new % templates in a new directory. % See the template class documentation for more details. % <http://www.artefact.tk/software/matlab/template/> % Latest information on M2HTML is available on the web through: % <http://www.artefact.tk/software/matlab/m2html/> % Other Matlab to HTML converters available on the web: % 1/ mat2html.pl, J.C. Kantor, in Perl, 1995: % <http://fresh.t-systems-sfr.com/unix/src/www/mat2html> % 2/ htmltools, B. Alsberg, in Matlab, 1997: % <http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=175> % 3/ mtree2html2001, H. Pohlheim, in Perl, 1996, 2001: % <http://www.pohlheim.com/perl_main.html#matlabdocu> % 4/ MatlabToHTML, T. Kristjansson, binary, 2001: % <http://www.psi.utoronto.ca/~trausti/MatlabToHTML/MatlabToHTML.html> % 5/ Highlight, G. Flandin, in Matlab, 2003: % <http://www.artefact.tk/software/matlab/highlight/> % 6/ mdoc, P. Brinkmann, in Matlab, 2003: % <http://www.math.uiuc.edu/~brinkman/software/mdoc/> % 7/ Ocamaweb, Miriad Technologies, in Ocaml, 2002: % <http://ocamaweb.sourceforge.net/> % 8/ Matdoc, M. Kaminsky, in Perl, 2003: % <http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3498> % 9/ Matlab itself, The Mathworks Inc, with HELPWIN, DOC and PUBLISH (R14) %------------------------------------------------------------------------------- %- Set up options and default parameters %------------------------------------------------------------------------------- t0 = clock; % for statistics msgInvalidPair = 'Bad value for argument: ''%s'''; options = struct('verbose', 1,... 'mFiles', {{'.'}},... 'htmlDir', 'doc',... 'recursive', 0,... 'source', 1,... 'download',0,... 'syntaxHighlighting', 1,... 'tabs', 4,... 'globalHypertextLinks', 0,... 'graph', 0,... 'todo', 0,... 'load', 0,... 'save', 0,... 'search', 0,... 'helptocxml', 0,... 'indexFile', 'index',... 'extension', '.html',... 'template', 'blue',... 'rootdir', pwd,... 'language', 'english'); if nargin == 1 & isstruct(varargin{1}) paramlist = [ fieldnames(varargin{1}) ... struct2cell(varargin{1}) ]'; paramlist = { paramlist{:} }; else if mod(nargin,2) error('Invalid parameter/value pair arguments.'); end paramlist = varargin; end optionsnames = lower(fieldnames(options)); for i=1:2:length(paramlist) pname = paramlist{i}; pvalue = paramlist{i+1}; ind = strmatch(lower(pname),optionsnames); if isempty(ind) error(['Invalid parameter: ''' pname '''.']); elseif length(ind) > 1 error(['Ambiguous parameter: ''' pname '''.']); end switch(optionsnames{ind}) case 'verbose' if strcmpi(pvalue,'on') options.verbose = 1; elseif strcmpi(pvalue,'off') options.verbose = 0; else error(sprintf(msgInvalidPair,pname)); end case 'mfiles' if iscellstr(pvalue) options.mFiles = pvalue; elseif ischar(pvalue) options.mFiles = cellstr(pvalue); else error(sprintf(msgInvalidPair,pname)); end options.load = 0; case 'htmldir' if ischar(pvalue) if isempty(pvalue), options.htmlDir = '.'; else options.htmlDir = pvalue; end else error(sprintf(msgInvalidPair,pname)); end case 'recursive' if strcmpi(pvalue,'on') options.recursive = 1; elseif strcmpi(pvalue,'off') options.recursive = 0; else error(sprintf(msgInvalidPair,pname)); end options.load = 0; case 'source' if strcmpi(pvalue,'on') options.source = 1; elseif strcmpi(pvalue,'off') options.source = 0; else error(sprintf(msgInvalidPair,pname)); end case 'download' if strcmpi(pvalue,'on') options.download = 1; elseif strcmpi(pvalue,'off') options.download = 0; else error(sprintf(msgInvalidPair,pname)); end case 'syntaxhighlighting' if strcmpi(pvalue,'on') options.syntaxHighlighting = 1; elseif strcmpi(pvalue,'off') options.syntaxHighlighting = 0; else error(sprintf(msgInvalidPair,pname)); end case 'tabs' if pvalue >= 0 options.tabs = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'globalhypertextlinks' if strcmpi(pvalue,'on') options.globalHypertextLinks = 1; elseif strcmpi(pvalue,'off') options.globalHypertextLinks = 0; else error(sprintf(msgInvalidPair,pname)); end options.load = 0; case 'graph' if strcmpi(pvalue,'on') options.graph = 1; elseif strcmpi(pvalue,'off') options.graph = 0; else error(sprintf(msgInvalidPair,pname)); end case 'todo' if strcmpi(pvalue,'on') options.todo = 1; elseif strcmpi(pvalue,'off') options.todo = 0; else error(sprintf(msgInvalidPair,pname)); end case 'load' if ischar(pvalue) if exist(pvalue) == 7 % directory provided pvalue = fullfile(pvalue,'m2html.mat'); end try load(pvalue); catch error(sprintf('Unable to load %s.', pvalue)); end options.load = 1; [dummy options.template] = fileparts(options.template); else error(sprintf(msgInvalidPair,pname)); end case 'save' if strcmpi(pvalue,'on') options.save = 1; elseif strcmpi(pvalue,'off') options.save = 0; else error(sprintf(msgInvalidPair,pname)); end case 'search' if strcmpi(pvalue,'on') options.search = 1; elseif strcmpi(pvalue,'off') options.search = 0; else error(sprintf(msgInvalidPair,pname)); end case 'helptocxml' if strcmpi(pvalue,'on') options.helptocxml = 1; elseif strcmpi(pvalue,'off') options.helptocxml = 0; else error(sprintf(msgInvalidPair,pname)); end case 'indexfile' if ischar(pvalue) options.indexFile = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'extension' if ischar(pvalue) & pvalue(1) == '.' options.extension = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'template' if ischar(pvalue) options.template = pvalue; else error(sprintf(msgInvalidPair,pname)); end case 'language' if ischar(pvalue) options.language = pvalue; else error(sprintf(msgInvalidPair,pname)); end otherwise error(['Invalid parameter: ''' pname '''.']); end end %------------------------------------------------------------------------------- %- Get template files location %------------------------------------------------------------------------------- s = fileparts(which(mfilename)); options.template = fullfile(s,'templates',options.template); if exist(options.template) ~= 7 error('[Template] Unknown template.'); end %------------------------------------------------------------------------------- %- Get list of M-files %------------------------------------------------------------------------------- if ~options.load if strcmp(options.mFiles,'.') d = dir(pwd); d = {d([d.isdir]).name}; options.mFiles = {d{~ismember(d,{'.' '..'})}}; end mfiles = getmfiles(options.mFiles,{},options.recursive); if ~length(mfiles), fprintf('Nothing to be done.\n'); return; end if options.verbose, fprintf('Found %d M-files.\n',length(mfiles)); end mfiles = sort(mfiles); % sort list of M-files in dictionary order end %------------------------------------------------------------------------------- %- Get list of (unique) directories and (unique) names %------------------------------------------------------------------------------- if ~options.load mdirs = {}; names = {}; for i=1:length(mfiles) [mdirs{i}, names{i}] = fileparts(mfiles{i}); if isempty(mdirs{i}), mdirs{i} = '.'; end end mdir = unique(mdirs); if options.verbose, fprintf('Found %d unique Matlab directories.\n',length(mdir)); end name = names; %name = unique(names); % output is sorted %if options.verbose, % fprintf('Found %d unique Matlab files.\n',length(name)); %end end %------------------------------------------------------------------------------- %- Create output directory, if necessary %------------------------------------------------------------------------------- if isempty(dir(options.htmlDir)) %- Create the top level output directory if options.verbose fprintf('Creating directory %s...\n',options.htmlDir); end if options.htmlDir(end) == filesep, options.htmlDir(end) = []; end [pathdir, namedir] = fileparts(options.htmlDir); if isempty(pathdir) [status, msg] = mkdir(escapeblank(namedir)); else [status, msg] = mkdir(escapeblank(pathdir), escapeblank(namedir)); end if ~status, error(msg); end end %------------------------------------------------------------------------------- %- Get synopsis, H1 line, script/function, subroutines, cross-references, todo %------------------------------------------------------------------------------- if ~options.load synopsis = cell(size(mfiles)); h1line = cell(size(mfiles)); subroutine = cell(size(mfiles)); hrefs = sparse(length(mfiles), length(mfiles)); todo = struct('mfile',[], 'line',[], 'comment',{{}}); ismex = zeros(length(mfiles), length(mexexts)); statlist = {}; statinfo = sparse(1,length(mfiles)); kw = cell(size(mfiles)); freq = cell(size(mfiles)); for i=1:length(mfiles) if options.verbose fprintf('Processing file %s...',mfiles{i}); end s = mfileparse(mfiles{i}, mdirs, names, options); synopsis{i} = s.synopsis; h1line{i} = s.h1line; subroutine{i} = s.subroutine; hrefs(i,:) = s.hrefs; todo.mfile = [todo.mfile repmat(i,1,length(s.todo.line))]; todo.line = [todo.line s.todo.line]; todo.comment = {todo.comment{:} s.todo.comment{:}}; ismex(i,:) = s.ismex; if options.search if options.verbose, fprintf('search...'); end [kw{i}, freq{i}] = searchindex(mfiles{i}); statlist = union(statlist, kw{i}); end if options.verbose, fprintf('\n'); end end hrefs = hrefs > 0; if options.search if options.verbose fprintf('Creating the search index...'); end statinfo = sparse(length(statlist),length(mfiles)); for i=1:length(mfiles) i1 = find(ismember(statlist, kw{i})); i2 = repmat(i,1,length(i1)); if ~isempty(i1) statinfo(sub2ind(size(statinfo),i1,i2)) = freq{i}; end if options.verbose, fprintf('.'); end end clear kw freq; if options.verbose, fprintf('\n'); end end end %------------------------------------------------------------------------------- %- Save M-filenames and cross-references for further analysis %------------------------------------------------------------------------------- matfilesave = 'm2html.mat'; if options.save if options.verbose fprintf('Saving MAT file %s...\n',matfilesave); end save(fullfile(options.htmlDir,matfilesave), ... 'mfiles', 'names', 'mdirs', 'name', 'mdir', 'options', ... 'hrefs', 'synopsis', 'h1line', 'subroutine', 'todo', 'ismex', ... 'statlist', 'statinfo'); end %------------------------------------------------------------------------------- %- Setup the output directories %------------------------------------------------------------------------------- for i=1:length(mdir) if exist(fullfile(options.htmlDir,mdir{i})) ~= 7 ldir = splitpath(mdir{i}); for j=1:length(ldir) if exist(fullfile(options.htmlDir,ldir{1:j})) ~= 7 %- Create the output directory if options.verbose fprintf('Creating directory %s...\n',... fullfile(options.htmlDir,ldir{1:j})); end if j == 1 [status, msg] = mkdir(escapeblank(options.htmlDir), ... escapeblank(ldir{1})); else [status, msg] = mkdir(escapeblank(options.htmlDir), ... escapeblank(fullfile(ldir{1:j}))); end error(msg); end end end end %------------------------------------------------------------------------------- %- Write the master index file %------------------------------------------------------------------------------- tpl_master = 'master.tpl'; tpl_master_identifier_nbyline = 4; php_search = 'search.php'; dotbase = 'graph'; %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_MASTER',tpl_master); tpl = set(tpl,'block','TPL_MASTER','rowdir','rowdirs'); tpl = set(tpl,'block','TPL_MASTER','idrow','idrows'); tpl = set(tpl,'block','idrow','idcolumn','idcolumns'); tpl = set(tpl,'block','TPL_MASTER','search','searchs'); tpl = set(tpl,'block','TPL_MASTER','graph','graphs'); %- Open for writing the HTML master index file curfile = fullfile(options.htmlDir,[options.indexFile options.extension]); if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set some template variables tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); tpl = set(tpl,'var','MASTERPATH', './'); tpl = set(tpl,'var','DIRS', sprintf('%s ',mdir{:})); %- Print list of unique directories for i=1:length(mdir) tpl = set(tpl,'var','L_DIR',... fullurl(mdir{i},[options.indexFile options.extension])); tpl = set(tpl,'var','DIR',mdir{i}); tpl = parse(tpl,'rowdirs','rowdir',1); end %- Print full list of M-files (sorted by column) [sortnames, ind] = sort(names); m_mod = mod(length(sortnames), tpl_master_identifier_nbyline); ind = [ind zeros(1,tpl_master_identifier_nbyline-m_mod)]; m_floor = floor(length(ind) / tpl_master_identifier_nbyline); ind = reshape(ind,m_floor,tpl_master_identifier_nbyline)'; for i=1:prod(size(ind)) if ind(i) tpl = set(tpl,'var','L_IDNAME',... fullurl(mdirs{ind(i)},[names{ind(i)} options.extension])); tpl = set(tpl,'var','T_IDNAME',mdirs{ind(i)}); tpl = set(tpl,'var','IDNAME',names{ind(i)}); tpl = parse(tpl,'idcolumns','idcolumn',1); else tpl = set(tpl,'var','L_IDNAME',''); tpl = set(tpl,'var','T_IDNAME',''); tpl = set(tpl,'var','IDNAME',''); tpl = parse(tpl,'idcolumns','idcolumn',1); end if mod(i,tpl_master_identifier_nbyline) == 0 tpl = parse(tpl,'idrows','idrow',1); tpl = set(tpl,'var','idcolumns',''); end end %- Add a search form if necessary tpl = set(tpl,'var','searchs',''); if options.search tpl = set(tpl,'var','PHPFILE',php_search); tpl = parse(tpl,'searchs','search',1); end %- Link to a full dependency graph, if necessary tpl = set(tpl,'var','graphs',''); if options.graph & options.globalHypertextLinks & length(mdir) > 1 tpl = set(tpl,'var','LGRAPH',[dotbase options.extension]); tpl = parse(tpl,'graphs','graph',1); end %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_MASTER'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); %------------------------------------------------------------------------------- %- Copy template files (CSS, images, ...) %------------------------------------------------------------------------------- % Get list of files d = dir(options.template); d = {d(~[d.isdir]).name}; % Copy files for i=1:length(d) [p, n, ext] = fileparts(d{i}); if ~strcmp(ext,'.tpl') ... % do not copy .tpl files & ~strcmp([n ext],'Thumbs.db') % do not copy this Windows generated file if isempty(dir(fullfile(options.htmlDir,d{i}))) if options.verbose fprintf('Copying template file %s...\n',d{i}); end %- there is a bug with <copyfile> in Matlab 6.5 : % http://www.mathworks.com/support/solutions/data/1-1B5JY.html %- and <copyfile> does not overwrite files even if newer... [status, errmsg] = copyfile(fullfile(options.template,d{i}),... options.htmlDir); %- If you encounter this bug, please uncomment one of the following lines % eval(['!cp -rf ' fullfile(options.template,d{i}) ' ' options.htmlDir]); % eval(['!copy ' fullfile(options.template,d{i}) ' ' options.htmlDir]); % status = 1; if ~status if ~isempty(errmsg) error(errmsg) else warning(sprintf(['<copyfile> failed to do its job...\n' ... 'This is a known bug in Matlab 6.5 (R13).\n' ... 'See http://www.mathworks.com/support/solutions/data/1-1B5JY.html'])); end end end end end %------------------------------------------------------------------------------- %- Search engine (index file and PHP script) %------------------------------------------------------------------------------- tpl_search = 'search.tpl'; idx_search = 'search.idx'; % TODO % improving the fill in of 'statlist' and 'statinfo' % TODO % improving the search template file and update the CSS file if options.search %- Write the search index file in output directory if options.verbose fprintf('Creating Search Index file %s...\n', idx_search); end docinfo = cell(length(mfiles),2); for i=1:length(mfiles) docinfo{i,1} = h1line{i}; docinfo{i,2} = fullurl(mdirs{i}, [names{i} options.extension]); end doxywrite(fullfile(options.htmlDir,idx_search),statlist,statinfo,docinfo); %- Create the PHP template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_SEARCH',tpl_search); %- Open for writing the PHP search script curfile = fullfile(options.htmlDir, php_search); if options.verbose fprintf('Creating PHP script %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set template fields tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH','./'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); tpl = set(tpl,'var','IDXFILE',idx_search); tpl = set(tpl,'var','PHPFILE',php_search); %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_SEARCH'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); end %------------------------------------------------------------------------------- %- Create <helptoc.xml> needed to display hierarchical entries in Contents panel %------------------------------------------------------------------------------- % See http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_env/guiref16.html % and http://www.mathworks.com/support/solutions/data/1-18U6Q.html?solution=1-18U6Q % TODO % display directories in TOC hierarchically instead of linearly if options.helptocxml curfile = fullfile(options.htmlDir, 'helptoc.xml'); if options.verbose fprintf('Creating XML Table-Of-Content %s...\n',curfile); end fid = openfile(curfile,'w'); fprintf(fid,'<?xml version=''1.0'' encoding=''ISO-8859-1'' ?>\n'); fprintf(fid,'<!-- $Date: %s $ -->\n\n', datestr(now,31)); fprintf(fid,'<toc version="1.0">\n\n'); fprintf(fid,['<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/book_mat.gif">%s\n'], ... [options.indexFile options.extension],'Toolbox'); for i=1:length(mdir) fprintf(fid,['<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/reficon.gif">%s\n'], ... fullfile(mdir{i}, ... [options.indexFile options.extension]),mdir{i}); if options.graph fprintf(fid,['\t<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/simulinkicon.gif">%s</tocitem>\n'], ... fullfile(mdir{i},... [dotbase options.extension]),'Dependency Graph'); end if options.todo if ~isempty(intersect(find(strcmp(mdir{i},mdirs)),todo.mfile)) fprintf(fid,['\t<tocitem target="%s" ',... 'image="$toolbox/matlab/icons/demoicon.gif">%s</tocitem>\n'], ... fullfile(mdir{i},... ['todo' options.extension]),'Todo list'); end end for j=1:length(mdirs) if strcmp(mdirs{j},mdir{i}) curfile = fullfile(mdir{i},... [names{j} options.extension]); fprintf(fid,'\t<tocitem target="%s">%s</tocitem>\n', ... curfile,names{j}); end end fprintf(fid,'</tocitem>\n'); end fprintf(fid,'</tocitem>\n'); fprintf(fid,'\n</toc>\n'); fclose(fid); end %------------------------------------------------------------------------------- %- Write an index for each output directory %------------------------------------------------------------------------------- tpl_mdir = 'mdir.tpl'; tpl_mdir_link = '<a href="%s">%s</a>'; %dotbase defined earlier %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_MDIR',tpl_mdir); tpl = set(tpl,'block','TPL_MDIR','row-m','rows-m'); tpl = set(tpl,'block','row-m','mexfile','mex'); tpl = set(tpl,'block','TPL_MDIR','othermatlab','other'); tpl = set(tpl,'block','othermatlab','row-other','rows-other'); tpl = set(tpl,'block','TPL_MDIR','subfolder','subfold'); tpl = set(tpl,'block','subfolder','subdir','subdirs'); tpl = set(tpl,'block','TPL_MDIR','todolist','todolists'); tpl = set(tpl,'block','TPL_MDIR','graph','graphs'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); for i=1:length(mdir) %- Open for writing each output directory index file curfile = fullfile(options.htmlDir,mdir{i},... [options.indexFile options.extension]); if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set template fields tpl = set(tpl,'var','INDEX', [options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH',backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdir{i}); %- Display Matlab m-files, their H1 line and their Mex status tpl = set(tpl,'var','rows-m',''); for j=1:length(mdirs) if strcmp(mdirs{j},mdir{i}) tpl = set(tpl,'var','L_NAME', [names{j} options.extension]); tpl = set(tpl,'var','NAME', names{j}); tpl = set(tpl,'var','H1LINE', h1line{j}); if any(ismex(j,:)) tpl = parse(tpl,'mex','mexfile'); else tpl = set(tpl,'var','mex',''); end tpl = parse(tpl,'rows-m','row-m',1); end end %- Display other Matlab-specific files (.mat,.mdl,.p) tpl = set(tpl,'var','other',''); tpl = set(tpl,'var','rows-other',''); w = what(mdir{i}); w = w(1); w = {w.mat{:} w.mdl{:} w.p{:}}; for j=1:length(w) tpl = set(tpl,'var','OTHERFILE',w{j}); tpl = parse(tpl,'rows-other','row-other',1); end if ~isempty(w) tpl = parse(tpl,'other','othermatlab'); end %- Display subsequent directories and classes tpl = set(tpl,'var','subdirs',''); tpl = set(tpl,'var','subfold',''); d = dir(mdir{i}); d = {d([d.isdir]).name}; d = {d{~ismember(d,{'.' '..'})}}; for j=1:length(d) if ismember(fullfile(mdir{i},d{j}),mdir) tpl = set(tpl,'var','SUBDIRECTORY',... sprintf(tpl_mdir_link,... fullurl(d{j},[options.indexFile options.extension]),d{j})); else tpl = set(tpl,'var','SUBDIRECTORY',d{j}); end tpl = parse(tpl,'subdirs','subdir',1); end if ~isempty(d) tpl = parse(tpl,'subfold','subfolder'); end %- Link to the TODO list if necessary tpl = set(tpl,'var','todolists',''); if options.todo if ~isempty(intersect(find(strcmp(mdir{i},mdirs)),todo.mfile)) tpl = set(tpl,'var','LTODOLIST',['todo' options.extension]); tpl = parse(tpl,'todolists','todolist',1); end end %- Link to the dependency graph if necessary tpl = set(tpl,'var','graphs',''); if options.graph tpl = set(tpl,'var','LGRAPH',[dotbase options.extension]); tpl = parse(tpl,'graphs','graph',1); end %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_MDIR'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); end %------------------------------------------------------------------------------- %- Write a TODO list file for each output directory, if necessary %------------------------------------------------------------------------------- tpl_todo = 'todo.tpl'; if options.todo %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_TODO',tpl_todo); tpl = set(tpl,'block','TPL_TODO','filelist','filelists'); tpl = set(tpl,'block','filelist','row','rows'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); for i=1:length(mdir) mfilestodo = intersect(find(strcmp(mdir{i},mdirs)),todo.mfile); if ~isempty(mfilestodo) %- Open for writing each TODO list file curfile = fullfile(options.htmlDir,mdir{i},... ['todo' options.extension]); if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); %- Set template fields tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdir{i}); tpl = set(tpl,'var','filelists', ''); for k=1:length(mfilestodo) tpl = set(tpl,'var','MFILE',names{mfilestodo(k)}); tpl = set(tpl,'var','rows',''); nbtodo = find(todo.mfile == mfilestodo(k)); for l=1:length(nbtodo) tpl = set(tpl,'var','L_NBLINE',... [names{mfilestodo(k)} ... options.extension ... '#l' num2str(todo.line(nbtodo(l)))]); tpl = set(tpl,'var','NBLINE',num2str(todo.line(nbtodo(l)))); tpl = set(tpl,'var','COMMENT',todo.comment{nbtodo(l)}); tpl = parse(tpl,'rows','row',1); end tpl = parse(tpl,'filelists','filelist',1); end %- Print the template in the HTML file tpl = parse(tpl,'OUT','TPL_TODO'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid); end end end %------------------------------------------------------------------------------- %- Create dependency graphs using GraphViz, if requested %------------------------------------------------------------------------------- tpl_graph = 'graph.tpl'; % You may have to modify the following line with Matlab7 (R14) to specify % the full path to where GraphViz is installed dot_exec = 'dot'; %dotbase defined earlier if options.graph %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_GRAPH',tpl_graph); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); %- Create a full dependency graph for all directories if possible if options.globalHypertextLinks & length(mdir) > 1 mdotfile = fullfile(options.htmlDir,[dotbase '.dot']); if options.verbose fprintf('Creating full dependency graph %s...',mdotfile); end mdot({hrefs, names, options, mdirs}, mdotfile); %mfiles calldot(dot_exec, mdotfile, ... fullfile(options.htmlDir,[dotbase '.map']), ... fullfile(options.htmlDir,[dotbase '.png'])); if options.verbose, fprintf('\n'); end fid = openfile(fullfile(options.htmlDir, [dotbase options.extension]),'w'); tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', './'); tpl = set(tpl,'var','MDIR', 'the whole toolbox'); tpl = set(tpl,'var','GRAPH_IMG', [dotbase '.png']); try % if <dot> failed... fmap = openfile(fullfile(options.htmlDir,[dotbase '.map']),'r'); tpl = set(tpl,'var','GRAPH_MAP', fscanf(fmap,'%c')); fclose(fmap); end tpl = parse(tpl,'OUT','TPL_GRAPH'); fprintf(fid,'%s', get(tpl,'OUT')); fclose(fid); end %- Create a dependency graph for each output directory for i=1:length(mdir) mdotfile = fullfile(options.htmlDir,mdir{i},[dotbase '.dot']); if options.verbose fprintf('Creating dependency graph %s...',mdotfile); end ind = find(strcmp(mdirs,mdir{i})); href1 = zeros(length(ind),length(hrefs)); for j=1:length(hrefs), href1(:,j) = hrefs(ind,j); end href2 = zeros(length(ind)); for j=1:length(ind), href2(j,:) = href1(j,ind); end mdot({href2, {names{ind}}, options}, mdotfile); %{mfiles{ind}} calldot(dot_exec, mdotfile, ... fullfile(options.htmlDir,mdir{i},[dotbase '.map']), ... fullfile(options.htmlDir,mdir{i},[dotbase '.png'])); if options.verbose, fprintf('\n'); end fid = openfile(fullfile(options.htmlDir,mdir{i},... [dotbase options.extension]),'w'); tpl = set(tpl,'var','INDEX',[options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdir{i}); tpl = set(tpl,'var','GRAPH_IMG', [dotbase '.png']); try % if <dot> failed, no '.map' file has been created fmap = openfile(fullfile(options.htmlDir,mdir{i},[dotbase '.map']),'r'); tpl = set(tpl,'var','GRAPH_MAP', fscanf(fmap,'%c')); fclose(fmap); end tpl = parse(tpl,'OUT','TPL_GRAPH'); fprintf(fid,'%s', get(tpl,'OUT')); fclose(fid); end end %------------------------------------------------------------------------------- %- Write an HTML file for each M-file %------------------------------------------------------------------------------- %- List of Matlab keywords (output from iskeyword) matlabKeywords = {'break', 'case', 'catch', 'continue', 'elseif', 'else', ... 'end', 'for', 'function', 'global', 'if', 'otherwise', ... 'persistent', 'return', 'switch', 'try', 'while'}; %'keyboard', 'pause', 'eps', 'NaN', 'Inf' tpl_mfile = 'mfile.tpl'; tpl_mfile_code = '<a href="%s" class="code" title="%s">%s</a>'; tpl_mfile_keyword = '<span class="keyword">%s</span>'; tpl_mfile_comment = '<span class="comment">%s</span>'; tpl_mfile_string = '<span class="string">%s</span>'; tpl_mfile_aname = '<a name="%s" href="#_subfunctions" class="code">%s</a>'; tpl_mfile_line = '%04d %s\n'; %- Delimiters used in strtok: some of them may be useless (% " .), removed '.' strtok_delim = sprintf(' \t\n\r(){}[]<>+-*~!|\\@&/,:;="''%%'); %- Create the HTML template tpl = template(options.template,'remove'); tpl = set(tpl,'file','TPL_MFILE',tpl_mfile); tpl = set(tpl,'block','TPL_MFILE','pathline','pl'); tpl = set(tpl,'block','TPL_MFILE','mexfile','mex'); tpl = set(tpl,'block','TPL_MFILE','script','scriptfile'); tpl = set(tpl,'block','TPL_MFILE','crossrefcall','crossrefcalls'); tpl = set(tpl,'block','TPL_MFILE','crossrefcalled','crossrefcalleds'); tpl = set(tpl,'block','TPL_MFILE','subfunction','subf'); tpl = set(tpl,'block','subfunction','onesubfunction','onesubf'); tpl = set(tpl,'block','TPL_MFILE','source','thesource'); tpl = set(tpl,'block','TPL_MFILE','download','downloads'); tpl = set(tpl,'var','DATE',[datestr(now,8) ' ' datestr(now,1) ' ' ... datestr(now,13)]); nblinetot = 0; for i=1:length(mdir) for j=1:length(mdirs) if strcmp(mdirs{j},mdir{i}) curfile = fullfile(options.htmlDir,mdir{i},... [names{j} options.extension]); %- Copy M-file for download, if necessary if options.download if options.verbose fprintf('Copying M-file %s.m to %s...\n',names{j},... fullfile(options.htmlDir,mdir{i})); end [status, errmsg] = copyfile(mfiles{j},... fullfile(options.htmlDir,mdir{i})); error(errmsg); end %- Open for writing the HTML file if options.verbose fprintf('Creating HTML file %s...\n',curfile); end fid = openfile(curfile,'w'); if strcmp(names{j},options.indexFile) fprintf(['Warning: HTML index file %s will be ' ... 'overwritten by Matlab function %s.\n'], ... [options.indexFile options.extension], mfiles{j}); end %- Open for reading the M-file fid2 = openfile(mfiles{j},'r'); %- Set some template fields tpl = set(tpl,'var','INDEX', [options.indexFile options.extension]); tpl = set(tpl,'var','MASTERPATH', backtomaster(mdir{i})); tpl = set(tpl,'var','MDIR', mdirs{j}); tpl = set(tpl,'var','NAME', names{j}); tpl = set(tpl,'var','H1LINE', entity(h1line{j})); tpl = set(tpl,'var','scriptfile', ''); if isempty(synopsis{j}) tpl = set(tpl,'var','SYNOPSIS',get(tpl,'var','script')); else tpl = set(tpl,'var','SYNOPSIS', synopsis{j}); end s = splitpath(mdir{i}); tpl = set(tpl,'var','pl',''); for k=1:length(s) c = cell(1,k); for l=1:k, c{l} = filesep; end cpath = {s{1:k};c{:}}; cpath = [cpath{:}]; if ~isempty(cpath), cpath = cpath(1:end-1); end if ismember(cpath,mdir) tpl = set(tpl,'var','LPATHDIR',[repmat('../',... 1,length(s)-k) options.indexFile options.extension]); else tpl = set(tpl,'var','LPATHDIR','#'); end tpl = set(tpl,'var','PATHDIR',s{k}); tpl = parse(tpl,'pl','pathline',1); end %- Handle mex files tpl = set(tpl,'var','mex', ''); samename = dir(fullfile(mdir{i},[names{j} '.*'])); samename = {samename.name}; tpl = set(tpl,'var','MEXTYPE', 'mex'); for k=1:length(samename) [dummy, dummy, ext] = fileparts(samename{k}); switch ext case '.c' tpl = set(tpl,'var','MEXTYPE', 'c'); case {'.cpp' '.c++' '.cxx' '.C'} tpl = set(tpl,'var','MEXTYPE', 'c++'); case {'.for' '.f' '.FOR' '.F'} tpl = set(tpl,'var','MEXTYPE', 'fortran'); otherwise %- Unknown mex file source end end [exts, platform] = mexexts; mexplatforms = sprintf('%s, ',platform{find(ismex(j,:))}); if ~isempty(mexplatforms) tpl = set(tpl,'var','PLATFORMS', mexplatforms(1:end-2)); tpl = parse(tpl,'mex','mexfile'); end %- Set description template field descr = ''; flagsynopcont = 0; flag_seealso = 0; while 1 tline = fgets(fid2); if ~ischar(tline), break, end tline = entity(fliplr(deblank(fliplr(tline)))); %- Synopsis line if ~isempty(strmatch('function',tline)) if ~isempty(strmatch('...',fliplr(deblank(tline)))) flagsynopcont = 1; end %- H1 line and description elseif ~isempty(strmatch('%',tline)) %- Hypertext links on the "See also" line ind = findstr(lower(tline),'see also'); if ~isempty(ind) | flag_seealso %- "See also" only in files in the same directory indsamedir = find(strcmp(mdirs{j},mdirs)); hrefnames = {names{indsamedir}}; r = deblank(tline); flag_seealso = 1; %(r(end) == ','); tline = ''; while 1 [t,r,q] = strtok(r,sprintf(' \t\n\r.,;%%')); tline = [tline q]; if isempty(t), break, end; ii = strcmpi(hrefnames,t); if any(ii) jj = find(ii); tline = [tline sprintf(tpl_mfile_code,... [hrefnames{jj(1)} options.extension],... synopsis{indsamedir(jj(1))},t)]; else tline = [tline t]; end end tline = sprintf('%s\n',tline); end descr = [descr tline(2:end)]; elseif isempty(tline) if ~isempty(descr), break, end; else if flagsynopcont if isempty(strmatch('...',fliplr(deblank(tline)))) flagsynopcont = 0; end else break; end end end tpl = set(tpl,'var','DESCRIPTION',... horztab(descr,options.tabs)); %- Set cross-references template fields: % Function called ind = find(hrefs(j,:) == 1); tpl = set(tpl,'var','crossrefcalls',''); for k=1:length(ind) if strcmp(mdirs{j},mdirs{ind(k)}) tpl = set(tpl,'var','L_NAME_CALL', ... [names{ind(k)} options.extension]); else tpl = set(tpl,'var','L_NAME_CALL', ... fullurl(backtomaster(mdirs{j}), ... mdirs{ind(k)}, ... [names{ind(k)} options.extension])); end tpl = set(tpl,'var','SYNOP_CALL', synopsis{ind(k)}); tpl = set(tpl,'var','NAME_CALL', names{ind(k)}); tpl = set(tpl,'var','H1LINE_CALL', h1line{ind(k)}); tpl = parse(tpl,'crossrefcalls','crossrefcall',1); end % Callers ind = find(hrefs(:,j) == 1); tpl = set(tpl,'var','crossrefcalleds',''); for k=1:length(ind) if strcmp(mdirs{j},mdirs{ind(k)}) tpl = set(tpl,'var','L_NAME_CALLED', ... [names{ind(k)} options.extension]); else tpl = set(tpl,'var','L_NAME_CALLED', ... fullurl(backtomaster(mdirs{j}),... mdirs{ind(k)}, ... [names{ind(k)} options.extension])); end tpl = set(tpl,'var','SYNOP_CALLED', synopsis{ind(k)}); tpl = set(tpl,'var','NAME_CALLED', names{ind(k)}); tpl = set(tpl,'var','H1LINE_CALLED', h1line{ind(k)}); tpl = parse(tpl,'crossrefcalleds','crossrefcalled',1); end %- Set subfunction template field tpl = set(tpl,'var',{'subf' 'onesubf'},{'' ''}); if ~isempty(subroutine{j}) & options.source for k=1:length(subroutine{j}) tpl = set(tpl, 'var', 'L_SUB', ['#_sub' num2str(k)]); tpl = set(tpl, 'var', 'SUB', subroutine{j}{k}); tpl = parse(tpl, 'onesubf', 'onesubfunction',1); end tpl = parse(tpl,'subf','subfunction'); end subname = extractname(subroutine{j}); %- Link to M-file (for download) tpl = set(tpl,'var','downloads',''); if options.download tpl = parse(tpl,'downloads','download',1); end %- Display source code with cross-references if options.source & ~strcmpi(names{j},'contents') fseek(fid2,0,-1); it = 1; matlabsource = ''; nbsubroutine = 1; %- Get href function names of this file indhrefnames = find(hrefs(j,:) == 1); hrefnames = {names{indhrefnames}}; %- Loop over lines while 1 tline = fgetl(fid2); if ~ischar(tline), break, end myline = ''; splitc = splitcode(entity(tline)); for k=1:length(splitc) if isempty(splitc{k}) elseif ~isempty(strmatch('function',splitc{k})) %- Subfunctions definition myline = [myline ... sprintf(tpl_mfile_aname,... ['_sub' num2str(nbsubroutine-1)],splitc{k})]; nbsubroutine = nbsubroutine + 1; elseif splitc{k}(1) == '''' myline = [myline ... sprintf(tpl_mfile_string,splitc{k})]; elseif splitc{k}(1) == '%' myline = [myline ... sprintf(tpl_mfile_comment,deblank(splitc{k}))]; elseif ~isempty(strmatch('...',splitc{k})) myline = [myline sprintf(tpl_mfile_keyword,'...')]; if ~isempty(splitc{k}(4:end)) myline = [myline ... sprintf(tpl_mfile_comment,splitc{k}(4:end))]; end else %- Look for keywords r = splitc{k}; while 1 [t,r,q] = strtok(r,strtok_delim); myline = [myline q]; if isempty(t), break, end; %- Highlight Matlab keywords & % cross-references on known functions if options.syntaxHighlighting & ... any(strcmp(matlabKeywords,t)) if strcmp('end',t) rr = fliplr(deblank(fliplr(r))); icomma = strmatch(',',rr); isemicolon = strmatch(';',rr); if ~(isempty(rr) | ~isempty([icomma isemicolon])) myline = [myline t]; else myline = [myline sprintf(tpl_mfile_keyword,t)]; end else myline = [myline sprintf(tpl_mfile_keyword,t)]; end elseif any(strcmp(hrefnames,t)) indt = indhrefnames(logical(strcmp(hrefnames,t))); flink = [t options.extension]; ii = ismember({mdirs{indt}},mdirs{j}); if ~any(ii) % take the first one... flink = fullurl(backtomaster(mdirs{j}),... mdirs{indt(1)}, flink); else indt = indt(logical(ii)); end myline = [myline sprintf(tpl_mfile_code,... flink, synopsis{indt(1)}, t)]; elseif any(strcmp(subname,t)) ii = find(strcmp(subname,t)); myline = [myline sprintf(tpl_mfile_code,... ['#_sub' num2str(ii)],... ['sub' subroutine{j}{ii}],t)]; else myline = [myline t]; end end end end matlabsource = [matlabsource sprintf(tpl_mfile_line,it,myline)]; it = it + 1; end nblinetot = nblinetot + it - 1; tpl = set(tpl,'var','SOURCECODE',... horztab(matlabsource,options.tabs)); tpl = parse(tpl,'thesource','source'); else tpl = set(tpl,'var','thesource',''); end tpl = parse(tpl,'OUT','TPL_MFILE'); fprintf(fid,'%s',get(tpl,'OUT')); fclose(fid2); fclose(fid); end end end %------------------------------------------------------------------------------- %- Display Statistics %------------------------------------------------------------------------------- if options.verbose prnbline = ''; if options.source prnbline = sprintf('(%d lines) ', nblinetot); end fprintf('Stats: %d M-files %sin %d directories documented in %d s.\n', ... length(mfiles), prnbline, length(mdir), round(etime(clock,t0))); end %=============================================================================== function mfiles = getmfiles(mdirs, mfiles, recursive) %- Extract M-files from a list of directories and/or M-files for i=1:length(mdirs) currentdir = fullfile(pwd, mdirs{i}); if exist(currentdir) == 2 % M-file mfiles{end+1} = mdirs{i}; elseif exist(currentdir) == 7 % Directory d = dir(fullfile(currentdir, '*.m')); d = {d(~[d.isdir]).name}; for j=1:length(d) %- don't take care of files containing ',' % probably a sccs file... if isempty(findstr(',',d{j})) mfiles{end+1} = fullfile(mdirs{i}, d{j}); end end if recursive d = dir(currentdir); d = {d([d.isdir]).name}; d = {d{~ismember(d,{'.' '..'})}}; for j=1:length(d) mfiles = getmfiles(cellstr(fullfile(mdirs{i},d{j})), ... mfiles, recursive); end end else fprintf('Warning: Unprocessed file %s.\n',mdirs{i}); if ~isempty(strmatch('/',mdirs{i})) | findstr(':',mdirs{i}) fprintf(' Use relative paths in ''mfiles'' option\n'); end end end %=============================================================================== function calldot(dotexec, mdotfile, mapfile, pngfile, opt) %- Draw a dependency graph in a PNG image using <dot> from GraphViz if nargin == 4, opt = ''; end try %- See <http://www.graphviz.org/> % <dot> must be in your system path, see M2HTML FAQ: % <http://www.artefact.tk/software/matlab/m2html/faq.php> eval(['!"' dotexec '" ' opt ' -Tcmap -Tpng "' mdotfile ... '" -o "' mapfile ... '" -o "' pngfile '"']); % use '!' rather than 'system' for backward compability with Matlab 5.3 catch % use of '!' prevents errors to be catched... fprintf('<dot> failed.'); end %=============================================================================== function s = backtomaster(mdir) %- Provide filesystem path to go back to the root folder ldir = splitpath(mdir); s = repmat('../',1,length(ldir)); %=============================================================================== function ldir = splitpath(p) %- Split a filesystem path into parts using filesep as separator ldir = {}; p = deblank(p); while 1 [t,p] = strtok(p,filesep); if isempty(t), break; end if ~strcmp(t,'.') ldir{end+1} = t; end end if isempty(ldir) ldir{1} = '.'; % should be removed end %=============================================================================== function name = extractname(synopsis) %- Extract function name in a synopsis if ischar(synopsis), synopsis = {synopsis}; end name = cell(size(synopsis)); for i=1:length(synopsis) ind = findstr(synopsis{i},'='); if isempty(ind) ind = findstr(synopsis{i},'function'); s = synopsis{i}(ind(1)+8:end); else s = synopsis{i}(ind(1)+1:end); end name{i} = strtok(s,[9:13 32 40]); % white space characters and '(' end if length(name) == 1, name = name{1}; end %=============================================================================== function f = fullurl(varargin) %- Build full url from parts (using '/' and not filesep) f = strrep(fullfile(varargin{:}),'\','/'); %=============================================================================== function str = escapeblank(str) %- Escape white spaces using '\' str = deblank(fliplr(deblank(fliplr(str)))); str = strrep(str,' ','\ '); %=============================================================================== function str = entity(str) %- Escape HTML special characters %- See http://www.w3.org/TR/html4/charset.html#h-5.3.2 str = strrep(str,'&','&amp;'); str = strrep(str,'<','&lt;'); str = strrep(str,'>','&gt;'); str = strrep(str,'"','&quot;'); %=============================================================================== function str = horztab(str,n) %- For browsers, the horizontal tab character is the smallest non-zero %- number of spaces necessary to line characters up along tab stops that are %- every 8 characters: behaviour obtained when n = 0. if n > 0 str = strrep(str,sprintf('\t'),blanks(n)); end
github
GYZHikari/Semantic-Cosegmentation-master
doxysearch.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/m2html/private/doxysearch.m
7,724
utf_8
8331cde8495f34b86aef8c18656b37f2
function result = doxysearch(query,filename) %DOXYSEARCH Search a query in a 'search.idx' file % RESULT = DOXYSEARCH(QUERY,FILENAME) looks for request QUERY % in FILENAME (Doxygen search.idx format) and returns a list of % files responding to the request in RESULT. % % See also DOXYREAD, DOXYWRITE % Copyright (C) 2004 Guillaume Flandin <[email protected]> % $Revision: 1.1 $Date: 2004/05/05 14:33:55 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % See <http://www.doxygen.org/> for more details. error(nargchk(1,2,nargin)); if nargin == 1, filename = 'search.idx'; end %- Open the search index file [fid, errmsg] = fopen(filename,'r','ieee-be'); if fid == -1, error(errmsg); end %- 4 byte header (DOXS) header = char(fread(fid,4,'uchar'))'; if ~all(header == 'DOXS') error('[doxysearch] Header of index file is invalid!'); end %- many thanks to <doxyread.m> and <doxysearch.php> r = query; requiredWords = {}; forbiddenWords = {}; foundWords = {}; res = {}; while 1 % extract each word of the query [t,r] = strtok(r); if isempty(t), break, end; if t(1) == '+' t = t(2:end); requiredWords{end+1} = t; elseif t(1) == '-' t = t(2:end); forbiddenWords{end+1} = t; end if ~ismember(t,foundWords) foundWords{end+1} = t; res = searchAgain(fid,t,res); end end %- Filter and sort results docs = combineResults(res); filtdocs = filterResults(docs,requiredWords,forbiddenWords); filtdocs = normalizeResults(filtdocs); res = sortResults(filtdocs); %- if nargout result = res; else for i=1:size(res,1) fprintf(' %d. %s - %s\n ',i,res{i,1},res{i,2}); for j=1:size(res{i,4},1) fprintf('%s ',res{i,4}{j,1}); end fprintf('\n'); end end %- Close the search index file fclose(fid); %=========================================================================== function res = searchAgain(fid, word,res) i = computeIndex(word); if i > 0 fseek(fid,i*4+4,'bof'); % 4 bytes per entry, skip header start = size(res,1); idx = readInt(fid); if idx > 0 fseek(fid,idx,'bof'); statw = readString(fid); while ~isempty(statw) statidx = readInt(fid); if length(statw) >= length(word) & ... strcmp(statw(1:length(word)),word) res{end+1,1} = statw; % word res{end,2} = word; % match res{end,3} = statidx; % index res{end,4} = (length(statw) == length(word)); % full res{end,5} = {}; % doc end statw = readString(fid); end totalfreq = 0; for j=start+1:size(res,1) fseek(fid,res{j,3},'bof'); numdoc = readInt(fid); docinfo = {}; for m=1:numdoc docinfo{m,1} = readInt(fid); % idx docinfo{m,2} = readInt(fid); % freq docinfo{m,3} = 0; % rank totalfreq = totalfreq + docinfo{m,2}; if res{j,2}, totalfreq = totalfreq + docinfo{m,2}; end; end for m=1:numdoc fseek(fid, docinfo{m,1}, 'bof'); docinfo{m,4} = readString(fid); % name docinfo{m,5} = readString(fid); % url end res{j,5} = docinfo; end for j=start+1:size(res,1) for m=1:size(res{j,5},1) res{j,5}{m,3} = res{j,5}{m,2} / totalfreq; end end end % if idx > 0 end % if i > 0 %=========================================================================== function docs = combineResults(result) docs = {}; for i=1:size(result,1) for j=1:size(result{i,5},1) key = result{i,5}{j,5}; rank = result{i,5}{j,3}; if ~isempty(docs) & ismember(key,{docs{:,1}}) l = find(ismember({docs{:,1}},key)); docs{l,3} = docs{l,3} + rank; docs{l,3} = 2 * docs{l,3}; else l = size(docs,1)+1; docs{l,1} = key; % key docs{l,2} = result{i,5}{j,4}; % name docs{l,3} = rank; % rank docs{l,4} = {}; %words end n = size(docs{l,4},1); docs{l,4}{n+1,1} = result{i,1}; % word docs{l,4}{n+1,2} = result{i,2}; % match docs{l,4}{n+1,3} = result{i,5}{j,2}; % freq end end %=========================================================================== function filtdocs = filterResults(docs,requiredWords,forbiddenWords) filtdocs = {}; for i=1:size(docs,1) words = docs{i,4}; c = 1; j = size(words,1); % check required if ~isempty(requiredWords) found = 0; for k=1:j if ismember(words{k,1},requiredWords) found = 1; break; end end if ~found, c = 0; end end % check forbidden if ~isempty(forbiddenWords) for k=1:j if ismember(words{k,1},forbiddenWords) c = 0; break; end end end % keep it or not if c, l = size(filtdocs,1)+1; filtdocs{l,1} = docs{i,1}; filtdocs{l,2} = docs{i,2}; filtdocs{l,3} = docs{i,3}; filtdocs{l,4} = docs{i,4}; end; end %=========================================================================== function docs = normalizeResults(docs); m = max([docs{:,3}]); for i=1:size(docs,1) docs{i,3} = 100 * docs{i,3} / m; end %=========================================================================== function result = sortResults(docs); [y, ind] = sort([docs{:,3}]); result = {}; ind = fliplr(ind); for i=1:size(docs,1) result{i,1} = docs{ind(i),1}; result{i,2} = docs{ind(i),2}; result{i,3} = docs{ind(i),3}; result{i,4} = docs{ind(i),4}; end %=========================================================================== function i = computeIndex(word) if length(word) < 2, i = -1; else i = double(word(1)) * 256 + double(word(2)); end %=========================================================================== function s = readString(fid) s = ''; while 1 w = fread(fid,1,'uchar'); if w == 0, break; end s(end+1) = char(w); end %=========================================================================== function i = readInt(fid) i = fread(fid,1,'uint32');
github
GYZHikari/Semantic-Cosegmentation-master
doxywrite.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/m2html/private/doxywrite.m
3,584
utf_8
3255d8f824957ebc173dde374d0f78af
function doxywrite(filename, kw, statinfo, docinfo) %DOXYWRITE Write a 'search.idx' file compatible with DOXYGEN % DOXYWRITE(FILENAME, KW, STATINFO, DOCINFO) writes file FILENAME % (Doxygen search.idx. format) using the cell array KW containing the % word list, the sparse matrix (nbword x nbfile) with non-null values % in (i,j) indicating the frequency of occurence of word i in file j % and the cell array (nbfile x 2) containing the list of urls and names % of each file. % % See also DOXYREAD % Copyright (C) 2003 Guillaume Flandin <[email protected]> % $Revision: 1.0 $Date: 2003/23/10 15:52:56 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % See <http://www.doxygen.org/> for more details. error(nargchk(4,4,nargin)); %- Open the search index file [fid, errmsg] = fopen(filename,'w','ieee-be'); if fid == -1, error(errmsg); end %- Write 4 byte header (DOXS) fwrite(fid,'DOXS','uchar'); pos = ftell(fid); %- Write 256 * 256 header idx = zeros(256); writeInt(fid, idx); %- Write word lists i = 1; idx2 = zeros(1,length(kw)); while 1 s = kw{i}(1:2); idx(double(s(2)+1), double(s(1)+1)) = ftell(fid); while i <= length(kw) & strmatch(s, kw{i}) writeString(fid,kw{i}); idx2(i) = ftell(fid); writeInt(fid,0); i = i + 1; end fwrite(fid, 0, 'int8'); if i > length(kw), break; end end %- Write extra padding bytes pad = mod(4 - mod(ftell(fid),4), 4); for i=1:pad, fwrite(fid,0,'int8'); end pos2 = ftell(fid); %- Write 256*256 header again fseek(fid, pos, 'bof'); writeInt(fid, idx); % Write word statistics fseek(fid,pos2,'bof'); idx3 = zeros(1,length(kw)); for i=1:length(kw) idx3(i) = ftell(fid); [ia, ib, v] = find(statinfo(i,:)); counter = length(ia); % counter writeInt(fid,counter); for j=1:counter writeInt(fid,ib(j)); % index writeInt(fid,v(j)); % freq end end pos3 = ftell(fid); %- Set correct handles to keywords for i=1:length(kw) fseek(fid,idx2(i),'bof'); writeInt(fid,idx3(i)); end % Write urls fseek(fid,pos3,'bof'); idx4 = zeros(1,length(docinfo)); for i=1:length(docinfo) idx4(i) = ftell(fid); writeString(fid, docinfo{i,1}); % name writeString(fid, docinfo{i,2}); % url end %- Set corrext handles to word statistics fseek(fid,pos2,'bof'); for i=1:length(kw) [ia, ib, v] = find(statinfo(i,:)); counter = length(ia); fseek(fid,4,'cof'); % counter for m=1:counter writeInt(fid,idx4(ib(m)));% index fseek(fid,4,'cof'); % freq end end %- Close the search index file fclose(fid); %=========================================================================== function writeString(fid, s) fwrite(fid,s,'uchar'); fwrite(fid,0,'int8'); %=========================================================================== function writeInt(fid, i) fwrite(fid,i,'uint32');
github
GYZHikari/Semantic-Cosegmentation-master
doxyread.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/m2html/private/doxyread.m
3,093
utf_8
3152e7d26bf7ac64118be56f72832a20
function [statlist, docinfo] = doxyread(filename) %DOXYREAD Read a 'search.idx' file generated by DOXYGEN % STATLIST = DOXYREAD(FILENAME) reads FILENAME (Doxygen search.idx % format) and returns the list of keywords STATLIST as a cell array. % [STATLIST, DOCINFO] = DOXYREAD(FILENAME) also returns a cell array % containing details for each keyword (frequency in each file where it % appears and the URL). % % See also DOXYSEARCH, DOXYWRITE % Copyright (C) 2003 Guillaume Flandin <[email protected]> % $Revision: 1.0 $Date: 2003/05/10 17:41:21 $ % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA. % Suggestions for improvement and fixes are always welcome, although no % guarantee is made whether and when they will be implemented. % Send requests to <[email protected]> % See <http://www.doxygen.org/> for more details. error(nargchk(0,1,nargin)); if nargin == 0, filename = 'search.idx'; end %- Open the search index file [fid, errmsg] = fopen(filename,'r','ieee-be'); if fid == -1, error(errmsg); end %- 4 byte header (DOXS) header = char(fread(fid,4,'uchar'))'; %- 256*256*4 byte index idx = fread(fid,256*256,'uint32'); idx = reshape(idx,256,256); %- Extract list of words i = find(idx); statlist = cell(0,2); for j=1:length(i) fseek(fid, idx(i(j)), 'bof'); statw = readString(fid); while ~isempty(statw) statidx = readInt(fid); statlist{end+1,1} = statw; % word statlist{end,2} = statidx; % index statw = readString(fid); end end %- Extract occurence frequency of each word and docs info (name and url) docinfo = cell(size(statlist,1),1); for k=1:size(statlist,1) fseek(fid, statlist{k,2}, 'bof'); numdoc = readInt(fid); docinfo{k} = cell(numdoc,4); for m=1:numdoc docinfo{k}{m,1} = readInt(fid); % idx docinfo{k}{m,2} = readInt(fid); % freq end for m=1:numdoc fseek(fid, docinfo{k}{m,1}, 'bof'); docinfo{k}{m,3} = readString(fid); % name docinfo{k}{m,4} = readString(fid); % url end docinfo{k} = reshape({docinfo{k}{:,2:4}},numdoc,[]); end %- Close the search index file fclose(fid); %- Remove indexes statlist = {statlist{:,1}}'; %=========================================================================== function s = readString(fid) s = ''; while 1 w = fread(fid,1,'uchar'); if w == 0, break; end s(end+1) = char(w); end %=========================================================================== function i = readInt(fid) i = fread(fid,1,'uint32');
github
GYZHikari/Semantic-Cosegmentation-master
imwrite2split.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/imwrite2split.m
1,617
utf_8
4222fd45df123e6dec9ef40ae793004f
% Writes/reads a large set of images into/from multiple directories. % % This is useful since certain OS handle very large directories (of say % >20K images) rather poorly (I'm talking to you Bill). Thus, can take % 100K images, and write into 5 separate directories, then read them back % in. % % USAGE % I = imwrite2split( I, nSplits, spliti, path, [varargin] ) % % INPUTS % I - image or images (if [] reads else writes) % nSplits - number of directories to split data into % spliti - first split number % path - directory where images are % writePrms - [varargin] parameters to imwrite2 % % OUTPUTS % I - image or images (read from disk if input I=[]) % % EXAMPLE % load images; clear IDXi IDXv t video videos; % imwrite2split( images(:,:,1:10), 2, 0, 'rats', 'rats', 'png', 5 ); % images2=imwrite2split( [], 2, 0, 'rats', 'rats', 'png', 5 ); % % See also IMWRITE2 % Piotr's Image&Video Toolbox Version NEW % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function I = imwrite2split( I, nSplits, spliti, path, varargin ) n = size(I,3); if( isempty(I) ); n=0; end nSplits = min(n,nSplits); for s=1:nSplits pathSplit = [path int2str2(s-1+spliti,2)]; if( n>0 ) % write nPerDir = ceil( n / nSplits ); ISplit = I(:,:,1:min(end,nPerDir)); imwrite2( ISplit, nPerDir>1, 0, pathSplit, varargin{:} ); if( s~=nSplits ); I = I(:,:,(nPerDir+1):end); end else % read ISplit = imwrite2( [], 1, 0, pathSplit, varargin{:} ); I = cat(3,I,ISplit); end end
github
GYZHikari/Semantic-Cosegmentation-master
playmovies.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/playmovies.m
1,935
utf_8
ef2eaad8a130936a1a281f1277ca0ea1
% [4D] shows R videos simultaneously as a movie. % % Plays a movie. % % USAGE % playmovies( I, [fps], [loop] ) % % INPUTS % I - MxNxTxR or MxNx1xTxR or MxNx3xTxR array (if MxNxT calls % playmovie) % fps - [100] maximum number of frames to display per second use % fps==0 to introduce no pause and have the movie play as % fast as possible % loop - [0] number of time to loop video (may be inf), % if neg plays video forward then backward then forward etc. % % OUTPUTS % % EXAMPLE % load( 'images.mat' ); % playmovies( videos ); % % See also MONTAGES, PLAYMOVIE, MAKEMOVIES % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function playmovies( I, fps, loop ) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n PLAYMOVIE is its '... 'recommended replacement.'],upper(mfilename)); if( nargin<2 || isempty(fps)); fps = 100; end if( nargin<3 || isempty(loop)); loop = 1; end playmovie( I, fps, loop ) % % nd=ndims(I); siz=size(I); nframes=siz(end-1); % if( nd==3 ); playmovie( I, fps, loop ); return; end % if( iscell(I) ); error('cell arrays not supported.'); end % if( ~(nd==4 || (nd==5 && any(size(I,3)==[1 3]))) ) % error('unsupported dimension of I'); end % inds={':'}; inds=inds(:,ones(1,nd-2)); % clim = [min(I(:)),max(I(:))]; % % h=gcf; colormap gray; figure(h); % bring to focus % for nplayed = 1 : abs(loop) % if( loop<0 && mod(nplayed,2)==1 ) % order = nframes:-1:1; % else % order = 1:nframes; % end % for i=order % tic; try disc=get(h); catch return; end %#ok<NASGU> % montage2(squeeze(I(inds{:},i,:)),1,[],clim); % title(sprintf('frame %d of %d',i,nframes)); % if(fps>0); pause(1/fps - toc); else pause(eps); end % end % end
github
GYZHikari/Semantic-Cosegmentation-master
pca_apply_large.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/pca_apply_large.m
2,062
utf_8
af84a2179b9d8042519bc6b378736a88
% Wrapper for pca_apply that allows for application to large X. % % Wrapper for pca_apply that splits and processes X in parts, this may be % useful if processing cannot be done fully in parallel because of memory % constraints. See pca_apply for usage. % % USAGE % same as pca_apply % % INPUTS % same as pca_apply % % OUTPUTS % same as pca_apply % % EXAMPLE % % See also PCA, PCA_APPLY, PCA_VISUALIZE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function [ Yk, Xhat, avsq ] = pca_apply_large( X, U, mu, vars, k ) siz = size(X); nd = ndims(X); [N,r] = size(U); if(N==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end inds = {':'}; inds = inds(:,ones(1,nd-1)); d= prod(siz(1:end-1)); % some error checking if(d~=N); error('incorrect size for X or U'); end if(isa(X,'uint8')); X = double(X); end if( k>r ) warning(['Only ' int2str(r) '<k comp. available.']); %#ok<WNTAG> k=r; end % Will run out of memory if X has too many elements. Hence, run % pca_apply on parts of X and recombine. maxwidth = ceil( (10^7) / d ); if(maxwidth > siz(end)) if (nargout==1) Yk = pca_apply( X, U, mu, vars, k ); elseif (nargout==2) [Yk, Xhat] = pca_apply( X, U, mu, vars, k ); else [ Yk, Xhat, avsq ] = pca_apply( X, U, mu, vars, k ); end else Yk = zeros( k, siz(end) ); Xhat = zeros( siz ); avsq = 0; avsqOrig = 0; last = 0; while(last < siz(end)) first=last+1; last=min(first+maxwidth-1,siz(end)); Xi = X(inds{:}, first:last); if( nargout==1 ) Yki = pca_apply( Xi, U, mu, vars, k ); else if( nargout==2 ) [Yki,Xhati] = pca_apply( Xi, U, mu, vars, k ); else [Yki,Xhati,avsqi,avsqOrigi] = pca_apply( Xi, U, mu, vars, k ); avsq = avsq + avsqi; avsqOrig = avsqOrig + avsqOrigi; end; Xhat(inds{:}, first:last ) = Xhati; end Yk( :, first:last ) = Yki; end; if( nargout==3); avsq = avsq / avsqOrig; end end
github
GYZHikari/Semantic-Cosegmentation-master
montages2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/montages2.m
2,269
utf_8
505e2be915d65fff8bfef8473875cc98
% MONTAGES2 [4D] Used to display R sets of T images each. % % Displays one montage (see montage2) per row. Each of the R image sets is % flattened to a single long image by concatenating the T images in the % set. Alternative to montages. % % USAGE % varargout = montages2( IS, [montage2prms], [padSiz] ) % % INPUTS % IS - MxNxTxR or MxNx1xTxR or MxNx3xTxR array % montage2prms - [] params for montage2; ex: {showLns,extraInf} % padSiz - [4] total amount of vertical or horizontal padding % % OUTPUTS % I - 3D or 4D array of flattened images, disp with montage2 % mm - #montages/row % nn - #montages/col % % EXAMPLE % load( 'images.mat' ); % imageclusters = clustermontage( images, IDXi, 16, 1 ); % montages2( imageclusters ); % % See also MONTAGES, MAKEMOVIES, MONTAGE2, CLUSTERMONTAGE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function varargout = montages2( IS, montage2prms, padSiz ) if( nargin<2 || isempty(montage2prms) ); montage2prms = {}; end if( nargin<3 || isempty(padSiz) ); padSiz = 4; end [padSiz,er] = checknumericargs( padSiz,[1 1], 0, 1 ); error(er); % get/test image format info nd = ndims(IS); siz = size(IS); if( nd==5 ) %MxNx1xTxR or MxNx3xTxR nch = size(IS,3); if( nch~=1 && nch~=3 ); error('illegal image stack format'); end if( nch==1 ); IS = squeeze(IS); nd=4; siz=size(IS); end end if ~any(nd==3:5) error('unsupported dimension of IS'); end % reshape IS so that each 3D element is concatenated to a 2D image, adding % padding padEl = max(IS(:)); IS=arraycrop2dims(IS, [siz(1)+padSiz siz(2:end)], padEl ); %UD pad siz=size(IS); if(nd==3) % reshape bw single IS=squeeze( reshape( IS, siz(1), [] ) ); elseif(nd==4) % reshape bw IS=squeeze( reshape( IS, siz(1), [], siz(4) ) ); else % reshape color IS=squeeze( reshape(permute(IS,[1 2 4 3 5]),siz(1),[],siz(3),siz(5))); end; siz = size(IS); IS=arraycrop2dims(IS, [siz(1) siz(2)+padSiz siz(3:end)], padEl); % show using montage2 varargout = cell(1,nargout); if( nargout); varargout{1}=IS; end; [varargout{2:end}] = montage2( IS, montage2prms{:} ); title(inputname(1));
github
GYZHikari/Semantic-Cosegmentation-master
filter_gauss_1D.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/filter_gauss_1D.m
1,137
utf_8
94a453b82dcdeba67bd886e042d552d9
% 1D Gaussian filter. % % Equivalent to (but faster then): % f = fspecial('Gaussian',[2*r+1,1],sigma); % f = filter_gauss_nD( 2*r+1, r+1, sigma^2 ); % % USAGE % f = filter_gauss_1D( r, sigma, [show] ) % % INPUTS % r - filter size=2r+1, if r=[] -> r=ceil(2.25*sigma) % sigma - standard deviation of filter % show - [0] figure to use for optional display % % OUTPUTS % f - 1D Gaussian filter % % EXAMPLE % f1 = filter_gauss_1D( 10, 2, 1 ); % f2 = filter_gauss_nD( 21, [], 2^2, 2); % % See also FILTER_BINOMIAL_1D, FILTER_GAUSS_ND, FSPECIAL % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function f = filter_gauss_1D( r, sigma, show ) if( nargin<3 || isempty(show) ); show=0; end if( isempty(r) ); r = ceil(sigma*2.25); end if( mod(r,1)~=0 ); error( 'r must be an integer'); end % compute filter x = -r:r; f = exp(-(x.*x)/(2*sigma*sigma))'; f(f<eps*max(f(:))*10) = 0; sumf = sum(f(:)); if(sumf~=0); f = f/sumf; end % display if(show); filter_visualize_1D( f, show ); end
github
GYZHikari/Semantic-Cosegmentation-master
clfEcoc.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/clfEcoc.m
1,493
utf_8
e77e1b4fd5469ed39f47dd6ed15f130f
function clf = clfEcoc(p,clfInit,clfparams,nclasses,use01targets) % Wrapper for ecoc that makes ecoc compatible with nfoldxval. % % Requires the SVM toolbox by Anton Schwaighofer. % % USAGE % clf = clfEcoc(p,clfInit,clfparams,nclasses,use01targets) % % INPUTS % p - data dimension % clfInit - binary classifier init (see nfoldxval) % clfparams - binary classifier parameters (see nfoldxval) % nclasses - num of classes (currently 3<=nclasses<=7 suppored) % use01targets - see ecoc % % OUTPUTS % clf - see ecoc % % EXAMPLE % % See also ECOC, NFOLDXVAL, CLFECOCCODE % % Piotr's Image&Video Toolbox Version 2.0 % Copyright 2008 Piotr Dollar. [pdollar-at-caltech.edu] % Please email me if you find bugs, or have suggestions or questions! % Licensed under the Lesser GPL [see external/lgpl.txt] if( nclasses<3 || nclasses>7 ) error( 'currently only works if 3<=nclasses<=7'); end; if( nargin<5 || isempty(use01targets)); use01targets=0; end; % create code (limited for now) [C,nbits] = clfEcocCode( nclasses ); clf = ecoc(nclasses, nbits, C, use01targets ); % didn't use to pass use01? clf.verbosity = 0; % don't diplay output % initialize and temporarily store binary learner clf.templearner = feval( clfInit, p, clfparams{:} ); % ecoctrain2 is custom version of ecoctrain clf.funTrain = @clfEcocTrain; clf.funFwd = @ecocfwd; function clf = clfEcocTrain( clf, varargin ) clf = ecoctrain( clf, clf.templearner, varargin{:} );