plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
GYZHikari/Semantic-Cosegmentation-master
getargs.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/getargs.m
3,455
utf_8
de2bab917fa6b9ba3099f1c6b6d68cf0
% Utility to process parameter name/value pairs. % % DEPRECATED -- ONLY USED BY KMEANS2? SHOULD BE REMOVED. % USE GETPARAMDEFAULTS INSTEAD. % % Based on code fromt Matlab Statistics Toolobox's "private/statgetargs.m" % % [EMSG,A,B,...]=GETARGS(PNAMES,DFLTS,'NAME1',VAL1,'NAME2',VAL2,...) % accepts a cell array PNAMES of valid parameter names, a cell array DFLTS % of default values for the parameters named in PNAMES, and additional % parameter name/value pairs. Returns parameter values A,B,... in the same % order as the names in PNAMES. Outputs corresponding to entries in PNAMES % that are not specified in the name/value pairs are set to the % corresponding value from DFLTS. If nargout is equal to length(PNAMES)+1, % then unrecognized name/value pairs are an error. If nargout is equal to % length(PNAMES)+2, then all unrecognized name/value pairs are returned in % a single cell array following any other outputs. % % EMSG is empty if the arguments are valid, or the text of an error message % if an error occurs. GETARGS does not actually throw any errors, but % rather returns an error message so that the caller may throw the error. % Outputs will be partially processed after an error occurs. % % USAGE % [emsg,varargout]=getargs(pnames,dflts,varargin) % % INPUTS % pnames - cell of valid parameter names % dflts - cell of default parameter values % varargin - list of proposed name / value pairs % % OUTPUTS % emsg - error msg - '' if no error % varargout - list of assigned name / value pairs % % EXAMPLE % pnames = {'color' 'linestyle', 'linewidth'}; dflts = { 'r','_','1'}; % v = {'linew' 2 'nonesuch' [1 2 3] 'linestyle' ':'}; % [emsg,color,linestyle,linewidth,unrec] = getargs(pnames,dflts,v{:}) % ok % [emsg,color,linestyle,linewidth] = getargs(pnames,dflts,v{:}) % err % % See also GETPARAMDEFAULTS % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function [emsg,varargout]=getargs(pnames,dflts,varargin) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n It will be ' ... 'removed in the next version of the toolbox.'],upper(mfilename)); % We always create (nparams+1) outputs: % one for emsg % nparams varargs for values corresponding to names in pnames % If they ask for one more (nargout == nparams+2), it's for unrecognized % names/values emsg = ''; nparams = length(pnames); varargout = dflts; unrecog = {}; nargs = length(varargin); % Must have name/value pairs if mod(nargs,2)~=0 emsg = sprintf('Wrong number of arguments.'); else % Process name/value pairs for j=1:2:nargs pname = varargin{j}; if ~ischar(pname) emsg = sprintf('Parameter name must be text.'); break; end i = strmatch(lower(pname),lower(pnames)); if isempty(i) % if they've asked to get back unrecognized names/values, add this % one to the list if nargout > nparams+1 unrecog((end+1):(end+2)) = {varargin{j} varargin{j+1}}; % otherwise, it's an error else emsg = sprintf('Invalid parameter name: %s.',pname); break; end elseif length(i)>1 emsg = sprintf('Ambiguous parameter name: %s.',pname); break; else varargout{i} = varargin{j+1}; end end end varargout{nparams+1} = unrecog;
github
GYZHikari/Semantic-Cosegmentation-master
normxcorrn_fg.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/normxcorrn_fg.m
2,699
utf_8
e65c38d97efb3a624e0fa94a97f75eb6
% Normalized n-dimensional cross-correlation with a mask. % % Similar to normxcorrn, except takes an additional argument that specifies % a figure ground mask for the T. That is T_fg must be of the same % dimensions as T, with each entry being 0 or 1, where zero specifies % regions to ignore (the ground) and 1 specifies interesting regions (the % figure). Essentially T_fg specifies regions in T that are interesting % and should be taken into account when doing normalized cross correlation. % This allows for templates of arbitrary shape, and not just squares. % % Note: this function is approximately 3 times slower then normxcorr2 % because it cannot use the trick of precomputing sums. % % USAGE % C = normxcorrn_fg( T, T_fg, A, [shape] ) % % INPUTS % T - template to correlate to each window in A % T_fg - figure/ground mask for the template % A - matrix to correlate T to % shape - ['full'] 'valid', 'full', or 'same', see convn_fast help % % OUTPUTS % C - correlation matrix % % EXAMPLE % A=rand(50); B=rand(11); Bfg=ones(11); % C1=normxcorrn_fg(B,Bfg,A); C2=normxcorr2(B,A); % figure(1); im(C1); figure(2); im(C2); % figure(3); im(abs(C1-C2)); % % See also NORMXCORRN % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function C = normxcorrn_fg( T, T_fg, A, shape ) if( nargin <4 || isempty(shape)); shape='full'; end; if( ndims(T)~=ndims(A) || ndims(T)~=ndims(T_fg) ) error('TEMPALTE, T_fg, and A must have same number of dimensions'); end; if( any(size(T)~=size(T_fg))) error('TEMPALTE and T_fg must have same dimensions'); end; if( ~all(T_fg==0 | T_fg==1)) error('T_fg may have only entries either 0 or 1'); end; nkeep = sum(T_fg(:)); if( nkeep==0); error('T_fg must have some nonzero values'); end; % center T on 0 and normalize magnitued to 1, excluding ground % T= (T-T_av) / ||(T-T_av)|| T(T_fg==0)=0; T = T - sum(T(:)) / nkeep; T(T_fg==0)=0; T = T / norm( T(:) ); % flip for convn_fast purposes for d=1:ndims(T); T = flipdim(T,d); end; for d=1:ndims(T_fg); T_fg = flipdim(T_fg,d); end; % get average over each window over A A_av = convn_fast( A, T_fg/nkeep, shape ); % get magnitude over each window over A "mag(WA-WAav)" % We can rewrite the above as "sqrt(SUM(WAi^2)-n*WAav^2)". so: A_mag = convn_fast( A.*A, T_fg, shape ) - nkeep * A_av .* A_av; A_mag = sqrt(A_mag); A_mag(A_mag<.000001)=1; %removes divide by 0 error % finally get C. in each image window, we will now do: % "dot(T,(WA-WAav)) / mag(WA-WAav)" C = convn_fast(A,T,shape) - A_av*sum(T(:)); C = C ./ A_mag;
github
GYZHikari/Semantic-Cosegmentation-master
makemovie.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/makemovie.m
1,266
utf_8
9a03d9a5227c4eaa86520f206ce283e7
% [3D] Used to convert a stack of T images into a movie. % % To display same data statically use montage. % % USAGE % M = makemovies( IS ) % % INPUTS % IS - MxNxT or MxNx1xT or MxNx3xT array of movies. % % OUTPUTS % M - resulting movie % % EXAMPLE % load( 'images.mat' ); % M = makemovie( videos(:,:,:,1) ); % movie( M ); % % See also MONTAGE2, MAKEMOVIES, PLAYMOVIE, CELL2ARRAY, FEVALARRAYS, % IMMOVIE, MOVIE2AVI % Piotr's Image&Video Toolbox Version NEW % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function M = makemovie( IS ) % get images format (if image stack is MxNxT convert to MxNx1xT) if (ndims(IS)==3); IS = permute(IS, [1,2,4,3] ); end siz = size(IS); nch = siz(3); nd = ndims(IS); if ( nd~=4 ); error('unsupported dimension of IS'); end if( nch~=1 && nch~=3 ); error('illegal image stack format'); end; % normalize for maximum contrast if( isa(IS,'double') ); IS = IS - min(IS(:)); IS = IS / max(IS(:)); end % make movie for i=1:siz(4) Ii=IS(:,:,:,i); if( nch==1 ); [Ii,Mi] = gray2ind( Ii ); else Mi=[]; end if i==1 M=repmat(im2frame( Ii, Mi ),[1,siz(4)]); else M(i) = im2frame( Ii, Mi ); end end
github
GYZHikari/Semantic-Cosegmentation-master
localsum_block.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/localsum_block.m
815
utf_8
1216b03a3bd44ff1fc3256de16a2f1c6
% Calculates the sum in non-overlapping blocks of I of size dims. % % Similar to localsum except gets sum in non-overlapping windows. % Equivalent to doing localsum, and then subsampling (except more % efficient). % % USAGE % I = localsum_block( I, dims ) % % INPUTS % I - matrix to compute sum over % dims - size of volume to compute sum over % % OUTPUTS % I - resulting array % % EXAMPLE % load trees; I=ind2gray(X,map); % I2 = localsum_block( I, 11 ); % figure(1); im(I); figure(2); im(I2); % % See also LOCALSUM % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function I = localsum_block( I, dims ) I = nlfiltblock_sep( I, dims, @rnlfiltblock_sum );
github
GYZHikari/Semantic-Cosegmentation-master
imrotate2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/imrotate2.m
1,326
utf_8
bb2ff6c3138ce5f53154d58d7ebc4f31
% Custom version of imrotate that demonstrates use of apply_homography. % % Works exactly the same as imrotate. For usage see imrotate. % % USAGE % IR = imrotate2( I, angle, [method], [bbox] ) % % INPUTS % I - 2D image [converted to double] % angle - angle to rotate in degrees % method - ['linear'] 'nearest', 'linear', 'spline', 'cubic' % bbox - ['loose'] 'loose' or 'crop' % % OUTPUTS % IR - rotated image % % EXAMPLE % load trees; % tic; X1 = imrotate( X, 55, 'bicubic' ); toc, % tic; X2 = imrotate2( X, 55, 'bicubic' ); toc % clf; subplot(2,2,1); im(X); subplot(2,2,2); im(X1-X2); % subplot(2,2,3); im(X1); subplot(2,2,4); im(X2); % % See also IMROTATE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function IR = imrotate2( I, angle, method, bbox ) if( ~isa( I, 'double' ) ); I = double(I); end if( nargin<3 || isempty(method)); method='linear'; end if( nargin<4 || isempty(bbox) ); bbox='loose'; end if( strcmp(method,'bilinear') || strcmp(method,'lin')); method='linear';end % convert arguments for apply_homography angle_rads = angle /180 * pi; R = rotationMatrix( angle_rads ); H = [R [0;0]; 0 0 1]; IR = apply_homography( I, H, method, bbox );
github
GYZHikari/Semantic-Cosegmentation-master
imSubsResize.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/imSubsResize.m
1,338
utf_8
cd7dedf790c015adfb1f2d620e9ed82f
% Resizes subs by resizVals. % % Resizes subs in subs/vals image representation by resizVals. % % This essentially replaces each sub by sub.*resizVals. The only subtlety % is that in images the leftmost sub value is .5, so for example when % resizing by a factor of 2, the first pixel is replaced by 2 pixels and so % location 1 in the original image goes to location 1.5 in the second % image, NOT 2. It may be necessary to round the values afterward. % % USAGE % subs = imSubsResize( subs, resizVals, [zeroPnt] ) % % INPUTS % subs - subscripts of point locations (n x d) % resizVals - k element vector of shrinking factors % zeroPnt - [.5] See comment above. % % OUTPUTS % subs - transformed subscripts of point locations (n x d) % % EXAMPLE % subs = imSubsResize( [1 1; 2 2], [2 2] ) % % % See also IMSUBSTOARRAY % Piotr's Image&Video Toolbox Version NEW % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function subs = imSubsResize( subs, resizVals, zeroPnt ) if( nargin<3 || isempty(zeroPnt) ); zeroPnt=.5; end [n d] = size(subs); [resizVals,er] = checkNumArgs( resizVals, [1 d], -1, 2 ); error(er); % transform subs resizVals = repmat( resizVals, [n, 1] ); subs = (subs - zeroPnt) .* resizVals + zeroPnt;
github
GYZHikari/Semantic-Cosegmentation-master
imtranslate.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/imtranslate.m
1,183
utf_8
054727fb31c105414b655c0f938b6ced
% Translate an image to subpixel accuracy. % % Note that for subplixel accuracy cannot use nearest neighbor interp. % % USAGE % IR = imtranslate( I, dx, dy, [method], [bbox] ) % % INPUTS % I - 2D image [converted to double] % dx - x translation (right) % dy - y translation (up) % method - ['linear'] 'nearest', 'linear', 'spline', 'cubic' % bbox - ['loose'] 'loose' or 'crop' % % OUTPUTS % IR - translated image % % EXAMPLE % load trees; % XT = imtranslate(X,0,1.5,'bicubic','crop'); % figure(1); im(X,[0 255]); figure(2); im(XT,[0 255]); % % See also IMROTATE2 % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function IR = imtranslate( I, dx, dy, method, bbox ) if( ~isa( I, 'double' ) ); I = double(I); end if( nargin<4 || isempty(method)); method='linear'; end if( nargin<5 || isempty(bbox) ); bbox='loose'; end if( strcmp(method,'bilinear') || strcmp(method,'lin')); method='linear';end % convert arguments for apply_homography H = [eye(2) [dy; dx]; 0 0 1]; IR = apply_homography( I, H, method, bbox );
github
GYZHikari/Semantic-Cosegmentation-master
randperm2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/randperm2.m
1,398
utf_8
5007722f3d5f5ba7c0f83f32ef8a3a2c
% Returns a random permutation of integers. % % randperm2(n) is a random permutation of the integers from 1 to n. For % example, randperm2(6) might be [2 4 5 6 1 3]. randperm2(n,k) is only % returns the first k elements of the permuation, so for example % randperm2(6) might be [2 4]. This is a faster version of randperm.m if % only need first k<<n elements of the random permutation. Also uses less % random bits (only k). Note that this is an implementation O(k), versus % the matlab implementation which is O(nlogn), however, in practice it is % often slower for k=n because it uses a loop. % % USAGE % p = randperm2( n, k ) % % INPUTS % n - permute 1:n % k - keep only first k outputs % % OUTPUTS % p - k length vector of permutations % % EXAMPLE % randperm2(10,5) % % See also RANDPERM % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function p = randperm2( n, k ) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n RANDSAMPLE is its '... 'recommended replacement.'],upper(mfilename)); p = randsample( n, k ); %if (nargin<2); k=n; else k = min(k,n); end % p = 1:n; % for i=1:k % r = i + floor( (n-i+1)*rand ); % t = p(r); p(r) = p(i); p(i) = t; % end % p = p(1:k);
github
GYZHikari/Semantic-Cosegmentation-master
apply_homography.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/apply_homography.m
3,582
utf_8
9c3ed72d35b1145f41114e6e6135b44f
% Applies the homography defined by H on the image I. % % Takes the center of the image as the origin, not the top left corner. % Also, the coordinate system is row/ column format, so H must be also. % % The bounding box of the image is set by the BBOX argument, a string that % can be 'loose' (default) or 'crop'. When BBOX is 'loose', IR includes the % whole transformed image, which generally is larger than I. When BBOX is % 'crop' IR is cropped to include only the central portion of the % transformed image and is the same size as I. Preserves I's type. % % USAGE % IR = apply_homography( I, H, [method], [bbox], [show] ) % % INPUTS % I - input black and white image (2D double or unint8 array) % H - 3x3 nonsingular homography matrix % method - ['linear'] for interp2 'nearest','linear','spline','cubic' % bbox - ['loose'] see above for meaning of bbox 'loose','crop') % show - [0] figure to use for optional display % % OUTPUTS % IR - result of applying H to I. % % EXAMPLE % load trees; I=X; % R = rotationMatrix( pi/4 ); T = [1; 3]; H = [R T; 0 0 1]; % IR = apply_homography( I, H, [], 'crop', 1 ); % % See also TEXTURE_MAP, IMROTATE2 % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function IR = apply_homography( I, H, method, bbox, show ) if( ndims(I)~=2 ); error('I must a MxN array'); end; if(any(size(H)~=[3 3])); error('H must be 3 by 3'); end; if(rank(H)~=3); error('H must be full rank.'); end; if( nargin<3 || isempty(method)); method='linear'; end; if( nargin<4 || isempty(bbox)); bbox='loose'; end; if( nargin<5 || isempty(show)); show=0; end; classname = class( I ); if(~strcmp(classname,'double')); I = double(I); end I = padarray(I,[3,3],eps,'both'); siz = size(I); % set origin to be center of image rstart = (-siz(1)+1)/2; rend = (siz(1)-1)/2; cstart = (-siz(2)+1)/2; cend = (siz(2)-1)/2; % If 'bbox' then get bounds of resulting image. To do this project the % original points accoring to the homography and see the bounds. Note % that since a homography maps a quadrilateral to a quadrilateral only % need to look at where the bounds of the quadrilateral are mapped to. % If 'same' then simply use the original image bounds. if (strcmp(bbox,'loose')) pr = H * [rstart rend rstart rend; cstart cstart cend cend; 1 1 1 1]; row_dest = pr(1,:) ./ pr(3,:); col_dest = pr(2,:) ./ pr(3,:); minr = floor(min(row_dest(:))); maxr = ceil(max(row_dest(:))); minc = floor(min(col_dest(:))); maxc = ceil(max(col_dest(:))); elseif (strcmp(bbox,'crop')) minr = rstart; maxr = rend; minc = cstart; maxc = cend; else error('illegal value for bbox'); end; mrows = maxr-minr+1; ncols = maxc-minc+1; % apply inverse homography on meshgrid in destination image [col_dest_grid,row_dest_grid] = meshgrid( minc:maxc, minr:maxr ); pr = inv(H) * [row_dest_grid(:)'; col_dest_grid(:)'; ones(1,mrows*ncols)]; row_sample_locs = pr(1,:) ./ pr(3,:) + (siz(1)+1)/2; row_sample_locs = reshape(row_sample_locs,mrows,ncols); col_sample_locs = pr(2,:) ./ pr(3,:) + (siz(2)+1)/2; col_sample_locs = reshape(col_sample_locs,mrows,ncols); % now texture map results IR = interp2( I, col_sample_locs, row_sample_locs, method ); IR(isnan(IR)) = 0; IR = arraycrop2dims( IR, size(IR)-6 ); %undo extra padding if(~strcmp(classname,'double')); IR=feval(classname,IR ); end % optionally show if ( show) I = arraycrop2dims( I, size(IR)-2 ); figure(show); clf; im(I); figure(show+1); clf; im(IR); end
github
GYZHikari/Semantic-Cosegmentation-master
pca_apply.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/pca_apply.m
2,427
utf_8
0831befb6057f8502bc492227455019a
% Companion function to pca. % % Use pca to retrieve the principal components U and the mean mu from a % set fo vectors X1 via [U,mu,vars] = pca(X1). Then given a new % vector x, use y = pca_apply( x, U, mu, vars, k ) to get the first k % coefficients of x in the space spanned by the columns of U. See pca for % general information. % % This may prove useful: % siz = size(X); k = 100; % Uim = reshape( U(:,1:k), [ siz(1:end-1) k ] ); % % USAGE % [ Yk, Xhat, avsq, avsqOrig ] = pca_apply( X, U, mu, vars, k ) % % INPUTS % X - array for which to get PCA coefficients % U - [returned by pca] -- see pca % mu - [returned by pca] -- see pca % vars - [returned by pca] -- see pca % k - number of principal coordinates to approximate X with % % OUTPUTS % Yk - first k coordinates of X in column space of U % Xhat - approximation of X corresponding to Yk % avsq - measure of squared error normalized to fall between [0,1] % % EXAMPLE % % See also PCA, PCA_VISUALIZE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function [Yk,Xhat,avsq,avsqOrig] = pca_apply(X,U,mu,vars,k) %#ok<INUSL> siz = size(X); nd = ndims(X); [N,r] = size(U); if(N==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end inds = {':'}; inds = inds(:,ones(1,nd-1)); d= prod(siz(1:end-1)); % some error checking if(d~=N); error('incorrect size for X or U'); end if(isa(X,'uint8')); X = double(X); end if( k>r ) warning(['Only ' int2str(r) '<k comp. available.']); %#ok<WNTAG> k=r; end % subtract mean, then flatten X Xorig = X; murep = mu( inds{:}, ones(1,siz(end))); X = X - murep; X = reshape(X, d, [] ); % Find Yk, the first k coefficients of X in the new basis k = min( r, k ); Uk = U(:,1:k); Yk = Uk' * X; % calculate Xhat - the approx of X using the first k princ components if( nargout>1 ) Xhat = Uk * Yk; Xhat = reshape( Xhat, siz ); Xhat = Xhat + murep; end % caclulate average value of (Xhat-Xorig).^2 compared to average value % of X.^2, where X is Xorig without the mean. This is equivalent to % what fraction of the variance is captured by Xhat. if( nargout>2 ) avsq = Xhat - Xorig; avsq = dot(avsq(:),avsq(:)); avsqOrig = dot(X(:),X(:)); if (nargout==3) avsq = avsq / avsqOrig; end end
github
GYZHikari/Semantic-Cosegmentation-master
mode2.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/deprecated/mode2.m
731
utf_8
5c9321ef4b610b4f4a2d43902a68838e
% Returns the mode of a vector. % % Was mode not part of Matlab before? % % USAGE % y = mode2( x ) % % INPUTS % x - vector of integers % % OUTPUTS % y - mode % % EXAMPLE % x = randint2( 1, 10, [1 3] ) % mode(x), mode2( x ) % % See also MODE % Piotr's Image&Video Toolbox Version 1.5 % Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu % Please email me if you find bugs, or have suggestions or questions! function y = mode2( x ) wid = sprintf('Images:%s:obsoleteFunction',mfilename); warning(wid,[ '%s is obsolete in Piotr''s toolbox.\n MODE is its '... 'recommended replacement.'],upper(mfilename)); y = mode( x ); % [b,i,j] = unique(x); % [ mval, ind ] = max(hist(j,length(b))); % y = b(ind);
github
GYZHikari/Semantic-Cosegmentation-master
savefig.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/external/other/savefig.m
13,459
utf_8
2b8463f9b01ceb743e440d8fb5755829
function savefig(fname, varargin) % Usage: savefig(filename, fighdl, options) % % Saves a pdf, eps, png, jpeg, and/or tiff of the contents of the fighandle's (or current) figure. % It saves an eps of the figure and the uses Ghostscript to convert to the other formats. % The result is a cropped, clean picture. There are options for using rgb or cmyk colours, % or grayscale. You can also choose the resolution. % % The advantage of savefig is that there is very little empty space around the figure in the % resulting files, you can export to more than one format at once, and Ghostscript generates % trouble-free files. % % If you find any errors, please let me know! (peder at axensten dot se) % % filename: File name without suffix. % % fighdl: (default: gcf) Integer handle to figure. % % options: (default: '-r300', '-lossless', '-rgb') You can define your own % defaults in a global variable savefig_defaults, if you want to, i.e. % savefig_defaults= {'-r200','-gray'};. % 'eps': Output in Encapsulated Post Script (no preview yet). % 'pdf': Output in (Adobe) Portable Document Format. % 'png': Output in Portable Network Graphics. % 'jpeg': Output in Joint Photographic Experts Group format. % 'tiff': Output in Tagged Image File Format (no compression: huge files!). % '-rgb': Output in rgb colours. % '-cmyk': Output in cmyk colours (not yet 'png' or 'jpeg' -- '-rgb' is used). % '-gray': Output in grayscale (not yet 'eps' -- '-rgb' is used). % '-fonts': Include fonts in eps or pdf. Includes only the subset needed. % '-lossless': Use lossless compression, works on most formats. same as '-c0', below. % '-c<float>': Set compression for non-indexed bitmaps in PDFs - % 0: lossless; 0.1: high quality; 0.5: medium; 1: high compression. % '-r<integer>': Set resolution. % '-crop': Removes points and line segments outside the viewing area -- permanently. % Only use this on figures where many points and/or line segments are outside % the area zoomed in to. This option will result in smaller vector files (has no % effect on pixel files). % '-dbg': Displays gs command line(s). % % EXAMPLE: % savefig('nicefig', 'pdf', 'jpeg', '-cmyk', '-c0.1', '-r250'); % Saves the current figure to nicefig.pdf and nicefig.png, both in cmyk and at 250 dpi, % with high quality lossy compression. % % REQUIREMENT: Ghostscript. Version 8.57 works, probably older versions too, but '-dEPSCrop' % must be supported. I think version 7.32 or newer is ok. % % HISTORY: % Version 1.0, 2006-04-20. % Version 1.1, 2006-04-27: % - No 'epstopdf' stuff anymore! Using '-dEPSCrop' option in gs instead! % Version 1.2, 2006-05-02: % - Added a '-dbg' option (see options, above). % - Now looks for a global variable 'savefig_defaults' (see options, above). % - More detailed Ghostscript options (user will not really notice). % - Warns when there is no device for a file-type/color-model combination. % Version 1.3, 2006-06-06: % - Added a check to see if there actually is a figure handle. % - Now works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too). % - Now compatible with Ghostscript 8.54, released 2006-06-01. % Version 1.4, 2006-07-20: % - Added an option '-soft' that enables anti-aliasing on pixel graphics (on by default). % - Added an option '-hard' that don't do anti-aliasing on pixel graphics. % Version 1.5, 2006-07-27: % - Fixed a bug when calling with a figure handle argument. % Version 1.6, 2006-07-28: % - Added a crop option, see above. % Version 1.7, 2007-03-31: % - Fixed bug: calling print with invalid renderer value '-none'. % - Removed GhostScript argument '-dUseCIEColor' as it sometimes discoloured things. % Version 1.8, 2008-01-03: % - Added MacIntel: 'MACI'. % - Added 64bit PC (I think, can't test it myself). % - Added option '-nointerpolate' (use it to prevent blurring of pixelated). % - Removed '-hard' and '-soft'. Use '-nointerpolate' for '-hard', default for '-soft'. % - Fixed the gs 8.57 warning on UseCIEColor (it's now set). % - Added '-gray' for pdf, but gs 8.56 or newer is needed. % - Added '-gray' and '-cmyk' for eps, but you a fairly recent gs might be needed. % Version 1.9, 2008-07-27: % - Added lossless compression, see option '-lossless', above. Works on most formats. % - Added lossy compression, see options '-c<float>...', above. Works on 'pdf'. % Thanks to Olly Woodford for idea and implementation! % - Removed option '-nointerpolate' -- now savefig never interpolates. % - Fixed a few small bugs and removed some mlint comments. % Version 2.0, 2008-11-07: % - Added the possibility to include fonts into eps or pdf. % % TO DO: (Need Ghostscript support for these, so don't expect anything soon...) % - svg output. % - '-cmyk' for 'jpeg' and 'png'. % - Preview in 'eps'. % - Embedded vector fonts, not bitmap, in 'eps'. % % Copyright (C) Peder Axensten (peder at axensten dot se), 2006. % KEYWORDS: eps, pdf, jpg, jpeg, png, tiff, eps2pdf, epstopdf, ghostscript % % INSPIRATION: eps2pdf (5782), eps2xxx (6858) % % REQUIREMENTS: Works in Matlab 6.5.1 (R13SP1) (maybe in 6.5 too). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% op_dbg= false; % Default value. % Compression compr= [' -dUseFlateCompression=true -dLZWEncodePages=true -dCompatibilityLevel=1.6' ... ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false ' ... ' -dColorImageFilter=%s -dGrayImageFilter=%s']; % Compression. lossless= sprintf (compr, '/FlateEncode', '/FlateEncode'); lossy= sprintf (compr, '/DCTEncode', '/DCTEncode' ); lossy= [lossy ' -c ".setpdfwrite << /ColorImageDict << /QFactor %g ' ... '/Blend 1 /HSample [%s] /VSample [%s] >> >> setdistillerparams"']; % Create gs command. cmdEnd= ' -sDEVICE=%s -sOutputFile="%s"'; % Essential. epsCmd= ''; epsCmd= [epsCmd ' -dSubsetFonts=true -dNOPLATFONTS']; % Future support? epsCmd= [epsCmd ' -dUseCIEColor=true -dColorConversionStrategy=/UseDeviceIndependentColor']; epsCmd= [epsCmd ' -dProcessColorModel=/%s']; % Color conversion. pdfCmd= [epsCmd ' -dAntiAliasColorImages=false' cmdEnd]; epsCmd= [epsCmd cmdEnd]; % Get file name. if((nargin < 1) || isempty(fname) || ~ischar(fname)) % Check file name. error('No file name specified.'); end [pathstr, namestr] = fileparts(fname); if(isempty(pathstr)), fname= fullfile(cd, namestr); end % Get handle. fighdl= get(0, 'CurrentFigure'); % See gcf. % Get figure handle. if((nargin >= 2) && (numel(varargin{1}) == 1) && isnumeric(varargin{1})) fighdl= varargin{1}; varargin= {varargin{2:end}}; end if(isempty(fighdl)), error('There is no figure to save!?'); end set(fighdl, 'Units', 'centimeters') % Set paper stuff. sz= get(fighdl, 'Position'); sz(1:2)= 0; set(fighdl, 'PaperUnits', 'centimeters', 'PaperSize', sz(3:4), 'PaperPosition', sz); % Set up the various devices. % Those commented out are not yet supported by gs (nor by savefig). % pdf-cmyk works due to the Matlab '-cmyk' export being carried over from eps to pdf. device.eps.rgb= sprintf(epsCmd, 'DeviceRGB', 'epswrite', [fname '.eps']); device.jpeg.rgb= sprintf(cmdEnd, 'jpeg', [fname '.jpeg']); % device.jpeg.cmyk= sprintf(cmdEnd, 'jpegcmyk', [fname '.jpeg']); device.jpeg.gray= sprintf(cmdEnd, 'jpeggray', [fname '.jpeg']); device.pdf.rgb= sprintf(pdfCmd, 'DeviceRGB', 'pdfwrite', [fname '.pdf']); device.pdf.cmyk= sprintf(pdfCmd, 'DeviceCMYK', 'pdfwrite', [fname '.pdf']); device.pdf.gray= sprintf(pdfCmd, 'DeviceGray', 'pdfwrite', [fname '.pdf']); device.png.rgb= sprintf(cmdEnd, 'png16m', [fname '.png']); % device.png.cmyk= sprintf(cmdEnd, 'png???', [fname '.png']); device.png.gray= sprintf(cmdEnd, 'pnggray', [fname '.png']); device.tiff.rgb= sprintf(cmdEnd, 'tiff24nc', [fname '.tiff']); device.tiff.cmyk= sprintf(cmdEnd, 'tiff32nc', [fname '.tiff']); device.tiff.gray= sprintf(cmdEnd, 'tiffgray', [fname '.tiff']); % Get options. global savefig_defaults; % Add global defaults. if( iscellstr(savefig_defaults)), varargin= {savefig_defaults{:}, varargin{:}}; elseif(ischar(savefig_defaults)), varargin= {savefig_defaults, varargin{:}}; end varargin= {'-r300', '-lossless', '-rgb', varargin{:}}; % Add defaults. res= ''; types= {}; fonts= 'false'; crop= false; for n= 1:length(varargin) % Read options. if(ischar(varargin{n})) switch(lower(varargin{n})) case {'eps','jpeg','pdf','png','tiff'}, types{end+1}= lower(varargin{n}); case '-rgb', color= 'rgb'; deps= {'-depsc2'}; case '-cmyk', color= 'cmyk'; deps= {'-depsc2', '-cmyk'}; case '-gray', color= 'gray'; deps= {'-deps2'}; case '-fonts', fonts= 'true'; case '-lossless', comp= 0; case '-crop', crop= true; case '-dbg', op_dbg= true; otherwise if(regexp(varargin{n}, '^\-r[0-9]+$')), res= varargin{n}; elseif(regexp(varargin{n}, '^\-c[0-9.]+$')), comp= str2double(varargin{n}(3:end)); else warning('pax:savefig:inputError', 'Unknown option in argument: ''%s''.', varargin{n}); end end else warning('pax:savefig:inputError', 'Wrong type of argument: ''%s''.', class(varargin{n})); end end types= unique(types); if(isempty(types)), error('No output format given.'); end if (comp == 0) % Lossless compression gsCompr= lossless; elseif (comp <= 0.1) % High quality lossy gsCompr= sprintf(lossy, comp, '1 1 1 1', '1 1 1 1'); else % Normal lossy gsCompr= sprintf(lossy, comp, '2 1 1 2', '2 1 1 2'); end % Generate the gs command. switch(computer) % Get gs command. case {'MAC','MACI'}, gs= '/usr/local/bin/gs'; case {'PCWIN'}, gs= 'gswin32c.exe'; case {'PCWIN64'}, gs= 'gswin64c.exe'; otherwise, gs= 'gs'; end gs= [gs ' -q -dNOPAUSE -dBATCH -dEPSCrop']; % Essential. gs= [gs ' -dPDFSETTINGS=/prepress -dEmbedAllFonts=' fonts]; % Must be first? gs= [gs ' -dUseFlateCompression=true']; % Useful stuff. gs= [gs ' -dAutoRotatePages=/None']; % Probably good. gs= [gs ' -dHaveTrueTypes']; % Probably good. gs= [gs ' ' res]; % Add resolution to cmd. if(crop && ismember(types, {'eps', 'pdf'})) % Crop the figure. fighdl= do_crop(fighdl); end % Output eps from Matlab. renderer= ['-' lower(get(fighdl, 'Renderer'))]; % Use same as in figure. if(strcmpi(renderer, '-none')), renderer= '-painters'; end % We need a valid renderer. deps = [deps '-loose']; % added by PPD seems to help w cropping in matlab 2014b :( print(fighdl, deps{:}, '-noui', renderer, res, [fname '-temp']); % Output the eps. % Convert to other formats. for n= 1:length(types) % Output them. if(isfield(device.(types{n}), color)) cmd= device.(types{n}).(color); % Colour model exists. else cmd= device.(types{n}).rgb; % Use alternative. if(~strcmp(types{n}, 'eps')) % It works anyways for eps (VERY SHAKY!). warning('pax:savefig:deviceError', ... 'No device for %s using %s. Using rgb instead.', types{n}, color); end end cmp= lossless; if (strcmp(types{n}, 'pdf')), cmp= gsCompr; end % Lossy compr only for pdf. if (strcmp(types{n}, 'eps')), cmp= ''; end % eps can't use lossless. cmd= sprintf('%s %s %s -f "%s-temp.eps"', gs, cmd, cmp, fname);% Add up. status= system(cmd); % Run Ghostscript. if (op_dbg || status), display (cmd), end end delete([fname '-temp.eps']); % Clean up. end function fig= do_crop(fig) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Remove line segments that are outside the view. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% haxes= findobj(fig, 'Type', 'axes', '-and', 'Tag', ''); for n=1:length(haxes) xl= get(haxes(n), 'XLim'); yl= get(haxes(n), 'YLim'); lines= findobj(haxes(n), 'Type', 'line'); for m=1:length(lines) x= get(lines(m), 'XData'); y= get(lines(m), 'YData'); inx= (xl(1) <= x) & (x <= xl(2)); % Within the x borders. iny= (yl(1) <= y) & (y <= yl(2)); % Within the y borders. keep= inx & iny; % Within the box. if(~strcmp(get(lines(m), 'LineStyle'), 'none')) crossx= ((x(1:end-1) < xl(1)) & (xl(1) < x(2:end))) ... % Crossing border x1. | ((x(1:end-1) < xl(2)) & (xl(2) < x(2:end))) ... % Crossing border x2. | ((x(1:end-1) > xl(1)) & (xl(1) > x(2:end))) ... % Crossing border x1. | ((x(1:end-1) > xl(2)) & (xl(2) > x(2:end))); % Crossing border x2. crossy= ((y(1:end-1) < yl(1)) & (yl(1) < y(2:end))) ... % Crossing border y1. | ((y(1:end-1) < yl(2)) & (yl(2) < y(2:end))) ... % Crossing border y2. | ((y(1:end-1) > yl(1)) & (yl(1) > y(2:end))) ... % Crossing border y1. | ((y(1:end-1) > yl(2)) & (yl(2) > y(2:end))); % Crossing border y2. crossp= [( (crossx & iny(1:end-1) & iny(2:end)) ... % Crossing a x border within y limits. | (crossy & inx(1:end-1) & inx(2:end)) ... % Crossing a y border within x limits. | crossx & crossy ... % Crossing a x and a y border (corner). ), false ... ]; crossp(2:end)= crossp(2:end) | crossp(1:end-1); % Add line segment's secont end point. keep= keep | crossp; end set(lines(m), 'XData', x(keep)) set(lines(m), 'YData', y(keep)) end end end
github
GYZHikari/Semantic-Cosegmentation-master
dirSynch.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/matlab/dirSynch.m
4,570
utf_8
d288299d31d15f1804183206d0aa0227
function dirSynch( root1, root2, showOnly, flag, ignDate ) % Synchronize two directory trees (or show differences between them). % % If a file or directory 'name' is found in both tree1 and tree2: % 1) if 'name' is a file in both the pair is considered the same if they % have identical size and identical datestamp (or if ignDate=1). % 2) if 'name' is a directory in both the dirs are searched recursively. % 3) if 'name' is a dir in root1 and a file in root2 (or vice-versa) % synchronization cannot proceed (an error is thrown). % If 'name' is found only in root1 or root2 it's a difference between them. % % The parameter flag controls how synchronization occurs: % flag==0: neither tree1 nor tree2 has preference (newer file is kept) % flag==1: tree2 is altered to reflect tree1 (tree1 is unchanged) % flag==2: tree1 is altered to reflect tree2 (tree2 is unchanged) % Run with showOnly=1 and different values of flag to see its effect. % % By default showOnly==1. If showOnly, displays a list of actions that need % to be performed in order to synchronize the two directory trees, but does % not actually perform the actions. It is highly recommended to run % dirSynch first with showOnly=1 before running it with showOnly=0. % % USAGE % dirSynch( root1, root2, [showOnly], [flag], [ignDate] ) % % INPUTS % root1 - root directory of tree1 % root2 - root directory of tree2 % showOnly - [1] show but do NOT perform actions % flag - [0] 0: synchronize; 1: set root2=root1; 2: set root1==root2 % ignDate - [0] if true considers two files same even if have diff dates % % OUTPUTS % dirSynch( 'c:\toolbox', 'c:\toolbox-old', 1 ) % % EXAMPLE % % See also % % Piotr's Computer Vision Matlab Toolbox Version 2.10 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if(nargin<3 || isempty(showOnly)), showOnly=1; end; if(nargin<4 || isempty(flag)), flag=0; end; if(nargin<5 || isempty(ignDate)), ignDate=0; end; % get differences between root1/root2 and loop over them D = dirDiff( root1, root2, ignDate ); roots={root1,root2}; ticId = ticStatus; for i=1:length(D) % get action if( flag==1 ) if( D(i).in1 ), act=1; src1=1; else act=0; src1=2; end elseif( flag==2 ) if( D(i).in2 ), act=1; src1=2; else act=0; src1=1; end else act=1; if(D(i).in1 && D(i).in2) if( D(i).new1 ), src1=1; else src1=2; end else if( D(i).in1 ), src1=1; else src1=2; end end end src2=mod(src1,2)+1; % perform action if( act==1 ) if( showOnly ) disp(['COPY ' int2str(src1) '->' int2str(src2) ': ' D(i).name]); else copyfile( [roots{src1} D(i).name], [roots{src2} D(i).name], 'f' ); end; else if( showOnly ) disp(['DEL in ' int2str(src1) ': ' D(i).name]); else fName = [roots{src1} D(i).name]; if(D(i).isdir), rmdir(fName,'s'); else delete(fName); end end end if(~showOnly), tocStatus( ticId, i/length(D) ); end; end end function D = dirDiff( root1, root2, ignDate ) % get differences from root1 to root2 D1 = dirDiff1( root1, root2, ignDate, '/' ); % get differences from root2 to root1 D2 = dirDiff1( root2, root1, ignDate, '/' ); % remove duplicates (arbitrarily from D2) D2=D2(~([D2.in1] & [D2.in2])); % swap 1 and 2 in D2 for i=1:length(D2), D2(i).in1=0; D2(i).in2=1; D2(i).new1=~D2(i).new1; end % merge D = [D1 D2]; end function D = dirDiff1( root1, root2, ignDate, subdir ) if(root1(end)~='/'), root1(end+1)='/'; end if(root2(end)~='/'), root2(end+1)='/'; end if(subdir(end)~='/'), subdir(end+1)='/'; end fs1=dir([root1 subdir]); fs2=dir([root2 subdir]); D=struct('name',0,'isdir',0,'in1',0,'in2',0,'new1',0); D=repmat(D,[1 length(fs1)]); n=0; names2={fs2.name}; Dsub=[]; for i1=1:length( fs1 ) name=fs1(i1).name; isdir=fs1(i1).isdir; if( any(strcmp(name,{'.','..'})) ), continue; end; i2 = find(strcmp(name,names2)); if(~isempty(i2) && isdir) % cannot handle this condition if(~fs2(i2).isdir), disp([root1 subdir name]); assert(false); end; % recurse and record possible differences Dsub=[Dsub dirDiff1(root1,root2,ignDate,[subdir name])]; %#ok<AGROW> elseif( ~isempty(i2) && fs1(i1).bytes==fs2(i2).bytes && ... (ignDate || fs1(i1).datenum==fs2(i2).datenum)) % nothing to do - files are same continue; else % record differences n=n+1; D(n).name=[subdir name]; D(n).isdir=isdir; D(n).in1=1; D(n).in2=~isempty(i2); D(n).new1 = ~D(n).in2 || (fs1(i1).datenum>fs2(i2).datenum); end end D = [D(1:n) Dsub]; end
github
GYZHikari/Semantic-Cosegmentation-master
plotRoc.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/matlab/plotRoc.m
5,212
utf_8
008f9c63073c6400c4960e9e213c47e5
function [h,miss,stds] = plotRoc( D, varargin ) % Function for display of rocs (receiver operator characteristic curves). % % Display roc curves. Consistent usage ensures uniform look for rocs. The % input D should have n rows, each of which is of the form: % D = [falsePosRate truePosRate] % D is generated, for example, by scanning a detection threshold over n % values from 0 (so first entry is [1 1]) to 1 (so last entry is [0 0]). % Alternatively D can be a cell vector of rocs, in which case an average % ROC will be shown with error bars. Plots missRate (which is just 1 minus % the truePosRate) on the y-axis versus the falsePosRate on the x-axis. % % USAGE % [h,miss,stds] = plotRoc( D, prm ) % % INPUTS % D - [nx2] n data points along roc [falsePosRate truePosRate] % typically ranges from [1 1] to [0 0] (or may be reversed) % prm - [] param struct % .color - ['g'] color for curve % .lineSt - ['-'] linestyle (see LineSpec) % .lineWd - [4] curve width % .logx - [0] use logarithmic scale for x-axis % .logy - [0] use logarithmic scale for y-axis % .marker - [''] marker type (see LineSpec) % .mrkrSiz - [12] marker size % .nMarker - [5] number of markers (regularly spaced) to display % .lims - [0 1 0 1] axes limits % .smooth - [0] if T compute lower envelop of roc to smooth staircase % .fpTarget - [] return miss rates at given fp values (and draw lines) % .xLbl - ['false positive rate'] label for x-axis % .yLbl - ['miss rate'] label for y-axis % % OUTPUTS % h - plot handle for use in legend only % miss - average miss rates at fpTarget reference values % stds - standard deviation of miss rates at fpTarget reference values % % EXAMPLE % k=2; x=0:.0001:1; data1 = [1-x; (1-x.^k).^(1/k)]'; % k=3; x=0:.0001:1; data2 = [1-x; (1-x.^k).^(1/k)]'; % hs(1)=plotRoc(data1,struct('color','g','marker','s')); % hs(2)=plotRoc(data2,struct('color','b','lineSt','--')); % legend( hs, {'roc1','roc2'} ); xlabel('fp'); ylabel('fn'); % % See also % % Piotr's Computer Vision Matlab Toolbox Version 3.02 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % get params [color,lineSt,lineWd,logx,logy,marker,mrkrSiz,nMarker,lims,smooth, ... fpTarget,xLbl,yLbl] = getPrmDflt( varargin, {'color' 'g' 'lineSt' '-' ... 'lineWd' 4 'logx' 0 'logy' 0 'marker' '' 'mrkrSiz' 12 'nMarker' 5 ... 'lims' [] 'smooth' 0 'fpTarget' [] 'xLbl' 'false positive rate' ... 'yLbl' 'miss rate' } ); if( isempty(lims) ); lims=[logx*1e-5 1 logy*1e-5 1]; end % ensure descending fp rate, change to miss rate, optionally 'nicefy' roc if(~iscell(D)), D={D}; end; nD=length(D); for j=1:nD, assert(size(D{j},2)==2); end for j=1:nD, if(D{j}(1,2)<D{j}(end,2)), D{j}=flipud(D{j}); end; end for j=1:nD, D{j}(:,2)=1-D{j}(:,2); assert(all(D{j}(:,2)>=0)); end if(smooth), for j=1:nD, D{j}=smoothRoc(D{j}); end; end % plot: (1) h for legend only, (2) markers, (3) error bars, (4) roc curves hold on; axis(lims); xlabel(xLbl); ylabel(yLbl); prmMrkr = {'MarkerSize',mrkrSiz,'MarkerFaceColor',color}; prmClr={'Color',color}; prmPlot = [prmClr,{'LineWidth',lineWd}]; h = plot( 2, 0, [lineSt marker], prmMrkr{:}, prmPlot{:} ); %(1) DQ = quantizeRocs( D, nMarker, logx, lims ); DQm=mean(DQ,3); if(~isempty(marker)) plot(DQm(:,1),DQm(:,2),marker,prmClr{:},prmMrkr{:} ); end %(2) if(nD>1), DQs=std(DQ,0,3); errorbar(DQm(:,1),DQm(:,2),DQs(:,2),'.',prmClr{:}); end %(3) if(nD==1), DQ=D{1}; else DQ=quantizeRocs(D,100,logx,lims); end DQm = mean(DQ,3); plot( DQm(:,1), DQm(:,2), lineSt, prmPlot{:} ); %(4) % plot line at given fp rate m=length(fpTarget); miss=zeros(1,m); stds=miss; if( m>0 ) assert( min(DQm(:,1))<=min(fpTarget) ); DQs=std(DQ,0,3); for i=1:m, j=find(DQm(:,1)<=fpTarget(i)); j=j(1); miss(i)=DQm(j,2); stds(i)=DQs(j,2); end fp=min(fpTarget); plot([fp fp],lims(3:4),'Color',.7*[1 1 1]); fp=max(fpTarget); plot([fp fp],lims(3:4),'Color',.7*[1 1 1]); end % set log axes if( logx==1 ) ticks=10.^(-8:8); set(gca,'XScale','log','XTick',ticks); end if( logy==1 ) ticks=[.001 .002 .005 .01 .02 .05 .1 .2 .5 1]; set(gca,'YScale','log','YTick',ticks); end if( logx==1 || logy==1 ), grid on; set(gca,'XMinorGrid','off','XMinorTic','off'); set(gca,'YMinorGrid','off','YMinorTic','off'); end end function DQ = quantizeRocs( Ds, nPnts, logx, lims ) % estimate miss rate at each target fp rate nD=length(Ds); DQ=zeros(nPnts,2,nD); if(logx==1), fps=logspace(log10(lims(1)),log10(lims(2)),nPnts); else fps=linspace(lims(1),lims(2),nPnts); end; fps=flipud(fps'); for j=1:nD, D=[Ds{j}; 0 1]; k=1; fp=D(k,1); for i=1:nPnts while( k<size(D,1) && fp>=fps(i) ), k=k+1; fp=D(k,1); end k0=max(k-1,1); fp0=D(k0,1); assert(fp0>=fp); if(fp0==fp), r=.5; else r=(fps(i)-fp)/(fp0-fp); end DQ(i,1,j)=fps(i); DQ(i,2,j)=r*D(k0,2)+(1-r)*D(k,2); end end end function D1 = smoothRoc( D ) D1 = zeros(size(D)); n = size(D,1); cnt=0; for i=1:n isAnkle = (i==1) || (i==n); if( ~isAnkle ) dP=D1(cnt,:); dC=D(i,:); dN=D(i+1,:); isAnkle = (dC(1)~=dP(1)) && (dC(2)~=dN(2)); end if(isAnkle); cnt=cnt+1; D1(cnt,:)=D(i,:); end end D1=D1(1:cnt,:); end
github
GYZHikari/Semantic-Cosegmentation-master
simpleCache.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/matlab/simpleCache.m
4,098
utf_8
92df86b0b7e919c9a26388e598e4d370
function varargout = simpleCache( op, cache, varargin ) % A simple cache that can be used to store results of computations. % % Can save and retrieve arbitrary values using a vector (includnig char % vectors) as a key. Especially useful if a function must perform heavy % computation but is often called with the same inputs (for which it will % give the same outputs). Note that the current implementation does a % linear search for the key (a more refined implementation would use a hash % table), so it is not meant for large scale usage. % % To use inside a function, make the cache persistent: % persistent cache; if( isempty(cache) ) cache=simpleCache('init'); end; % The following line, when placed inside a function, means the cache will % stay in memory until the matlab environment changes. For an example % usage see maskGaussians. % % USAGE - 'init': initialize a cache object % cache = simpleCache('init'); % % USAGE - 'put': put something in cache. key must be a numeric vector % cache = simpleCache( 'put', cache, key, val ); % % USAGE - 'get': retrieve from cache. found==1 if obj was found % [found,val] = simpleCache( 'get', cache, key ); % % USAGE - 'remove': free key % [cache,found] = simpleCache( 'remove', cache, key ); % % INPUTS % op - 'init', 'put', 'get', 'remove' % cache - the cache object being operated on % varargin - see USAGE above % % OUTPUTS % varargout - see USAGE above % % EXAMPLE % cache = simpleCache('init'); % hellokey=rand(1,3); worldkey=rand(1,11); % cache = simpleCache( 'put', cache, hellokey, 'hello' ); % cache = simpleCache( 'put', cache, worldkey, 'world' ); % [f,v]=simpleCache( 'get', cache, hellokey ); disp(v); % [f,v]=simpleCache( 'get', cache, worldkey ); disp(v); % % See also PERSISTENT, MASKGAUSSIANS % % Piotr's Computer Vision Matlab Toolbox Version 2.61 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] switch op case 'init' % init a cache cacheSiz = 8; cache.freeinds = 1:cacheSiz; cache.keyns = -ones(1,cacheSiz); cache.keys = cell(1,cacheSiz); cache.vals = cell(1,cacheSiz); varargout = {cache}; case 'put' % a put operation key=varargin{1}; val=varargin{2}; cache = cacheput( cache, key, val ); varargout = {cache}; case 'get' % a get operation key=varargin{1}; [ind,val] = cacheget( cache, key ); found = ind>0; varargout = {found,val}; case 'remove' % a remove operation key=varargin{1}; [cache,found] = cacheremove( cache, key ); varargout = {cache,found}; otherwise error('Unknown cache operation: %s',op); end end function cache = cachegrow( cache ) % double cache size cacheSiz = length( cache.keyns ); if( cacheSiz>64 ) % warn if getting big warning(['doubling cache size to: ' int2str2(cacheSiz*2)]);%#ok<WNTAG> end cache.freeinds = [cache.freeinds (cacheSiz+1):(2*cacheSiz)]; cache.keyns = [cache.keyns -ones(1,cacheSiz)]; cache.keys = [cache.keys cell(1,cacheSiz)]; cache.vals = [cache.vals cell(1,cacheSiz)]; end function cache = cacheput( cache, key, val ) % put something into the cache % get location to place ind = cacheget( cache, key ); % see if already in cache if( ind==-1 ) if( isempty( cache.freeinds ) ) cache = cachegrow( cache ); %grow cache end ind = cache.freeinds(1); % get new cache loc cache.freeinds = cache.freeinds(2:end); end % now simply place in ind cache.keyns(ind) = length(key); cache.keys{ind} = key; cache.vals{ind} = val; end function [ind,val] = cacheget( cache, key ) % get cache element, or fail cacheSiz = length( cache.keyns ); keyn = length( key ); for i=1:cacheSiz if(keyn==cache.keyns(i) && all(key==cache.keys{i})) val = cache.vals{i}; ind = i; return; end end ind=-1; val=-1; end function [cache,found] = cacheremove( cache, key ) % get cache element, or fail ind = cacheget( cache, key ); found = ind>0; if( found ) cache.freeinds = [ind cache.freeinds]; cache.keyns(ind) = -1; cache.keys{ind} = []; cache.vals{ind} = []; end end
github
GYZHikari/Semantic-Cosegmentation-master
tpsInterpolate.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/matlab/tpsInterpolate.m
1,646
utf_8
d3bd3a26d048f32cfdc17884ccae6d8c
function [xsR,ysR] = tpsInterpolate( warp, xs, ys, show ) % Apply warp (obtained by tpsGetWarp) to a set of new points. % % USAGE % [xsR,ysR] = tpsInterpolate( warp, xs, ys, [show] ) % % INPUTS % warp - [see tpsGetWarp] bookstein warping parameters % xs, ys - points to apply warp to % show - [1] will display results in figure(show) % % OUTPUTS % xsR, ysR - result of warp applied to xs, ys % % EXAMPLE % % See also TPSGETWARP % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<4 || isempty(show)); show = 1; end wx = warp.wx; affinex = warp.affinex; wy = warp.wy; affiney = warp.affiney; xsS = warp.xsS; ysS = warp.ysS; xsD = warp.xsD; ysD = warp.ysD; % interpolate points (xs,ys) xsR = f( wx, affinex, xsS, ysS, xs(:)', ys(:)' ); ysR = f( wy, affiney, xsS, ysS, xs(:)', ys(:)' ); % optionally show points (xsR, ysR) if( show ) figure(show); subplot(2,1,1); plot( xs, ys, '.', 'color', [0 0 1] ); hold('on'); plot( xsS, ysS, '+' ); hold('off'); subplot(2,1,2); plot( xsR, ysR, '.' ); hold('on'); plot( xsD, ysD, '+' ); hold('off'); end function zs = f( w, aff, xsS, ysS, xs, ys ) % find f(x,y) for xs and ys given W and original points n = size(w,1); ns = size(xs,2); delXs = xs'*ones(1,n) - ones(ns,1)*xsS; delYs = ys'*ones(1,n) - ones(ns,1)*ysS; distSq = (delXs .* delXs + delYs .* delYs); distSq = distSq + eye(size(distSq)) + eps; U = distSq .* log( distSq ); U( isnan(U) )=0; zs = aff(1)*ones(ns,1)+aff(2)*xs'+aff(3)*ys'; zs = zs + sum((U.*(ones(ns,1)*w')),2);
github
GYZHikari/Semantic-Cosegmentation-master
checkNumArgs.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/matlab/checkNumArgs.m
3,796
utf_8
726c125c7dc994c4989c0e53ad4be747
function [ x, er ] = checkNumArgs( x, siz, intFlag, signFlag ) % Helper utility for checking numeric vector arguments. % % Runs a number of tests on the numeric array x. Tests to see if x has all % integer values, all positive values, and so on, depending on the values % for intFlag and signFlag. Also tests to see if the size of x matches siz % (unless siz==[]). If x is a scalar, x is converted to a array simply by % creating a matrix of size siz with x in each entry. This is why the % function returns x. siz=M is equivalent to siz=[M M]. If x does not % satisfy some criteria, an error message is returned in er. If x satisfied % all the criteria er=''. Note that error('') has no effect, so can use: % [ x, er ] = checkNumArgs( x, ... ); error(er); % which will throw an error only if something was wrong with x. % % USAGE % [ x, er ] = checkNumArgs( x, siz, intFlag, signFlag ) % % INPUTS % x - numeric array % siz - []: does not test size of x % - [if not []]: intended size for x % intFlag - -1: no need for integer x % 0: error if non integer x % 1: error if non odd integers % 2: error if non even integers % signFlag - -2: entires of x must be strictly negative % -1: entires of x must be negative % 0: no contstraints on sign of entries in x % 1: entires of x must be positive % 2: entires of x must be strictly positive % % OUTPUTS % x - if x was a scalar it may have been replicated into a matrix % er - contains error msg if anything was wrong with x % % EXAMPLE % a=1; [a, er]=checkNumArgs( a, [1 3], 2, 0 ); a, error(er) % % See also NARGCHK % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] xname = inputname(1); er=''; if( isempty(siz) ); siz = size(x); end; if( length(siz)==1 ); siz=[siz siz]; end; % first check that x is numeric if( ~isnumeric(x) ); er = [xname ' not numeric']; return; end; % if x is a scalar, simply replicate it. xorig = x; if( length(x)==1); x = x(ones(siz)); end; % regardless, must have same number of x as n if( length(siz)~=ndims(x) || ~all(size(x)==siz) ) er = ['has size = [' num2str(size(x)) '], ']; er = [er 'which is not the required size of [' num2str(siz) ']']; er = createErrMsg( xname, xorig, er ); return; end % check that x are the right type of integers (unless intFlag==-1) switch intFlag case 0 if( ~all(mod(x,1)==0)) er = 'must have integer entries'; er = createErrMsg( xname, xorig, er); return; end; case 1 if( ~all(mod(x,2)==1)) er = 'must have odd integer entries'; er = createErrMsg( xname, xorig, er); return; end; case 2 if( ~all(mod(x,2)==0)) er = 'must have even integer entries'; er = createErrMsg( xname, xorig, er ); return; end; end; % check sign of entries in x (unless signFlag==0) switch signFlag case -2 if( ~all(x<0)) er = 'must have strictly negative entries'; er = createErrMsg( xname, xorig, er ); return; end; case -1 if( ~all(x<=0)) er = 'must have negative entries'; er = createErrMsg( xname, xorig, er ); return; end; case 1 if( ~all(x>=0)) er = 'must have positive entries'; er = createErrMsg( xname, xorig, er ); return; end; case 2 if( ~all(x>0)) er = 'must have strictly positive entries'; er = createErrMsg( xname, xorig, er ); return; end end function er = createErrMsg( xname, x, er ) if(numel(x)<10) er = ['Numeric input argument ' xname '=[' num2str(x) '] ' er '.']; else er = ['Numeric input argument ' xname ' ' er '.']; end
github
GYZHikari/Semantic-Cosegmentation-master
fevalDistr.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/matlab/fevalDistr.m
11,227
utf_8
7e4d5077ef3d7a891b2847cb858a2c6c
function [out,res] = fevalDistr( funNm, jobs, varargin ) % Wrapper for embarrassingly parallel function evaluation. % % Runs "r=feval(funNm,jobs{i}{:})" for each job in a parallel manner. jobs % should be a cell array of length nJob and each job should be a cell array % of parameters to pass to funNm. funNm must be a function in the path and % must return a single value (which may be a dummy value if funNm writes % results to disk). Different forms of parallelization are supported % depending on the hardware and Matlab toolboxes available. The type of % parallelization is determined by the parameter 'type' described below. % % type='LOCAL': jobs are executed using a simple "for" loop. This implies % no parallelization and is the default fallback option. % % type='PARFOR': jobs are executed using a "parfor" loop. This option is % only available if the Matlab *Parallel Computing Toolbox* is installed. % Make sure to setup Matlab workers first using "matlabpool open". % % type='DISTR': jobs are executed on the Caltech cluster. Distributed % queuing system must be installed separately. Currently this option is % only supported on the Caltech cluster but could easily be installed on % any Linux cluster as it requires only SSH and a shared filesystem. % Parameter pLaunch is used for controller('launchQueue',pLaunch{:}) and % determines cluster machines used (e.g. pLaunch={48,401:408}). % % type='COMPILED': jobs are executed locally in parallel by first compiling % an executable and then running it in background. This option requires the % *Matlab Compiler* to be installed (but does NOT require the Parallel % Computing Toolbox). Compiling can take 1-10 minutes, so use this option % only for large jobs. (On Linux alter startup.m by calling addpath() only % if ~isdeployed, otherwise will get error about "CTF" after compiling). % Note that relative paths will not work after compiling so all paths used % by funNm must be absolute paths. % % type='WINHPC': jobs are executed on a Windows HPC Server 2008 cluster. % Similar to type='COMPILED', except after compiling, the executable is % queued to the HPC cluster where all computation occurs. This option % likewise requires the *Matlab Compiler*. Paths to data, etc., must be % absolute paths and available from HPC cluster. Parameter pLaunch must % have two fields 'scheduler' and 'shareDir' that define the HPC Server. % Extra parameters in pLaunch add finer control, see fedWinhpc for details. % For example, at MSR one possible cluster is defined by scheduler = % 'MSR-L25-DEV21' and shareDir = '\\msr-arrays\scratch\msr-pool\L25-dev21'. % Note call to 'job submit' from Matlab will hang unless pwd is saved % (simply call 'job submit' from cmd prompt and enter pwd). % % USAGE % [out,res] = fevalDistr( funNm, jobs, [varargin] ) % % INPUTS % funNm - name of function that will process jobs % jobs - [1xnJob] cell array of parameters for each job % varargin - additional params (struct or name/value pairs) % .type - ['local'], 'parfor', 'distr', 'compiled', 'winhpc' % .pLaunch - [] extra params for type='distr' or type='winhpc' % .group - [1] send jobs in batches (only relevant if type='distr') % % OUTPUTS % out - 1 if jobs completed successfully % res - [1xnJob] cell array containing results of each job % % EXAMPLE % % Note: in this case parallel versions are slower since conv2 is so fast % n=16; jobs=cell(1,n); for i=1:n, jobs{i}={rand(500),ones(25)}; end % tic, [out,J1] = fevalDistr('conv2',jobs,'type','local'); toc, % tic, [out,J2] = fevalDistr('conv2',jobs,'type','parfor'); toc, % tic, [out,J3] = fevalDistr('conv2',jobs,'type','compiled'); toc % [isequal(J1,J2), isequal(J1,J3)], figure(1); montage2(cell2array(J1)) % % See also matlabpool mcc % % Piotr's Computer Vision Matlab Toolbox Version 3.26 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] dfs={'type','local','pLaunch',[],'group',1}; [type,pLaunch,group]=getPrmDflt(varargin,dfs,1); store=(nargout==2); if(isempty(jobs)), res=cell(1,0); out=1; return; end switch lower(type) case 'local', [out,res]=fedLocal(funNm,jobs,store); case 'parfor', [out,res]=fedParfor(funNm,jobs,store); case 'distr', [out,res]=fedDistr(funNm,jobs,pLaunch,group,store); case 'compiled', [out,res]=fedCompiled(funNm,jobs,store); case 'winhpc', [out,res]=fedWinhpc(funNm,jobs,pLaunch,store); otherwise, error('unkown type: ''%s''',type); end end function [out,res] = fedLocal( funNm, jobs, store ) % Run jobs locally using for loop. nJob=length(jobs); res=cell(1,nJob); out=1; tid=ticStatus('collecting jobs'); for i=1:nJob, r=feval(funNm,jobs{i}{:}); if(store), res{i}=r; end; tocStatus(tid,i/nJob); end end function [out,res] = fedParfor( funNm, jobs, store ) % Run jobs locally using parfor loop. nJob=length(jobs); res=cell(1,nJob); out=1; parfor i=1:nJob, r=feval(funNm,jobs{i}{:}); if(store), res{i}=r; end; end end function [out,res] = fedDistr( funNm, jobs, pLaunch, group, store ) % Run jobs using Linux queuing system. if(~exist('controller.m','file')) msg='distributed queuing not installed, switching to type=''local''.'; warning(msg); [out,res]=fedLocal(funNm,jobs,store); return; %#ok<WNTAG> end nJob=length(jobs); res=cell(1,nJob); controller('launchQueue',pLaunch{:}); if( group>1 ) nJobGrp=ceil(nJob/group); jobsGrp=cell(1,nJobGrp); k=0; for i=1:nJobGrp, k1=min(nJob,k+group); jobsGrp{i}={funNm,jobs(k+1:k1),'type','local'}; k=k1; end nJob=nJobGrp; jobs=jobsGrp; funNm='fevalDistr'; end jids=controller('jobsAdd',nJob,funNm,jobs); k=0; fprintf('Sent %i jobs...\n',nJob); tid=ticStatus('collecting jobs'); while( 1 ) jids1=controller('jobProbe',jids); if(isempty(jids1)), pause(.1); continue; end jid=jids1(1); [r,err]=controller('jobRecv',jid); if(~isempty(err)), disp('ABORTING'); out=0; break; end k=k+1; if(store), res{jid==jids}=r; end tocStatus(tid,k/nJob); if(k==nJob), out=1; break; end end; controller('closeQueue'); end function [out,res] = fedCompiled( funNm, jobs, store ) % Run jobs locally in background in parallel using compiled code. nJob=length(jobs); res=cell(1,nJob); tDir=jobSetup('.',funNm,'',{}); cmd=[tDir 'fevalDistrDisk ' funNm ' ' tDir ' ']; i=0; k=0; Q=feature('numCores'); q=0; tid=ticStatus('collecting jobs'); while( 1 ) % launch jobs until queue is full (q==Q) or all jobs launched (i==nJob) while(q<Q && i<nJob), q=q+1; i=i+1; jobSave(tDir,jobs{i},i); if(ispc), system2(['start /B /min ' cmd int2str2(i,10)],0); else system2([cmd int2str2(i,10) ' &'],0); end end % collect completed jobs (k1 of them), release queue slots done=jobFileIds(tDir,'done'); k1=length(done); k=k+k1; q=q-k1; for i1=done, res{i1}=jobLoad(tDir,i1,store); end pause(1); tocStatus(tid,k/nJob); if(k==nJob), out=1; break; end end for i=1:10, try rmdir(tDir,'s'); break; catch,pause(1),end; end %#ok<CTCH> end function [out,res] = fedWinhpc( funNm, jobs, pLaunch, store ) % Run jobs using Windows HPC Server. nJob=length(jobs); res=cell(1,nJob); dfs={'shareDir','REQ','scheduler','REQ','executable','fevalDistrDisk',... 'mccOptions',{},'coresPerTask',1,'minCores',1024,'priority',2000}; p = getPrmDflt(pLaunch,dfs,1); tDir = jobSetup(p.shareDir,funNm,p.executable,p.mccOptions); for i=1:nJob, jobSave(tDir,jobs{i},i); end hpcSubmit(funNm,1:nJob,tDir,p); k=0; ticId=ticStatus('collecting jobs'); while( 1 ) done=jobFileIds(tDir,'done'); k=k+length(done); for i1=done, res{i1}=jobLoad(tDir,i1,store); end pause(5); tocStatus(ticId,k/nJob); if(k==nJob), out=1; break; end end for i=1:10, try rmdir(tDir,'s'); break; catch,pause(5),end; end %#ok<CTCH> end function tids = hpcSubmit( funNm, ids, tDir, pLaunch ) % Helper: send jobs w given ids to HPC cluster. n=length(ids); tids=cell(1,n); if(n==0), return; end; scheduler=[' /scheduler:' pLaunch.scheduler ' ']; m=system2(['cluscfg view' scheduler],0); minCores=(hpcParse(m,'total number of nodes',1) - ... hpcParse(m,'Unreachable nodes',1) - 1)*8; minCores=min([minCores pLaunch.minCores n*pLaunch.coresPerTask]); m=system2(['job new /numcores:' int2str(minCores) '-*' scheduler ... '/priority:' int2str(pLaunch.priority)],1); jid=hpcParse(m,'created job, id',0); s=min(ids); e=max(ids); p=n>1 && isequal(ids,s:e); if(p), jid1=[jid '.1']; else jid1=jid; end for i=1:n, tids{i}=[jid1 '.' int2str(i)]; end cmd0=''; if(p), cmd0=['/parametric:' int2str(s) '-' int2str(e)]; end cmd=@(id) ['job add ' jid scheduler '/workdir:' tDir ' /numcores:' ... int2str(pLaunch.coresPerTask) ' ' cmd0 ' /stdout:stdout' id ... '.txt ' pLaunch.executable ' ' funNm ' ' tDir ' ' id]; if(p), ids1='*'; n=1; else ids1=int2str2(ids); end if(n==1), ids1={ids1}; end; for i=1:n, system2(cmd(ids1{i}),1); end system2(['job submit /id:' jid scheduler],1); disp(repmat(' ',1,80)); end function v = hpcParse( msg, key, tonum ) % Helper: extract val corresponding to key in hpc msg. t=regexp(msg,': |\n','split'); t=strtrim(t(1:floor(length(t)/2)*2)); keys=t(1:2:end); vals=t(2:2:end); j=find(strcmpi(key,keys)); if(isempty(j)), error('key ''%s'' not found in:\n %s',key,msg); end v=vals{j}; if(tonum==0), return; elseif(isempty(v)), v=0; return; end if(tonum==1), v=str2double(v); return; end v=regexp(v,' ','split'); v=str2double(regexp(v{1},':','split')); if(numel(v)==4), v(5)=0; end; v=((v(1)*24+v(2))*60+v(3))*60+v(4)+v(5)/1000; end function tDir = jobSetup( rtDir, funNm, executable, mccOptions ) % Helper: prepare by setting up temporary dir and compiling funNm t=clock; t=mod(t(end),1); t=round((t+rand)/2*1e15); tDir=[rtDir filesep sprintf('fevalDistr-%015i',t) filesep]; mkdir(tDir); if(~isempty(executable) && exist(executable,'file')) fprintf('Reusing compiled executable...\n'); copyfile(executable,tDir); else t=clock; fprintf('Compiling (this may take a while)...\n'); [~,f,e]=fileparts(executable); if(isempty(f)), f='fevalDistrDisk'; end mcc('-m','fevalDistrDisk','-d',tDir,'-o',f,'-a',funNm,mccOptions{:}); t=etime(clock,t); fprintf('Compile complete (%.1f seconds).\n',t); if(~isempty(executable)), copyfile([tDir filesep f e],executable); end end end function ids = jobFileIds( tDir, type ) % Helper: get list of job files ids on disk of given type fs=dir([tDir '*-' type '*']); fs={fs.name}; n=length(fs); ids=zeros(1,n); for i=1:n, ids(i)=str2double(fs{i}(1:10)); end end function jobSave( tDir, job, ind ) %#ok<INUSL> % Helper: save job to temporary file for use with fevalDistrDisk() save([tDir int2str2(ind,10) '-in'],'job'); end function r = jobLoad( tDir, ind, store ) % Helper: load job and delete temporary files from fevalDistrDisk() f=[tDir int2str2(ind,10)]; if(store), r=load([f '-out']); r=r.r; else r=[]; end fs={[f '-done'],[f '-in.mat'],[f '-out.mat']}; delete(fs{:}); pause(.1); for i=1:3, k=0; while(exist(fs{i},'file')==2) %#ok<ALIGN> warning('Waiting to delete %s.',fs{i}); %#ok<WNTAG> delete(fs{i}); pause(5); k=k+1; if(k>12), break; end; end; end end function msg = system2( cmd, show ) % Helper: wraps system() call if(show), disp(cmd); end [status,msg]=system(cmd); msg=msg(1:end-1); if(status), error(msg); end if(show), disp(msg); end end
github
GYZHikari/Semantic-Cosegmentation-master
medfilt1m.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/filters/medfilt1m.m
2,998
utf_8
a3733d27c60efefd57ada9d83ccbaa3d
function y = medfilt1m( x, r, z ) % One-dimensional adaptive median filtering with missing values. % % Applies a width s=2*r+1 one-dimensional median filter to vector x, which % may contain missing values (elements equal to z). If x contains no % missing values, y(j) is set to the median of x(j-r:j+r). If x contains % missing values, y(j) is set to the median of x(j-R:j+R), where R is the % smallest radius such that sum(valid(x(j-R:j+R)))>=s, i.e. the number of % valid values in the window is at least s (a value x is valid x~=z). Note % that the radius R is adaptive and can vary as a function of j. % % This function uses a modified version of medfilt1.m from Matlab's 'Signal % Processing Toolbox'. Note that if x contains no missing values, % medfilt1m(x) and medfilt1(x) are identical execpt at boundary regions. % % USAGE % y = medfilt1m( x, r, [z] ) % % INPUTS % x - [nx1] length n vector with possible missing entries % r - filter radius % z - [NaN] element that represents missing entries % % OUTPUTS % y - [nx1] filtered vector x % % EXAMPLE % x=repmat((1:4)',1,5)'; x=x(:)'; x0=x; % n=length(x); x(rand(n,1)>.8)=NaN; % y = medfilt1m(x,2); [x0; x; y; x0-y] % % See also MODEFILT1, MEDFILT1 % % Piotr's Computer Vision Matlab Toolbox Version 2.35 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] % apply medfilt1 (standard median filter) to valid locations in x if(nargin<3 || isempty(z)), z=NaN; end; x=x(:)'; n=length(x); if(isnan(z)), valid=~isnan(x); else valid=x~=z; end; v=sum(valid); if(v==0), y=repmat(z,1,n); return; end if(v<2*r+1), y=repmat(median(x(valid)),1,n); return; end y=medfilt1(x(valid),2*r+1); % get radius R needed at each location j to span s=2r+1 valid values % get start (a) and end (b) locations and map back to location in y C=[0 cumsum(valid)]; s=2*r+1; R=find(C==s); R=R(1)-2; pos=zeros(1,n); for j=1:n, R0=R; R=R0-1; a=max(1,j-R); b=min(n,j+R); if(C(b+1)-C(a)<s), R=R0; a=max(1,j-R); b=min(n,j+R); if(C(b+1)-C(a)<s), R=R0+1; a=max(1,j-R); b=min(n,j+R); end end pos(j)=(C(b+1)+C(a+1))/2; end y=y(floor(pos)); end function y = medfilt1( x, s ) % standard median filter (copied from medfilt1.m) n=length(x); r=floor(s/2); indr=(0:s-1)'; indc=1:n; ind=indc(ones(1,s),1:n)+indr(:,ones(1,n)); x0=x(ones(r,1))*0; X=[x0'; x'; x0']; X=reshape(X(ind),s,n); y=median(X,1); end % function y = medfilt1( x, s ) % % standard median filter (slow) % % get unique values in x % [vals,disc,inds]=unique(x); m=length(vals); n=length(x); % if(m>256), warning('x takes on large number of diff vals'); end %#ok<WNTAG> % % create quantized representation [H(i,j)==1 iff x(j)==vals(i)] % H=zeros(m,n); H(sub2ind2([m,n],[inds; 1:n]'))=1; % % create histogram [H(i,j) is count of x(j-r:j+r)==vals(i)] % H=localSum(H,[0 s],'same'); % % compute median for each j and map inds back to original vals % [disc,inds]=max(cumsum(H,1)>s/2,[],1); y=vals(inds); % end
github
GYZHikari/Semantic-Cosegmentation-master
FbMake.m
.m
Semantic-Cosegmentation-master/code/Util/pdollar_toolbox/filters/FbMake.m
6,692
utf_8
b625c1461a61485af27e490333350b4b
function FB = FbMake( dim, flag, show ) % Various 1D/2D/3D filterbanks (hardcoded). % % USAGE % FB = FbMake( dim, flag, [show] ) % % INPUTS % dim - dimension % flag - controls type of filterbank to create % - if d==1 % 1: gabor filter bank for spatiotemporal stuff % - if d==2 % 1: filter bank from Serge Belongie % 2: 1st/2nd order DooG filters. Similar to Gabor filterbank. % 3: similar to Laptev&Lindberg ICPR04 % 4: decent seperable steerable? filterbank % 5: berkeley filterbank for textons papers % 6: symmetric DOOG filters % - if d==3 % 1: decent seperable steerable filterbank % show - [0] figure to use for optional display % % OUTPUTS % % EXAMPLE % FB = FbMake( 2, 1, 1 ); % % See also FBAPPLY2D % % Piotr's Computer Vision Matlab Toolbox Version 2.0 % Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com] % Licensed under the Simplified BSD License [see external/bsd.txt] if( nargin<3 || isempty(show) ); show=0; end % create FB switch dim case 1 FB = FbMake1D( flag ); case 2 FB = FbMake2D( flag ); case 3 FB = FbMake3d( flag ); otherwise error( 'dim must be 1 2 or 3'); end % display FbVisualize( FB, show ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FB = FbMake1D( flag ) switch flag case 1 %%% gabor filter bank for spatiotemporal stuff omegas = 1 ./ [3 4 5 7.5 11]; sigmas = [3 4 5 7.5 11]; FB = FbMakegabor1D( 15, sigmas, omegas ); otherwise error('none created.'); end function FB = FbMakegabor1D( r, sigmas, omegas ) for i=1:length(omegas) [feven,fodd]=filterGabor1d(r,sigmas(i),omegas(i)); if( i==1 ); FB=repmat(feven,[2*length(omegas) 1]); end FB(i*2-1,:)=feven; FB(i*2,:)=fodd; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FB = FbMake2D( flag ) switch flag case 1 %%% filter bank from Berkeley / Serge Belongie r=15; FB = FbMakegabor( r, 6, 3, 3, sqrt(2) ); FB2 = FbMakeDOG( r, .6, 2.8, 4); FB = cat(3, FB, FB2); %FB = FB(:,:,1:2:36); %include only even symmetric filters %FB = FB(:,:,2:2:36); %include only odd symmetric filters case 2 %%% 1st/2nd order DooG filters. Similar to Gabor filterbank. FB = FbMakeDooG( 15, 6, 3, 5, .5) ; case 3 %%% similar to Laptev&Lindberg ICPR04 % Wierd filterbank of Gaussian derivatives at various scales % Higher order filters probably not useful. r = 9; dims=[2*r+1 2*r+1]; sigs = [.5 1 1.5 3]; % sigs = [1,1.5,2]; derivs = []; %derivs = [ derivs; 0 0 ]; % 0th order %derivs = [ derivs; 1 0; 0 1 ]; % first order %derivs = [ derivs; 2 0; 0 2; 1 1 ]; % 2nd order %derivs = [ derivs; 3 0; 0 3; 1 2; 2 1 ]; % 3rd order %derivs = [ derivs; 4 0; 0 4; 1 3; 3 1; 2 2 ]; % 4th order derivs = [ derivs; 0 1; 0 2; 0 3; 0 4; 0 5]; % 0n order derivs = [ derivs; 1 0; 2 0; 3 0; 4 0; 5 0]; % n0 order cnt=1; nderivs = size(derivs,1); for s=1:length(sigs) for i=1:nderivs dG = filterDoog( dims, [sigs(s) sigs(s)], derivs(i,:), 0 ); if(s==1 && i==1); FB=repmat(dG,[1 1 length(sigs)*nderivs]); end FB(:,:,cnt) = dG; cnt=cnt+1; %dG = filterDoog( dims, [sigs(s)*3 sigs(s)], derivs(i,:), 0 ); %FB(:,:,cnt) = dG; cnt=cnt+1; %dG = filterDoog( dims, [sigs(s) sigs(s)*3], derivs(i,:), 0 ); %FB(:,:,cnt) = dG; cnt=cnt+1; end end case 4 % decent seperable steerable? filterbank r = 9; dims=[2*r+1 2*r+1]; sigs = [.5 1.5 3]; derivs = [1 0; 0 1; 2 0; 0 2]; cnt=1; nderivs = size(derivs,1); for s=1:length(sigs) for i=1:nderivs dG = filterDoog( dims, [sigs(s) sigs(s)], derivs(i,:), 0 ); if(s==1 && i==1); FB=repmat(dG,[1 1 length(sigs)*nderivs]); end FB(:,:,cnt) = dG; cnt=cnt+1; end end FB2 = FbMakeDOG( r, .6, 2.8, 4); FB = cat(3, FB, FB2); case 5 %%% berkeley filterbank for textons papers FB = FbMakegabor( 7, 6, 1, 2, 2 ); case 6 %%% symmetric DOOG filters FB = FbMakeDooGSym( 4, 2, [.5 1] ); otherwise error('none created.'); end function FB = FbMakegabor( r, nOrient, nScales, lambda, sigma ) % multi-scale even/odd gabor filters. Adapted from code by Serge Belongie. cnt=1; for m=1:nScales for n=1:nOrient [F1,F2]=filterGabor2d(r,sigma^m,lambda,180*(n-1)/nOrient); if(m==1 && n==1); FB=repmat(F1,[1 1 nScales*nOrient*2]); end FB(:,:,cnt)=F1; cnt=cnt+1; FB(:,:,cnt)=F2; cnt=cnt+1; end end function FB = FbMakeDooGSym( r, nOrient, sigs ) % Adds symmetric DooG filters. These are similar to gabor filters. cnt=1; dims=[2*r+1 2*r+1]; for s=1:length(sigs) Fodd = -filterDoog( dims, [sigs(s) sigs(s)], [1 0], 0 ); Feven = filterDoog( dims, [sigs(s) sigs(s)], [2 0], 0 ); if(s==1); FB=repmat(Fodd,[1 1 length(sigs)*nOrient*2]); end for n=1:nOrient theta = 180*(n-1)/nOrient; FB(:,:,cnt) = imrotate( Feven, theta, 'bil', 'crop' ); cnt=cnt+1; FB(:,:,cnt) = imrotate( Fodd, theta, 'bil', 'crop' ); cnt=cnt+1; end end function FB = FbMakeDooG( r, nOrient, nScales, lambda, sigma ) % 1st/2nd order DooG filters. Similar to Gabor filterbank. % Defaults: nOrient=6, nScales=3, lambda=5, sigma=.5, cnt=1; dims=[2*r+1 2*r+1]; for m=1:nScales sigma = sigma * m^.7; Fodd = -filterDoog( dims, [sigma lambda*sigma^.6], [1,0], 0 ); Feven = filterDoog( dims, [sigma lambda*sigma^.6], [2,0], 0 ); if(m==1); FB=repmat(Fodd,[1 1 nScales*nOrient*2]); end for n=1:nOrient theta = 180*(n-1)/nOrient; FB(:,:,cnt) = imrotate( Feven, theta, 'bil', 'crop' ); cnt=cnt+1; FB(:,:,cnt) = imrotate( Fodd, theta, 'bil', 'crop' ); cnt=cnt+1; end end function FB = FbMakeDOG( r, sigmaStr, sigmaEnd, n ) % adds a serires of difference of Gaussian filters. sigs = sigmaStr:(sigmaEnd-sigmaStr)/(n-1):sigmaEnd; for s=1:length(sigs) FB(:,:,s) = filterDog2d(r,sigs(s),2); %#ok<AGROW> if( s==1 ); FB=repmat(FB,[1 1 length(sigs)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function FB = FbMake3d( flag ) switch flag case 1 % decent seperable steerable filterbank r = 25; dims=[2*r+1 2*r+1 2*r+1]; sigs = [.5 1.5 3]; derivs = [0 0 1; 0 1 0; 1 0 0; 0 0 2; 0 2 0; 2 0 0]; cnt=1; nderivs = size(derivs,1); for s=1:length(sigs) for i=1:nderivs dG = filterDoog( dims, repmat(sigs(s),[1 3]), derivs(i,:), 0 ); if(s==1 && i==1); FB=repmat(dG,[1 1 1 nderivs*length(sigs)]); end FB(:,:,:,cnt) = dG; cnt=cnt+1; end end otherwise error('none created.'); end
github
GYZHikari/Semantic-Cosegmentation-master
computeColor.m
.m
Semantic-Cosegmentation-master/code/Util/Optical Flow/computeColor.m
3,142
utf_8
a36a650437bc93d4d8ffe079fe712901
function img = computeColor(u,v) % computeColor color codes flow field U, V % According to the c++ source code of Daniel Scharstein % Contact: [email protected] % Author: Deqing Sun, Department of Computer Science, Brown University % Contact: [email protected] % $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $ % Copyright 2007, Deqing Sun. % % All Rights Reserved % % Permission to use, copy, modify, and distribute this software and its % documentation for any purpose other than its incorporation into a % commercial product is hereby granted without fee, provided that the % above copyright notice appear in all copies and that both that % copyright notice and this permission notice appear in supporting % documentation, and that the name of the author and Brown University not be used in % advertising or publicity pertaining to distribution of the software % without specific, written prior permission. % % THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, % INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY % PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR % ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES % WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN % ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. nanIdx = isnan(u) | isnan(v); u(nanIdx) = 0; v(nanIdx) = 0; colorwheel = makeColorwheel(); ncols = size(colorwheel, 1); rad = sqrt(u.^2+v.^2); a = atan2(-v, -u)/pi; fk = (a+1) /2 * (ncols-1) + 1; % -1~1 maped to 1~ncols k0 = floor(fk); % 1, 2, ..., ncols k1 = k0+1; k1(k1==ncols+1) = 1; f = fk - k0; for i = 1:size(colorwheel,2) tmp = colorwheel(:,i); col0 = tmp(k0)/255; col1 = tmp(k1)/255; col = (1-f).*col0 + f.*col1; idx = rad <= 1; col(idx) = 1-rad(idx).*(1-col(idx)); % increase saturation with radius col(~idx) = col(~idx)*0.75; % out of range img(:,:, i) = uint8(floor(255*col.*(1-nanIdx))); end; %% function colorwheel = makeColorwheel() % color encoding scheme % adapted from the color circle idea described at % http://members.shaw.ca/quadibloc/other/colint.htm RY = 15; YG = 6; GC = 4; CB = 11; BM = 13; MR = 6; ncols = RY + YG + GC + CB + BM + MR; colorwheel = zeros(ncols, 3); % r g b col = 0; %RY colorwheel(1:RY, 1) = 255; colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)'; col = col+RY; %YG colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)'; colorwheel(col+(1:YG), 2) = 255; col = col+YG; %GC colorwheel(col+(1:GC), 2) = 255; colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)'; col = col+GC; %CB colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)'; colorwheel(col+(1:CB), 3) = 255; col = col+CB; %BM colorwheel(col+(1:BM), 3) = 255; colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)'; col = col+BM; %MR colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)'; colorwheel(col+(1:MR), 1) = 255;
github
GYZHikari/Semantic-Cosegmentation-master
region_to_shape.m
.m
Semantic-Cosegmentation-master/code/Ours/region_to_shape.m
2,301
utf_8
47925c4dc400a8d41c1f05e006daeb3d
function polar_values_descrete=region_to_shape(im_region) if nargin==0 im_region=imread('50.png'); end [region_i region_j]=find(im_region(:,:,1)); region_i_mean=mean(region_i); region_j_mean=mean(region_j); region_size=length(region_i); region_size_normalize=10000; im_edge=edge(im_region); [edge_i edge_j]=find(im_edge); edge_i=(edge_i-region_i_mean)*region_size_normalize/region_size; edge_j=(edge_j-region_j_mean)*region_size_normalize/region_size; polar_values=zeros(length(edge_i),2); for edge_index=1:length(edge_i) polar_values(edge_index,:)=[ij_to_angle(edge_i(edge_index),edge_j(edge_index)) norm([edge_i(edge_index) edge_j(edge_index)])]; end [~, sorted_indexes]=sort(polar_values(:,1)); polar_values=polar_values(sorted_indexes,:); polar_values_descrete=zeros(360,1); polar_value_descrete_index=1; for polar_value_index=1:size(polar_values,1)-1 if polar_values(polar_value_index)>polar_value_descrete_index polar_values_descrete(polar_value_descrete_index)=polar_values(polar_value_index,2); polar_value_descrete_index=polar_value_descrete_index+1; end end if length(polar_values)==0 polar_values_descrete=40*ones(360,1); polar_values(1,:)=[1 40]; end for polar_value_descrete_index=360:-1:1 if polar_values_descrete(polar_value_descrete_index)==0 polar_values_descrete(polar_value_descrete_index)=polar_values(end,2); end end % polar_values_descrete = (polar_values_descrete - min(polar_values_descrete))/(max(polar_values_descrete) - min(polar_values_descrete)); % polar_values_descrete=polar_values_descrete-30;%mean(polar_values_descrete); % polar_values_descrete=polar_values_descrete/norm(polar_values_descrete); % end function ij_angle=ij_to_angle(i,j) if (j==0)&&(i>0) ij_angle=90; elseif (j==0)&&(i<0) ij_angle=270; elseif (j>0)&&(i==0) ij_angle=0; elseif (j<0)&&(i==0) ij_angle=180; elseif (j>0)&&(i>0) ij_angle=atand(i/j); elseif (j>0)&&(i<0) ij_angle=atand(i/j)+360; elseif (j<0)&&(i>0) ij_angle=atand(i/j)+180; elseif (j<0)&&(i<0) ij_angle=atand(i/j)+180; end end
github
GYZHikari/Semantic-Cosegmentation-master
gene_weight.m
.m
Semantic-Cosegmentation-master/code/Ours/gene_weight.m
826
utf_8
61eb07fae858ed2653a0b66fba7fb527
function affmat = gene_weight( feature, nodes, theta) affmat = zeros(numel(nodes), numel(nodes)); %% attach addtional connection/edge edges = edges_between(nodes); %% compute affinity matrix value row = edges(:,1); col = edges(:,2); ind = sub2ind(size(affmat), row, col); tmp = sum( (feature(row,:) - feature(col,:)).^2, 2); valDistances = sqrt(tmp)+eps; minVal = min(valDistances); valDistances=(valDistances-minVal)/(max(valDistances)-minVal); weights=exp(-theta*valDistances); affmat(ind) = weights; ind = sub2ind(size(affmat), col, row); affmat(ind) = weights; end function edges = edges_between(inds) if isempty(inds) edges = []; end num = length(inds); mat = tril(ones(num), -1); [row, col] = find(mat); edges = [inds(row), inds(col)]; end
github
siprob/arhmm_mcmc-master
arhmm_est_cpu.m
.m
arhmm_mcmc-master/arhmm_est_cpu.m
1,882
utf_8
911a9f82c561722b95f1ea9e0a72b254
%{ Parallel MCMC sampling of AR-HMMs for stochastic time series prediction. - Calculate predictions for a given set of AR-HMMs and an initial observation sequence. Written by I. R. Sipos ([email protected]) and A. Ceffer ([email protected]) (Department of Networked Systems and Services, Budapest University of Technology and Economics, Budapest, Hungary, 2016.) Intended for academic purposes on an as is basis. Any feedback is appreciated. Please refer to: (1) SIPOS, I. Róbert. Parallel stratified MCMC sampling of AR-HMMs for stochastic time series prediction. In: Proceedings, 4th Stochastic Modeling Techniques and Data Analysis (SMTDA2016). Valletta, 2016. (2) SIPOS, I. Róbert; CEFFER, Attila; LEVENDOVSZKY, János. Parallel optimization of sparse portfolios with AR-HMMs. Computational Economics, Online First. DOI: 10.1007/s10614-016-9579-y %} function [pred, LL] = arhmm_est_cpu(hmms, x) warning('off'); addpath(genpath('HMMall')); warning('on'); % Initializations. K = size(hmms, 2); pred = nan(1, K); LL = nan(1, K); T = length(x); % Sequentially iterate through each AR-HMM. for k = 1:K hmm = hmms(:, k); N = length(hmm.pi); % Observation likelihood for time instance and each state. obslik = ones(N, T-1)*eps; for i = 1:N for t = 1:T-1 if hmm.sigma(i) > 0 obslik(i, t) = normpdf(x(t+1)-hmm.rho(i)*x(t), hmm.mu(i), hmm.sigma(i)); end end end % Call the forward-backward algorithm. [~, ~, gamma, loglik] = fwdback(hmm.pi, hmm.A, obslik); % Prediction. alpha = gamma(:, end).' * hmm.A; y = alpha * (hmm.rho.*x(end) + hmm.mu); % Store the results. pred(k) = y; LL(k) = loglik; end end
github
siprob/arhmm_mcmc-master
cond_indep_fisher_z.m
.m
arhmm_mcmc-master/HMMall/KPMstats/cond_indep_fisher_z.m
3,647
utf_8
e3291330222ba7b37c56cc824decff44
function [CI, r, p] = cond_indep_fisher_z(X, Y, S, C, N, alpha) % COND_INDEP_FISHER_Z Test if X indep Y given Z using Fisher's Z test % CI = cond_indep_fisher_z(X, Y, S, C, N, alpha) % % C is the covariance (or correlation) matrix % N is the sample size % alpha is the significance level (default: 0.05) % % See p133 of T. Anderson, "An Intro. to Multivariate Statistical Analysis", 1984 if nargin < 6, alpha = 0.05; end r = partial_corr_coef(C, X, Y, S); z = 0.5*log( (1+r)/(1-r) ); z0 = 0; W = sqrt(N - length(S) - 3)*(z-z0); % W ~ N(0,1) cutoff = norminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95 %cutoff = mynorminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95 if abs(W) < cutoff CI = 1; else % reject the null hypothesis that rho = 0 CI = 0; end p = normcdf(W); %p = mynormcdf(W); %%%%%%%%% function p = normcdf(x,mu,sigma) %NORMCDF Normal cumulative distribution function (cdf). % P = NORMCDF(X,MU,SIGMA) computes the normal cdf with mean MU and % standard deviation SIGMA at the values in X. % % The size of P is the common size of X, MU and SIGMA. A scalar input % functions as a constant matrix of the same size as the other inputs. % % Default values for MU and SIGMA are 0 and 1 respectively. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 26.2. % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 1.1 $ $Date: 2005/04/26 02:29:17 $ if nargin < 3, sigma = 1; end if nargin < 2; mu = 0; end [errorcode x mu sigma] = distchck(3,x,mu,sigma); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Initialize P to zero. p = zeros(size(x)); % Return NaN if SIGMA is not positive. k1 = find(sigma <= 0); if any(k1) tmp = NaN; p(k1) = tmp(ones(size(k1))); end % Express normal CDF in terms of the error function. k = find(sigma > 0); if any(k) p(k) = 0.5 * erfc( - (x(k) - mu(k)) ./ (sigma(k) * sqrt(2))); end % Make sure that round-off errors never make P greater than 1. k2 = find(p > 1); if any(k2) p(k2) = ones(size(k2)); end %%%%%%%% function x = norminv(p,mu,sigma); %NORMINV Inverse of the normal cumulative distribution function (cdf). % X = NORMINV(P,MU,SIGMA) finds the inverse of the normal cdf with % mean, MU, and standard deviation, SIGMA. % % The size of X is the common size of the input arguments. A scalar input % functions as a constant matrix of the same size as the other inputs. % % Default values for MU and SIGMA are 0 and 1 respectively. % References: % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical % Functions", Government Printing Office, 1964, 7.1.1 and 26.2.2 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 1.1 $ $Date: 2005/04/26 02:29:17 $ if nargin < 3, sigma = 1; end if nargin < 2; mu = 0; end [errorcode p mu sigma] = distchck(3,p,mu,sigma); if errorcode > 0 error('Requires non-scalar arguments to match in size.'); end % Allocate space for x. x = zeros(size(p)); % Return NaN if the arguments are outside their respective limits. k = find(sigma <= 0 | p < 0 | p > 1); if any(k) tmp = NaN; x(k) = tmp(ones(size(k))); end % Put in the correct values when P is either 0 or 1. k = find(p == 0); if any(k) tmp = Inf; x(k) = -tmp(ones(size(k))); end k = find(p == 1); if any(k) tmp = Inf; x(k) = tmp(ones(size(k))); end % Compute the inverse function for the intermediate values. k = find(p > 0 & p < 1 & sigma > 0); if any(k), x(k) = sqrt(2) * sigma(k) .* erfinv(2 * p(k) - 1) + mu(k); end
github
siprob/arhmm_mcmc-master
logistK.m
.m
arhmm_mcmc-master/HMMall/KPMstats/logistK.m
7,253
utf_8
9539c8105ebca14d632373f5f9f4b70d
function [beta,post,lli] = logistK(x,y,w,beta) % [beta,post,lli] = logistK(x,y,beta,w) % % k-class logistic regression with optional sample weights % % k = number of classes % n = number of samples % d = dimensionality of samples % % INPUT % x dxn matrix of n input column vectors % y kxn vector of class assignments % [w] 1xn vector of sample weights % [beta] dxk matrix of model coefficients % % OUTPUT % beta dxk matrix of fitted model coefficients % (beta(:,k) are fixed at 0) % post kxn matrix of fitted class posteriors % lli log likelihood % % Let p(i,j) = exp(beta(:,j)'*x(:,i)), % Class j posterior for observation i is: % post(j,i) = p(i,j) / (p(i,1) + ... p(i,k)) % % See also logistK_eval. % % David Martin <[email protected]> % May 3, 2002 % Copyright (C) 2002 David R. Martin <[email protected]> % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA % 02111-1307, USA, or see http://www.gnu.org/copyleft/gpl.html. % TODO - this code would be faster if x were transposed error(nargchk(2,4,nargin)); debug = 0; if debug>0, h=figure(1); set(h,'DoubleBuffer','on'); end % get sizes [d,nx] = size(x); [k,ny] = size(y); % check sizes if k < 2, error('Input y must encode at least 2 classes.'); end if nx ~= ny, error('Inputs x,y not the same length.'); end n = nx; % make sure class assignments have unit L1-norm sumy = sum(y,1); if abs(1-sumy) > eps, sumy = sum(y,1); for i = 1:k, y(i,:) = y(i,:) ./ sumy; end end clear sumy; % if sample weights weren't specified, set them to 1 if nargin < 3, w = ones(1,n); end % normalize sample weights so max is 1 w = w / max(w); % if starting beta wasn't specified, initialize randomly if nargin < 4, beta = 1e-3*rand(d,k); beta(:,k) = 0; % fix beta for class k at zero else if sum(beta(:,k)) ~= 0, error('beta(:,k) ~= 0'); end end stepsize = 1; minstepsize = 1e-2; post = computePost(beta,x); lli = computeLogLik(post,y,w); for iter = 1:100, %disp(sprintf(' logist iter=%d lli=%g',iter,lli)); vis(x,y,beta,lli,d,k,iter,debug); % gradient and hessian [g,h] = derivs(post,x,y,w); % make sure Hessian is well conditioned if rcond(h) < eps, % condition with Levenberg-Marquardt method for i = -16:16, h2 = h .* ((1 + 10^i)*eye(size(h)) + (1-eye(size(h)))); if rcond(h2) > eps, break, end end if rcond(h2) < eps, warning(['Stopped at iteration ' num2str(iter) ... ' because Hessian can''t be conditioned']); break end h = h2; end % save lli before update lli_prev = lli; % Newton-Raphson with step-size halving while stepsize >= minstepsize, % Newton-Raphson update step step = stepsize * (h \ g); beta2 = beta; beta2(:,1:k-1) = beta2(:,1:k-1) - reshape(step,d,k-1); % get the new log likelihood post2 = computePost(beta2,x); lli2 = computeLogLik(post2,y,w); % if the log likelihood increased, then stop if lli2 > lli, post = post2; lli = lli2; beta = beta2; break end % otherwise, reduce step size by half stepsize = 0.5 * stepsize; end % stop if the average log likelihood has gotten small enough if 1-exp(lli/n) < 1e-2, break, end % stop if the log likelihood changed by a small enough fraction dlli = (lli_prev-lli) / lli; if abs(dlli) < 1e-3, break, end % stop if the step size has gotten too small if stepsize < minstepsize, brea, end % stop if the log likelihood has decreased; this shouldn't happen if lli < lli_prev, warning(['Stopped at iteration ' num2str(iter) ... ' because the log likelihood decreased from ' ... num2str(lli_prev) ' to ' num2str(lli) '.' ... ' This may be a bug.']); break end end if debug>0, vis(x,y,beta,lli,d,k,iter,2); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% class posteriors function post = computePost(beta,x) [d,n] = size(x); [d,k] = size(beta); post = zeros(k,n); bx = zeros(k,n); for j = 1:k, bx(j,:) = beta(:,j)'*x; end for j = 1:k, post(j,:) = 1 ./ sum(exp(bx - repmat(bx(j,:),k,1)),1); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% log likelihood function lli = computeLogLik(post,y,w) [k,n] = size(post); lli = 0; for j = 1:k, lli = lli + sum(w.*y(j,:).*log(post(j,:)+eps)); end if isnan(lli), error('lli is nan'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% gradient and hessian %% These are computed in what seems a verbose manner, but it is %% done this way to use minimal memory. x should be transposed %% to make it faster. function [g,h] = derivs(post,x,y,w) [k,n] = size(post); [d,n] = size(x); % first derivative of likelihood w.r.t. beta g = zeros(d,k-1); for j = 1:k-1, wyp = w .* (y(j,:) - post(j,:)); for ii = 1:d, g(ii,j) = x(ii,:) * wyp'; end end g = reshape(g,d*(k-1),1); % hessian of likelihood w.r.t. beta h = zeros(d*(k-1),d*(k-1)); for i = 1:k-1, % diagonal wt = w .* post(i,:) .* (1 - post(i,:)); hii = zeros(d,d); for a = 1:d, wxa = wt .* x(a,:); for b = a:d, hii_ab = wxa * x(b,:)'; hii(a,b) = hii_ab; hii(b,a) = hii_ab; end end h( (i-1)*d+1 : i*d , (i-1)*d+1 : i*d ) = -hii; end for i = 1:k-1, % off-diagonal for j = i+1:k-1, wt = w .* post(j,:) .* post(i,:); hij = zeros(d,d); for a = 1:d, wxa = wt .* x(a,:); for b = a:d, hij_ab = wxa * x(b,:)'; hij(a,b) = hij_ab; hij(b,a) = hij_ab; end end h( (i-1)*d+1 : i*d , (j-1)*d+1 : j*d ) = hij; h( (j-1)*d+1 : j*d , (i-1)*d+1 : i*d ) = hij; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% debug/visualization function vis (x,y,beta,lli,d,k,iter,debug) if debug<=0, return, end disp(['iter=' num2str(iter) ' lli=' num2str(lli)]); if debug<=1, return, end if d~=3 | k>10, return, end figure(1); res = 100; r = abs(max(max(x))); dom = linspace(-r,r,res); [px,py] = meshgrid(dom,dom); xx = px(:); yy = py(:); points = [xx' ; yy' ; ones(1,res*res)]; func = zeros(k,res*res); for j = 1:k, func(j,:) = exp(beta(:,j)'*points); end [mval,ind] = max(func,[],1); hold off; im = reshape(ind,res,res); imagesc(xx,yy,im); hold on; syms = {'w.' 'wx' 'w+' 'wo' 'w*' 'ws' 'wd' 'wv' 'w^' 'w<'}; for j = 1:k, [mval,ind] = max(y,[],1); ind = find(ind==j); plot(x(1,ind),x(2,ind),syms{j}); end pause(0.1); % eof
github
siprob/arhmm_mcmc-master
multipdf.m
.m
arhmm_mcmc-master/HMMall/KPMstats/multipdf.m
1,192
utf_8
1fce56db4c9a59d35960bd25df11b1f9
function p = multipdf(x,theta) %MULTIPDF Multinomial probability density function. % p = multipdf(x,theta) returns the probabilities of % vector x, under the multinomial distribution % with parameter vector theta. % % Author: David Ross %-------------------------------------------------------- % Check the arguments. %-------------------------------------------------------- error(nargchk(2,2,nargin)); % make sure theta is a vector if ndims(theta) > 2 | all(size(theta) > 1) error('theta must be a vector'); end % make sure x is of the appropriate size if ndims(x) > 2 | any(size(x) ~= size(theta)) error('columns of X must have same length as theta'); end %-------------------------------------------------------- % Main... %-------------------------------------------------------- p = prod(theta .^ x); p = p .* factorial(sum(x)) ./ prod(factorial_v(x)); %-------------------------------------------------------- % Function factorial_v(x): computes the factorial function % on each element of x %-------------------------------------------------------- function r = factorial_v(x) if size(x,2) == 1 x = x'; end r = []; for y = x r = [r factorial(y)]; end
github
siprob/arhmm_mcmc-master
metrop.m
.m
arhmm_mcmc-master/HMMall/netlab3.3/metrop.m
5,284
utf_8
df084b9ad36314e304a99b9b1f3c955e
function [samples, energies, diagn] = metrop(f, x, options, gradf, varargin) %METROP Markov Chain Monte Carlo sampling with Metropolis algorithm. % % Description % SAMPLES = METROP(F, X, OPTIONS) uses the Metropolis algorithm to % sample from the distribution P ~ EXP(-F), where F is the first % argument to METROP. The Markov chain starts at the point X and each % candidate state is picked from a Gaussian proposal distribution and % accepted or rejected according to the Metropolis criterion. % % SAMPLES = METROP(F, X, OPTIONS, [], P1, P2, ...) allows additional % arguments to be passed to F(). The fourth argument is ignored, but % is included for compatibility with HMC and the optimisers. % % [SAMPLES, ENERGIES, DIAGN] = METROP(F, X, OPTIONS) also returns a log % of the energy values (i.e. negative log probabilities) for the % samples in ENERGIES and DIAGN, a structure containing diagnostic % information (position and acceptance threshold) for each step of the % chain in DIAGN.POS and DIAGN.ACC respectively. All candidate states % (including rejected ones) are stored in DIAGN.POS. % % S = METROP('STATE') returns a state structure that contains the state % of the two random number generators RAND and RANDN. These are % contained in fields randstate, randnstate. % % METROP('STATE', S) resets the state to S. If S is an integer, then % it is passed to RAND and RANDN. If S is a structure returned by % METROP('STATE') then it resets the generator to exactly the same % state. % % The optional parameters in the OPTIONS vector have the following % interpretations. % % OPTIONS(1) is set to 1 to display the energy values and rejection % threshold at each step of the Markov chain. If the value is 2, then % the position vectors at each step are also displayed. % % OPTIONS(14) is the number of samples retained from the Markov chain; % default 100. % % OPTIONS(15) is the number of samples omitted from the start of the % chain; default 0. % % OPTIONS(18) is the variance of the proposal distribution; default 1. % % See also % HMC % % Copyright (c) Ian T Nabney (1996-2001) if nargin <= 2 if ~strcmp(f, 'state') error('Unknown argument to metrop'); end switch nargin case 1 % Return state of sampler samples = get_state(f); % Function defined in this module return; case 2 % Set the state of the sampler set_state(f, x); % Function defined in this module return; end end if 0 seed = 42; randn('state', seed); rand('state', seed) end display = options(1); if options(14) > 0 nsamples = options(14); else nsamples = 100; end if options(15) >= 0 nomit = options(15); else nomit = 0; end if options(18) > 0.0 std_dev = sqrt(options(18)); else std_dev = 1.0; % default end nparams = length(x); % Set up string for evaluating potential function. f = fcnchk(f, length(varargin)); samples = zeros(nsamples, nparams); % Matrix of returned samples. if nargout >= 2 en_save = 1; energies = zeros(nsamples, 1); else en_save = 0; end if nargout >= 3 diagnostics = 1; diagn_pos = zeros(nsamples, nparams); diagn_acc = zeros(nsamples, 1); else diagnostics = 0; end % Main loop. n = - nomit + 1; Eold = feval(f, x, varargin{:}); % Evaluate starting energy. nreject = 0; % Initialise count of rejected states. while n <= nsamples xold = x; % Sample a new point from the proposal distribution x = xold + randn(1, nparams)*std_dev; %fprintf('netlab propose: xold = %5.3f,%5.3f, xnew = %5.3f,%5.3f\n',... % xold(1), xold(2), x(1), x(2)); % Now apply Metropolis algorithm. Enew = feval(f, x, varargin{:}); % Evaluate new energy. a = exp(Eold - Enew); % Acceptance threshold. if (diagnostics & n > 0) diagn_pos(n,:) = x; diagn_acc(n,:) = a; end if (display > 1) fprintf(1, 'New position is\n'); disp(x); end r = rand(1); %fprintf('netlab: n=%d, a=%f/%f=%5.3f (%5.3f), r=%5.3f\n',... % n, exp(-Enew), exp(-Eold), a, exp(-Enew)/exp(-Eold), r); if a > r % Accept the new state. Eold = Enew; if (display > 0) fprintf(1, 'Finished step %4d Threshold: %g\n', n, a); end else % Reject the new state if n > 0 nreject = nreject + 1; end x = xold; % Reset position if (display > 0) fprintf(1, ' Sample rejected %4d. Threshold: %g\n', n, a); end end if n > 0 samples(n,:) = x; % Store sample. if en_save energies(n) = Eold; % Store energy. end end n = n + 1; end if (display > 0) fprintf(1, '\nFraction of samples rejected: %g\n', ... nreject/(nsamples)); end if diagnostics diagn.pos = diagn_pos; diagn.acc = diagn_acc; end % Return complete state of the sampler. function state = get_state(f) state.randstate = rand('state'); state.randnstate = randn('state'); return % Set state of sampler, either from full state, or with an integer function set_state(f, x) if isnumeric(x) rand('state', x); randn('state', x); else if ~isstruct(x) error('Second argument to metrop must be number or state structure'); end if (~isfield(x, 'randstate') | ~isfield(x, 'randnstate')) error('Second argument to metrop must contain correct fields') end rand('state', x.randstate); randn('state', x.randnstate); end return
github
siprob/arhmm_mcmc-master
hmc.m
.m
arhmm_mcmc-master/HMMall/netlab3.3/hmc.m
7,683
utf_8
64c15e958297afe69787b8617dc1a56a
function [samples, energies, diagn] = hmc(f, x, options, gradf, varargin) %HMC Hybrid Monte Carlo sampling. % % Description % SAMPLES = HMC(F, X, OPTIONS, GRADF) uses a hybrid Monte Carlo % algorithm to sample from the distribution P ~ EXP(-F), where F is the % first argument to HMC. The Markov chain starts at the point X, and % the function GRADF is the gradient of the `energy' function F. % % HMC(F, X, OPTIONS, GRADF, P1, P2, ...) allows additional arguments to % be passed to F() and GRADF(). % % [SAMPLES, ENERGIES, DIAGN] = HMC(F, X, OPTIONS, GRADF) also returns a % log of the energy values (i.e. negative log probabilities) for the % samples in ENERGIES and DIAGN, a structure containing diagnostic % information (position, momentum and acceptance threshold) for each % step of the chain in DIAGN.POS, DIAGN.MOM and DIAGN.ACC respectively. % All candidate states (including rejected ones) are stored in % DIAGN.POS. % % [SAMPLES, ENERGIES, DIAGN] = HMC(F, X, OPTIONS, GRADF) also returns % the ENERGIES (i.e. negative log probabilities) corresponding to the % samples. The DIAGN structure contains three fields: % % POS the position vectors of the dynamic process. % % MOM the momentum vectors of the dynamic process. % % ACC the acceptance thresholds. % % S = HMC('STATE') returns a state structure that contains the state of % the two random number generators RAND and RANDN and the momentum of % the dynamic process. These are contained in fields randstate, % randnstate and mom respectively. The momentum state is only used for % a persistent momentum update. % % HMC('STATE', S) resets the state to S. If S is an integer, then it % is passed to RAND and RANDN and the momentum variable is randomised. % If S is a structure returned by HMC('STATE') then it resets the % generator to exactly the same state. % % The optional parameters in the OPTIONS vector have the following % interpretations. % % OPTIONS(1) is set to 1 to display the energy values and rejection % threshold at each step of the Markov chain. If the value is 2, then % the position vectors at each step are also displayed. % % OPTIONS(5) is set to 1 if momentum persistence is used; default 0, % for complete replacement of momentum variables. % % OPTIONS(7) defines the trajectory length (i.e. the number of leap- % frog steps at each iteration). Minimum value 1. % % OPTIONS(9) is set to 1 to check the user defined gradient function. % % OPTIONS(14) is the number of samples retained from the Markov chain; % default 100. % % OPTIONS(15) is the number of samples omitted from the start of the % chain; default 0. % % OPTIONS(17) defines the momentum used when a persistent update of % (leap-frog) momentum is used. This is bounded to the interval [0, % 1). % % OPTIONS(18) is the step size used in leap-frogs; default 1/trajectory % length. % % See also % METROP % % Copyright (c) Ian T Nabney (1996-2001) % Global variable to store state of momentum variables: set by set_state % Used to initialise variable if set global HMC_MOM if nargin <= 2 if ~strcmp(f, 'state') error('Unknown argument to hmc'); end switch nargin case 1 samples = get_state(f); return; case 2 set_state(f, x); return; end end display = options(1); if (round(options(5) == 1)) persistence = 1; % Set alpha to lie in [0, 1) alpha = max(0, options(17)); alpha = min(1, alpha); salpha = sqrt(1-alpha*alpha); else persistence = 0; end L = max(1, options(7)); % At least one step in leap-frogging if options(14) > 0 nsamples = options(14); else nsamples = 100; % Default end if options(15) >= 0 nomit = options(15); else nomit = 0; end if options(18) > 0 step_size = options(18); % Step size. else step_size = 1/L; % Default end x = x(:)'; % Force x to be a row vector nparams = length(x); % Set up strings for evaluating potential function and its gradient. f = fcnchk(f, length(varargin)); gradf = fcnchk(gradf, length(varargin)); % Check the gradient evaluation. if (options(9)) % Check gradients feval('gradchek', x, f, gradf, varargin{:}); end samples = zeros(nsamples, nparams); % Matrix of returned samples. if nargout >= 2 en_save = 1; energies = zeros(nsamples, 1); else en_save = 0; end if nargout >= 3 diagnostics = 1; diagn_pos = zeros(nsamples, nparams); diagn_mom = zeros(nsamples, nparams); diagn_acc = zeros(nsamples, 1); else diagnostics = 0; end n = - nomit + 1; Eold = feval(f, x, varargin{:}); % Evaluate starting energy. nreject = 0; if (~persistence | isempty(HMC_MOM)) p = randn(1, nparams); % Initialise momenta at random else p = HMC_MOM; % Initialise momenta from stored state end lambda = 1; % Main loop. while n <= nsamples xold = x; % Store starting position. pold = p; % Store starting momenta Hold = Eold + 0.5*(p*p'); % Recalculate Hamiltonian as momenta have changed if ~persistence % Choose a direction at random if (rand < 0.5) lambda = -1; else lambda = 1; end end % Perturb step length. epsilon = lambda*step_size*(1.0 + 0.1*randn(1)); % First half-step of leapfrog. p = p - 0.5*epsilon*feval(gradf, x, varargin{:}); x = x + epsilon*p; % Full leapfrog steps. for m = 1 : L - 1 p = p - epsilon*feval(gradf, x, varargin{:}); x = x + epsilon*p; end % Final half-step of leapfrog. p = p - 0.5*epsilon*feval(gradf, x, varargin{:}); % Now apply Metropolis algorithm. Enew = feval(f, x, varargin{:}); % Evaluate new energy. p = -p; % Negate momentum Hnew = Enew + 0.5*p*p'; % Evaluate new Hamiltonian. a = exp(Hold - Hnew); % Acceptance threshold. if (diagnostics & n > 0) diagn_pos(n,:) = x; diagn_mom(n,:) = p; diagn_acc(n,:) = a; end if (display > 1) fprintf(1, 'New position is\n'); disp(x); end if a > rand(1) % Accept the new state. Eold = Enew; % Update energy if (display > 0) fprintf(1, 'Finished step %4d Threshold: %g\n', n, a); end else % Reject the new state. if n > 0 nreject = nreject + 1; end x = xold; % Reset position p = pold; % Reset momenta if (display > 0) fprintf(1, ' Sample rejected %4d. Threshold: %g\n', n, a); end end if n > 0 samples(n,:) = x; % Store sample. if en_save energies(n) = Eold; % Store energy. end end % Set momenta for next iteration if persistence p = -p; % Adjust momenta by a small random amount. p = alpha.*p + salpha.*randn(1, nparams); else p = randn(1, nparams); % Replace all momenta. end n = n + 1; end if (display > 0) fprintf(1, '\nFraction of samples rejected: %g\n', ... nreject/(nsamples)); end if diagnostics diagn.pos = diagn_pos; diagn.mom = diagn_mom; diagn.acc = diagn_acc; end % Store final momentum value in global so that it can be retrieved later HMC_MOM = p; return % Return complete state of sampler (including momentum) function state = get_state(f) global HMC_MOM state.randstate = rand('state'); state.randnstate = randn('state'); state.mom = HMC_MOM; return % Set complete state of sampler (including momentum) or just set randn % and rand with integer argument. function set_state(f, x) global HMC_MOM if isnumeric(x) rand('state', x); randn('state', x); HMC_MOM = []; else if ~isstruct(x) error('Second argument to hmc must be number or state structure'); end if (~isfield(x, 'randstate') | ~isfield(x, 'randnstate') ... | ~isfield(x, 'mom')) error('Second argument to hmc must contain correct fields') end rand('state', x.randstate); randn('state', x.randnstate); HMC_MOM = x.mom; end return
github
siprob/arhmm_mcmc-master
gtminit.m
.m
arhmm_mcmc-master/HMMall/netlab3.3/gtminit.m
5,204
utf_8
ab76f6114a7e85375ade5e5889d5f6a7
function net = gtminit(net, options, data, samp_type, varargin) %GTMINIT Initialise the weights and latent sample in a GTM. % % Description % NET = GTMINIT(NET, OPTIONS, DATA, SAMPTYPE) takes a GTM NET and % generates a sample of latent data points and sets the centres (and % widths if appropriate) of NET.RBFNET. % % If the SAMPTYPE is 'REGULAR', then regular grids of latent data % points and RBF centres are created. The dimension of the latent data % space must be 1 or 2. For one-dimensional latent space, the % LSAMPSIZE parameter gives the number of latent points and the % RBFSAMPSIZE parameter gives the number of RBF centres. For a two- % dimensional latent space, these parameters must be vectors of length % 2 with the number of points in each of the x and y directions to % create a rectangular grid. The widths of the RBF basis functions are % set by a call to RBFSETFW passing OPTIONS(7) as the scaling % parameter. % % If the SAMPTYPE is 'UNIFORM' or 'GAUSSIAN' then the latent data is % found by sampling from a uniform or Gaussian distribution % correspondingly. The RBF basis function parameters are set by a call % to RBFSETBF with the DATA parameter as dataset and the OPTIONS % vector. % % Finally, the output layer weights of the RBF are initialised by % mapping the mean of the latent variable to the mean of the target % variable, and the L-dimensional latent variale variance to the % variance of the targets along the first L principal components. % % See also % GTM, GTMEM, PCA, RBFSETBF, RBFSETFW % % Copyright (c) Ian T Nabney (1996-2001) % Check for consistency errstring = consist(net, 'gtm', data); if ~isempty(errstring) error(errstring); end % Check type of sample stypes = {'regular', 'uniform', 'gaussian'}; if (strcmp(samp_type, stypes)) == 0 error('Undefined sample type.') end if net.dim_latent > size(data, 2) error('Latent space dimension must not be greater than data dimension') end nlatent = net.gmmnet.ncentres; nhidden = net.rbfnet.nhidden; % Create latent data sample and set RBF centres switch samp_type case 'regular' if nargin ~= 6 error('Regular type must specify latent and RBF shapes'); end l_samp_size = varargin{1}; rbf_samp_size = varargin{2}; if round(l_samp_size) ~= l_samp_size error('Latent sample specification must contain integers') end % Check existence and size of rbf specification if any(size(rbf_samp_size) ~= [1 net.dim_latent]) | ... prod(rbf_samp_size) ~= nhidden error('Incorrect specification of RBF centres') end % Check dimension and type of latent data specification if any(size(l_samp_size) ~= [1 net.dim_latent]) | ... prod(l_samp_size) ~= nlatent error('Incorrect dimension of latent sample spec.') end if net.dim_latent == 1 net.X = [-1:2/(l_samp_size-1):1]'; net.rbfnet.c = [-1:2/(rbf_samp_size-1):1]'; net.rbfnet = rbfsetfw(net.rbfnet, options(7)); elseif net.dim_latent == 2 net.X = gtm_rctg(l_samp_size); net.rbfnet.c = gtm_rctg(rbf_samp_size); net.rbfnet = rbfsetfw(net.rbfnet, options(7)); else error('For regular sample, input dimension must be 1 or 2.') end case {'uniform', 'gaussian'} if strcmp(samp_type, 'uniform') net.X = 2 * (rand(nlatent, net.dim_latent) - 0.5); else % Sample from N(0, 0.25) distribution to ensure most latent % data is inside square net.X = randn(nlatent, net.dim_latent)/2; end net.rbfnet = rbfsetbf(net.rbfnet, options, net.X); otherwise % Shouldn't get here error('Invalid sample type'); end % Latent data sample and basis function parameters chosen. % Now set output weights [PCcoeff, PCvec] = pca(data); % Scale PCs by eigenvalues A = PCvec(:, 1:net.dim_latent)*diag(sqrt(PCcoeff(1:net.dim_latent))); [temp, Phi] = rbffwd(net.rbfnet, net.X); % Normalise X to ensure 1:1 mapping of variances and calculate weights % as solution of Phi*W = normX*A' normX = (net.X - ones(size(net.X))*diag(mean(net.X)))*diag(1./std(net.X)); net.rbfnet.w2 = Phi \ (normX*A'); % Bias is mean of target data net.rbfnet.b2 = mean(data); % Must also set initial value of variance % Find average distance between nearest centres % Ensure that distance of centre to itself is excluded by setting diagonal % entries to realmax net.gmmnet.centres = rbffwd(net.rbfnet, net.X); d = dist2(net.gmmnet.centres, net.gmmnet.centres) + ... diag(ones(net.gmmnet.ncentres, 1)*realmax); sigma = mean(min(d))/2; % Now set covariance to minimum of this and next largest eigenvalue if net.dim_latent < size(data, 2) sigma = min(sigma, PCcoeff(net.dim_latent+1)); end net.gmmnet.covars = sigma*ones(1, net.gmmnet.ncentres); % Sub-function to create the sample data in 2d function sample = gtm_rctg(samp_size) xDim = samp_size(1); yDim = samp_size(2); % Produce a grid with the right number of rows and columns [X, Y] = meshgrid([0:1:(xDim-1)], [(yDim-1):-1:0]); % Change grid representation sample = [X(:), Y(:)]; % Shift grid to correct position and scale it maxXY= max(sample); sample(:,1) = 2*(sample(:,1) - maxXY(1)/2)./maxXY(1); sample(:,2) = 2*(sample(:,2) - maxXY(2)/2)./maxXY(2); return;
github
siprob/arhmm_mcmc-master
mlphess.m
.m
arhmm_mcmc-master/HMMall/netlab3.3/mlphess.m
1,633
utf_8
b91a15ca11b4886de6c1671c33a735d3
function [h, hdata] = mlphess(net, x, t, hdata) %MLPHESS Evaluate the Hessian matrix for a multi-layer perceptron network. % % Description % H = MLPHESS(NET, X, T) takes an MLP network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. % % [H, HDATA] = MLPHESS(NET, X, T) returns both the Hessian matrix H and % the contribution HDATA arising from the data dependent term in the % Hessian. % % H = MLPHESS(NET, X, T, HDATA) takes a network data structure NET, a % matrix X of input values, and a matrix T of target values, together % with the contribution HDATA arising from the data dependent term in % the Hessian, and returns the full Hessian matrix H corresponding to % the second derivatives of the negative log posterior distribution. % This version saves computation time if HDATA has already been % evaluated for the current weight and bias values. % % See also % MLP, HESSCHEK, MLPHDOTV, EVIDENCE % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'mlp', x, t); if ~isempty(errstring); error(errstring); end if nargin == 3 % Data term in Hessian needs to be computed hdata = datahess(net, x, t); end [h, hdata] = hbayes(net, hdata); % Sub-function to compute data part of Hessian function hdata = datahess(net, x, t) hdata = zeros(net.nwts, net.nwts); for v = eye(net.nwts); hdata(find(v),:) = mlphdotv(net, x, t, v); end return
github
siprob/arhmm_mcmc-master
glmhess.m
.m
arhmm_mcmc-master/HMMall/netlab3.3/glmhess.m
4,024
utf_8
2d706b82d25cb35ff9467fe8837ef26f
function [h, hdata] = glmhess(net, x, t, hdata) %GLMHESS Evaluate the Hessian matrix for a generalised linear model. % % Description % H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. Note that the target data % is not required in the calculation, but is included to make the % interface uniform with NETHESS. For linear and logistic outputs, the % computation is very simple and is done (in effect) in one line in % GLMTRAIN. % % [H, HDATA] = GLMHESS(NET, X, T) returns both the Hessian matrix H and % the contribution HDATA arising from the data dependent term in the % Hessian. % % H = GLMHESS(NET, X, T, HDATA) takes a network data structure NET, a % matrix X of input values, and a matrix T of target values, together % with the contribution HDATA arising from the data dependent term in % the Hessian, and returns the full Hessian matrix H corresponding to % the second derivatives of the negative log posterior distribution. % This version saves computation time if HDATA has already been % evaluated for the current weight and bias values. % % See also % GLM, GLMTRAIN, HESSCHEK, NETHESS % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'glm', x, t); if ~isempty(errstring); error(errstring); end ndata = size(x, 1); nparams = net.nwts; nout = net.nout; p = glmfwd(net, x); inputs = [x ones(ndata, 1)]; if nargin == 3 hdata = zeros(nparams); % Full Hessian matrix % Calculate data component of Hessian switch net.outfn case 'linear' % No weighting function here out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)]; for j = 1:nout hdata = rearrange_hess(net, j, out_hess, hdata); end case 'logistic' % Each output is independent e = ones(1, net.nin+1); link_deriv = p.*(1-p); out_hess = zeros(net.nin+1); for j = 1:nout inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e); out_hess = inputs'*inputs; % Hessian for this output hdata = rearrange_hess(net, j, out_hess, hdata); end case 'softmax' bb_start = nparams - nout + 1; % Start of bias weights block ex_hess = zeros(nparams); % Contribution to Hessian from single example for m = 1:ndata X = x(m,:)'*x(m,:); a = diag(p(m,:))-((p(m,:)')*p(m,:)); ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X); ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout); temp = kron(a, x(m,:)); ex_hess(bb_start:nparams, 1:nparams-nout) = temp; ex_hess(1:nparams-nout, bb_start:nparams) = temp'; hdata = hdata + ex_hess; end otherwise error(['Unknown activation function ', net.outfn]); end end [h, hdata] = hbayes(net, hdata); function hdata = rearrange_hess(net, j, out_hess, hdata) % Because all the biases come after all the input weights, % we have to rearrange the blocks that make up the network Hessian. % This function assumes that we are on the jth output and that all outputs % are independent. bb_start = net.nwts - net.nout + 1; % Start of bias weights block ob_start = 1+(j-1)*net.nin; % Start of weight block for jth output ob_end = j*net.nin; % End of weight block for jth output b_index = bb_start+(j-1); % Index of bias weight % Put input weight block in right place hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin); % Put second derivative of bias weight in right place hdata(b_index, b_index) = out_hess(net.nin+1, net.nin+1); % Put cross terms (input weight v bias weight) in right place hdata(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin); hdata(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1); return
github
siprob/arhmm_mcmc-master
rbfhess.m
.m
arhmm_mcmc-master/HMMall/netlab3.3/rbfhess.m
3,138
utf_8
0a6ef29c8be32e9991cacfe42bdfa0b3
function [h, hdata] = rbfhess(net, x, t, hdata) %RBFHESS Evaluate the Hessian matrix for RBF network. % % Description % H = RBFHESS(NET, X, T) takes an RBF network data structure NET, a % matrix X of input values, and a matrix T of target values and returns % the full Hessian matrix H corresponding to the second derivatives of % the negative log posterior distribution, evaluated for the current % weight and bias values as defined by NET. Currently, the % implementation only computes the Hessian for the output layer % weights. % % [H, HDATA] = RBFHESS(NET, X, T) returns both the Hessian matrix H and % the contribution HDATA arising from the data dependent term in the % Hessian. % % H = RBFHESS(NET, X, T, HDATA) takes a network data structure NET, a % matrix X of input values, and a matrix T of target values, together % with the contribution HDATA arising from the data dependent term in % the Hessian, and returns the full Hessian matrix H corresponding to % the second derivatives of the negative log posterior distribution. % This version saves computation time if HDATA has already been % evaluated for the current weight and bias values. % % See also % MLPHESS, HESSCHEK, EVIDENCE % % Copyright (c) Ian T Nabney (1996-2001) % Check arguments for consistency errstring = consist(net, 'rbf', x, t); if ~isempty(errstring); error(errstring); end if nargin == 3 % Data term in Hessian needs to be computed [a, z] = rbffwd(net, x); hdata = datahess(net, z, t); end % Add in effect of regularisation [h, hdata] = hbayes(net, hdata); % Sub-function to compute data part of Hessian function hdata = datahess(net, z, t) % Only works for output layer Hessian currently if (isfield(net, 'mask') & ~any(net.mask(... 1:(net.nwts - net.nout*(net.nhidden+1))))) hdata = zeros(net.nwts); ndata = size(z, 1); out_hess = [z ones(ndata, 1)]'*[z ones(ndata, 1)]; for j = 1:net.nout hdata = rearrange_hess(net, j, out_hess, hdata); end else error('Output layer Hessian only.'); end return % Sub-function to rearrange Hessian matrix function hdata = rearrange_hess(net, j, out_hess, hdata) % Because all the biases come after all the input weights, % we have to rearrange the blocks that make up the network Hessian. % This function assumes that we are on the jth output and that all outputs % are independent. % Start of bias weights block bb_start = net.nwts - net.nout + 1; % Start of weight block for jth output ob_start = net.nwts - net.nout*(net.nhidden+1) + (j-1)*net.nhidden... + 1; % End of weight block for jth output ob_end = ob_start + net.nhidden - 1; % Index of bias weight b_index = bb_start+(j-1); % Put input weight block in right place hdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nhidden, ... 1:net.nhidden); % Put second derivative of bias weight in right place hdata(b_index, b_index) = out_hess(net.nhidden+1, net.nhidden+1); % Put cross terms (input weight v bias weight) in right place hdata(b_index, ob_start:ob_end) = out_hess(net.nhidden+1, ... 1:net.nhidden); hdata(ob_start:ob_end, b_index) = out_hess(1:net.nhidden, ... net.nhidden+1); return
github
siprob/arhmm_mcmc-master
dhmm_em.m
.m
arhmm_mcmc-master/HMMall/HMM/dhmm_em.m
4,081
utf_8
e23671f3809776edff04b1c4ec457169
function [LL, prior, transmat, obsmat, nrIterations] = ... dhmm_em(data, prior, transmat, obsmat, varargin) % LEARN_DHMM Find the ML/MAP parameters of an HMM with discrete outputs using EM. % [ll_trace, prior, transmat, obsmat, iterNr] = learn_dhmm(data, prior0, transmat0, obsmat0, ...) % % Notation: Q(t) = hidden state, Y(t) = observation % % INPUTS: % data{ex} or data(ex,:) if all sequences have the same length % prior(i) % transmat(i,j) % obsmat(i,o) % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'max_iter' - max number of EM iterations [10] % 'thresh' - convergence threshold [1e-4] % 'verbose' - if 1, print out loglik at every iteration [1] % 'obs_prior_weight' - weight to apply to uniform dirichlet prior on observation matrix [0] % % To clamp some of the parameters, so learning does not change them: % 'adj_prior' - if 0, do not change prior [1] % 'adj_trans' - if 0, do not change transmat [1] % 'adj_obs' - if 0, do not change obsmat [1] % % Modified by Herbert Jaeger so xi are not computed individually % but only their sum (over time) as xi_summed; this is the only way how they are used % and it saves a lot of memory. [max_iter, thresh, verbose, obs_prior_weight, adj_prior, adj_trans, adj_obs] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'obs_prior_weight', 0, 'adj_prior', 1, 'adj_trans', 1, 'adj_obs', 1); previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; if ~iscell(data) data = num2cell(data, 2); % each row gets its own cell end while (num_iter <= max_iter) & ~converged % E step [loglik, exp_num_trans, exp_num_visits1, exp_num_emit] = ... compute_ess_dhmm(prior, transmat, obsmat, data, obs_prior_weight); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans & ~isempty(exp_num_trans) transmat = mk_stochastic(exp_num_trans); end if adj_obs obsmat = mk_stochastic(exp_num_emit); end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; LL = [LL loglik]; end nrIterations = num_iter - 1; %%%%%%%%%%%%%%%%%%%%%%% function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ... compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet) % COMPUTE_ESS_DHMM Compute the Expected Sufficient Statistics for an HMM with discrete outputs % function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, exp_num_visitsT] = ... % compute_ess_dhmm(startprob, transmat, obsmat, data, dirichlet) % % INPUTS: % startprob(i) % transmat(i,j) % obsmat(i,o) % data{seq}(t) % dirichlet - weighting term for uniform dirichlet prior on expected emissions % % OUTPUTS: % exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(X(t-1) = i, X(t) = j| Obs(l)) % exp_num_visits1(i) = sum_l Pr(X(1)=i | Obs(l)) % exp_num_visitsT(i) = sum_l Pr(X(T)=i | Obs(l)) % exp_num_emit(i,o) = sum_l sum_{t=1}^T Pr(X(t) = i, O(t)=o| Obs(l)) % where Obs(l) = O_1 .. O_T for sequence l. numex = length(data); [S O] = size(obsmat); exp_num_trans = zeros(S,S); exp_num_visits1 = zeros(S,1); exp_num_visitsT = zeros(S,1); exp_num_emit = dirichlet*ones(S,O); loglik = 0; for ex=1:numex obs = data{ex}; T = length(obs); %obslik = eval_pdf_cond_multinomial(obs, obsmat); obslik = multinomial_prob(obs, obsmat); [alpha, beta, gamma, current_ll, xi_summed] = fwdback(startprob, transmat, obslik); loglik = loglik + current_ll; exp_num_trans = exp_num_trans + xi_summed; exp_num_visits1 = exp_num_visits1 + gamma(:,1); exp_num_visitsT = exp_num_visitsT + gamma(:,T); % loop over whichever is shorter if T < O for t=1:T o = obs(t); exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t); end else for o=1:O ndx = find(obs==o); if ~isempty(ndx) exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2); end end end end
github
siprob/arhmm_mcmc-master
mhmm_em.m
.m
arhmm_mcmc-master/HMMall/HMM/mhmm_em.m
5,884
utf_8
f63c5cc11c6d1ae9f2a0a94d8d639218
function [LL, prior, transmat, mu, Sigma, mixmat] = ... mhmm_em(data, prior, transmat, mu, Sigma, mixmat, varargin); % LEARN_MHMM Compute the ML parameters of an HMM with (mixtures of) Gaussians output using EM. % [ll_trace, prior, transmat, mu, sigma, mixmat] = learn_mhmm(data, ... % prior0, transmat0, mu0, sigma0, mixmat0, ...) % % Notation: Q(t) = hidden state, Y(t) = observation, M(t) = mixture variable % % INPUTS: % data{ex}(:,t) or data(:,t,ex) if all sequences have the same length % prior(i) = Pr(Q(1) = i), % transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i) % mu(:,j,k) = E[Y(t) | Q(t)=j, M(t)=k ] % Sigma(:,:,j,k) = Cov[Y(t) | Q(t)=j, M(t)=k] % mixmat(j,k) = Pr(M(t)=k | Q(t)=j) : set to [] or ones(Q,1) if only one mixture component % % Optional parameters may be passed as 'param_name', param_value pairs. % Parameter names are shown below; default values in [] - if none, argument is mandatory. % % 'max_iter' - max number of EM iterations [10] % 'thresh' - convergence threshold [1e-4] % 'verbose' - if 1, print out loglik at every iteration [1] % 'cov_type' - 'full', 'diag' or 'spherical' ['full'] % % To clamp some of the parameters, so learning does not change them: % 'adj_prior' - if 0, do not change prior [1] % 'adj_trans' - if 0, do not change transmat [1] % 'adj_mix' - if 0, do not change mixmat [1] % 'adj_mu' - if 0, do not change mu [1] % 'adj_Sigma' - if 0, do not change Sigma [1] % % If the number of mixture components differs depending on Q, just set the trailing % entries of mixmat to 0, e.g., 2 components if Q=1, 3 components if Q=2, % then set mixmat(1,3)=0. In this case, B2(1,3,:)=1.0. if ~isempty(varargin) & ~isstr(varargin{1}) % catch old syntax error('optional arguments should be passed as string/value pairs') end [max_iter, thresh, verbose, cov_type, adj_prior, adj_trans, adj_mix, adj_mu, adj_Sigma, fun_eta, rcorr] = ... process_options(varargin, 'max_iter', 10, 'thresh', 1e-4, 'verbose', 1, ... 'cov_type', 'full', 'adj_prior', 1, 'adj_trans', 1, 'adj_mix', 1, ... 'adj_mu', 1, 'adj_Sigma', 1, 'fun_eta', @mixgauss_prob, 'rcorr', data); previous_loglik = -inf; loglik = 0; converged = 0; num_iter = 1; LL = []; if ~iscell(data) data = num2cell(data, [1 2]); % each elt of the 3rd dim gets its own cell end numex = length(data); O = size(data{1},1); Q = length(prior); if isempty(mixmat) mixmat = ones(Q,1); end M = size(mixmat,2); if M == 1 adj_mix = 0; end while (num_iter <= max_iter) & ~converged zzz = tic; %ABC % E step [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data, fun_eta, rcorr); % M step if adj_prior prior = normalise(exp_num_visits1); end if adj_trans transmat = mk_stochastic(exp_num_trans); end if adj_mix mixmat = mk_stochastic(postmix); end if adj_mu | adj_Sigma [mu2, Sigma2] = mixgauss_Mstep(postmix, m, op, ip, 'cov_type', cov_type); if adj_mu mu = reshape(mu2, [O Q M]); end if adj_Sigma Sigma = reshape(Sigma2, [O O Q M]); end end if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end %fprintf('%f\n', loglik); %ABC num_iter = num_iter + 1; converged = em_converged(loglik, previous_loglik, thresh); previous_loglik = loglik; LL = [LL loglik]; %fprintf('%s\n', toc(zzz)); %ABC %toc(zzz); end %%%%%%%%% function [loglik, exp_num_trans, exp_num_visits1, postmix, m, ip, op] = ... ess_mhmm(prior, transmat, mixmat, mu, Sigma, data, fun_eta, rcorr) % ESS_MHMM Compute the Expected Sufficient Statistics for a MOG Hidden Markov Model. % % Outputs: % exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(Q(t-1) = i, Q(t) = j| Obs(l)) % exp_num_visits1(i) = sum_l Pr(Q(1)=i | Obs(l)) % % Let w(i,k,t,l) = P(Q(t)=i, M(t)=k | Obs(l)) % where Obs(l) = Obs(:,:,l) = O_1 .. O_T for sequence l % Then % postmix(i,k) = sum_l sum_t w(i,k,t,l) (posterior mixing weights/ responsibilities) % m(:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) % ip(i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l)' * Obs(:,t,l) % op(:,:,i,k) = sum_l sum_t w(i,k,t,l) * Obs(:,t,l) * Obs(:,t,l)' verbose = 0; %[O T numex] = size(data); numex = length(data); O = size(data{1},1); Q = length(prior); M = size(mixmat,2); exp_num_trans = zeros(Q,Q); exp_num_visits1 = zeros(Q,1); postmix = zeros(Q,M); m = zeros(O,Q,M); op = zeros(O,O,Q,M); ip = zeros(Q,M); mix = (M>1); loglik = 0; if verbose, fprintf(1, 'forwards-backwards example # '); end for ex=1:numex if verbose, fprintf(1, '%d ', ex); end %obs = data(:,:,ex); obs = data{ex}; T = size(obs,2); if mix %[B, B2] = mixgauss_prob(obs, mu, Sigma, mixmat); [B, B2] = fun_eta(rcorr, mu, Sigma, mixmat); [alpha, beta, gamma, current_loglik, xi_summed, gamma2] = ... fwdback(prior, transmat, B, 'obslik2', B2, 'mixmat', mixmat); else %B = mixgauss_prob(obs, mu, Sigma); B = fun_eta(rcorr, mu, Sigma); [alpha, beta, gamma, current_loglik, xi_summed] = fwdback(prior, transmat, B); end loglik = loglik + current_loglik; if verbose, fprintf(1, 'll at ex %d = %f\n', ex, loglik); end exp_num_trans = exp_num_trans + xi_summed; % sum(xi,3); exp_num_visits1 = exp_num_visits1 + gamma(:,1); if mix postmix = postmix + sum(gamma2,3); else postmix = postmix + sum(gamma,2); gamma2 = reshape(gamma, [Q 1 T]); % gamma2(i,m,t) = gamma(i,t) end for i=1:Q for k=1:M w = reshape(gamma2(i,k,:), [1 T]); % w(t) = w(i,k,t,l) wobs = obs .* repmat(w, [O 1]); % wobs(:,t) = w(t) * obs(:,t) m(:,i,k) = m(:,i,k) + sum(wobs, 2); % m(:) = sum_t w(t) obs(:,t) op(:,:,i,k) = op(:,:,i,k) + wobs * obs'; % op(:,:) = sum_t w(t) * obs(:,t) * obs(:,t)' ip(i,k) = ip(i,k) + sum(sum(wobs .* obs, 2)); % ip = sum_t w(t) * obs(:,t)' * obs(:,t) end end end if verbose, fprintf(1, '\n'); end
github
siprob/arhmm_mcmc-master
subv2ind.m
.m
arhmm_mcmc-master/HMMall/KPMtools/subv2ind.m
1,574
utf_8
e85d0bab88fc0d35b803436fa1dc0e15
function ndx = subv2ind(siz, subv) % SUBV2IND Like the built-in sub2ind, but the subscripts are given as row vectors. % ind = subv2ind(siz,subv) % % siz can be a row or column vector of size d. % subv should be a collection of N row vectors of size d. % ind will be of size N * 1. % % Example: % subv = [1 1 1; % 2 1 1; % ... % 2 2 2]; % subv2ind([2 2 2], subv) returns [1 2 ... 8]' % i.e., the leftmost digit toggles fastest. % % See also IND2SUBV. if isempty(subv) ndx = []; return; end if isempty(siz) ndx = 1; return; end [ncases ndims] = size(subv); %if length(siz) ~= ndims % error('length of subscript vector and sizes must be equal'); %end if all(siz==2) %rbits = subv(:,end:-1:1)-1; % read from right to left, convert to 0s/1s %ndx = bitv2dec(rbits)+1; twos = pow2(0:ndims-1); ndx = ((subv-1) * twos(:)) + 1; %ndx = sum((subv-1) .* twos(ones(ncases,1), :), 2) + 1; % equivalent to matrix * vector %ndx = sum((subv-1) .* repmat(twos, ncases, 1), 2) + 1; % much slower than ones %ndx = ndx(:)'; else %siz = siz(:)'; cp = [1 cumprod(siz(1:end-1))]'; %ndx = ones(ncases, 1); %for i = 1:ndims % ndx = ndx + (subv(:,i)-1)*cp(i); %end ndx = (subv-1)*cp + 1; end %%%%%%%%%%% function d = bitv2dec(bits) % BITV2DEC Convert a bit vector to a decimal integer % d = butv2dec(bits) % % This is just like the built-in bin2dec, except the argument is a vector, not a string. % If bits is an array, each row will be converted. [m n] = size(bits); twos = pow2(n-1:-1:0); d = sum(bits .* twos(ones(m,1),:),2);
github
siprob/arhmm_mcmc-master
zipload.m
.m
arhmm_mcmc-master/HMMall/KPMtools/zipload.m
1,611
utf_8
67412c21b14bebb640784443e9e3bbd8
%ZIPLOAD Load compressed data file created with ZIPSAVE % % [data] = zipload( filename ) % filename: string variable that contains the name of the % compressed file (do not include '.zip' extension) % Use only with files created with 'zipsave' % pkzip25.exe has to be in the matlab path. This file is a compression utility % made by Pkware, Inc. It can be dowloaded from: http://www.pkware.com % Or directly from ftp://ftp.pkware.com/pk250c32.exe, for the Windows 95/NT version. % This function was tested using 'PKZIP 2.50 Command Line for Windows 9x/NT' % It is important to use version 2.5 of the utility. Otherwise the command line below % has to be changed to include the proper options of the compression utility you % wish to use. % This function was tested in MATLAB Version 5.3 under Windows NT. % Fernando A. Brucher - May/25/1999 % % Example: % [loadedData] = zipload('testfile'); %-------------------------------------------------------------------- function [data] = zipload( filename ) %--- Decompress data file by calling pkzip (comand line command) --- % Options used: % 'extract' = decompress file % 'silent' = no console output % 'over=all' = overwrite files %eval( ['!pkzip25 -extract -silent -over=all ', filename, '.zip'] ) eval( ['!pkzip25 -extract -silent -over=all ', filename, '.zip'] ) %--- Load data from decompressed file --- % try, catch takes care of cases when pkzip fails to decompress a % valid matlab format file try tmpStruc = load( filename ); data = tmpStruc.data; catch, return, end %--- Delete decompressed file --- delete( [filename,'.mat'] )
github
siprob/arhmm_mcmc-master
plot_ellipse.m
.m
arhmm_mcmc-master/HMMall/KPMtools/plot_ellipse.m
507
utf_8
3a27bbd5c1bdfe99983171e96789da6d
% PLOT_ELLIPSE % h=plot_ellipse(x,y,theta,a,b) % % This routine plots an ellipse with centre (x,y), axis lengths a,b % with major axis at an angle of theta radians from the horizontal. % % Author: P. Fieguth % Jan. 98 % %http://ocho.uwaterloo.ca/~pfieguth/Teaching/372/plot_ellipse.m function h=plot_ellipse(x,y,theta,a,b) np = 100; ang = [0:np]*2*pi/np; R = [cos(theta) -sin(theta); sin(theta) cos(theta)]; pts = [x;y]*ones(size(ang)) + R*[cos(ang)*a; sin(ang)*b]; h=plot( pts(1,:), pts(2,:) );
github
siprob/arhmm_mcmc-master
bipartiteMatchingHungarian.m
.m
arhmm_mcmc-master/HMMall/KPMtools/bipartiteMatchingHungarian.m
2,593
utf_8
983df7bc538a844b42427ae58d69c75b
% MATCH - Solves the weighted bipartite matching (or assignment) % problem. % % Usage: a = match(C); % % Arguments: % C - an m x n cost matrix; the sets are taken to be % 1:m and 1:n; C(i, j) gives the cost of matching % items i (of the first set) and j (of the second set) % % Returns: % % a - an m x 1 assignment vector, which gives the % minimum cost assignment. a(i) is the index of % the item of 1:n that was matched to item i of % 1:m. If item i (of 1:m) was not matched to any % item of 1:n, then a(i) is zero. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a] = optimalMatching(C) % Trivial cases: [p, q] = size(C); if (p == 0) a = []; return; elseif (q == 0) a = zeros(p, 1); return; end if 0 % First, reduce the problem by making easy optimal matches. If two % elements agree that they are the best match, then match them up. [x, a] = min(C, [], 2); [y, b] = min(C, [], 1); u = find(1:p ~= b(a(:))); a(u) = 0; v = find(1:q ~= a(b(:))'); C = C(u, v); if (isempty(C)) return; end end % Get the (new) size of the two sets, u and v. [m, n] = size(C); %mx = realmax; mx = 2*max(C(:)); mn = -2*min(C(:)); % Pad the affinity matrix to be square if (m < n) C = [C; mx * ones(n - m, n)]; elseif (n < m) C = [C, mx * ones(m, m - n)]; end % Run the Hungarian method. First replace infinite values by the % largest (or smallest) finite values. C(find(isinf(C) & (C > 0))) = mx; C(find(isinf(C) & (C < 0))) = mn; %fprintf('running hungarian\n'); [b, cost] = hungarian(C'); % Extract only the real assignments ap = b(1:m)'; ap(find(ap > n)) = 0; a = ap; %% Incorporate this sub-assignment into the complete assignment % k = find(ap); % a(u(k)) = v(ap(k));
github
siprob/arhmm_mcmc-master
conf2mahal.m
.m
arhmm_mcmc-master/HMMall/KPMtools/conf2mahal.m
2,424
utf_8
682226ca8c1183325f4204e0c22de0a7
% CONF2MAHAL - Translates a confidence interval to a Mahalanobis % distance. Consider a multivariate Gaussian % distribution of the form % % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C))) % % where MD(x, m, P) is the Mahalanobis distance from x % to m under P: % % MD(x, m, P) = (x - m) * P * (x - m)' % % A particular Mahalanobis distance k identifies an % ellipsoid centered at the mean of the distribution. % The confidence interval associated with this ellipsoid % is the probability mass enclosed by it. Similarly, % a particular confidence interval uniquely determines % an ellipsoid with a fixed Mahalanobis distance. % % If X is an d dimensional Gaussian-distributed vector, % then the Mahalanobis distance of X is distributed % according to the Chi-squared distribution with d % degrees of freedom. Thus, the Mahalanobis distance is % determined by evaluating the inverse cumulative % distribution function of the chi squared distribution % up to the confidence value. % % Usage: % % m = conf2mahal(c, d); % % Inputs: % % c - the confidence interval % d - the number of dimensions of the Gaussian distribution % % Outputs: % % m - the Mahalanobis radius of the ellipsoid enclosing the % fraction c of the distribution's probability mass % % See also: MAHAL2CONF % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function m = conf2mahal(c, d) m = chi2inv(c, d);
github
siprob/arhmm_mcmc-master
plotgauss2d.m
.m
arhmm_mcmc-master/HMMall/KPMtools/plotgauss2d.m
4,119
utf_8
1bf48827c7a74f224086a54411e4ac82
function h=plotgauss2d(mu, Sigma) % PLOTGAUSS2D Plot a 2D Gaussian as an ellipse with optional cross hairs % h=plotgauss2(mu, Sigma) % h = plotcov2(mu, Sigma); return; %%%%%%%%%%%%%%%%%%%%%%%% % PLOTCOV2 - Plots a covariance ellipse with major and minor axes % for a bivariate Gaussian distribution. % % Usage: % h = plotcov2(mu, Sigma[, OPTIONS]); % % Inputs: % mu - a 2 x 1 vector giving the mean of the distribution. % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving % the covariance of the distribution (or the zero matrix). % % Options: % 'conf' - a scalar between 0 and 1 giving the confidence % interval (i.e., the fraction of probability mass to % be enclosed by the ellipse); default is 0.9. % 'num-pts' - the number of points to be used to plot the % ellipse; default is 100. % % This function also accepts options for PLOT. % % Outputs: % h - a vector of figure handles to the ellipse boundary and % its major and minor axes % % See also: PLOTCOV3 % Copyright (C) 2002 Mark A. Paskin function h = plotcov2(mu, Sigma, varargin) if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end [p, ... n, ... plot_opts] = process_options(varargin, 'conf', 0.9, ... 'num-pts', 100); h = []; holding = ishold; if (Sigma == zeros(2, 2)) z = mu; else % Compute the Mahalanobis radius of the ellipsoid that encloses % the desired probability mass. k = conf2mahal(p, 2); % The major and minor axes of the covariance ellipse are given by % the eigenvectors of the covariance matrix. Their lengths (for % the ellipse with unit Mahalanobis radius) are given by the % square roots of the corresponding eigenvalues. if (issparse(Sigma)) [V, D] = eigs(Sigma); else [V, D] = eig(Sigma); end % Compute the points on the surface of the ellipse. t = linspace(0, 2*pi, n); u = [cos(t); sin(t)]; w = (k * V * sqrt(D)) * u; z = repmat(mu, [1 n]) + w; % Plot the major and minor axes. L = k * sqrt(diag(D)); h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ... [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:}); hold on; h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ... [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})]; end h = [h; plot(z(1, :), z(2, :), plot_opts{:})]; if (~holding) hold off; end %%%%%%%%%%%% % CONF2MAHAL - Translates a confidence interval to a Mahalanobis % distance. Consider a multivariate Gaussian % distribution of the form % % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C))) % % where MD(x, m, P) is the Mahalanobis distance from x % to m under P: % % MD(x, m, P) = (x - m) * P * (x - m)' % % A particular Mahalanobis distance k identifies an % ellipsoid centered at the mean of the distribution. % The confidence interval associated with this ellipsoid % is the probability mass enclosed by it. Similarly, % a particular confidence interval uniquely determines % an ellipsoid with a fixed Mahalanobis distance. % % If X is an d dimensional Gaussian-distributed vector, % then the Mahalanobis distance of X is distributed % according to the Chi-squared distribution with d % degrees of freedom. Thus, the Mahalanobis distance is % determined by evaluating the inverse cumulative % distribution function of the chi squared distribution % up to the confidence value. % % Usage: % % m = conf2mahal(c, d); % % Inputs: % % c - the confidence interval % d - the number of dimensions of the Gaussian distribution % % Outputs: % % m - the Mahalanobis radius of the ellipsoid enclosing the % fraction c of the distribution's probability mass % % See also: MAHAL2CONF % Copyright (C) 2002 Mark A. Paskin function m = conf2mahal(c, d) m = chi2inv(c, d); % matlab stats toolbox
github
siprob/arhmm_mcmc-master
zipsave.m
.m
arhmm_mcmc-master/HMMall/KPMtools/zipsave.m
1,480
utf_8
cc543374345b9e369d147c452008bc36
%ZIPSAVE Save data in compressed format % % zipsave( filename, data ) % filename: string variable that contains the name of the resulting % compressed file (do not include '.zip' extension) % pkzip25.exe has to be in the matlab path. This file is a compression utility % made by Pkware, Inc. It can be dowloaded from: http://www.pkware.com % This function was tested using 'PKZIP 2.50 Command Line for Windows 9x/NT' % It is important to use version 2.5 of the utility. Otherwise the command line below % has to be changed to include the proper options of the compression utility you % wish to use. % This function was tested in MATLAB Version 5.3 under Windows NT. % Fernando A. Brucher - May/25/1999 % % Example: % testData = [1 2 3; 4 5 6; 7 8 9]; % zipsave('testfile', testData); % % Modified by Kevin Murphy, 26 Feb 2004, to use winzip %------------------------------------------------------------------------ function zipsave( filename, data ) %--- Save data in a temporary file in matlab format (.mat)--- eval( ['save ''', filename, ''' data'] ) %--- Compress data by calling pkzip (comand line command) --- % Options used: % 'add' = add compressed files to the resulting zip file % 'silent' = no console output % 'over=all' = overwrite files %eval( ['!pkzip25 -silent -add -over=all ', filename, '.zip ', filename,'.mat'] ) eval( ['!zip ', filename, '.zip ', filename,'.mat'] ) %--- Delete temporary matlab format file --- delete( [filename,'.mat'] )
github
siprob/arhmm_mcmc-master
matprint.m
.m
arhmm_mcmc-master/HMMall/KPMtools/matprint.m
1,020
utf_8
e92a96dad0e0b9f25d2fe56280ba6393
% MATPRINT - prints a matrix with specified format string % % Usage: matprint(a, fmt, fid) % % a - Matrix to be printed. % fmt - C style format string to use for each value. % fid - Optional file id. % % Eg. matprint(a,'%3.1f') will print each entry to 1 decimal place % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk @ csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % March 2002 function matprint(a, fmt, fid) if nargin < 3 fid = 1; end [rows,cols] = size(a); % Construct a format string for each row of the matrix consisting of % 'cols' copies of the number formating specification fmtstr = []; for c = 1:cols fmtstr = [fmtstr, ' ', fmt]; end fmtstr = [fmtstr '\n']; % Add a line feed fprintf(fid, fmtstr, a'); % Print the transpose of the matrix because % fprintf runs down the columns of a matrix.
github
siprob/arhmm_mcmc-master
plotcov3.m
.m
arhmm_mcmc-master/HMMall/KPMtools/plotcov3.m
4,040
utf_8
1f186acd56002148a3da006a9fc8b6a2
% PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate % Gaussian distribution. % % Usage: % [h, s] = plotcov3(mu, Sigma[, OPTIONS]); % % Inputs: % mu - a 3 x 1 vector giving the mean of the distribution. % Sigma - a 3 x 3 symmetric positive semi-definite matrix giving % the covariance of the distribution (or the zero matrix). % % Options: % 'conf' - a scalar between 0 and 1 giving the confidence % interval (i.e., the fraction of probability mass to % be enclosed by the ellipse); default is 0.9. % 'num-pts' - if the value supplied is n, then (n + 1)^2 points % to be used to plot the ellipse; default is 20. % 'plot-opts' - a cell vector of arguments to be handed to PLOT3 % to contol the appearance of the axes, e.g., % {'Color', 'g', 'LineWidth', 1}; the default is {} % 'surf-opts' - a cell vector of arguments to be handed to SURF % to contol the appearance of the ellipsoid % surface; a nice possibility that yields % transparency is: {'EdgeAlpha', 0, 'FaceAlpha', % 0.1, 'FaceColor', 'g'}; the default is {} % % Outputs: % h - a vector of handles on the axis lines % s - a handle on the ellipsoid surface object % % See also: PLOTCOV2 % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h, s] = plotcov3(mu, Sigma, varargin) if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end [p, ... n, ... plot_opts, ... surf_opts] = process_options(varargin, 'conf', 0.9, ... 'num-pts', 20, ... 'plot-opts', {}, ... 'surf-opts', {}); h = []; holding = ishold; if (Sigma == zeros(3, 3)) z = mu; else % Compute the Mahalanobis radius of the ellipsoid that encloses % the desired probability mass. k = conf2mahal(p, 3); % The axes of the covariance ellipse are given by the eigenvectors of % the covariance matrix. Their lengths (for the ellipse with unit % Mahalanobis radius) are given by the square roots of the % corresponding eigenvalues. if (issparse(Sigma)) [V, D] = eigs(Sigma); else [V, D] = eig(Sigma); end if (any(diag(D) < 0)) error('Invalid covariance matrix: not positive semi-definite.'); end % Compute the points on the surface of the ellipsoid. t = linspace(0, 2*pi, n); [X, Y, Z] = sphere(n); u = [X(:)'; Y(:)'; Z(:)']; w = (k * V * sqrt(D)) * u; z = repmat(mu(:), [1 (n + 1)^2]) + w; % Plot the axes. L = k * sqrt(diag(D)); h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ... [mu(2); mu(2) + L(1) * V(2, 1)], ... [mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:}); hold on; h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ... [mu(2); mu(2) + L(2) * V(2, 2)], ... [mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})]; h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ... [mu(2); mu(2) + L(3) * V(2, 3)], ... [mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})]; end s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ... reshape(z(2, :), [(n + 1) (n + 1)]), ... reshape(z(3, :), [(n + 1) (n + 1)]), ... surf_opts{:}); if (~holding) hold off; end
github
siprob/arhmm_mcmc-master
exportfig.m
.m
arhmm_mcmc-master/HMMall/KPMtools/exportfig.m
30,663
utf_8
838a8ee93ca6a9b6a85a90fa68976617
function varargout = exportfig(varargin) %EXPORTFIG Export a figure. % EXPORTFIG(H, FILENAME) writes the figure H to FILENAME. H is % a figure handle and FILENAME is a string that specifies the % name of the output file. % % EXPORTFIG(H, FILENAME, OPTIONS) writes the figure H to FILENAME % with options initially specified by the structure OPTIONS. The % field names of OPTIONS must be legal parameters listed below % and the field values must be legal values for the corresponding % parameter. Default options can be set in releases prior to R12 % by storing the OPTIONS structure in the root object's appdata % with the command % setappdata(0,'exportfigdefaults', OPTIONS) % and for releases after R12 by setting the preference with the % command % setpref('exportfig', 'defaults', OPTIONS) % % EXPORTFIG(...,PARAM1,VAL1,PARAM2,VAL2,...) specifies % parameters that control various characteristics of the output % file. Any parameter value can be the string 'auto' which means % the parameter uses the default factory behavior, overriding % any other default for the parameter. % % Format Paramter: % 'Format' a string % specifies the output format. Defaults to 'eps'. For a % list of export formats type 'help print'. % 'Preview' one of the strings 'none', 'tiff' % specifies a preview for EPS files. Defaults to 'none'. % % Size Parameters: % 'Width' a positive scalar % specifies the width in the figure's PaperUnits % 'Height' a positive scalar % specifies the height in the figure's PaperUnits % 'Bounds' one of the strings 'tight', 'loose' % specifies a tight or loose bounding box. Defaults to 'tight'. % 'Reference' an axes handle or a string % specifies that the width and height parameters % are relative to the given axes. If a string is % specified then it must evaluate to an axes handle. % % Specifying only one dimension sets the other dimension % so that the exported aspect ratio is the same as the % figure's or reference axes' current aspect ratio. % If neither dimension is specified the size defaults to % the width and height from the figure's or reference % axes' size. Tight bounding boxes are only computed for % 2-D views and in that case the computed bounds enclose all % text objects. % % Rendering Parameters: % 'Color' one of the strings 'bw', 'gray', 'cmyk' % 'bw' specifies that lines and text are exported in % black and all other objects in grayscale % 'gray' specifies that all objects are exported in grayscale % 'rgb' specifies that all objects are exported in color % using the RGB color space % 'cmyk' specifies that all objects are exported in color % using the CMYK color space % 'Renderer' one of 'painters', 'zbuffer', 'opengl' % specifies the renderer to use % 'Resolution' a positive scalar % specifies the resolution in dots-per-inch. % 'LockAxes' one of 0 or 1 % specifies that all axes limits and ticks should be fixed % while exporting. % % The default color setting is 'bw'. % % Font Parameters: % 'FontMode' one of the strings 'scaled', 'fixed' % 'FontSize' a positive scalar % in 'scaled' mode multiplies with the font size of each % text object to obtain the exported font size % in 'fixed' mode specifies the font size of all text % objects in points % 'DefaultFixedFontSize' a positive scalar % in 'fixed' mode specified the default font size in % points % 'FontSizeMin' a positive scalar % specifies the minimum font size allowed after scaling % 'FontSizeMax' a positive scalar % specifies the maximum font size allowed after scaling % 'FontEncoding' one of the strings 'latin1', 'adobe' % specifies the character encoding of the font % 'SeparateText' one of 0 or 1 % specifies that the text objects are stored in separate % file as EPS with the base filename having '_t' appended. % % If FontMode is 'scaled' but FontSize is not specified then a % scaling factor is computed from the ratio of the size of the % exported figure to the size of the actual figure. % % The default 'FontMode' setting is 'scaled'. % % Line Width Parameters: % 'LineMode' one of the strings 'scaled', 'fixed' % 'LineWidth' a positive scalar % 'DefaultFixedLineWidth' a positive scalar % 'LineWidthMin' a positive scalar % specifies the minimum line width allowed after scaling % 'LineWidthMax' a positive scalar % specifies the maximum line width allowed after scaling % The semantics of 'Line' parameters are exactly the % same as the corresponding 'Font' parameters, except that % they apply to line widths instead of font sizes. % % Style Map Parameter: % 'LineStyleMap' one of [], 'bw', or a function name or handle % specifies how to map line colors to styles. An empty % style map means styles are not changed. The style map % 'bw' is a built-in mapping that maps lines with the same % color to the same style and otherwise cycles through the % available styles. A user-specified map is a function % that takes as input a cell array of line objects and % outputs a cell array of line style strings. The default % map is []. % % Examples: % exportfig(gcf,'fig1.eps','height',3); % Exports the current figure to the file named 'fig1.eps' with % a height of 3 inches (assuming the figure's PaperUnits is % inches) and an aspect ratio the same as the figure's aspect % ratio on screen. % % opts = struct('FontMode','fixed','FontSize',10,'height',3); % exportfig(gcf, 'fig2.eps', opts, 'height', 5); % Exports the current figure to 'fig2.eps' with all % text in 10 point fonts and with height 5 inches. % % See also PREVIEWFIG, APPLYTOFIG, RESTOREFIG, PRINT. % Copyright 2000 Ben Hinkle % Email bug reports and comments to [email protected] if (nargin < 2) error('Too few input arguments'); end % exportfig(H, filename, [options,] ...) H = varargin{1}; if ~LocalIsHG(H,'figure') error('First argument must be a handle to a figure.'); end filename = varargin{2}; if ~ischar(filename) error('Second argument must be a string.'); end paramPairs = {varargin{3:end}}; if nargin > 2 if isstruct(paramPairs{1}) pcell = LocalToCell(paramPairs{1}); paramPairs = {pcell{:}, paramPairs{2:end}}; end end verstr = version; majorver = str2num(verstr(1)); defaults = []; if majorver > 5 if ispref('exportfig','defaults') defaults = getpref('exportfig','defaults'); end elseif exist('getappdata') defaults = getappdata(0,'exportfigdefaults'); end if ~isempty(defaults) dcell = LocalToCell(defaults); paramPairs = {dcell{:}, paramPairs{:}}; end % Do some validity checking on param-value pairs if (rem(length(paramPairs),2) ~= 0) error(['Invalid input syntax. Optional parameters and values' ... ' must be in pairs.']); end auto.format = 'eps'; auto.preview = 'none'; auto.width = -1; auto.height = -1; auto.color = 'bw'; auto.defaultfontsize=10; auto.fontsize = -1; auto.fontmode='scaled'; auto.fontmin = 8; auto.fontmax = 60; auto.defaultlinewidth = 1.0; auto.linewidth = -1; auto.linemode=[]; auto.linemin = 0.5; auto.linemax = 100; auto.fontencoding = 'latin1'; auto.renderer = []; auto.resolution = []; auto.stylemap = []; auto.applystyle = 0; auto.refobj = -1; auto.bounds = 'tight'; explicitbounds = 0; auto.lockaxes = 1; auto.separatetext = 0; opts = auto; % Process param-value pairs args = {}; for k = 1:2:length(paramPairs) param = lower(paramPairs{k}); if ~ischar(param) error('Optional parameter names must be strings'); end value = paramPairs{k+1}; switch (param) case 'format' opts.format = LocalCheckAuto(lower(value),auto.format); if strcmp(opts.format,'preview') error(['Format ''preview'' no longer supported. Use PREVIEWFIG' ... ' instead.']); end case 'preview' opts.preview = LocalCheckAuto(lower(value),auto.preview); if ~strcmp(opts.preview,{'none','tiff'}) error('Preview must be ''none'' or ''tiff''.'); end case 'width' opts.width = LocalToNum(value, auto.width); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.width) error('Width must be a numeric scalar > 0'); end end case 'height' opts.height = LocalToNum(value, auto.height); if ~ischar(value) | ~strcmp(value,'auto') if(~LocalIsPositiveScalar(opts.height)) error('Height must be a numeric scalar > 0'); end end case 'color' opts.color = LocalCheckAuto(lower(value),auto.color); if ~strcmp(opts.color,{'bw','gray','rgb','cmyk'}) error('Color must be ''bw'', ''gray'',''rgb'' or ''cmyk''.'); end case 'fontmode' opts.fontmode = LocalCheckAuto(lower(value),auto.fontmode); if ~strcmp(opts.fontmode,{'scaled','fixed'}) error('FontMode must be ''scaled'' or ''fixed''.'); end case 'fontsize' opts.fontsize = LocalToNum(value,auto.fontsize); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.fontsize) error('FontSize must be a numeric scalar > 0'); end end case 'defaultfixedfontsize' opts.defaultfontsize = LocalToNum(value,auto.defaultfontsize); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.defaultfontsize) error('DefaultFixedFontSize must be a numeric scalar > 0'); end end case 'fontsizemin' opts.fontmin = LocalToNum(value,auto.fontmin); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.fontmin) error('FontSizeMin must be a numeric scalar > 0'); end end case 'fontsizemax' opts.fontmax = LocalToNum(value,auto.fontmax); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.fontmax) error('FontSizeMax must be a numeric scalar > 0'); end end case 'fontencoding' opts.fontencoding = LocalCheckAuto(lower(value),auto.fontencoding); if ~strcmp(opts.fontencoding,{'latin1','adobe'}) error('FontEncoding must be ''latin1'' or ''adobe''.'); end case 'linemode' opts.linemode = LocalCheckAuto(lower(value),auto.linemode); if ~strcmp(opts.linemode,{'scaled','fixed'}) error('LineMode must be ''scaled'' or ''fixed''.'); end case 'linewidth' opts.linewidth = LocalToNum(value,auto.linewidth); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.linewidth) error('LineWidth must be a numeric scalar > 0'); end end case 'defaultfixedlinewidth' opts.defaultlinewidth = LocalToNum(value,auto.defaultlinewidth); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.defaultlinewidth) error(['DefaultFixedLineWidth must be a numeric scalar >' ... ' 0']); end end case 'linewidthmin' opts.linemin = LocalToNum(value,auto.linemin); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.linemin) error('LineWidthMin must be a numeric scalar > 0'); end end case 'linewidthmax' opts.linemax = LocalToNum(value,auto.linemax); if ~ischar(value) | ~strcmp(value,'auto') if ~LocalIsPositiveScalar(opts.linemax) error('LineWidthMax must be a numeric scalar > 0'); end end case 'linestylemap' opts.stylemap = LocalCheckAuto(value,auto.stylemap); case 'renderer' opts.renderer = LocalCheckAuto(lower(value),auto.renderer); if ~ischar(value) | ~strcmp(value,'auto') if ~strcmp(opts.renderer,{'painters','zbuffer','opengl'}) error(['Renderer must be ''painters'', ''zbuffer'' or' ... ' ''opengl''.']); end end case 'resolution' opts.resolution = LocalToNum(value,auto.resolution); if ~ischar(value) | ~strcmp(value,'auto') if ~(isnumeric(value) & (prod(size(value)) == 1) & (value >= 0)); error('Resolution must be a numeric scalar >= 0'); end end case 'applystyle' % means to apply the options and not export opts.applystyle = 1; case 'reference' if ischar(value) if strcmp(value,'auto') opts.refobj = auto.refobj; else opts.refobj = eval(value); end else opts.refobj = value; end if ~LocalIsHG(opts.refobj,'axes') error('Reference object must evaluate to an axes handle.'); end case 'bounds' opts.bounds = LocalCheckAuto(lower(value),auto.bounds); explicitbounds = 1; if ~strcmp(opts.bounds,{'tight','loose'}) error('Bounds must be ''tight'' or ''loose''.'); end case 'lockaxes' opts.lockaxes = LocalToNum(value,auto.lockaxes); case 'separatetext' opts.separatetext = LocalToNum(value,auto.separatetext); otherwise error(['Unrecognized option ' param '.']); end end % make sure figure is up-to-date drawnow; allLines = findall(H, 'type', 'line'); allText = findall(H, 'type', 'text'); allAxes = findall(H, 'type', 'axes'); allImages = findall(H, 'type', 'image'); allLights = findall(H, 'type', 'light'); allPatch = findall(H, 'type', 'patch'); allSurf = findall(H, 'type', 'surface'); allRect = findall(H, 'type', 'rectangle'); allFont = [allText; allAxes]; allColor = [allLines; allText; allAxes; allLights]; allMarker = [allLines; allPatch; allSurf]; allEdge = [allPatch; allSurf]; allCData = [allImages; allPatch; allSurf]; old.objs = {}; old.prop = {}; old.values = {}; % Process format if strncmp(opts.format,'eps',3) & ~strcmp(opts.preview,'none') args = {args{:}, ['-' opts.preview]}; end hadError = 0; oldwarn = warning; try % lock axes limits, ticks and labels if requested if opts.lockaxes old = LocalManualAxesMode(old, allAxes, 'TickMode'); old = LocalManualAxesMode(old, allAxes, 'TickLabelMode'); old = LocalManualAxesMode(old, allAxes, 'LimMode'); end % Process size parameters figurePaperUnits = get(H, 'PaperUnits'); oldFigureUnits = get(H, 'Units'); oldFigPos = get(H,'Position'); set(H, 'Units', figurePaperUnits); figPos = get(H,'Position'); refsize = figPos(3:4); if opts.refobj ~= -1 oldUnits = get(opts.refobj, 'Units'); set(opts.refobj, 'Units', figurePaperUnits); r = get(opts.refobj, 'Position'); refsize = r(3:4); set(opts.refobj, 'Units', oldUnits); end aspectRatio = refsize(1)/refsize(2); if (opts.width == -1) & (opts.height == -1) opts.width = refsize(1); opts.height = refsize(2); elseif (opts.width == -1) opts.width = opts.height * aspectRatio; elseif (opts.height == -1) opts.height = opts.width / aspectRatio; end wscale = opts.width/refsize(1); hscale = opts.height/refsize(2); sizescale = min(wscale,hscale); old = LocalPushOldData(old,H,'PaperPositionMode', ... get(H,'PaperPositionMode')); set(H, 'PaperPositionMode', 'auto'); newPos = [figPos(1) figPos(2)+figPos(4)*(1-hscale) ... wscale*figPos(3) hscale*figPos(4)]; set(H, 'Position', newPos); set(H, 'Units', oldFigureUnits); % process line-style map if ~isempty(opts.stylemap) & ~isempty(allLines) oldlstyle = LocalGetAsCell(allLines,'LineStyle'); old = LocalPushOldData(old, allLines, {'LineStyle'}, ... oldlstyle); newlstyle = oldlstyle; if ischar(opts.stylemap) & strcmpi(opts.stylemap,'bw') newlstyle = LocalMapColorToStyle(allLines); else try newlstyle = feval(opts.stylemap,allLines); catch warning(['Skipping stylemap. ' lasterr]); end end set(allLines,{'LineStyle'},newlstyle); end % Process rendering parameters switch (opts.color) case {'bw', 'gray'} if ~strcmp(opts.color,'bw') & strncmp(opts.format,'eps',3) opts.format = [opts.format 'c']; end args = {args{:}, ['-d' opts.format]}; %compute and set gray colormap oldcmap = get(H,'Colormap'); newgrays = 0.30*oldcmap(:,1) + 0.59*oldcmap(:,2) + 0.11*oldcmap(:,3); newcmap = [newgrays newgrays newgrays]; old = LocalPushOldData(old, H, 'Colormap', oldcmap); set(H, 'Colormap', newcmap); %compute and set ColorSpec and CData properties old = LocalUpdateColors(allColor, 'color', old); old = LocalUpdateColors(allAxes, 'xcolor', old); old = LocalUpdateColors(allAxes, 'ycolor', old); old = LocalUpdateColors(allAxes, 'zcolor', old); old = LocalUpdateColors(allMarker, 'MarkerEdgeColor', old); old = LocalUpdateColors(allMarker, 'MarkerFaceColor', old); old = LocalUpdateColors(allEdge, 'EdgeColor', old); old = LocalUpdateColors(allEdge, 'FaceColor', old); old = LocalUpdateColors(allCData, 'CData', old); case {'rgb','cmyk'} if strncmp(opts.format,'eps',3) opts.format = [opts.format 'c']; args = {args{:}, ['-d' opts.format]}; if strcmp(opts.color,'cmyk') args = {args{:}, '-cmyk'}; end else args = {args{:}, ['-d' opts.format]}; end otherwise error('Invalid Color parameter'); end if (~isempty(opts.renderer)) args = {args{:}, ['-' opts.renderer]}; end if (~isempty(opts.resolution)) | ~strncmp(opts.format,'eps',3) if isempty(opts.resolution) opts.resolution = 0; end args = {args{:}, ['-r' int2str(opts.resolution)]}; end % Process font parameters if ~isempty(opts.fontmode) oldfonts = LocalGetAsCell(allFont,'FontSize'); oldfontunits = LocalGetAsCell(allFont,'FontUnits'); set(allFont,'FontUnits','points'); switch (opts.fontmode) case 'fixed' if (opts.fontsize == -1) set(allFont,'FontSize',opts.defaultfontsize); else set(allFont,'FontSize',opts.fontsize); end case 'scaled' if (opts.fontsize == -1) scale = sizescale; else scale = opts.fontsize; end newfonts = LocalScale(oldfonts,scale,opts.fontmin,opts.fontmax); set(allFont,{'FontSize'},newfonts); otherwise error('Invalid FontMode parameter'); end old = LocalPushOldData(old, allFont, {'FontSize'}, oldfonts); old = LocalPushOldData(old, allFont, {'FontUnits'}, oldfontunits); end if strcmp(opts.fontencoding,'adobe') & strncmp(opts.format,'eps',3) args = {args{:}, '-adobecset'}; end % Process line parameters if ~isempty(opts.linemode) oldlines = LocalGetAsCell(allMarker,'LineWidth'); old = LocalPushOldData(old, allMarker, {'LineWidth'}, oldlines); switch (opts.linemode) case 'fixed' if (opts.linewidth == -1) set(allMarker,'LineWidth',opts.defaultlinewidth); else set(allMarker,'LineWidth',opts.linewidth); end case 'scaled' if (opts.linewidth == -1) scale = sizescale; else scale = opts.linewidth; end newlines = LocalScale(oldlines, scale, opts.linemin, opts.linemax); set(allMarker,{'LineWidth'},newlines); end end % adjust figure bounds to surround axes if strcmp(opts.bounds,'tight') if (~strncmp(opts.format,'eps',3) & LocalHas3DPlot(allAxes)) | ... (strncmp(opts.format,'eps',3) & opts.separatetext) if (explicitbounds == 1) warning(['Cannot compute ''tight'' bounds. Using ''loose''' ... ' bounds.']); end opts.bounds = 'loose'; end end warning('off'); if ~isempty(allAxes) if strncmp(opts.format,'eps',3) if strcmp(opts.bounds,'loose') args = {args{:}, '-loose'}; end old = LocalPushOldData(old,H,'Position', oldFigPos); elseif strcmp(opts.bounds,'tight') oldaunits = LocalGetAsCell(allAxes,'Units'); oldapos = LocalGetAsCell(allAxes,'Position'); oldtunits = LocalGetAsCell(allText,'units'); oldtpos = LocalGetAsCell(allText,'Position'); set(allAxes,'units','points'); apos = LocalGetAsCell(allAxes,'Position'); oldunits = get(H,'Units'); set(H,'units','points'); origfr = get(H,'position'); fr = []; for k=1:length(allAxes) if ~strcmpi(get(allAxes(k),'Tag'),'legend') axesR = apos{k}; r = LocalAxesTightBoundingBox(axesR, allAxes(k)); r(1:2) = r(1:2) + axesR(1:2); fr = LocalUnionRect(fr,r); end end if isempty(fr) fr = [0 0 origfr(3:4)]; end for k=1:length(allAxes) ax = allAxes(k); r = apos{k}; r(1:2) = r(1:2) - fr(1:2); set(ax,'Position',r); end old = LocalPushOldData(old, allAxes, {'Position'}, oldapos); old = LocalPushOldData(old, allText, {'Position'}, oldtpos); old = LocalPushOldData(old, allText, {'Units'}, oldtunits); old = LocalPushOldData(old, allAxes, {'Units'}, oldaunits); old = LocalPushOldData(old, H, 'Position', oldFigPos); old = LocalPushOldData(old, H, 'Units', oldFigureUnits); r = [origfr(1) origfr(2)+origfr(4)-fr(4) fr(3:4)]; set(H,'Position',r); else args = {args{:}, '-loose'}; old = LocalPushOldData(old,H,'Position', oldFigPos); end end % Process text in a separate file if needed if opts.separatetext & ~opts.applystyle % First hide all text and export oldtvis = LocalGetAsCell(allText,'visible'); set(allText,'visible','off'); oldax = LocalGetAsCell(allAxes,'XTickLabel',1); olday = LocalGetAsCell(allAxes,'YTickLabel',1); oldaz = LocalGetAsCell(allAxes,'ZTickLabel',1); null = cell(length(oldax),1); [null{:}] = deal([]); set(allAxes,{'XTickLabel'},null); set(allAxes,{'YTickLabel'},null); set(allAxes,{'ZTickLabel'},null); print(H, filename, args{:}); set(allText,{'Visible'},oldtvis); set(allAxes,{'XTickLabel'},oldax); set(allAxes,{'YTickLabel'},olday); set(allAxes,{'ZTickLabel'},oldaz); % Now hide all non-text and export as eps in painters [path, name, ext] = fileparts(filename); tfile = fullfile(path,[name '_t.eps']); tfile2 = fullfile(path,[name '_t2.eps']); foundRenderer = 0; for k=1:length(args) if strncmp('-d',args{k},2) args{k} = '-deps'; elseif strncmp('-zbuffer',args{k},8) | ... strncmp('-opengl', args{k},6) args{k} = '-painters'; foundRenderer = 1; end end if ~foundRenderer args = {args{:}, '-painters'}; end allNonText = [allLines; allLights; allPatch; ... allImages; allSurf; allRect]; oldvis = LocalGetAsCell(allNonText,'visible'); oldc = LocalGetAsCell(allAxes,'color'); oldaxg = LocalGetAsCell(allAxes,'XGrid'); oldayg = LocalGetAsCell(allAxes,'YGrid'); oldazg = LocalGetAsCell(allAxes,'ZGrid'); [null{:}] = deal('off'); set(allAxes,{'XGrid'},null); set(allAxes,{'YGrid'},null); set(allAxes,{'ZGrid'},null); set(allNonText,'Visible','off'); set(allAxes,'Color','none'); print(H, tfile2, args{:}); set(allNonText,{'Visible'},oldvis); set(allAxes,{'Color'},oldc); set(allAxes,{'XGrid'},oldaxg); set(allAxes,{'YGrid'},oldayg); set(allAxes,{'ZGrid'},oldazg); %hack up the postscript file fid1 = fopen(tfile,'w'); fid2 = fopen(tfile2,'r'); line = fgetl(fid2); while ischar(line) if strncmp(line,'%%Title',7) fprintf(fid1,'%s\n',['%%Title: ', tfile]); elseif (length(line) < 3) fprintf(fid1,'%s\n',line); elseif ~strcmp(line(end-2:end),' PR') & ... ~strcmp(line(end-1:end),' L') fprintf(fid1,'%s\n',line); end line = fgetl(fid2); end fclose(fid1); fclose(fid2); delete(tfile2); elseif ~opts.applystyle drawnow; print(H, filename, args{:}); end warning(oldwarn); catch warning(oldwarn); hadError = 1; end % Restore figure settings if opts.applystyle varargout{1} = old; else for n=1:length(old.objs) if ~iscell(old.values{n}) & iscell(old.prop{n}) old.values{n} = {old.values{n}}; end set(old.objs{n}, old.prop{n}, old.values{n}); end end if hadError error(deblank(lasterr)); end % % Local Functions % function outData = LocalPushOldData(inData, objs, prop, values) outData.objs = {objs, inData.objs{:}}; outData.prop = {prop, inData.prop{:}}; outData.values = {values, inData.values{:}}; function cellArray = LocalGetAsCell(fig,prop,allowemptycell); cellArray = get(fig,prop); if nargin < 3 allowemptycell = 0; end if ~iscell(cellArray) & (allowemptycell | ~isempty(cellArray)) cellArray = {cellArray}; end function newArray = LocalScale(inArray, scale, minv, maxv) n = length(inArray); newArray = cell(n,1); for k=1:n newArray{k} = min(maxv,max(minv,scale*inArray{k}(1))); end function gray = LocalMapToGray1(color) gray = color; if ischar(color) switch color(1) case 'y' color = [1 1 0]; case 'm' color = [1 0 1]; case 'c' color = [0 1 1]; case 'r' color = [1 0 0]; case 'g' color = [0 1 0]; case 'b' color = [0 0 1]; case 'w' color = [1 1 1]; case 'k' color = [0 0 0]; end end if ~ischar(color) gray = 0.30*color(1) + 0.59*color(2) + 0.11*color(3); end function newArray = LocalMapToGray(inArray); n = length(inArray); newArray = cell(n,1); for k=1:n color = inArray{k}; if ~isempty(color) color = LocalMapToGray1(color); end if isempty(color) | ischar(color) newArray{k} = color; else newArray{k} = [color color color]; end end function newArray = LocalMapColorToStyle(inArray); inArray = LocalGetAsCell(inArray,'Color'); n = length(inArray); newArray = cell(n,1); styles = {'-','--',':','-.'}; uniques = []; nstyles = length(styles); for k=1:n gray = LocalMapToGray1(inArray{k}); if isempty(gray) | ischar(gray) | gray < .05 newArray{k} = '-'; else if ~isempty(uniques) & any(gray == uniques) ind = find(gray==uniques); else uniques = [uniques gray]; ind = length(uniques); end newArray{k} = styles{mod(ind-1,nstyles)+1}; end end function newArray = LocalMapCData(inArray); n = length(inArray); newArray = cell(n,1); for k=1:n color = inArray{k}; if (ndims(color) == 3) & isa(color,'double') gray = 0.30*color(:,:,1) + 0.59*color(:,:,2) + 0.11*color(:,:,3); color(:,:,1) = gray; color(:,:,2) = gray; color(:,:,3) = gray; end newArray{k} = color; end function outData = LocalUpdateColors(inArray, prop, inData) value = LocalGetAsCell(inArray,prop); outData.objs = {inData.objs{:}, inArray}; outData.prop = {inData.prop{:}, {prop}}; outData.values = {inData.values{:}, value}; if (~isempty(value)) if strcmp(prop,'CData') value = LocalMapCData(value); else value = LocalMapToGray(value); end set(inArray,{prop},value); end function bool = LocalIsPositiveScalar(value) bool = isnumeric(value) & ... prod(size(value)) == 1 & ... value > 0; function value = LocalToNum(value,auto) if ischar(value) if strcmp(value,'auto') value = auto; else value = str2num(value); end end %convert a struct to {field1,val1,field2,val2,...} function c = LocalToCell(s) f = fieldnames(s); v = struct2cell(s); opts = cell(2,length(f)); opts(1,:) = f; opts(2,:) = v; c = {opts{:}}; function c = LocalIsHG(obj,hgtype) c = 0; if (length(obj) == 1) & ishandle(obj) c = strcmp(get(obj,'type'),hgtype); end function c = LocalHas3DPlot(a) zticks = LocalGetAsCell(a,'ZTickLabel'); c = 0; for k=1:length(zticks) if ~isempty(zticks{k}) c = 1; return; end end function r = LocalUnionRect(r1,r2) if isempty(r1) r = r2; elseif isempty(r2) r = r1; elseif max(r2(3:4)) > 0 left = min(r1(1),r2(1)); bot = min(r1(2),r2(2)); right = max(r1(1)+r1(3),r2(1)+r2(3)); top = max(r1(2)+r1(4),r2(2)+r2(4)); r = [left bot right-left top-bot]; else r = r1; end function c = LocalLabelsMatchTicks(labs,ticks) c = 0; try t1 = num2str(ticks(1)); n = length(ticks); tend = num2str(ticks(n)); c = strncmp(labs(1),t1,length(labs(1))) & ... strncmp(labs(n),tend,length(labs(n))); end function r = LocalAxesTightBoundingBox(axesR, a) r = []; atext = findall(a,'type','text','visible','on'); if ~isempty(atext) set(atext,'units','points'); res=LocalGetAsCell(atext,'extent'); for n=1:length(atext) r = LocalUnionRect(r,res{n}); end end if strcmp(get(a,'visible'),'on') r = LocalUnionRect(r,[0 0 axesR(3:4)]); oldunits = get(a,'fontunits'); set(a,'fontunits','points'); label = text(0,0,'','parent',a,... 'units','points',... 'fontsize',get(a,'fontsize'),... 'fontname',get(a,'fontname'),... 'fontweight',get(a,'fontweight'),... 'fontangle',get(a,'fontangle'),... 'visible','off'); fs = get(a,'fontsize'); % handle y axis tick labels ry = [0 -fs/2 0 axesR(4)+fs]; ylabs = get(a,'yticklabels'); yticks = get(a,'ytick'); maxw = 0; if ~isempty(ylabs) for n=1:size(ylabs,1) set(label,'string',ylabs(n,:)); ext = get(label,'extent'); maxw = max(maxw,ext(3)); end if ~LocalLabelsMatchTicks(ylabs,yticks) & ... strcmp(get(a,'xaxislocation'),'bottom') ry(4) = ry(4) + 1.5*ext(4); end if strcmp(get(a,'yaxislocation'),'left') ry(1) = -(maxw+5); else ry(1) = axesR(3); end ry(3) = maxw+5; r = LocalUnionRect(r,ry); end % handle x axis tick labels rx = [0 0 0 fs+5]; xlabs = get(a,'xticklabels'); xticks = get(a,'xtick'); if ~isempty(xlabs) if strcmp(get(a,'xaxislocation'),'bottom') rx(2) = -(fs+5); if ~LocalLabelsMatchTicks(xlabs,xticks); rx(4) = rx(4) + 2*fs; rx(2) = rx(2) - 2*fs; end else rx(2) = axesR(4); % exponent is still below axes if ~LocalLabelsMatchTicks(xlabs,xticks); rx(4) = rx(4) + axesR(4) + 2*fs; rx(2) = -2*fs; end end set(label,'string',xlabs(1,:)); ext1 = get(label,'extent'); rx(1) = -ext1(3)/2; set(label,'string',xlabs(size(xlabs,1),:)); ext2 = get(label,'extent'); rx(3) = axesR(3) + (ext2(3) + ext1(3))/2; r = LocalUnionRect(r,rx); end set(a,'fontunits',oldunits); delete(label); end function c = LocalManualAxesMode(old, allAxes, base) xs = ['X' base]; ys = ['Y' base]; zs = ['Z' base]; oldXMode = LocalGetAsCell(allAxes,xs); oldYMode = LocalGetAsCell(allAxes,ys); oldZMode = LocalGetAsCell(allAxes,zs); old = LocalPushOldData(old, allAxes, {xs}, oldXMode); old = LocalPushOldData(old, allAxes, {ys}, oldYMode); old = LocalPushOldData(old, allAxes, {zs}, oldZMode); set(allAxes,xs,'manual'); set(allAxes,ys,'manual'); set(allAxes,zs,'manual'); c = old; function val = LocalCheckAuto(val, auto) if ischar(val) & strcmp(val,'auto') val = auto; end
github
siprob/arhmm_mcmc-master
montageKPM.m
.m
arhmm_mcmc-master/HMMall/KPMtools/montageKPM.m
2,917
utf_8
3863707e80820a96eac8635dfccbbf11
function h = montageKPM(arg) % montageKPM is like the built-in montage, but assumes input is MxNxK or filenames % % Converts patches (y,x,i) into patches(y,x,1,i) % Also, adds a black border aroudn them if iscell(arg) h= montageFilenames(arg); else nr = size(arg,1); nc = size(arg,2); Npatches = size(arg,3); patchesColor = reshape(arg, [nr nc 1 Npatches]); patchesColor = patchesColor ./ max(patchesColor(:)); if 1 %put a black border around them for display purposes border = 5; bgColor = ones(1,1,class(patchesColor)); patchesColorBig = bgColor*ones(nr+2*border, nc+2*border, 1, Npatches, class(patchesColor)); %patchesColorBig = zeros(nr+2*border, nc+2*border, 1, Npatches, class(patchesColor)); patchesColorBig(border+1:end-border, border+1:end-border, :, :) = patchesColor; else patchesColorBig = patchesColor; end montage(patchesColorBig) end %%%%%%%%%%%%% function h = montageFilenames(filenames) %[nRows, nCols, nBands, nFrames] = size(a); % Estimate nMontageColumns and nMontageRows given the desired ratio of % Columns to Rows to be one (square montage). aspectRatio = 1; nMontageCols = sqrt(aspectRatio * nRows * nFrames / nCols); % Make sure montage rows and columns are integers. The order in the adjustment % matters because the montage image is created horizontally across columns. nMontageCols = ceil(nMontageCols); nMontageRows = ceil(nFrames / nMontageCols); % Create the montage image. b = a(1,1); % to inherit type b(1,1) = 0; % from a b = repmat(b, [nMontageRows*nRows, nMontageCols*nCols, nBands, 1]); rows = 1 : nRows; cols = 1 : nCols; for i = 0:nMontageRows-1 for j = 0:nMontageCols-1, k = j + i * nMontageCols + 1; if k <= nFrames b(rows + i * nRows, cols + j * nCols, :) = a(:,:,:,k); else break; end end end if isempty(cm) hh = imshow(b); else hh = imshow(b,cm); end if nargout > 0 h = hh; end %-------------------------------------------------------------- %Parse Inputs Function function [I,map] = parse_inputs(varargin) % initialize variables map = []; iptchecknargin(1,2,nargin,mfilename); iptcheckinput(varargin{1},{'uint8' 'double' 'uint16' 'logical' 'single' ... 'int16'},{},mfilename, 'I, BW, or RGB',1); I = varargin{1}; if nargin==2 if isa(I,'int16') eid = sprintf('Images:%s:invalidIndexedImage',mfilename); msg1 = 'An indexed image can be uint8, uint16, double, single, or '; msg2 = 'logical.'; error(eid,'%s %s',msg1, msg2); end map = varargin{2}; iptcheckinput(map,{'double'},{},mfilename,'MAP',1); if ((size(map,1) == 1) && (prod(map) == numel(I))) % MONTAGE(D,[M N P]) OBSOLETE eid = sprintf('Images:%s:obsoleteSyntax',mfilename); msg1 = 'MONTAGE(D,[M N P]) is an obsolete syntax.'; msg2 = 'Use multidimensional arrays to represent multiframe images.'; error(eid,'%s\n%s',msg1,msg2); end end
github
siprob/arhmm_mcmc-master
optimalMatching.m
.m
arhmm_mcmc-master/HMMall/KPMtools/optimalMatching.m
2,593
utf_8
983df7bc538a844b42427ae58d69c75b
% MATCH - Solves the weighted bipartite matching (or assignment) % problem. % % Usage: a = match(C); % % Arguments: % C - an m x n cost matrix; the sets are taken to be % 1:m and 1:n; C(i, j) gives the cost of matching % items i (of the first set) and j (of the second set) % % Returns: % % a - an m x 1 assignment vector, which gives the % minimum cost assignment. a(i) is the index of % the item of 1:n that was matched to item i of % 1:m. If item i (of 1:m) was not matched to any % item of 1:n, then a(i) is zero. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a] = optimalMatching(C) % Trivial cases: [p, q] = size(C); if (p == 0) a = []; return; elseif (q == 0) a = zeros(p, 1); return; end if 0 % First, reduce the problem by making easy optimal matches. If two % elements agree that they are the best match, then match them up. [x, a] = min(C, [], 2); [y, b] = min(C, [], 1); u = find(1:p ~= b(a(:))); a(u) = 0; v = find(1:q ~= a(b(:))'); C = C(u, v); if (isempty(C)) return; end end % Get the (new) size of the two sets, u and v. [m, n] = size(C); %mx = realmax; mx = 2*max(C(:)); mn = -2*min(C(:)); % Pad the affinity matrix to be square if (m < n) C = [C; mx * ones(n - m, n)]; elseif (n < m) C = [C, mx * ones(m, m - n)]; end % Run the Hungarian method. First replace infinite values by the % largest (or smallest) finite values. C(find(isinf(C) & (C > 0))) = mx; C(find(isinf(C) & (C < 0))) = mn; %fprintf('running hungarian\n'); [b, cost] = hungarian(C'); % Extract only the real assignments ap = b(1:m)'; ap(find(ap > n)) = 0; a = ap; %% Incorporate this sub-assignment into the complete assignment % k = find(ap); % a(u(k)) = v(ap(k));
github
siprob/arhmm_mcmc-master
plotcov2.m
.m
arhmm_mcmc-master/HMMall/KPMtools/plotcov2.m
3,013
utf_8
4305f11ba0280ef8ebcad4c8a4c4013c
% PLOTCOV2 - Plots a covariance ellipse with major and minor axes % for a bivariate Gaussian distribution. % % Usage: % h = plotcov2(mu, Sigma[, OPTIONS]); % % Inputs: % mu - a 2 x 1 vector giving the mean of the distribution. % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving % the covariance of the distribution (or the zero matrix). % % Options: % 'conf' - a scalar between 0 and 1 giving the confidence % interval (i.e., the fraction of probability mass to % be enclosed by the ellipse); default is 0.9. % 'num-pts' - the number of points to be used to plot the % ellipse; default is 100. % % This function also accepts options for PLOT. % % Outputs: % h - a vector of figure handles to the ellipse boundary and % its major and minor axes % % See also: PLOTCOV3 % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = plotcov2(mu, Sigma, varargin) if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end [p, ... n, ... plot_opts] = process_options(varargin, 'conf', 0.9, ... 'num-pts', 100); h = []; holding = ishold; if (Sigma == zeros(2, 2)) z = mu; else % Compute the Mahalanobis radius of the ellipsoid that encloses % the desired probability mass. k = conf2mahal(p, 2); % The major and minor axes of the covariance ellipse are given by % the eigenvectors of the covariance matrix. Their lengths (for % the ellipse with unit Mahalanobis radius) are given by the % square roots of the corresponding eigenvalues. if (issparse(Sigma)) [V, D] = eigs(Sigma); else [V, D] = eig(Sigma); end % Compute the points on the surface of the ellipse. t = linspace(0, 2*pi, n); u = [cos(t); sin(t)]; w = (k * V * sqrt(D)) * u; z = repmat(mu, [1 n]) + w; % Plot the major and minor axes. L = k * sqrt(diag(D)); h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ... [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:}); hold on; h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ... [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})]; end h = [h; plot(z(1, :), z(2, :), plot_opts{:})]; if (~holding) hold off; end
github
siprob/arhmm_mcmc-master
ind2subv.m
.m
arhmm_mcmc-master/HMMall/KPMtools/ind2subv.m
1,206
utf_8
5c2e8689803ece8fca091e60c913809d
function sub = ind2subv(siz, ndx) % IND2SUBV Like the built-in ind2sub, but returns the answer as a row vector. % sub = ind2subv(siz, ndx) % % siz and ndx can be row or column vectors. % sub will be of size length(ndx) * length(siz). % % Example % ind2subv([2 2 2], 1:8) returns % [1 1 1 % 2 1 1 % ... % 2 2 2] % That is, the leftmost digit toggle fastest. % % See also SUBV2IND n = length(siz); if n==0 sub = ndx; return; end if all(siz==2) sub = dec2bitv(ndx-1, n); sub = sub(:,n:-1:1)+1; return; end cp = [1 cumprod(siz(:)')]; ndx = ndx(:) - 1; sub = zeros(length(ndx), n); for i = n:-1:1 % i'th digit sub(:,i) = floor(ndx/cp(i))+1; ndx = rem(ndx,cp(i)); end %%%%%%%%%% function bits = dec2bitv(d,n) % DEC2BITV Convert a decimal integer to a bit vector. % bits = dec2bitv(d,n) is just like the built-in dec2bin, except the answer is a vector, not a string. % n is an optional minimum length on the bit vector. % If d is a vector, each row of the output array will be a bit vector. if (nargin<2) n=1; % Need at least one digit even for 0. end d = d(:); [f,e]=log2(max(d)); % How many digits do we need to represent the numbers? bits=rem(floor(d*pow2(1-max(n,e):0)),2);
github
siprob/arhmm_mcmc-master
process_options.m
.m
arhmm_mcmc-master/HMMall/KPMtools/process_options.m
4,394
utf_8
483b50d27e3bdb68fd2903a0cab9df44
% PROCESS_OPTIONS - Processes options passed to a Matlab function. % This function provides a simple means of % parsing attribute-value options. Each option is % named by a unique string and is given a default % value. % % Usage: [var1, var2, ..., varn[, unused]] = ... % process_options(args, ... % str1, def1, str2, def2, ..., strn, defn) % % Arguments: % args - a cell array of input arguments, such % as that provided by VARARGIN. Its contents % should alternate between strings and % values. % str1, ..., strn - Strings that are associated with a % particular variable % def1, ..., defn - Default values returned if no option % is supplied % % Returns: % var1, ..., varn - values to be assigned to variables % unused - an optional cell array of those % string-value pairs that were unused; % if this is not supplied, then a % warning will be issued for each % option in args that lacked a match. % % Examples: % % Suppose we wish to define a Matlab function 'func' that has % required parameters x and y, and optional arguments 'u' and 'v'. % With the definition % % function y = func(x, y, varargin) % % [u, v] = process_options(varargin, 'u', 0, 'v', 1); % % calling func(0, 1, 'v', 2) will assign 0 to x, 1 to y, 0 to u, and 2 % to v. The parameter names are insensitive to case; calling % func(0, 1, 'V', 2) has the same effect. The function call % % func(0, 1, 'u', 5, 'z', 2); % % will result in u having the value 5 and v having value 1, but % will issue a warning that the 'z' option has not been used. On % the other hand, if func is defined as % % function y = func(x, y, varargin) % % [u, v, unused_args] = process_options(varargin, 'u', 0, 'v', 1); % % then the call func(0, 1, 'u', 5, 'z', 2) will yield no warning, % and unused_args will have the value {'z', 2}. This behaviour is % useful for functions with options that invoke other functions % with options; all options can be passed to the outer function and % its unprocessed arguments can be passed to the inner function. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [varargout] = process_options(args, varargin) % Check the number of input arguments n = length(varargin); if (mod(n, 2)) error('Each option must be a string/value pair.'); end % Check the number of supplied output arguments if (nargout < (n / 2)) error('Insufficient number of output arguments given'); elseif (nargout == (n / 2)) warn = 1; nout = n / 2; else warn = 0; nout = n / 2 + 1; end % Set outputs to be defaults varargout = cell(1, nout); for i=2:2:n varargout{i/2} = varargin{i}; end % Now process all arguments nunused = 0; for i=1:2:length(args) found = 0; for j=1:2:n if strcmpi(args{i}, varargin{j}) varargout{(j + 1)/2} = args{i + 1}; found = 1; break; end end if (~found) if (warn) warning(sprintf('Option ''%s'' not used.', args{i})); args{i} else nunused = nunused + 1; unused{2 * nunused - 1} = args{i}; unused{2 * nunused} = args{i + 1}; end end end % Assign the unused arguments if (~warn) if (nunused) varargout{nout} = unused; else varargout{nout} = cell(0); end end
github
siprob/arhmm_mcmc-master
nonmaxsup.m
.m
arhmm_mcmc-master/HMMall/KPMtools/nonmaxsup.m
1,708
utf_8
ad451680a9d414f907da2969e0809c22
% NONMAXSUP - Non-maximal Suppression % % Usage: cim = nonmaxsup(im, radius) % % Arguments: % im - image to be processed. % radius - radius of region considered in non-maximal % suppression (optional). Typical values to use might % be 1-3. Default is 1. % % Returns: % cim - image with pixels that are not maximal within a % square neighborhood zeroed out. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cim = nonmaxsup(m, radius) if (nargin == 1) radius = 1; end % Extract local maxima by performing a grey scale morphological % dilation and then finding points in the corner strength image that % match the dilated image and are also greater than the threshold. sze = 2 * radius + 1; % Size of mask. mx = ordfilt2(m, sze^2, ones(sze)); % Grey-scale dilate. cim = sparse(m .* (m == mx));
github
jordiolivares/visio.artificial-master
haarFeatureDemo.m
.m
visio.artificial-master/images_P5/haarFeatureDemo.m
6,707
utf_8
8fcda30aa7babd3f4ef6e434391b9163
function [ outClass, X, Y, selFeatures, error, predErr ] = haarFeatureDemo(numFeatures,X,Y,Yprev) %UNTITLED Summary of this function goes here % Detailed explanation goes here outSize=[30,30]; close all; % Get dataset if ~exist('numFeatures','var'), numFeatures=3; end % Create a new database if it is not provided if ~exist('X','var') || ~exist('Y','var'), [X,Y] = getDataBase(outSize,15); else % Remove previously rejected images X2=X; Y2=Y; X=X(Yprev==1,:); Y=Y(Yprev==1); end % Get the average face as model model=uint8(round(reshape(mean(X(Y==1,:),1),outSize))); % Ask as many features as we want selFeatures=[]; predictions=[]; error=[]; predErr=[]; cascErr=[]; for f=1:numFeatures, % Ask feature values [rectPos,rectNeg,rectPosS,rectNegS]=selectFeature(model,outSize); % Get feature values for all images in the dataset fval=getRectVal(rectPosS,rectNegS,X,outSize); % Get threshold value to build a weak classifier [thr,polarity,pred,err]=getThreshold(fval,Y); % Store the feature in the list of features selFeatures=[selFeatures;rectPos rectNeg]; predictions=[predictions pred]; % Get the accumulate predictions accPred=sum(predictions,2); % Get the final prediction outClass=sign(accPred); % Store historical error=[error err]; predErr=[predErr sum(outClass~=Y)/length(Y)]; %Show the features subplot(2,3,[1 4]); showFeatures(model,selFeatures); % Show the values using the sum of rectangle pixels subplot(2,3,2); showFeatureVals(fval,Y,thr,polarity);title(sprintf('Feature Values. Polarity=%d',polarity)); legend('Face','No-face'); % Show the accumulated values subplot(2,3,3); stem(accPred);title('Accumulated Values'); % Show the values using the sum of rectangle pixels subplot(2,3,5); stem(outClass);title(['Final prediction. Error=' sprintf('%3.1f%%',round(err*100))]); % Show error comparison between feature and ensemble subplot(2,3,6); if exist('Yprev','var'), Ycascade=Y2; Ycascade(Yprev==1)=outClass; cascErr=[cascErr sum(Ycascade~=Y2)/length(Y2)]; errMat=[error;predErr;cascErr]; bar(errMat');title('Error values feature vs ensemble vs cascade'); legend('F. Error', 'Ens. Error' , 'Cascade Error'); else errMat=[error;predErr;cascErr]; bar(errMat');title('Error values feature vs ensemble'); legend('F. Error', 'Ens. Error'); end end % Recover initial data if exist('X2','var'), X=X2; Y=Y2; Yprev(Yprev==1)=outClass; outClass=Yprev; end end function [rectPos,rectNeg,rectPosS,rectNegS]=selectFeature(model,outSize) h=figure(); imshow(model);title('Select feature points'); [x,y]=ginput(2); close(h); mSize=size(model); % Get the feature rectPos=round([x(1) y(1) x(2)-x(1)+1 y(2)-y(1)+1]); rectNeg=round([x(2)+1 y(1) rectPos(3) rectPos(4)]); % Correct the feature if rectNeg(2)+rectNeg(4)-1>mSize(1), overLength=(rectNeg(2)+rectNeg(4)-1)-mSize(1); rectPos(2)=rectPos(2)+overLength-1; rectPos(4)=rectPos(4)-overLength; rectNeg(4)=rectNeg(4)-overLength; end if rectNeg(1)+rectNeg(3)-1>mSize(2), overLength=(rectNeg(1)+rectNeg(3)-1)-mSize(2); rectPos(1)=rectPos(1)+overLength-1; rectPos(3)=rectPos(3)-overLength; rectNeg(3)=rectNeg(3)-overLength; end % Reescale the feature s=outSize./mSize; x=x*s(2); y=y*s(1); rectPosS=round([x(1) y(1) x(2)-x(1)+1 y(2)-y(1)+1]); rectNegS=round([x(2)+1 y(1) rectPosS(3) rectPosS(4)]); % Correct the feature if rectNegS(2)+rectNegS(4)-1>outSize(1), overLength=(rectNegS(2)+rectNegS(4)-1)-outSize(1); rectPosS(2)=rectPosS(2)+overLength-1; rectPosS(4)=rectPosS(4)-overLength; rectNegS(4)=rectNegS(4)-overLength; end if rectNegS(1)+rectNegS(3)-1>outSize(2), overLength=(rectNegS(1)+rectNegS(3)-1)-outSize(2); rectPosS(1)=rectPosS(1)+overLength-1; rectPosS(3)=rectPosS(3)-overLength; rectNegS(3)=rectNegS(3)-overLength; end end function showFeatures(model,selFeatures) %Show the model imshow(model);title('Selected features'); hold on; for i=1:size(selFeatures,1), rectPos=selFeatures(i,1:4); rectNeg=selFeatures(i,5:8); % Show feature rectangle('position',rectPos,'facecolor','w'); rectangle('position',rectNeg,'facecolor','k'); end end function f=getRectVal(rectPos,rectNeg,X,outSize) f=zeros(size(X,1),1); for i=1:size(X,1), % Get the image image=reshape(X(i,:),outSize); % Select the rectangle regions r1=image(rectPos(2):rectPos(2)+rectPos(4)-1,rectPos(1):rectPos(1)+rectPos(3)-1); r2=image(rectNeg(2):rectNeg(2)+rectNeg(4)-1,rectNeg(1):rectNeg(1)+rectNeg(3)-1); % Evaluate the difference between region values f(i)=sum(reshape(r1,1,[]))-sum(reshape(r2,1,[])); end end function showFeatureVals(f,Y,thr,polarity) plot(1:length(find(Y==1)),f(find(Y==1)),'g*', 1:length(find(Y==-1)), f(find(Y==-1)), 'r+'); hold on; plot([0,length(Y)],[thr,thr],'k--','linewidth',2); hold off; end function [thr,polarity,prediction,err]=getThreshold(s,Y) % Get feature values for positive and negative samples posVals=s(Y==1); negVals=s(Y==-1); % Check threshold value for polarity 1 minVal=min(posVals); maxVal=max(negVals(negVals<minVal)); if isempty(maxVal), maxVal=minVal; end thr1=(minVal+maxVal)/2; prediction1=(s>=thr1)*2-1; err1=sum(Y~=prediction1)/length(Y); % Check threshold value for polarity -1 maxVal=max(posVals); minVal=min(negVals(negVals>maxVal)); if isempty(minVal), minVal=maxVal; end thr2=(minVal+maxVal)/2; prediction2=(s<thr2)*2-1; err2=sum(Y~=prediction2)/length(Y); if err1<err2, thr=thr1; polarity=1; prediction=prediction1; err=err1; else thr=thr2; polarity=-1; prediction=prediction2; err=err2; end end
github
jordiolivares/visio.artificial-master
ej53.m
.m
visio.artificial-master/images_P5/ej53.m
1,450
utf_8
2646d810245093f1e2fa9d2902278a60
function [ output_args ] = ej53( input_args ) %EJ53 Summary of this function goes here % Detailed explanation goes here addpath('ViolaJones','ViolaJones/SubFunctions'); % a) [X, Y] = getDataBase([20 20]); X = uint8(round(reshape(mean(X), [20 20]))); imshow(X); rectangle('Position', [3 7 14 4], 'facecolor','k'); rectangle('Position', [3 9 14 2], 'facecolor','w'); % b) figure; subplot(2,3,1); im = imread('images/landscape.jpg'); imshow(im); subplot(2,3,4); showIntegralImage(im); subplot(2,3,2); im = imread('images/natural.jpg'); imshow(im); subplot(2,3,5); showIntegralImage(im); subplot(2,3,3); im = imread('images/room.jpg'); imshow(im); subplot(2,3,6); showIntegralImage(im); pause; % c) close all; image = imread('images/testFaces1.jpg'); showFaces(image); pause; close all; image = imread('images/testFaces2.jpg'); showFaces(image); end function showIntegralImage(image) defaultoptions.Resize = false; intImageStruct = GetIntegralImages(image,defaultoptions); imagesc(intImageStruct.ii);colormap(jet); end function showFaces(image) options.Rescale = false; faces = ObjectDetection(image, 'ViolaJones/HaarCascades/haarcascade_frontalface_alt.mat', options); imshow(image); for i = 1:size(faces, 1) rectangle('Position', faces(i,:), 'EdgeColor', 'b'); end end
github
jordiolivares/visio.artificial-master
ej24.m
.m
visio.artificial-master/images_P2/ej24.m
1,282
utf_8
58db53473919bd455693025b2964462c
function [] = ej24() %EJ24 Summary of this function goes here % Detailed explanation goes here einstein = imread('einstein.jpg'); monroe = imread('monroe.jpg'); h_monroe = hybrid(monroe, einstein, 6, 10); background = zeros(size(h_monroe), 'uint8'); figure subplot(3,3,1) imshow(einstein); subplot(3,3,2) imshow(monroe); subplot(3,3,3) imshow(h_monroe); subplot(3,3,4) imshow(paste(background, imresize(h_monroe, 0.8))); subplot(3,3,5) imshow(paste(background, imresize(h_monroe, 0.7))); subplot(3,3,6) imshow(paste(background, imresize(h_monroe, 0.6))); subplot(3,3,7) imshow(paste(background, imresize(h_monroe, 0.5))); subplot(3,3,8) imshow(paste(background, imresize(h_monroe, 0.4))); subplot(3,3,9) imshow(paste(background, imresize(h_monroe, 0.3))); end function [result] = highpass(image, sigma) lowpass = imgaussfilt(image, sigma); result = image - lowpass; end function [image] = paste(background, foreground) image = background; sizes = size(foreground); image(1:sizes(1), 1:sizes(2)) = foreground; end function [image] = hybrid(image1, image2, sigma1, sigma2) lowpass = imgaussfilt(image1, sigma1); image = lowpass + highpass(image2, sigma2); end
github
jordiolivares/visio.artificial-master
gaussRandom.m
.m
visio.artificial-master/images_P3/gaussRandom.m
6,443
utf_8
8f6251f91754da2356403f31ea2ed4a7
function [ samples ] = gaussRandom( mu, sigma, numSamples ) % GAUSSRANDOM Sample a normal distribution with parameters mu and sigma % Generate random points using a gaussian distribution if size(sigma,1)==1, sigma=eye(length(mu))*sigma; end samples = mvnrnd(mu,sigma,numSamples); end function [r,T] = mvnrnd(mu,sigma,cases,T) % MVNRND Random vectors from the multivariate normal distribution. % R = MVNRND(MU,SIGMA) returns an N-by-D matrix R of random vectors % chosen from the multivariate normal distribution with mean vector MU, % and covariance matrix SIGMA. MU is an N-by-D matrix, and MVNRND % generates each row of R using the corresponding row of MU. SIGMA is a % D-by-D symmetric positive semi-definite matrix, or a D-by-D-by-N array. % If SIGMA is an array, MVNRND generates each row of R using the % corresponding page of SIGMA, i.e., MVNRND computes R(I,:) using MU(I,:) % and SIGMA(:,:,I). If the covariance matrix is diagonal, containing % variances along the diagonal and zero covariances off the diagonal, % SIGMA may also be specified as a 1-by-D matrix or a 1-by-D-by-N array, % containing just the diagonal. If MU is a 1-by-D vector, MVNRND % replicates it to match the trailing dimension of SIGMA. % % R = MVNRND(MU,SIGMA,N) returns a N-by-D matrix R of random vectors % chosen from the multivariate normal distribution with 1-by-D mean % vector MU, and D-by-D covariance matrix SIGMA. % % Example: % % mu = [1 -1]; Sigma = [.9 .4; .4 .3]; % r = mvnrnd(mu, Sigma, 500); % plot(r(:,1),r(:,2),'.'); % % See also MVTRND, MVNPDF, MVNCDF, NORMRND. % R = MVNRND(MU,SIGMA,N,T) supplies the Cholesky factor T of % SIGMA, so that SIGMA(:,:,J) == T(:,:,J)'*T(:,:,J) if SIGMA is a 3D array or SIGMA % == T'*T if SIGMA is a matrix. No error checking is done on T. % % [R,T] = MVNRND(...) returns the Cholesky factor T, so it can be % re-used to make later calls more efficient, although there are greater % efficiency gains when SIGMA can be specified as a diagonal instead. % Copyright 1993-2011 The MathWorks, Inc. if nargin < 2 || isempty(mu) || isempty(sigma) error(message('stats:mvnrnd:TooFewInputs')); elseif ndims(mu) > 2 error(message('stats:mvnrnd:BadMu')); elseif ndims(sigma) > 3 error(message('stats:mvnrnd:BadSigma')); end [n,d] = size(mu); sz = size(sigma); if sz(1)==1 && sz(2)>1 % Just the diagonal of Sigma has been passed in. sz(1) = sz(2); sigmaIsDiag = true; else sigmaIsDiag = false; end % Special case: if mu is a column vector, then use sigma to try % to interpret it as a row vector. if d == 1 && sz(1) == n mu = mu'; [n,d] = size(mu); end % Get size of data. if nargin < 3 || isempty(cases) nocases = true; % cases not supplied else nocases = false; % cases was supplied if n == cases % mu is ok elseif n == 1 % mu is a single row, make cases copies n = cases; mu = repmat(mu,n,1); else error(message('stats:mvnrnd:InputSizeMismatchMu')); end end % Single covariance matrix if ndims(sigma) == 2 % Make sure sigma is the right size if sz(1) ~= sz(2) error(message('stats:mvnrnd:BadCovariance2DSize')); elseif ~isequal(sz, [d d]) error(message('stats:mvnrnd:InputSizeMismatch2DSigma')); end if nargin > 3 % sigma has already been factored, so use it. r = randn(n,size(T,1)) * T + mu; elseif sigmaIsDiag % Just the diagonal of sigma has been specified. if any(sigma<0) error(message('stats:mvnrnd:BadDiagSigma')); end t = sqrt(sigma); if nargout>1 T = diag(t); end r = bsxfun(@times,randn(n,d),t) + mu; else % Factor sigma using a function that will perform a Cholesky-like % factorization as long as the sigma matrix is positive % semi-definite (can have perfect correlation). Cholesky requires a % positive definite matrix. sigma == T'*T [T,err] = cholcov(sigma); if err ~= 0 error(message('stats:mvnrnd:BadCovariance2DSymPos')); end r = randn(n,size(T,1)) * T + mu; end % Multiple covariance matrices elseif ndims(sigma) == 3 % mu is a single row and cases not given, rep mu out to match sigma if n == 1 && nocases % already know size(sigma,3) > 1 n = sz(3); mu = repmat(mu,n,1); end % Make sure sigma is the right size if sz(1) ~= sz(2) % Sigma is 3-D error(message('stats:mvnrnd:BadCovariance3DSize')); elseif (sz(1) ~= d) || (sz(2) ~= d) % Sigma is 3-D error(message('stats:mvnrnd:InputSizeMismatch3DSigma')); elseif sz(3) ~= n error(message('stats:mvnrnd:InputSizeMismatchSigmaDimension')); end if nargin < 4 if nargout > 1 T = zeros(sz,class(sigma)); end if sigmaIsDiag sigma = reshape(sigma,sz(2),sz(3))'; if any(any(sigma<0)) error(message('stats:mvnrnd:BadDiagSigma')); end R = sqrt(sigma); r = bsxfun(@times,randn(n,d),R) + mu; if nargout > 1 for i=1:n T(:,:,i) = diag(R(i,:)); end end else r = zeros(n,d,superiorfloat(mu,sigma)); for i = 1:n [R,err] = cholcov(sigma(:,:,i)); if err ~= 0 error(message('stats:mvnrnd:BadCovariance3DSymPos')); end Rrows = size(R,1); r(i,:) = randn(1,Rrows) * R + mu(i,:); if nargout > 1 T(1:Rrows,:,i) = R; end end end else % T specified r = zeros(n,d,superiorfloat(mu,sigma)); for i = 1:n r(i,:) = randn(1,d) * T(:,:,i) + mu(i,:); end end end end
github
jordiolivares/visio.artificial-master
ej35.m
.m
visio.artificial-master/images_P3/ej35.m
1,838
ibm852
3c8d035d618415bd27c410708444776a
function [ output_args ] = ej35( input_args ) %EJ35 Summary of this function goes here % Detailed explanation goes here % a) showMatches('starbucks.jpg', 'starbucks6.jpg'); pause % b) % Take elements out if you want to do the experiment for fewer elements imatges = {'starbucks.jpg', 'starbucks2.png', 'starbucks4.jpg',... 'starbucks5.png', 'starbucks6.jpg', 'starbucksCup.jpg'}; % Or just uncomment this and comment the line above %imatges = {'starbucks.jpg', 'starbucks2.png', 'starbucks4.jpg'}; sorted = sortBySimilarity(imatges); close all; for comb = sorted showMatches(comb{1}, comb{2}); disp('Prem Enter per a la següent imatge:'); pause end % d) im = imread('starbucks.jpg'); im45 = imrotate(imresize(im, 0.5), 45); im97 = imrotate(imresize(im, 1.4), 97); im140 = imrotate(imresize(im, 0.7), 140); im200 = imrotate(imresize(im, 0.2), 200); imwrite(im45, 'starbucks45.png'); imwrite(im97, 'starbucks97.png'); imwrite(im140, 'starbucks140.png'); imwrite(im200, 'starbucks200.png'); showMatches('starbucks45.png', 'starbucks6.jpg'); pause showMatches('starbucks97.png', 'starbucks6.jpg'); pause showMatches('starbucks140.png', 'starbucks6.jpg'); pause showMatches('starbucks200.png', 'starbucks6.jpg'); end function [output] = sortBySimilarity(list) combinations = combnk(list, 2); combinations = [combinations; fliplr(combinations)]'; combinations(3,:) = num2cell(zeros(size(combinations, 2),1)); for i = 1:size(combinations, 2) [~, score] = showMatches(combinations{1, i}, combinations{2, i}); close; combinations{3, i} = sum(score); end combinations = sortrows(combinations', [1 3])'; output = combinations; end
github
jordiolivares/visio.artificial-master
ej31.m
.m
visio.artificial-master/images_P3/ej31.m
2,461
utf_8
a73520adedd4bd5204d530bfe79b295f
function [] = ej31() %EJ31 Summary of this function goes here % Detailed explanation goes here frames = extractBackground('Barcelona.mp4'); video = VideoReader('Barcelona.mp4'); sampleFrame = read(video, 1757); background = frames(:,:,:,12); figure subplot(1,2,1) imshow(background); title('Background'); subplot(1,2,2) imshow(sampleFrame); title('Image'); figure subplot(1,1,1) imshow(sampleFrame - background); title('Moving parts') end function [backgroundFrames] = extractBackground(filename) % Extracts the background of a video in each scene using the median keyFrames = segmentVideo(filename, 250000); video = VideoReader(filename); videoFrames = video.NumberOfFrames; video = VideoReader(filename); backgroundFrames = zeros(video.Height, video.Width, 3, size(keyFrames, 1), 'uint8'); for i = 1:size(keyFrames, 1) if i == size(keyFrames, 1) numFrames = videoFrames - keyFrames(i); else numFrames = keyFrames(i+1) - keyFrames(i); end tmp = zeros(video.Height, video.Width, 3, numFrames, 'uint8'); for j = 1:numFrames tmp(:,:,:, j) = readFrame(video); end % Median of all frames at that pixel coordinate backgroundFrames(:,:,:,i) = median(tmp, 4); end end function [keyFrames] = segmentVideo(filename, threshold) % Segments the video using 'threshold' as a way to detect change of scene video = VideoReader(filename); keyFrames = 1; previous_frame = readFrame(video); current_frame = readFrame(video); frame_count = 2; while hasFrame(video) if frameDiff(current_frame, previous_frame) > threshold keyFrames = [keyFrames ; frame_count]; end previous_frame = current_frame; current_frame = readFrame(video); frame_count = frame_count + 1; end end function [difference] = frameDiff(frame1, frame2) % Calculates the difference between images using the image histogram of % each RGB channel [tmp1, ~] = imhist(frame1(:,:,1)); [tmp2, ~] = imhist(frame2(:,:,1)); diffR = sum(abs(tmp1 - tmp2)); [tmp1, ~] = imhist(frame1(:,:,2)); [tmp2, ~] = imhist(frame2(:,:,2)); diffG = sum(abs(tmp1 - tmp2)); [tmp1, ~] = imhist(frame1(:,:,3)); [tmp2, ~] = imhist(frame2(:,:,3)); diffB = sum(abs(tmp1 - tmp2)); difference = diffR + diffG + diffB; end
github
jordiolivares/visio.artificial-master
ej32.m
.m
visio.artificial-master/images_P3/ej32.m
1,115
utf_8
d5a23687195d4558e16b74681b460b88
function [ ] = ej32( ) %%%%%%%%%%%%% (a) %%%%%%%%%%%%% cloud1 = gaussRandom([1,2], 0.1, 100); cloud2 = gaussRandom([2,2], 0.1, 100); cloud3 = gaussRandom([2,1], 0.1, 100); figure subplot(2,3,2) plot(cloud1(:,1), cloud1(:,2), '.', cloud2(:,1), cloud2(:,2), '.', cloud3(:,1), cloud3(:,2), '.') title('Original') %%%%%%%%%%%%% (b) %%%%%%%%%%%%% allPoints = [cloud1; cloud2; cloud3]; %%% k=2 %%% [idx , C] = kmeans([cloud1 ; cloud2 ; cloud3], 2); subplot(2,3,4) plotClusters(2, idx, C, allPoints) title('k=2') %%% k=3 %%% [idx , C] = kmeans([cloud1 ; cloud2 ; cloud3], 3); subplot(2,3,5) plotClusters(3, idx, C, allPoints) title('k=3') %%% k=4 %%% [idx , C] = kmeans([cloud1 ; cloud2 ; cloud3], 4); subplot(2,3,6) plotClusters(4, idx, C, allPoints) title('k=4') end function [] = plotClusters(k, idx, C, allPoints) hold on for i=1:k cluster = allPoints(idx==i, :); plot(cluster(:,1), cluster(:,2), '.') plot(C(i,1), C(i,2), 'o') end end
github
jordiolivares/visio.artificial-master
ej13.m
.m
visio.artificial-master/images_P1/ej13.m
453
utf_8
12b07efedfd40d3c12a88caa9ff7ad49
function [ output ] = ej13() car = imread('car_gray.jpg'); car_130 = auxiliar(car, 130); figure subplot(2,1,1) imshow(car) subplot(2,1,2) imshow(car_130) print('subplot_3_binarize.png', '-dpng'); close end function [ thresholded_image ] = auxiliar( image, threshold ) % Use the built-in function to binarize the image thresholded_image = imbinarize(image, double(threshold) / 255.0); end
github
jordiolivares/visio.artificial-master
ej411.m
.m
visio.artificial-master/images_P4/ej411.m
435
iso_8859_13
2e7195061f5cb72382168cefae30582b
function [ ] = testFiltros() % Esta función pretende ilustrar el banco de filtros de la gaussiana F=makeLMfilters(); % genera los filtros visualizeFilters(F); end function [ ] = visualizeFilters(F) % This function receives a bank of filters and visualize them by pseudocolors figure, % visualiza todos los filtros for k=1:size(F,3); subplot(8,6,k); imagesc(F(:,:,k)); colorbar; end end
github
jordiolivares/visio.artificial-master
makeLMfilters.m
.m
visio.artificial-master/images_P4/makeLMfilters.m
1,896
utf_8
91f2c95201e8f0112ddbc2abd05f854a
function F=makeLMfilters % Returns the LML filter bank of size 49x49x48 in F. To convolve an % image I with the filter bank you can either use the matlab function % conv2, i.e. responses(:,:,i)=conv2(I,F(:,:,i),'valid'), or use the % Fourier transform. SUP=49; % Support of the largest filter (must be odd) SCALEX=sqrt(2).^[1:3]; % Sigma_{x} for the oriented filters NORIENT=6; % Number of orientations NROTINV=12; NBAR=length(SCALEX)*NORIENT; NEDGE=length(SCALEX)*NORIENT; NF=NBAR+NEDGE+NROTINV; F=zeros(SUP,SUP,NF); hsup=(SUP-1)/2; [x,y]=meshgrid([-hsup:hsup],[hsup:-1:-hsup]); orgpts=[x(:) y(:)]'; count=1; for scale=1:length(SCALEX), for orient=0:NORIENT-1, angle=pi*orient/NORIENT; % Not 2pi as filters have symmetry c=cos(angle);s=sin(angle); rotpts=[c -s;s c]*orgpts; F(:,:,count)=makefilter(SCALEX(scale),0,1,rotpts,SUP); F(:,:,count+NEDGE)=makefilter(SCALEX(scale),0,2,rotpts,SUP); count=count+1; end; end; count=NBAR+NEDGE+1; SCALES=sqrt(2).^[1:4]; for i=1:length(SCALES), F(:,:,count)=normalise(fspecial('gaussian',SUP,SCALES(i))); F(:,:,count+1)=normalise(fspecial('log',SUP,SCALES(i))); F(:,:,count+2)=normalise(fspecial('log',SUP,3*SCALES(i))); count=count+3; end; return function f=makefilter(scale,phasex,phasey,pts,sup) gx=gauss1d(3*scale,0,pts(1,:),phasex); gy=gauss1d(scale,0,pts(2,:),phasey); f=normalise(reshape(gx.*gy,sup,sup)); return function g=gauss1d(sigma,mean,x,ord) % Function to compute gaussian derivatives of order 0 <= ord < 3 % evaluated at x. x=x-mean;num=x.*x; variance=sigma^2; denom=2*variance; g=exp(-num/denom)/(pi*denom)^0.5; switch ord, case 1, g=-g.*(x/variance); case 2, g=g.*((num-variance)/(variance^2)); end; return function f=normalise(f), f=f-mean(f(:)); f=f/sum(abs(f(:))); return
github
jordiolivares/visio.artificial-master
getFeatures.m
.m
visio.artificial-master/images_P4/getFeatures.m
517
utf_8
08549ab0fa2be0c5af292e13842a7182
function [ featuresVector ] = getFeatures( image ) %GETFEATURES Summary of this function goes here % Detailed explanation goes here F = makeLMfilters(); greyImage = rgb2gray(image); featuresVector = zeros(1, size(F, 3)); for i = 1:size(F, 3) featuresVector(i) = calculateFeature(F(:,:,i), greyImage); end end function [meanConvolution] = calculateFeature(convolution, image) convoluted = conv2(double(image), convolution, 'same'); meanConvolution = mean(convoluted(:)); end
github
vins24/bm_rng-master
degree_2_coef.m
.m
bm_rng-master/matlab/degree_2_coef.m
1,051
utf_8
76e213bb907ed966541fcc8c4897c1ea
% % function to extract coefficients for a degree 2 polyonmial % % based on inspiration found in various MATLAB forums % function [my_coefs] = degree_2_coef(frac_bits, n, coef) % n.m (Q notation) % n = number bits for integer part of your number % m = fractional bits, for example c1 = 12, c0 = 19 (passsed as array in frac_bits) % frac_bits = [19,12]; % coef = input coefficients m1 = frac_bits(1); m2 = frac_bits(2); m3 = frac_bits(3); n1 = n(1); n2 = n(2); n3 = n(3); for j= 1: size(coef,1) % Converting decimal to binary of a signed fraction d2b1 = dec2fix(coef(j,1), m1, n1); d2b2 = dec2fix(coef(j,2), m2, n2); d2b3 = dec2fix(coef(j,3), m3, n3); % coefs in String cell array format my_coefs{j,1} = strjoin(cellstr(num2str(d2b1'))',''); my_coefs{j,2} = strjoin(cellstr(num2str(d2b2'))',''); my_coefs{j,3} = strjoin(cellstr(num2str(d2b3'))',''); %fprintf('i=%4d C2=%s C1=%s C0=%s\n', j, my_coefs{j,3}, my_coefs{j,2}, my_coefs{j,1}) end end
github
vins24/bm_rng-master
dec2twos.m
.m
bm_rng-master/matlab/dec2twos.m
1,742
utf_8
6fc10b62e47f86606bbcc2e04b51bbdc
% % function to convert 2's compliment value to binary % % based on inspiration found in various MATLAB forums % function t = dec2twos(x, nbits) % DEC2TWOS Convert decimal integer to binary string two's complement. % % Usage: T = DEC2TWOS(X, NBITS) % % Converts the signed decimal integer given by X (either a scalar, vector, % or matrix) to the two's complement representation as a string. If X is a % vector or matrix, T(i, :) is the representation for X(i) (the shape of X % is not preserved). % % Example: % >> dec2twos([23 3 -23 -3]) % % ans = % % 010111 % 000011 % 101001 % 111101 % % Inputs: % -X: decimal integers to convert to two's complement. % -NBITS: number of bits in the representation (optional, default is the % fewest number of bits necessary). % % Outputs: % -T: two's complement representation of X as a string. % % See also: TWOS2DEC, DEC2FIX, FIX2DEC, DEC2BIN, DEC2HEX, DEC2BASE. error(nargchk(1, 2, nargin)); x = x(:); maxx = max(abs(x)); nbits_min = nextpow2(maxx + (any(x == maxx))) + 1; % Default number of bits. if nargin == 1 || isempty(nbits) nbits = nbits_min; elseif nbits < nbits_min warning('dec2twos:nbitsTooSmall', ['Minimum number of bits to ' ... 'represent maximum input x is %i, which is greater than ' ... 'input nbits = %i. Setting nbits = %i.'], ... nbits_min, nbits, nbits_min) nbits = nbits_min; end t = repmat('0', numel(x), nbits); % Initialize output: Case for x = 0 if any(x > 0) t(x > 0, :) = dec2bin(x(x > 0), nbits); % Case for x > 0 end if any(x < 0) t(x < 0, :) = dec2bin(2^nbits + x(x < 0), nbits); % Case for x < 0 end
github
vins24/bm_rng-master
dec2fix.m
.m
bm_rng-master/matlab/dec2fix.m
2,256
utf_8
ded95370cf4bd96cf395fd4005061167
% % function to convert 2's compliment value to binary % % based on inspiration found in various MATLAB forums % function f = dec2fix(x, nfracbits, nbits) % DEC2FIX Convert decimal integer to binary string fixed point. % % Usage: F = DEC2FIX(X, NFRACBITS, NBITS) % % Converts the signed decimal integer given by X (either a scalar, vector, % or matrix) to the two's complement representation as a string. If X is a % vector or matrix, F(i, :) is the representation for X(i) (the shape of X % is not preserved). Note that many fractional numbers that can be % represented with a finite number of fractional digits cannot be % represented by a finite number of fractional bits (specifically % non-powers-of-two like 0.3), so input NFRACBITS is required to specify % the precision for the number of fractional bits. Even powers-of-two % fractional decimal numbers (like 0.5) require this input. % % Example: % >> dec2fix([2.3 2.4 -2.3 -2.4], 3) % % ans = % % 010.010 % 010.011 % 101.110 % 101.101 % % Inputs: % -X: decimal integers to convert to two's complement. % -NFRACBITS: number of bits to represent fractional part. % -NBITS: total number of bits in the representation including the % fractional bits (optional, default is the fewest number of bits % necessary to represent the integer portion). % % Outputs: % -F: fixed point representation of X as a string. % % See also: FIX2DEC, TWOS2DEC, DEC2TWOS, DEC2BIN, DEC2HEX, DEC2BASE. error(nargchk(2, 3, nargin)); x = x(:); maxx = max(abs(x)); nbits_min = max([nextpow2(maxx + (any(x == maxx))) + 1 + nfracbits, ... nfracbits]); % Default number of bits. if nargin < 3 nbits = nbits_min; elseif nbits < nbits_min warning('dec2twos:nbitsTooSmall', ['Minimum number of bits to ' ... 'represent maximum input x is %i, which is greater than ' ... 'input nbits = %i. Setting nbits = %i.'], ... nbits_min, nbits, nbits_min) nbits = nbits_min; end % Convert to two's complement string. f = dec2twos(round(x * 2.^nfracbits), nbits); % Insert binary point. f(:, end+1) = '_'; f = f(:, [1:(nbits-nfracbits), nbits+1, (nbits-nfracbits+1):nbits]);
github
vins24/bm_rng-master
lzd.m
.m
bm_rng-master/matlab/lzd.m
340
utf_8
342769b93194fbd08e5c6d943e64a1f1
%leading zero detector% function [num_lzd] = lzd(u0) num_lzd = 0; t = u0; % 0x800000000000 m = uint64(140737488355328); for n = drange(1:48) %for (i=0; i<47 ; i++) { x = bitand(t, m, 'uint64'); if (x) break; else num_lzd = num_lzd + 1; t = bitshift(t, 1, 'uint64'); end end
github
vins24/bm_rng-master
taus.m
.m
bm_rng-master/matlab/taus.m
1,166
utf_8
6b9e19d9415b909dae4abfb22c4fe301
function [s0, s1, s2, a] = taus(s0, s1, s2) %a = 0; x = uint32(0); %a = (((s0 << 13) ^ s0) >> 19); x = bitshift(s0, 13, 'uint32'); x= bitxor(x,s0); x = bitshift(x,-19, 'uint32'); %a = bitshift((bitshift(s0, 13) ^ s0), -19); %s0 = (((s0 & 0xFFFFFFFE) << 12) ^ a); %s0 = bitshift(s0 & hex2dec('fffffffe'), 12) ^ x; y = uint32(4294967294); s0 = bitand(s0, y); s0 = bitshift(s0, 12, 'uint32'); s0 = bitxor(s0, x); %a = (((s1 << 2) ^ s1) >> 25); %a = bitshift((bitshift(s1, 2) ^ s1), -25); x = bitshift(s1,2); x = bitxor(x,s1); x = bitshift(x, -25, 'uint32'); %s1 = (((s1 & 0xFFFFFFF8) << 4) ^ a); %s1 = bitshift(s1 & hex2dec('fffffff8'), 4) ^ x; z = uint32(4294967288); s1 = bitand(s1, z); s1 = bitshift(s1, 4, 'uint32'); s1 = bitxor(s1, x); %a = (((s2 << 3) ^ s2) >> 11); %a = bitshift((bitshift(s2, 3) ^ s2), -11); x = bitshift(s2, 3); x = bitxor(x, s2); x = bitshift(x,-11, 'uint32'); %s2 = (((s2 & 0xFFFFFFF0) << 17) ^ a); %s2 = bitshift(s2 & hex2dec('fffffff0'), 17) ^ x; m = uint32(4294967280); s2 = bitand(s2, m); s2 = bitshift(s2, 17, 'uint32'); s2 = bitxor(s2, x); m = bitxor(s0,s1); a = bitxor(m,s2); end
github
vins24/bm_rng-master
degree_1_coef.m
.m
bm_rng-master/matlab/degree_1_coef.m
880
utf_8
7ca917c42bb19b2cbe700b7a246c69b5
% % function to extract coefficients for a degree 1 polyonmial % % based on inspiration found in various MATLAB forums % function [my_coefs] = degree_1_coef(frac_bits, n, coef) % n.m (Q notation) % n = number bits for your number % m = fractional bits, for example c1 = 12, c0 = 19 (passsed as array in frac_bits) % frac_bits = [19,12]; % coef = input coefficients m1 = frac_bits(1); m2 = frac_bits(2); n1 = n(1); n2 = n(2); for j= 1: size(coef,1) % Converting decimal to binary of a signed fraction d2b1 = dec2fix(coef(j,1), m1, n1); d2b2 = dec2fix(coef(j,2), m2, n2); % coefs in String cell array format my_coefs{j,1} = strjoin(cellstr(num2str(d2b1'))',''); my_coefs{j,2} = strjoin(cellstr(num2str(d2b2'))',''); %fprintf('i=%4d C1=%12s C0=%12s\n', j, my_coefs{j,2}, my_coefs{j,1}) end end
github
old-NWTC/FAST-master
PlotCertTestResults.m
.m
FAST-master/CertTest/PlotCertTestResults.m
26,846
utf_8
20415be42ae9440d9e1c9b5acccee429
function PlotCertTestResults( newPath, oldPath, PlotFAST, PlotAdams, PlotSimulink ) % FAST-ADAMS-Simulink CertTest comparisons: %function PlotCertTestResults( newPath, oldPath, PlotFAST, PlotAdams, PlotSimulink ) % This function plots the FAST, ADAMS, and/or FAST_SFunc CertTest results, % comparing .out/.plt, .elm, .asi, .pmf, and .eig files from the newPath % with the files contained in oldPath. PlotFAST, PlotADAMS, and PlotSimulink % are true/false values that can be set to avoid plotting results from % particular CertTests (e.g., you can choose not to plot Simulink results) % % This function can produce hundreds of plots, so the files are saved as % 150 dpi .png files in a directory called [oldPath "\Plots"] (which will % be created if it doesn't already exist). if nargin < 5 PlotSimulink = false; end if nargin < 4 PlotAdams = false; end if nargin < 3 PlotFAST = true; end if nargin < 2 oldPath = [ '.' filesep 'TstFiles' ]; end if nargin == 0 newPath = '.'; end descFiles = {'SFunc', 'Adams', 'FAST'}; plotFiles = [PlotSimulink, PlotAdams, PlotFAST]; for i= 1:26 fileRoot = ['Test' num2str(i,'%02.0f')]; oldRoot = strcat( oldPath, filesep, fileRoot, {'.SFunc', '_ADAMS', ''} ); newRoot = strcat( newPath, filesep, fileRoot, {'.SFunc', '_ADAMS', ''} ); if i == 14 % linearization case oldFiles = strcat( oldRoot, {'.eig', '_LIN.out', '.eig'} ); newFiles = strcat( newRoot, {'.eig', '_LIN.out', '.eig'} ); nModes = 30; CompareCertTestResults(3,newFiles(plotFiles), oldFiles(plotFiles), nModes, descFiles(plotFiles), ... [fileRoot ' - First ' num2str(nModes) ' Natural Frequencies'], true, [fileRoot '_nf'] ); else SavePngFiles = true; %setting this to false will keep ALL of the plot windows open % SavePngFiles = false; %setting this to false will keep ALL of the plot windows open % Compare time series if i == 2 || i == 4 || i > 17 % use the new binary file format oldFiles = strcat( oldRoot, {'.outb', '.plt', '.outb'} ); newFiles = strcat( newRoot, {'.outb', '.plt', '.outb'} ); else % use the text format oldFiles = strcat( oldRoot, {'.out', '.plt', '.out'} ); newFiles = strcat( newRoot, {'.out', '.plt', '.out'} ); end TitleLocDesc = cellstr(['new: ' newFiles{end} ' | old: ' oldFiles{end}]); CompareCertTestResults(1,newFiles(plotFiles), oldFiles(plotFiles), [8, 7, 8], descFiles(plotFiles), [fileRoot ' Output Time Series'], SavePngFiles, [fileRoot '_ts'],TitleLocDesc ); end % time series if i == 10 % Compare (.AD.out) .elm files oldFiles = strcat( oldRoot, '.AD.out' ); newFiles = strcat( newRoot, '.AD.out' ); CompareCertTestResults(1,newFiles(plotFiles), oldFiles(plotFiles), [8, 7, 8], descFiles(plotFiles), [fileRoot ' AeroDyn Time Series'], true, [fileRoot '_ADts'] ); end % elm files %% bjj: removed block for less plotting continue; if i==1 || i==3 || i==8 % Compare .azi files oldFiles = strcat( oldRoot, '.azi' ); newFiles = strcat( newRoot, '.azi' ); CompareCertTestResults(1,newFiles(plotFiles), oldFiles(plotFiles), [7, 6, 7], descFiles(plotFiles), [fileRoot ' Azimuth Averages'] , true, [fileRoot '_azi'] ); end %azi files if i==4 || i==7 || i==13 || i==17 % Compare .pmf files oldFiles = strcat( oldRoot, '.pmf' ); newFiles = strcat( newRoot, '.pmf' ); if i == 4 || i == 17 CompareCertTestResults(2,newFiles(plotFiles), oldFiles(plotFiles), [ 8, 7, 8], descFiles(plotFiles), [fileRoot ' Probability Density Functions'], true, [fileRoot '_pmf'] ); else % these have TI and Mean Wind Speed in the header CompareCertTestResults(2,newFiles(plotFiles), oldFiles(plotFiles), [11, 10, 11], descFiles(plotFiles), [fileRoot ' Probability Density Functions'], true, [fileRoot '_pmf'] ); end end %pmf files end return; end %% -------------------------------------------------------------------------- function CompareCertTestResults(pltType, newFiles, oldFiles, HdrLines, descFiles, descTitle, savePlts, saveName, TitleLocDesc ) % Required Input: % pltType - scalar that determines the content of the data files: % when = 1, data file has one X column and many Y columns; % when = 2, data file has X-Y columns. % when = 3, data file is linearization output (files % differ for differing output!) % newFiles - cell array containing names of the new files to compare with oldFiles (no more than 7 files!) % oldFiles - cell array containing names of the old files % % Optional Input: % HdrLines - numeric array of size 3; default is [8, 7, 8] % HdrLines(1) = total number of header lines in the file % HdrLines(2) = number of the line containing the column titles % HdrLines(3) = number of the line containing the column units % descFiles - cell array containing description of the individual (new) files, displayed in plot legend % descTitle - string or cell array containing a description of the plots, used in plot title % savePlts - logical scalar; if true, plots will be saved as .png files in path(oldFiles)\Plots directory; default is false % saveName - a RootName (relative to path(oldFiles)\Plots\) used to name the saved plots; default is RootName(oldFiles{1}) % % Output: % none % set some constants for plotting LineWidthConst = 3; FntSz = 18; LineColors = {[0 1 1],[1 0 1],[0 1 0],[0 0 1],[1 0 0],[1 1 0],[1 1 1]}; % set some parameters that won't change OneXCol = 1; ColPairs = 2; NatFreq = 3; % get the number of files and do some checking numFiles = length(oldFiles); numNew = length(newFiles); if numFiles ~= numNew error('CompareCertTestResults::oldFiles and newFiles file name cell arrays must be the same size for comparisons.'); end if numFiles > length(LineColors) error('CompareCertTestResults::too many files. there aren''t enough colors defined.'); end % set some defaults for optional inputs if nargin < 7 savePlts = false; if nargin < 4 HdrLines = [8, 7, 8]; end end if nargin < 6 || isempty(descTitle) %short-circuting allowed! descTitle = {'File Comparisons Using Old Files' oldFiles{:}}; else descTitle = ['File Comparisons for ' descTitle]; end if nargin > 8 %bjj:there is a better way to do this, but I don't feel like figuring it out right now descTitle = cellstr(descTitle); for i=1:length(TitleLocDesc) descTitle{1+i}=TitleLocDesc{i}; end end if (nargin <= 4) || (numFiles ~= length(descFiles)) descFiles = cell(nf,1); getTxt = true; else getTxt = false; end [pathstr, name ] = fileparts(oldFiles{1} ); if nargin < 8 saveName = name; end OutFilePath = [pathstr filesep 'Plots' ]; % make sure the directory exists; if not, create it if ~exist(OutFilePath, 'dir') mkdir( OutFilePath ); end OutFileRoot = [OutFilePath filesep saveName]; % get the data for plotting oldData = cell(numFiles,1); newData = cell(numFiles,1); %% Plot the Natural Frequencies and return if pltType == NatFreq nFreq = HdrLines(1); fig = plotNaturalFrequencies( oldFiles, newFiles, descFiles, descTitle, nFreq, FntSz, LineColors ); set(fig,'paperorientation','landscape','paperposition',[0.25 0.25 10.5 8]) if savePlts print(fig,'-dpng','-r150',[OutFileRoot '.png']); close(fig) end return; end %% we're going to plot some x-y data... nCols = 0; nCols_new = 0; oldCols = cell(numFiles,1); colName = cell(numFiles,1); oldUnits = cell(numFiles,1); for iFile = 1:numFiles if length(oldFiles{iFile}) > 4 && strcmpi( oldFiles{iFile}((end-4):end),'.outb' ) [oldData{iFile}, oldCols{iFile}, oldUnits{iFile}] = ReadFASTbinary(oldFiles{iFile}); else [oldData{iFile}, oldCols{iFile}, oldUnits{iFile}] = ReadFASTtext(oldFiles{iFile}, '', HdrLines(1), HdrLines(2), HdrLines(3)); end if length(newFiles{iFile}) > 4 && strcmpi( newFiles{iFile}((end-4):end),'.outb' ) [newData{iFile}, colName{iFile} ] = ReadFASTbinary(newFiles{iFile}); else [newData{iFile}, colName{iFile} ] = ReadFASTtext(newFiles{iFile}, '', HdrLines(1), HdrLines(2), HdrLines(3)); end nCols = max(nCols, size(oldData{iFile},2)); nCols_new = max(nCols_new, size(newData{iFile},2)); if getTxt descFiles{iFile} = ['File ' num2str(iFile)]; end end %iFile if nCols == 0 disp(['CompareCertTestResults::No data found for ' saveName]); return; elseif pltType == ColPairs if mod(nCols,2) ~= 0 error(['CompareCertTestResults::number of columns must be even for X-Y pairings for ' saveName]); end end NoDiff = true(numFiles,1); for iFile = 1:numFiles [nr_Old, nc_Old] = size(oldData{iFile}); [nr_New, nc_New] = size(newData{iFile}); if nc_New == 0 || nc_Old == 0 NoDiff(iFile) = false; else if nCols ~= nc_Old || nCols ~= nc_New %bjj: we're going to try to match the columns now (before this was an error) disp(['CompareCertTestResults::number of columns differ in the file comparisons of old and new ' descFiles{iFile} ' files.']); fprintf( ' File %i old: %i rows x %i columns\n new: %i rows x %i columns\n', ... iFile, nr_Old, nc_Old, nr_New, nc_New ); end if nr_Old ~= nr_New disp('WARNING: CompareCertTestResults::number of rows differ in the file comparisons'); NoDiff(iFile) = false; else if pltType == OneXCol t_diff = oldData{iFile}(:,1) - newData{iFile}(:,1); if norm(t_diff,inf) > 0.005 % figure; plot(t_diff); disp(['WARNING: CompareCertTestResults::X columns (column 1) in old and new ' descFiles{iFile} ... ' files differ by more than 0.005' oldUnits{iFile}{1} ] ); NoDiff(iFile) = false; end elseif pltType == ColPairs t_diff = oldData{iFile}(:,1:2:end) - newData{iFile}(:,1:2:end); if norm(t_diff(:),inf) > 0.005 %bjj this is probably not a very good test % figure; plot(t_diff); disp(['WARNING: CompareCertTestResults::X columns in old and new ' descFiles{iFile} ... ' files differ by more than 0.005 units.'] ); NoDiff(iFile) = false; end %norm(t_diff( end %OneXCol end %nr_Old ~= nr_New end %nc_New == 0 || nc_Old == 0 end %for iFile % create the plots for time series-type data switch pltType case ColPairs strd = 2; case OneXCol strd = 1; otherwise error(['CompareCertTestResults::invalid plot type ' num2str(pltType) ]); end % switch anyDiffPlot = false; nCols = size(oldData{1},2); for iPlot = 2:strd:nCols % for iPlot = 100:strd:nCols fig=figure; ChannelName = oldCols{1}{iPlot}; [ChannelName_new,scaleFactor] = getNewChannelName(ChannelName); HaveLabels = false; %if we don't find any labels for these plots, we can't plot them for iFile = 1:numFiles HaveLabels = false; subplot(6,1,1:4); hold on; [yCol_old,err1] = getColIndx( ChannelName, oldCols{iFile}, oldFiles{iFile} ); [yCol_new,err2] = getColIndx( ChannelName_new, colName{iFile}, newFiles{iFile} ); if err1 || err2 continue else % fprintf('%10s (%3.0f) %10s (%3.0f)\n', ChannelName, yCol_old, ChannelName_new, yCol_new ); HaveLabels = true; switch pltType case ColPairs xCol_old = yCol_old-1; xCol_new = yCol_new-1; case OneXCol xCol_old = 1; xCol_new = 1; otherwise error('Invalid pltType in PlotCertTestResults:CompareCertTestResults'); end end h1(1) = plot(oldData{iFile}(:,xCol_old), oldData{iFile}(:,yCol_old)); set(h1(1),'LineStyle','-', 'DisplayName',[descFiles{iFile} ', old'],'Color',LineColors{iFile}, 'LineWidth',LineWidthConst+1); h1(2) = plot(newData{iFile}(:,xCol_new), newData{iFile}(:,yCol_new)/scaleFactor ); set(h1(2),'LineStyle',':', 'DisplayName',[descFiles{iFile} ', new'],'Color',LineColors{iFile}*0.75, 'LineWidth',LineWidthConst); % set(h1(2),'LineStyle','--','DisplayName',[descFiles{iFile} ', new'],'Color',LineColors{iFile}*0.75, 'LineWidth',LineWidthConst+1); currXLim = xlim; if NoDiff(iFile) anyDiffPlot = true; % absolute difference subplot(6,1,5); AbsDiff = (oldData{iFile}(:,yCol_old)-newData{iFile}(:,yCol_new)/scaleFactor ); plot(oldData{iFile}(:,xCol_old) , AbsDiff, ... 'Displayname',descFiles{iFile},'Color',LineColors{iFile}, 'LineWidth',LineWidthConst); hold on; xlim(currXLim); % relative difference (% of old) subplot(6,1,6); plot(oldData{iFile}(:,xCol_old) , 100*AbsDiff./ oldData{iFile}(:,yCol_old), ... 'Displayname',descFiles{iFile},'Color',LineColors{iFile}, 'LineWidth',LineWidthConst); hold on; xlim(currXLim); end end %iFile if HaveLabels %did we find columns to match? for iSubPl=1:3 if iSubPl == 3 subplot(6,1,1:4) yTxt = {oldCols{iFile}{yCol_old}, oldUnits{iFile}{yCol_old}} ; elseif anyDiffPlot if iSubPl == 2 subplot(6,1,5) yTxt = {'Difference' ,'(Old-New)', oldUnits{iFile}{yCol_old}}; else subplot(6,1,6); yTxt = {'Relative' 'Difference','(%)'}; xlabel([oldCols{iFile}{xCol_old} ' ' oldUnits{iFile}{xCol_old}],'FontSize',FntSz ) ; end else %difference plots xlabel([oldCols{iFile}{xCol_old} ' ' oldUnits{iFile}{xCol_old}],'FontSize',FntSz ) ; continue; end set(gca,'FontSize',FntSz,'gridlinestyle','-'); ylabel(yTxt); grid on; end %iSubPl t=title( descTitle,'interpreter','none','FontSize',FntSz-1 ); % set(t,'interpreter','none') % set(t,'FontSize',FntSz-1); h=legend('show'); set(h,'interpreter','none','FontSize',FntSz-3); %'location','best'); set(fig,'paperorientation','landscape','paperposition',[0.25 0.25 10.5 8] ... ,'Name',oldCols{iFile}{yCol_old}); if savePlts %Matlab 2012: %print(['-f' num2str(fig)],'-dpng','-r150',[OutFileRoot '_' num2str(iPlot-1) '.png']); %Matlab 2014b: print(fig,'-dpng','-r150',[OutFileRoot '_' num2str(iPlot-1) '.png']); close(fig) end else close(fig) end end %iPlot return; end %% ------------------------------------------------------------------------ function [ChannelName_new,scaleFact] = getNewChannelName(ChannelName) scaleFact = 1.0; if strcmpi(ChannelName,'WaveElev') ChannelName_new = 'Wave1Elev'; elseif strncmpi( ChannelName,'Fair',4 ) && strcmpi( ChannelName((end-2):end), 'Ten') %TFair[i] = FairiTen ChannelName_new = strrep( strrep( ChannelName,'Fair','TFair['),'Ten',']'); elseif strncmpi( ChannelName,'Anch',4 ) && strcmpi( ChannelName((end-2):end), 'Ten') %TAnch[i] = AnchiTen ChannelName_new = strrep( strrep( ChannelName,'Anch','TAnch['),'Ten',']'); elseif strncmpi( ChannelName,'Anch',4 ) && strcmpi( ChannelName((end-2):end), 'Ten') %TAnch[i] = AnchiTen ChannelName_new = strrep( strrep( ChannelName,'Anch','TAnch['),'Ten',']'); elseif strcmpi(ChannelName,'IntfXss') ChannelName_new = 'IntfFXss'; elseif strcmpi(ChannelName,'IntfYss') ChannelName_new = 'IntfFYss'; elseif strcmpi(ChannelName,'IntfZss') ChannelName_new = 'IntfFZss'; elseif strcmpi(ChannelName,'ReactXss') ChannelName_new = 'ReactFXss'; elseif strcmpi(ChannelName,'ReactYss') ChannelName_new = 'ReactFYss'; elseif strcmpi(ChannelName,'ReactZss') ChannelName_new = 'ReactFZss'; elseif strcmpi(ChannelName,'WindVxi') ChannelName_new = 'Wind1VelX'; elseif strcmpi(ChannelName,'WindVyi') ChannelName_new = 'Wind1VelY'; elseif strcmpi(ChannelName,'WindVzi') ChannelName_new = 'Wind1VelZ'; % elseif strcmpi(ChannelName,'TTDspFA') % ChannelName_new = 'TwHt1TPxi'; % elseif strcmpi(ChannelName,'TTDspSS') % ChannelName_new = 'TwHt1TPyi'; % elseif strcmpi(ChannelName,'-TwrBsFxt') % ChannelName_new = 'ReactFXss'; % scaleFact = 1000; % elseif strcmpi(ChannelName,'-TwrBsFyt') % ChannelName_new = 'ReactFYss'; % scaleFact = 1000; % elseif strcmpi(ChannelName,'-TwrBsFzt') % ChannelName_new = 'ReactFZss'; % scaleFact = 1000; % elseif strcmpi(ChannelName,'-TwrBsMxt') % ChannelName_new = 'ReactMXss'; % scaleFact = 1000; % elseif strcmpi(ChannelName,'-TwrBsMyt') % ChannelName_new = 'ReactMYss'; % scaleFact = 1000; % elseif strcmpi(ChannelName,'-TwrBsMzt') % ChannelName_new = 'ReactMZss'; % scaleFact = 1000; else ChannelName_new = strrep(ChannelName,'Wave1V','M1N1V'); ChannelName_new = strrep(ChannelName_new,'Wave1A','M1N1A'); %ChannelName_new = ChannelName_new; end if strncmpi(ChannelName_new,'TFair[',6) ChannelName_new = strrep(ChannelName_new, 'TFair[','T['); scaleFact = 1000; elseif strncmpi(ChannelName_new,'TAnch[',6) ChannelName_new = strrep(ChannelName_new, 'TAnch[','T_a['); scaleFact = 1000; end return end %% ------------------------------------------------------------------------ function [Indx,err] = getColIndx( ColToFind, colNames, fileName ) Indx = find( strcmpi(ColToFind, colNames), 1, 'first' ); if isempty(Indx) disp(['Error: ' ColToFind ' not found in ' fileName ]); err = true; else err = false; end return end %% ------------------------------------------------------------------------ function [fig] = plotNaturalFrequencies( oldFiles, newFiles, descFiles, descTitle, nFreq, FntSz, LineColors ) nf = length(oldFiles); OldData = cell(nf,1); NewData = cell(nf,1); % get the data % barData = []; % descTxt = cell(nf*2,1); groupSpacing = 1; %this serves as our spacing between groupings (fraction of a bar) nBars = 0; maxNF = 0; for iFile = 1:nf OldData{iFile} = getEigenvaluesFromFile(oldFiles{iFile}); NewData{iFile} = getEigenvaluesFromFile(newFiles{iFile}); if ~isempty(OldData{iFile}) nBars = nBars + 1; maxNF = max(maxNF, length(OldData{iFile})); end if ~isempty(NewData{iFile}) nBars = nBars + 1; maxNF = max(maxNF, length(NewData{iFile})); end % indx = iFile*2; % indxm1 = indx - 1 ; % % barData{:,indx } = getEigenvaluesFromFile(newFiles{iFile}); % barData{:,indxm1} = getEigenvaluesFromFile(oldFiles{iFile}); % % descTxt{indx} = [descFiles{iFile} ', new']; % descTxt{indxm1} = [descFiles{iFile} ', old']; end % create a bar plot fig = figure; t = title( descTitle,'interpreter','none','FontSize',FntSz ); set(t,'interpreter','none'); hold on; barIndxStart = 1.5; barIndx = barIndxStart; groupSpacing = groupSpacing + nBars; for iFile = 1:nf L1 = length(OldData{iFile}); if L1 > 0 xAxis = ( 0:(L1-1) )*groupSpacing + barIndx; h = bar(xAxis,OldData{iFile},1/groupSpacing); set(h, 'FaceColor', LineColors{iFile}, 'DisplayName',[descFiles{iFile} ', old']); barIndx = barIndx + 1; end L2 = length(NewData{iFile}); if L2 > 0 xAxis = ( 0:(L2-1) )*groupSpacing + barIndx; h = bar(xAxis,OldData{iFile},1/groupSpacing); set(h, 'FaceColor', LineColors{iFile}*0.65, 'DisplayName',[descFiles{iFile} ', new']); barIndx = barIndx + 1; end end if maxNF > 0 xAxis = ( 0:(maxNF-1) )*groupSpacing + barIndx - 0.5*nBars - 0.5; % set(gca,'xlim',[1 maxNF*nBars+barIndx-1],'xtick',xAxis); nFact = max(1,floor(nFreq/15)); %15 is max number of axis ticks h=gca; h.XTick = xAxis(1:nFact:end); h.XTickLabel = 1:nFact:maxNF; xlim([1, groupSpacing*nFreq]); %bjj: there is something weird here, but I'm too tired to care %set(h,'xtick',xAxis(1:nFact:end),'xticklab',1:nFact:maxNF); % set(h,'xlim',[1 groupSpacing*nFreq]); end set(gca,'FontSize',FntSz-3,'ygrid','on','gridlinestyle','-'); ylabel('Full System Natural Frequency, Hz','FontSize',FntSz); xlabel('Full System Mode Number','FontSize',FntSz); box on; h=legend('show'); set(h,'interpreter','none','FontSize',FntSz-3,'location','NorthWest'); return end %% ------------------------------------------------------------------------ function [eivalues] = getEigenvaluesFromFile(fileName) fid = fopen(fileName); if fid > 0 line = fgetl(fid); while ischar(line) if isempty( strfind(line, 'E I G E N V A L U E S') ) % ADAMS FILES HAVE THIS IDENTIFIER (but this could change in other versions!!!!) if isempty( strfind(line, 'ans =') ) % Output from Matlab script (this could change, in other versions, too!!!!!) % keep looking line = fgetl(fid); else % read from Matlab (FAST) output file dat = textscan( fid, '%f' ); %we'll read to the end of this section/file where there aren't any more numbers eivalues = dat{1}; break; end else % read from ADAMS output file fgetl(fid); % header % textscan( fid, '%*s%f', 'delimiter','+/-' ); %we're just getting the imaginary parts dat = textscan( fid, '%f%f%*s%f' ); %we'll read to the end of this section (when there aren't numbers anymore) eivalues = dat{3}; break; end end fclose( fid ); else disp( ['getEigenvaluesFromFile::Error ' num2str(fid) ' opening file, "' fileName '".' ]); eivalues = []; end return; end %% ------------------------------------------------------------------------
github
kaltwang/2015doubly-master
tprod_testcases.m
.m
2015doubly-master/code/toolboxes/tprod/tprod_testcases.m
17,197
utf_8
26b0e1b54b6867e5d62e8956c84e01bd
function []=tprod_testcases(testCases,debugin) % This file contains lots of test-cases to test the performance of the tprod % files vs. the matlab built-ins. % % % Copyright 2006- by Jason D.R. Farquhar ([email protected]) % Permission is granted for anyone to copy, use, or modify this % software and accompanying documents for any uncommercial % purposes, provided this copyright notice is retained, and note is % made of any changes that have been made. This software and % documents are distributed without any warranty, express or % implied if ( nargin < 1 || isempty(testCases) ) testCases={'acc','timing','blksz'}; end; if ( ~iscell(testCases) ) testCases={testCases}; end; if ( nargin < 2 ) debugin=1; end; global DEBUG; DEBUG=debugin; % fprintf('------------------ memory execption test ------------\n'); % ans=tprod(randn(100000,1),1,randn(100000,1)',1); % ans=tprod(randn(100000,1),1,randn(100000,1)',1,'m'); %----------------------------------------------------------------------- % Real , Real if ( ~isempty(strmatch('acc',testCases)) ) fprintf('------------------- Accuracy tests -------------------\n'); X=complex(randn(101,101,101),randn(101,101,101)); Y=complex(randn(101,101),randn(101,101)); fprintf('\n****************\n Double Real X, Double Real Y\n******************\n') accuracyTests(real(X),real(Y),'dRdR'); fprintf('\n****************\n Double Real X, Double Complex Y\n******************\n') accuracyTests(real(X),Y,'dRdC'); fprintf('\n****************\n Double Complex X, Double Real Y\n******************\n') accuracyTests(X,real(Y),'dCdR'); fprintf('\n****************\n Double Complex X, Double Complex Y\n******************\n') accuracyTests(X,Y,'dCdC'); fprintf('\n****************\n Double Real X, Single Real Y\n******************\n') accuracyTests(real(X),single(real(Y)),'dRsR'); fprintf('\n****************\n Double Real X, Single Complex Y\n******************\n') accuracyTests(real(X),single(Y),'dRsC'); fprintf('\n****************\n Double Complex X, Single Real Y\n******************\n') accuracyTests(X,single(real(Y)),'dCsR'); fprintf('\n****************\n Double Complex X, Single Complex Y\n******************\n') accuracyTests(X,single(Y),'dCsC'); fprintf('\n****************\n Single Real X, Double Real Y\n******************\n') accuracyTests(single(real(X)),real(Y),'sRdR'); fprintf('\n****************\n Single Real X, Double Complex Y\n******************\n') accuracyTests(single(real(X)),Y,'sRdC'); fprintf('\n****************\n Single Complex X, Double Real Y\n******************\n') accuracyTests(single(X),real(Y),'sCdR'); fprintf('\n****************\n Single Complex X, Double Complex Y\n******************\n') accuracyTests(single(X),Y,'sCdC'); fprintf('\n****************\n Single Real X, Single Real Y\n******************\n') accuracyTests(single(real(X)),single(real(Y)),'sRsR'); fprintf('\n****************\n Single Real X, Single Complex Y\n******************\n') accuracyTests(single(real(X)),single(Y),'sRsC'); fprintf('\n****************\n Single Complex X, Single Real Y\n******************\n') accuracyTests(single(X),single(real(Y)),'sCsR'); fprintf('\n****************\n Single Complex X, Single Complex Y\n******************\n') accuracyTests(single(X),single(Y),'sCsC'); fprintf('All tests passed\n'); end % fprintf('------------------- Timing tests -------------------\n'); if ( ~isempty(strmatch('timing',testCases)) ) %Timing tests X=complex(randn(101,101,101),randn(101,101,101)); Y=complex(randn(101,101),randn(101,101)); fprintf('\n****************\n Real X, Real Y\n******************\n') timingTests(real(X),real(Y),'RR'); fprintf('\n****************\n Real X, Complex Y\n******************\n') timingTests(real(X),Y,'RC'); fprintf('\n****************\n Complex X, Real Y\n******************\n') timingTests(X,real(Y),'CR'); fprintf('\n****************\n Complex X, Complex Y\n******************\n') timingTests(X,Y,'CC'); end % fprintf('------------------- Scaling tests -------------------\n'); % scalingTests([32,64,128,256]); if( ~isempty(strmatch('blksz',testCases)) ) fprintf('------------------- Blksz tests -------------------\n'); blkSzTests([128 96 64 48 40 32 24 16 0],[128,256,512,1024,2048]); end return; function []=accuracyTests(X,Y,str) unitTest([str ' OuterProduct, [1],[2]'],tprod(X(:,1),1,Y(:,1),2,'m'),X(:,1)*Y(:,1).'); unitTest([str ' Inner product, [-1],[-1]'],tprod(X(:,1),-1,Y(:,1),-1,'m'),X(:,1).'*Y(:,1)); unitTest([str ' Matrix product, [1 -1],[-1 2]'],tprod(X(:,:,1),[1 -1],Y,[-1 2],'m'),X(:,:,1)*Y); unitTest([str ' transposed matrix product, [-1 1],[-1 2]'],tprod(X(:,:,1),[-1 1],Y,[-1 2],'m'),X(:,:,1).'*Y); unitTest([str ' Matrix frobenius norm, [-1 -2],[-1 -2]'],tprod(X(:,:,1),[-1 -2],Y,[-1 -2],'m'),sum(sum(X(:,:,1).*Y))); unitTest([str ' transposed matrix frobenius norm, [-1 -2],[-2 -1]'],tprod(X(:,:,1),[-1 -2],Y,[-2 -1],'m'),sum(sum(X(:,:,1).'.*Y))); unitTest([str ' ignored dims, [0 -2],[-2 2 1]'],tprod(Y(1,:),[0 -2],X(:,:,:),[-2 2 1],'m'),reshape(Y(1,:)*reshape(X,size(X,1),[]),size(X,2),size(X,3)).'); % Higher order matrix operations unitTest([str ' spatio-temporal filter [-1 -2 1],[-1 -2]'],tprod(X,[-1 -2 1],Y,[-1 -2],'m'),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1])); unitTest([str ' spatio-temporal filter (fallback) [-1 -2 1],[-1 -2]'],tprod(X,[-1 -2 1],Y,[-1 -2]),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1])); unitTest([str ' spatio-temporal filter (order) [-1 -2],[-1 -2 1]'],tprod(Y,[-1 -2],X,[-1 -2 1]),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1])); unitTest([str ' spatio-temporal filter (order) [-1 -2],[-1 -2 3]'],tprod(Y,[-1 -2],X,[-1 -2 3]),reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[1 1 size(X,3)])); unitTest([str ' transposed spatio-temporal filter [1 -2 -3],[-2 -3]'],tprod(X,[1 -2 -3],Y,[-2 -3],'m'),reshape(reshape(X,size(X,1),size(X,2)*size(X,3))*Y(:),[size(X,1) 1])); unitTest([str ' matrix-vector product [-1 1 2][-1]'],tprod(X,[-1 1 2],Y(:,1),[-1],'m'),reshape(Y(:,1).'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[size(X,2) size(X,3)])); unitTest([str ' spatial filter (fallback): [-1 2 3],[-1 1]'],tprod(X,[-1 2 3],Y,[-1 1]),reshape(Y.'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[size(Y,2) size(X,2) size(X,3)])); unitTest([str ' spatial filter: [-1 2 3],[-1 1]'],tprod(X,[-1 2 3],Y,[-1 1],'m'),reshape(Y.'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[size(Y,2) size(X,2) size(X,3)])); unitTest([str ' temporal filter [1 -2 3],[2 -2]'],tprod(X,[1 -2 3],Y(1,:),[2 -2],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2)); unitTest([str ' temporal filter [2 -2],[1 -2 3]'],tprod(Y(1,:),[2 -2],X,[1 -2 3],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2)); unitTest([str ' temporal filter [-2 2],[1 -2 3]'],tprod(Y(1,:).',[-2 2],X,[1 -2 3],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2)); unitTest([str ' temporal filter [-2 2],[1 -2 3]'],tprod(Y(1,:).',[-2 2],X,[1 -2 3],'m'),sum(X.*repmat(Y(1,:),[size(X,1) 1 size(X,3)]),2)); Xp=permute(X,[1 3 2]); unitTest([str ' blk-code [-1 1 -2][-1 2 -2]'],tprod(X,[-1 1 -2],X,[-1 2 -2],'m'),reshape(Xp,[],size(Xp,3)).'*reshape(Xp,[],size(Xp,3))); return; function []=timingTests(X,Y,str); % outer product simulation fprintf([str ' OuterProduct [1][2]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic; for i=1:1000; Z=tprod(X(:,1),1,Y(:,1),2); end fprintf('%30s %gs\n','tprod',toc/1000); % = .05 / .01 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic; for i=1:1000; Zm=tprod(X(:,1),1,Y(:,1),2,'m'); end fprintf('%30s %gs\n','tprod m',toc/1000); % = .05 / .01 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;T=X(:,1)*Y(:,1).';end; fprintf('%30s %gs\n','MATLAB',toc/1000); % = .03 / .01 % matrix product fprintf([str ' MatrixProduct [1 -1][-1 2]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;Z=tprod(X(:,:,1),[1 -1],Y,[-1 2]);end fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;Zm=tprod(X(:,:,1),[1 -1],Y,[-1 2],'m');end fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;T=X(:,:,1)*Y;end fprintf('%30s %gs\n','MATLAB',toc/1000);% = .17 / .06 % transposed matrix product simulation fprintf([str ' transposed Matrix Product [-1 1][2 -1]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;Z=tprod(X(:,:,1),[-1 1],Y,[2 -1]);end fprintf('%30s %gs\n','tprod',toc/1000);% =.3 / .06 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;Zm=tprod(X(:,:,1),[-1 1],Y,[2 -1],'m');end fprintf('%30s %gs\n','tprod m',toc/1000);% =.3 / .06 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic, for i=1:1000;T=X(:,:,1).'*Y.';end fprintf('%30s %gs\n','MATLAB',toc/1000); % =.17 / .06 % Higher order matrix operations % times: P3-m 1.8Ghz 2048k / P4 2.4Ghz 512k fprintf([str ' spatio-temporal filter [-1 -2 1] [-1 -2]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500;Z=tprod(X,[-1 -2 1],Y,[-1 -2]);end, fprintf('%30s %gs\n','tprod',toc/500);% =.26 / .18 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500;Zm=tprod(X,[-1 -2 1],Y,[-1 -2],'m');end, fprintf('%30s %gs\n','tprod m',toc/500);% =.26 / .18 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500;T=reshape(Y(:).'*reshape(X,size(X,1)*size(X,2),size(X,3)),[size(X,3) 1]);end, fprintf('%30s %gs\n','MATLAB',toc/500); %=.21 / .18 fprintf([str ' transposed spatio-temporal filter [1 -2 -3] [-2 -3]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50;Z=tprod(X,[1 -2 -3],Y,[-2 -3]);end, fprintf('%30s %gs\n','tprod',toc/50);% =.27 / .28 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50;Zm=tprod(X,[1 -2 -3],Y,[-2 -3],'m');end, fprintf('%30s %gs\n','tprod m',toc/50);% =.27 / .28 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50;T=reshape(reshape(X,size(X,1),size(X,2)*size(X,3))*Y(:),[size(X,1) 1]);end, fprintf('%30s %gs\n','MATLAB',toc/50); %=.24 / .26 % MATRIX vector product fprintf([str ' matrix-vector product [-1 1 2] [-1]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500; Z=tprod(X,[-1 1 2],Y(:,1),[-1]);end, fprintf('%30s %gs\n','tprod',toc/500); %=.27 / .26 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500; Zm=tprod(X,[-1 1 2],Y(:,1),[-1],'m');end, fprintf('%30s %gs\n','tprod m',toc/500); %=.27 / .26 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500; T=reshape(Y(:,1).'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[1 size(X,2) size(X,3)]);end, fprintf('%30s %gs\n','MATLAB (reshape)',toc/500);%=.21 / .28 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:500; T=zeros([size(X,1),1,size(X,3)]);for k=1:size(X,3); T(:,:,k)=Y(1,:)*X(:,:,k); end,end, fprintf('%30s %gs\n','MATLAB (loop)',toc/500); %=.49 / % spatial filter fprintf([str ' Spatial filter: [-1 2 3],[-1 1]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic;for i=1:500;Z=tprod(X,[-1 2 3],Y(:,1:2),[-1 1]);end; fprintf('%30s %gs\n','tprod',toc/500);%=.39/.37 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic;for i=1:500;Zm=tprod(X,[-1 2 3],Y(:,1:2),[-1 1],'m');end; fprintf('%30s %gs\n','tprod m',toc/500);%=.39/.37 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic;for i=1:500; T=reshape(Y(:,1:2).'*reshape(X,[size(X,1) size(X,2)*size(X,3)]),[2 size(X,2) size(X,3)]);end; fprintf('%30s %gs\n','MATLAB',toc/500); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic;for i=1:500;T=zeros(2,size(X,2),size(X,3));for k=1:size(X,3);T(:,:,k)=Y(:,1:2).'*X(:,:,k);end;end; fprintf('%30s %gs\n','MATLAB (loop)',toc/500); %=.76/.57 % temporal filter fprintf([str ' Temporal filter: [1 -2 3],[2 -2]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50; Z=tprod(X,[1 -2 3],Y,[2 -2]);end fprintf('%30s %gs\n','tprod',toc/50); %=.27 / .31 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50; T=zeros([size(X,1),size(Y,1),size(X,3)]);for k=1:size(X,3); T(:,:,k)=X(:,:,k)*Y(:,:).'; end,end, fprintf('%30s %gs\n','MATLAB (loop)',toc/50); %= .50 / %tic,for i=1:50; T=zeros([size(X,1),size(Y,1),size(X,3)]); for k=1:size(Y,1); T(:,k,:)=sum(X.*repmat(Y(k,:),[size(X,1) 1 size(X,3)]),2);end,end; %fprintf('%30s %gs\n','MATLAB (repmat)',toc/50); %=3.9 / 3.3 fprintf([str ' Temporal filter2: [1 -2 3],[-2 2]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50; Z=tprod(X,[1 -2 3],Y,[-2 2]);end fprintf('%30s %gs\n','tprod',toc/50); %=.27 / .31 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50; T=zeros([size(X,1),size(Y,1),size(X,3)]);for k=1:size(X,3); T(:,:,k)=X(:,:,k)*Y(:,:); end,end, fprintf('%30s %gs\n','MATLAB (loop)',toc/50); %= .50 / % Data Covariances fprintf([str ' Channel-covariance/trial(3) [1 -1 3] [2 -1 3]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic;for i=1:50;Z=tprod(X,[1 -1 3],[],[2 -1 3]);end; fprintf('%30s %gs\n','tprod',toc/50); %=8.36/7.6 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:50;T=zeros(size(X,1),size(X,1),size(X,3));for k=1:size(X,3); T(:,:,k)=X(:,:,k)*X(:,:,k)';end;end, fprintf('%30s %gs\n','MATLAB (loop)',toc/50); %=9.66/7.0 % N.B. --- aligned over dim 1 takes 2x longer! fprintf([str ' Channel-covariance/trial(1) [1 -1 2] [1 -1 3]\n']); A=complex(randn(size(X)),randn(size(X))); % flush cache? tic;for i=1:10;Z=tprod(X,[1 -1 2],[],[1 -1 3]);end; fprintf('%30s %gs\n','tprod',toc/10); %= /37.2 A=complex(randn(size(X)),randn(size(X))); % flush cache? tic,for i=1:10;T=zeros(size(X,1),size(X,1),size(X,3));for k=1:size(X,3);T(k,:,:)=shiftdim(X(k,:,:))'*shiftdim(X(k,:,:));end;end, fprintf('%30s %gs\n','MATLAB',toc/10); %=17.2/25.8 return; function []=scalingTests(Ns); % Scaling test fprintf('Simple test of the effect of the acc size\n'); for N=Ns; fprintf('X=[%d x %d]\n',N,N*N);X=randn(N,N*N);Y=randn(N*N,1); fprintf('[1 -1][-1]\n'); tic, for i=1:1000;Z=tprod(X,[1 -1],Y,[-1],'n');end fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06 tic, for i=1:1000;Z=tprod(X,[1 -1],Y,[-1],'mn');end fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06 end fprintf('Simple mat vs non mat tests\n'); for N=Ns; fprintf('N=%d\n',N);X=randn(N,N,N);Y=randn(N,N); fprintf('[1 -1 -2][-1 -2]\n'); tic, for i=1:1000;Z=tprod(X,[1 -1 -2],Y,[-1 -2]);end fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06 tic, for i=1:1000;Z=tprod(X,[1 -1 -2],Y,[-1 -2],'m');end fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06 fprintf('[-1 -2 1][-1 -2]\n'); tic, for i=1:1000;Z=tprod(X,[-1 -2 1],Y,[-1 -2]);end fprintf('%30s %gs\n','tprod',toc/1000);% = .28 / .06 tic, for i=1:1000;Z=tprod(X,[-1 -2 1],Y,[-1 -2],'m');end fprintf('%30s %gs\n','tprod m',toc/1000);% = .28 / .06 fprintf('[-1 2 3][-1 1]\n'); tic, for i=1:100;Z=tprod(X,[-1 2 3],Y,[-1 1]);end fprintf('%30s %gs\n','tprod',toc/100);% = .28 / .06 tic, for i=1:100;Z=tprod(X,[-1 2 3],Y,[-1 1],'m');end fprintf('%30s %gs\n','tprod m',toc/100);% = .28 / .06 end function []=blkSzTests(blkSzs,Ns); fprintf('Blksz optimisation tests\n'); %blkSzs=[64 48 40 32 24 16 0]; tptime=zeros(numel(blkSzs+2)); for N=Ns;%[128,256,512,1024,2048]; X=randn(N,N);Y=randn(size(X)); for i=1:5; % use tprod without matlab for b=1:numel(blkSzs); blkSz=blkSzs(b); clear T;T=randn(1024,1024); % clear cache tic,for j=1:3;tprod(X,[1 -1],Y,[-1 2],'mn',blkSz);end; tptime(b)=tptime(b)+toc; end; % tprod with defaults & matlab if possible clear T;T=randn(1024,1024); % clear cache tic,for j=1:3;tprod(X,[1 -1],Y,[-1 2]);end; tptime(numel(blkSzs)+1)=tptime(numel(blkSzs)+1)+toc; % the pure matlab code clear T;T=randn(1024,1024); % clear cache tic,for j=1:3; Z=X*Y;end; tptime(numel(blkSzs)+2)=tptime(numel(blkSzs)+2)+toc; end; for j=1:numel(blkSzs); fprintf('blk=%d, N = %d -> %gs \n',blkSzs(j),N,tptime(j)); end fprintf('tprod, N = %d -> %gs \n',N,tptime(numel(blkSzs)+1)); fprintf('MATLAB, N = %d -> %gs \n',N,tptime(numel(blkSzs)+2)); fprintf('\n'); end; return; % simple function to check the accuracy of a test and report the result function [testRes,trueRes,diff]=unitTest(testStr,testRes,trueRes,tol) global DEBUG; if ( nargin < 4 ) if ( isa(trueRes,'double') ) tol=1e-11; elseif ( isa(trueRes,'single') ) tol=1e-5; elseif ( isa(trueRes,'integer') ) warning('Integer inputs!'); tol=1; elseif ( isa(trueRes,'logical') ) tol=0; end end diff=abs(testRes-trueRes)./max(1,abs(testRes+trueRes)); fprintf('%60s = %0.3g ',testStr,max(diff(:))); if ( max(diff(:)) > tol ) if ( exist('mimage') ) mimage(squeeze(testRes),squeeze(trueRes),squeeze(diff)) end fprintf(' **FAILED***\n'); if ( DEBUG>0 ) warning([testStr ': failed!']), fprintf('Type return to continue\b');keyboard; end; else fprintf('Passed \n'); end
github
kaltwang/2015doubly-master
etprod.m
.m
2015doubly-master/code/toolboxes/tprod/etprod.m
3,882
utf_8
2f529c6b86be54251a59ae7f9db81d98
function [C,Atp,Btp]=etprod(Cidx,A,Aidx,B,Bidx) % tprod wrapper to make calls more similar to Einstein Summation Convention % % [C,Atp,Btp]=etprod(Cidx,A,Aidx,B,Bidx); % Wrapper function for tprod to map between Einstein summation % convetion (ESC) and tprod's numeric calling convention e.g. % 1) Matrix Matrix product: % ESC: C_ij = A_ik B_kj <=> C = etprod('ij',A,'ik',B,'kj'); % 2) Vector outer product % ESC: C_ij = A_i B_j <=> C = etprod('ij',A,'i',B,'j'); % A,B col vec % C = etprod('ij',A,' i',B,' j'); % A,B row vec % N.B. use spaces ' ' to indicate empty/ignored *singlenton* dimensions % 3) Matrix vector product % ESC: C_i = A_ik B_k <=> C = etprod('i',A,'ik',B,'k'); % 4) Spatial Filtering % ESC: FX_fte = A_cte B_cf <=> C = etprod('fte',A,'cte',B,'cf') % OR: % C = etprod({'feat','time','epoch'},A,{'ch','time','epoch'},B,{'ch','feat'}) % % Inputs: % Cidx -- the list of dimension labels for the output % A -- [n-d] array of the A values % Aidx -- [ndims(A) x 1] (array, string, or cell array of strings) % list of dimension labels for A array % B -- [m-d] array of the B values % Bidx -- [ndims(B) x 1] (array, string or cell array of strings) % list of dimension labels for B array % Outputs: % C -- [p-d] array of output values. Dimension labels are as in Cidx % Atp -- [ndims(A) x 1] A's dimspec as used in the core tprod call % Btp -- [ndims(B) x 1] B's dimspec as used in the core tprod call % % See Also: tprod, tprod_testcases % % Copyright 2006- by Jason D.R. Farquhar ([email protected]) % Permission is granted for anyone to copy, use, or modify this % software and accompanying documents for any uncommercial % purposes, provided this copyright notice is retained, and note is % made of any changes that have been made. This software and % documents are distributed without any warranty, express or % implied if ( iscell(Aidx)~=iscell(Bidx) || iscell(Cidx)~=iscell(Aidx) ) error('Aidx,Bidx and Cidx cannot be of different types, all cells or arrays'); end Atp = zeros(size(Aidx)); Btp = zeros(size(Bidx)); % Map inner product dimensions, to unique *negative* index for i=1:numel(Aidx) if ( iscell(Aidx) ) Bmatch = strcmp(Aidx{i}, Bidx); else Bmatch = (Aidx(i)==Bidx); end if ( any(Bmatch) ) Btp(Bmatch)=-i; Atp(i)=-i; end; end % Spaces/empty values in the input become 0's, i.e. ignored dimensions if ( iscell(Aidx) ) Btp(strcmp(' ',Bidx))=0;Btp(strcmp('',Bidx))=0; Atp(strcmp(' ',Aidx))=0;Atp(strcmp('',Aidx))=0; else Btp(' '==Bidx)=0; Atp(' '==Aidx)=0; end % Map to output position numbers, to correct *positive* index for i=1:numel(Cidx); if ( iscell(Aidx) ) Atp(strcmp(Cidx{i}, Aidx))=i; Btp(strcmp(Cidx{i}, Bidx))=i; else Atp(Cidx(i)==Aidx)=i; Btp(Cidx(i)==Bidx)=i; end end % now do the tprod call. global LOG; if ( isempty(LOG) ) LOG=0; end; % N.B. set LOG to valid fd to log if ( LOG>0 ) fprintf(LOG,'tprod(%s,[%s], %s,[%s])\n',mxPrint(A),sprintf('%d ',Atp),mxPrint(B),sprintf('%d ',Btp)); end C=tprod(A,Atp,B,Btp,'n'); return; function [str]=mxPrint(mx) sz=size(mx); if ( isa(mx,'double') ) str='d'; else str='s'; end; if ( isreal(mx)) str=[str 'r']; else str=[str 'c']; end; str=[str ' [' sprintf('%dx',sz(1:end-1)) sprintf('%d',sz(end)) '] ']; return; %---------------------------------------------------------------------------- function testCase(); A=randn(10,10); B=randn(10,10); C2 = tprod(A,[1 -2],B,[-2 2]); C = etprod('ij',A,'ik',B,'kj'); mad(C2,C) C = etprod({'i' 'j'},A,{'i' 'k'},B,{'k' 'j'}); A=randn(100,100);B=randn(100,100,4); C3 = tprod(A,[-1 -2],B,[-1 -2 3]); C3 = tprod(B,[-1 -2 1],A,[-1 -2]); C3 = tprod(A,[-1 -2],B,[-1 -2 1]); C = etprod('3',A,'12',B,'123'); C = etprod([3],A,[1 2],B,[1 2 3]); C = etprod({'3'},A,{'1' '2'},B,{'1' '2' '3'})
github
bryanbeyer/Scour_3D-master
getForce.m
.m
Scour_3D-master/getForce.m
837
utf_8
90e0c595340dfef15a868406befa1162
% written by: Stu Blair % date: Jan 16, 2012 % purpose: get force vector for all solid nodes in an LBM domain function F = getForce(solidNodes,streamTgtMat,LatticeSpeeds,bb_spd,fIn) % determine number of solid nodes numSolidNodes=length(solidNodes); %deterimne number of dimensions [numDim,numSpd]=size(LatticeSpeeds); F = zeros(numSolidNodes,numDim); % get forceContribMat - map of force contributors for each solid node forceContribMat = zeros(numSolidNodes,numSpd); for spd = 2:numSpd % stationary speed never contributes forceContribMat(:,spd)=~ismember(streamTgtMat(solidNodes,spd),solidNodes); end e_alpha = LatticeSpeeds'; for spd=2:numSpd f1 = fIn(solidNodes,spd)+fIn(streamTgtMat(solidNodes,spd),bb_spd(spd)); f2 = (f1).*forceContribMat(:,spd); f3 = kron(f2,e_alpha(bb_spd(spd),:)); F = F + f3; end
github
bryanbeyer/Scour_3D-master
D2Q9_lattice_parameters.m
.m
Scour_3D-master/D2Q9_lattice_parameters.m
227
utf_8
bddb7b96f31f4a63bcc5296912d9fed3
% function [w, ex, ey,bb_spd] = D2Q9_lattice_parameters() w = [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]; ex = [0, 1, 0, -1, 0, 1, -1, -1, 1]; ey = [0, 0, 1, 0, -1, 1, 1, -1, -1]; bb_spd = [1, 4, 5, 2, 3, 8, 9, 6, 7];
github
bryanbeyer/Scour_3D-master
RecMesh.m
.m
Scour_3D-master/RecMesh.m
2,177
utf_8
89522f9e5af20eb01c2d3e8572b58e49
% function [GCOORD,NODES,BOUNDARIES]= RecMesh(x_left,x_right,y_bottom,y_top,Nx,Ny) % % Written by: Stu Blair % Date: 2/9/2010 % Purpose: provide mesh definition data structures for a structured, % uniform rectangular mesh to be used with ME 4612 final project function [GCOORD,NODES,BOUNDARIES] = RecMesh(x_left,x_right,y_bottom,y_top,Nx,Ny) x_space = linspace(x_left,x_right,Nx); y_space = linspace(y_bottom,y_top,Ny); [X,Y] = meshgrid(x_space,y_space); nnodes = Nx*Ny; nnel = 4; %constant for rectangular elements nel = (Nx-1)*(Ny - 1); GCOORD = zeros(nnodes,2); NODES = zeros(nel,nnel); % === form the GCOORD array =============================================== index = 0; for j = 1:Ny for i = 1:Nx index = index+1; GCOORD(index,1) = X(j,i); GCOORD(index,2) = Y(j,i); end end % ========================================================================= % ====== Form the NODES array ============================================= for j = 1:(Ny - 1) for i = 1:(Nx - 1) ele_index = (j-1)*(Nx-1)+i; node1 = (j-1)*Nx + i; node2 = node1+1; node3 = node2+Nx; node4 = node3-1; NODES(ele_index,1) = node1; NODES(ele_index,2) = node2; NODES(ele_index,3) = node3; NODES(ele_index,4) = node4; end end % ========================================================================= BOUNDARIES.bottom = 1:Nx; %left-to-right BOUNDARIES.right = Nx:Nx:Nx*(Ny); %bottom-to-top BOUNDARIES.top = Nx*Ny:-1:(Nx*(Ny-1)+1);%right-to-left BOUNDARIES.left = (Nx*(Ny-1)+1):-Nx:1;%top-to-bottom % this array of BOUNDARIES will have ALL of the nodes on the given % boundary. This is important for carrying out the boundary integrals on % each side. Somehow, in the application of these BCs, I will have to deal % with the fact that some nodes are shared between boundaries. For this % simple geometry, the first and last node on each boundary is shared. % based on the logic of forming this array, the nodes are ordered such that % the domain is encircled counter-clockwise starting at the bottom % left-hand corner.
github
bryanbeyer/Scour_3D-master
SetInletMacroscopicBCPoiss.m
.m
Scour_3D-master/SetInletMacroscopicBCPoiss.m
526
utf_8
5d29f4bdb2ab505f5a90c5e46ef420ea
% appropriate for D2Q9 grids only function [ux,uy,rho]=SetInletMacroscopicBCPoiss(ux,uy,rho,fIn,u_bc,b,... gcoord,inlet_node_list) % set macroscopic inlet boundary conditions ux(inlet_node_list) = (u_bc)*(1-((gcoord(inlet_node_list,2)-b).^2)./(b*b)); uy(inlet_node_list) = 0; rho(inlet_node_list) = 1./(1-ux(inlet_node_list)).*(... fIn(inlet_node_list,1)+fIn(inlet_node_list,3)+fIn(inlet_node_list,5)... +2*(fIn(inlet_node_list,4)+fIn(inlet_node_list,7)+... fIn(inlet_node_list,8)));
github
google/gps-measurement-tools-master
Utc2Gps.m
.m
gps-measurement-tools-master/opensource/Utc2Gps.m
3,937
utf_8
0593bea672dfa8778026636946dd5424
function [gpsTime,fctSeconds] = Utc2Gps(utcTime) % [gpsTime,fctSeconds] = Utc2Gps(utcTime) % Convert the UTC date and time to GPS week & seconds % % Inputs: % utcTime: [mx6] matrix % utcTime(i,:) = [year,month,day,hours,minutes,seconds] % year must be specified using four digits, e.g. 1994 % year valid range: 1980 <= year <= 2099 % % Outputs: % gpsTime: [mx2] matrix [gpsWeek, gpsSeconds], % gpsWeek = number of weeks since GPS epoch % gpsSeconds = number of seconds into gpsWeek, % fctSeconds: full cycle time = seconds since GPS epoch (1980/01/06 00:00 UTC) % Other functions needed: JulianDay.m, LeapSeconds.m %initialize outputs gpsTime=[]; fctSeconds=[]; [bOk]=CheckUtcTimeInputs(utcTime); if ~bOk return end HOURSEC = 3600; MINSEC = 60; daysSinceEpoch = floor(JulianDay(utcTime) - GpsConstants.GPSEPOCHJD); gpsWeek = fix(daysSinceEpoch/7); dayofweek = rem(daysSinceEpoch,7); % calculate the number of seconds since Sunday at midnight: gpsSeconds = dayofweek*GpsConstants.DAYSEC + utcTime(:,4)*HOURSEC + ... utcTime(:,5)*MINSEC + utcTime(:,6); gpsWeek = gpsWeek + fix(gpsSeconds/GpsConstants.WEEKSEC); gpsSeconds = rem(gpsSeconds,GpsConstants.WEEKSEC); % now add leapseconds leapSecs = LeapSeconds(utcTime); fctSeconds = gpsWeek(:)*GpsConstants.WEEKSEC + gpsSeconds(:) + leapSecs(:); % when a leap second happens, utc time stands still for one second, % so gps seconds get further ahead, so we add leapsecs in going to gps time gpsWeek = fix(fctSeconds/GpsConstants.WEEKSEC); iZ = gpsWeek==0; gpsSeconds(iZ) = fctSeconds(iZ); %set gpsSeconds directly, because rem(x,0)=NaN gpsSeconds(~iZ) = rem(fctSeconds(~iZ),gpsWeek(~iZ)*GpsConstants.WEEKSEC); gpsTime=[gpsWeek,gpsSeconds]; assert(all(fctSeconds==gpsWeek*GpsConstants.WEEKSEC+gpsSeconds),... 'Error in computing gpsWeek, gpsSeconds'); end %end of function Utc2Gps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [bOk] = CheckUtcTimeInputs(utcTime) %utility function for Utc2Gps %check inputs if size(utcTime,2)~=6 error('utcTime must have 6 columns') end %check that year, month & day are integers x = utcTime(:,1:3); if any(any( (x-fix(x)) ~= 0 )) error('year,month & day must be integers') end %check that year is in valid range if ( any(utcTime(:,1)<1980) || any(utcTime(:,1)>2099) ) error('year must have values in the range: [1980:2099]') end %check validity of month, day and time if (any(utcTime(:,2))<1 || any(utcTime(:,2))>12 ) error('The month in utcTime must be a number in the set [1:12]') end if (any(utcTime(:,3)<1) || any(utcTime(:,3)>31)) error('The day in utcTime must be a number in the set [1:31]') end if (any(utcTime(:,4)<0) || any(utcTime(:,4)>=24)) error('The hour in utcTime must be in the range [0,24)') end if (any(utcTime(:,5)<0) || any(utcTime(:,5)>=60)) error('The minutes in utcTime must be in the range [0,60)') end if (any(utcTime(:,6)<0) || any(utcTime(:,6)>60)) %Note: seconds can equal 60 exactly, on the second a leap second is added error('The seconds in utcTime must be in the range [0,60]') end bOk = true; end %end of function CheckUtcTimeInputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % %     http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
WlsPvt.m
.m
gps-measurement-tools-master/opensource/WlsPvt.m
6,430
utf_8
0ccc707de9a099046e5ba3aaaf56badd
function [xHat,z,svPos,H,Wpr,Wrr] = WlsPvt(prs,gpsEph,xo) % [xHat,z,svPos,H,Wpr,Wrr] = WlsPvt(prs,gpsEph,xo) % calculate a weighted least squares PVT solution, xHat % given pseudoranges, pr rates, and initial state % % Inputs: % prs: matrix of raw pseudoranges, and pr rates, each row of the form: % [trxWeek,trxSeconds,sv,prMeters,prSigmaMeters,prrMps,prrSigmaMps] % trxWeek, trxSeconds: Rx time of measurement % where trxSeconds = seconds in the current GPS week % sv: satellite id number % prMeters, prSigmaMeters: pseudorange and standard deviation (meters) % prrMps, prrSigmaMps: pseudorange rate and standard deviation (m/s) % gpsEph: matching vector of GPS ephemeris struct, defined in ReadRinexNav % xo: initial (previous) state, [x,y,z,bc,xDot,yDot,xDot,bcDot]' % in ECEF coordinates(meters and m/s) % % Outputs: xHat: estimate of state update % z = [zPr; zPrr] a-posteriori residuals (measured-calculated) % svPos: matrix of calculated sv positions and sv clock error: % [sv prn, x,y,z (ecef m), dtsv (s),xDot,yDot,zDot, dtsvDot] % H: H observation matrix corresponding to svs in svPos(:,1) % Wpr,Wrr Weights used in WlsPvt = 1/diag(sigma measurements) % use these matrices to compute variances of xHat % % The PVT solution = xo + xHat, in ECEF coordinates % For unweighted solution, set all sigmas = 1 %Author: Frank van Diggelen %Open Source code for processing Android GNSS Measurements jWk=1; jSec=2; jSv=3; jPr=4; jPrSig=5; jPrr=6; jPrrSig=7;%index of columns [bOk,numVal] = checkInputs(prs, gpsEph, xo); if ~bOk error('inputs not right size, or not properly aligned with each other') end xHat=[]; z=[]; H=[]; svPos=[]; xyz0 = xo(1:3); bc = xo(4); if numVal<4 return end ttxWeek = prs(:,jWk); %week of tx. Note - we could get a rollover, when ttx_sv %goes negative, and it is handled in GpsEph2Pvt, where we work with fct ttxSeconds = prs(:,jSec) - prs(:,jPr)/GpsConstants.LIGHTSPEED; %ttx by sv clock % this is accurate satellite time of tx, because we use actual pseudo-ranges % here, not corrected ranges % write the equation for pseudorange to see the rx clock error exactly cancel % to get precise GPS time: we subtract the satellite clock error from sv time, % as done next: dtsv = GpsEph2Dtsv(gpsEph,ttxSeconds); dtsv = dtsv(:); %make into a column for compatibility with other time vectors ttx = ttxSeconds - dtsv; %subtract dtsv from sv time to get true gps time %calculate satellite position at ttx [svXyzTtx,dtsv,svXyzDot,dtsvDot]=GpsEph2Pvt(gpsEph,[ttxWeek,ttx]); svXyzTrx = svXyzTtx; %initialize svXyz at time of reception %Compute weights --------------------------------------------------- Wpr = diag(1./prs(:,jPrSig)); Wrr = diag(1./prs(:,jPrrSig)); %iterate on this next part tilL change in pos & line of sight vectors converge xHat=zeros(4,1); dx=xHat+inf; whileCount=0; maxWhileCount=100; %we expect the while loop to converge in < 10 iterations, even with initial %position on other side of the Earth (see Stanford course AA272C "Intro to GPS") while norm(dx) > GnssThresholds.MAXDELPOSFORNAVM whileCount=whileCount+1; assert(whileCount < maxWhileCount,... 'while loop did not converge after %d iterations',whileCount); for i=1:length(gpsEph) % calculate tflight from, bc and dtsv dtflight = (prs(i,jPr)-bc)/GpsConstants.LIGHTSPEED + dtsv(i); % Use of bc: bc>0 <=> pr too big <=> tflight too big. % i.e. trx = trxu - bc/GpsConstants.LIGHTSPEED % Use of dtsv: dtsv>0 <=> pr too small <=> tflight too small. % i.e ttx = ttxsv - dtsv svXyzTrx(i,:) = FlightTimeCorrection(svXyzTtx(i,:), dtflight); end %calculate line of sight vectors and ranges from satellite to xo v = xyz0(:)*ones(1,numVal,1) - svXyzTrx';%v(:,i) = vector from sv(i) to xyz0 range = sqrt( sum(v.^2) ); v = v./(ones(3,1)*range); % line of sight unit vectors from sv to xo svPos=[prs(:,3),svXyzTrx,dtsv(:)]; %calculate the a-priori range residual prHat = range(:) + bc -GpsConstants.LIGHTSPEED*dtsv; % Use of bc: bc>0 <=> pr too big <=> rangehat too big % Use of dtsv: dtsv>0 <=> pr too small zPr = prs(:,jPr)-prHat; H = [v', ones(numVal,1)]; % H matrix = [unit vector,1] %z = Hx, premultiply by W: Wz = WHx, and solve for x: dx = pinv(Wpr*H)*Wpr*zPr; % update xo, xhat and bc xHat=xHat+dx; xyz0=xyz0(:)+dx(1:3); bc=bc+dx(4); %Now calculate the a-posteriori range residual zPr = zPr-H*dx; end % Compute velocities --------------------------------------------------------- rrMps = zeros(numVal,1); for i=1:numVal %range rate = [satellite velocity] dot product [los from xo to sv] rrMps(i) = -svXyzDot(i,:)*v(:,i); end prrHat = rrMps + xo(8) - GpsConstants.LIGHTSPEED*dtsvDot; zPrr = prs(:,jPrr)-prrHat; %z = Hx, premultiply by W: Wz = WHx, and solve for x: vHat = pinv(Wrr*H)*Wrr*zPrr; xHat = [xHat;vHat]; z = [zPr;zPrr]; end %end of function WlsPvt %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [bOk,numVal] = checkInputs(prs, gpsEph, xo) %utility function for WlsPvt jWk=1; jSec=2; jSv=3; jPr=4; jPrSig=5; jPrr=6; jPrrSig=7;%index of columns bOk=false; %check inputs numVal=size(prs,1); if (max(prs(:,jSec))-min(prs(:,jSec)))> eps return elseif length(gpsEph)~=numVal return elseif any(prs(:,jSv) ~= [gpsEph.PRN]') return elseif any(size(xo) ~= [8,1]) return elseif size(prs,2)~=7 return else bOk = true; end %We insist that gpsEph and prs are aligned first. %ClosestGpsEph.m does this, and passes back indices for prs - this is the way to %do it right, so we don't have nested searches for svId end %end of function checkInputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % %     http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
Gps2Utc.m
.m
gps-measurement-tools-master/opensource/Gps2Utc.m
5,737
utf_8
32fa6bc33bc0de2d2058510f5773395b
function [utcTime] = Gps2Utc(gpsTime,fctSeconds) % [utcTime] = Gps2Utc(gpsTime,[fctSeconds]) % Convert GPS time (week & seconds), or Full Cycle Time (seconds) to UTC % % Input: gpsTime, [mx2] matrix [gpsWeek, gpsSeconds], % fctSeconds, [optional] Full Cycle Time (seconds) % % Outputs: utcTime, [mx6] matrix = [year,month,day,hours,minutes,seconds] % % If fctSeconds is provided, gpsTime is ignored % % Valid range of inputs: % gps times corresponding to 1980/6/1 <= time < 2100/1/1 % i.e. [0,0] <= gpsTime < [6260, 432000] % 0 <= fctSeconds < 3786480000 % % See also: Utc2Gps % Other functions needed: LeapSeconds.m %Author: Frank van Diggelen %Open Source code for processing Android GNSS Measurements %Algorithm for handling leap seconds: % When a leap second happens, utc time stands still for one second, so % gps seconds get further ahead, so we subtract leapSecs to move from gps time % % 1) convert gpsTime to time = [yyyy,mm,dd,hh,mm,ss] (with no leap seconds) % 2) look up leap seconds for time: ls = LeapSeconds(time); % This is (usually) the correct leap second value. Unless: % If (utcTime=time) and (utcTime=time+ls) straddle a leap second % then we need to add 1 to ls % So, after step 2) ... % 3) convert gpsTime-ls to timeMLs % 4) look up leap seconds: ls1 = LeapSeconds(timeMLs); % 5) if ls1~=ls, convert (gpsTime-ls1) to UTC Time %% Check inputs if nargin<2 && size(gpsTime,2)~=2 error('gpsTime must have two columns') end if nargin<2 fctSeconds = gpsTime*[GpsConstants.WEEKSEC; 1]; end %fct at 2100/1/1 00:00:00, not counting leap seconds: fct2100 = [6260, 432000]*[GpsConstants.WEEKSEC; 1]; if any(fctSeconds<0) || any (fctSeconds >= fct2100) error('gpsTime must be in this range: [0,0] <= gpsTime < [6260, 432000]'); end %% Finished checks %from now on work with fct %% Apply algorithm for handling leaps seconds % 1) convert gpsTime to time = [yyyy,mm,dd,hh,mm,ss] (with no leap seconds) time = Fct2Ymdhms(fctSeconds); % 2) look up leap seconds for time: ls = LeapSeconds(time); ls = LeapSeconds(time); % 3) convert gpsTime-ls to timeMLs timeMLs = Fct2Ymdhms(fctSeconds-ls); % 4) look up leap seconds: ls1 = LeapSeconds(timeMLs); ls1 = LeapSeconds(timeMLs); % 5) if ls1~=ls, convert (gpsTime-ls1) to UTC Time if all(ls1==ls) utcTime = timeMLs; else utcTime = Fct2Ymdhms(fctSeconds-ls1); end % NOTE: % Gps2Utc.m doesn't produce 23:59:60, at a leap second. % Instead, as the leap second occurs, the Gps2Utc.m sequence of % UTC hh:mm:ss is 23:59:59, 00:00:00, 00:00:00 % and we keep it like that for code simplicity. % Here are a sequence of UTC and GPS times around a leap second: % formalUtcTimes = [1981 12 31 23 59 59; 1981 12 31 23 59 60; 1982 1 1 0 0 0]; % gpsTimes = [103 431999; 103 432000; 103 432001]; % >> Gps2Utc(gpsTimes) % ans = % 1981 12 31 23 59 59 % 1982 1 1 0 0 0 % 1982 1 1 0 0 0 % If you want to change this you could check LeapSeconds.m to see if you're % exactly on the addition of a leap second, and then change the UTC format % to include the '60' seconds end %end of function Gps2Utc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function time = Fct2Ymdhms(fctSeconds) %Utility function for Gps2Utc %Convert GPS full cycle time to [yyyy,mm,dd,hh,mm,ss.s] format HOURSEC = 3600; MINSEC = 60; monthDays=[31,28,31,30,31,30,31,31,30,31,30,31];%days each month (not leap year) m=length(fctSeconds); days = floor(fctSeconds / GpsConstants.DAYSEC) + 6;%days since 1980/1/1 years=zeros(m,1)+1980; %decrement days by a year at a time, until we have calculated the year: leap=ones(m,1); %1980 was a leap year while (any(days > (leap+365))) I = find(days > (leap+365) ); days(I) = days(I) - (leap(I) + 365); years(I)=years(I)+1; leap(I) = (rem(years(I),4) == 0); % leap = 1 on a leap year, 0 otherwise % This works from 1901 till 2099, 2100 isn't a leap year (2000 is). % Calculate the year, ie time(1) end, time=zeros(m,6);%initialize matrix time(:,1)=years; %decrement days by a month at a time, until we have calculated the month % Calculate the month, ie time(:,2) % Loop through m: for i=1:m month = 1; if (rem(years(i),4) == 0) %This works from 1901 till 2099 monthDays(2)=29; %Make February have 29 days in a leap year else monthDays(2)=28; end while (days(i) > monthDays(month)) days(i) = days(i)-monthDays(month); month = month+1; end time(i,2)=month; end time(:,3) = days; sinceMidnightSeconds = rem(fctSeconds, GpsConstants.DAYSEC); time(:,4) = fix(sinceMidnightSeconds/HOURSEC); lastHourSeconds = rem(sinceMidnightSeconds, HOURSEC); time(:,5) = fix(lastHourSeconds/MINSEC); time(:,6) = rem(lastHourSeconds,MINSEC); end %end of function Fct2Ymdhms %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % %     http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
ReadGnssLogger.m
.m
gps-measurement-tools-master/opensource/ReadGnssLogger.m
16,712
utf_8
20ec3397745d7b547f780418f11c351c
function [gnssRaw,gnssAnalysis] = ReadGnssLogger(dirName,fileName,dataFilter,gnssAnalysis) %% [gnssRaw,gnssAnalysis]=ReadGnssLogger(dirName,fileName,[dataFilter],[gnssAnalysis]); % Read the log file created by Gnss Logger App in Android % Compatible with Android release N % % Input: % dirName = string with directory of fileName, % e.g. '~/Documents/MATLAB/Pseudoranges/2016-03-28' % fileName = string with filename % optional inputs: % [dataFilter], nx2 cell array of pairs of strings, % dataFilter{i,1} is a string with one of 'Raw' header values from the % GnssLogger log file e.g. 'ConstellationType' % dataFilter{i,2} is a string with a valid matlab expression, containing % the header value, e.g. 'ConstellationType==1' % See SetDataFilter.m for full rules and examples of dataFilter. % [gnssAnalysis] structure containing analysis, incl list of missing fields % % Output: % gnssRaw, all GnssClock and GnssMeasurement fields from log file, including: % .TimeNanos (int64) % .FullBiasNanos (int64) % ... % .Svid % .ReceivedSvTimeNanos (int64) % .PseudorangeRateMetersPerSecond % ... % and data fields created by this function: % .allRxMillis (int64), full cycle time of measurement (milliseconds) % accurate to one millisecond, it is convenient for matching up time % tags. For computing accurate location, etc, you must still use % TimeNanos and gnssMeas.tRxSeconds % % gnssAnalysis, structure containing analysis, including list of missing fields % % see also: SetDataFilter, ProcessGnssMeas %Author: Frank van Diggelen %Open Source code for processing Android GNSS Measurements %factored into a few main sub-functions: % MakeCsv() % ReadRawCsv() % FilterData() % PackGnssRaw() % CheckGnssClock() % ReportMissingFields() %% Initialize outputs and inputs gnssRaw = []; gnssAnalysis.GnssClockErrors = 'GnssClock Errors.'; gnssAnalysis.GnssMeasurementErrors = 'GnssMeasurement Errors.'; gnssAnalysis.ApiPassFail = ''; if nargin<3, dataFilter = []; end %% check we have the right kind of fileName extension = fileName(end-3:end); if ~any(strcmp(extension,{'.txt','.csv'})) error('Expecting file name of the form "*.txt", or "*.csv"'); end %% read log file into a numeric matrix 'S', and a cell array 'header' rawCsvFile = MakeCsv(dirName,fileName); [header,C] = ReadRawCsv(rawCsvFile); %% apply dataFilter [bOk] = CheckDataFilter(dataFilter,header); if ~bOk, return, end [bOk,C] = FilterData(C,dataFilter,header); if ~bOk, return, end %% pack data into gnssRaw structure [gnssRaw,missing] = PackGnssRaw(C,header); %% check clock and measurements [gnssRaw,gnssAnalysis] = CheckGnssClock(gnssRaw,gnssAnalysis); gnssAnalysis = ReportMissingFields(gnssAnalysis,missing); end %end of function ReadGnssLogger %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function csvFileName = MakeCsv(dirName,fileName) %% make csv file, if necessary. %And return extended csv file name (i.e. with full path in the name) %TBD, maybe, do this entirely with Matlab read/write functions, make independent %from grep and sed %make extended file name if dirName(end)~='/' dirName = [dirName,'/']; %add / end csvFileName = [dirName,'raw.csv']; if strcmp(fileName(end-3:end),'.csv') return %input file is a csv file, nothing more to do here end extendedFileName = [dirName,fileName]; fprintf('\nReading file %s\n',extendedFileName) %% read version txtfileID = fopen(extendedFileName,'r'); if txtfileID<0 error('file ''%s'' not found',extendedFileName); end line=''; while isempty(strfind(lower(line),'version')) line = fgetl(txtfileID); if ~ischar(line) %eof or error occurred if isempty(line) error('\nError occurred while reading file %s\n',fileName) end break end end if line==-1 fprintf('\nCould not find "Version" in input file %s\n',fileName) return end %look for the beginning of the version number, e.g. 1.4.0.0 iDigits = regexp(line,'\d'); %index into the first number found in line v = sscanf(line(iDigits(1):end),'%d.%d.%d.%d',4); if length(v)<4 v(end+1:4,1)=0; %make v into a length 4 column vector end %Now extract the platform k = strfind(line,'Platform:'); if any(k) sPlatform = line(k+9:end); else sPlatform = '';%set empty if 'Platform:' not found end if isempty(strfind(sPlatform,'N')) %add || strfind(platform,'O') and so on for future platforms fprintf('\nThis version of ReadGnssLogger supports Android N\n') fprintf('WARNING: did not find "Platform" type in log file, expected "Platform: N"\n') fprintf('Please Update GnssLogger\n') sPlatform = 'N';%assume version N end v1 = [1;4;0;0]; sCompare = CompareVersions(v,v1); %Note, we need to check both the logger version (e.g. v1.0.0.0) and the %Platform version "e.g. Platform: N" for any logic based on version if strcmp(sCompare,'before') fprintf('\nThis version of ReadGnssLogger supports v1.4.0.0 onwards\n') error('Found "%s" in log file',line) end %% write csv file with header and numbers %We could use grep and sed to make a csv file %fclose(txtfileID); % system(['grep -e ''Raw,'' ',extendedFileName,... % ' | sed -e ''s/true/1/'' -e ''s/false/0/'' -e ''s/# //'' ',... % ' -e ''s/Raw,//'' ',... %replace "Raw," with nothing % '-e ''s/(//g'' -e ''s/)//g'' > ',csvFileName]); % % On versions from v1.4.0.0 N: % grep on "Raw," replace alpha characters amongst the numbers, % remove parentheses in the header, % note use of /g for "global" so sed acts on every occurrence in each line % csv file "prs.csv" now contains a header row followed by numerical data % %But we'll do the same thing using Matlab, so people don't need grep/sed: csvfileID = fopen(csvFileName,'w'); while ischar(line) line = fgetl(txtfileID); if line == -1 break endif if isempty(strfind(line,'Raw,')) continue %skip to next line end %Now 'line' contains the raw measurements header or data line = strrep(line,'Raw,',''); line = strrep(line,'#',''); line = strrep(line,' ','');%remove '#' and spaces %from versions v1.4.0.0 N we actually dont need to look for '(',')','true' %or 'false' anymore. So we are done with replacing. That was easy. fprintf(csvfileID,'%s\n',line); end fclose(txtfileID); fclose(csvfileID); if isempty(line) %line should be -1 at eof error('\nError occurred while reading file %s\n',fileName) end end %end of function MakeCsv %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [header,C] = ReadRawCsv(rawCsvFile) %% read data from csv file into a numerical matrix 'S' and cell array 'header' %Note csvread fills ,, with zero, so we will need a lower level read function to %tell the difference between empty fields and valid zeros %T = readtable(csvFileName,'FileType','text'); %use this to debug %read header row: fid = fopen(rawCsvFile); if fid<0 error('file ''%s'' not found',rawCsvFile); end headerString = fgetl(fid); if isempty(strfind(headerString,'TimeNanos')) error('\n"TimeNanos" string not found in file %s\n',fileName) end header=textscan(headerString,'%s','Delimiter',','); header = header{1}; %this makes header a numFieldsx1 cell array numFields = size(header,1); %read lines using formatSpec so we get TimeNanos and FullBiasNanos as %int64, everything else as doubles, and empty values as NaN formatSpec=''; for i=1:numFields %lotsa || here, because we are comparing a vector, 'header' %to a specific string each time. Not sure how to do this another way %and still be able to easily read and debug. Better safe than too clever. %longs if any(i == find(strcmp(header,'CodeType'))) formatSpec = strcat(formatSpec, ' %s'); elseif i == find(strcmp(header,'TimeNanos')) || ... i == find(strcmp(header,'FullBiasNanos')) || ... i == find(strcmp(header,'ReceivedSvTimeNanos')) || ... i == find(strcmp(header,'ReceivedSvTimeUncertaintyNanos')) || ... i == find(strcmp(header,'CarrierCycles')) formatSpec = sprintf('%s %%d64',formatSpec); elseif 0 %ints % TBD maybe %d32 for ints: AccumulatedDeltaRangeState, ... % ConstellationType, MultipathIndicator, State, Svid formatSpec = sprintf('%s %%d32',formatSpec); else %everything else doubles formatSpec = sprintf('%s %%f',formatSpec); end end %Replace empty string fields with 'NaN' C = textscan(fid,formatSpec,'Delimiter',',','EmptyValue',NaN); %Replace CodeType string fields with 'NaN' codeTypeHeaderIndex = find(strcmp(header,'CodeType')); numberOfLogs = size(C{1},1); C(codeTypeHeaderIndex) = {nan(numberOfLogs, 1)}; fclose(fid); end% of function ReadRawCsv %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [bOk,C] = FilterData(C,dataFilter,header) %% filter C based on contents of dataFilter bOk = true; iS = ones(size(C{1})); %initialize index into rows of C for i=1:size(dataFilter,1) j=find(strcmp(header,dataFilter{i,1}));%j = index into header %we should always be a value of j, because checkDataFilter checks for this: assert(any(j),'dataFilter{i} = %s not found in header\n',dataFilter{i,1}) %now we must evaluate the expression in dataFilter{i,2}, for example: % 'BiasUncertaintyNanos < 1e7' %assign the relevant cell of C to a variable with same name as the header ts = sprintf('%s = C{%d};',header{j},j); eval(ts); %create an index vector from the expression in dataFilter{i,2} ts = sprintf('iSi = %s;',dataFilter{i,2}); eval(ts); %AND the iS index values on each iteration of i iS = iS & iSi; end % Check if filter removes all values if ~any(iS) %if all zeros fprintf('\nAll measurements removed. Specify dataFilter less strictly than this:, ') dataFilter(:,2) bOk=false; C=[]; return end % Keep only those values of C indexed by iS for i=1:length(C) C{i} = C{i}(iS); end end %end of function FilterDataS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [gnssRaw,missing] = PackGnssRaw(C,header) %% pack data into gnssRaw, and report missing fields assert(length(C)==length(header),... 'length(C) ~= length(header). This should have been checked before here') gnssRaw = []; %report clock fields present/missing, based on: gnssClockFields = {... 'TimeNanos' 'TimeUncertaintyNanos' 'LeapSecond' 'FullBiasNanos' 'BiasUncertaintyNanos' 'DriftNanosPerSecond' 'DriftUncertaintyNanosPerSecond' 'HardwareClockDiscontinuityCount' 'BiasNanos' }; missing.ClockFields = {}; %report measurements fields present/missing, based on: gnssMeasurementFields = {... 'Cn0DbHz' 'ConstellationType' 'MultipathIndicator' 'PseudorangeRateMetersPerSecond' 'PseudorangeRateUncertaintyMetersPerSecond' 'ReceivedSvTimeNanos' 'ReceivedSvTimeUncertaintyNanos' 'State' 'Svid' 'AccumulatedDeltaRangeMeters' 'AccumulatedDeltaRangeUncertaintyMeters' }; %leave these out for now, 'cause we dont care (for now), or they're deprecated, % or they could legitimately be left out (because they are not computed in % a particular GNSS implementation) % SnrInDb, TimeOffsetNanos, CarrierFrequencyHz, CarrierCycles, CarrierPhase, % CarrierPhaseUncertainty missing.MeasurementFields = {}; %pack data into vector variables, if the fields are not NaNs for j = 1:length(header) if any(isfinite(C{j})) %not all NaNs %TBD what if there are some NaNs, but not all. i.e. some missing %data in the log file - TBD deal with this eval(['gnssRaw.',header{j}, '=C{j};']); elseif any(strcmp(header{j},gnssClockFields)) missing.ClockFields{end+1} = header{j}; elseif any(strcmp(header{j},gnssMeasurementFields)) missing.MeasurementFields{end+1} = header{j}; end end %So, if a field is not reported, it will be all NaNs from makeCsv, and the above %code will not load it into gnssRaw. So when we call 'CheckGnssClock' it can %check for missing fields in gnssRaw. %TBD look for all zeros that can not legitimately be all zero, %e.g. AccumulatedDeltaRangeMeters, and report these as missing data end %end of function PackGnssRaw %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [gnssRaw,gnssAnalysis,bOk] = CheckGnssClock(gnssRaw,gnssAnalysis) %% check clock values in gnssRaw bOk = true; sFail = ''; %initialize string to record failure messafes N = length(gnssRaw.ReceivedSvTimeNanos); %Insist on the presence of TimeNanos (time from hw clock) if ~isfield(gnssRaw,'TimeNanos') s = ' TimeNanos missing from GnssLogger File.'; fprintf('WARNING: %s\n',s); sFail = [sFail,s]; bOk = false; end if ~isfield(gnssRaw,'FullBiasNanos') s = 'FullBiasNanos missing from GnssLogger file.'; fprintf('WARNING: %s, we need it to get the week number\n',s); sFail = [sFail,s]; bOk = false; end if ~isfield(gnssRaw,'BiasNanos') gnssRaw.BiasNanos = zeros(N,1); end if ~isfield(gnssRaw,'HardwareClockDiscontinuityCount') %possibly non fatal error, we assume there is no hardware clock discontinuity %so we set to zero and move on, but we print a warning gnssRaw.HardwareClockDiscontinuityCount = zeros(N,1); fprintf('WARNING: Added HardwareClockDiscontinuityCount=0 because it is missing from GNSS Logger file\n'); end %check FullBiasNanos, it should be negative values bChangeSign = any(gnssRaw.FullBiasNanos<0) & any(gnssRaw.FullBiasNanos>0); assert(~bChangeSign,... 'FullBiasNanos changes sign within log file, this should never happen'); %Now we know FullBiasNanos doesnt change sign,auto-detect sign of FullBiasNanos, %if it is positive, give warning and change if any(gnssRaw.FullBiasNanos>0) gnssRaw.FullBiasNanos = -1*gnssRaw.FullBiasNanos; fprintf('WARNING: FullBiasNanos wrong sign. Should be negative. Auto changing inside ReadGpsLogger\n'); gnssAnalysis.GnssClockErrors = [gnssAnalysis.GnssClockErrors,... sprintf(' FullBiasNanos wrong sign.')]; end %compute full cycle time of measurement, in milliseonds gnssRaw.allRxMillis = int64((gnssRaw.TimeNanos - gnssRaw.FullBiasNanos)*1e-6); %allRxMillis is now accurate to one millisecond (because it's an integer) if ~bOk gnssAnalysis.ApiPassFail = ['FAIL ',sFail]; end end %end of function CheckGnssClock %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function gnssAnalysis = ReportMissingFields(gnssAnalysis,missing) %% report missing clock and measurement fields in gnssAnalysis %report missing clock fields if ~isempty(missing.ClockFields) gnssAnalysis.GnssClockErrors = sprintf(... '%s Missing Fields:',gnssAnalysis.GnssClockErrors); for i=1:length(missing.ClockFields) gnssAnalysis.GnssClockErrors = sprintf(... '%s %s,',gnssAnalysis.GnssClockErrors,missing.ClockFields{i}); end gnssAnalysis.GnssClockErrors(end) = '.';%replace final comma with period end %report missing measurement fields if ~isempty(missing.MeasurementFields) gnssAnalysis.GnssMeasurementErrors = sprintf(... '%s Missing Fields:',gnssAnalysis.GnssMeasurementErrors); for i=1:length(missing.MeasurementFields) gnssAnalysis.GnssMeasurementErrors = sprintf(... '%s %s,',gnssAnalysis.GnssMeasurementErrors,... missing.MeasurementFields{i}); end gnssAnalysis.GnssMeasurementErrors(end) = '.';%replace last comma with period end %assign pass/fail if ~any(strfind(gnssAnalysis.ApiPassFail,'FAIL')) %didn't already fail if isempty(missing.ClockFields) && isempty(missing.MeasurementFields) gnssAnalysis.ApiPassFail = 'PASS'; else gnssAnalysis.ApiPassFail = 'FAIL BECAUSE OF MISSING FIELDS'; end end end %end of function ReportMissingFields %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % %     http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
ReadRinexNav.m
.m
gps-measurement-tools-master/opensource/ReadRinexNav.m
9,684
utf_8
61ac6db7bc356768f15c9f03a38f590c
function [gpsEph,iono] = ReadRinexNav(fileName) % [gpsEph,iono] = ReadRinexNav(fileName) % % Read GPS ephemeris and iono data from an ASCII formatted RINEX 2.10 Nav file. % Input: % fileName - string containing name of RINEX formatted navigation data file % Output: % gpsEph: vector of ephemeris data, each element is an ephemeris structure % structure order and orbit variable names follow RINEX 2.1 Table A4 % clock variable names af0, af1, af2 follow IS GPS 200 % gpsEph(i).PRN % SV PRN number % gpsEph(i).Toc % Time of clock (seconds) % gpsEph(i).af0 % SV clock bias (seconds) % gpsEph(i).af1 % SV clock drift (sec/sec) % gpsEph(i).af2 % SV clock drift rate (sec/sec2) % gpsEph(i).IODE % Issue of data, ephemeris % gpsEph(i).Crs % Sine harmonic correction to orbit radius (meters) % gpsEph(i).Delta_n % Mean motion difference from computed value (radians/sec) % gpsEph(i).M0 % Mean anomaly at reference time (radians) % gpsEph(i).Cuc % Cosine harmonic correction to argument of lat (radians) % gpsEph(i).e % Eccentricity (dimensionless) % gpsEph(i).Cus % Sine harmonic correction to argument of latitude (radians) % gpsEph(i).Asqrt % Square root of semi-major axis (meters^1/2) % gpsEph(i).Toe % Reference time of ephemeris (seconds) % gpsEph(i).Cic % Cosine harmonic correction to angle of inclination (radians) % gpsEph(i).OMEGA % Longitude of ascending node at weekly epoch (radians) % gpsEph(i).Cis % Sine harmonic correction to angle of inclination (radians) % gpsEph(i).i0 % Inclination angle at reference time (radians) % gpsEph(i).Crc % Cosine harmonic correction to the orbit radius (meters) % gpsEph(i).omega % Argument of perigee (radians) % gpsEph(i).OMEGA_DOT% Rate of right ascension (radians/sec) % gpsEph(i).IDOT % Rate of inclination angle (radians/sec) % gpsEph(i).codeL2 % codes on L2 channel % gpsEph(i).GPS_Week % GPS week (to go with Toe), (NOT Mod 1024) % gpsEph(i).L2Pdata % L2 P data flag % gpsEph(i).accuracy % SV user range accuracy (meters) % gpsEph(i).health % Satellite health % gpsEph(i).TGD % Group delay (seconds) % gpsEph(i).IODC % Issue of Data, Clock % gpsEph(i).ttx % Transmission time of message (seconds) % gpsEph(i).Fit_interval %fit interval (hours), zero if not known % % iono: ionospheric parameter structure % iono.alpha = [alpha0, alpha1, alpha2, alpha3] % iono.beta = [ beta0, beta1, beta2, beta3] % if iono data is not present in the Rinex file, iono is returned empty. fidEph = fopen(fileName); [numEph,numHdrLines] = countEph(fidEph); %Now read from the begining again, looking for iono parameters frewind(fidEph); iono = readIono(fidEph,numHdrLines); %initialize ephemeris structure array: gpsEph = InitializeGpsEph; gpsEph = repmat(gpsEph,1,numEph); %now read each ephemeris into gpsEph(j) %RINEX defines the format in terms of numbers of characters, so that's how we %read it, e.g. "gpsEph(j).PRN = str2num(line(1:2));" and so on for j = 1:numEph line = fgetl(fidEph); gpsEph(j).PRN = str2num(line(1:2)); %NOTE: we use str2num, not str2double, since str2num handles 'D' for exponent %% get Toc (Rinex gives this as UTC time yy,mm,dd,hh,mm,ss) year = str2num(line(3:6)); %convert year to a 4-digit year, this code is good to the year 2080. %From 2080 RINEX 2.1 is ambiguous and shouldnt be used, because is has a %2-digit year, and 100 years will have passed since the GPS Epoch. if year < 80, year = 2000+year; else year = 1900+year; end month = str2num(line(7:9)); day = str2num(line(10:12)); hour = str2num(line(13:15)); minute = str2num(line(16:18)); second = str2num(line(19:22)); %convert Toc to gpsTime gpsTime = Utc2Gps([year,month,day,hour,minute,second]); gpsEph(j).Toc = gpsTime(2); %% get all other parameters gpsEph(j).af0 = str2num(line(23:41)); gpsEph(j).af1 = str2num(line(42:60)); gpsEph(j).af2 = str2num(line(61:79)); line = fgetl(fidEph); gpsEph(j).IODE = str2num(line(4:22)); gpsEph(j).Crs = str2num(line(23:41)); gpsEph(j).Delta_n = str2num(line(42:60)); gpsEph(j).M0 = str2num(line(61:79)); line = fgetl(fidEph); gpsEph(j).Cuc = str2num(line(4:22)); gpsEph(j).e = str2num(line(23:41)); gpsEph(j).Cus = str2num(line(42:60)); gpsEph(j).Asqrt = str2num(line(61:79)); line=fgetl(fidEph); gpsEph(j).Toe = str2num(line(4:22)); gpsEph(j).Cic = str2num(line(23:41)); gpsEph(j).OMEGA = str2num(line(42:60)); gpsEph(j).Cis = str2num(line(61:79)); line = fgetl(fidEph); gpsEph(j).i0 = str2num(line(4:22)); gpsEph(j).Crc = str2num(line(23:41)); gpsEph(j).omega = str2num(line(42:60)); gpsEph(j).OMEGA_DOT = str2num(line(61:79)); line = fgetl(fidEph); gpsEph(j).IDOT = str2num(line(4:22)); gpsEph(j).codeL2 = str2num(line(23:41)); gpsEph(j).GPS_Week = str2num(line(42:60)); gpsEph(j).L2Pdata = str2num(line(61:79)); line = fgetl(fidEph); gpsEph(j).accuracy = str2num(line(4:22)); gpsEph(j).health = str2num(line(23:41)); gpsEph(j).TGD = str2num(line(42:60)); gpsEph(j).IODC = str2num(line(61:79)); line = fgetl(fidEph); gpsEph(j).ttx = str2num(line(4:22)); gpsEph(j).Fit_interval = str2num(line(23:41)); end fclose(fidEph); end %end of function ReadRinexNav %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [numEph,numHdrLines] = countEph(fidEph,fileName) %utility function for ReadRinexNav %Read past the header, and then read to the end, counting ephemerides: numHdrLines = 0; bFoundHeader = false; while ~bFoundHeader %Read past the header numHdrLines = numHdrLines+1; line = fgetl(fidEph); if ~ischar(line), break, end k = strfind(line,'END OF HEADER'); if ~isempty(k), bFoundHeader = true; break end end if ~bFoundHeader error('Error reading file: %s\nExpected RINEX header not found',fileName); end %Now read to the end of the file numEph = -1; while 1 numEph = numEph+1; line = fgetl(fidEph); if line == -1, break; elseif length(line)~=79 %use this opportunity to check line is the right length %because in the rest of ReadRinexNav we depend on line being this length error('Incorrect line length encountered in RINEX file'); end end; %check that we read the expected number of lines: if rem(numEph,8)~=0 error('Number of nav lines in %s should be divisible by 8',fileName); end numEph = numEph/8; %8 lines per ephemeris end %end of function countEph %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function iono = readIono(fidEph,numHdrLines) %utility function to read thru the header lines, and find iono parameters iono = []; %return empty if iono not found bIonoAlpha=false; bIonoBeta=false; for i = 1:numHdrLines, line = fgetl(fidEph); % Look for iono parameters, and read them in if ~isempty(strfind(line,'ION ALPHA')) %line contains iono alpha parameters ii = strfind(line,'ION ALPHA'); iono.alpha=str2num(line(1:ii-1)); %If we have 4 parameters then we have the complete iono alpha bIonoAlpha = (length(iono.alpha)==4); end if ~isempty(strfind(line,'ION BETA'))%line contains the iono beta parameters ii = strfind(line,'ION BETA'); iono.beta=str2num(line(1:ii-1)); %If we have 4 parameters then we have the complete iono beta bIonoBeta = (length(iono.beta)==4); end end if ~(bIonoAlpha && bIonoBeta) %if we didn't get both alpha and beta iono correctly, then return empty iono iono=[]; end end %end of function readIono %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function gpsEph = InitializeGpsEph %utility function to initialize the ephemeris structure gpsEph.PRN = 0; gpsEph.Toc = 0; gpsEph.af0 = 0; gpsEph.af1 = 0; gpsEph.af2 = 0; gpsEph.IODE = 0; gpsEph.Crs = 0; gpsEph.Delta_n = 0; gpsEph.M0 = 0; gpsEph.Cuc = 0; gpsEph.e = 0; gpsEph.Cus = 0; gpsEph.Asqrt = 0; gpsEph.Toe = 0; gpsEph.Cic = 0; gpsEph.OMEGA = 0; gpsEph.Cis = 0; gpsEph.i0 = 0; gpsEph.Crc = 0; gpsEph.omega = 0; gpsEph.OMEGA_DOT = 0; gpsEph.IDOT = 0; gpsEph.codeL2 = 0; gpsEph.GPS_Week = 0; gpsEph.L2Pdata = 0; gpsEph.accuracy = 0; gpsEph.health = 0; gpsEph.TGD = 0; gpsEph.IODC = 0; gpsEph.ttx = 0; gpsEph.Fit_interval= 0; end %end of function InitializeEph %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % %     http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
ProcessGnssMeas.m
.m
gps-measurement-tools-master/opensource/ProcessGnssMeas.m
10,037
utf_8
bb97c6b42797c809f0db07298501eeda
function gnssMeas = ProcessGnssMeas(gnssRaw) % gnssMeas = ProcessGnssMeas(gnssRaw) % Process raw measurements read from ReadGnssLogger % Using technique explained in "Raw GNSS Measurements from Android" tutorial % % Input: gnssRaw, output from ReadGnssLogger % Output: gnssMeas structure formatted conveniently for batch processing: %gnssMeas.FctSeconds = Nx1 Full cycle time tag of M batched measurements. % .ClkDCount = Nx1 Hw clock discontinuity count % .HwDscDelS = Nx1 Hw clock change during each discontiuity (seconds) % .Svid = 1xM all svIds found in gnssRaw. % .AzDeg = 1xM azimuth in degrees at last valid epoch % .ElDeg = 1xM elevation, ditto % .tRxSeconds = NxM time of reception, seconds of gps week % .tTxSeconds = NxM time of transmission, seconds of gps week % .PrM = NxM pseudoranges, row i corresponds to FctSeconds(i) % .PrSigmaM = NxM pseudorange error estimate (1-sigma) % .DelPrM = NxM change in pr while clock continuous % .PrrMps = NxM pseudorange rate % .PrrSigmaMps= NxM % .AdrM = NxM accumulated delta range (= -k * carrier phase) % .AdrSigmaM = NxM % .AdrState = NxM % .Cn0DbHz = NxM % % all gnssMeas values are doubles % % Az and El are returned NaN. Compute Az,El using ephemeris and lla, % or read from NMEA or GnssStatus %Author: Frank van Diggelen %Open Source code for processing Android GNSS Measurements % Filter valid values first, so that rollover checks, etc, are on valid data gnssRaw = FilterValid(gnssRaw); %anything within 1ms is considered same epoch: allRxMilliseconds = double(gnssRaw.allRxMillis); gnssMeas.FctSeconds = (unique(allRxMilliseconds))*1e-3; N = length(gnssMeas.FctSeconds); gnssMeas.ClkDCount = zeros(N,1); gnssMeas.HwDscDelS = zeros(N,1); gnssMeas.Svid = unique(gnssRaw.Svid)'; %all the sv ids found in gnssRaw M = length(gnssMeas.Svid); gnssMeas.AzDeg = zeros(1,M)+NaN; gnssMeas.ElDeg = zeros(1,M)+NaN; gnssMeas.tRxSeconds = zeros(N,M)+NaN; %time of reception, seconds of gps week gnssMeas.tTxSeconds = zeros(N,M)+NaN; %time of transmission, seconds of gps week gnssMeas.PrM = zeros(N,M)+NaN; gnssMeas.PrSigmaM = zeros(N,M)+NaN; gnssMeas.DelPrM = zeros(N,M)+NaN; gnssMeas.PrrMps = zeros(N,M)+NaN; gnssMeas.PrrSigmaMps= zeros(N,M)+NaN; gnssMeas.AdrM = zeros(N,M)+NaN; gnssMeas.AdrSigmaM = zeros(N,M)+NaN; gnssMeas.AdrState = zeros(N,M); gnssMeas.Cn0DbHz = zeros(N,M)+NaN; %GPS Week number: weekNumber = floor(-double(gnssRaw.FullBiasNanos)*1e-9/GpsConstants.WEEKSEC); %check for fields that are commonly all zero and may be missing from gnssRaw if ~isfield(gnssRaw,'BiasNanos') gnssRaw.BiasNanos = 0; end if ~isfield(gnssRaw,'TimeOffsetNanos') gnssRaw.TimeOffsetNanos = 0; end %compute time of measurement relative to start of week %subtract big longs (i.e. time from 1980) before casting time of week as double WEEKNANOS = int64(GpsConstants.WEEKSEC*1e9); weekNumberNanos = int64(weekNumber)*int64(GpsConstants.WEEKSEC*1e9); %compute tRxNanos using gnssRaw.FullBiasNanos(1), so that % tRxNanos includes rx clock drift since the first epoch: tRxNanos = gnssRaw.TimeNanos -gnssRaw.FullBiasNanos(1) - weekNumberNanos; %Assert if Tow state ~=1, because then gnssRaw.FullBiasNanos(1) might be wrong State = gnssRaw.State(1); assert(bitand(State,2^0) & bitand(State,2^3),... 'gnssRaw.State(1) must have bits 0 and 3 true before calling ProcessGnssMeas') %tRxNanos now since beginning of the week, unless we had a week rollover %assert(all(tRxNanos <= WEEKNANOS),'tRxNanos should be <= WEEKNANOS') %TBD check week rollover code, and add assert tRxNanos <= WEEKNANOS after assert(all(tRxNanos >= 0),'tRxNanos should be >= 0') %subtract the fractional offsets TimeOffsetNanos and BiasNanos: tRxSeconds = (double(tRxNanos)-gnssRaw.TimeOffsetNanos-gnssRaw.BiasNanos)*1e-9; tTxSeconds = double(gnssRaw.ReceivedSvTimeNanos)*1e-9; %check for week rollover in tRxSeconds [prSeconds,tRxSeconds] = CheckGpsWeekRollover(tRxSeconds,tTxSeconds); %we are ready to compute pseudorange in meters: PrM = prSeconds*GpsConstants.LIGHTSPEED; PrSigmaM = double(gnssRaw.ReceivedSvTimeUncertaintyNanos)*1e-9*... GpsConstants.LIGHTSPEED; PrrMps = gnssRaw.PseudorangeRateMetersPerSecond; PrrSigmaMps = gnssRaw.PseudorangeRateUncertaintyMetersPerSecond; AdrM = gnssRaw.AccumulatedDeltaRangeMeters; AdrSigmaM = gnssRaw.AccumulatedDeltaRangeUncertaintyMeters; AdrState = gnssRaw.AccumulatedDeltaRangeState; Cn0DbHz = gnssRaw.Cn0DbHz; %Now pack these vectors into the NxM matrices for i=1:N %i is index into gnssMeas.FctSeconds and matrix rows %get index of measurements within 1ms of this time tag J = find(abs(gnssMeas.FctSeconds(i)*1e3 - allRxMilliseconds)<1); for j=1:length(J) %J(j) is index into gnssRaw.* k = find(gnssMeas.Svid==gnssRaw.Svid(J(j))); %k is the index into gnssMeas.Svid and matrix columns gnssMeas.tRxSeconds(i,k) = tRxSeconds(J(j)); gnssMeas.tTxSeconds(i,k) = tTxSeconds(J(j)); gnssMeas.PrM(i,k) = PrM(J(j)); gnssMeas.PrSigmaM(i,k) = PrSigmaM(J(j)); gnssMeas.PrrMps(i,k) = PrrMps(J(j)); gnssMeas.PrrSigmaMps(i,k)= PrrSigmaMps(J(j)); gnssMeas.AdrM(i,k) = AdrM(J(j)); gnssMeas.AdrSigmaM(i,k) = AdrSigmaM(J(j)); gnssMeas.AdrState(i,k) = AdrState(J(j)); gnssMeas.Cn0DbHz(i,k) = Cn0DbHz(J(j)); end %save the hw clock discontinuity count for this epoch: gnssMeas.ClkDCount(i) = gnssRaw.HardwareClockDiscontinuityCount(J(1)); if gnssRaw.HardwareClockDiscontinuityCount(J(1)) ~= ... gnssRaw.HardwareClockDiscontinuityCount(J(end)) error('HardwareClockDiscontinuityCount changed within the same epoch'); end end gnssMeas = GetDelPr(gnssMeas); end %of function ProcessGnssMeas %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function gnssRaw = FilterValid(gnssRaw) %utility function for ProcessGnssMeas, %remove fields corresponding to measurements that are invalid %NOTE: this makes it simpler to process data. But it removes data, % so if you want to investigate *why* fields are invalid, then do so % before calling this function %check ReceivedSvTimeUncertaintyNanos, PseudorangeRateUncertaintyMetersPerSecond %for now keep only Svid with towUnc<0.5 microseconds and prrUnc < 10 mps iTowUnc = gnssRaw.ReceivedSvTimeUncertaintyNanos > GnssThresholds.MAXTOWUNCNS; iPrrUnc = gnssRaw.PseudorangeRateUncertaintyMetersPerSecond > ... GnssThresholds.MAXPRRUNCMPS; iBad = iTowUnc | iPrrUnc; if any(iBad) numBad = sum(iBad); %assert if we're about to remove everything: assert(numBad<length(iBad),'Removing all measurements in gnssRaw') names = fieldnames(gnssRaw); for i=1:length(names) ts = sprintf('gnssRaw.%s(iBad) = [];',names{i}); eval(ts); %remove fields for invalid meas end %explain to user what happened: fprintf('\nRemoved %d bad meas inside ProcessGnssMeas>FilterValid because:\n',... sum(iBad)) if any(iTowUnc) fprintf('towUnc > %.0f ns\n',GnssThresholds.MAXTOWUNCNS) end if any(iPrrUnc) fprintf('prrUnc > %.0f m/s\n',GnssThresholds.MAXPRRUNCMPS) end end end %end of function FilterValid %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function gnssMeas = GetDelPr(gnssMeas) % utility function for ProcessGnssMeas, compute DelPr % gnssMeas.DelPrM = NxM, change in pr while clock is continuous N = length(gnssMeas.FctSeconds); M = length(gnssMeas.Svid); bClockDis = [0;diff(gnssMeas.ClkDCount)~=0];%binary, 1 <=> clock discontinuity %initialize first epoch to zero (by definition), rest to NaN delPrM = zeros(N,M); delPrM(2:end,:) = NaN; for j=1:M i0=1; %i0 = index from where we compute DelPr for i=2:N if bClockDis(i) || isnan(gnssMeas.PrM(i0,j)) i0 = i; %reset to i if clock discont or a break in tracking end if bClockDis(i) delPrM(i,j) = NaN; else delPrM(i,j) = gnssMeas.PrM(i,j) - gnssMeas.PrM(i0,j); end end end gnssMeas.DelPrM = delPrM; end %of function GetDelPr %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [prSeconds,tRxSeconds] = CheckGpsWeekRollover(tRxSeconds,tTxSeconds) %utility function for ProcessGnssMeas prSeconds = tRxSeconds - tTxSeconds; iRollover = prSeconds > GpsConstants.WEEKSEC/2; if any(iRollover) fprintf('\nWARNING: week rollover detected in time tags. Adjusting ...\n') prS = prSeconds(iRollover); delS = round(prS/GpsConstants.WEEKSEC)*GpsConstants.WEEKSEC; prS = prS - delS; %prS are in the range [-WEEKSEC/2 : WEEKSEC/2]; %check that common bias is not huge (like, bigger than 10s) maxBiasSeconds = 10; if any(prS>maxBiasSeconds) error('Failed to correct week rollover\n') else prSeconds(iRollover) = prS; %put back into prSeconds vector %Now adjust tRxSeconds by the same amount: tRxSeconds(iRollover) = tRxSeconds(iRollover) - delS; fprintf('Corrected week rollover\n') end end %TBD Unit test this end %end of function CheckGpsWeekRollover %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % %     http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
GetNasaHourlyEphemeris.m
.m
gps-measurement-tools-master/opensource/GetNasaHourlyEphemeris.m
7,264
utf_8
269885253c5a185948a02dab5d5de302
function [allGpsEph,allGloEph] = GetNasaHourlyEphemeris(utcTime,dirName) %[allGpsEph,allGloEph] = GetNasaHourlyEphemeris(utcTime,dirName) %Get hourly ephemeris files, % If a GPS ephemeris file is in dirName, with valid ephemeris for at % least 24 svs, then read it; else download from NASA's archive of % Space Geodesy Data % %Output allGpsEph structure of ephemerides in format defined in ReadRinexNav.m % TBD: allGloEph, and any other supported by the NSA ftp site % %examples of how to call GetNasaHourlyEphemeris: %1) with /demoFiles and utcTime where ephemeris has already been downloaded: % replace '~/...' with actual path: % dirName = '~/Documents/MATLAB/gpstools/opensource/demoFiles'; % utcTime = [2016,8,22,22,50,00]; % [allGpsEph,allGloEph] = GetNasaHourlyEphemeris(utcTime,dirName) % %2) with utcTime for which ephemeris has not been downloaded, % this exercises the automatic ftp download. % Replace '~' with actual path: % dirName = '~/Documents/MATLAB/gpstools/opensource/demoFiles'; % utcTime = [2016,5,ceil(rand(1,2).*[30,24]),0,0],%a random Hour and Day in May % [allGpsEph,allGloEph] = GetNasaHourlyEphemeris(utcTime,dirName) % % More details: % The Nasa ephemeris Unix-compressed. % GetNasaHourlyEphemeris will automatically uncompress it, if you have the right % uncompress function on you computer. If you need to install an unzip utility, % see http://cddis.nasa.gov/ and http://www.gpzip.org % Search for 'uncompress' in the GetNasaHourlyEphemeris function to find and % edit the name of the unzip utility. %Author: Frank van Diggelen %Open Source code for processing Android GNSS Measurements allGpsEph=[];allGloEph=[]; if nargin<2 dirName = []; end [bOk,dirName] = CheckInputs(utcTime,dirName); if ~bOk, return, end %Description of file names, see: %http://cddis.gsfc.nasa.gov/Data_and_Derived_Products/GNSS/... % broadcast_ephemeris_data.html#GPShourly yearNumber4Digit = utcTime(1); yearNumber2Digit = rem(utcTime(1),100); dayNumber = DayOfYear(utcTime); hourlyZFile = sprintf('hour%03d0.%02dn.Z',dayNumber,yearNumber2Digit); ephFilename = hourlyZFile(1:end-2); fullEphFilename = [dirName,ephFilename]; %full name (with directory specified) %check if ephemeris file already exists (e.g. you downloaded it 'by hand') %and if there are fresh ephemeris for lotsa sats within 2 hours of fctSeconds bGotGpsEph = false; if exist(fullEphFilename,'file')==2 %% file exists locally, so read it fprintf('Reading GPS ephemeris from ''%s'' file in local directory\n',... ephFilename); fprintf('%s\n',dirName); allGpsEph = ReadRinexNav(fullEphFilename); [~,fctSeconds] = Utc2Gps(utcTime); ephAge = [allGpsEph.GPS_Week]*GpsConstants.WEEKSEC + [allGpsEph.Toe] - ... fctSeconds; %get index into fresh and healthy ephemeris (health bit set => unhealthy) iFreshAndHealthy = abs(ephAge)<GpsConstants.EPHVALIDSECONDS & ... ~[allGpsEph.health]; %TBD look at allEph.Fit_interval, and deal with values > 0 goodEphSvs = unique([allGpsEph(iFreshAndHealthy).PRN]); if length(goodEphSvs)>=GnssThresholds.MINNUMGPSEPH bGotGpsEph = true; end end if ~bGotGpsEph %% get ephemeris from Nasa site ftpSiteName = 'cddis.gsfc.nasa.gov'; hourlyDir=sprintf('/gnss/data/hourly/%4d/%03d/',yearNumber4Digit,dayNumber); fprintf('\nGetting GPS ephemeris ''%s'' from NASA ftp site ...',hourlyZFile) fprintf('\nftp://%s%s\n',ftpSiteName,hourlyDir); %check that the dirName has been properly specified if strfind(dirName,'~') fprintf('\nYou set: dirName = ''%s''\n',dirName) fprintf('To download ephemeris from ftp,') fprintf(' specify ''dirName'' with full path, and no tilde ''~''\n') fprintf('Change ''dirName'' or download ephemeris file ''%s'' by hand\n',... hourlyZFile); fprintf('To unzip the *.Z file, see http://www.gzip.org/\n') return end try nasaFtp=ftp(ftpSiteName); %connect to ftp server and create ftp object cd(nasaFtp,hourlyDir); zF = mget(nasaFtp,hourlyZFile,dirName); %get compressed (.Z) file catch %failed automatic ftp, ask user to do this by hand fprintf('\nAutomatic ftp download failed.\n') fprintf('Please go to this ftp, ftp://cddis.gsfc.nasa.gov/ \n') fprintf('and get this file:%s%s \n',hourlyDir,hourlyZFile); fprintf('Extract contents to the directory with your pseudorange log file:\n') fprintf('%s\n',dirName) fprintf('To unzip the *.Z file, see http://www.gzip.org/\n') fprintf('Then run this function again, it will read from that directory\n') return end %Now we have the zipped file from nasa. Unzip it: unzipCommand='uncompress';%edit if your platform uses something different if any(strfind(computer,'PCWIN')) unzipCommand='gunzip'; end s = sprintf('%s "%s"',unzipCommand,zF{1}); %string for system command [sysFlag,result] = system(s); if any(sysFlag) fprintf('\nError in GetNasaHourlyEphemeris.m\n') fprintf('%s',result); fprintf('System command ''%s'' failed\n',unzipCommand) fprintf('Unzip contents of %s by hand. See http://www.gzip.org/\n',zF{1}) fprintf('Then run this function again, it will read the uncompressed file\n') return end bOk = bOk && ~sysFlag; if bOk fprintf('\nSuccessfully downloaded ephemeris file ''%s''\n',ephFilename) if ~isempty(dirName) fprintf('to: %s\n',dirName); end else end end allGpsEph = ReadRinexNav(fullEphFilename); end %end of function GetNasaHourlyEphemeris %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [bOk,dirName] = CheckInputs(utcTime,dirName) %% check we have the utcTime and right kind of dirName if any(size(utcTime)~=[1,6]) error('utcTime must be a (1x6) vector') end if isempty(dirName), return, end bOk = true; if ~exist(dirName,'dir') bOk = false; fprintf('Error: directory ''%s'' not found\n',dirName); if any(strfind(computer,'PCWIN')) && any(strfind(dirName,'/')) fprintf('Looks like you''re using a PC, be sure your directory is specified with back-slashes ''\\''\n'); end else % check if there is a slash at the end of dirName %decide what type of slash to use: slashChar = '/'; %default if any(strfind(dirName,'\')) slashChar = '\'; end if dirName(end)~=slashChar dirName = [dirName,slashChar]; %add slash end end end %end of function CheckInputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright 2016 Google Inc. % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License.
github
google/gps-measurement-tools-master
ReadNmeaFile.m
.m
gps-measurement-tools-master/NmeaUtils/ReadNmeaFile.m
9,958
utf_8
9a68e0e553a19e83a81a59402d4b90df
function [nmea,Msg] = ReadNmeaFile(dirName,fileName,Msg) % [nmea,Msg] = ReadNmeaFile(dirName,fileName,[Msg]); % % Reads GGA and RMC data from a NMEA file. % This function recognizes GGA data with quality of % GPS fix (1)/RTK(4)/Float RTK(5)/Manual input(7) only. % Output: % nmea: structure array with one element per epoch. % nmea(i).Gga, % nmea(i).Rmc % % Each field of Gga, Rmc is a scalar => easy to extract vectors later. % % $--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh<CR><LF> % UTC lat lon q num hdop altAboveMsl geoidHeight ... % Gga.Time Day fraction % .LatDeg Latitude in degrees % .LonDeg Longitude in degrees % .AltM Altitude above Ellipsoid in meters % .NumSats = Number of satellites in use % .Hdop % .GeoidM = Gedoidal separation, "-" = mean-sea-level below ellipsoid % % $--RMC,hhmmss.sss,x,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxxxx,x.x,a,a*hh<CR><LF> % Rmc.Datenum Date and Time = MATLAB datenum, use datevec(Rmc.Datenum) to get % 1x6 date and time vector [yyy mm dd hh mm ss.s] % .LatDeg Latitude in degrees % .LonDeg Longitude in degrees % .TrackDeg (degrees from true north) % .SpeedKnots (knots) % % Release 2.3 of NMEA added a new field added to RMC just prior to the checksum, % 'Mode': A=autonomous, D=differential, E=estimated, N=Data not valid. % % Msg, cell array of strings with status % % TBD % .Gsv % % TBD remaining fields that are sometimes empty: magvar, valid, status, etc % % Examples from https://www.gpsinformation.org/dale/nmea.htm % GGA Example, % $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 % Where: % GGA Global Positioning System Fix Data % 123519 Fix taken at 12:35:19 UTC % 4807.038,N Latitude 48 deg 07.038' N % 01131.000,E Longitude 11 deg 31.000' E % 1 Fix quality: % 0 = invalid % 1 = GPS fix (SPS) % 2 = DGPS fix % 3 = PPS fix % 4 = Real Time Kinematic % 5 = Float RTK % 6 = estimated (dead reckoning) (2.3 feature) % 7 = Manual input mode % 8 = Simulation mode % 08 Number of satellites being tracked % 0.9 Horizontal dilution of position % 545.4,M Altitude, Meters, above mean sea level % 46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid % (empty field) time in seconds since last DGPS update % (empty field) DGPS station ID number % *47 the checksum data, always begins with * % % RMC example, % $GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A % % Where: % RMC Recommended Minimum sentence C % 123519 Fix taken at 12:35:19 UTC % A Status A=active or V=Void. % 4807.038,N Latitude 48 deg 07.038' N % 01131.000,E Longitude 11 deg 31.000' E % 022.4 Speed over the ground in knots % 084.4 Track angle in degrees True % 230394 Date - 23rd of March 1994 % 003.1,W Magnetic Variation % *6A The checksum data, always begins with * % %% Initialize fields if nargin<3 Msg = {}; end nmea = []; nmeaGga = struct('Time',{},'LatDeg',{},'LonDeg',{},'AltM',{},'NumSats',{},... 'Hdop',{},'GeoidM',{}); nmeaRmc = struct('Datenum',{},'LatDeg',{},'LonDeg',{},... 'TrackDeg',{},'SpeedKnots',{}); %define NaN fields for missing nmea messages nanGga.Time=NaN; nanGga.LatDeg=NaN; nanGga.LonDeg=NaN; nanGga.AltM=NaN; nanGga.NumSats=NaN; nanGga.Hdop=NaN; nanGga.GeoidM=NaN; nanRmc.Datenum=NaN; nanRmc.LatDeg=NaN; nanRmc.LonDeg=NaN; nanRmc.TrackDeg=NaN; nanRmc.SpeedKnots=NaN; % Define recognized GGA fix qualities. Only lines with these qualities will be % parsed as GGA data. knownGgaQualities = [GgaQuality.GPS, GgaQuality.RTK,... GgaQuality.FLOAT_RTK, GgaQuality.MANUAL]; %% read file and call parsers fid = fopen(fullfile(dirName,fileName),'r'); if fid<0 Msg{end+1} = 'Error: file not found'; return end line = 'x';%initialize to some character while ischar(line) line = fgetl(fid); %% remove characters before '$' if ~ischar(line) || ~contains(line,'$') continue else iDollar = strfind(line,'$'); line = line(iDollar(1):end); end %% parse nmea lines [nmeaField,fieldType,quality] = parseGga(line); if ~isempty(fieldType) if any(knownGgaQualities(:) == quality) nmeaGga(end+1) = nmeaField; %#ok<AGROW> end continue end %TBD: %if isempty(fieldType) %[nmeaField,fieldType] = parseGsv(line); %end [nmeaField,fieldType] = parseRmc(line); if ~isempty(fieldType) nmeaRmc(end+1) = nmeaField; %#ok<AGROW> continue end end fclose(fid); if isempty(line) %line should be -1 at eof Msg{end+1} = 'Error occurred while reading file'; nmea = []; return end %% Pack all matching time tags: N = length(nmeaGga); %make one nmea structure for each Gga field if N==0 Msg{end+1} = sprintf('Found no recognized GGA data in %s.', fileName); return end if isempty(nmeaRmc) Msg{end+1} = sprintf('Found no RMC data in %s.', fileName); return end nmea.Gga = nmeaGga(1); nmea.Rmc = nmeaRmc(1); nmea = repelem(nmea,N); for i=1:N nmea(i).Gga = nmeaGga(i); ti = nmea(i).Gga.Time; iR = find(ti == rem([nmeaRmc.Datenum],1)); if ~isempty(iR) nmea(i).Rmc = nmeaRmc(iR(1)); else nmea(i).Rmc=nanRmc; end end end %end of function ReadNmeaFile %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Gga,fieldType,quality] = parseGga(line) %% parse a gga message from the string 'line' % $--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx*hh %format: %s %s %s %s %s %s %d %d %f %f %s %f %s %f %d %s %fields: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 % UTC lat lon qual % 8=num, 9=hdop, 10=altAboveMsl, 12=geoidHeight Gga = ''; fieldType = ''; quality=-1; line = upper(line); if ~contains(line,'GGA,') return end fieldType = 'Gga'; line = strrep(line,'*',','); %replace '*' with ',' C = textscan(line,'%s %s %s %s %s %s %d %d %f %f %s %f %s %f %d %s',... 'Delimiter',',','EmptyValue',NaN); if ~isempty(C{2}{1}) hhmmss = sprintf('%010.3f',str2double(C{2}{1}));%hours mins secs, to 3 digits %this allows us to capture the milliseconds in datenum: d = datenum(hhmmss,'HHMMSS.FFF'); Gga.Time = d-floor(d); else Gga.Time = NaN; end ddmm = C{3}{1}; %deg and minutes if isempty(ddmm) Gga.LatDeg = NaN; else assert(strfind(ddmm,'.')==5,... 'GGA Latitude not defined correctly, should be ddmm.m'); Gga.LatDeg = str2double(ddmm(1:2)) + (str2double(ddmm(3:end))/60); if strcmp(C{4}{1},'S') Gga.LatDeg = -Gga.LatDeg; end end dddmm = C{5}{1}; %deg and minutes if isempty(dddmm) Gga.LonDeg = NaN; else assert(strfind(dddmm,'.')==6,... 'GGA Longitude not defined correctly, should be dddmm.m'); Gga.LonDeg = str2double(dddmm(1:3)) + (str2double(dddmm(4:end))/60); if strcmp(C{6}{1},'W') Gga.LonDeg = -Gga.LonDeg; end end Gga.AltM = C{10}+C{12}; %height above the ellipsoid (m) quality = C{7}; %quality - identifies the source of this location Gga.NumSats = C{8}; % Number of satellites in use Gga.Hdop = C{9}; % HDOP Gga.GeoidM = C{12}; % Gedoidal separation,"-" = mean-sea-level below ellipsoid %leave the following out for now, to keep things simple: % Gga.DiffAgeS = C{14}; %Age of Differental data % Gga.DiffRefId= C{15}; % Differential reference station ID end %end of function parseGga %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Rmc,fieldType] = parseRmc(line) %% parse an rmc message from the string 'line' % $--RMC,hhmmss.sss,x,llll.ll,a,yyyyy.yy,a,x.x,x.x,xxxxxx,x.x,a,a*hh %format: %s %s %s %s %s %s %s %f %f %s %f %s %s %s %fields: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %example: % $GPRMC,123519.0,A,4807.038,N,01131.000,E,022.4,084.4,230394,3.1,E,A*0B % fields 1 2 3 4 5 6 7 8 9 10 11 12 13 14 % hhmmss.s status lat lon speed track ddmmyy magvar mode Rmc = ''; fieldType = ''; line = upper(line); if ~contains(line,'RMC,') return end fieldType = 'Rmc'; line = strrep(line,'*',','); %replace '*' with ',' C = textscan(line,'%s %s %s %s %s %s %s %f %f %s %f %s %s %s',... 'Delimiter',',','EmptyValue',NaN); if ~isempty(C{2}{1}) && ~isempty(C{10}{1}) hhmmss = sprintf('%010.3f',str2double(C{2}{1})); %hrs mins secs, to 3 digits %this allows us to capture the milliseconds in datenum: ddmmyy = C{10}{1}; %day month year Rmc.Datenum = datenum([ddmmyy,hhmmss],'ddmmyyHHMMSS.FFF'); else Rmc.Datenum = NaN; end ddmm = C{4}{1}; %deg and minutes if isempty(ddmm) Rmc.LatDeg = NaN; else assert(strfind(ddmm,'.')==5,... 'RMC Latitude not defined correctly, should be ddmm.m'); Rmc.LatDeg = str2double(ddmm(1:2)) + (str2double(ddmm(3:end))/60); if strcmp(C{5}{1},'S') Rmc.LatDeg = -Rmc.LatDeg; end end dddmm = C{6}{1}; %deg and minutes if isempty(dddmm) Rmc.LonDeg = NaN; else assert(strfind(dddmm,'.')==6,... 'RMC Longitude not defined correctly, should be dddmm.m'); Rmc.LonDeg = str2double(dddmm(1:3)) + (str2double(dddmm(4:end))/60); if strcmp(C{7}{1},'W') Rmc.LonDeg = -Rmc.LonDeg; end end trackDeg = C(9); %track in degrees from true North Rmc.TrackDeg = trackDeg{1}; speedKnots = C(8); %speed in knots Rmc.SpeedKnots = speedKnots{1}; end %end of function parseRmc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
hanshuting/graph_ensemble-master
vec.m
.m
graph_ensemble-master/src/vec.m
1,567
utf_8
f3fc35a93c8a5b99b592835a0b810dd5
% Y = VEC(x) Given an m x n matrix x, this produces the vector Y of length % m*n that contains the columns of the matrix x, stacked below each other. % % See also mat. function x = vec(X) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % [m n] = size(X); x = reshape(X,m*n,1);
github
hanshuting/graph_ensemble-master
anneal.m
.m
graph_ensemble-master/src/util/anneal.m
8,126
utf_8
a2fc8f6d4866e3078bce3e438d38a6ea
function [minimum,fval] = anneal(loss, parent, options) % ANNEAL Minimizes a function with the method of simulated annealing % (Kirkpatrick et al., 1983) % % ANNEAL takes three input parameters, in this order: % % LOSS is a function handle (anonymous function or inline) with a loss % function, which may be of any type, and needn't be continuous. It does, % however, need to return a single value. % % PARENT is a vector with initial guess parameters. You must input an % initial guess. % % OPTIONS is a structure with settings for the simulated annealing. If no % OPTIONS structure is provided, ANNEAL uses a default structure. OPTIONS % can contain any or all of the following fields (missing fields are % filled with default values): % % Verbosity: Controls output to the screen. % 0 suppresses all output % 1 gives final report only [default] % 2 gives temperature changes and final report % Generator: Generates a new solution from an old one. % Any function handle that takes a solution as input and % gives a valid solution (i.e. some point in the solution % space) as output. % The default function generates a row vector which % slightly differs from the input vector in one element: % @(x) (x+(randperm(length(x))==length(x))*randn/100) % Other examples of possible solution generators: % @(x) (rand(3,1)): Picks a random point in the unit cube % @(x) (ceil([9 5].*rand(2,1))): Picks a point in a 9-by-5 % discrete grid % Note that if you use the default generator, ANNEAL only % works on row vectors. For loss functions that operate on % column vectors, use this generator instead of the % default: % @(x) (x(:)'+(randperm(length(x))==length(x))*randn/100)' % InitTemp: The initial temperature, can be any positive number. % Default is 1. % StopTemp: Temperature at which to stop, can be any positive number % smaller than InitTemp. % Default is 1e-8. % StopVal: Value at which to stop immediately, can be any output of % LOSS that is sufficiently low for you. % Default is -Inf. % CoolSched: Generates a new temperature from the previous one. % Any function handle that takes a scalar as input and % returns a smaller but positive scalar as output. % Default is @(T) (.8*T) % MaxConsRej: Maximum number of consecutive rejections, can be any % positive number. % Default is 1000. % MaxTries: Maximum number of tries within one temperature, can be % any positive number. % Default is 300. % MaxSuccess: Maximum number of successes within one temperature, can % be any positive number. % Default is 20. % % % Usage: % [MINIMUM,FVAL] = ANNEAL(LOSS,NEWSOL,[OPTIONS]); % MINIMUM is the solution which generated the smallest encountered % value when input into LOSS. % FVAL is the value of the LOSS function evaluated at MINIMUM. % OPTIONS = ANNEAL(); % OPTIONS is the default options structure. % % % Example: % The so-called "six-hump camelback" function has several local minima % in the range -3<=x<=3 and -2<=y<=2. It has two global minima, namely % f(-0.0898,0.7126) = f(0.0898,-0.7126) = -1.0316. We can define and % minimise it as follows: % camel = @(x,y)(4-2.1*x.^2+x.^4/3).*x.^2+x.*y+4*(y.^2-1).*y.^2; % loss = @(p)camel(p(1),p(2)); % [x f] = ANNEAL(loss,[0 0]) % We get output: % Initial temperature: 1 % Final temperature: 3.21388e-007 % Consecutive rejections: 1027 % Number of function calls: 6220 % Total final loss: -1.03163 % x = % -0.0899 0.7127 % f = % -1.0316 % Which reasonably approximates the analytical global minimum (note % that due to randomness, your results will likely not be exactly the % same). % Reference: % Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by % Simulated Annealing. _Science, 220_, 671-680. % [email protected] % $Revision: v5 $ $Date: 2006/04/26 12:54:04 $ % Modified by Shuting Han, 4/15/2016 def = struct(... 'CoolSched',@(T) (.8*T),... 'Generator',@(x) toggle(x),... 'InitTemp',1,... 'MaxConsRej',1000,... 'MaxSuccess',20,... 'MaxTries',300,... 'StopTemp',1e-8,... 'StopVal',-Inf,... 'Verbosity',1); % 'Generator',@(x) (x+(randperm(length(x))==length(x))*randn/100),... % Check input if ~nargin %user wants default options, give it and stop minimum = def; return elseif nargin<2, %user gave only objective function, throw error error('MATLAB:anneal:noParent','You need to input a first guess.'); elseif nargin<3, %user gave no options structure, use default options=def; else %user gave all input, check if options structure is complete if ~isstruct(options) error('MATLAB:anneal:badOptions',... 'Input argument ''options'' is not a structure') end fs = {'CoolSched','Generator','InitTemp','MaxConsRej',... 'MaxSuccess','MaxTries','StopTemp','StopVal','Verbosity'}; for nm=1:length(fs) if ~isfield(options,fs{nm}), options.(fs{nm}) = def.(fs{nm}); end end end % main settings newsol = options.Generator; % neighborhood space function Tinit = options.InitTemp; % initial temp minT = options.StopTemp; % stopping temp cool = options.CoolSched; % annealing schedule minF = options.StopVal; max_consec_rejections = options.MaxConsRej; max_try = options.MaxTries; max_success = options.MaxSuccess; report = options.Verbosity; k = 1; % boltzmann constant % counters etc itry = 0; success = 0; finished = 0; consec = 0; T = Tinit; initenergy = loss(parent); oldenergy = initenergy; total = 0; if report==2, fprintf(1,'\n T = %7.5f, loss = %10.5f\n',T,oldenergy); end while ~finished; itry = itry+1; % just an iteration counter current = parent; % % Stop / decrement T criteria if itry >= max_try || success >= max_success; if T < minT || consec >= max_consec_rejections; finished = 1; total = total + itry; break; else T = cool(T); % decrease T according to cooling schedule if report==2, % output fprintf(1,' T = %7.5f, loss = %10.5f\n',T,oldenergy); end total = total + itry; itry = 1; success = 1; end end newparam = newsol(current); newenergy = loss(newparam); if (newenergy < minF), parent = newparam; oldenergy = newenergy; break end if (oldenergy-newenergy > 1e-6) parent = newparam; oldenergy = newenergy; success = success+1; consec = 0; else if (rand < exp( (oldenergy-newenergy)/(k*T) )); parent = newparam; oldenergy = newenergy; success = success+1; else consec = consec+1; end end end minimum = parent; fval = oldenergy; if report; fprintf(1, '\n Initial temperature: \t%g\n', Tinit); fprintf(1, ' Final temperature: \t%g\n', T); fprintf(1, ' Consecutive rejections: \t%i\n', consec); fprintf(1, ' Number of function calls:\t%i\n', total); fprintf(1, ' Total final loss: \t%g\n', fval); end function [y] = toggle(x) indx = randi(length(x),1); y = x; y(indx) = 1-y(indx); end end
github
hanshuting/graph_ensemble-master
graphProperties.m
.m
graph_ensemble-master/src/util/graphProperties.m
4,236
utf_8
85256a2e4937e41679ec818c7a9c2068
function [ L, EGlob, CClosed, ELocClosed, COpen, ELocOpen ] = graphProperties( varargin ) % graphProperties: compute properties of a graph from its adjacency matrix % usage: [L,EGlob,CClosed,ELocClosed,COpen,ELocOpen] = graphProperties(A); % % arguments: % A (nxn) - adjacency matrix of a graph G % % L (scalar) - characteristic path length % EGlob (scalar) - global efficiency % CClosed (scalar) - clustering coefficient (closed neighborhood) % ELocClosed (scalar) - local efficiency (closed neighborhood) % COpen (scalar) - clustering coefficient (open neighborhood) % ELocOpen (scalar) - local efficiency (open neighborhood) % % author: Nathan D. Cahill % email: [email protected] % date: 10 April 2014 % get adjacency matrix from list of inputs A = parseInputs(varargin{:}); % get number of vertices n = size(A,1); % shortest path distances between each node D = graphallshortestpaths(A); % characteristic path length L = sum(D(:))/(n*(n-1)); % global efficiency EGlob = (sum(sum(1./(D+eye(n)))) - n)/(n*(n-1)); % subgraphs of G induced by the neighbors of each vertex [MClosed,kClosed,MOpen,kOpen] = subgraphs(A); % local clustering coefficient in each subgraph [CLocClosed,CLocOpen] = deal(zeros(n,1)); for i = 1:n CLocClosed(i) = sum(MClosed{i}(:))/... (numel(kClosed{i})*(numel(kClosed{i})-1)); CLocOpen(i) = sum(MOpen{i}(:))/... (numel(kOpen{i})*(numel(kOpen{i})-1)); end % clustering coefficients CClosed = mean(CLocClosed); COpen = mean(CLocOpen); % local efficiency of each subgraph [ELocSGClosed,ELocSGOpen] = deal(zeros(n,1)); for i = 1:n % distance matrix and number of vertices for current subgraph DSGClosed = graphallshortestpaths(MClosed{i}); DSGOpen = graphallshortestpaths(MOpen{i}); nSGClosed = numel(kClosed{i}); nSGOpen = numel(kOpen{i}); % efficiency of current subgraph ELocSGClosed(i) = (sum(sum(1./(DSGClosed+eye(nSGClosed)))) - nSGClosed)/... (nSGClosed*(nSGClosed-1)); ELocSGOpen(i) = (sum(sum(1./(DSGOpen+eye(nSGOpen)))) - nSGOpen)/... (nSGOpen*(nSGOpen-1)); end % local efficiency of graph ELocClosed = mean(ELocSGClosed); ELocOpen = mean(ELocSGOpen); end function A = parseInputs(varargin) % parseInputs: test that input is an adjacency matrix % check number of inputs narginchk(1,1); % get first input A = varargin{1}; % test to make sure A is a square matrix if ~isnumeric(A) || ~ismatrix(A) || size(A,1)~=size(A,2) error([mfilename,':ANotSquare'],'Input must be a square matrix.'); end % test to make sure A only contains zeros and ones if any((A~=0)&(A~=1)) error([mfilename,':ANotValid'],... 'Input matrix must contain only zeros and ones.'); end % change A to sparse if necessary if ~issparse(A) A = sparse(A); end end function [MClosed,kClosed,MOpen,kOpen] = subgraphs(A) % subgraphs: compute adjacency matrices for each vertex in a graph % usage: [MClosed,kClosed,MOpen,kOpen] = subgraphs(A); % % arguments: % A - (nxn) adjacency matrix of a graph G % % MClosed, MOpen - (nx1) cell arrays containing adjacency matrices of the % subgraphs corresponding to neighbors of each vertex. For example, % MClosed{j} is the adjacency matrix of the subgraph of G % corresponding to the closed neighborhood of the jth vertex of G, % and kClosed{j} is the list of vertices of G that are in the % subgraph (and represent the corresponding rows/columns of % MClosed{j}) % % author: Nathan D. Cahill % email: [email protected] % date: 10 Apr 2014 % number of vertices n = size(A,1); % initialize indices of neighboring vertices, and adjacency matrices [kClosed,kOpen] = deal(cell(n,1)); [MClosed,MOpen] = deal(cell(n,1)); % loop through each vertex, determining its neighbors for i=1:n % find indices of neighbors of vertex v_i k1 = find(A(i,:)); % vertices with edge beginning at v_i k2 = find(A(:,i)); % vertices with edge ending at v_i kOpen{i} = union(k1,k2); % vertices in neighborhood of v_i kClosed{i} = union(kOpen{i},i); % extract submatrix describing adjacency of neighbors of v_i MOpen{i} = A(kOpen{i},kOpen{i}); MClosed{i} = A(kClosed{i},kClosed{i}); end end
github
hanshuting/graph_ensemble-master
makeShuffledData.m
.m
graph_ensemble-master/src/graphs/makeShuffledData.m
1,065
utf_8
001f9896d283081f75d86871214c70ad
function [] = makeShuffledData(param) expt_name = param.expt_name; ee = param.ee; num_shuff = param.num_shuff; data_path = param.data_path; shuff_path_base = param.shuff_path_base; % make shuffled data for n = 1:length(expt_name) expt_ee = ee{n}; load([data_path expt_name{n} '\' expt_name{n} '.mat']); num_node = size(Spikes,1); for e = 1:length(expt_ee) fprintf('processing %s_%s...\n',expt_name{n},expt_ee{e}); % set save path shuff_path = [shuff_path_base 'shuffled_' ... expt_name{n} '_' expt_ee{e} '_loopy\']; if ~exist(shuff_path) mkdir(shuff_path); end % load data load([data_path expt_name{n} '\' expt_name{n} '_' expt_ee{e} '.mat']); data_raw = data; % shuffle for i = 1:num_shuff data = shuffle(data_raw','exchange')'; save([shuff_path 'shuffled_' expt_name{n} '_' expt_ee{e} '_'... num2str(i) '.mat'],'data'); end end end
github
hanshuting/graph_ensemble-master
makeCCgraph.m
.m
graph_ensemble-master/src/graphs/makeCCgraph.m
1,833
utf_8
b4f28b4118e500e6b4d12c424dbcbe27
function [] = makeCCgraph(param) expt_name = param.expt_name; ee = param.ee; num_shuff = param.num_shuff; data_path = param.data_path; shuff_path_base = param.shuff_path_base; p = param.p; % make xcorr graph for n = 1:length(expt_name) expt_ee = ee{n}; load([data_path expt_name{n} '\' expt_name{n} '.mat']); num_node = size(Spikes,1); for e = 1:length(expt_ee) fprintf('processing %s_%s...\n',expt_name{n},expt_ee{e}); % load real and random models shuff_path = [shuff_path_base 'shuffled_' ... expt_name{n} '_' expt_ee{e} '_loopy\']; % load data load([data_path expt_name{n} '\' expt_name{n} '_' expt_ee{e} '.mat']); % calculate correlation cc = corr(data); % threshold correlation with shuffled data shuff_cc = zeros(size(cc,1),size(cc,2),num_shuff); for i = 1:num_shuff load([shuff_path 'shuffled_' expt_name{n} '_' expt_ee{e} '_'... num2str(i) '.mat']); shuff_cc(:,:,i) = corr(data); end cc_thresh = zeros(size(cc)); for i = 1:size(cc,1) for j = 1:size(cc,2) if all(isnan(shuff_cc(i,j,:))) continue; end ccdist = fitdist(squeeze(shuff_cc(i,j,:)),'normal'); cc_thresh(i,j) = icdf(ccdist,1-p); end end % generate graph cc_graph = cc>cc_thresh; cc_graph = cc_graph-diag(diag(cc_graph)); cc_weight = cc.*cc_graph; % save results ccpath = [param.result_path_base '\' expt_name{n} '\cc\']; save([ccpath expt_name{n} '_' expt_ee{e} '_cc_graph.mat'],... 'cc_graph','cc_weight','-v7.3'); end end end
github
hanshuting/graph_ensemble-master
getEdgeId.m
.m
graph_ensemble-master/src/paramter_estimation/getEdgeId.m
488
utf_8
1796dddb717073f46cbb8ed01d2680eb
% Given the edge indices, return its id in Vt % The edges in Vt are ordered in increasing order of % for edges (i,j) such that i < j % e.g. for graph with 6 nodes (1,2),(1,3), .... ,(3,6),(4,5),(4,6),(5,6) function id = getEdgeId(N,edge) E = size(edge,1); id = zeros(E,1); for e=1:E i = edge(e,1); j = edge(e,2); if(i >= j) continue; end id(e) = N*(i-1) - sum(1:(i-1)) + (j-i); end id(find(id == 0)) = []; end
github
hanshuting/graph_ensemble-master
lasso_node_by_node.m
.m
graph_ensemble-master/src/loopy_model/structure_learning/lasso_node_by_node.m
2,865
utf_8
41ca9c74c1fc182736cd2a9f895fee26
% LASSO_NODE_BY_NODE Tries to predict one variable as a function of another % and return lasso coefficients in a matrix, where each row refers to a % lasso logistic regression and each column a coefficient. % % Input % samples: logical matrix where each row is a sample and each column a node % relative_lambda: relative regularization factor (relative to the lambda % that drives all coefficients to zero. % option 'variable_groups': array that marks with integers which variable % belongs to each group, so a variable is not predicted by variables of % the same group % % Return % coefficients: matrix where each row refers to a lasso logistic % regression and each column a coefficient function [coefficients] = lasso_node_by_node(samples, relative_lambda, varargin) % parse input arguments parser = inputParser; is_logical_matrix = @(x) ismatrix(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('relative_lambda', @isnumeric); parser.addParamValue('variable_groups', [], @isnumeric); parser.parse(samples, relative_lambda, varargin{:}); variable_groups = parser.Results.variable_groups; node_count = size(samples,2); % ensures variable groups is a vector of integers with node count size if isempty(variable_groups) variable_groups = uint8(1:node_count); elseif length(variable_groups) ~= node_count error('variable_group variable must have one element per node'); else variable_groups = uint8(variable_groups); end % each line of the coefficients comes from a regression, there is one % regression per node, that generates one coefficient per other node % (but diagonal is zero since we cannot use own node to predict itself, % and for each line columns corresponding to variables in the same group % are zero as well). % We will store these values in the lasso_coefficients square matrix lasso_coefficients = zeros(node_count); disp('Starting Lasso Logistic Regression'); % let's try to predict each node based on the others using lasso for label_node = 1:node_count % feature nodes are all nodes except the ones in the same group % (including the node that is being labeled) group_nodes = find(variable_groups == variable_groups(label_node)); feature_nodes = setdiff(1:node_count, group_nodes); X = samples(:,feature_nodes); Y = samples(:,label_node); B = lassoglm(X,Y, 'binomial', 'LambdaRatio', relative_lambda, 'NumLambda', 2); % B = lassoglm(X,Y, 'poisson', 'LambdaRatio', relative_lambda, 'NumLambda', 2); %SH 20160329 lasso_coefficients(label_node, feature_nodes) = B(:,1)'; fprintf('.'); end fprintf('\n'); coefficients = lasso_coefficients; end
github
hanshuting/graph_ensemble-master
lasso_node_by_node_parallel.m
.m
graph_ensemble-master/src/loopy_model/structure_learning/lasso_node_by_node_parallel.m
3,218
utf_8
e0267c6e0324844b22866ba9591c73e1
% WORKS ONLY IF PARALLEL COMPUTING TOLLBOX IS INSTALLED % % LASSO_NODE_BY_NODE Tries to predict one variable as a function of another % and return lasso coefficients in a matrix, where each row refers to a % lasso logistic regression and each column a coefficient. % % Input % samples: logical matrix where each row is a sample and each column a node % relative_lambda: relative regularization factor (relative to the lambda % that drives all coefficients to zero. % option 'variable_groups': array that marks with integers which variable % belongs to each group, so a variable is not predicted by variables of % the same group % % Return % coefficients: matrix where each row refers to a lasso logistic % regression and each column a coefficient function [coefficients] = lasso_node_by_node_parallel(samples, relative_lambda, varargin) % parse input arguments parser = inputParser; is_logical_matrix = @(x) ismatrix(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('relative_lambda', @isnumeric); parser.addParamValue('variable_groups', [], @isnumeric); parser.parse(samples, relative_lambda, varargin{:}); variable_groups = parser.Results.variable_groups; node_count = size(samples,2); % ensures variable groups is a vector of integers with node count size if isempty(variable_groups) variable_groups = uint8(1:node_count); elseif length(variable_groups) ~= node_count error('variable_group variable must have one element per node'); else variable_groups = uint8(variable_groups); end % each line of the coefficients comes from a regression, there is one % regression per node, that generates one coefficient per other node % (but diagonal is zero since we cannot use own node to predict itself, % and for each line columns corresponding to variables in the same group % are zero as well). % We will store these values in the lasso_coefficients square matrix lasso_coefficients = zeros(node_count); sliced_coefficients = cell(node_count,1); disp('Starting Lasso Logistic Regression (Parallel)'); % let's try to predict each node based on the others using lasso poolobj = parpool; parfor label_node = 1:node_count % feature nodes are all nodes except the ones in the same group % (including the node that is being labeled) group_nodes = find(variable_groups == variable_groups(label_node)); feature_nodes = setdiff(1:node_count, group_nodes); X = samples(:,feature_nodes); Y = samples(:,label_node); B = lassoglm(X,Y, 'binomial', 'LambdaRatio', relative_lambda, 'NumLambda', 2); sliced_coefficients{label_node} = B(:,1)'; fprintf(' %d ', label_node); end delete(poolobj); fprintf('\n'); for label_node = 1:node_count group_nodes = find(variable_groups == variable_groups(label_node)); feature_nodes = setdiff(1:node_count, group_nodes); lasso_coefficients(label_node, feature_nodes) = sliced_coefficients{label_node}; end coefficients = lasso_coefficients; end
github
hanshuting/graph_ensemble-master
learn_structures_by_density.m
.m
graph_ensemble-master/src/loopy_model/structure_learning/learn_structures_by_density.m
5,481
utf_8
aaef90286007e048e8a9fe7cba04ae25
% LEARN_STRUCTURES_BY_DENSITY % % Input % samples: logical matrix where each row is a sample and each column a node % relative_lambda: relative regularization factor (relative to the lambda % that drives all coefficients to zero. % densities: vector of densities to be tried. % option variable_groups: array that marks with integers which variable % belongs to each group, so a variable is not predicted by variables of % the same group. Edges are only possible between variables in the same % group. % % Return % graph_structures: cell array, each one containing a adjacency matrix to % the respective threshold function [graph_structures, numeric_graph_structure] = learn_structures_by_density(samples, relative_lambda, densities, variable_groups) % parse input arguments parser = inputParser; % is_logical_matrix = @(x) ismatrix(x) && islogical(x); is_logical_matrix = @(x) ismatrix(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('relative_lambda', @isnumeric); parser.addRequired('densities', @isnumeric); variable_groups_chk = @(x)validateattributes(x, {'cell'}, {'vector'}); parser.addOptional('variable_groups', [], variable_groups_chk); if nargin < 4 parser.parse(samples, relative_lambda, densities); variable_groups = parser.Results.variable_groups; else parser.parse(samples, relative_lambda, densities, variable_groups); end node_count = size(samples,2); if iscell(variable_groups) coefficients = lasso_node_by_node_group(samples, relative_lambda, 'variable_groups', variable_groups); else coefficients = lasso_node_by_node(samples, relative_lambda, 'variable_groups', variable_groups); end % if there are negative values in the symmetric coefficients means that % one edge was predicted to be both attractive and repulsive in the two % different lassos. We will just zero those variables (at the moment I % wrote the code, 10/1820 edges with the Columbia data would have this % problem so it is really rare) multiplied_coefficients = coefficients .* coefficients'; negative_values_indexes = find(multiplied_coefficients < 0); if negative_values_indexes % TODO: This is an odd metric -- first, negative_values_indexes has % an entry for each half edge, so its length is twice the number of % undirected edges affected. % Second, multiplied_coefficients seems inappropriate as some max % set of edges to compare against, since if coefficient(i, j) > 0 % but coefficient(j, i) == 0, edge (i, j) will not be included in % length(find(multiplied_coefficients ~= 0)), even though it will % show up as a positive edge in numeric_graph_structure and may % very well become an actual edge if greater than threshold. fprintf('Found %d/%d edges that had contradicting weight signs in both lassos.\n',... length(negative_values_indexes), length(find(multiplied_coefficients ~= 0))); summed_negative_values = coefficients + coefficients'; summed_negative_values = summed_negative_values(negative_values_indexes); fprintf('The mean of the contradicting pairs after summing is %d, with the max summed pair at %d.\n', ... mean(summed_negative_values(:)), max(summed_negative_values(:))); fprintf('Compare with %d, the mean of all coefficient pairs.\n', ... 2*mean(coefficients(coefficients ~= 0))); % coefficients(negative_values_indexes) = 0; end % numeric graph structure numeric_graph_structure = (coefficients + coefficients'); if iscell(variable_groups) % Convert variable_groups to logical matrix eligible_edges = zeros(node_count, node_count); for ii = 1:node_count eligible_edges(ii, variable_groups{ii}) = 1; end eligible_edges = logical(eligible_edges); assert(all(all(eligible_edges == eligible_edges')), ... 'variable_groups must be symmetric.'); edge_vector = numeric_graph_structure(triu(eligible_edges, 1)); else edge_vector = vecUT(numeric_graph_structure); end max_edge_count = numel(edge_vector); % for each given density produce an adjacency matrix graph_structures = cell(1,numel(densities)); for ii = 1:numel(densities) density = densities(ii); % now let's find what is the threshold we should use to get a certain density threshold = quantile(edge_vector, 1 - density); if ~threshold fprintf('Lambda is too big, such that it is not possible to achieve the desired graph density.\n'); fprintf('Target was %.f edges, but only able to identify %d non-zero coefficients\n', ... max_edge_count * density, numel(find(edge_vector > 0))); threshold = 0; end % now identify the indexes of the edges that will be kept graph_structures{ii} = logical(numeric_graph_structure > threshold); fprintf('Report\n'); fprintf('Total possible edges: %i\n', max_edge_count); fprintf('Density wanted: %f%%\n', density * 100); fprintf('Edges wanted: %.f\n', density * max_edge_count); fprintf('Non-zero coefficients: %i\n', numel(find(edge_vector > 0))); fprintf('Selected edges: %i\n', numel(find(edge_vector > threshold))); end end
github
hanshuting/graph_ensemble-master
run.m
.m
graph_ensemble-master/src/expt_framework/run.m
9,683
utf_8
5e21d0fbfd12a7c34828364e728cb642
%% Experiment: Parameter Estimation for Real data % Description: % - Learn multiple structures with various regularizers (lambda) and % tolerance values % - Train the parameters with respect to each of the structure learned % in the previous step with various values of parameter estimation % regularizer % - Predict (test) the learned models in the previous step on validation data % - Finally, choose the optimal model based on validation likelihood % % Inputs (with example): % params.lambda = 1e-10; % params.use_built_in_lasso = false; % % Quick run in MATLAB: % In root folder, after loading startup.m, run: % runExpt('structure_learning_synthetic', 1) % Quick run on command line: % \run.sh Parameter_estimation 1 function run(params) %Kate: if result is already computed, we are done fsave = sprintf('%s/results/%s', params.exptDir, ... params.saveFileName); if(exist(fsave)) %loads 'model_collection'!!!! fprintf('Loading existing %s', fsave); load(fsave); disp(model_collection); for i = 1:numel(model_collection.models) fprintf('model %d:\n', i); model = model_collection.models{i}; if(isfield(model, 'test_likelihood')) continue; end fprintf('Computing training likelihood\n'); model.train_likelihood = compute_avg_log_likelihood( ... model.theta.node_potentials, ... model.theta.edge_potentials, ... model.theta.logZ, ... model_collection.x_train); %Kate: reverting changes by rvtonge from 11/11/15: % Compute test likelihood fprintf('Computing test likelihood\n'); model.test_likelihood = compute_avg_log_likelihood( ... model.theta.node_potentials, ... model.theta.edge_potentials, ... model.theta.logZ, ... model_collection.x_test); model_collection.models{i} = model; end else %% Get the data X = params.data; sample_count = size(X,1); x_train_base = X(1:floor(params.split*sample_count),:); x_test_base = X((floor(params.split*sample_count)+1):sample_count,:); %% Prep data x_train = add_lookback_nodes(x_train_base, params.time_span); x_test = add_lookback_nodes(x_test_base, params.time_span); stim_count = size(params.stimuli, 2); % Append any stimulus nodes if stim_count > 0 assert(sample_count == size(params.stimuli, 1), ... 'Stimuli and neuron data must have same number of samples.') x_train = [x_train params.stimuli(1:floor(params.split*sample_count),:)]; x_test = [x_test params.stimuli((floor(params.split*sample_count)+1):sample_count,:)]; end % define allowed edges via variable groups % One variable group entry per node. Each group entry is a (possibly % empty) list of other node indexes. if params.time_span > 1 num_groups = size(x_train,2); variable_groups = cell(1, num_groups); base_node_count = size(params.data, 2); % Indexes of current timestep nodes origidx = 1:base_node_count; % Indexes of prev timestep nodes dupidx = base_node_count+1:(num_groups - stim_count); % Always consider fully connected graph at current timestep variable_groups(origidx) = all_but_me(1, base_node_count); if strcmp(params.edges, 'full') % Fully connect all neuron nodes. variable_groups = all_but_me(1, params.time_span * base_node_count); % variable_groups = uint16(1:size(x_train, 2)); else if strcmp(params.edges, 'simple')==0 fprintf('Invalid edges parameter. Resorting to default setting "simple".\n'); params.edges = 'simple'; end fprintf('Prohibiting edges between offset nodes.\n'); % Add edge from every current timestep node to every % added previous timestep node. % Add half edges from orig nodes to every dup node. variable_groups(origidx) = cellfun(@(x) [x dupidx], ... variable_groups(origidx),'UniformOutput',false); % Set half edge from every dup edge to every orig node. variable_groups(dupidx) = {origidx}; end % Always connect stimulus nodes to all non-stimulus nodes % NOTE: Does NOT connect stimulus nodes to each other stimidx = (num_groups - stim_count + 1):num_groups; % Half edges from neuron nodes to stimulus nodes for ii = [origidx dupidx] variable_groups{ii} = [variable_groups{ii} stimidx]; end % Half edges from stimulus nodes to neuron nodes for ii = stimidx variable_groups{ii} = [origidx dupidx]; end if params.no_same_neuron_edges fprintf('Removing all edges between same-neuron nodes.\n'); for ii = origidx this_node_idxs = ii:base_node_count:params.time_span*base_node_count; for jj = this_node_idxs variable_groups{jj} = setdiff(variable_groups{jj}, this_node_idxs); end end end else % Fully connect ALL nodes (including stimulus) % variable_groups = uint16(1:size(x_train, 2)); variable_groups = all_but_me(1, size(x_train, 2)); end %% Instantiate object that runs the algorithm if strcmp(params.structure_type, 'loopy') model_collection = LoopyModelCollection(x_train, x_test, ... 's_lambda_count',params.s_lambda_count, ... 's_lambda_min',params.s_lambda_min, ... 's_lambda_max',params.s_lambda_max, ... 'density_count',params.density_count, ... 'density_min',params.density_min, ... 'density_max',params.density_max, ... 'p_lambda_count',params.p_lambda_count, ... 'p_lambda_min',params.p_lambda_min, ... 'p_lambda_max',params.p_lambda_max); % 'time_span', params.time_span); model_collection.variable_groups = variable_groups; else % when training a tree there is no need for density and structure % lambda model_collection = LoopyModelCollection(x_train, x_test, ... 'p_lambda_count',params.p_lambda_count, ... 'p_lambda_min',params.p_lambda_min, ... 'p_lambda_max',params.p_lambda_max); end %% Structure Learninig fprintf('Structure Learning...\n'); if strcmp(params.structure_type, 'loopy') % learn loopy models model_collection = model_collection.do_loopy_structure_learning(); else % learn tree model (learns single structure) model_collection = model_collection.do_chowliu_structure_learning(); end %% Parameter Estimation fprintf('Parameter Estimation...\n'); disp(model_collection); % Training model_collection = model_collection.do_parameter_estimation( ... 'BCFW_max_iterations', params.BCFW_max_iterations, ... 'compute_true_logZ', params.compute_true_logZ, ... 'reweight_denominator', params.reweight_denominator); end % SH for i = 1:numel(model_collection.models) fprintf('model %d:\n', i); model = model_collection.models{i}; model.time_span = params.time_span; if(isfield(model, 'test_likelihood')) continue; end fprintf('Computing training likelihood\n'); model.train_likelihood = compute_avg_log_likelihood( ... model.theta.node_potentials, ... model.theta.edge_potentials, ... model.theta.logZ, ... model_collection.x_train); %Kate: reverting changes by rvtonge from 11/11/15: % Compute test likelihood fprintf('Computing test likelihood\n'); model.test_likelihood = compute_avg_log_likelihood( ... model.theta.node_potentials, ... model.theta.edge_potentials, ... model.theta.logZ, ... model_collection.x_test); model_collection.models{i} = model; end % Saves results disp(model_collection); save(sprintf('%s/results/%s', params.exptDir, params.saveFileName), 'model_collection'); end function [indices] = all_but_me(low, high) %ALL_BUT_ME Cell array of all sets that omit one integer from range [low, high]. N = high - low + 1; tmp = repmat((low:high)', 1, N); tmp = tmp(~eye(size(tmp))); tmp = reshape(tmp,N - 1, N)'; indices = num2cell(tmp, 2)'; end
github
hanshuting/graph_ensemble-master
infer_structure.m
.m
graph_ensemble-master/src/structure_learning/infer_structure/infer_structure.m
6,225
utf_8
f7f75dfecc3e22ffb7e95247341bd512
% INFER_STRUCTURE Infers the structure of MRF of binary variables based on samples % % Input % samples: logical matrix where each row is a sample and each column a node % lambda: regularization factor % options: % 'graph_build_method': ['and', 'or', 'average', 'raw']. How to conciliate % the fact that sometimes node A is used to predict B, but B is not % used to predict A. 'and' methods need both to happen to put an % edge between nodes, 'or' only needs one of them, and 'average' % checks the lasso coefficient on average is above tolerance. % 'raw' returns the assymetric matrix which rows are just the % output of the lasso regression. % Default: 'and' % 'return_logical': [true, false]. Whether to return a thresholded % logical matrix representing the connection or to return the numeric % weights predicted for each edge. Default: true % 'tolerance': Only used if 'return_logical' is true. Threshold for % the lasso coefficients, above which a node is considered % relevant to predict another (i.e. connected). Default: 0.1 % 'use_built_in_lasso': [true, false]. If true uses matlab lasso % regression, else uses Boyd binaries. Default: false % 'use_relative_lambda': interprets lambda not as an absolute value % but as a proportions of the maximum lambda. Only works when % 'use_built_in_lasso' is set. Default: false. % 'use_lasso_regression': does regression instead of logistic % regression. Option kept so we can make tests. Default: false. function [ graph_structure,graph_values] = infer_structure( samples, lambda, varargin ) % parse input arguments parser = inputParser; is_logical_matrix = @(x) ismatrix(x) && islogical(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('lambda', @isnumeric); parser.addParamValue('tolerance', 0, @isnumeric); parser.addParamValue('graph_build_method', 'and', @ischar); parser.addParamValue('return_logical', true, @islogical); parser.addParamValue('use_built_in_lasso', false, @islogical); parser.addParamValue('use_relative_lambda', false, @islogical); parser.addParamValue('use_lasso_regression', false, @islogical); parser.addParamValue('preknown_edges',-1,@isscalar); parser.parse(samples, lambda, varargin{:}); tolerance = parser.Results.tolerance; graph_build_method = parser.Results.graph_build_method; return_logical = parser.Results.return_logical; use_built_in_lasso = parser.Results.use_built_in_lasso; use_relative_lambda = parser.Results.use_relative_lambda; use_lasso_regression = parser.Results.use_lasso_regression; preknown_edges = parser.Results.preknown_edges; node_count = size(samples,2); % each line of the coefficients comes from a regression, there is one % regression per node, that generates one coefficient per other node % (but diagonal is zero since we cannot use own node to predict itself) lasso_coefficients = zeros(node_count); disp('Starting Lasso Logistic Regression'); % let's try to predict each node based on the others using lasso for label_node = 1:node_count feature_nodes = setdiff(1:node_count,[label_node]); X = samples(:,feature_nodes); Y = samples(:,label_node); if use_built_in_lasso if use_lasso_regression if use_relative_lambda B = lasso(X,Y,'LambdaRatio', lambda, 'NumLambda', 2); else B = lasso(X,Y,'Lambda', lambda); end else if use_relative_lambda B = lassoglm(X,Y, 'binomial', 'LambdaRatio', lambda, 'NumLambda', 2); else B = lassoglm(X,Y, 'binomial', 'Lambda', lambda); end end lasso_coefficients(label_node, feature_nodes) = abs(B(:,1)'); else % lasso solver accepts inputs as files, using temp files features_file = tempname; mmwrite(features_file, samples(:,feature_nodes)); labels_file = tempname; mmwrite(labels_file, samples(:,label_node)); % solver outputs file, getting temp path for output trained_model_file = tempname; % call lasso solver system(sprintf('thirdparty/l1_logreg-0.8.2/src_c/l1_logreg_train -q -s %s %s %.32f %s', features_file, labels_file, lambda, trained_model_file)); % get classifier coefficients (except intercept term) trained_model = full(mmread(trained_model_file)); lasso_coefficients(label_node, feature_nodes) = abs(trained_model(2:end)); end fprintf('.'); end disp(''); % now use coefficients to infer graph structure switch graph_build_method case 'and' graph_structure = min(lasso_coefficients, lasso_coefficients'); case 'or' graph_structure = max(lasso_coefficients, lasso_coefficients'); case 'average' graph_structure = (lasso_coefficients + lasso_coefficients')/2; case 'raw' graph_structure = lasso_coefficients; end % if output should be logical, then compare with threshold if return_logical disp('Returning thresholded estimated structure') graph_values = graph_structure; graph_structure = triu(graph_structure,1); if preknown_edges ~= -1 [~,edgeInd] = sort(graph_structure(:),'descend'); edges = zeros(size(graph_structure(:))); edges(edgeInd(1:preknown_edges)) = 1; graph_structure = reshape(edges,size(graph_structure)); graph_structure = max(graph_structure,graph_structure'); else graph_structure = graph_structure >= tolerance; end else graph_values = graph_structure; disp('Returning non-thresholded estimated structure') end % Make sure diagonal values are 0 graph_structure = graph_structure .* (1 - diag(ones(1,node_count))); end
github
hanshuting/graph_ensemble-master
simple_infer_structure.m
.m
graph_ensemble-master/src/structure_learning/simple_infer_structure/simple_infer_structure.m
2,383
utf_8
b80d3b54863048cad93e5bd158ee3730
% SIMPLE_INFER_STRUCTURE Infers the structure of MRF of binary variables based on samples % This is a cleaned up version of the INFER_STRUCTURE function, holding % only options that matter most. % % Besides that, this model return graph for multiple thresholds without % repeating the lasso regression. % % Input % samples: logical matrix where each row is a sample and each column a node % relative_lambda: relative regularization factor (relative to the lambda % that drives all coefficients to zero. % thresholds: vector of thresholds to be tried. % % Return % graph_structures: cell array, each one containing a adjacency matrix to % the respective threshold function [graph_structures,numeric_graph_structure] = simple_infer_structure(samples, relative_lambda, thresholds) % parse input arguments parser = inputParser; is_logical_matrix = @(x) ismatrix(x) && islogical(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('relative_lambda', @isnumeric); parser.addRequired('thresholds', @isnumeric); parser.parse(samples, relative_lambda, thresholds); node_count = size(samples,2); % each line of the coefficients comes from a regression, there is one % regression per node, that generates one coefficient per other node % (but diagonal is zero since we cannot use own node to predict itself) % We will store these values in the lasso_coefficient square matrix lasso_coefficients = zeros(node_count); disp('Starting Lasso Logistic Regression'); % let's try to predict each node based on the others using lasso for label_node = 1:node_count feature_nodes = setdiff(1:node_count, label_node); X = samples(:,feature_nodes); Y = samples(:,label_node); B = lassoglm(X,Y, 'binomial', 'LambdaRatio', relative_lambda, 'NumLambda', 2); lasso_coefficients(label_node, feature_nodes) = abs(B(:,1)'); fprintf('.'); end fprintf('\n'); % make matrix symmetric numeric_graph_structure = max(lasso_coefficients, lasso_coefficients'); % for each threshold produce an adjacency matrix graph_structures = cell(1,numel(thresholds)); i = 0; for threshold = thresholds i = i + 1; graph_structures{i} = (numeric_graph_structure >= threshold); end end
github
hanshuting/graph_ensemble-master
infer_structures_with_given_densities.m
.m
graph_ensemble-master/src/structure_learning/simple_infer_structure/infer_structures_with_given_densities.m
3,368
utf_8
2d5f3acec6c44a1c2da18589aa93b321
% SIMPLE_INFER_STRUCTURE Infers the structure of MRF of binary variables based on samples % This is a cleaned up version of the INFER_STRUCTURE function, holding % only options that matter most. % % Besides that, this model return graph for multiple thresholds without % repeating the lasso regression. % % Input % samples: logical matrix where each row is a sample and each column a node % relative_lambda: relative regularization factor (relative to the lambda % that drives all coefficients to zero. % thresholds: vector of thresholds to be tried. % % Return % graph_structures: cell array, each one containing a adjacency matrix to % the respective threshold function [graph_structures,numeric_graph_structure] = infer_structures_with_given_densities(samples, relative_lambda, densities) % parse input arguments parser = inputParser; is_logical_matrix = @(x) ismatrix(x) && islogical(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('relative_lambda', @isnumeric); parser.addRequired('densities', @isnumeric); parser.parse(samples, relative_lambda, densities); node_count = size(samples,2); coefficients = lasso_node_by_node(samples,relative_lambda); % Remove descripancies symmetric_coefficients = coefficients .* coefficients'; % if there are negative values in the symmetric coefficients means that % one edge was predicted to be both attractive and repulsive in the two % different lassos. We will just zero those variables (at the moment I % wrote the code 10/1810 edges would have this problem) negative_values_indexes = find(symmetric_coefficients < 0); if negative_values_indexes fprintf('Found %d/%d edges that had contradicting weight signs in both lassos. Zero these coefficients\n', length(negative_values_indexes), length(find(symmetric_coefficients > 0))); symmetric_coefficients(negative_values_indexes) = 0; end % numeric graph structure numeric_graph_structure = (coefficients + coefficients'); % for each given density produce an adjacency matrix graph_structures = cell(1,numel(densities)); i = 0; for density = densities % now let's find what is the threshold we should use to get a certain density threshold = quantile(vecUT(symmetric_coefficients), 1 - density); if ~threshold fprintf('Lambda is too big, such that it is not possible to achieve the desired graph density.\n'); fprintf('Target was %d edges, but only able to identify %d non-zero coefficients\n', ... nchoosek(node_count, 2) * density, length(find(vecUT(symmetric_coefficients) > 0))); threshold = 0; end % now identify the indexes of the edges that will be kept i = i + 1; graph_structures{i} = logical(symmetric_coefficients > threshold); fprintf('Report\n'); fprintf('Total possible edges: %i\n', nchoosek(node_count, 2)); fprintf('Density wanted: %f%%\n', density * 100); fprintf('Edges wanted: %i\n', density * nchoosek(node_count, 2)); fprintf('Non-zero coefficients: %i\n', length(find(vecUT(symmetric_coefficients) > 0))); fprintf('Selected edges: %i\n', length(find(vecUT(symmetric_coefficients) > threshold))); end end
github
hanshuting/graph_ensemble-master
lasso_node_by_node_old.m
.m
graph_ensemble-master/src/structure_learning/simple_infer_structure/lasso_node_by_node_old.m
2,786
utf_8
dd66948eed4f923240712e0ca1e02d9c
% LASSO_NODE_BY_NODE Tries to predict one variable as a function of another % and return lasso coefficients in a matrix, where each row refers to a % lasso logistic regression and each column a coefficient. % % Input % samples: logical matrix where each row is a sample and each column a node % relative_lambda: relative regularization factor (relative to the lambda % that drives all coefficients to zero. % option 'variable_groups': array that marks with integers which variable % belongs to each group, so a variable is not predicted by variables of % the same group % % Return % coefficients: matrix where each row refers to a lasso logistic % regression and each column a coefficient function [coefficients] = lasso_node_by_node(samples, relative_lambda, varargin) % parse input arguments parser = inputParser; is_logical_matrix = @(x) ismatrix(x) && islogical(x); parser.addRequired('samples', is_logical_matrix); parser.addRequired('relative_lambda', @isnumeric); parser.addParamValue('variable_groups', [], @isnumeric); parser.parse(samples, relative_lambda, varargin); variable_groups = parser.Results.variable_groups; node_count = size(samples,2); % ensures variable groups is a vector of integers with node count size if length(variable_groups) == 0 variable_groups = uint8(zeros(1,node_count)); elseif length(variable_groups) ~= node_count error('variable_group variable must have one element per node'); else variable_groups = uint8(variable_groups); end % each line of the coefficients comes from a regression, there is one % regression per node, that generates one coefficient per other node % (but diagonal is zero since we cannot use own node to predict itself, % and for each line columns corresponding to variables in the same group % are zero as well). % We will store these values in the lasso_coefficients square matrix lasso_coefficients = zeros(node_count); disp('Starting Lasso Logistic Regression'); % let's try to predict each node based on the others using lasso for label_node = 1:node_count % feature nodes are all nodes except the ones in the same group % (including the node that is being labeled) group_nodes = find(variable_groups == variable_groups(label_node)); feature_nodes = setdiff(1:node_count, group_nodes); X = samples(:,feature_nodes); Y = samples(:,label_node); B = lassoglm(X,Y, 'binomial', 'LambdaRatio', relative_lambda, 'NumLambda', 2); lasso_coefficients(label_node, feature_nodes) = B(:,1)'; fprintf('.'); end fprintf('\n'); coefficients = lasso_coefficients; end
github
xijunlee/Undergraduate-Thesis-Project-master
cheegerpartition.m
.m
Undergraduate-Thesis-Project-master/new_algorithm(lxl)/CodeLSA/helper_functions/cheegerpartition.m
548
utf_8
8e15bda04a98bfb56b6f04e376ed64c4
%evaluates the cheeger constant for a given partition function h=cheegerpartition(group,simMat); d=sum(simMat,2); %grade of each node (sum of distances on the row) [IcutA,IcutB]=meshgrid(group-1,2-group); %bool that indicates if a group is connected to A and/or B IcutAB=and(IcutA,IcutB); %indeces of nodes of A connected to B cutAB=sum(simMat(find(IcutAB))); %sum of arcs from A to B %compute the cheeger constant for this partition h=cutAB/min(sum(d(find(group==1))),sum(d(find(group==2))));
github
xijunlee/Undergraduate-Thesis-Project-master
evaluatenormalcut.m
.m
Undergraduate-Thesis-Project-master/new_algorithm(lxl)/CodeLSA/helper_functions/evaluatenormalcut.m
889
utf_8
ca9fd58a1d309f136b115628b7ca3ca5
%evaluates the normal cut function % group is a vector of zeros and ones that indicates the two partitions % simMat is the similarity matrix function cost=evaluatenormalcut(group,simMat); d=sum(simMat,2); %grade of each node (sum of distances on the row) assocA=sum(d(find(group==0))); %association of cluster A assocB=sum(d(find(group==1))); %association of cluster B [IcutA,IcutB]=meshgrid(group,1-group); %bool that indicates if a group is connected to A and/or B IcutAB=and(IcutA,IcutB); %indeces of nodes of A connected to B IcutBA=not(or(IcutA,IcutB)); %indeces of nodes of B connected to A cutAB=sum(simMat(find(IcutAB))); %sum of arcs from A to B cutBA=sum(simMat(find(IcutBA))); %sum of arcs from B to A cost=cutAB/assocA+cutBA/assocB; %normal cut cost function
github
xijunlee/Undergraduate-Thesis-Project-master
spectralcluster.m
.m
Undergraduate-Thesis-Project-master/new_algorithm(lxl)/CodeLSA/helper_functions/spectralcluster.m
765
utf_8
bb76077d06ddfb666bba7353094f70c1
% affmat is the affinity matrix A % k is the number of largest eigenvectors in matrix L % num_class is the number of classes %diagmat is the diagonal matrix D^(-0.5) % Lmat is the matrix L %X and Y ar matrices formed from eigenvectors of L % IDX is the clustering results % errorsum is the distance from kmeans function [diagMat,LMat,X,Y,IDX,errorsum]= spectralcluster(affMat,k,num_class) numDT=size(affMat,2); diagMat= diag((sum(affMat,2)).^(-1./2)); LMat=diagMat*affMat*diagMat; [v,d]=eigs(LMat,k); X=v(:,1:k); normX=(sum(X.^2,2)).^(1./2); Y=zeros(size(X)); for index=1:numDT Y(index,:)=X(index,:)./normX(index,1); end [IDX,C,sumd] = kmeans(Y,num_class,'EmptyAction','drop','Replicates',10); %[C,IDX] = kmeans(Y,num_class); errorsum=1;%sum(sum(sumd));