plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
sabbiu/ObjectDetection-master
vl_click.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/toolbox/plotop/vl_click.m
2,661
utf_8
6982e869cf80da57fdf68f5ebcd05a86
function P = vl_click(N,varargin) ; % VL_CLICK Click a point % P=VL_CLICK() let the user click a point in the current figure and % returns its coordinates in P. P is a two dimensiona vectors where % P(1) is the point X-coordinate and P(2) the point Y-coordinate. The % user can abort the operation by pressing any key, in which case the % empty matrix is returned. % % P=VL_CLICK(N) lets the user select N points in a row. The user can % stop inserting points by pressing any key, in which case the % partial list is returned. % % VL_CLICK() accepts the following options: % % PlotMarker:: [0] % Plot a marker as points are selected. The markers are deleted on % exiting the function. % % See also: VL_CLICKPOINT(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). plot_marker = 0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'plotmarker' plot_marker = varargin{k+1} ; otherwise error(['Uknown option ''', varargin{k}, '''.']) ; end end if nargin < 1 N=1; end % -------------------------------------------------------------------- % Do job % -------------------------------------------------------------------- fig = gcf ; is_hold = ishold ; hold on ; bhandler = get(fig,'WindowButtonDownFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'WindowButtonDownFcn',@click_handler) ; set(fig,'KeyPressFcn',@key_handler) ; set(fig,'Pointer','crosshair') ; P=[] ; h=[] ; data.exit=0; guidata(fig,data) ; while size(P,2) < N uiwait(fig) ; data = guidata(fig) ; if(data.exit) break ; end P = [P data.P] ; if( plot_marker ) h=[h plot(data.P(1),data.P(2),'rx')] ; end end if ~is_hold hold off ; end if( plot_marker ) pause(.1); delete(h) ; end set(fig,'WindowButtonDownFcn',bhandler) ; set(fig,'KeyPressFcn',khandler) ; set(fig,'Pointer',pointer) ; % ==================================================================== function click_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; data.P = P ; guidata(obj,data) ; uiresume(gcbo) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
sabbiu/ObjectDetection-master
vl_pr.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/toolbox/plotop/vl_pr.m
9,138
utf_8
c7fe6832d2b6b9917896810c52a05479
function [recall, precision, info] = vl_pr(labels, scores, varargin) %VL_PR Precision-recall curve. % [RECALL, PRECISION] = VL_PR(LABELS, SCORES) computes the % precision-recall (PR) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % samples. % % Samples are ranked by decreasing scores, starting from rank 1. % PRECISION(K) and RECALL(K) are the precison and recall when % samples of rank smaller or equal to K-1 are predicted to be % positive and the remaining to be negative. So for example % PRECISION(3) is the percentage of positive samples among the two % samples with largest score. PRECISION(1) is the precision when no % samples are predicted to be positive and is conventionally set to % the value 1. % % Set to zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the PR curve % may have maximum recall smaller than 1, unless the INCLUDEINF % option is used (see below). The options NUMNEGATIVES and % NUMPOSITIVES can be used to add additional surrogate samples with % -INF score (see below). % % [RECALL, PRECISION, INFO] = VL_PR(...) returns an additional % structure INFO with the following fields: % % info.auc:: % The area under the precision-recall curve. If the INTERPOLATE % option is set to FALSE, then trapezoidal interpolation is used % to integrate the PR curve. If the INTERPOLATE option is set to % TRUE, then the curve is piecewise constant and no other % approximation is introduced in the calculation of the area. In % the latter case, INFO.AUC is the same as INFO.AP. % % info.ap:: % Average precision as defined by TREC. This is the average of the % precision observed each time a new positive sample is % recalled. In this calculation, any sample with -INF score % (unless INCLUDEINF is used) and any additional positive induced % by NUMPOSITIVES has precision equal to zero. If the INTERPOLATE % option is set to true, the AP is computed from the interpolated % precision and the result is the same as INFO.AUC. Note that AP % as defined by TREC normally does not use interpolation [1]. % % info.ap_interp_11:: % 11-points interpolated average precision as defined by TREC. % This is the average of the maximum precision for recall levels % greather than 0.0, 0.1, 0.2, ..., 1.0. This measure was used in % the PASCAL VOC challenge up to the 2008 edition. % % info.auc_pa08:: % Deprecated. It is the same of INFO.AP_INTERP_11. % % VL_PR(...) with no output arguments plots the PR curve in the % current axis. % % VL_PR() accepts the following options: % % Interpolate:: false % If set to true, use interpolated precision. The interpolated % precision is defined as the maximum precision for a given recall % level and onwards. Here it is implemented as the culumative % maximum from low to high scores of the precision. % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems % for which one stores ony a handful of top results for efficiency % reasons. % % IncludeInf:: false % If set to true, data with -INF score SCORES is included in the % evaluation and the maximum recall is 1 even if -INF scores are % present. This option does not include any additional positive or % negative data introduced by specifying NUMPOSITIVES and % NUMNEGATIVES. % % Stable:: false % If set to true, RECALL and PRECISION are returned in the same order % of LABELS and SCORES rather than being sorted by decreasing % score (increasing recall). Samples with -INF scores are assigned % RECALL and PRECISION equal to NaN. % % NormalizePrior:: [] % If set to a scalar, reweights positive and negative labels so % that the fraction of positive ones is equal to the specified % value. This computes the normalised PR curves of [2] % % About the PR curve:: % This section uses the same symbols used in the documentation of % the VL_ROC() function. In addition to those quantities, define: % % PRECISION(S) = TP(S) / (TP(S) + FP(S)) % RECALL(S) = TPR(S) = TP(S) / P % % The precision is the fraction of positivie predictions which are % correct, and the recall is the fraction of positive labels that % have been correctly classified (recalled). Notice that the recall % is also equal to the true positive rate for the ROC curve (see % VL_ROC()). % % REFERENCES: % [1] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to % Information Retrieval. Cambridge University Press, 2008. % [2] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in % object detectors. In Proc. ECCV, 2012. % % See also VL_ROC(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % TP and FP are the vectors of true positie and false positve label % counts for decreasing scores, P and N are the total number of % positive and negative labels. Note that if certain options are used % some labels may actually not be stored explicitly by LABELS, so P+N % can be larger than the number of element of LABELS. [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.stable = false ; opts.interpolate = false ; opts.normalizePrior = [] ; opts = vl_argparse(opts,varargin) ; % compute precision and recall small = 1e-10 ; recall = tp / max(p, small) ; if isempty(opts.normalizePrior) precision = max(tp, small) ./ max(tp + fp, small) ; else a = opts.normalizePrior ; precision = max(tp * a/max(p,small), small) ./ ... max(tp * a/max(p,small) + fp * (1-a)/max(n,small), small) ; end % interpolate precision if needed if opts.interpolate precision = fliplr(vl_cummax(fliplr(precision))) ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % area under the curve using trapezoid interpolation if ~opts.interpolate info.auc = 0.5 * sum((precision(1:end-1) + precision(2:end)) .* diff(recall)) ; end % average precision (for each recalled positive sample) sel = find(diff(recall)) + 1 ; info.ap = sum(precision(sel)) / p ; if opts.interpolate info.auc = info.ap ; end % TREC 11 points average interpolated precision info.ap_interp_11 = 0.0 ; for rc = linspace(0,1,11) pr = max([0, precision(recall >= rc)]) ; info.ap_interp_11 = info.ap_interp_11 + pr / 11 ; end % legacy definition info.auc_pa08 = info.ap_interp_11 ; end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if nargout == 0 cla ; hold on ; plot(recall,precision,'linewidth',2) ; if isempty(opts.normalizePrior) randomPrecision = p / (p + n) ; else randomPrecision = opts.normalizePrior ; end spline([0 1], [1 1] * randomPrecision, 'r--', 'linewidth', 2) ; axis square ; grid on ; xlim([0 1]) ; xlabel('recall') ; ylim([0 1]) ; ylabel('precision') ; title(sprintf('PR (AUC: %.2f%%, AP: %.2f%%, AP11: %.2f%%)', ... info.auc * 100, ... info.ap * 100, ... info.ap_interp_11 * 100)) ; if opts.interpolate legend('PR interp.', 'PR rand.', 'Location', 'SouthEast') ; else legend('PR', 'PR rand.', 'Location', 'SouthEast') ; end clear recall precision info ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable precision(1) = [] ; recall(1) = [] ; precision_ = precision ; recall_ = recall ; precision = NaN(size(precision)) ; recall = NaN(size(recall)) ; precision(perm) = precision_ ; recall(perm) = recall_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
sabbiu/ObjectDetection-master
vl_ubcread.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/toolbox/sift/vl_ubcread.m
3,015
utf_8
e8ddd3ecd87e76b6c738ba153fef050f
function [f,d] = vl_ubcread(file, varargin) % SIFTREAD Read Lowe's SIFT implementation data files % [F,D] = VL_UBCREAD(FILE) reads the frames F and the descriptors D % from FILE in UBC (Lowe's original implementation of SIFT) format % and returns F and D as defined by VL_SIFT(). % % VL_UBCREAD(FILE, 'FORMAT', 'OXFORD') assumes the format used by % Oxford VGG implementations . % % See also: VL_SIFT(), VL_HELP(). % Authors: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.verbosity = 0 ; opts.format = 'ubc' ; opts = vl_argparse(opts, varargin) ; g = fopen(file, 'r'); if g == -1 error(['Could not open file ''', file, '''.']) ; end [header, count] = fscanf(g, '%d', [1 2]) ; if count ~= 2 error('Invalid keypoint file header.'); end switch opts.format case 'ubc' numKeypoints = header(1) ; descrLen = header(2) ; case 'oxford' numKeypoints = header(2) ; descrLen = header(1) ; otherwise error('Unknown format ''%s''.', opts.format) ; end if(opts.verbosity > 0) fprintf('%d keypoints, %d descriptor length.\n', numKeypoints, descrLen) ; end %creates two output matrices switch opts.format case 'ubc' P = zeros(4,numKeypoints) ; case 'oxford' P = zeros(5,numKeypoints) ; end L = zeros(descrLen, numKeypoints) ; %parse tmp.key for k = 1:numKeypoints switch opts.format case 'ubc' % Record format: i,j,s,th [record, count] = fscanf(g, '%f', [1 4]) ; if count ~= 4 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; case 'oxford' % Record format: x, y, a, b, c such that x' [a b ; b c] x = 1 [record, count] = fscanf(g, '%f', [1 5]) ; if count ~= 5 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; end % Record format: descriptor [record, count] = fscanf(g, '%d', [1 descrLen]) ; if count ~= descrLen error(... sprintf('Invalid keypoint file (parsing keypoint %d, descriptor part)',k) ); end L(:,k) = record(:) ; end fclose(g) ; switch opts.format case 'ubc' P(1:2,:) = flipud(P(1:2,:)) + 1 ; % i,j -> x,y f=[ P(1:2,:) ; P(3,:) ; -P(4,:) ] ; d=uint8(L) ; p=[1 2 3 4 5 6 7 8] ; q=[1 8 7 6 5 4 3 2] ; for j=0:3 for i=0:3 d(8*(i+4*j)+p,:) = d(8*(i+4*j)+q,:) ; end end case 'oxford' P(1:2,:) = P(1:2,:) + 1 ; % matlab origin f = P ; f(3:5,:) = inv2x2(f(3:5,:)) ; d = uint8(L) ; end % -------------------------------------------------------------------- function S = inv2x2(C) % -------------------------------------------------------------------- den = C(1,:) .* C(3,:) - C(2,:) .* C(2,:) ; S = [C(3,:) ; -C(2,:) ; C(1,:)] ./ den([1 1 1], :) ;
github
sabbiu/ObjectDetection-master
vl_frame2oell.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/toolbox/sift/vl_frame2oell.m
2,806
utf_8
c93792632f630743485fa4c2cf12d647
function eframes = vl_frame2oell(frames) % VL_FRAMES2OELL Convert a geometric frame to an oriented ellipse % EFRAME = VL_FRAME2OELL(FRAME) converts the generic FRAME to an % oriented ellipses EFRAME. FRAME and EFRAME can be matrices, with % one frame per column. % % A frame is either a point, a disc, an oriented disc, an ellipse, % or an oriented ellipse. These are represented respectively by 2, % 3, 4, 5 and 6 parameters each, as described in VL_PLOTFRAME(). An % oriented ellipse is the most general geometric frame; hence, there % is no loss of information in this conversion. % % If FRAME is an oriented disc or ellipse, then the conversion is % immediate. If, however, FRAME is not oriented (it is either a % point or an unoriented disc or ellipse), then an orientation must % be assigned. The orientation is chosen in such a way that the % affine transformation that maps the standard oriented frame into % the output EFRAME does not rotate the Y axis. If frames represent % detected visual features, this convention corresponds to assume % that features are upright. % % If FRAME is a point, then the output is an ellipse with null area. % % See: <a href="matlab:vl_help('tut.frame')">feature frames</a>, % VL_PLOTFRAME(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [D,K] = size(frames) ; eframes = zeros(6,K) ; switch D case 2 eframes(1:2,:) = frames(1:2,:) ; case 3 eframes(1:2,:) = frames(1:2,:) ; eframes(3,:) = frames(3,:) ; eframes(6,:) = frames(3,:) ; case 4 r = frames(3,:) ; c = r.*cos(frames(4,:)) ; s = r.*sin(frames(4,:)) ; eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = [c ; s ; -s ; c] ; case 5 eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = mapFromS(frames(3:5,:)) ; case 6 eframes = frames ; otherwise error('FRAMES format is unknown.') ; end % -------------------------------------------------------------------- function A = mapFromS(S) % -------------------------------------------------------------------- % Returns the (stacking of the) 2x2 matrix A that maps the unit circle % into the ellipses satisfying the equation x' inv(S) x = 1. Here S % is a stacked covariance matrix, with elements S11, S12 and S22. % % The goal is to find A such that AA' = S. In order to let the Y % direction unaffected (upright feature), the assumption is taht % A = [a b ; 0 c]. Hence % % AA' = [a^2, ab ; ab, b^2+c^2] = S. A = zeros(4,size(S,2)) ; a = sqrt(S(1,:)); b = S(2,:) ./ max(a, 1e-18) ; A(1,:) = a ; A(2,:) = b ; A(4,:) = sqrt(max(S(3,:) - b.*b, 0)) ;
github
sabbiu/ObjectDetection-master
vl_plotsiftdescriptor.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/toolbox/sift/vl_plotsiftdescriptor.m
5,114
utf_8
a4e125a8916653f00143b61cceda2f23
function h=vl_plotsiftdescriptor(d,f,varargin) % VL_PLOTSIFTDESCRIPTOR Plot SIFT descriptor % VL_PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptor D. If D is a % matrix, it plots one descriptor per column. D has the same format % used by VL_SIFT(). % % VL_PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to % the SIFT frames F, specified as columns of the matrix F. F has the % same format used by VL_SIFT(). % % H=VL_PLOTSIFTDESCRIPTOR(...) returns the handle H to the line % drawing representing the descriptors. % % The function assumes that the SIFT descriptors use the standard % configuration of 4x4 spatial bins and 8 orientations bins. The % following parameters can be used to change this: % % NumSpatialBins:: 4 % Number of spatial bins in both spatial directions X and Y. % % NumOrientationBins:: 8 % Number of orientation bis. % % MagnificationFactor:: 3 % Magnification factor. The width of one bin is equal to the scale % of the keypoint F multiplied by this factor. % % See also: VL_SIFT(), VL_PLOTFRAME(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.magnificationFactor = 3.0 ; opts.numSpatialBins = 4 ; opts.numOrientationBins = 8 ; opts.maxValue = 0 ; if nargin > 1 if ~ isnumeric(f) error('F must be a numeric type (use [] to leave it unspecified)') ; end end opts = vl_argparse(opts, varargin) ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= opts.numSpatialBins^2 * opts.numOrientationBins) error('The number of rows of D does not match the geometry of the descriptor') ; end if nargin > 1 if (~isempty(f) & (size(f,1) < 2 | size(f,1) > 6)) error('F must be either empty of have from 2 to six rows.'); end if size(f,1) == 2 % translation only f(3:6,:) = deal([10 0 0 10]') ; %f = [f; 10 * ones(1, size(f,2)) ; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 3 % translation and scale f(3:6,:) = [1 0 0 1]' * f(3,:) ; %f = [f; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 4 c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if size(f,1) == 5 assert(false) ; c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if(~isempty(f) & size(f,2) ~= size(d,2)) error('D and F have incompatible dimension') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 | isempty(f) f = repmat([0;0;1;0;0;1],1,K) ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K [x,y] = render_descr(d(:,k), opts.numSpatialBins, opts.numOrientationBins, opts.maxValue) ; xall = [xall opts.magnificationFactor*f(3,k)*x + opts.magnificationFactor*f(5,k)*y + f(1,k)] ; yall = [yall opts.magnificationFactor*f(4,k)*x + opts.magnificationFactor*f(6,k)*y + f(2,k)] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- function [x,y] = render_descr(d, numSpatialBins, numOrientationBins, maxValue) % -------------------------------------------------------------------- % Get the coordinates of the lines of the SIFT grid; each bin has side 1 [x,y] = meshgrid(-numSpatialBins/2:numSpatialBins/2,-numSpatialBins/2:numSpatialBins/2) ; % Get the corresponding bin centers xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % Rescale the descriptor range so that the biggest peak fits inside the bin diagram if maxValue d = 0.4 * d / maxValue ; else d = 0.4 * d / max(d(:)+eps) ; end % We scramble the the centers to have them in row major order % (descriptor convention). xc = xc' ; yc = yc' ; % Each spatial bin contains a star with numOrientationBins tips xc = repmat(xc(:)',numOrientationBins,1) ; yc = repmat(yc(:)',numOrientationBins,1) ; % Do the stars th=linspace(0,2*pi,numOrientationBins+1) ; th=th(1:end-1) ; xd = repmat(cos(th), 1, numSpatialBins*numSpatialBins) ; yd = repmat(sin(th), 1, numSpatialBins*numSpatialBins) ; xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,numSpatialBins^2*numOrientationBins) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,numSpatialBins+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
sabbiu/ObjectDetection-master
phow_caltech101.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/apps/phow_caltech101.m
11,594
utf_8
7f4890a2e6844ca56debbfe23cca64f3
function phow_caltech101() % PHOW_CALTECH101 Image classification in the Caltech-101 dataset % This program demonstrates how to use VLFeat to construct an image % classifier on the Caltech-101 data. The classifier uses PHOW % features (dense SIFT), spatial histograms of visual words, and a % Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT, % kd-trees, and homogeneous kernel map. The program also % demonstrates VLFeat PEGASOS SVM solver, although for this small % dataset other solvers such as LIBLINEAR can be more efficient. % % By default 15 training images are used, which should result in % about 64% performance (a good performance considering that only a % single feature type is being used). % % Call PHOW_CALTECH101 to train and test a classifier on a small % subset of the Caltech-101 data. Note that the program % automatically downloads a copy of the Caltech-101 data from the % Internet if it cannot find a local copy. % % Edit the PHOW_CALTECH101 file to change the program configuration. % % To run on the entire dataset change CONF.TINYPROBLEM to FALSE. % % The Caltech-101 data is saved into CONF.CALDIR, which defaults to % 'data/caltech-101'. Change this path to the desired location, for % instance to point to an existing copy of the Caltech-101 data. % % The program can also be used to train a model on custom data by % pointing CONF.CALDIR to it. Just create a subdirectory for each % class and put the training images there. Make sure to adjust % CONF.NUMTRAIN accordingly. % % Intermediate files are stored in the directory CONF.DATADIR. All % such files begin with the prefix CONF.PREFIX, which can be changed % to test different parameter settings without overriding previous % results. % % The program saves the trained model in % <CONF.DATADIR>/<CONF.PREFIX>-model.mat. This model can be used to % test novel images independently of the Caltech data. % % load('data/baseline-model.mat') ; # change to the model path % label = model.classify(model, im) ; % % Author: Andrea Vedaldi % Copyright (C) 2011-2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). conf.calDir = 'data/caltech-101' ; conf.dataDir = 'data/' ; conf.autoDownloadData = true ; conf.numTrain = 15 ; conf.numTest = 15 ; conf.numClasses = 102 ; conf.numWords = 600 ; conf.numSpatialX = [2 4] ; conf.numSpatialY = [2 4] ; conf.quantizer = 'kdtree' ; conf.svm.C = 10 ; conf.svm.solver = 'sdca' ; %conf.svm.solver = 'sgd' ; %conf.svm.solver = 'liblinear' ; conf.svm.biasMultiplier = 1 ; conf.phowOpts = {'Step', 3} ; conf.clobber = false ; conf.tinyProblem = true ; conf.prefix = 'baseline' ; conf.randSeed = 1 ; if conf.tinyProblem conf.prefix = 'tiny' ; conf.numClasses = 5 ; conf.numSpatialX = 2 ; conf.numSpatialY = 2 ; conf.numWords = 300 ; conf.phowOpts = {'Verbose', 2, 'Sizes', 7, 'Step', 5} ; end conf.vocabPath = fullfile(conf.dataDir, [conf.prefix '-vocab.mat']) ; conf.histPath = fullfile(conf.dataDir, [conf.prefix '-hists.mat']) ; conf.modelPath = fullfile(conf.dataDir, [conf.prefix '-model.mat']) ; conf.resultPath = fullfile(conf.dataDir, [conf.prefix '-result']) ; randn('state',conf.randSeed) ; rand('state',conf.randSeed) ; vl_twister('state',conf.randSeed) ; % -------------------------------------------------------------------- % Download Caltech-101 data % -------------------------------------------------------------------- if ~exist(conf.calDir, 'dir') || ... (~exist(fullfile(conf.calDir, 'airplanes'),'dir') && ... ~exist(fullfile(conf.calDir, '101_ObjectCategories', 'airplanes'))) if ~conf.autoDownloadData error(... ['Caltech-101 data not found. ' ... 'Set conf.autoDownloadData=true to download the required data.']) ; end vl_xmkdir(conf.calDir) ; calUrl = ['http://www.vision.caltech.edu/Image_Datasets/' ... 'Caltech101/101_ObjectCategories.tar.gz'] ; fprintf('Downloading Caltech-101 data to ''%s''. This will take a while.', conf.calDir) ; untar(calUrl, conf.calDir) ; end if ~exist(fullfile(conf.calDir, 'airplanes'),'dir') conf.calDir = fullfile(conf.calDir, '101_ObjectCategories') ; end % -------------------------------------------------------------------- % Setup data % -------------------------------------------------------------------- classes = dir(conf.calDir) ; classes = classes([classes.isdir]) ; classes = {classes(3:conf.numClasses+2).name} ; images = {} ; imageClass = {} ; for ci = 1:length(classes) ims = dir(fullfile(conf.calDir, classes{ci}, '*.jpg'))' ; ims = vl_colsubset(ims, conf.numTrain + conf.numTest) ; ims = cellfun(@(x)fullfile(classes{ci},x),{ims.name},'UniformOutput',false) ; images = {images{:}, ims{:}} ; imageClass{end+1} = ci * ones(1,length(ims)) ; end selTrain = find(mod(0:length(images)-1, conf.numTrain+conf.numTest) < conf.numTrain) ; selTest = setdiff(1:length(images), selTrain) ; imageClass = cat(2, imageClass{:}) ; model.classes = classes ; model.phowOpts = conf.phowOpts ; model.numSpatialX = conf.numSpatialX ; model.numSpatialY = conf.numSpatialY ; model.quantizer = conf.quantizer ; model.vocab = [] ; model.w = [] ; model.b = [] ; model.classify = @classify ; % -------------------------------------------------------------------- % Train vocabulary % -------------------------------------------------------------------- if ~exist(conf.vocabPath) || conf.clobber % Get some PHOW descriptors to train the dictionary selTrainFeats = vl_colsubset(selTrain, 30) ; descrs = {} ; %for ii = 1:length(selTrainFeats) parfor ii = 1:length(selTrainFeats) im = imread(fullfile(conf.calDir, images{selTrainFeats(ii)})) ; im = standarizeImage(im) ; [drop, descrs{ii}] = vl_phow(im, model.phowOpts{:}) ; end descrs = vl_colsubset(cat(2, descrs{:}), 10e4) ; descrs = single(descrs) ; % Quantize the descriptors to get the visual words vocab = vl_kmeans(descrs, conf.numWords, 'verbose', 'algorithm', 'elkan', 'MaxNumIterations', 50) ; save(conf.vocabPath, 'vocab') ; else load(conf.vocabPath) ; end model.vocab = vocab ; if strcmp(model.quantizer, 'kdtree') model.kdtree = vl_kdtreebuild(vocab) ; end % -------------------------------------------------------------------- % Compute spatial histograms % -------------------------------------------------------------------- if ~exist(conf.histPath) || conf.clobber hists = {} ; parfor ii = 1:length(images) % for ii = 1:length(images) fprintf('Processing %s (%.2f %%)\n', images{ii}, 100 * ii / length(images)) ; im = imread(fullfile(conf.calDir, images{ii})) ; hists{ii} = getImageDescriptor(model, im); end hists = cat(2, hists{:}) ; save(conf.histPath, 'hists') ; else load(conf.histPath) ; end % -------------------------------------------------------------------- % Compute feature map % -------------------------------------------------------------------- psix = vl_homkermap(hists, 1, 'kchi2', 'gamma', .5) ; % -------------------------------------------------------------------- % Train SVM % -------------------------------------------------------------------- if ~exist(conf.modelPath) || conf.clobber switch conf.svm.solver case {'sgd', 'sdca'} lambda = 1 / (conf.svm.C * length(selTrain)) ; w = [] ; parfor ci = 1:length(classes) perm = randperm(length(selTrain)) ; fprintf('Training model for class %s\n', classes{ci}) ; y = 2 * (imageClass(selTrain) == ci) - 1 ; [w(:,ci) b(ci) info] = vl_svmtrain(psix(:, selTrain(perm)), y(perm), lambda, ... 'Solver', conf.svm.solver, ... 'MaxNumIterations', 50/lambda, ... 'BiasMultiplier', conf.svm.biasMultiplier, ... 'Epsilon', 1e-3); end case 'liblinear' svm = train(imageClass(selTrain)', ... sparse(double(psix(:,selTrain))), ... sprintf(' -s 3 -B %f -c %f', ... conf.svm.biasMultiplier, conf.svm.C), ... 'col') ; w = svm.w(:,1:end-1)' ; b = svm.w(:,end)' ; end model.b = conf.svm.biasMultiplier * b ; model.w = w ; save(conf.modelPath, 'model') ; else load(conf.modelPath) ; end % -------------------------------------------------------------------- % Test SVM and evaluate % -------------------------------------------------------------------- % Estimate the class of the test images scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ; [drop, imageEstClass] = max(scores, [], 1) ; % Compute the confusion matrix idx = sub2ind([length(classes), length(classes)], ... imageClass(selTest), imageEstClass(selTest)) ; confus = zeros(length(classes)) ; confus = vl_binsum(confus, ones(size(idx)), idx) ; % Plots figure(1) ; clf; subplot(1,2,1) ; imagesc(scores(:,[selTrain selTest])) ; title('Scores') ; set(gca, 'ytick', 1:length(classes), 'yticklabel', classes) ; subplot(1,2,2) ; imagesc(confus) ; title(sprintf('Confusion matrix (%.2f %% accuracy)', ... 100 * mean(diag(confus)/conf.numTest) )) ; print('-depsc2', [conf.resultPath '.ps']) ; save([conf.resultPath '.mat'], 'confus', 'conf') ; % ------------------------------------------------------------------------- function im = standarizeImage(im) % ------------------------------------------------------------------------- im = im2single(im) ; if size(im,1) > 480, im = imresize(im, [480 NaN]) ; end % ------------------------------------------------------------------------- function hist = getImageDescriptor(model, im) % ------------------------------------------------------------------------- im = standarizeImage(im) ; width = size(im,2) ; height = size(im,1) ; numWords = size(model.vocab, 2) ; % get PHOW features [frames, descrs] = vl_phow(im, model.phowOpts{:}) ; % quantize local descriptors into visual words switch model.quantizer case 'vq' [drop, binsa] = min(vl_alldist(model.vocab, single(descrs)), [], 1) ; case 'kdtree' binsa = double(vl_kdtreequery(model.kdtree, model.vocab, ... single(descrs), ... 'MaxComparisons', 50)) ; end for i = 1:length(model.numSpatialX) binsx = vl_binsearch(linspace(1,width,model.numSpatialX(i)+1), frames(1,:)) ; binsy = vl_binsearch(linspace(1,height,model.numSpatialY(i)+1), frames(2,:)) ; % combined quantization bins = sub2ind([model.numSpatialY(i), model.numSpatialX(i), numWords], ... binsy,binsx,binsa) ; hist = zeros(model.numSpatialY(i) * model.numSpatialX(i) * numWords, 1) ; hist = vl_binsum(hist, ones(size(bins)), bins) ; hists{i} = single(hist / sum(hist)) ; end hist = cat(1,hists{:}) ; hist = hist / sum(hist) ; % ------------------------------------------------------------------------- function [className, score] = classify(model, im) % ------------------------------------------------------------------------- hist = getImageDescriptor(model, im) ; psix = vl_homkermap(hist, 1, 'kchi2', 'gamma', .5) ; scores = model.w' * psix + model.b' ; [score, best] = max(scores) ; className = model.classes{best} ;
github
sabbiu/ObjectDetection-master
sift_mosaic.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/apps/sift_mosaic.m
4,621
utf_8
8fa3ad91b401b8f2400fb65944c79712
function mosaic = sift_mosaic(im1, im2) % SIFT_MOSAIC Demonstrates matching two images using SIFT and RANSAC % % SIFT_MOSAIC demonstrates matching two images based on SIFT % features and RANSAC and computing their mosaic. % % SIFT_MOSAIC by itself runs the algorithm on two standard test % images. Use SIFT_MOSAIC(IM1,IM2) to compute the mosaic of two % custom images IM1 and IM2. % AUTORIGHTS if nargin == 0 im1 = imread(fullfile(vl_root, 'data', 'river1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'river2.jpg')) ; end % make single im1 = im2single(im1) ; im2 = im2single(im2) ; % make grayscale if size(im1,3) > 1, im1g = rgb2gray(im1) ; else im1g = im1 ; end if size(im2,3) > 1, im2g = rgb2gray(im2) ; else im2g = im2 ; end % -------------------------------------------------------------------- % SIFT matches % -------------------------------------------------------------------- [f1,d1] = vl_sift(im1g) ; [f2,d2] = vl_sift(im2g) ; [matches, scores] = vl_ubcmatch(d1,d2) ; numMatches = size(matches,2) ; X1 = f1(1:2,matches(1,:)) ; X1(3,:) = 1 ; X2 = f2(1:2,matches(2,:)) ; X2(3,:) = 1 ; % -------------------------------------------------------------------- % RANSAC with homography model % -------------------------------------------------------------------- clear H score ok ; for t = 1:100 % estimate homograpyh subset = vl_colsubset(1:numMatches, 4) ; A = [] ; for i = subset A = cat(1, A, kron(X1(:,i)', vl_hat(X2(:,i)))) ; end [U,S,V] = svd(A) ; H{t} = reshape(V(:,9),3,3) ; % score homography X2_ = H{t} * X1 ; du = X2_(1,:)./X2_(3,:) - X2(1,:)./X2(3,:) ; dv = X2_(2,:)./X2_(3,:) - X2(2,:)./X2(3,:) ; ok{t} = (du.*du + dv.*dv) < 6*6 ; score(t) = sum(ok{t}) ; end [score, best] = max(score) ; H = H{best} ; ok = ok{best} ; % -------------------------------------------------------------------- % Optional refinement % -------------------------------------------------------------------- function err = residual(H) u = H(1) * X1(1,ok) + H(4) * X1(2,ok) + H(7) ; v = H(2) * X1(1,ok) + H(5) * X1(2,ok) + H(8) ; d = H(3) * X1(1,ok) + H(6) * X1(2,ok) + 1 ; du = X2(1,ok) - u ./ d ; dv = X2(2,ok) - v ./ d ; err = sum(du.*du + dv.*dv) ; end if exist('fminsearch') == 2 H = H / H(3,3) ; opts = optimset('Display', 'none', 'TolFun', 1e-8, 'TolX', 1e-8) ; H(1:8) = fminsearch(@residual, H(1:8)', opts) ; else warning('Refinement disabled as fminsearch was not found.') ; end % -------------------------------------------------------------------- % Show matches % -------------------------------------------------------------------- dh1 = max(size(im2,1)-size(im1,1),0) ; dh2 = max(size(im1,1)-size(im2,1),0) ; figure(1) ; clf ; subplot(2,1,1) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,:));f2(1,matches(2,:))+o], ... [f1(2,matches(1,:));f2(2,matches(2,:))]) ; title(sprintf('%d tentative matches', numMatches)) ; axis image off ; subplot(2,1,2) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,ok));f2(1,matches(2,ok))+o], ... [f1(2,matches(1,ok));f2(2,matches(2,ok))]) ; title(sprintf('%d (%.2f%%) inliner matches out of %d', ... sum(ok), ... 100*sum(ok)/numMatches, ... numMatches)) ; axis image off ; drawnow ; % -------------------------------------------------------------------- % Mosaic % -------------------------------------------------------------------- box2 = [1 size(im2,2) size(im2,2) 1 ; 1 1 size(im2,1) size(im2,1) ; 1 1 1 1 ] ; box2_ = inv(H) * box2 ; box2_(1,:) = box2_(1,:) ./ box2_(3,:) ; box2_(2,:) = box2_(2,:) ./ box2_(3,:) ; ur = min([1 box2_(1,:)]):max([size(im1,2) box2_(1,:)]) ; vr = min([1 box2_(2,:)]):max([size(im1,1) box2_(2,:)]) ; [u,v] = meshgrid(ur,vr) ; im1_ = vl_imwbackward(im2double(im1),u,v) ; z_ = H(3,1) * u + H(3,2) * v + H(3,3) ; u_ = (H(1,1) * u + H(1,2) * v + H(1,3)) ./ z_ ; v_ = (H(2,1) * u + H(2,2) * v + H(2,3)) ./ z_ ; im2_ = vl_imwbackward(im2double(im2),u_,v_) ; mass = ~isnan(im1_) + ~isnan(im2_) ; im1_(isnan(im1_)) = 0 ; im2_(isnan(im2_)) = 0 ; mosaic = (im1_ + im2_) ./ mass ; figure(2) ; clf ; imagesc(mosaic) ; axis image off ; title('Mosaic') ; if nargout == 0, clear mosaic ; end end
github
sabbiu/ObjectDetection-master
encodeImage.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/apps/recognition/encodeImage.m
5,278
utf_8
5d9dc6161995b8e10366b5649bf4fda4
function descrs = encodeImage(encoder, im, varargin) % ENCODEIMAGE Apply an encoder to an image % DESCRS = ENCODEIMAGE(ENCODER, IM) applies the ENCODER % to image IM, returning a corresponding code vector PSI. % % IM can be an image, the path to an image, or a cell array of % the same, to operate on multiple images. % % ENCODEIMAGE(ENCODER, IM, CACHE) utilizes the specified CACHE % directory to store encodings for the given images. The cache % is used only if the images are specified as file names. % % See also: TRAINENCODER(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.cacheDir = [] ; opts.cacheChunkSize = 512 ; opts = vl_argparse(opts,varargin) ; if ~iscell(im), im = {im} ; end % break the computation into cached chunks startTime = tic ; descrs = cell(1, numel(im)) ; numChunks = ceil(numel(im) / opts.cacheChunkSize) ; for c = 1:numChunks n = min(opts.cacheChunkSize, numel(im) - (c-1)*opts.cacheChunkSize) ; chunkPath = fullfile(opts.cacheDir, sprintf('chunk-%03d.mat',c)) ; if ~isempty(opts.cacheDir) && exist(chunkPath) fprintf('%s: loading descriptors from %s\n', mfilename, chunkPath) ; load(chunkPath, 'data') ; else range = (c-1)*opts.cacheChunkSize + (1:n) ; fprintf('%s: processing a chunk of %d images (%3d of %3d, %5.1fs to go)\n', ... mfilename, numel(range), ... c, numChunks, toc(startTime) / (c - 1) * (numChunks - c + 1)) ; data = processChunk(encoder, im(range)) ; if ~isempty(opts.cacheDir) save(chunkPath, 'data') ; end end descrs{c} = data ; clear data ; end descrs = cat(2,descrs{:}) ; % -------------------------------------------------------------------- function psi = processChunk(encoder, im) % -------------------------------------------------------------------- psi = cell(1,numel(im)) ; if numel(im) > 1 & matlabpool('size') > 1 parfor i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end else % avoiding parfor makes debugging easier for i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end end psi = cat(2, psi{:}) ; % -------------------------------------------------------------------- function psi = encodeOne(encoder, im) % -------------------------------------------------------------------- im = encoder.readImageFn(im) ; features = encoder.extractorFn(im) ; imageSize = size(im) ; psi = {} ; for i = 1:size(encoder.subdivisions,2) minx = encoder.subdivisions(1,i) * imageSize(2) ; miny = encoder.subdivisions(2,i) * imageSize(1) ; maxx = encoder.subdivisions(3,i) * imageSize(2) ; maxy = encoder.subdivisions(4,i) * imageSize(1) ; ok = ... minx <= features.frame(1,:) & features.frame(1,:) < maxx & ... miny <= features.frame(2,:) & features.frame(2,:) < maxy ; descrs = encoder.projection * bsxfun(@minus, ... features.descr(:,ok), ... encoder.projectionCenter) ; if encoder.renormalize descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; end w = size(im,2) ; h = size(im,1) ; frames = features.frame(1:2,:) ; frames = bsxfun(@times, bsxfun(@minus, frames, [w;h]/2), 1./[w;h]) ; descrs = extendDescriptorsWithGeometry(encoder.geometricExtension, frames, descrs) ; switch encoder.type case 'bovw' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 100) ; z = vl_binsum(zeros(encoder.numWords,1), 1, double(words)) ; z = sqrt(z) ; case 'fv' z = vl_fisher(descrs, ... encoder.means, ... encoder.covariances, ... encoder.priors, ... 'Improved') ; case 'vlad' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 15) ; assign = zeros(encoder.numWords, numel(words), 'single') ; assign(sub2ind(size(assign), double(words), 1:numel(words))) = 1 ; z = vl_vlad(descrs, ... encoder.words, ... assign, ... 'SquareRoot', ... 'NormalizeComponents') ; end z = z / max(sqrt(sum(z.^2)), 1e-12) ; psi{i} = z(:) ; end psi = cat(1, psi{:}) ; % -------------------------------------------------------------------- function psi = getFromCache(name, cache) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; if exist(cachePath, 'file') data = load(cachePath) ; psi = data.psi ; else psi = [] ; end % -------------------------------------------------------------------- function storeToCache(name, cache, psi) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; vl_xmkdir(cache) ; data.psi = psi ; save(cachePath, '-STRUCT', 'data') ;
github
sabbiu/ObjectDetection-master
experiments.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/apps/recognition/experiments.m
6,905
utf_8
1e4a4911eed4a451b9488b9e6cc9b39c
function experiments() % EXPERIMENTS Run image classification experiments % The experimens download a number of benchmark datasets in the % 'data/' subfolder. Make sure that there are several GBs of % space available. % % By default, experiments run with a lite option turned on. This % quickly runs all of them on tiny subsets of the actual data. % This is used only for testing; to run the actual experiments, % set the lite variable to false. % % Running all the experiments is a slow process. Using parallel % MATLAB and several cores/machiens is suggested. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). lite = true ; clear ex ; ex(1).prefix = 'fv-aug' ; ex(1).trainOpts = {'C', 10} ; ex(1).datasets = {'fmd', 'scene67'} ; ex(1).seed = 1 ; ex(1).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(2) = ex(1) ; ex(2).datasets = {'caltech101'} ; ex(2).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(3) = ex(1) ; ex(3).datasets = {'voc07'} ; ex(3).C = 1 ; ex(4) = ex(1) ; ex(4).prefix = 'vlad-aug' ; ex(4).opts = {... 'type', 'vlad', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(5) = ex(4) ; ex(5).datasets = {'caltech101'} ; ex(5).opts{end} = ex(2).opts{end} ; ex(6) = ex(4) ; ex(6).datasets = {'voc07'} ; ex(6).C = 1 ; ex(7) = ex(1) ; ex(7).prefix = 'bovw-aug' ; ex(7).opts = {... 'type', 'bovw', ... 'numWords', 4096, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(8) = ex(7) ; ex(8).datasets = {'caltech101'} ; ex(8).opts{end} = ex(2).opts{end} ; ex(9) = ex(7) ; ex(9).datasets = {'voc07'} ; ex(9).C = 1 ; ex(10).prefix = 'fv' ; ex(10).trainOpts = {'C', 10} ; ex(10).datasets = {'fmd', 'scene67'} ; ex(10).seed = 1 ; ex(10).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(11) = ex(10) ; ex(11).datasets = {'caltech101'} ; ex(11).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(12) = ex(10) ; ex(12).datasets = {'voc07'} ; ex(12).C = 1 ; ex(13).prefix = 'fv-sp' ; ex(13).trainOpts = {'C', 10} ; ex(13).datasets = {'fmd', 'scene67'} ; ex(13).seed = 1 ; ex(13).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1', '3x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(14) = ex(13) ; ex(14).datasets = {'caltech101'} ; ex(14).opts{6} = {'1x1', '2x2'} ; ex(14).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(15) = ex(13) ; ex(15).datasets = {'voc07'} ; ex(15).C = 1 ; if lite, tag = 'lite' ; else, tag = 'ex' ; end for i=1:numel(ex) for j=1:numel(ex(i).datasets) dataset = ex(i).datasets{j} ; if ~isfield(ex(i), 'trainOpts') || ~iscell(ex(i).trainOpts) ex(i).trainOpts = {} ; end traintest(... 'prefix', [tag '-' dataset '-' ex(i).prefix], ... 'seed', ex(i).seed, ... 'dataset', char(dataset), ... 'datasetDir', fullfile('data', dataset), ... 'lite', lite, ... ex(i).trainOpts{:}, ... 'encoderParams', ex(i).opts) ; end end % print HTML table pf('<table>\n') ; ph('method', 'VOC07', 'Caltech 101', 'Scene 67', 'FMD') ; pr('FV', ... ge([tag '-voc07-fv'],'ap11'), ... ge([tag '-caltech101-fv']), ... ge([tag '-scene67-fv']), ... ge([tag '-fmd-fv'])) ; pr('FV + aug.', ... ge([tag '-voc07-fv-aug'],'ap11'), ... ge([tag '-caltech101-fv-aug']), ... ge([tag '-scene67-fv-aug']), ... ge([tag '-fmd-fv-aug'])) ; pr('FV + s.p.', ... ge([tag '-voc07-fv-sp'],'ap11'), ... ge([tag '-caltech101-fv-sp']), ... ge([tag '-scene67-fv-sp']), ... ge([tag '-fmd-fv-sp'])) ; %pr('VLAD', ... % ge([tag '-voc07-vlad'],'ap11'), ... % ge([tag '-caltech101-vlad']), ... % ge([tag '-scene67-vlad']), ... % ge([tag '-fmd-vlad'])) ; pr('VLAD + aug.', ... ge([tag '-voc07-vlad-aug'],'ap11'), ... ge([tag '-caltech101-vlad-aug']), ... ge([tag '-scene67-vlad-aug']), ... ge([tag '-fmd-vlad-aug'])) ; %pr('VLAD+sp', ... % ge([tag '-voc07-vlad-sp'],'ap11'), ... % ge([tag '-caltech101-vlad-sp']), ... % ge([tag '-scene67-vlad-sp']), ... % ge([tag '-fmd-vlad-sp'])) ; %pr('BOVW', ... % ge([tag '-voc07-bovw'],'ap11'), ... % ge([tag '-caltech101-bovw']), ... % ge([tag '-scene67-bovw']), ... % ge([tag '-fmd-bovw'])) ; pr('BOVW + aug.', ... ge([tag '-voc07-bovw-aug'],'ap11'), ... ge([tag '-caltech101-bovw-aug']), ... ge([tag '-scene67-bovw-aug']), ... ge([tag '-fmd-bovw-aug'])) ; %pr('BOVW+sp', ... % ge([tag '-voc07-bovw-sp'],'ap11'), ... % ge([tag '-caltech101-bovw-sp']), ... % ge([tag '-scene67-bovw-sp']), ... % ge([tag '-fmd-bovw-sp'])) ; pf('</table>\n'); function pf(str) fprintf(str) ; function str = ge(name, format) if nargin == 1, format = 'acc'; end data = load(fullfile('data', name, 'result.mat')) ; switch format case 'acc' str = sprintf('%.2f%% <span style="font-size:8px;">Acc</span>', mean(diag(data.confusion)) * 100) ; case 'ap11' str = sprintf('%.2f%% <span style="font-size:8px;">mAP</span>', mean(data.ap11) * 100) ; end function pr(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<td>%s</td>',varargin{i}) ; end fprintf('</tr>\n') ; function ph(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<th>%s</th>',varargin{i}) ; end fprintf('</tr>\n') ;
github
sabbiu/ObjectDetection-master
getDenseSIFT.m
.m
ObjectDetection-master/Project-GUI/vlfeat-0.9.20/apps/recognition/getDenseSIFT.m
1,679
utf_8
2059c0a2a4e762226d89121408c6e51c
function features = getDenseSIFT(im, varargin) % GETDENSESIFT Extract dense SIFT features % FEATURES = GETDENSESIFT(IM) extract dense SIFT features from % image IM. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.scales = logspace(log10(1), log10(.25), 5) ; opts.contrastthreshold = 0 ; opts.step = 3 ; opts.rootSift = false ; opts.normalizeSift = true ; opts.binSize = 8 ; opts.geometry = [4 4 8] ; opts.sigma = 0 ; opts = vl_argparse(opts, varargin) ; dsiftOpts = {'norm', 'fast', 'floatdescriptors', ... 'step', opts.step, ... 'size', opts.binSize, ... 'geometry', opts.geometry} ; if size(im,3)>1, im = rgb2gray(im) ; end im = im2single(im) ; im = vl_imsmooth(im, opts.sigma) ; for si = 1:numel(opts.scales) im_ = imresize(im, opts.scales(si)) ; [frames{si}, descrs{si}] = vl_dsift(im_, dsiftOpts{:}) ; % root SIFT if opts.rootSift descrs{si} = sqrt(descrs{si}) ; end if opts.normalizeSift descrs{si} = snorm(descrs{si}) ; end % zero low contrast descriptors info.contrast{si} = frames{si}(3,:) ; kill = info.contrast{si} < opts.contrastthreshold ; descrs{si}(:,kill) = 0 ; % store frames frames{si}(1:2,:) = (frames{si}(1:2,:)-1) / opts.scales(si) + 1 ; frames{si}(3,:) = opts.binSize / opts.scales(si) / 3 ; end features.frame = cat(2, frames{:}) ; features.descr = cat(2, descrs{:}) ; features.contrast = cat(2, info.contrast{:}) ; function x = snorm(x) x = bsxfun(@times, x, 1./max(1e-5,sqrt(sum(x.^2,1)))) ;
github
sabbiu/ObjectDetection-master
generate_bow.m
.m
ObjectDetection-master/Project-CLI/generate_bow.m
1,962
utf_8
d637d39a2cdd49b6c43fb6521174b402
%% Object Detection % Sabbiu Shah, Sagar Adhikari, Samip Subedi % Department of Electronics and Computer Engineering % IOE, Pulchowk Campus % 2016 %% ================ function that generates bag of words ============== function [ histogram, bounding_rect] = generate_bow( image ) %generates bow for new image bagg = 500; I = imread(image); level = graythresh(I); bw = im2bw(I,level); se = strel('line',11,90); erodedBW = imerode(imcomplement(bw),se); dilatedBW = imdilate(erodedBW,se); col_info = any(dilatedBW,1); row_info = any(dilatedBW,2); min_x = 1; min_y = 1; for i=1:size(col_info,2) if(col_info(1,i) == 1) if(min_x ==1 ) min_x = i; end max_x = i; end end for i=1:size(row_info,1) if(row_info(i,1) == 1) if(min_y ==1 ) min_y = i; end max_y = i; end end bounding_rect = [min_x, min_y, max_x-min_x, max_y-min_y]; I = imcrop(I,[min_x, min_y, max_x-min_x, max_y-min_y]); imwrite(mat2gray(I),'temporary_crop.jpg'); descriptors = features_SIFT('temporary_crop.jpg'); load('cluster_centers.mat','centers'); descriptors = double(descriptors)/255; % variable that stores cluster no. cluster_no = []; histogram = zeros(1,bagg); for i=1:size(descriptors,1) minimum = norm(descriptors(i,:)-centers(1,:)); index = 1; for j=2:size(centers,1) if(minimum > norm(descriptors(i,:)-centers(j,:))) minimum = norm(descriptors(i,:)-centers(j,:)); index = j; end end cluster_no = [cluster_no; index]; end for i=1:size(cluster_no,1) histogram(1,cluster_no(i,1)) = histogram(1,cluster_no(i,1)) + 1; end histogram = histogram/norm(histogram); end
github
sabbiu/ObjectDetection-master
features_SIFT.m
.m
ObjectDetection-master/Project-CLI/features_SIFT.m
1,027
utf_8
53223ae2686f49c32df120fbc841dcc9
%% Object Detection % Sabbiu Shah, Sagar Adhikari, Samip Subedi % Department of Electronics and Computer Engineering % IOE, Pulchowk Campus % 2016 %% ================ SIFT_features function =========================== function [ descriptor ] = features_SIFT( image_loc ) % This function returns descriptor for image using SIFT peak_thresh = 0; % increase to limit; default is 0 edge_thresh = 10; % decrease to limit; default is 10 I = imread(image_loc); % figure % imshow(I); if size(I,3)>1 I = rgb2gray(I); end I = single(I); % Convert to single precision floating point [feature, descriptor] = vl_sift(I, ... 'PeakThresh', peak_thresh, ... 'edgethresh', edge_thresh ); % perm = randperm(size(feature,2)) ; % sel = perm(1:50) ; % h1 = vl_plotframe(feature(:,sel)) ; % h2 = vl_plotframe(feature(:,sel)) ; % set(h1,'color','k','linewidth',3) ; % set(h2,'color','y','linewidth',2) ; descriptor = transpose(descriptor); end
github
sabbiu/ObjectDetection-master
kmeans.m
.m
ObjectDetection-master/Project-CLI/kmeans.m
1,652
utf_8
3d14ffd9f0a50969931cde873f4b27ec
%% Object Detection % Sabbiu Shah, Sagar Adhikari, Samip Subedi % Department of Electronics and Computer Engineering % IOE, Pulchowk Campus % 2016 %==================== K-means function ============================== function [ center, number ] = kmeans( features, clusters, KMI ) %It is the implementation of kmeans algorithm F = features; K = clusters; CENTS = F( ceil(rand(K,1)*size(F,1)) ,:); % Cluster Centers cents_old = CENTS; DAL = zeros(size(F,1),K+2); % Distances and Labels fprintf('Doing...%2d',1); for n = 1:KMI fprintf('\b\b%2d',n); for i = 1:size(F,1) for j = 1:K DAL(i,j) = norm(F(i,:) - CENTS(j,:)); end [Distance, CN] = min(DAL(i,1:K)); % 1:K are Distance from Cluster Centers 1:K DAL(i,K+1) = CN; % K+1 is Cluster Label DAL(i,K+2) = Distance; % K+2 is Minimum Distance end for i = 1:K A = (DAL(:,K+1) == i); % Cluster K Points CENTS(i,:) = mean(F(A,:)); % New Cluster Centers if sum(isnan(CENTS(:))) ~= 0 % If CENTS(i,:) Is Nan Then Replace It With Random Point NC = find(isnan(CENTS(:,1)) == 1); % Find Nan Centers for Ind = 1:size(NC,1) CENTS(NC(Ind),:) = F(randi(size(F,1)),:); end end end check = cents_old - CENTS; cents_old = CENTS; check = abs(check); val = max(max(check)); if(abs(val)<0.00001) break; end end center = CENTS; number = DAL; fprintf('\n'); end
github
sabbiu/ObjectDetection-master
vl_compile.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/vl_compile.m
5,060
utf_8
978f5189bb9b2a16db3368891f79aaa6
function vl_compile(compiler) % VL_COMPILE Compile VLFeat MEX files % VL_COMPILE() uses MEX() to compile VLFeat MEX files. This command % works only under Windows and is used to re-build problematic % binaries. The preferred method of compiling VLFeat on both UNIX % and Windows is through the provided Makefiles. % % VL_COMPILE() only compiles the MEX files and assumes that the % VLFeat DLL (i.e. the file VLFEATROOT/bin/win{32,64}/vl.dll) has % already been built. This file is built by the Makefiles. % % By default VL_COMPILE() assumes that Visual C++ is the active % MATLAB compiler. VL_COMPILE('lcc') assumes that the active % compiler is LCC instead (see MEX -SETUP). Unfortunately LCC does % not seem to be able to compile the latest versions of VLFeat due % to bugs in the support of 64-bit integers. Therefore it is % recommended to use Visual C++ instead. % % See also: VL_NOPREFIX(), VL_HELP(). % Authors: Andrea Vedadli, Jonghyun Choi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 1, compiler = 'visualc' ; end switch lower(compiler) case 'visualc' fprintf('%s: assuming that Visual C++ is the active compiler\n', mfilename) ; useLcc = false ; case 'lcc' fprintf('%s: assuming that LCC is the active compiler\n', mfilename) ; warning('LCC may fail to compile VLFeat. See help vl_compile.') ; useLcc = true ; otherwise error('Unknown compiler ''%s''.', compiler) end vlDir = vl_root ; toolboxDir = fullfile(vlDir, 'toolbox') ; switch computer case 'PCWIN' fprintf('%s: compiling for PCWIN (32 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw32') ; binwDir = fullfile(vlDir, 'bin', 'win32') ; case 'PCWIN64' fprintf('%s: compiling for PCWIN64 (64 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw64') ; binwDir = fullfile(vlDir, 'bin', 'win64') ; otherwise error('The architecture is neither PCWIN nor PCWIN64. See help vl_compile.') ; end impLibPath = fullfile(binwDir, 'vl.lib') ; libDir = fullfile(binwDir, 'vl.dll') ; mkd(mexwDir) ; % find the subdirectories of toolbox that we should process subDirs = dir(toolboxDir) ; subDirs = subDirs([subDirs.isdir]) ; discard = regexp({subDirs.name}, '^(.|..|noprefix|mex.*)$', 'start') ; keep = cellfun('isempty', discard) ; subDirs = subDirs(keep) ; subDirs = {subDirs.name} ; % Copy support files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ~exist(fullfile(binwDir, 'vl.dll')) error('The VLFeat DLL (%s) could not be found. See help vl_compile.', ... fullfile(binwDir, 'vl.dll')) ; end tmp = dir(fullfile(binwDir, '*.dll')) ; supportFileNames = {tmp.name} ; for fi = 1:length(supportFileNames) name = supportFileNames{fi} ; cp(fullfile(binwDir, name), ... fullfile(mexwDir, name) ) ; end % Ensure implib for LCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if useLcc lccImpLibDir = fullfile(mexwDir, 'lcc') ; lccImpLibPath = fullfile(lccImpLibDir, 'VL.lib') ; lccRoot = fullfile(matlabroot, 'sys', 'lcc', 'bin') ; lccImpExePath = fullfile(lccRoot, 'lcc_implib.exe') ; mkd(lccImpLibDir) ; cp(fullfile(binwDir, 'vl.dll'), fullfile(lccImpLibDir, 'vl.dll')) ; cmd = ['"' lccImpExePath '"', ' -u ', '"' fullfile(lccImpLibDir, 'vl.dll') '"'] ; fprintf('Running:\n> %s\n', cmd) ; curPath = pwd ; try cd(lccImpLibDir) ; [d,w] = system(cmd) ; if d, error(w); end cd(curPath) ; catch cd(curPath) ; error(lasterr) ; end end % Compile each mex file ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for i = 1:length(subDirs) thisDir = fullfile(toolboxDir, subDirs{i}) ; fileNames = ls(fullfile(thisDir, '*.c')); for f = 1:size(fileNames,1) fileName = fileNames(f, :) ; sp = strfind(fileName, ' '); if length(sp) > 0, fileName = fileName(1:sp-1); end filePath = fullfile(thisDir, fileName); fprintf('MEX %s\n', filePath); dot = strfind(fileName, '.'); mexFile = fullfile(mexwDir, [fileName(1:dot) 'dll']); if exist(mexFile) delete(mexFile) end cmd = {['-I' toolboxDir], ... ['-I' vlDir], ... '-O', ... '-outdir', mexwDir, ... filePath } ; if useLcc cmd{end+1} = lccImpLibPath ; else cmd{end+1} = impLibPath ; end mex(cmd{:}) ; end end % -------------------------------------------------------------------- function cp(src,dst) % -------------------------------------------------------------------- if ~exist(dst,'file') fprintf('Copying ''%s'' to ''%s''.\n', src,dst) ; copyfile(src,dst) ; end % -------------------------------------------------------------------- function mkd(dst) % -------------------------------------------------------------------- if ~exist(dst, 'dir') fprintf('Creating directory ''%s''.', dst) ; mkdir(dst) ; end
github
sabbiu/ObjectDetection-master
vl_noprefix.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/vl_noprefix.m
1,875
utf_8
97d8755f0ba139ac1304bc423d3d86d3
function vl_noprefix % VL_NOPREFIX Create a prefix-less version of VLFeat commands % VL_NOPREFIX() creats prefix-less stubs for VLFeat functions % (e.g. SIFT for VL_SIFT). This function is seldom used as the stubs % are included in the VLFeat binary distribution anyways. Moreover, % on UNIX platforms, the stubs are generally constructed by the % Makefile. % % See also: VL_COMPILE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). root = fileparts(which(mfilename)) ; list = listMFilesX(root); outDir = fullfile(root, 'noprefix') ; if ~exist(outDir, 'dir') mkdir(outDir) ; end for li = 1:length(list) name = list(li).name(1:end-2) ; % remove .m nname = name(4:end) ; % remove vl_ stubPath = fullfile(outDir, [nname '.m']) ; fout = fopen(stubPath, 'w') ; fprintf('Creating stub %s for %s\n', stubPath, nname) ; fprintf(fout, 'function varargout = %s(varargin)\n', nname) ; fprintf(fout, '%% %s Stub for %s\n', upper(nname), upper(name)) ; fprintf(fout, '[varargout{1:nargout}] = %s(varargin{:})\n', name) ; fclose(fout) ; end end function list = listMFilesX(root) list = struct('name', {}, 'path', {}) ; files = dir(root) ; for fi = 1:length(files) name = files(fi).name ; if files(fi).isdir if any(regexp(name, '^(\.|\.\.|noprefix)$')) continue ; else tmp = listMFilesX(fullfile(root, name)) ; list = [list, tmp] ; end end if any(regexp(name, '^vl_(demo|test).*m$')) continue ; elseif any(regexp(name, '^vl_(demo|setup|compile|help|root|noprefix)\.m$')) continue ; elseif any(regexp(name, '\.m$')) list(end+1) = struct(... 'name', {name}, ... 'path', {fullfile(root, name)}) ; end end end
github
sabbiu/ObjectDetection-master
vl_pegasos.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/misc/vl_pegasos.m
2,837
utf_8
d5e0915c439ece94eb5597a07090b67d
% VL_PEGASOS [deprecated] % VL_PEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_pegasos(X,Y,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end % parameters for vl_maketrainingset setvarargin = {}; if (sum(strcmpi('HOMKERMAP',varargin))) setvarargin{end+1} = 'HOMKERMAP'; setvarargin{end+1} = varargin{find(strcmpi('HOMKERMAP',varargin),1)+1}; varargin(find(strcmpi('HOMKERMAP',varargin),1)+1)=[]; varargin(find(strcmpi('HOMKERMAP',varargin),1))=[]; end if (sum(strcmpi('KChi2',varargin))) setvarargin{end+1} = 'KChi2'; varargin(find(strcmpi('KChi2',varargin),1))=[]; end if (sum(strcmpi('KINTERS',varargin))) setvarargin{end+1} = 'KINTERS'; varargin(find(strcmpi('KINTERS',varargin),1))=[]; end if (sum(strcmpi('KL1',varargin))) setvarargin{end+1} = 'KL1'; varargin(find(strcmpi('KL1',varargin),1))=[]; end if (sum(strcmpi('KJS',varargin))) setvarargin{end+1} = 'KJS'; varargin(find(strcmpi('KJS',varargin),1))=[]; end if (sum(strcmpi('Period',varargin))) setvarargin{end+1} = 'Period'; setvarargin{end+1} = varargin{find(strcmpi('Period',varargin),1)+1}; varargin(find(strcmpi('Period',varargin),1)+1)=[]; varargin(find(strcmpi('Period',varargin),1))=[]; end if (sum(strcmpi('Window',varargin))) setvarargin{end+1} = 'Window'; setvarargin{end+1} = varargin{find(strcmpi('Window',varargin),1)+1}; varargin(find(strcmpi('Window',varargin),1)+1)=[]; varargin(find(strcmpi('Window',varargin),1))=[]; end if (sum(strcmpi('Gamma',varargin))) setvarargin{end+1} = 'Gamma'; setvarargin{end+1} = varargin{find(strcmpi('Gamma',varargin),1)+1}; varargin(find(strcmpi('Gamma',varargin),1)+1)=[]; varargin(find(strcmpi('Gamma',varargin),1))=[]; end setvarargin{:} DATA = vl_maketrainingset(double(X),int8(Y),setvarargin{:}); DATA [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_pegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
sabbiu/ObjectDetection-master
vl_svmpegasos.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/misc/vl_svmpegasos.m
1,178
utf_8
009c2a2b87a375d529ed1a4dbe3af59f
% VL_SVMPEGASOS [deprecated] % VL_SVMPEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_svmpegasos(DATA,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_svmpegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
sabbiu/ObjectDetection-master
vl_override.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/misc/vl_override.m
4,654
utf_8
e233d2ecaeb68f56034a976060c594c5
function config = vl_override(config,update,varargin) % VL_OVERRIDE Override structure subset % CONFIG = VL_OVERRIDE(CONFIG, UPDATE) copies recursively the fileds % of the structure UPDATE to the corresponding fields of the % struture CONFIG. % % Usually CONFIG is interpreted as a list of paramters with their % default values and UPDATE as a list of new paramete values. % % VL_OVERRIDE(..., 'Warn') prints a warning message whenever: (i) % UPDATE has a field not found in CONFIG, or (ii) non-leaf values of % CONFIG are overwritten. % % VL_OVERRIDE(..., 'Skip') skips fields of UPDATE that are not found % in CONFIG instead of copying them. % % VL_OVERRIDE(..., 'CaseI') matches field names in a % case-insensitive manner. % % Remark:: % Fields are copied at the deepest possible level. For instance, % if CONFIG has fields A.B.C1=1 and A.B.C2=2, and if UPDATE is the % structure A.B.C1=3, then VL_OVERRIDE() returns a strucuture with % fields A.B.C1=3, A.B.C2=2. By contrast, if UPDATE is the % structure A.B=4, then the field A.B is copied, and VL_OVERRIDE() % returns the structure A.B=4 (specifying 'Warn' would warn about % the fact that the substructure B.C1, B.C2 is being deleted). % % Remark:: % Two fields are matched if they correspond exactly. Specifically, % two fileds A(IA).(FA) and B(IA).FB of two struct arrays A and B % match if, and only if, (i) A and B have the same dimensions, % (ii) IA == IB, and (iii) FA == FB. % % See also: VL_ARGPARSE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). warn = false ; skip = false ; err = false ; casei = false ; if length(varargin) == 1 & ~ischar(varargin{1}) % legacy warn = 1 ; end if ~warn & length(varargin) > 0 for i=1:length(varargin) switch lower(varargin{i}) case 'warn' warn = true ; case 'skip' skip = true ; case 'err' err = true ; case 'argparse' argparse = true ; case 'casei' casei = true ; otherwise error(sprintf('Unknown option ''%s''.',varargin{i})) ; end end end % if CONFIG is not a struct array just copy UPDATE verbatim if ~isstruct(config) config = update ; return ; end % if CONFIG is a struct array but UPDATE is not, no match can be % established and we simply copy UPDATE verbatim if ~isstruct(update) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays, but have different % dimensions then nom atch can be established and we simply copy % UPDATE verbatim if numel(update) ~= numel(config) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays of the same % dimension, we override recursively each field for idx=1:numel(update) fields = fieldnames(update) ; for i = 1:length(fields) updateFieldName = fields{i} ; if casei configFieldName = findFieldI(config, updateFieldName) ; else configFieldName = findField(config, updateFieldName) ; end if ~isempty(configFieldName) config(idx).(configFieldName) = ... vl_override(config(idx).(configFieldName), ... update(idx).(updateFieldName)) ; else if warn warning(sprintf('copied field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if err error(sprintf('The field ''%s'' is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if skip if warn warning(sprintf('skipping field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end continue ; end config(idx).(updateFieldName) = update(idx).(updateFieldName) ; end end end % -------------------------------------------------------------------- function field = findFieldI(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmpi(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end % -------------------------------------------------------------------- function field = findField(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmp(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end
github
sabbiu/ObjectDetection-master
vl_quickvis.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/quickshift/vl_quickvis.m
3,696
utf_8
27f199dad4c5b9c192a5dd3abc59f9da
function [Iedge dists map gaps] = vl_quickvis(I, ratio, kernelsize, maxdist, maxcuts) % VL_QUICKVIS Create an edge image from a Quickshift segmentation. % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. RATIO controls the tradeoff % between color consistency and spatial consistency (See VL_QUICKSEG) and % KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG, % VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which % increase the density. % % VL_QUICKVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at % most MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) also % returns the DIST thresholds that were chosen. % % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, DISTS) will use the DISTS % specified % % [IEDGE,DISTS,MAP,GAPS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) % also returns the MAP and GAPS from VL_QUICKSHIFT. % % See Also: VL_QUICKSHIFT(), VL_QUICKSEG(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin == 4 dists = maxdist; maxdist = max(dists); [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); else [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end [Iedge dists] = mapvis(map, gaps, dists); function [Iedge dists] = mapvis(map, gaps, maxdist, maxcuts) % MAPVIS Create an edge image from a Quickshift segmentation. % IEDGE = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. MAXDIST is the maximum % distance between neighbors which increase the density. % % MAPVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at most % MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) also returns the DIST % thresholds that were chosen. % % IEDGE = MAPVIS(MAP, GAPS, DISTS) will use the DISTS specified % % See Also: VL_QUICKVIS, VL_QUICKSHIFT, VL_QUICKSEG if nargin == 3 dists = maxdist; maxdist = max(dists); else dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh % throw away min region size instead of maxdist? ind = find(dists < maxdist); dists = dists(ind); if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end Iedge = zeros(size(map)); for i = 1:length(dists) s = find(gaps >= dists(i)); mapdist = map; mapdist(s) = s; [mapped labels] = vl_flatmap(mapdist); fprintf('%d/%d %d regions\n', i, length(dists), length(unique(mapped))) borders = getborders(mapped); Iedge(borders) = dists(i); %Iedge(borders) = Iedge(borders) + 1; %Iedge(borders) = i; end %%%%%%%%% GETBORDERS function borders = getborders(map) dx = conv2(map, [-1 1], 'same'); dy = conv2(map, [-1 1]', 'same'); borders = find(dx ~= 0 | dy ~= 0);
github
sabbiu/ObjectDetection-master
vl_demo_aib.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/demo/vl_demo_aib.m
2,928
utf_8
590c6db09451ea608d87bfd094662cac
function vl_demo_aib % VL_DEMO_AIB Test Agglomerative Information Bottleneck (AIB) D = 4 ; K = 20 ; randn('state',0) ; rand('state',0) ; X1 = randn(2,300) ; X1(1,:) = X1(1,:) + 2 ; X2 = randn(2,300) ; X2(1,:) = X2(1,:) - 2 ; X3 = randn(2,300) ; X3(2,:) = X3(2,:) + 2 ; figure(1) ; clf ; hold on ; vl_plotframe(X1,'color','r') ; vl_plotframe(X2,'color','g') ; vl_plotframe(X3,'color','b') ; axis equal ; xlim([-4 4]); ylim([-4 4]); axis off ; rectangle('position',D*[-1 -1 2 2]) vl_demo_print('aib_basic_data', .6) ; C = 1:K*K ; Pcx = zeros(3,K*K) ; f1 = quantize(X1,D,K) ; f2 = quantize(X2,D,K) ; f3 = quantize(X3,D,K) ; Pcx(1,:) = vl_binsum(Pcx(1,:), ones(size(f1)), f1) ; Pcx(2,:) = vl_binsum(Pcx(2,:), ones(size(f2)), f2) ; Pcx(3,:) = vl_binsum(Pcx(3,:), ones(size(f3)), f3) ; Pcx = Pcx / sum(Pcx(:)) ; [parents, cost] = vl_aib(Pcx) ; cutsize = [K*K, 10, 3, 2, 1] ; for i=1:length(cutsize) [cut,map,short] = vl_aibcut(parents, cutsize(i)) ; parents_cut(short > 0) = parents(short(short > 0)) ; C = short(1:K*K+1) ; [drop1,drop2,C] = unique(C) ; figure(i+1) ; clf ; plotquantization(D,K,C) ; hold on ; %plottree(D,K,parents_cut) ; axis equal ; axis off ; title(sprintf('%d clusters', cutsize(i))) ; vl_demo_print(sprintf('aib_basic_clust_%d',i),.6) ; end % -------------------------------------------------------------------- function f = quantize(X,D,K) % -------------------------------------------------------------------- d = 2*D / K ; j = round((X(1,:) + D) / d) ; i = round((X(2,:) + D) / d) ; j = max(min(j,K),1) ; i = max(min(i,K),1) ; f = sub2ind([K K],i,j) ; % -------------------------------------------------------------------- function [i,j] = plotquantization(D,K,C) % -------------------------------------------------------------------- hold on ; cl = [[.3 .3 .3] ; .5*hsv(max(C)-1)+.5] ; d = 2*D / K ; for i=0:K-1 for j=0:K-1 patch(d*(j+[0 1 1 0])-D, ... d*(i+[0 0 1 1])-D, ... cl(C(j*K+i+1),:)) ; end end % -------------------------------------------------------------------- function h = plottree(D,K,parents) % -------------------------------------------------------------------- d = 2*D / K ; C = zeros(2,2*K*K-1)+NaN ; N = zeros(1,2*K*K-1) ; for i=0:K-1 for j=0:K-1 C(:,j*K+i+1) = [d*j-D; d*i-D]+d/2 ; N(:,j*K+i+1) = 1 ; end end for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; if all(isnan(C(:,i))), continue; end if all(isnan(C(:,p))) C(:,p) = C(:,i) / N(i) ; else C(:,p) = C(:,p) + C(:,i) / N(i) ; end N(p) = N(p) + 1 ; end C(1,:) = C(1,:) ./ N ; C(2,:) = C(2,:) ./ N ; xt = zeros(3, 2*length(parents)-1)+NaN ; yt = zeros(3, 2*length(parents)-1)+NaN ; for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; xt(1,i) = C(1,i) ; xt(2,i) = C(1,p) ; yt(1,i) = C(2,i) ; yt(2,i) = C(2,p) ; end h=line(xt(:),yt(:),'linestyle','-','marker','.','linewidth',3) ;
github
sabbiu/ObjectDetection-master
vl_demo_alldist.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/demo/vl_demo_alldist.m
5,460
utf_8
6d008a64d93445b9d7199b55d58db7eb
function vl_demo_alldist % numRepetitions = 3 ; numDimensions = 1000 ; numSamplesRange = [300] ; settingsRange = {{'alldist2', 'double', 'l2', }, ... {'alldist', 'double', 'l2', 'nosimd'}, ... {'alldist', 'double', 'l2' }, ... {'alldist2', 'single', 'l2', }, ... {'alldist', 'single', 'l2', 'nosimd'}, ... {'alldist', 'single', 'l2' }, ... {'alldist2', 'double', 'l1', }, ... {'alldist', 'double', 'l1', 'nosimd'}, ... {'alldist', 'double', 'l1' }, ... {'alldist2', 'single', 'l1', }, ... {'alldist', 'single', 'l1', 'nosimd'}, ... {'alldist', 'single', 'l1' }, ... {'alldist2', 'double', 'chi2', }, ... {'alldist', 'double', 'chi2', 'nosimd'}, ... {'alldist', 'double', 'chi2' }, ... {'alldist2', 'single', 'chi2', }, ... {'alldist', 'single', 'chi2', 'nosimd'}, ... {'alldist', 'single', 'chi2' }, ... {'alldist2', 'double', 'hell', }, ... {'alldist', 'double', 'hell', 'nosimd'}, ... {'alldist', 'double', 'hell' }, ... {'alldist2', 'single', 'hell', }, ... {'alldist', 'single', 'hell', 'nosimd'}, ... {'alldist', 'single', 'hell' }, ... {'alldist2', 'double', 'kl2', }, ... {'alldist', 'double', 'kl2', 'nosimd'}, ... {'alldist', 'double', 'kl2' }, ... {'alldist2', 'single', 'kl2', }, ... {'alldist', 'single', 'kl2', 'nosimd'}, ... {'alldist', 'single', 'kl2' }, ... {'alldist2', 'double', 'kl1', }, ... {'alldist', 'double', 'kl1', 'nosimd'}, ... {'alldist', 'double', 'kl1' }, ... {'alldist2', 'single', 'kl1', }, ... {'alldist', 'single', 'kl1', 'nosimd'}, ... {'alldist', 'single', 'kl1' }, ... {'alldist2', 'double', 'kchi2', }, ... {'alldist', 'double', 'kchi2', 'nosimd'}, ... {'alldist', 'double', 'kchi2' }, ... {'alldist2', 'single', 'kchi2', }, ... {'alldist', 'single', 'kchi2', 'nosimd'}, ... {'alldist', 'single', 'kchi2' }, ... {'alldist2', 'double', 'khell', }, ... {'alldist', 'double', 'khell', 'nosimd'}, ... {'alldist', 'double', 'khell' }, ... {'alldist2', 'single', 'khell', }, ... {'alldist', 'single', 'khell', 'nosimd'}, ... {'alldist', 'single', 'khell' }, ... } ; %settingsRange = settingsRange(end-5:end) ; styles = {} ; for marker={'x','+','.','*','o'} for color={'r','g','b','k','y'} styles{end+1} = {'color', char(color), 'marker', char(marker)} ; end end for ni=1:length(numSamplesRange) for ti=1:length(settingsRange) tocs = [] ; for ri=1:numRepetitions rand('state',ri) ; randn('state',ri) ; numSamples = numSamplesRange(ni) ; settings = settingsRange{ti} ; [tocs(end+1), D] = run_experiment(numDimensions, ... numSamples, ... settings) ; end means(ni,ti) = mean(tocs) ; stds(ni,ti) = std(tocs) ; if mod(ti-1,3) == 0 D0 = D ; else err = max(abs(D(:)-D0(:))) ; fprintf('err %f\n', err) ; if err > 1, keyboard ; end end end end if 0 figure(1) ; clf ; hold on ; numStyles = length(styles) ; for ti=1:length(settingsRange) si = mod(ti - 1, numStyles) + 1 ; h(ti) = plot(numSamplesRange, means(:,ti), styles{si}{:}) ; leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; errorbar(numSamplesRange, means(:,ti), stds(:,ti), 'linestyle', 'none') ; end end for ti=1:length(settingsRange) leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; end figure(1) ; clf ; barh(means(end,:)) ; set(gca,'ytick', 1:length(leg), 'yticklabel', leg,'ydir','reverse') ; xlabel('Time [s]') ; function [elaps, D] = run_experiment(numDimensions, numSamples, settings) distType = 'l2' ; algType = 'alldist' ; classType = 'double' ; useSimd = true ; for si=1:length(settings) arg = settings{si} ; switch arg case {'l1', 'l2', 'chi2', 'hell', 'kl2', 'kl1', 'kchi2', 'khell'} distType = arg ; case {'alldist', 'alldist2'} algType = arg ; case {'single', 'double'} classType = arg ; case 'simd' useSimd = true ; case 'nosimd' useSimd = false ; otherwise assert(false) ; end end X = rand(numDimensions, numSamples) ; X(X < .3) = 0 ; switch classType case 'double' case 'single' X = single(X) ; end vl_simdctrl(double(useSimd)) ; switch algType case 'alldist' tic ; D = vl_alldist(X, distType) ; elaps = toc ; case 'alldist2' tic ; D = vl_alldist2(X, distType) ; elaps = toc ; end
github
sabbiu/ObjectDetection-master
vl_demo_ikmeans.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/demo/vl_demo_ikmeans.m
774
utf_8
17ff0bb7259d390fb4f91ea937ba7de0
function vl_demo_ikmeans() % VL_DEMO_IKMEANS numData = 10000 ; dimension = 2 ; data = uint8(255*rand(dimension,numData)) ; numClusters = 3^3 ; [centers, assignments] = vl_ikmeans(data, numClusters); figure(1) ; clf ; axis off ; plotClusters(data, centers, assignments) ; vl_demo_print('ikmeans_2d',0.6); [tree, assignments] = vl_hikmeans(data,3,numClusters) ; figure(2) ; clf ; axis off ; plotClusters(data, [], [4 2 1] * double(assignments)) ; vl_demo_print('hikmeans_2d',0.6); function plotClusters(data, centers, assignments) hold on ; cc=jet(double(max(assignments(:)))); for i=1:max(assignments(:)) plot(data(1,assignments == i),data(2,assignments == i),'.','color',cc(i,:)); end if ~isempty(centers) plot(centers(1,:),centers(2,:),'k.','MarkerSize',20) end
github
sabbiu/ObjectDetection-master
vl_demo_svm.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/demo/vl_demo_svm.m
1,235
utf_8
7cf6b3504e4fc2cbd10ff3fec6e331a7
% VL_DEMO_SVM Demo: SVM: 2D linear learning function vl_demo_svm y=[];X=[]; % Load training data X and their labels y load('vl_demo_svm_data.mat') Xp = X(:,y==1); Xn = X(:,y==-1); figure plot(Xn(1,:),Xn(2,:),'*r') hold on plot(Xp(1,:),Xp(2,:),'*b') axis equal ; vl_demo_print('svm_training') ; % Parameters lambda = 0.01 ; % Regularization parameter maxIter = 1000 ; % Maximum number of iterations energy = [] ; % Diagnostic function function diagnostics(svm) energy = [energy [svm.objective ; svm.dualObjective ; svm.dualityGap ] ] ; end % Training the SVM energy = [] ; [w b info] = vl_svmtrain(X, y, lambda,... 'MaxNumIterations',maxIter,... 'DiagnosticFunction',@diagnostics,... 'DiagnosticFrequency',1) % Visualisation eq = [num2str(w(1)) '*x+' num2str(w(2)) '*y+' num2str(b)]; line = ezplot(eq, [-0.9 0.9 -0.9 0.9]); set(line, 'Color', [0 0.8 0],'linewidth', 2); vl_demo_print('svm_training_result') ; figure hold on plot(energy(1,:),'--b') ; plot(energy(2,:),'-.g') ; plot(energy(3,:),'r') ; legend('Primal objective','Dual objective','Duality gap') xlabel('Diagnostics iteration') ylabel('Energy') vl_demo_print('svm_energy') ; end
github
sabbiu/ObjectDetection-master
vl_demo_kdtree_sift.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/demo/vl_demo_kdtree_sift.m
6,832
utf_8
e676f80ac330a351f0110533c6ebba89
function vl_demo_kdtree_sift % VL_DEMO_KDTREE_SIFT % Demonstrates the use of a kd-tree forest to match SIFT % features. If FLANN is present, this function runs a comparison % against it. % AUTORIGHS rand('state',0) ; randn('state',0); do_median = 0 ; do_mean = 1 ; % try to setup flann if ~exist('flann_search', 'file') if exist(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) addpath(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) ; end end do_flann = exist('nearest_neighbors') == 3 ; if ~do_flann warning('FLANN not found. Comparison disabled.') ; end maxNumComparisonsRange = [1 10 50 100 200 300 400] ; numTreesRange = [1 2 5 10] ; % get data (SIFT features) im1 = imread(fullfile(vl_root, 'data', 'roofs1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'roofs2.jpg')) ; im1 = single(rgb2gray(im1)) ; im2 = single(rgb2gray(im2)) ; [f1,d1] = vl_sift(im1,'firstoctave',-1,'floatdescriptors','verbose') ; [f2,d2] = vl_sift(im2,'firstoctave',-1,'floatdescriptors','verbose') ; % add some noise to make matches unique d1 = single(d1) + rand(size(d1)) ; d2 = single(d2) + rand(size(d2)) ; % match exhaustively to get the ground truth elapsedDirect = tic ; D = vl_alldist(d1,d2) ; [drop, best] = min(D, [], 1) ; elapsedDirect = toc(elapsedDirect) ; for ti=1:length(numTreesRange) for vi=1:length(maxNumComparisonsRange) v = maxNumComparisonsRange(vi) ; t = numTreesRange(ti) ; if do_median tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'median', ... 'numtrees', t) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons',v) ; elapsedKD_median(vi,ti) = toc ; errors_median(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_median(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_mean tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'mean', ... 'numtrees', t) ; %kdtree = readflann(kdtree, '/tmp/flann.txt') ; %checkx(kdtree, d1, 1, 1) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons', v) ; elapsedKD_mean(vi,ti) = toc ; errors_mean(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_mean(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_flann tic ; [i, d] = flann_search(d1, d2, 1, struct('algorithm','kdtree', ... 'trees', t, ... 'checks', v)); ifla = i ; elapsedKD_flann(vi,ti) = toc; errors_flann(vi,ti) = sum(i ~= best) / length(best) ; errorsD_flann(vi,ti) = mean(abs(d - drop) ./ drop) ; end end end figure(1) ; clf ; leg = {} ; hnd = [] ; sty = {{'color','r'},{'color','g'},... {'color','b'},{'color','c'},... {'color','k'}} ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errors_median(:,ti),'-*',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errors_mean(:,ti), '-o',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errors_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('percentage of incorrect matches (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_incorrect',.6) ; figure(2) ; clf ; leg = {} ; hnd = [] ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errorsD_median(:,ti),'*-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errorsD_mean(:,ti), 'o-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errorsD_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('relative overestimation of minmium distannce (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_distortion',.6) ; % -------------------------------------------------------------------- function checkx(kdtree, X, t, n, mib, mab) % -------------------------------------------------------------------- if nargin <= 4 mib = -inf * ones(size(X,1),1) ; mab = +inf * ones(size(X,1),1) ; end lc = kdtree.trees(t).nodes.lowerChild(n) ; uc = kdtree.trees(t).nodes.upperChild(n) ; if lc < 0 for i=-lc:-uc-1 di = kdtree.trees(t).dataIndex(i) ; if any(X(:,di) > mab) error('a') ; end if any(X(:,di) < mib) error('b') ; end end return end i = kdtree.trees(t).nodes.splitDimension(n) ; v = kdtree.trees(t).nodes.splitThreshold(n) ; mab_ = mab ; mab_(i) = min(mab(i), v) ; checkx(kdtree, X, t, lc, mib, mab_) ; mib_ = mib ; mib_(i) = max(mib(i), v) ; checkx(kdtree, X, t, uc, mib_, mab) ; % -------------------------------------------------------------------- function kdtree = readflann(kdtree, path) % -------------------------------------------------------------------- data = textread(path)' ; for i=1:size(data,2) nodeIds = data(1,:) ; ni = find(nodeIds == data(1,i)) ; if ~isnan(data(2,i)) % internal node li = find(nodeIds == data(4,i)) ; ri = find(nodeIds == data(5,i)) ; kdtree.trees(1).nodes.lowerChild(ni) = int32(li) ; kdtree.trees(1).nodes.upperChild(ni) = int32(ri) ; kdtree.trees(1).nodes.splitThreshold(ni) = single(data(2,i)) ; kdtree.trees(1).nodes.splitDimension(ni) = single(data(3,i)+1) ; else di = data(3,i) + 1 ; kdtree.trees(1).nodes.lowerChild(ni) = int32(- di) ; kdtree.trees(1).nodes.upperChild(ni) = int32(- di - 1) ; end kdtree.trees(1).dataIndex = uint32(1:kdtree.numData) ; end
github
sabbiu/ObjectDetection-master
vl_impattern.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/imop/vl_impattern.m
6,876
utf_8
1716a4d107f0186be3d11c647bc628ce
function im = vl_impattern(varargin) % VL_IMPATTERN Generate an image from a stock pattern % IM=VLPATTERN(NAME) returns an instance of the specified % pattern. These stock patterns are useful for testing algoirthms. % % All generated patterns are returned as an image of class % DOUBLE. Both gray-scale and colour images have range in [0,1]. % % VL_IMPATTERN() without arguments shows a gallery of the stock % patterns. The following patterns are supported: % % Wedge:: % The image of a wedge. % % Cone:: % The image of a cone. % % SmoothChecker:: % A checkerboard with Gaussian filtering on top. Use the % option-value pair 'sigma', SIGMA to specify the standard % deviation of the smoothing and the pair 'step', STEP to specfity % the checker size in pixels. % % ThreeDotsSquare:: % A pattern with three small dots and two squares. % % UniformNoise:: % Random i.i.d. noise. % % Blobs: % Gaussian blobs of various sizes and anisotropies. % % Blobs1: % Gaussian blobs of various orientations and anisotropies. % % Blob: % One Gaussian blob. Use the option-value pairs 'sigma', % 'orientation', and 'anisotropy' to specify the respective % parameters. 'sigma' is the scalar standard deviation of an % isotropic blob (the image domain is the rectangle % [-1,1]^2). 'orientation' is the clockwise rotation (as the Y % axis points downards). 'anisotropy' (>= 1) is the ratio of the % the largest over the smallest axis of the blob (the smallest % axis length is set by 'sigma'). Set 'cut' to TRUE to cut half % half of the blob. % % A stock image:: % Any of 'box', 'roofs1', 'roofs2', 'river1', 'river2', 'spotted'. % % All pattern accept a SIZE parameter [WIDTH,HEIGHT]. For all but % the stock images, the default size is [128,128]. % Author: Andrea Vedaldi % Copyright (C) 2012 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin > 0 pattern=varargin{1} ; varargin=varargin(2:end) ; else pattern = 'gallery' ; end patterns = {'wedge','cone','smoothChecker','threeDotsSquare', ... 'blob', 'blobs', 'blobs1', ... 'box', 'roofs1', 'roofs2', 'river1', 'river2'} ; % spooling switch lower(pattern) case 'wedge', im = wedge(varargin) ; case 'cone', im = cone(varargin) ; case 'smoothchecker', im = smoothChecker(varargin) ; case 'threedotssquare', im = threeDotSquare(varargin) ; case 'uniformnoise', im = uniformNoise(varargin) ; case 'blob', im = blob(varargin) ; case 'blobs', im = blobs(varargin) ; case 'blobs1', im = blobs1(varargin) ; case {'box','roofs1','roofs2','river1','river2','spots'} im = stockImage(pattern, varargin) ; case 'gallery' clf ; num = numel(patterns) ; for p = 1:num vl_tightsubplot(num,p,'box','outer') ; imagesc(vl_impattern(patterns{p}),[0 1]) ; axis image off ; title(patterns{p}) ; end colormap gray ; return ; otherwise error('Unknown patter ''%s''.', pattern) ; end if nargout == 0 clf ; imagesc(im) ; hold on ; colormap gray ; axis image off ; title(pattern) ; clear im ; end function [u,v,opts,args] = commonOpts(args) opts.size = [128 128] ; [opts,args] = vl_argparse(opts, args) ; ur = linspace(-1,1,opts.size(2)) ; vr = linspace(-1,1,opts.size(1)) ; [u,v] = meshgrid(ur,vr); function im = wedge(args) [u,v,opts,args] = commonOpts(args) ; im = abs(u) + abs(v) > (1/4) ; im(v < 0) = 0 ; function im = cone(args) [u,v,opts,args] = commonOpts(args) ; im = sqrt(u.^2+v.^2) ; im = im / max(im(:)) ; function im = smoothChecker(args) opts.size = [128 128] ; opts.step = 16 ; opts.sigma = 2 ; opts = vl_argparse(opts, args) ; [u,v] = meshgrid(0:opts.size(1)-1, 0:opts.size(2)-1) ; im = xor((mod(u,opts.step*2) < opts.step),... (mod(v,opts.step*2) < opts.step)) ; im = double(im) ; im = vl_imsmooth(im, opts.sigma) ; function im = threeDotSquare(args) [u,v,opts,args] = commonOpts(args) ; im = ones(size(u)) ; im(-2/3<u & u<2/3 & -2/3<v & v<2/3) = .75 ; im(-1/3<u & u<1/3 & -1/3<v & v<1/3) = .50 ; [drop,i] = min(abs(v(:,1))) ; [drop,j1] = min(abs(u(1,:)-1/6)) ; [drop,j2] = min(abs(u(1,:))) ; [drop,j3] = min(abs(u(1,:)+1/6)) ; im(i,j1) = 0 ; im(i,j2) = 0 ; im(i,j3) = 0 ; function im = blobs(args) [u,v,opts,args] = commonOpts(args) ; im = zeros(size(u)) ; num = 5 ; square = 2 / num ; sigma = square / 2 / 3 ; scales = logspace(log10(0.5), log10(1), num) ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; A = sigma * diag([scales(i) scales(i)/skews(j)]) * [1 -1 ; 1 1] / sqrt(2) ; C = inv(A'*A) ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = blob(args) [u,v,opts,args] = commonOpts(args) ; opts.sigma = 0.15 ; opts.anisotropy = .5 ; opts.orientation = 2/3 * pi ; opts.cut = false ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; th = opts.orientation ; R = [cos(th) -sin(th) ; sin(th) cos(th)] ; A = opts.sigma * R * diag([opts.anisotropy 1]) ; T = [0;0] ; [x,y] = vl_waffine(inv(A),-inv(A)*T,u,v) ; im = exp(-0.5 *(x.^2 + y.^2)) ; if opts.cut im = im .* double(x > 0) ; end function im = blobs1(args) [u,v,opts,args] = commonOpts(args) ; opts.number = 5 ; opts.sigma = [] ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; square = 2 / opts.number ; num = opts.number ; if isempty(opts.sigma) sigma = 1/6 * square ; else sigma = opts.sigma * square ; end rotations = linspace(0,pi,num+1) ; rotations(end) = [] ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; th = rotations(i) ; R = [cos(th) -sin(th); sin(th) cos(th)] ; A = sigma * R * diag([1 1/skews(j)]) ; C = inv(A*A') ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = uniformNoise(args) opts.size = [128 128] ; opts.seed = 1 ; opts = vl_argparse(opts, args) ; state = vl_twister('state') ; vl_twister('state',opts.seed) ; im = vl_twister(opts.size([2 1])) ; vl_twister('state',state) ; function im = stockImage(pattern,args) opts.size = [] ; opts = vl_argparse(opts, args) ; switch pattern case 'river1', path='river1.jpg' ; case 'river2', path='river2.jpg' ; case 'roofs1', path='roofs1.jpg' ; case 'roofs2', path='roofs2.jpg' ; case 'box', path='box.pgm' ; case 'spots', path='spots.jpg' ; end im = imread(fullfile(vl_root,'data',path)) ; im = im2double(im) ; if ~isempty(opts.size) im = imresize(im, opts.size) ; im = max(im,0) ; im = min(im,1) ; end
github
sabbiu/ObjectDetection-master
vl_tpsu.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/imop/vl_tpsu.m
1,755
utf_8
09f36e1a707c069b375eb2817d0e5f13
function [U,dU,delta]=vl_tpsu(X,Y) % VL_TPSU Compute the U matrix of a thin-plate spline transformation % U=VL_TPSU(X,Y) returns the matrix % % [ U(|X(:,1) - Y(:,1)|) ... U(|X(:,1) - Y(:,N)|) ] % [ ] % [ U(|X(:,M) - Y(:,1)|) ... U(|X(:,M) - Y(:,N)|) ] % % where X is a 2xM matrix and Y a 2xN matrix of points and U(r) is % the opposite -r^2 log(r^2) of the radial basis function of the % thin plate spline specified by X and Y. % % [U,dU]=vl_tpsu(x,y) returns the derivatives of the columns of U with % respect to the parameters Y. The derivatives are arranged in a % Mx2xN array, one layer per column of U. % % See also: VL_TPS(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if exist('tpsumx') U = tpsumx(X,Y) ; else M=size(X,2) ; N=size(Y,2) ; % Faster than repmat, but still fairly slow r2 = ... (X( ones(N,1), :)' - Y( ones(1,M), :)).^2 + ... (X( 1+ones(N,1), :)' - Y(1+ones(1,M), :)).^2 ; U = - rb(r2) ; end if nargout > 1 M=size(X,2) ; N=size(Y,2) ; dx = X( ones(N,1), :)' - Y( ones(1,M), :) ; dy = X(1+ones(N,1), :)' - Y(1+ones(1,M), :) ; r2 = (dx.^2 + dy.^2) ; r = sqrt(r2) ; coeff = drb(r)./(r+eps) ; dU = reshape( [coeff .* dx ; coeff .* dy], M, 2, N) ; end % The radial basis function function y = rb(r2) y = zeros(size(r2)) ; sel = find(r2 ~= 0) ; y(sel) = - r2(sel) .* log(r2(sel)) ; % The derivative of the radial basis function function y = drb(r) y = zeros(size(r)) ; sel = find(r ~= 0) ; y(sel) = - 4 * r(sel) .* log(r(sel)) - 2 * r(sel) ;
github
sabbiu/ObjectDetection-master
vl_xyz2lab.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/imop/vl_xyz2lab.m
1,570
utf_8
09f95a6f9ae19c22486ec1157357f0e3
function J=vl_xyz2lab(I,il) % VL_XYZ2LAB Convert XYZ color space to LAB % J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format. % % VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55, % D65, D75, D93. The default illuminatn is E. % % See also: VL_XYZ2LUV(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 2 il='E' ; end switch lower(il) case 'a' xw = 0.4476 ; yw = 0.4074 ; case 'b' xw = 0.3324 ; yw = 0.3474 ; case 'c' xw = 0.3101 ; yw = 0.3162 ; case 'e' xw = 1/3 ; yw = 1/3 ; case 'd50' xw = 0.3457 ; yw = 0.3585 ; case 'd55' xw = 0.3324 ; yw = 0.3474 ; case 'd65' xw = 0.312713 ; yw = 0.329016 ; case 'd75' xw = 0.299 ; yw = 0.3149 ; case 'd93' xw = 0.2848 ; yw = 0.2932 ; end J=zeros(size(I)) ; % Reference white Yw = 1.0 ; Xw = xw/yw ; Zw = (1-xw-yw)/yw * Yw ; % XYZ components X = I(:,:,1) ; Y = I(:,:,2) ; Z = I(:,:,3) ; x = X/Xw ; y = Y/Yw ; z = Z/Zw ; L = 116 * f(y) - 16 ; a = 500*(f(x) - f(y)) ; b = 200*(f(y) - f(z)) ; J = cat(3,L,a,b) ; % -------------------------------------------------------------------- function b=f(a) % -------------------------------------------------------------------- sp = find(a > 0.00856) ; sm = find(a <= 0.00856) ; k = 903.3 ; b=zeros(size(a)) ; b(sp) = a(sp).^(1/3) ; b(sm) = (k*a(sm) + 16)/116 ;
github
sabbiu/ObjectDetection-master
vl_test_gmm.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_gmm.m
1,332
utf_8
76782cae6c98781c6c38d4cbf5549d94
function results = vl_test_gmm(varargin) % VL_TEST_GMM % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; end function s = setup() randn('state',0) ; s.X = randn(128, 1000) ; end function test_multithreading(s) dataTypes = {'single','double'} ; for dataType = dataTypes conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; vl_threads(0) ; [means, covariances, priors, ll, posteriors] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_twister('state',0) ; vl_threads(1) ; [means_, covariances_, priors_, ll_, posteriors_] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_assert_almost_equal(means, means_, 1e-2) ; vl_assert_almost_equal(covariances, covariances_, 1e-2) ; vl_assert_almost_equal(priors, priors_, 1e-2) ; vl_assert_almost_equal(ll, ll_, 1e-2 * abs(ll)) ; vl_assert_almost_equal(posteriors, posteriors_, 1e-2) ; end end
github
sabbiu/ObjectDetection-master
vl_test_twister.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_twister.m
1,251
utf_8
2bfb5a30cbd6df6ac80c66b73f8646da
function results = vl_test_twister(varargin) % VL_TEST_TWISTER vl_test_init ; function test_illegal_args() vl_assert_exception(@() vl_twister(-1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister(1, -1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister([1, -1]), 'vl:invalidArgument') ; function test_seed_by_scalar() rand('twister',1) ; a = rand ; vl_twister('state',1) ; b = vl_twister ; vl_assert_equal(a,b,'seed by scalar + VL_TWISTER()') ; function test_get_set_state() rand('twister',1) ; a = rand('twister') ; vl_twister('state',1) ; b = vl_twister('state') ; vl_assert_equal(a,b,'read state') ; a(1) = a(1) + 1 ; vl_twister('state',a) ; b = vl_twister('state') ; vl_assert_equal(a,b,'set state') ; function test_multi_dimensions() b = rand('twister') ; rand('twister',b) ; vl_twister('state',b) ; a=rand([1 2 3 4 5]) ; b=vl_twister([1 2 3 4 5]) ; vl_assert_equal(a,b,'VL_TWISTER([M N P ...])') ; function test_multi_multi_args() rand('twister',1) ; a=rand(1, 2, 3, 4, 5) ; vl_twister('state',1) ; b=vl_twister(1, 2, 3, 4, 5) ; vl_assert_equal(a,b,'VL_TWISTER(M, N, P, ...)') ; function test_square() rand('twister',1) ; a=rand(10) ; vl_twister('state',1) ; b=vl_twister(10) ; vl_assert_equal(a,b,'VL_TWISTER(N)') ;
github
sabbiu/ObjectDetection-master
vl_test_kdtree.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_kdtree.m
2,449
utf_8
9d7ad2b435a88c22084b38e5eb5f9eb9
function results = vl_test_kdtree(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.X = single(randn(10, 1000)) ; s.Q = single(randn(10, 10)) ; function test_nearest(s) for tmethod = {'median', 'mean'} for type = {@single, @double} conv = type{1} ; tmethod = char(tmethod) ; X = conv(s.X) ; Q = conv(s.Q) ; tree = vl_kdtreebuild(X,'ThresholdMethod', tmethod) ; [nn, d2] = vl_kdtreequery(tree, X, Q) ; D2 = vl_alldist2(X, Q, 'l2') ; [d2_, nn_] = min(D2) ; vl_assert_equal(... nn,uint32(nn_),... 'incorrect nns: type=%s th. method=%s', func2str(conv), tmethod) ; vl_assert_almost_equal(... d2,d2_,... 'incorrect distances: type=%s th. method=%s', func2str(conv), tmethod) ; end end function test_nearests(s) numNeighbors = 7 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; vl_assert_equal(nn,uint32(nn_)) ; vl_assert_almost_equal(d2,d2_) ; function test_ann(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 50 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end function test_ann_forest(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 25 ; numTrees = 5 ; tree = vl_kdtreebuild(s.X, 'numTrees', 5) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end
github
sabbiu/ObjectDetection-master
vl_test_imwbackward.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_imwbackward.m
514
utf_8
33baa0784c8f6f785a2951d7f1b49199
function results = vl_test_imwbackward(varargin) % VL_TEST_IMWBACKWARD vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; function test_identity(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_almost_equal(s.I, vl_imwbackward(xr,yr,s.I,x,y)) ; function test_invalid_args(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_exception(@() vl_imwbackward(xr,yr,single(s.I),x,y), 'vl:invalidArgument') ;
github
sabbiu/ObjectDetection-master
vl_test_alphanum.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_alphanum.m
1,624
utf_8
2da2b768c2d0f86d699b8f31614aa424
function results = vl_test_alphanum(varargin) % VL_TEST_ALPHANUM vl_test_init ; function s = setup() s.strings = ... {'1000X Radonius Maximus','10X Radonius','200X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','Allegia 50 Clasteron','Allegia 500 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 6R Clasteron','Alpha 100','Alpha 2','Alpha 200','Alpha 2A','Alpha 2A-8000','Alpha 2A-900','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 5000','Callisto Morphamax 600','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 700','Callisto Morphamax 7000','Xiph Xlater 10000','Xiph Xlater 2000','Xiph Xlater 300','Xiph Xlater 40','Xiph Xlater 5','Xiph Xlater 50','Xiph Xlater 500','Xiph Xlater 5000','Xiph Xlater 58'} ; s.sortedStrings = ... {'10X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','200X Radonius','1000X Radonius Maximus','Allegia 6R Clasteron','Allegia 50 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 500 Clasteron','Alpha 2','Alpha 2A','Alpha 2A-900','Alpha 2A-8000','Alpha 100','Alpha 200','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 600','Callisto Morphamax 700','Callisto Morphamax 5000','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 7000','Xiph Xlater 5','Xiph Xlater 40','Xiph Xlater 50','Xiph Xlater 58','Xiph Xlater 300','Xiph Xlater 500','Xiph Xlater 2000','Xiph Xlater 5000','Xiph Xlater 10000'} ; function test_basic(s) sorted = vl_alphanum(s.strings) ; assert(isequal(sorted,s.sortedStrings)) ;
github
sabbiu/ObjectDetection-master
vl_test_printsize.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_printsize.m
1,447
utf_8
0f0b6437c648b7a2e1310900262bd765
function results = vl_test_printsize(varargin) % VL_TEST_PRINTSIZE vl_test_init ; function s = setup() s.fig = figure(1) ; s.usletter = [8.5, 11] ; % inches s.a4 = [8.26772, 11.6929] ; clf(s.fig) ; plot(1:10) ; function teardown(s) close(s.fig) ; function test_basic(s) for sigma = [1 0.5 0.2] vl_printsize(s.fig, sigma) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), sigma*s.usletter(1), 1e-4) ; vl_assert_almost_equal(pos(1), 0, 1e-4) ; vl_assert_almost_equal(pos(3), sigma*s.usletter(1), 1e-4) ; end function test_papertype(s) vl_printsize(s.fig, 1, 'papertype', 'a4') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.a4(1), 1e-4) ; function test_margin(s) m = 0.5 ; vl_printsize(s.fig, 1, 'margin', m) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.usletter(1) * (1 + 2*m), 1e-4) ; vl_assert_almost_equal(pos(1), s.usletter(1) * m, 1e-4) ; function test_reference(s) sigma = 1 ; vl_printsize(s.fig, 1, 'reference', 'vertical') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(2), sigma*s.usletter(2), 1e-4) ; vl_assert_almost_equal(pos(2), 0, 1e-4) ; vl_assert_almost_equal(pos(4), sigma*s.usletter(2), 1e-4) ;
github
sabbiu/ObjectDetection-master
vl_test_cummax.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_cummax.m
838
utf_8
5e98ee1681d4823f32ecc4feaa218611
function results = vl_test_cummax(varargin) % VL_TEST_CUMMAX vl_test_init ; function test_basic() vl_assert_almost_equal(... vl_cummax(1), 1) ; vl_assert_almost_equal(... vl_cummax([1 2 3 4], 2), [1 2 3 4]) ; function test_multidim() a = [1 2 3 4 3 2 1] ; b = [1 2 3 4 4 4 4] ; for k=1:6 dims = ones(1,6) ; dims(k) = numel(a) ; a = reshape(a, dims) ; b = reshape(b, dims) ; vl_assert_almost_equal(... vl_cummax(a, k), b) ; end function test_storage_classes() types = {@double, @single, ... @int32, @uint32, ... @int16, @uint16, ... @int8, @uint8} ; if vl_matlabversion() > 71000 types = horzcat(types, {@int64, @uint64}) ; end for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_cummax(a(eye(3))), a(toeplitz([1 1 1], [1 0 0 ]))) ; end end
github
sabbiu/ObjectDetection-master
vl_test_imintegral.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_imintegral.m
1,429
utf_8
4750f04ab0ac9fc4f55df2c8583e5498
function results = vl_test_imintegral(varargin) % VL_TEST_IMINTEGRAL vl_test_init ; function state = setup() state.I = ones(5,6) ; state.correct = [ 1 2 3 4 5 6 ; 2 4 6 8 10 12 ; 3 6 9 12 15 18 ; 4 8 12 16 20 24 ; 5 10 15 20 25 30 ; ] ; function test_matlab_equivalent(s) vl_assert_equal(slow_imintegral(s.I), s.correct) ; function test_basic(s) vl_assert_equal(vl_imintegral(s.I), s.correct) ; function test_multi_dimensional(s) vl_assert_equal(vl_imintegral(repmat(s.I, [1 1 3])), ... repmat(s.correct, [1 1 3])) ; function test_random(s) numTests = 50 ; for i = 1:numTests I = rand(5) ; vl_assert_almost_equal(vl_imintegral(s.I), ... slow_imintegral(s.I)) ; end function test_datatypes(s) vl_assert_equal(single(vl_imintegral(s.I)), single(s.correct)) ; vl_assert_equal(double(vl_imintegral(s.I)), double(s.correct)) ; vl_assert_equal(uint32(vl_imintegral(s.I)), uint32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(s.I)), int32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(-s.I)), -int32(s.correct)) ; function integral = slow_imintegral(I) integral = zeros(size(I)); for k = 1:size(I,3) for r = 1:size(I,1) for c = 1:size(I,2) integral(r,c,k) = sum(sum(I(1:r,1:c,k))); end end end
github
sabbiu/ObjectDetection-master
vl_test_sift.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_sift.m
1,318
utf_8
806c61f9db9f2ebb1d649c9bfcf3dc0a
function results = vl_test_sift(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() s.I = im2single(imread(fullfile(vl_root,'data','box.pgm'))) ; [s.ubc.f, s.ubc.d] = ... vl_ubcread(fullfile(vl_root,'data','box.sift')) ; function test_ubc_descriptor(s) err = [] ; [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'frames', s.ubc.f) ; D2 = vl_alldist(f, s.ubc.f) ; [drop, perm] = min(D2) ; f = f(:,perm) ; d = d(:,perm) ; error = mean(sqrt(sum((single(s.ubc.d) - single(d)).^2))) ... / mean(sqrt(sum(single(s.ubc.d).^2))) ; assert(error < 0.1, ... 'sift descriptor did not produce desctiptors similar to UBC ones') ; function test_ubc_detector(s) [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'peakthresh', .01, ... 'edgethresh', 10) ; s.ubc.f(4,:) = mod(s.ubc.f(4,:), 2*pi) ; f(4,:) = mod(f(4,:), 2*pi) ; % scale the components so that 1 pixel erro in x,y,z is equal to a % 10-th of angle. S = diag([1 1 1 20/pi]); D2 = vl_alldist(S * s.ubc.f, S * f) ; [d2,perm] = sort(min(D2)) ; error = sqrt(d2) ; quant80 = round(.8 * size(f,2)) ; % check for less than one pixel error at 80% quantile assert(error(quant80) < 1, ... 'sift detector did not produce enough keypoints similar to UBC ones') ;
github
sabbiu/ObjectDetection-master
vl_test_binsum.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_binsum.m
1,377
utf_8
f07f0f29ba6afe0111c967ab0b353a9d
function results = vl_test_binsum(varargin) % VL_TEST_BINSUM vl_test_init ; function test_three_args() vl_assert_almost_equal(... vl_binsum([0 0], 1, 2), [0 1]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, 1), [0 7]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, [1 2 2 2 2 2 2 2]), [0 0]) ; function test_four_args() vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1], [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1]', [1 2 3]', 2), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3]', 2), 2*eye(3)) ; function test_3d_one() Z = zeros(3,3,3) ; B = 3*ones(3,1,3) ; R = Z ; R(:,3,:) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, 17, B, 2), R) ; function test_3d_two() Z = zeros(3,3,3) ; B = 3*ones(3,3,1) ; X = zeros(3,3,1) ; X(:,:,1) = 17 ; R = Z ; R(:,:,3) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, X, B, 3), R) ; function test_storage_classes() types = {@double, @single, ... @int32, @uint32, ... @int16, @uint16, ... @int8, @uint8} ; if vl_matlabversion() > 71000 types = horzcat(types, {@int64, @uint64}) ; end for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_binsum(a(eye(3)), a([1 1 1]), b([1 2 3]), 1), a(2*eye(3))) ; end end
github
sabbiu/ObjectDetection-master
vl_test_lbp.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_lbp.m
892
utf_8
a79c0ce0c85e25c0b1657f3a0b499538
function results = vl_test_lbp(varargin) % VL_TEST_TWISTER vl_test_init ; function test_unfiorm_lbps(s) % enumerate the 56 uniform lbps q = 0 ; for i=0:7 for j=1:7 I = zeros(3) ; p = mod(s.pixels - i + 8, 8) + 1 ; I(p <= j) = 1 ; f = vl_lbp(single(I), 3) ; q = q + 1 ; vl_assert_equal(find(f), q) ; end end % constant lbps I = [1 1 1 ; 1 0 1 ; 1 1 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 57) ; I = [1 1 1 ; 1 1 1 ; 1 1 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 57) ; % other lbps I = [1 0 1 ; 0 0 0 ; 1 0 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 58) ; function test_fliplr(s) randn('state',0) ; I = randn(256,256,1,'single') ; f = vl_lbp(fliplr(I), 8) ; f_ = vl_lbpfliplr(vl_lbp(I, 8)) ; vl_assert_almost_equal(f,f_,1e-3) ; function s = setup() s.pixels = [5 6 7 ; 4 NaN 0 ; 3 2 1] ;
github
sabbiu/ObjectDetection-master
vl_test_colsubset.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_colsubset.m
828
utf_8
be0c080007445b36333b863326fb0f15
function results = vl_test_colsubset(varargin) % VL_TEST_COLSUBSET vl_test_init ; function s = setup() s.x = [5 2 3 6 4 7 1 9 8 0] ; function test_beginning(s) vl_assert_equal(1:5, vl_colsubset(1:10, 5, 'beginning')) ; vl_assert_equal(1:5, vl_colsubset(1:10, .5, 'beginning')) ; function test_ending(s) vl_assert_equal(6:10, vl_colsubset(1:10, 5, 'ending')) ; vl_assert_equal(6:10, vl_colsubset(1:10, .5, 'ending')) ; function test_largest(s) vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, 5, 'largest')) ; vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, .5, 'largest')) ; function test_smallest(s) vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, 5, 'smallest')) ; vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, .5, 'smallest')) ; function test_random(s) assert(numel(intersect(s.x, vl_colsubset(s.x, 5, 'random'))) == 5) ;
github
sabbiu/ObjectDetection-master
vl_test_alldist.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_alldist.m
2,373
utf_8
9ea1a36c97fe715dfa2b8693876808ff
function results = vl_test_alldist(varargin) % VL_TEST_ALLDIST vl_test_init ; function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js', ... 'kchi2', 'kl2', 'kl1', 'khell', 'kjs'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) x - x .* log2(1 + y/x) + y - y .* log2(1 + x/y), ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y), ... @(x,y) .5 * (x .* log2(1 + y/x) + y .* log2(1 + x/y))} ; types = {'single', 'double'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; vl_assert_almost_equal(... vl_alldist(X,Y,dists{d}), ... makedist(distsEquiv{d},X,Y), ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist(X,X,ker) ; kyy = vl_alldist(Y,Y,ker) ; kxy = vl_alldist(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
sabbiu/ObjectDetection-master
vl_test_ihashsum.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_ihashsum.m
581
utf_8
edc283062469af62056b0782b171f5fc
function results = vl_test_ihashsum(varargin) % VL_TEST_IHASHSUM vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(round(16*rand(2,100))) ; sel = find(all(s.data==0)) ; s.data(1,sel)=1 ; function test_hash(s) D = size(s.data,1) ; K = 5 ; h = zeros(1,K,'uint32') ; id = zeros(D,K,'uint8'); next = zeros(1,K,'uint32') ; [h,id,next] = vl_ihashsum(h,id,next,K,s.data) ; sel = vl_ihashfind(id,next,K,s.data) ; count = double(h(sel)) ; [drop,i,j] = unique(s.data','rows') ; for k=1:size(s.data,2) count_(k) = sum(j == j(k)) ; end vl_assert_equal(count,count_) ;
github
sabbiu/ObjectDetection-master
vl_test_grad.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_grad.m
434
utf_8
4d03eb33a6a4f68659f868da95930ffb
function results = vl_test_grad(varargin) % VL_TEST_GRAD vl_test_init ; function s = setup() s.I = rand(150,253) ; s.I_small = rand(2,2) ; function test_equiv(s) vl_assert_equal(gradient(s.I), vl_grad(s.I)) ; function test_equiv_small(s) vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ; function test_equiv_forward(s) Ix = diff(s.I,2,1) ; Iy = diff(s.I,2,1) ; vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
github
sabbiu/ObjectDetection-master
vl_test_whistc.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_whistc.m
1,384
utf_8
81c446d35c82957659840ab2a579ec2c
function results = vl_test_whistc(varargin) % VL_TEST_WHISTC vl_test_init ; function test_acc() x = ones(1, 10) ; e = 1 ; o = 1:10 ; vl_assert_equal(vl_whistc(x, o, e), 55) ; function test_basic() x = 1:10 ; e = 1:10 ; o = ones(1, 10) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; x = linspace(-1,11,100) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; function test_multidim() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_nan() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; x(1:7:end) = NaN ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_no_edges() x = rand(10, 20, 30) ; o = ones(size(x)) ; vl_assert_equal(histc(1, []), vl_whistc(1, 1, [])) ; vl_assert_equal(histc(x, []), vl_whistc(x, o, [])) ; vl_assert_equal(histc(x, [], 1), vl_whistc(x, o, [], 1)) ; vl_assert_equal(histc(x, [], 2), vl_whistc(x, o, [], 2)) ; vl_assert_equal(histc(x, [], 3), vl_whistc(x, o, [], 3)) ;
github
sabbiu/ObjectDetection-master
vl_test_roc.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_roc.m
1,019
utf_8
9b2ae71c9dc3eda0fc54c65d55054d0c
function results = vl_test_roc(varargin) % VL_TEST_ROC vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(tpr, [0 1 2 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 3 2 1 0] / 3) ; function test_perfect_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(info.eer, 0) ; vl_assert_almost_equal(info.auc, 1) ; function test_swap1_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(tpr, [0 1 1 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 2 2 1 0] / 3) ; function test_swap1_tptn_stable(s) [tpr,tnr] = vl_roc(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(tpr, [1 2 1 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 2 2 1 0] / 3) ; function test_swap1_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(info.eer, 1/3) ; vl_assert_almost_equal(info.auc, 1 - 1/(2*3)) ;
github
sabbiu/ObjectDetection-master
vl_test_dsift.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_dsift.m
2,048
utf_8
fbbfb16d5a21936c1862d9551f657ccc
function results = vl_test_dsift(varargin) % VL_TEST_DSIFT vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = rgb2gray(single(I)) ; function test_fast_slow(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSize = 5 ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; [f_, d_] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors', ... 'fast') ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift fast approximation not close') ; function test_sift(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSizeRange = [1 1.2 5] ; for wi = 1:length(windowSizeRange) windowSize = windowSizeRange(wi) ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; numKeys = size(f, 2) ; f_ = [f ; ones(1, numKeys) * scale ; zeros(1, numKeys)] ; [f_, d_] = vl_sift(s.I, ... 'magnif', magnif, ... 'frames', f_, ... 'firstoctave', -1, ... 'levels', 5, ... 'floatdescriptors', ... 'windowsize', windowSize) ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift and sift equivalence') ; end
github
sabbiu/ObjectDetection-master
vl_test_alldist2.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_alldist2.m
2,284
utf_8
89a787e3d83516653ae8d99c808b9d67
function results = vl_test_alldist2(varargin) % VL_TEST_ALLDIST vl_test_init ; % TODO: test integer classes function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist2(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist2(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist2(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', ... 'kchi2', 'kl2', 'kl1', 'khell'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y)}; types = {'single', 'double', 'sparse'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; a = vl_alldist2(X,Y,dists{d}) ; b = makedist(distsEquiv{d},X,Y) ; vl_assert_almost_equal(a,b, ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist2(X,X,ker) ; kyy = vl_alldist2(Y,Y,ker) ; kxy = vl_alldist2(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist2(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
sabbiu/ObjectDetection-master
vl_test_fisher.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_fisher.m
2,097
utf_8
c9afd9ab635bd412cbf8be3c2d235f6b
function results = vl_test_fisher(varargin) % VL_TEST_FISHER vl_test_init ; function s = setup() randn('state',0) ; dimension = 5 ; numData = 21 ; numComponents = 3 ; s.x = randn(dimension,numData) ; s.mu = randn(dimension,numComponents) ; s.sigma2 = ones(dimension,numComponents) ; s.prior = ones(1,numComponents) ; s.prior = s.prior / sum(s.prior) ; function test_basic(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior) ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_norm(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'normalized') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_sqrt(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_improved(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_fast(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior, true) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved', 'fast') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function enc = simple_fisher(x, mu, sigma2, pri, fast) if nargin < 5, fast = false ; end sigma = sqrt(sigma2) ; for k = 1:size(mu,2) delta{k} = bsxfun(@times, bsxfun(@minus, x, mu(:,k)), 1./sigma(:,k)) ; q(k,:) = log(pri(k)) - 0.5 * sum(log(sigma2(:,k))) - 0.5 * sum(delta{k}.^2,1) ; end q = exp(bsxfun(@minus, q, max(q,[],1))) ; q = bsxfun(@times, q, 1 ./ sum(q,1)) ; n = size(x,2) ; if fast [~,i] = max(q) ; q = zeros(size(q)) ; q(sub2ind(size(q),i,1:n)) = 1 ; end for k = 1:size(mu,2) u{k} = delta{k} * q(k,:)' / n / sqrt(pri(k)) ; v{k} = (delta{k}.^2 - 1) * q(k,:)' / n / sqrt(2*pri(k)) ; end enc = cat(1, u{:}, v{:}) ;
github
sabbiu/ObjectDetection-master
vl_test_imsmooth.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_imsmooth.m
1,837
utf_8
718235242cad61c9804ba5e881c22f59
function results = vl_test_imsmooth(varargin) % VL_TEST_IMSMOOTH vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; I = max(min(vl_imdown(I),1),0) ; s.I = single(I) ; function test_pad_by_continuity(s) % Convolving a constant signal padded with continuity does not change % the signal. I = ones(3) ; for ker = {'triangular', 'gaussian'} ker = char(ker) ; J = vl_imsmooth(I, 2, ... 'kernel', ker, ... 'padding', 'continuity') ; vl_assert_almost_equal(J, I, 1e-4, ... 'padding by continutiy with kernel = %s', ker) ; end function test_kernels(s) for ker = {'triangular', 'gaussian'} ker = char(ker) ; for type = {@single, @double} for simd = [0 1] for sigma = [1 2 7] for step = [1 2 3] vl_simdctrl(simd) ; conv = type{1} ; g = equivalent_kernel(ker, sigma) ; J = vl_imsmooth(conv(s.I), sigma, ... 'kernel', ker, ... 'padding', 'zero', ... 'subsample', step) ; J_ = conv(convolve(s.I, g, step)) ; vl_assert_almost_equal(J, J_, 1e-4, ... 'kernel=%s sigma=%f step=%d simd=%d', ... ker, sigma, step, simd) ; end end end end end function g = equivalent_kernel(ker, sigma) switch ker case 'gaussian' W = ceil(4*sigma) ; g = exp(-.5*((-W:W)/(sigma+eps)).^2) ; case 'triangular' W = max(round(sigma),1) ; g = W - abs(-W+1:W-1) ; end g = g / sum(g) ; function I = convolve(I, g, step) if strcmp(class(I),'single') g = single(g) ; else g = double(g) ; end for k=1:size(I,3) I(:,:,k) = conv2(g,g,I(:,:,k),'same'); end I = I(1:step:end,1:step:end,:) ;
github
sabbiu/ObjectDetection-master
vl_test_svmtrain.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_svmtrain.m
4,277
utf_8
071b7c66191a22e8236fda16752b27aa
function results = vl_test_svmtrain(varargin) % VL_TEST_SVMTRAIN vl_test_init ; end function s = setup() randn('state',0) ; Np = 10 ; Nn = 10 ; xp = diag([1 3])*randn(2, Np) ; xn = diag([1 3])*randn(2, Nn) ; xp(1,:) = xp(1,:) + 2 + 1 ; xn(1,:) = xn(1,:) - 2 + 1 ; s.x = [xp xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; s.lambda = 0.01 ; s.biasMultiplier = 10 ; if 0 figure(1) ; clf; vl_plotframe(xp, 'g') ; hold on ; vl_plotframe(xn, 'r') ; axis equal ; grid on ; end % Run LibSVM as an accuate solver to compare results with. Note that % LibSVM optimizes a slightly different cost function due to the way % the bias is handled. % [s.w, s.b] = accurate_solver(s.x, s.y, s.lambda, s.biasMultiplier) ; s.w = [1.180762951236242; 0.098366470721632] ; s.b = -1.540018443946204 ; s.obj = obj(s, s.w, s.b) ; end function test_sgd_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sgd', ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', 1/s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % there are no absolute guarantees on the objective gap, but % the heuristic SGD uses as stopping criterion seems reasonable % within a factor 10 at least. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-2) ; end end function test_sdca_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % the gap with the accurate solver cannot be % greater than the duality gap. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-3) ; end end function test_weights(s) for algo = {'sgd', 'sdca'} for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; numRepeats = 10 ; pos = find(s.y > 0) ; neg = find(s.y < 0) ; weights = ones(1, numel(s.y)) ; weights(pos) = numRepeats ; % simulate weighting by repeating positives [w b info] = vl_svmtrain(... s.x(:, [repmat(pos,1,numRepeats) neg]), ... s.y(:, [repmat(pos,1,numRepeats) neg]), ... s.lambda / (numel(pos) *numRepeats + numel(neg)) / (numel(pos) + numel(neg)), ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4) ; % apply weigthing [w_ b_ info_] = vl_svmtrain(... s.x, ... s.y, ... s.lambda, ... 'Solver', char(algo), ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4, ... 'Weights', weights) ; vl_assert_almost_equal(conv([w; b]), conv([w_; b_]), 0.05) ; end end end function test_homkermap(s) for solver = {'sgd', 'sdca'} for conv = {@single,@double} conv = conv{1} ; dataset = vl_svmdataset(conv(s.x), 'homkermap', struct('order',1)) ; vl_twister('state',0) ; [w_ b_] = vl_svmtrain(dataset, s.y, s.lambda) ; x_hom = vl_homkermap(conv(s.x), 1) ; vl_twister('state',0) ; [w b] = vl_svmtrain(x_hom, s.y, s.lambda) ; vl_assert_almost_equal([w; b],[w_; b_], 1e-7) ; end end end function [w,b] = accurate_solver(X, y, lambda, biasMultiplier) addpath opt/libsvm/matlab/ N = size(X,2) ; model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 -e 0.00001 ', 1/(lambda*N))) ; w = X(:,model.SVs) * model.sv_coef ; b = - model.rho ; format long ; disp('model w:') disp(w) disp('bias b:') disp(b) end function o = obj(s, w, b) o = (sum(w.*w) + b*b) * s.lambda / 2 + mean(max(0, 1 - s.y .* (w'*s.x + b))) ; end
github
sabbiu/ObjectDetection-master
vl_test_phow.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_phow.m
549
utf_8
f761a3bb218af855986263c67b2da411
function results = vl_test_phow(varargin) % VL_TEST_PHOPW vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = single(s.I) ; function test_gray(s) [f,d] = vl_phow(s.I, 'color', 'gray') ; assert(size(d,1) == 128) ; function test_rgb(s) [f,d] = vl_phow(s.I, 'color', 'rgb') ; assert(size(d,1) == 128*3) ; function test_hsv(s) [f,d] = vl_phow(s.I, 'color', 'hsv') ; assert(size(d,1) == 128*3) ; function test_opponent(s) [f,d] = vl_phow(s.I, 'color', 'opponent') ; assert(size(d,1) == 128*3) ;
github
sabbiu/ObjectDetection-master
vl_test_kmeans.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_kmeans.m
3,632
utf_8
0e1d6f4f8101c8982a0e743e0980c65a
function results = vl_test_kmeans(varargin) % VL_TEST_KMEANS % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; function s = setup() randn('state',0) ; s.X = randn(128, 100) ; function test_basic(s) [centers, assignments, en] = vl_kmeans(s.X, 10, 'NumRepetitions', 10) ; [centers_, assignments_, en_] = simpleKMeans(s.X, 10) ; assert(en_ <= 1.1 * en, 'vl_kmeans did not optimize enough') ; function test_algorithms(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; [centers, assignments, en] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Lloyd', ... 'Distance', distance) ; vl_twister('state',0) ; [centers_, assignments_, en_] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Elkan', ... 'Distance', distance) ; vl_twister('state',0) ; [centers__, assignments__, en__] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'ANN', ... 'Distance', distance, ... 'NumTrees', 3, ... 'MaxNumComparisons',0) ; vl_assert_almost_equal(centers, centers_, 1e-5) ; vl_assert_almost_equal(assignments, assignments_, 1e-5) ; vl_assert_almost_equal(en, en_, 1e-4) ; vl_assert_almost_equal(centers, centers__, 1e-5) ; vl_assert_almost_equal(assignments, assignments__, 1e-5) ; vl_assert_almost_equal(en, en__, 1e-4) ; vl_assert_almost_equal(centers_, centers__, 1e-5) ; vl_assert_almost_equal(assignments_, assignments__, 1e-5) ; vl_assert_almost_equal(en_, en__, 1e-4) ; end end function test_patterns(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; data = [1 1 0 0 ; 1 0 1 0] ; data = conversion(data) ; [centers, assignments, en] = vl_kmeans(data, 4, ... 'NumRepetitions', 100, ... 'Distance', distance) ; assert(isempty(setdiff(data', centers', 'rows'))) ; end end function [centers, assignments, en] = simpleKMeans(X, numCenters) [dimension, numData] = size(X) ; centers = randn(dimension, numCenters) ; for iter = 1:10 [dists, assignments] = min(vl_alldist(centers, X)) ; en = sum(dists) ; centers = [zeros(dimension, numCenters) ; ones(1, numCenters)] ; centers = vl_binsum(centers, ... [X ; ones(1,numData)], ... repmat(assignments, dimension+1, 1), 2) ; centers = centers(1:end-1, :) ./ repmat(centers(end,:), dimension, 1) ; end
github
sabbiu/ObjectDetection-master
vl_test_hikmeans.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_hikmeans.m
463
utf_8
dc3b493646e66316184e86ff4e6138ab
function results = vl_test_hikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [tree, assign] = vl_hikmeans(s.data,3,100) ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [tree, assign] = vl_hikmeans(s.data,3,100,'method','elkan') ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ;
github
sabbiu/ObjectDetection-master
vl_test_aib.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_aib.m
1,277
utf_8
78978ae54e7ebe991d136336ba4bf9c6
function results = vl_test_aib(varargin) % VL_TEST_AIB vl_test_init ; function s = setup() s = [] ; function test_basic(s) Pcx = [.3 .3 0 0 0 0 .2 .2] ; % This results in the AIB tree % % 1 - \ % 5 - \ % 2 - / \ % - 7 % 3 - \ / % 6 - / % 4 - / % % coded by the map [5 5 6 6 7 1] (1 denotes the root). [parents,cost] = vl_aib(Pcx) ; vl_assert_equal(parents, [5 5 6 6 7 7 1]) ; vl_assert_almost_equal(mi(Pcx)*[1 1 1], cost(1:3), 1e-3) ; [cut,map,short] = vl_aibcut(parents,2) ; vl_assert_equal(cut, [5 6]) ; vl_assert_equal(map, [1 1 2 2 1 2 0]) ; vl_assert_equal(short, [5 5 6 6 5 6 7]) ; function test_cluster_null(s) Pcx = [.5 .5 0 0 0 0 0 0] ; % This results in the AIB tree % % 1 - \ % 5 % 2 - / % % 3 x % % 4 x % % If ClusterNull is specified, the values 3 and 4 % which have zero probability are merged first % % 1 ----------\ % 7 % 2 ----- \ / % 6-/ % 3 -\ / % 5 -/ % 4 -/ parents1 = vl_aib(Pcx) ; parents2 = vl_aib(Pcx,'ClusterNull') ; vl_assert_equal(parents1, [5 5 0 0 1 0 0]) ; vl_assert_equal(parents2(3), parents2(4)) ; function x = mi(P) % mutual information P1 = sum(P,1) ; P2 = sum(P,2) ; x = sum(sum(P .* log(max(P,1e-10) ./ (P2*P1)))) ;
github
sabbiu/ObjectDetection-master
vl_test_plotbox.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_plotbox.m
414
utf_8
aa06ce4932a213fb933bbede6072b029
function results = vl_test_plotbox(varargin) % VL_TEST_PLOTBOX vl_test_init ; function test_basic(s) figure(1) ; clf ; vl_plotbox([-1 -1 1 1]') ; xlim([-2 2]) ; ylim([-2 2]) ; close(1) ; function test_multiple(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10)) ; close(1) ; function test_style(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10), 'r-.', 'LineWidth', 3) ; close(1) ;
github
sabbiu/ObjectDetection-master
vl_test_imarray.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_imarray.m
795
utf_8
c5e6a5aa8c2e63e248814f5bd89832a8
function results = vl_test_imarray(varargin) % VL_TEST_IMARRAY vl_test_init ; function test_movie_rgb(s) A = rand(23,15,3,4) ; B = vl_imarray(A,'movie',true) ; function test_movie_indexed(s) cmap = get(0,'DefaultFigureColormap') ; A = uint8(size(cmap,1)*rand(23,15,4)) ; A = min(A,size(cmap,1)-1) ; B = vl_imarray(A,'movie',true) ; function test_movie_gray_indexed(s) A = uint8(255*rand(23,15,4)) ; B = vl_imarray(A,'movie',true,'cmap',gray(256)) ; for k=1:size(A,3) vl_assert_equal(squeeze(A(:,:,k)), ... frame2im(B(k))) ; end function test_basic(s) M = 3 ; N = 4 ; width = 32 ; height = 15 ; for i=1:M for j=1:N A{i,j} = rand(width,height) ; end end A1 = A'; A1 = cat(3,A1{:}) ; A2 = cell2mat(A) ; B = vl_imarray(A1, 'layout', [M N]) ; vl_assert_equal(A2,B) ;
github
sabbiu/ObjectDetection-master
vl_test_homkermap.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_homkermap.m
1,903
utf_8
c157052bf4213793a961bde1f73fb307
function results = vl_test_homkermap(varargin) % VL_TEST_HOMKERMAP vl_test_init ; function check_ker(ker, n, window, period) args = {n, ker, 'window', window} ; if nargin > 3 args = {args{:}, 'period', period} ; end x = [-1 -.5 0 .5 1] ; y = linspace(0,2,100) ; for conv = {@single, @double} x = feval(conv{1}, x) ; y = feval(conv{1}, y) ; sx = sign(x) ; sy = sign(y) ; psix = vl_homkermap(x, args{:}) ; psiy = vl_homkermap(y, args{:}) ; k = vl_alldist(psix,psiy,'kl2') ; k_ = (sx'*sy) .* vl_alldist(sx.*x,sy.*y,ker) ; vl_assert_almost_equal(k, k_, 2e-2) ; end function test_uniform_kchi2(), check_ker('kchi2', 3, 'uniform', 15) ; function test_uniform_kjs(), check_ker('kjs', 3, 'uniform', 15) ; function test_uniform_kl1(), check_ker('kl1', 29, 'uniform', 15) ; function test_rect_kchi2(), check_ker('kchi2', 3, 'rectangular', 15) ; function test_rect_kjs(), check_ker('kjs', 3, 'rectangular', 15) ; function test_rect_kl1(), check_ker('kl1', 29, 'rectangular', 10) ; function test_auto_uniform_kchi2(),check_ker('kchi2', 3, 'uniform') ; function test_auto_uniform_kjs(), check_ker('kjs', 3, 'uniform') ; function test_auto_uniform_kl1(), check_ker('kl1', 25, 'uniform') ; function test_auto_rect_kchi2(), check_ker('kchi2', 3, 'rectangular') ; function test_auto_rect_kjs(), check_ker('kjs', 3, 'rectangular') ; function test_auto_rect_kl1(), check_ker('kl1', 25, 'rectangular') ; function test_gamma() x = linspace(0,1,20) ; for gamma = linspace(.2,2,10) k = vl_alldist(x, 'kchi2') .* (x'*x + 1e-12).^((gamma-1)/2) ; psix = vl_homkermap(x, 3, 'kchi2', 'gamma', gamma) ; assert(norm(k - psix'*psix) < 1e-2) ; end function test_negative() x = linspace(-1,1,20) ; k = vl_alldist(abs(x), 'kchi2') .* (sign(x)'*sign(x)) ; psix = vl_homkermap(x, 3, 'kchi2') ; assert(norm(k - psix'*psix) < 1e-2) ;
github
sabbiu/ObjectDetection-master
vl_test_slic.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_slic.m
200
utf_8
12a6465e3ef5b4bcfd7303cd8a9229d4
function results = vl_test_slic(varargin) % VL_TEST_SLIC vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; function test_slic(s) segmentation = vl_slic(s.im, 10, 0.1) ;
github
sabbiu/ObjectDetection-master
vl_test_ikmeans.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_ikmeans.m
466
utf_8
1ee2f647ac0035ed0d704a0cd615b040
function results = vl_test_ikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [centers, assign] = vl_ikmeans(s.data,100) ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [centers, assign] = vl_ikmeans(s.data,100,'method','elkan') ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ;
github
sabbiu/ObjectDetection-master
vl_test_mser.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_mser.m
242
utf_8
1ad33563b0c86542a2978ee94e0f4a39
function results = vl_test_mser(varargin) % VL_TEST_MSER vl_test_init ; function s = setup() s.im = im2uint8(rgb2gray(vl_impattern('roofs1'))) ; function test_mser(s) [regions,frames] = vl_mser(s.im) ; mask = vl_erfill(s.im, regions(1)) ;
github
sabbiu/ObjectDetection-master
vl_test_inthist.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_inthist.m
811
utf_8
459027d0c54d8f197563a02ab66ef45d
function results = vl_test_inthist(varargin) % VL_TEST_INTHIST vl_test_init ; function s = setup() rand('state',0) ; s.labels = uint32(8*rand(123, 76, 3)) ; function test_basic(s) l = 10 ; hist = vl_inthist(s.labels, 'numlabels', l) ; hist_ = inthist_slow(s.labels, l) ; vl_assert_equal(double(hist),hist_) ; function test_sample(s) rand('state',0) ; boxes = 10 * rand(4,20) + .5 ; boxes(3:4,:) = boxes(3:4,:) + boxes(1:2,:) ; boxes = min(boxes, 10) ; boxes = uint32(boxes) ; inthist = vl_inthist(s.labels) ; hist = vl_sampleinthist(inthist, boxes) ; function hist = inthist_slow(labels, numLabels) m = size(labels,1) ; n = size(labels,2) ; l = numLabels ; b = zeros(m*n,l) ; b = vl_binsum(b, 1, reshape(labels,m*n,[]), 2) ; b = reshape(b,m,n,l) ; for k=1:l hist(:,:,k) = cumsum(cumsum(b(:,:,k)')') ; end
github
sabbiu/ObjectDetection-master
vl_test_imdisttf.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_imdisttf.m
1,885
utf_8
ae921197988abeb984cbcdf9eaf80e77
function results = vl_test_imdisttf(varargin) % VL_TEST_DISTTF vl_test_init ; function test_basic() for conv = {@single, @double} conv = conv{1} ; I = conv([0 0 0 ; 0 -2 0 ; 0 0 0]) ; D = vl_imdisttf(I); assert(isequal(D, conv(- [0 1 0 ; 1 2 1 ; 0 1 0]))) ; I(2,2) = -3 ; [D,map] = vl_imdisttf(I) ; assert(isequal(D, conv(-1 - [0 1 0 ; 1 2 1 ; 0 1 0]))) ; assert(isequal(map, 5 * ones(3))) ; end function test_1x1() assert(isequal(1, vl_imdisttf(1))) ; function test_rand() I = rand(13,31) ; for t=1:4 param = [rand randn rand randn] ; [D0,map0] = imdisttf_equiv(I,param) ; [D,map] = vl_imdisttf(I,param) ; vl_assert_almost_equal(D,D0,1e-10) assert(isequal(map,map0)) ; end function test_param() I = zeros(3,4) ; I(1,1) = -1 ; [D,map] = vl_imdisttf(I,[1 0 1 0]); assert(isequal(-[1 0 0 0 ; 0 0 0 0 ; 0 0 0 0 ;], D)) ; D0 = -[1 .9 .6 .1 ; 0 0 0 0 ; 0 0 0 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[1 .9 .6 .1 ; .9 .8 .5 0 ; .6 .5 .2 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 .1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[.9 1 .9 .6 ; .8 .9 .8 .5 ; .5 .6 .5 .2 ; ] ; [D,map] = vl_imdisttf(I,[.1 1 .1 0]); vl_assert_almost_equal(D,D0,1e-10); function test_special() I = rand(13,31) -.5 ; D = vl_imdisttf(I, [0 0 1e5 0]) ; vl_assert_almost_equal(D(:,1),min(I,[],2),1e-10); D = vl_imdisttf(I, [1e5 0 0 0]) ; vl_assert_almost_equal(D(1,:),min(I,[],1),1e-10); function [D,map]=imdisttf_equiv(I,param) D = inf + zeros(size(I)) ; map = zeros(size(I)) ; ur = 1:size(D,2) ; vr = 1:size(D,1) ; [u,v] = meshgrid(ur,vr) ; for v_=vr for u_=ur E = I(v_,u_) + ... param(1) * (u - u_ - param(2)).^2 + ... param(3) * (v - v_ - param(4)).^2 ; map(E < D) = sub2ind(size(I),v_,u_) ; D = min(D,E) ; end end
github
sabbiu/ObjectDetection-master
vl_test_vlad.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_vlad.m
1,977
utf_8
d3797288d6edb1d445b890db3780c8ce
function results = vl_test_vlad(varargin) % VL_TEST_VLAD vl_test_init ; function s = setup() randn('state',0) ; s.x = randn(128,256) ; s.mu = randn(128,16) ; assignments = rand(16, 256) ; s.assignments = bsxfun(@times, assignments, 1 ./ sum(assignments,1)) ; function test_basic (s) x = [1, 2, 3] ; mu = [0, 0, 0] ; assignments = eye(3) ; phi = vl_vlad(x, mu, assignments, 'unnormalized') ; vl_assert_equal(phi, [1 2 3]') ; mu = [0, 1, 2] ; phi = vl_vlad(x, mu, assignments, 'unnormalized') ; vl_assert_equal(phi, [1 1 1]') ; phi = vl_vlad([x x], mu, [assignments assignments], 'unnormalized') ; vl_assert_equal(phi, [2 2 2]') ; function test_rand (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized') ; vl_assert_equal(phi, phi_) ; function test_norm (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = phi_ / norm(phi_) ; phi = vl_vlad(s.x, s.mu, s.assignments) ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_sqrt (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_individual (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = reshape(phi_, size(s.x,1), []) ; phi_ = bsxfun(@times, phi_, 1 ./ sqrt(sum(phi_.^2))) ; phi_ = phi_(:) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized', 'normalizecomponents') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_mass (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = reshape(phi_, size(s.x,1), []) ; phi_ = bsxfun(@times, phi_, 1 ./ sum(s.assignments,2)') ; phi_ = phi_(:) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized', 'normalizemass') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function enc = simple_vlad(x, mu, assign) for i = 1:size(assign,1) enc{i} = x * assign(i,:)' - sum(assign(i,:)) * mu(:,i) ; end enc = cat(1, enc{:}) ;
github
sabbiu/ObjectDetection-master
vl_test_pr.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_pr.m
3,763
utf_8
4d1da5ccda1a7df2bec35b8f12fdd620
function results = vl_test_pr(varargin) % VL_TEST_PR vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(pr, [1 1/1 2/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 2 2 2 2] / 2) ; function test_perfect_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(info.auc, 1) ; vl_assert_almost_equal(info.ap, 1) ; vl_assert_almost_equal(info.ap_interp_11, 1) ; function test_swap1_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(pr, [1 1/1 1/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 1 2 2 2] / 2) ; function test_swap1_tptn_stable(s) [rc,pr] = vl_pr(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(pr, [1/1 2/3 1/2 2/4 2/5]) ; vl_assert_almost_equal(rc, [1 2 1 2 2] / 2) ; function test_swap1_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores1) ; clf; vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(info.auc, [.5 + .5 * (.5 + 2/3)/2]) ; vl_assert_almost_equal(info.ap, [1/1 + 2/3]/2) ; vl_assert_almost_equal(info.ap_interp_11, mean([1 1 1 1 1 1 2/3 2/3 2/3 2/3 2/3])) ; function test_inf(s) scores = [1 -inf -1 -1 -1 -1] ; labels = [1 1 -1 -1 -1 -1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false) ; vl_assert_equal(numel(rc1), numel(rc2) + 1) ; vl_assert_almost_equal(info1.auc, [1 * .5 + (1/5 + 2/6)/2 * .5]) ; vl_assert_almost_equal(info1.ap, [1 * .5 + 2/6 * .5]) ; vl_assert_almost_equal(info1.ap_interp_11, [1 * 6/11 + 2/6 * 5/11]) ; vl_assert_almost_equal(info2.auc, 0.5) ; vl_assert_almost_equal(info2.ap, 0.5) ; vl_assert_almost_equal(info2.ap_interp_11, 1 * 6 / 11) ; function test_inf_stable(s) scores = [-1 -1 -1 -1 -inf +1] ; labels = [-1 -1 -1 -1 +1 +1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true, 'stable', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false, 'stable', true) ; [rc1_,pr1_,info1_] = vl_pr(labels, scores, 'includeInf', true, 'stable', false) ; [rc2_,pr2_,info2_] = vl_pr(labels, scores, 'includeInf', false, 'stable', false) ; % stability does not change scores vl_assert_almost_equal(info1,info1_) ; vl_assert_almost_equal(info2,info2_) ; % unstable with inf (first point (0,1) is conventional) vl_assert_almost_equal(rc1_, [0 .5 .5 .5 .5 .5 1]) vl_assert_almost_equal(pr1_, [1 1 1/2 1/3 1/4 1/5 2/6]) % unstable without inf vl_assert_almost_equal(rc2_, [0 .5 .5 .5 .5 .5]) vl_assert_almost_equal(pr2_, [1 1 1/2 1/3 1/4 1/5]) % stable with inf (no conventional point here) vl_assert_almost_equal(rc1, [.5 .5 .5 .5 1 .5]) ; vl_assert_almost_equal(pr1, [1/2 1/3 1/4 1/5 2/6 1]) ; % stable without inf (no conventional point and -inf are NaN) vl_assert_almost_equal(rc2, [.5 .5 .5 .5 NaN .5]) ; vl_assert_almost_equal(pr2, [1/2 1/3 1/4 1/5 NaN 1]) ; function test_normalised_pr(s) scores = [+1 +2] ; labels = [+1 -1] ; [rc1,pr1,info1] = vl_pr(labels,scores) ; [rc2,pr2,info2] = vl_pr(labels,scores,'normalizePrior',.5) ; vl_assert_almost_equal(pr1, pr2) ; vl_assert_almost_equal(rc1, rc2) ; scores_ = [+1 +2 +2 +2] ; labels_ = [+1 -1 -1 -1] ; [rc3,pr3,info3] = vl_pr(labels_,scores_) ; [rc4,pr4,info4] = vl_pr(labels,scores,'normalizePrior',1/4) ; vl_assert_almost_equal(info3, info4) ; function test_normalised_pr_corner_cases(s) scores = 1:10 ; labels = ones(1,10) ; [rc1,pr1,info1] = vl_pr(labels,scores) ; vl_assert_almost_equal(rc1, (0:10)/10) ; vl_assert_almost_equal(pr1, ones(1,11)) ; scores = 1:10 ; labels = zeros(1,10) ; [rc2,pr2,info2] = vl_pr(labels,scores) ; vl_assert_almost_equal(rc2, zeros(1,11)) ; vl_assert_almost_equal(pr2, ones(1,11)) ;
github
sabbiu/ObjectDetection-master
vl_test_hog.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_hog.m
1,555
utf_8
eed7b2a116d142040587dc9c4eb7cd2e
function results = vl_test_hog(varargin) % VL_TEST_HOG vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; [x,y]= meshgrid(linspace(-1,1,128)) ; s.round = single(x.^2+y.^2); s.imSmall = s.im(1:128,1:128,:) ; s.imSmall = s.im ; s.imSmallFlipped = s.imSmall(:,end:-1:1,:) ; function test_basic_call(s) cellSize = 8 ; hog = vl_hog(s.im, cellSize) ; function test_bilinear_orientations(s) cellSize = 8 ; vl_hog(s.im, cellSize, 'bilinearOrientations') ; function test_variants_and_flipping(s) variants = {'uoctti', 'dalaltriggs'} ; numOrientationsRange = 3:9 ; cellSize = 8 ; for cellSize = [4 8 16] for i=1:numel(variants) for j=1:numel(numOrientationsRange) args = {'bilinearOrientations', ... 'variant', variants{i}, ... 'numOrientations', numOrientationsRange(j)} ; hog = vl_hog(s.imSmall, cellSize, args{:}) ; perm = vl_hog('permutation', args{:}) ; hog1 = vl_hog(s.imSmallFlipped, cellSize, args{:}) ; hog2 = hog(:,end:-1:1,perm) ; %norm(hog1(:)-hog2(:)) vl_assert_almost_equal(hog1,hog2,1e-3) ; end end end function test_polar(s) cellSize = 8 ; im = s.round ; for b = [0 1] if b args = {'bilinearOrientations'} ; else args = {} ; end hog1 = vl_hog(im, cellSize, args{:}) ; [ix,iy] = vl_grad(im) ; m = sqrt(ix.^2 + iy.^2) ; a = atan2(iy,ix) ; m(:,[1 end]) = 0 ; m([1 end],:) = 0 ; hog2 = vl_hog(cat(3,m,a), cellSize, 'DirectedPolarField', args{:}) ; vl_assert_almost_equal(hog1,hog2,norm(hog1(:))/1000) ; end
github
sabbiu/ObjectDetection-master
vl_test_argparse.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_argparse.m
795
utf_8
e72185b27206d0ee1dfdc19fe77a5be6
function results = vl_test_argparse(varargin) % VL_TEST_ARGPARSE vl_test_init ; function test_basic() opts.field1 = 1 ; opts.field2 = 2 ; opts.field3 = 3 ; opts_ = opts ; opts_.field1 = 3 ; opts_.field2 = 10 ; opts = vl_argparse(opts, {'field2', 10, 'field1', 3}) ; assert(isequal(opts, opts_)) ; opts_.field1 = 9 ; opts = vl_argparse(opts, {'field1', 4, 'field1', 9}) ; assert(isequal(opts, opts_)) ; function test_error() opts.field1 = 1 ; try opts = vl_argparse(opts, {'field2', 5}) ; catch e return ; end assert(false) ; function test_leftovers() opts1.field1 = 1 ; opts2.field2 = 1 ; opts1_.field1 = 2 ; opts2_.field2 = 2 ; [opts1,args] = vl_argparse(opts1, {'field1', 2, 'field2', 2}) ; opts2 = vl_argparse(opts2, args) ; assert(isequal(opts1,opts1_), isequal(opts2,opts2_)) ;
github
sabbiu/ObjectDetection-master
vl_test_liop.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_liop.m
1,023
utf_8
a162be369073bed18e61210f44088cf3
function results = vl_test_liop(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() randn('state',0) ; s.patch = randn(65,'single') ; xr = -32:32 ; [x,y] = meshgrid(xr) ; s.blob = - single(x.^2+y.^2) ; function test_basic(s) d = vl_liop(s.patch) ; function test_blob(s) % with a blob, all local intensity order pattern are equal. In % particular, if the blob intensity decreases away from the center, % then all local intensities sampled in a neighbourhood of 2 elements % are already sorted (see LIOP details). d = vl_liop(s.blob, ... 'IntensityThreshold', 0, ... 'NumNeighbours', 2, ... 'NumSpatialBins', 1) ; assert(isequal(d, single([1;0]))) ; function test_neighbours(s) for n=2:5 for p=1:3 d = vl_liop(s.patch, 'NumNeighbours', n, 'NumSpatialBins', p) ; assert(numel(d) == p * factorial(n)) ; end end function test_multiple(s) x = randn(31,31,3, 'single') ; d = vl_liop(x) ; for i=1:3 d_(:,i) = vl_liop(squeeze(x(:,:,i))) ; end assert(isequal(d,d_)) ;
github
sabbiu/ObjectDetection-master
vl_test_binsearch.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/xtest/vl_test_binsearch.m
1,339
utf_8
85dc020adce3f228fe7dfb24cf3acc63
function results = vl_test_binsearch(varargin) % VL_TEST_BINSEARCH vl_test_init ; function test_inf_bins() x = [-inf -1 0 1 +inf] ; vl_assert_equal(vl_binsearch([], x), [0 0 0 0 0]) ; vl_assert_equal(vl_binsearch([-inf 0], x), [1 1 2 2 2]) ; vl_assert_equal(vl_binsearch([-inf], x), [1 1 1 1 1]) ; vl_assert_equal(vl_binsearch([-inf +inf], x), [1 1 1 1 2]) ; function test_empty() vl_assert_equal(vl_binsearch([], []), []) ; function test_bnd() vl_assert_equal(vl_binsearch([], [1]), [0]) ; vl_assert_equal(vl_binsearch([], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([], [+inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [.9]), [0]) ; vl_assert_equal(vl_binsearch([1], [1]), [1]) ; vl_assert_equal(vl_binsearch([1], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [+inf]), [1]) ; function test_basic() vl_assert_equal(vl_binsearch(-10:10, -10:10), 1:21) ; vl_assert_equal(vl_binsearch(-10:10, -11:10), 0:21) ; vl_assert_equal(vl_binsearch(-10:10, [-inf, -11:10, +inf]), [0 0:21 21]) ; function test_frac() vl_assert_equal(vl_binsearch(1:10, 1:.5:10), floor(1:.5:10)) vl_assert_equal(vl_binsearch(1:10, fliplr(1:.5:10)), ... fliplr(floor(1:.5:10))) ; function test_array() a = reshape(1:100,10,10) ; b = reshape(1:.5:100.5, 2, []) ; c = floor(b) ; vl_assert_equal(vl_binsearch(a,b), c) ;
github
sabbiu/ObjectDetection-master
vl_roc.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/plotop/vl_roc.m
10,113
utf_8
22fd8ff455ee62a96ffd94b9074eafeb
function [tpr,tnr,info] = vl_roc(labels, scores, varargin) %VL_ROC ROC curve. % [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating % Characteristic (ROC) curve [1]. LABELS is a row vector of ground % truth labels, greater than zero for a positive sample and smaller % than zero for a negative one. SCORES is a row vector of % corresponding sample scores, usually obtained from a % classifier. The scores induce a ranking of the samples where % larger scores should correspond to positive labels. % % Without output arguments, the function plots the ROC graph of the % specified data in the current graphical axis. % % Otherwise, the function returns the true positive and true % negative rates TPR and TNR. These are vectors of the same size of % LABELS and SCORES and are computed as follows. Samples are ranked % by decreasing scores, starting from rank 1. TPR(K) and TNR(K) are % the true positive and true negative rates when samples of rank % smaller or equal to K-1 are predicted to be positive. So for % example TPR(3) is the true positive rate when the two samples with % largest score are predicted to be positive. Similarly, TPR(1) is % the true positive rate when no samples are predicted to be % positive, i.e. the constant 0. % % Setting a label to zero ignores the corresponding sample in the % calculations, as if the sample was removed from the data. Setting % the score of a sample to -INF causes the function to assume that % that sample was never retrieved. If there are samples with -INF % score, the ROC curve is incomplete as the maximum recall is less % than 1. % % [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO % with the following fields: % % info.auc:: Area under the ROC curve (AUC). % This is the area under the ROC plot, the parametric curve % (FPR(S), TPR(S)). The PLOT option can be used to plot variants % of this curve, which affects the calculation of a corresponding % AUC. % % info.eer:: Equal error rate (EER). % The equal error rate is the value of FPR (or FNR) when the ROC % curves intersects the line connecting (0,0) to (1,1). % % info.eerThreshold:: EER threshold. % The value of the score for which the EER is attained. % % VL_ROC() accepts the following options: % % Plot:: [] % Setting this option turns on plotting unconditionally. The % following plot variants are supported: % % tntp:: Plot TPR against TNR (standard ROC plot). % tptn:: Plot TNR against TPR (recall on the horizontal axis). % fptp:: Plot TPR against FPR. % fpfn:: Plot FNR against FPR (similar to a DET curve). % % Note that this option will affect the INFO.AUC value computation % too. % % NumPositives:: [] % NumNegatives:: [] % If either of these parameters is set to a number, the function % pretends that LABELS contains the specified number of % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entries in % LABELS. The additional positive/negative labels are appended to % the end of the sequence as if they had -INF scores (as explained % above, the function interprets such samples as `not % retrieved'). This feature can be used to evaluate the % performance of a large-scale retrieval experiment in which only % a subset of highly-scoring results are recorded for efficiency % reason. % % Stable:: false % If set to true, TPR and TNR are returned in the same order % of LABELS and SCORES rather than being sorted by decreasing % score. % % About the ROC curve:: % Consider a classifier that predicts as positive all samples whose % score is not smaller than a threshold S. The ROC curve represents % the performance of such classifier as the threshold S is % changed. Formally, define % % P = overall num. of positive samples, % N = overall num. of negative samples, % % and for each threshold S % % TP(S) = num. of samples that are correctly classified as positive, % TN(S) = num. of samples that are correctly classified as negative, % FP(S) = num. of samples that are incorrectly classified as positive, % FN(S) = num. of samples that are incorrectly classified as negative. % % Consider also the rates: % % TPR = TP(S) / P, FNR = FN(S) / P, % TNR = TN(S) / N, FPR = FP(S) / N, % % and notice that, by definition, % % P = TP(S) + FN(S) , N = TN(S) + FP(S), % 1 = TPR(S) + FNR(S), 1 = TNR(S) + FPR(S). % % The ROC curve is the parametric curve (FPR(S), TPR(S)) obtained % as the classifier threshold S is varied in the reals. The TPR is % the same as `recall' in a PR curve (see VL_PR()). % % The ROC curve is contained in the square with vertices (0,0) The % (average) ROC curve of a random classifier is a line which % connects (1,0) and (0,1). % % The ROC curve is independent of the prior probability of the % labels (i.e. of P/(P+N) and N/(P+N)). % % REFERENCES: % [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic % % See also: VL_PR(), VL_DET(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.plot = [] ; opts.stable = false ; opts = vl_argparse(opts,varargin) ; % compute the rates small = 1e-10 ; tpr = tp / max(p, small) ; fpr = fp / max(n, small) ; fnr = 1 - tpr ; tnr = 1 - fpr ; do_plots = ~isempty(opts.plot) || nargout == 0 ; if isempty(opts.plot), opts.plot = 'fptp' ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || do_plots % Area under the curve. Since the curve is a staircase (in the % sense that for each sample either tn is decremented by one % or tp is incremented by one but the other remains fixed), % the integral is particularly simple and exact. switch opts.plot case 'tntp', info.auc = -sum(tpr .* diff([0 tnr])) ; case 'fptp', info.auc = +sum(tpr .* diff([0 fpr])) ; case 'tptn', info.auc = +sum(tnr .* diff([0 tpr])) ; case 'fpfn', info.auc = +sum(fnr .* diff([0 fpr])) ; otherwise error('''%s'' is not a valid PLOT type.', opts.plot); end % Equal error rate. One must find the index S in correspondence of % which TNR(S) and TPR(s) cross. Note that TPR(S) is non-decreasing, % TNR(S) is non-increasing, and from rank S to rank S+1 only one of % the two quantities can change. Hence there are exactly two types % of crossing points: % % 1) TNR(S) = TNR(S+1) = EER and TPR(S) <= EER, TPR(S+1) > EER, % 2) TPR(S) = TPR(S+1) = EER and TNR(S) > EER, TNR(S+1) <= EER. % % Moreover, if the maximum TPR is smaller than 1, then it is % possible that neither of the two cases realizes. In the latter % case, we return EER=NaN. s = max(find(tnr > tpr)) ; if s == length(tpr) info.eer = NaN ; info.eerThreshold = 0 ; else if tpr(s) == tpr(s+1) info.eer = 1 - tpr(s) ; else info.eer = 1 - tnr(s) ; end info.eerThreshold = scores(perm(s)) ; end end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if do_plots cla ; hold on ; switch lower(opts.plot) case 'tntp' hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true negative rate') ; ylabel('true positive rate (recall)') ; loc = 'sw' ; case 'fptp' hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ; spline([1 0], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive rate') ; ylabel('true positive rate (recall)') ; loc = 'se' ; case 'tptn' hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true positive rate (recall)') ; ylabel('false positive rate') ; loc = 'sw' ; case 'fpfn' hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive (false alarm) rate') ; ylabel('false negative (miss) rate') ; loc = 'ne' ; otherwise error('''%s'' is not a valid PLOT type.', opts.plot); end grid on ; xlim([0 1]) ; ylim([0 1]) ; axis square ; title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ... 'interpreter', 'none') ; legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable tpr(1) = [] ; tnr(1) = [] ; tpr_ = tpr ; tnr_ = tnr ; tpr = NaN(size(tpr)) ; tnr = NaN(size(tnr)) ; tpr(perm) = tpr_ ; tnr(perm) = tnr_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
sabbiu/ObjectDetection-master
vl_click.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/plotop/vl_click.m
2,661
utf_8
6982e869cf80da57fdf68f5ebcd05a86
function P = vl_click(N,varargin) ; % VL_CLICK Click a point % P=VL_CLICK() let the user click a point in the current figure and % returns its coordinates in P. P is a two dimensiona vectors where % P(1) is the point X-coordinate and P(2) the point Y-coordinate. The % user can abort the operation by pressing any key, in which case the % empty matrix is returned. % % P=VL_CLICK(N) lets the user select N points in a row. The user can % stop inserting points by pressing any key, in which case the % partial list is returned. % % VL_CLICK() accepts the following options: % % PlotMarker:: [0] % Plot a marker as points are selected. The markers are deleted on % exiting the function. % % See also: VL_CLICKPOINT(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). plot_marker = 0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'plotmarker' plot_marker = varargin{k+1} ; otherwise error(['Uknown option ''', varargin{k}, '''.']) ; end end if nargin < 1 N=1; end % -------------------------------------------------------------------- % Do job % -------------------------------------------------------------------- fig = gcf ; is_hold = ishold ; hold on ; bhandler = get(fig,'WindowButtonDownFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'WindowButtonDownFcn',@click_handler) ; set(fig,'KeyPressFcn',@key_handler) ; set(fig,'Pointer','crosshair') ; P=[] ; h=[] ; data.exit=0; guidata(fig,data) ; while size(P,2) < N uiwait(fig) ; data = guidata(fig) ; if(data.exit) break ; end P = [P data.P] ; if( plot_marker ) h=[h plot(data.P(1),data.P(2),'rx')] ; end end if ~is_hold hold off ; end if( plot_marker ) pause(.1); delete(h) ; end set(fig,'WindowButtonDownFcn',bhandler) ; set(fig,'KeyPressFcn',khandler) ; set(fig,'Pointer',pointer) ; % ==================================================================== function click_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; data.P = P ; guidata(obj,data) ; uiresume(gcbo) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
sabbiu/ObjectDetection-master
vl_pr.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/plotop/vl_pr.m
9,138
utf_8
c7fe6832d2b6b9917896810c52a05479
function [recall, precision, info] = vl_pr(labels, scores, varargin) %VL_PR Precision-recall curve. % [RECALL, PRECISION] = VL_PR(LABELS, SCORES) computes the % precision-recall (PR) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % samples. % % Samples are ranked by decreasing scores, starting from rank 1. % PRECISION(K) and RECALL(K) are the precison and recall when % samples of rank smaller or equal to K-1 are predicted to be % positive and the remaining to be negative. So for example % PRECISION(3) is the percentage of positive samples among the two % samples with largest score. PRECISION(1) is the precision when no % samples are predicted to be positive and is conventionally set to % the value 1. % % Set to zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the PR curve % may have maximum recall smaller than 1, unless the INCLUDEINF % option is used (see below). The options NUMNEGATIVES and % NUMPOSITIVES can be used to add additional surrogate samples with % -INF score (see below). % % [RECALL, PRECISION, INFO] = VL_PR(...) returns an additional % structure INFO with the following fields: % % info.auc:: % The area under the precision-recall curve. If the INTERPOLATE % option is set to FALSE, then trapezoidal interpolation is used % to integrate the PR curve. If the INTERPOLATE option is set to % TRUE, then the curve is piecewise constant and no other % approximation is introduced in the calculation of the area. In % the latter case, INFO.AUC is the same as INFO.AP. % % info.ap:: % Average precision as defined by TREC. This is the average of the % precision observed each time a new positive sample is % recalled. In this calculation, any sample with -INF score % (unless INCLUDEINF is used) and any additional positive induced % by NUMPOSITIVES has precision equal to zero. If the INTERPOLATE % option is set to true, the AP is computed from the interpolated % precision and the result is the same as INFO.AUC. Note that AP % as defined by TREC normally does not use interpolation [1]. % % info.ap_interp_11:: % 11-points interpolated average precision as defined by TREC. % This is the average of the maximum precision for recall levels % greather than 0.0, 0.1, 0.2, ..., 1.0. This measure was used in % the PASCAL VOC challenge up to the 2008 edition. % % info.auc_pa08:: % Deprecated. It is the same of INFO.AP_INTERP_11. % % VL_PR(...) with no output arguments plots the PR curve in the % current axis. % % VL_PR() accepts the following options: % % Interpolate:: false % If set to true, use interpolated precision. The interpolated % precision is defined as the maximum precision for a given recall % level and onwards. Here it is implemented as the culumative % maximum from low to high scores of the precision. % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems % for which one stores ony a handful of top results for efficiency % reasons. % % IncludeInf:: false % If set to true, data with -INF score SCORES is included in the % evaluation and the maximum recall is 1 even if -INF scores are % present. This option does not include any additional positive or % negative data introduced by specifying NUMPOSITIVES and % NUMNEGATIVES. % % Stable:: false % If set to true, RECALL and PRECISION are returned in the same order % of LABELS and SCORES rather than being sorted by decreasing % score (increasing recall). Samples with -INF scores are assigned % RECALL and PRECISION equal to NaN. % % NormalizePrior:: [] % If set to a scalar, reweights positive and negative labels so % that the fraction of positive ones is equal to the specified % value. This computes the normalised PR curves of [2] % % About the PR curve:: % This section uses the same symbols used in the documentation of % the VL_ROC() function. In addition to those quantities, define: % % PRECISION(S) = TP(S) / (TP(S) + FP(S)) % RECALL(S) = TPR(S) = TP(S) / P % % The precision is the fraction of positivie predictions which are % correct, and the recall is the fraction of positive labels that % have been correctly classified (recalled). Notice that the recall % is also equal to the true positive rate for the ROC curve (see % VL_ROC()). % % REFERENCES: % [1] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to % Information Retrieval. Cambridge University Press, 2008. % [2] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in % object detectors. In Proc. ECCV, 2012. % % See also VL_ROC(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % TP and FP are the vectors of true positie and false positve label % counts for decreasing scores, P and N are the total number of % positive and negative labels. Note that if certain options are used % some labels may actually not be stored explicitly by LABELS, so P+N % can be larger than the number of element of LABELS. [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.stable = false ; opts.interpolate = false ; opts.normalizePrior = [] ; opts = vl_argparse(opts,varargin) ; % compute precision and recall small = 1e-10 ; recall = tp / max(p, small) ; if isempty(opts.normalizePrior) precision = max(tp, small) ./ max(tp + fp, small) ; else a = opts.normalizePrior ; precision = max(tp * a/max(p,small), small) ./ ... max(tp * a/max(p,small) + fp * (1-a)/max(n,small), small) ; end % interpolate precision if needed if opts.interpolate precision = fliplr(vl_cummax(fliplr(precision))) ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % area under the curve using trapezoid interpolation if ~opts.interpolate info.auc = 0.5 * sum((precision(1:end-1) + precision(2:end)) .* diff(recall)) ; end % average precision (for each recalled positive sample) sel = find(diff(recall)) + 1 ; info.ap = sum(precision(sel)) / p ; if opts.interpolate info.auc = info.ap ; end % TREC 11 points average interpolated precision info.ap_interp_11 = 0.0 ; for rc = linspace(0,1,11) pr = max([0, precision(recall >= rc)]) ; info.ap_interp_11 = info.ap_interp_11 + pr / 11 ; end % legacy definition info.auc_pa08 = info.ap_interp_11 ; end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if nargout == 0 cla ; hold on ; plot(recall,precision,'linewidth',2) ; if isempty(opts.normalizePrior) randomPrecision = p / (p + n) ; else randomPrecision = opts.normalizePrior ; end spline([0 1], [1 1] * randomPrecision, 'r--', 'linewidth', 2) ; axis square ; grid on ; xlim([0 1]) ; xlabel('recall') ; ylim([0 1]) ; ylabel('precision') ; title(sprintf('PR (AUC: %.2f%%, AP: %.2f%%, AP11: %.2f%%)', ... info.auc * 100, ... info.ap * 100, ... info.ap_interp_11 * 100)) ; if opts.interpolate legend('PR interp.', 'PR rand.', 'Location', 'SouthEast') ; else legend('PR', 'PR rand.', 'Location', 'SouthEast') ; end clear recall precision info ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable precision(1) = [] ; recall(1) = [] ; precision_ = precision ; recall_ = recall ; precision = NaN(size(precision)) ; recall = NaN(size(recall)) ; precision(perm) = precision_ ; recall(perm) = recall_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
sabbiu/ObjectDetection-master
vl_ubcread.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/sift/vl_ubcread.m
3,015
utf_8
e8ddd3ecd87e76b6c738ba153fef050f
function [f,d] = vl_ubcread(file, varargin) % SIFTREAD Read Lowe's SIFT implementation data files % [F,D] = VL_UBCREAD(FILE) reads the frames F and the descriptors D % from FILE in UBC (Lowe's original implementation of SIFT) format % and returns F and D as defined by VL_SIFT(). % % VL_UBCREAD(FILE, 'FORMAT', 'OXFORD') assumes the format used by % Oxford VGG implementations . % % See also: VL_SIFT(), VL_HELP(). % Authors: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.verbosity = 0 ; opts.format = 'ubc' ; opts = vl_argparse(opts, varargin) ; g = fopen(file, 'r'); if g == -1 error(['Could not open file ''', file, '''.']) ; end [header, count] = fscanf(g, '%d', [1 2]) ; if count ~= 2 error('Invalid keypoint file header.'); end switch opts.format case 'ubc' numKeypoints = header(1) ; descrLen = header(2) ; case 'oxford' numKeypoints = header(2) ; descrLen = header(1) ; otherwise error('Unknown format ''%s''.', opts.format) ; end if(opts.verbosity > 0) fprintf('%d keypoints, %d descriptor length.\n', numKeypoints, descrLen) ; end %creates two output matrices switch opts.format case 'ubc' P = zeros(4,numKeypoints) ; case 'oxford' P = zeros(5,numKeypoints) ; end L = zeros(descrLen, numKeypoints) ; %parse tmp.key for k = 1:numKeypoints switch opts.format case 'ubc' % Record format: i,j,s,th [record, count] = fscanf(g, '%f', [1 4]) ; if count ~= 4 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; case 'oxford' % Record format: x, y, a, b, c such that x' [a b ; b c] x = 1 [record, count] = fscanf(g, '%f', [1 5]) ; if count ~= 5 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; end % Record format: descriptor [record, count] = fscanf(g, '%d', [1 descrLen]) ; if count ~= descrLen error(... sprintf('Invalid keypoint file (parsing keypoint %d, descriptor part)',k) ); end L(:,k) = record(:) ; end fclose(g) ; switch opts.format case 'ubc' P(1:2,:) = flipud(P(1:2,:)) + 1 ; % i,j -> x,y f=[ P(1:2,:) ; P(3,:) ; -P(4,:) ] ; d=uint8(L) ; p=[1 2 3 4 5 6 7 8] ; q=[1 8 7 6 5 4 3 2] ; for j=0:3 for i=0:3 d(8*(i+4*j)+p,:) = d(8*(i+4*j)+q,:) ; end end case 'oxford' P(1:2,:) = P(1:2,:) + 1 ; % matlab origin f = P ; f(3:5,:) = inv2x2(f(3:5,:)) ; d = uint8(L) ; end % -------------------------------------------------------------------- function S = inv2x2(C) % -------------------------------------------------------------------- den = C(1,:) .* C(3,:) - C(2,:) .* C(2,:) ; S = [C(3,:) ; -C(2,:) ; C(1,:)] ./ den([1 1 1], :) ;
github
sabbiu/ObjectDetection-master
vl_frame2oell.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/sift/vl_frame2oell.m
2,806
utf_8
c93792632f630743485fa4c2cf12d647
function eframes = vl_frame2oell(frames) % VL_FRAMES2OELL Convert a geometric frame to an oriented ellipse % EFRAME = VL_FRAME2OELL(FRAME) converts the generic FRAME to an % oriented ellipses EFRAME. FRAME and EFRAME can be matrices, with % one frame per column. % % A frame is either a point, a disc, an oriented disc, an ellipse, % or an oriented ellipse. These are represented respectively by 2, % 3, 4, 5 and 6 parameters each, as described in VL_PLOTFRAME(). An % oriented ellipse is the most general geometric frame; hence, there % is no loss of information in this conversion. % % If FRAME is an oriented disc or ellipse, then the conversion is % immediate. If, however, FRAME is not oriented (it is either a % point or an unoriented disc or ellipse), then an orientation must % be assigned. The orientation is chosen in such a way that the % affine transformation that maps the standard oriented frame into % the output EFRAME does not rotate the Y axis. If frames represent % detected visual features, this convention corresponds to assume % that features are upright. % % If FRAME is a point, then the output is an ellipse with null area. % % See: <a href="matlab:vl_help('tut.frame')">feature frames</a>, % VL_PLOTFRAME(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [D,K] = size(frames) ; eframes = zeros(6,K) ; switch D case 2 eframes(1:2,:) = frames(1:2,:) ; case 3 eframes(1:2,:) = frames(1:2,:) ; eframes(3,:) = frames(3,:) ; eframes(6,:) = frames(3,:) ; case 4 r = frames(3,:) ; c = r.*cos(frames(4,:)) ; s = r.*sin(frames(4,:)) ; eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = [c ; s ; -s ; c] ; case 5 eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = mapFromS(frames(3:5,:)) ; case 6 eframes = frames ; otherwise error('FRAMES format is unknown.') ; end % -------------------------------------------------------------------- function A = mapFromS(S) % -------------------------------------------------------------------- % Returns the (stacking of the) 2x2 matrix A that maps the unit circle % into the ellipses satisfying the equation x' inv(S) x = 1. Here S % is a stacked covariance matrix, with elements S11, S12 and S22. % % The goal is to find A such that AA' = S. In order to let the Y % direction unaffected (upright feature), the assumption is taht % A = [a b ; 0 c]. Hence % % AA' = [a^2, ab ; ab, b^2+c^2] = S. A = zeros(4,size(S,2)) ; a = sqrt(S(1,:)); b = S(2,:) ./ max(a, 1e-18) ; A(1,:) = a ; A(2,:) = b ; A(4,:) = sqrt(max(S(3,:) - b.*b, 0)) ;
github
sabbiu/ObjectDetection-master
vl_plotsiftdescriptor.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/toolbox/sift/vl_plotsiftdescriptor.m
5,114
utf_8
a4e125a8916653f00143b61cceda2f23
function h=vl_plotsiftdescriptor(d,f,varargin) % VL_PLOTSIFTDESCRIPTOR Plot SIFT descriptor % VL_PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptor D. If D is a % matrix, it plots one descriptor per column. D has the same format % used by VL_SIFT(). % % VL_PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to % the SIFT frames F, specified as columns of the matrix F. F has the % same format used by VL_SIFT(). % % H=VL_PLOTSIFTDESCRIPTOR(...) returns the handle H to the line % drawing representing the descriptors. % % The function assumes that the SIFT descriptors use the standard % configuration of 4x4 spatial bins and 8 orientations bins. The % following parameters can be used to change this: % % NumSpatialBins:: 4 % Number of spatial bins in both spatial directions X and Y. % % NumOrientationBins:: 8 % Number of orientation bis. % % MagnificationFactor:: 3 % Magnification factor. The width of one bin is equal to the scale % of the keypoint F multiplied by this factor. % % See also: VL_SIFT(), VL_PLOTFRAME(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.magnificationFactor = 3.0 ; opts.numSpatialBins = 4 ; opts.numOrientationBins = 8 ; opts.maxValue = 0 ; if nargin > 1 if ~ isnumeric(f) error('F must be a numeric type (use [] to leave it unspecified)') ; end end opts = vl_argparse(opts, varargin) ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= opts.numSpatialBins^2 * opts.numOrientationBins) error('The number of rows of D does not match the geometry of the descriptor') ; end if nargin > 1 if (~isempty(f) & (size(f,1) < 2 | size(f,1) > 6)) error('F must be either empty of have from 2 to six rows.'); end if size(f,1) == 2 % translation only f(3:6,:) = deal([10 0 0 10]') ; %f = [f; 10 * ones(1, size(f,2)) ; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 3 % translation and scale f(3:6,:) = [1 0 0 1]' * f(3,:) ; %f = [f; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 4 c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if size(f,1) == 5 assert(false) ; c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if(~isempty(f) & size(f,2) ~= size(d,2)) error('D and F have incompatible dimension') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 | isempty(f) f = repmat([0;0;1;0;0;1],1,K) ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K [x,y] = render_descr(d(:,k), opts.numSpatialBins, opts.numOrientationBins, opts.maxValue) ; xall = [xall opts.magnificationFactor*f(3,k)*x + opts.magnificationFactor*f(5,k)*y + f(1,k)] ; yall = [yall opts.magnificationFactor*f(4,k)*x + opts.magnificationFactor*f(6,k)*y + f(2,k)] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- function [x,y] = render_descr(d, numSpatialBins, numOrientationBins, maxValue) % -------------------------------------------------------------------- % Get the coordinates of the lines of the SIFT grid; each bin has side 1 [x,y] = meshgrid(-numSpatialBins/2:numSpatialBins/2,-numSpatialBins/2:numSpatialBins/2) ; % Get the corresponding bin centers xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % Rescale the descriptor range so that the biggest peak fits inside the bin diagram if maxValue d = 0.4 * d / maxValue ; else d = 0.4 * d / max(d(:)+eps) ; end % We scramble the the centers to have them in row major order % (descriptor convention). xc = xc' ; yc = yc' ; % Each spatial bin contains a star with numOrientationBins tips xc = repmat(xc(:)',numOrientationBins,1) ; yc = repmat(yc(:)',numOrientationBins,1) ; % Do the stars th=linspace(0,2*pi,numOrientationBins+1) ; th=th(1:end-1) ; xd = repmat(cos(th), 1, numSpatialBins*numSpatialBins) ; yd = repmat(sin(th), 1, numSpatialBins*numSpatialBins) ; xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,numSpatialBins^2*numOrientationBins) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,numSpatialBins+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
sabbiu/ObjectDetection-master
phow_caltech101.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/apps/phow_caltech101.m
11,594
utf_8
7f4890a2e6844ca56debbfe23cca64f3
function phow_caltech101() % PHOW_CALTECH101 Image classification in the Caltech-101 dataset % This program demonstrates how to use VLFeat to construct an image % classifier on the Caltech-101 data. The classifier uses PHOW % features (dense SIFT), spatial histograms of visual words, and a % Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT, % kd-trees, and homogeneous kernel map. The program also % demonstrates VLFeat PEGASOS SVM solver, although for this small % dataset other solvers such as LIBLINEAR can be more efficient. % % By default 15 training images are used, which should result in % about 64% performance (a good performance considering that only a % single feature type is being used). % % Call PHOW_CALTECH101 to train and test a classifier on a small % subset of the Caltech-101 data. Note that the program % automatically downloads a copy of the Caltech-101 data from the % Internet if it cannot find a local copy. % % Edit the PHOW_CALTECH101 file to change the program configuration. % % To run on the entire dataset change CONF.TINYPROBLEM to FALSE. % % The Caltech-101 data is saved into CONF.CALDIR, which defaults to % 'data/caltech-101'. Change this path to the desired location, for % instance to point to an existing copy of the Caltech-101 data. % % The program can also be used to train a model on custom data by % pointing CONF.CALDIR to it. Just create a subdirectory for each % class and put the training images there. Make sure to adjust % CONF.NUMTRAIN accordingly. % % Intermediate files are stored in the directory CONF.DATADIR. All % such files begin with the prefix CONF.PREFIX, which can be changed % to test different parameter settings without overriding previous % results. % % The program saves the trained model in % <CONF.DATADIR>/<CONF.PREFIX>-model.mat. This model can be used to % test novel images independently of the Caltech data. % % load('data/baseline-model.mat') ; # change to the model path % label = model.classify(model, im) ; % % Author: Andrea Vedaldi % Copyright (C) 2011-2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). conf.calDir = 'data/caltech-101' ; conf.dataDir = 'data/' ; conf.autoDownloadData = true ; conf.numTrain = 15 ; conf.numTest = 15 ; conf.numClasses = 102 ; conf.numWords = 600 ; conf.numSpatialX = [2 4] ; conf.numSpatialY = [2 4] ; conf.quantizer = 'kdtree' ; conf.svm.C = 10 ; conf.svm.solver = 'sdca' ; %conf.svm.solver = 'sgd' ; %conf.svm.solver = 'liblinear' ; conf.svm.biasMultiplier = 1 ; conf.phowOpts = {'Step', 3} ; conf.clobber = false ; conf.tinyProblem = true ; conf.prefix = 'baseline' ; conf.randSeed = 1 ; if conf.tinyProblem conf.prefix = 'tiny' ; conf.numClasses = 5 ; conf.numSpatialX = 2 ; conf.numSpatialY = 2 ; conf.numWords = 300 ; conf.phowOpts = {'Verbose', 2, 'Sizes', 7, 'Step', 5} ; end conf.vocabPath = fullfile(conf.dataDir, [conf.prefix '-vocab.mat']) ; conf.histPath = fullfile(conf.dataDir, [conf.prefix '-hists.mat']) ; conf.modelPath = fullfile(conf.dataDir, [conf.prefix '-model.mat']) ; conf.resultPath = fullfile(conf.dataDir, [conf.prefix '-result']) ; randn('state',conf.randSeed) ; rand('state',conf.randSeed) ; vl_twister('state',conf.randSeed) ; % -------------------------------------------------------------------- % Download Caltech-101 data % -------------------------------------------------------------------- if ~exist(conf.calDir, 'dir') || ... (~exist(fullfile(conf.calDir, 'airplanes'),'dir') && ... ~exist(fullfile(conf.calDir, '101_ObjectCategories', 'airplanes'))) if ~conf.autoDownloadData error(... ['Caltech-101 data not found. ' ... 'Set conf.autoDownloadData=true to download the required data.']) ; end vl_xmkdir(conf.calDir) ; calUrl = ['http://www.vision.caltech.edu/Image_Datasets/' ... 'Caltech101/101_ObjectCategories.tar.gz'] ; fprintf('Downloading Caltech-101 data to ''%s''. This will take a while.', conf.calDir) ; untar(calUrl, conf.calDir) ; end if ~exist(fullfile(conf.calDir, 'airplanes'),'dir') conf.calDir = fullfile(conf.calDir, '101_ObjectCategories') ; end % -------------------------------------------------------------------- % Setup data % -------------------------------------------------------------------- classes = dir(conf.calDir) ; classes = classes([classes.isdir]) ; classes = {classes(3:conf.numClasses+2).name} ; images = {} ; imageClass = {} ; for ci = 1:length(classes) ims = dir(fullfile(conf.calDir, classes{ci}, '*.jpg'))' ; ims = vl_colsubset(ims, conf.numTrain + conf.numTest) ; ims = cellfun(@(x)fullfile(classes{ci},x),{ims.name},'UniformOutput',false) ; images = {images{:}, ims{:}} ; imageClass{end+1} = ci * ones(1,length(ims)) ; end selTrain = find(mod(0:length(images)-1, conf.numTrain+conf.numTest) < conf.numTrain) ; selTest = setdiff(1:length(images), selTrain) ; imageClass = cat(2, imageClass{:}) ; model.classes = classes ; model.phowOpts = conf.phowOpts ; model.numSpatialX = conf.numSpatialX ; model.numSpatialY = conf.numSpatialY ; model.quantizer = conf.quantizer ; model.vocab = [] ; model.w = [] ; model.b = [] ; model.classify = @classify ; % -------------------------------------------------------------------- % Train vocabulary % -------------------------------------------------------------------- if ~exist(conf.vocabPath) || conf.clobber % Get some PHOW descriptors to train the dictionary selTrainFeats = vl_colsubset(selTrain, 30) ; descrs = {} ; %for ii = 1:length(selTrainFeats) parfor ii = 1:length(selTrainFeats) im = imread(fullfile(conf.calDir, images{selTrainFeats(ii)})) ; im = standarizeImage(im) ; [drop, descrs{ii}] = vl_phow(im, model.phowOpts{:}) ; end descrs = vl_colsubset(cat(2, descrs{:}), 10e4) ; descrs = single(descrs) ; % Quantize the descriptors to get the visual words vocab = vl_kmeans(descrs, conf.numWords, 'verbose', 'algorithm', 'elkan', 'MaxNumIterations', 50) ; save(conf.vocabPath, 'vocab') ; else load(conf.vocabPath) ; end model.vocab = vocab ; if strcmp(model.quantizer, 'kdtree') model.kdtree = vl_kdtreebuild(vocab) ; end % -------------------------------------------------------------------- % Compute spatial histograms % -------------------------------------------------------------------- if ~exist(conf.histPath) || conf.clobber hists = {} ; parfor ii = 1:length(images) % for ii = 1:length(images) fprintf('Processing %s (%.2f %%)\n', images{ii}, 100 * ii / length(images)) ; im = imread(fullfile(conf.calDir, images{ii})) ; hists{ii} = getImageDescriptor(model, im); end hists = cat(2, hists{:}) ; save(conf.histPath, 'hists') ; else load(conf.histPath) ; end % -------------------------------------------------------------------- % Compute feature map % -------------------------------------------------------------------- psix = vl_homkermap(hists, 1, 'kchi2', 'gamma', .5) ; % -------------------------------------------------------------------- % Train SVM % -------------------------------------------------------------------- if ~exist(conf.modelPath) || conf.clobber switch conf.svm.solver case {'sgd', 'sdca'} lambda = 1 / (conf.svm.C * length(selTrain)) ; w = [] ; parfor ci = 1:length(classes) perm = randperm(length(selTrain)) ; fprintf('Training model for class %s\n', classes{ci}) ; y = 2 * (imageClass(selTrain) == ci) - 1 ; [w(:,ci) b(ci) info] = vl_svmtrain(psix(:, selTrain(perm)), y(perm), lambda, ... 'Solver', conf.svm.solver, ... 'MaxNumIterations', 50/lambda, ... 'BiasMultiplier', conf.svm.biasMultiplier, ... 'Epsilon', 1e-3); end case 'liblinear' svm = train(imageClass(selTrain)', ... sparse(double(psix(:,selTrain))), ... sprintf(' -s 3 -B %f -c %f', ... conf.svm.biasMultiplier, conf.svm.C), ... 'col') ; w = svm.w(:,1:end-1)' ; b = svm.w(:,end)' ; end model.b = conf.svm.biasMultiplier * b ; model.w = w ; save(conf.modelPath, 'model') ; else load(conf.modelPath) ; end % -------------------------------------------------------------------- % Test SVM and evaluate % -------------------------------------------------------------------- % Estimate the class of the test images scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ; [drop, imageEstClass] = max(scores, [], 1) ; % Compute the confusion matrix idx = sub2ind([length(classes), length(classes)], ... imageClass(selTest), imageEstClass(selTest)) ; confus = zeros(length(classes)) ; confus = vl_binsum(confus, ones(size(idx)), idx) ; % Plots figure(1) ; clf; subplot(1,2,1) ; imagesc(scores(:,[selTrain selTest])) ; title('Scores') ; set(gca, 'ytick', 1:length(classes), 'yticklabel', classes) ; subplot(1,2,2) ; imagesc(confus) ; title(sprintf('Confusion matrix (%.2f %% accuracy)', ... 100 * mean(diag(confus)/conf.numTest) )) ; print('-depsc2', [conf.resultPath '.ps']) ; save([conf.resultPath '.mat'], 'confus', 'conf') ; % ------------------------------------------------------------------------- function im = standarizeImage(im) % ------------------------------------------------------------------------- im = im2single(im) ; if size(im,1) > 480, im = imresize(im, [480 NaN]) ; end % ------------------------------------------------------------------------- function hist = getImageDescriptor(model, im) % ------------------------------------------------------------------------- im = standarizeImage(im) ; width = size(im,2) ; height = size(im,1) ; numWords = size(model.vocab, 2) ; % get PHOW features [frames, descrs] = vl_phow(im, model.phowOpts{:}) ; % quantize local descriptors into visual words switch model.quantizer case 'vq' [drop, binsa] = min(vl_alldist(model.vocab, single(descrs)), [], 1) ; case 'kdtree' binsa = double(vl_kdtreequery(model.kdtree, model.vocab, ... single(descrs), ... 'MaxComparisons', 50)) ; end for i = 1:length(model.numSpatialX) binsx = vl_binsearch(linspace(1,width,model.numSpatialX(i)+1), frames(1,:)) ; binsy = vl_binsearch(linspace(1,height,model.numSpatialY(i)+1), frames(2,:)) ; % combined quantization bins = sub2ind([model.numSpatialY(i), model.numSpatialX(i), numWords], ... binsy,binsx,binsa) ; hist = zeros(model.numSpatialY(i) * model.numSpatialX(i) * numWords, 1) ; hist = vl_binsum(hist, ones(size(bins)), bins) ; hists{i} = single(hist / sum(hist)) ; end hist = cat(1,hists{:}) ; hist = hist / sum(hist) ; % ------------------------------------------------------------------------- function [className, score] = classify(model, im) % ------------------------------------------------------------------------- hist = getImageDescriptor(model, im) ; psix = vl_homkermap(hist, 1, 'kchi2', 'gamma', .5) ; scores = model.w' * psix + model.b' ; [score, best] = max(scores) ; className = model.classes{best} ;
github
sabbiu/ObjectDetection-master
sift_mosaic.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/apps/sift_mosaic.m
4,621
utf_8
8fa3ad91b401b8f2400fb65944c79712
function mosaic = sift_mosaic(im1, im2) % SIFT_MOSAIC Demonstrates matching two images using SIFT and RANSAC % % SIFT_MOSAIC demonstrates matching two images based on SIFT % features and RANSAC and computing their mosaic. % % SIFT_MOSAIC by itself runs the algorithm on two standard test % images. Use SIFT_MOSAIC(IM1,IM2) to compute the mosaic of two % custom images IM1 and IM2. % AUTORIGHTS if nargin == 0 im1 = imread(fullfile(vl_root, 'data', 'river1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'river2.jpg')) ; end % make single im1 = im2single(im1) ; im2 = im2single(im2) ; % make grayscale if size(im1,3) > 1, im1g = rgb2gray(im1) ; else im1g = im1 ; end if size(im2,3) > 1, im2g = rgb2gray(im2) ; else im2g = im2 ; end % -------------------------------------------------------------------- % SIFT matches % -------------------------------------------------------------------- [f1,d1] = vl_sift(im1g) ; [f2,d2] = vl_sift(im2g) ; [matches, scores] = vl_ubcmatch(d1,d2) ; numMatches = size(matches,2) ; X1 = f1(1:2,matches(1,:)) ; X1(3,:) = 1 ; X2 = f2(1:2,matches(2,:)) ; X2(3,:) = 1 ; % -------------------------------------------------------------------- % RANSAC with homography model % -------------------------------------------------------------------- clear H score ok ; for t = 1:100 % estimate homograpyh subset = vl_colsubset(1:numMatches, 4) ; A = [] ; for i = subset A = cat(1, A, kron(X1(:,i)', vl_hat(X2(:,i)))) ; end [U,S,V] = svd(A) ; H{t} = reshape(V(:,9),3,3) ; % score homography X2_ = H{t} * X1 ; du = X2_(1,:)./X2_(3,:) - X2(1,:)./X2(3,:) ; dv = X2_(2,:)./X2_(3,:) - X2(2,:)./X2(3,:) ; ok{t} = (du.*du + dv.*dv) < 6*6 ; score(t) = sum(ok{t}) ; end [score, best] = max(score) ; H = H{best} ; ok = ok{best} ; % -------------------------------------------------------------------- % Optional refinement % -------------------------------------------------------------------- function err = residual(H) u = H(1) * X1(1,ok) + H(4) * X1(2,ok) + H(7) ; v = H(2) * X1(1,ok) + H(5) * X1(2,ok) + H(8) ; d = H(3) * X1(1,ok) + H(6) * X1(2,ok) + 1 ; du = X2(1,ok) - u ./ d ; dv = X2(2,ok) - v ./ d ; err = sum(du.*du + dv.*dv) ; end if exist('fminsearch') == 2 H = H / H(3,3) ; opts = optimset('Display', 'none', 'TolFun', 1e-8, 'TolX', 1e-8) ; H(1:8) = fminsearch(@residual, H(1:8)', opts) ; else warning('Refinement disabled as fminsearch was not found.') ; end % -------------------------------------------------------------------- % Show matches % -------------------------------------------------------------------- dh1 = max(size(im2,1)-size(im1,1),0) ; dh2 = max(size(im1,1)-size(im2,1),0) ; figure(1) ; clf ; subplot(2,1,1) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,:));f2(1,matches(2,:))+o], ... [f1(2,matches(1,:));f2(2,matches(2,:))]) ; title(sprintf('%d tentative matches', numMatches)) ; axis image off ; subplot(2,1,2) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,ok));f2(1,matches(2,ok))+o], ... [f1(2,matches(1,ok));f2(2,matches(2,ok))]) ; title(sprintf('%d (%.2f%%) inliner matches out of %d', ... sum(ok), ... 100*sum(ok)/numMatches, ... numMatches)) ; axis image off ; drawnow ; % -------------------------------------------------------------------- % Mosaic % -------------------------------------------------------------------- box2 = [1 size(im2,2) size(im2,2) 1 ; 1 1 size(im2,1) size(im2,1) ; 1 1 1 1 ] ; box2_ = inv(H) * box2 ; box2_(1,:) = box2_(1,:) ./ box2_(3,:) ; box2_(2,:) = box2_(2,:) ./ box2_(3,:) ; ur = min([1 box2_(1,:)]):max([size(im1,2) box2_(1,:)]) ; vr = min([1 box2_(2,:)]):max([size(im1,1) box2_(2,:)]) ; [u,v] = meshgrid(ur,vr) ; im1_ = vl_imwbackward(im2double(im1),u,v) ; z_ = H(3,1) * u + H(3,2) * v + H(3,3) ; u_ = (H(1,1) * u + H(1,2) * v + H(1,3)) ./ z_ ; v_ = (H(2,1) * u + H(2,2) * v + H(2,3)) ./ z_ ; im2_ = vl_imwbackward(im2double(im2),u_,v_) ; mass = ~isnan(im1_) + ~isnan(im2_) ; im1_(isnan(im1_)) = 0 ; im2_(isnan(im2_)) = 0 ; mosaic = (im1_ + im2_) ./ mass ; figure(2) ; clf ; imagesc(mosaic) ; axis image off ; title('Mosaic') ; if nargout == 0, clear mosaic ; end end
github
sabbiu/ObjectDetection-master
encodeImage.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/apps/recognition/encodeImage.m
5,278
utf_8
5d9dc6161995b8e10366b5649bf4fda4
function descrs = encodeImage(encoder, im, varargin) % ENCODEIMAGE Apply an encoder to an image % DESCRS = ENCODEIMAGE(ENCODER, IM) applies the ENCODER % to image IM, returning a corresponding code vector PSI. % % IM can be an image, the path to an image, or a cell array of % the same, to operate on multiple images. % % ENCODEIMAGE(ENCODER, IM, CACHE) utilizes the specified CACHE % directory to store encodings for the given images. The cache % is used only if the images are specified as file names. % % See also: TRAINENCODER(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.cacheDir = [] ; opts.cacheChunkSize = 512 ; opts = vl_argparse(opts,varargin) ; if ~iscell(im), im = {im} ; end % break the computation into cached chunks startTime = tic ; descrs = cell(1, numel(im)) ; numChunks = ceil(numel(im) / opts.cacheChunkSize) ; for c = 1:numChunks n = min(opts.cacheChunkSize, numel(im) - (c-1)*opts.cacheChunkSize) ; chunkPath = fullfile(opts.cacheDir, sprintf('chunk-%03d.mat',c)) ; if ~isempty(opts.cacheDir) && exist(chunkPath) fprintf('%s: loading descriptors from %s\n', mfilename, chunkPath) ; load(chunkPath, 'data') ; else range = (c-1)*opts.cacheChunkSize + (1:n) ; fprintf('%s: processing a chunk of %d images (%3d of %3d, %5.1fs to go)\n', ... mfilename, numel(range), ... c, numChunks, toc(startTime) / (c - 1) * (numChunks - c + 1)) ; data = processChunk(encoder, im(range)) ; if ~isempty(opts.cacheDir) save(chunkPath, 'data') ; end end descrs{c} = data ; clear data ; end descrs = cat(2,descrs{:}) ; % -------------------------------------------------------------------- function psi = processChunk(encoder, im) % -------------------------------------------------------------------- psi = cell(1,numel(im)) ; if numel(im) > 1 & matlabpool('size') > 1 parfor i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end else % avoiding parfor makes debugging easier for i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end end psi = cat(2, psi{:}) ; % -------------------------------------------------------------------- function psi = encodeOne(encoder, im) % -------------------------------------------------------------------- im = encoder.readImageFn(im) ; features = encoder.extractorFn(im) ; imageSize = size(im) ; psi = {} ; for i = 1:size(encoder.subdivisions,2) minx = encoder.subdivisions(1,i) * imageSize(2) ; miny = encoder.subdivisions(2,i) * imageSize(1) ; maxx = encoder.subdivisions(3,i) * imageSize(2) ; maxy = encoder.subdivisions(4,i) * imageSize(1) ; ok = ... minx <= features.frame(1,:) & features.frame(1,:) < maxx & ... miny <= features.frame(2,:) & features.frame(2,:) < maxy ; descrs = encoder.projection * bsxfun(@minus, ... features.descr(:,ok), ... encoder.projectionCenter) ; if encoder.renormalize descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; end w = size(im,2) ; h = size(im,1) ; frames = features.frame(1:2,:) ; frames = bsxfun(@times, bsxfun(@minus, frames, [w;h]/2), 1./[w;h]) ; descrs = extendDescriptorsWithGeometry(encoder.geometricExtension, frames, descrs) ; switch encoder.type case 'bovw' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 100) ; z = vl_binsum(zeros(encoder.numWords,1), 1, double(words)) ; z = sqrt(z) ; case 'fv' z = vl_fisher(descrs, ... encoder.means, ... encoder.covariances, ... encoder.priors, ... 'Improved') ; case 'vlad' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 15) ; assign = zeros(encoder.numWords, numel(words), 'single') ; assign(sub2ind(size(assign), double(words), 1:numel(words))) = 1 ; z = vl_vlad(descrs, ... encoder.words, ... assign, ... 'SquareRoot', ... 'NormalizeComponents') ; end z = z / max(sqrt(sum(z.^2)), 1e-12) ; psi{i} = z(:) ; end psi = cat(1, psi{:}) ; % -------------------------------------------------------------------- function psi = getFromCache(name, cache) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; if exist(cachePath, 'file') data = load(cachePath) ; psi = data.psi ; else psi = [] ; end % -------------------------------------------------------------------- function storeToCache(name, cache, psi) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; vl_xmkdir(cache) ; data.psi = psi ; save(cachePath, '-STRUCT', 'data') ;
github
sabbiu/ObjectDetection-master
experiments.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/apps/recognition/experiments.m
6,905
utf_8
1e4a4911eed4a451b9488b9e6cc9b39c
function experiments() % EXPERIMENTS Run image classification experiments % The experimens download a number of benchmark datasets in the % 'data/' subfolder. Make sure that there are several GBs of % space available. % % By default, experiments run with a lite option turned on. This % quickly runs all of them on tiny subsets of the actual data. % This is used only for testing; to run the actual experiments, % set the lite variable to false. % % Running all the experiments is a slow process. Using parallel % MATLAB and several cores/machiens is suggested. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). lite = true ; clear ex ; ex(1).prefix = 'fv-aug' ; ex(1).trainOpts = {'C', 10} ; ex(1).datasets = {'fmd', 'scene67'} ; ex(1).seed = 1 ; ex(1).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(2) = ex(1) ; ex(2).datasets = {'caltech101'} ; ex(2).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(3) = ex(1) ; ex(3).datasets = {'voc07'} ; ex(3).C = 1 ; ex(4) = ex(1) ; ex(4).prefix = 'vlad-aug' ; ex(4).opts = {... 'type', 'vlad', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(5) = ex(4) ; ex(5).datasets = {'caltech101'} ; ex(5).opts{end} = ex(2).opts{end} ; ex(6) = ex(4) ; ex(6).datasets = {'voc07'} ; ex(6).C = 1 ; ex(7) = ex(1) ; ex(7).prefix = 'bovw-aug' ; ex(7).opts = {... 'type', 'bovw', ... 'numWords', 4096, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(8) = ex(7) ; ex(8).datasets = {'caltech101'} ; ex(8).opts{end} = ex(2).opts{end} ; ex(9) = ex(7) ; ex(9).datasets = {'voc07'} ; ex(9).C = 1 ; ex(10).prefix = 'fv' ; ex(10).trainOpts = {'C', 10} ; ex(10).datasets = {'fmd', 'scene67'} ; ex(10).seed = 1 ; ex(10).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(11) = ex(10) ; ex(11).datasets = {'caltech101'} ; ex(11).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(12) = ex(10) ; ex(12).datasets = {'voc07'} ; ex(12).C = 1 ; ex(13).prefix = 'fv-sp' ; ex(13).trainOpts = {'C', 10} ; ex(13).datasets = {'fmd', 'scene67'} ; ex(13).seed = 1 ; ex(13).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1', '3x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(14) = ex(13) ; ex(14).datasets = {'caltech101'} ; ex(14).opts{6} = {'1x1', '2x2'} ; ex(14).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(15) = ex(13) ; ex(15).datasets = {'voc07'} ; ex(15).C = 1 ; if lite, tag = 'lite' ; else, tag = 'ex' ; end for i=1:numel(ex) for j=1:numel(ex(i).datasets) dataset = ex(i).datasets{j} ; if ~isfield(ex(i), 'trainOpts') || ~iscell(ex(i).trainOpts) ex(i).trainOpts = {} ; end traintest(... 'prefix', [tag '-' dataset '-' ex(i).prefix], ... 'seed', ex(i).seed, ... 'dataset', char(dataset), ... 'datasetDir', fullfile('data', dataset), ... 'lite', lite, ... ex(i).trainOpts{:}, ... 'encoderParams', ex(i).opts) ; end end % print HTML table pf('<table>\n') ; ph('method', 'VOC07', 'Caltech 101', 'Scene 67', 'FMD') ; pr('FV', ... ge([tag '-voc07-fv'],'ap11'), ... ge([tag '-caltech101-fv']), ... ge([tag '-scene67-fv']), ... ge([tag '-fmd-fv'])) ; pr('FV + aug.', ... ge([tag '-voc07-fv-aug'],'ap11'), ... ge([tag '-caltech101-fv-aug']), ... ge([tag '-scene67-fv-aug']), ... ge([tag '-fmd-fv-aug'])) ; pr('FV + s.p.', ... ge([tag '-voc07-fv-sp'],'ap11'), ... ge([tag '-caltech101-fv-sp']), ... ge([tag '-scene67-fv-sp']), ... ge([tag '-fmd-fv-sp'])) ; %pr('VLAD', ... % ge([tag '-voc07-vlad'],'ap11'), ... % ge([tag '-caltech101-vlad']), ... % ge([tag '-scene67-vlad']), ... % ge([tag '-fmd-vlad'])) ; pr('VLAD + aug.', ... ge([tag '-voc07-vlad-aug'],'ap11'), ... ge([tag '-caltech101-vlad-aug']), ... ge([tag '-scene67-vlad-aug']), ... ge([tag '-fmd-vlad-aug'])) ; %pr('VLAD+sp', ... % ge([tag '-voc07-vlad-sp'],'ap11'), ... % ge([tag '-caltech101-vlad-sp']), ... % ge([tag '-scene67-vlad-sp']), ... % ge([tag '-fmd-vlad-sp'])) ; %pr('BOVW', ... % ge([tag '-voc07-bovw'],'ap11'), ... % ge([tag '-caltech101-bovw']), ... % ge([tag '-scene67-bovw']), ... % ge([tag '-fmd-bovw'])) ; pr('BOVW + aug.', ... ge([tag '-voc07-bovw-aug'],'ap11'), ... ge([tag '-caltech101-bovw-aug']), ... ge([tag '-scene67-bovw-aug']), ... ge([tag '-fmd-bovw-aug'])) ; %pr('BOVW+sp', ... % ge([tag '-voc07-bovw-sp'],'ap11'), ... % ge([tag '-caltech101-bovw-sp']), ... % ge([tag '-scene67-bovw-sp']), ... % ge([tag '-fmd-bovw-sp'])) ; pf('</table>\n'); function pf(str) fprintf(str) ; function str = ge(name, format) if nargin == 1, format = 'acc'; end data = load(fullfile('data', name, 'result.mat')) ; switch format case 'acc' str = sprintf('%.2f%% <span style="font-size:8px;">Acc</span>', mean(diag(data.confusion)) * 100) ; case 'ap11' str = sprintf('%.2f%% <span style="font-size:8px;">mAP</span>', mean(data.ap11) * 100) ; end function pr(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<td>%s</td>',varargin{i}) ; end fprintf('</tr>\n') ; function ph(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<th>%s</th>',varargin{i}) ; end fprintf('</tr>\n') ;
github
sabbiu/ObjectDetection-master
getDenseSIFT.m
.m
ObjectDetection-master/Project-CLI/vlfeat-0.9.20/apps/recognition/getDenseSIFT.m
1,679
utf_8
2059c0a2a4e762226d89121408c6e51c
function features = getDenseSIFT(im, varargin) % GETDENSESIFT Extract dense SIFT features % FEATURES = GETDENSESIFT(IM) extract dense SIFT features from % image IM. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.scales = logspace(log10(1), log10(.25), 5) ; opts.contrastthreshold = 0 ; opts.step = 3 ; opts.rootSift = false ; opts.normalizeSift = true ; opts.binSize = 8 ; opts.geometry = [4 4 8] ; opts.sigma = 0 ; opts = vl_argparse(opts, varargin) ; dsiftOpts = {'norm', 'fast', 'floatdescriptors', ... 'step', opts.step, ... 'size', opts.binSize, ... 'geometry', opts.geometry} ; if size(im,3)>1, im = rgb2gray(im) ; end im = im2single(im) ; im = vl_imsmooth(im, opts.sigma) ; for si = 1:numel(opts.scales) im_ = imresize(im, opts.scales(si)) ; [frames{si}, descrs{si}] = vl_dsift(im_, dsiftOpts{:}) ; % root SIFT if opts.rootSift descrs{si} = sqrt(descrs{si}) ; end if opts.normalizeSift descrs{si} = snorm(descrs{si}) ; end % zero low contrast descriptors info.contrast{si} = frames{si}(3,:) ; kill = info.contrast{si} < opts.contrastthreshold ; descrs{si}(:,kill) = 0 ; % store frames frames{si}(1:2,:) = (frames{si}(1:2,:)-1) / opts.scales(si) + 1 ; frames{si}(3,:) = opts.binSize / opts.scales(si) / 3 ; end features.frame = cat(2, frames{:}) ; features.descr = cat(2, descrs{:}) ; features.contrast = cat(2, info.contrast{:}) ; function x = snorm(x) x = bsxfun(@times, x, 1./max(1e-5,sqrt(sum(x.^2,1)))) ;
github
neuropoly/axonpacking-master
axons_setup.m
.m
axonpacking-master/code/axons_setup.m
2,927
utf_8
b9f1c3bdbc776d4043dbc9a4d1e11512
function [D,x0, side] = axons_setup(axons, lawname, k) % author : Tom Mingasson % axonsSetup creates a randomly generated axon gamma or lognormal distribution and initilialize axons positions in a square area defined by its length 'side'. % diameters distribution under a gamma or lognormal law D = samplingHastingsMetropolis(axons, lawname, k); % dimension of the square area N = axons.N{k}; if axons.d_var{k} == 0 side = sqrt(N*(3*max(D(:))+axons.Delta{k}).^2); else side = sqrt(N*(2*max(D(:))+axons.Delta{k}).^2); end % Random positions on a grid for the N axons sqrt_N = round(sqrt(N))+1; [Xgrid Ygrid] = meshgrid(1:side/sqrt_N:side, 1:side/sqrt_N:side); Xgrid =Xgrid(:); Ygrid =Ygrid(:); Permutations = randperm(sqrt_N^2); x0 = zeros(N,2); for i=1:N x0(i,:) = [Xgrid(Permutations(i)) Ygrid(Permutations(i))]; end x0 = reshape(x0',1,2*N)'; end function d = samplingHastingsMetropolis(axons,lawName,k) sigma_instru = 1; N = axons.N{k}; x = zeros(N,1); x(1)=axons.d_mean{k}; xmin = axons.threshold_low{k}; xmax = axons.threshold_high{k}; axe_hist =linspace(xmin,xmax,100); for n=1:N-1 % drawing of x* from x(n) (= current point) under a gaussian intrumental law x_star = x(n) + sigma_instru*randn; % acceptation or reject proba_accept = (q_instru(x(n),x_star,sigma_instru)*pobj(x_star,axons,lawName,k))/(q_instru(x_star,x(n),sigma_instru)*pobj(x(n),axons,lawName,k)); u=rand; if u<proba_accept x(n+1)=x_star; else x(n+1)=x(n); end end figure('Name','Disk diameter histogram') hold off xth = linspace(0.01,xmax,1000); yth = pobj(xth, axons,lawName, k); [n_hist,bins]=hist(x(1:n),axe_hist); h = bar(bins,n_hist); set(h,'barwidth',0.5) hold on plot(xth,yth/max(yth(:))*max(n_hist),'r', 'LineWidth',1 ) legend('histogram',['distribution law : ', lawName]) drawnow xlabel('diameters (um)') ylabel('number of disks') d = x; end function [ pobj ] = pobj(x, axons,lawName, k) % Probability pobj(x) where pobj is the function we want to sample meanAxons = axons.d_mean{k}; varAxons = axons.d_var{k}; threshold_high = axons.threshold_high{k}; threshold_low = axons.threshold_low{k}; switch lawName case 'lognormal' mu = log(meanAxons) - 1/2*log(1 + varAxons/(meanAxons)^2); sigma = sqrt( log( 1 + varAxons/(meanAxons)^2) ); if x>=threshold_high | x <= threshold_low pobj=0; else pobj = lognpdf(x,mu,sigma); end case 'gamma' a = meanAxons^2/varAxons; b = varAxons/meanAxons; if x>=threshold_high | x<=threshold_low pobj=0; else pobj = gampdf(x, a, b); end end end function [q] = q_instru( x_star, x_courant, sigma_instru ) % Evaluation of the instrumental function q for (x, x_current) q = 1/(sigma_instru*sqrt(2*pi))*exp(-(x_star-x_courant)^2/(2*sigma_instru^2)); end
github
neuropoly/axonpacking-master
process_packing.m
.m
axonpacking-master/code/process_packing.m
5,704
utf_8
c917838799e34d0310385913bd8f51d2
function [final_positions, overlap, fvf_historic] = process_packing(x0, d, gap, side, iter_max, iter_fvf) % author : Tom Mingasson % function that create the packing i.e disk migrations from intial positions disp(' ') disp('Packing in process...') disp(' ') N = length(d); fvf_historic = []; x = x0; progress = progressBar(iter_max); for iter = 1:iter_max MyGrad = compute_grad(x, d+gap/2, side); x = x + MyGrad; if round(iter/iter_fvf)==iter/iter_fvf | iter==1 pts = reshape(x,2,length(x)/2); t = 0:.1:2*pi+0.1; % FVF mask resolution = 0.05; % um masksize = ceil(side/resolution); FVF_mask = false(masksize); for id=1:N Xfibers = d(id)*cos(t) + pts(1,id); Yfibers = d(id)*sin(t) + pts(2,id); FVF_mask = FVF_mask | poly2mask(Xfibers/side*masksize, Yfibers/side*masksize, masksize, masksize); end % AVF mask AVF_mask = false(masksize); g_ratio=compute_gratio(d); for id=1:N Xaxons = g_ratio(id)*d(id)*cos(t) + pts(1,id); Yaxons = g_ratio(id)*d(id)*sin(t) + pts(2,id); AVF_mask = AVF_mask | poly2mask(Xaxons/side*masksize, Yaxons/side*masksize, masksize, masksize); end % mask in which FVF is computed. Its area is Atot. Ls = sqrt(sum(pi*(d+gap/2).^2))*(4/5)/side*masksize; Atot = Ls * Ls; Xmin = round(mean(pts(1,:))/side*masksize - Ls/2); Xmax = round(mean(pts(1,:))/side*masksize + Ls/2); Ymin = round(mean(pts(2,:))/side*masksize - Ls/2); Ymax = round(mean(pts(2,:))/side*masksize + Ls/2); FVF_mask_trunc = FVF_mask(Xmin:Xmax,Ymin:Ymax); fvf_historic = [fvf_historic sum(FVF_mask_trunc(:))/ Atot]; % display intermediate packing and compute FVF set(figure(201), 'Name', 'Disk migration'); clf subplot(1,2,1) colormap(gray) imagesc(AVF_mask - FVF_mask) axis off hold on rectangle('Position',[Xmin, Ymin, Ls, Ls],'EdgeColor', 'r', 'LineWidth', 1.5) title(['Diam Mean : ',num2str(round(mean(d(:))*10)/10),' um ','Diam Var : ',num2str(round(var(d(:))*10)/10),' um ','Gap : ',num2str(gap),' um '],'FontSize',10,'FontWeight','bold'); axis square subplot(1,2,2) plot([1:length(fvf_historic)]*iter_fvf, fvf_historic, 'r*-') title('Disk density in the red square' ,'FontSize',10,'FontWeight','bold'); axis square drawnow end progress.update(); end progress.close(); final_positions = reshape(x,2,length(x)/2); % evaluate overlap in the final packing overlap = 0; for i = 1:N-1 for j = i+1:N [~,~,area] = areaIntersect(final_positions(:,i),d(i),final_positions(:,j),d(j)); overlap = overlap + area; end end disp(' ') disp(['overlap area ratio regarding total disk areas in the packing: ', num2str(overlap / sum(pi*d.^2) * 100), ' %']) end function MyGrad = compute_grad(x, D, side) % author : Tom Mingasson Kcenter0 = 0.01; % center step coeff for disks withOUT overlapping Kcenter1 = 0; % center step coeff for disks with overlapping Krep = 0.1; % repulsion step coeff for disks with overlapping pts = reshape(x,2,length(x)/2); N=size(pts,2); % intersection P = squareform(pdist(pts','euclidean'))+eye(N); Rsum = (repmat(D,1,N)' + repmat(D,1,N)).*(tril(ones(N,N),-1)+triu(ones(N,N),1)); L = (Rsum./P-1); % >0 if intersection Lbin = L; Lbin(Lbin>0) = 1; Lbin(Lbin<=0) = 0; F = floor(linspace(1,N+1,2*N+1)); F=F(1:end-1); Lbin2 = Lbin(:,F); inter1_index = repmat(sum(Lbin),2,1); inter1_index(inter1_index>0)=1; % disks that overlap inter0_index = 1 - inter1_index; % disks that NOT overlap % attraction pts_centered = side/2-pts; attraction_norm = sqrt(pts_centered(1,:).^2+pts_centered(2,:).^2); attraction = pts_centered./repmat(attraction_norm,[2,1]); % repulsion U = repmat(x',N,1)-repmat(pts',1,N); Usum = sum(U.*Lbin2,1); Unorm = sqrt(Usum(1:2:end).^2 + Usum(2:2:end).^2); Unorm(Unorm==0) = 1; Unormalization = repmat(Unorm,2,1); Unormalization = Unormalization(:)'; Usum_normed = Usum./Unormalization ; repulsion = (Usum_normed.*inter1_index(:)')'; MyGrad = reshape(Kcenter0.*attraction.*inter0_index + Kcenter1.*attraction.*inter1_index,1,2*N)' + Krep.*repulsion; end function [p,q,areatotal,numberOfPoints] = areaIntersect(C1,r1,C2,r2) % Circle centers C1 and C2 with radius r1 and r2. % Compute x and y % Solve in easy coordinates a = norm(C1-C2); % Check for divide by zero if isequal(a,0) % Circles have same center. Return the area of the smaller circle. p = [NaN;NaN]; q = [NaN;NaN]; numberOfPoints = Inf; areatotal = pi*min(r1,r2)^2; return end x = 0.5*(a + (r1^2 - r2^2)/a); if r1^2 < x^2 % Check for sqrt of negative p = [NaN;NaN]; q = [NaN;NaN]; if r1 + r2 < a areatotal = 0; numberOfPoints = 0; else % One circle is inside the other areatotal = pi*min(r1,r2)^2; numberOfPoints = Inf; end return end y = sqrt(r1^2 - x^2); % Original coordinates basis i = (C2-C1)/norm(C2-C1); j = null(i'); % Intersection points in original coordinates p = C1 + i*x + j*y ; q = C1 + i*x - j*y; % Compute the angle theta between radius and x-axis % in the easy coordinates theta1 = atan2(y,x); theta2 = atan2(y,a-x); % Obtain A1 with x, y, r1 area1 = theta1*r1^2 - x*y; % Obtain A2 with a-x, y, r2 area2 = theta2*r2^2 - (a-x)*y; areatotal = area1 + area2; if isequal(p,q) numberOfPoints = 1; else numberOfPoints = 2; end end
github
domingomery/Balu-master
Bds_bootstrap.m
.m
Balu-master/DataSelectionAndGeneration/Bds_bootstrap.m
690
utf_8
ded2459781ccf06343c1b7ebfedea80b
% [Xb,db,Xnb,dnb] = Bds_bootstrap(X,d,N) % % Toolbox: Balu % % Bootstrap sample (with replacement) % % input: (X,d) means features and ideal classification % Bbootsample takes a bootstrap sample of (X,d) to build (Xb,db). % N is the number of samples of Xb, default is the number of samples % of X. % Xnb,dnb are the samples not considered in Xb,db. % % D.Mery, PUC-DCC, 2010 % http://dmery.ing.puc.cl function [Xb,db,Xnb,dnb] = Bds_bootstrap(X,d,N) Nx = size(X,1); if not(exist('N','var')) N = Nx; end ib = mod(ceil(N*rand(N,1)),Nx)+1; Xb = X(ib,:); db = d(ib,:); Nx = size(X,1); nb = ones(Nx,1); nb(ib) = 0; inb = find(nb==1); Xnb = X(inb,:); dnb = d(inb,:);
github
domingomery/Balu-master
Bds_smote.m
.m
Balu-master/DataSelectionAndGeneration/Bds_smote.m
3,500
utf_8
af43561c3a7f3af17d7ef3465ae1c7e2
% [New_X, New_d] = Bds_smote(X, d, smote_rate, k) % % Toolbox: Balu % % OVER-SAMPLING method, where the label for the majority class is 0 % and the label for the minority class is 1. % % This function implements SMOTE (Synthetic Minority Over-sampling TEchnique) % an oversampling technique for imbalanced data sets, with two classes. % The algorithm generates a synthetic sample as a point along the line % between each minority sample and one random point selected of their % K-NN in the same class. % % Input: % X is a matrix with features (columns). % d is the ideal classification for X. % smote_rate is the rate of the synthetic samples to be created for % the minority class. A value of 1.0 means that 100% of the data in % the minority class will be generated. % k is the number of neighbours to use % % Output: % New_X is the new feature matrix augmented with the synthetic samples % New_d is the new ideal classification for New_X. % % For more details on the theoretical description of the algorithm % please refer to the following paper: % Chawla, N. V. et al (2002). SMOTE: synthetic minority over-sampling % technique in J. Arti?cial Intell. Res., vol. 16, n.o 1, pp. 321?357 % % This implementation use the nearestneighbour provided by Richard % Brown,available on: % http://www.mathworks.com/matlabcentral/fileexchange/38830-smote-synthe % tic-minority-over-sampling-technique % % C. Mera, UNAL, 2013 function [New_X, New_d] = Bds_smote(X, d, smote_rate, k) if (nargin < 3) smote_rate = 1.0; k = 5; elseif (nargin < 4) k = 5; end if (smote_rate > 0) % POS_DAT = candidate points of the minority class (labeled 1) POS_DAT = X(d == 1,:); POS_DAT = POS_DAT'; pos_size = size(POS_DAT, 2); % Calculate the number N of synthetic data examples that need % to be generated for the minority class N = round(pos_size * smote_rate); % If the rate es less than 1, only a random sample of the minority % class is used if (smote_rate < 1) RND_IDX = randsample(pos_size, N); POS_DAT = POS_DAT(:,RND_IDX); pos_size = size(POS_DAT, 2); end % Finding the k nearest neighbours the positive points I = nearestneighbour(POS_DAT, POS_DAT, 'NumberOfNeighbours', k+1); I = I'; [r, c] = size(I); Xn = ones(N,1); XX = zeros(size(POS_DAT,1), N); j = 1; % If the rate is a multiple of 1 while (N >= pos_size) for i = 1:r index = I(i,randi(k)+1); alpha = rand; new_P = (1-alpha).*POS_DAT(:,i) + alpha.*(POS_DAT(:,index)); XX(:,j) = new_P; N = N-1; j = j+1; end end % The remaning N synthetic samples to be created while (N > 0) i = randi(r); index = I(i, randi(k)+1); alpha = rand; new_P = (1-alpha).*POS_DAT(:,i) + alpha.*(POS_DAT(:,index)); XX(:,j) = new_P; N = N-1; j = j+1; end New_X = [X; XX']; New_d = [d; Xn]; else New_X = X; New_d = d; end end
github
domingomery/Balu-master
Bds_ixstratify.m
.m
Balu-master/DataSelectionAndGeneration/Bds_ixstratify.m
762
utf_8
6d0584ad85f7d3d3b0727f47cc3cb6e6
% [i1,i2] = Bds_ixstratify(d,s) % % Toolbox: Balu % % Data Stratification (without replacement) % % input: (d,s) ideal classification and portion % Bds_sixtratify takes randomily a portion s (s between 0 and 1) of each class % from d to build indices i1. The indices of not used samples are stored in i2. % % D.Mery, PUC-DCC, 2013 % http://dmery.ing.puc.cl function [i1,i2] = Bds_ixstratify(d,s) dmin = int8(min(d)); dmax = int8(max(d)); i1 = []; i2 = []; for k=dmin:dmax ik = find(d==k); dk = d(ik); nk = length(dk); rk = rand(nk,1); [i,j] = sort(rk); sk = ceil(s*nk); if (sk>0) i1 = [i1; ik(j(1:sk))]; end if (sk<nk) i2 = [i2; ik(j(sk+1:nk))]; end end
github
domingomery/Balu-master
Bds_nostratify.m
.m
Balu-master/DataSelectionAndGeneration/Bds_nostratify.m
751
utf_8
594a7e2dc975c4df569b271f69f10e3e
% [X1,d1,X2,d2] = Bds_nostratify(X,d,s) % % Toolbox: Balu % % Data Sampling without Stratification (without replacement) % % input: (X,d) means features and ideal classification % Bnostratify takes randomily a portion s (s between 0 and 1) of the % whole that without considering the portion of each class % from (X,d) to build (X1,d1). The samples not used in (X1,d1) are % stored in (X2,d2). % % D.Mery, PUC-DCC, 2010 % http://dmery.ing.puc.cl function [X1,d1,X2,d2] = Bds_nostratify(X,d,s) N = size(X,1); rn = rand(N,1); [i,j] = sort(rn); Xr = X(j,:); dr = d(j); r = fix(s*N); R = [1 r;r+1 N]; X1 = Xr(R(1,1):R(1,2),:); d1 = dr(R(1,1):R(1,2),:); X2 = Xr(R(2,1):R(2,2),:); d2 = dr(R(2,1):R(2,2),:);
github
domingomery/Balu-master
Bds_gaussgen.m
.m
Balu-master/DataSelectionAndGeneration/Bds_gaussgen.m
1,006
utf_8
8e1c348d753a5b1efba901c7fe3342de
% [X,d] = Bds_gaussgen(m,s,n) % % Toolbox: Balu % % Gaussian Random Sample Generator. % m matrix qxp. m(i,j) is mean of class i for feature j % s matrix qxp. s(i,j) is std of class i for feature j % n vector qx1. n(i) is number of samples of class i % % Example for two classes and two features: % [X,d] = Bds_gaussgen([10 1;1 10],4*ones(2,2),500*ones(2,1)); % Bio_plotfeatures(X,d) % % Example for three classes and two features: % [X,d] = Bds_gaussgen([2 1;1 2;2 2],ones(3,2)/4,500*ones(3,1)); % Bio_plotfeatures(X,d) % % (c) GRIMA-DCCUC, 2011 % http://grima.ing.puc.cl % function [X,d] = Bds_gaussgen(m,s,n) q = length(n); % number of classes p = size(m,2); % number of features N = sum(n); % number of samples X = zeros(N,p); d = zeros(N,1); t = 1; for i=1:q d(t:t+n(i)-1) = i; x = zeros(n(i),p); for j=1:p x(:,j) = s(i,j)*randn(n(i),1)+m(i,j); end X(t:t+n(i)-1,:) = x; t = t+n(i); end
github
domingomery/Balu-master
Bds_stratify.m
.m
Balu-master/DataSelectionAndGeneration/Bds_stratify.m
1,153
utf_8
13a9e28e3d401b191bafc0d99cea105a
% [X1,d1,X2,d2] = Bds_stratify(X,d,s) % % Toolbox: Balu % % Data Stratification (without replacement) % % input: (X,d) means features and ideal classification % Bds_stratify takes randomily a portion s (s between 0 and 1) of each class % from (X,d) to build (X1,d1). The samples not used in (X1,d1) are % stored in (X2,d2). % % D.Mery, PUC-DCC, 2010 % http://dmery.ing.puc.cl function [X1,d1,X2,d2,i1,i2] = Bds_stratify(X,d,s) [i1,i2] = Bds_ixstratify(d,s); X1 = X(i1,:); d1 = d(i1); X2 = X(i2,:); d2 = d(i2); % dmin = int8(min(d)); % dmax = int8(max(d)); % % % X1 = []; % d1 = []; % X2 = []; % d2 = []; % i1 = []; % i2 = []; % % for k=dmin:dmax % ik = find(d==k); % Xk = X(ik,:); % dk = d(ik); % nk = length(dk); % rk = rand(nk,1); % [i,j] = sort(rk); % sk = ceil(s*nk); % if (sk>0) % X1 = [X1; Xk(j(1:sk),:)]; % d1 = [d1; dk(j(1:sk))]; % i1 = [ii; ik(j(1:sk))]; % end % if (sk<nk) % X2 = [X2; Xk(j(sk+1:nk),:)]; % d2 = [d2; dk(j(sk+1:nk))]; % i2 = [i2; ik(j(sk+1:nk))]; % end % end
github
domingomery/Balu-master
Bds_Adasyn.m
.m
Balu-master/DataSelectionAndGeneration/Bds_Adasyn.m
3,853
utf_8
de570389b3084e03d40846ad0a8c19a3
% [New_X, New_d] = Bds_Adasyn(X, d, smote_rate, k) % % Toolbox: Balu % % OVER-SAMPLING method, where the label for the majority class is 0 % and the label for the minority class is 1. % % This function implements ADASYN (Adaptive Synthetic Sampling Approach) % for Imbalanced Learning. Its main idea is to generate minority class % examples adaptively according to their distributions, where more % synthetic data is created for "difficult" ones than "easy" ones. % % Input: % X is a matrix with features (columns). % d is the ideal classification for X {0, 1} where 1 is the % minority class. % smote_rate is the rate of the synthetic samples to be created for % the minority class. A value of 1.0 means that 100% of the data in % the minority class will be generated % k is the number of neighbours to use % % Output: % New_X is the new feature matrix augmented with the synthetic samples % New_d is the new ideal classification for New_X. % % For more details on the theoretical description of the algorithm % please refer to the following paper: % HE, H. et al (2008). ADASYN: Adaptive synthetic sampling approach for % imbalanced learning in IEEE International Joint Conference on NN, 2008 % % This implementation use the nearestneighbour provided by Richard Brown % and available on: % http://www.mathworks.com/matlabcentral/fileexchange/38830-smote-synthe % tic-minority-over-sampling-technique % C. Mera, UNAL, 2013 function [new_X, new_d] = Bds_Adasyn(X, d, smote_rate, k) if (nargin < 3) smote_rate = 1.0; k = 5; elseif (nargin < 4) k = 5; end if (smote_rate > 0) % Points of the majority class (labeled 0) NEG_DAT = X(d == 0,:); NEG_DAT = NEG_DAT'; % Points of the minority class (labeled 1) POS_DAT = X(d == 1,:); POS_DAT = POS_DAT'; neg_size = size(NEG_DAT, 2); pos_size = size(POS_DAT, 2); if (pos_size < neg_size) % Calculate the number N of synthetic data examples that need % to be generated for the minority class N = round(pos_size * smote_rate); % Finding the k nearest neighbours of all the positive samples I = nearestneighbour(POS_DAT, X', 'NumberOfNeighbours', k+1); I = I'; % Calculate the ratio r_i R = sum(d(I(:,2:end))==0, 2); R = R/k; % Normalize r_i R = R/sum(R); % Calculate the number of synthetic data examples that need to be % generated for each minority example G = round(R*N); % Coorrect N by the effect of the round function N = sum(G(:,1)); XX = zeros(size(POS_DAT,1), N); aux = 0; for i=1:pos_size if (G(i) >= 1) I2 = nearestneighbour(POS_DAT(:,i), POS_DAT, 'NumberOfNeighbours', k+1); for j=1:G(i) index = I2(1,randi(k)+1); aux = aux + 1; alpha = rand; new_P = (1-alpha).*POS_DAT(:,i) + alpha.*(POS_DAT(:,index)); XX(:,aux) = new_P; end end end %Delete No-Generated samples if (aux < N) XX(:,aux+1:end)=[]; N = aux; end new_X = [X; XX']; new_d = [d; ones(N,1)]; else new_X = X; new_d = d; end else new_X = X; new_d = d; end end
github
domingomery/Balu-master
Bds_CNNRule.m
.m
Balu-master/DataSelectionAndGeneration/Bds_CNNRule.m
1,848
utf_8
d42d82252bd1f1e3782d2aeb2dda5edb
% [New_X, New_d] = Bds_CNNRule(X, d) % % Toolbox: Balu % % UNDER-SAMPLING method, where the label for the majority class is 0 % and the label for the minority class is 1. % % This function implements the Condensed Nearest Neighbor Rule (CNN) to % undersampling the majority class (labeled 0). CNN Rule aims to ?nd % examples far from decision boundaries. The idea is to ?nd a consistent % data subset Z ? X, where all the examples in X can be classi?ed % correctly by using 1-NN in Z. % % Input: % X is a matrix with features (columns). % d is the ideal classification for X. % % Output: % New_X is the new feature matrix with less elements that X. % New_d is the new ideal classification for New_X. % % For more details on the theoretical description of the original % algorithm please refer to the following paper: % P. E. Hart (1968). The Condensed Nearest Neighbor Rule. % IEEE Transactions on Information Theory IT-14 (1968), 515-516 % % C. Mera, UNAL, 2013 function [new_X, new_d] = Bds_CNNRule(X, d) % Points of the majority class (labeled 0) NEG_DAT = X(d == 0,:); neg_size = size(NEG_DAT, 1); % Points of the minority class (labeled 1) POS_DAT = X(d == 1,:); pos_size = size(POS_DAT, 1); % Select one data sample at random from the majority class x = randi(neg_size); % Create Z as all positive samples and one randomly selected negative example Z = [POS_DAT;NEG_DAT(x,:)]; dz = ones(pos_size+1,1); dz(end) = 0; % Classify X with the 1-NN rule using the examples in Z op.k = 1; op = Bcl_knn(Z,dz,op); ds = Bcl_knn(X,op); INDX = d~=ds; Z = [Z; X(INDX,:)]; new_X = Z; new_d = [dz; d(INDX)]; end
github
domingomery/Balu-master
Bds_BorderSMOTE.m
.m
Balu-master/DataSelectionAndGeneration/Bds_BorderSMOTE.m
3,549
utf_8
408e7ed9368e3c291ab9fed6c7473698
% [New_X, New_d] = Bds_BorderSMOTE(X, d, smote_rate, k) % % Toolbox: Balu % % OVER-SAMPLING method, where the label for the majority class is 0 % and the label for the minority class is 1. % % This function implements Borderline-SMOTE an oversampling method for % imbalanced data sets with two classes. Borderline-SMOTE is a % modification of SMOTE. It Only use borderline examples to generate new % data by applying SMOTE. % % Input: % X is a matrix with features (columns). % d is the ideal classification for X. % smote_rate is the rate of the synthetic samples to be created for % the minority class. A value of 1.0 means that 100% of the data in % the minority class will be generated % k is the number of neighbours to use % % Output: % New_X is the new feature matrix augmented with the synthetic samples % New_d is the new ideal classification for New_X. % % For more details on the theoretical description of the algorithm % please refer to the following paper: % Han, H. et al (2005). Borderline-SMOTE: A New Over-Sampling Method % in Imbalanced Data Sets Learning. Advances in Intelligent Computing, % Vol. 3644, pp 878-887, Springer. % % This implementation use the nearestneighbour provided by Richard Brown % and available on: % http://www.mathworks.com/matlabcentral/fileexchange/38830-smote-synthe % tic-minority-over-sampling-technique % % % C. Mera, UNAL, 2013 function [New_X, New_d] = Bds_BorderSMOTE(X, d, smote_rate, k) if (nargin < 3) smote_rate = 1.0; k = 5; elseif (nargin < 4) k = 5; end if (smote_rate > 0) % POS_DAT = candidate points of the minority class (labeled 1) POS_DAT = X(d == 1,:); POS_DAT = POS_DAT'; pos_size = size(POS_DAT, 2); % Calculate the number N of synthetic data examples that need % to be generated for the minority class N = round(pos_size * smote_rate); % If the rate es less than 1, only a random sample of the minority % class is used if (smote_rate < 1) RND_IDX = randsample(pos_size, N); POS_DAT = POS_DAT(:,RND_IDX); smote_rate = 1; end % Finding the k nearest neighbours the positive points I = nearestneighbour(POS_DAT, X', 'NumberOfNeighbours', k+1); I = I'; [r, c] = size(I); Xn = ones(N,1); XX = zeros(size(POS_DAT,1), N); j = 1; % If the rate is a multiple of 100 while (N > 0) for i=1:r Z = I(i,2:k+1); m = sum(d(Z,:)==0); if (m < k && m >= (k/2)) I2 = nearestneighbour(POS_DAT(:,i), POS_DAT, 'NumberOfNeighbours', k+1); for w=1:floor(smote_rate) index = I2(1,randi(k)+1); alpha = rand; new_P = (1-alpha).*POS_DAT(:,i) + alpha.*(POS_DAT(:,index)); XX(:,j) = new_P; N = N-1; j = j+1; if (N <= 0); break; end end end if (N <= 0); break; end end end New_X = [X; XX']; New_d = [d; Xn]; else New_X = X; New_d = d; end end
github
domingomery/Balu-master
Bct_neighbor.m
.m
Balu-master/Clustering/Bct_neighbor.m
1,101
utf_8
db714d4f192e31b5f83d55db1f721304
% function [ds,Xc] = Bct_neighbor(X,th) % % Toolbox: Balu % % Neigbor clustering: iterative method, a sample will be added to a % cluster if its distance to the mass center of the cluster is less than % th, else it will be create a new cluster. % % X matrix of samples % th minimal distance % ds assigned class number % Xc mass center of each cluster % % Example: % [X,d] = Bds_gaussgen([10 1;1 10],1*ones(2,2),100*ones(2,1)); % figure(1) % Bio_plotfeatures(X,d); % ds = Bct_neighbor(X,4); % figure(2) % Bio_plotfeatures(X,ds); % % (c) D.Mery, PUC-DCC, 2011 % http://dmery.ing.puc.cl function [ds,Xc] = Bct_neighbor(X,th) m = size(X,2); N = size(X,1); ds = zeros(N,1); c = 1; ds(1) = c; while(sum(ds>0)<N) i0 = find(ds==0); X0 = X(i0,:); n0 = length(i0); Xc = ones(n0,1)*mean(X(ds==c,:),1); Xd = Xc-X0; M2 = sqrt(sum(Xd.*Xd,2)); i2 = find(M2<th); if ~isempty(i2) ds(i0(i2)) = c; else c = c+1; ds(i0(1))=c; end end Xc = zeros(c,m); for i=1:c Xc(i,:) = mean(X(ds==i,:),1); end
github
domingomery/Balu-master
Bct_spectralct.m
.m
Balu-master/Clustering/Bct_spectralct.m
1,340
utf_8
19a41f7ffb07e8394f853b07224832a2
% [idx eigvec eigval] = Bct_spectralct(W, k) % % Toolbox: Balu % Spectral clustering % % idx -- cluster indexes (same as Matlab k-means). % eigvec -- eigenvectors. % eigval -- eigenvalues. % % W -- weighted adjacency matrix. % k -- number of clusters. % % Example: % load spectraldata % d = ones(size(X,1),1); % figure % Bio_plotfeatures(X,d) % G = Bct_knngraph2d(X, 50); % beta = 1/0.5^2; % [ni nj] = find(G == true); % W = zeros(size(G)); % W(G == true) = exp(-beta*(sum((X(ni,:) - X(nj,:)).^2,2))); % ds = Bct_spectralct(W, 3); % figure % Bio_plotfeatures(X,ds) % % % See also Bcl_qda. % % (c) GRIMA-DCCUC, 2011: Cristobal Moenne % http://grima.ing.puc.cl function [idx eigvec eigval] = Bct_spectralct(W, k) [eigval eigvec] = eigsmatrix(W, k); space = eigvec(:,1:k); for ni=1:size(space, 1) space(ni,:) = space(ni,:)./norm(space(ni,:)); end idx = kmeans(space, k, 'replicates', 5, 'emptyaction', 'singleton'); end function [eigval eigvec] = eigsmatrix(W, k) D = diag(sum(W)); [eigvec eigval] = eigs(D\W, k); eigval = real(diag(eigval)); [dummy index] = sort(eigval, 'descend'); eigval = eigval(index); eigvec = eigvec(:,index); end
github
domingomery/Balu-master
Bct_kmeans.m
.m
Balu-master/Clustering/Bct_kmeans.m
1,908
utf_8
731948205dde97c0de06209f88d8605a
% function [ds,C] = Bct_kmeans(X,k,show) % % Toolbox: Balu % % k-means clustering % X matrix of samples % k number of clusters % ds assigned class number % C centroids of each cluster % show = 1 display intermediate results % show = 0 uses kmeans algortithm of vlfeat (if installed else algorithm % of matlab). % % Example: % [X,d] = Bds_gaussgen([10 1;1 10;15 15],4*ones(3,3),100*ones(3,1)); % figure(1) % Bio_plotfeatures(X,d); % ds = Bct_kmeans(X,3); % figure(2) % Bio_plotfeatures(X,ds); % % (c) D.Mery, PUC-DCC, 2011 % http://dmery.ing.puc.cl function [ds,C] = Bct_kmeans(X,k,show) if not(exist('show','var')) show = 0; end X = double(X); if show==0 if ~exist('vl_kmeans','file') [ds,C] = kmeans(X,k); else % [ds,C] = vl_kmeans(X,k); [C,ds] = vl_kmeans(X',k); ds = ds'; C = C'; end else fprintf('Computing K-means clustering for %d clusters and %dx%d data...\n',k,size(X,1),size(X,2)); [N,P] = size(X); d = fix(k*0.999*rand(N,1)+1); ok = 0; C = zeros(k,P); while not(ok) Dk = Inf*ones(N,k); for i=1:k ii = find(d==i); if isempty(ii) mi = rand(1,P); else mi = mean(X(ii,:),1); end D = X-ones(N,1)*mi; D2 = D.*D; Dk(:,i) = sum(D2,2); C(i,:) = mi; end [i,j] = min(Dk,[],2); ds = j; e = norm(d-ds); d = ds; if e<1 ok = 1; end if show if P<=3 clf Bio_plotfeatures(X,ds) else clf Bio_plotfeatures(X(:,1:3),ds) end pause(1) end end end
github
domingomery/Balu-master
Bct_neighbor2D.m
.m
Balu-master/Clustering/Bct_neighbor2D.m
1,598
utf_8
38bbb4bf29df45f9bb0c50453e1835a7
% function [ds,Xc] = Bct_neighbor(X,th) % % Toolbox: Balu % % Neigbor clustering: iterative method, a sample will be added to a % cluster if its distance to the mass center of the cluster is less than % th, else it will be create a new cluster. % % X matrix of samples % th minimal distance % ds assigned class number % Xc mass center of each cluster % % Example: % [X,d] = Bds_gaussgen([10 1;1 10],1*ones(2,2),100*ones(2,1)); % figure(1) % Bio_plotfeatures(X,d); % ds = Bct_neighbor(X,4); % figure(2) % Bio_plotfeatures(X,ds); % % (c) D.Mery, PUC-DCC, 2011 % http://dmery.ing.puc.cl function [ds,Xc] = Bct_neighbor2D(X,th) m = size(X,1); nimg = size(X,2); N = size(X,3); ds = zeros(N,1); c = 1; ds(1) = c; while(sum(ds>0)<N) i0 = find(ds==0); X0 = X(:,:,i0); n0 = length(i0); Xc = zeros(m,nimg,n0); for k=1:n0 Xc(:,:,k) = mean(X0(:,:,k),2)*ones(1,nimg); end Xd = Xc-X0; M2 = sqrt(sum(Xd.*Xd,1)); t = mean(M2,2); i2 = find(t<th); if ~isempty(i2) ds(i0(i2)) = c; else c = c+1; ds(i0(1))=c; end end Xc = zeros(m,nimg,c); for i=1:c Xi = X(:,:,ds==i); ni = sum(ds==i); T = zeros(nimg,ni); T(:) = sum(Xi,1); T = T'; for p=1:m for q=1:nimg s = 0; nr = 0; for r=1:ni if T(r,q)>0 s = s + Xi(p,q,r); nr = nr+1; end end if nr>0 Xc(p,q,i) = s/nr; end end end end
github
domingomery/Balu-master
Bct_medoidshift.m
.m
Balu-master/Clustering/Bct_medoidshift.m
1,027
utf_8
0d29036ecc03408541afde75b95011e2
% function [ds,map] = Bct_medoidshift(X, sigma, k) % % Toolbox: Balu % % Medoidshift clustering % X matrix of samples. % sigma: standard deviation of the Gaussian Parzen window. % map is the map of the tree. % ds assigned class number. % k number of clusters. % map are the reduced coordinates. % % Implementation based on: % Vedaldi,A; Stefano, S. (2008): Quick Shift and Kernel Methods for % Mode Seeking, ECCV2008. % % Example: % [X,d] = Bds_gaussgen([10 1;1 10;15 15],4*ones(3,3),100*ones(3,1)); % figure(1) % Bio_plotfeatures(X,d); % ds = Bct_medoidshift(X,2,3); % figure(2) % Bio_plotfeatures(X,ds); % % (c) D.Mery, PUC-DCC, 2010 % http://dmery.ing.puc.cl function [ds,map] = Bct_medoidshift(X, sigma, k) G = X'; [d,N] = size(G) ; oN = ones(N,1) ; od = ones(d,1) ; n = (G'.*G')*od ; D = n*oN' + oN*n' - 2*(G'*G) ; F = - exp(- .5 * D' / sigma^2) ; Q = n * (oN'*F) - 2 * G' * (G*F) ; [drop,map] = max(Q) ; map = map'; ds = Bct_kmeans(map,k);
github
domingomery/Balu-master
Bct_meanshift.m
.m
Balu-master/Clustering/Bct_meanshift.m
1,376
utf_8
157a796adf09812bddd41af3e7d191a4
% function [ds,Z] = Bct_meanshift(X, sigma) % % Toolbox: Balu % % Meanshift clustering % X matrix of samples % sigma: standard deviation of the Gaussian Parzen window % ds assigned class number. % Z are the reduced coordinates. % % Implementation based on: % Vedaldi,A; Stefano, S. (2008): Quick Shift and Kernel Methods for % Mode Seeking, ECCV2008. % % Example: % [X,d] = Bds_gaussgen([10 1;1 10;15 15],4*ones(3,3),100*ones(3,1)); % figure(1) % Bio_plotfeatures(X,d); % ds = Bct_meanshift(X,2); % figure(2) % Bio_plotfeatures(X,ds); % % (c) D.Mery, PUC-DCC, 2010 % http://dmery.ing.puc.cl function [ds,Z] = Bct_meanshift(X, sigma) G = X'; [d,N] = size(G) ; oN = ones(N,1) ; od = ones(d,1) ; n = (G'.*G')*od ; Z = G ; T = 100 ; for t=1:T m = (Z'.*Z')*od ; D = m*oN' + oN*n' - 2*(Z'*G) ; F = - exp(- .5 * D' / sigma^2) ; Y = F ./ (oN * (oN'*F)) ; Z = G*Y ; end Z = Z'; ds = zeros(N,1); ds(1)=1; ms = Z(1,:); ns = 1; r = 1; s = sigma*2; for i=2:N mi = Z(i,:); D = ms-ones(r,1)*mi; D2 = D.*D; Dk = sum(D2,2); [ii,jj] = min(Dk'); if ii<s ds(i) = jj(1); ms(jj,:) = ms(jj,:)*ns(jj)+mi; ns(jj)=ns(jj)+1; ms(jj,:) = ms(jj,:)/ns(jj); else r = r+1; ms = [ms;mi]; ns = [ns;1]; ds(i)=r; end end
github
domingomery/Balu-master
Bio_printfeatures.m
.m
Balu-master/InputOutput/Bio_printfeatures.m
1,758
utf_8
fa30eae8aa7a4319e561efd2b7e19a4b
% Bprintfeatures(X,Xn) % for features with feature names % Bprintfeatures(X) % for feature values only % % Toolbox: Balu % Display extracted features. % Xn: feature names (matrix mxp, one row per each string of p % characters) % X: feature values (vector 1xm for m features) % Xu: feature units (matrix mxq, one row per each string of q % characters) % % These variables are the outputs of Bgeofeatures or Bintfeatures. % % The output of Bprintfeatures is like this: % % 1 center of grav i [pixels] 163.297106 % 2 center of grav j [pixels] 179.841850 % 3 Height [pixels] 194.000000 % 4 Width [pixels] 196.000000 % 5 Area [pixels] 29361.375000 % : : : : % % Example 1: Display of standard geometric features of testimg1.jpg % I = imread('testimg1.jpg'); % input image % R = Bsegbalu(I); % segmentation % [X,Xn,Xu] = Bfg_standard(R); % standard geometric features % Bprintfeatures(X,Xn,Xu) % % Example 2: Display of first 5 samples of datagauss.mat % load datagauss % Xn = ['[length]';'[weigh] ']; % Xu = ['cm';'kg']; % for i=1:5 % fprintf('Sample %d:\n',i); % Bprintfeatures(X(i,:),Xn,Xu) % Benterpause % end % % % See also Bplotfeatures. % % (c) D.Mery, PUC-DCC, 2010 % http://dmery.ing.puc.cl function Bprintfeatures(X,Xn) N = length(X); if ~exist('Xn','var') Xn = char(zeros(N,16)); end for k=1:size(Xn,1) fprintf('%3d %s %f\n',k,Xn(k,:),X(k)); end
github
domingomery/Balu-master
Bio_labelimage.m
.m
Balu-master/InputOutput/Bio_labelimage.m
312
utf_8
6f25dff925685ad79454ad4d48cbb1e1
% (c) D.Mery, PUC-DCC, 2011 % http://dmery.ing.puc.cl function d = Bio_labelimage(f) d = zeros(f.imgmax-f.imgmin+1,1); for i=f.imgmin:f.imgmax [I,st] = Bio_loadimg(f,i); imshow(I(:,:,1),[]) fprintf('\n--- processing image %s...\n',st); d(i-f.imgmin+1,1) = input('Label for this image? '); end
github
domingomery/Balu-master
Bio_copyfiles.m
.m
Balu-master/InputOutput/Bio_copyfiles.m
674
utf_8
144400f6ca2023cf5376ddcd39c35c0b
% Bio_copyfiles(prefix1,prefix2) % % Toolbox: Balu % Copy files prefix1* to prefix2*. % % This program convert all files starting with prefix1 to new files with % prefix2. % % Example: % Bio_copyfiles('images','img') % converts all files 'images' to 'img' % % (c) GRIMA-DCCUC, 2011 % http://grima.ing.puc.cl function Bio_copyfiles(prefix1,prefix2) d1 = dir([prefix1 '*']); t1 = length(prefix1); n = length(d1); if n>0 fprintf('copying %d files...\n',n) if ispc fcp = '!copy '; else fcp = '!cp '; end for i=1:n f1 = d1(i).name; f2 = [prefix2 f1(t1+1:end)]; eval([fcp f1 ' ' f2]); end end
github
domingomery/Balu-master
Bio_statusbar.m
.m
Balu-master/InputOutput/Bio_statusbar.m
7,905
utf_8
dab9d1909a18344b0a96efd07da39d40
%Display a status/progress bar and inform about the elapsed %as well as the remaining time (linear estimation). % %Synopsis: % % f = Bio_statusbar % Get all status/progress bar handles. % % f = Bio_statusbar(title) % Create a new status/progress bar. If title is an empty % string, the default 'Progress ...' will be used. % % f = Bio_statusbar(title,f) % Reset an existing status/progress bar or create a new % if the handle became invalid. % % f = Bio_statusbar(done,f) % For 0 < done < 1, update the progress bar and the elap- % sed time. Estimate the remaining time until completion. % On user abort, return an empty handle. % % v = Bio_statusbar('on') % v = Bio_statusbar('off') % Set default visibility for new statusbars and return % the previous setting. % % v = Bio_statusbar('on',f) % v = Bio_statusbar('off',f) % Show or hide an existing statusbar and return the last % visibility setting. % % delete(Bio_statusbar) % Remove all status/progress bars. % % drawnow % Refresh all GUI windows. % % Example: % f=Bio_statusbar('Wait some seconds ...'); % for p=0:0.01:1 % pause(0.2); % if isempty(Bio_statusbar(p,f)) % break; % end % end % if ishandle(f) % delete(f); % end % % Copyright (c) 2004, Marcel Leutenegger % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % * Neither the name of the Ecole Polytechnique F??d??rale de Lausanne, % Laboratoire d'Optique Biom??dicale nor the names % of its contributors may be used to endorse or promote products derived % from this software without specific prior written permission. % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. function f=Bio_statusbar(p,f) persistent visible; %vr2014b = strcmp(version('-release'),'2014b'); vr_new = versionyear()>=2014; if nargin < nargout % get handles o='ShowHiddenHandles'; t=get(0,o); set(0,o,'on'); f=findobj(get(0,'Children'),'flat','Tag','StatusBar'); set(0,o,t); return; end curtime=86400*now; if vr_new tt = nargin == 2 && isa(check(f),'matlab.ui.Figure'); else tt = nargin == 2 && check(f); end if nargin & ischar(p) if isequal(p,'on') | isequal(p,'off') if nargin == 2 if check(f) % show/hide v=get(f,'Visible'); set(f,'Visible',p); end else v=visible; visible=p; % default if ~strcmp(v,'off') v='on'; end end if nargout f=v; end else if nargin == 2 & check(f) % reset modify(f,'Line','XData',[4 4 4]); modify(f,'Rect','Position',[4 54 0.1 22]); modify(f,'Done','String','0'); modify(f,'Time','String','0:00:00'); modify(f,'Task','String','0:00:00'); else f=create(visible); % create end if p set(f,'Name',p); end set(f,'CloseRequestFcn','set(gcbo,''UserData'',-abs(get(gcbo,''UserData'')));','UserData',[curtime curtime 0]); end drawnow; elseif tt % update t=get(f,'UserData'); if any(t < 0) % confirm if p >= 1 | isequal(questdlg({'Are you sure to stop the execution now?',''},'Abort requested','Stop','Resume','Resume'),'Stop') delete(f); f=[]; % interrupt return; end t=abs(t); set(f,'UserData',t); % continue end p=min(1,max([0 p])); % % Refresh display if % % 1. still computing % 2. computation just finished % or % more than a second passed since last refresh % or % more than 0.4% computed since last refresh % if any(t) & (p >= 1 | curtime-t(2) > 1 | p-t(3) > 0.004) set(f,'UserData',[t(1) curtime p]); t=round(curtime-t(1)); h=floor(t/60); modify(f,'Line','XData',[4 4+248*p 4+248*p]); modify(f,'Rect','Position',[4 54 max(0.1,248*p) 22]); modify(f,'Done','String',sprintf('%u',floor(p*100+0.5))); modify(f,'Time','String',sprintf('%u:%02u:%02u',[floor(h/60);mod(h,60);mod(t,60)])); if p > 0.05 | t > 60 t=ceil(t/p-t); if t < 1e7 h=floor(t/60); modify(f,'Task','String',sprintf('%u:%02u:%02u',[floor(h/60);mod(h,60);mod(t,60)])); end end if p == 1 set(f,'CloseRequestFcn','delete(gcbo);','UserData',[]); end drawnow; end end if ~nargout clear; end %Check if a given handle is a progress bar. % function f=check(f) %vr2014b = strcmp(version('-release'),'2014b'); if versionyear>=2014 if isa(f,'matlab.ui.Figure') && ishandle(f(1)) && isequal(get(f(1),'Tag'),'StatusBar') f=f(1); else f=[]; end else if f && ishandle(f(1)) && isequal(get(f(1),'Tag'),'StatusBar') f=f(1); else f=[]; end end %Create the progress bar. % function f=create(visible) if ~nargin | isempty(visible) visible='on'; end s=[256 80]; t=get(0,'ScreenSize'); f=figure('DoubleBuffer','on','HandleVisibility','off','MenuBar','none','Name','Progress ...','IntegerHandle','off','NumberTitle','off','Resize','off','Position',[floor((t(3:4)-s)/2) s],'Tag','StatusBar','ToolBar','none','Visible',visible); a.Parent=axes('Parent',f,'Position',[0 0 1 1],'Visible','off','XLim',[0 256],'YLim',[0 80]); % %Horizontal bar % rectangle('Position',[4 54 248 22],'EdgeColor','white','FaceColor',[0.6 0.6 0.6],a); line([4 4 252],[55 76 76],'Color',[0.5 0.5 0.5],a); rectangle('Position',[4 54 0.1 22],'EdgeColor','white','FaceColor',[0.1 0.3 1],'Tag','Rect',a); line([4 4 4],[54 54 77],'Color',[0.2 0.2 0.2],'Tag','Line',a); % %Description texts % a.FontWeight='bold'; a.Units='pixels'; a.VerticalAlignment='middle'; text(136,66,1,'%',a); text(16,36,'Elapsed time:',a); text(16,20,'Remaining:',a); text(190,36,'hh:mm:ss',a); text(190,20,'hh:mm:ss',a); % %Information texts % a.HorizontalAlignment='right'; text(136,66,1,'0',a,'Tag','Done'); text(178,36,'0:00:00',a,'Tag','Time'); text(178,20,'0:00:00',a,'Tag','Task'); %Modify an object property. % function modify(f,t,p,v) set(findobj(f,'Tag',t),p,v); function y = versionyear() st = version('-release'); y = str2num(st(1:4)); %#ok<ST2NM>
github
domingomery/Balu-master
Bio_showconfusion.m
.m
Balu-master/InputOutput/Bio_showconfusion.m
867
utf_8
dd4bbd143405a76194a42ac2a3a6e07c
%function Bio_showconfusion(C) % % Toolbox: Balu % Show confusion matrix C in a color 2D representation. % % % Example: % % % Simulation of a 10x10 confussion matrix % C = rand(10,10)+2*eye(10);C = C/max(C(:)); % % Bio_showconfusion(C) % (c) GRIMA-DCCUC, 2013 % http://grima.ing.puc.cl % function Bio_showconfusion(C) minC = min(C(:)); maxC = max(C(:)); [N,M] = size(C); if minC<0 error('There are negative values.'); end if maxC>100 error('Maximal value of C should be 100.') end if N~=M error('Matrix should be square.') end if maxC<=1 C = 100*C; end jet100 = imresize(jet,[100 3],'nearest'); clf; T = 256; imshow(imresize(round(C),[T T],'nearest'),jet100) axis off hold on sq = 256/N; for i=1:N y = T*i/N-sq/2; for j=1:N x = T*j/N-0.75*sq; text(x,y,num2str(round(C(i,j)))) end end colorbar