plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
virati/SGView-master
boundedline.m
.m
SGView-master/lib/boundedline/kakearney-boundedline-pkg-2112a2b/boundedline/boundedline.m
10,932
utf_8
cda0c1e3f0cd78568120d513ca9571f3
function varargout = boundedline(varargin) %BOUNDEDLINE Plot a line with shaded error/confidence bounds % % [hl, hp] = boundedline(x, y, b) % [hl, hp] = boundedline(x, y, b, linespec) % [hl, hp] = boundedline(x1, y1, b1, linespec1, x2, y2, b2, linespec2) % [hl, hp] = boundedline(..., 'alpha') % [hl, hp] = boundedline(..., ax) % [hl, hp] = boundedline(..., 'transparency', trans) % [hl, hp] = boundedline(..., 'orientation', orient) % [hl, hp] = boundedline(..., 'cmap', cmap) % % Input variables: % % x, y: x and y values, either vectors of the same length, matrices % of the same size, or vector/matrix pair where the row or % column size of the array matches the length of the vector % (same requirements as for plot function). % % b: npoint x nside x nline array. Distance from line to % boundary, for each point along the line (dimension 1), for % each side of the line (lower/upper or left/right, depending % on orientation) (dimension 2), and for each plotted line % described by the preceding x-y values (dimension 3). If % size(b,1) == 1, the bounds will be the same for all points % along the line. If size(b,2) == 1, the bounds will be % symmetrical on both sides of the lines. If size(b,3) == 1, % the same bounds will be applied to all lines described by % the preceding x-y arrays (only applicable when either x or % y is an array). Bounds cannot include Inf, -Inf, or NaN, % % linespec: line specification that determines line type, marker % symbol, and color of the plotted lines for the preceding % x-y values. % % 'alpha': if included, the bounded area will be rendered with a % partially-transparent patch the same color as the % corresponding line(s). If not included, the bounded area % will be an opaque patch with a lighter shade of the % corresponding line color. % % ax: handle of axis where lines will be plotted. If not % included, the current axis will be used. % % transp: Scalar between 0 and 1 indicating with the transparency or % intensity of color of the bounded area patch. Default is % 0.2. % % orient: 'vert': add bounds in vertical (y) direction (default) % 'horiz': add bounds in horizontal (x) direction % % cmap: n x 3 colormap array. If included, lines will be colored % (in order of plotting) according to this colormap, % overriding any linespec or default colors. % % Output variables: % % hl: handles to line objects % % hp: handles to patch objects % % Example: % % x = linspace(0, 2*pi, 50); % y1 = sin(x); % y2 = cos(x); % e1 = rand(size(y1))*.5+.5; % e2 = [.25 .5]; % % ax(1) = subplot(2,2,1); % [l,p] = boundedline(x, y1, e1, '-b*', x, y2, e2, '--ro'); % outlinebounds(l,p); % title('Opaque bounds, with outline'); % % ax(2) = subplot(2,2,2); % boundedline(x, [y1;y2], rand(length(y1),2,2)*.5+.5, 'alpha'); % title('Transparent bounds'); % % ax(3) = subplot(2,2,3); % boundedline([y1;y2], x, e1(1), 'orientation', 'horiz') % title('Horizontal bounds'); % % ax(4) = subplot(2,2,4); % boundedline(x, repmat(y1, 4,1), permute(0.5:-0.1:0.2, [3 1 2]), ... % 'cmap', cool(4), 'transparency', 0.5); % title('Multiple bounds using colormap'); % Copyright 2010 Kelly Kearney %-------------------- % Parse input %-------------------- % Alpha flag isalpha = cellfun(@(x) ischar(x) && strcmp(x, 'alpha'), varargin); if any(isalpha) usealpha = true; varargin = varargin(~isalpha); else usealpha = false; end % Axis isax = cellfun(@(x) isscalar(x) && ishandle(x) && strcmp('axes', get(x,'type')), varargin); if any(isax) hax = varargin{isax}; varargin = varargin(~isax); else hax = gca; end % Transparency [found, trans, varargin] = parseparam(varargin, 'transparency'); if ~found trans = 0.2; end if ~isscalar(trans) || trans < 0 || trans > 1 error('Transparency must be scalar between 0 and 1'); end % Orientation [found, orient, varargin] = parseparam(varargin, 'orientation'); if ~found orient = 'vert'; end if strcmp(orient, 'vert') isvert = true; elseif strcmp(orient, 'horiz') isvert = false; else error('Orientation must be ''vert'' or ''horiz'''); end % Colormap [hascmap, cmap, varargin] = parseparam(varargin, 'cmap'); % X, Y, E triplets, and linespec [x,y,err,linespec] = deal(cell(0)); while ~isempty(varargin) if length(varargin) < 3 error('Unexpected input: should be x, y, bounds triplets'); end if all(cellfun(@isnumeric, varargin(1:3))) x = [x varargin(1)]; y = [y varargin(2)]; err = [err varargin(3)]; varargin(1:3) = []; else error('Unexpected input: should be x, y, bounds triplets'); end if ~isempty(varargin) && ischar(varargin{1}) linespec = [linespec varargin(1)]; varargin(1) = []; else linespec = [linespec {[]}]; end end %-------------------- % Reformat x and y % for line and patch % plotting %-------------------- % Calculate y values for bounding lines plotdata = cell(0,7); htemp = figure('visible', 'off'); for ix = 1:length(x) % Get full x, y, and linespec data for each line (easier to let plot % check for properly-sized x and y and expand values than to try to do % it myself) try if isempty(linespec{ix}) hltemp = plot(x{ix}, y{ix}); else hltemp = plot(x{ix}, y{ix}, linespec{ix}); end catch close(htemp); error('X and Y matrices and/or linespec not appropriate for line plot'); end linedata = get(hltemp, {'xdata', 'ydata', 'marker', 'linestyle', 'color'}); nline = size(linedata,1); % Expand bounds matrix if necessary if nline > 1 if ndims(err{ix}) == 3 err2 = squeeze(num2cell(err{ix},[1 2])); else err2 = repmat(err(ix),nline,1); end else err2 = err(ix); end % Figure out upper and lower bounds [lo, hi] = deal(cell(nline,1)); for iln = 1:nline x2 = linedata{iln,1}; y2 = linedata{iln,2}; nx = length(x2); if isvert lineval = y2; else lineval = x2; end sz = size(err2{iln}); if isequal(sz, [nx 2]) lo{iln} = lineval - err2{iln}(:,1)'; hi{iln} = lineval + err2{iln}(:,2)'; elseif isequal(sz, [nx 1]) lo{iln} = lineval - err2{iln}'; hi{iln} = lineval + err2{iln}'; elseif isequal(sz, [1 2]) lo{iln} = lineval - err2{iln}(1); hi{iln} = lineval + err2{iln}(2); elseif isequal(sz, [1 1]) lo{iln} = lineval - err2{iln}; hi{iln} = lineval + err2{iln}; elseif isequal(sz, [2 nx]) % not documented, but accepted anyways lo{iln} = lineval - err2{iln}(:,1); hi{iln} = lineval + err2{iln}(:,2); elseif isequal(sz, [1 nx]) % not documented, but accepted anyways lo{iln} = lineval - err2{iln}; hi{iln} = lineval + err2{iln}; elseif isequal(sz, [2 1]) % not documented, but accepted anyways lo{iln} = lineval - err2{iln}(1); hi{iln} = lineval + err2{iln}(2); else error('Error bounds must be npt x nside x nline array'); end end % Combine all data (xline, yline, marker, linestyle, color, lower bound % (x or y), upper bound (x or y) plotdata = [plotdata; linedata lo hi]; end close(htemp); % Override colormap if hascmap nd = size(plotdata,1); cmap = repmat(cmap, ceil(nd/size(cmap,1)), 1); cmap = cmap(1:nd,:); plotdata(:,5) = num2cell(cmap,2); end %-------------------- % Plot %-------------------- % Setup of x and y, plus line and patch properties nline = size(plotdata,1); [xl, yl, xp, yp, marker, lnsty, lncol, ptchcol, alpha] = deal(cell(nline,1)); for iln = 1:nline xl{iln} = plotdata{iln,1}; yl{iln} = plotdata{iln,2}; % if isvert % xp{iln} = [plotdata{iln,1} fliplr(plotdata{iln,1})]; % yp{iln} = [plotdata{iln,6} fliplr(plotdata{iln,7})]; % else % xp{iln} = [plotdata{iln,6} fliplr(plotdata{iln,7})]; % yp{iln} = [plotdata{iln,2} fliplr(plotdata{iln,2})]; % end [xp{iln}, yp{iln}] = calcpatch(plotdata{iln,1}, plotdata{iln,2}, isvert, plotdata{iln,6}, plotdata{iln,7}); marker{iln} = plotdata{iln,3}; lnsty{iln} = plotdata{iln,4}; if usealpha lncol{iln} = plotdata{iln,5}; ptchcol{iln} = plotdata{iln,5}; alpha{iln} = trans; else lncol{iln} = plotdata{iln,5}; ptchcol{iln} = interp1([0 1], [1 1 1; lncol{iln}], trans); alpha{iln} = 1; end end % Plot patches and lines if verLessThan('matlab', '8.4.0') [hp,hl] = deal(zeros(nline,1)); else [hp,hl] = deal(gobjects(nline,1)); end axes(hax); hold all; for iln = 1:nline hp(iln) = patch(xp{iln}, yp{iln}, ptchcol{iln}, 'facealpha', alpha{iln}, 'edgecolor', 'none'); end for iln = 1:nline hl(iln) = line(xl{iln}, yl{iln}, 'marker', marker{iln}, 'linestyle', lnsty{iln}, 'color', lncol{iln}); end %-------------------- % Assign output %-------------------- nargchk(0, 2, nargout); if nargout >= 1 varargout{1} = hl; end if nargout == 2 varargout{2} = hp; end %-------------------- % Parse optional % parameters %-------------------- function [found, val, vars] = parseparam(vars, param) isvar = cellfun(@(x) ischar(x) && strcmpi(x, param), vars); if sum(isvar) > 1 error('Parameters can only be passed once'); end if any(isvar) found = true; idx = find(isvar); val = vars{idx+1}; vars([idx idx+1]) = []; else found = false; val = []; end %---------------------------- % Calculate patch coordinates %---------------------------- function [xp, yp] = calcpatch(xl, yl, isvert, lo, hi) ismissing = any(isnan([xl;yl;lo;hi]),2); iseq = ~verLessThan('matlab', '8.4.0') && isequal(lo, hi); % deal with zero-width bug in R2014b/R2015a if isvert if iseq xp = [xl nan(size(xl))]; yp = [lo fliplr(hi)]; else xp = [xl fliplr(xl)]; yp = [lo fliplr(hi)]; end else if iseq xp = [lo fliplr(hi)]; yp = [yl nan(size(yl))]; else xp = [lo fliplr(hi)]; yp = [yl fliplr(yl)]; end end if any(ismissing) warning('boundedline:NaN', 'NaNs in bounds; inpainting'); xp = inpaint_nans(xp'); yp = inpaint_nans(yp'); end
github
virati/SGView-master
inpaint_nans.m
.m
SGView-master/lib/boundedline/old/inpaint_nans.m
12,719
utf_8
7407e1e4d4a09317af91014238711e07
function B=inpaint_nans(A,method) % inpaint_nans: in-paints over nans in an array % usage: B=inpaint_nans(A) % % solves approximation to one of several pdes to % interpolate and extrapolate holes % % arguments (input): % A - nxm array with some NaNs to be filled in % % method - (OPTIONAL) scalar numeric flag - specifies % which approach (or physical metaphor to use % for the interpolation.) All methods are capable % of extrapolation, some are better than others. % There are also speed differences, as well as % accuracy differences for smooth surfaces. % % methods {0,1,2} use a simple plate metaphor % methods {3} use a better plate equation, % but will be slower % methods 4 use a spring metaphor % % method == 0 --> (DEFAULT) see method 1, but % this method does not build as large of a % linear system in the case of only a few % NaNs in a large array. % Extrapolation behavior is linear. % % method == 1 --> simple approach, applies del^2 % over the entire array, then drops those parts % of the array which do not have any contact with % NaNs. Uses a least squares approach, but it % does not touch existing points. % In the case of small arrays, this method is % quite fast as it does very little extra work. % Extrapolation behavior is linear. % % method == 2 --> uses del^2, but solving a direct % linear system of equations for nan elements. % This method will be the fastest possible for % large systems since it uses the sparsest % possible system of equations. Not a least % squares approach, so it may be least robust % to noise on the boundaries of any holes. % This method will also be least able to % interpolate accurately for smooth surfaces. % Extrapolation behavior is linear. % % method == 3 --+ See method 0, but uses del^4 for % the interpolating operator. This may result % in more accurate interpolations, at some cost % in speed. % % method == 4 --+ Uses a spring metaphor. Assumes % springs (with a nominal length of zero) % connect each node with every neighbor % (horizontally, vertically and diagonally) % Since each node tries to be like its neighbors, % extrapolation is as a constant function where % this is consistent with the neighboring nodes. % % % arguments (output): % B - nxm array with NaNs replaced % I always need to know which elements are NaN, % and what size the array is for any method [n,m]=size(A); nm=n*m; k=isnan(A(:)); % list the nodes which are known, and which will % be interpolated nan_list=find(k); known_list=find(~k); % how many nans overall nan_count=length(nan_list); % convert NaN indices to (r,c) form % nan_list==find(k) are the unrolled (linear) indices % (row,column) form [nr,nc]=ind2sub([n,m],nan_list); % both forms of index in one array: % column 1 == unrolled index % column 2 == row index % column 3 == column index nan_list=[nan_list,nr,nc]; % supply default method if (nargin<2)|isempty(method) method = 0; elseif ~ismember(method,0:4) error 'If supplied, method must be one of: {0,1,2,3,4}.' end % for different methods switch method case 0 % The same as method == 1, except only work on those % elements which are NaN, or at least touch a NaN. % horizontal and vertical neighbors only talks_to = [-1 0;0 -1;1 0;0 1]; neighbors_list=identify_neighbors(n,m,nan_list,talks_to); % list of all nodes we have identified all_list=[nan_list;neighbors_list]; % generate sparse array with second partials on row % variable for each element in either list, but only % for those nodes which have a row index > 1 or < n L = find((all_list(:,2) > 1) & (all_list(:,2) < n)); nl=length(L); if nl>0 fda=sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-1 0 1],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); else fda=spalloc(n*m,n*m,size(all_list,1)*5); end % 2nd partials on column index L = find((all_list(:,3) > 1) & (all_list(:,3) < m)); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-n 0 n],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list(:,1)),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 1 % least squares approach with del^2. Build system % for every array element as an unknown, and then % eliminate those which are knowns. % Build sparse matrix approximating del^2 for % every element in A. % Compute finite difference for second partials % on row variable first [i,j]=ndgrid(2:(n-1),1:m); ind=i(:)+(j(:)-1)*n; np=(n-2)*m; fda=sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... repmat([1 -2 1],np,1),n*m,n*m); % now second partials on column variable [i,j]=ndgrid(1:n,2:(m-1)); ind=i(:)+(j(:)-1)*n; np=n*(m-2); fda=fda+sparse(repmat(ind,1,3),[ind-n,ind,ind+n], ... repmat([1 -2 1],np,1),nm,nm); % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 2 % Direct solve for del^2 BVP across holes % generate sparse array with second partials on row % variable for each nan element, only for those nodes % which have a row index > 1 or < n L = find((nan_list(:,2) > 1) & (nan_list(:,2) < n)); nl=length(L); if nl>0 fda=sparse(repmat(nan_list(L,1),1,3), ... repmat(nan_list(L,1),1,3)+repmat([-1 0 1],nl,1), ... repmat([1 -2 1],nl,1),n*m,n*m); else fda=spalloc(n*m,n*m,size(nan_list,1)*5); end % 2nd partials on column index L = find((nan_list(:,3) > 1) & (nan_list(:,3) < m)); nl=length(L); if nl>0 fda=fda+sparse(repmat(nan_list(L,1),1,3), ... repmat(nan_list(L,1),1,3)+repmat([-n 0 n],nl,1), ... repmat([1 -2 1],nl,1),n*m,n*m); end % fix boundary conditions at extreme corners % of the array in case there were nans there if ismember(1,nan_list(:,1)) fda(1,[1 2 n+1])=[-2 1 1]; end if ismember(n,nan_list(:,1)) fda(n,[n, n-1,n+n])=[-2 1 1]; end if ismember(nm-n+1,nan_list(:,1)) fda(nm-n+1,[nm-n+1,nm-n+2,nm-n])=[-2 1 1]; end if ismember(nm,nan_list(:,1)) fda(nm,[nm,nm-1,nm-n])=[-2 1 1]; end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); % and solve... B=A; k=nan_list(:,1); B(k)=fda(k,k)\rhs(k); case 3 % The same as method == 0, except uses del^4 as the % interpolating operator. % del^4 template of neighbors talks_to = [-2 0;-1 -1;-1 0;-1 1;0 -2;0 -1; ... 0 1;0 2;1 -1;1 0;1 1;2 0]; neighbors_list=identify_neighbors(n,m,nan_list,talks_to); % list of all nodes we have identified all_list=[nan_list;neighbors_list]; % generate sparse array with del^4, but only % for those nodes which have a row & column index % >= 3 or <= n-2 L = find( (all_list(:,2) >= 3) & ... (all_list(:,2) <= (n-2)) & ... (all_list(:,3) >= 3) & ... (all_list(:,3) <= (m-2))); nl=length(L); if nl>0 % do the entire template at once fda=sparse(repmat(all_list(L,1),1,13), ... repmat(all_list(L,1),1,13) + ... repmat([-2*n,-n-1,-n,-n+1,-2,-1,0,1,2,n-1,n,n+1,2*n],nl,1), ... repmat([1 2 -8 2 1 -8 20 -8 1 2 -8 2 1],nl,1),nm,nm); else fda=spalloc(n*m,n*m,size(all_list,1)*5); end % on the boundaries, reduce the order around the edges L = find((((all_list(:,2) == 2) | ... (all_list(:,2) == (n-1))) & ... (all_list(:,3) >= 2) & ... (all_list(:,3) <= (m-1))) | ... (((all_list(:,3) == 2) | ... (all_list(:,3) == (m-1))) & ... (all_list(:,2) >= 2) & ... (all_list(:,2) <= (n-1)))); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,5), ... repmat(all_list(L,1),1,5) + ... repmat([-n,-1,0,+1,n],nl,1), ... repmat([1 1 -4 1 1],nl,1),nm,nm); end L = find( ((all_list(:,2) == 1) | ... (all_list(:,2) == n)) & ... (all_list(:,3) >= 2) & ... (all_list(:,3) <= (m-1))); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3) + ... repmat([-n,0,n],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); end L = find( ((all_list(:,3) == 1) | ... (all_list(:,3) == m)) & ... (all_list(:,2) >= 2) & ... (all_list(:,2) <= (n-1))); nl=length(L); if nl>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3) + ... repmat([-1,0,1],nl,1), ... repmat([1 -2 1],nl,1),nm,nm); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list(:,1)),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 4 % Spring analogy % interpolating operator. % list of all springs between a node and a horizontal % or vertical neighbor hv_list=[-1 -1 0;1 1 0;-n 0 -1;n 0 1]; hv_springs=[]; for i=1:4 hvs=nan_list+repmat(hv_list(i,:),nan_count,1); k=(hvs(:,2)>=1) & (hvs(:,2)<=n) & (hvs(:,3)>=1) & (hvs(:,3)<=m); hv_springs=[hv_springs;[nan_list(k,1),hvs(k,1)]]; end % delete replicate springs hv_springs=unique(sort(hv_springs,2),'rows'); % build sparse matrix of connections, springs % connecting diagonal neighbors are weaker than % the horizontal and vertical springs nhv=size(hv_springs,1); springs=sparse(repmat((1:nhv)',1,2),hv_springs, ... repmat([1 -1],nhv,1),nhv,nm); % eliminate knowns rhs=-springs(:,known_list)*A(known_list); % and solve... B=A; B(nan_list(:,1))=springs(:,nan_list(:,1))\rhs; end % ==================================================== % end of main function % ==================================================== % ==================================================== % begin subfunctions % ==================================================== function neighbors_list=identify_neighbors(n,m,nan_list,talks_to) % identify_neighbors: identifies all the neighbors of % those nodes in nan_list, not including the nans % themselves % % arguments (input): % n,m - scalar - [n,m]=size(A), where A is the % array to be interpolated % nan_list - array - list of every nan element in A % nan_list(i,1) == linear index of i'th nan element % nan_list(i,2) == row index of i'th nan element % nan_list(i,3) == column index of i'th nan element % talks_to - px2 array - defines which nodes communicate % with each other, i.e., which nodes are neighbors. % % talks_to(i,1) - defines the offset in the row % dimension of a neighbor % talks_to(i,2) - defines the offset in the column % dimension of a neighbor % % For example, talks_to = [-1 0;0 -1;1 0;0 1] % means that each node talks only to its immediate % neighbors horizontally and vertically. % % arguments(output): % neighbors_list - array - list of all neighbors of % all the nodes in nan_list if ~isempty(nan_list) % use the definition of a neighbor in talks_to nan_count=size(nan_list,1); talk_count=size(talks_to,1); nn=zeros(nan_count*talk_count,2); j=[1,nan_count]; for i=1:talk_count nn(j(1):j(2),:)=nan_list(:,2:3) + ... repmat(talks_to(i,:),nan_count,1); j=j+nan_count; end % drop those nodes which fall outside the bounds of the % original array L = (nn(:,1)<1)|(nn(:,1)>n)|(nn(:,2)<1)|(nn(:,2)>m); nn(L,:)=[]; % form the same format 3 column array as nan_list neighbors_list=[sub2ind([n,m],nn(:,1),nn(:,2)),nn]; % delete replicates in the neighbors list neighbors_list=unique(neighbors_list,'rows'); % and delete those which are also in the list of NaNs. neighbors_list=setdiff(neighbors_list,nan_list,'rows'); else neighbors_list=[]; end
github
virati/SGView-master
boundedline.m
.m
SGView-master/lib/boundedline/old/boundedline.m
10,524
utf_8
16b1d04028aded72eaf869f149fcddd7
function varargout = boundedline(varargin) %BOUNDEDLINE Plot a line with shaded error/confidence bounds % % [hl, hp] = boundedline(x, y, b) % [hl, hp] = boundedline(x, y, b, linespec) % [hl, hp] = boundedline(x1, y1, b1, linespec1, x2, y2, b2, linespec2) % [hl, hp] = boundedline(..., 'alpha') % [hl, hp] = boundedline(..., ax) % [hl, hp] = boundedline(..., 'transparency', trans) % [hl, hp] = boundedline(..., 'orientation', orient) % [hl, hp] = boundedline(..., 'cmap', cmap) % % Input variables: % % x, y: x and y values, either vectors of the same length, matrices % of the same size, or vector/matrix pair where the row or % column size of the array matches the length of the vector % (same requirements as for plot function). % % b: npoint x nside x nline array. Distance from line to % boundary, for each point along the line (dimension 1), for % each side of the line (lower/upper or left/right, depending % on orientation) (dimension 2), and for each plotted line % described by the preceding x-y values (dimension 3). If % size(b,1) == 1, the bounds will be the same for all points % along the line. If size(b,2) == 1, the bounds will be % symmetrical on both sides of the lines. If size(b,3) == 1, % the same bounds will be applied to all lines described by % the preceding x-y arrays (only applicable when either x or % y is an array). Bounds cannot include Inf, -Inf, or NaN, % % linespec: line specification that determines line type, marker % symbol, and color of the plotted lines for the preceding % x-y values. % % 'alpha': if included, the bounded area will be rendered with a % partially-transparent patch the same color as the % corresponding line(s). If not included, the bounded area % will be an opaque patch with a lighter shade of the % corresponding line color. % % ax: handle of axis where lines will be plotted. If not % included, the current axis will be used. % % transp: Scalar between 0 and 1 indicating with the transparency or % intensity of color of the bounded area patch. Default is % 0.2. % % orient: 'vert': add bounds in vertical (y) direction (default) % 'horiz': add bounds in horizontal (x) direction % % cmap: n x 3 colormap array. If included, lines will be colored % (in order of plotting) according to this colormap, % overriding any linespec or default colors. % % Output variables: % % hl: handles to line objects % % hp: handles to patch objects % % Example: % % x = linspace(0, 2*pi, 50); % y1 = sin(x); % y2 = cos(x); % e1 = rand(size(y1))*.5+.5; % e2 = [.25 .5]; % % ax(1) = subplot(2,2,1); % [l,p] = boundedline(x, y1, e1, '-b*', x, y2, e2, '--ro'); % outlinebounds(l,p); % title('Opaque bounds, with outline'); % % ax(2) = subplot(2,2,2); % boundedline(x, [y1;y2], rand(length(y1),2,2)*.5+.5, 'alpha'); % title('Transparent bounds'); % % ax(3) = subplot(2,2,3); % boundedline([y1;y2], x, e1(1), 'orientation', 'horiz') % title('Horizontal bounds'); % % ax(4) = subplot(2,2,4); % boundedline(x, repmat(y1, 4,1), permute(0.5:-0.1:0.2, [3 1 2]), ... % 'cmap', cool(4), 'transparency', 0.5); % title('Multiple bounds using colormap'); % Copyright 2010 Kelly Kearney %-------------------- % Parse input %-------------------- % Alpha flag isalpha = cellfun(@(x) ischar(x) && strcmp(x, 'alpha'), varargin); if any(isalpha) usealpha = true; varargin = varargin(~isalpha); else usealpha = false; end % Axis isax = cellfun(@(x) isscalar(x) && ishandle(x) && strcmp('axes', get(x,'type')), varargin); if any(isax) hax = varargin{isax}; varargin = varargin(~isax); else hax = gca; end % Transparency [found, trans, varargin] = parseparam(varargin, 'transparency'); if ~found trans = 0.2; end if ~isscalar(trans) || trans < 0 || trans > 1 error('Transparency must be scalar between 0 and 1'); end % Orientation [found, orient, varargin] = parseparam(varargin, 'orientation'); if ~found orient = 'vert'; end if strcmp(orient, 'vert') isvert = true; elseif strcmp(orient, 'horiz') isvert = false; else error('Orientation must be ''vert'' or ''horiz'''); end % Colormap [hascmap, cmap, varargin] = parseparam(varargin, 'cmap'); % X, Y, E triplets, and linespec [x,y,err,linespec] = deal(cell(0)); while ~isempty(varargin) if length(varargin) < 3 error('Unexpected input: should be x, y, bounds triplets'); end if all(cellfun(@isnumeric, varargin(1:3))) x = [x varargin(1)]; y = [y varargin(2)]; err = [err varargin(3)]; varargin(1:3) = []; else error('Unexpected input: should be x, y, bounds triplets'); end if ~isempty(varargin) && ischar(varargin{1}) linespec = [linespec varargin(1)]; varargin(1) = []; else linespec = [linespec {[]}]; end end %-------------------- % Reformat x and y % for line and patch % plotting %-------------------- % Calculate y values for bounding lines plotdata = cell(0,7); htemp = figure('visible', 'off'); for ix = 1:length(x) % Get full x, y, and linespec data for each line (easier to let plot % check for properly-sized x and y and expand values than to try to do % it myself) try if isempty(linespec{ix}) hltemp = plot(x{ix}, y{ix}); else hltemp = plot(x{ix}, y{ix}, linespec{ix}); end catch close(htemp); error('X and Y matrices and/or linespec not appropriate for line plot'); end linedata = get(hltemp, {'xdata', 'ydata', 'marker', 'linestyle', 'color'}); nline = size(linedata,1); % Expand bounds matrix if necessary if nline > 1 if ndims(err{ix}) == 3 err2 = squeeze(num2cell(err{ix},[1 2])); else err2 = repmat(err(ix),nline,1); end else err2 = err(ix); end % Figure out upper and lower bounds [lo, hi] = deal(cell(nline,1)); for iln = 1:nline x2 = linedata{iln,1}; y2 = linedata{iln,2}; nx = length(x2); if isvert lineval = y2; else lineval = x2; end sz = size(err2{iln}); if isequal(sz, [nx 2]) lo{iln} = lineval - err2{iln}(:,1)'; hi{iln} = lineval + err2{iln}(:,2)'; elseif isequal(sz, [nx 1]) lo{iln} = lineval - err2{iln}'; hi{iln} = lineval + err2{iln}'; elseif isequal(sz, [1 2]) lo{iln} = lineval - err2{iln}(1); hi{iln} = lineval + err2{iln}(2); elseif isequal(sz, [1 1]) lo{iln} = lineval - err2{iln}; hi{iln} = lineval + err2{iln}; elseif isequal(sz, [2 nx]) % not documented, but accepted anyways lo{iln} = lineval - err2{iln}(:,1); hi{iln} = lineval + err2{iln}(:,2); elseif isequal(sz, [1 nx]) % not documented, but accepted anyways lo{iln} = lineval - err2{iln}; hi{iln} = lineval + err2{iln}; elseif isequal(sz, [2 1]) % not documented, but accepted anyways lo{iln} = lineval - err2{iln}(1); hi{iln} = lineval + err2{iln}(2); else error('Error bounds must be npt x nside x nline array'); end end % Combine all data (xline, yline, marker, linestyle, color, lower bound % (x or y), upper bound (x or y) plotdata = [plotdata; linedata lo hi]; end close(htemp); % Override colormap if hascmap nd = size(plotdata,1); cmap = repmat(cmap, ceil(nd/size(cmap,1)), 1); cmap = cmap(1:nd,:); plotdata(:,5) = num2cell(cmap,2); end %-------------------- % Plot %-------------------- % Setup of x and y, plus line and patch properties nline = size(plotdata,1); [xl, yl, xp, yp, marker, lnsty, lncol, ptchcol, alpha] = deal(cell(nline,1)); for iln = 1:nline xl{iln} = plotdata{iln,1}; yl{iln} = plotdata{iln,2}; % if isvert % xp{iln} = [plotdata{iln,1} fliplr(plotdata{iln,1})]; % yp{iln} = [plotdata{iln,6} fliplr(plotdata{iln,7})]; % else % xp{iln} = [plotdata{iln,6} fliplr(plotdata{iln,7})]; % yp{iln} = [plotdata{iln,2} fliplr(plotdata{iln,2})]; % end [xp{iln}, yp{iln}] = calcpatch(plotdata{iln,1}, plotdata{iln,2}, isvert, plotdata{iln,6}, plotdata{iln,7}); marker{iln} = plotdata{iln,3}; lnsty{iln} = plotdata{iln,4}; if usealpha lncol{iln} = plotdata{iln,5}; ptchcol{iln} = plotdata{iln,5}; alpha{iln} = trans; else lncol{iln} = plotdata{iln,5}; ptchcol{iln} = interp1([0 1], [1 1 1; lncol{iln}], trans); alpha{iln} = 1; end end % Plot patches and lines [hp,hl] = deal(zeros(nline,1)); axes(hax); hold all; for iln = 1:nline hp(iln) = patch(xp{iln}, yp{iln}, ptchcol{iln}, 'facealpha', alpha{iln}, 'edgecolor', 'none'); end for iln = 1:nline hl(iln) = line(xl{iln}, yl{iln}, 'marker', marker{iln}, 'linestyle', lnsty{iln}, 'color', lncol{iln}); end %-------------------- % Assign output %-------------------- nargchk(0, 2, nargout); if nargout >= 1 varargout{1} = hl; end if nargout == 2 varargout{2} = hp; end %-------------------- % Parse optional % parameters %-------------------- function [found, val, vars] = parseparam(vars, param) isvar = cellfun(@(x) ischar(x) && strcmpi(x, param), vars); if sum(isvar) > 1 error('Parameters can only be passed once'); end if any(isvar) found = true; idx = find(isvar); val = vars{idx+1}; vars([idx idx+1]) = []; else found = false; val = []; end %---------------------------- % Calculate patch coordinates %---------------------------- function [xp, yp] = calcpatch(xl, yl, isvert, lo, hi) ismissing = any(isnan([xl;yl;lo;hi]),2); if isvert xp = [xl fliplr(xl)]; yp = [lo fliplr(hi)]; else xp = [lo fliplr(hi)]; yp = [yl fliplr(yl)]; end if any(ismissing) warning('NaNs in bounds; inpainting'); xp = inpaint_nans(xp'); yp = inpaint_nans(yp'); end
github
icemansina/LSTM-CF-master
prepare_batch.m
.m
LSTM-CF-master/matlab/caffe/prepare_batch.m
1,298
utf_8
68088231982895c248aef25b4886eab0
% ------------------------------------------------------------------------ function images = prepare_batch(image_files,IMAGE_MEAN,batch_size) % ------------------------------------------------------------------------ if nargin < 2 d = load('ilsvrc_2012_mean'); IMAGE_MEAN = d.image_mean; end num_images = length(image_files); if nargin < 3 batch_size = num_images; end IMAGE_DIM = 256; CROPPED_DIM = 227; indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; center = floor(indices(2) / 2)+1; num_images = length(image_files); images = zeros(CROPPED_DIM,CROPPED_DIM,3,batch_size,'single'); parfor i=1:num_images % read file fprintf('%c Preparing %s\n',13,image_files{i}); try im = imread(image_files{i}); % resize to fixed input size im = single(im); im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % Transform GRAY to RGB if size(im,3) == 1 im = cat(3,im,im,im); end % permute from RGB to BGR (IMAGE_MEAN is already BGR) im = im(:,:,[3 2 1]) - IMAGE_MEAN; % Crop the center of the image images(:,:,:,i) = permute(im(center:center+CROPPED_DIM-1,... center:center+CROPPED_DIM-1,:),[2 1 3]); catch warning('Problems with file',image_files{i}); end end
github
icemansina/LSTM-CF-master
matcaffe_demo_vgg.m
.m
LSTM-CF-master/matlab/caffe/matcaffe_demo_vgg.m
3,036
utf_8
f836eefad26027ac1be6e24421b59543
function scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file) % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file) % % Demo of the matlab wrapper using the networks described in the BMVC-2014 paper "Return of the Devil in the Details: Delving Deep into Convolutional Nets" % % INPUT % im - color image as uint8 HxWx3 % use_gpu - 1 to use the GPU, 0 to use the CPU % model_def_file - network configuration (.prototxt file) % model_file - network weights (.caffemodel file) % mean_file - mean BGR image as uint8 HxWx3 (.mat file) % % OUTPUT % scores 1000-dimensional ILSVRC score vector % % EXAMPLE USAGE % model_def_file = 'zoo/VGG_CNN_F_deploy.prototxt'; % model_file = 'zoo/VGG_CNN_F.caffemodel'; % mean_file = 'zoo/VGG_mean.mat'; % use_gpu = true; % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file, mean_file); % % NOTES % the image crops are prepared as described in the paper (the aspect ratio is preserved) % % PREREQUISITES % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % init caffe network (spews logging info) matcaffe_init(use_gpu, model_def_file, model_file); % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im, mean_file)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; % size(scores) scores = squeeze(scores); % scores = mean(scores,2); % [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im, mean_file) % ------------------------------------------------------------------------ IMAGE_DIM = 256; CROPPED_DIM = 224; d = load(mean_file); IMAGE_MEAN = d.image_mean; % resize to fixed input size im = single(im); if size(im, 1) < size(im, 2) im = imresize(im, [IMAGE_DIM NaN]); else im = imresize(im, [NaN IMAGE_DIM]); end % RGB -> BGR im = im(:, :, [3 2 1]); % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices_y = [0 size(im,1)-CROPPED_DIM] + 1; indices_x = [0 size(im,2)-CROPPED_DIM] + 1; center_y = floor(indices_y(2) / 2)+1; center_x = floor(indices_x(2) / 2)+1; curr = 1; for i = indices_y for j = indices_x images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :)-IMAGE_MEAN, [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end images(:,:,:,5) = ... permute(im(center_y:center_y+CROPPED_DIM-1,center_x:center_x+CROPPED_DIM-1,:)-IMAGE_MEAN, ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr);
github
icemansina/LSTM-CF-master
matcaffe_demo.m
.m
LSTM-CF-master/matlab/caffe/matcaffe_demo.m
3,344
utf_8
669622769508a684210d164ac749a614
function [scores, maxlabel] = matcaffe_demo(im, use_gpu) % scores = matcaffe_demo(im, use_gpu) % % Demo of the matlab wrapper using the ILSVRC network. % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format: % % convert from uint8 to single % im = single(im); % % reshape to a fixed size (e.g., 227x227) % im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % permute from RGB to BGR and subtract the data mean (already in BGR) % im = im(:,:,[3 2 1]) - data_mean; % % flip width and height to make width the fastest dimension % im = permute(im, [2 1 3]); % If you have multiple images, cat them with cat(4, ...) % The actual forward function. It takes in a cell array of 4-D arrays as % input and outputs a cell array. % init caffe network (spews logging info) if exist('use_gpu', 'var') matcaffe_init(use_gpu); else matcaffe_init(); end if nargin < 1 % For demo purposes we will use the peppers image im = imread('peppers.png'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; size(scores) scores = squeeze(scores); scores = mean(scores,2); [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im) % ------------------------------------------------------------------------ d = load('ilsvrc_2012_mean'); IMAGE_MEAN = d.image_mean; IMAGE_DIM = 256; CROPPED_DIM = 227; % resize to fixed input size im = single(im); im = imresize(im, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % permute from RGB to BGR (IMAGE_MEAN is already BGR) im = im(:,:,[3 2 1]) - IMAGE_MEAN; % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; curr = 1; for i = indices for j = indices images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :), [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end center = floor(indices(2) / 2)+1; images(:,:,:,5) = ... permute(im(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:), ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr);
github
icemansina/LSTM-CF-master
matcaffe_demo_vgg_mean_pix.m
.m
LSTM-CF-master/matlab/caffe/matcaffe_demo_vgg_mean_pix.m
3,069
utf_8
04b831d0f205ef0932c4f3cfa930d6f9
function scores = matcaffe_demo_vgg_mean_pix(im, use_gpu, model_def_file, model_file) % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file) % % Demo of the matlab wrapper based on the networks used for the "VGG" entry % in the ILSVRC-2014 competition and described in the tech. report % "Very Deep Convolutional Networks for Large-Scale Image Recognition" % http://arxiv.org/abs/1409.1556/ % % INPUT % im - color image as uint8 HxWx3 % use_gpu - 1 to use the GPU, 0 to use the CPU % model_def_file - network configuration (.prototxt file) % model_file - network weights (.caffemodel file) % % OUTPUT % scores 1000-dimensional ILSVRC score vector % % EXAMPLE USAGE % model_def_file = 'zoo/deploy.prototxt'; % model_file = 'zoo/model.caffemodel'; % use_gpu = true; % im = imread('../../examples/images/cat.jpg'); % scores = matcaffe_demo_vgg(im, use_gpu, model_def_file, model_file); % % NOTES % mean pixel subtraction is used instead of the mean image subtraction % % PREREQUISITES % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % init caffe network (spews logging info) matcaffe_init(use_gpu, model_def_file, model_file); % mean BGR pixel mean_pix = [103.939, 116.779, 123.68]; % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im, mean_pix)}; toc; % do forward pass to get scores % scores are now Width x Height x Channels x Num tic; scores = caffe('forward', input_data); toc; scores = scores{1}; % size(scores) scores = squeeze(scores); % scores = mean(scores,2); % [~,maxlabel] = max(scores); % ------------------------------------------------------------------------ function images = prepare_image(im, mean_pix) % ------------------------------------------------------------------------ IMAGE_DIM = 256; CROPPED_DIM = 224; % resize to fixed input size im = single(im); if size(im, 1) < size(im, 2) im = imresize(im, [IMAGE_DIM NaN]); else im = imresize(im, [NaN IMAGE_DIM]); end % RGB -> BGR im = im(:, :, [3 2 1]); % oversample (4 corners, center, and their x-axis flips) images = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices_y = [0 size(im,1)-CROPPED_DIM] + 1; indices_x = [0 size(im,2)-CROPPED_DIM] + 1; center_y = floor(indices_y(2) / 2)+1; center_x = floor(indices_x(2) / 2)+1; curr = 1; for i = indices_y for j = indices_x images(:, :, :, curr) = ... permute(im(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :), [2 1 3]); images(:, :, :, curr+5) = images(end:-1:1, :, :, curr); curr = curr + 1; end end images(:,:,:,5) = ... permute(im(center_y:center_y+CROPPED_DIM-1,center_x:center_x+CROPPED_DIM-1,:), ... [2 1 3]); images(:,:,:,10) = images(end:-1:1, :, :, curr); % mean BGR pixel subtraction for c = 1:3 images(:, :, c, :) = images(:, :, c, :) - mean_pix(c); end
github
jinw1004/DeepList-master
slmetric_pw.m
.m
DeepList-master/code/patchmatch/slmetric_pw.m
5,784
utf_8
db4423a1315c3056bca4cabf694d42f4
function M = slmetric_pw(X1, X2, mtype, varargin) %SLMETRIC_PW Compute the metric between column vectors pairwisely % % $ Syntax $ % - M = slmetric_pw(X1, X2, mtype); % - M = slmetric_pw(X1, X2, mtype, ...); % % $ Description $ % - M = slmetric_pw(X1, X2, mtype) Computes the metrics between % column vectors of X1 and X2 pairwisely, using the metric % specified by mtype. If X1 has n1 columns, X2 has n2 columns, then % the resultant M would be of size n1 x n2. The entry at i-th row % and j-th column of M represents the metric between X1(:, i) and % X2(:, j). % % - M = slmetric_pw(X1, X2, mtype, ...) Some metric types requires % extra parameters, which should be specified in params. % % - The supported metrics of this function are listed as follows: % \* % \t Table 1. The supported metrics \\ % \h name & description \\ % 'eucdist' & Euclidean distance: ||x - y|| \\ % 'sqdist' & Square of Euclidean distance: ||x - y||^2 \\ % 'dotprod' & Canonical dot product: <x,y> = x^T * y \\ % 'nrmcorr' & Normalized correlation (cosine angle): % (x^T * y ) / (||x|| * ||y||) \\ % 'angle' & Angle between two vectors (in radian) \\ % 'quadfrm' & Quadratic form: x^T * Q * y % Q is specified in the 1st extra parameter \\ % 'quaddiff' & Quadratic form of difference: % (x - y)^T * Q * (x - y), % Q is specified in the 1st extra parameter \\ % 'cityblk' & City block distance (abssum of difference) \\ % 'maxdiff' & Maximum absolute difference \\ % 'mindiff' & Minimum absolute difference \\ % 'wsqdist' & Weighted square of Euclidean distance \\ % \sum_i w_i (x_i - y_i)^2, w = (w_1, ..., w_d) % the weights w is specified in 1st extra parameter % as a length-d column vector \\ % \* % % $ Remarks $ % - X1 and X2 are both matrices with n1 column vectors and n2 column % vectors respectively. Then the resultant matrix M will be a n1 * n2 % matrix. The entry at i-th row and j-th column of M is the metric between % the i-th column vector in X1 and the j-th column vector in X2. % % $ History $ % - Created by Dahua Lin on Dec 06th, 2005 % - Modified by Dahua Lin on Apr 21st, 2005 % - regularize the error reporting % - Modified by Dahua Lin on Sep 11st, 2005 % - completely rewrite the core codes based on new mex computation % cores, and the runtime efficiency in both time and space is % significantly increased. % %% parse and verify input arguments if nargin < 3 raise_lackinput('slmetric_pw', 3); end mtype = lower(mtype); %% compute switch mtype case {'eucdist', 'sqdist'} checkdim(X1, X2); sqs1 = sum(X1 .* X1, 1)'; sqs2 = sum(X2 .* X2, 1); M = (-2) * X1' * X2; M = sladdrowcols(M, sqs2, sqs1); M(M < 0) = 0; if strcmp(mtype, 'eucdist') M = sqrt(M); end case 'dotprod' checkdim(X1, X2); M = X1' * X2; case {'nrmcorr', 'angle'} checkdim(X1, X2); M = X1' * X2; f1 = sqrt(sum(X1 .* X1, 1))'; f2 = sqrt(sum(X2 .* X2, 1)); f1(f1 < eps) = eps; % prevent from being zeros f2(f2 < eps) = eps; f1 = 1 ./ f1; f2 = 1 ./ f2; M = slmulrowcols(M, f2, f1); if strcmp(mtype, 'angle0') M = real(acos(M)); end case 'quadfrm' % parse parameters Q = varargin{1}; [d1, d2] = size(Q); if size(X1, 1) ~= d1 || size(X2, 1) ~= d2 error('sltoolbox:sizmismatch', ... 'The dimensions of X1 and X2 are not consistent with Q'); end % compute M = X1' * Q * X2; case 'quaddiff' % parse parameters d = checkdim(X1, X2); Q = varargin{1}; if ~isequal(size(Q), [d, d]) error('sltoolbox:dimmismatch', ... 'The dimensions of X1 and X2 are not consistent with Q'); end % compute qs1 = sum(X1 .* (Q * X1), 1)'; qs2 = sum(X2 .* (Q * X2), 1); M = X1' * (-(Q + Q')) * X2; M = sladdrowcols(M, qs2, qs1); case 'cityblk' M = sldiff_pw(X1, X2, 'abssum'); case 'maxdiff' M = sldiff_pw(X1, X2, 'maxdiff'); case 'mindiff' M = sldiff_pw(X1, X2, 'mindiff'); case 'wsqdist' % parse parameters d = checkdim(X1, X2); w = varargin{1}; if ~isequal(size(w), [d, 1]) error('sltoolbox:sizmismatch', ... 'w is not a proper size column vector'); end % compute wX1 = slmulvec(X1, w, 1); qs1 = sum(wX1 .* X1, 1)'; clear wX1; wX2 = slmulvec(X2, w, 1); qs2 = sum(wX2 .* X2, 1); M = (-2) * X1' * wX2; clear wX2; M = sladdrowcols(M, qs2, qs1); otherwise error('sltoolbox:invalid_type', 'Unknown metric type %s', mtype); end %% Auxiliary function function d = checkdim(X1, X2) d = size(X1, 1); if d ~= size(X2, 1) error('sltoolbox:sizmismatch', ... 'X1 and X2 have different sample dimensions'); end
github
jinw1004/DeepList-master
vl_simplenn_display.m
.m
DeepList-master/code/matConvNet/vl_simplenn_display.m
2,913
utf_8
a7b610d48d096a3b7dbd70fa131290f0
function vl_simplenn_display(net) % VL_SIMPLENN_DISPLAY Simple CNN statistics % VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET. % Copyright (C) 2014 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). for w={'layer', 'type', 'support', 'stride', 'padding', 'field', 'mem'} switch char(w) case 'type', s = 'type' ; case 'stride', s = 'stride' ; case 'padding', s = 'pad' ; case 'field', s = 'field' ; case 'mem', s = 'c//g mem' ; otherwise, s = char(w) ; end fprintf('%10s',s) ; for l=1:numel(net.layers) ly=net.layers{l} ; switch char(w) case 'layer', s=sprintf('%d', l) ; case 'type' switch ly.type case 'normalize', s='nrm'; case 'pool', if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end case 'conv', s='cnv' ; case 'softmax', s='sftm' ; case 'loss', s='lloss' ; case 'softmaxloss', 'sftml' ; otherwise s=ly.type ; end case 'support' switch ly.type case 'conv', support(1:2,l) = [size(ly.filters,1) ; size(ly.filters,2)] ; case 'pool', support(1:2,l) = ly.pool(:) ; otherwise, support(1:2,l) = [1;1] ; end s=sprintf('%dx%d', support(1,l), support(2,l)) ; case 'stride' switch ly.type case {'conv', 'pool'} if numel(ly.stride) == 1 stride(1:2,l) = ly.stride ; else stride(1:2,l) = ly.stride(:) ; end otherwise, stride(:,l)=1 ; end s=sprintf('%dx%d', stride(1,l), stride(2,l)) ; case 'pad' switch ly.type case {'conv', 'pool'} if numel(ly.pad) == 1 pad(1:2,l) = ly.pad ; else pad(1:2,l) = ly.pad(:) ; end otherwise, pad(:,l)=1 ; end s=sprintf('%dx%d', pad(1,l), pad(2,l)) ; case 'field' for i=1:2 field(i,l) = sum(cumprod([1 stride(i,1:l-1)]).*(support(i,1:l)-1))+1 ; end s=sprintf('%dx%d', field(1,l), field(2,l)) ; case 'mem' [a,b] = xmem(ly) ; mem(1:2,l) = [a;b] ; s=sprintf('%.0f/%.0f', a/1024^2, b/1024^2) ; end fprintf('|%7s', s) ; end fprintf('|\n') ; end fprintf('total CPU/GPU memory: %.1f/%1.f MB\n', sum(mem(1,:))/1024^2, sum(mem(2,:))/1024^2) ; function [cpuMem,gpuMem]=xmem(s) cpuMem = 0 ; gpuMem = 0 ; for f=fieldnames(s)' f = char(f) ; t=s.(f) ; if isstruct(t) [a,b] = xmem(t) ; cpuMem = cpuMem + a ; gpuMem = gpuMem + b ; m = m + xmem(t) ; continue ; end if isnumeric(t) if isa(t,'gpuArray') gpuMem = gpuMem + 4 * numel(t) ; else cpuMem = cpuMem + 4 * numel(t) ; end end end
github
jrterven/MultiKinCalib-master
knnsearch.m
.m
MultiKinCalib-master/knnsearch.m
3,976
utf_8
0f62ce2cf9bcdf736e723a616915f539
function [idx,D]=knnsearch(varargin) % KNNSEARCH Linear k-nearest neighbor (KNN) search % IDX = knnsearch(Q,R,K) searches the reference data set R (n x d array % representing n points in a d-dimensional space) to find the k-nearest % neighbors of each query point represented by eahc row of Q (m x d array). % The results are stored in the (m x K) index array, IDX. % % IDX = knnsearch(Q,R) takes the default value K=1. % % IDX = knnsearch(Q) or IDX = knnsearch(Q,[],K) does the search for R = Q. % % Rationality % Linear KNN search is the simplest appraoch of KNN. The search is based on % calculation of all distances. Therefore, it is normally believed only % suitable for small data sets. However, other advanced approaches, such as % kd-tree and delaunary become inefficient when d is large comparing to the % number of data points. On the other hand, the linear search in MATLAB is % relatively insensitive to d due to the vectorization. In this code, the % efficiency of linear search is further improved by using the JIT % aceeleration of MATLAB. Numerical example shows that its performance is % comparable with kd-tree algorithm in mex. % % See also, kdtree, nnsearch, delaunary, dsearch % By Yi Cao at Cranfield University on 25 March 2008 % Example 1: small data sets %{ R=randn(100,2); Q=randn(3,2); idx=knnsearch(Q,R); plot(R(:,1),R(:,2),'b.',Q(:,1),Q(:,2),'ro',R(idx,1),R(idx,2),'gx'); %} % Example 2: ten nearest points to [0 0] %{ R=rand(100,2); Q=[0 0]; K=10; idx=knnsearch(Q,R,10); r=max(sqrt(sum(R(idx,:).^2,2))); theta=0:0.01:pi/2; x=r*cos(theta); y=r*sin(theta); plot(R(:,1),R(:,2),'b.',Q(:,1),Q(:,2),'co',R(idx,1),R(idx,2),'gx',x,y,'r-','linewidth',2); %} % Example 3: cputime comparion with delaunay+dsearch I, a few to look up %{ R=randn(10000,4); Q=randn(500,4); t0=cputime; idx=knnsearch(Q,R); t1=cputime; T=delaunayn(R); idx1=dsearchn(R,T,Q); t2=cputime; fprintf('Are both indices the same? %d\n',isequal(idx,idx1)); fprintf('CPU time for knnsearch = %g\n',t1-t0); fprintf('CPU time for delaunay = %g\n',t2-t1); %} % Example 4: cputime comparion with delaunay+dsearch II, lots to look up %{ Q=randn(10000,4); R=randn(500,4); t0=cputime; idx=knnsearch(Q,R); t1=cputime; T=delaunayn(R); idx1=dsearchn(R,T,Q); t2=cputime; fprintf('Are both indices the same? %d\n',isequal(idx,idx1)); fprintf('CPU time for knnsearch = %g\n',t1-t0); fprintf('CPU time for delaunay = %g\n',t2-t1); %} % Example 5: cputime comparion with kd-tree by Steven Michael (mex file) % <a href="http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7030&objectType=file">kd-tree by Steven Michael</a> %{ Q=randn(10000,10); R=randn(500,10); t0=cputime; idx=knnsearch(Q,R); t1=cputime; tree=kdtree(R); idx1=kdtree_closestpoint(tree,Q); t2=cputime; fprintf('Are both indices the same? %d\n',isequal(idx,idx1)); fprintf('CPU time for knnsearch = %g\n',t1-t0); fprintf('CPU time for delaunay = %g\n',t2-t1); %} % Check inputs [Q,R,K,fident] = parseinputs(varargin{:}); % Check outputs error(nargoutchk(0,2,nargout)); % C2 = sum(C.*C,2)'; [N,M] = size(Q); L=size(R,1); idx = zeros(N,K); D = idx; if K==1 % Loop for each query point for k=1:N d=zeros(L,1); for t=1:M d=d+(R(:,t)-Q(k,t)).^2; end if fident d(k)=inf; end [D(k),idx(k)]=min(d); end else for k=1:N d=zeros(L,1); for t=1:M d=d+(R(:,t)-Q(k,t)).^2; end if fident d(k)=inf; end [s,t]=sort(d); idx(k,:)=t(1:K); D(k,:)=s(1:K); end end if nargout>1 D=sqrt(D); end function [Q,R,K,fident] = parseinputs(varargin) % Check input and output error(nargchk(1,3,nargin)); Q=varargin{1}; if nargin<2 R=Q; fident = true; else fident = false; R=varargin{2}; end if isempty(R) fident = true; R=Q; end if ~fident fident = isequal(Q,R); end if nargin<3 K=1; else K=varargin{3}; end
github
jrterven/MultiKinCalib-master
FinalCalibration.m
.m
MultiKinCalib-master/FinalCalibration.m
7,024
utf_8
388a97a812a8b549efad527ee6f77ffc
% Script: % proj05_FinalCalibration % % Description: % Perform calibration of a Kinect camera (depth or color) given pairs of % 3D points and 2D projections. % % Dependencies: % function proj05_costFunVec: this function is the one we wish to minimize % function tr2eul: converts from rotation matriz to Euler angles. % calibParameters.mat: file with variables defined in proj0_Multi_Kinect_Calibration.m % such as distortRad, distortTan, withSkew. % % Inputs: % - preCalibResults: file with initial estimation of rotation and % translation for each camera. This file is generated in proj0_Multi_Kinect_Calibration.m % - initIntrinsics: file with initial estimation of intrinsic parameters for each % camera. This file is generated in proj0_Multi_Kinect_Calibration.m % - camNum: Number of camera to calibrate. % - camType: Type of camera to calibrate. 'depth' or 'color' % % % Usage: % This function is called on the step 5: Final Joint Calibration of the % calibration process. % % Results: % Intrinsic and extrinsic parameters, radDist (radial distortion) and % tanDist (tangential distortion). % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 function [outData1 outData2] = FinalCalibration( ... preCalibResults, initIntrinsics, camNum, camType) clear proj05_costFunVec3; % clear persistent variables of the cost function load('calibParameters.mat'); % Load the variables: distortRad, distortTan, withSkew load(preCalibResults); % Load the estimated extrinsics load(initIntrinsics); % Load the initial intrinsics % Generates a file with variables for the cost function save([dataDir '/variablesForCostFun.mat'],'camNum','camType'); cd(fileparts(mfilename('fullpath'))); % Get intrinsic initial values from initIntrinsics file if strcmp(camType, 'depth') if camNum == 1 f = preIntrinsicsD1(1,1); cx = preIntrinsicsD1(1,3); cy = preIntrinsicsD1(2,3); skew = preIntrinsicsD1(1,2); elseif camNum == 2 f = preIntrinsicsD2(1,1); cx = preIntrinsicsD2(1,3); cy = preIntrinsicsD2(2,3); skew = preIntrinsicsD2(1,2); elseif camNum == 3 f = preIntrinsicsD3(1,1); cx = preIntrinsicsD3(1,3); cy = preIntrinsicsD3(2,3); skew = preIntrinsicsD3(1,2); elseif camNum == 4 f = preIntrinsicsD4(1,1); cx = preIntrinsicsD4(1,3); cy = preIntrinsicsD4(2,3); skew = preIntrinsicsD4(1,2); end elseif strcmp(camType, 'color') if camNum == 1 f = preIntrinsicsC1(1,1); cx = preIntrinsicsC1(1,3); cy = preIntrinsicsC1(2,3); skew = preIntrinsicsC1(1,2); elseif camNum == 2 f = preIntrinsicsC2(1,1); cx = preIntrinsicsC2(1,3); cy = preIntrinsicsC2(2,3); skew = preIntrinsicsC2(1,2); elseif camNum == 3 f = preIntrinsicsC3(1,1); cx = preIntrinsicsC3(1,3); cy = preIntrinsicsC3(2,3); skew = preIntrinsicsC3(1,2); elseif camNum == 4 f = preIntrinsicsC4(1,1); cx = preIntrinsicsC4(1,3); cy = preIntrinsicsC4(2,3); skew = preIntrinsicsC4(1,2); end end % Get extrinsics from pre-calibration if camNum == 1 R = eye(3); %Rq = qGetQ( R ); %Rq = qNormalize(Rq); Rq = rotm2quat(R); t = [0 0 0]; elseif camNum == 2 %Rq = qGetQ( R1_2 ); %Rq = qNormalize(Rq); Rq = rotm2quat(R1_2); t = t1_2; elseif camNum == 3 %Rq = qGetQ( R1_3 ); %Rq = qNormalize(Rq); Rq = rotm2quat(R1_3); t = t1_3; elseif camNum == 4 %Rq = qGetQ( R1_4 ); %Rq = qNormalize(Rq); Rq = rotm2quat(R1_4); t = t1_4; end % Build the variables vector to be solved x0 = [f, cx, cy, ... Rq(1), Rq(2), Rq(3), Rq(4), ... t(1), t(2), t(3)]; if distortRad > 0 if distortRad == 2 x0 = [x0 0 0]; elseif distortRad == 3 x0 = [x0 0 0 0]; end if distortTan x0 = [x0 0 0]; end end if withSkew x0 = [x0 skew]; end % Non-linear optimization options = optimset('Algorithm','levenberg-marquardt','MaxFunEvals',100000, ... 'TolFun',1e-100,'TolX',1e-100,'MaxIter', 10000); x = fsolve('proj05_costFunVec3',x0,options); % Extract results from results vector f = x(1); % focal length cx = x(2); % principal point x cy = x(3); % principal point y if withSkew s = x(end); % skew else s = 0; end % Get rotation from vector Rq = [x(4) x(5) x(6) x(7)]; % Convert to rotation matrix % Rx=[1 0 0;0 cos(Reul(1)) sin(Reul(1));0 -sin(Reul(1)) cos(Reul(1))]; % Ry=[cos(Reul(2)) 0 -sin(Reul(2));0 1 0;sin(Reul(2)) 0 cos(Reul(2))]; % Rz=[cos(Reul(3)) sin(Reul(3)) 0;-sin(Reul(3)) cos(Reul(3)) 0;0 0 1]; % R = Rx*Ry*Rz; %R = eul2r(Reul(1),Reul(2),Reul(3)); %Rq = qNormalize(Rq); % Get rotation matrix from quaternion %R = qGetR(Rq); R = quat2rotm(Rq); % Extract translation t = [x(8); x(9); x(10)]; % Extract radial and tangential distortion coefficients if distortRad == 2 k1 = x(11); k2 = x(12); if distortTan p1 = x(13); p2 = x(14); end elseif distortRad == 3 k1 = x(11); k2 = x(12); k3 = x(13); if distortTan p1 = x(14); p2 = x(15); end end % Display results disp(['***** ' camType ' Camera ' num2str(camNum) ' Calibration Results *****']); intrinsics = [f s cx; 0 f cy; 0 0 1]; disp('Intrinsic parameters matrix:'); disp(intrinsics); % Rotation disp('R='); disp(R); % Test if the rotation is valid detR = det(R); if detR ~= 1 disp('Invalid rotation matrix!') disp(['Determinant = ' num2str(detR)]); end % Translation disp('t='); disp(t); % Distortion radDist = []; tanDist = []; if distortRad > 0 if distortRad == 2 disp('Radial Distortion: k1, k2') radDist = [k1 k2]; disp(radDist); elseif distortRad == 3 disp('Radial Distortion: k1, k2, k3') radDist = [k1 k2 k3]; disp(radDist); end if distortTan disp('Tangential Distortion: p1, p2') tanDist = [p1 p2]; disp(tanDist); end end tanStr = '0'; if distortTan tanStr = '2'; else tanStr = '0'; end % Calculate reproyection error with the pointcloud and point-cloud projections result = struct('CamType',camType,'CamNum',camNum,'MatchingDist',minDist3D, ... 'Intrinsics',intrinsics,'Rot',R,'t',t,'RadDist',radDist, ... 'TanDist',tanDist); repError = proj05_calcReprojectionError2(result); disp(['Error: ' num2str(repError)]); % Build the name of the struct name = ['cam' num2str(camNum) '_' camType '_' num2str(minDist3D) 'mm_' ... 'rad' num2str(distortRad) '_tan' tanStr]; % Build the struct with the data results = struct('CamType',camType,'MatchingDist',minDist3D, ... 'Intrinsics',intrinsics,'Rot',Rq,'t',t,'RadDist',radDist, ... 'TanDist',tanDist,'Error',repError); outData1.(name) = results; outData2 = results;
github
jrterven/MultiKinCalib-master
Step03_Matching.m
.m
MultiKinCalib-master/Step03_Matching.m
2,265
utf_8
84fad680aa977b0e7cf22fbed9cf3048
% function: % Step03_Matching(camCount,dataAcqFile,preCalibResultsFile,minDist3D,matchingResultsFile) % % Description: % Perform the point cloud matching step between all pairs of cameras. % % Dependencies: % - function Find3DMatches: peform the actual matching between a pair of % pointclouds. % % Inputs: % - camCount: Number of cameras to calibrate % - dataAcqFile: file containing the data from the acquisition step. % - preCalibResultsFile: name of the output file containing the results % of the pre-calibration % - minDist3D: matching distance % - matchingResultsFile: out file containing the matching results. % % Return: % Save the results on the matchingResultsFile specified in the arguments % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 function Step03_Matching(camCount,dataAcqFile,minDist3D,matchingResultsFile) load(dataAcqFile); disp('Step 3: 3D Pointcloud Matching'); % Finds the 3D matches between pointclouds % Generates a file called matchingResultsFile disp('Searching for matchings between Cam1 and Cam2'); [cam2_1Matches,cam2_1depthProj,cam2_1colorProj] = Find3DMatches( ... pc1, pc2, T1_2, cam2.depthProj, cam2.colorProj, minDist3D); save(matchingResultsFile,'cam2_1Matches','cam2_1depthProj','cam2_1colorProj'); if camCount > 2 disp('Searching for matchings between Cam1 and Cam3'); [cam3_1Matches,cam3_1depthProj,cam3_1colorProj] = Find3DMatches( ... pc1, pc3, T1_3, cam3.depthProj, cam3.colorProj, minDist3D); save(matchingResultsFile,'cam3_1Matches', ... 'cam3_1depthProj','cam3_1colorProj','-append'); disp('Searching for matchings between Cam2 and Cam3'); [cam3_2Matches,cam3_2depthProj,cam3_2colorProj] = Find3DMatches( ... pc2, pc3, T2_3, cam3.depthProj, cam3.colorProj, minDist3D); save(matchingResultsFile,'cam3_2Matches', ... 'cam3_2depthProj','cam3_2colorProj','-append'); end if camCount > 3 disp('Searching for matchings between Cam1 and Cam4'); [cam4_1Matches,cam4_1depthProj,cam4_1colorProj] = Find3DMatches( ... pc1, pc4, T1_4, cam4.depthProj, cam4.colorProj, minDist3D); save(matchingResultsFile,'cam4_1Matches', ... 'cam4_1depthProj','cam4_1colorProj','-append'); end
github
jrterven/MultiKinCalib-master
serverGetData.m
.m
MultiKinCalib-master/serverGetData.m
5,485
utf_8
2bdb052ce46ef892036d2609ccbc24c9
% Function: % serverGetData % % Description: % Communicates with remote clients via TCP/IP to obtain the calibration % points, pointcloud of the scene, and depth and color projections of the % 3D calibration points of the current frame % % Dependencies: % TCPIPCommands.mat: mat file with custom defined codes % % % Inputs: % TCPIPCons: TCP/IP connections % CapturePC: if true, the clients send all the data to the server and all % the data is returned by this function. % % Usage: % This function is called inside the dataAcq.m GUI KinectUpdate function. % When the user presses the "Start Acquisition" button, this function is % called repeatedly on each frame acquired from the Kinect. Each time % this function is called with the second parameter on false, the remote % clients save their data locally. When this function is called with the % second parameter on true, the remote clients send the data to the % server and this function returns the whole data. % % Returns: % dataSaved: if true, all the clients were able to collect data, if % false, an error ocurred. % camData: cell array of struct arrays with the data for each camera % Each element of the cell array contains the data of each camera saved % as a structure containing: % camPoints: calibration camera points on camera space % pointcloud: colored point cloud of the scene % depthProj: depth projections of point cloud % colorProj: color projections of point cloud % For example to access to the camPoints of camera 1 use: % camData{1}.camPoints % % Authors: % Diana M. Cordova % Juan R. Terven % % Date: 26-June-2016 function [dataSaved, camData] = serverGetData(TCPIPCons,CapturePC,pointcloudSize) load('TCPIPCommands.mat'); % Display input buffer size %disp(get(tcpipServer1,'InputBufferSize')); % Number of connections CON_NUM = size(tcpipServer1,2); % Send a capture command to all cameras ack = TCPIPbroadcastCommand(TCPIPCons,CON_NUM, CAPTURE, 'capturing'); % If communication error if ack == false disp('Comunication Error on CAPTURE command!!'); dataSaved = false; return; end % At this point, all the cameras capture a frame % Check if all have valid data resp = TCPIPgetResponses(TCPIPCons, CON_NUM, 'No valid Kinect frame'); % Before processing the data, we need to make sure that a valid % frame was acquired on all the cameras if resp == VALID_FRAME % if valid frame on all cameras % Send a process command to all cameras ack = TCPIPbroadcastCommand(TCPIPCons, CON_NUM, PROCESS, 'processing frame'); if ack == false disp('Comunication Error on PROCESS command!!'); dataSaved = false; return; end % At this point, all the cameras are processing its own frame % searching for the balls % Check if all have found the six balls resp = TCPIPgetResponses(TCPIPCons, CON_NUM, ... ['Not found ' num2str(pointsOnStick) ' balls']); if resp == VALID_FRAME % if all cameras found the six balls % Send a save command to all cameras ack = TCPIPbroadcastCommand(TCPIPCons, CON_NUM, SAVE, 'saving frame'); if ack == false dataSaved = false; return; end % if we want to collect all the data from the clients if CapturePC % Get remote camPoints, pointclouds, depthProj, and % colorProj camPointsMetDat = whos('camPoints'); camDataSize = camPointsMetDat.size; depthProjMetDat = whos('depthProj'); depthProjSize = depthProjMetDat.size; colorProjMetDat = whos('colorProj'); colorProjSize = colorProjMetDat.size; [camPoints, pc, depthPr, colorPr] = getCalibDataFromClient(TCPIPCons, ... CON_NUM, camDataSize, pointcloudSize, ... depthProjSize,colorProjSize); if CON_NUM > 1 cam2 = struct('camPoints',camPoints{1}, ... 'pointcloud',pc{1}, 'depthProj',depthPr{1}, ... 'colorProj',colorPr{1}); camData{2} = cam2; end if CON_NUM > 2 cam3 = struct('camPoints',camPoints{2}, ... 'pointcloud',pc{2}, 'depthProj',depthPr{2}, ... 'colorProj',colorPr{2}); camData{3} = cam3; end if CON_NUM > 3 cam4 = struct('camPoints',camPoints{3}, ... 'pointcloud',pc{3},'depthProj',depthPr{3}, ... 'colorProj',colorPr{3}); camData{4} = cam4; end end else dataSaved = false; return; end else % if some client were not able to capture data dataSaved = false; return; end end
github
jrterven/MultiKinCalib-master
PreCalib.m
.m
MultiKinCalib-master/PreCalib.m
2,907
utf_8
910358ae66170af3240c5f499dc9fd3d
% function: % [Rs, ts, T] = PreCalib(camNum,dataAcqFile) % % Description: % Perform a pre-calibration of the extrinsic parameters between a pair of % Kinect cameras. % % Dependencies: % - function CostFunPreCalib: this function is the one we wish to % minimize. % - file 'calibParameters.mat' created with proj0_ServerMultiKinectCalib. % From this file we use the variables: 'dataDir', 'minFunType', 'pointsToConsider' % - file dataAcqFile created with proj01_ServerCapturePointsFromCalibObject.m % From this file we get the calibration camera points of the camera % we wish to calibrate i.e. cam2.camPoints, cam3.camPoints, etc. % % Inputs: % - camNum: Number of camera to calibrate wrt the reference camera % - file dataAcqFile % % Usage: % % Return: % - Rs, ts: Estimation of the extrinsic parameters of the camNum wrt the % reference camera. % - T: 4x4 transformation matrix composed by Rs and Tt % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 function [Rs, ts, T] = PreCalib(camA,camB,dataAcqFile) % Load calibration parameters: %'dataDir', 'minFunType', 'pointsToConsider' load('calibParameters.mat'); load(dataAcqFile); %% Calibrate Depth Camera R = eye(3); t = [0,0,0]; % Extract the data from the structures located in dataAcqFile if camA == 1 XwA = cam1.camPoints; elseif camA == 2 XwA = cam2.camPoints; elseif camA == 3 XwA = cam3.camPoints; elseif camA == 4 XwA = cam4.camPoints; end if camB == 1 XwB = cam1.camPoints; elseif camB == 2 XwB = cam2.camPoints; elseif camB == 3 XwB = cam3.camPoints; elseif camB == 4 XwB = cam4.camPoints; end if strcmp(minFunType,'pointReg') if pointsToConsider ~= -1 XwA = XwA(1:pointsToConsider,:); XwB = XwB(1:pointsToConsider,:); end [Rs,ts] = rigid_transform_3D(XwA, XwB); rmse = calculateRegistrationError(XwA',XwB',Rs,ts); disp(['RMSE of Precalibration:' num2str(rmse)]); elseif strcmp(minFunType,'fsolve') % Generates a file with variables for the cost function save([dataDir '/variablesForCostFunPreCalib.mat'],'camNum','Xw1','Xw2'); x0 = [0, 0, 0, t(1), t(2), t(3)]; options = optimset('MaxFunEvals',100000,'TolFun',1e-100,'TolX',1e-100, 'MaxIter', 10000); x = fsolve('proj02_CostFunPreCalib',x0,options); Reul = [x(1) x(2) x(3)]; Rx=[1 0 0;0 cos(Reul(1)) sin(Reul(1));0 -sin(Reul(1)) cos(Reul(1))]; Ry=[cos(Reul(2)) 0 -sin(Reul(2));0 1 0;sin(Reul(2)) 0 cos(Reul(2))]; Rz=[cos(Reul(3)) sin(Reul(3)) 0;-sin(Reul(3)) cos(Reul(3)) 0;0 0 1]; Rs = Rx*Ry*Rz; ts = [x(4); x(5); x(6)]; else disp('Invalid minimization function: only supports pointReg or fsolve'); end % Test if it is a valid rotation matrix disp('R:'), disp(Rs) disp('Rotation determinant:') det(Rs) disp('t='), disp(ts) T = [Rs ts; 0 0 0 1];
github
jrterven/MultiKinCalib-master
Step05_FinalCalibration.m
.m
MultiKinCalib-master/Step05_FinalCalibration.m
3,117
utf_8
5fc8cf44653153f6b7d0f3261fcfe232
% function: % Step05_FinalCalibration(camCount,preCalibResultsFile,initIntrinsicsFile,finalCalibResults) % % Description: % Perform the final calibration of all the cameras using a non-linear % optimization. % % Dependencies: % - function FinalCalibration: performs the calibration of a single % camera. % - file 'calibParameters.mat' created with proj0_ServerMultiKinectCalib. % From this file we use the variables: 'dataDir', 'minFunType', 'pointsToConsider' % % Inputs: % - camCount: Number of cameras to calibrate % - preCalibResultsFile: name of the output file containing the results % of the pre-calibration % - initIntrinsicsFile: out file with the estimated intrinsic parameters. % % Return: % Save the results on the finalCalibResults specified in the arguments % % Authors: % Diana M. Cordova % Juan R. Terven % Date: Feb-2016 function Step05_FinalCalibration(camCount,preCalibResultsFile,initIntrinsicsFile,finalCalibResults) disp('Step 4: Final Joint Calibration'); % Calibrate camera 1 disp('Calibrating Depth camera 1...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 1, 'depth'); save(finalCalibResults,'-struct','result1'); % Save results on .mat disp('Calibrating Color camera 1...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 1, 'color'); save(finalCalibResults,'-struct','result1','-append'); if camCount > 1 % Calibrate camera 2 disp('Calibrating Depth camera 2...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 2, 'depth'); save(finalCalibResults,'-struct','result1','-append'); disp('Calibrating Color camera 2...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 2, 'color'); save(finalCalibResults,'-struct','result1','-append'); end if camCount > 2 % Calibrate camera 3 disp('Calibrating Depth camera 3...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 3, 'depth'); save(finalCalibResults,'-struct','result1','-append') disp('Calibrating Color camera 3...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 3, 'color'); save(finalCalibResults,'-struct','result1','-append') end if camCount > 3 % Calibrate camera 4 disp('Calibrating Depth camera 4...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 4, 'depth'); save(finalCalibResults,'-struct','result1','-append'); disp('Calibrating Color camera 4...') [result1, result2] = FinalCalibration(preCalibResultsFile, ... initIntrinsicsFile, 4, 'color'); save(finalCalibResults,'-struct','result1','-append') end
github
jrterven/MultiKinCalib-master
S05_costFunVec.m
.m
MultiKinCalib-master/S05_costFunVec.m
5,888
utf_8
210560ea349880160a178c88cb754faf
% Function: % proj05_costFunVec % % Description: % Function that we wish to minimize. % % Dependencies: % - calibParameters.mat: file with variables defined in proj0_Multi_Kinect_Calibration.m % such as: dataDir, distortRad, distortTan, withSkew % - matchingResults.mat: file containing the 3D matching points % (cam2_1Matches, cam3_1Matches, etc)and 2D projections % (cam2_1depthProj, cam2_1colorProj, etc) % - variablesForCostFun.mat: file with variables 'camNum','camType' % created in proj05_FinalCalibration. % % Inputs: % x0: parameters that we wish to find by minimizing the function f % % Usage: % This function is called by an optimization function such as fsolve, % lsqnonlin, fmincon % % Results: % find the values of x0 that minimize f % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 function fun = proj05_costFunVec(x0) persistent X3d x2d distRad distTan height width with_skew; % The first iteration loads the data if isempty(X3d) X3d = []; x2d = []; % Load dataDir, distortRad, distortTan, withSkew load('calibParameters.mat'); distRad = distortRad; distTan = distortTan; with_skew = withSkew; % Load variables camNum and camType load([dataDir '/variablesForCostFun.mat']); if camNum == 1 load(dataAcqFile) else % Load the point clouds: cam2_1Matches, cam3_1Matches, etc load(matchingResultsFile); end if strcmp(camType, 'depth') height = 424; width = 512; elseif strcmp(camType, 'color') height = 1080; width = 1920; end % Get the 3D points from the matching results % 3D points as a 3 x n matrix if camNum == 1 X3d = (cam1.pointcloud(1:100:end,:))'; % 2D points as a 2 x n matrix if strcmp(camType, 'depth') x2d = double(cam1.depthProj(1:100:end,:))'; elseif strcmp(camType, 'color') x2d = double(cam1.colorProj(1:100:end,:))'; end elseif camNum == 2 X3d = cam2_1Matches'; % 2D points as a 2 x n matrix if strcmp(camType, 'depth') x2d = double(cam2_1depthProj)'; elseif strcmp(camType, 'color') x2d = double(cam2_1colorProj)'; end elseif camNum == 3 X3d = cam3_1Matches'; if strcmp(camType, 'depth') x2d = double(cam3_1depthProj)'; elseif strcmp(camType, 'color') x2d = double(cam3_1colorProj)'; end elseif camNum == 4 X3d = cam4_1Matches'; if strcmp(camType, 'depth') x2d = double(cam4_1depthProj)'; elseif strcmp(camType, 'color') x2d = double(cam4_1colorProj)'; end end % Remove outliers from X3d in both matrices % Find columns with invalid values x2dValidCols = ~any( isnan( x2d ) | isinf( x2d ) | x2d > width | x2d < 0, 1 ); x3dValidCols = ~any( isnan( X3d ) | isinf( X3d ) | X3d > 8, 1 ); validCols = x2dValidCols & x3dValidCols; x2d = x2d(:,validCols); X3d = X3d(:,validCols); % x2d(:,any(X3d > 8)) = []; % remove columns with values greater than 8 meters % x2d(:,any(X3d == inf)) = []; % x2d(:,any(X3d == -inf)) = []; % % X3d(:,any(X3d > 8)) = []; % remove columns with values greater than 8 meters % X3d(:,any(X3d == inf)) = []; % X3d(:,any(X3d == -inf)) = []; % % % Now remove outliers from x2d in both matrices % X3d(:,any(x2d > width)) = []; % X3d(:,any(x2d < 0)) = []; % remove columns with negative values % X3d(:,any(x2d == inf)) = []; % X3d(:,any(x2d == -inf)) = []; % % x2d(:,any(x2d > width)) = []; % x2d(:,any(x2d < 0)) = []; % remove columns with negative values % x2d(:,any(x2d == inf)) = []; % x2d(:,any(x2d == -inf)) = []; end f = x0(1); % focal length cx = x0(2); % principal point cy = x0(3); % Rotation R = eul2r(x0(4),x0(5),x0(6)); % Rx=[1 0 0;0 cos(x0(4)) sin(x0(4));0 -sin(x0(4)) cos(x0(4))]; % Ry=[cos(x0(5)) 0 -sin(x0(5));0 1 0;sin(x0(5)) 0 cos(x0(5))]; % Rz=[cos(x0(6)) sin(x0(6)) 0;-sin(x0(6)) cos(x0(6)) 0;0 0 1]; % R = Rx*Ry*Rz; % Translation t = [x0(7);x0(8);x0(9)]; if distRad == 2 k1 = x0(10); k2 = x0(11); if distTan p1 = x0(12); p2 = x0(13); end elseif distRad == 3 k1 = x0(10); k2 = x0(11); k3 = x0(12); if distTan p1 = x0(13); p2 = x0(14); end end if with_skew s = x0(end); else s = 0; end intrinsic = [f s cx; 0 f cy; 0 0 1]; N = size(X3d,2); Xw = X3d; xc = x2d; xc(2,:) = height - xc(2,:); % Apply extrinsic parameters proj = R * Xw + repmat(t,1,size(Xw,2)); % Apply Intrinsic parameters to get the projection proj = intrinsic * proj; proj = proj ./ repmat(proj(3,:),3,1); % Distortion correction if distRad > 0 u = proj(1,:); v = proj(2,:); ud=xc(1,:); vd=xc(2,:); r = sqrt((u-cx).^2 + (v-cy).^2); if distRad == 2 compRad(1,:) = 1 + k1*r.^2 + k2*r.^4; compRad(2,:) = 1 + k1*r.^2 + k2*r.^4; elseif distRad == 3 compRad(1,:) = 1 + k1*r.^2 + k2*r.^4 + k3*r.^6; compRad(2,:) = 1 + k1*r.^2 + k2*r.^4 + k3*r.^6; end compTan = zeros(2,size(u,2)); if distTan compTan(1,:) = 2*p1*(u-cx).*(v-cy) + p2*(r.^2+2*(u-cx).^2); compTan(2,:) = p1*(r.^2+2*(v-cy).^2) + 2*p2*(u-cx).*(v-cy); end % Reprojection error with distortion fun(1,:)= ((u-cx).*compRad(1,:) + compTan(1,:)) - (ud-cx); fun(2,:)= ((v-cy).*compRad(2,:) + compTan(2,:)) -(vd-cy); else % Reprojection error without distortion fun = proj(1:2,:) - xc; end % Display the reproyection error err = fun .* fun; err = sum(err(:)); disp(sqrt(err/N));
github
jrterven/MultiKinCalib-master
CostFunPreCalib.m
.m
MultiKinCalib-master/CostFunPreCalib.m
1,477
utf_8
9c3ffd29db0967fdf9a090a3c1e168a1
% Function: % CostFunPreCalib % % Description: % Function that we wish to minimize using proj02_PreCalib % % Dependencies: % File: calibParameters.mat where we load the variables load dataDir and pointsToConsider % File: variablesForCostFunPreCalib.mat with the variables camNum, Xw1, Xw2 % % Inputs: % 1) x0: parameters that we wish to find by minimizing the function f % % Usage: % This function is called by the proj02_PreCalib script inside the optimization % function fsolve % % Results: % find the values of x0 that minimize f % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 % function f= CostFunPreCalib(x0) persistent Xw1s; persistent Xw2s; % Euler angles to Rotation matrix R = eul2r(x0(1),x0(2),x0(3)); t = [x0(4);x0(5);x0(6)]; % Load the data if isempty(Xw1s) % Load dataDir and pointsToConsider load('calibParameters.mat'); % Load camNum, Xw1, Xw2 load([dataDir '/variablesForCostFunPreCalib.mat']); Xw1s = Xw1'; Xw2s = Xw2'; if pointsToConsider ~= -1 Xw1s = Xw1s(:,1:pointsToConsider); Xw2s = Xw2s(:,1:pointsToConsider); end end pos_puntos_ref=[Xw1s(1,:)' Xw1s(2,:)' Xw1s(3,:)']; pos_puntos_cam=[Xw2s(1,:)' Xw2s(2,:)' Xw2s(3,:)']; f = []; for j=1:size(pos_puntos_ref,1) vec=pos_puntos_ref(j,:); comp=pos_puntos_cam(j,:); p_esp=(R*vec')+t; fun = comp - p_esp'; f=[fun'; f]; end e=mean(abs(f))
github
jrterven/MultiKinCalib-master
dataAcq.m
.m
MultiKinCalib-master/dataAcq.m
27,025
utf_8
077af366b281510066728625af90d1dd
function varargout = dataAcq(varargin) % DATAACQ MATLAB code for dataAcq.fig % DATAACQ, by itself, creates a new DATAACQ or raises the existing % singleton*. % % H = DATAACQ returns the handle to a new DATAACQ or the handle to % the existing singleton*. % % DATAACQ('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in DATAACQ.M with the given input arguments. % % DATAACQ('Property','Value',...) creates a new DATAACQ or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before dataAcq_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to dataAcq_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help dataAcq % Last Modified by GUIDE v2.5 05-Jun-2016 18:43:59 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @dataAcq_OpeningFcn, ... 'gui_OutputFcn', @dataAcq_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before dataAcq is made visible. function dataAcq_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to dataAcq (see VARARGIN) % Choose default command line output for dataAcq handles.output = hObject; % Create timer handles.timer = timer('ExecutionMode','fixedRate',... 'Period', 0.1,... 'TimerFcn', {@KinectUpdate,handles}); % Update handles structure guidata(hObject, handles); set(handles.buttonStopKinects,'Visible','Off'); set(handles.buttonStartAcq,'Enable','Off'); set(handles.buttonStopAcq,'Visible','Off'); set(handles.buttonSaveReference,'Enable','Off'); set(handles.buttonClearReference,'Visible','Off'); % Reference not ready setappdata(handles.axesCam1,'refAReady',false); % Acquistion = false setappdata(handles.buttonStartAcq,'Acquisition',false); % local adquisitions empty setappdata(handles.buttonStartAcq,'camPoints',[]); % Clear the image axes clearImg = ones(1080,1920) * 255; imshow(clearImg, 'Parent', handles.axesCam1); % Get setup data role = getappdata(0,'role'); camCount = getappdata(0,'camCount'); countImagesToSave = getappdata(0,'countImagesToSave'); set(handles.editCams,'string',num2str(camCount)); set(handles.editAcqs,'string',num2str(countImagesToSave)); if strcmp(role,'client') clientId = getappdata(0,'clientId'); set(handles.textRole,'string',[role ' ' num2str(clientId)]); serverIP = getappdata(0,'serverIP'); set(handles.editServerIP,'string',serverIP); % set(handles.buttonStartKinects,'Enable','Off'); else % Display 'server' role set(handles.textRole,'string',role); % Display local IP address address = java.net.InetAddress.getLocalHost; IPaddress = char(address.getHostAddress); set(handles.editServerIP,'string',IPaddress); end % Save the number of connections setappdata(handles.figure1,'connections',0); % UIWAIT makes dataAcq wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = dataAcq_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in buttonStartKinects. function buttonStartKinects_Callback(hObject, eventdata, handles) % hObject handle to buttonStartKinects (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) addpath('Kin2/Mex'); k2 = Kin2('color','depth','infrared'); %imgWidth = 512; imgHeight = 424; outOfRange = 4000; setappdata(handles.axesCam1,'k2',k2); start(handles.timer) %disp('Timer activated') set(handles.buttonStartKinects,'Visible','Off'); set(handles.buttonStopKinects,'Visible','On'); set(handles.buttonSaveReference,'Enable','On'); % Save reference flag to false setappdata(handles.axesCam1,'refAReady',false); function KinectUpdate(obj,event,handles) k2 = getappdata(handles.axesCam1,'k2'); refAReady = getappdata(handles.axesCam1,'refAReady'); % Get frames from Kinect and save them on underlying buffer validData = k2.updateData; % Before processing the data, we need to make sure that a valid % frame was acquired. if validData % Copy data to Matlab matrices %depth = k2.getDepth; colorImg = k2.getColor; infrared = k2.getInfrared; % If not reference ready if ~refAReady % Search the infrared marker on the infrared image [refAw, refAc] = findPointAfromInfrared(k2, infrared); % and save it setappdata(handles.axesCam1,'refAw',refAw); setappdata(handles.axesCam1,'refAc', refAc); % If the reference is ready, get it from memory else refAw = getappdata(handles.axesCam1,'refAw'); refAc = getappdata(handles.axesCam1,'refAc'); end % Read the acqusition flag (see if acquisition is activated) acquisition = getappdata(handles.buttonStartAcq,'Acquisition'); % If no acquisition activated if ~acquisition % Plot the infrared marker on the color image colorImg = insertShape(colorImg,'FilledCircle',[refAc 10],'color','yellow'); % If acquisition activated, % get parameters else role = getappdata(0,'role'); pointsOnStick = getappdata(0,'pointsOnStick'); sizeStick = getappdata(0,'sizeStick'); refAw = getappdata(handles.axesCam1,'refAw'); pointcloudSize = getappdata(handles.buttonConnect,'pointcloudSize'); % if this computer is the server if strcmp(role,'server') % Get the TCPIP connections TCPIPCons = getappdata(handles.buttonConnect,'TCPIPCons'); % Get the location of the calibration points in color space % returns points as a 6x2 matrix in the case of six balls or 3x2 in % the case of three balls [validBalls, points] = trackCalibPoints(k2,colorImg, ... pointsOnStick, refAw, sizeStick); if validBalls % Plot the balls in color colorImg = insertShape(colorImg,'FilledCircle',points(1,:),'color','yellow'); %plot(points(1,1),points(1,2),'y*', 'MarkerSize',15) colorImg = insertShape(colorImg,'FilledCircle',points(2,:),'color','blue'); %plot(points(2,1),points(2,2),'b*','MarkerSize',15) colorImg = insertShape(colorImg,'FilledCircle',points(3,:),'color','cyan'); %plot(points(3,1),points(3,2),'c*','MarkerSize',15) if pointsOnStick == 6 plot(points(4,1),points(4,2),'k*','MarkerSize',15) plot(points(5,1),points(5,2),'g*','MarkerSize',15) plot(points(6,1),points(6,2),'m*','MarkerSize',15) end % read the desired number of acquisitions from GUI maxAcqs = str2double(get(handles.editAcqs,'String')); % read the current number of acquistions camPoints = getappdata(handles.buttonStartAcq,'camPoints'); currAcqs = size(camPoints,1); finishAcq = false; % flag indicating finishing acquisition % if the number of acquisitions is less than the % desired acquisitions, send to clients a command % gather data and save it locally if currAcqs < (maxAcqs - 1) % Send a command to get the calibration points on % camera space from on each remote camera [dataSaved, ~] = serverGetData(TCPIPCons,false,pointcloudSize); % if the current number of acquisitions reached the % desired acquistions fetch all the data from the % clients else %camData is a cell array of struct arrays with the % data from each remote camera. Each element of the % cell array is a structure with the following fields: % camPoints: calibration camera points on camera space % pointcloud: colored point cloud of the scene % depthProj: depth projections of point cloud % colorProj: color projections of point cloud % As an example to access to the camPoints of camera 1 use: % camData{1}.camPoints [dataSaved, camData] = serverGetData(TCPIPCons,false,pointcloudSize); if dataSaved, finishAcq = true; end end if dataSaved % Accumulate local data points in camera space. These are % the calibration points in camera space (n x 3) camPoints = [camPoints; k2.mapColorPoints2Camera(points)]; setappdata(handles.buttonStartAcq,'camPoints',camPoints); % update the number of acquisitions acqs = size(camPoints,1); set(handles.textAcquisitions,'String',num2str(acqs)); if finishAcq % Get the local pointcloud pointcloud = k2.getPointCloud; % Get the pointcloud's projections on depth space depthProj = k2.mapCameraPoints2Depth(pointcloud); % Get the pointcloud's projections on color space colorProj = k2.mapCameraPoints2Color(pointcloud); % Save all the data into camData cam1 = struct('camPoints',camPoints,'pointcloud',pointcloud, ... 'depthProj', depthProj, 'colorProj', colorProj); camData{1} = cam1; setappdata(0,'camData',camData); end end end % if client else tcpipClient = getappdata(0,'tcpipClient'); end end imshow(colorImg, 'Parent', handles.axesCam1); end % --- Executes on button press in buttonStopKinects. function buttonStopKinects_Callback(hObject, eventdata, handles) % hObject handle to buttonStopKinects (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if isvalid(handles.timer) stop(handles.timer); end % Delete Kinect object k2 = getappdata(handles.axesCam1,'k2'); k2.delete; setappdata(handles.axesCam1,'k2',k2); set(handles.buttonStartKinects,'Visible','On'); set(handles.buttonStopKinects,'Visible','Off'); % --- Executes when user attempts to close figure1. function figure1_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if isvalid(handles.timer) stop(handles.timer); delete(handles.timer); end clear handles.timer; % Hint: delete(hObject) closes the figure delete(hObject); function editCams_Callback(hObject, eventdata, handles) % hObject handle to editCams (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editCams as text % str2double(get(hObject,'String')) returns contents of editCams as a double % --- Executes during object creation, after setting all properties. function editCams_CreateFcn(hObject, eventdata, handles) % hObject handle to editCams (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function editAcqs_Callback(hObject, eventdata, handles) % hObject handle to editAcqs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editAcqs as text % str2double(get(hObject,'String')) returns contents of editAcqs as a double % --- Executes during object creation, after setting all properties. function editAcqs_CreateFcn(hObject, eventdata, handles) % hObject handle to editAcqs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in buttonStartAcq. function buttonStartAcq_Callback(hObject, eventdata, handles) % hObject handle to buttonStartAcq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.buttonStartAcq,'Enable','Off'); setappdata(handles.buttonStartAcq,'Acquisition',true); % --- Executes on button press in buttonSaveExit. function buttonSaveExit_Callback(hObject, eventdata, handles) % hObject handle to buttonSaveExit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Stop timer if isvalid(handles.timer) stop(handles.timer); delete(handles.timer); end % Close network connections, if any closeConnections(handles); %figure(main) close(dataAcq) function closeConnections(handles) role = getappdata(0,'role'); connections = getappdata(handles.figure1,'connections'); TCPIPCons = getappdata(handles.buttonConnect,'TCPIPCons'); % close the server connections if strcmp(role,'server') if connections == 1 %tcpipServer1 = getappdata(0,'tcpipServer1'); fclose(TCPIPCons{1}); end if connections == 2 %tcpipServer2 = getappdata(0,'tcpipServer2'); fclose(TCPIPCons{2}); end if connections == 3 %tcpipServer3 = getappdata(0,'tcpipServer3'); fclose(TCPIPCons{3}); end % if client, close client connection else if connections == 1 tcpipClient = getappdata(0,'tcpipClient'); fclose(tcpipClient); end end % --- Executes on button press in buttonCancel. function buttonCancel_Callback(hObject, eventdata, handles) % hObject handle to buttonCancel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Shutdown timer if isvalid(handles.timer) stop(handles.timer); delete(handles.timer); end % Close network connections, if any closeConnections(handles); figure(main) close(dataAcq) % --- Executes on button press in buttonStopAcq. function buttonStopAcq_Callback(hObject, eventdata, handles) % hObject handle to buttonStopAcq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes during object creation, after setting all properties. function figure1_CreateFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called %setappdata(hObject,'Initialization',false); function editServerIP_Callback(hObject, eventdata, handles) % hObject handle to editServerIP (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of editServerIP as text % str2double(get(hObject,'String')) returns contents of editServerIP as a double % --- Executes during object creation, after setting all properties. function editServerIP_CreateFcn(hObject, eventdata, handles) % hObject handle to editServerIP (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu1 % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popupmenu2. function popupmenu2_Callback(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu2 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu2 % --- Executes during object creation, after setting all properties. function popupmenu2_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in buttonConnect. function buttonConnect_Callback(hObject, eventdata, handles) % hObject handle to buttonConnect (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.buttonConnect,'Enable','Off'); depth_width = 512; depth_height = 424; pointcloud = zeros(depth_height*depth_width,3); pcMetDat = whos('pointcloud'); pointcloudSize = pcMetDat.size; % Save pointcloud setappdata(handles.buttonConnect,'pointcloud',pointcloud); setappdata(handles.buttonConnect,'pointcloudSize',pointcloudSize); role = getappdata(0,'role'); camCount = getappdata(0,'camCount') - 1; % Set the number of external clients (cameras), max = 3 (3 clients + % server) CON_NUM = camCount; % 1 client + server = 2 Kinects % Load Camera Network Commands and port numbers load('TCPIPCommands.mat'); connections = 0; % If the current computer is the Server if strcmp(role,'server') TCPIPCons = cell(0); % Start a TCP/IP server socket in MATLAB. % By setting the IP address to '0.0.0.0' the server socket will accept % connections on the specified port % (arbitrarily chosen to be 55000 in our case) from any IP address. % You can restrict the TCP/IP server socket to only accept incoming % connections from a specific IP address by explicitly specifying the IP address. if CON_NUM > 0 tcpipServer1 = tcpip('0.0.0.0',PORT1,'NetworkRole','Server'); set(tcpipServer1,'OutputBufferSize',8); % sending one double (8 bytes) set(tcpipServer1,'InputBufferSize',pcMetDat.bytes); % receive complete pointcloud set(tcpipServer1,'Timeout',60); % Save server1 setappdata(0,'tcpipServer1',tcpipServer1); % Open the server socket and wait indefinitely for a connection. % This line will cause MATLAB to wait until an incoming connection is established. disp('TCP Server ready') disp('Waiting for client 1 ...') fopen(tcpipServer1); TCPIPCons{1} = tcpipServer1; disp('Client 1 connected.') connections = 1; end % If we want more than one client, set up another connection if CON_NUM > 1 tcpipServer2 = tcpip('0.0.0.0',PORT2,'NetworkRole','Server'); set(tcpipServer2,'OutputBufferSize',8); % sending one double (8 bytes) set(tcpipServer2,'InputBufferSize',pcMetDat.bytes); % receive complete pointcloud set(tcpipServer2,'Timeout',30); % Save server2 setappdata(0,'tcpipServer2',tcpipServer2); disp('TCP Server ready') disp('Waiting for client 2...') fopen(tcpipServer2); TCPIPCons{2} = tcpipServer2; disp('Client 2 connected.') connections = 2; end if CON_NUM > 2 tcpipServer3 = tcpip('0.0.0.0',PORT3,'NetworkRole','Server'); set(tcpipServer3,'OutputBufferSize',8); % sending one double (8 bytes) set(tcpipServer3,'InputBufferSize',pcMetDat.bytes); % receive complete pointcloud set(tcpipServer3,'Timeout',30); % Save server3 setappdata(0,'tcpipServer3',tcpipServer3); disp('TCP Server ready') disp('Waiting for client 3...') fopen(tcpipServer3); TCPIPCons{3} = tcpipServer3; disp('Client 3 connected.'); connections = 3; end % Save the connections setappdata(handles.buttonConnect,'TCPIPCons',TCPIPCons); disp(size(TCPIPCons)) % If the computer is a client else % get the client ID clientId = getappdata(0,'clientId'); if clientId == 1 port = PORT1; elseif clientId == 2 port = PORT2; elseif clientId == 3 port = PORT3; end serverIP = get(handles.editServerIP,'string'); disp(['Trying to connect with server in ' serverIP]); % Create a MATLAB client connection to our MATLAB server socket. % The port number of the client must match that selected for the server. tcpipClient = tcpip(serverIP,port,'NetworkRole','Client'); set(tcpipClient,'InputBufferSize',8); set(tcpipClient,'OutputBufferSize',pcMetDat.bytes); set(tcpipClient,'Timeout',60); % Save client setappdata(0,'tcpipClient',tcpipClient); % Open a TCPIP connection to the server fopen(tcpipClient); disp('Connected to Server'); disp('Waiting for Commands'); connections = 1; end % if server % Save the number of connections setappdata(handles.figure1,'connections',connections); % --- Executes on button press in buttonSaveReference. function buttonSaveReference_Callback(hObject, eventdata, handles) % hObject handle to buttonSaveReference (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Update the flag setappdata(handles.axesCam1,'refAReady',true); % Hide the button and show the clear reference set(handles.buttonSaveReference,'Visible','Off'); set(handles.buttonClearReference,'Visible','On'); % Enable the start acquisition button if connections > 0 connections = getappdata(handles.figure1,'connections'); if connections > 0 set(handles.buttonStartAcq,'Enable','On'); end % --- Executes on button press in buttonClearReference. function buttonClearReference_Callback(hObject, eventdata, handles) % hObject handle to buttonClearReference (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Update the flag setappdata(handles.axesCam1,'refAReady',false); % Hide the button and show the Save reference set(handles.buttonSaveReference,'Visible','On'); set(handles.buttonClearReference,'Visible','Off'); % Disable the start acquisition button set(handles.buttonStartAcq,'Enable','Off');
github
jrterven/MultiKinCalib-master
Step02_PreCalibration.m
.m
MultiKinCalib-master/Step02_PreCalibration.m
2,122
utf_8
431aa2945f529d4c0f09faf5a8c64a1b
% function: % Step02_PreCalibration(camCount,dataAcqFile,preCalibResultsFile) % % Description: % Perform a pre-calibration of the extrinsic parameters of all the % Kinect cameras. % % Dependencies: % - function proj02_CostFunPreCalib: this function is the one we wish to % minimize. % - file 'calibParameters.mat' created with proj0_ServerMultiKinectCalib. % From this file we use the variables: 'dataDir', 'minFunType', 'pointsToConsider' % - file dataAcqFile created with proj01_ServerCapturePointsFromCalibObject.m % From this file we get the calibration camera points of the camera % we wish to calibrate i.e. cam2.camPoints, cam3.camPoints, etc. % % Inputs: % - camCount: Number of cameras to calibrate % - dataAcqFile: file containing the data from the acquisition step. % - preCalibResultsFile: name of the output file containing the results % of the pre-calibration % % Return: % Save the results on the preCalibResultsFile specified in the arguments % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 function Step02_PreCalibration(camCount,dataAcqFile,preCalibResultsFile) disp('Step 2: Pre-calibration'); % Estimate extrinsic parameters between camera 1 and camera 2 disp('Estimate extrinsic parameters between camera 1 and camera 2'); [R1_2, t1_2, T1_2] = PreCalib(1,2,dataAcqFile); save(preCalibResultsFile,'R1_2','t1_2'); if camCount > 2 % Estimate extrinsic parameters between camera 3 and camera 1 disp('Estimate extrinsic parameters between camera 1 and camera 3'); [R1_3, t1_3, T1_3] = PreCalib(1,3,dataAcqFile); save(preCalibResultsFile,'R1_3','t1_3', '-append'); disp('Estimate extrinsic parameters between camera 2 and 3'); [R2_3, t2_3, T2_3] = PreCalib(2,3,dataAcqFile); save(preCalibResultsFile,'R2_3','t2_3', '-append'); end if camCount > 3 % Estimate extrinsic parameters between camera 4 and camera 1 disp('Estimate extrinsic parameters between camera 1 and camera 4'); [R1_4, t1_4, T1_4] = PreCalib(1,4,dataAcqFile); save(preCalibResultsFile,'R1_4','t1_4', '-append'); end
github
jrterven/MultiKinCalib-master
Step03_Find3DMatches.m
.m
MultiKinCalib-master/Step03_Find3DMatches.m
1,484
utf_8
f9d34967041fa2644eb59f1ed0f5cad9
% function: % Find3DMatches % % Description: % Find 3D matches % % Dependencies: % % Inputs: % % Usage: % % Return: % % Authors: % Diana M. Cordova % Juan R. Terven % Date: 16-Jan-2016 % function [cam2_1Matches,cam2_1depthProj,cam2_1colorProj] = Find3DMatches(pc1, pc2, T2_1, ... cam2DepthProj, cam2ColorProj, minDist3D) % k2 = Kin2('color','depth'); % % while true % validData = k2.updateKin2; % % if validData % break; % end % pause(0.03); % end % Transform cam2 points to cam1 in order to find matches by distance pc2 = pc2'; pc2h = [pc2; ones(1,size(pc2,2))]; pc2_1 = T2_1 \ pc2h; pc2_1 = pc2_1(1:end-1,1:end); pc2_1 = pc2_1'; % Find matching points between camera 1 and 2 %disp('Searching for Matching Points between cameras'); [cam2_1Matches,cam2_1depthProj,cam2_1colorProj] = matching3DNN(pc1, pc2_1, cam2DepthProj, cam2ColorProj, minDist3D/1000); disp('Finish finding matching points'); % Transform the matches back to camera 2 and get its 2D projections % on the depth camera % cam2PCh = [cam2_1Matches'; ones(1,size(cam2_1Matches,1))]; % cam2PCh = T2_1 * cam2PCh; % cam2PCh = cam2PCh(1:end-1,1:end)'; % cam2_1depthProj = k2.mapCameraPoints2Depth(cam2PCh); % and the 2D projections on the color camera % cam2_1colorProj = k2.mapCameraPoints2Color(cam2PCh); % k2.delete; end
github
jrterven/MultiKinCalib-master
main.m
.m
MultiKinCalib-master/main.m
10,290
utf_8
f65a240ff77f3aa27e9b30e186ff884d
function varargout = main(varargin) % MAIN MATLAB code for main.fig % MAIN, by itself, creates a new MAIN or raises the existing % singleton*. % % H = MAIN returns the handle to a new MAIN or the handle to % the existing singleton*. % % MAIN('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MAIN.M with the given input arguments. % % MAIN('Property','Value',...) creates a new MAIN or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before main_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to main_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help main % Last Modified by GUIDE v2.5 18-Aug-2016 11:21:17 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @main_OpeningFcn, ... 'gui_OutputFcn', @main_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before main is made visible. function main_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to main (see VARARGIN) % Choose default command line output for main handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes main wait for user response (see UIRESUME) % uiwait(handles.figure1); displaySetupParams(handles); % --- Outputs from this function are returned to the command line. function varargout = main_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in buttonSetup. function buttonSetup_Callback(hObject, eventdata, handles) % hObject handle to buttonSetup (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) initialization % --- Executes on button press in buttonDataAcquisition. function buttonDataAcquisition_Callback(hObject, eventdata, handles) % hObject handle to buttonDataAcquisition (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) dataAcq % --- Executes on button press in buttonPreCalibration. function buttonPreCalibration_Callback(hObject, eventdata, handles) % hObject handle to buttonPreCalibration (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Step02_PreCalibration(camCount,dataAcqFile,preCalibResultsFile % --- Executes on button press in buttonMatching. function buttonMatching_Callback(hObject, eventdata, handles) % hObject handle to buttonMatching (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Step03_Matching(camCount,dataAcqFile,minDist3D,matchingResultsFile) % --- Executes on button press in buttonIntrinsicInit. function buttonIntrinsicInit_Callback(hObject, eventdata, handles) % hObject handle to buttonIntrinsicInit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Step04_IntrinsicParametersEstimation(camCount,dataAcqFile, ... preCalibResultsFile,matchingResultsFile,initIntrinsicsFile) % --- Executes on button press in buttonNonLinearOptim. function buttonNonLinearOptim_Callback(hObject, eventdata, handles) % hObject handle to buttonNonLinearOptim (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Step05_FinalCalibration(camCount,preCalibResultsFile,initIntrinsicsFile,finalCalibResults) % --- Executes on button press in buttonExit. function buttonExit_Callback(hObject, eventdata, handles) % hObject handle to buttonExit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close all function setupData = getSetupData() role = getappdata(0,'role'); % If server data if strcmp(role,'server') camCount = getappdata(0,'clientsCount') + 1; dataDir = getappdata(0,'dataDir'); countImagesToSave = getappdata(0,'countImagesToSave'); minDist3D = getappdata(0,'minDist3D'); withSkew = getappdata(0,'withSkew'); distortRad = getappdata(0,'distortRad'); distortTan = getappdata(0,'distortTan'); pointsOnStick = getappdata(0,'pointsOnStick'); sizeStick = getappdata(0,'sizeStick'); setupData = struct('role',role,'camCount',camCount, ... 'dataDir',dataDir,'countImagesToSave',countImagesToSave, ... 'minDist3D',minDist3D,'withSkew',withSkew, ... 'distortRad',distortRad,'distortTan',distortTan, ... 'pointsOnStick',pointsOnStick,'sizeStick',sizeStick); % If client data else clientId = getappdata(0,'clientId'); serverIP = getappdata(0,'serverIP'); setupData = struct('role',role,'clientId',clientId,'serverIP',serverIP); end function displaySetupParams(handles) setupDataAvail = getappdata(0,'setupDataAvail'); % If there is not setup data available if ~setupDataAvail role = 'server'; camCount = 2; dataDir = strrep(pwd,'\','/'); countImagesToSave = 10; minDist3D = 2; withSkew = logical(1); distortRad = 0; distortTan = logical(0); pointsOnStick = 3; sizeStick = 30; % Save data to root directory setappdata(0,'role',role); setappdata(0,'camCount',camCount); setappdata(0,'dataDir',dataDir); setappdata(0,'countImagesToSave',countImagesToSave); setappdata(0,'minDist3D',minDist3D); setappdata(0,'withSkew',withSkew); setappdata(0,'distortRad',distortRad); setappdata(0,'distortTan',distortTan); setappdata(0,'pointsOnStick',pointsOnStick); setappdata(0,'sizeStick',sizeStick); [patstr, name, ext] = fileparts(dataDir); dataDirToShow = name; sd = struct('role',role,'camCount',camCount, ... 'dataDir',dataDirToShow,'countImagesToSave',countImagesToSave, ... 'minDist3D',minDist3D,'withSkew',withSkew, ... 'distortRad',distortRad,'distortTan',distortTan, ... 'pointsOnStick',pointsOnStick,'sizeStick',sizeStick); else sd = getSetupData; end % If server msg = ''; if strcmp(sd.role,'server') [patstr, name, ext] = fileparts(sd.dataDir); dataDirToShow = name; msg = sprintf(['Computer Role: ' sd.role '\n' ... 'Cameras: ' num2str(sd.camCount) '\n' ... 'Images to save: ' num2str(sd.countImagesToSave) '\n' ... 'Output dir: ' dataDirToShow '\n' ... 'Matching distance: ' num2str(sd.minDist3D) '\n' ... 'Skew: ' logical2strYN(sd.withSkew) '\n' ... 'Radial dist coeff: ' num2str(sd.distortRad) '\n' ... 'Tangential dist: ' logical2strYN(sd.distortTan) '\n' ... 'Points on calib object: ' num2str(sd.pointsOnStick) '\n' ... 'Calib object length: ' num2str(sd.sizeStick) 'cm\n']); % if client else msg = sprintf(['Computer Role: ' sd.role '\n' ... 'Client Id: ' num2str(sd.clientId) '\n' ... 'Server IP: ' sd.serverIP '\n']); end set(handles.textSetupParams,'string',msg); function str = logical2strYN(l) if l str = 'yes'; else str = 'no'; end % --- Executes during object creation, after setting all properties. function uipanel1_CreateFcn(hObject, eventdata, handles) % hObject handle to uipanel1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- Executes during object creation, after setting all properties. function figure1_CreateFcn(hObject, eventdata, handles) % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Initialize setupDataAvailable variable setappdata(0,'setupDataAvail',false); % --- Executes on button press in buttonPointCloudVis. function buttonPointCloudVis_Callback(hObject, eventdata, handles) % hObject handle to buttonPointCloudVis (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)
github
jrterven/MultiKinCalib-master
initialization.m
.m
MultiKinCalib-master/initialization.m
24,418
utf_8
1bdaecd20777d065710faeed395badd0
function varargout = initialization(varargin) % INITIALIZATION MATLAB code for initialization.fig % INITIALIZATION, by itself, creates a new INITIALIZATION or raises the existing % singleton*. % % H = INITIALIZATION returns the handle to a new INITIALIZATION or the handle to % the existing singleton*. % % INITIALIZATION('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in INITIALIZATION.M with the given input arguments. % % INITIALIZATION('Property','Value',...) creates a new INITIALIZATION or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before initialization_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to initialization_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help initialization % Last Modified by GUIDE v2.5 30-May-2016 23:25:38 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @initialization_OpeningFcn, ... 'gui_OutputFcn', @initialization_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before initialization is made visible. function initialization_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to initialization (see VARARGIN) % Choose default command line output for initialization handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes initialization wait for user response (see UIRESUME) % uiwait(handles.figure1); initializeServerControls(handles) % --- Outputs from this function are returned to the command line. function varargout = initialization_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on selection change in listbox1. function listbox1_Callback(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns listbox1 contents as cell array % contents{get(hObject,'Value')} returns selected item from listbox1 sel_val=get(handles.listbox1,'value'); % If Server selected if sel_val==1 enableServerControls(handles) % Disable client controls set(handles.uipanel3,'visible','off'); set(handles.edit8,'string',''); set(handles.edit9,'string',''); % Display the IP address address = java.net.InetAddress.getLocalHost; IPaddress = char(address.getHostAddress); set(handles.text20,'string',IPaddress); % Else if Client selected else set(handles.uipanel3,'visible','on'); disableServerControls(handles) clearServerControls(handles) end function initializeServerControls(handles) % Initial values set(handles.edit1,'string','1'); set(handles.edit3,'string',pwd); set(handles.edit4,'string','10'); set(handles.edit5,'string','2'); set(handles.edit6,'string','3'); set(handles.edit7,'string','60'); set(handles.checkbox1,'value',0); set(handles.checkbox3,'value',1); address = java.net.InetAddress.getLocalHost; IPaddress = char(address.getHostAddress); set(handles.text20,'string',IPaddress); function clearServerControls(handles) set(handles.edit1,'string',''); set(handles.edit3,'string',''); set(handles.edit4,'string',''); set(handles.edit5,'string',''); set(handles.edit6,'string',''); set(handles.edit7,'string',''); set(handles.checkbox1,'value',0); set(handles.checkbox3,'value',0); set(handles.text20,'string',''); function disableServerControls(handles) set(handles.edit1,'enable','off'); set(handles.edit3,'enable','off'); set(handles.edit4,'enable','off'); set(handles.edit5,'enable','off'); set(handles.edit6,'enable','off'); set(handles.edit7,'enable','off'); set(handles.checkbox3,'enable','off'); set(handles.popupmenu1,'enable','off'); set(handles.checkbox1,'enable','off'); function enableServerControls(handles) set(handles.edit1,'enable','on'); set(handles.edit3,'enable','on'); set(handles.edit4,'enable','on'); set(handles.edit5,'enable','on'); set(handles.edit6,'enable','on'); set(handles.edit7,'enable','on'); set(handles.checkbox3,'enable','on'); set(handles.popupmenu1,'enable','on'); set(handles.checkbox1,'enable','on'); % --- Executes during object creation, after setting all properties. function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit3_Callback(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit3 as text % str2double(get(hObject,'String')) returns contents of edit3 as a double % --- Executes during object creation, after setting all properties. function edit3_CreateFcn(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit4_Callback(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit4 as text % str2double(get(hObject,'String')) returns contents of edit4 as a double % --- Executes during object creation, after setting all properties. function edit4_CreateFcn(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit5_Callback(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit5 as text % str2double(get(hObject,'String')) returns contents of edit5 as a double % --- Executes during object creation, after setting all properties. function edit5_CreateFcn(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit6_Callback(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit6 as text % str2double(get(hObject,'String')) returns contents of edit6 as a double % --- Executes during object creation, after setting all properties. function edit6_CreateFcn(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit7_Callback(hObject, eventdata, handles) % hObject handle to edit7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit7 as text % str2double(get(hObject,'String')) returns contents of edit7 as a double % --- Executes during object creation, after setting all properties. function edit7_CreateFcn(hObject, eventdata, handles) % hObject handle to edit7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in togglebutton1. function togglebutton1_Callback(hObject, eventdata, handles) % hObject handle to togglebutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton1 function edit8_Callback(hObject, eventdata, handles) % hObject handle to edit8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit8 as text % str2double(get(hObject,'String')) returns contents of edit8 as a double % --- Executes during object creation, after setting all properties. function edit8_CreateFcn(hObject, eventdata, handles) % hObject handle to edit8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % read the value from listbox to determine if it was server or client sel_val=get(handles.listbox1,'value'); % If Server selected if sel_val==1 % Save data to root directory setappdata(0,'role','server'); setappdata(0,'clientsCount',str2double(get(handles.edit1,'string'))); dataDir = strrep(get(handles.edit3,'string'),'\','/'); setappdata(0,'dataDir',dataDir); setappdata(0,'countImagesToSave',str2double(get(handles.edit4,'string'))); setappdata(0,'minDist3D',str2double(get(handles.edit5,'string'))); setappdata(0,'withSkew',logical(get(handles.checkbox3,'value'))); contentsDistortRadMenu = cellstr(get(handles.popupmenu1,'string')); distortRad = str2double(contentsDistortRadMenu{get(handles.popupmenu1,'Value')}); setappdata(0,'distortRad',distortRad); setappdata(0,'distortTan',get(handles.checkbox1,'value')); setappdata(0,'pointsOnStick',str2double(get(handles.edit6,'string'))); setappdata(0,'sizeStick',str2double(get(handles.edit7,'string'))); % if client selected else setappdata(0,'role','client'); setappdata(0,'clientId',str2double(get(handles.edit9,'string'))); setappdata(0,'serverIP',get(handles.edit8,'string')); end setappdata(0,'setupDataAvail',true); %on another GUI you want to get the slider properties %h=findall(0,'tag','textSetupParams'); h = findobj('tag','textSetupParams'); set(h,'String',' '); figure(main) close(initialization) % --- Executes on button press in checkbox1. function checkbox1_Callback(hObject, eventdata, handles) % hObject handle to checkbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox1 % --- Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu1 % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in checkbox3. function checkbox3_Callback(hObject, eventdata, handles) % hObject handle to checkbox3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox3 % --- Executes on button press in togglebutton2. function togglebutton2_Callback(hObject, eventdata, handles) % hObject handle to togglebutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton2 function edit9_Callback(hObject, eventdata, handles) % hObject handle to edit9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit9 as text % str2double(get(hObject,'String')) returns contents of edit9 as a double % --- Executes during object creation, after setting all properties. function edit9_CreateFcn(hObject, eventdata, handles) % hObject handle to edit9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit10_Callback(hObject, eventdata, handles) % hObject handle to edit10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit10 as text % str2double(get(hObject,'String')) returns contents of edit10 as a double % --- Executes during object creation, after setting all properties. function edit10_CreateFcn(hObject, eventdata, handles) % hObject handle to edit10 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton2. function pushbutton2_Callback(hObject, eventdata, handles) % hObject handle to pushbutton2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %[filename, pathname]=uiputfile('*.jpeg;*.jpg;*.tiff;*.gif;*.bmp;*.png;*.hdf;*.pcx;*.xwd;*.ico;*.cur;*.ras;*.pbm;*.pgm;*.ppm;', 'Save image'); folder_name = uigetdir; set(handles.edit3,'string',folder_name); % --- Executes on button press in pushbutton3. function pushbutton3_Callback(hObject, eventdata, handles) % hObject handle to pushbutton3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) figure(main) close(initialization) % --- Executes on button press in pushbutton4. function pushbutton4_Callback(hObject, eventdata, handles) % hObject handle to pushbutton4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [file,path] = uiputfile('*.mat','Save Setup As'); [patstr, name, ext] = fileparts(file); if strcmp(ext,'.mat') == 0 errordlg('The file must be a .mat') else % read the value from listbox to determine if it was server or client sel_val=get(handles.listbox1,'value'); % If Server selected if sel_val==1 % get data from controls role ='server'; camCount = str2double(get(handles.edit1,'string')); countImagesToSave = str2double(get(handles.edit4,'string')); dataDir = get(handles.edit3,'string'); minDist3D = str2double(get(handles.edit5,'string')); withSkew = logical(get(handles.checkbox3,'value')); contentsDistortRadMenu = cellstr(get(handles.popupmenu1,'string')); distortRad = str2double(contentsDistortRadMenu{get(handles.popupmenu1,'Value')}); distortRadVal = get(handles.popupmenu1,'Value'); distortTan = get(handles.checkbox1,'value'); pointsOnStick = get(handles.edit6,'string'); sizeStick = str2double(get(handles.edit7,'string')); % Save the variables in output file save([path file],'role','camCount','countImagesToSave','dataDir', ... 'minDist3D','withSkew','distortRad','distortRadVal', ... 'distortTan','pointsOnStick','sizeStick'); % if client selected else role = 'client'; clientId = str2double(get(handles.edit9,'string')); serverIP = get(handles.edit8,'string'); % Save the variables in output file save([path file],'role','clientId','serverIP'); end msgbox(['File Saved: ' path file],'File Saved') end % --- Executes on button press in pushbutton5. function pushbutton5_Callback(hObject, eventdata, handles) % hObject handle to pushbutton5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [FileName,PathName] = uigetfile('*.mat','Select the Setup file'); [patstr, name, ext] = fileparts(FileName); if strcmp(ext,'.mat') == 0 errordlg('The input file must be a .mat') else % load the saved variables into workspace load([PathName FileName]) % read the value from listbox to determine if it was server or client currentRole = get(handles.listbox1,'value'); % If the data saved was from server if strcmp(role,'server') % If the role read is server, and the current role is client % display an error if currentRole ~= 1 errordlg(['Loading Server data with Client role selected. ' ... 'Please select the Server role first']); % copy the loaded variables into the controls else set(handles.edit1,'string',num2str(camCount)); set(handles.edit4,'string',num2str(countImagesToSave)); set(handles.edit3,'string',dataDir); set(handles.edit5,'string',num2str(minDist3D)); set(handles.checkbox3,'value',withSkew); set(handles.popupmenu1,'Value',distortRadVal); set(handles.checkbox1,'value',distortTan); set(handles.edit6,'string',pointsOnStick); set(handles.edit7,'string',num2str(sizeStick)); end else strcmp(role,'client') % If the role read is client, and the current role is server % display an error if currentRole ~= 2 errordlg(['Loading Client data with Server role selected. ' ... 'Please select the Client role first']); % copy the loaded variables into the controls else set(handles.edit9,'string',num2str(clientId)); set(handles.edit8,'string',serverIP); end end end % --- Executes during object creation, after setting all properties. function text20_CreateFcn(hObject, eventdata, handles) % hObject handle to text20 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over text20. function text20_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to text20 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) address = java.net.InetAddress.getLocalHost; IPaddress = char(address.getHostAddress); set(handles.text20,'string',IPaddress);
github
jrterven/MultiKinCalib-master
Step04_IntrinsicParametersEstimation.m
.m
MultiKinCalib-master/Step04_IntrinsicParametersEstimation.m
2,917
utf_8
1ba76157c5d145557316901747069e5b
% function: % Step04_IntrinsicParametersEstimation(camCount,dataAcqFile,preCalibResultsFile,matchingResultsFile,initIntrinsicsFile) % % Description: % Estimates intrinsics parameters for all the cameras (depth and color % for each Kinect). % % Dependencies: % - function EstimateIntrins: estimates the camera intrinsics using the method from % Prince, Simon JD. Computer vision: models, learning, and inference. % Cambridge University Press, 2012. % % Inputs: % - camCount: Number of cameras to calibrate % - dataAcqFile: file containing the data from the acquisition step. % - preCalibResultsFile: name of the output file containing the results % of the pre-calibration % - matchingResultsFile: out file containing the matching results. % - initIntrinsicsFile: out file with the estimated intrinsic parameters. % % Return: % Save the results on the initIntrinsicsFile specified in the arguments. % % Authors: % Diana M. Cordova % Juan R. Terven % Date: Feb-2016 function Step04_IntrinsicParametersEstimation(dataAcqFile,matchingResultsFile,preCalibResultsFile,initIntrinsicsFile) % Initialize Intrinsics of depth cam1 using its pointcloud preIntrinsicsD1 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,1, 'depth'); % Initialize Intrinsics of color cam1 using its pointcloud preIntrinsicsC1 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,1, 'color'); save(initIntrinsicsFile,'preIntrinsicsD1','preIntrinsicsC1'); if camCount > 1 % Initialize Intrinsics of depth cam2 using the pointclouds matches with cam1 preIntrinsicsD2 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,2, 'depth'); % Initialize Intrinsics of color cam2 using the pointclouds matches with cam1 preIntrinsicsC2 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,2, 'color'); save(initIntrinsicsFile,'preIntrinsicsD2','preIntrinsicsC2','-append'); end if camCount > 2 % Initialize Intrinsics of depth cam2 using the pointclouds matches with cam1 preIntrinsicsD3 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,3, 'depth'); % Initialize Intrinsics of color cam2 using the pointclouds matches with cam1 preIntrinsicsC3 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,3, 'color'); save(initIntrinsicsFile,'preIntrinsicsD3','preIntrinsicsC3','-append'); end if camCount > 3 % Initialize Intrinsics of depth cam2 using the pointclouds matches with cam1 preIntrinsicsD4 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,4, 'depth'); % Initialize Intrinsics of color cam2 using the pointclouds matches with cam1 preIntrinsicsC4 = EstimateIntrins(dataAcqFile,matchingResultsFile,preCalibResultsFile,4, 'color'); save(initIntrinsicsFile,'preIntrinsicsD4','preIntrinsicsC4','-append'); end
github
jrterven/MultiKinCalib-master
matching3DNN.m
.m
MultiKinCalib-master/matching3DNN.m
3,446
utf_8
65dcfbeedd901cb8df56256989086f61
% Function: % matching3DNN % % Description: % Given two input pointclouds (cam1PC, cam2PC), finds the matching points. % Matching points are searched using 1-Nearest Neighbor with a threshold % value of epsilon millimeters. % % Usage: % % % Params: % cam1PC : Pointcloud from camera 1 in n x 3 % cam2PC : Pointcloud from camera 2 in n x 3 % epsilon: Max distance between corresponding points in meters % % Return: % cam1MatchedPoints : Matched points in camera 1 in m x 3 % cam2MatchedPoints : Matched points in camera 2 in m x 3 % % Authors: % Diana M. Cordova % Juan R. Terven % % Citation: % Put the paper here! % % Date: 09-Jan-2016 function [cam2_1MatchedPoints, matchedDepthProj, matchedColorProj] = matching3DNN( ... cam1PC, cam2PC, cam2DepthProj, cam2ColorProj, epsilon) % Remove inf and NaN values from input pointclouds cam1PCvalidRows = ~any( isnan( cam1PC ) | isinf( cam1PC ), 2 ); cam2PCvalidRows = ~any( isnan( cam2PC ) | isinf( cam2PC ), 2 ); cam1PC = cam1PC(cam1PCvalidRows,:); cam2PC = cam2PC(cam2PCvalidRows,:); cam2DepthProj = cam2DepthProj(cam2PCvalidRows,:); cam2ColorProj = cam2ColorProj(cam2PCvalidRows,:); % VERSION 3: Using knnsearch from %http://www.mathworks.com/matlabcentral/fileexchange/19345-efficient-k-nearest-neighbor-search-using-jit [idx, D] = knnsearch(cam1PC,cam2PC); % idx contains the indices of cam2PC with the smallest distance to each % cam1PC % Find the points with distance less than epsilon matchedIdx = idx(D <= epsilon); cam2_1MatchedPoints = cam2PC(matchedIdx,:); matchedDepthProj = cam2DepthProj(matchedIdx,:); matchedColorProj = cam2ColorProj(matchedIdx,:); % VERSION 2: Using pdist2 Matlab function, partitioning the pointclouds % in 100 parts for storage % Brute search for the nearest point to each point from cam1PC in cam2PC % iout = 1; % % elemPerPartition = floor(size(cam1PC,1)/100); % % for i1=0:99 % idx = uint32(floor(i1*elemPerPartition + 1:elemPerPartition*(i1+1))); % cam1PCpart = cam1PC(idx,:); % D = pdist2(cam1PCpart, cam2PC); % [r,c] = find(D<epsilon); % % cam1MatchedPoints = [cam1MatchedPoints; cam1PC(r + i1*elemPerPartition,:)]; % cam2MatchedPoints = [cam2MatchedPoints; cam2PC(c,:)]; % % disp(i1); % end % VERSION 1: Using vectorized Euclidean distance % for i1=1:size(cam1PC,1) % for each point in cam1PC % % % calculate the distance of point i1 from cam1PC to all the points % % in cam2PC % % % replicate the i1th component of cam1PC cam2PC times in order to % % vectorize the operation % pc1 = repmat(cam1PC(i1,:),size(cam2PC,1),1); % D = sqrt(sum(abs(pc1 - cam2PC).^2,2)); % % % D have all the distances, find the index of the minimun value % [m,idx] = min(D); % % % If the minimum value is less than the theshold we have a match % % save the point on both output pointclouds % % and remove from the cam2PC search % if m < epsilon % cam1MatchedPoints(iout,:) = cam1PC(i1,:); % cam2MatchedPoints(iout,:) = cam2PC(idx,:); % % cam2PC(idx,:) = []; % iout = iout + 1; % end % end end
github
jrterven/MultiKinCalib-master
trackCalibPoints.m
.m
MultiKinCalib-master/trackCalibPoints.m
6,387
utf_8
14c24c13dab8f66c2f04b7b0b186dfad
% Function: % trackCalibPoints % % Description: % Search for three or six red points in a stick of SIZE_AF. It uses color space % and camera space to detect the points in the color image and its 3D % coordinates as well in order to verify that the points lie in a stick % and that the dimensions of the stick are correct. % % a b c d e f % o--o--o--o--o--o % % Dependencies: % Kin2 class % % Inputs: % kinect: Kin2 object % colorFrame: color camera frame % a_refw: Infrared marker position. Used to find point A % SIZE_AB: Length of the stick % % Usage: % This function is called during the calibration images acquisition step. % % Returns: % validBalls: flag indicating a successful detection % points: 6x2 vector of 2D position of the balls in color space % % Author: % Juan R. Terven % Date: 15-Jan-2016 function [validBalls, points] = trackCalibPoints(kinect, colorFrame, ... pointsOnStick, a_refw, SIZE_AF) points = zeros(pointsOnStick,2); validBalls = false; % To track red objects in real time % we have to subtract the red component % from the grayscale image to extract the red components in the image. diff_im = imsubtract(colorFrame(:,:,1), rgb2gray(colorFrame)); %Use a median filter to filter out noise diff_im = medfilt2(diff_im, [3 3]); % Convert the resulting grayscale image into a binary image. diff_im = im2bw(diff_im,0.18); % Remove all those pixels less than 300px diff_im = bwareaopen(diff_im,30); % Label all the connected components in the image. bw = bwlabel(diff_im, 8); % Here we do the image blob analysis. % We get a set of properties for each labeled region. stats = regionprops(bw, 'BoundingBox', 'Centroid'); numObjects = length(stats); temp = zeros(numObjects,2); for i=1:numObjects temp(i,:) = stats(i).Centroid; end if ~isempty(temp) hold on plot(temp(:,1),temp(:,2),'k*', 'MarkerSize',10) hold off end % Continue if it found at least pointsOnStick objects if numObjects >= pointsOnStick %disp(['numObjects:' num2str(numObjects)]); % Get these points on camera space from color to camera wtemp = kinect.mapColorPoints2Camera(temp); % Calculate the distance from each point (in camera coordinates) % to the reference point (extracted from the infrared image) dist_2_Aw = zeros(numObjects,1); for i=1:numObjects dist_2_Aw(i) = sqrt((a_refw(1)-wtemp(i,1))^2 + ... (a_refw(2)-wtemp(i,2))^2) + ... (a_refw(3)-wtemp(i,3))^2; end % Find a,b,c,d,e,f in order where a is the closest point to a_ref, % then b, and so on [~, idx] = sort(dist_2_Aw); points = temp(idx,:); pointsw = wtemp(idx,:); points = points(1:pointsOnStick,:); % select only the first pointsOnStick % Plot the possible balls in yellow hold on plot(points(:,1),points(:,2),'y*', 'MarkerSize',15) hold off % Check that all the points are inside a line between a and f ai = double(points(1,:)); % point a in the image (ai) bi = double(points(2,:)); ci = double(points(3,:)); if pointsOnStick == 6 di = double(points(4,:)); ei = double(points(5,:)); fi = double(points(6,:)); end % for this we calculate the slope if pointsOnStick == 3 m = (ci(2)-ai(2))/(ci(1)-ai(1)); elseif pointsOnStick == 6 m = (fi(2)-ai(2))/(fi(1)-ai(1)); end % given the point-slope equation of a line % y - y1 = m(x - x1) % (x1, y1) will be the coordinates of the A extreme of the line % and we will calculate the y component of b,c,d,e yb = m * (bi(1) - ai(1)) + ai(2); if pointsOnStick == 6 yc = m * (ci(1) - ai(1)) + ai(2); yd = m * (di(1) - ai(1)) + ai(2); ye = m * (ei(1) - ai(1)) + ai(2); end % The calculated y component of the points (yb, yc, yd, ye) must be % equal (ideally) of the actual y component of points (bi(2), % ci(2), di(2) and ei(2) % lets give it alpha pixels of error alpha = 20; if pointsOnStick == 3 if abs(yb-bi(2)) > alpha disp('No points on a line') return; end elseif pointsOnStick == 6 if abs(yb-bi(2)) > alpha || abs(yc-ci(2)) > alpha || ... abs(yd-di(2)) > alpha || abs(ye-ei(2)) > alpha disp('No points on a line') return; end end % Validate the coordinates of the points by size using its camera % space values (X,Y,Z) sizeAB = norm(pointsw(1,:) - pointsw(2,:)); sizeAC = norm(pointsw(1,:) - pointsw(3,:)); if pointsOnStick == 6 sizeAD = norm(pointsw(1,:) - pointsw(4,:)); sizeAE = norm(pointsw(1,:) - pointsw(5,:)); sizeAF = norm(pointsw(1,:) - pointsw(6,:)); end if pointsOnStick == 3 if sizeAC > (SIZE_AF - 0.2) && sizeAC < (SIZE_AF + 0.2) && ... sizeAB < sizeAC validBalls = true; disp('VALID balls') end elseif pointsOnStick == 6 if sizeAF > (SIZE_AF - 0.2) && sizeAF < (SIZE_AF + 0.2) && ... sizeAB < sizeAF && sizeAC < sizeAF && sizeAD < sizeAF && ... sizeAE < sizeAF validBalls = true; disp('VALID balls') end end %disp(['Distances btw points: ' num2str(sizeAB) ' ' num2str(sizeAC) ' ' num2str(sizeAD) ' ' num2str(sizeAE) ' ' num2str(sizeAF) ' ' ]) else disp(['Not found at least ' num2str(pointsOnStick) ' objects']); end % if numObjects >=3 end % end trackBalls function
github
jrterven/MultiKinCalib-master
findPointAfromInfrared.m
.m
MultiKinCalib-master/findPointAfromInfrared.m
2,640
utf_8
2dbc61d7a6cb99b8a8580f0df3fab990
% Function: % findPointAfromInfrared % % Description: % Finds the nearest 3D world point to the marker. % The point A is the fixed point, we use a reflective tape on the % ground near this point. So when detecting the red points, the nearest % point to this (refAw) will be point A. % % Dependencies: % Kin2 class % % % Inputs: % kinect: Kin2 object % % Usage: % This function is called at the beggining of the images acquisition for % calibration. This function returns the location of the infrared marker % (reflective tape) such that this point be used for detecting the % reference point in the calibration object. % % Returns: % refAw: position of the infrared marker in camera space (X,Y,Z). % refAc: poistion of the infrared marker in color space (x,y) % % Authors: % Diana M. Cordova % Juan R. Terven % % Date: 05-June-2016 function [refAw, refAc] = findPointAfromInfrared(kinect, infrared) imgBW = im2bw(infrared); % Remove all those pixels less than 300px imgBW = bwareaopen(imgBW,5); % calculate the centroid stat = regionprops(imgBW,'centroid'); refAw = zeros(1,3); refAc = zeros(1,2); if length(stat) >= 1 refA = stat(1).Centroid; % Search for the nearest neighbor that can be mapped to % camera space movement = 1; % move 1 pixel n1 = refA; n2 = refA; n3 = refA; n4 = refA; for i=1:100 % Move refA on the 4 neighbors n1(1) = n1(1) + movement; % move in positive x direction n2(1) = n2(1) - movement; % move in negative x direction n3(2) = n3(2) + movement; n4(2) = n4(2) - movement; ns = [n1;n2;n3;n4]; refAws = kinect.mapDepthPoints2Camera(ns); if ~isinf(refAws(1,1)) refAw = refAws(1,:); break; elseif ~isinf(refAws(2,1)) refAw = refAws(2,:); break; elseif ~isinf(refAws(3,1)) refAw = refAws(3,:); break; elseif ~isinf(refAws(4,1)) refAw = refAws(4,:); break; end movement = movement + 1; end refAc = kinect.mapCameraPoints2Color(refAw); %plot(refAc(1),refAc(2),'y*') end end % findPointAfromInfrared function
github
jrterven/MultiKinCalib-master
calibCostFun.m
.m
MultiKinCalib-master/Kin2/Mex/calibCostFun.m
2,431
utf_8
971b01fffa44b09203d158efc55dc03e
function fun = calibCostFun(x0) persistent X3d x2d quatRot height = 1080; width = 1920; % The first iteration loads the data if isempty(X3d) X3d = []; x2d = []; % Get the 3D points from the matching results % 3D points as a 3 x n matrix load('calibData.mat'); quatRot = rot; X3d = pointcloud'; % 2D points as a 2 x n matrix x2d = double(proj2d)'; % Remove outliers from X3d in both matrices x2dValidCols = ~any( isnan( x2d ) | isinf( x2d ) | x2d > width | x2d < 0, 1 ); x3dValidCols = ~any( isnan( X3d ) | isinf( X3d ) | X3d > 8, 1 ); validCols = x2dValidCols & x3dValidCols; x2d = x2d(:,validCols); X3d = X3d(:,validCols); end f = x0(1); % focal length cx = x0(2); % principal point x cy = x0(3); % principal point y % Rotation Rq = [x0(4) x0(5) x0(6) x0(7)]; if quatRot R = quat2rotm(Rq); else R = eye(3); end % Translation t = [x0(8);x0(9);x0(10)]; % Build camera matrix intrinsic = [f 0 cx; 0 f cy; 0 0 1]; k1 = x0(11); k2 = x0(12); k3 = x0(13); N = size(X3d,2); Xw = X3d; xc = x2d; xc(2,:) = height - xc(2,:); % Apply extrinsic parameters proj = R * Xw + repmat(t,1,size(Xw,2)); % Apply Intrinsic parameters to get the projection proj = intrinsic * proj; % Dehomogenization proj = proj ./ repmat(proj(3,:),3,1); u = proj(1,:); v = proj(2,:); ud=xc(1,:); vd=xc(2,:); % Normalized coordinates in the image plane un = (u - cx)/f; vn = (v - cy)/f; % Calculate the Radial Distortion r = sqrt(un.^2 + vn.^2); compRad(1,:) = 1 + k1*r.^2 + k2*r.^4 + k3*r.^6; compRad(2,:) = 1 + k1*r.^2 + k2*r.^4 + k3*r.^6; % Undistort the normalized point coordinates in the image plane un_undist = un.*compRad(1,:); vn_undist = vn.*compRad(2,:); % Unormalized the points u_undist = (un_undist * f) + cx; v_undist = (vn_undist * f) + cy; % Reprojection error fun(1,:)= u_undist - ud; fun(2,:)= v_undist - vd; err = fun .* fun; err = sum(err(:)); %disp(sqrt(err/N)); end
github
bearsroom/mxnet-augmented-master
parse_json.m
.m
mxnet-augmented-master/matlab/+mxnet/private/parse_json.m
19,095
utf_8
2d934e0eae2779e69f5c3883b8f89963
function data = parse_json(fname,varargin) %PARSE_JSON parse a JSON (JavaScript Object Notation) file or string % % Based on jsonlab (https://github.com/fangq/jsonlab) created by Qianqian Fang. Jsonlab is lisonced under BSD or GPL v3. global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end function opt=varargin2struct(varargin) % % opt=varargin2struct('param1',value1,'param2',value2,...) % or % opt=varargin2struct(...,optstruct,...) % % convert a series of input parameters into a structure % % input: % 'param', value: the input parameters should be pairs of a string and a value % optstruct: if a parameter is a struct, the fields will be merged to the output struct % % output: % opt: a struct where opt.param1=value1, opt.param2=value2 ... % len=length(varargin); opt=struct; if(len==0) return; end i=1; while(i<=len) if(isstruct(varargin{i})) opt=mergestruct(opt,varargin{i}); elseif(ischar(varargin{i}) && i<len) opt=setfield(opt,lower(varargin{i}),varargin{i+1}); i=i+1; else error('input must be in the form of ...,''name'',value,... pairs or structs'); end i=i+1; end function val=jsonopt(key,default,varargin) % % val=jsonopt(key,default,optstruct) % % setting options based on a struct. The struct can be produced % by varargin2struct from a list of 'param','value' pairs % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % % $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $ % % input: % key: a string with which one look up a value from a struct % default: if the key does not exist, return default % optstruct: a struct where each sub-field is a key % % output: % val: if key exists, val=optstruct.key; otherwise val=default % val=default; if(nargin<=2) return; end opt=varargin{1}; if(isstruct(opt)) if(isfield(opt,key)) val=getfield(opt,key); elseif(isfield(opt,lower(key))) val=getfield(opt,lower(key)); end end function s=mergestruct(s1,s2) % % s=mergestruct(s1,s2) % % merge two struct objects into one % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % date: 2012/12/22 % % input: % s1,s2: a struct object, s1 and s2 can not be arrays % % output: % s: the merged struct object. fields in s1 and s2 will be combined in s. if(~isstruct(s1) || ~isstruct(s2)) error('input parameters contain non-struct'); end if(length(s1)>1 || length(s2)>1) error('can not merge struct arrays'); end fn=fieldnames(s2); s=s1; for i=1:length(fn) s=setfield(s,fn{i},getfield(s2,fn{i})); end function newdata=struct2jdata(data,varargin) % % newdata=struct2jdata(data,opt,...) % % convert a JData object (in the form of a struct array) into an array % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % % input: % data: a struct array. If data contains JData keywords in the first % level children, these fields are parsed and regrouped into a % data object (arrays, trees, graphs etc) based on JData % specification. The JData keywords are % "_ArrayType_", "_ArraySize_", "_ArrayData_" % "_ArrayIsSparse_", "_ArrayIsComplex_" % opt: (optional) a list of 'Param',value pairs for additional options % The supported options include % 'Recursive', if set to 1, will apply the conversion to % every child; 0 to disable % % output: % newdata: the covnerted data if the input data does contain a JData % structure; otherwise, the same as the input. % % examples: % obj=struct('_ArrayType_','double','_ArraySize_',[2 3], % '_ArrayIsSparse_',1 ,'_ArrayData_',null); % ubjdata=struct2jdata(obj); fn=fieldnames(data); newdata=data; len=length(data); if(jsonopt('Recursive',0,varargin{:})==1) for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end
github
SholtoForbes/3D-master
SPARTANAero.m
.m
3D-master/SPARTANAero.m
2,085
utf_8
4c8472352b93571e9675cc32a6992ac9
% Defines the aerodynamics of the SPARTAN over a range of Mach no.s % Created by Sholto Forbes-Spyratos % Uses equations defined in the Aerodynamics section of Aircraft Design: A Conceptual Approach by % Raymer % M = 2 % alpha = 0 % v = 2*300 % rho = 0.412707 % mu = 0.0000146884 function CL = SPARTANAero(M,alpha,v,rho,mu) geom.b = 4.45*2; % Wingspan (m) geom.c = 9.791; % Root Chord (m) geom.d = 1.0499*2; % Fuselage Diameter (m) geom.S_ref = 0.5*4.45*12.8159; % Wing Reference Area (m^2) geom.A = geom.b^2/geom.S_ref; % Aspect Ratio geom.S_exposed = 0.5*(4.45 - 1.0499)*9.7910; % Wing Reference Area (m^2) geom.Lambda = deg2rad(19.1505); % Wing Sweep at Chord Location (rad) geom.L_tot = 22.94; % Total Length (m) if M < 0.8 CL = SubSonic(M,alpha,geom) elseif (0.8 <= M) && (M <= 1.2) elseif (1.2 < M) && (M < 3) CL = SuperSonic(M,alpha) elseif M >= 3 CL = SuperSonic(M,alpha) end l_fuselage = geom.L_tot; l_wing = geom.c/2; % Mean Chord (m) R_fuselage = rho*v*l_fuselage/mu % Reynolds no. Fuselage R_wing = rho*v*l_wing/mu % Reynolds no. Wings % R_tail = rho*v*l_tail/mu; % Reynolds no. Tails Cf_fuselage = 0.455 / ( log10(R_fuselage)^2.58 * (1 + 0.144*M^2)^0.65) % Fiction Coefficient Fuselage Cf_wing = 0.455 / ( log10(R_wing)^2.58 * (1 + 0.144*M^2)^0.65) % Fiction Coefficient Fuselage end function CL = SuperSonic(M,alpha) beta = sqrt(M^2 - 1); CL_alpha = 4/beta; % Lift Coefficient per Unit Angle of Attack (Radians) CL = CL_alpha * alpha; end function CL = SubSonic(M,alpha,geom) A = geom.A; % Aspect Ratio b = geom.b; % Wingspan (m) c = geom.c; % Chord length (m) d = geom.d; % Fuselage Diameter (m) S_ref = geom.S_ref; % Wing Reference Area (m^2) S_exposed = geom.S_exposed; % Wing Reference Area (m^2) Lambda = geom.Lambda; % Wing Sweep at Chord Location (rad) cl_alpha = 2*pi; Cl_alpha = cl_alpha*(0.5*c*(b-d)); beta = sqrt(M^2 - 1); F = 1.07 * (1 + d/b)^2; eta = Cl_alpha/(2*pi/beta); CL_alpha = 2*pi*A / (2 + sqrt(4 + A^2 * beta^2 / eta^2 * (1 + tan(Lambda)^2 / beta^2))) * S_exposed / S_ref * F CL = CL_alpha * alpha; end
github
lanl-ansi/PowerModels.jl-master
case5_uc.m
.m
PowerModels.jl-master/test/data/matpower/case5_uc.m
2,149
utf_8
1e2590e75d2981d64bbabd3d8738a9e1
% used in tests of, % - unit commitment, generator 4 should be de-commited due to high cost function mpc = case5_uc mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 100.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000 2.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 4 3 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case5.m
.m
PowerModels.jl-master/test/data/matpower/case5.m
2,695
utf_8
8055caaf1bbf7650f27dffaf2c09e662
% used in tests of, % - non-contiguous bus ids % - tranformer orentation swapping % - dual values % - clipping cost functions using ncost % - linear objective function % - bus type correction function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 0 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000 2.000000; 2 0.0 0.0 3 0.100000 0.000000 0.000000 2.000000; % skipped by powermodels 2 0.0 0.0 3 0.100000 0.000000 0.000000 2.000000; % skipped by powermodels 2 0.0 0.0 3 0.100000 0.000000 0.000000 2.000000; % skipped by powermodels 2 0.0 0.0 3 0.100000 0.000000 0.000000 2.000000; % skipped by powermodels 2 0.0 0.0 3 0.100000 0.000000 0.000000 2.000000; % skipped by powermodels ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 4 3 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case7_tplgy.m
.m
PowerModels.jl-master/test/data/matpower/case7_tplgy.m
2,764
utf_8
ac81a346a20940f9e41c1ea739b3cd8e
% % Test for component status pre-processing % function mpc = case7_tplgy mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 3 0.0 0.0 0.0 0.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; 2 2 100.0 50.0 1.0 5.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; 3 1 0.0 0.0 0.0 0.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; 4 1 100.0 50.0 0.0 0.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; 5 2 0.0 0.0 1.0 5.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; 6 4 100.0 50.0 1.0 5.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; 7 1 50.0 10.0 1.0 5.0 1 1.00000 0.00000 240.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 0.000 0.000 1000.0 -1000.0 1.00000 100.0 1 200.0 0.0; 2 0.000 0.000 1000.0 -1000.0 1.00000 100.0 1 140.0 0.0; 5 0.000 0.000 100.0 -100.0 1.00000 100.0 1 330.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 1.000000 0.000000; 2 0.0 0.0 3 0.000000 1.000000 0.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 3 0.065 0.62 0.00 30.0 0.0 0.0 0.0 0.0 0 -30.0 30.0; 1 4 0.012 0.53 0.00 60.0 0.0 0.0 0.0 0.0 0 -30.0 30.0; 1 5 0.042 0.90 0.00 60.0 0.0 0.0 0.0 0.0 0 -30.0 30.0; 2 3 0.075 0.51 0.00 45.0 0.0 0.0 0.0 0.0 0 -30.0 30.0; 3 5 0.025 0.75 0.25 30.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 3 6 0.025 0.75 0.25 30.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 5 6 0.025 0.75 0.25 30.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 4 5 0.025 0.07 0.05 300.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; ]; %% dcline data % fbus tbus status Pf Pt Qf Qt Vf Vt Pmin Pmax QminF QmaxF QminT QmaxT loss0 loss1 mpc.dcline = [ 1 2 0 10 9.0 99.0 -10.0 1.0000 1.0000 10 100 -100 100 -100 100 10.00 0.00; 5 6 1 10 9.0 99.0 -10.0 1.0000 1.0000 0 200 -100 100 -100 100 10.00 0.00; 7 4 1 10 9.0 99.0 -10.0 1.0000 1.0000 -200 0 -100 100 -100 100 10.00 0.00; ]; %% storage data % storage_bus ps qs energy energy_rating charge_rating discharge_rating charge_efficiency discharge_efficiency thermal_rating qmin qmax r x p_loss q_loss status mpc.storage = [ 6 0.0 0.0 20.0 100.0 50.0 70.0 0.8 0.9 100.0 -50.0 70.0 0.1 0.0 0.0 0.0 1; ]; %% switch data % f_bus t_bus psw qsw state thermal_rating status mpc.switch = [ 1 6 0.0 0.00 1 1000.0 0; ];
github
lanl-ansi/PowerModels.jl-master
case5_db.m
.m
PowerModels.jl-master/test/data/matpower/case5_db.m
1,886
utf_8
fbdf969ad340385a2f86ad61d100b724
% tests network with dangeling buses, a feature that occurs in many large datasets function mpc = case5_dc mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 1 300.0 98.61 0.0 0.0 1 1.06355 2.87619 230.0 1 1.10000 0.90000; 2 1 0.0 0.00 0.0 0.0 1 1.08009 -0.79708 230.0 1 1.10000 0.90000; 3 1 0.0 0.00 0.0 0.0 1 1.10000 -0.64925 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000; 5 1 300.0 98.61 0.0 0.0 1 1.05304 3.70099 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.06355 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 4 0.0 -70.8186 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 5 463.5555 -184.9224 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 2 14.000000 0.000000; 2 0.0 0.0 2 15.000000 0.000000; 2 0.0 0.0 2 40.000000 0.000000; 2 0.0 0.0 2 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 5 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; %% dcline data % fbus tbus status Pf Pt Qf Qt Vf Vt Pmin Pmax QminF QmaxF QminT QmaxT loss0 loss1 mpc.dcline = [ 3 5 1 10 8.9 99.9934 -10.4049 1.1 1.05555 0 100 -100 100 -100 100 0 0; ];
github
lanl-ansi/PowerModels.jl-master
case14.m
.m
PowerModels.jl-master/test/data/matpower/case14.m
4,769
utf_8
83581c937c4e1a14e1886d8ecfe80176
% Case to test no explicit branch limits % from matpower - http://www.pserc.cornell.edu/matpower/ function mpc = case14 %CASE14 Power flow data for IEEE 14 bus test case. % Please see CASEFORMAT for details on the case file format. % This data was converted from IEEE Common Data Format % (ieee14cdf.txt) on 15-Oct-2014 by cdf2matp, rev. 2393 % See end of file for warnings generated during conversion. % % Converted from IEEE CDF file from: % http://www.ee.washington.edu/research/pstca/ % % 08/19/93 UW ARCHIVE 100.0 1962 W IEEE 14 Bus Test Case % MATPOWER %% MATPOWER Case Format : Version 2 mpc.version = '2'; %%----- Power Flow Data -----%% %% system MVA base mpc.baseMVA = 100; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 3 0 0 0 0 1 1.06 0 0 1 1.06 0.94; 2 2 21.7 12.7 0 0 1 1.045 -4.98 0 1 1.06 0.94; 3 2 94.2 19 0 0 1 1.01 -12.72 0 1 1.06 0.94; 4 1 47.8 -3.9 0 0 1 1.019 -10.33 0 1 1.06 0.94; 5 1 7.6 1.6 0 0 1 1.02 -8.78 0 1 1.06 0.94; 6 2 11.2 7.5 0 0 1 1.07 -14.22 0 1 1.06 0.94; 7 1 0 0 0 0 1 1.062 -13.37 0 1 1.06 0.94; 8 1 0 0 0 0 1 1.09 -13.36 0 1 1.06 0.94; 9 1 29.5 16.6 0 19 1 1.056 -14.94 0 1 1.06 0.94; 10 1 9 5.8 0 0 1 1.051 -15.1 0 1 1.06 0.94; 11 1 3.5 1.8 0 0 1 1.057 -14.79 0 1 1.06 0.94; 12 1 6.1 1.6 0 0 1 1.055 -15.07 0 1 1.06 0.94; 13 1 13.5 5.8 0 0 1 1.05 -15.16 0 1 1.06 0.94; 14 1 14.9 5 0 0 1 1.036 -16.04 0 1 1.06 0.94; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf mpc.gen = [ 1 232.4 -16.9 10 0 1.06 100 1 332.4 0 0 0 0 0 0 0 1.0 0 0 0 0; 2 40 42.4 50 -40 1.045 100 1 140.0 0 0 0 0 0 0 0 0 1.0 0 0 0; 3 0 23.4 40 0 1.01 100 1 100.0 0 0 0 0 0 0 0 0 0 1.0 0 0; 6 0 12.2 24 -6 1.07 100 1 100.0 0 0 0 0 0 0 0 0 0 0 1.0 0; 8 0 17.4 24 -6 1.09 100 1 100.0 0 0 0 0 0 0 0 0 0 0 0 0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.01938 0.05917 0.0528 0 0 0 0 0 1 -360 360; 1 5 0.05403 0.22304 0.0492 0 0 0 0 0 1 -360 360; 2 3 0.04699 0.19797 0.0438 0 0 0 0 0 1 -360 360; 2 4 0.05811 0.17632 0.034 0 0 0 0 0 1 -360 360; 2 5 0.05695 0.17388 0.0346 0 0 0 0 0 1 -360 360; 3 4 0.06701 0.17103 0.0128 0 0 0 0 0 1 -360 360; 4 5 0.01335 0.04211 0 0 0 0 0 0 1 -360 360; 4 7 0 0.20912 0 0 0 0 0.978 0 1 -360 360; 4 9 0 0.55618 0 0 0 0 0.969 0 1 -360 360; 5 6 0 0.25202 0 0 0 0 0.932 0 1 -360 360; 6 11 0.09498 0.1989 0 0 0 0 0 0 1 -360 360; 6 12 0.12291 0.25581 0 0 0 0 0 0 1 -360 360; 6 13 0.06615 0.13027 0 0 0 0 0 0 1 -360 360; 7 8 0 0.17615 0 0 0 0 0 0 1 -360 360; 7 9 0 0.11001 0 0 0 0 0 0 1 -360 360; 9 10 0.03181 0.0845 0 0 0 0 0 0 1 -360 360; 9 14 0.12711 0.27038 0 0 0 0 0 0 1 -360 360; 10 11 0.08205 0.19207 0 0 0 0 0 0 1 -360 360; 12 13 0.22092 0.19988 0 0 0 0 0 0 1 -360 360; 13 14 0.17093 0.34802 0 0 0 0 0 0 1 -360 360; ]; %%----- OPF Data -----%% %% generator cost data % 1 startup shutdown n x1 y1 ... xn yn % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0 0 5 0 0 0.0430292599 20 0; 2 0 0 5 0 0 0.25 20 0; 2 0 0 5 0 0 0.01 40 0; 2 0 0 5 0 0 0.01 40 0; 2 0 0 5 0 0 0.01 40 0; ]; %% bus names mpc.bus_name = { 'Bus 1 HV'; 'Bus 2 HV'; 'Bus 3 HV'; 'Bus 4 HV'; 'Bus 5 HV'; 'Bus 6 LV'; 'Bus 7 ZV'; 'Bus 8 TV'; 'Bus 9 LV'; 'Bus 10 LV'; 'Bus 11 LV'; 'Bus 12 LV'; 'Bus 13 LV'; 'Bus 14 LV'; }; % Warnings from cdf2matp conversion: % % ***** check the title format in the first line of the cdf file. % ***** Qmax = Qmin at generator at bus 1 (Qmax set to Qmin + 10) % ***** MVA limit of branch 1 - 2 not given, set to 0 % ***** MVA limit of branch 1 - 5 not given, set to 0 % ***** MVA limit of branch 2 - 3 not given, set to 0 % ***** MVA limit of branch 2 - 4 not given, set to 0 % ***** MVA limit of branch 2 - 5 not given, set to 0 % ***** MVA limit of branch 3 - 4 not given, set to 0 % ***** MVA limit of branch 4 - 5 not given, set to 0 % ***** MVA limit of branch 4 - 7 not given, set to 0 % ***** MVA limit of branch 4 - 9 not given, set to 0 % ***** MVA limit of branch 5 - 6 not given, set to 0 % ***** MVA limit of branch 6 - 11 not given, set to 0 % ***** MVA limit of branch 6 - 12 not given, set to 0 % ***** MVA limit of branch 6 - 13 not given, set to 0 % ***** MVA limit of branch 7 - 8 not given, set to 0 % ***** MVA limit of branch 7 - 9 not given, set to 0 % ***** MVA limit of branch 9 - 10 not given, set to 0 % ***** MVA limit of branch 9 - 14 not given, set to 0 % ***** MVA limit of branch 10 - 11 not given, set to 0 % ***** MVA limit of branch 12 - 13 not given, set to 0 % ***** MVA limit of branch 13 - 14 not given, set to 0
github
lanl-ansi/PowerModels.jl-master
case2.m
.m
PowerModels.jl-master/test/data/matpower/case2.m
885
utf_8
a49e159cc74b520baf5f00877d81355e
% Case to test space based matlab matrix % And other hard to parse cases % also test data without a generator cost model function mpc = case2 mpc.version = '2'; mpc.baseMVA = 100.00; mpc.bus = [ 1 3 0.00 0.00 0.00 0.00 1 1.0000 0.00000 20.00 1 1.100 0.900 0.00 0.00 0 0 % comment in a matrix 144 1 184.31 52.53 0.00 0.00 1 1.0000 0.00000 100.00 1 1.100 0.900 0.00 0.00 0 0]; mpc.gen = [1 1098.17 140.74 952.77 -186.22 1.0400 2246.86 1 2042.60 0 612.78 2042.60 -186.22 952.77 -186.22 952.77 0 0 0 0 20.4260 0 0 0 0]; mpc.branch = [ 144 1 0.00122 0.04896 0.00000 2042.60 9999.00 9999.00 1.02000 0.000 1 0.00 0.00 -1096.78 -85.26 1098.17 140.74 0 0 0 0 % line comment ]; mpc.bus_name = { 'Bus 1 LV'; 'Bus 144 HV'; };
github
lanl-ansi/PowerModels.jl-master
case3.m
.m
PowerModels.jl-master/test/data/matpower/case3.m
2,337
utf_8
303f1329fa093405df83c5d50a0a0344
% Case to test adding data to matpower file % tests refrence bus detection % tests basic ac and hvdc modeling % tests when gencost is present but not dclinecost % quadratic objective function function mpc = case3 mpc.version = '2'; mpc.baseMVA = 100.0; mpc.bus = [ 1 2 110.0 40.0 0.0 0.0 1 1.10000 -0.00000 240.0 1 1.10000 0.90000; 2 2 110.0 40.0 0.0 0.0 1 0.92617 7.25883 240.0 1 1.10000 0.90000; 3 2 95.0 50.0 0.0 0.0 1 0.90000 -17.26710 240.0 2 1.10000 0.90000; ]; mpc.gen = [ 1 158.067 28.79 1000.0 -1000.0 1.1 100.0 1 2000.0 0.0; 2 160.006 -4.63 1000.0 -1000.0 0.92617 100.0 1 1500.0 0.0; 3 0.0 -4.843 1000.0 -1000.0 0.9 100.0 1 0.0 0.0; ]; mpc.gencost = [ 2 0.0 0.0 3 0.110000 5.000000 0.000000; 2 0.0 0.0 3 0.085000 1.200000 0.000000; 2 0.0 0.0 3 0.000000 0.000000 0.000000; ]; mpc.branch = [ 1 3 0.065 0.62 0.45 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 3 2 0.025 0.75 0.7 50.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 1 2 0.042 0.9 0.3 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; ]; mpc.dcline = [ 1 2 1 10 10 25.91 -4.16 1.1 0.92617 10 900 -900 900 -900 900 0 0 Inf -Inf 0 NaN 0 0 ] % matpower data format extentions % adding single values mpc.const_int = 123; mpc.const_float = 4.56 mpc.const_str = 'a string'; % adding extra matrix values % generic table, comes in a matrix mpc.areas = [ 1 1; 2 3; ]; % named column table %column_names% area refbus mpc.areas_named = [ 4 5; 5 6; ]; % add two new columns to "branch" matrix %column_names% rate_i rate_p mpc.branch_limit = [ 50.2 45; 36 60.1; 12 30; ]; % adding extra cell values mpc.areas_cells = { 'Area 1' 123 987 'Slack \"Bus\" 1' 1.23 ; 'Area 2' 456 987 'Slack Bus 3' 4.56 ; }; %column_names% area_name area area2 refbus_name refbus mpc.areas_named_cells = { 'Area 1' 123 987 'Slack Bus 1' 1.23; 'Area 2' 456 987 'Slack Bus 3' 4.56; }; %column_names% name number_id mpc.branch_names = { 'Branch 1' 123; 'Branch 2' 456; 'Branch 3' 789; }; %column_names% number string mpc.bus_data = { 1 'FAV SPOT 02' 2 'FAV PLACE 05' 3 'FAV PLC 08' }; %column_names% extra mpc.load_data = { 100 101 }; %column_names% string number mpc.component = { 'temp' 1000.0 };
github
lanl-ansi/PowerModels.jl-master
case5_pwlc.m
.m
PowerModels.jl-master/test/data/matpower/case5_pwlc.m
2,241
utf_8
ee8c39be5886057f9acd8ee9587d60a0
% tests pwl cost functions function mpc = case5_pwlc mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 50.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 100.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 50.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 60.0; ]; %% generator cost data % 1 startup shutdown n x1 y1 ... xn yn mpc.gencost = [ 1 0.0 0.0 4 -0.1 0.0 0.0 0.0 0.1 0.0 0.2 0.0 2.0; % tests zero cost 1 0.0 0.0 4 0.0 841.0 20.0 841.0 100.0 841.0 150.0 841.0 2.0; % tests constant cost 1 0.0 0.0 4.0 170.0 4772.0 231.0 6203.0 293.0 7855.0 355.0 9738.0 2.0; % tests poorly typed ncost value 1 0.0 0.0 4 22.0 1122.0 33.0 1417.0 44.0 1742.0 55.0 2075.0 2.0; 1 0.0 0.0 4 7.0 897.0 7.0 897.0 9.0 1479.0 10.0 1791.0 2.0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 0.0 0.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; mpc.dcline = [ 1 10 1 10 10 25.91 -4.16 1.1 0.92617 10 900 -900 900 -900 900 0 0 0 0 0 0 0 0 ]
github
lanl-ansi/PowerModels.jl-master
case24.m
.m
PowerModels.jl-master/test/data/matpower/case24.m
9,996
utf_8
b7712ffffdb538c13576fc14f1f3a516
% from pglib-opf - https://github.com/power-grid-lib/pglib-opf % tests missing angmin,angmax data correction % tests branch orientation data correction % tests mpc.areas function mpc = case24 mpc.version = '2'; mpc.baseMVA = 100.0; %% area data % area refbus mpc.areas = [ 1 1; 2 3; 3 8; 4 6; ]; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 108.0 22.0 0.0 0.0 1 1.03116 -7.74931 138.0 1 1.05000 0.95000; 2 2 97.0 20.0 0.0 0.0 1 1.02794 -7.72341 138.0 1 1.05000 0.95000; 3 1 180.0 37.0 0.0 0.0 1 1.01395 -9.95875 138.0 1 1.05000 0.95000; 4 1 74.0 15.0 0.0 0.0 1 1.00903 -10.81131 138.0 1 1.05000 0.95000; 5 1 71.0 14.0 0.0 0.0 1 1.02711 -10.74273 138.0 1 1.05000 0.95000; 6 1 136.0 28.0 0.0 -100.0 2 1.02760 -13.28597 138.0 1 1.05000 0.95000; 7 2 125.0 25.0 0.0 0.0 2 1.02956 -3.59164 138.0 1 1.05000 0.95000; 8 1 171.0 35.0 0.0 0.0 2 1.00427 -9.50027 138.0 1 1.05000 0.95000; 9 1 175.0 36.0 0.0 0.0 1 1.02698 -9.27195 138.0 1 1.05000 0.95000; 10 1 195.0 40.0 0.0 0.0 2 1.05000 -10.62235 138.0 1 1.05000 0.95000; 11 1 0.0 0.0 0.0 0.0 3 1.03273 -4.64818 230.0 1 1.05000 0.95000; 12 1 0.0 0.0 0.0 0.0 3 1.02695 -3.52232 230.0 1 1.05000 0.95000; 13 3 265.0 54.0 0.0 0.0 3 1.05000 0.00000 230.0 1 1.05000 0.95000; 14 2 194.0 39.0 0.0 0.0 3 1.05000 -3.71689 230.0 1 1.05000 0.95000; 15 2 317.0 64.0 0.0 0.0 4 1.04479 1.17525 230.0 1 1.05000 0.95000; 16 2 100.0 20.0 0.0 0.0 4 1.04951 1.27626 230.0 1 1.05000 0.95000; 17 1 0.0 0.0 0.0 0.0 4 1.04984 4.77096 230.0 1 1.05000 0.95000; 18 2 333.0 68.0 0.0 0.0 4 1.05000 5.75937 230.0 1 1.05000 0.95000; 19 1 181.0 37.0 0.0 0.0 3 1.04185 0.70319 230.0 1 1.05000 0.95000; 20 1 128.0 26.0 0.0 0.0 3 1.04489 2.06190 230.0 1 1.05000 0.95000; 21 2 0.0 0.0 0.0 0.0 4 1.05000 6.19253 230.0 1 1.05000 0.95000; 22 2 0.0 0.0 0.0 0.0 4 1.05000 11.87100 230.0 1 1.05000 0.95000; 23 2 0.0 0.0 0.0 0.0 3 1.05000 3.51051 230.0 1 1.05000 0.95000; 24 1 0.0 0.0 0.0 0.0 4 1.01424 -2.85872 230.0 1 1.05000 0.95000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 20.0 4.934 10.0 0.0 1.03116 100.0 1 20.0 16.0; 1 20.0 4.934 10.0 0.0 1.03116 100.0 1 20.0 16.0; 1 76.0 0.571 30.0 -25.0 1.03116 100.0 1 76.0 15.2; 1 76.0 0.571 30.0 -25.0 1.03116 100.0 1 76.0 15.2; 2 20.0 2.222 10.0 0.0 1.02794 100.0 1 20.0 16.0; 2 20.0 2.222 10.0 0.0 1.02794 100.0 1 20.0 16.0; 2 76.0 -21.307 30.0 -25.0 1.02794 100.0 1 76.0 15.2; 2 76.0 -21.307 30.0 -25.0 1.02794 100.0 1 76.0 15.2; 7 99.974 10.062 60.0 0.0 1.02956 100.0 1 100.0 25.0; 7 99.974 10.062 60.0 0.0 1.02956 100.0 1 100.0 25.0; 7 99.974 10.062 60.0 0.0 1.02956 100.0 1 100.0 25.0; 13 173.258 34.475 80.0 0.0 1.05 100.0 1 197.0 69.0; 13 173.258 34.475 80.0 0.0 1.05 100.0 1 197.0 69.0; 13 173.258 34.475 80.0 0.0 1.05 100.0 1 197.0 69.0; 14 0.0 110.354 200.0 -50.0 1.05 100.0 1 0.0 0.0; 15 2.4 6.0 6.0 0.0 1.04479 100.0 1 12.0 2.4; 15 2.4 6.0 6.0 0.0 1.04479 100.0 1 12.0 2.4; 15 2.4 6.0 6.0 0.0 1.04479 100.0 1 12.0 2.4; 15 2.4 6.0 6.0 0.0 1.04479 100.0 1 12.0 2.4; 15 2.4 6.0 6.0 0.0 1.04479 100.0 1 12.0 2.4; 15 54.3 80.0 80.0 -50.0 1.04479 100.0 1 155.0 54.3; 16 155.0 80.0 80.0 -50.0 1.04951 100.0 1 155.0 54.3; 18 400.0 54.665 200.0 -50.0 1.05 100.0 1 400.0 100.0; 21 296.31 -15.579 200.0 -50.0 1.05 100.0 1 400.0 100.0; 22 47.938 -6.795 16.0 -10.0 1.05 100.0 1 50.0 10.0; 22 47.938 -6.795 16.0 -10.0 1.05 100.0 1 50.0 10.0; 22 47.938 -6.795 16.0 -10.0 1.05 100.0 1 50.0 10.0; 22 47.938 -6.795 16.0 -10.0 1.05 100.0 1 50.0 10.0; 22 47.938 -6.795 16.0 -10.0 1.05 100.0 1 50.0 10.0; 22 47.938 -6.795 16.0 -10.0 1.05 100.0 1 50.0 10.0; 23 113.399 -9.984 80.0 -50.0 1.05 100.0 1 155.0 54.3; 23 113.399 -9.984 80.0 -50.0 1.05 100.0 1 155.0 54.3; 23 248.289 21.208 150.0 -25.0 1.05 100.0 1 350.0 140.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 1500.0 0.0 3 0.000000 130.000000 400.684900; 2 1500.0 0.0 3 0.000000 130.000000 400.684900; 2 1500.0 0.0 3 0.014142 16.081100 212.307600; 2 1500.0 0.0 3 0.014142 16.081100 212.307600; 2 1500.0 0.0 3 0.000000 130.000000 400.684900; 2 1500.0 0.0 3 0.000000 130.000000 400.684900; 2 1500.0 0.0 3 0.014142 16.081100 212.307600; 2 1500.0 0.0 3 0.014142 16.081100 212.307600; 2 1500.0 0.0 3 0.052672 43.661500 781.521000; 2 1500.0 0.0 3 0.052672 43.661500 781.521000; 2 1500.0 0.0 3 0.052672 43.661500 781.521000; 2 1500.0 0.0 3 0.007170 48.580400 832.757500; 2 1500.0 0.0 3 0.007170 48.580400 832.757500; 2 1500.0 0.0 3 0.007170 48.580400 832.757500; 2 1500.0 0.0 3 0.000000 0.000000 0.000000; 2 1500.0 0.0 3 0.328412 56.564000 86.385200; 2 1500.0 0.0 3 0.328412 56.564000 86.385200; 2 1500.0 0.0 3 0.328412 56.564000 86.385200; 2 1500.0 0.0 3 0.328412 56.564000 86.385200; 2 1500.0 0.0 3 0.328412 56.564000 86.385200; 2 1500.0 0.0 3 0.008342 12.388300 382.239100; 2 1500.0 0.0 3 0.008342 12.388300 382.239100; 2 1500.0 0.0 3 0.000213 4.423100 395.374900; 2 1500.0 0.0 3 0.000213 4.423100 395.374900; 2 1500.0 0.0 3 0.000000 0.001000 0.001000; 2 1500.0 0.0 3 0.000000 0.001000 0.001000; 2 1500.0 0.0 3 0.000000 0.001000 0.001000; 2 1500.0 0.0 3 0.000000 0.001000 0.001000; 2 1500.0 0.0 3 0.000000 0.001000 0.001000; 2 1500.0 0.0 3 0.000000 0.001000 0.001000; 2 1500.0 0.0 3 0.008342 12.388300 382.239100; 2 1500.0 0.0 3 0.008342 12.388300 382.239100; 2 1500.0 0.0 3 0.004895 11.849500 665.109400; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.0026 0.0139 0.4611 175.0 193.0 200.0 0.0 0.0 1 -7.100016 7.100016; 1 3 0.0546 0.2112 0.0572 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 1 5 0.0218 0.0845 0.0229 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 2 4 0.0328 0.1267 0.0343 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 2 6 0.0497 0.192 0.052 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 3 9 0.0308 0.119 0.0322 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 3 24 0.0023 0.0839 0.0 400.0 510.0 600.0 1.03 0.0 1 -7.100016 7.100016; 4 9 0.0268 0.1037 0.0281 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 5 10 0.0228 0.0883 0.0239 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 6 10 0.0139 0.0605 2.459 175.0 193.0 200.0 0.0 0.0 1 -7.100016 7.100016; 7 8 0.0159 0.0614 0.0166 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 8 9 0.0427 0.1651 0.0447 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 8 10 0.0427 0.1651 0.0447 175.0 208.0 220.0 0.0 0.0 1 -7.100016 7.100016; 9 11 0.0023 0.0839 0.0 400.0 510.0 600.0 1.03 0.0 1 -7.100016 7.100016; 9 12 0.0023 0.0839 0.0 400.0 510.0 600.0 1.03 0.0 1 -7.100016 7.100016; 10 11 0.0023 0.0839 0.0 400.0 510.0 600.0 1.02 0.0 1 -7.100016 7.100016; 10 12 0.0023 0.0839 0.0 400.0 510.0 600.0 1.02 0.0 1 -7.100016 7.100016; 11 13 0.0061 0.0476 0.0999 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 11 14 0.0054 0.0418 0.0879 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 12 13 0.0061 0.0476 0.0999 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 12 23 0.0124 0.0966 0.203 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 13 23 0.0111 0.0865 0.1818 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 14 16 0.005 0.0389 0.0818 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 15 16 0.0022 0.0173 0.0364 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 15 21 0.0063 0.049 0.103 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 15 21 0.0063 0.049 0.103 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 15 24 0.0067 0.0519 0.1091 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 16 17 0.0033 0.0259 0.0545 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 16 19 0.003 0.0231 0.0485 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 17 18 0.0018 0.0144 0.0303 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 17 22 0.0135 0.1053 0.2212 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 18 21 0.0033 0.0259 0.0545 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 18 21 0.0033 0.0259 0.0545 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 19 20 0.0051 0.0396 0.0833 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 19 20 0.0051 0.0396 0.0833 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 20 23 0.0028 0.0216 0.0455 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 23 20 0.0028 0.0216 0.0455 500.0 600.0 625.0 0.0 0.0 1 -7.100016 7.100016; 21 22 0.0087 0.0678 0.1424 500.0 600.0 625.0 0.0 0.0 1 0.000000 0.000000; ];
github
lanl-ansi/PowerModels.jl-master
case9.m
.m
PowerModels.jl-master/test/data/matpower/case9.m
2,193
utf_8
03b837e611021136e7dce6783fe4f738
% used in tests of, % - sparce SDP implementation, possible cholesky PosDefException function mpc = case9 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 3 0.0 0.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 2 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 3 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 4 1 0.0 0.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 5 1 80.0 20.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 6 1 0.0 0.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 7 1 90.0 40.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 8 1 0.0 0.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; 9 1 100.0 40.0 0.0 0.0 1 1.00000 0.00000 350.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 0.0 0.0 900.0 -900.0 1.0 100.0 1 250.0 10.0; 2 0.0 0.0 900.0 -900.0 1.0 100.0 1 300.0 10.0; 3 0.0 0.0 900.0 -900.0 1.0 100.0 1 270.0 10.0; ]; %% generator cost data mpc.gencost = [ 2 0.0 0.0 2 4.1 0.0; 2 0.0 0.0 2 2.3 0.0; 2 0.0 0.0 2 1.1 0.0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 4 0.000 0.058 0.000 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 4 5 0.017 0.092 0.158 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 5 6 0.039 0.170 0.358 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 3 6 0.000 0.059 0.000 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 6 7 0.012 0.101 0.209 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 7 8 0.009 0.072 0.149 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 8 2 0.000 0.063 0.000 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 8 9 0.032 0.161 0.306 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; 9 4 0.010 0.085 0.176 900.0 900.0 900.0 0.0 0.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case5_gap.m
.m
PowerModels.jl-master/test/data/matpower/case5_gap.m
2,164
utf_8
671d777e38c28224a04eda98a6ca828c
% uses negative generator costs to test convex relaxations % voltage mag and voltage angle difference bounds are key function mpc = case5_gap mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.09071 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.09981 0.90000; 5 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 5 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 -14.000000 0.000000; 2 0.0 0.0 3 0.000000 -15.000000 0.000000; 2 0.0 0.0 3 0.000000 -30.000000 0.000000; 2 0.0 0.0 3 0.000000 -40.000000 0.000000; 2 0.0 0.0 3 0.000000 -10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 1.13502939215 7.37625865451; 1 4 0.00304 0.0304 0.00658 426.0 426.0 426.0 0.0 0.0 1 0.658328506605 4.09149161503; 1 5 0.00064 0.0064 0.03126 426.0 426.0 426.0 0.0 0.0 1 -1.85752917181 0.214859173174; 2 3 0.00108 0.0108 0.01852 426.0 426.0 426.0 0.0 0.0 1 -1.6352215473 0.67895498723; 3 4 0.00297 0.0297 0.00674 426.0 426.0 426.0 0.0 0.0 1 -4.41979643164 2.02540580579; 4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -5.06895761352 -0.827924013964; ];
github
lanl-ansi/PowerModels.jl-master
case3_tnep.m
.m
PowerModels.jl-master/test/data/matpower/case3_tnep.m
1,278
utf_8
ead5d883df41cc54bf004737b4210419
% tests extra data needed for tnep problems % test when not all ne_branch branch ids are bus ids function mpc = case3_tnep mpc.version = '2'; mpc.baseMVA = 100.0; mpc.bus = [ 2 3 110.0 40.0 0.0 0.0 1 1.10000 -0.00000 240.0 1 1.10000 0.90000; 3 2 110.0 40.0 0.0 0.0 1 0.92617 7.25883 240.0 1 1.10000 0.90000; 4 2 95.0 50.0 0.0 0.0 1 0.90000 -17.26710 240.0 2 1.10000 0.90000; ]; mpc.gen = [ 2 148.067 54.697 1000.0 -1000.0 1.1 100.0 1 2000.0 0.0; 3 170.006 -8.791 1000.0 -1000.0 0.92617 100.0 1 2000.0 0.0; 4 0.0 -4.843 1000.0 -1000.0 0.9 100.0 1 0.0 0.0; ]; mpc.gencost = [ 2 0.0 0.0 3 0.110000 5.000000 0.000000; 2 0.0 0.0 3 0.085000 1.200000 0.000000; 2 0.0 0.0 3 0.000000 0.000000 0.000000; ]; mpc.branch = [ 2 3 0.042 0.9 0.3 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; ]; %column_names% f_bus t_bus br_r br_x br_b rate_a rate_b rate_c tap shift br_status angmin angmax construction_cost mpc.ne_branch = [ 2 4 0.065 0.62 0.45 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0 1; 4 3 0.025 0.75 0.7 50.0 0.0 0.0 0.0 0.0 1 -30.0 30.0 1; 4 3 0.025 0.75 0.7 0.0 0.0 0.0 0.0 0.0 1 -30.0 30.0 1; ];
github
lanl-ansi/PowerModels.jl-master
case5_npg.m
.m
PowerModels.jl-master/test/data/matpower/case5_npg.m
2,052
utf_8
624549d328690dfa5c89a8092933627b
% used in tests of, % - negative generator outputs function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 -40.0 -60.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 -200.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 20.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 400.0 0.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 900.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.010000 14.000000 0.000000; 2 0.0 0.0 3 0.020000 15.000000 0.000000; 2 0.0 0.0 3 0.030000 30.000000 0.000000; 2 0.0 0.0 3 0.040000 40.000000 0.000000; 2 0.0 0.0 3 0.000000 -10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case5_dc.m
.m
PowerModels.jl-master/test/data/matpower/case5_dc.m
2,344
utf_8
50a742579b5303513bdd62c528ad9199
% tests dc line with costs % tests generator and dc line voltage setpoint warnings function mpc = case5_dc mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 1 0.0 0.00 0.0 0.0 1 1.06355 2.87619 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08009 -0.79708 230.0 1 1.10000 0.90000; 3 1 300.0 98.61 0.0 0.0 1 1.10000 -0.64925 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000; 5 1 0.0 0.00 0.0 0.0 1 1.05304 3.70099 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.06355 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 333.6866 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -70.8186 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 5 463.5555 -184.9224 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 5 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 0.0 0.0 1 -30.0 30.0; 4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; %% dcline data % fbus tbus status Pf Pt Qf Qt Vf Vt Pmin Pmax QminF QmaxF QminT QmaxT loss0 loss1 mpc.dcline = [ 3 5 1 15 8.9 99.9934 -10.4049 1.1 1.05555 10 100 -100 100 -100 100 1 0.01; ]; %% dcline cost data % 2 startup shutdown n c(n-1) ... c0 mpc.dclinecost = [ 2 0.0 0.0 4 0.000000 0.000000 40.000000 0.000000; ];
github
lanl-ansi/PowerModels.jl-master
case5_uc_strg.m
.m
PowerModels.jl-master/test/data/matpower/case5_uc_strg.m
2,580
utf_8
3932c3885a84421f33e949f72fc22e31
% used in tests of, % - unit commitment, generator 4 should be de-commited due to high cost function mpc = case5_uc mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 100.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000 2.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 4 3 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; % hours mpc.time_elapsed = 1.0 %% storage data % storage_bus ps qs energy energy_rating charge_rating discharge_rating charge_efficiency discharge_efficiency thermal_rating qmin qmax r x p_loss q_loss status mpc.storage = [ 3 0.0 0.0 20.0 100.0 50.0 70.0 0.8 0.9 100.0 -50.0 70.0 0.1 0.0 0.0 0.0 1; 10 0.0 0.0 30.0 100.0 0.0 70.0 0.9 0.8 100.0 110.0 120.0 0.1 0.0 0.0 0.0 1; ];
github
lanl-ansi/PowerModels.jl-master
case5_strg.m
.m
PowerModels.jl-master/test/data/matpower/case5_strg.m
2,406
utf_8
277e707bf78cc5ca09132809a8990e99
% used in tests of, % - storage modeling function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; % hours mpc.time_elapsed = 1.0 %% storage data % storage_bus ps qs energy energy_rating charge_rating discharge_rating charge_efficiency discharge_efficiency thermal_rating qmin qmax r x p_loss q_loss status mpc.storage = [ 3 0.0 0.0 20.0 100.0 50.0 70.0 0.8 0.9 100.0 -50.0 70.0 0.1 0.0 0.0 0.0 1; 10 0.0 0.0 30.0 100.0 50.0 70.0 0.9 0.8 100.0 -50.0 70.0 0.1 0.0 0.0 0.0 1; ];
github
lanl-ansi/PowerModels.jl-master
case5_asym.m
.m
PowerModels.jl-master/test/data/matpower/case5_asym.m
2,096
utf_8
13b833127c1a25f144950df06313b47b
% tests asymetrical branch voltage angle differences function mpc = case5_asym mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.09071 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.09981 0.90000; 5 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 5 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 1.13502939215 7.37625865451; 1 4 0.00304 0.0304 0.00658 426.0 426.0 426.0 0.0 0.0 1 0.658328506605 4.09149161503; 1 5 0.00064 0.0064 0.03126 426.0 426.0 426.0 0.0 0.0 1 -1.85752917181 0.214859173174; 2 3 0.00108 0.0108 0.01852 426.0 426.0 426.0 0.0 0.0 1 -1.6352215473 0.67895498723; 3 4 0.00297 0.0297 0.00674 426.0 426.0 426.0 0.0 0.0 1 -4.41979643164 2.02540580579; 4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -5.06895761352 -0.827924013964; ];
github
lanl-ansi/PowerModels.jl-master
case5_sw_nb.m
.m
PowerModels.jl-master/test/data/matpower/case5_sw_nb.m
3,737
utf_8
536ee3631a6d31a6f65dd6d7e7ef3503
% used in tests of, % - switch modeling with a node-break representation % - the encoding of bus ids with numbers over 100 is "branch_id0bus_id" function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 5.0 10.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 5 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 101 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 102 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 201 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 204 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 301 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 305 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 402 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 403 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 503 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 504 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 603 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 604 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 704 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 705 2 0.0 0.0 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.00000 100.0 1 40.0 0.0; 1 170.0 127.0 127.0 -127.5 1.00000 100.0 1 170.0 0.0; 3 324.0 390.0 390.0 -390.0 1.00000 100.0 1 520.0 0.0; 4 0.0 -10.0 150.0 -150.0 1.00000 100.0 1 200.0 0.0; 5 470.0 -165.0 450.0 -450.0 1.00000 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 2 14.0 0.0; 2 0.0 0.0 2 15.0 0.0; 2 0.0 0.0 2 30.0 0.0; 2 0.0 0.0 2 40.0 0.0; 2 0.0 0.0 2 10.0 0.0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 101 102 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 201 204 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 301 305 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 402 403 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 503 504 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 603 604 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 704 705 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; %% switch data % f_bus t_bus psw qsw state thermal_rating status mpc.switch = [ 1 101 0.0 0.00 1 1000.0 1; 2 102 0.0 0.00 1 1000.0 1; 1 201 0.0 0.00 1 1000.0 1; 4 204 0.0 0.00 1 1000.0 1; 1 301 0.0 0.00 1 1000.0 1; 5 305 0.0 0.00 1 1000.0 1; 2 402 0.0 0.00 1 1000.0 1; 3 403 0.0 0.00 1 1000.0 1; 3 503 0.0 0.00 1 1000.0 1; 4 504 0.0 0.00 1 1000.0 1; 3 603 0.0 0.00 1 1000.0 1; 4 604 0.0 0.00 1 1000.0 1; 4 704 0.0 0.00 1 1000.0 1; 5 705 0.0 0.00 1 1000.0 1; ];
github
lanl-ansi/PowerModels.jl-master
case5_clm.m
.m
PowerModels.jl-master/test/data/matpower/case5_clm.m
2,229
utf_8
d9cbef19094b9edd9861e3cb3332a3ee
% used in tests of, % - adding explict current constraints % - current a ratings tranfered to thermal limits function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 0.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 0.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 0.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 0.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 0.0 0.0 0.0 1.05 1.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 0.0 0.0 0.0 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 0.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; ]; % adds current ratings to branch matrix %column_names% c_rating_a mpc.branch_currents = [ 400.0; 426; 426; 426; 426; 426; 240.0; ];
github
lanl-ansi/PowerModels.jl-master
case5_ext.m
.m
PowerModels.jl-master/test/data/matpower/case5_ext.m
2,405
utf_8
650212fa5dc2481b6b0dc83d789f7475
% used in tests of, % - inactive bus 11 % - negative branch susceptance % - power flow slack bus with multiple generators % - power flow slack bus with non-zero va value function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 3 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 1 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; 11 4 0.0 0.0 1.0 10.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 10 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000 2.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000 2.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 4 3 0.00297 -0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; 10 11 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case6.m
.m
PowerModels.jl-master/test/data/matpower/case6.m
1,905
utf_8
f3047dc4e17d93d99f563bb737086e85
% Case to test two connected components in the network data % the case is two replicates of the case3 network function mpc = case6 mpc.version = '2'; mpc.baseMVA = 100.0; mpc.bus = [ 1 3 110.0 40.0 0.0 0.0 1 1.10000 -0.00000 240.0 1 1.10000 0.90000; 2 2 110.0 40.0 0.0 0.0 1 0.92617 7.25883 240.0 1 1.10000 0.90000; 3 2 95.0 50.0 0.0 0.0 1 0.90000 -17.26710 240.0 2 1.10000 0.90000; 4 3 110.0 40.0 0.0 0.0 1 1.10000 -0.00000 240.0 1 1.10000 0.90000; 5 2 110.0 40.0 0.0 0.0 1 0.92617 7.25883 240.0 1 1.10000 0.90000; 6 2 95.0 50.0 0.0 0.0 1 0.90000 -17.26710 240.0 2 1.10000 0.90000; ]; mpc.gen = [ 1 148.067 54.697 1000.0 -1000.0 1.1 100.0 1 2000.0 0.0; 2 170.006 -8.791 1000.0 -1000.0 0.92617 100.0 1 1500.0 0.0; 3 0.0 -4.843 1000.0 -1000.0 0.9 100.0 1 0.0 0.0; 4 148.067 54.697 1000.0 -1000.0 1.1 100.0 1 2000.0 0.0; 5 170.006 -8.791 1000.0 -1000.0 0.92617 100.0 1 1500.0 0.0; 6 0.0 -4.843 1000.0 -1000.0 0.9 100.0 1 0.0 0.0; ]; mpc.gencost = [ 2 0.0 0.0 3 0.110000 5.000000 0.000000; 2 0.0 0.0 3 0.085000 1.200000 0.000000; 2 0.0 0.0 3 0.000000 0.000000 0.000000; 2 0.0 0.0 3 0.110000 5.000000 0.000000; 2 0.0 0.0 3 0.085000 1.200000 0.000000; 2 0.0 0.0 3 0.000000 0.000000 0.000000; ]; mpc.branch = [ 1 3 0.065 0.62 0.45 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 3 2 0.025 0.75 0.7 50.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 1 2 0.042 0.9 0.3 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 4 6 0.065 0.62 0.45 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 6 5 0.025 0.75 0.7 50.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 4 5 0.042 0.9 0.3 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case5_sw.m
.m
PowerModels.jl-master/test/data/matpower/case5_sw.m
1,897
utf_8
6a2e73349d3840c9d7e9938492a88bbf
% used in tests of, % - switch modeling function mpc = case5 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.00000 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 5.0 10.0 1 1.00000 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.00000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.00000 0.00000 230.0 1 1.10000 0.90000; 10 2 0.0 0.0 0.0 0.0 1 1.00000 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.00000 100.0 1 40.0 0.0; 1 170.0 127.0 127.0 -127.5 1.00000 100.0 1 170.0 0.0; 3 324.0 390.0 390.0 -390.0 1.00000 100.0 1 520.0 0.0; 4 0.0 -10.0 150.0 -150.0 1.00000 100.0 1 200.0 0.0; 10 470.0 -165.0 450.0 -450.0 1.00000 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 2 14.0 0.0; 2 0.0 0.0 2 15.0 0.0; 2 0.0 0.0 2 30.0 0.0; 2 0.0 0.0 2 40.0 0.0; 2 0.0 0.0 2 10.0 0.0; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 10 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 -1.0 1 -30.0 30.0; 4 10 0.00297 0.0297 0.00674 240 240 240 0.0 0.0 1 -30.0 30.0; ]; %% switch data % f_bus t_bus psw qsw state thermal_rating status mpc.switch = [ 1 2 300.0 98.61 1 1000.0 1; 3 2 0.0 0.00 0 1000.0 1; 3 4 0.0 0.00 1 1000.0 0; ];
github
lanl-ansi/PowerModels.jl-master
case3_oltc_pst.m
.m
PowerModels.jl-master/test/data/matpower/case3_oltc_pst.m
1,496
utf_8
2850a95f709d111a9d59484fb3331536
% Case to test adding data to matpower file % tests refrence bus detection % tests basic ac and hvdc modeling % tests when gencost is present but not dclinecost % quadratic objective function function mpc = case3 mpc.version = '2'; mpc.baseMVA = 100.0; mpc.bus = [ 1 2 110.0 40.0 0.0 0.0 1 1.10000 -0.00000 240.0 1 1.10000 0.90000; 2 2 110.0 40.0 0.0 0.0 1 0.92617 7.25883 240.0 1 1.10000 0.90000; 3 2 95.0 50.0 0.0 0.0 1 0.90000 -17.26710 240.0 2 1.10000 0.90000; ]; mpc.gen = [ 1 158.067 28.79 1000.0 -1000.0 1.1 100.0 1 2000.0 0.0; 2 160.006 -4.63 1000.0 -1000.0 0.92617 100.0 1 1500.0 0.0; 3 0.0 -4.843 1000.0 -1000.0 0.9 100.0 1 0.0 0.0; ]; mpc.gencost = [ 2 0.0 0.0 3 0.110000 5.000000 0.000000; 2 0.0 0.0 3 0.085000 1.200000 0.000000; 2 0.0 0.0 3 0.000000 0.000000 0.000000; ]; % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 3 0.065 0.62 0.45 9000.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 3 2 0.025 0.75 0.7 50.0 0.0 0.0 0.0 0.0 1 -30.0 30.0; 1 2 0.042 0.9 0.3 9000.0 0.0 0.0 0.0 5.0 1 -30.0 30.0; ]; mpc.dcline = [ 1 2 1 10 10 25.91 -4.16 1.1 0.92617 10 900 -900 900 -900 900 0 0 0 0 0 0 0 0 ] % add new columns to "branch" matrix %column_names% tm_min tm_max ta_min ta_max mpc.branch_oltc_pst = [ 0.9 1.1 0 0; 0.9 1.1 0.0 0.0; 1.0 1.0 -15.0 15.0; ];
github
lanl-ansi/PowerModels.jl-master
frankenstein_00.m
.m
PowerModels.jl-master/test/data/matpower/frankenstein_00.m
2,010
utf_8
2eb9f12948ad025400fd4fdb36c530fc
% Case saved by PowerWorld Simulator, version 19, build date January 17, 2017 % Case Information Header = 2 lines % A Frankenstein network for testing all of the core features of v33 data files % developed by Carleton Coffrin ([email protected]) June 2017 function mpc = frankenstein_00 mpc.version = '2'; mpc.baseMVA = 100.00; %% bus data mpc.bus = [ 1002 2 0.00 0.00 0.00 0.00 101 0.9989281 2.93603 345.00 201 1.100 0.900 1005 2 0.00 0.00 0.00 0.00 101 1.0199983 0.12982 87.00 201 1.100 0.900 1008 2 18.90 6.90 0.00 0.00 101 1.0203628 -0.00217 87.00 201 1.100 0.900 1009 3 10.50 2.30 0.00 105.30 101 1.0300000 0.00000 87.00 201 1.100 0.900 ]; %% generator data mpc.gen = [ 1002 27.50 2.00 2.00 2.00 1.0200 31.30 1 27.50 16.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 27.5000 1005 20.00 -242.52 250.00 -250.00 1.0200 320.00 1 200.00 -200.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 200.0000 1009 -17.73 109.28 250.00 -250.00 1.0300 100.00 1 250.00 -250.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 250.0000 ]; %% generator cost data mpc.gencost = [ 2 0 0 4 0 0 1 0 2 0 0 4 0 0 1 0 2 0 0 4 0 0 1 0 ]; %% branch data mpc.branch = [ 1005 1002 0.005210 0.177370 0.00000 84.00 84.00 84.00 1.02500 0.000 1 0.00 0.00 -27.46 -0.66 27.50 2.01 1008 1005 0.001278 0.012294 0.22708 1086.00 1195.00 1086.00 0.00000 0.000 1 0.00 0.00 -18.98 -6.80 18.98 -16.79 1005 1009 0.000475 0.004680 0.08200 1044.00 1170.00 1044.00 0.00000 0.000 1 0.00 0.00 28.45 -225.08 -28.23 218.69 ]; %% bus names mpc.bus_name = { 'FAV SPOT 02'; 'FAV PLACE 05'; 'FAV PLC 08'; 'FAV PLACE 09'; };
github
lanl-ansi/PowerModels.jl-master
case30.m
.m
PowerModels.jl-master/test/data/matpower/case30.m
6,660
utf_8
b2778ec0340deede2b1cd151d52c4b79
% from pglib-opf - https://github.com/power-grid-lib/pglib-opf function mpc = case30 mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 3 0.0 0.0 0.0 0.0 1 1.06000 -0.00000 132.0 1 1.06000 0.94000; 2 2 21.7 12.7 0.0 0.0 1 1.03591 -4.11149 132.0 1 1.06000 0.94000; 3 1 2.4 1.2 0.0 0.0 1 1.01502 -6.85372 132.0 1 1.06000 0.94000; 4 1 7.6 1.6 0.0 0.0 1 1.00446 -8.44574 132.0 1 1.06000 0.94000; 5 2 94.2 19.0 0.0 0.0 1 0.99748 -13.13219 132.0 1 1.06000 0.94000; 6 1 0.0 0.0 0.0 0.0 1 1.00170 -10.15671 132.0 1 1.06000 0.94000; 7 1 22.8 10.9 0.0 0.0 1 0.99208 -11.91706 132.0 1 1.06000 0.94000; 8 2 30.0 30.0 0.0 0.0 1 1.00241 -10.93461 132.0 1 1.06000 0.94000; 9 1 0.0 0.0 0.0 0.0 1 1.03671 -13.26615 1.0 1 1.06000 0.94000; 10 1 5.8 2.0 0.0 19.0 1 1.03220 -14.89730 33.0 1 1.06000 0.94000; 11 2 0.0 0.0 0.0 0.0 1 1.06000 -13.26615 11.0 1 1.06000 0.94000; 12 1 11.2 7.5 0.0 0.0 1 1.04625 -14.18878 33.0 1 1.06000 0.94000; 13 2 0.0 0.0 0.0 0.0 1 1.06000 -14.18878 11.0 1 1.06000 0.94000; 14 1 6.2 1.6 0.0 0.0 1 1.03103 -15.09457 33.0 1 1.06000 0.94000; 15 1 8.2 2.5 0.0 0.0 1 1.02621 -15.17834 33.0 1 1.06000 0.94000; 16 1 3.5 1.8 0.0 0.0 1 1.03259 -14.75320 33.0 1 1.06000 0.94000; 17 1 9.0 5.8 0.0 0.0 1 1.02726 -15.07475 33.0 1 1.06000 0.94000; 18 1 3.2 0.9 0.0 0.0 1 1.01602 -15.79032 33.0 1 1.06000 0.94000; 19 1 9.5 3.4 0.0 0.0 1 1.01317 -15.95831 33.0 1 1.06000 0.94000; 20 1 2.2 0.7 0.0 0.0 1 1.01714 -15.75153 33.0 1 1.06000 0.94000; 21 1 17.5 11.2 0.0 0.0 1 1.01982 -15.35269 33.0 1 1.06000 0.94000; 22 1 0.0 0.0 0.0 0.0 1 1.02041 -15.33860 33.0 1 1.06000 0.94000; 23 1 3.2 1.6 0.0 0.0 1 1.01532 -15.56400 33.0 1 1.06000 0.94000; 24 1 8.7 6.7 0.0 4.3 1 1.00930 -15.72597 33.0 1 1.06000 0.94000; 25 1 0.0 0.0 0.0 0.0 1 1.00621 -15.29138 33.0 1 1.06000 0.94000; 26 1 3.5 2.3 0.0 0.0 1 0.98833 -15.72053 33.0 1 1.06000 0.94000; 27 1 0.0 0.0 0.0 0.0 1 1.01294 -14.75624 33.0 1 1.06000 0.94000; 28 1 0.0 0.0 0.0 0.0 1 0.99824 -10.79567 132.0 1 1.06000 0.94000; 29 1 2.4 0.9 0.0 0.0 1 0.99288 -16.01182 33.0 1 1.06000 0.94000; 30 1 10.6 1.9 0.0 0.0 1 0.98128 -16.91371 33.0 1 1.06000 0.94000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 218.839 9.372 10.0 0.0 1.06 100.0 1 784 0.0; % COW 2 80.05 24.589 50.0 -40.0 1.03591 100.0 1 100 0.0; % NG 5 0.0 32.487 40.0 -40.0 0.99748 100.0 1 0 0.0; % SYNC 8 0.0 40.0 40.0 -10.0 1.00241 100.0 1 0 0.0; % SYNC 11 0.0 11.87 24.0 -6.0 1.06 100.0 1 0 0.0; % SYNC 13 0.0 10.414 24.0 -6.0 1.06 100.0 1 0 0.0; % SYNC ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 0.521378 0.000000; % COW 2 0.0 0.0 3 0.000000 1.135166 0.000000; % NG 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC 2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ 1 2 0.0192 0.0575 0.0528 138 138 138 0.0 0.0 1 -30.0 30.0; 1 3 0.0452 0.1652 0.0408 152 152 152 0.0 0.0 1 -30.0 30.0; 2 4 0.057 0.1737 0.0368 139 139 139 0.0 0.0 1 -30.0 30.0; 3 4 0.0132 0.0379 0.0084 135 135 135 0.0 0.0 1 -30.0 30.0; 2 5 0.0472 0.1983 0.0418 144 144 144 0.0 0.0 1 -30.0 30.0; 2 6 0.0581 0.1763 0.0374 139 139 139 0.0 0.0 1 -30.0 30.0; 4 6 0.0119 0.0414 0.009 148 148 148 0.0 0.0 1 -30.0 30.0; 5 7 0.046 0.116 0.0204 127 127 127 0.0 0.0 1 -30.0 30.0; 6 7 0.0267 0.082 0.017 140 140 140 0.0 0.0 1 -30.0 30.0; 6 8 0.012 0.042 0.009 148 148 148 0.0 0.0 1 -30.0 30.0; 6 9 0.0 0.208 0.0 142 142 142 0.978 0.0 1 -30.0 30.0; 6 10 0.0 0.556 0.0 53 53 53 0.969 0.0 1 -30.0 30.0; 9 11 0.0 0.208 0.0 142 142 142 0.0 0.0 1 -30.0 30.0; 9 10 0.0 0.11 0.0 267 267 267 0.0 0.0 1 -30.0 30.0; 4 12 0.0 0.256 0.0 115 115 115 0.932 0.0 1 -30.0 30.0; 12 13 0.0 0.14 0.0 210 210 210 0.0 0.0 1 -30.0 30.0; 12 14 0.1231 0.2559 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 12 15 0.0662 0.1304 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 12 16 0.0945 0.1987 0.0 30 30 30 0.0 0.0 1 -30.0 30.0; 14 15 0.221 0.1997 0.0 20 20 20 0.0 0.0 1 -30.0 30.0; 16 17 0.0524 0.1923 0.0 38 38 38 0.0 0.0 1 -30.0 30.0; 15 18 0.1073 0.2185 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 18 19 0.0639 0.1292 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 19 20 0.034 0.068 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 10 20 0.0936 0.209 0.0 30 30 30 0.0 0.0 1 -30.0 30.0; 10 17 0.0324 0.0845 0.0 33 33 33 0.0 0.0 1 -30.0 30.0; 10 21 0.0348 0.0749 0.0 30 30 30 0.0 0.0 1 -30.0 30.0; 10 22 0.0727 0.1499 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 21 22 0.0116 0.0236 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 15 23 0.1 0.202 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 22 24 0.115 0.179 0.0 26 26 26 0.0 0.0 1 -30.0 30.0; 23 24 0.132 0.27 0.0 29 29 29 0.0 0.0 1 -30.0 30.0; 24 25 0.1885 0.3292 0.0 27 27 27 0.0 0.0 1 -30.0 30.0; 25 26 0.2544 0.38 0.0 25 25 25 0.0 0.0 1 -30.0 30.0; 25 27 0.1093 0.2087 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 28 27 0.0 0.396 0.0 75 75 75 0.968 0.0 1 -30.0 30.0; 27 29 0.2198 0.4153 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 27 30 0.3202 0.6027 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 29 30 0.2399 0.4533 0.0 28 28 28 0.0 0.0 1 -30.0 30.0; 8 28 0.0636 0.2 0.0428 140 140 140 0.0 0.0 1 -30.0 30.0; 6 28 0.0169 0.0599 0.013 149 149 149 0.0 0.0 1 -30.0 30.0; ];
github
lanl-ansi/PowerModels.jl-master
case5_tnep.m
.m
PowerModels.jl-master/test/data/matpower/case5_tnep.m
2,658
utf_8
470d092090807211509fb7dba3d74915
% tests extra data needed for tnep problems function mpc = case5_tnep mpc.version = '2'; mpc.baseMVA = 100.0; %% bus data % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin mpc.bus = [ 1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000; 2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000; 3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000; 4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000; 5 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000; ]; %% generator data % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin mpc.gen = [ 1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0; 1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0; 3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0; 4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0; 5 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0; ]; %% generator cost data % 2 startup shutdown n c(n-1) ... c0 mpc.gencost = [ 2 0.0 0.0 3 0.000000 14.000000 0.000000; 2 0.0 0.0 3 0.000000 15.000000 0.000000; 2 0.0 0.0 3 0.000000 30.000000 0.000000; 2 0.0 0.0 3 0.000000 40.000000 0.000000; 2 0.0 0.0 3 0.000000 10.000000 0.000000; ]; %% branch data % fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax mpc.branch = [ % 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0; % 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0; 1 5 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0; 2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0; 3 4 0.00297 0.0297 0.00674 426 426 426 1.05 1.0 1 -30.0 30.0; 4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0; ]; %column_names% f_bus t_bus br_r br_x br_b rate_a rate_b rate_c tap shift br_status angmin angmax construction_cost mpc.ne_branch = [ 1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0 1; 1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0 1; 1 4 0.00304 0.0304 0.00658 1.0 1.0 1.0 0.0 0.0 1 -30.0 30.0 1; ]; %% dcline data % fbus tbus status Pf Pt Qf Qt Vf Vt Pmin Pmax QminF QmaxF QminT QmaxT loss0 loss1 mpc.dcline = [ 3 5 1 10 8.9 99.9934 -10.4049 1.1 1.05304 10 100 -100 100 -100 100 1 0.01; ]; %% dcline cost data % 2 startup shutdown n c(n-1) ... c0 mpc.dclinecost = [ 2 0.0 0.0 3 0.000000 40.000000 0.000000; ];
github
ezachar/PeerJ-master
parseInputs.m
.m
PeerJ-master/Code/FeatureExtraction/parseInputs.m
1,405
utf_8
12f34715332fcd1e988e132221c88ae0
function [datapath,outpath,ext,kernel,bin, modelfname,list] = parseInputs(varargin) % function [datapath,outpath,ext,kernel,bin, modelfname,list] = parseInputs(varargin) %=== Check for the right number of inputs if rem(nargin,2)== 1 error('IncorrectNumberOfArguments',... 'Incorrect number of arguments to %s.',mfilename); end %=== Allowed inputs okargs = {'datapath','outpath','ext','kernel','bin', 'modelfname','list'}; %=== Defaults list = fullfile('..','Data','list.txt'); datapath = fullfile('..','Data'); modelfname = fullfile('..','Data','pdbmodel.mat'); outpath = datapath; if ~exist(outpath,'dir') mkdir(outpath); end ext = ''; %'.pdb'; % extension of the pdb files kernel = fspecial('gaussian') ; % ones(3, 3) / 9; % 3x3 mean kernel bin = 20; % width of histogram bins in angles for j=1:2:nargin [k, pval] = pvpair(varargin{j}, varargin{j+1}, okargs, mfilename); switch(k) case 1 % datapath = pval; case 2 % outpath = pval; case 3 % ext = pval; case 4 % kernel = str2num(pval); case 5 % bin = str2num(pval); case 6 % modelfname = pval; case 7 % list = pval; end end
github
ezachar/PeerJ-master
cnn_proteins_init_perChannel.m
.m
PeerJ-master/Code/cnn/cnn_proteins_init_perChannel.m
3,880
utf_8
80f57acab2e8cf5d93352d5088c57f76
function net = cnn_proteins_init_perChannel(opts, varargin) % CNN_MNIST_LENET Initialize a CNN similar for MNIST % opts.useSPnorm = false ; % opts.useDropout = false; opts = vl_argparse(opts, varargin) ; rng('default'); rng(0) ; f=1/100 ; net.layers = {} ; numLastFilters = 500; numFilters = 20; % number of filters numLabels = 6; FD=1; if opts.angles pad1=1; else pad1=0; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,FD,numFilters, 'single'), zeros(1, numFilters, 'single')}}, ... 'stride', 1, ... 'pad', pad1) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{ones(numFilters, 1, 'single'), zeros(numFilters, 1, 'single')}}); if opts.relu net.layers{end+1} = struct('type', 'relu') ; end net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,numFilters,50, 'single'),zeros(1,50,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{ones(50, 1, 'single'), zeros(50, 1, 'single')}}); if opts.relu net.layers{end+1} = struct('type', 'relu') ; end net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(2,2,50,numLastFilters, 'single'), zeros(1,numLastFilters,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{ones(numLastFilters, 1, 'single'), zeros(numLastFilters, 1, 'single')}}); net.layers{end+1} = struct('type', 'relu') ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(1,1,numLastFilters,numLabels, 'single'), zeros(1,numLabels,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'softmaxloss') ; % optionally insert Dropout layer % if opts.Dropout % if ~opts.relu % net = insertDropout(net, 3) ; % net = insertDropout(net, 7) ; % net = insertDropout(net, 11) ; %net = insertDropout(net, 10) ; % else % net = insertDropout(net, 4) ; % net = insertDropout(net, 9) ; % net = insertDropout(net, 14) ; % end if opts.Dropout if ~opts.relu net = insertDropout(net, 6) ; net = insertDropout(net, 10) ; else net = insertDropout(net, 7) ; net = insertDropout(net, 12) ; end end % -------------------------------------------------------------------- function net = insertSPnorm(net, l) % -------------------------------------------------------------------- assert(isfield(net.layers{l}, 'weights')); layer = struct('type', 'spnorm', 'param', [2 2 1 2]) ; net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ; % -------------------------------------------------------------------- function net = insertDropout(net, l) % -------------------------------------------------------------------- layer = struct('type', 'dropout','rate', 0.2) ; %0.5 net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
github
ezachar/PeerJ-master
cnn_proteins_init.m
.m
PeerJ-master/Code/cnn/cnn_proteins_init.m
3,891
utf_8
25cea2ab45fc779167b255f5eed4acaf
function net = cnn_proteins_init(opts, varargin) % CNN_MNIST_LENET Initialize a CNN similar for MNIST % opts.useSPnorm = false ; % opts.useDropout = false; opts = vl_argparse(opts, varargin) ; rng('default'); rng(0) ; f=1/100 ; net.layers = {} ; numLastFilters = 500; numFilters = 20; % number of filters numLabels = 6; if opts.angles FD=23; pad1=1; else FD = 8; % 1; pad1=0; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,FD,numFilters, 'single'), zeros(1, numFilters, 'single')}}, ... 'stride', 1, ... 'pad', pad1) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{ones(numFilters, 1, 'single'), zeros(numFilters, 1, 'single')}}); if opts.relu net.layers{end+1} = struct('type', 'relu') ; end net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(5,5,numFilters,50, 'single'),zeros(1,50,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{ones(50, 1, 'single'), zeros(50, 1, 'single')}}); if opts.relu net.layers{end+1} = struct('type', 'relu') ; end net.layers{end+1} = struct('type', 'pool', ... 'method', 'max', ... 'pool', [2 2], ... 'stride', 2, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(2,2,50,numLastFilters, 'single'), zeros(1,numLastFilters,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{ones(numLastFilters, 1, 'single'), zeros(numLastFilters, 1, 'single')}}); net.layers{end+1} = struct('type', 'relu') ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{f*randn(1,1,numLastFilters,numLabels, 'single'), zeros(1,numLabels,'single')}}, ... 'stride', 1, ... 'pad', 0) ; net.layers{end+1} = struct('type', 'softmaxloss') ; % optionally insert Dropout layer % if opts.Dropout % if ~opts.relu % net = insertDropout(net, 3) ; % net = insertDropout(net, 7) ; % net = insertDropout(net, 11) ; %net = insertDropout(net, 10) ; % else % net = insertDropout(net, 4) ; % net = insertDropout(net, 9) ; % net = insertDropout(net, 14) ; % end if opts.Dropout if ~opts.relu net = insertDropout(net, 6) ; net = insertDropout(net, 10) ; else net = insertDropout(net, 7) ; net = insertDropout(net, 12) ; end end % -------------------------------------------------------------------- function net = insertSPnorm(net, l) % -------------------------------------------------------------------- assert(isfield(net.layers{l}, 'weights')); layer = struct('type', 'spnorm', 'param', [2 2 1 2]) ; net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ; % -------------------------------------------------------------------- function net = insertDropout(net, l) % -------------------------------------------------------------------- layer = struct('type', 'dropout','rate', 0.2) ; %0.5 net.layers = horzcat(net.layers(1:l), layer, net.layers(l+1:end)) ;
github
albertomontesg/computer-vision-exercises-master
MCL_Localization_lab.m
.m
computer-vision-exercises-master/exercise3/code/MCL_Localization_lab.m
9,090
utf_8
da7b928668ef1fbbc50dcf8018575a68
% 1DOF ROBOT LOCALIZATION IN A CIRCULAR HALLWAY USING A HISTOGRAM FILTER function MCLLocalization1DOFRobotInTheHallway clear all; %close all; global frame figure_handle plot_handle firstTime; fprintf('Loading the animation data...\n'); load animation; fprintf('Animation data loaded\n'); % Algorithm parameters simpar.circularHallway=1; % 1:yes, 0:no simpar.animate=1; % 1: Draw the animation of the gaussian. 0: do not draw (speed up the simulation) simpar.nSteps=500; % number of steps of the algorithm simpar.domain = 850; % Domain size (in centimeters) simpar.xTrue_0=[mod(abs(ceil(simpar.domain*randn(1))),850); 20]; simpar.numberOfParticles = 100; simpar.wk_stdev=1; % stddev of the noise used in acceleration to simulate the robot movement. simpar.door_locations = [222,326,611]; % Position of the doors (in centimetres). This is the Map definition. simpar.door_stdev=90/4; % +-2sigma of the door observation is assumend to be 90 cm which is the wide of the door simpar.odometry_stdev = 2; % Odometry uncertainty. Std. deviation of a Gaussian pdf. [cm] simpar.T=1; % Simulation sample time % Fixe the position of the figure to the up left corner % Fixe the size depending on the screen size scrsz = get(0,'ScreenSize'); figure_handle=figure('Position',[0 0 scrsz(3)/3.5 scrsz(4)]); %figure_handle=figure(1); firstTime=ones(6); xTrue_k=simpar.xTrue_0 % Initial Robot belief is generated from the uniform distribution belief_particles = random('unif',0,simpar.domain,1,simpar.numberOfParticles); % The localization algorithm starts here %%%%%%%%%%%%%%%%%%%%%%%%%%%% for k = 1:simpar.nSteps DrawRobot(xTrue_k(1), simpar); %Plots the robot xTrue_k_1=xTrue_k; xTrue_k=SimulateRobot(xTrue_k_1,simpar); %Simulates the robot movement uk=get_odometry(xTrue_k,xTrue_k_1,simpar); zk=get_measurements(xTrue_k(1),xTrue_k_1(1),simpar); fprintf('step=%d,zk=%d uk=%f\n',k,zk,uk); % Aplies the particle filter to localize the robot and draws the % particles in the figure belief_particles=MCL(belief_particles,uk,zk,simpar); end end % The Localization Algorith ends here %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Simulate how the robot moves %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xTrue_kNew=SimulateRobot(xTrue_k, simpar) %We will need to update the robot position here taking into account the %noise in acceleration wk=randn(1)*simpar.wk_stdev; xTrue_kNew = [1 simpar.T; 0 1]* xTrue_k + [simpar.T^2/2; simpar.T] * wk; if simpar.circularHallway, % the hallway is assumed to be circular xTrue_kNew=mod(xTrue_kNew,simpar.domain); else % the hallway is assumed to be linear if xTrue_kNew(1)>simpar.domain xTrue_kNew(1) = simpar.domain-mod(xTrue_kNew(1),simpar.domain); xTrue_kNew(2) = -xTrue_kNew(2); % change direction of motion end if xTrue_kNew(1)<0 xTrue_kNew(1) = -xTrue_kNew(1); xTrue_kNew(2) = -xTrue_kNew(2); % change direction of motion end end end % Simulates the odometry measurements including noise%%%%%%%%%%%%%%%%%% function uk=get_odometry(xTrue_k,xTrue_k_1,simpar) uk=mod(xTrue_k(1)-xTrue_k_1(1)+simpar.odometry_stdev*randn(1),850); end % Simulates the detection of doors by the robot sensor %%%%%%%%%%%%%%%% function sensor=get_measurements(xTrue_k,xTrue_k_1,simpar) i=1; sensor = 0; while(i<=length(simpar.door_locations) && sensor ~= 1) if ((xTrue_k(1) >= simpar.door_locations(i) && simpar.door_locations(i)>= xTrue_k_1(1)) || (xTrue_k(1) <= simpar.door_locations(i) && simpar.door_locations(i)<= xTrue_k_1(1))) && (abs(xTrue_k(1)-xTrue_k_1(1))<180) sensor = 1; end i = i + 1; end end % Draws the robot function DrawRobot(x, simpar) global frame figure_handle if simpar.animate figure(figure_handle); x = mod(x,simpar.domain); i=x*332/simpar.domain; % keep the frame within the correct boundaries if i<1, i=1; end; if i>332, i=332; end; if i<1, i=1; end; subplot(6,1,1); image(frame(ceil(i)).image); %axis equal; end drawnow; end % Plots a Gaussian using a bar plot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function DrawParticles(sp,label,pdf,weight,simpar) global firstTime plot_handle figure_handle if simpar.animate if firstTime(sp) figure(figure_handle); subplot(6,1,sp); firstTime(sp)=0; plot_handle(sp)=scatter(pdf,zeros(1,simpar.numberOfParticles),weight*20+2, 'filled'); axis([0 simpar.domain -0.1 1]); xlabel(label); else figure(figure_handle); subplot(6,1,sp); set(plot_handle(sp),'XData',pdf,'YData',zeros(1,simpar.numberOfParticles),'SizeData',weight*20+2); end end end function DrawGaussian(sp,label,pdf_values,simpar) global figure_handle if simpar.animate figure(figure_handle); subplot(6,1,sp); plot(1:simpar.domain,pdf_values,'-b'); axis([0 simpar.domain 0 max(pdf_values)]); xlabel(label); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% COMPLETE THESE FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Aplies the MCL algorithm and plots the results function updated_belief_particles=MCL(priorbelief_particles,uk,zk,simpar) % COMPLETE THIS FUNCTION % This lines must be replaced by your solution to the MCL localization % problem. They are provided only to allow for the execution of the program % before solving the lab. measurement_model_particles=zeros(1,simpar.domain); for i = 1:size(simpar.door_locations,2) measurement_model_particles = measurement_model_particles + pdf('norm', 1:simpar.domain,simpar.door_locations(i), simpar.door_stdev); end measurement_model_particles = measurement_model_particles / sum(measurement_model_particles); %measurement_model_particles=pdf('unif',[1:simpar.domain],0,simpar.domain); % change this value for the correct one predict_particles = sample_motion_model(uk, priorbelief_particles, simpar); % change this value for the correct one weight_particles = measurement_model(zk, predict_particles, simpar); % Resampling Algorithm for the Udacity course index = floor(random('unif', 0, 1) * simpar.numberOfParticles) + 1; beta = 0.; mw = max(weight_particles); updated_belief_particles = zeros(1, simpar.numberOfParticles); % Vector to store the new particles that survive the resampling for i = 1:simpar.numberOfParticles beta = beta + random('unif', 0, 1) * 2 * mw; while beta > weight_particles(index) beta = beta - weight_particles(index); index = mod(index + 1, simpar.numberOfParticles) + 1; end updated_belief_particles(i) = predict_particles(index); end % plotting the pdfs for the animation DrawParticles(2,'prior',priorbelief_particles,ones(1,simpar.numberOfParticles),simpar); DrawParticles(3,'predict',predict_particles,ones(1,simpar.numberOfParticles),simpar); DrawGaussian (4,'measurement model',measurement_model_particles,simpar); DrawParticles(5,'Weighted Particles',predict_particles,weight_particles, simpar); DrawParticles(6,'update',updated_belief_particles,ones(1,simpar.numberOfParticles), simpar); end function predict_particles=sample_motion_model(uk,prior_belief_particles,simpar) % COMPLETE THIS FUNCTION % Here computes the x_t ~ P(x_t|u_k, x_t-1) as a normal distribution % where the mean is the expected position x_k-1+u_k*T and the std has % been set to 2 predict_particles = random('norm', prior_belief_particles+uk*simpar.T, 2); predict_particles = mod(predict_particles, simpar.domain); end function particle_weights=measurement_model(zk,pdf_particles,simpar) % COMPLETE THIS FUNCTION % wk = P( zk | xk ) % Compute the P(z_k=1|x_k) particle_weights=zeros(1,simpar.numberOfParticles); % change this value for the correct one for i = 1:size(simpar.door_locations,2) particle_weights = particle_weights + pdf('norm', pdf_particles, simpar.door_locations(i), simpar.door_stdev); end % In the case z_k = 0, return the P(z_k=0|x_k) = 1 - P(z_k=1|x_k) if zk == 0 particle_weights = 1 - particle_weights; end particle_weights = particle_weights / sum(particle_weights); end
github
albertomontesg/computer-vision-exercises-master
normalizePoints2d.m
.m
computer-vision-exercises-master/exercise4/code/normalizePoints2d.m
561
utf_8
abeca945dd1d8512f82c09403c848316
% Normalization of 2d-pts % Inputs: % x1s = 2d points % Outputs: % nxs = normalized points % T = normalization matrix function [x_n, T] = normalizePoints2d(x) centroid = mean(x,2); dists = sqrt(sum((x - repmat(centroid,1,size(x,2))).^2,1)); mean_dist = mean(dists); T = [sqrt(2)/mean_dist 0 -sqrt(2)/mean_dist*centroid(1);... 0 sqrt(2)/mean_dist -sqrt(2)/mean_dist*centroid(2);... 0 0 1]; if size(x, 1) == 2 x = [x; ones(1, size(x,2))]; end x_n = T * x; end
github
albertomontesg/computer-vision-exercises-master
showFeatureMatches.m
.m
computer-vision-exercises-master/exercise4/code/showFeatureMatches.m
752
utf_8
6ec133c49f053049c95d2d9ac102bbe6
% show feature matches between two images % % Input: % img1 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of first image % img2 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of second image % fig - figure id function showFeatureMatches(img1, corner1, img2, corner2, fig) [sx, sy, sz] = size(img1); img = [img1, img2]; corner2 = corner2 + repmat([sy, 0]', [1, size(corner2, 2)]); figure(fig), imshow(img, []); hold on, plot(corner1(1,:), corner1(2,:), '+r'); hold on, plot(corner2(1,:), corner2(2,:), '+r'); hold on, plot([corner1(1,:); corner2(1,:)], [corner1(2,:); corner2(2,:)], 'b'); end
github
albertomontesg/computer-vision-exercises-master
fundamentalMatrix.m
.m
computer-vision-exercises-master/exercise4/code/fundamentalMatrix.m
630
utf_8
07af32b81188a8adeaaa944ed949be0e
% Compute the fundamental matrix using the eight point algorithm % Input % x1s, x2s Point correspondences % % Output % Fh Fundamental matrix with the det F = 0 constraint % F Initial fundamental matrix obtained from the eight point algorithm % function [Fh, F] = fundamentalMatrix(x1s, x2s) [x1n, T1] = normalizePoints2d(x1s); [x2n, T2] = normalizePoints2d(x2s); W = [ repmat(x2n(1,:)',1,3) .* x1n', repmat(x2n(2,:)',1,3) .* x1n', x1n(1:3,:)']; [~, ~, V] = svd(W); F = reshape(V(:,end),3,3)'; [u, s, v] = svd(F); Fh = T2' * u * diag([s(1) s(5) 0]) * v' * T1; end
github
albertomontesg/computer-vision-exercises-master
showCameras.m
.m
computer-vision-exercises-master/exercise4/code/showCameras.m
950
utf_8
a6edc052546f1d63e4218438661e1e84
% showCameras(Ms, fig) % % Input % Ms cell array of 4x4 transformation matrices ([R|t]) with last row % equal to [0 0 0 1] % fig figure id function showCameras(Ms, fig) [sx, sy] = size(Ms); o = [0, 0, 0, 1]'; x = [1, 0, 0, 1]'; y = [0, 1, 0, 1]'; z = [0, 0, 1, 1]'; po = zeros(4, sy); px = zeros(4, sy); py = zeros(4, sy); pz = zeros(4, sy); for k = 1:sy po(:, k) = Ms{k}\o; px(:, k) = Ms{k}\x; py(:, k) = Ms{k}\y; pz(:, k) = Ms{k}\z; end figure(fig); hold on, line([po(1, :); px(1,:)], [po(2, :); px(2,:)], [po(3, :); px(3,:)], 'Color', [1, 0, 0]); hold on, line([po(1, :); py(1,:)], [po(2, :); py(2,:)], [po(3, :); py(3,:)], 'Color', [0, 1, 0]); hold on, line([po(1, :); pz(1,:)], [po(2, :); pz(2,:)], [po(3, :); pz(3,:)], 'Color', [0, 0, 1]); %axis equal; grid on; axis equal end
github
albertomontesg/computer-vision-exercises-master
essentialMatrix.m
.m
computer-vision-exercises-master/exercise4/code/essentialMatrix.m
641
utf_8
c1e2b95eb7c69e621970c485af797883
% Compute the essential matrix using the eight point algorithm % Input % x1s, x2s Point correspondences 3xn matrices % % Output % Eh Essential matrix with the det E = 0 constraint and the constraint that the first two singular values are equal % E Initial essential matrix obtained from the eight point algorithm % function [Eh, E] = essentialMatrix(x1s, x2s) W = [ repmat(x2s(1,:)',1,3) .* x1s', repmat(x2s(2,:)',1,3) .* x1s', x1s(1:3,:)']; [~, ~, V] = svd(W); E = reshape(V(:,end),3,3)'; [u, s, v] = svd(E); r = s(1); s = s(5); Eh = u * diag([(r+s)/2, (r+s)/2, 0]) * v'; end
github
albertomontesg/computer-vision-exercises-master
decomposeE.m
.m
computer-vision-exercises-master/exercise4/code/decomposeE.m
759
utf_8
1c828ef6f5a1b83b703952cc573c585d
% Decompose the essential matrix % Return P = [R|t] which relates the two views % Yu will need the point correspondences to find the correct solution for P function P = decomposeE(E, x1s, x2s) [U,~,V] = svd(E); W = [0 -1 0; 1 0 0; 0 0 1]; R1 = -U*W*V'; % minus sign to enforce det(R)=1 R2 = -U*W'*V'; t = U(:,end); t = t / norm(t); P_c = [eye(3), zeros(3,1)]; for i = 1:4 PP = (R1*(i<=2) + R2*(i>2)) * [eye(3), t*((-1)^(i-1))]; [XS, ~] = linearTriangulation(P_c, x1s, PP, x2s); % Check if any of the 3D points is placed behind the camera % if so, P it will not be valid. if sum(XS(3,:) < 0) == 0 P = PP; break; end end end
github
albertomontesg/computer-vision-exercises-master
makehomogeneous.m
.m
computer-vision-exercises-master/exercise6/code/makehomogeneous.m
649
utf_8
19d1cac5b6483d4dd545ef8b6bca5dcb
% MAKEHOMOGENEOUS - Appends a scale of 1 to array inhomogeneous coordinates % % Usage: hx = makehomogeneous(x) % % Argument: % x - an N x npts array of inhomogeneous coordinates. % % Returns: % hx - an (N+1) x npts array of homogeneous coordinates with the % homogeneous scale set to 1 % % See also: MAKEINHOMOGENEOUS % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % April 2010 function hx = makehomogeneous(x) [rows, npts] = size(x); hx = ones(rows+1, npts); hx(1:rows,:) = x;
github
albertomontesg/computer-vision-exercises-master
drawCameras.m
.m
computer-vision-exercises-master/exercise6/code/drawCameras.m
934
utf_8
393dbdab07b0a574bb10dd2f69b9ac62
%Ms is a cell matrix of 1 to n projection matrices %Ms{1} = P1; %Ms{2} = P2; %... %fig is the figure number where to draw the cameras function drawCameras(Ms, fig) [sx, sy] = size(Ms); o = [0, 0, 0, 1]'; x = [1, 0, 0, 1]'; y = [0, 1, 0, 1]'; z = [0, 0, 1, 1]'; po = zeros(4, sy); px = zeros(4, sy); py = zeros(4, sy); pz = zeros(4, sy); for k = 1:sy po(:, k) = Ms{k}\o; px(:, k) = Ms{k}\x; py(:, k) = Ms{k}\y; pz(:, k) = Ms{k}\z; end figure(fig); hold on, line([po(1, :); px(1,:)], [po(2, :); px(2,:)], [po(3, :); px(3,:)], 'Color', [1, 0, 0]); hold on, line([po(1, :); py(1,:)], [po(2, :); py(2,:)], [po(3, :); py(3,:)], 'Color', [0, 1, 0]); hold on, line([po(1, :); pz(1,:)], [po(2, :); pz(2,:)], [po(3, :); pz(3,:)], 'Color', [0, 0, 1]); axis equal; grid on; a = 1; end
github
albertomontesg/computer-vision-exercises-master
ransacfitprojmatrix.m
.m
computer-vision-exercises-master/exercise6/code/ransacfitprojmatrix.m
4,030
utf_8
48cf8ea5f6157729c26d62bf1612d89d
% RANSACFITPROJMATRIX - fits projection matrix using RANSAC % % Usage: [P, inliers] = ransacfitprojmatrix(x1, x2, t) % % Arguments: % x1 - 2xN or 3xN set of homogeneous points. If the data is % 2xN it is assumed the homogeneous scale factor is 1. % x2 - 3xN or 4xN set of homogeneous points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not % (reprojection error in pixels). % % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % P - The 4x4 projection matrix % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. % % See Also: RANSAC, PROJMATRIX function [P, inliers] = ransacfitprojmatrix(x1, x2, t, feedback) if nargin == 3 feedback = 0; end [rows,npts] = size(x1); if rows~=2 & rows~=3 error('x1 must have 2 or 3 rows'); end if rows == 2 % Pad data with homogeneous scale factor of 1 x1 = [x1; ones(1,npts)]; end [rows,npts] = size(x2); if rows~=3 & rows~=4 error('x2 must have 3 or 4 rows'); end if rows == 3 % Pad data with homogeneous scale factor of 1 x2 = [x2; ones(1,npts)]; end [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise3dpts(x2); s = 6; fittingfn = @projmatrix; distfn = @reprojectiondist; degenfn = @isdegenerate; maxDataTrials = 100; maxTrials = 2000; % x1 and x2 are 'stacked' to create a 6xN array for ransac [P, inliers] = ransac([x1; x2], fittingfn, distfn, degenfn, s, t, feedback, maxDataTrials, maxTrials); % Now do a final least squares fit on the data points considered to % be inliers. P = projmatrix(x1(:,inliers), x2(:,inliers)); % Denormalise P = inv(T1)*P*T2; % make sure the projection matrix fits together with the projection % matrices computed with the essential matrix P = ([P./norm(P(1:3,1:3)); 0 0 0 1]); %-------------------------------------------------------------------------- function [bestInliers, bestP] = reprojectiondist(P, x, t); x1 = x(1:3,:); % Extract x1 and x2 from x x2 = x(4:7,:); if iscell(P) % We have several solutions each of which must be tested nP = length(P); % Number of solutions to test bestP = P{1}; % Initial allocation of best solution ninliers = 0; % Number of inliers for k = 1:nP proj = zeros(3,length(x1)); for n = 1:length(x1) proj(:,n) = P{k}*x2(:,n); proj(1:3,n) = proj(1:3,n)./proj(3,n); end error = sqrt(sum((x1(1:2,:) - proj(1:2,:)).^2,1)); inliers = find(abs(error) < t); % Indices of inlying points if length(inliers) > ninliers % Record best solution ninliers = length(inliers); bestP = P{k}; bestInliers = inliers; end end else % We just have one solution proj = zeros(3,length(x1)); for n = 1:length(x1) proj(:,n) = P*x2(:,n); proj(1:3,n) = proj(1:3,n)./proj(3,n); end error = sqrt(sum((x1(1:2,:) - proj(1:2,:)).^2,1)); bestInliers = find(abs(error) < t); % Indices of inlying points bestP = P; % Copy F directly to bestF end %---------------------------------------------------------------------- % (Degenerate!) function to determine if a set of matched points will result % in a degeneracy in the calculation of a projection matrix as needed by % RANSAC. This function assumes this cannot happen... function r = isdegenerate(x) r = 0;
github
albertomontesg/computer-vision-exercises-master
showFeatureMatches.m
.m
computer-vision-exercises-master/exercise6/code/showFeatureMatches.m
756
utf_8
59cf88c95fbb9fb5157440341544b30e
% show feature matches between two images % % Input: % img1 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of first image % img2 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of second image % fig - figure id function showFeatureMatches(img1, corner1, img2, corner2, fig) [~, sy, ~] = size(img1); img = [img1, img2]; corner2 = corner2 + repmat([sy, 0]', [1, size(corner2, 2)]); figure(fig), imshow(img, []); hold on, plot(corner1(1,:), corner1(2,:), '+r'); hold on, plot(corner2(1,:), corner2(2,:), '+r'); hold on, plot([corner1(1,:); corner2(1,:)], [corner1(2,:); corner2(2,:)], 'b'); end
github
albertomontesg/computer-vision-exercises-master
ransacfitfundmatrix.m
.m
computer-vision-exercises-master/exercise6/code/ransacfitfundmatrix.m
5,681
utf_8
d636255e269db2be2501f6bd39d651c1
% RANSACFITFUNDMATRIX - fits fundamental matrix using RANSAC % % Usage: [F, inliers] = ransacfitfundmatrix(x1, x2, t) % % Arguments: % x1 - 2xN or 3xN set of homogeneous points. If the data is % 2xN it is assumed the homogeneous scale factor is 1. % x2 - 2xN or 3xN set of homogeneous points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % Note that point coordinates are normalised to that their % mean distance from the origin is sqrt(2). The value of % t should be set relative to this, say in the range % 0.001 - 0.01 % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % F - The 3x3 fundamental matrix such that x2'Fx1 = 0. % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. % % See Also: RANSAC, FUNDMATRIX % Copyright (c) 2004-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2004 Original version % August 2005 Distance error function changed to match changes in RANSAC function [F, inliers] = ransacfitfundmatrix(x1, x2, t, feedback) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end if nargin == 2 t = 0.00005; feedback = 0; end if nargin == 3 feedback = 0; end [rows,npts] = size(x1); if rows~=2 & rows~=3 error('x1 and x2 must have 2 or 3 rows'); end if rows == 2 % Pad data with homogeneous scale factor of 1 x1 = [x1; ones(1,npts)]; x2 = [x2; ones(1,npts)]; end % Normalise each set of points so that the origin is at centroid and % mean distance from origin is sqrt(2). normalise2dpts also ensures the % scale parameter is 1. Note that 'fundmatrix' will also call % 'normalise2dpts' but the code in 'ransac' that calls the distance % function will not - so it is best that we normalise beforehand. [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); s = 8; % Number of points needed to fit a fundamental matrix. Note that % only 7 are needed but the function 'fundmatrix' only % implements the 8-point solution. fittingfn = @fundmatrix; distfn = @funddist; degenfn = @isdegenerate; maxDataTrials = 100; maxTrials = 2000; % x1 and x2 are 'stacked' to create a 6xN array for ransac [F, inliers] = ransac([x1; x2], fittingfn, distfn, degenfn, s, t, feedback, maxDataTrials, maxTrials); % Now do a final least squares fit on the data points considered to % be inliers. F = fundmatrix(x1(:,inliers), x2(:,inliers)); % Denormalise F = T2'*F*T1; %-------------------------------------------------------------------------- % Function to evaluate the first order approximation of the geometric error % (Sampson distance) of the fit of a fundamental matrix with respect to a % set of matched points as needed by RANSAC. See: Hartley and Zisserman, % 'Multiple View Geometry in Computer Vision', page 270. % % Note that this code allows for F being a cell array of fundamental matrices of % which we have to pick the best one. (A 7 point solution can return up to 3 % solutions) function [bestInliers, bestF] = funddist(F, x, t); x1 = x(1:3,:); % Extract x1 and x2 from x x2 = x(4:6,:); if iscell(F) % We have several solutions each of which must be tested nF = length(F); % Number of solutions to test bestF = F{1}; % Initial allocation of best solution ninliers = 0; % Number of inliers for k = 1:nF x2tFx1 = zeros(1,length(x1)); for n = 1:length(x1) x2tFx1(n) = x2(:,n)'*F{k}*x1(:,n); end Fx1 = F{k}*x1; Ftx2 = F{k}'*x2; % Evaluate distances d = x2tFx1.^2 ./ ... (Fx1(1,:).^2 + Fx1(2,:).^2 + Ftx2(1,:).^2 + Ftx2(2,:).^2); inliers = find(abs(d) < t); % Indices of inlying points if length(inliers) > ninliers % Record best solution ninliers = length(inliers); bestF = F{k}; bestInliers = inliers; end end else % We just have one solution x2tFx1 = zeros(1,length(x1)); for n = 1:length(x1) x2tFx1(n) = x2(:,n)'*F*x1(:,n); end Fx1 = F*x1; Ftx2 = F'*x2; % Evaluate distances d = x2tFx1.^2 ./ ... (Fx1(1,:).^2 + Fx1(2,:).^2 + Ftx2(1,:).^2 + Ftx2(2,:).^2); bestInliers = find(abs(d) < t); % Indices of inlying points bestF = F; % Copy F directly to bestF end %---------------------------------------------------------------------- % (Degenerate!) function to determine if a set of matched points will result % in a degeneracy in the calculation of a fundamental matrix as needed by % RANSAC. This function assumes this cannot happen... function r = isdegenerate(x) r = 0;
github
albertomontesg/computer-vision-exercises-master
normalise3dpts.m
.m
computer-vision-exercises-master/exercise6/code/normalise3dpts.m
2,182
utf_8
54c8a965fb92edec39a1f93028771089
% NORMALISE3DPTS - normalises 3D homogeneous points % % Function translates and normalises a set of 3D homogeneous points % so that their centroid is at the origin and their mean distance from % the origin is sqrt(3). This process typically improves the % conditioning of any equations used to solve homographies, fundamental % matrices etc. % % Usage: [newpts, T] = normalise3dpts(pts) % % Argument: % pts - 4xN array of 4D homogeneous coordinates % % Returns: % newpts - 4xN array of transformed 3D homogeneous coordinates. The % scaling parameter is normalised to 1 unless the point is at % infinity. % T - The 4x4 transformation matrix, newpts = T*pts % % If there are some points at infinity the normalisation transform % is calculated using just the finite points. Being a scaling and % translating transform this will not affect the points at infinity. function [newpts, T] = normalise3dpts(pts) if size(pts,1) ~= 4 error('pts must be 4xN'); end % Find the indices of the points that are not at infinity finiteind = find(abs(pts(4,:)) > eps); if length(finiteind) ~= size(pts,2) warning('Some points are at infinity'); end % For the finite points ensure homogeneous coords have scale of 1 pts(1,finiteind) = pts(1,finiteind)./pts(4,finiteind); pts(2,finiteind) = pts(2,finiteind)./pts(4,finiteind); pts(3,finiteind) = pts(3,finiteind)./pts(4,finiteind); pts(4,finiteind) = 1; c = mean(pts(1:3,finiteind)')'; % Centroid of finite points newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to centroid. newp(2,finiteind) = pts(2,finiteind)-c(2); newp(3,finiteind) = pts(3,finiteind)-c(3); dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2 + newp(3,finiteind).^2); meandist = mean(dist(:)); % Ensure dist is a column vector for Octave 3.0.1 scale = sqrt(3)/meandist; T = [scale 0 0 -scale*c(1); 0 scale 0 -scale*c(2); 0 0 scale -scale*c(3); 0 0 0 1 ]; newpts = T*pts;
github
albertomontesg/computer-vision-exercises-master
projmatrix.m
.m
computer-vision-exercises-master/exercise6/code/projmatrix.m
2,113
utf_8
790273b38d11e84890a2ae16ec749317
% PROJMATRIX - computes projection matrix from 6 or more 3D-2D points % % Function computes the projection matrix from 6 or more 3D-2D matching points in % a stereo pair of images. The normalised 6 point algorithm given by % Hartley and Zisserman is used. To achieve accurate results it is % recommended that 12 or more points are used % % Usage: [P] = projmatrix(x1, x2) % % Arguments: % x1, x2 - Two sets of corresponding 3xN and 4xN set of homogeneous % points. % Returns: % P - The 3x4 projection matrix. function [P] = projmatrix(varargin) [x1, x2, npts] = checkargs(varargin(:)); Octave = exist('OCTAVE_VERSION') ~= 0; % Are we running under Octave? % Normalise each set of points so that the origin % is at centroid and mean distance from origin is sqrt(2). % normalise2dpts also ensures the scale parameter is 1. [xy, T1] = normalise2dpts(x1); [XYZ, T2] = normalise3dpts(x2); % Build the constraint matrix A = [XYZ(1,:)' XYZ(2,:)' XYZ(3,:)' ones(npts,1) zeros(npts,1) zeros(npts,1) zeros(npts,1) zeros(npts,1) -xy(1,:)'.*XYZ(1,:)' -xy(1,:)'.*XYZ(2,:)' -xy(1,:)'.*XYZ(3,:)' -xy(1,:)'; zeros(npts,1) zeros(npts,1) zeros(npts,1) zeros(npts,1) XYZ(1,:)' XYZ(2,:)' XYZ(3,:)' ones(npts,1) -xy(2,:)'.*XYZ(1,:)' -xy(2,:)'.*XYZ(2,:)' -xy(2,:)'.*XYZ(3,:)' -xy(2,:)']; if Octave [U,D,V] = svd(A); % Don't seem to be able to use the economy % decomposition under Octave here else [U,D,V] = svd(A,0); % Under MATLAB use the economy decomposition end Pvec = V(:, end); P = [Pvec(1) Pvec(2) Pvec(3) Pvec(4) ; Pvec(5) Pvec(6) Pvec(7) Pvec(8) ; Pvec(9) Pvec(10) Pvec(11) Pvec(12)]; % Denormalise P = inv(T1)*P*T2; function [x1, x2, npts] = checkargs(arg); if length(arg) == 2 x1 = arg{1}; x2 = arg{2}; elseif length(arg) == 1 x1 = arg{1}(1:3,:); x2 = arg{1}(4:7,:); else error('Wrong number of arguments supplied'); end npts = size(x1,2);
github
albertomontesg/computer-vision-exercises-master
hnormalise.m
.m
computer-vision-exercises-master/exercise6/code/hnormalise.m
1,012
utf_8
ac17ab683e70a6324bb66b10d5e547d0
% HNORMALISE - Normalises array of homogeneous coordinates to a scale of 1 % % Usage: nx = hnormalise(x) % % Argument: % x - an Nxnpts array of homogeneous coordinates. % % Returns: % nx - an Nxnpts array of homogeneous coordinates rescaled so % that the scale values nx(N,:) are all 1. % % Note that any homogeneous coordinates at infinity (having a scale value of % 0) are left unchanged. % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/~pk % % February 2004 function nx = hnormalise(x) [rows,npts] = size(x); nx = x; % Find the indices of the points that are not at infinity finiteind = find(abs(x(rows,:)) > eps); if length(finiteind) ~= npts warning('Some points are at infinity'); end % Normalise points not at infinity for r = 1:rows-1 nx(r,finiteind) = x(r,finiteind)./x(rows,finiteind); end nx(rows,finiteind) = 1;
github
albertomontesg/computer-vision-exercises-master
makeinhomogeneous.m
.m
computer-vision-exercises-master/exercise6/code/makeinhomogeneous.m
791
utf_8
ce76d362845ed0c7eef257d1d0406795
% MAKEINHOMOGENEOUS - Converts homogeneous coords to inhomogeneous coordinates % % Usage: x = makehomogeneous(hx) % % Argument: % hx - an N x npts array of homogeneous coordinates. % % Returns: % x - an (N-1) x npts array of inhomogeneous coordinates % % Warning: If there are any points at infinity (scale = 0) the coordinates % of these points are simply returned minus their scale coordinate. % % See also: MAKEHOMOGENEOUS, HNORMALISE % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % April 2010 function x = makeinhomogeneous(hx) hx = hnormalise(hx); % Normalise to scale of one x = hx(1:end-1,:); % Extract all but the last row
github
albertomontesg/computer-vision-exercises-master
create3DModel.m
.m
computer-vision-exercises-master/exercise6/code/create3DModel.m
1,038
utf_8
fb590ce1dd28521c85c6d4f32c2866d0
%depth image in double %img - rgb image in double function create3DModel(depth, img, fig) skip = 1; img = img(1:skip:end, 1:skip:end, :); depth = (depth(1:skip:end, 1:skip:end)); [sx, sy] = size(depth); K = [1 0 sx/2; 0 1 sy/2; 0 0 1]; Kinv = inv(K); % Get 3d points. [Xp Yp] = meshgrid(1:size(depth,2), 1:size(depth,1)); Zp = depth; figure(fig); imgR = img(:,:,1); imgG = img(:,:,2); imgB = img(:,:,3); col = [imgR(:), imgG(:), imgB(:)]; %chose either scatter3 or trisurf method to plot if (true) Xp = depth .* (Xp*Kinv(1,1) + Yp*Kinv(1,2) + Kinv(1,3)); Yp = depth .* (Yp*Kinv(2,2) + Kinv(2,3)); scatter3(Xp(:), Yp(:), Zp(:), 1, col); else tri = delaunay(Xp(:), Yp(:)); trisurf(tri, Xp(:), Yp(:), Zp(:)); trisurf(tri, Xp(:), Yp(:), Zp(:),'FaceVertexCData', col, 'LineStyle', 'none', 'FaceColor', 'interp'); end end
github
albertomontesg/computer-vision-exercises-master
showFeatureInliers.m
.m
computer-vision-exercises-master/exercise6/code/showFeatureInliers.m
996
utf_8
d115855b8ec9edc71bf2c7a9954e0037
% show feature matches between two images % % Input: % img1 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of first image % img2 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of second image % fig - figure id function showFeatureMatches(img1, corner1, img2, corner2, inliers_pos, fig) sy = size(img1, 2); img = [img1, img2]; in_pos = false(1, size(corner1,2)); in_pos(inliers_pos) = true; corner2 = corner2 + repmat([sy, 0]', [1, size(corner2, 2)]); figure(fig), imshow(img, []); hold on, plot(corner1(1,:), corner1(2,:), '+r'); hold on, plot(corner2(1,:), corner2(2,:), '+r'); hold on, plot([corner1(1,in_pos); corner2(1,in_pos)],... [corner1(2,in_pos); corner2(2,in_pos)], 'g'); hold on, plot([corner1(1,~in_pos); corner2(1,~in_pos)],... [corner1(2,~in_pos); corner2(2,~in_pos)], 'r'); end
github
albertomontesg/computer-vision-exercises-master
fundmatrix.m
.m
computer-vision-exercises-master/exercise6/code/fundmatrix.m
3,975
utf_8
16d85192930d30a0b89c7e70077c9e5a
% FUNDMATRIX - computes fundamental matrix from 8 or more points % % Function computes the fundamental matrix from 8 or more matching points in % a stereo pair of images. The normalised 8 point algorithm given by % Hartley and Zisserman p265 is used. To achieve accurate results it is % recommended that 12 or more points are used % % Usage: [F, e1, e2] = fundmatrix(x1, x2) % [F, e1, e2] = fundmatrix(x) % % Arguments: % x1, x2 - Two sets of corresponding 3xN set of homogeneous % points. % % x - If a single argument is supplied it is assumed that it % is in the form x = [x1; x2] % Returns: % F - The 3x3 fundamental matrix such that x2'*F*x1 = 0. % e1 - The epipole in image 1 such that F*e1 = 0 % e2 - The epipole in image 2 such that F'*e2 = 0 % % Copyright (c) 2002-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % Feb 2002 - Original version. % May 2003 - Tidied up and numerically improved. % Feb 2004 - Single argument allowed to enable use with RANSAC. % Mar 2005 - Epipole calculation added, 'economy' SVD used. % Aug 2005 - Octave compatibility function [F,e1,e2] = fundmatrix(varargin) [x1, x2, npts] = checkargs(varargin(:)); Octave = exist('OCTAVE_VERSION') ~= 0; % Are we running under Octave? % Normalise each set of points so that the origin % is at centroid and mean distance from origin is sqrt(2). % normalise2dpts also ensures the scale parameter is 1. [x1, T1] = normalise2dpts(x1); [x2, T2] = normalise2dpts(x2); % Build the constraint matrix A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(npts,1) ]; if Octave [U,D,V] = svd(A); % Don't seem to be able to use the economy % decomposition under Octave here else [U,D,V] = svd(A,0); % Under MATLAB use the economy decomposition end % Extract fundamental matrix from the column of V corresponding to % smallest singular value. F = reshape(V(:,9),3,3)'; % Enforce constraint that fundamental matrix has rank 2 by performing % a svd and then reconstructing with the two largest singular values. [U,D,V] = svd(F,0); F = U*diag([D(1,1) D(2,2) 0])*V'; % Denormalise F = T2'*F*T1; if nargout == 3 % Solve for epipoles [U,D,V] = svd(F,0); e1 = hnormalise(V(:,3)); e2 = hnormalise(U(:,3)); end %-------------------------------------------------------------------------- % Function to check argument values and set defaults function [x1, x2, npts] = checkargs(arg); if length(arg) == 2 x1 = arg{1}; x2 = arg{2}; if ~all(size(x1)==size(x2)) error('x1 and x2 must have the same size'); elseif size(x1,1) ~= 3 error('x1 and x2 must be 3xN'); end elseif length(arg) == 1 if size(arg{1},1) ~= 6 error('Single argument x must be 6xN'); else x1 = arg{1}(1:3,:); x2 = arg{1}(4:6,:); end else error('Wrong number of arguments supplied'); end npts = size(x1,2); if npts < 8 error('At least 8 points are needed to compute the fundamental matrix'); end
github
albertomontesg/computer-vision-exercises-master
ransac.m
.m
computer-vision-exercises-master/exercise6/code/ransac.m
9,877
utf_8
6161d8cc1a602a9c2796433f55d7b6dd
% RANSAC - Robustly fits a model to data with the RANSAC algorithm % % Usage: % % [M, inliers] = ransac(x, fittingfn, distfn, degenfn s, t, feedback, ... % maxDataTrials, maxTrials) % % Arguments: % x - Data sets to which we are seeking to fit a model M % It is assumed that x is of size [d x Npts] % where d is the dimensionality of the data and Npts is % the number of data points. % % fittingfn - Handle to a function that fits a model to s % data from x. It is assumed that the function is of the % form: % M = fittingfn(x) % Note it is possible that the fitting function can return % multiple models (for example up to 3 fundamental matrices % can be fitted to 7 matched points). In this case it is % assumed that the fitting function returns a cell array of % models. % If this function cannot fit a model it should return M as % an empty matrix. % % distfn - Handle to a function that evaluates the % distances from the model to data x. % It is assumed that the function is of the form: % [inliers, M] = distfn(M, x, t) % This function must evaluate the distances between points % and the model returning the indices of elements in x that % are inliers, that is, the points that are within distance % 't' of the model. Additionally, if M is a cell array of % possible models 'distfn' will return the model that has the % most inliers. If there is only one model this function % must still copy the model to the output. After this call M % will be a non-cell object representing only one model. % % degenfn - Handle to a function that determines whether a % set of datapoints will produce a degenerate model. % This is used to discard random samples that do not % result in useful models. % It is assumed that degenfn is a boolean function of % the form: % r = degenfn(x) % It may be that you cannot devise a test for degeneracy in % which case you should write a dummy function that always % returns a value of 1 (true) and rely on 'fittingfn' to return % an empty model should the data set be degenerate. % % s - The minimum number of samples from x required by % fittingfn to fit a model. % % t - The distance threshold between a data point and the model % used to decide whether the point is an inlier or not. % % feedback - An optional flag 0/1. If set to one the trial count and the % estimated total number of trials required is printed out at % each step. Defaults to 0. % % maxDataTrials - Maximum number of attempts to select a non-degenerate % data set. This parameter is optional and defaults to 100. % % maxTrials - Maximum number of iterations. This parameter is optional and % defaults to 1000. % % Returns: % M - The model having the greatest number of inliers. % inliers - An array of indices of the elements of x that were % the inliers for the best model. % % For an example of the use of this function see RANSACFITHOMOGRAPHY or % RANSACFITPLANE % References: % M.A. Fishler and R.C. Boles. "Random sample concensus: A paradigm % for model fitting with applications to image analysis and automated % cartography". Comm. Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981 % % Richard Hartley and Andrew Zisserman. "Multiple View Geometry in % Computer Vision". pp 101-113. Cambridge University Press, 2001 % Copyright (c) 2003-2006 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % May 2003 - Original version % February 2004 - Tidied up. % August 2005 - Specification of distfn changed to allow model fitter to % return multiple models from which the best must be selected % Sept 2006 - Random selection of data points changed to ensure duplicate % points are not selected. % February 2007 - Jordi Ferrer: Arranged warning printout. % Allow maximum trials as optional parameters. % Patch the problem when non-generated data % set is not given in the first iteration. % August 2008 - 'feedback' parameter restored to argument list and other % breaks in code introduced in last update fixed. % December 2008 - Octave compatibility mods % June 2009 - Argument 'MaxTrials' corrected to 'maxTrials'! function [M, inliers] = ransac(x, fittingfn, distfn, degenfn, s, t, feedback, ... maxDataTrials, maxTrials) Octave = exist('OCTAVE_VERSION') ~= 0; % Test number of parameters error ( nargchk ( 6, 9, nargin ) ); if nargin < 9; maxTrials = 1000; end; if nargin < 8; maxDataTrials = 100; end; if nargin < 7; feedback = 0; end; [rows, npts] = size(x); p = 0.99; % Desired probability of choosing at least one sample % free from outliers bestM = NaN; % Sentinel value allowing detection of solution failure. trialcount = 0; bestscore = 0; N = 1; % Dummy initialisation for number of trials. while N > trialcount % Select at random s datapoints to form a trial model, M. % In selecting these points we have to check that they are not in % a degenerate configuration. degenerate = 1; count = 1; while degenerate % Generate s random indicies in the range 1..npts % (If you do not have the statistics toolbox, or are using Octave, % use the function RANDOMSAMPLE from my webpage) if Octave | ~exist('randsample.m') ind = randomsample(npts, s); else ind = randsample(npts, s); end % Test that these points are not a degenerate configuration. degenerate = feval(degenfn, x(:,ind)); if ~degenerate % Fit model to this random selection of data points. % Note that M may represent a set of models that fit the data in % this case M will be a cell array of models M = feval(fittingfn, x(:,ind)); % Depending on your problem it might be that the only way you % can determine whether a data set is degenerate or not is to % try to fit a model and see if it succeeds. If it fails we % reset degenerate to true. if isempty(M) degenerate = 1; end end % Safeguard against being stuck in this loop forever count = count + 1; if count > maxDataTrials warning('Unable to select a nondegenerate data set'); break end end % Once we are out here we should have some kind of model... % Evaluate distances between points and model returning the indices % of elements in x that are inliers. Additionally, if M is a cell % array of possible models 'distfn' will return the model that has % the most inliers. After this call M will be a non-cell object % representing only one model. [inliers, M] = feval(distfn, M, x, t); % Find the number of inliers to this model. ninliers = length(inliers); if ninliers > bestscore % Largest set of inliers so far... bestscore = ninliers; % Record data for this model bestinliers = inliers; bestM = M; % Update estimate of N, the number of trials to ensure we pick, % with probability p, a data set with no outliers. fracinliers = ninliers/npts; pNoOutliers = 1 - fracinliers^s; pNoOutliers = max(eps, pNoOutliers); % Avoid division by -Inf pNoOutliers = min(1-eps, pNoOutliers);% Avoid division by 0. N = log(1-p)/log(pNoOutliers); end trialcount = trialcount+1; if feedback fprintf('trial %d out of %d \r',trialcount, ceil(N)); end % Safeguard against being stuck in this loop forever if trialcount > maxTrials warning( ... sprintf('ransac reached the maximum number of %d trials',... maxTrials)); break end end fprintf('\n'); if ~isnan(bestM) % We got a solution M = bestM; inliers = bestinliers; else M = []; inliers = []; error('ransac was unable to find a useful solution'); end
github
albertomontesg/computer-vision-exercises-master
normalise2dpts.m
.m
computer-vision-exercises-master/exercise6/code/normalise2dpts.m
2,361
utf_8
2b9d94a3681186006a3fd47a45faf939
% NORMALISE2DPTS - normalises 2D homogeneous points % % Function translates and normalises a set of 2D homogeneous points % so that their centroid is at the origin and their mean distance from % the origin is sqrt(2). This process typically improves the % conditioning of any equations used to solve homographies, fundamental % matrices etc. % % Usage: [newpts, T] = normalise2dpts(pts) % % Argument: % pts - 3xN array of 2D homogeneous coordinates % % Returns: % newpts - 3xN array of transformed 2D homogeneous coordinates. The % scaling parameter is normalised to 1 unless the point is at % infinity. % T - The 3x3 transformation matrix, newpts = T*pts % % If there are some points at infinity the normalisation transform % is calculated using just the finite points. Being a scaling and % translating transform this will not affect the points at infinity. % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % May 2003 - Original version % February 2004 - Modified to deal with points at infinity. % December 2008 - meandist calculation modified to work with Octave 3.0.1 % (thanks to Ron Parr) function [newpts, T] = normalise2dpts(pts) if size(pts,1) ~= 3 error('pts must be 3xN'); end % Find the indices of the points that are not at infinity finiteind = find(abs(pts(3,:)) > eps); if length(finiteind) ~= size(pts,2) warning('Some points are at infinity'); end % For the finite points ensure homogeneous coords have scale of 1 pts(1,finiteind) = pts(1,finiteind)./pts(3,finiteind); pts(2,finiteind) = pts(2,finiteind)./pts(3,finiteind); pts(3,finiteind) = 1; c = mean(pts(1:2,finiteind)')'; % Centroid of finite points newp(1,finiteind) = pts(1,finiteind)-c(1); % Shift origin to centroid. newp(2,finiteind) = pts(2,finiteind)-c(2); dist = sqrt(newp(1,finiteind).^2 + newp(2,finiteind).^2); meandist = mean(dist(:)); % Ensure dist is a column vector for Octave 3.0.1 scale = sqrt(2)/meandist; T = [scale 0 -scale*c(1) 0 scale -scale*c(2) 0 0 1 ]; newpts = T*pts;
github
albertomontesg/computer-vision-exercises-master
showImageWithSIFT.m
.m
computer-vision-exercises-master/exercise1/code/showImageWithSIFT.m
333
utf_8
d22d381bd687e62736387ce7fe7483c3
% show image with key points % % Input: % img - n x m color image % corner - 2 x k matrix, holding keypoint coordinates of first image % fig - figure id function showImageWithSIFT(img, sift_features, fig) figure(fig); imshow(img, []); hold on vl_plotframe(sift_features); end
github
albertomontesg/computer-vision-exercises-master
showFeatureMatches.m
.m
computer-vision-exercises-master/exercise1/code/showFeatureMatches.m
758
utf_8
8b7d6b5462a35ff1c02e7f0a4db16712
% show feature matches between two images % % Input: % img1 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of first image % img2 - n x m color image % corner1 - 2 x k matrix, holding keypoint coordinates of second image % fig - figure id function showFeatureMatches(img1, corner1, img2, corner2, fig) [sx, sy, sz] = size(img1); img = [img1, img2]; corner2 = corner2 + repmat([sy, 0]', [1, size(corner2, 2)]); figure(fig), imshow(img, []); hold on, plot(corner1(1,:), corner1(2,:), '+r'); hold on, plot(corner2(1,:), corner2(2,:), '+r'); hold on, plot([corner1(1,:); corner2(1,:)], [corner1(2,:); corner2(2,:)], 'b'); end
github
albertomontesg/computer-vision-exercises-master
extractDescriptor.m
.m
computer-vision-exercises-master/exercise1/code/extractDescriptor.m
1,023
utf_8
8aad6d78974c3f7e5402318b87241581
% extract descriptor % % Input: % keyPoints - detected keypoints in a 2 x n matrix holding the key % point coordinates % img - the gray scale image % % Output: % descr - w x n matrix, stores for each keypoint a % descriptor. m is the size of the image patch, % represented as vector function descr = extractDescriptor(corners, img) % Descriptor size: 9x9 patch_size = 9; pad = (patch_size-1) / 2; % Apply padding for the descriptors at the edges img = padarray(img, [pad pad]); % Initialize th descriptors output n = size(corners, 2); descr = zeros(patch_size^2, n); % Iterate for each corner and extract the corresponding patch for i = 1:n r_pos = corners(1,i) + pad; c_pos = corners(2,i) + pad; patch = img((r_pos-pad):(r_pos+pad),(c_pos-pad):(c_pos+pad)); descr(:,i) = reshape(patch', patch_size^2, 1); end end
github
albertomontesg/computer-vision-exercises-master
showImageWithCorners.m
.m
computer-vision-exercises-master/exercise1/code/showImageWithCorners.m
339
utf_8
0f689ab81e2bd82f3593f8609335dfb1
% show image with key points % % Input: % img - n x m color image % corner - 2 x k matrix, holding keypoint coordinates of first image % fig - figure id function showImageWithCorners(img, corners, fig) figure(fig); imshow(img, []); hold on, plot(corners(1,:), corners(2,:), '+r'); end
github
albertomontesg/computer-vision-exercises-master
extractHarrisCorner.m
.m
computer-vision-exercises-master/exercise1/code/extractHarrisCorner.m
1,249
utf_8
61d4a4604fc151953c9a3d9ac60beaa4
% extract harris corner % % Input: % img - n x m gray scale image % thresh - scalar value to threshold corner strength % % Output: % corners - 2 x k matrix storing the keypoint coordinates % H - n x m gray scale image storing the corner strength function [corners, H] = extractHarrisCorner(img, thresh) % Define the gradients steps dx = [-.5 0 .5]; dy = dx'; % Compute the gradient of the image at each axis IX = conv2(padarray(img, [0, 1], 'symmetric'), dx, 'valid'); IY = conv2(padarray(img, [1, 0], 'symmetric'), dy, 'valid'); % Apply Gaussian Filter and compute all the Harris matrix values blur_filter = fspecial('gaussian'); IX2 = conv2(IX.^2, blur_filter, 'same'); IY2 = conv2(IY.^2, blur_filter, 'same'); IXIY = conv2(IX.*IY, blur_filter, 'same'); % Compute the Harris Response Measure H = (IX2.*IY2 - IXIY.^2) ./ (IX2 + IY2 + eps); % Non-Maximum-Suppression in a 3 pixel radius; radius = 3; diam = 2*radius + 1; mx = ordfilt2(H, diam^2, ones(diam)); cim = (H==mx)&(H>thresh); % Find the localization of the corners [r,c] = find(cim); corners = [r'; c']; end
github
albertomontesg/computer-vision-exercises-master
matchDescriptors.m
.m
computer-vision-exercises-master/exercise1/code/matchDescriptors.m
847
utf_8
b4397cccdf4daae9de8506da30242d06
% match descriptors % % Input: % descr1 - k x n descriptor of first image % descr2 - k x m descriptor of second image % thresh - scalar value to threshold the matches % % Output: % matches - 2 x w matrix storing the indices of the matching % descriptors function matches = matchDescriptors(descr1, descr2, thresh) % Initialize the SSD matrix n = size(descr1, 2); m = size(descr2, 2); ssd = zeros(n, m); % Compute the Sum of Square Differences for i = 1:n for j = 1:m dif = descr1(:,i) - descr2(:,j); ssd(i,j) = dif'*dif; end end % Find the positions where the SSD is less than the given thresehold match = (ssd<thresh); [r, c] = find(match); matches = [r'; c']; end
github
bradmonk/neuromorph-master
neuromorph.m
.m
neuromorph-master/neuromorph.m
31,150
utf_8
1ca551cd60a803c7cb9a3459cb0fcbf2
function varargout = neuromorph(varargin) %% neuromorph.m - NEURON MORPHOLOGY TOOLBOX %{ % % Syntax % ----------------------------------------------------- % neuromorph() % % % Description % ----------------------------------------------------- % % neuromorph() is run with no arguments passed in. The user % will be prompted to select a directory which contains the image data % tif stack along with the corresponding xls file. % % % Useage Definitions % ----------------------------------------------------- % % neuromorph() % launches a GUI to process image stack data from GRIN lens % experiments % % % % Example % ----------------------------------------------------- % % TBD % % % See Also % ----------------------------------------------------- % >> web('http://bradleymonk.com/neuromorph') % >> web('http://imagej.net/Miji') % >> web('http://bigwww.epfl.ch/sage/soft/mij/') % % % Attribution % ----------------------------------------------------- % % Created by: Bradley Monk % % email: [email protected] % % website: bradleymonk.com % % 2016.07.04 %} %---------------------------------------------------- %% ESTABLISH STARTING PATHS clc; close all; clear all; clear java; disp('WELCOME TO NEUROMORPH - A NEURON MORPHOLOGY TOOLBOX') global thisfilepath thisfile = 'neuromorph.m'; thisfilepath = fileparts(which(thisfile)); cd(thisfilepath); fprintf('\n\n Current working path set to: \n % s \n', thisfilepath) pathdir0 = thisfilepath; pathdir1 = [thisfilepath '/neuromorphdata']; gpath = [pathdir0 ':' pathdir1]; addpath(gpath) fprintf('\n\n Added folders to path: \n % s \n % s \n % s \n % s \n\n',... pathdir0,pathdir1) %% MANUALLY SET PER-SESSION PATH PARAMETERS IF WANTED global datadir datafile datadate datadir = ''; datafile = ''; datadate = ''; global imgpath imgpath = ''; %% CD TO DATA DIRECTORY %{ if numel(datadir) < 1 datadir = uigetdir; end cd(datadir); home = cd; disp(['HOME PATH: ' datadir]) if numel(datafile) < 1 datafile = uigetfile('*.tif*; *.bmp'); end imgpath = [datadir '/' datafile]; %} %% ESTABLISH GLOBALS AND SET STARTING VALUES global IMG DENDRITE SPINE SPINEHN ROISAVES ROInum IMG = []; ROISAVES = []; ROISAVES.SpineMask = []; ROISAVES.SpinePos = []; ROISAVES.SpineExtentPos = [0 0]; ROISAVES.SpineExtentCenter = []; ROISAVES.SpineExtentX = []; ROISAVES.SpineExtentY = []; ROISAVES.SpineHeadPos = [0 0]; ROISAVES.SpineHeadCenter = []; ROISAVES.SpineHeadX = []; ROISAVES.SpineHeadY = []; ROISAVES.SpineNeckPos = [0 0]; ROISAVES.SpineNeckCenter = []; ROISAVES.SpineNeckX = []; ROISAVES.SpineNeckY = []; ROISAVES.DendritePos = [0 0]; ROISAVES.DendriteCenter = []; ROISAVES.DendriteX = []; ROISAVES.DendriteY = []; ROISAVES.SpineNearPos = [0 0]; ROISAVES.SpineNearCenter = []; ROISAVES.SpineNearX = []; ROISAVES.SpineNearY = []; SPINE.intensity = []; SPINE.area = []; SPINEHN.spineextent = []; SPINEHN.spineextentintensity = []; SPINEHN.spineextentintensityprofile = []; SPINEHN.spineextentcenter = []; SPINEHN.headwidth = []; SPINEHN.headintensity = []; SPINEHN.headintensityprofile = []; SPINEHN.headcenter = []; SPINEHN.necklength = []; SPINEHN.neckintensity = []; SPINEHN.neckintensityprofile = []; SPINEHN.neckcenter = []; DENDRITE.size = []; DENDRITE.intensity = []; DENDRITE.intensityprofile = []; DENDRITE.center = []; DENDRITE.nearestspine = []; DENDRITE.nearestspineint = []; DENDRITE.nearestspineprofile = []; DENDRITE.nearestspinecenter = []; SPINE.area = 0; SPINE.intensity = 0; SPINEHN.spineextent = 0; SPINEHN.spineextentintensity = 0; SPINEHN.headwidth = 0; SPINEHN.headintensity = 0; SPINEHN.necklength = 0; SPINEHN.neckintensity = 0; DENDRITE.size = 0; DENDRITE.intensity = 0; DENDRITE.nearestspine = 0; DENDRITE.nearestspineint = 0; global haxPRE memos memoboxH global dotsz cdotsz dotsz = 30; cdotsz = 150; global magnification maglevel global MORPHdata MORPHdat MORPHtab MORPHd ROInames Datafilename global hROI ROImask ROIpos dendritesize dpos global imXlim imYlim VxD dVOL magnification = 6; maglevel = 6; dendritesize = maglevel*5; dpos = []; MORPHdata = {}; MORPHdat = []; MORPHtab = []; MORPHd = []; ROInames = ''; Datafilename = ''; hROI = []; ROImask = []; ROIpos = []; ROIarea = []; ROI_INTENSITY = []; ROI_INTENSITY_MEAN = []; VxD = 1; dVOL = 1; global MORPHdats ccmap cmmap phCCD MORPHdats = {}; ccmap = []; cmmap = []; % global ROI_INTENSITY ROI_INTENSITY_MEAN ROIarea %######################################################################## %% MAIN ANALYSIS GUI WINDOW SETUP %######################################################################## % mainguih.CurrentCharacter = '+'; mainguih = figure('Units', 'normalized','OuterPosition', [.02 .05 .85 .87], 'BusyAction',... 'cancel', 'Name', 'Lifetime image', 'Tag', 'lifetime image','Visible', 'Off', ... 'KeyPressFcn', {@keypresszoom,1},'Color',[.99 .99 .99],'MenuBar','none','Resize','off'); haxCCD = axes('Parent', mainguih, 'NextPlot', 'Add',... 'Position', [0.01 0.01 0.60 0.95], 'PlotBoxAspectRatio', [1 1 1], ... 'XColor','none','YColor','none'); cmapsliderH = uicontrol('Parent', mainguih, 'Units', 'normalized','Style','slider',... 'Max',50,'Min',1,'Value',10,'SliderStep',[.1 .2],... 'Position', [0.02 0.96 0.58 0.03], 'Callback', @cmapslider); haxPRE = axes('Parent', mainguih, 'NextPlot', 'replacechildren',... 'Position', [0.63 0.03 0.36 0.25]); axes(haxCCD) %---------------------------------------------------- % IMAGE PROCESSING PANEL %---------------------------------------------------- IPpanelH = uipanel('Title','Image Processing','FontSize',10,... 'BackgroundColor',[1 1 1],... 'Position', [0.62 0.60 0.37 0.39]); % 'Visible', 'Off', getROIH = uicontrol('Parent', IPpanelH, 'Units', 'normalized', ... 'Position', [0.05 0.80 0.45 0.15], 'FontSize', 11, 'String', 'MEASURE ROI',... 'Callback', @getROI); uicontrol('Parent', IPpanelH, 'Style', 'Text', 'Units', 'normalized','BackgroundColor',[.96 .96 .96],... 'Position', [0.68 0.91 0.25 0.06], 'FontSize', 12,'String', 'ROI ID'); ROIIDh = uicontrol('Parent', IPpanelH, 'Style', 'Edit', 'Units', 'normalized', ... 'Position', [0.68 0.81 0.25 0.10], 'FontSize', 11,'BackgroundColor',[1 1 1]); measureButtonsH = uipanel('Parent', IPpanelH,'Title','Analyses','FontSize',10,... 'BackgroundColor',[.99 .99 .99],... 'Position', [0.05 0.15 0.90 0.60]); % 'Visible', 'Off', yp = 1 - ((1/6.2) .* (1:6)); bpos1 = [0.05 yp(1) 0.95 0.14]; bpos2 = [0.05 yp(2) 0.95 0.14]; bpos3 = [0.05 yp(3) 0.95 0.14]; bpos4 = [0.05 yp(4) 0.95 0.14]; bpos5 = [0.05 yp(5) 0.95 0.14]; bpos6 = [0.05 yp(6) 0.95 0.14]; checkbox1H = uicontrol('Parent', measureButtonsH,'Style','checkbox','Units','normalized',... 'Position', bpos1 ,'String','Spine Area', 'Value',1,'BackgroundColor',[1 1 1]); checkbox2H = uicontrol('Parent', measureButtonsH,'Style','checkbox','Units','normalized',... 'Position', bpos2 ,'String','Spine Total Length', 'Value',1,'BackgroundColor',[1 1 1]); checkbox3H = uicontrol('Parent', measureButtonsH,'Style','checkbox','Units','normalized',... 'Position', bpos3 ,'String','Spine Head Diameter', 'Value',1,'BackgroundColor',[1 1 1]); checkbox4H = uicontrol('Parent', measureButtonsH,'Style','checkbox','Units','normalized',... 'Position', bpos4 ,'String','Spine Neck Length', 'Value',1,'BackgroundColor',[1 1 1]); checkbox5H = uicontrol('Parent', measureButtonsH,'Style','checkbox','Units','normalized',... 'Position', bpos5 ,'String','Dendritic Shaft Diameter', 'Value',1,'BackgroundColor',[1 1 1]); checkbox6H = uicontrol('Parent', measureButtonsH,'Style','checkbox','Units','normalized',... 'Position', bpos6 ,'String','Nearest Neighbor Spine', 'Value',1,'BackgroundColor',[1 1 1]); savefileh = uicontrol('Parent', IPpanelH, 'Units', 'normalized', ... 'Position', [0.05 0.02 0.65 0.10], 'String', 'Save Data', 'FontSize', 11,... 'Callback', @saveFile); loadIMGh = uicontrol('Parent', IPpanelH, 'Units', 'normalized', ... 'Position', [0.70 0.02 0.25 0.10], 'String', 'Import Image', 'FontSize', 11,... 'Callback', @loadIMG); % %---------------------------------------------------- % % MEMO CONSOLE GUI WINDOW % %---------------------------------------------------- % % memopanelH = uipanel('Parent', mainguih,'Title','Memo Log ','FontSize',10,... % 'BackgroundColor',[.95 .95 .95],... % 'Position', [0.62 0.30 0.30 0.29]); % 'Visible', 'Off', % % % memos = {' Welcome to Neuromorph', ' ',... % ' Press MEASURE ROI to start', ' ', ... % ' ', ' ', ... % ' ', ' ', ... % ' ', ' '}; % % memoboxH = uicontrol('Parent',memopanelH,'Style','listbox','Units','normalized',... % 'Max',10,'Min',0,'Value',[],'FontSize', 13,'FontName', 'FixedWidth',... % 'String',memos,'FontWeight', 'bold',... % 'Position',[.05 .05 .90 .90]); %---------------------------------------------------- % MEMO CONSOLE GUI WINDOW %---------------------------------------------------- memopanelH = uipanel('Parent', mainguih,'Title','Memo Log ','FontSize',10,... 'BackgroundColor',[1 1 1],... 'Position', [0.62 0.30 0.37 0.29]); % 'Visible', 'Off', memes = {' ',' ',' ', ' ',' ',' ',' ', ... 'Welcome to the Neuromorph', 'Ready to Import Image!'}; conboxH = uicontrol('Parent',memopanelH,'Style','listbox','Units','normalized',... 'Max',9,'Min',0,'Value',9,'FontSize', 13,'FontName', 'FixedWidth',... 'String',memes,'FontWeight', 'bold',... 'Position',[.0 .0 1 1]); memocon('Click the Import Image button above.') %% %---------------------------------------------------- % IMPORT IMAGE & LOAD DEFAULT TOOLBOX PARAMETERS %---------------------------------------------------- % loadfile() set(mainguih, 'Visible', 'On'); axes(haxCCD) % ----------------------------------------------------------------------------- %% GUI TOOLBOX FUNCTIONS % ----------------------------------------------------------------------------- %---------------------------------------------------- % QUANTIFY SPINE ROI %---------------------------------------------------- function getROI(boxidselecth, eventdata) ROInum = str2num(ROIIDh.String); if checkbox1H.Value MORPHOa(ROInum) end if checkbox2H.Value MORPHOb(ROInum) end if checkbox3H.Value MORPHOc(ROInum) end if checkbox4H.Value MORPHOd(ROInum) end if checkbox5H.Value MORPHOe(ROInum) end if checkbox6H.Value MORPHOf(ROInum) end spf1 = sprintf(['\n TOTAL SPINE INTENSITY: % 5.3f '... '\n TOTAL SPINE AREA: % 5.1f '... '\n SPINE HEAD WIDTH: % 5.1f '... '\n SPINE NECK LENGTH: % 5.1f '... '\n NEAREST SPINE DIST: % 5.1f '... '\n DENDRITE DIAMETER: % 5.1f '... '\n DENDRITE INTENSITY: % 5.3f \n\n'],... SPINE.intensity,SPINE.area,... SPINEHN.headwidth,SPINEHN.necklength,... DENDRITE.nearestspine,... DENDRITE.size, DENDRITE.intensity); disp(spf1) % ------ memos(1:end-1) = memos(2:end); memos{3} = ['TOTAL SPINE INTENSITY: ' num2str(SPINE.intensity)]; memos{4} = ['TOTAL SPINE AREA: ' num2str(SPINE.area)]; memos{5} = ['SPINE HEAD WIDTH: ' num2str(SPINEHN.headwidth)]; memos{6} = ['SPINE NECK LENGTH: ' num2str(SPINEHN.necklength)]; memos{7} = ['DENDRITE DIAMETER: ' num2str(DENDRITE.size)]; memos{8} = ['DENDRITE INTENSITY: ' num2str(DENDRITE.intensity)]; memos{9} = ['NEAREST SPINE DIST: ' num2str(DENDRITE.nearestspine)]; memos{end} = ' '; memoboxH.String = memos; pause(.02) % ------ % --------------------------------------- % SAVE MORPHOLOGY STATISTICS FOR THIS SPINE:DENDRITE PAIR % --------------------------------------- % ROISAVES : saved inside individual MORPHO() functions MORPHdata{ROInum} = {SPINE, SPINEHN, DENDRITE}; % --------------------------------------- % QUESTION DIALOGUE TO KEEP DRAWING OR END % --------------------------------------- doagainROI = questdlg('Select next ROI?', 'Select next ROI?', 'Yes', 'No', 'No'); switch doagainROI case 'Yes' set(ROIIDh,'String',num2str((str2num(ROIIDh.String)+1)) ); getROI case 'No' set(ROIIDh,'String',num2str((str2num(ROIIDh.String)+1)) ); % keyboard end set(gcf,'Pointer','arrow') end %---------------------------------------------------- % QUANTIFY Spine Total Area %---------------------------------------------------- function MORPHOa(ROInum) % % ------ % disp('Draw outline around entire spine') % memos(1:end-1) = memos(2:end); % memos{end} = 'Draw outline around entire spine'; % memoboxH.String = memos; % pause(.02) % % ------ memocon('Draw outline around entire spine.') hROI = imfreehand(haxCCD); ROImask = hROI.createMask(phCCD); ROIpos = hROI.getPosition; ROIarea = polyarea(ROIpos(:,1),ROIpos(:,2)); ROI_INTENSITY = IMG .* ROImask; ROI_INTENSITY_MEAN = mean(ROI_INTENSITY(ROI_INTENSITY > 0)); SPINE.area = ROIarea; SPINE.intensity = ROI_INTENSITY_MEAN; fprintf('\n TOTAL SPINE INTENSITY: % 5.5g \n TOTAL SPINE AREA: % 5.5g \n\n',... ROI_INTENSITY_MEAN,ROIarea) ROISAVES(ROInum).SpineMask = ROImask; ROISAVES(ROInum).SpinePos = ROIpos; end %---------------------------------------------------- % QUANTIFY Spine Total Length %---------------------------------------------------- function MORPHOb(ROInum) % % ------ % disp('Draw line from dendritic shaft to spine tip (longest extent of spine)') % memos(1:end-1) = memos(2:end); % memos{end} = 'Draw line from spine head tip to dendrite'; % memoboxH.String = memos; % pause(.02) % % ------ memocon('Draw line from spine tip to dendrite shaft.') hline = imline(haxCCD); dpos = hline.getPosition(); spineextent = sqrt((dpos(1,1)-dpos(2,1))^2 + (dpos(1,2)-dpos(2,2))^2); spineextentcenter = [mean(dpos(:,1)) mean(dpos(:,2))]; scatter(spineextentcenter(1),spineextentcenter(2), cdotsz,... 'MarkerFaceColor', 'none', 'MarkerEdgeColor', [1 0 0], 'LineWidth', 3) [cx,cy,c] = improfile(IMG, dpos(:,1), dpos(:,2), round(spineextent)); % sqrt((cx(1)-cx(end))^2 + (cy(1)-cy(end))^2) scatter(cx,cy, dotsz,'MarkerFaceColor', [1 0 0]) SPINEHN.spineextent = spineextent; SPINEHN.spineextentintensity = mean(c); SPINEHN.spineextentintensityprofile = c; SPINEHN.spineextentcenter = spineextentcenter; ROISAVES(ROInum).SpineExtentPos = dpos; ROISAVES(ROInum).SpineExtentCenter = spineextentcenter; ROISAVES(ROInum).SpineExtentX = cx; ROISAVES(ROInum).SpineExtentY = cy; % ------ Plot F Profile ---- plot(haxPRE, c) axes(haxCCD) % -------------------------- end %---------------------------------------------------- % QUANTIFY Spine Head Diameter %---------------------------------------------------- function MORPHOc(ROInum) memocon('Draw line across spine head width.') hline = imline(haxCCD); dpos = hline.getPosition(); spineheadwidth = sqrt((dpos(1,1)-dpos(2,1))^2 + (dpos(1,2)-dpos(2,2))^2); spineheadcenter = [mean(dpos(:,1)) mean(dpos(:,2))]; scatter(spineheadcenter(1),spineheadcenter(2), cdotsz,... 'MarkerFaceColor', 'none', 'MarkerEdgeColor', [1 0 1], 'LineWidth', 3) [cx,cy,c] = improfile(IMG, dpos(:,1), dpos(:,2), round(spineheadwidth)); % sqrt((cx(1)-cx(end))^2 + (cy(1)-cy(end))^2) scatter(cx,cy, dotsz,'MarkerFaceColor', [1 0 1]) SPINEHN.headwidth = spineheadwidth; SPINEHN.headintensity = mean(c); SPINEHN.headintensityprofile = c; SPINEHN.headcenter = spineheadcenter; ROISAVES(ROInum).SpineHeadPos = dpos; ROISAVES(ROInum).SpineHeadCenter = spineheadcenter; ROISAVES(ROInum).SpineHeadX = cx; ROISAVES(ROInum).SpineHeadY = cy; % ------ Plot F Profile ---- plot(haxPRE, c) axes(haxCCD) % -------------------------- end %---------------------------------------------------- % QUANTIFY Spine Neck Length %---------------------------------------------------- function MORPHOd(ROInum) memocon('Draw line across spine neck width.') hline = imline(haxCCD); dpos = hline.getPosition(); spinenecklength = sqrt((dpos(1,1)-dpos(2,1))^2 + (dpos(1,2)-dpos(2,2))^2); spineneckcenter = [mean(dpos(:,1)) mean(dpos(:,2))]; scatter(spineneckcenter(1),spineneckcenter(2), cdotsz,... 'MarkerFaceColor', 'none', 'MarkerEdgeColor', [0 1 0], 'LineWidth', 3) [cx,cy,c] = improfile(IMG, dpos(:,1), dpos(:,2), round(spinenecklength)); % sqrt((cx(1)-cx(end))^2 + (cy(1)-cy(end))^2) scatter(cx,cy, dotsz,'MarkerFaceColor', [0 1 0]) SPINEHN.necklength = spinenecklength; SPINEHN.neckintensity = mean(c); SPINEHN.neckintensityprofile = c; SPINEHN.neckcenter = spineneckcenter; ROISAVES(ROInum).SpineNeckPos = dpos; ROISAVES(ROInum).SpineNeckCenter = spineneckcenter; ROISAVES(ROInum).SpineNeckX = cx; ROISAVES(ROInum).SpineNeckY = cy; % ------ Plot F Profile ---- plot(haxPRE, c) axes(haxCCD) % -------------------------- end %---------------------------------------------------- % QUANTIFY Dendritic Shaft Diameter %---------------------------------------------------- function MORPHOe(ROInum) memocon('Draw line to measure dendrite width near spine') hline = imline(haxCCD); dpos = hline.getPosition(); % row 1 of dpos is the x,y pos of the line origin % test this using scatter(dpos(1,1),dpos(1,2),'r') dendritesize = sqrt((dpos(1,1)-dpos(2,1))^2 + (dpos(1,2)-dpos(2,2))^2); dendritecenter = [mean(dpos(:,1)) mean(dpos(:,2))]; scatter(dendritecenter(1),dendritecenter(2), cdotsz,... 'MarkerFaceColor', 'none', 'MarkerEdgeColor', [0 0 1], 'LineWidth', 3) [cx,cy,c] = improfile(IMG, dpos(:,1), dpos(:,2), round(dendritesize)); % sqrt((cx(1)-cx(end))^2 + (cy(1)-cy(end))^2) scatter(cx,cy, dotsz,'MarkerFaceColor', [0 0 1]) DENDRITE.size = dendritesize; DENDRITE.intensity = mean(c); DENDRITE.intensityprofile = c; DENDRITE.center = dendritecenter; ROISAVES(ROInum).DendritePos = dpos; ROISAVES(ROInum).DendriteCenter = dendritecenter; ROISAVES(ROInum).DendriteX = cx; ROISAVES(ROInum).DendriteY = cy; % ------ Plot F Profile ---- plot(haxPRE, c) axes(haxCCD) % -------------------------- end %---------------------------------------------------- % QUANTIFY Nearest Neighbor Spine %---------------------------------------------------- function MORPHOf(ROInum) memocon('Draw line from this spine to nearest spine.') hline = imline(haxCCD); dpos = hline.getPosition(); nearestspine = sqrt((dpos(1,1)-dpos(2,1))^2 + (dpos(1,2)-dpos(2,2))^2); nearestspinecenter = [mean(dpos(:,1)) mean(dpos(:,2))]; scatter(nearestspinecenter(1),nearestspinecenter(2), cdotsz,... 'MarkerFaceColor', 'none', 'MarkerEdgeColor', [0 1 0], 'LineWidth', 3) [cx,cy,c] = improfile(IMG, dpos(:,1), dpos(:,2), round(nearestspine)); % sqrt((cx(1)-cx(end))^2 + (cy(1)-cy(end))^2) scatter(cx,cy, dotsz,'MarkerFaceColor', [0 1 0]) DENDRITE.nearestspine = nearestspine; DENDRITE.nearestspineint = mean(c); DENDRITE.nearestspineprofile = c; DENDRITE.nearestspinecenter = nearestspinecenter; ROISAVES(ROInum).SpineNearPos = dpos; ROISAVES(ROInum).SpineNearCenter = nearestspinecenter; ROISAVES(ROInum).SpineNearX = cx; ROISAVES(ROInum).SpineNearY = cy; % ------ Plot F Profile ---- plot(haxPRE, c) axes(haxCCD) % -------------------------- end %---------------------------------------------------- % KEYBOARD CALLBACKS (ZOOM + PAN) %---------------------------------------------------- function keypresszoom(hObject, eventData, key) % --- ZOOM --- if strcmp(mainguih.CurrentCharacter,'=') % IN THE FUTURE USE MOUSE LOCATION TO ZOOM % INTO A SPECIFIC POINT. TO QUERY MOUSE LOCATION % USE THE METHOD: mainguih.CurrentPoint zoom(1.5) drawnow end if strcmp(mainguih.CurrentCharacter,'-') zoom(.5) drawnow end % --- PAN --- if strcmp(mainguih.CurrentCharacter,'p') pan('on') % h = pan; % h.ActionPreCallback = @myprecallback; % h.ActionPostCallback = @mypostcallback; % h.Enable = 'on'; end if strcmp(mainguih.CurrentCharacter,'o') pan('off') end if strcmp(mainguih.CurrentCharacter,'f') haxCCD.XLim = haxCCD.XLim+20; drawnow end if strcmp(mainguih.CurrentCharacter,'s') haxCCD.XLim = haxCCD.XLim-20; drawnow end if strcmp(mainguih.CurrentCharacter,'e') haxCCD.YLim = haxCCD.YLim+20; drawnow end if strcmp(mainguih.CurrentCharacter,'d') haxCCD.YLim = haxCCD.YLim-20; drawnow end % --- RESET ZOOM & PAN --- if strcmp(mainguih.CurrentCharacter,'0') zoom out zoom reset haxCCD.XLim = imXlim; haxCCD.YLim = imYlim; end end %---------------------------------------------------- % BOX SELECTION %---------------------------------------------------- function boxselection(source,callbackdata) % callbackdata.OldValue.String boxtype = callbackdata.NewValue.String; end %---------------------------------------------------- % LOAD FILE %---------------------------------------------------- function loadIMG(loadIMGh, eventData) if numel(datafile) < 1 [datafile,datadir,~] = uigetfile('*.tif*; *.bmp'); end cd(datadir); imgpath = [datadir '/' datafile]; memocon('Working dir changed to: ') memocon(datadir) iminfo = imfinfo(imgpath); [im, map] = imread(imgpath); im_size = size(im); im_nmap = numel(map); im_ctype = iminfo.ColorType; if strcmp(im_ctype, 'truecolor') || numel(im_size) > 2 IMG = rgb2gray(im); IMG = im2double(IMG); elseif strcmp(im_ctype, 'indexed') IMG = ind2gray(im,map); IMG = im2double(IMG); elseif strcmp(im_ctype, 'grayscale') IMG = im2double(im); else IMG = im; end axes(haxCCD) colormap(haxCCD,bone); % parula phCCD = imagesc(IMG , 'Parent', haxCCD); pause(1) ccmap = bone; cmmap = [zeros(10,3); ccmap(end-40:end,:)]; colormap(haxCCD,cmmap) mainguih.Colormap = cmmap; pause(.2) imXlim = haxCCD.XLim; imYlim = haxCCD.YLim; xdim = size(IMG,2); ydim = size(IMG,1); %---------------------------------------------------- % SET USER-EDITABLE GUI VALUES %---------------------------------------------------- set(mainguih, 'Name', datafile); set(ROIIDh, 'String', int2str(1)); set(haxCCD, 'XLim', [1 xdim]); set(haxCCD, 'YLim', [1 ydim]); %---------------------------------------------------- % axes(haxCCD) memocon('Finished loading image.') memocon('Click on the image to make it active.') memocon('Use the =/- keys to zoom in and out') memocon('Use s d f e keys to move left down right up') memocon('Click MEASURE ROI to begin.') end %---------------------------------------------------- % SAVE DATA AND ROI COORDINATES %---------------------------------------------------- function saveFile(savefileh, eventData) saveDatafilename = inputdlg('Enter a filename to save data','file name',1,... {datafile(1:end-4)}); Datafilename = char(strcat(saveDatafilename)); MORPHdata = MORPHdata(~cellfun(@isempty, MORPHdata)); %for nn = 1:size(MORPHdats,2) for nn = 1:size(MORPHdata,2) MORPHdat(nn,:) = [MORPHdata{1,nn}{1}.area ... MORPHdata{1,nn}{1}.intensity ... MORPHdata{1,nn}{2}.spineextent ... MORPHdata{1,nn}{2}.spineextentintensity ... MORPHdata{1,nn}{2}.headwidth ... MORPHdata{1,nn}{2}.headintensity ... MORPHdata{1,nn}{2}.necklength ... MORPHdata{1,nn}{2}.neckintensity ... MORPHdata{1,nn}{3}.size ... MORPHdata{1,nn}{3}.intensity ... MORPHdata{1,nn}{3}.nearestspine ... MORPHdata{1,nn}{3}.nearestspineint ... ]; ROInames{nn} = num2str(nn); end MORPHtab = array2table(MORPHdat); MORPHtab.Properties.VariableNames = {... 'SPINE_AREA' 'SPINE_F' 'SPINE_LEN' 'SPINE_LEN_F' ... 'HEAD_WIDTH' 'HEAD_F' 'NECK_LENGTH' 'NECK_F'... 'DEND_DIAMETER' 'DEND_DIAMETER_F' 'NEARBY_SPINE_DIST' 'LENGTH_SHAFT_F'... }; MORPHtab.Properties.RowNames = ROInames; MORPHtab.FILE = repmat(datafile,size(MORPHdata,2),1); % MORPHtab.DATE = repmat(datadate,size(MORPHdata,2),1); writetable(MORPHtab,[Datafilename '.csv'],'WriteRowNames',true) save([Datafilename '.mat'],'MORPHdata','ROISAVES') memocon('Data saved to: ') memocon(datadir) memocon([Datafilename '.csv']) end %---------------------------------------------------- % IMAGE SIDER CALLBACK %---------------------------------------------------- function cmapslider(hObject, eventdata) % Hints: hObject.Value returns position of slider % hObject.Min and hObject.Max determine range of slider % sunel = get(handles.sunelslider,'value'); % Get current light elev. % sunaz = get(hObject,'value'); % Varies from -180 -> 0 deg slideVal = ceil(cmapsliderH.Value); % cmap = colormap(haxCCD); ccmap = bone; % parula % cmmap = [zeros(slideVal,3); ccmap(end-40:end,:)]; cmmap = [zeros(slideVal,3); ccmap(slideVal:end,:)]; colormap(haxCCD,cmmap) pause(.05) end %---------------------------------------------------- % LOAD ROI DATA %---------------------------------------------------- function loadROI(hObject, eventdata) % ------ disp('Select .mat file with ROI data') memos(1:end-1) = memos(2:end); memos{end} = 'Select .mat file with ROI data'; memoboxH.String = memos; pause(.02) % ------ [ROIFileName,ROIPathName,ROIFilterIndex] = uigetfile('*.mat'); ROIloaded = load([ROIPathName ROIFileName],'MORPHdata','ROISAVES'); MORPHdata = ROIloaded.MORPHdata; ROISAVES = ROIloaded.ROISAVES; % ------ disp('ROI data loaded into workspace!') memos(1:end-1) = memos(2:end); memos{end} = 'ROI data loaded into workspace!'; memoboxH.String = memos; pause(.02) % ------ lwd = 4; axes(haxCCD) for nn = 1:length(ROISAVES) line(ROISAVES(nn).SpinePos(:,1), ROISAVES(nn).SpinePos(:,2),'Color',[.95 .95 .10],'LineWidth',lwd) line(ROISAVES(nn).SpineExtentPos(:,1), ROISAVES(nn).SpineExtentPos(:,2),'Color',[.10 .95 .95],'LineWidth',lwd) line(ROISAVES(nn).SpineHeadPos(:,1), ROISAVES(nn).SpineHeadPos(:,2),'Color',[.95 .10 .95],'LineWidth',lwd) line(ROISAVES(nn).SpineNeckPos(:,1), ROISAVES(nn).SpineNeckPos(:,2),'Color',[.95 .10 .10],'LineWidth',lwd) line(ROISAVES(nn).DendritePos(:,1), ROISAVES(nn).DendritePos(:,2),'Color',[.10 .95 .10],'LineWidth',lwd) line(ROISAVES(nn).SpineNearPos(:,1), ROISAVES(nn).SpineNearPos(:,2),'Color',[.10 .10 .95],'LineWidth',lwd) end % ROISAVES.SpinePos % ROISAVES.SpineExtentPos % ROISAVES.SpineHeadPos % ROISAVES.SpineNeckPos % ROISAVES.DendritePos % ROISAVES.SpineNearPos end %---------------------------------------------------- % MEMO LOG UPDATE %---------------------------------------------------- function memocon(spf,varargin) if iscellstr(spf) spf = [spf{:}]; end if iscell(spf) return keyboard spf = [spf{:}]; end if ~ischar(spf) return keyboard spf = [spf{:}]; end memes(1:end-1) = memes(2:end); memes{end} = spf; conboxH.String = memes; pause(.02) if nargin == 3 vrs = deal(varargin); memi = memes; memes(1:end) = {' '}; memes{end-1} = vrs{1}; memes{end} = spf; conboxH.String = memes; conboxH.FontAngle = 'italic'; conboxH.ForegroundColor = [.9 .4 .01]; pause(vrs{2}) conboxH.FontAngle = 'normal'; conboxH.ForegroundColor = [0 0 0]; conboxH.String = memi; pause(.02) elseif nargin == 2 vrs = deal(varargin); pause(vrs{1}) end disp(spf) end end %% EOF
github
shenweichen/Coursera-master
RunInference.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/RunInference.m
1,769
utf_8
1ba1656e4edc7d51078478fedd09878a
function pred = RunInference (factors) % This function performs inference for a Markov network specified as a list % of factors. % % Input: % factors: An array of struct factors, each containing 'var', 'card', and % 'val' fields. % % Output: % pred: An array of predictions for every variable. In particular, % pred(i) is the predicted value for variable numbered i (as determined % by the 'var' fields in the input factors). % % Copyright (C) Daphne Koller, Stanford University, 2012 binaries = {'.\inference\doinference.exe', ... './inference/doinference-mac', ... './inference/doinference-linux'}; kFactorsFilename = 'factors.fg'; kStderrFilename = 'inf.log'; kInfBinary = binaries{[ispc ismac isunix]}; % NB: need ismac first so that if ismac and isunix are both 1, then mac is chosen kInferenceType = 'map'; % choices are 'map' or 'pd' factorsString = SerializeFactorsFg (factors); fd = fopen(kFactorsFilename, 'wt'); fprintf (fd, '%s', factorsString); fclose(fd); if (isunix && ~ismac) command = [kInfBinary ' ' kFactorsFilename ' ' kInferenceType]; else command = [kInfBinary ' ' kFactorsFilename ' ' kInferenceType ' 2> ' kStderrFilename]; end [retVal, output] = system(command); if (retVal ~= 0) error('The doinference command failed. Look at the file %s to diagnose the cause', kStderrFilename); end pred = ParseOutput(output); end function pred = ParseOutput(output) lines = strread(output, '%s', 'delimiter', sprintf('\n')); lines(strcmp(lines, '')) = []; numVars = str2double(lines{1}); if (numVars ~= length(lines) - 1) error('Error parsing output: %s', output); end pred = zeros(numVars, 1); for i = 2:(numVars + 1) line = str2num(lines{i}); %#ok pred(i-1) = line(end); end end
github
shenweichen/Coursera-master
IndexToAssignment.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/IndexToAssignment.m
568
utf_8
506de63bacc99887816fc7288aaa4301
% IndexToAssignment Convert index to variable assignment. % % A = IndexToAssignment(I, D) converts an index, I, into the .val vector % into an assignment over variables with cardinality D. If I is a vector, % then the function produces a matrix of assignments, one assignment % per row. % % See also AssignmentToIndex.m % % Copyright (C) Daphne Koller, Stanford University, 2012 function A = IndexToAssignment(I, D) D = D(:)'; % ensure that D is a row vector A = bsxfun(@mod, floor(bsxfun(@rdivide, I(:) - 1, cumprod([1, D(1:end - 1)]))), D) + 1; end
github
shenweichen/Coursera-master
submit.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/submit.m
4,874
utf_8
b28bc742c0663bbf562786d44919f474
function submit(part) addpath('./lib'); conf.assignmentKey = '1RFc-gNfEeapUhL5oS3IIQ'; conf.itemName = 'Markov Networks for OCR'; conf.partArrays = { ... { ... 'Ga9CX', ... { 'ComputeSingletonFactors.m' }, ... '', ... }, ... { ... 'Y6ud3', ... { 'ComputeSingletonFactors.m' }, ... '', ... }, ... { ... 'YX6FP', ... { 'ComputePairwiseFactors.m' }, ... '', ... }, ... { ... 'sVpuc', ... { 'ComputePairwiseFactors.m' }, ... '', ... }, ... { ... 'ZzAEz', ... { 'ComputeTripletFactors.m' }, ... '', ... }, ... { ... 'jF5vU', ... { 'ComputeTripletFactors.m' }, ... '', ... }, ... { ... 'IQZRx', ... { 'ComputeSimilarityFactor.m' }, ... '', ... }, ... { ... 'bWL2q', ... { 'ComputeSimilarityFactor.m' }, ... '', ... }, ... { ... 'TfTAH', ... { 'ComputeAllSimilarityFactors.m' }, ... '', ... }, ... { ... '44rjP', ... { 'ComputeAllSimilarityFactors.m' }, ... '', ... }, ... { ... 'eGTyV', ... { 'ChooseTopSimilarityFactors.m' }, ... '', ... }, ... { ... 'VfH4h', ... { 'ChooseTopSimilarityFactors.m' }, ... '', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end % specifies which parts are test parts function result = isTest(partIdx) if (mod(partIdx, 2) == 0) result = true; else result = false; end end function out = output(partIdx, auxstring) load PA3Models.mat; if (isTest(partIdx)) load PA3TestCases.mat; else load PA3SampleCases.mat; end if partIdx == 1 images = Part1SampleImagesInput; factors = ComputeSingletonFactors(images, imageModel); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 2 images = Part1TestImagesInput; factors = ComputeSingletonFactors(images, imageModel); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 3 images = Part2SampleImagesInput; factors = ComputePairwiseFactors(images, pairwiseModel, imageModel.K); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 4 images = Part2TestImagesInput; factors = ComputePairwiseFactors(images, pairwiseModel, imageModel.K); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 5 images = Part3SampleImagesInput; factors = ComputeTripletFactors(images, tripletList, imageModel.K); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors, 2); elseif partIdx == 6 images = Part3TestImagesInput; factors = ComputeTripletFactors(images, tripletList, imageModel.K); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors, 2); elseif partIdx == 7 images = Part4SampleImagesInput; factor = ComputeSimilarityFactor(images, imageModel.K, 1, 2); factor = SortAllFactors(factor); out = SerializeFactorsFgGrading(factor); elseif partIdx == 8 images = Part4TestImagesInput; factor = ComputeSimilarityFactor(images, imageModel.K, 3, 4); factor = SortAllFactors(factor); out = SerializeFactorsFgGrading(factor); elseif partIdx == 9 images = Part5SampleImagesInput; factors = ComputeAllSimilarityFactors(images, imageModel.K); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 10 images = Part5TestImagesInput; factors = ComputeAllSimilarityFactors(images, imageModel.K); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 11 allFactors = Part6SampleFactorsInput; factors = ChooseTopSimilarityFactors(allFactors, 2); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); elseif partIdx == 12 allFactors = Part6TestFactorsInput; factors = ChooseTopSimilarityFactors(allFactors, 2); factors = SortAllFactors(factors); out = SerializeFactorsFgGrading(factors); end end function f = SortAllFactors(factors) for i = 1:length(factors) factors(i) = SortFactorVars(factors(i)); end varMat = vertcat(factors(:).var); [unused, order] = sortrows(varMat); f = factors(order); end function G = SortFactorVars(F) [sortedVars, order] = sort(F.var); G.var = sortedVars; G.card = F.card(order); G.val = zeros(numel(F.val), 1); assignmentsInF = IndexToAssignment(1:numel(F.val), F.card); assignmentsInG = assignmentsInF(:,order); G.val(AssignmentToIndex(assignmentsInG, G.card)) = F.val; end function str = SerializeWordList (words) str = []; for i = 1:length(words) str = [str num2str(words{i}(:)') ' ']; %#ok end end
github
shenweichen/Coursera-master
GetValueOfAssignment.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/GetValueOfAssignment.m
809
utf_8
272b9bca5fe98bd4c793e9b6d3bc0c2f
%GETVALUEOFASSIGNMENT Gets the value of a variable assignment in a factor. % % v = GETVALUEOFASSIGNMENT(F, A) returns the value of a variable assignment, % A, in factor F. The order of the variables in A are assumed to be the % same as the order in F.var. % % v = GETVALUEOFASSIGNMENT(F, A, VO) gets the value of a variable assignment, % A, in factor F. The order of the variables in A are given by the vector VO. % % See also SETVALUEOFASSIGNMENT % Copyright (C) Daphne Koller, Stanford University, 2012 function v = GetValueOfAssignment(F, A, VO) if (nargin == 2), indx = AssignmentToIndex(A, F.card); else map = zeros(length(F.var), 1); for i = 1:length(F.var), map(i) = find(VO == F.var(i)); end; indx = AssignmentToIndex(A(map), F.card); end; v = F.val(indx);
github
shenweichen/Coursera-master
AssignmentToIndex.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/AssignmentToIndex.m
631
utf_8
ee3dd64cb42f51f10372074314d48e76
% AssignmentToIndex Convert assignment to index. % % I = AssignmentToIndex(A, D) converts an assignment, A, over variables % with cardinality D to an index into the .val vector for a factor. % If A is a matrix then the function converts each row of A to an index. % % See also IndexToAssignment.m and SampleFactors.m % % Copyright (C) Daphne Koller, Stanford University, 2012 function I = AssignmentToIndex(A, D) D = D(:)'; % ensure that D is a row vector if (any(size(A) == 1)), I = cumprod([1, D(1:end - 1)]) * (A(:) - 1) + 1; else I = sum(bsxfun(@times, A - 1, cumprod([1, D(1:end - 1)])), 2) + 1; end; end
github
shenweichen/Coursera-master
SetValueOfAssignment.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/SetValueOfAssignment.m
829
utf_8
1cdbc6dd85db30405ae79f168a884b23
%SETVALUEOFASSIGNMENT Sets the value of a variable assignment in a factor. % % F = SETVALUEOFASSIGNMENT(F, A, v) sets the value of a variable assignment, % A, in factor F to v. The order of the variables in A are assumed to be the % same as the order in F.var. % % F = SETVALUEOFASSIGNMENT(F, A, v, VO) sets the value of a variable % assignment, A, in factor F to v. The order of the variables in A are given % by the vector VO. % % See also GETVALUEOFASSIGNMENT % Copyright (C) Daphne Koller, Stanford University, 2012 function F = SetValueOfAssignment(F, A, v, VO) if (nargin == 3), indx = AssignmentToIndex(A, F.card); else map = zeros(length(F.var), 1); for i = 1:length(F.var), map(i) = find(VO == F.var(i)); end; indx = AssignmentToIndex(A(map), F.card); end; F.val(indx) = v;
github
shenweichen/Coursera-master
submitWithConfiguration.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/lib/submitWithConfiguration.m
3,010
utf_8
81b617620421b9891908dc9e7fbf6cda
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else fprintf('Submission successful. You can view your grade under My Submission on the programming assignment page.\n\n'); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentKey = conf.assignmentKey; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) partIdx = 0; for part = parts partId = part{:}.id; partIdx = partIdx + 1; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partIdx); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www.coursera.org/api/onDemandProgrammingScriptSubmissionsController.v1'; end
github
shenweichen/Coursera-master
savejson.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
shenweichen/Coursera-master
loadjson.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/lib/jsonlab/loadjson.m
18,888
ibm852
f5b550952f123aa7ebbb4cc1e4e1a2ca
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else % str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); str=sprintf('x0x%X_%s',toascii(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) % str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',toascii(str0(pos(i))))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
shenweichen/Coursera-master
loadubjson.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
shenweichen/Coursera-master
saveubjson.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW3_Markov Networks for OCR/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
shenweichen/Coursera-master
IndexToAssignment.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW1_Simple BN Knowledge Engineering/IndexToAssignment.m
583
utf_8
344ed305e4ca7bcf86898725befe1413
% IndexToAssignment Convert index to variable assignment. % % A = IndexToAssignment(I, D) converts an index, I, into the .val vector % into an assignment over variables with cardinality D. If I is a vector, % then the function produces a matrix of assignments, one assignment % per row. % % See also AssignmentToIndex.m and FactorTutorial.m function A = IndexToAssignment(I, D) D = D(:)'; % ensure that D is a row vector A = mod(floor(repmat(I(:) - 1, 1, length(D)) ./ repmat(cumprod([1, D(1:end - 1)]), length(I), 1)), ... repmat(D, length(I), 1)) + 1; end
github
shenweichen/Coursera-master
FactorMarginalization.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW1_Simple BN Knowledge Engineering/FactorMarginalization.m
1,605
utf_8
d4123eb1bd128d3be2ea9483ed159e1c
% FactorMarginalization Sums given variables out of a factor. % B = FactorMarginalization(A,V) computes the factor with the variables % in V summed out. The factor data structure has the following fields: % .var Vector of variables in the factor, e.g. [1 2 3] % .card Vector of cardinalities corresponding to .var, e.g. [2 2 2] % .val Value table of size prod(.card) % % The resultant factor should have at least one variable remaining or this % function will throw an error. % % See also FactorProduct.m, IndexToAssignment.m, and AssignmentToIndex.m function B = FactorMarginalization(A, V) % Check for empty factor or variable list if (isempty(A.var) || isempty(V)), B = A; return; end; % Construct the output factor over A.var \ V (the variables in A.var that are not in V) % and mapping between variables in A and B [B.var, mapB] = setdiff(A.var, V); % Check for empty resultant factor if isempty(B.var) error('Error: Resultant factor has empty scope'); end; % Initialize B.card and B.val B.card = A.card(mapB); B.val = zeros(1, prod(B.card)); % Compute some helper indices % These will be very useful for calculating B.val % so make sure you understand what these lines are doing assignments = IndexToAssignment(1:length(A.val), A.card); indxB = AssignmentToIndex(assignments(:, mapB), B.card); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % YOUR CODE HERE % Correctly populate the factor values of B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i = 1:length(B.val), B.val(i) = sum(A.val(indxB==i)) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end
github
shenweichen/Coursera-master
FactorProduct.m
.m
Coursera-master/Specialization_Probabilistic_Graphical_Models_Stanford_University/Course1_Probabilistic_Graphical_Models_1_Representation/HW1_Simple BN Knowledge Engineering/FactorProduct.m
2,298
utf_8
1e54a5848d80539d565c6a008e64f656
% FactorProduct Computes the product of two factors. % C = FactorProduct(A,B) computes the product between two factors, A and B, % where each factor is defined over a set of variables with given dimension. % The factor data structure has the following fields: % .var Vector of variables in the factor, e.g. [1 2 3] % .card Vector of cardinalities corresponding to .var, e.g. [2 2 2] % .val Value table of size prod(.card) % % See also FactorMarginalization.m, IndexToAssignment.m, and % AssignmentToIndex.m function C = FactorProduct(A, B) % Check for empty factors if (isempty(A.var)), C = B; return; end; if (isempty(B.var)), C = A; return; end; % Check that variables in both A and B have the same cardinality [dummy iA iB] = intersect(A.var, B.var); if ~isempty(dummy) % A and B have at least 1 variable in common assert(all(A.card(iA) == B.card(iB)), 'Dimensionality mismatch in factors'); end % Set the variables of C C.var = union(A.var, B.var); % Construct the mapping between variables in A and B and variables in C. % In the code below, we have that % % mapA(i) = j, if and only if, A.var(i) == C.var(j) % % and similarly % % mapB(i) = j, if and only if, B.var(i) == C.var(j) % % For example, if A.var = [3 1 4], B.var = [4 5], and C.var = [1 3 4 5], % then, mapA = [2 1 3] and mapB = [3 4]; mapA(1) = 2 because A.var(1) = 3 % and C.var(2) = 3, so A.var(1) == C.var(2). [dummy, mapA] = ismember(A.var, C.var); [dummy, mapB] = ismember(B.var, C.var); % Set the cardinality of variables in C C.card = zeros(1, length(C.var)); C.card(mapA) = A.card; C.card(mapB) = B.card; % Initialize the factor values of C: % prod(C.card) is the number of entries in C C.val = zeros(1, prod(C.card)); % Compute some helper indices % These will be very useful for calculating C.val % so make sure you understand what these lines are doing. assignments = IndexToAssignment(1:prod(C.card), C.card); indxA = AssignmentToIndex(assignments(:, mapA), A.card); indxB = AssignmentToIndex(assignments(:, mapB), B.card); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % YOUR CODE HERE: % Correctly populate the factor values of C %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C.val = A.val(indxA) .* B.val(indxB) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end