plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
tsajed/nmr-pred-master
secularity.m
.m
nmr-pred-master/spinach/kernel/legacy/secularity.m
437
utf_8
4dececf297c793c5ecc049c8cc08358f
% A trap for legacy function calls. % % [email protected] function secularity(varargin) % Direct the user to the new function error('This function is deprecated, use assume() instead.'); end % You told us you would release Spinach on 1 October 2011 and you actually % released Spinach on 1 October 2011. It's not very often that people actu- % ally deliver on what they say these days. % % Dieter Suter, to IK
github
tsajed/nmr-pred-master
contour_plot.m
.m
nmr-pred-master/spinach/kernel/legacy/contour_plot.m
597
utf_8
0a8656a515a8827cca670b531c450d13
% A trap for legacy function calls. % % [email protected] function contour_plot(varargin) % Direct the user to the new function error('This function is deprecated, use plot_2d() instead.'); end % According to a trade legend, Uhlenbeck and Goudsmit (students of % Ehrenfest when they stumbled upon an explanation for the anomalo- % us g-factor) presented it to Ehrenfest and said, in effect "here's % our theory, but don't publish it - it can't be right". He submit- % ted it anyway with the justification that they were "young enough % to be able to afford a stupidity".
github
tsajed/nmr-pred-master
combnk.m
.m
nmr-pred-master/spinach/kernel/external/combnk.m
1,407
utf_8
9e6b7b79ccf707597f84b82264aee2da
% All combinations of the N elements in V taken K at a time. % C = COMBNK(V,K) produces a matrix, with K columns. Each row of C has % K of the elements in the vector V. C has N!/K!(N-K)! rows. K must be % a nonnegative integer. % % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.2.2 $ $Date: 2004/12/24 20:46:48 $ function c = combnk(v,k) [m, n] = size(v); if min(m,n) ~= 1 error('stats:combnk:VectorRequired','First argument has to be a vector.'); end if n == 1 n = m; flag = 1; else flag = 0; end if n == k c = v(:).'; elseif n == k + 1 tmp = v(:).'; c = tmp(ones(n,1),:); c(1:n+1:n*n) = []; c = reshape(c,n,n-1); elseif k == 1 c = v.'; elseif n < 17 && (k > 3 || n-k < 4) rows = 2.^(n); ncycles = rows; for count = 1:n settings = (0:1); ncycles = ncycles/2; nreps = rows./(2*ncycles); settings = settings(ones(1,nreps),:); settings = settings(:); settings = settings(:,ones(1,ncycles)); x(:,n-count+1) = settings(:); %#ok<AGROW> end idx = x(sum(x,2) == k,:); nrows = size(idx,1); [rows,~] = find(idx'); c = reshape(v(rows),k,nrows).'; else P = []; if flag == 1, v = v.'; end if k < n && k > 1 for idx = 1:n-k+1 Q = combnk(v(idx+1:n),k-1); P = [P; [v(ones(size(Q,1),1),idx) Q]]; %#ok<AGROW> end end c = P; end end
github
tsajed/nmr-pred-master
phantom3d.m
.m
nmr-pred-master/spinach/kernel/external/phantom3d.m
7,917
utf_8
54651ef6f65a0fe3d1d5e068339b469b
% Three-dimensional analogue of MATLAB Shepp-Logan phantom. Generates a 3D % head phantom that can be used to test 3-D reconstruction algorithms. % % DEF is a string that specifies the type of head phantom to generate. % Valid values are: % % 'Shepp-Logan' A test image used widely by researchers in % tomography % 'Modified Shepp-Logan' (default) A variant of the Shepp-Logan phantom % in which the contrast is improved for better % visual perception. % % N is a scalar that specifies the grid size of P. % If you omit the argument, N defaults to 64. % % P = PHANTOM3D(E,N) generates a user-defined phantom, where each row % of the matrix E specifies an ellipsoid in the image. E has ten columns, % with each column containing a different parameter for the ellipsoids: % % Column 1: A the additive intensity value of the ellipsoid % Column 2: a the length of the x semi-axis of the ellipsoid % Column 3: b the length of the y semi-axis of the ellipsoid % Column 4: c the length of the z semi-axis of the ellipsoid % Column 5: x0 the x-coordinate of the center of the ellipsoid % Column 6: y0 the y-coordinate of the center of the ellipsoid % Column 7: z0 the z-coordinate of the center of the ellipsoid % Column 8: phi phi Euler angle (in degrees) (rotation about z-axis) % Column 9: theta theta Euler angle (in degrees) (rotation about x-axis) % Column 10: psi psi Euler angle (in degrees) (rotation about z-axis) % % For purposes of generating the phantom, the domains for the x-, y-, and % z-axes span [-1,1]. Columns 2 through 7 must be specified in terms % of this range. % % [P,E] = PHANTOM3D(...) returns the matrix E used to generate the phantom. % % Class Support % ------------- % All inputs must be of class double. All outputs are of class double. % % Remarks % ------- % For any given voxel in the output image, the voxel's value is equal to the % sum of the additive intensity values of all ellipsoids that the voxel is a % part of. If a voxel is not part of any ellipsoid, its value is 0. % % The additive intensity value A for an ellipsoid can be positive or negative; % if it is negative, the ellipsoid will be darker than the surrounding pixels. % Note that, depending on the values of A, some voxels may have values outside % the range [0,1]. % % Example % ------- % ph = phantom3d(128); % figure, imshow(squeeze(ph(64,:,:))) % % Matthias Christian Schabel ([email protected]) % University of Utah Department of Radiology % Utah Center for Advanced Imaging Research % 729 Arapeen Drive % Salt Lake City, UT 84108-1218 function [p,ellipse]=phantom3d(varargin) [ellipse,n] = parse_inputs(varargin{:}); p = zeros([n n n]); rng = ( (0:n-1)-(n-1)/2 ) / ((n-1)/2); [x,y,z] = meshgrid(rng,rng,rng); coord = [x(:) y(:) z(:)]'; p = p(:)'; for k = 1:size(ellipse,1) A = ellipse(k,1); % Amplitude change for this ellipsoid asq = ellipse(k,2)^2; % a^2 bsq = ellipse(k,3)^2; % b^2 csq = ellipse(k,4)^2; % c^2 x0 = ellipse(k,5); % x offset y0 = ellipse(k,6); % y offset z0 = ellipse(k,7); % z offset phi = ellipse(k,8)*pi/180; % first Euler angle in radians theta = ellipse(k,9)*pi/180; % second Euler angle in radians psi = ellipse(k,10)*pi/180; % third Euler angle in radians cphi = cos(phi); sphi = sin(phi); ctheta = cos(theta); stheta = sin(theta); cpsi = cos(psi); spsi = sin(psi); % Euler rotation matrix alpha = [ cpsi*cphi-ctheta*sphi*spsi cpsi*sphi+ctheta*cphi*spsi spsi*stheta; -spsi*cphi-ctheta*sphi*cpsi -spsi*sphi+ctheta*cphi*cpsi cpsi*stheta; stheta*sphi -stheta*cphi ctheta]; % rotated ellipsoid coordinates coordp = alpha*coord; idx = find((coordp(1,:)-x0).^2./asq + (coordp(2,:)-y0).^2./bsq + (coordp(3,:)-z0).^2./csq <= 1); p(idx) = p(idx) + A; end p = reshape(p,[n n n]); end function [e,n] = parse_inputs(varargin) % e is the m-by-10 array which defines ellipsoids % n is the size of the phantom brain image n = 128; % The default size e = []; defaults = {'shepp-logan', 'modified shepp-logan', 'yu-ye-wang'}; for i=1:nargin if ischar(varargin{i}) % Look for a default phantom def = lower(varargin{i}); idx = strmatch(def,defaults); %#ok<MATCH2> if isempty(idx) eid = sprintf('Images:%s:unknownPhantom',mfilename); msg = 'Unknown default phantom selected.'; error(eid,'%s',msg); end switch defaults{idx} case 'shepp-logan' e = shepp_logan; case 'modified shepp-logan' e = modified_shepp_logan; case 'yu-ye-wang' e = yu_ye_wang; end elseif numel(varargin{i})==1 n = varargin{i}; % a scalar is the image size elseif ismatrix(varargin{i})&&size(varargin{i},2)==10 e = varargin{i}; % user specified phantom else eid = sprintf('Images:%s:invalidInputArgs',mfilename); msg = 'Invalid input arguments.'; error(eid,'%s',msg); end end % ellipse is not yet defined if isempty(e) e = modified_shepp_logan; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Default head phantoms: % %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function e = shepp_logan e = modified_shepp_logan; e(:,1) = [1 -.98 -.02 -.02 .01 .01 .01 .01 .01 .01]; end function e = modified_shepp_logan % % This head phantom is the same as the Shepp-Logan except % the intensities are changed to yield higher contrast in % the image. Taken from Toft, 199-200. % % A a b c x0 y0 z0 phi theta psi % ----------------------------------------------------------------- e = [ 1 .6900 .920 .810 0 0 0 0 0 0 -.8 .6624 .874 .780 0 -.0184 0 0 0 0 -.2 .1100 .310 .220 .22 0 0 -18 0 10 -.2 .1600 .410 .280 -.22 0 0 18 0 10 .1 .2100 .250 .410 0 .35 -.15 0 0 0 .1 .0460 .046 .050 0 .1 .25 0 0 0 .1 .0460 .046 .050 0 -.1 .25 0 0 0 .1 .0460 .023 .050 -.08 -.605 0 0 0 0 .1 .0230 .023 .020 0 -.606 0 0 0 0 .1 .0230 .046 .020 .06 -.605 0 0 0 0 ]; end function e = yu_ye_wang % % Yu H, Ye Y, Wang G, Katsevich-Type Algorithms for Variable Radius Spiral Cone-Beam CT % % A a b c x0 y0 z0 phi theta psi % ----------------------------------------------------------------- e = [ 1 .6900 .920 .900 0 0 0 0 0 0 -.8 .6624 .874 .880 0 0 0 0 0 0 -.2 .4100 .160 .210 -.22 0 -.25 108 0 0 -.2 .3100 .110 .220 .22 0 -.25 72 0 0 .2 .2100 .250 .500 0 .35 -.25 0 0 0 .2 .0460 .046 .046 0 .1 -.25 0 0 0 .1 .0460 .023 .020 -.08 -.65 -.25 0 0 0 .1 .0460 .023 .020 .06 -.65 -.25 90 0 0 .2 .0560 .040 .100 .06 -.105 .625 90 0 0 -.2 .0560 .056 .100 0 .100 .625 0 0 0 ]; end
github
tsajed/nmr-pred-master
lgwt.m
.m
nmr-pred-master/spinach/kernel/external/lgwt.m
1,126
utf_8
ac4205aaceb3726f4eea42d9460d9ec6
% This script is for computing definite integrals using Legendre-Gauss % Quadrature. Computes the Legendre-Gauss nodes and weights on an interval % [a,b] with truncation order N % % Suppose you have a continuous function f(x) which is defined on [a,b] % which you can evaluate at any x in [a,b]. Simply evaluate it at all of % the values contained in the x vector to obtain a vector f. Then compute % the definite integral using sum(f.*w); % % Written by Greg von Winckel - 02/25/2004 function [x,w]=lgwt(N,a,b) % Set point counters N=N-1; N1=N+1; N2=N+2; % Initial guess y=cos((2*(0:N)'+1)*pi/(2*N+2))+(0.27/N1)*sin(pi*linspace(-1,1,N1)'*N/N2); % Preallocate the arrays L=zeros(N1,N2); Lp=zeros(N1,N2); y0=2; % Iterate until convergence while max(abs(y-y0))>eps L(:,1)=1; L(:,2)=y; for k=2:N1 L(:,k+1)=( (2*k-1)*y.*L(:,k)-(k-1)*L(:,k-1) )/k; end Lp=(N2)*( L(:,N1)-y.*L(:,N2) )./(1-y.^2); y0=y; y=y0-L(:,N2)./Lp; end % Linear map from[-1,1] to [a,b] x=(a*(1-y)+b*(1+y))/2; % Compute the weights w=(b-a)./((1-y.^2).*Lp.^2)*(N2/N1)^2; end
github
tsajed/nmr-pred-master
b2r.m
.m
nmr-pred-master/spinach/kernel/external/b2r.m
1,889
utf_8
20310193c425104c056c7e75205b86af
% Blue -> white -> red color map. White always corresponds % to value zero. % % Cunjie Zhang % Ilya Kuprov function newmap=b2r(cmin,cmax) % Check the input if nargin~=2 error('incorrect number of input arguments.') end if cmin>=cmax error('the first argument must be smaller than the second one.'); end % Set basic colors red_top = [1 0 0]; white_middle= [1 1 1]; blue_bottom = [0 0 1]; % Set up color interpolation color_num = 255; color_input = [blue_bottom; white_middle; red_top]; oldsteps = linspace(-1, 1, length(color_input)); newsteps = linspace(-1, 1, color_num); % Interpolate colors newmap_all = NaN(size(newsteps,2),3); if (cmin<0)&&(cmax>0) if abs(cmin)<cmax for j=1:3 newmap_all(:,j) = min(max(transpose(interp1(oldsteps, color_input(:,j), newsteps)), 0), 1); end start_point = round((cmin+cmax)/2/cmax*color_num); newmap = squeeze(newmap_all(start_point:color_num,:)); elseif abs(cmin)>=cmax for j=1:3 newmap_all(:,j) = min(max(transpose(interp1(oldsteps, color_input(:,j), newsteps)), 0), 1); end end_point = round((cmax-cmin)/2/abs(cmin)*color_num); newmap = squeeze(newmap_all(1:end_point,:)); end elseif cmin>=0 for j=1:3 newmap_all(:,j) = min(max(transpose(interp1(oldsteps, color_input(:,j), newsteps)), 0), 1); end start_point = round((cmin+cmax)/2/cmax*color_num); newmap = squeeze(newmap_all(start_point:color_num,:)); elseif cmax <= 0 for j=1:3 newmap_all(:,j) = min(max(transpose(interp1(oldsteps, color_input(:,j), newsteps)), 0), 1); end end_point = round((cmax-cmin)/2/abs(cmin)*color_num); newmap = squeeze(newmap_all(1:end_point,:)); end end
github
tsajed/nmr-pred-master
jacobianest.m
.m
nmr-pred-master/spinach/kernel/external/jacobianest.m
5,840
utf_8
4c955378155f9dffa7cf48c2abaab7d7
function [jac,err] = jacobianest(fun,x0) % gradest: estimate of the Jacobian matrix of a vector valued function of n variables % usage: [jac,err] = jacobianest(fun,x0) % % % arguments: (input) % fun - (vector valued) analytical function to differentiate. % fun must be a function of the vector or array x0. % % x0 - vector location at which to differentiate fun % If x0 is an nxm array, then fun is assumed to be % a function of n*m variables. % % % arguments: (output) % jac - array of first partial derivatives of fun. % Assuming that x0 is a vector of length p % and fun returns a vector of length n, then % jac will be an array of size (n,p) % % err - vector of error estimates corresponding to % each partial derivative in jac. % % % Example: (nonlinear least squares) % xdata = (0:.1:1)'; % ydata = 1+2*exp(0.75*xdata); % fun = @(c) ((c(1)+c(2)*exp(c(3)*xdata)) - ydata).^2; % % [jac,err] = jacobianest(fun,[1 1 1]) % % jac = % -2 -2 0 % -2.1012 -2.3222 -0.23222 % -2.2045 -2.6926 -0.53852 % -2.3096 -3.1176 -0.93528 % -2.4158 -3.6039 -1.4416 % -2.5225 -4.1589 -2.0795 % -2.629 -4.7904 -2.8742 % -2.7343 -5.5063 -3.8544 % -2.8374 -6.3147 -5.0518 % -2.9369 -7.2237 -6.5013 % -3.0314 -8.2403 -8.2403 % % err = % 5.0134e-15 5.0134e-15 0 % 5.0134e-15 0 2.8211e-14 % 5.0134e-15 8.6834e-15 1.5804e-14 % 0 7.09e-15 3.8227e-13 % 5.0134e-15 5.0134e-15 7.5201e-15 % 5.0134e-15 1.0027e-14 2.9233e-14 % 5.0134e-15 0 6.0585e-13 % 5.0134e-15 1.0027e-14 7.2673e-13 % 5.0134e-15 1.0027e-14 3.0495e-13 % 5.0134e-15 1.0027e-14 3.1707e-14 % 5.0134e-15 2.0053e-14 1.4013e-12 % % (At [1 2 0.75], jac should be numerically zero) % % % See also: derivest, gradient, gradest % % % Author: John D'Errico % e-mail: [email protected] % Release: 1.0 % Release date: 3/6/2007 % get the length of x0 for the size of jac nx = numel(x0); MaxStep = 100; StepRatio = 2.0000001; % was a string supplied? if ischar(fun) fun = str2func(fun); end % get fun at the center point f0 = fun(x0); f0 = f0(:); n = length(f0); if n==0 % empty begets empty jac = zeros(0,nx); err = jac; return end relativedelta = MaxStep*StepRatio .^(0:-1:-25); nsteps = length(relativedelta); % total number of derivatives we will need to take jac = zeros(n,nx); err = jac; for i = 1:nx x0_i = x0(i); if x0_i ~= 0 delta = x0_i*relativedelta; else delta = relativedelta; end % evaluate at each step, centered around x0_i % difference to give a second order estimate fdel = zeros(n,nsteps); for j = 1:nsteps fdif = fun(swapelement(x0,i,x0_i + delta(j))) - fun(swapelement(x0,i,x0_i - delta(j))); fdel(:,j) = fdif(:); end % these are pure second order estimates of the % first derivative, for each trial delta. derest = fdel.*repmat(0.5 ./ delta,n,1); % The error term on these estimates has a second order % component, but also some 4th and 6th order terms in it. % Use Romberg exrapolation to improve the estimates to % 6th order, as well as to provide the error estimate. % loop here, as rombextrap coupled with the trimming % will get complicated otherwise. for j = 1:n [der_romb,errest] = rombextrap(StepRatio,derest(j,:),[2 4]); % trim off 3 estimates at each end of the scale nest = length(der_romb); trim = [1:3, nest+(-2:0)]; [der_romb,tags] = sort(der_romb); der_romb(trim) = []; tags(trim) = []; errest = errest(tags); % now pick the estimate with the lowest predicted error [err(j,i),ind] = min(errest); jac(j,i) = der_romb(ind); end end end % mainline function end % ======================================= % sub-functions % ======================================= function vec = swapelement(vec,ind,val) % swaps val as element ind, into the vector vec vec(ind) = val; end % sub-function end % ============================================ % subfunction - romberg extrapolation % ============================================ function [der_romb,errest] = rombextrap(StepRatio,der_init,rombexpon) % do romberg extrapolation for each estimate % % StepRatio - Ratio decrease in step % der_init - initial derivative estimates % rombexpon - higher order terms to cancel using the romberg step % % der_romb - derivative estimates returned % errest - error estimates % amp - noise amplification factor due to the romberg step srinv = 1/StepRatio; % do nothing if no romberg terms nexpon = length(rombexpon); rmat = ones(nexpon+2,nexpon+1); % two romberg terms rmat(2,2:3) = srinv.^rombexpon; rmat(3,2:3) = srinv.^(2*rombexpon); rmat(4,2:3) = srinv.^(3*rombexpon); % qr factorization used for the extrapolation as well % as the uncertainty estimates [qromb,rromb] = qr(rmat,0); % the noise amplification is further amplified by the Romberg step. % amp = cond(rromb); % this does the extrapolation to a zero step size. ne = length(der_init); rhs = vec2mat(der_init,nexpon+2,ne - (nexpon+2)); rombcoefs = rromb\(qromb'*rhs); der_romb = rombcoefs(1,:)'; % uncertainty estimate of derivative prediction s = sqrt(sum((rhs - rmat*rombcoefs).^2,1)); rinv = rromb\eye(nexpon+1); cov1 = sum(rinv.^2,2); % 1 spare dof errest = s'*12.7062047361747*sqrt(cov1(1)); end % rombextrap % ============================================ % subfunction - vec2mat % ============================================ function mat = vec2mat(vec,n,m) % forms the matrix M, such that M(i,j) = vec(i+j-1) [i,j] = ndgrid(1:n,0:m-1); ind = i+j; mat = vec(ind); if n==1 mat = mat'; end end % vec2mat
github
tsajed/nmr-pred-master
expv.m
.m
nmr-pred-master/spinach/kernel/external/expv.m
4,863
utf_8
c8732ae90e0aa822b4d89d0835ebf115
% [w, err, hump] = expv( t, A, v, tol, m ) % EXPV computes an approximation of w = exp(t*A)*v for a % general matrix A using Krylov subspace projection techniques. % It does not compute the matrix exponential in isolation but instead, % it computes directly the action of the exponential operator on the % operand vector. This way of doing so allows for addressing large % sparse problems. The matrix under consideration interacts only % via matrix-vector products (matrix-free method). % % w = expv( t, A, v ) % computes w = exp(t*A)*v using a default tol = 1.0e-7 and m = 30. % % [w, err] = expv( t, A, v ) % renders an estimate of the error on the approximation. % % [w, err] = expv( t, A, v, tol ) % overrides default tolerance. % % [w, err, hump] = expv( t, A, v, tol, m ) % overrides default tolerance and dimension of the Krylov subspace, % and renders an approximation of the `hump'. % % The hump is defined as: % hump = max||exp(sA)||, s in [0,t] (or s in [t,0] if t < 0). % It is used as a measure of the conditioning of the matrix exponential % problem. The matrix exponential is well-conditioned if hump = 1, % whereas it is poorly-conditioned if hump >> 1. However the solution % can still be relatively fairly accurate even when the hump is large % (the hump is an upper bound), especially when the hump and % ||w(t)||/||v|| are of the same order of magnitude (further details in % reference below). % % Example 1: % ---------- % n = 100; % A = rand(n); % v = eye(n,1); % w = expv(1,A,v); % % Example 2: % ---------- % % generate a random sparse matrix % n = 100; % A = rand(n); % for j = 1:n % for i = 1:n % if rand < 0.5, A(i,j) = 0; end; % end; % end; % v = eye(n,1); % A = sparse(A); % invaluable for a large and sparse matrix. % % tic % [w,err] = expv(1,A,v); % toc % % disp('w(1:10) ='); disp(w(1:10)); % disp('err ='); disp(err); % % tic % w_matlab = expm(full(A))*v; % toc % % disp('w_matlab(1:10) ='); disp(w_matlab(1:10)); % gap = norm(w-w_matlab)/norm(w_matlab); % disp('||w-w_matlab|| / ||w_matlab|| ='); disp(gap); % % In the above example, n could have been set to a larger value, % but the computation of w_matlab will be too long (feel free to % discard this computation). % % See also MEXPV, EXPOKIT. % Roger B. Sidje ([email protected]) % EXPOKIT: Software Package for Computing Matrix Exponentials. % ACM - Transactions On Mathematical Software, 24(1):130-156, 1998 function [w, err, hump] = expv( t, A, v, tol, m ) [n,n] = size(A); if nargin == 3, tol = 1.0e-7; m = min(n,30); end; if nargin == 4, m = min(n,30); end; anorm = norm(A,'inf'); mxrej = 10; btol = 1.0e-7; gamma = 0.9; delta = 1.2; mb = m; t_out = abs(t); nstep = 0; t_new = 0; t_now = 0; s_error = 0; rndoff= anorm*eps; k1 = 2; xm = 1/m; normv = norm(v); beta = normv; fact = (((m+1)/exp(1))^(m+1))*sqrt(2*pi*(m+1)); t_new = (1/anorm)*((fact*tol)/(4*beta*anorm))^xm; s = 10^(floor(log10(t_new))-1); t_new = ceil(t_new/s)*s; sgn = sign(t); nstep = 0; w = v; hump = normv; while t_now < t_out nstep = nstep + 1; t_step = min( t_out-t_now,t_new ); V = zeros(n,m+1); H = zeros(m+2,m+2); V(:,1) = (1/beta)*w; for j = 1:m p = A*V(:,j); for i = 1:j H(i,j) = V(:,i)'*p; p = p-H(i,j)*V(:,i); end; s = norm(p); if s < btol, k1 = 0; mb = j; t_step = t_out-t_now; break; end; H(j+1,j) = s; V(:,j+1) = (1/s)*p; end; if k1 ~= 0, H(m+2,m+1) = 1; avnorm = norm(A*V(:,m+1)); end; ireject = 0; while ireject <= mxrej, mx = mb + k1; F = expm(sgn*t_step*H(1:mx,1:mx)); if k1 == 0, err_loc = btol; break; else phi1 = abs( beta*F(m+1,1) ); phi2 = abs( beta*F(m+2,1) * avnorm ); if phi1 > 10*phi2, err_loc = phi2; xm = 1/m; elseif phi1 > phi2, err_loc = (phi1*phi2)/(phi1-phi2); xm = 1/m; else err_loc = phi1; xm = 1/(m-1); end; end; if err_loc <= delta * t_step*tol, break; else t_step = gamma * t_step * (t_step*tol/err_loc)^xm; s = 10^(floor(log10(t_step))-1); t_step = ceil(t_step/s) * s; if ireject == mxrej, error('The requested tolerance is too high.'); end; ireject = ireject + 1; end; end; mx = mb + max( 0,k1-1 ); w = V(:,1:mx)*(beta*F(1:mx,1)); beta = norm( w ); hump = max(hump,beta); t_now = t_now + t_step; t_new = gamma * t_step * (t_step*tol/err_loc)^xm; s = 10^(floor(log10(t_new))-1); t_new = ceil(t_new/s) * s; err_loc = max(err_loc,rndoff); s_error = s_error + err_loc; end; err = s_error; hump = hump / normv;
github
tsajed/nmr-pred-master
fourdif.m
.m
nmr-pred-master/spinach/kernel/external/fourdif.m
2,782
utf_8
a00d709f10e1499cbbbdaad00c7907a4
% The function [x, DM] = fourdif(N,m) computes the m'th derivative Fourier % spectral differentiation matrix on grid with N equispaced points in [0,2pi) % % Input: % N: Size of differentiation matrix. % M: Derivative required (non-negative integer) % % Output: % x: Equispaced points 0, 2pi/N, 4pi/N, ... , (N-1)2pi/N % DM: m'th order differentiation matrix % % Explicit formulas are used to compute the matrices for m=1 and 2. % A discrete Fouier approach is employed for m>2. The program % computes the first column and first row and then uses the % toeplitz command to create the matrix. % % For m=1 and 2 the code implements a "flipping trick" to % improve accuracy suggested by W. Don and A. Solomonoff in % SIAM J. Sci. Comp. Vol. 6, pp. 1253--1268 (1994). % The flipping trick is necesary since sin t can be computed to high % relative precision when t is small whereas sin (pi-t) cannot. % % S.C. Reddy, J.A.C. Weideman 1998. Corrected for MATLAB R13 % by JACW, April 2003. function [x, DM] = fourdif(N,m) x=2*pi*(0:N-1)'/N; % gridpoints h=2*pi/N; % grid spacing zi=sqrt(-1); kk=(1:N-1)'; n1=floor((N-1)/2); n2=ceil((N-1)/2); if m==0 % compute first column col1=[1; zeros(N-1,1)]; % of zeroth derivative row1=col1; % matrix, which is identity elseif m==1 % compute first column if rem(N,2)==0 % of 1st derivative matrix topc=cot((1:n2)'*h/2); col1=[0; 0.5*((-1).^kk).*[topc; -flipud(topc(1:n1))]]; else topc=csc((1:n2)'*h/2); col1=[0; 0.5*((-1).^kk).*[topc; flipud(topc(1:n1))]]; end; row1=-col1; % first row elseif m==2 % compute first column if rem(N,2)==0 % of 2nd derivative matrix topc=csc((1:n2)'*h/2).^2; col1=[-pi^2/3/h^2-1/6; -0.5*((-1).^kk).*[topc; flipud(topc(1:n1))]]; else topc=csc((1:n2)'*h/2).*cot((1:n2)'*h/2); col1=[-pi^2/3/h^2+1/12; -0.5*((-1).^kk).*[topc; -flipud(topc(1:n1))]]; end; row1=col1; % first row else % employ FFT to compute N1=floor((N-1)/2); % 1st column of matrix for m>2 N2 = (-N/2)*rem(m+1,2)*ones(rem(N+1,2)); mwave=zi*[(0:N1) N2 (-N1:-1)]; col1=real(ifft((mwave.^m).*fft([1 zeros(1,N-1)]))); if rem(m,2)==0, row1=col1; % first row even derivative else col1=[0 col1(2:N)]'; row1=-col1; % first row odd derivative end; end; DM=toeplitz(col1,row1); end
github
tsajed/nmr-pred-master
simps.m
.m
nmr-pred-master/spinach/kernel/external/simps.m
3,044
utf_8
f3d545adb2c382d803770cbc778b8c92
% Simpson's numerical integration. % % Z = SIMPS(Y) computes an approximation of the integral of Y using % Simpson's method (with unit spacing). To compute the integral for % spacing different from one, multiply Z by the spacing increment. % % For vectors, SIMPS(Y) is the integral of Y. For matrices, SIMPS(Y) % is a row vector with the integral over each column. For N-D arrays, % SIMPS(Y) works across the first non-singleton dimension. % % Z = SIMPS(X,Y) computes the integral of Y with respect to X using % Simpson's rule. X and Y must be vectors of the same length, or X % must be a column vector and Y an array whose first non-singleton % dimension is length(X). SIMPS operates along this dimension. % % Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM % of Y. The length of X must be the same as size(Y,DIM). % % [email protected] % [email protected] function z = simps(x,y,dim) % Make sure x and y are column vectors, or y is a matrix. perm = []; nshifts = 0; if nargin == 3 % simps(x,y,dim) perm = [dim:max(ndims(y),dim) 1:dim-1]; yp = permute(y,perm); [m,n] = size(yp); elseif nargin==2 && isscalar(y) % simps(y,dim) dim = y; y = x; perm = [dim:max(ndims(y),dim) 1:dim-1]; yp = permute(y,perm); [m,n] = size(yp); x = 1:m; else % simps(y) or simps(x,y) if nargin < 2, y = x; end [yp,nshifts] = shiftdim(y); [m,n] = size(yp); if nargin < 2, x = 1:m; end end x = x(:); if length(x) ~= m if isempty(perm) % dim argument not given error('MATLAB:simps:LengthXmismatchY',... 'LENGTH(X) must equal the length of the first non-singleton dimension of Y.'); else error('MATLAB:simps:LengthXmismatchY',... 'LENGTH(X) must equal the length of the DIM''th dimension of Y.'); end end % The output size for [] is a special case when DIM is not given. if isempty(perm) && isequal(y,[]) z = zeros(1,class(y)); return; end % Use TRAPZ if m<3 if m<3 if exist('dim','var') z = trapz(x,y,dim); else z = trapz(x,y); end return end % Simpson's rule y = yp; clear yp dx = repmat(diff(x,1,1),1,n); dx1 = dx(1:end-1,:); dx2 = dx(2:end,:); alpha = (dx1+dx2)./dx1/6; a0 = alpha.*(2*dx1-dx2); a1 = alpha.*(dx1+dx2).^2./dx2; a2 = alpha.*dx1./dx2.*(2*dx2-dx1); z = sum(a0(1:2:end,:).*y(1:2:m-2,:) +... a1(1:2:end,:).*y(2:2:m-1,:) +... a2(1:2:end,:).*y(3:2:m,:),1); if rem(m,2) == 0 % Adjusting if length(x) is even state0 = warning('query','MATLAB:nearlySingularMatrix'); state0 = state0.state; warning('off','MATLAB:nearlySingularMatrix') C = vander(x(end-2:end))\y(end-2:end,:); z = z + C(1,:).*(x(end,:).^3-x(end-1,:).^3)/3 +... C(2,:).*(x(end,:).^2-x(end-1,:).^2)/2 +... C(3,:).*dx(end,:); warning(state0,'MATLAB:nearlySingularMatrix') end % Resizing siz = size(y); siz(1) = 1; z = reshape(z,[ones(1,nshifts),siz]); if ~isempty(perm), z = ipermute(z,perm); end end
github
unamfi/Cuantizacion-vectorial-master
LPCC.m
.m
Cuantizacion-vectorial-master/LPCC.m
2,289
utf_8
3352b9c3cd158718279a760df20b0e89
%% LPCC function LPCCres = LPCC(s) [R LPC p] = lpc(s); Q = 3*p/2; for i=1:1:length(LPC) C = zeros(1,Q+1); C(1) = log(sqrt(R{i}(1))); for m=1:Q if m>=1 && m<=p C(m+1)=LPC{i}(m); for k=1:m-1 C(m+1)=C(m+1)+((k/m)*C(k+1)*LPC{i}(m-k)); end end if m>p C(m+1)=0; for k=m-p:m-1 C(m+1)=C(m+1)+((k/m)*C(k+1)*LPC{i}(m-k)); end end end LPCCres{i} = C; end end function [R LPC p] = lpc(s) % LPC Example of a local function. fid = fopen(s, 'r'); senal0 = fread(fid, inf, 'int16'); %senal0 = Recortar(senal0); b = [1 -0.95]; a = [1]; p = 8; senal0 = filter(b, a, senal0); lenX = length(senal0); numMuestrasVentana = 128; nV = lenX/numMuestrasVentana; %display(lenX) for trama=1:nV %senal = senal(1:128); senal = senal0((trama*128)-127:(trama*128)); senal = senal.*hamming(128); r = zeros(p+1,1); for k=0:p for m=1:127-k+1 r(k+1) = r(k+1) + senal(m)*senal(m+k); end end R{trama} = r; %display(r); %Hasta aqui esta bien. e = zeros(p+1,1); e(1,1) = r(1); k = zeros(p,1); alpha = zeros(p,p); for i=1:p suma = 0; for j=1:(i-1) suma = suma + alpha(j,i-1)*r(abs(i-j+1)); end k(i) = (r(i+1) - suma) / e(i,1); %fprintf('k(%i) = %i\n', i, k(i) ) alpha(i,i) = k(i); %display(alpha(i,i)) for j=1:i-1 alpha(j,i)= alpha(j,i-1) - k(i)*alpha(i-j,i-1); %display(alpha) end e(i+1,1) = (1-k(i)*k(i))*e(i,1); %esta bien %fprintf('e(%i) = %i\n', i + 1, k(i) ) end %display(alpha) am = zeros(p,1); for m=1:p am(m) = alpha(m,p); end LPC{trama} = am; %display(am) end end
github
unamfi/Cuantizacion-vectorial-master
Itakura.m
.m
Cuantizacion-vectorial-master/Itakura.m
97
utf_8
a77eac098d163cc4aa6e1add2ecccb08
%% ITAKURA function d = Itakura(y,Ry,x) d = log((x*Ry*transpose(x))/(y*Ry*transpose(y)));
github
unamfi/Cuantizacion-vectorial-master
kMedias.m
.m
Cuantizacion-vectorial-master/kMedias.m
1,202
utf_8
ef907879c1d603d0e3a63604aae4a1e7
%% K-MEDIAS function centroides = kMedias(vectores,k) for i = 1:k z{i} = vectores{i}; zAnt{i} = zeros(1,length(vectores{i})); end while notEqual(z,zAnt,k) zAnt = z; display('entro') for vector = 1:length(vectores) for cent = 1:length(z) d{vector}(cent) = sum((z{cent}-vectores{vector}).^2); end end vect=cell(1,k); for vector = 1:length(vectores) [val,ind]=min(d{vector}); display(ind) temp=[vectores{vector};vect{ind}]; vect{ind}=temp; end for n = 1:k z{n} = mean(vect{n},1); end centroides = z; %display(d) end centroides = z; %display(z) %centroides=0; end function res = notEqual(z,zAnt,k) res = 1; for s = 1:k b{s} = isequal(z{s},zAnt{s}); res = res & b{s}; end if res == 0 res = 1; else res = 0; end end
github
shuoli-robotics/ppzr-master
dialog.m
.m
ppzr-master/sw/logalizer/dialog.m
34,826
utf_8
5407ab492113a3d0358e62c19dc1feab
%-------------------------------------------------------------------- %A simple MATLAB GUI for paparazzi autopilot log-file plotting %Paparazzi Project [http://www.nongnu.org/paparazzi/] %by Roman Krashhanitsa 28/10/2005 %adjustable parabeters: % maxnum - increase if dialog window hangs up or doesnt refresh % Nres - number or interpolated points in the plot, decrease to improve % plotting performance or increase to improve resolution %-------------------------------------------------------------------- function varargout = dialog(varargin) % DIALOG M-file for dialog.fig % DIALOG, by itself, creates a new DIALOG or raises the existing % singleton*. % % H = DIALOG returns the handle to a new DIALOG or the handle to % the existing singleton*. % % DIALOG('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in DIALOG.M with the given input arguments. % % DIALOG('Property','Value',...) creates a new DIALOG or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before dialog_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to dialog_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help dialog % Last Modified by GUIDE v2.5 18-Sep-2006 11:05:50 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @dialog_OpeningFcn, ... 'gui_OutputFcn', @dialog_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin & isstr(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT function [m,n]=set2Plot(handles,section,field) axes(handles.axes1); global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; N=max(size(labelsSections)); n=1; while n<=N && ~strcmpi(labelsSections(n),section), n=n+1; end; if strcmpi(labelsSections(n),section), set(handles.ListSections,'Value',n); ListSections_Callback(0, 0, handles); M=max(size(labelsFields)); m=1; while m<=M && ~strcmpi(labelsFields(m),field), m=m+1; end; if strcmpi(labelsFields(m),field), return; end; end; m=0; n=0; return; function [x,y]=setXY2plot(m,n,k) %fetch xy data for section n, field m global X0; global logData; global x; global y; x=[]; y=[]; len=max(size(logData)); last_time=0; for j=1:len, if logData(j).type==n && logData(j).plane_id==k, if logData(j).time>last_time, x=[x;logData(j).time]; y=[y;logData(j).fields(m)]; last_time=x(max(size(x))); end; end; end; x=x-X0; % shift timer to start at the boot time function h=plotlog(x,y) %plot data for section n, field m, plane_id k % minimum number of points in the plot (resolution) %if actual number of points if greater we dont need to change anything, but %if it is less, interpolate using nearest neighbor as closest model of %signals incoming to ground station. Previous value is used in the ap %until a new value is obtained Nres=1000; if ~isempty(x) && ~isempty(y), MIN=min(x); MAX=max(x); X=MIN:(MAX-MIN)/Nres:MAX; if max(size(X))<=max(size(x)) %plot as it is h=plot(x,y); else h=plot(x,y,'x'); %plot(X,interp1(x,y,X,'nearest')); %interpolate using nearest neighbor end; end; % --- Executes just before dialog is made visible. function dialog_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to dialog (see VARARGIN) % Choose default command line output for dialog handles.output = hObject; % Update handles structure guidata(hObject, handles); if strcmp(get(hObject,'Visible'),'off') plot([0 1],[0 0]); end set(handles.ListSections,'Enable','off'); set(handles.ListFields,'Enable','off'); set(handles.ListDevices,'Enable','off'); global X0; X0=0; % UIWAIT makes dialog wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = dialog_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure if ~isempty(handles) varargout{1} = handles.output; end; % -------------------------------------------------------------------- function FileMenu_Callback(hObject, eventdata, handles) % hObject handle to FileMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function OpenMenuItem_Callback(hObject, eventdata, handles) % hObject handle to OpenMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) file = uigetfile('*.fig'); if ~isequal(file, 0) open(file); end % -------------------------------------------------------------------- function PrintMenuItem_Callback(hObject, eventdata, handles) % hObject handle to PrintMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) printdlg(handles.figure1) % -------------------------------------------------------------------- function CloseMenuItem_Callback(hObject, eventdata, handles) % hObject handle to CloseMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... ['Close ' get(handles.figure1,'Name') '...'],... 'Yes','No','Yes'); if strcmp(selection,'No') return; end delete(handles.figure1) % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end set(hObject, 'String', {'plot(rand(5))', 'plot(sin(1:0.01:25))', 'comet(cos(1:.01:10))', 'bar(1:10)', 'plot(membrane)', 'surf(peaks)'}); % --- Executes on selection change in popupmenu3. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns popupmenu3 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu3 % --- Executes on button press in loadButton. function loadButton_Callback(hObject, eventdata, handles) % hObject handle to loadButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global logData; global labelsSections; res=0; [FileName,PathName,res] = uigetfile('*.log','Open Log file...'); if res~=0, %read protocol specification global nodeList; global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; global id_Devices; try node=xmlread(fullfile(PathName,FileName)); catch warning('File ',fullfile(PathName,FileName),' does not exist'); close(gcf); return; end; %find name of the data file dataFileName=char(node.getFirstChild.getAttributes.item(0).getValue); %find ground altitude global ground_alt; j=0; found=0 while ~found && j<=node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.getLength, if ~strcmpi(node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.item(j).getName,'GROUND_ALT'), j=j+1; found=1; end; end; if j<=node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.getLength, ground_alt=str2num(char(node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.item(j).getValue)); else ground_alt=0; end; %---read protocol--------------------------------- set(handles.text1,'String','Reading protocol specification'); notfound=1; %found messages or not finish=0; %structure traversing finished nodeList=node.getChildNodes; i=1; %level in the structure J=[0]; val=''; while notfound && ~finish, while J(i)<nodeList.getLength && notfound, drawnow; %flash event queue val=node.getNodeName; notfound=~strcmp(val,'message'); if notfound while node.getChildNodes.getLength~=0 && notfound %go to the next level nodeList=node.getChildNodes; i=i+1; J(i)=0; node=nodeList.item(J(i)); val=node.getNodeName; notfound=~strcmp(val,'message'); end; J(i)=J(i)+1; if J(i)<nodeList.getLength node=nodeList.item(J(i)); end; end; end; if i>=3 && notfound % if not a root node nodeList=node.getParentNode.getParentNode.getChildNodes; i=i-1; J(i)=J(i)+1; if J(i)<nodeList.getLength node=nodeList.item(J(i)); end; else %nothing, will get caught by while loop finish=1; end; end; %make labels for the first list menu count=nodeList.getLength; labelsSections=[]; lineSections=[]; sectionsIndex=[]; for j=0:count-1, if (nodeList.item(j).getNodeName=='message') lineSections=[lineSections,char(nodeList.item(j).getAttributes.item(1).getValue),'|']; sectionsIndex=[sectionsIndex,j]; labelsSections=[labelsSections,{char(nodeList.item(j).getAttributes.item(1).getValue)}]; end; end; lineSections=lineSections(1:max(size(lineSections))-1); %cut off last '|' character set(handles.ListSections,'String',lineSections); %make labels for the fields list (submenu) nn=get(handles.ListSections,'Value'); nn=nn(1); childList=nodeList.item(sectionsIndex(nn)).getChildNodes; count=childList.getLength; labelsFields=[]; for j=0:count-1, if childList.item(j).getNodeName=='field', attr=childList.item(j).getAttributes; cattr=attr.getLength; k=0; while k<cattr && ~strcmp(attr.item(k).getName,'name'), k=k+1; end; labelsFields=[labelsFields,char(attr.item(k).getValue),'|']; fieldsIndex=[fieldsIndex,k]; end; end; labelsFields=labelsFields(1:max(size(labelsFields))-1); %cut off last '|' character set(handles.ListFields,'String',labelsFields); %--- read data ---------------------------- try fid=fopen(fullfile(PathName,dataFileName)); catch warning('File ',fullfile(PathName,dataFileName),' does not exist'); end; fseek(fid,0,'eof'); %ff to end endpos=ftell(fid); %find file size fseek(fid,0,'bof'); %rewind to start tline = fgetl(fid); % while ~(feof(fid) || ~isempty(findstr(tline,'<data>'))), % tline = fgetl(fid); % end; %read data logData=[]; num=0; maxnum=100; %used to flush event queue while ~feof(fid), tline = fgetl(fid); [tok,tline]=strtok(tline); t=sscanf(tok,'%g'); %extract time [tok,tline]=strtok(tline); plane=sscanf(tok,'%g'); %airplane id? [lab,tline]=strtok(tline); %extract message label fld=sscanf(tline,'%g'); %extract a vector of fields found=0; j=1; count=max(size(labelsSections)); %find index of the message label in the protocol while j<count+1 && ~found, %found=~isempty(strmatch(lab,cell2mat(labelsSections(j)))); found=strcmp(lab,cell2mat(labelsSections(j))); j=j+1; end; j=j-1; if ~found, warning('Protocol specification in messages.xml does not match protocol in log file.'); else % if found s=struct('time',t,'type',j,'plane_id',plane,'fields',fld); logData=[logData,s]; end; pos=ftell(fid); set(handles.text1,'String',[num2str(double(pos)/double(endpos)*100.0,'%5.2f'),'%']); num=num+1; if num>maxnum, num=0; drawnow; %flash event queue end; end; %make labels for Device ID listbox global id_Devices; id_Devices=[]; count=max(size(logData)); for j=1:count, k=1; nn=max(size(id_Devices)); tag=logData(j).plane_id; notfound=1; while k<=nn && notfound, notfound=~(tag==id_Devices(k)); if notfound, k=k+1; end; end; if notfound, id_Devices=[id_Devices,tag]; end; end; labelsDevices=num2str(id_Devices(1)); for j=2:max(size(id_Devices)), labelsDevices=[labelsDevices,'|',num2str(id_Devices(j))]; end; set(handles.ListDevices,'String',labelsDevices); set(handles.text1,'String',FileName); set(handles.ListSections,'Enable','on'); set(handles.ListFields,'Enable','on'); set(handles.ListDevices,'Enable','on'); else %file was not selected end; j=1; while (~strcmp(labelsSections{j},'BOOT') && j<max(size(labelsSections)) ) j=j+1; end; k=1; while logData(k).type~=j && k<max(size(logData)) k=k+1; end; if (k<max(size(logData))) X0=logData(k).time; else warning('BOOT message not found.. Corrupted log?'); end; % --- Executes during object creation, after setting all properties. function ListFields_CreateFcn(hObject, eventdata, handles) % hObject handle to ListFields (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in ListFields. function ListFields_Callback(hObject, eventdata, handles) % hObject handle to ListFields (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ListFields contents as cell array % contents{get(hObject,'Value')} returns selected item from ListFields %make labels for the fields list (submenu) % --- Executes on button press in keepToggleButton. function keepToggleButton_Callback(hObject, eventdata, handles) % hObject handle to keepToggleButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of keepToggleButton % --- Executes during object creation, after setting all properties. function ListSections_CreateFcn(hObject, eventdata, handles) % hObject handle to ListSections (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in ListSections. function ListSections_Callback(hObject, eventdata, handles) % hObject handle to ListSections (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ListSections contents as cell array % contents{get(hObject,'Value')} returns selected item from ListSections % global nodeList; % global labelsSections; % global sectionsIndex; % global labelsFields; % global fieldsIndex; % % nn=get(handles.ListSections,'Value'); % nn=nn(1); % childList=nodeList.item(sectionsIndex(nn)).getChildNodes; % count=childList.getLength; % labelsFields=[]; % for j=0:count-1, % if childList.item(j).getNodeName=='field', % attr=childList.item(j).getAttributes; % cattr=attr.getLength; k=0; % while k<cattr && ~strcmp(attr.item(k).getName,'name'), % k=k+1; % end; % labelsFields=[labelsFields,char(attr.item(k).getValue),'|']; % fieldsIndex=[fieldsIndex,k]; % end; % end; % labelsFields=labelsFields(1:max(size(labelsFields))-1); %cut off last '|' character % set(handles.ListFields,'String',labelsFields); % set(handles.ListFields,'Value',1); global nodeList; global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; nn=get(handles.ListSections,'Value'); nn=nn(1); childList=nodeList.item(sectionsIndex(nn)).getChildNodes; count=childList.getLength; labelsFields=[]; lineFields=[]; fieldsIndex=[]; for j=0:count-1, if childList.item(j).getNodeName=='field', attr=childList.item(j).getAttributes; cattr=attr.getLength; k=0; while k<cattr && ~strcmp(attr.item(k).getName,'name'), k=k+1; end; labelsFields=[labelsFields,{char(attr.item(k).getValue)}]; lineFields=[lineFields,char(attr.item(k).getValue),'|']; fieldsIndex=[fieldsIndex,k]; end; end; lineFields=lineFields(1:max(size(lineFields))-1); %cut off last '|' character set(handles.ListFields,'String',lineFields); set(handles.ListFields,'Value',1); % --- Executes on button press in plotButton. function plotButton_Callback(hObject, eventdata, handles) % hObject handle to plotButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global logData; global id_Devices; global x; global y; Nres=1000; % minimum number of points in the plot (resolution) %if actual number of points if greater we dont need to change anything, but %if it is less, interpolate using nearest neighbor as closest model of %signals incoming to ground station. Previous value is used in the ap %until a new value is obtained axes(handles.axes1); if ~get(handles.keepToggleButton,'Value') cla; else hold on; end; n=get(handles.ListSections,'Value'); n=n(1); m=get(handles.ListFields,'Value'); m=m(1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, xlim([t1 t2]); axis 'auto y'; end; % --- Executes on button press in printButton. function printButton_Callback(hObject, eventdata, handles) % hObject handle to printButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) printpreview(gcf); % --- Executes on button press in edit. function edit_Callback(hObject, eventdata, handles) % hObject handle to edit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if ~get(handles.edit,'Value') plotedit off; else plotedit(gcf); end; % --- Executes during object creation, after setting all properties. function ListDevices_CreateFcn(hObject, eventdata, handles) % hObject handle to ListDevices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in ListDevices. function ListDevices_Callback(hObject, eventdata, handles) % hObject handle to ListDevices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ListDevices contents as cell array % contents{get(hObject,'Value')} returns selected item from ListDevices % --- Executes on button press in zoomin. function zoomin_Callback(hObject, eventdata, handles) % hObject handle to zoomin (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if get(hObject,'Value')==get(hObject,'Max') zoom on; else zoom off; end; % --- Executes on button press in zoomout. function zoomout_Callback(hObject, eventdata, handles) % hObject handle to zoomout (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if get(hObject,'Value')==get(hObject,'Min') zoom on; else zoom off; end; % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit2_CreateFcn(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function edit2_Callback(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit2 as text % str2double(get(hObject,'String')) returns contents of edit2 as a double % --- Executes on button press in rotate3d. function rotate3d_Callback(hObject, eventdata, handles) % hObject handle to rotate3d (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of rotate3d if get(hObject,'Value')==get(hObject,'Min') rotate3d off; else rotate3d on; end; % --- Executes on button press in roll_button_button. function roll_button_Callback(hObject, eventdata, handles) % hObject handle to roll_button_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); [m,n]=set2Plot(handles,'attitude','phi'); k=get(handles.ListDevices,'Value'); k=id_Devices(k); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'desired','roll'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_roll','desired\_roll'); % --- Executes on button press in pitch_button. function pitch_button_Callback(hObject, eventdata, handles) % hObject handle to pitch_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); k=get(handles.ListDevices,'Value'); k=id_Devces(k); [m,n]=set2Plot(handles,'attitude','theta'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'desired','pitch'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_pitch','desired\_pitch'); % --- Executes on button press in heading_button. function heading_button_Callback(hObject, eventdata, handles) % hObject handle to heading_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); k=get(handles.ListDevices,'Value'); k=id_Devices(k); [m,n]=set2Plot(handles,'GPS','course'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'navigation','desired_course'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_course','desired\_course'); % --- Executes on button press in altitude_button. function altitude_button_Callback(hObject, eventdata, handles) % hObject handle to altitude_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); k=get(handles.ListDevices,'Value'); k=id_Devices(k); [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'desired','desired_altitude'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_altitude','desired\_altitude'); % --- Executes on button press in traj_button. function traj_button_Callback(hObject, eventdata, handles) % hObject handle to traj_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global z; global t; global id_Devices; axes(handles.axes1); xx=[]; yy=[]; zz=[]; k=get(handles.ListDevices,'Value'); k=id_Devices(1); [m,n]=set2Plot(handles,'navigation','pos_x'); if m*n~=0, [tx,xx]=setXY2plot(m,n,k); end; [m,n]=set2Plot(handles,'navigation','pos_y'); if m*n~=0, [ty,yy]=setXY2plot(m,n,k); yy=interp1(ty,yy,tx); end; [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [tz,zz]=setXY2plot(m,n,k); zz=interp1(tz,zz,tx); end; x=xx; y=yy; global ground_alt; z=zz-ground_alt; t=tx; if ~isempty(x) && ~isempty(y) && ~isempty(z) && ~isempty(t), t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2 && t1<=t(max(size(t)-1)), N=max(size(t)); n1=1; while n1<=N && t(n1)<t1, n1=n1+1; end; n2=n1+1; while n2<=N && t(n2)<t2, n2=n2+1; end; h=plot3(x(n1:n2),y(n1:n2),z(n1:n2)); else h=plot3(x,y,z); end; set(h,'LineWidth',1.0); set(h,'Marker','none'); set(h,'LineStyle','-'); box; grid on; end; % --- Executes on button press in vel_button. function vel_button_Callback(hObject, eventdata, handles) % hObject handle to vel_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global z; global t; axes(handles.axes1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [m,n]=set2Plot(handles,'GPS','speed'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; xx=[]; yy=[]; zz=[]; [m,n]=set2Plot(handles,'navigation','pos_x'); if m*n~=0, [tx,xx]=setXY2plot(m,n,k); end; [m,n]=set2Plot(handles,'navigation','pos_y'); if m*n~=0, [ty,yy]=setXY2plot(m,n,k); yy=interp1(ty,yy,tx); end; [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [tz,zz]=setXY2plot(m,n,k); zz=interp1(tz,zz,tx); end; v=[];N=max(size(xx)); for j=2:N, v=[v sqrt((xx(j)-xx(j-1))^2+(yy(j)-yy(j-1))^2+(zz(j)-zz(j-1))^2)/(tx(j)-tx(j-1))]; end; y=v; x=tx(2:N); h=plotlog(x,y); if ~isempty(x) && ~isempty(y), t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2 && t1<=t(max(size(t)-1)), axis([t1 t2 -inf inf]); axis 'auto y'; end; set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; legend('GPS\_speed','computed\_speed'); % --- Executes on button press in gaz_button. function gaz_button_Callback(hObject, eventdata, handles) % hObject handle to gaz_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; axes(handles.axes1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [m,n]=set2Plot(handles,'servos','thrust'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; % --- Executes on button press in ap_mode_pushbutton_pushbutton. function ap_mode_pushbutton_Callback(hObject, eventdata, handles) % hObject handle to ap_mode_pushbutton_pushbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) xl=xlim; yl=ylim; xscale=xl(2)-xl(1); yscale=yl(2)-yl(1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [m,n]=set2Plot(handles,'PPRZ_MODE','ap_mode'); if m*n==0, return; end; n1=1; [x,y]=setXY2plot(m,n,k); N=max(size(x)); while x(n1)<xl(1) && n1<N, n1=n1+1; end; while x(n1)<xl(2) && n1<N, m1=y(n1+1); C=[0 0 0]; %color switch m1 case 0 C=[1 0.3 0]; txt='manual'; case 1 C=[1 0.5 0]; txt='auto1'; case 2 C=[1 0.7 0]; txt='auto2'; case 3 C=[1 1 0]; txt='home'; end; n2=n1+1; while y(n2)==m1 && x(n2)<xl(2) && n2<N, n2=n2+1; end; hold on; if x(n1)<xl(1), t1=xl(1)+0.01*xscale; else t1=x(n1); end; if x(n2)>xl(2), t2=xl(2)-0.01*xscale; else t2=x(n2); end; line([t1 t2],[yl(1)+0.1*yscale yl(1)+0.1*yscale],'LineWidth',0.5,'Color',C); if x(n1)>=xl(1), patch([1,0,1]*xscale*0.01+x(n1),[-1 0 1]*yscale*0.01+yl(1)+0.1*yscale,C); end; if x(n2)<=xl(2), patch(-1*[1,0,1]*xscale*0.01+x(n2),[-1 0 1]*yscale*0.01+yl(1)+0.1*yscale,C); end; if t2-t1>0.15*xscale, text(t1+0.5*(t2-t1),yl(1)+0.1*yscale,txt,... 'EdgeColor',C,'BackgroundColor',get(handles.axes1,'Color'),'HorizontalAlignment','Center'); end; hold off; n1=n2; end; legend_handle=legend; if ~isempty(legend_handle), legend(legend_handle); end; %refresh legend % --- Executes during object creation, after setting all properties. function vel_button_CreateFcn(hObject, eventdata, handles) % hObject handle to vel_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called
github
shuoli-robotics/ppzr-master
dialog.m
.m
ppzr-master/sw/logalizer/matlab_log/dialog.m
41,728
utf_8
8a40368512745e70d158a49ee08c5926
%-------------------------------------------------------------------- %A simple MATLAB GUI for paparazzi autopilot log-file plotting %Paparazzi Project [http://www.nongnu.org/paparazzi/] %by Roman Krashhanitsa 28/10/2005 %adjustable parabeters: % maxnum - increase if dialog window hangs up or doesnt refresh % Nres - number or interpolated points in the plot, decrease to improve % plotting performance or increase to improve resolution %-------------------------------------------------------------------- function varargout = dialog(varargin) % DIALOG M-file for dialog.fig % DIALOG, by itself, creates a new DIALOG or raises the existing % singleton*. % % H = DIALOG returns the handle to a new DIALOG or the handle to % the existing singleton*. % % DIALOG('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in DIALOG.M with the given input arguments. % % DIALOG('Property','Value',...) creates a new DIALOG or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before dialog_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to dialog_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help dialog % Last Modified by GUIDE v2.5 18-Sep-2006 11:05:50 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @dialog_OpeningFcn, ... 'gui_OutputFcn', @dialog_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin & isstr(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT function [m,n]=set2Plot(handles,section,field) axes(handles.axes1); global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; N=max(size(labelsSections)); n=1; while n<=N && ~strcmpi(labelsSections(n),section), n=n+1; end; if strcmpi(labelsSections(n),section), set(handles.ListSections,'Value',n); ListSections_Callback(0, 0, handles); M=max(size(labelsFields)); m=1; while m<=M && ~strcmpi(labelsFields(m),field), m=m+1; end; if strcmpi(labelsFields(m),field), return; end; end; m=0; n=0; return; function [x,y]=setXY2plot(m,n,k) %fetch xy data for section n, field m global X0; global logData; global x; global y; x=[]; y=[]; len=max(size(logData)); last_time=0; for j=1:len, if logData(j).type==n && logData(j).plane_id==k, if logData(j).time>last_time, x=[x;logData(j).time]; y=[y;logData(j).fields(m)]; last_time=x(max(size(x))); end; end; end; x=x-X0; % shift timer to start at the boot time function h=plotlog(x,y) %plot data for section n, field m, plane_id k % minimum number of points in the plot (resolution) %if actual number of points if greater we dont need to change anything, but %if it is less, interpolate using nearest neighbor as closest model of %signals incoming to ground station. Previous value is used in the ap %until a new value is obtained Nres=1000; h=0; if ~isempty(x) && ~isempty(y), MIN=min(x); MAX=max(x); X=MIN:(MAX-MIN)/Nres:MAX; if max(size(X))<=max(size(x)) %plot as it is h=plot(x,y); else h=plot(x,y,'x'); %plot(X,interp1(x,y,X,'nearest')); %interpolate using nearest neighbor end; end; % --- Executes just before dialog is made visible. function dialog_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to dialog (see VARARGIN) % Choose default command line output for dialog handles.output = hObject; % Update handles structure guidata(hObject, handles); if strcmp(get(hObject,'Visible'),'off') plot([0 1],[0 0]); end set(handles.ListSections,'Enable','off'); set(handles.ListFields,'Enable','off'); set(handles.ListDevices,'Enable','off'); global X0; X0=0; pp_home=getenv('PAPARAZZI_HOME'); if (max(size(pp_home))==0) warning('PAPARAZZI_HOME environment variable was not found. Using current dir..'); pp_home=pwd; % otherwise use curent directory else pp_home=fullfile(pp_home,'conf'); end; %read protocol specification global nodeList; global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; global X0; X0=0; try node=xmlread(fullfile(pp_home,'messages.xml')); catch warning('messages.xml not found. trying var/messages.xml...') try node=xmlread(fullfile(pp_home,'var/messages.xml')); catch warning('messages.xml not found. Exiting...'); close(gcf); % delete(handles.figure1); return; end; end; nodeList=node.getChildNodes.item(0).getChildNodes; %make labels for the first list menu count=nodeList.getLength; labelsSections=[]; lineSections=[]; sectionsIndex=[]; j=0; found=false; while j<count && ~found, if (nodeList.item(j).getNodeType == nodeList.item(j).ELEMENT_NODE & ... strcmp(nodeList.item(j).getNodeName,'class') & ... strcmp(nodeList.item(j).getAttributes.getNamedItem('name').getValue,'telemetry')) found=true; else j=j+1; end; end; nodeList=nodeList.item(j).getChildNodes; count=nodeList.getLength; for j=0:count-1, if (nodeList.item(j).getNodeType == nodeList.item(j).ELEMENT_NODE & ... strcmp(nodeList.item(j).getNodeName,'message')) lineSections=[lineSections,char(nodeList.item(j).getAttributes.getNamedItem('name').getValue),'|']; sectionsIndex=[sectionsIndex,j]; labelsSections=[labelsSections,{char(nodeList.item(j).getAttributes.getNamedItem('name').getValue)}]; end; end; lineSections=lineSections(1:max(size(lineSections))-1); %cut off last '|' character set(handles.ListSections,'String',lineSections); %make labels for the fields list (submenu) nn=get(handles.ListSections,'Value'); nn=nn(1); childList=nodeList.item(sectionsIndex(nn)).getChildNodes; count=childList.getLength; labelsFields=[]; for j=0:count-1, if strcmp(childList.item(j).getNodeName,'field'), attr=childList.item(j).getAttributes; cattr=attr.getLength; k=0; while k<cattr && ~strcmp(attr.item(k).getName,'name'), k=k+1; end; labelsFields=[labelsFields,char(attr.item(k).getValue),'|']; fieldsIndex=[fieldsIndex,k]; end; end; labelsFields=labelsFields(1:max(size(labelsFields))-1); %cut off last '|' character set(handles.ListFields,'String',labelsFields); % UIWAIT makes dialog wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = dialog_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure if ~isempty(handles) varargout{1} = handles.output; end; % -------------------------------------------------------------------- function FileMenu_Callback(hObject, eventdata, handles) % hObject handle to FileMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function OpenMenuItem_Callback(hObject, eventdata, handles) % hObject handle to OpenMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) file = uigetfile('*.fig'); if ~isequal(file, 0) open(file); end % -------------------------------------------------------------------- function PrintMenuItem_Callback(hObject, eventdata, handles) % hObject handle to PrintMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) printdlg(handles.figure1) % -------------------------------------------------------------------- function CloseMenuItem_Callback(hObject, eventdata, handles) % hObject handle to CloseMenuItem (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... ['Close ' get(handles.figure1,'Name') '...'],... 'Yes','No','Yes'); if strcmp(selection,'No') return; end delete(handles.figure1) % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end set(hObject, 'String', {'plot(rand(5))', 'plot(sin(1:0.01:25))', 'comet(cos(1:.01:10))', 'bar(1:10)', 'plot(membrane)', 'surf(peaks)'}); % --- Executes on selection change in popupmenu3. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns popupmenu3 contents as cell array % contents{get(hObject,'Value')} returns selected item from popupmenu3 % --- Executes on button press in loadButton. function loadButton_Callback(hObject, eventdata, handles) % hObject handle to loadButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global logData; global labelsSections; res=0; [FileName,PathName,res] = uigetfile('*.log','Open Log file...'); if res~=0, %read protocol specification global nodeList; global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; global id_Devices; % try % node=xmlread(fullfile(PathName,FileName)); % catch % warning('File ',fullfile(PathName,FileName),' does not exist'); % close(gcf); % return; % end; % % %find name of the data file % dataFileName=char(node.getFirstChild.getAttributes.item(0).getValue); % %find ground altitude % global ground_alt; % j=0; % found=0 % while ~found && j<=node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.getLength, % if ~strcmpi(node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.item(j).getName,'GROUND_ALT'), % j=j+1; % found=1; % end; % end; % if j<=node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.getLength, % ground_alt=str2num(char(node.getFirstChild.getChildNodes.item(1).getChildNodes.item(1).getChildNodes.item(1).getAttributes.item(j).getValue)); % else ground_alt=0; % end; % % % %---read protocol--------------------------------- % set(handles.text1,'String','Reading protocol specification'); % notfound=1; %found messages or not % finish=0; %structure traversing finished % nodeList=node.getChildNodes; % i=1; %level in the structure % J=[0]; % val=''; % while notfound && ~finish, % while J(i)<nodeList.getLength && notfound, % drawnow; %flash event queue % val=node.getNodeName; % notfound=~strcmp(val,'message'); % if notfound % while node.getChildNodes.getLength~=0 && notfound %go to the next level % nodeList=node.getChildNodes; % i=i+1; % J(i)=0; % node=nodeList.item(J(i)); % val=node.getNodeName; % notfound=~strcmp(val,'message'); % end; % J(i)=J(i)+1; % if J(i)<nodeList.getLength % node=nodeList.item(J(i)); % end; % end; % end; % if i>=3 && notfound % if not a root node % nodeList=node.getParentNode.getParentNode.getChildNodes; % i=i-1; % J(i)=J(i)+1; % if J(i)<nodeList.getLength % node=nodeList.item(J(i)); % end; % else % %nothing, will get caught by while loop % finish=1; % end; % end; % %make labels for the first list menu % count=nodeList.getLength; % labelsSections=[]; % lineSections=[]; % sectionsIndex=[]; % for j=0:count-1, % if (nodeList.item(j).getNodeName=='message') % lineSections=[lineSections,char(nodeList.item(j).getAttributes.item(1).getValue),'|']; % sectionsIndex=[sectionsIndex,j]; % labelsSections=[labelsSections,{char(nodeList.item(j).getAttributes.item(1).getValue)}]; % end; % end; % lineSections=lineSections(1:max(size(lineSections))-1); %cut off last '|' character % set(handles.ListSections,'String',lineSections); % %make labels for the fields list (submenu) % nn=get(handles.ListSections,'Value'); % nn=nn(1); % childList=nodeList.item(sectionsIndex(nn)).getChildNodes; % count=childList.getLength; % labelsFields=[]; % for j=0:count-1, % if childList.item(j).getNodeName=='field', % attr=childList.item(j).getAttributes; % cattr=attr.getLength; k=0; % while k<cattr && ~strcmp(attr.item(k).getName,'name'), % k=k+1; % end; % labelsFields=[labelsFields,char(attr.item(k).getValue),'|']; % fieldsIndex=[fieldsIndex,k]; % end; % end; % labelsFields=labelsFields(1:max(size(labelsFields))-1); %cut off last '|' character % set(handles.ListFields,'String',labelsFields); if res~=0, try fid=fopen(fullfile(PathName,FileName)); catch error(lasterror); end; %find beginning of data fseek(fid,0,'eof'); %ff to end endpos=ftell(fid); %find file size fseek(fid,0,'bof'); %rewind to start tline = fgetl(fid); while ~(feof(fid) || ~isempty(findstr(tline,'data_file='))), tline = fgetl(fid); end; [name,value]=strread(tline,'%q%q','delimiter','"'); dataFileName=value{2}; fclose(fid); %--- read data ---------------------------- try fid=fopen(fullfile(PathName,dataFileName)); catch warning('File ',fullfile(PathName,dataFileName),' does not exist'); end; fseek(fid,0,'eof'); %ff to end endpos=ftell(fid); %find file size fseek(fid,0,'bof'); %rewind to start %tline = fgetl(fid); % while ~(feof(fid) || ~isempty(findstr(tline,'<data>'))), % tline = fgetl(fid); % end; %read data logData=[]; num=0; maxnum=100; %used to flush event queue while ~feof(fid), tline = fgetl(fid); [tok,tline]=strtok(tline); t=sscanf(tok,'%g'); %extract time [tok,tline]=strtok(tline); plane=sscanf(tok,'%g'); %airplane id? [lab,tline]=strtok(tline); %extract message label fld=sscanf(tline,'%g'); %extract a vector of fields found=0; j=1; count=max(size(labelsSections)); %find index of the message label in the protocol while j<count+1 && ~found, %found=~isempty(strmatch(lab,cell2mat(labelsSections(j)))); found=strcmp(lab,cell2mat(labelsSections(j))); j=j+1; end; j=j-1; if ~found, warning('Protocol specification in messages.xml does not match protocol in log file.'); else % if found s=struct('time',t,'type',j,'plane_id',plane,'fields',fld); logData=[logData,s]; end; pos=ftell(fid); set(handles.text1,'String',[num2str(double(pos)/double(endpos)*100.0,'%5.2f'),'%']); num=num+1; if num>maxnum, num=0; drawnow; %flash event queue end; end; %make labels for Device ID listbox global id_Devices; id_Devices=[]; count=max(size(logData)); for j=1:count, k=1; nn=max(size(id_Devices)); tag=logData(j).plane_id; notfound=1; while k<=nn && notfound, notfound=~(tag==id_Devices(k)); if notfound, k=k+1; end; end; if notfound, id_Devices=[id_Devices,tag]; end; end; labelsDevices=num2str(id_Devices(1)); for j=2:max(size(id_Devices)), labelsDevices=[labelsDevices,'|',num2str(id_Devices(j))]; end; set(handles.ListDevices,'String',labelsDevices); set(handles.text1,'String',FileName); set(handles.ListSections,'Enable','on'); set(handles.ListFields,'Enable','on'); set(handles.ListDevices,'Enable','on'); else %file was not selected end; j=1; while (~strcmp(labelsSections{j},'BOOT') && j<max(size(labelsSections)) ) j=j+1; end; k=1; while logData(k).type~=j && k<max(size(logData)) k=k+1; end; if (k<max(size(logData))) X0=logData(k).time; else warning('BOOT message not found.. Corrupted log?'); end; end; %function % --- Executes during object creation, after setting all properties. function ListFields_CreateFcn(hObject, eventdata, handles) % hObject handle to ListFields (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in ListFields. function ListFields_Callback(hObject, eventdata, handles) % hObject handle to ListFields (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ListFields contents as cell array % contents{get(hObject,'Value')} returns selected item from ListFields %make labels for the fields list (submenu) % --- Executes on button press in keepToggleButton. function keepToggleButton_Callback(hObject, eventdata, handles) % hObject handle to keepToggleButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of keepToggleButton % --- Executes during object creation, after setting all properties. function ListSections_CreateFcn(hObject, eventdata, handles) % hObject handle to ListSections (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in ListSections. function ListSections_Callback(hObject, eventdata, handles) % hObject handle to ListSections (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ListSections contents as cell array % contents{get(hObject,'Value')} returns selected item from ListSections % global nodeList; % global labelsSections; % global sectionsIndex; % global labelsFields; % global fieldsIndex; % % nn=get(handles.ListSections,'Value'); % nn=nn(1); % childList=nodeList.item(sectionsIndex(nn)).getChildNodes; % count=childList.getLength; % labelsFields=[]; % for j=0:count-1, % if childList.item(j).getNodeName=='field', % attr=childList.item(j).getAttributes; % cattr=attr.getLength; k=0; % while k<cattr && ~strcmp(attr.item(k).getName,'name'), % k=k+1; % end; % labelsFields=[labelsFields,char(attr.item(k).getValue),'|']; % fieldsIndex=[fieldsIndex,k]; % end; % end; % labelsFields=labelsFields(1:max(size(labelsFields))-1); %cut off last '|' character % set(handles.ListFields,'String',labelsFields); % set(handles.ListFields,'Value',1); global nodeList; global labelsSections; global sectionsIndex; global labelsFields; global fieldsIndex; nn=get(handles.ListSections,'Value'); nn=nn(1); childList=nodeList.item(sectionsIndex(nn)).getChildNodes; count=childList.getLength; labelsFields=[]; lineFields=[]; fieldsIndex=[]; for j=0:count-1, if childList.item(j).getNodeName=='field', attr=childList.item(j).getAttributes; cattr=attr.getLength; k=0; while k<cattr && ~strcmp(attr.item(k).getName,'name'), k=k+1; end; labelsFields=[labelsFields,{char(attr.item(k).getValue)}]; lineFields=[lineFields,char(attr.item(k).getValue),'|']; fieldsIndex=[fieldsIndex,k]; end; end; lineFields=lineFields(1:max(size(lineFields))-1); %cut off last '|' character set(handles.ListFields,'String',lineFields); set(handles.ListFields,'Value',1); % --- Executes on button press in plotButton. function plotButton_Callback(hObject, eventdata, handles) % hObject handle to plotButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global logData; global id_Devices; global x; global y; Nres=1000; % minimum number of points in the plot (resolution) %if actual number of points if greater we dont need to change anything, but %if it is less, interpolate using nearest neighbor as closest model of %signals incoming to ground station. Previous value is used in the ap %until a new value is obtained axes(handles.axes1); if ~get(handles.keepToggleButton,'Value') cla; else hold on; end; n=get(handles.ListSections,'Value'); n=n(1); m=get(handles.ListFields,'Value'); m=m(1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, xlim([t1 t2]); axis 'auto y'; end; fig=figure('Position',[250, 280, 600,240]); ax=gca; [x,y]=setXY2plot(m,n,k); axes(ax); t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, [c,j1]=min(abs(x-t1)); j1 [c,j2]=min(abs(x-t2)); j2 p=plotlog(x(j1:j2)-x(j1),y(j1:j2)); xlim([0 t2-t1]); axis 'auto y'; else p=plotlog(x,y); axis 'auto y'; end; setTemplate(p,ax,fig); xlabel('Time, s'); ylabel('Throttle'); % --- Executes on button press in printButton. function printButton_Callback(hObject, eventdata, handles) % hObject handle to printButton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) printpreview(gcf); % --- Executes on button press in edit. function edit_Callback(hObject, eventdata, handles) % hObject handle to edit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if ~get(handles.edit,'Value') plotedit off; else plotedit(gcf); end; % --- Executes during object creation, after setting all properties. function ListDevices_CreateFcn(hObject, eventdata, handles) % hObject handle to ListDevices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes on selection change in ListDevices. function ListDevices_Callback(hObject, eventdata, handles) % hObject handle to ListDevices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = get(hObject,'String') returns ListDevices contents as cell array % contents{get(hObject,'Value')} returns selected item from ListDevices % --- Executes on button press in zoomin. function zoomin_Callback(hObject, eventdata, handles) % hObject handle to zoomin (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if get(hObject,'Value')==get(hObject,'Max') zoom on; else zoom off; end; % --- Executes on button press in zoomout. function zoomout_Callback(hObject, eventdata, handles) % hObject handle to zoomout (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if get(hObject,'Value')==get(hObject,'Min') zoom on; else zoom off; end; % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit2_CreateFcn(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end function edit2_Callback(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit2 as text % str2double(get(hObject,'String')) returns contents of edit2 as a double % --- Executes on button press in rotate3d. function rotate3d_Callback(hObject, eventdata, handles) % hObject handle to rotate3d (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of rotate3d if get(hObject,'Value')==get(hObject,'Min') rotate3d off; else rotate3d on; end; % --- Executes on button press in roll_button_button. function roll_button_Callback(hObject, eventdata, handles) % hObject handle to roll_button_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); [m,n]=set2Plot(handles,'attitude','phi'); k=get(handles.ListDevices,'Value'); k=id_Devices(k); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'desired','roll'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y*180/pi); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_roll','desired\_roll'); figure('Position',[250, 280, 600,270]); hh=gca; [m,n]=set2Plot(handles,'desired','roll'); if m*n~=0, [x,y]=setXY2plot(m,n,k); axes(hh); h=plotlog(x,y*180/pi); set(h,'LineWidth',3.0); set(h,'Marker','none'); set(h,'LineStyle','-'); set(h,'Color',[0.6 0.6 1]); end; hold on; [m,n]=set2Plot(handles,'attitude','phi'); k=get(handles.ListDevices,'Value'); k=id_Devices(k); if m*n~=0, [x,y]=setXY2plot(m,n,k); axes(hh); h=plotlog(x,y); set(h,'LineWidth',1.); set(h,'Marker','none'); set(h,'LineStyle','-'); set(h,'Color',[0 0 0]); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('Desired roll','Estimated roll'); xlabel('Time, s'); ylabel('Angle, deg'); set(hh,'FontName','Times'); set(hh,'FontSize',9); set(get(hh,'XLabel'),'FontName','Times','FontSize',9); set(get(hh,'YLabel'),'FontName','Times','FontSize',9); % --- Executes on button press in pitch_button. function pitch_button_Callback(hObject, eventdata, handles) % hObject handle to pitch_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); k=get(handles.ListDevices,'Value'); k=id_Devices(k); [m,n]=set2Plot(handles,'attitude','theta'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'desired','pitch'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_pitch','desired\_pitch'); % --- Executes on button press in heading_button. function heading_button_Callback(hObject, eventdata, handles) % hObject handle to heading_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); k=get(handles.ListDevices,'Value'); k=id_Devices(k); [m,n]=set2Plot(handles,'GPS','course'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y*0.1); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'navigation','desired_course'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y*0.1); set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_course','desired\_course'); % --- Executes on button press in altitude_button. function altitude_button_Callback(hObject, eventdata, handles) % hObject handle to altitude_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global id_Devices; axes(handles.axes1); k=get(handles.ListDevices,'Value'); k=id_Devices(k); [m,n]=set2Plot(handles,'desired','desired_altitude'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',3.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y/100); set(h,'LineWidth',1); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('estimated\_altitude','desired\_altitude'); figure('Position',[250, 280, 600,270]); hh=gca; axes(hh); k=get(handles.ListDevices,'Value'); k=id_Devices(k); [m,n]=set2Plot(handles,'desired','desired_altitude'); if m*n~=0, [x,y]=setXY2plot(m,n,k); axes(hh); h=plotlog(x,y); set(h,'LineWidth',3.0); set(h,'Marker','none'); set(h,'LineStyle','-'); set(h,'Color',[0.6,0.6,1]); end; hold on; [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [x,y]=setXY2plot(m,n,k); axes(hh); h=plotlog(x,y/100); set(h,'LineWidth',1); set(h,'Marker','none'); set(h,'LineStyle','-'); set(h,'Color',[0,0,0]); end; hold off; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; legend('Desired altitude','Estimated altitude'); xlabel('Time, s'); ylabel('Altitude, m'); set(hh,'FontName','Times','FontSize',9); set(get(hh,'XLabel'),'FontName','Times','FontSize',9); set(get(hh,'YLabel'),'FontName','Times','FontSize',9); % --- Executes on button press in traj_button. function traj_button_Callback(hObject, eventdata, handles) % hObject handle to traj_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global z; global t; global id_Devices; axes(handles.axes1); xx=[]; yy=[]; zz=[]; k=get(handles.ListDevices,'Value'); k=id_Devices(k); format long; [m,n]=set2Plot(handles,'navigation','pos_x'); %[m,n]=set2Plot(handles,'GPS','utm_east'); if m*n~=0, [tx,xx]=setXY2plot(m,n,k); end; [m,n]=set2Plot(handles,'navigation','pos_y'); %[m,n]=set2Plot(handles,'GPS','utm_north'); if m*n~=0, [ty,yy]=setXY2plot(m,n,k); % yy=interp1(ty,yy,tx,'spline'); end; [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [tz,zz]=setXY2plot(m,n,k); zz=interp1(tz,zz,tx,'nearest'); end; x=xx; y=yy; global ground_alt; z=zz/100-ground_alt; t=tx; if ~isempty(x) && ~isempty(y) && ~isempty(z) && ~isempty(t), t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2 && t1<=t(max(size(t)-1)), N=max(size(t)); n1=1; while n1<=N && t(n1)<t1, n1=n1+1; end; n2=n1+1; while n2<=N && t(n2)<t2, n2=n2+1; end; h=plot3(x(n1:n2),y(n1:n2),z(n1:n2)); else h=plot3(x,y,z); end; set(h,'LineWidth',1.0); set(h,'Marker','none'); set(h,'LineStyle','-'); xlabel('x'); ylabel('y'); zlabel('z'); box; grid on; end; figure('Position',[250, 280, 600,270]); hh=gca; axes(hh); if ~isempty(x) && ~isempty(y) && ~isempty(z) && ~isempty(t), t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2 && t1<=t(max(size(t)-1)), N=max(size(t)); n1=1; while n1<=N && t(n1)<t1, n1=n1+1; end; n2=n1+1; while n2<=N && t(n2)<t2, n2=n2+1; end; axes(hh); h=plot3(x(n1:n2),y(n1:n2),z(n1:n2)); else axes(hh); h=plot3(x,y,z); end; set(h,'LineWidth',1.0);t set(h,'Marker','none'); set(h,'LineStyle','-'); xlabel('x'); ylabel('y'); zlabel('z'); box; grid on; end; % --- Executes on button press in vel_button. function vel_button_Callback(hObject, eventdata, handles) % hObject handle to vel_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; global z; global t; axes(handles.axes1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [m,n]=set2Plot(handles,'GPS','speed'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y/100); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold on; xx=[]; yy=[]; zz=[]; [m,n]=set2Plot(handles,'navigation','pos_x'); if m*n~=0, [tx,xx]=setXY2plot(m,n,k); end; [m,n]=set2Plot(handles,'navigation','pos_y'); if m*n~=0, [ty,yy]=setXY2plot(m,n,k); yy=interp1(ty,yy,tx); end; [m,n]=set2Plot(handles,'GPS','alt'); if m*n~=0, [tz,zz]=setXY2plot(m,n,k); zz=interp1(tz,zz,tx)/100; end; v=[];N=max(size(xx)); for j=2:N, v=[v sqrt((xx(j)-xx(j-1))^2+(yy(j)-yy(j-1))^2+(zz(j)-zz(j-1))^2)/(tx(j)-tx(j-1))]; end; y=v; x=tx(2:N); h=plotlog(x,y); if ~isempty(x) && ~isempty(y), t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2 && t1<=t(max(size(t)-1)), axis([t1 t2 -inf inf]); axis 'auto y'; end; set(h,'LineWidth',2.0); set(h,'Marker','none'); set(h,'LineStyle','-'); end; hold off; legend('GPS\_speed','computed\_speed'); % --- Executes on button press in gaz_button. function gaz_button_Callback(hObject, eventdata, handles) % hObject handle to gaz_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global x; global y; axes(handles.axes1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [m,n]=set2Plot(handles,'servos','thrust'); if m*n~=0, [x,y]=setXY2plot(m,n,k); h=plotlog(x,y); set(h,'LineWidth',0.5); set(h,'Marker','none'); set(h,'LineStyle','-'); end; t1=str2num(get(handles.edit1,'String')); t2=str2num(get(handles.edit2,'String')); if t1~=t2 && t1<t2, axis([t1 t2 -inf inf]); axis 'auto y'; end; % --- Executes on button press in ap_mode_pushbutton_pushbutton. function ap_mode_pushbutton_Callback(hObject, eventdata, handles) % hObject handle to ap_mode_pushbutton_pushbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) xl=xlim; yl=ylim; xscale=xl(2)-xl(1); yscale=yl(2)-yl(1); k=get(handles.ListDevices,'Value'); global id_Devices; k=id_Devices(k); [m,n]=set2Plot(handles,'PPRZ_MODE','ap_mode'); if m*n==0, return; end; n1=1; [x,y]=setXY2plot(m,n,k); N=max(size(x)); while x(n1)<xl(1) && n1<N, n1=n1+1; end; while x(n1)<xl(2) && n1<N, m1=y(n1+1); C=[0 0 0]; %color switch m1 case 0 C=[1 0.3 0]; txt='manual'; case 1 C=[1 0.5 0]; txt='auto1'; case 2 C=[1 0.7 0]; txt='auto2'; case 3 C=[1 1 0]; txt='home'; end; n2=n1+1; while y(n2)==m1 && x(n2)<xl(2) && n2<N, n2=n2+1; end; hold on; if x(n1)<xl(1), t1=xl(1)+0.01*xscale; else t1=x(n1); end; if x(n2)>xl(2), t2=xl(2)-0.01*xscale; else t2=x(n2); end; line([t1 t2],[yl(1)+0.1*yscale yl(1)+0.1*yscale],'LineWidth',0.5,'Color',C); if x(n1)>=xl(1), patch([1,0,1]*xscale*0.01+x(n1),[-1 0 1]*yscale*0.01+yl(1)+0.1*yscale,C); end; if x(n2)<=xl(2), patch(-1*[1,0,1]*xscale*0.01+x(n2),[-1 0 1]*yscale*0.01+yl(1)+0.1*yscale,C); end; if t2-t1>0.15*xscale, text(t1+0.5*(t2-t1),yl(1)+0.1*yscale,txt,... 'EdgeColor',C,'BackgroundColor',get(handles.axes1,'Color'),'HorizontalAlignment','Center'); end; hold off; n1=n2; end; legend_handle=legend; if ~isempty(legend_handle), legend(legend_handle); end; %refresh legend % --- Executes during object creation, after setting all properties. function vel_button_CreateFcn(hObject, eventdata, handles) % hObject handle to vel_button (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called function setTemplate(pl,ax,fig) set(fig,'Position',[250, 280, 600,240]) set(pl,'LineWidth',1,'Color',[0,0,0]); set(pl,'LineWidth',1.0); set(pl,'Marker','x'); set(pl,'LineStyle','-'); set(ax,'YLimMode','auto'); set(ax,'LineWidth',1.0); set(ax,'LineStyle','-'); set(ax,'FontName','Times'); set(ax,'FontSize',10); box on;
github
shuoli-robotics/ppzr-master
tilt.m
.m
ppzr-master/sw/logalizer/matlab/tilt.m
3,005
utf_8
28f19a8ce44283009a8f4ba0410e4c0b
% % this is a 2 states kalman filter used to fuse the readings of a % two axis accelerometer and one axis gyro. % The filter estimates the angle and the gyro bias. % % function [angle, bias, rate, cov] = tilt(status, gyro, accel) TILT_UNINIT = 0; TILT_PREDICT = 1; TILT_UPDATE = 2; persistent tilt_angle; % our state persistent tilt_bias; % persistent tilt_rate; % unbiased rate persistent tilt_P; % covariance matrix tilt_dt = 0.015625; % prediction time step tilt_R = 0.3; % measurement covariance noise % means we expect a 0.3 rad jitter from the % accelerometer if (status == TILT_UNINIT) [tilt_angle, tilt_bias, tilt_rate, tilt_P] = tilt_init(gyro, accel); else [tilt_angle, tilt_rate, tilt_P] = ... tilt_predict(gyro, tilt_P, ... tilt_angle, tilt_bias, tilt_rate, ... tilt_dt); if (status == TILT_UPDATE) [tilt_angle, tilt_bias, tilt_P] = tilt_update(accel, tilt_R, tilt_P, ... tilt_angle, tilt_bias); end end angle = tilt_angle; bias = tilt_bias; rate = tilt_rate; cov = tilt_P; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Initialisation % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [angle, bias, rate, P] = tilt_init(gyro, accel) angle = theta_of_accel(accel); %angle = phi_of_accel(accel); bias = gyro(2); rate = 0; P = [ 1 0 0 0 ]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Prediction % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [angle_out, rate_out, P_out] = tilt_predict(gyro, P_in, ... angle_in, bias, rate,... dt) rate_out = gyro(2) - bias; %rate_out = gyro(1) - bias; % update state ( X += Xdot * dt ) angle_out = angle_in + (rate + rate_out) / 2 * dt; % update covariance ( Pdot = F*P + P*F' + Q ) % ( P += Pdot * dt ) % % F is the Jacobian of Xdot with respect to the states: % % F = [ d(angle_dot)/d(angle) d(angle_dot)/d(gyro_bias) ] % [ d(gyro_bias_dot)/d(angle) d(gyro_bias_dot)/d(gyro_bias) ] % F = [ 0 -1 % jacobian of state dot wrt state 0 0 ]; Q = [ 0 0 % process covariance noise 0 8e-3 ]; Pdot = F * P_in + P_in * F' + Q; P_out = P_in + Pdot * dt; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Update % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [angle_out, bias_out, P_out] = tilt_update(accel, R, P_in, ... angle_in, ... bias_in) measure_angle = theta_of_accel(accel); %measure_angle = phi_of_accel(accel); err = measure_angle - angle_in; H = [ 1 0 ]; E = H * P_in * H' + R; K = P_in * H' * inv(E); P_out = P_in - K * H * P_in; X = [ angle_in bias_in ]; X = X + K *err; angle_out = X(1); bias_out = X(2);
github
shuoli-robotics/ppzr-master
theta_of_accel.m
.m
ppzr-master/sw/logalizer/matlab/theta_of_accel.m
186
utf_8
a68d408f14dcafd800965d810c91c1c1
% % return pitch angle from an accelerometer reading % under assumption that acceleration is vertical % function [theta] = theta_of_accel(accel) theta = -asin( accel(1) / norm(accel));
github
shuoli-robotics/ppzr-master
eulers_of_quat.m
.m
ppzr-master/sw/logalizer/matlab/eulers_of_quat.m
334
utf_8
aa4e8f9fcedb41872e29eb098aefa7d3
% % initialise euler angles from a quaternion % function [eulers] = eulers_of_quat(quat) q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); phi = atan2(2*(q2*q3 + q0*q1), (q0^2 - q1^2 - q2^2 + q3^2)); theta = asin(-2*(q1*q3 - q0*q2)); psi = atan2(2*(q1*q2 + q0*q3), (q0^2 + q1^2 - q2^2 - q3^2)); eulers = [phi theta psi]';
github
shuoli-robotics/ppzr-master
synth_data.m
.m
ppzr-master/sw/logalizer/matlab/synth_data.m
923
utf_8
c23bbe3eb4319edf0890fc9bc4b033c2
% % build synthetic data % function [t, rates, quat] = synth_data(dt, nb_samples) t_end = dt * (nb_samples - 1); t = 0:dt:t_end; rates = zeros(3, nb_samples); omega_q = 15; amp_q = 2; osc_start = floor(nb_samples/2); osc_end = floor(osc_start+2*pi/(omega_q*dt)); for idx=osc_start:osc_end rates(2, idx) = -amp_q*(1 - cos((idx-osc_start)*(omega_q*dt))); end osc_start = floor(nb_samples/2 + 8*pi/(omega_q*dt)); osc_end = floor(osc_start+2*pi/(omega_q*dt)); for idx=osc_start:osc_end rates(2, idx) = amp_q*(1 - cos((idx-osc_start)*(omega_q*dt))); end quat(:, 1) = quat_of_eulers([0.2 -0.4 0.5]'); for idx=2:nb_samples p = rates(1, idx-1); q = rates(2, idx-1); r = rates(3, idx-1); omega = [ 0 -p -q -r p 0 r -q q -r 0 p r q -p 0 ]; quat_dot = 0.5 * omega * quat(:, idx-1); quat(:, idx) = quat(:, idx-1) + quat_dot * dt; quat(:, idx) = normalize_quat(quat(:, idx)); end
github
shuoli-robotics/ppzr-master
theta_of_quat.m
.m
ppzr-master/sw/logalizer/matlab/theta_of_quat.m
182
utf_8
1b15a8391b14bd82c12a4031d009657c
% % initialise euler angles from a quaternion % function [theta] = theta_of_quat(quat) q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); theta = asin(-2*(q1*q3 - q0*q2));
github
shuoli-robotics/ppzr-master
synth_imu.m
.m
ppzr-master/sw/logalizer/matlab/synth_imu.m
382
utf_8
eb83cb7d22000974d367cc96ef11e37f
% % build synthetic imu data % function [gyro, accel, mag] = synth_imu(rates, quat) nb_samples = length(rates); g_ned = [ 0 0 258.3275]; h_ned = [ 166.8120 0.0 203.3070]; for idx = 1:nb_samples dcm = dcm_of_quat(quat(:, idx)); accel(:, idx) = sim_accel(g_ned, dcm); mag(:, idx) = sim_mag(h_ned, dcm); gyro(:, idx) = sim_gyro_2(rates(:, idx)); end;
github
shuoli-robotics/ppzr-master
sfun_ahrs.m
.m
ppzr-master/sw/logalizer/matlab/sfun_ahrs.m
7,062
utf_8
738df5f0b69d65203e9e7dea9d2b8c41
function [sys,x0,str,ts] = sfun_ahrs(t,x,u,flag) AHRS_UNINIT = 0; AHRS_STEP_PHI = 1; AHRS_STEP_THETA = 2; AHRS_STEP_PSI = 3; persistent ahrs_state; persistent ahrs_quat; % first four elements of our state persistent ahrs_biases;% last three elements of our state persistent ahrs_rates; % we get unbiased body rates as byproduct persistent ahrs_P; % error covariance matrix ahrs_dt = 0.015625; %R = [ 1.3^2 % R is our measurement noise estimate % 1.3^2 % 2.5^2 ]; R = [ 4^2 % R is our measurement noise estimate 4^2 4^2 ]; %qg = 8e-03; qg = 8e-3; Q = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 qg 0 0 0 0 0 0 0 qg 0 0 0 0 0 0 0 qg ]; %disp(sprintf('flag %d', flag)); switch flag, %%%%%%%%%%%%%%%%%% % Initialization % %%%%%%%%%%%%%%%%%% case 0, ahrs_state = 0; ahrs_quat = quat_of_eulers([0 0 0]'); ahrs_biases = [0 0 0]'; ahrs_rates = [0 0 0]'; ahrs_init(1, [0 0 0]', [0 0 0], [0 0 0]); [sys,x0,str,ts]=mdlInitializeSizes(ahrs_dt); %%%%%%%%%% % Update % %%%%%%%%%% case 2, gyro = u(1:3); mag = u(4:6); accel = u(7:9); if (ahrs_state == AHRS_UNINIT) [filter_initialised, ahrs_quat ahrs_biases ahrs_rates ahrs_P] = ... ahrs_init(0, gyro, accel, mag); if( filter_initialised ) ahrs_state = AHRS_STEP_PHI;, end; else [ahrs_quat ahrs_rates ahrs_P] = ... ahrs_predict(ahrs_P, Q, gyro, ahrs_quat, ahrs_biases,... ahrs_dt); switch ahrs_state, case AHRS_STEP_PHI, measure = phi_of_accel(accel); estimate = phi_of_quat(ahrs_quat); wrap = pi; H = get_dphi_dq(ahrs_quat); case AHRS_STEP_THETA, measure = theta_of_accel(accel); estimate = theta_of_quat(ahrs_quat); wrap = pi/2; H = get_dtheta_dq(ahrs_quat); case AHRS_STEP_PSI, phi = phi_of_quat(ahrs_quat); theta = theta_of_quat(ahrs_quat); measure = psi_of_mag(mag, phi, theta); estimate = psi_of_quat(ahrs_quat); wrap = pi; H = get_dpsi_dq(ahrs_quat); end; error = get_error(measure, estimate, wrap); [ahrs_quat ahrs_biases ahrs_P] = ... ahrs_update(H, error, R(ahrs_state), ahrs_P, ahrs_quat, ahrs_biases); ahrs_state = ahrs_state+1; if (ahrs_state > AHRS_STEP_PSI), ahrs_state = AHRS_STEP_PHI;, end; end; sys = []; %%%%%%%%%%% % Outputs % %%%%%%%%%%% case 3, eulers = eulers_of_quat(ahrs_quat); sys = [eulers(1) eulers(2) eulers(3) ahrs_rates(1) ahrs_rates(2) ... ahrs_rates(3) ahrs_biases(1) ahrs_biases(2) ahrs_biases(3)]; %%%%%%%%%%%%% % Terminate % %%%%%%%%%%%%% case 9, sys = []; %%%%%%%%%%%%%%%%%%%% % Unexpected flags % %%%%%%%%%%%%%%%%%%%% otherwise error(['Unhandled flag = ',num2str(flag)]); end % % begin mdlInitializeSizes % function [sys,x0,str,ts]=mdlInitializeSizes (period) sizes = simsizes(); sizes.NumContStates = 0; sizes.NumDiscStates = 0; sizes.NumOutputs = 9; sizes.NumInputs = 9; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; sys = simsizes(sizes); x0 = []; str = []; ts = [period 0]; % end mdlInitializeSizes % % % Initialisation % % function [filter_initialised, quat, biases, rates, P] = ... ahrs_init(reset, gyro, accel, mag) persistent saved_gyro; persistent saved_accel; persistent saved_mag; persistent nb_init; if (reset) nb_init = 0; saved_gyro = []; saved_accel = []; saved_mag = []; return; end; nb_init = nb_init+1; saved_gyro(:, nb_init) = gyro; saved_accel(:, nb_init) = accel; saved_mag(:, nb_init) = mag; if (nb_init < 50) quat = quat_of_eulers([0 0 0]'); biases = [0 0 0]'; filter_initialised = 0; else mean_gyro = average_vector(saved_gyro); mean_accel = average_vector(saved_accel); mean_mag = average_vector(saved_mag); phi = phi_of_accel(mean_accel); theta = theta_of_accel(mean_accel); psi = psi_of_mag(mean_mag, phi, theta); quat = quat_of_eulers([phi, theta, psi]); biases = mean_gyro; mgd = mean_gyro * 180 / pi; atd = [phi, theta, psi] * 180 / pi; disp('init done'); disp(sprintf('initial biases %f %f %f',mgd(1), mgd(2), mgd(3))); disp(sprintf('initial attitude %f %f %f',atd(1), atd(2), atd(3))); filter_initialised = 1; end; rates = [0 0 0]; P = [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; % % % Prediction % % function [quat_out, rates_out, P_out] = ahrs_predict(P_in, Q_in, ... gyro, quat_in, biases, ... dt) rates_out = gyro - biases; p = rates_out(1); q = rates_out(2); r = rates_out(3); omega = 0.5 * [ 0 -p -q -r p 0 r -q q -r 0 p r q -p 0 ]; quat_dot = omega * quat_in; quat_out = quat_in + quat_dot * dt; quat_out = normalize_quat(quat_out); % F is the Jacobian of Xdot with respect to the states q0 = quat_out(1); q1 = quat_out(2); q2 = quat_out(3); q3 = quat_out(4); F = 0.5 * [ 0 -p -q -r q1 q2 q3 p 0 r -q -q0 q3 -q2 q -r 0 p -q3 -q0 q1 r q -p 0 q2 -q1 -q0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; P_dot = F * P_in + P_in * F' + Q_in; P_out = P_in + P_dot * dt; % % % Update % % function [quat_out, biases_out, P_out] = ahrs_update(H, err, R, P_in, ... quat_in, biases_in) E = H * P_in * H' + R; K = P_in * H' * inv(E); P_out = P_in - K * H * P_in; X = [quat_in' biases_in']'; X = X + K *err; quat_out = [X(1) X(2) X(3) X(4)]'; biases_out = [X(5) X(6) X(7)]'; quat_out = normalize_quat(quat_out); % % Jacobian of the measurements to the system states. % function [H] = get_dphi_dq(quat) dcm = dcm_of_quat(quat); phi_err = 2 / (dcm(3,3)^2 + dcm(2,3)^2); q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); H = [ (q1 * dcm(3,3)) * phi_err (q0 * dcm(3,3) + 2 * q1 * dcm(2,3)) * phi_err (q3 * dcm(3,3) + 2 * q2 * dcm(2,3)) * phi_err (q2 * dcm(3,3)) * phi_err 0 0 0 ]'; function [H] = get_dtheta_dq(quat) dcm = dcm_of_quat(quat); theta_err = 2 / sqrt(1 - dcm(1,3)^2); q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); H = [ q2 * theta_err -q3 * theta_err q0 * theta_err -q1 * theta_err 0 0 0 ]'; function [H] = get_dpsi_dq(quat) dcm = dcm_of_quat(quat); psi_err = 2 / (dcm(1,1)^2 + dcm(1,2)^2); q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); H = [ (q3 * dcm(1,1)) * psi_err (q2 * dcm(1,1)) * psi_err (q1 * dcm(1,1) + 2 * q2 * dcm(1,2)) * psi_err (q0 * dcm(1,1) + 2 * q3 * dcm(1,2)) * psi_err 0 0 0 ]'; function [err] = get_error(measure, estimate, wrap) err = measure - estimate; if (err > wrap), err = err - 2*wrap, end; if (err < -wrap), err = err + 2*wrap, end; function [avg] = average_vector(vector) avg = [ mean(vector(1, 1:length(vector))) mean(vector(2, 1:length(vector))) mean(vector(3, 1:length(vector))) ];
github
shuoli-robotics/ppzr-master
quat_of_eulers.m
.m
ppzr-master/sw/logalizer/matlab/quat_of_eulers.m
629
utf_8
8783ebf9fadbb74652d2a366c9064c02
% % initialise a quaternion from euler angles % function [quat] = quat_of_eulers(eulers) phi2 = eulers(1) / 2.0; theta2 = eulers(2) / 2.0; psi2 = eulers(3) / 2.0; sinphi2 = sin( phi2 ); cosphi2 = cos( phi2 ); sintheta2 = sin( theta2 ); costheta2 = cos( theta2 ); sinpsi2 = sin( psi2 ); cospsi2 = cos( psi2 ); q0 = cosphi2 * costheta2 * cospsi2 + sinphi2 * sintheta2 * sinpsi2; q1 = sinphi2 * costheta2 * cospsi2 - cosphi2 * sintheta2 * sinpsi2; q2 = cosphi2 * sintheta2 * cospsi2 + sinphi2 * costheta2 * sinpsi2; q3 = cosphi2 * costheta2 * sinpsi2 - sinphi2 * sintheta2 * cospsi2; quat = [q0 q1 q2 q3]';
github
shuoli-robotics/ppzr-master
dcm_of_quat.m
.m
ppzr-master/sw/logalizer/matlab/dcm_of_quat.m
481
utf_8
b9950e5f461f13427a7c670158a92c14
% % initialise a DCM from a quaternion % function [dcm] = dcm_of_quat(quat) q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); dcm00 = q0^2 + q1^2 - q2^2 - q3^2; dcm01 = 2 * (q1*q2 + q0*q3); dcm02 = 2 * (q1*q3 - q0*q2); dcm10 = 2 * (q1*q2 - q0*q3); dcm11 = q0^2 - q1^2 + q2^2 - q3^2; dcm12 = 2 * (q2*q3 + q0*q1); dcm20 = 2 * (q1*q3 + q0*q2); dcm21 = 2 * (q2*q3 - q0*q1); dcm22 = q0^2 - q1^2 - q2^2 + q3^2; dcm = [ dcm00 dcm01 dcm02 dcm10 dcm11 dcm12 dcm20 dcm21 dcm22 ];
github
shuoli-robotics/ppzr-master
ahrs.m
.m
ppzr-master/sw/logalizer/matlab/ahrs.m
4,335
utf_8
5723f910e49a91fc556660bc06826fa8
function [quat, biases] = ahrs(status, gyro, accel, mag) AHRS_UNINIT = 0; AHRS_STEP_PHI = 1; AHRS_STEP_THETA = 2; AHRS_STEP_PSI = 3; persistent ahrs_quat; persistent ahrs_biases; persistent ahrs_rates; persistent ahrs_P; % covariance matrix persistent ahrs_Q; % estimate noise variance ahrs_dt = 0.015625; R = [ 1.3^2 % R is our measurement noise estimate 1.3^2 2.5^2 ]; %R = [ 0.0046^2 % 0.0046^2 % 2.5^2 ]; if (status == AHRS_UNINIT) [ahrs_quat ... ahrs_biases ... ahrs_rates ... ahrs_P ... ahrs_Q ] = ahrs_init(gyro, accel, mag); else [ahrs_quat ... ahrs_rates... ahrs_P] = ahrs_predict(ahrs_P, ahrs_Q, gyro, ahrs_quat, ahrs_biases,... ahrs_dt); if (status == AHRS_STEP_PHI) measure = phi_of_accel(accel); estimate = phi_of_quat(ahrs_quat); C = get_dphi_dq(ahrs_quat); elseif (status == AHRS_STEP_THETA) measure = theta_of_accel(accel); estimate = theta_of_quat(ahrs_quat); C = get_dtheta_dq(ahrs_quat); elseif (status == AHRS_STEP_PSI) phi = phi_of_quat(ahrs_quat); theta = theta_of_quat(ahrs_quat); measure = psi_of_mag(mag, phi, theta); estimate = psi_of_quat(ahrs_quat); C = get_dpsi_dq(ahrs_quat); end; error = measure - estimate; [ahrs_quat ... ahrs_biases ... ahrs_P] = ahrs_update(C, error, R(status), ahrs_P, ahrs_quat, ... ahrs_biases); end; quat = ahrs_quat; biases = ahrs_biases; % % % Initialisation % % function [quat, biases, rates, P, Q] = ahrs_init(gyro, accel, mag) phi = phi_of_accel(accel); theta = theta_of_accel(accel); psi = psi_of_mag(mag, phi, theta); quat = quat_of_eulers([phi, theta, psi]); biases = gyro; rates = [0 0 0]'; P = [ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; qg = 8e-03; %qg = 1e-04; Q = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 qg 0 0 0 0 0 0 0 qg 0 0 0 0 0 0 0 qg ]; % % % Prediction % % function [quat_out, rates_out, P_out] = ahrs_predict(P_in, Q_in, ... gyro, quat_in, biases, ... dt) rates_out = gyro - biases; p = rates_out(1); q = rates_out(2); r = rates_out(3); omega = 0.5 * [ 0 -p -q -r p 0 r -q q -r 0 p r q -p 0 ]; quat_dot = omega * quat_in; quat_out = quat_in + quat_dot * dt; quat_out = normalize_quat(quat_out); % F is the Jacobian of Xdot with respect to the states q0 = quat_out(1); q1 = quat_out(2); q2 = quat_out(3); q3 = quat_out(4); F = 0.5 * [ 0 -p -q -r q1 q2 q3 p 0 r -q -q0 q3 -q2 q -r 0 p -q3 -q0 q1 r q -p 0 q2 -q1 -q0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; P_dot = F * P_in + P_in * F' + Q_in; P_out = P_in + P_dot * dt; % % % Update % % function [quat_out, biases_out, P_out] = ahrs_update(C, err, R, P_in, ... quat_in, biases_in) E = C * P_in * C' + R; K = P_in * C' * inv(E); P_out = P_in - K * C * P_in; X = [quat_in' biases_in']'; X = X + K *err; quat_out = [X(1) X(2) X(3) X(4)]'; biases_out = [X(5) X(6) X(7)]'; quat_out = normalize_quat(quat_out); % % Jacobian of the measurements to the system states. % function [C] = get_dphi_dq(quat) dcm = dcm_of_quat(quat); phi_err = 2 / (dcm(3,3)^2 + dcm(2,3)^2); q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); C = [ (q1 * dcm(3,3)) * phi_err (q0 * dcm(3,3) + 2 * q1 * dcm(2,3)) * phi_err (q3 * dcm(3,3) + 2 * q2 * dcm(2,3)) * phi_err (q2 * dcm(3,3)) * phi_err 0 0 0 ]'; function [C] = get_dtheta_dq(quat) dcm = dcm_of_quat(quat); theta_err = 2 / sqrt(1 - dcm(1,3)^2); q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); C = [ q2 * theta_err -q3 * theta_err q0 * theta_err -q1 * theta_err 0 0 0 ]'; function [C] = get_dpsi_dq(quat) dcm = dcm_of_quat(quat); psi_err = 2 / (dcm(1,1)^2 + dcm(1,2)^2); q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); C = [ (q3 * dcm(1,1)) * psi_err (q2 * dcm(1,1)) * psi_err (q1 * dcm(1,1) + 2 * q2 * dcm(1,2)) * psi_err (q0 * dcm(1,1) + 2 * q3 * dcm(1,2)) * psi_err 0 0 0 ]';
github
shuoli-robotics/ppzr-master
range_meter_accel_kalman.m
.m
ppzr-master/sw/logalizer/matlab/range_meter_accel_kalman.m
2,603
utf_8
e73c363bd661f2f111583fc707bf8fde
% % % % function [sys,x0,str,ts] = range_meter_accel_kalman(t,x,u,flag) period = 0.015625; persistent X; % state (Z, Zdot, Zdotdot) persistent P; % error covariance switch flag, %%%%%%%%%%%%%%%%%% % Initialization % %%%%%%%%%%%%%%%%%% case 0, X=[0. 0. 0.]'; P=[1. 0. 0. 0. 1. 0. 0. 0. 1.]; [sys,x0,str,ts]=mdlInitializeSizes(period); %%%%%%%%%% % Update % %%%%%%%%%% case 2, sys=[]; %%%%%%%%%%% % Outputs % %%%%%%%%%%% case 3, accel = u(1) - 9.81; rangemeter = u(2); % state transition model F = [1. period 0. 0. 1. period 0. 0. 1. ]; % control-input model B = [0]; % process noise covariance Q = [period^4/4 period^3/2 period^2/2 period^3/2 period^2 period period^2/2 period 1.]; % observation model H_a = [0 0 1]; % observation noise covariance R_a = [.01]; % observation model H_r = [1 0 0]; % observation noise covariance R_r = [.0025]; % predict X = F*X; % + B*u P = F*P*F'+ Q; % update rangemeter err = rangemeter - H_r*X; S = H_r*P*H_r' + R_r; K = P*H_r'*inv(S); X = X + err * K; P = (eye(3,3) - K*H_r)*P; % update accel err = accel - H_a*X; S = H_a*P*H_a' + R_a; K = P*H_a'*inv(S); X = X + err * K; P = (eye(3,3) - K*H_a)*P; sys = [X(3) X(2) X(1)]; case 9, sys=[]; %%%%%%%%%%%%%%%%%%%% % Unexpected flags % %%%%%%%%%%%%%%%%%%%% otherwise error(['Unhandled flag = ',num2str(flag)]); end % end sfuntmpl % %============================================================================= % mdlInitializeSizes % Return the sizes, initial conditions, and sample times for the S-function. %============================================================================= % function [sys,x0,str,ts]=mdlInitializeSizes (period) % % call simsizes for a sizes structure, fill it in and convert it to a % sizes array. % % Note that in this example, the values are hard coded. This is not a % recommended practice as the characteristics of the block are typically % defined by the S-function parameters. % sizes = simsizes; sizes.NumContStates = 0; sizes.NumDiscStates = 0; sizes.NumOutputs = 3; sizes.NumInputs = 2; sizes.DirFeedthrough = 1; sizes.NumSampleTimes = 1; % at least one sample time is needed sys = simsizes(sizes); % % initialize the initial conditions % x0 = []; % % str is always an empty matrix % str = []; % % initialize the array of sample times % ts = [period 0]; % end mdlInitializeSizes
github
shuoli-robotics/ppzr-master
psi_of_quat.m
.m
ppzr-master/sw/logalizer/matlab/psi_of_quat.m
205
utf_8
821c1b678bcc85fbf97dd6fe3a1b3e3d
% % initialise euler angles from a quaternion % function [psi] = psi_of_quat(quat) q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); psi = atan2(2*(q1*q2 + q0*q3), (q0^2 + q1^2 - q2^2 - q3^2));
github
shuoli-robotics/ppzr-master
phi_of_quat.m
.m
ppzr-master/sw/logalizer/matlab/phi_of_quat.m
205
utf_8
577a048517be0669ac35e0f7fc8f3b30
% % initialise euler angles from a quaternion % function [phi] = phi_of_quat(quat) q0 = quat(1); q1 = quat(2); q2 = quat(3); q3 = quat(4); phi = atan2(2*(q2*q3 + q0*q1), (q0^2 - q1^2 - q2^2 + q3^2));
github
shuoli-robotics/ppzr-master
phi_of_accel.m
.m
ppzr-master/sw/logalizer/matlab/phi_of_accel.m
175
utf_8
7f341eaa185852c295e0a3d39219d885
% % returns roll angle from an accelerometer reading % under assumption that acceleration is vertical % function [phi] = phi_of_accel(accel) phi = atan2(accel(2), accel(3));
github
shuoli-robotics/ppzr-master
dcm_of_eulers.m
.m
ppzr-master/sw/logalizer/matlab/dcm_of_eulers.m
607
utf_8
d49ff8d4658100d798e02d14b725d7b8
% % initialise a DCM from a set of eulers % function [dcm] = dcm_of_eulers(eulers) phi = eulers(1); theta = eulers(2); psi = eulers(3); dcm00 = cos(theta) * cos(psi); dcm01 = cos(theta) * sin(psi); dcm02 = -sin(theta); dcm10 = sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi); dcm11 = sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi); dcm12 = sin(phi) * cos(theta); dcm20 = cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi); dcm21 = cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi); dcm22 = cos(phi) * cos(theta); dcm = [ dcm00 dcm01 dcm02 dcm10 dcm11 dcm12 dcm20 dcm21 dcm22 ];
github
shuoli-robotics/ppzr-master
psi_of_mag.m
.m
ppzr-master/sw/logalizer/matlab/psi_of_mag.m
1,076
utf_8
04a2ed36a67c0a29c793684357f7f95d
% % return yaw angle from a magnetometer reading, knowing roll and pitch % % The rotation matrix to rotate from NED frame to body frame without % rotating in the yaw axis is: % % [ 1 0 0 ] [ cos(Theta) 0 -sin(Theta) ] % [ 0 cos(Phi) sin(Phi) ] [ 0 1 0 ] % [ 0 -sin(Phi) cos(Phi) ] [ sin(Theta) 0 cos(Theta) ] % % This expands to: % % [ cos(Theta) 0 -sin(Theta) ] % [ sin(Phi)*sin(Theta) cos(Phi) sin(Phi)*cos(Theta)] % [ cos(Phi)*sin(Theta) -sin(Phi) cos(Phi)*cos(Theta)] % % However, to untilt the compass reading, we need to use the % transpose of this matrix. % % [ cos(Theta) sin(Phi)*sin(Theta) cos(Phi)*sin(Theta) ] % [ 0 cos(Phi) -sin(Phi) ] % [ -sin(Theta) sin(Phi)*cos(Theta) cos(Phi)*cos(Theta) ] % function [psi] = psi_of_mag(mag, phi, theta) mn = cos(theta) * mag(1)+ ... sin(phi) * sin(theta) * mag(2)+ ... cos(phi) * sin(theta) * mag(3); me = cos(phi)* mag(2) + ... -sin(phi) * mag(3); psi = -atan2( me, mn );
github
shuoli-robotics/ppzr-master
normalize_quat.m
.m
ppzr-master/sw/logalizer/matlab/normalize_quat.m
84
utf_8
059325b9c340c1295d2d86b71c7f0d02
function [quat_out] = normalize_quat(quat_in) quat_out = quat_in / norm(quat_in);
github
shuoli-robotics/ppzr-master
plot_prop.m
.m
ppzr-master/sw/logalizer/matlab/plot_prop.m
1,636
utf_8
a1b37b753e6331884f03d5edc92a7ad1
% % plot a serie of measures realised with the black 10*4.5 prop % function [] = plot_prop() rpm = [ 2800 3350 3720 4450 5250 ]; thrust_g = [ 122 175 219 310 445 ]; torque_g = [ 10 16 19 26 44 ]; omega = rpm / 60 * 2 * pi; omega_square = omega.^2; thrust_n = thrust_g .* ( 9.81 / 1000 ); torque_n = torque_g .* ( 9.81 / 1000 ); K = fminsearch(@lin_model, [1, 1]); Kt = K(1); Kq = K(2); % F = 0.5 * rho * prop_area * ct * prop_rad^2 * omega^2 rho = 1.225; prop_area = 0.005; prop_rad = 0.125; Ct = Kt / (0.5 * rho * prop_area * prop_rad^2) Cq = Kq / (0.5 * rho * prop_area * prop_rad^2) plot(omega_square, thrust_n, ... omega_square, Kt * omega_square, ... omega_square, torque_n, ... omega_square, Kq * omega_square ) title('Propeller caracterisation (EPP 10*4.5)'); legend('thrust', 'fitted thrust', 'torque', 'fitted torque'); xlabel('omega square in rad^2/s^2'); ylabel('forces in N'); tb = annotation('textbox', [0.2 0.65 0.1 0.1]); set(tb, 'String', ... [sprintf('Thrust = %.2e * omega^2 ( Ct = %.2e )\n\n', Kt, Ct) ... sprintf('Torque = %.2e * omega^2 ( Cq = %.2e )', Kq, Cq)], ... 'FitHeightToText', 'on' ); function [sse] = lin_model(params) Kt = params(1); Kq = params(2); fitted_thrust = Kt * omega_square; fitted_torque = Kq * omega_square; err_t = fitted_thrust - thrust_n; err_q = fitted_torque - torque_n; sse = sum(err_t .^ 2) + sum(err_q .^ 2); end end
github
shuoli-robotics/ppzr-master
eulers_ahrs.m
.m
ppzr-master/sw/logalizer/matlab/eulers_ahrs.m
3,448
utf_8
ff18ecc6efcad8ecea4cb1c04b4153e3
function [eulers, biases] = eulers_ahrs(status, gyro, accel, mag, dt) AHRS_UNINIT = 0; AHRS_PREDICT = 1; AHRS_UPDATE_PHI = 2; AHRS_UPDATE_THETA = 3; AHRS_UPDATE_PSI = 4; persistent ahrs_eulers; persistent ahrs_biases; persistent ahrs_rates; persistent ahrs_P; if (status == AHRS_UNINIT) [ahrs_eulers ahrs_biases ahrs_rates ahrs_P] = ahrs_init(gyro, accel, mag); else [ahrs_eulers, ahrs_rates, ahrs_P] = ahrs_predict(gyro, ahrs_P, ... ahrs_eulers, ... ahrs_rates, ahrs_biases, dt); if (status >= AHRS_UPDATE_PHI) [ahrs_eulers, ahrs_biases, ahrs_P] = ahrs_update(status, accel, mag, ... ahrs_P, ahrs_eulers, ahrs_biases); end end eulers = ahrs_eulers; biases = ahrs_biases; % % % Initialisation % % function [eulers, biases, rates, P] = ahrs_init(gyro, accel, mag) eulers(1, 1) = phi_of_accel(accel); eulers(2, 1) = theta_of_accel(accel); eulers(3, 1) = psi_of_mag(mag, eulers(1), eulers(2)); biases = gyro; rates = [0 0 0]'; P = [ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; % % % Prediction % % function [eulers_out, rates_out, P_out] = ahrs_predict(gyro, P_in, ... eulers_in, rates_in, biases, ... dt) rates_out = gyro - biases; phi = eulers_in(1); theta = eulers_in(2); psi = eulers_in(3); p = rates_out(1); q = rates_out(2); r = rates_out(3); rted = [ 1 sin(phi)*tan(theta) cos(phi)*tan(theta) 0 cos(phi) -sin(phi) 0 sin(phi)/cos(theta) cos(phi)/cos(theta) ]; eulers_dot = rted * (rates_out + rates_in)/2; eulers_out = eulers_in + eulers_dot * dt; d_phidot_d_state = [ cos(phi)*tan(theta)*q - sin(phi)*tan(theta)*r 1/(1+theta^2) * (sin(phi)*q+cos(phi)*r) 0 -1 -sin(phi)*tan(theta) -cos(phi)*tan(theta) ]'; d_thetadot_d_state = [ -sin(phi)*q - cos(phi)*r 0 0 0 -cos(phi) sin(phi) ]'; d_psidot_d_state = [ cos(phi)/cos(theta)*q - sin(phi)/cos(theta)*r sin(theta)/cos(theta)^2*(sin(phi)*q+cos(phi)*r) 0 0 -sin(phi)/cos(theta) -cos(phi)/cos(theta) ]'; % jacobian of state_dot wrt state F = [ d_phidot_d_state d_thetadot_d_state d_psidot_d_state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; % estimate noise covariance Q = 8e-3 * [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ]; P_dot = F * P_in + P_in * F' + Q; P_out = P_in + P_dot * dt; % % % Update % % function [eulers_out, biases_out, P_out] = ahrs_update(status, accel, mag, ... P_in, eulers_in, biases_in) if (status == 2)%AHRS_UPDATE_PHI) measure = phi_of_accel(accel); estimate = eulers_in(1); H = [ 1 0 0 0 0 0 ]; R = 1.3^2; elseif (status == 3)%AHRS_UPDATE_THETA) measure = theta_of_accel(accel); estimate = eulers_in(2); H = [ 0 1 0 0 0 0 ]; R = 1.3^2; elseif (status == 4)%AHRS_UPDATE_PSI) measure = psi_of_mag(mag, eulers_in(1), eulers_in(2)); estimate = eulers_in(3); H = [ 0 0 1 0 0 0 ]; R = 2.5^2; end %R = [ 1.3^2 % R is our measurement noise estimate % 1.3^2 % 2.5^2 ]; E = H * P_in * H' + R; K = P_in * H' * inv(E); P_out = P_in - K * H * P_in; X = [eulers_in' biases_in']'; error = measure - estimate; X = X + K * error; eulers_out = [X(1) X(2) X(3)]'; biases_out = [X(4) X(5) X(6)]';
github
shuoli-robotics/ppzr-master
eulers_of_quat.m
.m
ppzr-master/sw/airborne/test/ahrs/plot/eulers_of_quat.m
789
utf_8
e5d898a1c84e280d2b3097f8a270c990
%% EULERS OF QUATERNION % % [euler] = eulers_of_quat(quat) % % transposes a quaternion to euler angles function [euler] = eulers_of_quat(quat) algebra_common; if size(quat)(2)==4 quat = quat'; transpose = 1; end dcm00 = 1.0 - 2*(quat(Q_QY,:).*quat(Q_QY,:) + quat(Q_QZ,:).*quat(Q_QZ,:)); dcm01 = 2*(quat(Q_QX,:).*quat(Q_QY,:) + quat(Q_QI,:).*quat(Q_QZ,:)); dcm02 = 2*(quat(Q_QX,:).*quat(Q_QZ,:) - quat(Q_QI,:).*quat(Q_QY,:)); dcm12 = 2*(quat(Q_QY,:).*quat(Q_QZ,:) + quat(Q_QI,:).*quat(Q_QX,:)); dcm22 = 1.0 - 2*(quat(Q_QX,:).*quat(Q_QX,:) + quat(Q_QY,:).*quat(Q_QY,:)); phi = atan2( dcm12, dcm22 ); theta = -asin( dcm02 ); psi = atan2( dcm01, dcm00 ); euler = [phi; theta; psi]; if transpose euler = euler'; end endfunction
github
shuoli-robotics/ppzr-master
unwrap.m
.m
ppzr-master/sw/airborne/test/ahrs/plot/unwrap.m
360
utf_8
88eb2f76dedb25dfbdeb635ff1af9f1e
%% unwrap % % [unwraped] = unwrap(wraped) % % function [unwraped] = unwrap(wraped) unwraped = zeros(length(wraped), 1); cnt = 0; for i=2:length(wraped) dif = wraped(i) - wraped(i-1); if (dif > pi/2) cnt=cnt-1; elseif (dif <-pi/2) cnt=cnt+1; end unwraped(i) = wraped(i)+2*pi*cnt; end endfunction
github
shuoli-robotics/ppzr-master
deg_of_rad.m
.m
ppzr-master/sw/airborne/test/ahrs/plot/deg_of_rad.m
124
utf_8
b8cf99172588f77a253dd84982a9d2e7
%% degres of radians % % [deg] = deg_of_rad(rad) % % function [deg] = deg_of_rad(rad) deg = rad * 180 / pi; endfunction
github
wpisailbot/boat-master
MovableBallastSimulation.m
.m
boat-master/control/matlab/MovableBallastSimulation.m
8,602
utf_8
6afbd0132248cfbb2917460b1eed281a
function MovableBallastSimulation(x0, phigoal) global Vmax ka ks kssq ku kf J Jmb rightingweight; global Kfast Kslow pgoal; pgoal = phigoal; stage1 = 16/64; stage2 = 16/64; G = stage1 * stage2; Vmax = 12; mbmass = 10; J = 12 * 1.2^2; % kg * m^2 Jmb = mbmass * .7^2; % kg * m^2 MBMotorStallTorque = 9.8 / G; % N-m MBMotorStallCurrent = 28; % Amps MBMotorFreeCurrent = 5; % Amps MBMotorFreeSpeed = 86 * 2 * pi / 60 * G; % rad / sec MBmaxAngle = 45; rightingweight = mbmass * 9.8; % N ka = 120 * 1.2 / J; %torque of keel when heeled at 90 deg (1 / s^2) %ka = 60 * 1.2; % drag of keel % Multiplying by radius thrice: twice for rotation->real velocity; once for force->torque % 0.5 * rho * area * C(=1) * u_0(=nominal velocity=nom rot vel * nom radius) * nom radius * nom radius / J % = kg / m^3 * m^2 * m / s * m^2 / (kg * m^2) = 1 / sec nom_rad = 0.8; nom_vel = 1.0; kssq = 0.5 * 1000 * 0.2 * 1 * nom_rad^3 / J; ks = kssq * nom_vel; % V = IR + omega / Kv % alpha = KtI / J % alpha = Kt (V - omega / Kv) / (R * J) % ku = Kt / (R * J) % kf = Kt / (Kv * R * J) % Kt = stall_torque * J / stall_cur % R = nominal_volts / stall_cur % Kv = free_speed / (nominal_volts - free_cur * R) Kt = MBMotorStallTorque * Jmb / MBMotorStallCurrent; R = Vmax / MBMotorStallCurrent; Kv = MBMotorFreeSpeed / (Vmax - MBMotorFreeCurrent * R); ku = Kt / (R * Jmb); %voltage effect on arm acceleration kf = Kt / (Kv * R * Jmb); %frictional resistance to arm acceleration xgoal = desx(phigoal) xnaught = xgoal; xnaught(1) = -0.5; [A, B, ~, Aslow, Bslow, ~] = linsys(xnaught) Aslow Bslow % For this, xslow = [phi, phidot, phiddot], uslow = [phidddot] Aslow = [0 1 0; 0 0 1; 0 0 0]; Bslow = [0; 0; 1]; ctr = rank(ctrb(A, B)) [vecA, eigA] = eig(A) [vecAslow, eigAslow] = eig(Aslow) K = lqr(A, B, diag([100.1 10.0 1.0 1.0]), [1e0]) Kfast = 15.1; Kslow = lqr(Aslow, Bslow, diag([100 100 10]), [0.1]) %Kslow = place(Aslow, Bslow, [-10, -2, -3]) %Kslow(1) = 0; %Kslow = [0 -0.1 -0.00] eigABK = eig(A - B * K) [vecABKslow, eigABKslow] = eig(Aslow - Bslow * Kslow) f = @(t, x) full_dyn(x, utrans(x, K * (xgoal - x)), t); %fsplit = @(t, x) full_dyn(x, utrans(x, Kfast * (Kslow * (xgoal([1 3 4]) - x([1 3 4])) - x(2))), t); %f = @(t, x) simple_dyn(x, K * (xgoal - x)); %f = @(t, x) A * x + B * K * (xgoal - x); %[ts, xs] = ode45(f, [0 30], x0); %[ts, xs] = ode45(fsplit, [0 10], x0); [ts, xs] = ode45(@call_flin_ctrl, [0 3], x0); uprimes = K * (repmat(xgoal, 1, length(ts)) - xs'); gammadotdes = Kslow * (repmat(xgoal([1 3 4]), 1, length(ts)) - xs(:, [1 3 4])'); uprimes = Kfast * (gammadotdes - xs(:, 2)'); jerks = []; phiddots = []; for i = 1:numel(ts) [xdot, jerk, gdot, gddot, ~] = fully_flin_control(ts(i), xs(i, :)); jerks(i) = jerk; gammadotdes(i) = gdot; uprimes(i) = gddot; phiddots(i) = xdot(4); end subplot(221); plot(ts, [xs(:, [1 2]) gammadotdes']); ylim([-1.5, 1.5]) legend('\gamma', 'gammadot', 'gammadotdes'); subplot(222); plot(ts, [xs(:, [3 4]), phiddots']); legend('\phi', 'phidot', 'phiaccel'); subplot(223); plot(ts, [uprimes' jerks']); legend('gammaddot', 'jerks'); title('Control Inputs'); subplot(224); for i = 1:length(ts) u(i) = max(min(utrans(xs(i, :), uprimes(i)), Vmax), -Vmax); end plot(ts, u); title('u'); end % Compute righting moment for given phi/gamma function tau = MBRight(phi, gamma) global rightingweight; [tau, ~, ~] = calcMBRightingMoment(phi, gamma, rightingweight); end % Compute motor load from ballast for given phi/gamma function tau = MBTorque(phi, gamma) global rightingweight; % Stage values are dealt with later... tau = calcMBTorque(phi, gamma, 1, 1, rightingweight); end function xdot = call_flin_ctrl(t, x) [xdot, ~, ~, ~, ~] = fully_flin_control(t, x); end function [xdot, phijerk, gammadot_des, gammaddot, u] = fully_flin_control(t, x) global Kfast Kslow pgoal; % Extract phiddot so that we can work with it. xdot = full_dyn(x, 0, t, 0); gamma = x(1); gammadot = x(2); phi = x(3); phidot = x(4); phiddot = xdot(4); phigoal = pgoal; if t > 20 phigoal = -pgoal; end phijerk = Kslow * ([phigoal; 0; 0] - [phi; phidot; phiddot]); gammadot_des = gammainv(gamma, [phi; phidot; phiddot; phijerk]); % If we just want to try feed-forwardsing it. %gammadot_des = 1 * (sign(phigoal) - gamma); gammaddot = Kfast * (gammadot_des - gammadot); u = utrans(x, gammaddot); xdot = full_dyn(x, u, t, 0); end % State vector is of form [gamma, gammadot, phi, phidot] % Full dynamics, with u as motor voltage function xdot = full_dyn(x, u, t, do_jerk) global ka ks kssq ku kf J Jmb Vmax; u = max(min(u, Vmax), -Vmax); gamma = x(1); gammadot = x(2); phi = x(3); phidot = x(4); D0 = 100; D = D0; Ddot = 0; if t > 20 && t < 21 D = D0 * 2 * (20.5 - t); Ddot = -2 * D0; elseif t > 21 D = -D0; end D = D * cos(phi); Ddot = Ddot * cos(phi) - D * sin(phi) * phidot; phiddot = -ka * sin(phi) - kssq * phidot * abs(phidot) + (MBRight(phi, gamma) + D) / J; phijerk = calcjerk(x, D, Ddot); gammaddot = ku * u - kf * gammadot + MBTorque(phi, gamma) / Jmb; if gamma > pi / 2 gammadot = min(gammadot, 0); elseif gamma < -pi / 2 gammadot = max(gammadot, 0); end xdot = [gammadot; gammaddot; phidot; phiddot]; if exist('do_jerk') && do_jerk == 1 xdot = [xdot; phijerk]; end end % Compute dynamics, but with uprime (gammaddot) instead of u function xdot = simple_dyn(x, uprime) global ka ks ku kf J; gamma = x(1); gammadot = x(2); phi = x(3); phidot = x(4); D = 00; phiddot = -ka * sin(phi) - ks * phidot + (MBRight(phi, gamma) + D) / J; gammaddot = uprime; xdot = [gammadot; gammaddot; phidot; phiddot]; end % Compute u at some given x and desired gammaddot function u = utrans(x, gammaddot_des) global ka ks ku kf Jmb; gamma = x(1); gammadot = x(2); phi = x(3); u = (gammaddot_des - MBTorque(phi, gamma) / Jmb + kf * gammadot) / ku; end function phijerk = calcjerk(x, D, Ddot) global ka rightingweight kssq J; gamma = x(1); gammadot = x(2); phi = x(3); phidot = x(4); [R, dRdphi, dRdgamma] = calcMBRightingMoment(phi, gamma, rightingweight); phiaccel = -ka * sin(phi) - kssq * phidot * abs(phidot) + (R + D) / J; phijerk = -ka * cos(phi) * phidot - 2 * kssq * abs(phidot) * phiaccel + (dRdphi * phidot + dRdgamma * gammadot + Ddot) / J; end % Compute appropriate gammadot for a given phidddot % phis = [phi, phidot, phiddot, phidddot] function gammadot = gammainv(gamma, phis) global ka rightingweight kssq J; phi = phis(1); phidot = phis(2); phiaccel = phis(3); phijerk = phis(4); % phiddot = -ka * sin(phi) - kssq * phidot * abs(phidot) + (MBRight(phi, gamma) + D) / J; % phijerk = -ka cos(phi) phidot - 2 kssq abs(phidot) phiddot + (dR/dphi phidot + dR/dgamma gammadot + Ddot) / J % gammadot = ((phijerk + ka cos(phi) phidot + 2 kssq abs(phidot) phiddot) J - Ddot - dR/dphi phidot) / (dR/dgamma) % Note that for dR/dgamma near zero, explodes [~, dRdphi, dRdgamma] = calcMBRightingMoment(phi, gamma, rightingweight); % Clip the edges and prevent singularities % TODO(james): Prevent going past max righting moment points. dRdgamma = min(dRdgamma, -0.01); % Ddot = 0 gammadot = ((phijerk + ka * cos(phi) * phidot + 2 * kssq * abs(phidot) * phiaccel) * J - 0 - dRdphi * phidot) / dRdgamma; end % Compute linearized system as function of uprime function [A, B, c, Aslow, Bslow, cslow] = linsys(x0); global ka ks ku kf J; % Start with clearly linear terms, then figure out MBRight % Note that we account for gammaddot in uprime, so zero out kf. A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -ka -ks]; B = [0; 1; 0; 0]; % Compute constant term (c) c = simple_dyn(x0, 0); Aright = jacobian(@(y) MBRight(y(1), y(2)), x0([3 1])); A(4, [3 1]) = A(4, [3 1]) + Aright; % The "slow" components of the system, where we % now treat gammadot as an input. slow = [1 3 4]; Aslow = A(slow, slow); Bslow = [1; 0; 0]; cslow = c(slow); end % Compute needed x for a desired phi % u will be zero at equilibrium because gammaddot=0. function [x] = desx(phi) foptions = optimoptions('fsolve', 'MaxFunctionEvaluations', 100000, 'Display', 'Off', 'Algorithm', 'levenberg-marquardt'); gamma = fsolve(@(gam) simple_dyn([gam; 0; phi; 0], 0), 0, foptions); x = [gamma; 0; phi; 0]; end % Invert the computation of the movable ballast righting moment function [gamma] = invright(desright, curphi) global rightingweight % TODO: Do this cleanly gamma = fsolve(@(gam) calcMBRightingMoment(curphi, gamma, rightingweight), 0, optimset('Display', 'off')); end
github
Yadaizi/LLC-image-classification-master
sp_find_sift_grid.m
.m
LLC-image-classification-master/sift/sp_find_sift_grid.m
4,187
utf_8
029daeb5a3d4d49bb26b0e1a64cc4b97
function sift_arr = sp_find_sift_grid(I, grid_x, grid_y, patch_size, sigma_edge) % parameters num_angles = 8; num_bins = 4; num_samples = num_bins * num_bins; alpha = 9; if nargin < 5 sigma_edge = 1; end angle_step = 2 * pi / num_angles; angles = 0:angle_step:2*pi; angles(num_angles+1) = []; % bin centers [hgt wid] = size(I); num_patches = numel(grid_x); sift_arr = zeros(num_patches, num_samples * num_angles); [G_X,G_Y]=gen_dgauss(sigma_edge); I_X = filter2(G_X, I, 'same'); % vertical edges I_Y = filter2(G_Y, I, 'same'); % horizontal edges I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude I_theta = atan2(I_Y,I_X); I_theta(find(isnan(I_theta))) = 0; % necessary???? % make default grid of samples (centered at zero, width 2) interval = 2/num_bins:2/num_bins:2; interval = interval - (1/num_bins + 1); [sample_x sample_y] = meshgrid(interval, interval); sample_x = reshape(sample_x, [1 num_samples]); sample_y = reshape(sample_y, [1 num_samples]); % make orientation images I_orientation = zeros(hgt, wid, num_angles); % for each histogram angle for a=1:num_angles % compute each orientation channel tmp = cos(I_theta - angles(a)).^alpha; tmp = tmp .* (tmp > 0); % weight by magnitude I_orientation(:,:,a) = tmp .* I_mag; end % for all patches for i=1:num_patches r = patch_size/2; cx = grid_x(i) + r - 0.5; cy = grid_y(i) + r - 0.5; % find coordinates of sample points (bin centers) sample_x_t = sample_x * r + cx; sample_y_t = sample_y * r + cy; sample_res = sample_y_t(2) - sample_y_t(1); % find window of pixels that contributes to this descriptor x_lo = grid_x(i); x_hi = grid_x(i) + patch_size - 1; y_lo = grid_y(i); y_hi = grid_y(i) + patch_size - 1; % find coordinates of pixels [sample_px, sample_py] = meshgrid(x_lo:x_hi,y_lo:y_hi); num_pix = numel(sample_px); sample_px = reshape(sample_px, [num_pix 1]); sample_py = reshape(sample_py, [num_pix 1]); % find (horiz, vert) distance between each pixel and each grid sample dist_px = abs(repmat(sample_px, [1 num_samples]) - repmat(sample_x_t, [num_pix 1])); dist_py = abs(repmat(sample_py, [1 num_samples]) - repmat(sample_y_t, [num_pix 1])); % find weight of contribution of each pixel to each bin weights_x = dist_px/sample_res; weights_x = (1 - weights_x) .* (weights_x <= 1); weights_y = dist_py/sample_res; weights_y = (1 - weights_y) .* (weights_y <= 1); weights = weights_x .* weights_y; % % make sure that the weights for each pixel sum to one? % tmp = sum(weights,2); % tmp = tmp + (tmp == 0); % weights = weights ./ repmat(tmp, [1 num_samples]); % make sift descriptor curr_sift = zeros(num_angles, num_samples); for a = 1:num_angles tmp = reshape(I_orientation(y_lo:y_hi,x_lo:x_hi,a),[num_pix 1]); tmp = repmat(tmp, [1 num_samples]); curr_sift(a,:) = sum(tmp .* weights); end sift_arr(i,:) = reshape(curr_sift, [1 num_samples * num_angles]); % % visualization % if sigma_edge >= 3 % subplot(1,2,1); % rescale_and_imshow(I(y_lo:y_hi,x_lo:x_hi) .* reshape(sum(weights,2), [y_hi-y_lo+1,x_hi-x_lo+1])); % subplot(1,2,2); % rescale_and_imshow(curr_sift); % pause; % end end function G=gen_gauss(sigma) if all(size(sigma)==[1, 1]) % isotropic gaussian f_wid = 4 * ceil(sigma) + 1; G = fspecial('gaussian', f_wid, sigma); % G = normpdf(-f_wid:f_wid,0,sigma); % G = G' * G; else % anisotropic gaussian f_wid_x = 2 * ceil(sigma(1)) + 1; f_wid_y = 2 * ceil(sigma(2)) + 1; G_x = normpdf(-f_wid_x:f_wid_x,0,sigma(1)); G_y = normpdf(-f_wid_y:f_wid_y,0,sigma(2)); G = G_y' * G_x; end function [GX,GY]=gen_dgauss(sigma) % laplacian of size sigma %f_wid = 4 * floor(sigma); %G = normpdf(-f_wid:f_wid,0,sigma); %G = G' * G; G = gen_gauss(sigma); [GX,GY] = gradient(G); GX = GX * 2 ./ sum(sum(abs(GX))); GY = GY * 2 ./ sum(sum(abs(GY)));
github
erlichlab/elutils-master
test_nonblocking.m
.m
elutils-master/+net/test_nonblocking.m
617
utf_8
8e2a79f129ba256b08ce855cf41c2630
function zmqlistener = test_nonblocking() zmqlistener = timer(); zmqlistener.StartFcn = @setup_zmq; zmqlistener.TimerFcn = @wait_for_msg; zmqlistener.ExecutionMode = 'fixedSpacing'; zmqlistener.BusyMode = 'drop'; zmqlistener.Period = 2; zmqlistener.TasksToExecute = +inf; zmqlistener.StartDelay = 0.1; start(zmqlistener) end function setup_zmq(obj,event) obj.userdata = net.zmqsub('hammer'); end function wait_for_msg(obj,event) sub = obj.userdata; [addr, data] = sub.recvjson(); if ~isempty(data) disp(data) else disp('no data') end end
github
erlichlab/elutils-master
zmqhelper.m
.m
elutils-master/+net/zmqhelper.m
5,299
utf_8
66a815982b07bdab722a7ad311761f8b
classdef zmqhelper < handle % The ZMQHandler class is a wrapper for the jeromq java class. % % properties url socktype socket subscriptions end methods function obj = zmqhelper(varargin) if nargin == 0 help(mfilename) end inpd = @utils.inputordefault; obj.socktype = inpd('type', 'pub', varargin); obj.url = inpd('url', [], varargin); obj.subscriptions = inpd('subscriptions', [], varargin); if isempty(obj.url) obj.url = net.zmqhelper.loadconf(obj.socktype); end import org.zeromq.ZMQ; context = ZMQ.context(1); obj.socket = context.socket(ZMQ.(upper(obj.socktype))); %obj.socket.HEARTBEAT_INTERVAL = 60000; % seems not available in jeromq obj.socket.connect(obj.url); % This assumes you want to use connect. if you want to bind... you are an advanced user. Do it yourself. if ~isempty(obj.subscriptions) for sx = 1:numel(obj.subscriptions) obj.socket.subscribe(uint8(obj.subscriptions{sx})); end end end function out = sendkv(obj, key, value) msg = uint8(sprintf('%s %s',key, json.mdumps(value))); out = send(obj.socket, msg); end function out = sendmsg(obj, msg) out = send(obj.socket, uint8(msg)); end function out = sendbytes(obj, msg) out = obj.socket.send(msg); end function [key, val] = recvkv(obj) out = char(obj.socket.recvStr(1)); % The one gets msg without blocking [key, tval] = strtok(out, ' '); val = json.mloads(tval(2:end)); end function out = recvmsg(obj) out = char(obj.socket.recvStr(1)); % The one gets msg without blocking end function out = recvbytes(obj) out = obj.socket.recv(1); % The one gets msg without blocking end function [addr, out] = recvjson(obj) msg = recvmsg(obj); % get msg with nonblocking and convert from java string to char if isempty(msg) addr = []; out = []; else [addr, out] = parsejson(msg); end end function out = waitformsg(obj) out = char(obj.socket.recvStr()); % The one gets msg with blocking end function [addr, out] = waitforjson(obj) msg = waitformsg(obj); % get msg with blocking if isempty(msg) addr = []; out = []; else [addr, out] = parsejson(msg); end end function out = waitfordata(obj) out = obj.socket.recv(); % The one gets msg with blocking end end methods (Static) function zmqconf = loadconf(prop, fname) if nargin == 1 fname = '~/.dbconf'; end ini = utils.ini2struct(fname); switch prop case 'pub' zmqconf = sprintf('%s:%d', ini.zmq.url, ini.zmq.pubport); case 'sub' zmqconf = sprintf('%s:%d', ini.zmq.url, ini.zmq.subport); case 'push' zmqconf = sprintf('%s:%d', ini.zmq.url, ini.zmq.pushport); otherwise error('If not using pub or sub you must specify the URL to use.') end end function zpub = getPublisher() % all publishers can share one publisher. persistent localpub; if isempty(localpub) localpub = net.zmqhelper('type','pub'); end zpub = localpub; end function zpub = getPusher() % all publishers can share one publisher. persistent localpush; if isempty(localpush) localpush = net.zmqhelper('type','push'); end zpub = localpush; end function zsub = getSubscriber(subscriptions) if ischar(subscriptions) subscriptions = {subscriptions}; end zsub = net.zmqhelper('type','sub', 'subscriptions',subscriptions); end end % methods end % classdef function [addr, out] = parsejson(msg) try json_start = find(msg=='{',1,"first"); json_end = find(msg=='}',1,"last"); jstr = msg(json_start:json_end); addr = strtrim(msg(1:json_start-1)); %out = json.fromjson(jstr); % decode the json string and return the address and the json object out = jsondecode(jstr); catch me utils.showerror(me) display(msg) addr = []; out = []; end end
github
erlichlab/elutils-master
sig4inv.m
.m
elutils-master/+stats/sig4inv.m
114
utf_8
832d02d929f5449eafd190461040b711
function x=sig4inv(beta,y) %% sig4 y0=beta(1); a=beta(2); x0=beta(3); b=beta(4); x = -b*log((a./(y-y0))-1)+x0;
github
erlichlab/elutils-master
KernelRegressionA.m
.m
elutils-master/+stats/KernelRegressionA.m
4,999
utf_8
dab81ba78e55468e744502b7999bcd76
classdef KernelRegressionA properties baseline_per_trial = false core_kernel % this is the matrix for a single kernel. Will use it as a convolution kernel core_kernel_matrix % This is the core_kernel convolued with the event times. event_times kernel_bin_size = 0.01 % seconds kernel_dof = 50 kernel_duration = 2 % seconds kernel_smoothing = 3 kernel_smoothing_style = 'normal' kernel_weights % The result of the kernel estimation step. spiketimes trial_types trial_weights % The result of the trial weight estimation step weighted_kernel_matrix % core_kernel_matrix multiplied by trial_weights end properties (Dependent) number_of_events kernel_bins kernels % Combine the kernel_weights with core_kernel to get the kernels total_time_steps end methods function obj = KernelRegressionA(e, s, t) obj.event_times = e; obj.spiketimes = s; if nargin < 3 obj.trial_types = col(1:size(e,1)); else obj.trial_types = t; % This allows you to fit fewer than # of trial trial_weights. Eg. if you want to assume the weights on % the same trial type is the same. end obj.trial_weights = ones(numel(unique(obj.trial_types)),1); end function obj = run(obj) generateCoreKernel(obj); generateKernelMatrix(obj); generateCoreWeights(obj); generateWeightMatrix(obj); fit(obj); end function obj = generateCoreKernel(obj) % tested, OK % To do the kernel regression we need a regression matrix to specify % where each element of the kernel influences the firing rate. % We will start with the % assumption that all kernels have the same length: kernel_duration. % Initialize the matrix to be the right size. obj.core_kernel = zeros(obj.kernel_bins, obj.kernel_dof); obj.kernel_weights = ones(size(obj.event_times,2), obj.kernel_dof); % Put ones every where they should be. bins_per_dof = obj.kernel_bins/ obj.kernel_dof; tmpA = repmat(1:obj.kernel_bins:numel(obj.core_kernel),bins_per_dof,1) + (0:(bins_per_dof-1))'; idx = tmpA + (0:bins_per_dof:(obj.kernel_bins-1)); obj.core_kernel(idx(:)) = 1; % Apply smoothing if obj.kernel_smoothing > 0 smooth_factor = obj.kernel_smoothing * bins_per_dof; switch obj.kernel_smoothing_style case 'normal' smooth_krn = normpdf(-(5*smooth_factor):(5*smooth_factor), 0, smooth_factor)'; case 'box' smooth_krn = ones(smooth_factor,1); otherwise error('Do not know how to smooth using %s'); end obj.core_kernel = conv2(obj.core_kernel, smooth_krn, 'same'); obj.core_kernel = obj.core_kernel ./ sum(obj.core_kernel,2); end end function obj = generateKernelMatrix(obj) % Initialize a matrix that is [session_duration / bin_size x # of % kernels * kernel_bins + 1] (the one is for baseline). o if obj.baseline_per_trial % Should baseline be allowed to vary for different trials of the same trial_type? I guess yes. obj.core_kernel_matrix = zeros(obj.total_time_steps, obj.number_of_events*obj.kernel_bins + size(obj.event_times,1)); else obj.core_kernel_matrix = zeros(obj.total_time_steps, obj.number_of_events*obj.kernel_bins + 1); end kernel_matrix = zeros(obj.total_time_steps, obj.number_of_events*obj.kernel_bins); % just for the kernels. Deal with the baseline later % We have a big matrix of zeros. We want to put the core_kernel % everywhere there is an event. Our plan for doing this is to put a 1 % whereever we want the kernel and then convolve this with our % core_kernel. We can then use this to estimate the kernel_weights. row_offset = floor(obj.kernel_bins/2); col_offset = floor(obj.kernel_dof/2); krn_offset = obj.kernel_dof; event_index = floor((obj.event_times - min(obj.event_times(:))) /obj.kernel_bin_size); % Converts event_times to indices row_idx = event_index(:) + row_offset; col_idx = col(repmat((0:(obj.number_of_events-1))*krn_offset,obj.) + idx = sub2ind(size(kernel_matrix), row_idx, col_idx); kernel_matrix(idx) = 1; kernel_matrix = conv2(kernel_matrix, obj.core_kernel, 'same'); end function number_of_events = get.number_of_events(obj) number_of_events = size(obj.event_times, 2); end function total_time_steps = get.total_time_steps(obj) total_time_steps = (max(obj.event_times(:)) - min(obj.event_times(:))) ./ obj.kernel_bin_size + obj.kernel_bins; end function kernel_bins = get.kernel_bins(obj) kernel_bins = obj.kernel_duration/obj.kernel_bin_size; assert(rem(kernel_bins,1)==0, 'The kernel_duration should be an integer multiple of kernel_bin_size'); end function kernels = get.kernels(obj) % tested, OK kernels = obj.kernel_weights * obj.core_kernel'; end end end function y = col(x) y = x(:); end
github
erlichlab/elutils-master
sig4.m
.m
elutils-master/+stats/sig4.m
173
utf_8
ff976a6673d16b218ccb1651af766178
% y=sig4(beta,x) % y0=beta(1); % a=beta(2); % x0=beta(3); % b=beta(4); function y=sig4(beta,x) y0=beta(1); a=beta(2); x0=beta(3); b=beta(4); y=y0+a./(1+ exp(-(x-x0)./b));
github
erlichlab/elutils-master
nanstderr.m
.m
elutils-master/+stats/nanstderr.m
142
utf_8
d09ca0d1a2ee8c2b698c5055f9e29d0e
function y = nanstderr(x,dim) if nargin==1 dim=1; end gd=sum(~isnan(x),dim); y=nanstd(x,0,dim)./sqrt(gd-1); y(y==Inf)=nan; y(gd==0)=nan;
github
erlichlab/elutils-master
cellmean.m
.m
elutils-master/+stats/cellmean.m
326
utf_8
3582f4fc2f25ad0b0db1325cfddfabf2
function [mu, se]=cellmean(M,varargin) % [mu, se]=cellmean(M,varargin) dim=1; utils.overridedefaults(who,varargin) mu=nan(1,numel(M)); se=mu; for fx=1:numel(M) if numel(M{fx})<2 mu(fx)=nan; se(fx)=nan; else mu(fx)=nanmean(M{fx},dim); se(fx)=stats.nanstderr(M{fx},dim); end end
github
erlichlab/elutils-master
bootsigmoid_val.m
.m
elutils-master/+stats/bootsigmoid_val.m
1,722
utf_8
06b7b18967ce489fc03a39b3af42dbb8
function [p,D]=bootsigmoid(A,B,varargin) % [p,D]=bootsigmoid(A,B,varargin) % Takes two sets of N x 2 binomial data A and B, and fits sigmoids to them % both. It then uses the mean and covariance of the fits to calculate the % distance (using the projection of the fits onto fisher's linear % discriminant) of the fits. % Then we permute the rows of A and B to generate permuted data sets and % perform the same fits and estimates of "distance". Finally, the distance % between A and B fits are compared to the distribution of distances % generated by permuting A and B. BOOTS=100000; utils.overridedefaults(who,varargin); import stats.* [dAB, D]=get_dist(A,B); n_A=size(A,1); n_B=size(B,1); permAB=nan(BOOTS,1); M=[A;B]; parfor bx=1:BOOTS rperm=randperm(n_A+n_B); rA=M(rperm(1:n_A),:); rB=M(rperm((n_A+1):end),:); permAB(bx)=get_dist(rA,rB); end p= stats.get_p(dAB,permAB); D.permAB=permAB; D.p=p; end %sfunction function [dAB,D]=get_dist(A,B) n_A=size(A,1); n_B=size(B,1); aidx=randperm(n_A); bidx=randperm(n_B); Alim=floor(n_A/2); Blim=floor(n_B/2); trainAdx=aidx(1:Alim); trainBdx=bidx(1:Blim); testAdx=aidx(Alim+1:end); testBdx=bidx(Blim+1:end); [nbetaA,~,~,covA,~]=nlinfit(A(trainAdx,1),A(trainAdx,2),@sig4,[0 1 0 10]); [nbetaB,~,~,covB,~]=nlinfit(B(trainBdx,1),B(trainBdx,2),@sig4,[0 1 0 10]); vAB=flda(nbetaA,nbetaB,covA,covB,Alim,Blim); [betaA,~,~,~,~]=nlinfit(A(testAdx,1),A(testAdx,2),@sig4,[0 1 0 10]); [betaB,~,~,~,~]=nlinfit(B(testBdx,1),B(testBdx,2),@sig4,[0 1 0 10]); dAB=abs(betaA*vAB-betaB*vAB); D.trainbetaA=nbetaA; D.trainbetaB=nbetaB; D.testbetaA=betaA; D.testbetaB=betaB; D.covA=covA; D.covB=covB; D.vAB=vAB; D.dAB=dAB; end % subfunction
github
erlichlab/elutils-master
sig4_invB.m
.m
elutils-master/+stats/sig4_invB.m
181
utf_8
c08cb89c2c6b4038f98284bc884f552e
% y=sig4(beta,x) % y0=beta(1); % a=beta(2); % x0=beta(3); % b=beta(4); function y=sig4_invB(beta,x) y0=beta(1); a=beta(2); x0=beta(3); b=1./beta(4); y=y0+a./(1+ exp(-(x-x0)./b));
github
erlichlab/elutils-master
sig2.m
.m
elutils-master/+stats/sig2.m
120
utf_8
c287dd7909e5ebcb805a5626775fe6f9
% y=sig2(beta,x) % x0=beta(3); % b=beta(4); function y=sig2(beta,x) x0=beta(1); b=beta(2); y=1./(1+ exp(-(x-x0)./b));
github
erlichlab/elutils-master
flda.m
.m
elutils-master/+stats/flda.m
1,152
utf_8
9bdfccc574b6158b470380ab74d3a6af
function v=flda(varargin) % v = flda(G1,G2) % v = flda(mean1,mean2,cov1,cov2,n1,n2) % % v is fisher's linear discriminant between the two "groups" of data % Using syntax 1 % G1 is an n x d matrix % G2 is an m x d matrix % Using syntax 2 % Group1 has mean mu1, covariance cov1, and n1 number of samples % Group2 has mean mu2, covariance cov2, and n2 number of samples % v is a d x 1 vector % % http://www.csd.uwo.ca/~olga/Courses//CS434a_541a//Lecture8.pdf if nargin==2 X=varargin{1}; Y=varargin{2}; [x_n, xdim]=size(X); [y_n, ydim]=size(Y); if xdim~=ydim error end muX=nanmean(X,1); muY=nanmean(Y,1); nX=X-repmat(muX,x_n,1); nY=Y-repmat(muY,y_n,1); nX(isnan(nX))=0; nY(isnan(nY))=0; S1 = nX'*nX; % This is an estimate of the covariance matrix -> divide by x_n to get COV(X) S2 = nY'*nY; elseif nargin==6 muX=varargin{1}; muY=varargin{2}; cx=varargin{3}; cy=varargin{4}; nx=varargin{5}; ny=varargin{6}; S1 = cx*(nx-1); S2 = cy*(ny-1); end Sw=S1+S2; % Solve eigenproblem Sb*V = Lambda*Sw*V v=Sw\(muX-muY)';
github
erlichlab/elutils-master
binned2.m
.m
elutils-master/+stats/binned2.m
3,374
utf_8
b96f93e8a24ff24b02339784a67566ca
function [xbinc, ybinc, mu, se, n]=binned2(x,y,z, varargin) % [binc, mu, se, n]=binned2(x,y,z,bin_e) % Takes a vector x and a vector y and returns mean and standard error of % values of z for bins of x and y. % % Input: % x 1xn vector of x values to bin % y 1xn vector of y values to bin % z 1xn vector of z values to average in each bin % % Optional Input [=default]: % % n_bins=10 Optional # of bins. % n_x_bins=n_bins Specify # of x bins. Overrides n_bins % n_y_bins=n_bins Specify # of y bins. Overrides n_bins % even_bins=false By default bins have equal # of data points. If this is % true then bins are evenly spaced and have uneven sample % sizes % % xbin_e=[] Optional bin edges for the x-axis. Overrides all % earlier options % % ybin_e=[]; Optional bin edges for the y-axis. Overrides all % earlier options % plot_it=false; % marker if plot_it then use this marker ['o'] % linestyle if plot_it then use this linestyle ['-'] % ax=[]; if plot_it=true, plot to this axis % % Output: % binc 1xm bin centers % mu 1xm The average value of y at that bin % se 1xm The standard error of y at that bin % n 1xm The number of values of y in this bin check_inputs(x,y,z) xbin_e=[]; ybin_e=[]; ax=[]; plot_it=false; n_bins=7; n_x_bins=n_bins; n_y_bins=n_bins; even_bins=false; func=@nanmean; linestyle = '-'; marker = 'o'; utils.overridedefaults(who,varargin); if isempty(ax) && plot_it ax=gca; end if isempty(xbin_e) if even_bins xbin_e=linspace(min(x),max(x),n_x_bins+1); else pbins=linspace(0,100,n_x_bins+1); xbin_e=unique(prctile(x,pbins)); end end if isempty(ybin_e) if even_bins ybin_e=linspace(min(y),max(y),n_y_bins+1); else pbins=linspace(0,100,n_y_bins+1); ybin_e=unique(prctile(y,pbins)); end end clr=cool(numel(ybin_e)-1); xbinc=(xbin_e(2:end)+xbin_e(1:end-1))/2; ybinc=(ybin_e(2:end)+ybin_e(1:end-1))/2; mu=repmat(nan,numel(ybinc),numel(xbinc)); se=mu; x=x(:); y=y(:); z=z(:); % split the data up by y [~,yind]=histc(y,ybin_e); [~,xind]=histc(x,xbin_e); if all(z==1 | z==0) binomial_data = true; else binomial_data = false; end for ny=1:numel(ybinc) for nx=1:numel(xbinc) tmp = func(z(xind==nx & yind==ny)); if isempty(tmp) tmp=nan; end mu(ny,nx)=tmp; if binomial_data sigma = sum(z(xind==nx & yind==ny)); count = sum(xind==nx & yind==ny); [~,ci]= binofit(sigma,count); se(ny,nx)=max(abs(ci-mu(ny,nx))); else se(ny,nx)=stats.nanstderr(z(xind==nx & yind==ny)); end n(ny,nx)=sum(~isnan(z(xind==nx & yind==ny))); end end if plot_it for ny=1:numel(ybinc) hh(ny,:)=draw.errorplot(ax,xbinc, mu(ny,:), se(ny,:),'Marker',marker,'Color',clr(ny,:)); set(hh(ny,2),'LineStyle',linestyle,'LineWidth',2) end end function check_inputs(x,y,z) if ~iscolumn(x) || ~iscolumn(y) || ~iscolumn(z) error('x,y & z must all be column vectors'); end if ~isequal(size(x), size(y)) || ~isequal(size(x), size(z)) || ~isequal(size(y), size(z)) error('x, y & z must all be column vectors of equal length'); end
github
erlichlab/elutils-master
align_hv.m
.m
elutils-master/+stats/align_hv.m
3,594
utf_8
5e557d2b0e614ee7d069e455658e2889
function [offset,inc_t,x,y]=align_hv(ev,ts,val,varargin) % [offset,inc_t,x,y]=align_hv(ev, ts,val, varargin) % % pairs={'pre' 3;... % 'post' 3;... % 'binsz' 0.001;... % 'meanflg' 0;... % 'krn' 0.25;... % 'max_offset' 1;... % 'pre_mask', -inf;... % 'post_mask',+inf;... % 'do_plot' false;... % 'max_iter' 100;... % 'max_peak' 1000;... % 'var_thres' 0.05;... % 'save_plot' '';... % 'col_axis' [-50 500];... % 'col_map' jet;... % 'mark_this',[];... % }; parseargs(varargin,pairs,{},1); % % pre = 3; post = 3; binsz = 0.001; % pre_mask = -inf; % post_mask = +inf; max_offset = 1; do_plot = false; max_iter = 100; max_peak = 1000; var_thres = 0.05; save_plot = ''; col_axis = [-50 500]; col_map = jet; mark_this = []; utils.overridedefaults(who, varargin); old_var=10e10; done=0; thres=1000; offset=zeros(size(ev)); if do_plot clf;ax(1)=axes('Position',[0.1 0.1 0.2 0.2]); ax(2)=axes('Position',[0.1 0.1 0.2 0.2]); hold on; end cnt=1; inc_t=ones(size(ev))==1; %% Calculate the mean and ci of the while ~done [y,x]=stats.cdraster(ev+offset,ts(:),val(:),pre,post,binsz); y(isnan(y))=0; [rowi,coli]=find(abs(y)>max_peak); inc_t(unique(rowi))=false; % [y x]=maskraster(x,y,pre_mask(ref),post_mask(ref)); ymn = nanmean(y(inc_t,:)); yst = stats.nanstderr(y(inc_t,:)); if do_plot plot_this(ax,x,y,inc_t,offset,save_plot,pre,post,cnt,0,col_axis,col_map,mark_this); end for tx=1:numel(ev); if inc_t(tx) [xcy,xcx]=xcorr(y(tx,:)-mean(y(tx,:)),ymn-mean(ymn)); [v,peakx]=max(xcy); offset(tx)=offset(tx)+xcx(peakx)*binsz; if abs(offset(tx))>max_offset inc_t(tx)=false; end end end new_var=sum(nanvar(y)); var_diff=(old_var-new_var)/old_var; if do_plot fprintf('Variance improved by %2.3g %% of total variance\n',100*var_diff); end old_var=new_var; cnt=cnt+1; if abs(var_diff)<var_thres || cnt>max_iter done=true; if do_plot plot_this(ax,x,y,inc_t,offset,save_plot,pre,post,cnt+1,0,col_axis,col_map,mark_this); end end end function plot_this(ax,x,y,inc_t,offset,save_plot,pre,post,cnt,do_sort,col_axis,col_map,mark_this) cla(ax(1)); cla(ax(2)); ymn = nanmean(y(inc_t,:)); yst = stats.nanstderr(y(inc_t,:)); if mean(mean(y))<0 iy=-y; else iy=y; end if do_sort [so,si]=sort(-offset); offset=offset(si); inc_t=inc_t(si); iy=iy(si,:); end imagesc(x,[],iy(inc_t,:),'Parent',ax(1)); set(ax(1), 'Ydir','normal') hold(ax(1),'on'); caxis(ax(1),col_axis); colormap(ax(1),col_map); if cnt==1 cbh=colorbar('peer',ax(1),'East'); set(cbh,'Position',get(cbh,'Position')-[0.2 0 0 0]) end % plot(ax,x,ymn-yst,x,ymn+yst,'Color',[1-0.2*cnt, 0 ,0]); % plot(ax(2),x,ymn-yst,x,ymn+yst,'Color',[0.2 0.2 0.9],'LineWidth',2); % set(ax(1),'YTick',[]); set(ax,'YTick',[]); set(ax(2),'Color','none'); set(ax,'XLim', [-pre post],'YLim',[1 sum(inc_t)]) %ylim([0 maxy]) xlabel(ax(2),'Time (s)') % ylabel(ax(2),'degrees/sec') yss=1:sum(inc_t==1); plot(ax(1),-offset(inc_t),yss(:) ,'w.'); if ~isempty(mark_this) plot(ax(1),-offset(inc_t)+mark_this(inc_t), yss(:), 'gx'); end drawnow if ~isempty(save_plot) saveas(gcf,sprintf('ahv_%s_%d.eps',save_plot,cnt),'epsc2'); end if cnt==1 set(cbh, 'Visible','off') end
github
erlichlab/elutils-master
sig3.m
.m
elutils-master/+stats/sig3.m
239
utf_8
031ac0a7d8b32a57722315ef985581b3
% y=sig4(beta,x) % y0=beta(1); % a=beta(2); % x0=beta(3); % b=beta(4); function y=sig3(beta,X) x0=beta(1); b=beta(2); w=beta(3); dx=X(:,2)-X(:,1); L=X(:,1); R=X(:,2); w=min(max(w,0),1); y=1./(1+ exp(-(dx-x0)./((1+w*R+(1-w)*L).^b)));
github
erlichlab/elutils-master
stderr.m
.m
elutils-master/+stats/stderr.m
101
utf_8
70cccd93f718ca93def51627c9e5d4da
function y=stderr(x,dim) if ~exist('dim','var') dim=1; end y=std(x,0,dim)/sqrt(size(x,dim)-1);
github
erlichlab/elutils-master
sig5.m
.m
elutils-master/+stats/sig5.m
265
utf_8
0e840ad915c8b249461ff617952c70f1
% y=sig4(beta,x) % y0=beta(1); % a=beta(2); % x0=beta(3); % b=beta(4); function y=sig5(beta,X) y0=beta(1); a=beta(2); x0=beta(3); b=beta(4); w=beta(5); dx=X(:,2)-X(:,1); rx=X(:,2); lx=X(:,1); w=min(max(0,w),1); y=y0+a./(1+ exp(-(dx-x0)./((w*rx+(1-w)*lx).^b)));
github
erlichlab/elutils-master
untiedrank.m
.m
elutils-master/+stats/untiedrank.m
1,862
utf_8
6209b20bdf331ab606146b08e4c2e830
function r = untiedrank(x) % function r = untiedrank(x) % % Similar to tiedrank, but arbitrarily breaks ties (with consistency each % time called) % reset random number generator to same start % RandStream.setDefaultStream(RandStream('mrg32k3a','Seed',10)); RandStream.setGlobalStream(RandStream('mrg32k3a','Seed',10)); if isvector(x) r = tr(x); else if isa(x,'single') outclass = 'single'; else outclass = 'double'; end % Operate on each column vector of the input (possibly > 2 dimensional) sz = size(x); ncols = sz(2:end); % for 2x3x4, ncols will be [3 4] r = zeros(sz,outclass); for j=1:prod(ncols) r(:,j)= tr(x(:,j)); end end % -------------------------------- function r = tr(x) %TR Local untiedrank function to compute results for one column % Sort, then leave the NaNs (which are sorted to the end) alone [sx, rowidx] = sort(x(:)); numNaNs = sum(isnan(x)); xLen = numel(x) - numNaNs; % Use ranks counting from low end ranks = [1:xLen NaN(1,numNaNs)]'; if isa(x,'single') ranks = single(ranks); end % "randomly" break ties. Avoid using diff(sx) here in case there are infs. ties = (sx(1:xLen-1) == sx(2:xLen)); tieloc = [find(ties); xLen+2]; maxTies = numel(tieloc); tiecount = 1; while (tiecount < maxTies) tiestart = tieloc(tiecount); ntied = 2; while(tieloc(tiecount+1) == tieloc(tiecount)+1) tiecount = tiecount+1; ntied = ntied+1; end % Compute mean of tied ranks % ranks(tiestart:tiestart+ntied-1) = sum(ranks(tiestart:tiestart+ntied-1)) / ntied; % "randomly" reassign ties temp = ranks(tiestart:tiestart+ntied-1); ranks(tiestart:tiestart+ntied-1) = temp(randperm(ntied)); tiecount = tiecount + 1; end % Broadcast the ranks back out, including NaN where required. r(rowidx) = ranks; r = reshape(r,size(x));
github
erlichlab/elutils-master
softplus.m
.m
elutils-master/+stats/softplus.m
337
utf_8
7d105e1e04014e4ca55b507a27f2307e
function y=softplus(beta,x) % y=softplus(beta,x) % a=beta(1); % x0=beta(2); % b=beta(3); a=beta(1); x0=beta(2); b=beta(3); y = a.*(log(1 + exp((x - x0).*b))); y/a = log(1 + exp(x-x0)*b) exp(y/a) = 1 + exp(x-x0)*b exp(y/a) - 1 = exp(x-x0)*b b*(exp(y/a) - 1 = exp(x-x0) log(b*exp(y) - a - 1) = x - x0 y = log(b*(exp(x) - a)) + x0;
github
erlichlab/elutils-master
sig4m.m
.m
elutils-master/+stats/sig4m.m
219
utf_8
05fdc096552ca475647fbe1ea82ca18f
% y=sig4(beta,x) % y0=beta(1); % a=beta(2); % x0=beta(3); % b=beta(4); function y=sig4m(beta,X) y0=beta(1); a=beta(2); x0=beta(3); b=beta(4); dx=X(:,2)-X(:,1); sx=X(:,2)+X(:,1); y=y0+a./(1+ exp(-(dx-x0)./(sx.^b)));
github
erlichlab/elutils-master
number_of_pairs.m
.m
elutils-master/+stats/number_of_pairs.m
1,817
utf_8
98688df40539000277d8a7cf6dd31647
% [n] = number_of_pairs(sh, p) Compute number of expected simultaneously-recorded pairs of "interesting" neurons % % Given a histogram of (# of sessions) versus (# of single-units recorded % per session), and given a probability of a neuron being an "interesting" % neuron (i.e., having a high enough firing rate, task-related % activity, etc), produces an estimate of number of pairs of interesting, % simultaneously recorded neurons. % % PARAMETERS: % ----------- % % sh A vector. The ith element in this vector should contain the % number of sessions in which there were i single units recorded. % % p The probability that a recorded neuron is "interesting" (however % you want to define it). % % RETURNS: % -------- % % n Expected number of simultaneously recorded "interesting" pairs % % % % EXAMPLE CALL: % ------------- % % >> number_of_pairs([4 5 3], 0.3) % % 1.7460 % % gives the number of expected interesting pairs if in 4 sessions you % recorded only one single unit (those produce no pairs, of course), in 5 % sessions you recorded two single units, and in 3 sessions you recorded % three single units; and the probability of an "interesting" cell is 0.3. % % CDB 15-June-2012 function [n] = number_of_pairs(sh, p) n=0; for i=2:numel(sh), % i is going to be the # of singles recorded for k=2:i % k is going to be the number of "interesting" neurons pk = nchoosek(i,k)*p.^k*(1-p).^(i-k); % probability of k "interesting" neurons in i recorded neurons, assuming independence ek = sh(i)*pk; % expected number of sessions in which we got k "interesting" neurons n = n + ek*nchoosek(k,2); % number of pairs we get out of k neurons (e.g., when k=3 that's three different pairs) end end;
github
erlichlab/elutils-master
loglikelihood.m
.m
elutils-master/+stats/loglikelihood.m
917
utf_8
e4392f988006d99eee42fadd1ad6a4a0
% [L,bic]=loglikelihood(M,y,np) % % Input % M: a vector of probabilities (model predictions) % y: a vector of binomial outcomes % np: the number of parameters in the model % % Output % L: the log likelihood % bic: the bayesian information criteria function [L,bic]=loglikelihood(M,y,np) % if isnumeric(M) N = nan+M; N(y==1)=M(y==1); N(y==0)=1-M(y==0); N(isnan(N) | isnan(M) | isnan(y))=[]; L=sum(log(N)); bic=2*-L+np*log(numel(N)); % not implemented yet % else % modeltype = class(M); % nobs = M.NumObservations; % resp = M.Variables.(M.ResponseName); % fit = fitted(M); % llpt = log(fitted(M)*resp + (1-fitted(M))*(1-resp)); % llpt(isnan(resp))=[]; % switch modeltype % case 'GeneralizedLinearMixedModel' % case {'GeneralizedLinearModel','NonLinearModel'} % nparams = M.NumPredictors; % end
github
erlichlab/elutils-master
rm_nans.m
.m
elutils-master/+db/rm_nans.m
333
utf_8
0cf78edb18bd0054cdeece3c5559a2c9
function S = rm_nans(S) % This is useful since NaNs can't be sent to the DB. fnames = fieldnames(S); for fx = 1:numel(fnames) try if isnan(S.(fnames{fx})) S = rmfield(S,fnames{fx}); end catch me % Skip for fields that can't be tested for nan. end end end
github
erlichlab/elutils-master
labdb.m
.m
elutils-master/+db/labdb.m
12,393
utf_8
b2b6dd69cc2d0ad6541952434691faa5
classdef (Sealed) labdb < handle % Class labdb % This is a wrapper class for the JDBC MySQL driver. % It has several features which are generally useful % 1. It reads credentials configurations from ~/.dbconf so that you don't have to type in credentials or store them in code. % 2. It maintains a single connection per configuration (a configuration is a user/hostname pair) for memory efficiency. % 3. It has several useful functions for getting and saving data to MySQL % 4. By default, automatically checks that the connection is alive and well before trying to communicate with the database. % This incurs a small overhead, and can be turned off with `obj.autocheck = false` % % To see a list of the functions for the class type db.labdb.help % To get help for a specific function call db.labdb.help(function_name), e.g. db.labdb.help('query') properties (SetAccess=public,GetAccess=protected) config = []; end properties (SetAccess=public,GetAccess=public) dbconn = []; autocheck = true;% Normally this class checks for DB connectivity before queries. If you are running many you can skip the autocheck. end methods (Access=private) function obj = labdb end end methods (Access=public) function setConfig(obj, config) % Manually set the user, passwd, host. % input should be a struct with those fields obj.config = config; end function host = getHost(obj) % host = getHost() % output: the hostname from the current config host = obj.config.host; end function user = getUser(obj) % host = getUser() % output: the user from the current config user = obj.config.user; end function out = getConnectionInfo(obj) % out = getConnectionInfo % returns a struct with connection information (driver version, connection URL, etc) out = ping(obj.dbconn); end function list = list_enums(obj, tablename, column) out = obj.query('show columns from %s where field="%s"',{tablename, column}); enums = out.COLUMN_TYPE{1}(6:end-1); done = false; list = {}; while ~done [this_one, enums] = strtok(enums, ','); list = [list, {strtrim(replace(this_one,'''',''))}]; if isempty(enums) done = true; else enums = enums(2:end); end end end function list = column_names(obj,tablename) out = obj.query('show columns from %s',{tablename}); list = out.COLUMN_NAME; end function cur = execute(obj, sqlstr, args) % cur = execute(sql_command, [input arguments]) % executes the sql_command and returns a cursor object. % Place holders can be used using sprintf style syntax. % e.g. execute('insert into foo (a,b) values (%.3f,"%s")',{3.1441241, 'some text goes here'}) if nargin<3 args = {}; end if obj.autocheck checkConnection(obj); end sqlquery = sprintf(sqlstr, args{:}); cur = exec(obj.dbconn, sqlquery); if cur.Message % There was an error fprintf(2,'SQL ERROR: %s \n',cur.Message); end end function use(obj, schema) % use(schema) % sets the default schema cur = execute(obj,sprintf('use %s', schema)); if cur.Message error('Failed to switch schemas') end end function out = explain(obj, table) % explain(something) % a shortcut for 'explain ...' out = query(obj,sprintf('explain %s', table)); end function out = last_insert_id(obj) % out = last_insert_id % returns the last_insert_id out = query(obj,'select last_insert_id() as id'); out = out.id; end function varargout = get(obj, sqlstr, args) % varargout = get(sql_command, [input arguments]) % Like query, this command uses sprintf style parsing to execute a MySQL SELECT command. % However, get is special in that it returns one variable for each column in the SELECT % whereas query returns a single table for the entire query. % % e.g. sessid = obj.get('select sessid from sessions limit 1') % sessid will be a float % [sessdate, sessid] = obj.get('select sessiondate, sessid from sessions') % sessdate will be a cell array and sessid will be a vector of float if nargin < 3 args = {}; end out = query(obj,sqlstr,args); varargout = cell(1,nargout); if isempty(out) || strcmp(out{1,1},'No Data') return; end for vx = 1:nargout varargout{vx} = out.(out.Properties.VariableNames{vx}); end end function call(obj, sqlstr, args) % call('storedProcedure(2456)') % call('storedProcedure(%d,"%s")',{1234,'stuff'}) % Calls the stored procedure with the passed arguments. if nargin<3 args={}; end execute(obj,sprintf('call %s', sprintf(sqlstr, args{:}))); end function out = query(obj, sqlstr, args) % tableout = query(sql_command, [input arguments]) % Like execute, this command uses sprintf style parsing. But instead of returning a cursor, % query returns a `table` object. % % e.g. sessid = obj.query('select sessid from sessions limit 1') % sessid will be a table with a sessid column. % [sessdate, sessid] = obj.get('select sessiondate, sessid from sessions') % sessdate will be a cell array and sessid will be a vector of float if obj.autocheck checkConnection(obj); end if nargin < 3 args = {}; end sqlquery = sprintf(sqlstr, args{:}); cur = exec(obj.dbconn, sqlquery); if cur.Message % There was an error fprintf(2,'SQL ERROR: %s \n',cur.Message); out = []; else data = fetch(cur); %if cur.rows <= 0 %cur.rows have been removed for the lastest version of MATLAB if isempty(cur.Data) out = {}; elseif iscell(cur.Data) && strcmp(cur.Data{1},'No Data') out = {}; else out = data.Data; end end close(cur); end function saveData(obj, tablename, data, varargin) % saveData(obj, tablename, data, colnames) if obj.autocheck checkConnection(obj); end if nargin < 4 if isstruct(data) colnames = fields(data); data = struct2table(data,'AsArray',true); elseif istable(data) colnames = data.Properties.VariableNames; else error('labdb:saveData','Must specify column names if not using table or struct type') end end datainsert(obj.dbconn, tablename, colnames, data); end function ok = isopen(obj) try cur = obj.dbconn.exec('select 1 from dual'); assert(isempty(cur.Message)); ok = true; catch me ok = false; end end function checkConnection(obj) try getId(obj.dbconn.Handle); cur = obj.dbconn.exec('select 1 from dual'); assert(isempty(cur.Message)); catch obj.dbconn = []; end if isempty(obj.dbconn) || ~obj.dbconn.isopen obj.dbconn = database(obj.config.db,obj.config.user,obj.config.passwd,'Vendor','MySQL',... 'Server',obj.config.host,'PortNumber',obj.config.port); end if ~isempty(obj.dbconn.Message) fprintf(2,'%s\n',obj.dbconn.Message); obj.dbconn = []; end end function close(obj) close(obj.dbconn); obj.dbconn = []; end end methods (Static) % We use a static method to give the matlab client a database object % for each configuration (IP, username) we only make one connection and then re-use it. % This is ok for MATLAB since it is single threaded. % It could potentially cause strange behavior if a user was doing inserts in a timer and also in the main % thread and using `last_insert_id` function help(fname) if nargin == 0 help('db.labdb') methods('db.labdb') else help(sprintf('db.labdb.%s',fname)) end end function so = getConnection(varargin) setdbprefs('DataReturnFormat','table') persistent localObj; % This is where we store existing connections. if nargin == 1 % The user provided a config name, so use that. configsec = varargin{1}; elseif nargin ==0 % The user provided nothing. Use the default config. configsec = 'client'; else configsec = utils.inputordefault('config','client',varargin); end % Check if we have a connection with the right name. try so = localObj.(configsec); return; catch ME if ~strcmp(ME.identifier, {'MATLAB:nonExistentField', 'MATLAB:structRefFromNonStruct'}) rethrow(ME) end end % No connection exists localObj.(configsec) = []; addMysqlConnecterToPath(); % Make sure the driver is on the path. if nargin < 3 config = readDBconf(configsec); else config.host = varargin{1}; config.user = varargin{2}; config.passwd = varargin{3}; if nargin > 3 config.db = varargin{4}; else config.db = 'met'; end end localObj.(configsec) = db.labdb; setConfig(localObj.(configsec), config); checkConnection(localObj.(configsec)); so = localObj.(configsec); end end end function cfg = readDBconf(cfgname) % A private function to help the labdb class read credentials from the % .dbconf file in the user's home directory. def.db = ''; % In case db is not passed in set it by default to nothing. def.port = 3306; if nargin == 0 cfgname = 'client'; end if ispc cfgpath = getenv('USERPROFILE'); else cfgpath = getenv('HOME'); end cfgfile = fullfile(cfgpath,'.dbconf'); if ~exist(cfgfile,'file') error('labdb:dbconf','.dbconf file not found in home directory'); end allcfg = utils.ini2struct(cfgfile); fopts = allcfg.(cfgname); cfg = utils.apply_struct(def, fopts); end function addMysqlConnecterToPath() jcp = javaclasspath('-all'); jarfile = 'mysql-connector-java-5.1.42-bin.jar'; if isempty(cell2mat(regexp(jcp,jarfile))) % Mysql is not on the path this_file = mfilename('fullpath'); [this_path] = fileparts(this_file); javaaddpath(fullfile(this_path, jarfile)); end end
github
erlichlab/elutils-master
drawgaussian.m
.m
elutils-master/+draw/drawgaussian.m
2,055
utf_8
5ec4d56c987f84917fba34d436c525cd
%drawgaussian Draw the 1-sigma lines for a 2d gaussian % % [h] = drawgaussian(mean, [sigmax, sigmay, r | C], ... % {'angstart', 0}, {'angend', 360}, {'useC', 0}) % % Draws the nth-sigma lines for a gaussian in the current % figure. Since it uses LINE to do this, it returns a handle to % that line. % % 'mean' must be a 2 element vector, first component <x>, second % <y>. % % sigmax is the standard deviation of x; sigma y the standard % deviation of y; and r is defined as % <(x-<x>)*(y-<y>)>/(sigmax*sigmay) and thus lies in [0,1). If % only two arguments are passed, the second is assumed to be a % two-by-two covariance matrix. % function [hout] = drawgaussian(mean, sigmax, sigmay, r, varargin) pairs = { ... 'angstart' 0 ; ... 'angend' 360 ; ... 'useC' 0 ; ... 'filled' 0 ; ... 'alph' 1 ; ... 'nth_sigma' 1 ; ... 'drawline' 0 ; ... }; parseargs(varargin, pairs); if ~isempty(find(isnan(sigmax(:)))) || ... (nargin>2 && ~isempty(find(isnan(sigmay(:))))), hout = []; return; end; npoints = 100; X = zeros(2, npoints+1); p = zeros(2,1); if nargin <= 2 || useC, covar = sigmax; else covar = [sigmax^2, r*sigmax*sigmay; ... r*sigmax*sigmay, sigmay^2]; end; [E, D] = eig(covar); D = nth_sigma * sqrt(D); % sigma, not sigma^2 for i=1:npoints theta = (angend - angstart)*(i-1)/(npoints-1) + angstart; theta = pi*theta/180; p(1) = D(1,1) * cos(theta); p(2) = D(2,2) * sin(theta); X(:,i) = E*p; end; if rem(angend,360) == rem(angstart,360), X(:,end) = X(:,1); else X = X(:,1:end-1); end; if drawline, edgecolor = 'k'; else edgecolor = 'none'; end; if filled, h = patch(X(1,:)+mean(1), X(2,:)+mean(2), 'r', 'FaceAlpha', min(1, alph), 'EdgeColor', edgecolor); else h = line(X(1,:)+mean(1), X(2,:)+mean(2)); end; if nargout > 0, hout = h; end;
github
erlichlab/elutils-master
shadeplot2.m
.m
elutils-master/+draw/shadeplot2.m
8,902
utf_8
5dd5f789c4d2ec7140fb7028dc7f27ec
function fhand=shadeplot2(x,y1,y2,varargin) % % shadeplot2(x,y1,y2,settings) % plots two shaded regions without the use of alpha, this allows the renderer to be % set as painters rather than openGL, giving a vector rather than raster image. % use shadeplot to quickly view graphs and choose colors, use shadeplot2 for final % rendered plot. % calls my_shadeplot over and over again onto the same figure to draw each region % relies on find_blocks in order to find contiguous regions of overlapping and % non-overlapping regions. % relies on mydeal to instantiate variables from structure called "options" % relies on find_xcross for interpolating between boundaries of overlapping and % non-overlapping regions. % x - x vector % y1 - 2 by x vector, 1st row contains lower bound, 2nd row contains upper bounds % y2 - " % options % .colors - 3x3 matrix, each row is an rgb color for y1, y2, and intersection, respectively % .fhand - figure handle to plot into, if not specified creates new one % % Written by Joseph Jun, 09.23.2008 % inpd = @utils.inputordefault; colors = inpd('colors',[0.498*ones(1,3); 0.898*ones(1,3); 0.647*ones(1,3)],varargin); fhand = inpd('fhand', [], varargin); if isempty(fhand) fhand=axes; end if size(x,1)>size(x,2), x=x'; end if size(y1,1)>size(y1,2), y1=y1'; end if size(y2,1)>size(y2,2), y2=y2'; end nx=length(x); isOverlap=true(1,nx); % true whenever bounds overlap dy.ll=y1(1,:)-y2(1,:); % the four combinations of differences between lower and upper bounds of curve 1 and 2 dy.lh=y1(1,:)-y2(2,:); dy.hl=y1(2,:)-y2(1,:); dy.hh=y1(2,:)-y2(2,:); blocks.non = dy.lh>0 | dy.hl<0; % all bins where curves do not overlap blocks.o12 = dy.hh>0 & dy.lh<0 & dy.ll>0; % curves overlap with 1 on top blocks.o21 = dy.hh<0 & dy.hl>0 & dy.ll<0; % curves overlap with 2 on top blocks.i12 = dy.hh<=0 & dy.ll>=0; % curves overlap with 1 inside of 2 blocks.i21 = dy.hh>=0 & dy.ll<=0; % curves overlap with 2 inside of 1 % calculate curves of overlapping regions % c1 and c2 are 1D vectors that define upper (c2) and lower (c1) bounds of overlapped curves c2(blocks.o12)=y2(2,blocks.o12); % 1 over 2 c1(blocks.o12)=y1(1,blocks.o12); c2(blocks.o21)=y1(2,blocks.o21); % 2 over 1 c1(blocks.o21)=y2(1,blocks.o21); c2(blocks.i12)=y1(2,blocks.i12); % 1 inside 2 c1(blocks.i12)=y1(1,blocks.i12); c2(blocks.i21)=y2(2,blocks.i21); % 2 inside 1 c1(blocks.i21)=y2(1,blocks.i21); % fill in non-overlapping points for interpolation of boundaries between blocks temp=blocks.non & dy.lh>=0; c1(temp)=y1(1,temp); c2(temp)=y2(2,temp); temp=blocks.non & dy.hl<=0; c1(temp)=y2(1,temp); c2(temp)=y1(2,temp); hold on; % -------- first plot y1 then y2 as shade plots my_shadeplot(x,y1(1,:),y1(2,:),{colors(1,:),fhand,1}); my_shadeplot(x,y2(1,:),y2(2,:),{colors(2,:),fhand,1}); % -------- next plot over the two curves wherever there is an overlap (must be done in blocks) if sum(~blocks.non)>0 [b,v]=find_blocks(blocks.non); % each row of b has where blocks are, v has whether block is overlapping (false) or non (true) nb=length(v); for k=1:nb if ~v(k) if sum(b(k,:))>1 my_shadeplot(x(b(k,:)), c1(b(k,:)),c2(b(k,:)), {colors(3,:),fhand,1}); end end end end % -------- now worry about interpolation inbetween discretization % ---- first detect any intersection of lines isll = dy.ll.*[dy.ll(2:end) dy.ll(end)]<0; islh = dy.lh.*[dy.lh(2:end) dy.lh(end)]<0; ishl = dy.hl.*[dy.hl(2:end) dy.hl(end)]<0; ishh = dy.hh.*[dy.hh(2:end) dy.hh(end)]<0; inds=find(isll | islh | ishl | ishh); ninds=length(inds); for k=1:ninds il=inds(k); ir=inds(k)+1; xl=x(il); xr=x(ir); templateType=0; % ---- check to see what kind of overlap exists, create new labeled lines that push % intersections into templates if y1(2,il)<y2(1,il) gy=[y1(1,il) y1(1,ir); y1(2,il) y1(2,ir)]; ry=[y2(1,il) y2(1,ir); y2(2,il) y2(2,ir)]; templateType=1; elseif y2(2,il)<y1(1,il) ry=[y1(1,il) y1(1,ir); y1(2,il) y1(2,ir)]; gy=[y2(1,il) y2(1,ir); y2(2,il) y2(2,ir)]; templateType=1; elseif y1(1,il)>y2(1,il) && y1(1,il)<y2(2,il) && y1(2,il)>y2(2,il) gy=[y1(1,il) y1(1,ir); y1(2,il) y1(2,ir)]; ry=[y2(1,il) y2(1,ir); y2(2,il) y2(2,ir)]; templateType=2; elseif y2(1,il)>y1(1,il) && y2(1,il)<y1(2,il) && y2(2,il)>y1(2,il) ry=[y1(1,il) y1(1,ir); y1(2,il) y1(2,ir)]; gy=[y2(1,il) y2(1,ir); y2(2,il) y2(2,ir)]; templateType=2; elseif y1(1,il)>y2(1,il) && y1(1,il)<y2(2,il) && y1(2,il)>y2(1,il) && y1(2,il)<y2(2,il) gy=[y1(1,il) y1(1,ir); y1(2,il) y1(2,ir)]; ry=[y2(1,il) y2(1,ir); y2(2,il) y2(2,ir)]; templateType=3; elseif y2(1,il)>y1(1,il) && y2(1,il)<y1(2,il) && y2(2,il)>y1(1,il) && y2(2,il)<y1(2,il) ry=[y1(1,il) y1(1,ir); y1(2,il) y1(2,ir)]; gy=[y2(1,il) y2(1,ir); y2(2,il) y2(2,ir)]; templateType=3; end [xll yll]=calc_xcross([xl xr],gy(1,:),[xl xr],ry(1,:)); [xlh ylh]=calc_xcross([xl xr],gy(1,:),[xl xr],ry(2,:)); [xhl yhl]=calc_xcross([xl xr],gy(2,:),[xl xr],ry(1,:)); [xhh yhh]=calc_xcross([xl xr],gy(2,:),[xl xr],ry(2,:)); if xll<xl || xll>xr, xll=[]; yll=[]; end if xlh<xl || xlh>xr, xlh=[]; ylh=[]; end if xhl<xl || xhl>xr, xhl=[]; yhl=[]; end if xhh<xl || xhh>xr, xhh=[]; yhh=[]; end switch templateType case 1 % case where green is below red and not intersecting if isempty(xll) if isempty(xhh), px=[xhl xr xr]; py=[yhl gy(2,2) ry(1,2)]; else px=[xhl xhh xr xr]; py=[yhl yhh ry(2,2) ry(1,2)]; end else if isempty(xhh), px=[xhl xr xr xll]; py=[yhl gy(2,2) gy(1,2) yll]; else if isempty(xlh), px=[xhl xhh xr xr xll]; py=[yhl yhh ry(2,2) ry(1,2) yll]; else px=[xhl xhh xlh xll]; py=[yhl yhh ylh yll]; end end end case 2 % case where green straddles red from below if ~isempty(xlh) px=[xl xl xlh]; py=[gy(1,1) ry(2,1) ylh]; else if isempty(xll) px=[xl xl xhh xr xr]; py=[gy(1,1) ry(2,1) yhh gy(2,2) gy(1,2)]; else if isempty(xhh) px=[xl xl xr xr xll]; py=[gy(1,1) ry(2,1) ry(2,2) ry(1,2) yll]; else if isempty(xhl) px=[xl xl xhh xr xr xll]; py=[gy(1,1) ry(2,1) yhh gy(2,2) ry(1,2) yll]; else px=[xl xl xhh xhl xll]; py=[gy(1,1) ry(2,1) yhh yhl yll]; end end end end case 3 if isempty(xhh) if isempty(xhl) px=[xl xl xr xr xll]; py=[gy(1,1) gy(2,1) gy(2,2) ry(1,2) yll]; else px=[xl xl xhl xll]; py=[gy(1,1) gy(2,1) yhl yll]; end else if isempty(xll) if isempty(xlh) px=[xl xl xhh xr xr]; py=[gy(1,1) gy(2,1) yhh ry(2,2) gy(1,2)]; else px=[xl xl xhh xlh]; py=[gy(1,1) gy(2,1) yhh ylh]; end else px=[xl xl xhh xr xr xll]; py=[gy(1,1) gy(2,1) yhh ry(2,2) ry(1,2) yll]; end end end patch(fhand,px,py,colors(3,:),'linestyle','none'); end % -------- return a VECTOR graphic hurray! set(gcf,'renderer','painters'); function h=my_shadeplot(x,y1,y2,opt) % function h=shadeplot(x,y1,y2,opt) % you need x, sorry % y1, y2 can be for example lower and upper confidence intervals. % opt={color, fighandle, alpha} if nargin <4 h=axes; clr='k'; alp=0.5; else h=opt{2}; alp=opt{3}; clr=opt{1}; end y2=y2(:)-y1(:); y1=y1(:); Y=[y1, y2]; h1=area(h,x,Y); set(h1(2),'EdgeColor','none','FaceColor',clr); if ~isempty(alp), alpha(alp); end set(h1(1),'EdgeColor','none','FaceColor','none'); function [b,v]=find_blocks(x) % % [b,v]=find_blocks(x) % x - single dimensional vector, assumed to be row % b - boolean matrix containing one row for each discovered block, % and one column for each element of x, true means that element belongs in the block % x=x(:)'; nx=length(x); cval=x(1); block_beg=1; nblocks=0; if isnumeric(x(end)), x(end+1)=x(end)+1; else x(end+1)=~x(end); end for k=1:(nx+1) if x(k)~=cval nblocks=nblocks+1; b(nblocks,:)=false(1,nx); b(nblocks,block_beg:(k-1))=true; block_beg=k; v(nblocks)=cval; cval=x(k); end end if block_beg==1, b=true(1,nx); end v=v'; function [xstar,ystar]=calc_xcross(x,y,u,v) % % [xstar,ystar]=calc_xcross(x,y,u,v) % calculates where two lines cross and value at meeting point % x - 2 element vector, defines x-coord of 1st line % y - 2 element vector, defines y-coord of 1st line % u - 2 element vector, defines x-coord of 2nd line % v - 2 element vector, defines y-coord of 2nd line % y0=(y(1)*x(2)-y(2)*x(1))/(x(2)-x(1)); v0=(v(1)*u(2)-v(2)*u(1))/(u(2)-u(1)); a=(y(2)-y(1))/(x(2)-x(1)); b=(v(2)-v(1))/(u(2)-u(1)); xstar=(y0-v0)/(b-a); ystar=y0+a*xstar;
github
erlichlab/elutils-master
histsig.m
.m
elutils-master/+draw/histsig.m
2,024
utf_8
316408eb6cf67188ef14a168aadd6c59
function [ hx]=histsig(x, x_sig, varargin) % [ hx]=histsig(x, x_sig, x_lim) inpd = @utils.inputordefault; [origin, args]=inpd('origin', 0.1, varargin); [wdth, args]=inpd('width',0.2,args); [hist_h, args]=inpd('height',0.180,args); [num_bins, args]=inpd('n_bins',17,args); [bins, args]=inpd('bins',[],args); [ax, args]=inpd('ax',[],args); [x_lim, args]=inpd('x_lim',[],args); [y_lim, args]=inpd('y_lim',[],args); [normed, args]=inpd('normed',false,args); [zero, args]=inpd('zero',0,args); [pval_threshold,args] = inpd('pval_threshold','.05',args); inpd(args) gd=~isnan(x); x=x(gd); x_sig=x_sig(gd); x_lim_b=[min(x)-0.1 max(x)+0.1]; if isempty(x_lim) x_lim=x_lim_b; end if isempty(ax) ax=draw.jaxes([origin origin wdth hist_h]); end marker_size=zeros(size(x))+12; marker_size(x_sig==1)=24; % make the x-axis histogram if isempty(bins) bins=linspace(x_lim_b(1),x_lim_b(2),num_bins); end nsig=histcounts(x(x_sig==0), bins); sig=histcounts(x(x_sig==1), bins); if normed total = sum(nsig) + sum(sig); nsig = nsig / total; sig = sig / total; end maxy=max(nsig(:)+sig(:))*1.3; cbins=edge2cen(bins); [hh]=bar(ax,cbins, [sig(:) nsig(:)],'stacked'); xlim(ax,x_lim); set(ax, 'YAxisLocation','left'); set(hh(1),'FaceColor','k') set(hh(2),'FaceColor',[1 1 1]) if isempty(y_lim) y_lim = [0 maxy]; end set(ax,'box','off','YLim',y_lim) set(ax,'Color','none') text(ax, getx(ax),gety(ax),sprintf('%d%% p<%s, n=%d',round(100*mean(x_sig)),pval_threshold,sum(~isnan(x)))) %text(ax, getx(ax),gety(ax),[num2str(round(100*mean(x_sig))) '% p<0.05']) x_mean=nanmean(x); [xt_sig,~,B]=stats.bootmean(x-zero); [CI]=prctile(B+zero,[2.5 97.5]); if xt_sig<0.05 y_lim=ylim(ax); y_pos=0.85 * y_lim(2); plot(ax,x_mean, y_pos,'.k','MarkerSize',6); plot(ax,[CI(1) CI(2)], [y_pos y_pos], '-k'); end function y=edge2cen(x) b2b_dist=x(2)-x(1); y=x+0.5*b2b_dist; y=y(1:end-1); function y=getx(ax) x=xlim(ax); y=0.03*(x(2)-x(1))+x(1); function y=gety(ax) x=ylim(ax); y=1.1*(x(2)-x(1))+x(1);
github
erlichlab/elutils-master
isosum_psycho.m
.m
elutils-master/+draw/isosum_psycho.m
2,131
utf_8
26192d5421145a85a198eccfe1297c00
% [X Y E]= isosum_psycho(x1,x2,wr,varargin) % A function to plot psychometrics with isosum lines. function [X Y E bfit bci]= isosum_psycho(x1,x2,wr,varargin) nsumbins=5; sum_bin_e=[]; x_bin_e=[]; nxbins=6; ax=[]; plot_it=true; clrs=[.85 0 0; 0 .1 .8; 0 .8 .1; .8 0 1; 1 .5 0; 0 0 0; ]; fit=false; mod=@erf3; beta=[0 1 0.5]; model_marker_size=0.3; data_marker_size=2; utils.overridedefaults(who,varargin); if isempty(ax) && plot_it ax=axes; end if isempty(clrs) clrs=clrs(1:nsumbins,:) ; end sumx=x1+x2; diffx=x2-x1; if isempty(sum_bin_e) pbins=linspace(0,100,nsumbins+1); sum_bin_e=prctile(sumx,pbins); end if isempty(x_bin_e) pbins=linspace(0,100,nxbins+1); x_bin_e=prctile(diffx,pbins); end Y=nan(nsumbins,nxbins); E=Y; X=Y; set(ax,'NextPlot','add'); if fit [bfit,resid,J,Sigma]=nlinfit([x1 x2],wr,mod,beta); bci=nlparci(bfit,resid,'covar',Sigma); [ll,bb]=loglikelihood(mod(bfit,[x1 x2]),wr,numel(beta)); fprintf('The BIC is %0.2f\n',bb); fprintf('The -LL is %0.2f\n',-ll); else bfit=0; bci=[0 0]; end for sx=1:nsumbins gt=sumx>=sum_bin_e(sx) & sumx<sum_bin_e(sx+1); dc=diffx(gt); x_bin_e=prctile(dc,pbins); [X(sx,:) Y(sx,:) E(sx,:)]=binned(dc,wr(gt),'bin_e',x_bin_e); if plot_it if fit mp=plot(ax,dc,mod(bfit,[x1(gt) x2(gt)]),'.','Color',(clrs(sx,:)+1)/2); set(mp,'MarkerSize',model_marker_size); end he=draw.errorplot(ax,X(sx,:)+0.2*sx,Y(sx,:), E(sx,:),'Color',clrs(sx,:),'Marker','o'); set(he(2),'MarkerFaceColor',clrs(sx,:),'MarkerSize',data_marker_size); end end if fit ch=get(ax,'Children'); mch=findobj(ch,'Marker','.'); cdh=setdiff(ch,mch); set(ax,'Children',[cdh; mch]); end function y=erf2(b,x) lapse=b(1); gain=b(2); ipsC=x(:,1); conC=x(:,2); inp=gain*(conC-ipsC)./(ipsC+conC).^0.5; y=lapse + (1-2*lapse)*(0.5*(erf(inp)+1)); function y=erf3(b,x) lapse=b(1); gain=b(2); noise=b(3); ipsC=x(:,1); conC=x(:,2); inp=gain*(conC-ipsC)./(ipsC+conC).^noise; y=lapse + (1-2*lapse)*(0.5*(erf(inp)+1));
github
erlichlab/elutils-master
unity.m
.m
elutils-master/+draw/unity.m
474
utf_8
a15b90de629093e2f2703b1e54bcfe07
% This function draws an unity line on the plot. %h=unity(ax,s) % ax (optional) plot to this axis, default gca % s (optional) use this linestyle, default ':k' function h=unity(ax,s) if nargin<2 s=':k'; end if nargin<1 ax=gca; end bax=ax; for axx=1:numel(bax) ax=bax(axx); oldhold=get(ax,'NextPlot'); xlim=get(ax, 'XLim'); ylim=get(ax, 'YLim'); hold(ax,'on') ll=min([xlim ylim]); ul=max([xlim ylim]); h=plot(ax,[ll ul],[ll ul],s); set(ax,'NextPlot',oldhold); end
github
erlichlab/elutils-master
task_timing.m
.m
elutils-master/+draw/task_timing.m
1,446
utf_8
fda761f48f0aeadf229643406b1b62b1
function task_timing(statetable, varargin) % draw.task_timing(statetable) % % names = { "Start Cue", "Nose in Fixation","Target Cue","Go Sound", "Nose in Target"}'; % start_state = [ 0, 0.15, 0.3, 1.3, 1.65]'; % stop_state = [ 0.15, 1.5, 1.65, 1.35, 1.8]'; % color = cellfun(@(x)x/255, {[48, 110, 29], [0,0,0], [48, 122, 242], [241, 151, 55],[140,40,93]}, 'UniformOutput',0)'; % % T = table(names, start_state, stop_state, color); % % draw.task_timing(T) % % % You can adjust the width after using Position % set(gca,'Position',[0.1 0.1 0.3 0.7]) % saveas(gcf, 'mytask.pdf') if nargin==0 names = {"Test State"}; color = {'r'}; start_state = 0; stop_state = 0.3; statetable = table(names, color, start_state, stop_state); end clf; ax = draw.jaxes; for x = 1:size(statetable,1) plot_state(ax,statetable(x,:), -0.2, max(statetable.stop_state)+0.2, 9.5-x) end plot(ax,[0 0.5],[9-x 9-x],'k','LineWidth',2); sh = text(0.25,8.5-x,'0.5 s'); sh.HorizontalAlignment = 'center'; ax.Visible = 'off'; ax.YLim = [-1 10]; end function [lh, th] = plot_state(ax, row, pre , post, ypos) startx = row.start_state; stopx = row.stop_state; color = row.color{1}; sname = row.names{1}; x = [pre, startx, startx, stopx, stopx, post]; y = ypos + [0, 0, 0.6, 0.6, 0, 0]; lh = plot(ax, x,y, 'Color',color,'LineWidth',2); th = text((pre)/2,ypos + 0.3, sname); set(th,'Color',color,'HorizontalAlignment','right','FontWeight','bold'); end
github
erlichlab/elutils-master
psychoplot4.m
.m
elutils-master/+draw/psychoplot4.m
2,729
utf_8
c0531293fb3a8721188984342248cd17
function varargout=psychoplot4(x_vals, varargin) % [stats]=psychoplot4(x_vals, went_right) % [stats]=psychoplot4(x_vals, hits, sides) % % Fits a 4 parameter sigmoid to psychophysical data % % x_vals the experimenter controlled value on each trial. % went_right a vector of [0,1]'s the same length as x_vals describing % the response on that trials % OR % % hits a vector of the correct/incorrect history as [0,1,nan]'s. % Nans are exluded automatically % sides a vector of [-1, 1]'s or ['LR']'s that say what the subject % should have done on that trial % % The sigmoid is of the form % y=y0+a./(1+ exp(-(x-x0)./b)); % % y0=beta(1) sets the lower bound % a=beta(2) a+y0 is the upper bound % x0=beta(3) is the bias % b=beta(4) is the slope if nargin==2 went_right=varargin{1}; elseif nargin==3 hits=varargin{1}; sides=varargin{2}; gd=~isnan(hits); hits=hits(gd); sides=sides(gd); x_vals=x_vals(gd); if isnumeric(sides(1)) went_right=(hits==1 & sides==1) | (hits==0 & sides==-1); else sides=lower(sides); went_right=(hits==1 & sides=='r') | (hits==0 & sides=='l'); end end [beta,resid,jacob,sigma,mse] = nlinfit(x_vals,went_right,@sig4,[0.1 .8 nanmean(x_vals) 10]); x_s=linspace(min(x_vals), max(x_vals), 100); [y_s,delta] = nlpredci(@sig4,x_s,beta,resid,'covar',sigma); betaci = nlparci(beta,resid,'covar',sigma); S.beta=beta; S.betaci=betaci; S.resid=resid; S.mse=mse; S.sigma=sigma; S.ypred=y_s; S.y95ci=delta; fig_h=figure; trial_types = unique(x_vals); if numel(trial_types) > numel(went_right)*0.1, sortedM=sortrows([x_vals(:) went_right(:)]); rawD=jconv(normpdf(-10:10, 0, 2), sortedM(:,2)'); ax=plot(sortedM(:,1), rawD,'o'); else meanD=zeros(size(trial_types)); seD=meanD; for tx = 1:numel(trial_types), meanD(tx) = mean(went_right(x_vals == trial_types(tx))); %seD(tx) = stderr(went_right(x_vals == trial_types(tx))); % it doesn't make sense to take the stderr of a bernoulli variable. % instead , just make the error bars 1/sqrt(n); seD(tx) = sqrt(meanD(tx)*(1-meanD(tx))/sum(x_vals == trial_types(tx))); end; ax=errorbar(trial_types, meanD,seD); set(ax,'MarkerSize', 15); set(ax,'LineStyle','none') set(ax,'Marker','.') end; hold on x_s=x_s(:); y_s=y_s(:); delta=delta(:); plot(x_s, y_s,'k'); plot(x_s,y_s-delta,'k:'); plot(x_s,y_s+delta,'k:'); ylim([0 1]); ylabel('% went right') set(gca,'YTickLabel',[0:10:100]); if nargout>=1 varargout{1}=S; end if nargout>=2 varargout{2}=ax; end function y=sig4(beta,x) y0=beta(1); a=beta(2); x0=beta(3); b=beta(4); y=y0+a./(1+ exp(-(x-x0)./b));
github
erlichlab/elutils-master
twodcomp.m
.m
elutils-master/+draw/twodcomp.m
2,055
utf_8
a7d4f275c6ed7c0318d26d909ff0fa0a
function ax=twodcomp(A,B,varargin) plot_type='surf'; plot_ax='v'; ax_h=0.2; ax_w=0.2; ax_h_off=0.1; ax_w_off=0.1; x=1:size(A,2); y=1:size(A,1); fig=[]; gap=0.05; cmin=min([A(:);B(:);B(:)-A(:)]); cmax=max([A(:);B(:);B(:)-A(:)]); ax=[]; plot_colorbar=false; utils.overridedefaults(who,varargin) if isempty(fig) fig=figure; end if isempty(ax) ax=make_axes(plot_ax,ax_w,ax_h,gap,ax_w_off,ax_h_off); end switch plot_type, case 'img' imagesc(x,y,A,'parent',ax(3)); imagesc(x,y,B,'parent',ax(2)); %colorbar('peer',ax(2)); imagesc(x,y,B-A,'parent',ax(1));%colorbar('peer',ax(3)); set(ax,'CLim',[cmin,cmax]); axis(ax,'xy'); if plot_colorbar pos=get(ax(3),'Position'); colorbar('peer',ax(3),'Position',[pos(1)+pos(3)+0.01 pos(2) 0.03 pos(4)]); end case 'surf' surf(ax(3),x,y,A); surf(ax(2),x,y,B); %colorbar('peer',ax(2)); surf(ax(1),x,y,B-A);%colorbar('peer',ax(3)); set(ax,'CLim',[cmin,cmax]); axis(ax,'xy'); if plot_colorbar pos=get(ax(3),'Position'); colorbar('peer',ax(3),'Position',[pos(1)+pos(3)+0.01 pos(2) 0.03 pos(4)]); end case 'scatter' switch style case 'plane' plot(ax(1),A(:),B(:),'.'); delete(ax(2)); delete(ax(3)); unity(ax(1)); end end function ax=make_axes(a,ax_w,ax_h,gap,ax_w_off,ax_h_off) if a=='h' ax(1)=axes('Position',[ax_w_off ax_h_off ax_w ax_h]); ax(2)=axes('Position',[ax_w_off+ax_w+gap ax_h_off ax_w ax_h]); ax(3)=axes('Position',[ax_w_off+2*ax_w+2*gap ax_h_off ax_w ax_h]); else ax(1)=axes('Position',[ax_w_off ax_h_off ax_w ax_h]); ax(2)=axes('Position',[ax_w_off ax_h_off+ax_h+gap ax_w ax_h]); ax(3)=axes('Position',[ax_w_off ax_h_off+2*ax_h+2*gap ax_w ax_h]); end
github
erlichlab/elutils-master
scatter_histhist.m
.m
elutils-master/+draw/scatter_histhist.m
2,816
utf_8
9c312dad3bd2fb8084a228d6f093dac5
function [hm, hx, hy]=scatter_histhist(x, x_sig, y,y_sig, varargin) % [hm, hx, hy]=scatter_histhist(x, x_sig, y,y_sig, x_lim, y_lim) % Optional arguments: % width, hist_height, num_bins, x_label, y_label % % E.g % x = randn(150,1)*2; % y = randn(250,1)*4+3; % y = randn(150,1)*4+3; % xsig = abs(x)>2; % ysig = y<0; % draw.scatter_histhist(x,xsig,y,ysig,'x_label','X','y_label','Y') iod = @utils.inputordefault; org=iod('org',0.15, varargin);%by default, orgy=org(x) orgy=iod('orgy',[], varargin); wdth=iod('width',0.5,varargin); hist_h=iod('hist_height',0.2,varargin); num_bns=iod('num_bins',17,varargin); x_label=iod('x_label','',varargin); y_label=iod('y_label','',varargin); x_lim_b=[min(x)-0.1 max(x)+0.1]; y_lim_b=[min(y)-0.1 max(y)+0.1]; x_lim = iod('x_lim',x_lim_b,varargin); y_lim = iod('y_lim',y_lim_b,varargin); if isempty(orgy) orgy = org; end figure hm=draw.jaxes; hm.Position = [org orgy wdth wdth]; set(hm,'Xlim',[-1 1]); set(hm,'Ylim',[-1 1]); hx=axes('Position',[org orgy+wdth+0.01 wdth hist_h]); hy=axes('Position',[org+wdth+0.01 orgy hist_h wdth]); marker_size=zeros(size(x))+12; marker_size(x_sig==1)=24; marker_size(y_sig==1)=24; marker_size(x_sig+y_sig==2)=36; % make the scatter plot scatter(hm,x, y, 36,'k'); xlabel(hm,x_label); ylabel(hm,y_label); xlim(hm,x_lim); ylim(hm,y_lim); draw.xhairs(hm,'k:',0,0); axes(hm); text(getx,gety,['n=' num2str(numel(x))]) % make the y-axis histogram bns=linspace(y_lim_b(1),y_lim_b(2),num_bns); nsig=histc(y(y_sig==0), bns); nsig=nsig(1:end-1); sig=histc(y(y_sig==1), bns); sig=sig(1:end-1); cbns=edge2cen(bns); [hh]=barh(hy,cbns, [sig nsig],'stacked'); set(hy, 'YTick',[]); ylim(hy,y_lim); set(hy, 'XAxisLocation','bottom'); set(hh(1),'FaceColor','k') set(hh(2),'FaceColor',[1 1 1]) set(hy,'box','off') set(hy,'Color','none') axes(hy); text(getx,gety,[num2str(round(100*mean(y_sig))) '% p<0.01']) y_mean=mean(y); [~,yt_sig]=ttest(y); set(hy,'NextPlot','add'); xx=get(hy,'XLim'); plot(hy,[0 xx(2)],[y_mean, y_mean],'-k'); % make the x-axis histogram bns=linspace(x_lim_b(1),x_lim_b(2),num_bns); nsig=histc(x(x_sig==0), bns); nsig=nsig(1:end-1); sig=histc(x(x_sig==1), bns); sig=sig(1:end-1); cbns=edge2cen(bns); [hh]=bar(hx,cbns, [sig(:) nsig(:)],'stacked'); set(hx, 'XTick',[]); xlim(hx,x_lim); set(gca, 'YAxisLocation','left'); set(hh(1),'FaceColor','k') set(hh(2),'FaceColor',[1 1 1]) set(hx,'box','off') set(hx,'Color','none') axes(hx); text(getx,gety,[num2str(round(100*mean(x_sig))) '% p<0.01']) x_mean=mean(x); [~,xt_sig]=ttest(x); set(hx,'NextPlot','add'); yy=get(hx,'YLim'); plot(hx, [x_mean, x_mean],[0 yy(2)],'-k'); function y=edge2cen(x) b2b_dist=x(2)-x(1); y=x+0.5*b2b_dist; y=y(1:end-1); function y=getx x=xlim; y=0.1*(x(2)-x(1))+x(1); function y=gety x=ylim; y=0.9*(x(2)-x(1))+x(1);
github
erlichlab/elutils-master
mloads.m
.m
elutils-master/+json/mloads.m
3,833
utf_8
82b3ff741f68f9d2bac6ea80362a2e77
function out = mloads(jstr, varargin) % out = mdumps(obj, ['compress']) % function that takes a matlab object (cell array, struct, vector) and converts it into json. % It also creates a "sister" json object that describes the type and dimension of the "leaf" elements. if isempty(jstr) out = {}; return; end if ischar(jstr) decompress = false; elseif char(jstr(1))=='{' decompress = false; jstr = char(jstr(:))'; else decompress = true; end decompress = utils.inputordefault('decompress',decompress,varargin); if decompress jstr = char(utils.zlibdecode(jstr)); end jstr = regexprep(jstr, '\<NaN\>', 'null'); try bigJ = jsondecode(jstr); builtin_flag = true; catch bigJ = json.fromjson(jstr); builtin_flag = false; end out = bigJ.vals; meta = bigJ.info; if builtin_flag out = applyinfo_bi(out, meta); else out = applyinfo(out, meta); end end function vals = applyinfo(vals, meta) if isfield(meta,'type__') % Then we are a leaf node tsize =double([meta.dim__{1} meta.dim__{2}]); tnumel = prod(tsize); switch(meta.type__) case {'cell', 'struct'} for cx = 1:tnumel vals{cx} = applyinfo(vals{cx}, meta.cell__{cx}); end if strcmp(meta.type__, 'struct') % This is a struct array vals = [vals{:}]; end vals = reshape(vals, tsize); case 'char' vals = char(vals); case 'double' if tnumel == 1 vals = double(vals); else vals = double([vals{:}]); vals = reshape(vals, tsize); end otherwise f = @(x) cast(x, meta.type__); if tnumel == 1 || strcmp(meta.type__, 'char') vals = f(vals); else vals = cellfun(f, vals); % vals = cell2mat(vals); vals = reshape(vals, tsize); end end else fnames = fieldnames(meta); for fx = 1:numel(fnames) vals.(fnames{fx}) = applyinfo(vals.(fnames{fx}), meta.(fnames{fx})); end end end function vals = applyinfo_bi(vals, meta) if iscell(meta) meta = meta{1}; end if isfield(meta,'type__') % Then we are a leaf node tsize =meta.dim__(:)'; tnumel = prod(tsize); switch(meta.type__) case {'cell', 'struct'} newvals=cell(tnumel,1); for cx = 1:tnumel if iscell(vals) newvals{cx} = applyinfo_bi(vals{cx}, meta.cell__(cx)); else newvals{cx} = applyinfo_bi(vals(cx), meta.cell__(cx)); end end if strcmp(meta.type__, 'struct') % This is a struct array newvals = [newvals{:}]; end vals = reshape(newvals, tsize); case 'char' vals = char(vals); case {'double','single','logical'} if ~isempty(vals) && prod(tsize)>1 vals = reshape(vals, tsize); end otherwise f = @(x) cast(x, meta.type__); if tnumel == 1 || strcmp(meta.type__, 'char') vals = f(vals); else vals = cellfun(f, vals); % vals = cell2mat(vals); vals = reshape(vals, tsize); end end else fnames = fieldnames(meta); for fx = 1:numel(fnames) vals.(fnames{fx}) = applyinfo_bi(vals.(fnames{fx}), meta.(fnames{fx})); end end end
github
erlichlab/elutils-master
mdumps.m
.m
elutils-master/+json/mdumps.m
2,894
utf_8
8b81ff9b34a969aa5abdc3df1b2797f2
function out = mdumps(obj, varargin) % out = mdumps(obj, ['compress']) % function that takes a matlab object (cell array, struct, vector) and converts it into json. % It also creates a "sister" json object that describes the type and dimension of the "leaf" elements. % Warning: Simple cell arrays (e.g. cell-arrays of strings or scalar numbers) are supported. However, cell arrays of more complex types (cell-arrays, structs, matrices) % Note: complex numbers should be converted into 2-vectors if isempty(obj) out = []; return; end compress = false; thorough = true; utils.overridedefaults(who, varargin); if thorough [meta, obj] = get_info_flatten_thorough(obj); else [meta, obj] = get_info_flatten(obj); end TO.vals = obj; TO.info = meta; try out = jsonencode(TO); catch out = json.tojson(TO); end if compress out = utils.zlibencode(out); end end function [M, S] = get_info_flatten(S) if isnumeric(S) || ischar(S) || islogical(S) || iscell(S) [M.type__, M.dim__] = getleafinfo(S); S = S(:); elseif isstruct(S) && numel(S)==1 fnames = fieldnames(S); for fx = 1:numel(fnames) [M.(fnames{fx}), S.(fnames{fx})] = get_info_flatten(S.(fnames{fx})); end elseif isstruct(S) % and numel is > 1, this is a struct array [M.type__, M.dim__] = getleafinfo(S); S = arrayfun(@(x){x},S); % Convert to cell array of struct S = S(:); elseif isobject(S) S = struct(S); [M.type__, M.dim__] = getleafinfo(S); S = arrayfun(@(x){x},S); % Convert to cell array of struct S = S(:); else [M.type__, M.dim__] = getleafinfo(S); error('json:mdumps','Do not know how to handle data of type %s', M.type) end end function [M, S] = get_info_flatten_thorough(S) if isnumeric(S) || ischar(S) || islogical(S) [M.type__, M.dim__] = getleafinfo(S); S = S(:); elseif isstruct(S) && numel(S)==1 fnames = fieldnames(S); for fx = 1:numel(fnames) [M.(fnames{fx}), S.(fnames{fx})] = get_info_flatten_thorough(S.(fnames{fx})); end elseif iscell(S) || isstruct(S) [M.type__, M.dim__] = getleafinfo(S); if isstruct(S) S = arrayfun(@(x){x},S); end S = S(:); for cx = 1:numel(S) [M.cell__{cx}, S{cx}] = get_info_flatten_thorough(S{cx}); end elseif isobject(S) S = struct(S); fnames = fieldnames(S); for fx = 1:numel(fnames) [M.(fnames{fx}), S.(fnames{fx})] = get_info_flatten_thorough(S.(fnames{fx})); end else [M.type__, M.dim__] = getleafinfo(S); error('json:mdumps','Do not know how to handle data of type %s', M.type__) end end function [ttype, tsize] = getleafinfo(leaf) ttype = class(leaf); tsize = size(leaf); end
github
erlichlab/elutils-master
showerror.m
.m
elutils-master/+utils/showerror.m
639
utf_8
c92f2f93b75dac33946442eaacee08f3
function out = showerror(le, varargin) if nargin==0 le=lasterror; end [print_stack, args] = utils.inputordefault('print_stack', true, varargin); utils.inputordefault(args) if nargout > 0 out = sprintf('\n%s \n%s\n',le.identifier, le.message); if print_stack for xi=1:numel(le.stack) out = sprintf('%s On line %i of %s\n',out, le.stack(xi).line, le.stack(xi).file); end end else fprintf(1,'\n%s \n%s\n',le.identifier, le.message); if print_stack for xi=1:numel(le.stack) fprintf(1,'On line %i of %s\n',le.stack(xi).line, le.stack(xi).file); end end end
github
erlichlab/elutils-master
date_diff.m
.m
elutils-master/+utils/date_diff.m
1,805
utf_8
1f82c41c56b44b8e57ed1e0569bc93c5
function out = date_diff(date1, date2, interval) % out = date_diff(date1, date2, interval) % Inputs % date1 a date in yyyy-mm-dd or yyyy-mm-dd hh:mm:ss format % date2 a date in yyyy-mm-dd or yyyy-mm-dd hh:mm:ss format % interval one of 'year','day','hour','minute','second' % % Note: date1 and date2 can either be date character arrays or cell % arrays (must be same size or only one should be a cell array) % if they are both arrays the diff is taken element-wise. if only one is an % array then the scalar date is compared to all elements of the array. % % Output % The time passed from date2 to date1 in units of interval if iscell(date1) && iscell(date2) % two cell arrays assert(isequal(size(date1),size(date2)),'date1 and date2 must have same size'); out = cellfun(@(x,y)date_diff_int(x,y,interval),date1,date2); elseif iscell(date1) % date1 is a cell assert(ischar(date2),'If date2 is not a cell array it must be a char'); out = cellfun(@(x)date_diff_int(x,date2,interval),date1); elseif iscell(date2) % date2 is a cell assert(ischar(date1),'If date1 is not a cell array it must be a char'); out = cellfun(@(x)date_diff_int(date1,x,interval),date2); else out = date_diff_int(date1,date2,interval); end end function out = date_diff_int(date1,date2,interval) out_in_days = datenum(date1) - datenum(date2); switch lower(interval(1:2)) % I only take the first 2 char to allow for plural. case 'ye' %years out = out_in_days / 365; case 'da' %days out = out_in_days; case 'ho' %hours out = out_in_days*24; case 'mi' %minutes out = out_in_days*24*60; case 'se' %seconds out = out_in_days*24*60*60; otherwise error('utils:date_diff','Do not know about interval %s',interval); end end
github
erlichlab/elutils-master
overridedefaults.m
.m
elutils-master/+utils/overridedefaults.m
3,788
utf_8
b307fdb8db5be4b0fa55b1d70d931d3a
%parseargs [opts] = overridedefaults(varnames, arguments, ignore_unknowns) % % Variable argument parsing % % function is meant to be used in the context of other functions % which have variable arguments. Typically, the function using % variable argument parsing would be written with the following % header: % % function myfunction(args, ..., varargin) % % and would set up some default values for variables: % bin_size = 0.1; % thresh = 2; % % overridedefaults(whos, varargin); % % % varargin can be of two forms: % 1) A cell array where odd entries are variable names and even entries are % the corresponding values % 2) A struct where the fieldnames are the variable names and the values of % the fields are the values (for pairs) % % % OVERRIDEDEFAULTS USES ASSIGNIN COMMANDS TO CHANGE OR SET VALUES OF % VARIABLES IN THE CALLING FUNCTION'S SPACE! THE RETURN VALUES ARE INTENDED % FOR ACCOUNTING PURPOSES ONLY AND USE OF THEM IS NOT CRITICAL FOR THE % CODE'S PRIMARY FUNCTIONALITY. % % OUTPUT: % % opts: Optional output that is a variable with fields corresponding to % each varname passed in or newly created varname. Values of % those fields are the final assigned value of the corresponding % varname variable. % % PARAMETERS: % ----------- % -varnames The list of variable names which are defined in the % calling function % -arguments The varargin list, I.e. a row cell array. % value for the variable. % % % Example: % -------- % Let's say i have a function foo % function foo(x,varargin) % a = 5; % b= 1; % overridedefaults(whos, varargin); % % Then in the workspace I call: % foo(100,'a',1,'b',2) % % This will override the values of a and b to be 1 and 2. % % Note that the arguments to `foo` may be in any order-- the % only ordering restriction is that whatever immediately follows % pair names (e.g. 'a') will be interpreted as the value to be % assigned to them (e.g. 'a' takes on the value 1); % % We encourage the use of utils.inputordefault over this function. % function [varargout] = overridedefaults(varnames, arguments, ignore_unknowns) if nargin < 3, ignore_unknowns=true; end; if nargout>0 % to start, assign the default values to the optional output for v=1:numel(varnames) out.(varnames{v}) = evalin('caller',varnames{v}); end end % Now we assign the value to those passed by arguments. if numel(arguments)==1 && isstruct(arguments{1}) arguments=arguments{1}; fn=fieldnames(arguments); for arg=1:numel(fn) switch fn{arg} case varnames assignin('caller',fn{arg}, arguments.(fn{arg})); out.(fn{arg})=arguments.(fn{arg}); otherwise if ignore_unknowns warning('OD:unknown','Variable %s not defined in caller. Skipping.',fn{arg}); else assignin('caller',fn{arg}, arguments.(fn{arg})); end end end else arg = 1; while arg <= length(arguments), switch arguments{arg}, case varnames, if arg+1 <= length(arguments) assignin('caller', arguments{arg}, arguments{arg+1}); out.(arguments{arg})=arguments{arg+1}; arg = arg+1; end; otherwise if ignore_unknowns warning('OD:unknown','Variable %s not defined in caller. Skipping.',arguments{arg}); else assignin('caller', arguments{arg}, arguments{arg+1}); out.(arguments{arg})=arguments{arg+1}; end arg = arg+1; end; arg = arg+1; end; end if nargout>0 varargout{1}=out; end return;
github
erlichlab/elutils-master
adaptive_mult.m
.m
elutils-master/+utils/adaptive_mult.m
2,123
utf_8
89328d00b41e6d0ae7f634db36b37b2c
% [val] = adaptive_mult(val, hit, {'hit_frac', 0}, {'stableperf', 0.75}, ... % {'mx', 1}, {'mn', 0}, {'do_callback', 0}) % % Implements multiplicative staircase adaptation of a variable. % % PARAMETERS: % ----------- % % val The value to be adapted. % % hit Pass this as 1 if latest trial was in the positive adaptation % direction; passit as 0 if it was in the negative direction % % OPTIONAL PARAMETERS % ------------------- % % hit_frac How much to add to the parameter when hit==1. Default value % is 0, meaning no adaptation whatsoever. % % stableperf The percentage of positive trials that would lead to no % movement on average. stableperf is used to calculate the % size of how much is substracted from the SPH when % hit==0. Default value is 75%. Performance below this will % (on average) lead to motion in the -hit_frac direction; % performance above this will lead to motion in the hit_frac % direction. % % mx Maximum bound on the value: value cannot go above this % % mn Minimum bound on the value: value cannot go below this % % % % RETURNS: % -------- % % val return the updated, post-adaptation value. % % % EXAMPLE CALL: % ------------- % % >> block_length = adaptive_step(block_length, hit, 'hit_frac', -0.1, 'stableperf', 0.75, 'mx, ... % 50, 'mn', 2) % % Will increase my_sph by 1 every time hit==1, and will decrease it % by 3 every time hit==0. my_sph will be bounded within 90 and 100. % function [val] = adaptive_mult(val, hit, varargin) inpd = @utils.inputordefault; hit_frac = inpd('hit_frac',0 ,varargin); stableperf = inpd('stableperf', 0.75, varargin); mx = inpd('mx', 1, varargin); mn = inpd('mn', 0, varargin); log_hit_step = log10(1 + hit_frac); log_miss_step = stableperf*log_hit_step/(1-stableperf); if hit==1, val = val * (10.^log_hit_step); elseif hit==0 val = val / (10.^log_miss_step); end % if hit is nan don't adapt if val > mx val = mx; end if val < mn val = mn end
github
erlichlab/elutils-master
parseargs.m
.m
elutils-master/+utils/parseargs.m
6,636
utf_8
c8ed076c97d377f6a6807576765b9992
%parseargs [opts] = parseargs(arguments, pairs, singles, ignore_unknowns) % % Variable argument parsing-- supersedes parseargs_example. This % function is meant to be used in the context of other functions % which have variable arguments. Typically, the function using % variable argument parsing would be written with the following % header: % % function myfunction(args, ..., varargin) % % and would define the variables "pairs" and "singles" (in a % format described below), and would then include the line % % parseargs(varargin, pairs, singles); % % 'pairs' and 'singles' specify how the variable arguments should % be parsed; their format is decribed below. It is best % understood by looking at the example at the bottom of these help % comments. % % varargin can be of two forms: % 1) A cell array where odd entries are variable names and even entries are % the corresponding values % 2) A struct where the fieldnames are the variable names and the values of % the fields are the values (for pairs) or the existence of the field % triggers acts as a single. % % pairs can be of two forms: % 1) an n x 2 cell array where the first column are the variable names and % the 2nd column are the default values. % 2) A struct where the fieldnames are the variable names and the values of % the fields are the values. % % PARSEARGS DOES NOT RETURN ANY VALUES; INSTEAD, IT USES ASSIGNIN % COMMANDS TO CHANGE OR SET VALUES OF VARIABLES IN THE CALLING % FUNCTION'S SPACE. % % % % PARAMETERS: % ----------- % % -arguments The varargin list, I.e. a row cell array. % % -pairs A cell array of all those arguments that are % specified by argument-value pairs. First column % of this cell array must indicate the variable % names; the second column must indicate % correponding default values. % % -singles A cell array of all those arguments that are % specified by a single flag. The first column must % indicate the flag; the second column must % indicate the corresponding variable name that % will be affected in the caller's workspace; the % third column must indicate the value that that % variable will take upon appearance of the flag; % and the fourth column must indicate a default % value for the variable. % % % Example: % -------- % % In "pairs", the first column defines both the variable name and the % marker looked for in varargin, and the second column defines that % variable's default value: % % pairs = {'thingy' 20 ; ... % 'blob' 'that'}; % % In "singles", the first column is the flag to be looked for in varargin, % the second column defines the variable name this flag affects, the third % column defines the value the variable will take if the flag was found, and % the last column defines the value the variable takes if the flag was NOT % found in varargin. % % singles = {'no_plot' 'plot_fg' '0' '1'; ... % {'plot' 'plot_fg' '1' '1'}; % % % Now for the function call from the user function: % % parseargs({'blob', 'fuff!', 'no_plot'}, pairs, singles); % % This will set, in the caller space, thingy=20, blob='fuff!', and % plot_fg=0. Since default values are in the second column of "pairs" % and the fourth column of "singles", and in the call to % parseargs 'thingy' was not specified, 'thingy' takes on its % default value of 20. % % Note that the arguments to parseargs may be in any order-- the % only ordering restriction is that whatever immediately follows % pair names (e.g. 'blob') will be interpreted as the value to be % assigned to them (e.g. 'blob' takes on the value 'fuff!'); % % If you never use singles, you can just call "parseargs(varargin, pairs)" % without the singles argument. % function [varargout] = parseargs(arguments, pairs, singles,ignore_unknowns) if nargin < 3, singles = {}; end; if nargin < 4, ignore_unknowns=false; end; % This assigns all the default values for pairs. if isstruct(pairs) out=pairs; fn=fieldnames(pairs); for fx=1:numel(fn) assignin('caller',fn{fx}, pairs.(fn{fx})); end pairs=fn; else for i=1:size(pairs,1), assignin('caller', pairs{i,1}, pairs{i,2}); end; end % This assigns all the default values for singles. for i=1:size(singles,1), assignin('caller', singles{i,2}, singles{i,4}); end; if isempty(singles), singles = {'', '', [], []}; nosingles=true; else nosingles=false; end; if isempty(pairs), pairs = {'', []}; nopairs=true; else nopairs=false; end; % Now we assign the value to those passed by arguments. if numel(arguments)==1 && isstruct(arguments{1}) arguments=arguments{1}; fn=fieldnames(arguments); for arg=1:numel(fn) switch fn{arg} case pairs(:,1) assignin('caller',fn{arg}, arguments.(fn{arg})); out.(fn{arg})=arguments.(fn{arg}); case singles(:,1) u = find(strcmp(fn{arg}, singles(:,1))); out.(fn{arg})=singles(:,1); assignin('caller', singles{u,2}, singles{u,3}); otherwise if ~ignore_unknowns fn{arg} mname = evalin('caller', 'mfilename'); error([mname ' : Didn''t understand above parameter']); end end end else arg = 1; while arg <= length(arguments), switch arguments{arg}, case pairs(:,1), if arg+1 <= length(arguments) assignin('caller', arguments{arg}, arguments{arg+1}); arg = arg+1; end; case singles(:,1), u = find(strcmp(arguments{arg}, singles(:,1))); assignin('caller', singles{u,2}, singles{u,3}); otherwise if ~ignore_unknowns arguments{arg} mname = evalin('caller', 'mfilename'); error([mname ' : Didn''t understand above parameter']); else if nosingles arg=arg+1; elseif nopairs % don't increment args. else error('Cannot use ignore_unknown and a mix of singles and pairs') end end end; arg = arg+1; end; end if nargout>0 varargout{1}=out; end return;
github
erlichlab/elutils-master
to_string_date.m
.m
elutils-master/+utils/to_string_date.m
2,465
utf_8
3b79081714a1f10ba59298abc6fa29bb
% [str] = to_string_date(din, ['format', {'dashes'|'nodashes'}) % % Takes a din that stands for a date and turns it into a string format that % can be used to look for data files or that can be used with the SQL % database. % % PARAMETERS: % ----------- % % din An integer. If it is an integer of magnitude less than 1000, it % is interpreted as the difference, in days, between today and the % desired date. For example, -3 means "three days before today" and % 5 means "five days after today". % If din is an integer with magnitude greater than 1000, then it % is interpreted as a number whose last two digits are the day of % the month, last two digits but two are the number of the month, % and the last four digits but four are the year-2000. E.g., 80411 % means the 11th of April of 2008. % % If din is passed in as a vector, a cell of the same size is % returned, with each element of the cell being the result of % to_string_date applied to each element of din. (Note that f din % is a vector of length one, the return will not be a cell but a % string.) % % If din is a string, then it is returned as is, with no changes. % % str A string representing the date. If the optional parameter % 'format' is not passed, i.e., it is left at its default value, % then the format will be 'yyyy-mm-dd'. If format is 'nodashes', % then the returned string will be in the format 'yyyymmdd'. % % written by Carlos Brody April 2009 function [str] = to_string_date(din, varargin) format = utils.inputordefault('format','dashes',varargin); if ischar(din), str = din; return; end; if numel(din)>1, str = cell(size(din)); for i=1:numel(din), str{i} = to_string_date(din(i), 'format', format); end; return; end; if abs(din)>1000, day = rem(din, 100); din = round((din-day)/100); month = rem(din,100); din = round((din-day)/100); if abs(din<1000), year = din + 2000; else year = din; end; day = num2str(day); day = ['0'*ones(1, 2-length(day)) day]; month = num2str(month); month = ['0'*ones(1, 2-length(month)) month]; year = num2str(year); if strcmp(format, 'nodashes'), str = [year month day]; else str = [year '-' month '-' day]; end; else str = datestr(now+din, 29); if strcmp(format, 'nodashes'), str = str(str~='-'); end; end;
github
erlichlab/elutils-master
adaptive_step.m
.m
elutils-master/+utils/adaptive_step.m
2,067
utf_8
9f6646a5feea5b49c15bbcaab948d83d
% [val] = adaptive_step(val, hit, {'hit_step', 0}, {'stableperf', 0.75}, ... % {'mx', 1}, {'mn', 0}, {'do_callback', 0}) % % Implements staircase adaptation of a variable. % % PARAMETERS: % ----------- % % val The value to be adapted. % % hit Pass this as 1 if latest trial was in the positive adaptation % direction; passit as 0 if it was in the negative direction % % OPTIONAL PARAMETERS % ------------------- % % hit_step How much to add to the parameter when hit==1. Default value % is 0, meaning no adaptation whatsoever. % % stableperf The percentage of positive trials that would lead to no % movement on average. stableperf is used to calculate the % size of how much is substracted from the SPH when % hit==0. Default value is 75%. Performance below this will % (on average) lead to motion in the -hit_step direction; % performance above this will lead to motion in the hit_step % direction. % % mx Maximum bound on the value: value cannot go above this % % mn Minimum bound on the value: value cannot go below this % % % % RETURNS: % -------- % % val return the updated, post-adaptation value. % % % EXAMPLE CALL: % ------------- % % >> block_length = adaptive_step(block_length, hit, 'hit_step', -1, 'stableperf', 0.75, 'mx, ... % 50, 'mn', 2) % % Will increase my_sph by 1 every time hit==1, and will decrease it % by 3 every time hit==0. my_sph will be bounded within 90 and 100. % function [val] = adaptive_step(val, hit, varargin) inpd = @utils.inputordefault; hit_step = inpd('hit_step',0 ,varargin); stableperf = inpd('stableperf', 0.75, varargin); mx = inpd('mx', 1, varargin); mn = inpd('mn', 0, varargin); miss_step = stableperf*hit_step/(1-stableperf); if hit==1 val = val + hit_step; elseif hit==0 val = val - miss_step; else warning('hit must be either 0 or 1!'); end; if val > mx val = mx; end if val < mn val = mn; end
github
erlichlab/elutils-master
combinator.m
.m
elutils-master/+utils/combinator.m
12,572
utf_8
b7227c1ea589711f5b1cacffff096fb1
function [A] = combinator(N,K,s1,s2) %COMBINATOR Perform basic permutation and combination samplings. % COMBINATOR will return one of 4 different samplings on the set 1:N, % taken K at a time. These samplings are given as follows: % % PERMUTATIONS WITH REPETITION/REPLACEMENT % COMBINATOR(N,K,'p','r') -- N >= 1, K >= 0 % PERMUTATIONS WITHOUT REPETITION/REPLACEMENT % COMBINATOR(N,K,'p') -- N >= 1, N >= K >= 0 % COMBINATIONS WITH REPETITION/REPLACEMENT % COMBINATOR(N,K,'c','r') -- N >= 1, K >= 0 % COMBINATIONS WITHOUT REPETITION/REPLACEMENT % COMBINATOR(N,K,'c') -- N >= 1, N >= K >= 0 % % Example: % % To see the subset relationships, do this: % combinator(4,2,'p','r') % Permutations with repetition % combinator(4,2,'p') % Permutations without repetition % combinator(4,2,'c','r') % Combinations with repetition % combinator(4,2,'c') % Combinations without repetition % % % If it is desired to use a set other than 1:N, simply use the output from % COMBINATOR as an index into the set of interest. For example: % % MySet = ['a' 'b' 'c' 'd']; % MySetperms = combinator(length(MySet),3,'p','r'); % Take 3 at a time. % MySetperms = MySet(MySetperms) % % % Class support for input N: % float: double, single % integers: int8,int16,int32 % % % Notes: % All of these algorithms have the potential to create VERY large outputs. % In each subfunction there is an anonymous function which can be used to % calculate the number of row which will appear in the output. If a rather % large output is expected, consider using an integer class to conserve % memory. For example: % % M = combinator(int8(30),3,'p','r'); % NOT uint8(30) % % will take up 1/8 the memory as passing the 30 as a double. See the note % below on using the MEX-File. % % To make your own code easier to read, the fourth argument can be any % string. If the string begins with an 'r' (or 'R'), the function % will be called with the replacement/repetition algorithm. If not, the % string will be ignored. % For instance, you could use: 'No replacement', or 'Repetition allowed' % If only two inputs are used, the function will assume 'p','r'. % The third argument must begin with either a 'p' or a 'c' but can be any % string beyond that. % % The permutations with repetitions algorithm uses cumsum. So does the % combinations without repetition algorithm for the special case of K=2. % Unfortunately, MATLAB does not allow cumsum to work with integer classes. % Thus a subfunction has been placed at the end for the case when these % classes are passed. The subfunction will automatically pass the % necessary matrix to the built-in cumsum when a single or double is used. % When an integer class is used, the subfunction first looks to see if the % accompanying MEX-File (cumsumall.cpp) has been compiled. If not, % then a MATLAB For loop is used to perform the cumsumming. This is % VERY slow! Therefore it is recommended to compile the MEX-File when % using integer classes. % The MEX-File was tested by the author using the Borland 5.5 C++ compiler. % % See also, perms, nchoosek, npermutek (on the FEX) % % Author: Matt Fig % Contact: [email protected] % Date: 5/30/2009 % % Reference: http://mathworld.wolfram.com/BallPicking.html ng = nargin; if ng == 2 s1 = 'p'; s2 = 'r'; elseif ng == 3 s2 = 'n'; elseif ng ~= 4 error('Only 2, 3 or 4 inputs are allowed. See help.') end if isempty(N) || K == 0 A = []; return elseif numel(N)~=1 || N<=0 || ~isreal(N) || floor(N) ~= N error('N should be one real, positive integer. See help.') elseif numel(K)~=1 || K<0 || ~isreal(K) || floor(K) ~= K error('K should be one real non-negative integer. See help.') end STR = lower(s1(1)); % We are only interested in the first letter. if ~strcmpi(s2(1),'r') STR = [STR,'n']; else STR = [STR,'r']; end try switch STR case 'pr' A = perms_rep(N,K); % strings case 'pn' A = perms_no_rep(N,K); % permutations case 'cr' A = combs_rep(N,K); % multichoose case 'cn' A = combs_no_rep(N,K); % choose otherwise error('Unknown option passed. See help') end catch rethrow(lasterror) % Throw error from here, not subfunction. % The only error thrown should be K>N for non-replacement calls. end function PR = perms_rep(N,K) % This is (basically) the same as npermutek found on the FEX. It is the % fastest way to calculate these (in MATLAB) that I know. % pr = @(N,K) N^K; Number of rows. % A speed comparison could be made with COMBN.m, found on the FEX. This % is an excellent code which uses ndgrid. COMBN is written by Jos. % % % All timings represent the best of 4 consecutive runs. % % All timings shown in subfunction notes used this configuration: % % 2007a 64-bit, Intel Xeon, win xp 64, 16 GB RAM % tic,Tc = combinator(single(9),7,'p','r');toc % %Elapsed time is 0.199397 seconds. Allow Ctrl+T+C+R on block % tic,Tj = combn(single(1:9),7);toc % %Elapsed time is 0.934780 seconds. % isequal(Tc,Tj) % Yes if N==1 PR = ones(1,K,class(N)); return elseif K==1 PR = (1:N).'; return end CN = class(N); M = double(N); % Single will give us trouble on indexing. L = M^K; % This is the number of rows the outputs will have. PR = zeros(L,K,CN); % Preallocation. D = ones(1,N-1,CN); % Use this for cumsumming later. LD = M-1; % See comment on N. VL = [-(N-1) D].'; % These values will be put into PR. % Now start building the matrix. TMP = VL(:,ones(L/M,1,CN)); % Instead of repmatting. PR(:,K) = TMP(:); % We don't need to do two these in loop. PR(1:M^(K-1):L,1) = VL; % The first column is the simplest. % Here we have to build the cols of PR the rest of the way. for ii = K-1:-1:2 ROWS = 1:M^(ii-1):L; % Indices into the rows for this col. TMP = VL(:,ones(length(ROWS)/(LD+1),1,CN)); % Match dimension. PR(ROWS,K-ii+1) = TMP(:); % Build it up, insert values. end PR(1,:) = 1; % For proper cumsumming. PR = cumsum2(PR); % This is the time hog. function PN = perms_no_rep(N,K) % Subfunction: permutations without replacement. % Uses the algorithm in combs_no_rep as a basis, then permutes each row. % pn = @(N,K) prod(1:N)/(prod(1:(N-K))); Number of rows. if N==K PN = perms_loop(N); % Call helper function. % [id,id] = sort(PN(:,1)); %#ok Not nec., uncomment for nice order. % PN = PN(id,:); % Return values. return elseif K==1 PN = (1:N).'; % Easy case. return end if K>N % Since there is no replacement, this cannot happen. error(['When no repetitions are allowed, '... 'K must be less than or equal to N']) end M = double(N); % Single will give us trouble on indexing. WV = 1:K; % Working vector. lim = K; % Sets the limit for working index. inc = 1; % Controls which element of WV is being worked on. BC = prod(M-K+1:M); % Pre-allocation of return arg. BC1 = BC / ( prod(1:K)); % Number of comb blocks. PN = zeros(round(BC),K,class(N)); L = prod(1:K) ; % To get the size of the blocks. cnt = 1+L; P = perms_loop(K); % Only need to use this once. PN(1:(1+L-1),:) = WV(P); % The first row. for ii = 2:(BC1 - 1); if logical((inc+lim)-N) % The logical is nec. for class single(?) stp = inc; % This is where the for loop below stops. flg = 0; % Used for resetting inc. else stp = 1; flg = 1; end for jj = 1:stp WV(K + jj - inc) = lim + jj; % Faster than a vector assignment! end PN(cnt:(cnt+L-1),:) = WV(P); % Assign block. cnt = cnt + L; % Increment base index. inc = inc*flg + 1; % Increment the counter. lim = WV(K - inc + 1 ); % lim for next run. end V = (N-K+1):N; % Final vector. PN(cnt:(cnt+L-1),:) = V(P); % Fill final block. % The sorting below is NOT necessary. If you prefer this nice % order, the next two lines can be un-commented. % [id,id] = sort(PN(:,1)); %#ok This is not necessary! % PN = PN(id,:); % Return values. function P = perms_loop(N) % Helper function to perms_no_rep. This is basically the same as the % MATLAB function perms. It has been un-recursed for a runtime of around % half the recursive version found in perms.m For example: % % tic,Tp = perms(1:9);toc % %Elapsed time is 0.222111 seconds. Allow Ctrl+T+C+R on block % tic,Tc = combinator(9,9,'p');toc % %Elapsed time is 0.143219 seconds. % isequal(Tc,Tp) % Yes M = double(N); % Single will give us trouble on indexing. P = 1; % Initializer. G = cumprod(1:(M-1)); % Holds the sizes of P. CN = class(N); for n = 2:M q = P; m = G(n-1); P = zeros(n*m,n,CN); P(1:m, 1) = n; P(1:m, 2:n) = q; a = m + 1; for ii = n-1:-1:1, t = q; t(t == ii) = n; b = a + m - 1; P(a:b, 1) = ii; P(a:b, 2:n) = t; a = b + 1; end end function CR = combs_rep(N,K) % Subfunction multichoose: combinations with replacement. % cr = @(N,K) prod((N):(N+K-1))/(prod(1:K)); Number of rows. M = double(N); % Single will give us trouble on indexing. WV = ones(1,K,class(N)); % This is the working vector. mch = prod((M:(M+K-1)) ./ (1:K)); % Pre-allocation. CR = ones(round(mch),K,class(N)); for ii = 2:mch if WV(K) == N cnt = K-1; % Work backwards in WV. while WV(cnt) == N cnt = cnt-1; % Work backwards in WV. end WV(cnt:K) = WV(cnt) + 1; % Fill forward. else WV(K) = WV(K)+1; % Keep working in this group. end CR(ii,:) = WV; end function CN = combs_no_rep(N,K) % Subfunction choose: combinations w/o replacement. % cn = @(N,K) prod(N-K+1:N)/(prod(1:K)); Number of rows. % Same output as the MATLAB function nchoosek(1:N,K), but often faster for % larger N. % For example: % % tic,Tn = nchoosek(1:17,8);toc % %Elapsed time is 0.430216 seconds. Allow Ctrl+T+C+R on block % tic,Tc = combinator(17,8,'c');toc % %Elapsed time is 0.024438 seconds. % isequal(Tc,Tn) % Yes if K>N error(['When no repetitions are allowed, '... 'K must be less than or equal to N']) end M = double(N); % Single will give us trouble on indexing. if K == 1 CN =(1:N).'; % These are simple cases. return elseif K == N CN = (1:N); return elseif K==2 && N>2 % This is an easy case to do quickly. BC = (M-1)*M / 2; id1 = cumsum2((M-1):-1:2)+1; CN = zeros(BC,2,class(N)); CN(:,2) = 1; CN(1,:) = [1 2]; CN(id1,1) = 1; CN(id1,2) = -((N-3):-1:0); CN = cumsum2(CN); return end WV = 1:K; % Working vector. lim = K; % Sets the limit for working index. inc = 1; % Controls which element of WV is being worked on. BC = prod(M-K+1:M) / (prod(1:K)); % Pre-allocation. CN = zeros(round(BC),K,class(N)); CN(1,:) = WV; % The first row. for ii = 2:(BC - 1); if logical((inc+lim)-N) % The logical is nec. for class single(?) stp = inc; % This is where the for loop below stops. flg = 0; % Used for resetting inc. else stp = 1; flg = 1; end for jj = 1:stp WV(K + jj - inc) = lim + jj; % Faster than a vector assignment. end CN(ii,:) = WV; % Make assignment. inc = inc*flg + 1; % Increment the counter. lim = WV(K - inc + 1 ); % lim for next run. end CN(ii+1,:) = (N-K+1):N; function A = cumsum2(A) %CUMSUM2, works with integer classes. % Duplicates the action of cumsum, but for integer classes. % If Matlab ever allows cumsum to work for integer classes, we can remove % this. if isfloat(A) A = cumsum(A); % For single and double, use built-in. return else try A = cumsumall(A); % User has the MEX-File ready? catch warning('Cumsumming by loop. MEX cumsumall.cpp for speed.') %#ok for ii = 2:size(A,1) A(ii,:) = A(ii,:) + A(ii-1,:); % User likes it slow. end end end
github
erlichlab/elutils-master
MakeSpectrumNoise.m
.m
elutils-master/+sound/MakeSpectrumNoise.m
2,511
utf_8
1ad790feb7a4eab9a9dd378d9caba9ef
% function [snd] = MakeSpectrumNoise(SRate, F1, F2, Duration, Kontrast, ... % CRatio, varargin) % % This function generates a sound whose power spectrum is white except for % two Gaussian peaks at F1 and F2 (each with std = sigma). The contrast of % each peak is defined as C_i = (P_i - b)/b, where P is the height of the peak % and b (baseline) is the baseline power of every other (non-peak) frequency. % % In order to adjust the relative contributions of the peaks at F1 and F2 % in a continuous way along one dimension, we specify the sum of contrasts % Kontrast = C1 + C2 % and the log ratio of contrasts % CRatio = log(C1/C2). % In this way, we can keep Kontrast at some constant and adjust CRatio so % that when CRatio > 0, there is more power around F1 and when CRatio < 0, % there is more power around F2. % % ARGUMENTS % --------- % Makes a sound such that: % % Srate sampling rate, in samples/sec % F1 frequency of first peak above white noise % F2 frequency of second peak above white noise % Duration duration of sound, in milliseconds % Kontrast C1 + C2 (see above) % CRatio log(C1/C2), as described above % OPTIONAL ARGUMENTS % ------------------ % sigma stdev of Gaussian distributions around F1 and F2 in % frequency space of the final sound % baseline power of every other frequency not around F1 or F2 % written by Bing, October 2008 function [snd] = MakeSpectrumNoise(SRate, F1, F2, Duration, Kontrast, CRatio, varargin) pairs = { 'stdev' 100 ; ... 'baseline' 0.01 ; ... }; parseargs(varargin, pairs); Duration = Duration/1000; % to sec % make white noise t = linspace(0, Duration, SRate*Duration); wnoise = randn(size(t)); C1 = Kontrast/(exp(-CRatio)+1); C2 = Kontrast - C1; % transform white noise to frequency space fwnoise = fft(wnoise)/Duration; % scale magnitude of the fft corresponding to duration ot sound omega = SRate*linspace(0, 1, length(fwnoise)); % corresponding frequency dimension G1 = exp(-(omega - F1) .^2 /(2*stdev^2)); G2 = exp(-(omega - F2) .^2 /(2*stdev^2)); % enhance frequencies around F1 and F2, then recover sound fsnd = fwnoise .* (G1*baseline*C1+baseline + G2*baseline*C2+baseline); % normalize the volume so that snd is as loud (psychoacoustics aside) as % the original generating white noise fsnd = fsnd * sqrt((sum(fwnoise.*conj(fwnoise)) / sum(fsnd.*conj(fsnd)))); snd = real(ifft(fsnd));
github
erlichlab/elutils-master
cosyne_ramp.m
.m
elutils-master/+sound/cosyne_ramp.m
887
utf_8
94b4e864d3b54de9f7a28cca9a9bfcb4
% [snd] = cosyne_ramp(snd, srate, ramp_ms) % % Takes a sound in the 1-dimensional vector snd, and assuming that the % samplerate for it is srate samples/sec, multiplies it by a cosyne ramp of % ramp_ms milliseconds (i.e., the cosyne function goes from min to max in % ramp_ms, meaning it has a whole-cycle a period of 2*ramp_ms) % function [snd] = cosyne_ramp(snd, srate, ramp_ms) if isempty(snd), return; end; len = ceil(srate*ramp_ms/1000)+1; if ~isvector(snd), error('COSYNE_RAMP:Invalid', 'snd must be an n-by-1 or 1-by-n vector'); end; if length(snd) < len, error('COSYNE_RAMP:Invalid', 'snd must be at least ramp_ms plus one sample long'); end; cos_period = 2*ramp_ms/1000; cosyne = cos(2*pi*(1/cos_period)*(0:len-1)/srate); snd(1:len) = snd(1:len).*cosyne(end:-1:1); snd(end-len+1:end) = snd(end-len+1:end).*cosyne;
github
erlichlab/elutils-master
MakeBupperSwoop.m
.m
elutils-master/+sound/MakeBupperSwoop.m
6,598
utf_8
08ef1f9c6e0298e251130dfbe2ca6e26
%MakeBupperSwoop.m [monosound]=MakeBupperSwoop(SRate, Att, StartFreq, ... % EndFreq, BeforeBreakDuration, AfterBreakDuration,... % Breaklen, Tau) % % Makes a sound: % % SRate: sampling rate, in samples/sec % Attenuation % StartFreq starting frequency of the sound, in Hz % EndFreq ending frequency of the sound, in Hz % BeforeBreakDuration duration of the first nonzero amplitude % parts of the sound (excluding breaks), in ms % AfterBreakDuration duration of the second nonzero amplitude % parts of the sound (excluding breaks), in ms % Breaklen number of ms of silence inserted into the middle of the tone % Tau Tau of frequency sigmoid, in ms % % OPTIONAL ARGS: % -------------- % % F1_volume_factor default 1; How much to multiply StartFreq part % of signal by. % % F2_volume_factor default 1; How much to multiply EndFreq part % of signal by. % % Stereo default 0; returns a mono sound. If 1, returns a % a stereo sound % % F1_loc_factor Only relevant if Stereo==1. Default is 0, % meaning no bias to Left or Right. A value of 1 % means bias completely to the left; a value of -1 % means bias completely to the right. % % F2_loc_factor As F1_loc_factor, but for sound F2. % % F1_lead_time Only relevant if Stereo==1. This is a time % advance, in ms, with which the Left signal is generated % compared to the Right signal. For a rat's head % size, 0.1 ms should be good. If this is left % empty, then it will be set equal to 0.1*F1_loc_factor. % % F2_lead_time As F1_lead_time, but for sound F1. If this is left % empty, then it will be set equal to 0.1*F2_loc_factor. % % The transitions from F1 to F2 in _volume_factor, _loc_factor, and % _lead_time all follow the sigmoid used for everything else. % % Carlos Brody Apr 06; _loc_factor and _lead_time added May 06 function [Beep]=MakeBupperSwoop(SRate, Att, StartFreq, EndFreq, ... BeforeDuration, AfterDuration, Breaklen, ... Tau, varargin) if nargin<=8, varargin = {}; end; pairs = { ... 'F1_volume_factor' 1 ; ... 'F2_volume_factor' 1 ; ... 'Stereo' 0 ; ... 'F1_loc_factor' 0 ; ... 'F2_loc_factor' 0 ; ... 'F1_lead_time' [] ; ... 'F2_lead_time' [] ; ... 'PPfilter_fname' '' ; ... 'bup_width' 5 ; ... }; utils.parseargs(varargin, pairs); if isempty(F1_lead_time), F1_lead_time = -0.1*F1_loc_factor; end; if isempty(F2_lead_time), F2_lead_time = -0.1*F2_loc_factor; end; if BeforeDuration==0 & AfterDuration==0, Beep = []; return; end; BeforeDuration = BeforeDuration/1000; % Turn everything into seconds AfterDuration = AfterDuration/1000; Duration = BeforeDuration + AfterDuration; BreakFraction = BeforeDuration/Duration; Breaklen = Breaklen/1000; F1_lead_time = F1_lead_time/1000; F2_lead_time = F2_lead_time/1000; Tau = Tau/(1000*Duration); % This is in relative units of zero2one vector % Create a time vector. t=0:(1/SRate):Duration; t=t(1:(end-1)); zero2one = (0:length(t)-1) / (length(t)-1); zero2one = tanh((zero2one - BreakFraction)/Tau); volume_factor = (F2_volume_factor - F1_volume_factor)*(zero2one+1)/2 + ... F1_volume_factor; loc_factor = (F2_loc_factor - F1_loc_factor) *(zero2one+1)/2 + ... F1_loc_factor; lead_time = (F2_lead_time - F1_lead_time) *(zero2one+1)/2 + ... F1_lead_time; zero2one = zero2one - min(zero2one); zero2one = zero2one/max(zero2one); logFrequency = log(StartFreq) + zero2one*(log(EndFreq) - log(StartFreq)); Frequency = exp(logFrequency); Phi = 2*pi*(cumsum(Frequency)-Frequency(1))*mean(diff(t)); if Stereo, Left_Phi = 2*pi*cumsum(Frequency)*mean(diff(t+lead_time)); Right_Phi = Phi; left_loc_factor = min(1+loc_factor, 1); right_loc_factor = min(1-loc_factor, 1); Left_Beep = MakeSound(Left_Phi, SRate, Att, Breaklen, BreakFraction, ... left_loc_factor.*volume_factor, PPfilter_fname, ... zero2one); Right_Beep = MakeSound(Right_Phi, SRate, Att, Breaklen, BreakFraction, ... right_loc_factor.*volume_factor, PPfilter_fname, ... zero2one); ldiff = length(Left_Beep) - length(Right_Beep); if ldiff < 0, Left_Beep = [Left_Beep zeros(1, -ldiff)]; elseif ldiff > 0, Right_Beep = [Right_Beep zeros(1, ldiff)]; end; Beep = [Left_Beep ; Right_Beep]; else Beep = MakeSound(Phi, SRate, Att, Breaklen, BreakFraction, ... volume_factor, PPfilter_fname, ... zero2one, bup_width); end; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [Beep] = MakeSound(Phi, SRate, Att, Breaklen, BreakFraction, ... volume_factor, PPfilter_fname, zero2one, bup_width) Timer = sin(Phi); Beep = zeros(size(Phi)); u = find(diff(sign(Timer)) > 0); u = [1 u]; bup = sound.singlebup(SRate, Att, 'PPfilter_fname', PPfilter_fname, 'width', bup_width); lbup = length(bup); for i=1:length(u), Beep(u(i):u(i)+lbup-1) = bup; end; Beep(1:length(volume_factor)) = Beep(1:length(volume_factor)).*volume_factor; if length(Beep)>length(volume_factor), Beep(length(volume_factor)+1:end) = ... Beep(length(volume_factor)+1:end).*volume_factor(end); end; Edge=MakeEdge(SRate, 0.003); LEdge=length(Edge); Breaklen = round(Breaklen*SRate); if Breaklen>0, [trash, u] = min(abs(zero2one-BreakFraction)); Beep1 = Beep(1:u); Beep2 = Beep(u+1:end); if length(Beep1) > LEdge; Beep1(end-LEdge+1:end) = Beep1(end-LEdge+1:end) .* Edge; end; if length(Beep2) > LEdge, Beep2(1:LEdge) = Beep2(1:LEdge) .* fliplr(Edge); end; Beep = [Beep1 ones(1, Breaklen)*Beep1(end) Beep2]; end; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [envelope] = MakeEdge(srate, coslen) t = (0:(1/srate):coslen)*pi/(2*coslen); envelope = (cos(t)).^2; return;
github
erlichlab/elutils-master
MakeSwoop.m
.m
elutils-master/+sound/MakeSwoop.m
2,192
utf_8
09ee5917bcea33f5d8c9b389ce7ef88d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeSwoop % Generate the individual tone pips as an accessory to PrepareSweep. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeSwoop % Usage: % Beep=MakeSwoop( SRate, Attenuation, Frequency, Duration, [RiseFall] ) % Create a sinusoidal beep at frequency Frequency in Hz of duration % SRate is the sample rate in Hz. % Attenuation is a scalar (0 dB is an amplitude 1 sinusoid.) % If a Attenuation is a vector, a harmonic stack is created with these attenuations. % Frequency in Hz % Duration in milliseconds % A fifth optional parameter RiseFall specifies the 10%-90% % rise and fall times in milliseconds using a cos^2 edge. function Beep=MakeSwoop( SRate, Attenuation, FrequencyStart, FrequencyEnd, Duration, varargin ) % Create a time vector. t=0:(1/SRate):(Duration/1000); t=t(1:(end-1)); % Make harmonic frequencies. FreqStart=FrequencyStart*(1:length(Attenuation)); FreqEnd =FrequencyEnd *(1:length(Attenuation)); % Create the frequencies in the beep. %Beep = 10 * 10.^(-Attens./20) .* sin( 2*pi* Freqs .* t ); if FrequencyStart < 0 Beep = 1*(10.^(-Attenuation./20)) .* randn(size(t)); else Beep=zeros(length(Attenuation), length(t)); zero2one = (0:length(t)-1) / (length(t)-1); for i=1:length(Attenuation), logFrequency = log(FreqStart(i)) + zero2one*(log(FreqEnd(i)) - log(FreqStart(i))); Frequency = exp(logFrequency); Beep(i,:) = 1*(10.^(-Attenuation(i)./20)) .* sin( 2*pi* Frequency .* t ); end; end if FrequencyStart ~= FrequencyEnd, gu=10; end; % Add harmonic components together. Beep=sum(Beep,1); % If the user specifies, add edge smoothing. if ( nargin >= 5 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeSwoop : End of function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
erlichlab/elutils-master
MakeBeep.m
.m
elutils-master/+sound/MakeBeep.m
1,862
utf_8
e6730035baf6efe94fb226b17bff9e9e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeBeep % Generate the individual tone pips as an accessory to PrepareSweep. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeBeep % Usage: % Beep=MakeBeep( SRate, Attenuation, Frequency, Duration, [RiseFall] ) % Create a sinusoidal beep at frequency Frequency in Hz of duration % SRate is the sample rate in Hz. % Attenuation is a scalar (0 dB is an amplitude 1 sinusoid.) % If a Attenuation is a vector, a harmonic stack is created with these attenuations. % Frequency in Hz % Duration in milliseconds % A fifth optional parameter RiseFall specifies the 10%-90% % rise and fall times in milliseconds using a cos^2 edge. function Beep=MakeBeep( SRate, Attenuation, Frequency, Duration, varargin ) % Create a time vector. t=0:(1/SRate):(Duration/1000); t=t(1:(end-1)); % Make harmonic frequencies. Freqs=Frequency*(1:length(Attenuation)); Attens=meshgrid(Attenuation,t); Attens=Attens'; [Freqs,t]=meshgrid(Freqs,t); Freqs=Freqs'; t=t'; % Create the frequencies in the beep. %Beep = 10 * 10.^(-Attens./20) .* sin( 2*pi* Freqs .* t ); if Frequency < 0 Beep = 1*(10.^(-Attens./20)) .* randn(size(t)); else Beep = 1*(10.^(-Attens./20)) .* sin( 2*pi* Freqs .* t ); end % Add harmonic components together. Beep=sum(Beep,1); % If the user specifies, add edge smoothing. if ( nargin >= 5 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeBeep : End of function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
erlichlab/elutils-master
MakeChord2.m
.m
elutils-master/+sound/MakeChord2.m
2,265
utf_8
d4e4da484d1e93df77d03709404f2dcf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeChord2 % Generate Chord. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Usage: % Beep=MakeChord( SRate, Attenuation, BaseFreq, NTones, Duration, [RiseFall] ) % Create a chord with base frequency 'BaseFreq' and with 'NTones' tones. % 'SRate' is the sample rate in Hz. % 'Attenuation' is a scalar (0 dB is an amplitude 1 sinusoid.) % 'BaseFreq' in Hz % 'Duration' in milliseconds % % Unlike MakeChord, MakeChord2 uses key-value pairs for varargin. % To specify 'RiseFall', for example, you would do: % MakeChord(srate, att, basefreq, ntones, dur, 'RiseFall', 0.05) % instead of tacking RiseFall as the fifth parameter. % % Also allows volume to be scaled up or down using a linear factor % 'volume_factor' function Beep=MakeChord2( SRate, Attenuation, BaseFreq, NTones, Duration, varargin ) pairs = { ... 'RiseFall', 0 ; ... 'volume_factor', 1 ; ... }; parse_knownargs(varargin, pairs); FilterPath=[GetParam('rpbox','protocol_path') '\PPfilter.mat']; if ( size(dir(FilterPath),1) == 1 ) PP=load(FilterPath); PP=PP.PP; % message(me,'Generating Calibrated Tones'); else PP=[]; % message(me,'Generating Non-calibrated Tones'); end % Create a time vector. t=0:(1/(SRate)):(Duration/1000); t=t(1:(end-1)); finterv = sqrt(sqrt(2)); %this stepping yields a diminished minor chord + 13 freq = BaseFreq; snd = zeros(1,length(t)); for k=1:NTones if isempty(PP) ToneAttenuation_adj(k) = Attenuation; else ToneAttenuation_adj(k) = Attenuation - ppval(PP, log10( freq )); % Remove any negative attenuations and replace with zero attenuation. ToneAttenuation_adj(k) = ToneAttenuation_adj(k) .* (ToneAttenuation_adj(k) > 0); end snd = snd + 10^(-ToneAttenuation_adj(k)/20) * ( sin( 2*pi*freq.*t )/NTones ); %IS THIS CORRECT??? freq = freq * finterv; end Beep = snd; % If the user specifies, add edge smoothing. if ( RiseFall > 0) Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; end Beep = Beep.*volume_factor;
github
erlichlab/elutils-master
MakeSwoop2.m
.m
elutils-master/+sound/MakeSwoop2.m
1,742
utf_8
06d44b69c6c79cd89c41fb2f3d72696b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeSwoop2 % Generate the individual tone pips as an accessory to PrepareSweep. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeSwoop2 % Usage: % Beep=MakeSwoop( SRate, Attenuation, Frequency, Duration, [RiseFall] ) % Create a sinusoidal beep at frequency Frequency in Hz of duration % SRate is the sample rate in Hz. % Attenuation is a scalar (0 dB is an amplitude 1 sinusoid.) % If a Attenuation is a vector, a harmonic stack is created with these attenuations. % Frequency in Hz % Duration in milliseconds % A fifth optional parameter RiseFall specifies the 10%-90% % rise and fall times in milliseconds using a cos^2 edge. function Beep=MakeSwoop2( SRate, Attenuation, LoFreq, HiFreq, Sweepdir, Duration, varargin ) % Create a time vector. t=0:(1/SRate):(Duration/1000); t=t(1:(end-1)); % Make harmonic frequencies. % Create the frequencies in the beep. %Beep = 10 * 10.^(-Attens./20) .* sin( 2*pi* Freqs .* t ); zero2one = (0:length(t)-1) / (length(t)-1); logFrequency = log(LoFreq) + zero2one*(log(HiFreq) - log(LoFreq)); Frequency = exp(logFrequency); Beep = 1*(10.^(-Attenuation./20)) .* sin( 2*pi* Frequency .* t ); switch Sweepdir, case 'up', case 'down', Beep = Beep(end:-1:1); otherwise, error('Sweepdir can only be ''up'' or ''down'''); end; % If the user specifies, add edge smoothing. if ( nargin >= 5 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; end
github
erlichlab/elutils-master
MakeSigmoidSwoop3.m
.m
elutils-master/+sound/MakeSigmoidSwoop3.m
4,319
utf_8
4b75bae0f81f56a8e851319eef4dccf6
%MakeSigmoidSwoop3.m [monosound]=MakeSigmoidSwoop3(SRate, Att, StartFreq, ... % EndFreq, BeforeBreakDuration, AfterBreakDuration,... % Breaklen, Tau, [RiseFall=3] ) % % Makes a sound: % % SRate: sampling rate, in samples/sec % Attenuation % StartFreq starting frequency of the sound, in Hz % EndFreq ending frequency of the sound, in Hz % BeforeBreakDuration duration of the first nonzero amplitude % parts of the sound (excluding breaks), in ms % AfterBreakDuration duration of the second nonzero amplitude % parts of the sound (excluding breaks), in ms % Breaklen number of ms of silence inserted into the middle of the tone % Tau Tau of frequency sigmoid, in ms % RiseFall width of half-cosine squared edge window, in ms % % OPTIONAL ARGS: % -------------- % % F1_volume_factor default 1; How much to multiply StartFreq part % of signal by. % % F2_volume_factor default 1; How much to multiply EndFreq part % of signal by. % % PPfilter_fname full path and filename, including .mat, of a % file containing filter parameters from speaker % calibration. If this parameter is left empty, the % location is drawn from exper's rpbox protocol_path. % % The transition from F1_volume_factor to F2_volume_factor follows the % sigmoid used for everything else. % % Carlos Brody 28 Mar 06 function [Beep]=MakeSigmoidSwoop3(SRate, Att, StartFreq, EndFreq, ... BeforeDuration, AfterDuration, Breaklen, ... Tau, RiseFall, varargin) if nargin<=9, varargin = {}; end; pairs = { ... 'F1_volume_factor' 1 ; ... 'F2_volume_factor' 1 ; ... 'PPfilter_fname' '' ; ... }; parseargs(varargin, pairs); if BeforeDuration==0 & AfterDuration==0, Beep = []; return; end; if isempty(PPfilter_fname) FilterPath=['Protocols' filesep 'PPfilter.mat']; else FilterPath = PPfilter_fname; end; PP = load(FilterPath); PP=PP.PP; BeforeDuration = BeforeDuration/1000; % Turn everything into seconds AfterDuration = AfterDuration/1000; Duration = BeforeDuration + AfterDuration; BreakFraction = BeforeDuration/Duration; Breaklen = Breaklen/1000; if nargin < 9, RiseFall = 0.003; else RiseFall = RiseFall/1000; end; Tau = Tau/(1000*Duration); % This is in relative units of zero2one vector % Create a time vector. t=0:(1/SRate):Duration; t=t(1:(end-1)); zero2one = (0:length(t)-1) / (length(t)-1); zero2one = tanh((zero2one - BreakFraction)/Tau); volume_factor = (F2_volume_factor - F1_volume_factor)*(zero2one+1)/2 + ... F1_volume_factor; zero2one = zero2one - min(zero2one); zero2one = zero2one/max(zero2one); logFrequency = log(StartFreq) + zero2one*(log(EndFreq) - log(StartFreq)); Frequency = exp(logFrequency); Phi = 2*pi*cumsum(Frequency)*mean(diff(t)); % Attenuation = Att - ppval(PP, log10(Frequency)); % plot(Frequency, Attenuation); % Attenuation = 5; [U, I, J] = unique(Frequency); Attenuation = Att - ppval(PP, log10(U)); Attenuation(Attenuation<0) = 0; Beep = 10.^(-Attenuation./20); Beep = Beep(row(J)).* sin(Phi); Beep = Beep.*volume_factor; % Edge ramp Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; % Is there a break in the middle of the swoop? Breaklen = round(Breaklen*SRate); if Breaklen>0, [trash, u] = min(abs(zero2one-BreakFraction)); Beep1 = Beep(1:u); Beep2 = Beep(u+1:end); if length(Beep1) > LEdge; Beep1(end-LEdge+1:end) = Beep1(end-LEdge+1:end) .* Edge; end; if length(Beep2) > LEdge, Beep2(1:LEdge) = Beep2(1:LEdge) .* fliplr(Edge); end; Beep = [Beep1 ones(1, Breaklen)*Beep1(end) Beep2]; end; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [envelope] = MakeEdge(srate, coslen) t = (0:(1/srate):coslen)*pi/(2*coslen); envelope = (cos(t)).^2; return; function x=row(x) x=x(:)';
github
erlichlab/elutils-master
MakeChord.m
.m
elutils-master/+sound/MakeChord.m
2,135
utf_8
00364a0eb3f67051ad1e59e125a86d24
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeChord % Generate Chord. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Usage: % Beep=MakeChord( SRate, Attenuation, BaseFreq, NTones, Duration, [RiseFall] ) % Create a chord with base frequency 'BaseFreq' and with 'NTones' tones. % 'SRate' is the sample rate in Hz. % 'Attenuation' is a scalar (0 dB is an amplitude 1 sinusoid.) % 'BaseFreq' in Hz % 'Duration' in milliseconds % A fifth optional parameter 'RiseFall' specifies the 10%-90% % rise and fall times in milliseconds using a cos^2 edge. % added try-catch so that this would work in dispatcher. JCE July 2007 % function Beep=MakeChord( SRate, Attenuation, BaseFreq, NTones, Duration, varargin ) try FilterPath=[GetParam('rpbox','protocol_path') '\PPfilter.mat']; if ( size(dir(FilterPath),1) == 1 ) PP=load(FilterPath); PP=PP.PP; else PP=[]; end % message(me,'Generating Calibrated Tones'); catch PP=[]; % message(me,'Generating Non-calibrated Tones'); end % Create a time vector. t=0:(1/(SRate)):(Duration/1000); t=t(1:(end-1)); finterv = sqrt(sqrt(2)); %this stepping yields a diminished minor chord + 13 freq = BaseFreq; snd = zeros(1,length(t)); for k=1:NTones if isempty(PP) ToneAttenuation_adj(k) = Attenuation; else ToneAttenuation_adj(k) = Attenuation - ppval(PP, log10( freq )); % Remove any negative attenuations and replace with zero attenuation. ToneAttenuation_adj(k) = ToneAttenuation_adj(k) .* (ToneAttenuation_adj(k) > 0); end snd = snd + 10^(-ToneAttenuation_adj(k)/20) * ( sin( 2*pi*freq.*t )/NTones ); %IS THIS CORRECT??? freq = freq * finterv; end Beep = snd; % If the user specifies, add edge smoothing. % This was changed to >=6 to correspond with the actual input variable list % JCE, July 2007 if ( nargin >= 6 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; end
github
erlichlab/elutils-master
MakeSigmoidSwoop2.m
.m
elutils-master/+sound/MakeSigmoidSwoop2.m
2,507
utf_8
db64fa6d40a96528a57c83acd4ae8d39
%MakeSigmoidSwoop2.m [Beep]=MakeSigmoidSwoop(SRate, SPL, StartFreq, EndFreq, Duration, Tau, Breaklen, [RiseFall=5] ) % % Makes a sound: % % SRate: sampling rate, in samples/sec % Attenuation % StartFreq starting frequency of the sound, in Hz % EndFreq ending frequency of the sound, in Hz % Duration duration of the nonzero amplitude parts of the sound (excluding breaks), in ms % Tau Tau of frequency sigmoid, in ms % Breaklen number of ms of silence inserted into the middle of the tone % RiseFall width of half-cosine squared edge window, in ms % % Carlos Brody 25 Apr 05 function [Beep]=MakeSigmoidSwoop2(SRate, Att, StartFreq, EndFreq, Duration, Tau, Breaklen, RiseFall ) if Duration==0, Beep = []; return; end; FilterPath=[GetParam('rpbox','protocol_path') filesep 'PPfilter.mat']; PP = load(FilterPath); PP=PP.PP; Tau = Tau/Duration; % This is in relative units for zero2one vector below Duration = Duration/1000; % Turn everything into seconds Breaklen = Breaklen/1000; if nargin < 8, RiseFall = 0.005; else RiseFall = RiseFall/1000; end; % Create a time vector. t=0:(1/SRate):Duration; t=t(1:(end-1)); zero2one = (0:length(t)-1) / (length(t)-1); zero2one = tanh((zero2one - 0.5)/Tau); zero2one = zero2one - min(zero2one); zero2one = zero2one/max(zero2one); logFrequency = log(StartFreq) + zero2one*(log(EndFreq) - log(StartFreq)); Frequency = exp(logFrequency); Phi = 2*pi*cumsum(Frequency)*mean(diff(t)); Attenuation = Att - ppval(PP, log10(Frequency)); Attenuation(find(Attenuation<0)) = 0; % plot(Frequency, Attenuation); % Attenuation = 5; Beep = 1*(10.^(-Attenuation./20) .* sin(Phi)); % Edge ramp Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; % Is there a break in the middle of the swoop? Breaklen = round(Breaklen*SRate); if Breaklen>0, [trash, u] = min(abs(zero2one-0.5)); Beep1 = Beep(1:u); Beep2 = Beep(u+1:end); Beep1(end-LEdge+1:end) = Beep1(end-LEdge+1:end) .* Edge; Beep2(1:LEdge) = Beep2(1:LEdge) .* fliplr(Edge); Beep = [Beep1 ones(1, Breaklen)*Beep1(end) Beep2]; end; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [envelope] = MakeEdge(srate, coslen) t = (0:(1/srate):coslen)*pi/(2*coslen); envelope = (cos(t)).^2; return;
github
erlichlab/elutils-master
MakeClick.m
.m
elutils-master/+sound/MakeClick.m
1,391
utf_8
6e51c9a71deabd3dacbf01b3c4d7b57e
% [click] = MakeClick({'sigma', 0.0001}, {'power', 1.2}) % % Makes a single, sharp, brief, broad-band "click!" of amplitude 0.7. % % Gets the sampling rate from protocolobj; then makes a % Gaussian-like function, exp(-|t|^power / (2*sigma^power)) : a % Guassian would have power=2; then takes the derivative of this % function. This is returned, with a length from -5*sigma to +5*sigma. % % If you want two settings that are different, clearly discriminable to % the human ear, audible to the rat ear, most likely clearly discriminable % to the rat ear, and playable at a 50KHz sampling rate, try: sigma=0.0002 % and power=1.5; versus sigma=0.00004, power=1.5. (That is, power 1.5 for % both cases, and sigma 200 microseconds in case one, 40 microseconds in % case two.) Case one has peak power at 1KHz and 2KHz; case two has peak % power at 5kHz and 10kHz. % % % OBLIGATORY PARAMETERS: % ---------------------- % % None % % OPTIONAL PARAMETERS: % -------------------- % % sigma, in milliseconds % % power % % CDB Feb 06 function [click] = MakeClick(varargin) sigma = []; power = []; pairs = { ... 'sigma' 0.0001 ; ... 'power' 1.2 ; ... }; parseargs(varargin, pairs); srate = get_generic('sampling_rate'); t = 0:(1/srate):10*sigma; click = diff(exp(-abs(t-5*sigma).^power / (2*sigma.^power))); click = 0.7*click/max(abs(click));
github
erlichlab/elutils-master
MakeBeep4Winsound.m
.m
elutils-master/+sound/MakeBeep4Winsound.m
1,818
utf_8
83fd71b44c3e6b281395e603e3add516
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeBeep4Winsound % Generate the individual tone pips as an accessory to PlayTones. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Beep=MakeBeep4Winsound( SRate, Attenuation, Frequency, Duration, varargin ) % MakeBeep % Usage: % Beep=MakeBeep( SRate, Attenuation, Frequency, Duration, [RiseFall] ) % Create a sinusoidal beep at frequency Frequency in Hz of duration % SRate is the sample rate in Hz. % Attenuation is a scalar. % If a Attenuation is a vector, a harmonic stack is created with these attenuations. % Frequency in Hz % Duration in milliseconds % A fifth optional parameter RiseFall specifies the 10%-90% % rise and fall times in milliseconds using a cos^2 edge. % Create a time vector. t=0:(floor(Duration/1000*SRate)-1); t=t/SRate; % Make harmonic frequencies. Freqs=Frequency*(1:length(Attenuation)); Attens=meshgrid(Attenuation,t); Attens=Attens'; [Freqs,t]=meshgrid(Freqs,t); Freqs=Freqs'; t=t'; % Create the frequencies in the beep. %Beep = 10 * (10.^(-Attens./20)); if Frequency < 0 Beep = 1*(10.^(-Attens./20)) .* randn(size(t)); else Beep = 1*(10.^(-Attens./20)) .* sin( 2*pi* Freqs .* t ); end % Add harmonic components together. Beep=sum(Beep,1); % If the user specifies, add edge smoothing. if ( nargin >= 5 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep(end-LEdge+1:end)=Beep(end-LEdge+1:end) .* Edge; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeBeep : End of function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
erlichlab/elutils-master
Make2Sines.m
.m
elutils-master/+sound/Make2Sines.m
2,539
utf_8
492ef41bbfe84d1b25ae431055ed018e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Make2Sines % Generate two sine tones with delay. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Usage: % Beep=Make2Sines( SRate, Attenuation, F1, F2, ToneDuration, Delay, [RiseFall] ) % Create sine tone with frequency f1, delay, and sine tone with freq f2 % 'SRate' is the sample rate in Hz. % 'Attenuation' is a scalar (0 dB is an amplitude 1 sinusoid.) % 'F1' and 'F2' in Hz % 'ToneDuration' and 'Delay' in milliseconds % A fifth optional parameter 'RiseFall' specifies the 10%-90% % rise and fall times in milliseconds using a cos^2 edge. function Beep=Make2Sines( SRate, Attenuation, F1, F2, ToneDuration, Delay, varargin ) FilterPath=[GetParam('rpbox','protocol_path') '\PPfilter.mat']; if ( size(dir(FilterPath),1) == 1 ) PP=load(FilterPath); PP=PP.PP; % message(me,'Generating Calibrated Tones'); else PP=[]; % message(me,'Generating Non-calibrated Tones'); end % Create a time vector. t = 0:(1/SRate):(ToneDuration/1000); t = t(1:end-1); %Create F1 if isempty(PP) ToneAttenuation_adj = Attenuation; else ToneAttenuation_adj = Attenuation - ppval(PP, log10( F1 )); % Remove any negative attenuations and replace with zero attenuation. ToneAttenuation_adj = ToneAttenuation_adj * (ToneAttenuation_adj > 0); end snd = 10^(-ToneAttenuation_adj/20) * sin( 2*pi*F1*t ); % If the user specifies, add edge smoothing. if ( nargin >= 5 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. snd(1:LEdge)=snd(1:LEdge) .* fliplr(Edge); snd((end-LEdge+1):end)=snd((end-LEdge+1):end) .* Edge; end %Create Delay tmp = 0:(1/SRate):(Delay/1000); snd2 = zeros(1,length(tmp)-1); %Create F2 if isempty(PP) ToneAttenuation_adj = Attenuation; else ToneAttenuation_adj = Attenuation - ppval(PP, log10( F2 )); % Remove any negative attenuations and replace with zero attenuation. ToneAttenuation_adj = ToneAttenuation_adj * (ToneAttenuation_adj > 0); end snd3 = 10^(-ToneAttenuation_adj/20) * sin( 2*pi*F2*t ); % If the user specifies, add edge smoothing. if ( nargin >= 5 ) RiseFall=varargin{1}; Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); % Put a cos^2 gate on the leading and trailing edges. snd3(1:LEdge)=snd3(1:LEdge) .* fliplr(Edge); snd3((end-LEdge+1):end)=snd3((end-LEdge+1):end) .* Edge; end Beep = [snd, snd2, snd3];
github
erlichlab/elutils-master
MakeSigmoidSwoop.m
.m
elutils-master/+sound/MakeSigmoidSwoop.m
2,211
utf_8
3f9b0adbb2823476b55a5c7f9523c9bb
%MakeSigmoidSwoopm.m [Beep]=MakeSigmoidSwoop(SRate, Attenuation, StartFreq, EndFreq, Duration, Tau, Breaklen, [RiseFall=5] ) % % Makes a sound: % % SRate: sampling rate, in samples/sec % Attenuation % StartFreq starting frequency of the sound, in Hz % EndFreq ending frequency of the sound, in Hz % Duration duration of the nonzero amplitude parts of the sound (excluding breaks), in ms % Tau Tau of frequency sigmoid, in ms % Breaklen number of ms of silence inserted into the middle of the tone % RiseFall width of half-cosine edge window, in ms % % Carlos Brody 21 Apr 05 function [Beep]=MakeSigmoidSwoop(SRate, Attenuation, StartFreq, EndFreq, Duration, Tau, Breaklen, RiseFall ) Tau = Tau/Duration; % This is in relative units for zero2one vector below Duration = Duration/1000; % Turn everything into seconds Breaklen = Breaklen/1000; if nargin < 8, RiseFall = 0.005; else RiseFall = RiseFall/1000; end; % Create a time vector. t=0:(1/SRate):Duration; t=t(1:(end-1)); zero2one = (0:length(t)-1) / (length(t)-1); zero2one = tanh((zero2one - 0.5)/Tau); zero2one = zero2one - min(zero2one); zero2one = zero2one/max(zero2one); logFrequency = log(StartFreq) + zero2one*(log(EndFreq) - log(StartFreq)); Frequency = exp(logFrequency); Phi = 2*pi*cumsum(Frequency)*mean(diff(t)); Beep = 1*(10.^(-Attenuation./20) .* sin(Phi)); % Edge ramp Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; % Is there a break in the middle of the swoop? Breaklen = round(Breaklen*SRate); if Breaklen>0, [trash, u] = min(abs(zero2one-0.5)); Beep1 = Beep(1:u); Beep2 = Beep(u+1:end); Beep1(end-LEdge+1:end) = Beep(end-LEdge+1:end) .* Edge; Beep2(1:LEdge) = Beep2(1:LEdge) .* fliplr(Edge); Beep = [Beep1 ones(1, Breaklen)*Beep1(end) Beep2]; end; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [envelope] = MakeEdge(srate, coslen) t = (0:(1/srate):coslen)*pi/(2*coslen); envelope = cos(t); return;
github
erlichlab/elutils-master
MakeFMWiggle.m
.m
elutils-master/+sound/MakeFMWiggle.m
2,621
utf_8
14f4272f26b69bb9edcbd12b347726ad
%MakeFMWiggle.m [monosound]=MakeFMWiggle(SRate, Att, Duration, CarrierFreq, ... % FMFreq, FMAmp, [RiseFall=3] {'volume_factor', 1, 'PPfilter_name', ''}) % % Makes a sinusoidally wiggling frequency pure tone (i.e., a sinusoidally frequency modulated sine wave): % % SRate: sampling rate, in samples/sec % Attenuation % Duration length of sound, in secs % CarrierFreq mean frequency of the sound, in Hz % FMFreq frequency at which the Carrier frequency will be modulated, in Hz % FMAmp amplitude of the FM modulation, in Hz. % RiseFall width of half-cosine squared edge window, in ms % % OPTIONAL ARGS: % -------------- % % volume_factor default 1; How much to multiply the signal amplitude by % % PPfilter_fname full path and filename, including .mat, of a % file containing filter parameters from speaker % calibration. If this parameter is left empty, the % location is drawn from exper's rpbox protocol_path. % % Carlos Brody Aug 07 function [Beep]=MakeFMWiggle(SRate, Att, Duration, CarrierFreq, FMFreq, ... FMAmp, RiseFall, varargin) if nargin<=7, varargin = {}; end; pairs = { ... 'volume_factor' 1 ; ... 'PPfilter_fname' '' ; ... }; parseargs(varargin, pairs); if Duration==0, Beep = []; return; end; if isempty(PPfilter_fname) FilterPath=['Protocols' filesep 'PPfilter.mat']; else FilterPath = PPfilter_fname; end; PP = load(FilterPath); PP=PP.PP; if nargin < 7, RiseFall = 0.003; else RiseFall = RiseFall/1000; end; % Create a time vector. t=0:(1/SRate):Duration; t=t(1:(end-1)); Frequency = CarrierFreq + FMAmp*sin(2*pi*FMFreq*t); Phi = 2*pi*cumsum(Frequency)*mean(diff(t)); % Attenuation = Att - ppval(PP, log10(Frequency)); % plot(Frequency, Attenuation); % Attenuation = 5; [U, I, J] = unique(Frequency); % Attenuation = Att - ppval(PP, log10(U)); Attenuation = Att - 30*ones(size(U)); Attenuation(find(Attenuation<0)) = 0; Beep = 10.^(-Attenuation./20); Beep = Beep(J).* sin(Phi); Beep = Beep.*volume_factor; % Edge ramp Edge=MakeEdge( SRate, RiseFall ); LEdge=length(Edge); Beep(1:LEdge)=Beep(1:LEdge) .* fliplr(Edge); Beep((end-LEdge+1):end)=Beep((end-LEdge+1):end) .* Edge; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [envelope] = MakeEdge(srate, coslen) t = (0:(1/srate):coslen)*pi/(2*coslen); envelope = (cos(t)).^2; return;
github
erlichlab/elutils-master
make_pbup.m
.m
elutils-master/+sound/make_pbup.m
8,806
utf_8
87fd9aa4ca3b776517cfe0782df11b6d
% [snd lrate rrate data] = make_pbup(R, g, srate, T, varargin) % % Makes Poisson bups % bup events from the left and right speakers are independent Poisson % events % % ======= % inputs: % % R total rate (in clicks/sec) of bups from both left and right % speakers (r_L + r_R). Note that if distractor_rate > 0, then R % includes these stereo distractor bups as well. % % g the natural log ratio of right and left rates: log(r_R/r_L) % % srate sample rate % % T total time (in sec) of Poisson bup trains to be generated % % ========= % varargin: % % bup_width % width of a bup in msec (Default 3) % base_freq % base frequency of an individual bup, in Hz. The individual bup % consists of this in combination with ntones-1 octaves above the % base frequency. (Default 2000) % % ntones % number of tones comprising each individual bup. The bup is the % basefreq combined with ntones-1 higher octaves. (Default 5) % % bup_ramp % the duration in msec of the upwards and downwards volume ramps % for individual bups. The bup volume ramps up following a cos^2 % function over this duration and it ramps down in an inverse % fashion. % % first_bup_stereo % if 1, then the first bup to occur is forced to be stereo % % distractor_rate % if >0, then this is the rate of stereo distractors (bups that % are played on both speakers). These stereo bups are generated % as Poisson events and then combined with those generated for % left and right sides. % note that this value affects the R used to compute independent % Poisson rates for left and right sides, such that % R = R - 2*distractor_rate % % generate_sound % if 1, then generate the snd vector % if 0, the snd vector will be empty; data will still contain the % bups times % % fixed_sound % if [], then generate new pbups sound % if not empty, then should contain a struct D with fields: % D.left = [left bup times] % D.right = [right bup times] % D.lrate % D.rrate % these two vectors should be at least as long as T, so there's % no gap in the sound that's generated % % crosstalk % [left_crosstalk right_crosstalk] % between 0 and 1, determines volume of left clicks that are % heard in the right channel, and vice versa. % if only number is provided, the crosstalk is assumed to be % symmetric (i.e., left_crosstalk = right_crosstalk) % % avoid_collisions % produces a pseudo-poisson clicks train where no clicks are % allowed to overlap. If the click rate is so high that % collisions are unavoidable a warning will be displayed % added: Chuck 2010-10-05 % % force_count % produces a pseudo-poisson click train where the precise number % of clicks is predetermined. The rate variables are interpreted % as counts. % added: Chuck 2010-10-05 % % ======== % outputs: % % snd a vector representing the sound generated % % lrate rate of Poisson events generated only on the left % % rrate rate of Poisson events generated only on the right % % data a struct containing the actual bup times (in sec, centered in % middle of every bup) in snd. % data.left and data.right % function [snd lrate rrate data] = make_pbup(R, g, srate, T, varargin) pairs = {... 'bup_width', 3; ... 'base_freq', 2000; ... 'ntones', 5; ... 'bup_ramp', 2; ... 'first_bup_stereo' 0; ... 'distractor_rate' 0; ... 'generate_sound' 1; ... 'fixed_sound' []; ... 'crosstalk' [0 0]; ... 'avoid_collisions' 0; ... 'force_count' 0; ... }; parseargs(varargin, pairs); if isempty(crosstalk), crosstalk = [0 0]; end; %#ok<NODEF> if numel(crosstalk) < 2, crosstalk = crosstalk*[1 1]; end; if isempty(fixed_sound), if distractor_rate > 0, R = R - distractor_rate*2; end; % rates of Poisson events on left and right rrate = R/(exp(-g)+1); lrate = R - rrate; if force_count == 1 %rates are interpreted as counts and therefore must be integers rrate = round(rrate); lrate = round(lrate); end %t = linspace(0, T, srate*T); lT = srate*T; %the length of what previously was the t vector if avoid_collisions == 1 lT2 = ceil(T * 1e3 / bup_width); if force_count == 1 if ~isnan(lrate); temp = randperm(lT2); tp1 = temp(1:lrate); tp1 = sortrows(tp1')'; else tp1 = []; end if ~isnan(rrate); temp = randperm(lT2); tp2 = temp(1:rrate); tp2 = sortrows(tp2')'; else tp2 = []; end else if ~isnan(lrate); tp1 = find(rand(1,lT2) < lrate/(1e3/bup_width)); else tp1 = []; end if ~isnan(rrate); tp2 = find(rand(1,lT2) < rrate/(1e3/bup_width)); else tp2 = []; end end if first_bup_stereo, first_bup = min([tp1 tp2]); bupwidth = 1; if first_bup <= bupwidth, extra_bup = first_bup; else extra_bup = ceil(rand(1)*(first_bup-bupwidth)); end; tp1 = union(extra_bup, tp1); tp2 = union(extra_bup, tp2); end if distractor_rate > 0, if force_count == 1 temp = randperm(lT2); td = temp(1:round(distractor_rate)); td = sortrows(td')'; else td = find(rand(1,lT2) < distractor_rate/(1e3/bup_width)); end tp1 = union(td, tp1); tp2 = union(td, tp2); end if (lrate + distractor_rate) * bup_width > 200 || (rrate + distractor_rate) * bup_width > 200 disp('Warning: Click rate is set to high to ensure Poisson train with avoid_collisions on'); end tp1 = tp1 * (srate / (1e3 / bup_width)); tp2 = tp2 * (srate / (1e3 / bup_width)); else % times of the bups are Poisson events if force_count == 1 if ~isnan(lrate); temp = randperm(lT); tp1 = temp(1:lrate); tp1 = sortrows(tp1')'; else tp1 = []; end if ~isnan(rrate); temp = randperm(lT); tp2 = temp(1:rrate); tp2 = sortrows(tp2')'; else tp2 = []; end else if ~isnan(lrate); tp1 = find(rand(1,lT) < lrate/srate); else tp1 = []; end if ~isnan(rrate); tp2 = find(rand(1,lT) < rrate/srate); else tp2 = []; end end % in order not to alter the difference in bup numbers between left and % right, the extra stereo bup is placed randomly somewhere between 0 and % the earliest bup on either side if first_bup_stereo, first_bup = min([tp1 tp2]); bupwidth = bup_width*srate/2; if first_bup <= bupwidth, extra_bup = first_bup; else extra_bup = ceil(rand(1)*(first_bup-bupwidth) + bupwidth); end; tp1 = union(extra_bup, tp1); tp2 = union(extra_bup, tp2); end; if distractor_rate > 0, if force_count == 1 temp = randperm(lT); td = temp(1:round(distractor_rate)); td = sortrows(td')'; else td = find(rand(1,lT) < distractor_rate/srate); end tp1 = union(td, tp1); tp2 = union(td, tp2); end; end data.left = tp1/srate; data.right = tp2/srate; else % if we've provided bupstimes for which a sound will be made lrate = fixed_sound.lrate; rrate = fixed_sound.rrate; data.left = fixed_sound.left; data.right = fixed_sound.right; tp1 = round(fixed_sound.left*srate); tp2 = round(fixed_sound.right*srate); %t = linspace(0, T, srate*T); lT = srate*T; end; if generate_sound, bup = singlebup(srate, 0, 'ntones', ntones, 'width', bup_width, 'basefreq', base_freq, 'ntones', ntones, 'ramp', bup_ramp); w = floor(length(bup)/2); snd = zeros(2, lT); for i = 1:length(tp1), % place left bups if tp1(i) > w && tp1(i) < lT-w, snd(1,tp1(i)-w:tp1(i)+w) = snd(1,tp1(i)-w:tp1(i)+w)+bup; end; end; for i = 1:length(tp2), % place right bups if tp2(i) > w && tp2(i) < lT-w, snd(2,tp2(i)-w:tp2(i)+w) = snd(2,tp2(i)-w:tp2(i)+w)+bup; end; end; if sum(crosstalk) > 0, % implement crosstalk temp_snd(1,:) = snd(1,:) + crosstalk(2)*snd(2,:); temp_snd(2,:) = snd(2,:) + crosstalk(1)*snd(1,:); % normalize the sound so that the volume (summed across both % speakers) is the same as the original snd before crosstalk ftemp_snd = fft(temp_snd,2); fsnd = fft(snd,2); Ptemp_snd = ftemp_snd .* conj(ftemp_snd); Psnd = fsnd .* conj(fsnd); vol_scaling = sqrt(sum(Psnd(:))/sum(Ptemp_snd(:))); snd = real(ifft(ftemp_snd * vol_scaling)); end; snd(snd>1) = 1; snd(snd<-1) = -1; else snd = []; end;
github
erlichlab/elutils-master
MakeEdge.m
.m
elutils-master/+sound/MakeEdge.m
783
utf_8
8536b947788790f936e5ead9be58a078
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeEdge % Generate the rising/falling edge as an accessory to MakeBeep. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Edge=MakeEdge( SRate, RiseFall ) % Usage: % Edge=MakeEdge( SRate, RiseFall ) % Calculate a cos^2 gate for the trailing edge that has a 10%-90% % fall time of RiseFall in milliseconds given sample rate SRate in Hz. omega=(1e3/RiseFall)*(acos(sqrt(0.1))-acos(sqrt(0.9))); t=0 : (1/SRate) : pi/2/omega; t=t(1:(end-1)); Edge= ( cos(omega*t) ).^2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MakeEdge : End of function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
erlichlab/elutils-master
singlebup.m
.m
elutils-master/+sound/singlebup.m
1,377
utf_8
0be7b1a1e09b4be4290028c14fac66ae
% [snd] = singlebup(srate, att, { 'width', 5}, {'ramp', 2}, {'basefreq', 2000}, ... % {'ntones' 5}, {'PPfilter_fname', ''}); ... function [snd] = singlebup(srate, att, varargin) width=5 ; ramp = 2 ; basefreq = 2000 ; ntones = 5 ; PPfilter_fname= '' ; utils.overridedefaults(who, varargin); width = width/1000; ramp = ramp/1000; if isempty(PPfilter_fname) FilterPath=['Protocols' filesep 'PPfilter.mat']; else FilterPath = PPfilter_fname; end; PP = load(FilterPath); PP=PP.PP; t = 0:(1/srate):width; snd = zeros(size(t)); for i=1:ntones, f = basefreq*(2.^(i-1)); attenuation = att - ppval(PP, log10(f)); snd = snd + (10.^(-attenuation./20)) .* sin(2*pi*f*t); end; if max(abs(snd)) >= 1, snd = snd/(1.01*max(abs(snd))); end; rampedge=MakeEdge(srate, ramp); ramplen = length(rampedge); snd(1:ramplen) = snd(1:ramplen) .* fliplr(rampedge); snd(end-ramplen+1:end) = snd(end-ramplen+1:end) .* rampedge; return; % ------------------------------------------------------------- % % % % ------------------------------------------------------------- function [envelope] = MakeEdge(srate, coslen) t = (0:(1/srate):coslen)*pi/(2*coslen); envelope = (cos(t)).^2; return;
github
virati/SGView-master
SG_view.m
.m
SGView-master/SG_view.m
78,170
utf_8
012bb7c3e7682c1678c29a1f1369c165
%% %Written by: Vineet Tiruvadi 2013-2016 %SG Viewer %Main Gui for rapid viewing and spectral figures of BrainRadio and hdEEG %data for MaybergLab. function varargout = SG_view(varargin) % SG_VIEW MATLAB code for SG_view.fig % SG_VIEW, by itself, creates a new SG_VIEW or raises the existing % singleton*.DBS901-Chronic-5day_perday.fig % % H = SG_VIEW returns the handle to a new SG_VIEW or the handle to % the existing singleton*. % % SG_VIEW('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SG_VIEW.M with the given input arguments. % % SG_VIEW('Property','Value',...) creates a new SG_VIEW or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before SG_view_OpeningFcn gets called. Anhttp://proxy.library.emory.edu/login?url= % unrecognized property name or invalid value makes property application % stop. All inputs are passed to SG_view_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help SG_view % Last Modified by GUIDE v2.5 06-Jun-2017 18:02:40 addpath(genpath('lib')) % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @SG_view_OpeningFcn, ... 'gui_OutputFcn', @SG_view_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before SG_view is made visible. function SG_view_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to SG_view (see VARARGIN) % Choose default command line output for SG_view handles.output = hObject; handles.svInts.num = 1; handles.interval_colors = {'k','b','m','c','r','g','y','k'}; %Hardload settings handles.LFP_HardLoad = ''; handles.EEG_HardLoad = ''; %General directory settings handles.LFP_dir = '~/local_data/BR'; handles.EEG_dir = '~/local_data/hdEEG'; handles.LFP_curr_dir = handles.LFP_dir; handles.welchPSD = []; handles.welchBounds = []; handles.welchColor = {}; handles.pmap = colormap('lines'); colormap('default'); %Figure variables handles.tdFig = 0; %What should every modality be sampled to? This INTERPOLATES, need to make %sure at every step that this is ok handles.DATA.common_Fs = 422; handles.BLP_pow = []; handles.brLFP.Fs = str2num(get(handles.edtLFP_Fs,'String')); %% NEW STRUCTURES %Assume 260 channels, set up the UI channel list for ii = 1:260 handles.DATA.UI_TS_List{ii} = [num2str(ii) ': Empty']; end handles.DATA.TS_List = zeros(260,1); %variable for address of current active channel %Start at 0, so throws exception if not properly handled after %initialization handles.UI.active_chann = 0; %% %Analysis tracking handles.SG.SG_Labels = {}; handles.SG.Done = zeros(260,1); handles.ANALYSIS.ds_factor = 1; %Bigger one for the bar plots across files/patients handles.ANALYSIS.Aggr.idx = 0; %% % Update handles structure guidata(hObject, handles); % UIWAIT makes SG_view wait for user response (see UIRESUME) % uiwait(handles.figure1); function LoadEEG(hObject,eventdata,handles,eeg_fname,eeg_dir) handles.RAW.EEG = []; disp('Loading EEG...'); %Linux handles.DATA.EEG.locs = readlocs('~/Dropbox/projects/Research/MDD-DBS/Ephys/hdEEG/GSN257.sfp'); %Windows %handles.DATA.EEG.locs = readlocs('C:\Users\Vineet\Dropbox\projects\Research\MDD-DBS\Ephys\hdEEG\GSN257.sfp'); handles.RAW.EEG.rawdata = load([eeg_dir eeg_fname{1}]); handles.RAW.EEG.Fs = handles.RAW.EEG.rawdata.EEGSamplingRate; %Display information in UI set(handles.edtEEGfname,'String',eeg_fname{1}); set(handles.edtEEG_Fs,'String',num2str(handles.RAW.EEG.Fs)); %Find the fieldnames list_fields = fieldnames(handles.RAW.EEG.rawdata); handles.DATA.EEG.ts = handles.RAW.EEG.rawdata.(list_fields{1}); ts_size = size(handles.DATA.EEG.ts); avg_idx = ts_size(1)+1; %This will be expanded and incorporate a configuration file/viewer so %can quickly switch between configs/montages %channel_list = {[32],[37],[25],[18],[241],[244],[238],[234],[89],[88],[130],[142],[136],[135],[148],[157],[9],[45],[186],[132]}; %Differential channels % Subset indeed handles.DATA.EEG.SubSet = {[32,37],[25,18],[241,244],[238,234],[89,88],[130,142],[136,135],[148,157],[9,45],[186,132]}; %handles.DATA.EEG.SubSetLabels = {}; %Single channels %handles.DATA.EEG.SubSet = {[32],[37],[25],[18],[241],[244],[238],[234],[89],[88],[130],[142],[136],[135],[148],[157],[9],[45],[186],[132]}; %Avg Reference %handles.DATA.EEG.SubSet = {[32,avg_idx],[37,avg_idx],[25,avg_idx],[18,avg_idx],[241,avg_idx],[244,avg_idx],[238,avg_idx],[234,avg_idx],[89,avg_idx],[88,avg_idx],[130,avg_idx],[142,avg_idx],[136,avg_idx],[135,avg_idx],[148,avg_idx],[157,avg_idx],[9,avg_idx],[45,avg_idx],[186,avg_idx],[132,avg_idx]}; %Just load all % for ii = 1:257 % handles.DATA.EEG.SubSet{ii} = [ii]; % end %Compute the channel average reference handles.DATA.EEG.ts(end+1,:) = mean(handles.DATA.EEG.ts,1); %Load in the EEG channels from the Subset variable for ii = 1:length(handles.DATA.EEG.SubSet) eeg_chann = cell2mat(handles.DATA.EEG.SubSet(ii)); if numel(eeg_chann) == 1 handles.DATA.chann{ii+2}.ts = detrend(handles.DATA.EEG.ts(eeg_chann,:)); handles.DATA.chann{ii+2}.label = ['EEG Channel ' num2str(eeg_chann)]; else handles.DATA.chann{ii+2}.ts = detrend(handles.DATA.EEG.ts(eeg_chann(1),:) - handles.DATA.EEG.ts(eeg_chann(2),:)); handles.DATA.chann{ii+2}.label = ['EEG Diff Channel ' num2str(eeg_chann(1)) ' : ' num2str(eeg_chann(2))]; end handles.DATA.chann{ii+2}.Fs = handles.RAW.EEG.Fs; handles.DATA.chann{ii+2}.num = ii+2; %Setup all EEG channels to be shifted when choosing windows handles.DATA.chann{ii+2}.doShift = 1; end add_channs = length(handles.DATA.EEG.SubSet)-1 handles.DATA.TS_List(3:3+add_channs) = 1; %Now do UI stuff, like populating the channel popdown for timedomain for ii = 1:length(handles.DATA.EEG.SubSet) handles.DATA.UI_TS_List{ii+2} = [num2str(ii+2) ':' handles.DATA.chann{ii+2}.label]; end set(handles.popChannTs,'String',handles.DATA.UI_TS_List); disp('...EEG File Loaded'); guidata(hObject,handles); %Loading of data function, this is for the brainradio LFP, %SINGLE FILES ONLY/EXPERIMENTS function LoadLFP(hObject, eventdata, handles, data_loc) handles.RAW.LFP = []; disp('Loading LFP...'); %Load in data from data_loc(ation) structure argument raw_data = dlmread([data_loc.data_path data_loc.data_file]); handles.RAW.LFP.rawdata = raw_data(:,[1,3]); handles.RAW.LFP.file = data_loc; %!!CHANGEBACK TO 422 handles.RAW.LFP.rawFs = str2num(get(handles.edtLFP_Fs,'String')); %Reflect changes in UI set(handles.editFname,'String',data_loc.data_file); set(handles.cmdAvgSpectr,'Enable','off'); handles.LFP_curr_dir = data_loc.data_path; %Interpolation and channel timeseries structures %handles.CHANN.ts will ALWAYS sampled at 1000Hz; though, here, the sizes %may not be consistent... for ii = 1:2 handles.DATA.chann{ii}.ts = resample(handles.RAW.LFP.rawdata(:,ii),handles.DATA.common_Fs,handles.RAW.LFP.rawFs); handles.DATA.chann{ii}.Fs = handles.RAW.LFP.rawFs * handles.DATA.common_Fs / handles.RAW.LFP.rawFs; handles.DATA.chann{ii}.doShift = 0; handles.DATA.chann{ii}.num = ii; end handles.DATA.TS_List(1:2) = [1 1]; handles.DATA.chann{1}.label = ['LFP Channel Left']; handles.DATA.chann{2}.label = ['LFP Channel Right']; handles.DATA.UI_TS_List{1} = [num2str(1) ':' handles.DATA.chann{1}.label]; handles.DATA.UI_TS_List{2} = [num2str(2) ':' handles.DATA.chann{2}.label]; set(handles.popChannTs,'String',handles.DATA.UI_TS_List); disp('...Raw LFP loaded'); handles.UI.active_chann = 1; guidata(hObject,handles); % --- Outputs from this function are returned to the command line. function varargout = SG_view_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; %This function is for LOADING THE CURRENT DATA %Includes BR and (aspirationally) hdEEG data % --- Executes on button press in cmdLoad. function cmdLoad_Callback(hObject, eventdata, handles) % hObject handle to cmdLoad (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB30816 % handles structure with handles and user data (see GUIDATA) [data_file data_path] = uigetfile({'*.txt'},'Pick BR Data File',handles.LFP_curr_dir,'MultiSelect','On') data_info.data_file = data_file; data_info.data_path = data_path; LoadLFP(hObject,eventdata,handles,data_info); %This button ALWAYS redoes analysis on all channels %And resets analysis sets (display sets) % --- Executes on button press in cmdLFP_TF. % function cmdLFP_TF_Callback(hObject, eventdata, handles) % % hObject handle to cmdLFP_TF (see GCBO) % % eventdata reserved - to be defined in a future version of MATLAB % % handles structure with handles and user data (see GUIDATA) % % disp('Generating [Spectrograms] for all channels...'); % % ds_fact = str2num(get(handles.edtDownsample,'String')); % %Preprocessing steps here % % %Clear current downsampled signals and spectrograms % handles.brLFP.ds = []; % handles.SG = []; % % handles.brLFP.ds(:,1) = decimate(handles.brLFP.rawdata{1}(1,:),ds_fact); % handles.brLFP.ds(:,2) = decimate(handles.brLFP.rawdata{1}(2,:),ds_fact); % handles.brLFP.aFs = handles.brLFP.Fs/ds_fact; % % handles.anls.data = {}; % % if (get(handles.cbFilter,'Value')) % disp('Filtering...'); % lpf_50 = lowpass_gen(handles.brLFP.aFs); % handles.anls.data{end}(1,:) = filtfilthd(lpf_50,handles.anls.data{end}(1,:)); % handles.anls.data{end}(2,:) = filtfilthd(lpf_50,handles.anls.data{end}(2,:)); % end % % sgWin = str2num(get(handles.edSgWin,'String')); % sgDispl = str2num(get(handles.edSgDispl,'String')); % sgNfft = str2num(get(handles.edSgNFFT,'String')); % % %Does the spectrogram analysis % for c_num = 1:2 % [handles.CHANN.SG{c_num}.S handles.CHANN.SG{c_num}.F handles.CHANN.SG{c_num}.T] = spectrogram(handles.brLFP.ds(:,c_num),blackmanharris(sgWin),sgDispl,sgNfft,handles.brLFP.aFs); % end % % handles.SG.Method = 'PWelch STFT'; % % %Which channel to plot here % colormap('jet'); % achann = handles.UI.active_chann; % imagesc(handles.CHANN.SG{achann}.T, handles.CHANN.SG{achann}.F, 10*log10(abs(handles.CHANN.SG{achann}.S)),[-50 0]);set(gca,'YDir','normal');colorbar(); % title(['Channel ' num2str(achann)]); % % disp('...Done [Spectrograms]'); % % handles.run_mean = []; % handles.run_length = 0; % handles.run_mean_color = {}; % % guidata(hObject,handles); % % --- Executes during object creation, after setting all properties. function editFname_CreateFcn(hObject, eventdata, handles) % hObject handle to editFname (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edSgWin_CreateFcn(hObject, eventdata, handles) % hObject handle to edSgWin (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edSgDispl_CreateFcn(hObject, eventdata, handles) % hObject handle to edSgDispl (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edSgNFFT_CreateFcn(hObject, eventdata, handles) % hObject handle to edSgNFFT (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function listbox1_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edtIStart_CreateFcn(hObject, eventdata, handles) % hObject handle to edtIStart (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edtIEnd_CreateFcn(hObject, eventdata, handles) % hObject handle to edtIEnd (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edtI2Start_CreateFcn(hObject, eventdata, handles) % hObject handle to edtI2Start (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes during object creation, after setting all properties. function edtI2End_CreateFcn(hObject, eventdata, handles) % hObject handle to edtI2End (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end %MAIN 1-D PLOTTING FUNCTION BELOW % --- Executes on button press in cmdSelect. %OLDOLDOLD % function cmdSelect_Callback(hObject, eventdata, handles) % % hObject handle to cmdSelect (see GCBO) % % eventdata reserved - to be defined in a future version of MATLAB % % handles structure with handles and user data (see GUIDATA) % % sig_cont = select_window(hObject,eventdata,handles); % % PSD_estimate(handles,handles.UI.active_chann,sig_cont); % % % colormap('jet'); % % axes(handles.axes1); % iv_rect = getrect(); % % use_welch = 1; % % clear l_hpsd r_hpsd; % [itv,t_vect] = iv_to_ts(handles,iv_rect); % % if use_welch % %Uses the Welch Estimate % [l_hpsd] = intrv_spectra(hObject,eventdata,handles,itv,'left'); % [r_hpsd] = intrv_spectra(hObject,eventdata,handles,itv,'right'); % end % % rectangle('Position',[iv_rect(1), 0, iv_rect(3), 100],'LineWidth',4,'EdgeColor',handles.pmap(handles.svInts.num+1,:)); % % PSD_plotting(hObject,eventdata,handles,l_hpsd,'Left'); function PSD_plotting(hObject,eventdata,handles,PSD,fig_title) handles.svInts.num = handles.svInts.num + 1; figure(handles.ag_spect); %suptitle(fig_title); % %Display spectrogram for each interval % subplot(3,2,1); % imagesc(PSD.sgT,PSD.sgF,10*log10(abs(PSD.sg))); % set(gca,'YDir','normal'); %pwelch estimate subplot(3,2,2:4); hold on; for ii = 1:2 b(:,1,ii) = abs(10*log10(PSD.P(:,ii)) - 10*log10(PSD.PC(:,1,ii))); b(:,2,ii) = abs(10*log10(PSD.P(:,ii)) - 10*log10(PSD.PC(:,2,ii))); end %Need to do running matrix of all PSDs being plotted and all bs handles.runPSD = [handles.runPSD, PSD.P]; handles.runBounds = cat(3,handles.runBounds,b); handles.runColor{handles.svInts.num} = handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1}; pmap = handles.pmap; boundedline(PSD.welchF,10*log10(handles.welchPSD),handles.welchBounds,'cmap',pmap,'alpha'); %boundedline(PSD.welchF,10*log10(PSD.welch),b,handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1},'alpha'); title('Welch Estimate'); xlabel('Freq (Hz)');ylabel('Power (dB)'); xlim([0 25]); %Save to handles.spectra{associated index} handles.PSD_estimates{handles.svInts.num}.LEFT = PSD.welch; handles.PSD_estimates{handles.svInts.num}.Freqs = PSD.welchF; % subplot(3,1,2); % boundedline(PSD.sgF,10*log10(PSD.sg_m),1.96 * (10*log10(PSD.sg_s))/sqrt(PSD.sg_n),handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1},'alpha');hold on; % % xlim([0 25]); % xlabel('Frequency (Hz)'); % ylabel('Power (dB)'); % title('Spectrogram Average Estimate'); % subplot(3,1,3); % b_mts(:,1) = abs(10*log10(LEFT.l_mts) - 10*log10(LEFT.l_mts_ci(1,:)')); % b_mts(:,2) = abs(10*log10(LEFT.l_mts) - 10*log10(LEFT.l_mts_ci(1,:)')); % % boundedline(LEFT.l_mts_f,10*log10(LEFT.l_mts),b_mts,handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1},'alpha'); % xlabel('Frequency (Hz)'); % ylabel('Power (dB)'); % xlim([0 50]);s % title('Multitaper Estimate'); plot_ratio = 0; subplot(3,2,5:6); if plot_ratio %subplot(3,2,5:6); if handles.svInts.num >= 2 plot(handles.PSD_estimates{1}.Freqs,10*log10(handles.PSD_estimates{2}.LEFT ./ handles.PSD_estimates{1}.LEFT));hold on; end xlim([0 25]); title('Log Power Ratio') else %Plot band limited power alphalim = [8,14]; thetalim = [4,8]; alpha_mask = find(PSD.welchF > alphalim(1) & PSD.welchF < alphalim(2)); theta_mask = find(PSD.welchF > thetalim(1) & PSD.welchF < thetalim(2)); alpha_pow = mean(PSD.welch(alpha_mask)); theta_pow = mean(PSD.welch(theta_mask)); handles.Alpha_pow = [handles.Alpha_pow,alpha_pow]; handles.Theta_pow = [handles.Theta_pow,theta_pow]; bar_h = bar([handles.Alpha_pow;handles.Theta_pow]); for kk = 1:length(bar_h) set(bar_h(kk),'FaceColor',pmap(kk,:)); end set(gca,'XTickLabel',{'Alpha','Theta'}); end set(findall(gcf,'-property','FontSize'),'FontSize',24); guidata(hObject,handles); function [nbounds,tvect] = iv_to_ts(handles,iv_rect,lim_time) iv_start = iv_rect(1); if lim_time == 0 iv_end = iv_rect(1)+iv_rect(3); else iv_end = iv_rect(1)+lim_time; end if iv_start < 0 iv_start = 0; end if iv_end > (length(handles.DATA.chann{handles.UI.active_chann}.ts) / handles.DATA.chann{handles.UI.active_chann}.Fs) iv_end = length(handles.DATA.chann{handles.UI.active_chann}.ts) / handles.DATA.chann{handles.UI.active_chann}.Fs; end nbounds = [iv_start iv_end] * handles.DATA.chann{handles.UI.active_chann}.Fs + 1; %+1 to account for no 0 index tvect = linspace(iv_start,iv_end,(iv_end - iv_start) * handles.DATA.chann{handles.UI.active_chann}.Fs); % --- Executes on button press in cmdSvInt. function cmdSvInt_Callback(hObject, eventdata, handles) % hObject handle to cmdSvInt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.svInts.num = handles.svInts.num + 1; handles.svInts.Int{handles.svInts.num}.file = get(handles.editFname,'String'); handles.svInts.Int{handles.svInts.num}.tInt = handles.curr_Int.t_Int; handles.svInts.Int{handles.svInts.num}.label = get(handles.edtIntLabel,'String'); handles.svInts.Int{handles.svInts.num}.l_psd = handles.curr_Int.l_hpsd; handles.svInts.Int{handles.svInts.num}.r_psd = handles.curr_Int.r_hpsd; base_list = get(handles.lsbIvs,'String'); base_list = strvcat(char(base_list),handles.svInts.Int{handles.svInts.num}.label); set(handles.lsbIvs,'String',cellstr(base_list)); guidata(hObject,handles); % --- Executes on selection change in lsbIvs. function lsbIvs_Callback(hObject, eventdata, handles) % hObject handle to lsbIvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns lsbIvs contents as cell array % contents{get(hObject,'Value')} returns selected item from lsbIvs % --- Executes during object creation, after setting all properties. function lsbIvs_CreateFcn(hObject, eventdata, handles) % hObject handle to lsbIvs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cmdLoadInt. function cmdLoadInt_Callback(hObject, eventdata, handles) % hObject handle to cmdLoadInt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.ANALYSIS.active_figure = figure(); %Refresh SG main axes %Plot the active chann SG_Plot_Chann(hObject,handles,handles.UI.active_chann); %Reset the interval count handles.ANALYSIS.active_interval = 0; handles.ANALYSIS.intv = {}; handles.ANALYSIS.Aggr.idx = handles.ANALYSIS.Aggr.idx + 1; % %handles.ag_spect = figure; % handles.svInts.num = 0; % handles.sel = 0; % handles.freq_means = []; % % handles.welchPSD = []; % handles.welchBounds = []; % handles.Alpha_pow = []; % handles.Theta_pow = []; guidata(hObject,handles); function edtIntLabel_Callback(hObject, eventdata, handles) % hObject handle to edtIntLabel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtIntabel as text % str2double(get(hObject,'String')) returns contents of edtIntLabel as a double % --- Executes during object creation, after setting all properties. function edtIntLabel_CreateFcn(hObject, eventdata, handles) % hObject handle to edtIntLabel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cbFilter. function cbFilter_Callback(hObject, eventdata, handles) % hObject handle to cbFilter (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of cbFilter % --- Executes on button press in cmdTime. %Displays the time series for the rectangle chosen function cmdTime_Callback(hObject, eventdata, handles) % hObject handle to cmdTime (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes1); iv_rect = getrect(); iv_start = iv_rect(1); iv_end = iv_rect(1)+iv_rect(3); if iv_start < 0 iv_start = 0; end if iv_end > (length(handles.brLFP.ds(:,1)) / handles.brLFP.aFs) iv_end = length(handles.brLFP.ds(:,1)) / handles.brLFP.aFs; end iv = [iv_start iv_end] * handles.brLFP.aFs + 1; t_vect = linspace(iv_start,iv_end,(iv_end - iv_start) * handles.brLFP.aFs + 1); t_sig = handles.brLFP.ds(iv(1):iv(2),:); figure; subplot(3,1,1); plot(t_vect,t_sig(:,1)); hold on; plot(t_vect,t_sig(:,2),'r'); set(findall(gcf,'-property','FontSize'),'FontSize',24); %set(findall(gcf,'-property','FontName'), 'Helvetica'); subplot(3,1,3); [acor, lag] = xcorr(t_sig(:,1),t_sig(:,2),'coeff'); plot(lag,acor); write_file = 1; if write_file dlmwrite('/tmp/left_time_sig.txt',[t_vect;t_sig(:,1)'],'delimiter',','); dlmwrite('/tmp/right_time_sig.txt',[t_vect;t_sig(:,2)'],'delimiter',','); end % --- Executes on button press in cmdSvBL. function cmdSvBL_Callback(hObject, eventdata, handles) % hObject handle to cmdSvBL (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.baselineInt.left = handles.curr_Int.left; handles.baselineInt.right = handles.curr_Int.right; guidata(hObject,handles); function edtIntLength_Callback(hObject, eventdata, handles) % hObject handle to edtIntLength (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtIntLength as text % str2double(get(hObject,'String')) returns contents of edtIntLength as a double % --- Executes during object creation, after setting all properties. function edtIntLength_CreateFcn(hObject, eventdata, handles) % hObject handle to edtIntLength (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edtDownsample_Callback(hObject, eventdata, handles) % hObject handle to edtDownsample (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtDownsample as text % str2double(get(hObject,'String')) returns contents of edtDownsample as a double % --- Executes during object creation, after setting all properties. function edtDownsample_CreateFcn(hObject, eventdata, handles) % hObject handle to edtDownsample (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cmdAvgSpectr. function cmdAvgSpectr_Callback(hObject, eventdata, handles) % hObject handle to cmdAvgSpectr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.svInts.num = handles.svInts.num + 1; %Periodogram for ii = 1:length(handles.anls.multi_data) %precondition signal sig_n = detrend(handles.anls.multi_data{ii}(1,:),'constant'); %Take just the last part of sig_n, minus the initial transient sig_n = sig_n(end - 5*handles.brLFP.aFs:end); %[Lpxx(ii,:),Lf] = periodogram(handles.anls.multi_data{ii}(1,:),blackmanharris(length(handles.anls.multi_data{ii}(1,:))),1024*2,handles.brLFP.aFs); [Lpxx(ii,:),Lf] = pwelch(sig_n,blackmanharris(5 * handles.brLFP.aFs),[],2056,handles.brLFP.aFs); disp(num2str(size(sig_n))); end if ~isfield(handles,'avgSpect') handles.avgSpect = figure(); end avgLp = mean(Lpxx,1); %stdLp = std(10*log10(Lpxx),[],1); stdLp = std(Lpxx,[],1); rngLp = range(Lpxx,1); figure(handles.avgSpect); subplot(4,1,1); plot(Lf,10*log10(avgLp),handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1});hold on; xlim([0 50]); subplot(4,1,2); boundedline(Lf,10*log10(avgLp),2*(10*log10(stdLp))/sqrt(length(handles.anls.multi_data)),handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1},'alpha')%,handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1},'alpha');hold on; xlim([0 50]); %Subplot for theta, alpha, beta band limited theta_mask = (Lf > 4 ) & (Lf < 8); theta_band_spectr = avgLp .* theta_mask'; theta_mean = mean(theta_band_spectr(theta_mask ~= 0)); alpha_mask = (Lf > 8 ) & (Lf < 14); alpha_band_spectr = avgLp .* alpha_mask'; alpha_mean = mean(alpha_band_spectr(alpha_mask ~= 0)); handles.run_length = handles.run_length + 1; handles.run_mean(:,handles.run_length) = [theta_mean,alpha_mean]'; %handles.run_mean = [handles.run_mean';theta_mean,alpha_mean]'; handles.run_mean_color = [handles.run_mean_color,handles.interval_colors{mod(handles.svInts.num,length(handles.interval_colors))+1}]; set(findall(gcf,'-property','FontSize'),'FontSize',24); guidata(hObject,handles); % --- Executes on button press in cmdReload. function cmdReload_Callback(hObject, eventdata, handles) % hObject handle to cmdReload (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) LoadLFP(hObject,eventdata,handles); guidata(hObject,handles); % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over cmdSelect. function cmdSelect_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to cmdSelect (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on key press with focus on cmdSelect and none of its controls. function cmdSelect_KeyPressFcn(hObject, eventdata, handles) % hObject handle to cmdSelect (see GCBO) % eventdata structure with the following fields (see UICONTROL) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) https://docs.google.com/presentation/d/1F5ppNZjxxtwawCghksNKbVTURH4TyB8eCgRIxSMwlfs/edit?usp=sharingof the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in SaveSGCmd. function SaveSGCmd_Callback(hObject, eventdata, handles) % hObject handle to SaveSGCmd (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Fig2 = figure; copyobj(handles.axes1,Fig2);colormap('jet'); data_file = get(handles.editFname,'String'); %hgsave(Fig2, ['/tmp/' handles.data_file '_spectrogram.fig']); pause(2); print(Fig2,'-dpng',['/tmp/' data_file '_Chann' num2str(handles.UI.active_chann) '_spectrogram.png']); % --- Executes during object creation, after setting all properties. function axes1_CreateFcn(hObject, eventdata, handles) % hObject handle to axes1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: place code in OpeningFcn to populate axes1 % --- Executes on button press in cmdClearSG. function cmdClearSG_Callback(hObject, eventdata, handles) % hObject handle to cmdClearSG (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes1) cla; % --- Executes on button press in cmdMeta. function cmdMeta_Callback(hObject, eventdata, handles) % hObject handle to cmdMeta (see GCBO)% % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Textprompts for ease pt = input('What patient is this?') exp = input('What experiment is this?') timept = input('What timepoint is this?') condit = input('What condition is this?') trial = input('What trial is this?') base_dir = '/tmp/Results/SysID/'; out_dir = [base_dir '/' exp '/' timept '/' pt '/'] mkdir(out_dir) output_file = [out_dir condit '_T' trial '.xml'] % --- Executes on button press in cmdPathClip. function cmdPathClip_Callback(hObject, eventdata, handles) % hObject handle to cmdPathClip (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clipboard('copy',[handles.RAW.LFP.file.data_path handles.RAW.LFP.file.data_file]); function SG_Plot_Chann(hObject,handles,achann) axes(handles.axes1);cla; colormap('jet'); %achann = handles.UI.active_chann; colormap('jet'); imagesc(handles.TF.chann{achann}.T, handles.TF.chann{achann}.F, 10*log10(abs(handles.TF.chann{achann}.S))); %caxis [-20,20] on the z-scored input signal seems like a great %VISUALIZATION technique; keep this for the main window spectrogram/view %But might need to be tweaked for the EEG data set(gca,'YDir','normal');colorbar();ylim([0 handles.TF.Fs / 2]);caxis([-20,20]); xlabel('Time (s)'); ylabel('Frequency (Hz)'); title(['Channel ' num2str(achann) ' - ' handles.DATA.chann{achann}.label]); % --- Executes during object creation, after setting all properties. function popChann_CreateFcn(hObject, eventdata, handles) % hObject handle to popChann (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popTFMethod. function popTFMethod_Callback(hObject, eventdata, handles) % hObject handle to popTFMethod (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popTFMethod contents as cell array % contents{get(hObject,'Value')} returns selected item from popTFMethod handles.TF_Method.idx = get(hObject,'Value'); temp_string = get(hObject,'String'); handles.TF_Method.name = temp_string{handles.TF_Method.idx}; guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function popTFMethod_CreateFcn(hObject, eventdata, handles) % hObject handle to popTFMethod (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cmdEEGLoad. function cmdEEGLoad_Callback(hObject, eventdata, handles) % hObject handle to cmdEEGLoad (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [handles.EEG_file handles.EEG_path] = uigetfile({'*.mat'},'Pick EEG Data File',handles.EEG_dir,'MultiSelect','Off') handles.EEG_file = cellstr(handles.EEG_file); handles.EEG_dir = handles.EEG_path; eeg_fname = handles.EEG_file;eeg_dir = handles.EEG_path; guidata(hObject,handles); LoadEEG(hObject,eventdata,handles,eeg_fname,eeg_dir); function edtEEGfname_Callback(hObject, eventdata, handles) % hObject handle to edtEEGfname (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtEEGfname as text % str2double(get(hObject,'String')) returns contents of edtEEGfname as a double % --- Executes during object creation, after setting all properties. function edtEEGfname_CreateFcn(hObject, eventdata, handles) % hObject handle to edtEEGfname (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cmdPAC. function cmdPAC_Callback(hObject, eventdata, handles) % hObject handle to cmdPAC (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Interval return function axes(handles.axes1); iv_rect = getrect(); if get(handles.chkLimIntv,'Value') lim_time = str2num(get(handles.edtIntLength,'String')); else lim_time = 0; end [itv,t_vect] = iv_to_ts(handles,iv_rect,lim_time); disp('Starting PAC'); PAC.sig = handles.brLFP.ds(itv(1):itv(2),:); disp('Running PAC...'); %Do PAC Calculation %CFC Section a_range = 1:1:100; p_range = 1:1:25; bw = 2; pbr = 0.02; n = 36; Fb = 2; Fc = 1; % %GPU version % %GPU VERSION % s1c = reshape(repmat(PAC.sig(:,1)',100,1),10,10,[]); % s2c = reshape(repmat(PAC.sig(:,2)',100,1),10,10,[]); % % S1 = gpuArray(PAC.sig(:,1)'); % S2 = gpuArray(PAC.sig(:,2)'); %Non-GPU version CFC.MI{1}.MIs = GLMcomodulogram(PAC.sig(:,1)',PAC.sig(:,2)',a_range,p_range,handles.brLFP.aFs,bw,pbr,'No'); CFC.MI{2}.MIs = GLMcomodulogram(PAC.sig(:,2)',PAC.sig(:,1)',a_range,p_range,handles.brLFP.aFs,bw,pbr,'No'); CFC.MI{3}.MIs = GLMcomodulogram(PAC.sig(:,1)',PAC.sig(:,1)',a_range,p_range,handles.brLFP.aFs,bw,pbr,'No'); CFC.MI{4}.MIs = GLMcomodulogram(PAC.sig(:,2)',PAC.sig(:,2)',a_range,p_range,handles.brLFP.aFs,bw,pbr,'No'); handles.CFC = CFC; guidata(hObject,handles); figure; colormap('jet'); subplot(2,2,1); imagesc(p_range,a_range,handles.CFC.MI{1}.MIs',[0 0.8]);set(gca,'ydir','Normal');colorbar(); subplot(2,2,2); imagesc(p_range,a_range,handles.CFC.MI{2}.MIs',[0 0.8]);set(gca,'ydir','Normal');colorbar(); subplot(2,2,3); imagesc(p_range,a_range,handles.CFC.MI{3}.MIs',[0 0.8]);set(gca,'ydir','Normal');colorbar(); subplot(2,2,4); imagesc(p_range,a_range,handles.CFC.MI{4}.MIs',[0 0.8]);set(gca,'ydir','Normal');colorbar(); disp('DONE PAC'); % --- Executes on selection change in popPSDEst. function popPSDEst_Callback(hObject, eventdata, handles) % hObject handle to popPSDEst (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popPSDEst contents as cell array % contents{get(hObject,'Value')} returns selected item from popPSDEst handles.PSD_Method.idx = get(hObject,'Value'); temp_string = get(hObject,'String'); handles.PSD_Method.name = temp_string{handles.PSD_Method.idx}; guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function popPSDEst_CreateFcn(hObject, eventdata, handles) % hObject handle to popPSDEst (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edtLFP_Fs_Callback(hObject, eventdata, handles) % hObject handle to edtLFP_Fs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtLFP_Fs as text % str2double(get(hObject,'String')) returns contents of edtLFP_Fs as a double handles.brLFP.Fs = str2num(get(hObject,'String')); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function edtLFP_Fs_CreateFcn(hObject, eventdata, handles) % hObject handle to edtLFP_Fs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edtEEG_Fs_Callback(hObject, eventdata, handles) % hObject handle to edtEEG_Fs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtEEG_Fs as text % str2double(get(hObject,'String')) returns contents of edtEEG_Fs as a double handles.hdEEG.Fs = str2num(get(hObject,'String')); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function edtEEG_Fs_CreateFcn(hObject, eventdata, handles) % hObject handle to edtEEG_Fs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popPACc1. function popPACc1_Callback(hObject, eventdata, handles) % hObject handle to popPACc1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popPACc1 contents as cell array % contents{get(hObject,'Value')} returns selected item from popPACc1 % --- Executes during object creation, after setting all properties. function popPACc1_CreateFcn(hObject, eventdata, handles) % hObject handle to popPACc1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in popPACc2. function popPACc2_Callback(hObject, eventdata, handles) % hObject handle to popPACc2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popPACc2 contents as cell array % contents{get(hObject,'Value')} returns selected item from popPACc2 % --- Executes during object creation, after setting all properties. function popPACc2_CreateFcn(hObject, eventdata, handles) % hObject handle to popPACc2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in chkLimIntv. function chkLimIntv_Callback(hObject, eventdata, handles) % hObject handle to chkLimIntv (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of chkLimIntv % --- Executes on button press in cmdTimeFile. function cmdTimeFile_Callback(hObject, eventdata, handles) % hObject handle to cmdTimeFile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %time_file = dlmread('/tmp/Andrea_imagined_movement/DBS906_emoLFPpilot_11092015.txt'); %time_file = dlmread('/tmp/Andrea_imagined_movement/DBS905_motorLFPpilot_11102015.txt'); meta_file = [handles.RAW.LFP.file.data_path handles.RAW.LFP.file.data_file(1:end-3) '.xml'] meta_data = dlmread(meta_file); timings = time_file(:,2); stim_art = time_file(:,3); disp('Timings Loaded...'); % --- Executes on button press in boxResamp1K. stim_art = time_file(:,3); disp('Timings Loaded...'); % --- Executes on button press in boxResamp1K. function boxResamp1K_Callback(hObject, eventdata, handles) % hObject handle to boxResamp1K (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of boxResamp1K % --- Executes on selection change in popChannTs. function popChannTs_Callback(hObject, eventdata, handles) % hObject handle to popChannTs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popChannTs contents as cell array % contents{get(hObject,'Value')} returns selected item from popChannTs %When this value changes, update the current active channel handles.UI.active_chann = get(hObject,'Value'); disp(['Changing Active Channel to ' num2str(handles.UI.active_chann)]); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function popChannTs_CreateFcn(hObject, eventdata, handles) % hObject handle to popChannTs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in cmdTsShow. function cmdTsShow_Callback(hObject, eventdata, handles) % hObject handle to cmdTsShow (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) curr_chann = get(handles.popChannTs,'Value'); figure(100); subplot(3,1,1); plot(handles.DATA.chann{curr_chann}.ts);hold on; title(['Channel ' num2str(curr_chann) ' :: Time Domain']);legend(); subplot(3,1,2); plot(handles.RAW.LFP.rawdata(:,curr_chann));hold on; title(['Raw Channel ' num2str(curr_chann) ' at ' num2str(handles.RAW.LFP.rawFs) ' :: T Domain']); %subplot(3,1,3); %spectrogram(handles.RAW.LFP.rawdata(:,curr_chann),blackmanharris(512),500,2^10,handles.RAW.LFP.rawFs); %title(['Spectrogram of RAW Channel ' num2str(curr_chann) ' :: TF Domain']);legend(); guidata(hObject,handles); % --- Executes on button press in cmdTFPlot. function cmdTFPlot_Callback(hObject, eventdata, handles) % hObject handle to cmdTFPlot (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) a = find(handles.DATA.TS_List == 1)'; disp('Computing T-F for Loaded Channels...'); handles.SG.Done = []; handles.SG.SG_Labels = {}; %Make a local container for the raw data chann_ts{1} = []; chann_fs = handles.DATA.chann{min(a)}.Fs; ds_fact = 1; for ii = a dummy_chann = handles.DATA.chann{ii}; chann_ts{ii}.ts = decimate(dummy_chann.ts,ds_fact); end chann_fs = chann_fs ./ ds_fact; %Without downsampling ahead of time for ii = a [handles.TF.chann{ii}.S, handles.TF.chann{ii}.F, handles.TF.chann{ii}.T] = spectrogram(chann_ts{ii}.ts,blackmanharris(512),500,2^10,422)%chann_fs); end %Update the decimated Fs handles.TF.Fs = chann_fs; %Set UI active channel to lowest available channel handles.UI.active_chann = min(a); %Plot the active chann SG_Plot_Chann(hObject,handles,handles.UI.active_chann); %Update the popdown text for ii = a SG_Labels{ii} = ['Channel ' num2str(ii)]; handles.SG.SG_Labels = SG_Labels; handles.SG.Done = [handles.SG.Done ii]; end set(handles.popChann,'String',SG_Labels); disp('...Done computing T-F for Channel Set'); guidata(hObject,handles); % --- Executes on button press in cmdCoher. function cmdCoher_Callback(hObject, eventdata, handles) % hObject handle to cmdCoher (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on selection change in popChann. function popChann_Callback(hObject, eventdata, handles) % hObject handle to popChann (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns popChann contents as cell array % contents{get(hObject,'Value')} returns selected item from popChann handles.UI.active_chann = get(hObject,'Value'); %Is value gotten in the current list of SG'ed channels? guidata(hObject, handles); if handles.SG.Done(handles.UI.active_chann) SG_Plot_Chann(hObject,handles,handles.UI.active_chann); else disp('That Channel Was Not Computed'); end %Function that finds the stim periods in ALL CHANNELS, and aligns them %Do this on raw data, sampled at highest Fs % --- Executes on button press in cmdStimAlign. function cmdStimAlign_Callback(hObject, eventdata, handles) % hObject handle to cmdStimAlign (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Filter all channels at 130 Hz loaded_channs = find(handles.DATA.TS_List == 1)'; d = fdesign.bandpass('N,F3dB1,F3dB2',20,129,131,1000); Hd = design(d,'butter'); fvtool(Hd); for ii = loaded_channs %filted_sig{ii}.stim_sig = eegfilt(handles.DATA.chann{ii}.ts,handles.DATA.chann{ii}.Fs,129,130); a{ii}.ts = filtfilthd(Hd,handles.DATA.chann{ii}.ts); end disp('...Done Aligning'); function intv = select_window(hObject,eventdata,handles) axes(handles.axes1); iv_rect = getrect(); %Bounds should be the boundary TIMES [intv.nbounds,intv.tvect] = iv_to_ts(handles,iv_rect,0); %0 is for the lim time ability, to keep fixed window length intv.fromChannel = handles.UI.active_chann; % --- Executes on button press in cmdChannPCA. function cmdChannPCA_Callback(hObject, eventdata, handles) % hObject handle to cmdChannPCA (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Do PCA on all channels %Choose your epoch curr_epoch = select_window(hObject,eventdata,handles) epoch_data = extractEpoch(handles,curr_epoch); ChannBand(handles,epoch_data); %Do a banding out %Just do raw PCA [coeff,score,latent] = pca(epoch_data,'Algorithm','eig'); %or do PCA on banded data % % figure; % subplot(3,2,1); % plot(score); % subplot(3,2,2); % scatter(epoch_data(:,1),epoch_data(:,2),'.'); % % subplot(3,2,3); % hist(epoch_data(:,1)); % subplot(3,2,4); % hist(epoch_data(:,2)); % % subplot(3,2,5); % [s,f,t] = spectrogram(score(:,1),blackmanharris(512),500,2^10,1000); % imagesc(t,f,10*log10(abs(s)));colormap('jet');set(gca,'YDir','normal'); % subplot(3,2,6); % [s,f,t] = spectrogram(score(:,2),blackmanharris(512),500,2^10,1000); % imagesc(t,f,10*log10(abs(s)));colormap('jet');set(gca,'YDir','normal'); % % disp('Done with time-series PCA'); function ChannBand(handles,epoch_data) %Break into bands band_epoch_data = extractBands(handles,epoch_data); %find timepoints bed_size = size(band_epoch_data); %Reshape so it's timex(channelxbands) PCA_input = reshape(permute(band_epoch_data,[2,3,1]),[],bed_size(1))'; %YES! this reshapes this matrix properly, as you would expect PCA_input = abs(PCA_input) [coeff,score,latent] = pca(PCA_input,'Algorithm','eig'); score = real(score) figure; subplot(2,2,1); %plot(abs(PCA_input)); imagesc(abs(coeff)) subplot(2,2,2); %plot(abs(score)); plot(latent) subplot(2,2,3); scatter3(abs(PCA_input(:,1)),abs(PCA_input(:,2)),abs(PCA_input(:,3)),'.'); subplot(2,2,4); scatter3(score(:,1),score(:,2),score(:,3),'.'); %subplot(3,2,3); %hist(PCA_input(:,1)); %subplot(3,2,4); %hist(PCA_input(:,2)); %this stuff is a bit meaningless when banded out; why take spectrogram of %banded power; ehh, there are reasons, but not right now %subplot(3,2,5); %[s,f,t] = spectrogram(score(:,1),blackmanharris(512),500,2^10,422); %imagesc(t,f,10*log10(abs(s)));colormap('jet');set(gca,'YDir','normal'); %subplot(3,2,6); %[s,f,t] = spectrogram(score(:,2),blackmanharris(512),500,2^10,422); %imagesc(t,f,10*log10(abs(s)));colormap('jet');set(gca,'YDir','normal'); disp('Done with time-series PCA'); % figure; % subplot(3,1,1); % imagesc(abs(coeff)); % subplot(3,1,2); % plot(score); % %Do covariance matrix % % %Plotting, bullshit right now % figure; % subplot(4,2,1);plot(epoch_data); % subplot(4,2,3);imagesc(coeff); % subplot(4,2,5);plot(latent); % topovect = linspace(1,260,260); % subplot(4,2,7);topoplot(topovect,handles.DATA.EEG.locs); % % %Plot the head and EEG channels % %figure; % %topoplot([],handles.DATA.EEG.locs,'style','blank','electrodes','labelpoint'); % %disp('PCA Analysis Done...'); % % %Blindly plot the first channel theta power vs third channel theta power % figure;title('Theta Power Space'); % %scatter3(PCA_input(:,5*(1-1) + 2),PCA_input(:,5*(3-1) + 2),PCA_input(:,5*(5-1) + 2));hold on; % line(PCA_input(:,5*(1-1) + 2),PCA_input(:,5*(3-1) + 4),PCA_input(:,5*(5-1) + 4)); % xlabel('Channel 1 Theta'); % ylabel('Channel 3 Theta'); function banded_data = extractSGBands(handles,epoch_data) %Break into traditional bands osc_bands.F = {[1,4],[4,8],[8,14],[15,30],[30,50],[1,20]}; osc_bands.name = {'Delta','Theta','Alpha','Beta','Broad Gamma','Norm'}; %Dimensionality of the data %Row is going to be observation, column is channel data_dim = size(epoch_data); for ii = 1:data_dim(2) %For each channel in the above %Do multitaper for spectrogram %Do pwelch spectrogram [S,F,T] = spectrogram(epoch_data(:,ii),blackmanharris(256),250,2^10,1000); %!!! Fs hardcoded here, change this for jj = 1:length(osc_bands.name) %For each band %banded_data; bandlims = osc_bands.F{jj}; %Log transform HERE %banded_data(:,jj,ii) = mean(10*log10(abs(S(F > bandlims(1) & F < bandlims(2),:)))); %OR Save log transform for viz banded_data(:,jj,ii) = sum(abs(S(F > bandlims(1) & F < bandlims(2),:))); end end function hilb_data = extractBands(handles,epoch_data) %Break into traditional bands osc_bands.F = {[1,4],[4,8],[8,14],[15,30],[30,50],[1,20]}; osc_bands.name = {'Delta','Theta','Alpha','Beta','Broad Gamma','Norm'}; %Dimensionality of the data %Row is going to be observation, column is channel data_dim = size(epoch_data); for ii = 1:length(osc_bands.name) f(ii) = fdesign.bandpass('N,Fc1,Fc2',100,osc_bands.F{ii}(1),osc_bands.F{ii}(2),1000); Fd(ii) = design(f(ii),'butter'); end for ii = 1:data_dim(2) %For each channel in the above %Do multitaper for spectrogram %Do FILTERING approach for jj = 1:length(osc_bands.name) %Make the filter fsig(:,jj,ii) = filtfilthd(Fd(jj),epoch_data(:,ii)); %banded_data(:,jj,ii) = fsig(:,jj,ii).^2; hilb_data(:,jj,ii) = hilbert(fsig(:,jj,ii)); end end %Do any band normalization here disp('Done Banding...'); function epochts = extractEpoch(handles,curr_epoch) %Go through all loaded channels and extract the needed epoch for ii = 1:length(handles.DATA.chann) [aligned_epoch,achann] = align_epoch(handles,curr_epoch, handles.DATA.chann{ii}); achann.ds = decimate(achann.ts,handles.ANALYSIS.ds_factor); %Now take the the interval chunk we wanted achann.intv{1}.ds = achann.ds(round(aligned_epoch.ivn)); achann.intv{1}.tvect = linspace(aligned_epoch.tvect(1),aligned_epoch.tvect(end),length(achann.intv{1}.ds)); epochts(:,ii) = achann.intv{1}.ds; end function [out_epoch,achann] = align_epoch(handles,in_epoch,achann) %Grab active channel and decimate it achann.dsFs = achann.Fs ./ handles.ANALYSIS.ds_factor; out_epoch = in_epoch; out_epoch.ivn = (in_epoch.tvect(1)*achann.dsFs) : (in_epoch.tvect(end)*achann.dsFs); if in_epoch.fromChannel <= 2 %window is in the reference of the LFPs if achann.num > 2 out_epoch.ivn = (in_epoch.tvect(1)*achann.dsFs - handles.DATA.lag_val) : (in_epoch.tvect(end)*achann.dsFs - handles.DATA.lag_val); end else %Window is in the reference of the EEGs if achann.num <= 2 out_epoch.ivn = (in_epoch.tvect(1)*achann.dsFs + handles.DATA.lag_val) : (in_epoch.tvect(end)*achann.dsFs + handles.DATA.lag_val); end end % --- Executes on button press in cmdOscModel. function cmdOscModel_Callback(hObject, eventdata, handles) % hObject handle to cmdOscModel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Do PCA on all channels %Choose your epoch curr_epoch = select_window(hObject,eventdata,handles) channel_Ts = extractEpoch(handles,curr_epoch); band_Ts = extractBands(handles,channel_Ts); %F(round(length(band_Ts(:,1,1))./10)) = struct('cdata',[],'colormap',[]); iband = 2; %Compute PLV for all pairwise channels figure(); nchann = length(band_Ts(1,1,:)); PLV = zeros(length(band_Ts(:,1,1)),nchann,nchann); for ii = 1:length(band_Ts(1,1,:)) for jj = 1:ii-1 subplot(4,1,1);plot(real(band_Ts(:,iband,ii)));hold on;plot(real(band_Ts(:,iband,jj)),'r'); phasediff = phase(band_Ts(:,iband,ii)) - phase(band_Ts(:,iband,jj)); PLV(:,ii,jj) = sin(phasediff); subplot(4,1,2);plot(phasediff);hold on;title('Phase Difference In Theta'); subplot(4,1,3);plot(diff(PLV(:,ii,jj)));hold on;title('Derivative of Phase Difference'); end end PLV2 = sin(phase(band_Ts(:,iband,1)) - phase(band_Ts(:,iband,2))); pval = angle(band_Ts(:,iband,:)); subplot(4,1,4);plot(PLV2);ylim([-2,2]);title('Sin Phase Difference'); % figure(81); % plot(channel_Ts); %figure(); %plot(PLV);title('Left and Right PLV'); %ylim([-2,2]); % Animation for phase offset % for kk = 1:50:length(band_Ts(:,1,1)); % figure(82); % clf; % for jj = iband; % subplot(3,1,1); % %plot(channel_Ts); % line([kk,kk],[0,2]); % % subplot(2,1,1); % %plot(imag(PLV)); % plot(PLV); % %plot(angle(band_Ts(:,jj,1)) - angle(band_Ts(:,jj,2))); % %plot([diff(sin(phase(band_Ts(:,jj,1)) - phase(band_Ts(:,jj,2))));0],'r'); % line([kk,kk],[-pi,pi]); % % subplot(2,1,2); % % for ss = 1:length(band_Ts(1,1,:)) % polar(pval(kk,ss),1,'o');hold on; % end % end % pause(0.001); % %F(kk) = getframe(gcf); % end disp('Done with osc model'); function [delta,theta,alpha,beta,bbgamma] = breakBands(ts) disp('Band Analysis...'); %bp.delta = fdesign.bandpass('',) function edtDSFactor_Callback(hObject, eventdata, handles) % hObject handle to edtDSFactor (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edtDSFactor as text % str2double(get(hObject,'String')) returns contents of edtDSFactor as a double handles.ANALYSIS.ds_factor = str2double(get(hObject,'String')); guidata(hObject,handles); % --- Executes during object creation, after setting all properties. function edtDSFactor_CreateFcn(hObject, eventdata, handles) % hObject handle to edtDSFactor (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end %MAIN 1-D PLOTTING FUNCTION BELOW % --- Executes on button press in cmdSelect. function cmdSelect_Callback(hObject, eventdata, handles) % hObject handle to cmdSelect (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sig_cont = select_window(hObject,eventdata,handles); solo_chann = 0; %Increment the current interval handles.ANALYSIS.active_interval = handles.ANALYSIS.active_interval + 1; %Get channel data for the interval of interest if solo_chann %if you want a single channel (the active one) achann = get_intv(handles,handles.UI.active_chann,sig_cont); else %if you want all the loaded channels achann = get_intv(handles,find(handles.DATA.TS_List==1)',sig_cont); end handles.ANALYSIS.intv{handles.ANALYSIS.active_interval}.achann = calc_Oscil(handles,achann); %Plot oscillatory data band_bars = plot_Oscil(handles); handles.ANALYSIS.Aggr.blp{handles.ANALYSIS.Aggr.idx} = band_bars; %Paint the window onto the SGview axes(handles.axes1); hold on; c = lines; for ii = 1:length(handles.ANALYSIS.intv) line([handles.ANALYSIS.intv{ii}.achann{1}.tvect(1),handles.ANALYSIS.intv{ii}.achann{1}.tvect(end)],[0,0],'LineWidth',10,'Color',c(ii,:)); end guidata(hObject,handles); %Calculate the PSD and also oscillatory bands; these will go hand in hand %for these analyses function achann = calc_Oscil(handles,achann) for ii = 1:length(achann) %Now calculate the PSD using pwelch %[P,F,B] = pwelch(achann.intv{1}.ds,512,500,2^10,achann.dsFs,'ConfidenceLevel',0.95); %Or with multitaper [achann{ii}.P,achann{ii}.F,achann{ii}.B] = pmtm(achann{ii}.ds,10,2^10,achann{ii}.dsFs,'ConfidenceLevel',0.95); %Extract the slope of the PSD achann{ii}.soi = achann{ii}.F > 1 & achann{ii}.F < 20; achann{ii}.slop = (10*log10(achann{ii}.P)) \ (10 * log10(achann{ii}.F)); achann{ii}.slop20 = (10*log10(achann{ii}.P(achann{ii}.soi))) \ (10 * log10(achann{ii}.F(achann{ii}.soi))); %Now calculate the oscillatory power in each band %achann{cidx}.intv{1}.bands = achann{ii}.bandData = extractSGBands(handles,achann{ii}.ds); achann{ii}.oscData = extractBands(handles,achann{ii}.ds); end function band_bars = plot_Oscil(handles,achann) %Start plotting figure(handles.ANALYSIS.active_figure); clf; numints = length(handles.ANALYSIS.intv); cmap = []; for jj = 1:numints achann = handles.ANALYSIS.intv{jj}.achann; for ii = 1:length(achann) subplot(3,length(achann),ii); colormap('lines'); h = plot(achann{ii}.tvect,achann{ii}.ds);hold on; xlabel('Time (s)');ylabel('Voltage (mV)'); title(['Raw Downsampled Signal - Channel ' num2str(ii)]); %set up color scheme properly %c = get(h,'Color'); cmap = colormap; subplot(3,length(achann),2+ii); bplot(achann{ii}.F,achann{ii}.P,achann{ii}.B,cmap(jj,:));hold on; title('PSD Plots'); %plot(achann{ii}.F(achann{ii}.soi),achann{ii}.slop20 * achann{ii}.F(achann{ii}.soi),zeros(size(achann{ii}.F,1),2),[1 0 0]); end end figure(handles.ANALYSIS.active_figure); achann = handles.ANALYSIS.intv{1}.achann; for ii = 1:length(achann) for jj = 1:numints %Normalize the bands handles.ANALYSIS.osc_bands(:,jj,ii) = 10*log10(mean(handles.ANALYSIS.intv{jj}.achann{ii}.bandData ./ mean(handles.ANALYSIS.intv{jj}.achann{ii}.bandData(:,6),1))); %Don't normalize the bands handles.ANALYSIS.osc_bands(:,jj,ii) = mean(abs(handles.ANALYSIS.intv{jj}.achann{ii}.bandData)); handles.ANALYSIS.psd.P(:,:,jj,ii) = handles.ANALYSIS.intv{jj}.achann{ii}.P; handles.ANALYSIS.psd.F(:,:,jj,ii) = handles.ANALYSIS.intv{jj}.achann{ii}.F; handles.ANALYSIS.psd.B(:,:,jj,ii) = handles.ANALYSIS.intv{jj}.achann{ii}.B; end %subplot(1,length(achann),ii) %bplot(handles.ANALYSIS.psd.F,handles.ANALYSIS.psd.P,handles.ANALYSIS.psd.B,colormap('jet')); %title('PSD Plots'); subplot(3,length(achann),4+ii) b = bar(handles.ANALYSIS.osc_bands(:,:,ii)); for kk = 1:length(b) b(kk).FaceColor = cmap(kk,:); end set(gca,'XTickLabels',{'Delta','Theta','Alpha','Beta','Gamma','NORM'}); title('Banded Power'); end %Store banded data and colors into larger array band_bars = handles.ANALYSIS.osc_bands; function achann = get_intv(handles,onchanns,epoch) %Check if we want to downsample the data ds_fact = handles.ANALYSIS.ds_factor; cidx = 0; for activec = onchanns cidx = cidx + 1; disp(['Calculating PSD for chann ' num2str(activec)]); %Grab active channel and decimate it achann{cidx}.ts = handles.DATA.chann{activec}.ts; achann{cidx}.dsFs = handles.DATA.chann{activec}.Fs ./ ds_fact; set(handles.txtDSFs,'String',['Fs: ' num2str(achann{cidx}.dsFs)]); %Decimate the signal achann{cidx}.ds = decimate(achann{cidx}.ts,ds_fact); %IF WE'RE DEALING WITH AN EEG SIGNAL, we need to shift it epoch.ivn = (epoch.tvect(1)*achann{cidx}.dsFs) : (epoch.tvect(end)*achann{cidx}.dsFs); if epoch.fromChannel <= 2 %window is in the reference of the LFPs if activec > 2 epoch.ivn = (epoch.tvect(1)*achann{cidx}.dsFs - handles.DATA.lag_val) : (epoch.tvect(end)*achann{cidx}.dsFs - handles.DATA.lag_val); end else %Window is in the reference of the EEGs if activec <= 2 epoch.ivn = (epoch.tvect(1)*achann{cidx}.dsFs + handles.DATA.lag_val) : (epoch.tvect(end)*achann{cidx}.dsFs + handles.DATA.lag_val); end end %Ignoring doShift in this implementation %Now take the the interval chunk we wanted achann{cidx}.ds = achann{cidx}.ds(round(epoch.ivn)); achann{cidx}.tvect = linspace(epoch.tvect(1),epoch.tvect(end),length(achann{cidx}.ds)); end %figure; %pwelch(achann.intv{1}.ds,512,500,2^10,achann.dsFs,'ConfidenceLevel',0.95); %subplot(2,1,2); %plot(b,10*log10(abs(a)));hold on; function bplot(F,P,B,c) %B comes directly from the computation functions b(:,1) = abs(10*log10(abs(squeeze(P))) - 10*log10(abs(B(:,1)))); b(:,2) = abs(10*log10(abs(squeeze(P))) - 10*log10(abs(B(:,2)))); h = boundedline(F,10*log10(abs(P)),b,'alpha','cmap',c); xlabel('Frequency (Hz)');ylabel('Power (dB)'); %set(h,'Colormap',c); xlim([0 100]); % --- Executes on button press in cmdAChannTF. function cmdAChannTF_Callback(hObject, eventdata, handles) % hObject handle to cmdAChannTF (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) a = handles.UI.active_chann; disp('Computing T-F for Active Channel...'); %Make a local container for the raw data chann_ts = []; chann_fs = handles.DATA.chann{min(a)}.Fs; ds_fact = 1; %Purely for display reasons; need not be put on front-UI for ii = a dummy_chann = handles.DATA.chann{ii}; chann_ts{ii}.ts = decimate(dummy_chann.ts,ds_fact); end chann_fs = chann_fs ./ ds_fact; %Without downsampling ahead of time?? %z-score the input signals for ii = a chann_ts{ii}.ts = zscore(chann_ts{ii}.ts); [handles.TF.chann{ii}.S, handles.TF.chann{ii}.F, handles.TF.chann{ii}.T] = spectrogram(chann_ts{ii}.ts,blackmanharris(512),500,2^10,chann_fs); end %Update the decimated Fs handles.TF.Fs = chann_fs; %Plot the active chann SG_Plot_Chann(hObject,handles,handles.UI.active_chann); %Update that the SG for the active channel has been done handles.SG.Done(a) = 1; handles.SG.SGLabels{a} = ['Channel ' num2str(a)]; set(handles.popChann,'String',handles.SG.SGLabels); set(handles.popChann,'Value',a); disp(['...Done computing T-F for Channel ' num2str(handles.UI.active_chann)]); guidata(hObject,handles); function update_UI_SG_Pop(handles) %check the handles SG tracking variables and populate the list %appropriately % --- Executes on button press in cmdAutoAlignStims. function cmdAutoAlignStims_Callback(hObject, eventdata, handles) % hObject handle to cmdAutoAlignStims (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Automated version here; move to other button when ready disp('Aligning channels'); d = fdesign.bandpass('N,F3dB1,F3dB2',20,129,131,1000); Hd = design(d,'butter'); %Compare the LFP signal with an EEG signal %I added the intrinsic differential signal for common mode rejection of %noise %This was more robust for SINGLE channels from the EEG %And seemed to stay the same for DIFFERENTIAL channels from the EEG c1 = zscore(filtfilthd(Hd,handles.DATA.chann{1}.ts)); c2 = zscore(filtfilthd(Hd,handles.DATA.chann{3}.ts - handles.DATA.chann{4}.ts)); %Try a cross correlation approach [cc,lags] = xcorr(c1,c2); [~,max_cc_idx] = max(cc); %We know that the lag should be limited, it's not going to be > max_cc_loc = lags(max_cc_idx) % Other way of doing it, trying to find the first point of large overlap; % this is shit % %find max region % %first z-score ccz = zscore(cc); %Try plotting the aligned signals; figure; subplot(3,1,1); c1t = 1:length(handles.DATA.chann{1}.ts); c2t = 1:length(handles.DATA.chann{3}.ts); c2ts = c2t + max_cc_loc; plot(c1t,zscore(handles.DATA.chann{1}.ts));hold on; plot(c2ts,zscore(handles.DATA.chann{3}.ts)); %Plot filtered stim artifact one subplot(3,1,2); plot(c1);hold on;plot(c2); subplot(3,1,3); plot(lags,ccz); %Store lag value for EEG channel set handles.DATA.lag_val = max_cc_loc; disp('Done Aligning'); guidata(hObject,handles); % --- Executes on button press in cmdDiffChann. function cmdDiffChann_Callback(hObject, eventdata, handles) % hObject handle to cmdDiffChann (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in cmdCmpLoad. function cmdCmpLoad_Callback(hObject, eventdata, handles) % hObject handle to cmdCmpLoad (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in cmdSGSett. function cmdSGSett_Callback(hObject, eventdata, handles) % hObject handle to cmdSGSett (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) function chann_sig = extract_window(handles,sig_cont) %get channel data chann_sig = handles.DATA.chann{sig_cont.fromChannel}.ts(sig_cont.nbounds(1):sig_cont.nbounds(2)); % --- Executes on button press in cmdMedFilt. function cmdMedFilt_Callback(hObject, eventdata, handles) % hObject handle to cmdMedFilt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sig_cont = select_window(hObject,eventdata,handles); sig_oi = extract_window(handles,sig_cont); figure; subplot(2,2,1); plot(sig_oi);title('Unfiltered interval of interest on channel'); %Filter the data for ii = 1:length(sig_cont.fromChannel) %filted(:,ii) = medfilt1(handles.DATA.chann{ii}.ts,50); hampeled(:,ii) = hampel(1:length(sig_oi),sig_oi,1,3,'Adaptive',0.1); end subplot(2,2,2); plot(hampeled);title('Filtered signal'); subplot(2,2,3); [s,f,t] = spectrogram(sig_oi,blackmanharris(512),500,2^10,1000); imagesc(t,f,10*log10(abs(s)));colormap('jet');set(gca,'YDir','normal'); subplot(2,2,4); [s,f,t] = spectrogram(hampeled,blackmanharris(512),500,2^10,1000); imagesc(t,f,10*log10(abs(s)));colormap('jet');set(gca,'YDir','normal'); % --- Executes on button press in cmdBreak. function cmdBreak_Callback(hObject, eventdata, handles) % hObject handle to cmdBreak (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in cmdPlotAggrBands. function cmdPlotAggrBands_Callback(hObject, eventdata, handles) % hObject handle to cmdPlotAggrBands (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) figure; cmap = colormap('colorcube'); %Plot the left signals first (channel 1) for ii = 1:2 %channel number subplot(1,2,ii); for jj = 2 %band number for ll = 1:length(handles.ANALYSIS.Aggr.blp) dummysize = size(handles.ANALYSIS.Aggr.blp{ll}); intvs = dummysize(2); for kk = 1:intvs %interval number %plot all patients next to each other osc(ll,:,:,:) = handles.ANALYSIS.Aggr.blp{ll}; b = bar(squeeze(osc(:,jj,:,ii))'); xlabel('Interval Number');ylabel('Power'); leg_end{kk} = ['Patient #' num2str(kk)]; end for pp = 1:length(b) b(pp).FaceColor = cmap(pp,:); end end end title(['Channel ' num2str(ii) ' Theta power']); legend(leg_end); end suptitle('TurnOn Powers'); % --- Executes on button press in cmdLowPassExtr. function cmdLowPassExtr_Callback(hObject, eventdata, handles) % hObject handle to cmdLowPassExtr (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %Just take channel 1 chann = 1; raw_sig = handles.DATA.chann{chann}.ts; %Band it below lph = fdesign.lowpass('N,F3dB',20,20,handles.DATA.chann{chann}.Fs); lpf = design(lph); filted_sig = filtfilthd(lpf,raw_sig); disp('Filtered...'); % --- Executes on button press in cmdSelectInfo. function cmdSelectInfo_Callback(hObject, eventdata, handles) % hObject handle to cmdSelectInfo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) sig_cont = select_window(hObject,eventdata,handles); disp('Interval Info:'); if sig_cont.tvect(end) - sig_cont.tvect(1) > 15 str_ok = 'OK!'; else str_ok = 'SMALL!!'; end disp(['Length of this interval is: ' num2str(sig_cont.tvect(end) - sig_cont.tvect(1)) ' which is ' str_ok]); disp([num2str(sig_cont.tvect(1)) ' to ' num2str(sig_cont.tvect(end))]);