plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
tsajed/nmr-pred-master
shaped_pulse_xy.m
.m
nmr-pred-master/spinach/kernel/pulses/shaped_pulse_xy.m
2,308
utf_8
1260d6e1278ac01983b4146f0ad12f8c
% Shaped pulse function using Cartesian coordinates. % % <http://spindynamics.org/wiki/index.php?title=Shaped_pulse_xy.m> function [rho,P]=shaped_pulse_xy(spin_system,drift,controls,amplitudes,time_grid,rho) % Check consistency grumble(drift,controls,amplitudes,time_grid,rho); % Decide the methods switch nargout case 1 % Run Krylov propagation for n=1:numel(time_grid) % Generate the evolution step operator slice_operator=drift; for k=1:numel(controls) slice_operator=slice_operator+amplitudes{k}(n)*controls{k}; end % Apply the evolution slice rho=step(spin_system,slice_operator,rho,time_grid(n)); end case 2 % Get the propagator going P=speye(size(drift)); % Compute the pulse propagator parfor n=1:numel(time_grid) % Generate the evolution step operator slice_operator=drift; for k=1:numel(controls) slice_operator=slice_operator+amplitudes{k}(n)*controls{k}; %#ok<PFBNS> end % Apply the evolution slice P=propagator(spin_system,slice_operator,time_grid(n))*P; end % Apply pulse propagator rho=P*rho; end end % Consistency enforcement function grumble(drift,controls,amplitudes,time_grid,rho) %#ok<INUSD> % to be written end % When IK proposed the fibre etching technique featured in the 2004 % JMR paper (http://dx.doi.org/10.1016/j.jmr.2004.08.017), he could % see terror in his supervisors's eyes - Peter Hore reasonably tho- % ught that the notoriously eccentric Russian student could not pos- % sibly be trusted with boiling hydrofluoric acid in a high-power % laser lab. The Chemistry Department safety officer held a similar % view. It is not entirely clear how IK got hold of several millili- % ters of concentrated HF and a heat gun on a Saturday night in the % PTCL Teaching Lab, but the photographs of the resulting fibre tip % were left on Peter's table on Monday. The paper was accepted by % JMR without revisions.
github
tsajed/nmr-pred-master
pulse_shape.m
.m
nmr-pred-master/spinach/kernel/pulses/pulse_shape.m
1,558
utf_8
597f1551090d023b60c69f0c8be1440f
% Shaped pulse waveforms. Add your own if necessary. Syntax: % % waveform=pulse_shape(pulse_name,npoints) % % Parameters: % % pulse_name - the name of the pulse % % npoints - number of points in the pulse % % [email protected] function waveform=pulse_shape(pulse_name,npoints) % Check consistency grumble(pulse_name,npoints); % Choose the shape switch pulse_name case 'gaussian' time_grid=linspace(-2,2,npoints); waveform=normpdf(time_grid); case 'rectangular' waveform=ones(1,npoints); otherwise % Complain and bomb out error('unknown pulse name.'); end end % Consistency enforcement function grumble(pulse_name,npoints) if ~ischar(pulse_name) error('pulse_name parameter must be a character string.'); end if (numel(npoints)~=1)||(~isnumeric(npoints))||(~isreal(npoints))||... (npoints<1)||(mod(npoints,1)~=0) error('npoints parameter must be a positive real integer greater than 1.'); end end % Let me start with a parable. It concerns an Eastern European country % whose parliament was considering a total smoking ban. In response, a % consortium of tobacco companies demonstrated that the savings made in % healthcare as a result of the decline in smoking-related diseases were % chicken feed besides the reduced payout in pensions as the result of % premature death - not to mention the fiscal increment from the habit. % % Stewart Dakers
github
tsajed/nmr-pred-master
shaped_pulse_af.m
.m
nmr-pred-master/spinach/kernel/pulses/shaped_pulse_af.m
3,631
utf_8
b96a135717d2dcd2e93ff925404317ba
% Shaped pulse in amplitude-frequency coordinates using Fokker-Planck % formalism. Syntax: % % rho=shaped_pulse_af(spin_system,L0,Lx,Ly,rho,rf_frq_list,... % rf_amp_list,rf_dur_list,rf_phi,max_rank,method) % % Parameters: % % L0 - drift Liouvillian that continues % running in the background % % Lx - X projection of the RF operator % % Ly - Y projection of the RF operator % % rho - initial condition % % rf_frq_list - a vector of RF frequencies at each % time slice, Hz % % rf_amp_list - a vector of RF amplitudes at each % time slice, Hz % % rf_dur_list - a vector of time slice durations, % in seconds % % rf_phi - RF phase at time zero % % max_rank - maximum rank of the Fokker-Planck % theory % % method - propagation method, 'expv' for Krylov % propagation, 'expm' for exponential % propagation, 'evolution' for Spinach % evolution function % % [email protected] function rho=shaped_pulse_af(spin_system,L0,Lx,Ly,rho,rf_frq_list,rf_amp_list,rf_dur_list,rf_phi,max_rank,method) % Set the defaults if ~exist('method','var'), method='expv'; end % Get problem dimensions spc_dim=2*max_rank+1; spn_dim=size(L0,1); stk_dim=size(rho,2); report(spin_system,['lab space problem dimension ' num2str(spc_dim)]); report(spin_system,['spin space problem dimension ' num2str(spn_dim)]); report(spin_system,['state vector stack size ' num2str(stk_dim)]); report(spin_system,['Fokker-Planck problem dimension ' num2str(spc_dim*spn_dim)]); % Compute RF angles and Fourier derivative operator [rotor_angles,d_dphi]=fourdif(spc_dim,1); % Add the phase rotor_angles=rotor_angles+rf_phi; % Build the background Liouvillian F0=kron(speye(spc_dim),L0); % Build the RF operator F1=cell(spc_dim); for n=1:spc_dim for k=1:spc_dim F1{n,k}=spalloc(spn_dim,spn_dim,0); end F1{n,n}=cos(rotor_angles(n))*Lx+sin(rotor_angles(n))*Ly; end F1=clean_up(spin_system,cell2mat(F1),spin_system.tols.liouv_zero); % Build the phase increment operator M=kron(d_dphi,speye(size(L0))); % Project the state P=spalloc(spc_dim,1,1); P(1)=1; rho=kron(P,rho); % Run the pulse switch method case 'expv' % Use Krylov propagation for n=1:numel(rf_frq_list) report(spin_system,['Krylov propagation step ' num2str(n) ' of ' num2str(numel(rf_frq_list)) '...']); rho=step(spin_system,F0+2*pi*rf_amp_list(n)*F1+2i*pi*rf_frq_list(n)*M,rho,rf_dur_list(n)); end case 'expm' % Use exponential propagation for n=1:numel(rf_frq_list) rho=propagator(spin_system,F0+2*pi*rf_amp_list(n)*F1+2i*pi*rf_frq_list(n)*M,rf_dur_list(n))*rho; end case 'evolution' % Use the evolution function for n=1:numel(rf_frq_list) rho=evolution(spin_system,F0+2*pi*rf_amp_list(n)*F1+2i*pi*rf_frq_list(n)*M,[],rho,rf_dur_list(n),1,'final'); end otherwise % Complain and bomb out error('unknown propagation method.'); end % Fold back the state rho=squeeze(sum(reshape(full(rho),[spn_dim spc_dim stk_dim]),2)); end % A man gazing at the stars is at the mercy % of the puddles in the road. % % Alexander Smith
github
tsajed/nmr-pred-master
read_wave.m
.m
nmr-pred-master/spinach/kernel/pulses/read_wave.m
1,720
utf_8
c5d0a2ff222049d09da608139ea7ec40
% Reads wavegauss.pk files. Arguments: % % filename - a string containing the name of the file % % npoints - waveform upsampling or downsampling is % performed to this number of points % % Note: phases are returned in degrees, amplitudes in percent. % % [email protected] function [amplitudes,phases]=read_wave(filename,npoints) % Read the file wavefile=fopen(filename,'r'); waveform=textscan(wavefile,'%f, %f','CommentStyle','##'); fclose(wavefile); % Build complex waveform waveform=waveform{1}.*exp(1i*pi*waveform{2}/180); % Resample the waveform waveform=interp1(linspace(0,1,numel(waveform)),real(waveform),linspace(0,1,npoints),'pchip')+... 1i*interp1(linspace(0,1,numel(waveform)),imag(waveform),linspace(0,1,npoints),'pchip'); % Convert back into amplitudes and phases amplitudes=abs(waveform); phases=90-(180/pi)*atan2(real(waveform),imag(waveform)); end % I condemn Christianity... It is, to me, the greatest of all imaginable % corruptions. [...] To breed in humans a self-contradiction, an art of % self-pollution, a will to lie at any price, an aversion and contempt for % all good and honest instincts! [...] The beyond as the will to deny all % reality; the cross as the distinguishing mark of the most subterranean % conspiracy ever heard of -- against health, beauty, well-being, intel- % lect... against life itself. % % I call Christianity the one great curse, the one great intrinsic depra- % vity, the one great instinct of revenge, for which no means are veno- % mous enough, or secret, subterranean and small enough - I call it the % one immortal blemish upon the human race... % % Friedrich Nietzsche
github
tsajed/nmr-pred-master
triwave.m
.m
nmr-pred-master/spinach/kernel/pulses/triwave.m
1,156
utf_8
4cf472acf9cc9f3945fdfa385e52dd5d
% Returns a triangular waveform. Syntax: % % waveform=triwave(amplitude,frequency,time_grid) % % Arguments: % % amplitude - amplitude at the tooth top % % frequency - waveform frequency, Hz % % time_grid - vector of time points, seconds % % [email protected] function waveform=triwave(amplitude,frequency,time_grid) % Check consistency grumble(amplitude,frequency,time_grid); % Compute the waveform waveform=abs(sawtooth(amplitude,frequency,time_grid)); end % Consistency enforcement function grumble(amplitude,frequency,time_grid) if (numel(amplitude)~=1)||(~isnumeric(amplitude))||(~isreal(amplitude)) error('amplitude parameter must be a real number.'); end if (numel(frequency)~=1)||(~isnumeric(frequency))||(~isreal(frequency)) error('frequency parameter must be a real number.'); end if (~isnumeric(time_grid))||(~isreal(time_grid)) error('time_grid parameter must be a vector of real numbers.'); end end % I am here to determine whether what you had just done is simple % incompetence or deliberate sabotage. % % Joseph Stalin, to his generals, in May 1941.
github
tsajed/nmr-pred-master
grad_sandw.m
.m
nmr-pred-master/spinach/kernel/pulses/grad_sandw.m
3,702
utf_8
05346aded1d5c4a56f9d56688ceb36b1
% Computes the effect of a gradient sandwich on the sample average density % matrix using Edwards formalism. It is assumed that the effect of diffusi- % on is negligible, that the gradients are linear, and that they are anti- % symmetric about the middle of the sample. Syntax: % % rho=grad_sandw(spin_system,L,rho,P,g_amps,s_len,g_durs,s_facs) % % Arguments: % % rho - spin system state vector % % L - system Liouvillian % % P - total propagator for all events happening % between the two gradients % % g_amps - row vector containing the amplitudes of % the two gradients, Gauss/cm % % s_len - sample length, cm % % g_durs - row vector containing the durations of % the two gradients, seconds % % s_facs - shape factors of the two gradients, use % [1 1] for square gradient pulses % % Note: the function integrates over sample coordinates - subsequent gra- % dient pulses would not refocus the magnetization that it has left % defocused. More information on the subject is available in Luke's % paper (http://dx.doi.org/10.1016/j.jmr.2014.01.011). % % [email protected] % [email protected] function rho=grad_sandw(spin_system,L,rho,P,g_amps,s_len,g_durs,s_facs) % Check consistency grumble(spin_system,L,rho,P,g_amps,s_len,g_durs,s_facs); % Inform the user report(spin_system,'computing the effect of a gradient sandwich...'); % Get effective gradient operators R=carrier(spin_system,'all')/spin_system.inter.magnet; G1=1e-4*s_facs(1)*g_amps(1)*s_len*g_durs(1)*R; G2=1e-4*s_facs(2)*g_amps(2)*s_len*g_durs(2)*R; % Check approximation applicability if significant(L*G1-G1*L,1e-6)||significant(L*G2-G2*L,1e-6) error('the Liouvillian does not commute with gradient operators.'); end % Run background Liouvillian evolution during first gradient rho=evolution(spin_system,L,[],rho,g_durs(1),1,'final'); % Account for rescaling of sample integral into [0,1] rho=evolution(spin_system,G1,[],rho,-1/2,1,'final'); % Evolution under the gradient pulses and P aux_mat=[-G2, 1i*P; 0*G1, G1]; aux_rho=[0*rho; rho]; aux_rho=evolution(spin_system,aux_mat,[],aux_rho,1,1,'final'); % Map back into the state vector space rho=aux_rho(1:end/2,:); % Undo the evolution overshoot rho=evolution(spin_system,G2,[],rho,1/2,1,'final'); % Run background Liouvillian evolution during second gradient rho=evolution(spin_system,L,[],rho,g_durs(2),1,'final'); end % Consistency enforcement function grumble(spin_system,L,rho,P,g_amps,s_len,g_durs,s_facs) if ~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}) error('this function is only applicable in Liouville space.'); end if (~isnumeric(L))||(~isnumeric(rho))||(~isnumeric(P))||(~isnumeric(g_amps))||... (~isnumeric(s_len))||(~isnumeric(g_durs))||(~isnumeric(s_facs)) error('all arguments apart from spin_system must be numeric.'); end if (~isreal(g_amps))||(numel(g_amps)~=2) error('g_amps vector must have two real elements.'); end if (~isreal(s_len))||(~isscalar(s_len))||(s_len<=0) error('s_len must be a positive real number.'); end if (~isreal(g_durs))||(numel(g_durs)~=2)||(any(g_durs<0)) error('g_durs vector must have two real non-negative elements.'); end if (~isreal(s_facs))||(numel(s_facs)~=2)||(any(s_facs<0)) error('s_facs vector must have two real non-negative elements.'); end end % Morality is simply the attitude we adopt towards % people we personally dislike. % % Oscar Wilde
github
tsajed/nmr-pred-master
cartesian2polar.m
.m
nmr-pred-master/spinach/kernel/pulses/cartesian2polar.m
5,606
utf_8
cd858484d46884e6e5f6e9124e021422
% Converts the [RF_x, RF_y] representation of a pulse waveform and the % derivatives of any function with respect to those RF values into the % [RF_amplitude, RF_phase] representation and the derivatives of the % function with respect to the amplitudes and phases. Syntax: % % [A,phi,df_dA,df_dphi]=cartesian2polar(x,y,df_dx,df_dy) % % Parameters: % % x - vector of waveform amplitudes along X % % y - vector of waveform amplitudes along Y % % df_dx - optional vector of derivatives of a scalar function % with respect to the waveform amplitudes along X % % df_dy - optional vector of derivatives of a scalar function % with respect to the waveform amplitudes along Y % % d2f_dx2 - optional matrix of second derivatives of a scalar function % with respect to the waveform amplitudes along X % % d2f_dxdy- optional matrix of second derivatives of a scalar function % with respect to the waveform amplitudes along X and Y % % d2f_dy2 - optional matrix of second derivatives of a scalar function % with respect to the waveform amplitudes along Y % % Outputs: % % A - vector of waveform amplitudes % % phi - vector of waveform phases % % df_dA - vector of derivatives of the function with respect % to the waveform amplitudes. % % df_dphi - vector of derivatives of the function with respect % to the waveform phases. % % d2f_dA2 - matrix of second derivatives of the function with respect % to the waveform amplitudes. % % d2f_dAdphi- matrix of second derivatives of the function with respect % to the waveform amplitudes and phases. % % d2f_dphi2- matrix of second derivatives of the function with respect % to the waveform phases. % % [email protected] function [A,phi,df_dA,df_dphi,d2f_dA2,d2f_dAdphi,d2f_dphi2]=cartesian2polar(x,y,df_dx,df_dy,d2f_dx2,d2f_dxdy,d2f_dy2) % Check consistency if nargin==2 grumble(x,y); elseif nargin==4 grumble(x,y,df_dx,df_dy); elseif nargin==7 grumble(x,y,df_dx,df_dy,d2f_dx2,d2f_dxdy,d2f_dy2); else error('incorrect number of arguments.'); end % Transform coordinates A=sqrt(x.^2+y.^2); phi=atan2(y,x); % Transform derivatives if (nargin>2)&&(nargout>2) df_dA=df_dx.*cos(phi)+df_dy.*sin(phi); df_dphi=-df_dx.*y+df_dy.*x; end % Transform second derivatives if (nargin>4)&&(nargout>4) d2f_dphi2= -A.*(cos(phi).*df_dx+sin(phi).*df_dy)+... A.*A.*(cos(phi).*cos(phi).*d2f_dy2-... 2*cos(phi).*sin(phi).*d2f_dxdy+... sin(phi).*sin(phi).*d2f_dx2); d2f_dA2=cos(phi).*cos(phi).*d2f_dx2+... 2*cos(phi).*sin(phi).*d2f_dxdy+... sin(phi).*sin(phi).*d2f_dy2; d2f_dAdphi=cos(phi).*df_dy-sin(phi).*df_dx+... A.*cos(phi).*sin(phi).*d2f_dy2+... A.*cos(phi).*cos(phi).*d2f_dxdy-... A.*sin(phi).*sin(phi).*d2f_dxdy-... A.*cos(phi).*sin(phi).*d2f_dx2; end end % Consistency enforcement function grumble(x,y,df_dx,df_dy,d2f_dx2,d2f_dxdy,d2f_dy2) if nargin==2 if (~isnumeric(x))||(~isreal(x)) error('x parameter must be a vector of real numbers.'); end if (~isnumeric(y))||(~isreal(y)) error('y parameter must be a vector of real numbers.'); end if ~all(size(x)==size(y)) error('x and y vectors must have the same dimension.'); end elseif nargin==4 if (~isnumeric(x))||(~isreal(x)) error('x parameter must be a vector of real numbers.'); end if (~isnumeric(y))||(~isreal(y)) error('y parameter must be a vector of real numbers.'); end if (~isnumeric(df_dx))||(~isreal(df_dx)) error('df_dx parameter must be a vector of real numbers.'); end if (~isnumeric(df_dy))||(~isreal(df_dy)) error('df_dy parameter must be a vector of real numbers.'); end if (~all(size(x)==size(y)))||(~all(size(y)==size(df_dx)))||(~all(size(df_dx)==size(df_dy))) error('all input vectors must have the same dimension.'); end elseif nargin==7 if (~isnumeric(x))||(~isreal(x)) error('x parameter must be a vector of real numbers.'); end if (~isnumeric(y))||(~isreal(y)) error('y parameter must be a vector of real numbers.'); end if (~isnumeric(df_dx))||(~isreal(df_dx)) error('df_dx parameter must be a vector of real numbers.'); end if (~isnumeric(df_dy))||(~isreal(df_dy)) error('df_dy parameter must be a vector of real numbers.'); end if (~isnumeric(d2f_dx2))||(~isreal(d2f_dx2)) error('d2f_dx2 parameter must be a matrix of real numbers.'); end if (~isnumeric(d2f_dy2))||(~isreal(d2f_dy2)) error('d2f_dy2 parameter must be a matrix of real numbers.'); end if (~isnumeric(d2f_dxdy))||(~isreal(d2f_dxdy)) error('ddf_dxdy parameter must be a matrix of real numbers.'); end if (~all(size(x)==size(y)))||(~all(size(y)==size(df_dx)))||(~all(size(df_dx)==size(df_dy))) error('all input vectors must have the same dimension.'); end if (size(d2f_dx2,2)~=length(df_dx))||(size(d2f_dx2,1)~=size(d2f_dx2,2))||all(size(d2f_dx2)~=size(d2f_dy2))||all(size(d2f_dy2)~=size(d2f_dxdy)) error('all input matrices must have the same, square dimensions.'); end end end % Beware of geeks bearing formulas. % % Warren Buffett
github
tsajed/nmr-pred-master
vg_pulse.m
.m
nmr-pred-master/spinach/kernel/pulses/vg_pulse.m
8,574
utf_8
74f26e90fda6513d7234e7db168e9bf5
% Veshtort-Griffin shaped pulses, generated from tables given in % % http://dx.doi.org/10.1002/cphc.200400018 % % There are good reasons to believe (see Section 2.2 of the paper) that % these are the best possible pulses within their design specifications % and basis sets. Syntax: % % waveform=vg_pulse(pulse_name,npoints,duration) % % The input should specify a pulse duration (in seconds), which is used % for normalization. The output is the amplitude of the waveform (there % is no phase modulation), in radians per second, normalized to produce % a 90-degree pulse. The following pulse names are available: E0A, E0B, % E100A, E100B, E200A, E200D, E200F, E300C, E300F, E400B, E300A, E500A, % E500B, E500C, E600A, E600C, E600F, E800A, E800B, E1000B. % % [email protected] function waveform=vg_pulse(pulse_name,npoints,duration) % Check consistency grumble(pulse_name,npoints,duration); % Stockpile names names={'E0A' 'E0B' 'E100A' 'E100B' 'E200A' 'E200D' 'E200F' 'E300C' 'E300F' 'E400B'... 'E300A' 'E500A' 'E500B' 'E500C' 'E600A' 'E600C' 'E600F' 'E800A' 'E800B' 'E1000B'}; % Stockpile cosine coefficients cosines=[... -0.763 -0.763 -0.734 0.265 0.282 0.276 0.251 0.228 0.269 0.231 0.222 0.240 0.242 0.222 -0.739 0.239 0.249 0.238 0.235 0.254 -0.905 0.869 -0.650 0.974 -0.314 1.213 -0.931 0.592 1.126 0.933 -1.440 2.042 0.405 0.819 0.847 1.546 1.305 -1.816 -1.192 1.239 2.472 -0.171 2.395 -1.502 -0.534 -1.708 0.675 -1.261 -1.566 -1.183 0.164 -1.300 -0.333 0.080 -0.077 -1.609 -1.032 0.999 1.553 -1.345 -0.811 0.039 -1.132 -0.208 0.612 0.050 -0.018 0.475 -0.114 -0.242 2.366 -1.880 -0.332 -1.473 0.531 0.363 0.388 1.235 0.122 -0.753 -0.088 -0.005 0.058 0.498 -0.040 0.201 -0.086 0.027 0.229 0.256 -1.646 0.904 -0.257 0.248 -0.357 -0.774 -1.735 0.152 -0.716 0.797 0.001 0.003 0.036 0.158 0.084 0.109 0.070 -0.069 0.116 0.041 0.246 0.009 0.260 0.128 -0.140 0.078 1.087 -0.710 -0.336 0.610 0.107 0.001 0.053 -0.165 -0.157 -0.082 -0.026 0.008 -0.015 0.025 0.192 0.072 0.064 0.018 -0.183 0.208 -0.273 -0.002 0.525 -1.169 -0.054 0.001 -0.045 -0.079 0.002 -0.029 0.012 0.011 -0.058 -0.052 -0.211 0.032 -0.014 0.044 0.087 0.071 0.115 -0.120 -0.185 0.377 0.006 0.001 0.011 0.051 0.072 0.012 0.000 -0.005 0.006 0.002 0.118 -0.110 -0.014 -0.029 0.090 -0.057 -0.003 0.011 0.022 0.103 0.002 0.001 0.000 0.035 -0.021 0.009 0.001 -0.002 0.010 0.007 0.003 0.033 -0.034 -0.024 0.012 -0.009 -0.036 -0.032 0.008 -0.055 0.004 0.000 0.000 -0.015 -0.003 -0.005 0.002 0.001 0.003 0.001 -0.058 0.006 0.021 0.007 -0.029 -0.002 -0.017 0.083 -0.041 0.009 -0.002 0.000 0.000 -0.015 -0.005 -0.004 0.000 -0.001 -0.004 -0.001 0.043 -0.009 -0.004 0.001 -0.021 -0.021 0.026 0.064 0.045 -0.043 0.001 0.000 -0.001 0.003 0.006 0.000 0.001 0.000 -0.002 -0.002 -0.008 0.008 0.005 0.000 -0.003 0.015 -0.026 -0.051 -0.007 0.020 0.001 0.000 0.001 0.006 0.002 0.000 0.001 0.000 0.000 0.000 -0.008 -0.007 -0.003 0.000 0.008 -0.001 0.020 -0.038 -0.021 0.013 0.001 0.000 0.000 -0.001 -0.002 -0.001 0.000 0.000 0.000 0.000 0.010 -0.001 -0.002 -0.002 0.005 -0.001 -0.012 0.011 0.013 -0.008 0.000 0.000 0.000 -0.002 0.000 -0.001 0.000 0.000 0.000 0.000 -0.004 0.001 0.001 -0.001 -0.002 -0.002 0.001 0.008 0.001 -0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 -0.001 0.000 -0.003 0.000 0.000 0.000 -0.005 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001 -0.001 -0.001 -0.002 -0.003 -0.001 0.003 -0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.001 0.001 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 0.001 0.000]; % Stockpile sine coefficients sines=[... 0.000 0.000 0.092 -2.104 1.459 -1.270 -1.273 -1.279 -0.788 -0.533 -0.772 -0.681 -3.105 -0.215 -0.360 0.249 -2.489 -0.238 -0.773 0.242 0.000 0.000 -0.729 -0.025 1.934 -0.244 0.913 0.828 -1.010 -1.288 -0.064 0.389 0.674 -1.555 -3.153 -1.861 0.874 -0.228 1.045 -1.607 0.000 0.000 0.564 0.795 -2.256 0.615 -0.312 0.029 0.875 1.006 0.427 -0.552 -1.212 0.357 0.210 -0.773 -0.847 -2.724 -0.918 -2.102 0.000 0.000 -0.057 0.222 0.189 0.106 0.106 -0.082 0.078 0.022 -0.269 0.177 1.609 0.525 1.867 1.583 0.610 0.724 -1.052 1.532 0.000 0.000 -0.032 -0.292 0.234 -0.125 -0.023 -0.038 -0.033 -0.010 0.284 0.313 -0.346 -0.034 -0.113 -0.285 0.255 1.886 1.391 -0.409 0.000 0.000 -0.063 -0.113 0.037 -0.056 -0.003 0.047 -0.102 -0.061 -0.144 -0.193 0.025 0.013 -0.168 0.121 -0.123 -0.316 -0.271 1.110 0.000 0.000 0.079 0.093 -0.025 0.036 0.009 -0.012 0.015 -0.007 -0.064 0.043 -0.017 -0.029 -0.081 -0.039 0.010 -0.305 -0.101 -0.359 0.000 0.000 -0.033 0.053 -0.063 0.017 -0.005 -0.002 0.024 0.026 0.110 -0.020 -0.085 -0.039 -0.091 -0.017 -0.003 -0.040 0.076 -0.091 0.000 0.000 0.004 -0.028 0.036 -0.006 0.003 0.003 0.001 -0.001 -0.047 -0.017 0.085 0.018 0.050 -0.068 -0.077 -0.020 -0.035 0.071 0.000 0.000 -0.001 -0.024 0.007 -0.006 -0.001 0.001 -0.007 -0.001 -0.008 0.035 -0.034 0.009 0.066 0.054 0.090 0.026 0.018 0.056 0.000 0.000 0.004 0.007 -0.010 0.002 0.000 0.000 -0.003 -0.002 0.028 -0.013 0.022 -0.002 -0.015 -0.005 -0.053 0.008 0.027 -0.102 0.000 0.000 -0.003 0.009 0.000 0.002 0.000 0.001 0.001 0.001 -0.024 -0.002 -0.012 0.000 -0.018 0.001 0.033 0.022 -0.042 0.025 0.000 0.000 0.001 -0.002 0.001 0.000 0.000 0.001 0.000 0.001 0.008 0.003 -0.001 -0.002 -0.003 0.001 -0.014 0.013 0.016 0.027 0.000 0.000 0.000 -0.004 0.001 0.000 0.000 0.000 -0.001 0.000 0.004 -0.003 0.002 -0.001 0.001 -0.002 0.002 -0.017 0.008 -0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 -0.007 0.002 -0.002 0.000 0.004 -0.002 0.000 -0.008 -0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.000 0.001 0.001 0.001 0.002 0.003 -0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 -0.002 -0.001 -0.002 0.000 -0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 -0.001 -0.001 -0.001 0.002 0.003 -0.002 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 -0.001 -0.001 0.000 0.000 -0.002 0.000 0.001 -0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 -0.001 -0.001 0.000 -0.001 0.001 -0.001 -0.001 -0.002]; % Parse the pulse name pulse_number=find(strcmp(names,pulse_name)); if isempty(pulse_number), error('incorrect pulse name.'); end % Preallocate the pulse waveform=zeros(1,npoints); % Build the time grid time_grid=linspace(0,2*pi,npoints); % Compute cosine terms for k=0:20 waveform=waveform+cosines(k+1,pulse_number)*cos(k*time_grid); end % Compute sine terms for k=1:20 waveform=waveform+sines(k,pulse_number)*sin(k*time_grid); end % Normalize the waveform waveform=2*pi*waveform/duration; end % Consistency enforcement function grumble(pulse_name,npoints,duration) if ~ischar(pulse_name) error('pulse_name parameter must be a character string.'); end if (numel(npoints)~=1)||(~isnumeric(npoints))||(~isreal(npoints))||... (npoints<1)||(mod(npoints,1)~=0) error('npoints parameter must be a positive real integer greater than 1.'); end if (numel(duration)~=1)||(~isnumeric(duration))||(~isreal(duration))||(duration<0) error('duration parameter must be a positive real number.'); end end % It is not the works, but the belief which is here decisive and determines % the order of rank -- to employ once more an old religious formula with a % new and deeper meaning -- it is some fundamental certainty which a noble % soul has about itself, something which is not to be sought, is not to be % found, and perhaps, also, is not to be lost. The noble soul has reverence % for itself. % % Friedrich Nietzsche, % "Beyond Good and Evil"
github
tsajed/nmr-pred-master
chirp_pulse_xy.m
.m
nmr-pred-master/spinach/kernel/pulses/chirp_pulse_xy.m
1,328
utf_8
60a1699f404ce6434d4dec3a29937a8b
% Chirp pulse waveform with a sine bell amplitude envelope in Cartesian % coordinates. Syntax: % % [Cx,Cy]=chirp_pulse_xy(npoints,duration,bandwidth,smfactor) % % with the following parameters: % % npoints - number of discretization points in % the waveform % % duration - pulse duration, seconds % % bandwidth - chirp sweep bandwidth around % zero frequency, Hz % % smfactor - sine power to be used for the % amplitude envelope % % [email protected] % [email protected] function [Cx,Cy]=chirp_pulse_xy(npoints,duration,bandwidth,smfactor) % Compute timing grid time_grid=linspace(-0.5,0.5,npoints); % Compute amplitudes amplitudes=1-abs(sin(pi*time_grid).^smfactor); % Compute phases phases=pi*duration*bandwidth*(time_grid.^2); % Calibrate amplitudes amplitudes=2*pi*sqrt(bandwidth/duration)*amplitudes; % Transform into Cartesian representation [Cx,Cy]=polar2cartesian(amplitudes,phases); end % "No one realized that the pumps that delivered fuel to the % emergency generators were electric." % % Angel Feliciano, representative of Verizon % explaining why Verizon's backup power failed % during the August 13, 2003 blackout, causing % disruption to the 911 service.
github
tsajed/nmr-pred-master
polar2cartesian.m
.m
nmr-pred-master/spinach/kernel/pulses/polar2cartesian.m
5,677
utf_8
6bd36555a087883533cbbe7263d035e3
% Converts [RF_amplitude, RF_phase] representation of a pulse waveform and % the derivatives of any function with respect to those amplitudes and pha- % ses into the [RF_x, RF_y] representation and the derivatives of the func- % tion with respect to those X and Y RF values. Syntax: % % [x,y,df_dx,df_dy]=polar2cartesian(A,phi,df_dA,df_dphi) % % Parameters: % % A - vector of waveform amplitudes % % phi - vector of waveform phases % % df_dA - optional vector of derivatives of some scalar function % with respect to the waveform amplitudes. % % df_dphi - optional vector of derivatives of some scalar function % with respect to the waveform phases. % % d2f_dA2 - matrix of second derivatives of the function with respect % to the waveform amplitudes. % % d2f_dAdphi- matrix of second derivatives of the function with respect % to the waveform amplitudes and phases. % % d2f_dphi2- matrix of second derivatives of the function with respect % to the waveform phases. % % Outputs: % % x - vector of waveform amplitudes along X % % y - vector of waveform amplitudes along Y % % df_dx - vector of derivatives of the function with respect to % the waveform amplitudes along X % % df_dy - vector of derivatives of the function with respect to % the waveform amplitudes along Y % % d2f_dx2 - optional matrix of second derivatives of a scalar function % with respect to the waveform amplitudes along X % % d2f_dxdy- optional matrix of second derivatives of a scalar function % with respect to the waveform amplitudes along X and Y % % d2f_dy2 - optional matrix of second derivatives of a scalar function % with respect to the waveform amplitudes along Y % % [email protected] function [x,y,df_dx,df_dy,d2f_dx2,d2f_dxdy,d2f_dy2]=polar2cartesian(A,phi,df_dA,df_dphi,d2f_dA2,d2f_dAdphi,d2f_dphi2) % Check consistency if nargin==2 grumble(A,phi); elseif nargin==4 grumble(A,phi,df_dA,df_dphi); elseif nargin==7 grumble(A,phi,df_dA,df_dphi,d2f_dA2,d2f_dAdphi,d2f_dphi2); else error('incorrect number of arguments.'); end % Transform coordinates x=A.*cos(phi); y=A.*sin(phi); % Transform derivatives if (nargin>2)&&(nargout>2) df_dx=df_dA.*cos(phi)-df_dphi.*sin(phi)./A; df_dy=df_dA.*sin(phi)+df_dphi.*cos(phi)./A; end % Transform second derivatives if (nargin>4)&&(nargout>4) A4=A.^4; A3=A.^3; A2=A.^2; d2f_dx2=+2*x.*y.*df_dphi./A4+y.*y.*d2f_dphi2./A4+df_dA./A-x.*x.*df_dA./A3-2*x.*y.*d2f_dAdphi./A3+x.*x.*d2f_dA2./A2; d2f_dy2=-2*x.*y.*df_dphi./A4+x.*x.*d2f_dphi2./A4+df_dA./A-y.*y.*df_dA./A3+2*x.*y.*d2f_dAdphi./A3+y.*y.*d2f_dA2./A2; d2f_dxdy=-df_dphi./A2+2*y.*y.*df_dphi./A4-x.*y.*d2f_dphi2./A4-x.*y.*df_dA./A3+x.*x.*d2f_dAdphi./A3-y.*y.*d2f_dAdphi./A3+x.*y.*d2f_dA2./A2; end end % Consistency enforcement function grumble(A,phi,df_dA,df_dphi,d2f_dA2,d2f_dAdphi,d2f_dphi2) if nargin==2 if (~isnumeric(A))||(~isreal(A))||(~all(A>=0)) error('amplitude parameter must be a vector of non-negative real numbers.'); end if (~isnumeric(phi))||(~isreal(phi)) error('phase parameter must be a vector of real numbers.'); end if ~all(size(A)==size(phi)) error('amplitude and phase vectors must have the same dimension.'); end elseif nargin==4 if (~isnumeric(A))||(~isreal(A))||(~all(A>=0)) error('amplitude parameter must be a vector of non-negative real numbers.'); end if (~isnumeric(phi))||(~isreal(phi)) error('phase parameter must be a vector of real numbers.'); end if (~isnumeric(df_dA))||(~isreal(df_dA)) error('df_dA parameter must be a vector of real numbers.'); end if (~isnumeric(df_dphi))||(~isreal(df_dphi)) error('df_dphi parameter must be a vector of real numbers.'); end if (~all(size(A)==size(phi)))||(~all(size(phi)==size(df_dA)))||(~all(size(df_dA)==size(df_dphi))) error('all input vectors must have the same dimension.'); end elseif nargin==7 if (~isnumeric(A))||(~isreal(A))||(~all(A>=0)) error('amplitude parameter must be a vector of non-negative real numbers.'); end if (~isnumeric(phi))||(~isreal(phi)) error('phase parameter must be a vector of real numbers.'); end if (~isnumeric(df_dA))||(~isreal(df_dA)) error('df_dA parameter must be a vector of real numbers.'); end if (~isnumeric(df_dphi))||(~isreal(df_dphi)) error('df_dphi parameter must be a vector of real numbers.'); end if (~all(size(A)==size(phi)))||(~all(size(phi)==size(df_dA)))||(~all(size(df_dA)==size(df_dphi))) error('all input vectors must have the same dimension.'); end if (~isnumeric(d2f_dA2))||(~isreal(d2f_dA2)) error('d2f_dA2 parameter must be a matrix of real numbers.'); end if (~isnumeric(d2f_dphi2))||(~isreal(d2f_dphi2)) error('d2f_dphi2 parameter must be a matrix of real numbers.'); end if (~isnumeric(d2f_dAdphi))||(~isreal(d2f_dAdphi)) error('ddf_dAdphi parameter must be a matrix of real numbers.'); end if (size(d2f_dA2,2)~=length(df_dA))||(size(d2f_dA2,1)~=size(d2f_dA2,2))||all(size(d2f_dA2)~=size(d2f_dphi2))||all(size(d2f_dphi2)~=size(d2f_dAdphi)) error('all input matrices must have the same, square dimensions.'); end end end % A public opinion poll is no substitute for thought. % % Warren Buffett
github
tsajed/nmr-pred-master
grad_pulse.m
.m
nmr-pred-master/spinach/kernel/pulses/grad_pulse.m
4,237
utf_8
c183d457f49f7121f8d525daf67e7432
% Computes the effect of a gradient pulse on the sample average density % matrix using Edwards formalism. It is assumed that the effect of dif- % fusion is negligible, that the gradient is linear, and that it is an- % tisymmetric about the middle of the sample. Syntax: % % rho=grad_pulse(spin_system,rho,g_amp,s_len,g_dur,s_fac) % % Arguments: % % rho - spin system state vector % % L - system Liouvillian % % g_amp - gradient amplitude, Gauss/cm % % s_len - sample length, cm % % g_dur - gradient pulse duration, seconds % % s_fac - gradient shape factor, use 1 for % square gradient pulses % % Note: the function integrates over sample coordinates - subsequent gra- % dient pulses would not refocus the magnetization that it has de- % focused. To simulate a gradient sandwich, use grad_sandw.m func- % tion. More information on the subject is available in Luke's pa- % per (http://dx.doi.org/10.1016/j.jmr.2014.01.011). % % [email protected] % [email protected] function rho=grad_pulse(spin_system,L,rho,g_amp,s_len,g_dur,s_fac) % Check consistency grumble(spin_system,L,rho,g_amp,s_len,g_dur,s_fac) % Inform the user report(spin_system,'computing the effect of a gradient pulse...'); % Get effective gradient operator G=1e-4*s_fac*g_amp*s_len*g_dur*carrier(spin_system,'all')/spin_system.inter.magnet; % Check approximation applicability if significant(L*G-G*L,1e-6) error('the Liouvillian does not commute with the gradient operator.'); end % Run background Liouvillian evolution rho=evolution(spin_system,L,[],rho,g_dur,1,'final'); % Account for rescaling of sample integral into [0,1] rho=evolution(spin_system,G,[],rho,-1/2,1,'final'); % Compute sample integral using auxiliary matrix method aux_mat=[0*G, 1i*speye(size(G)); 0*G, G]; aux_rho=[0*rho; rho]; aux_rho=evolution(spin_system,aux_mat,[],aux_rho,1,1,'final'); % Map back into the state vector space rho=aux_rho(1:end/2,:); % Inform the user report(spin_system,'gradient propagation done.') end % Consistency enforcement function grumble(spin_system,L,rho,g_amp,s_len,g_dur,s_fac) if ~ismember(spin_system.bas.formalism,{'sphten-liouv','zeeman-liouv'}) error('this function is only applicable in Liouville space.'); end if (~isnumeric(L))||(~isnumeric(rho))||(~isnumeric(g_amp))||... (~isnumeric(s_len))||(~isnumeric(g_dur))||(~isnumeric(s_fac)) error('all arguments apart from spin_system must be numeric.'); end if (~isreal(g_amp))||(~isscalar(g_amp)) error('g_amp must be a real scalar.'); end if (~isreal(s_len))||(~isscalar(s_len))||(s_len<=0) error('s_len must be a positive real number.'); end if (~isreal(g_dur))||(~isscalar(g_dur))||(g_dur<0) error('g_dur must be a real non-negative scalar.'); end if (~isreal(s_fac))||(~isscalar(s_fac))||(s_fac<0) error('s_fac must be a real non-negative scalar.'); end end % I cannot understand why we idle discussing religion. If we are honest - and scientists % have to be - we must admit that religion is a jumble of false assertions, with no basis % in reality. The very idea of God is a product of the human imagination. It is quite % understandable why primitive people, who were so much more exposed to the overpowering % forces of nature than we are today, should have personified these forces in fear and % trembling. But nowadays, when we understand so many natural processes, we have no need % for such solutions. I can't for the life of me see how the postulate of an Almighty God % helps us in any way. What I do see is that this assumption leads to such unproductive % questions as why God allows so much misery and injustice, the exploitation of the poor % by the rich and all the other horrors He might have prevented. If religion is still % being taught, it is by no means because its ideas still convince us, but simply because % some of us want to keep the lower classes quiet. Quiet people are much easier to govern % than clamorous and dissatisfied ones. They are also much easier to exploit. % % Paul Dirac
github
tsajed/nmr-pred-master
wave_basis.m
.m
nmr-pred-master/spinach/kernel/pulses/wave_basis.m
3,090
utf_8
70011646cc9544f99942468390fb9dcf
% Common basis sets for the expansion of pulse waveforms. Returns the wave- % form basis functions as columns of a matrix. Syntax: % % basis_waves=wave_basis(basis_type,n_functions,n_steps) % % Parameters: % % basis_type - may be set to 'sine_waves', 'cosine_waves', % and 'legendre'. The sine and the cosine op- % tions return the corresponding functions in % the [-pi,pi] interval, legendre option re- % turns legendre polynomials in the [-1,1] in- % terval. % % n_functions - the number of functions to return (integer % frequencies starting from zero on the case % of cosines, integer frequencies starting % from 1 inthe case of sines, legendre poly- % nomial ranks in the case of legendre func- % tion basis set. % % n_points - number of discretization points. % % Note: Because the resulting waveforms are discretized, they are not pre- % cisely orthogonal under the standard scalar multiplication. An ex- % tra orthogonalization step is therefore applied to make them ortho- % gonal as vectors. % % [email protected] function basis_waves=wave_basis(basis_type,n_functions,n_points) % Check consistency grumble(basis_type,n_functions,n_points); % Preallocate the array basis_waves=zeros(n_functions,n_points); % Generate the functions switch basis_type case 'sine_waves' % Fill the array parfor n=1:n_functions basis_waves(n,:)=sin(n*linspace(-pi,pi,n_points)); end case 'cosine_waves' % Fill the array parfor n=1:n_functions basis_waves(n,:)=cos((n-1)*linspace(-pi,pi,n_points)); end case 'legendre' % Fill the array parfor n=1:n_functions basis_waves(n,:)=mfun('P',n-1,linspace(-1,1,n_points)); basis_waves(n,:)=basis_waves(n,:)/norm(basis_waves(n,:)); end otherwise % Complain and bomb out error('unrecognized basis function type.'); end % Orthogonalize the array basis_waves=orth(basis_waves'); end % Consistency enforcement function grumble(basis_type,n_functions,n_points) if ~ischar(basis_type) error('basis_type parameter must be a character string.'); end if (numel(n_functions)~=1)||(~isnumeric(n_functions))||(~isreal(n_functions))||... (n_functions<1)||(mod(n_functions,1)~=0) error('n_functions parameter must be a positive real integer greater than 1.'); end if (numel(n_points)~=1)||(~isnumeric(n_points))||(~isreal(n_points))||... (n_points<1)||(mod(n_points,1)~=0) error('n_points parameter must be a positive real integer greater than 1.'); end end % Self-esteem is the reputation we acquire with ourselves. % % Nathaniel Branden
github
tsajed/nmr-pred-master
oscillator.m
.m
nmr-pred-master/spinach/kernel/contexts/oscillator.m
1,368
utf_8
6c53aeeaf1935c1447ba630c0a307fe3
% Harmonic oscillator infrastructure. Syntax: % % [H_oscl,X_oscl,xgrid]=oscillator(parameters) % % where: % % parameters.frc_cnst - force constant % % parameters.dmd_mass - particle mass % % parameters.grv_cnst - gravitational acceleration % % parameters.n_points - number of discretization points % % parameters.rgn_size - oscillator box dimension % % The function returns: % % H_oscl - oscillator Hamiltonian % % X_oscl - oscillator X operator % % xgrid - X coordinate grid % % [email protected] function [H_oscl,X_oscl,xgrid]=oscillator(parameters) % Second derivative operator d2_dx2=((parameters.n_points-1)/parameters.rgn_size)^2*fdmat(parameters.n_points,5,2); % Coordinate grid xgrid=linspace(-parameters.rgn_size/2,parameters.rgn_size/2,parameters.n_points)'; % Coordinate operator X_oscl=spdiags(xgrid,0,parameters.n_points,parameters.n_points); % Boundary conditions d2_dx2(:,1)=0; d2_dx2(:,end)=0; d2_dx2(1,:)=0; d2_dx2(end,:)=0; % Hamiltonian H_oscl=-(1/(2*parameters.dmd_mass))*d2_dx2+(parameters.frc_cnst/2)*X_oscl^2+... parameters.dmd_mass*parameters.grv_cnst*X_oscl; end % Just in terms of allocation of time resources, religion is % not very efficient. There's a lot more I could be doing on % a Sunday morning. % % Bill Gates
github
tsajed/nmr-pred-master
doublerot.m
.m
nmr-pred-master/spinach/kernel/contexts/doublerot.m
14,428
utf_8
cb152dc63d979f9801d438d1113dc5e8
% Fokker-Planck double angle spinning context. Generates a Liouvillian % superoperator and passes it on to the pulse sequence function, which % should be supplied as a handle. Syntax: % % answer=doublerot(spin_system,pulse_sequence,parameters,assumptions) % % where pulse sequence is a function handle to one of the pulse sequences % located in the experiments directory, assumptions is a string that would % be passed to assume.m when the Hamiltonian is built and parameters is a % structure with the following subfields: % % parameters.rate_outer - outer rotor spinning rate in Hz % % parameters.rate_inner - inner rotor spinning rate in Hz % % parameters.axis_outer - spinning axis of the outer rotor, % given as a normalized 3-element % vector % % parameters.axis_inner - spinning axis of the inner rotor, % given as a normalized 3-element % vector % % parameters.rank_outer - maximum harmonic rank to retain in % the solution (increase till conver- % gence is achieved, approximately % equal to the number of spinning si- % debands in the spectrum) for the % outer rotor % % parameters.rank_inner - maximum harmonic rank to retain in % the solution (increase till conver- % gence is achieved, approximately % equal to the number of spinning si- % debands in the spectrum) for the % inner rotor % % parameters.rframes - rotating frame specification, e.g. % {{'13C',2},{'14N,3}} requests second % order rotating frame transformation % with respect to carbon-13 and third % order rotating frame transformation % with respect to nitrogen-14 % % Additional subfields may be required by the pulse sequence. The parameters % structure is passed to the pulse sequence with the following additional % parameters set: % % parameters.spc_dim - matrix dimension for the spatial % dynamics subspace % % parameters.spn_dim - matrix dimension for the spin % dynamics subspace % % This function returns the powder average of whatever it is that the pulse % sequence returns. % % Note: arbitrary order rotating frame transformation is supported, inc- % luding infinite order. See the header of rotframe.m for further % information. % % Note: the state projector assumes a powder -- single crystal DOR is not % currently supported. % % [email protected] function answer=doublerot(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Get the Hamiltonian [H,Q]=hamiltonian(assume(spin_system,assumptions)); % Apply offsets H=frqoffset(spin_system,H,parameters); % Count rotor trajectory points npoints_inner=2*parameters.rank_inner+1; npoints_outer=2*parameters.rank_outer+1; npoints_total=npoints_outer*npoints_inner; % Get problem dimensions spc_dim=npoints_total; spn_dim=size(H,1); report(spin_system,['lab space problem dimension ' num2str(spc_dim)]); report(spin_system,['spin space problem dimension ' num2str(spn_dim)]); report(spin_system,['Fokker-Planck problem dimension ' num2str(spc_dim*spn_dim)]); parameters.spc_dim=spc_dim; parameters.spn_dim=spn_dim; % Compute spectral derivative operators [traj_inner,d_dphi_inner]=fourdif(npoints_inner,1); [traj_outer,d_dphi_outer]=fourdif(npoints_outer,1); % Compute rotor phase tracks phases_outer=kron(traj_outer,ones(npoints_inner,1)); phases_inner=kron(ones(npoints_outer,1),traj_inner); % Compute double spinning operator M=2*pi*kron((parameters.rate_outer*kron(d_dphi_outer,speye(size(d_dphi_inner)))+... parameters.rate_inner*kron(speye(size(d_dphi_outer)),d_dphi_inner)),speye(size(H))); % Get rotor axis orientations [phi_inner,theta_inner,~]=cart2sph(parameters.axis_inner(1),... parameters.axis_inner(2),... parameters.axis_inner(3)); [phi_outer,theta_outer,~]=cart2sph(parameters.axis_outer(1),... parameters.axis_outer(2),... parameters.axis_outer(3)); theta_inner=pi/2-theta_inner; theta_outer=pi/2-theta_outer; % Compute outer rotor axis tilt D_out2lab=euler2wigner(phi_outer,theta_outer,0); % Compute inner rotor axis tilt D_inn2out=euler2wigner(phi_inner,theta_inner,0); % Get carrier operators C=cell(size(parameters.rframes)); for n=1:numel(parameters.rframes) C{n}=carrier(spin_system,parameters.rframes{n}{1}); end % Get relaxation and kinetics R=relaxation(spin_system); K=kinetics(spin_system); % Get the averaging grid sph_grid=load([spin_system.sys.root_dir '/kernel/grids/' parameters.grid '.mat']); % Project relaxation and kinetics R=kron(speye(spc_dim),R); K=kron(speye(spc_dim),K); % Project the initial state if isfield(parameters,'rho0')&&strcmp(parameters.grid,'single_crystal') % Single crystal simulations start at 12 o'clock space_part=zeros(parameters.spc_dim,1); space_part(1)=1; parameters.rho0=kron(space_part,parameters.rho0); report(spin_system,'single crystal simulation, rotor phase averaging switched off.'); elseif isfield(parameters,'rho0') % Powder simulations start distributed space_part=ones(parameters.spc_dim,1)/sqrt(parameters.spc_dim); parameters.rho0=kron(space_part,parameters.rho0); report(spin_system,'powder simulation, rotor phase averaging switched on.'); end % Project the coil state if isfield(parameters,'coil')&&strcmp(parameters.grid,'single_crystal') % Single crystal simulations require unnormalized coil space_part=ones(parameters.spc_dim,1); parameters.coil=kron(space_part,parameters.coil); spin_system.sys.disable{end+1}='norm_coil'; report(spin_system,'single crystal simulation, coil normalization switched off.'); elseif isfield(parameters,'coil') % Powder simulations require normalized coil space_part=ones(parameters.spc_dim,1)/sqrt(parameters.spc_dim); parameters.coil=kron(space_part,parameters.coil); report(spin_system,'powder simulation, coil normalization switched on.'); end % Preallocate answer array ans_array=cell(numel(sph_grid.weights),1); % Shut up and inform the user report(spin_system,['powder average being computed over ' num2str(numel(sph_grid.weights)) ' orientations.']); if ~isfield(parameters,'verbose')||(parameters.verbose==0) report(spin_system,'pulse sequence has been silenced to avoid excessive output.') spin_system.sys.output='hush'; end % Powder averaged spectrum parfor q=1:numel(sph_grid.weights) %#ok<*PFBNS> % Set crystallite orientation D_mol2inn=euler2wigner([sph_grid.alphas(q) sph_grid.betas(q) sph_grid.gammas(q)])'; % Preallocate Liouvillian blocks L=cell(npoints_total,npoints_total); for n=1:npoints_total for k=1:npoints_total L{n,k}=krondelta(n,k)*H; end end % Build Liouvillian blocks for n=1:npoints_total % Get the rotations D_outer=euler2wigner(0,0,phases_outer(n)); D_inner=euler2wigner(0,0,phases_inner(n)); D=D_out2lab*D_outer*D_inn2out*D_inner*D_mol2inn; % Build the block for k=1:5 for m=1:5 L{n,n}=L{n,n}+D(k,m)*Q{k,m}; end end % Apply the rotating frame for k=1:numel(parameters.rframes) L{n,n}=rotframe(spin_system,C{k},(L{n,n}+L{n,n}')/2,parameters.rframes{k}{1},parameters.rframes{k}{2}); end end % Assemble the liouvillian L=clean_up(spin_system,cell2mat(L),spin_system.tols.liouv_zero); % Report to the user report(spin_system,'running the pulse sequence...'); % Run the pulse sequence ans_array{q}=pulse_sequence(spin_system,parameters,L+1i*M,R,K); end % Add up structures answer=sph_grid.weights(1)*ans_array{1}; for n=2:numel(ans_array) answer=answer+sph_grid.weights(n)*ans_array{n}; end end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'rframes') report(spin_system,'parameters.rframes field not set, assuming no additional rotating frame transformations.'); parameters.rframes={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency enforcement function grumble(spin_system,pulse_sequence,parameters,assumptions) % Formalism if ~ismember(spin_system.bas.formalism,{'zeeman-liouv','sphten-liouv'}) error('this function is only available in Liouville space.'); end % Rotor ranks if ~isfield(parameters,'rank_outer') error('parameters.rank_outer subfield must be present.'); elseif (~isnumeric(parameters.rank_outer))||(~isreal(parameters.rank_outer))||... (mod(parameters.rank_outer,1)~=0)||(parameters.rank_outer<0) error('parameters.rank_outer must be a positive real integer.'); end if ~isfield(parameters,'rank_inner') error('parameters.rank_inner subfield must be present.'); elseif (~isnumeric(parameters.rank_inner))||(~isreal(parameters.rank_inner))||... (mod(parameters.rank_inner,1)~=0)||(parameters.rank_inner<0) error('parameters.rank_inner must be a positive real integer.'); end % Spinning rates if ~isfield(parameters,'rate_outer') error('parameters.rate_outer subfield must be present.'); elseif (~isnumeric(parameters.rate_outer))||(~isreal(parameters.rate_outer)) error('parameters.rate_outer must be a real number.'); end if ~isfield(parameters,'rate_inner') error('parameters.rate_inner subfield must be present.'); elseif (~isnumeric(parameters.rate_inner))||(~isreal(parameters.rate_inner)) error('parameters.rate_inner must be a real number.'); end % Spinning axes if ~isfield(parameters,'axis_outer') error('parameters.axis_outer subfield must be present.'); elseif (~isnumeric(parameters.axis_outer))||(~isreal(parameters.axis_outer))||... (~isrow(parameters.axis_outer))||(numel(parameters.axis_outer)~=3) error('parameters.axis_outer must be a row vector of three real numbers.'); end if ~isfield(parameters,'axis_inner') error('parameters.axis_inner subfield must be present.'); elseif (~isnumeric(parameters.axis_inner))||(~isreal(parameters.axis_inner))||... (~isrow(parameters.axis_inner))||(numel(parameters.axis_inner)~=3) error('parameters.axis_inner must be a row vector of three real numbers.'); end % Spherical grid if ~isfield(parameters,'grid') error('spherical averaging grid must be specified in parameters.grid variable.'); elseif isempty(parameters.grid) error('parameters.grid variable cannot be empty.'); elseif ~ischar(parameters.grid) error('parameters.grid variable must be a character string.'); end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Rotating frame transformations if ~isfield(parameters,'rframes') error('parameters.rframes variable must be specified.'); elseif ~iscell(parameters.rframes) error('parameters.rframes must be a cell array.'); end for n=1:numel(parameters.rframes) if ~iscell(parameters.rframes{n}) error('elements of parameters.rframes must be cell arrays.'); end if numel(parameters.rframes{n})~=2 error('elements of parameters.rframes must have exactly two sub-elements each.'); end if ~ischar(parameters.rframes{n}{1}) error('the first part of each element of parameters.rframes must be a character string.'); end if ~ismember(parameters.rframes{n}{1},spin_system.comp.isotopes) error('parameters.rframes refers to a spin that is not present in the system.'); end if ~isnumeric(parameters.rframes{n}{2}) error('the second part of each element of parameters.rframes must be a number.'); end end end % Show me a hero and I'll write you a tragedy. % % F. Scott Fitzgerald
github
tsajed/nmr-pred-master
gridfree.m
.m
nmr-pred-master/spinach/kernel/contexts/gridfree.m
9,938
utf_8
4022c6869a17347b8568ec5413610d90
% Fokker-Planck magic angle spinning and SLE context. Generates a Liouvil- % lian superoperator and passes it on to the pulse sequence function, which % should be supplied as a handle. Syntax: % % answer=gridfree(spin_system,pulse_sequence,parameters,assumptions) % % where pulse sequence is a function handle to one of the pulse sequences % located in the experiments directory, assumptions is a string that would % be passed to assume.m when the Hamiltonian is built and parameters is a % structure with the following subfields: % % parameters.rate - spinning rate in Hz % % parameters.axis - spinning axis, given as a normalized % 3-element vector % % parameters.spins - a cell array giving the spins that % the pulse sequence involves, e.g. % {'1H','13C'} % % parameters.offset - a cell array giving transmitter off- % sets in Hz on each of the spins listed % in parameters.spins array % % parameters.max_rank - maximum D-function rank to retain in % the solution (increase till conver- % gence is achieved, approximately % equal to the number of spinning si- % debands in the spectrum) % % parameters.tau_c - correlation times (in seconds) for rotational % diffusion. Single number for isotropic rotati- % onal diffusion, two for axial and three for % rhombic rotational diffusion. Other interacti- % ons and coordinates are assumed to be specifi- % ed in the rotational diffusion tensor eigen- % frame. % % Additional subfields may be required by the pulse sequence. The parameters % structure is passed to the pulse sequence with the following additional % parameters set: % % parameters.spc_dim - matrix dimension for the spatial % dynamics subspace % % parameters.spn_dim - matrix dimension for the spin % dynamics subspace % % This function returns the powder average of whatever it is that the pulse % sequence returns. % % Note: the choice of the Wigner function rank truncation level depends on % the spinning rate (the slower the spinning, the greater ranks are % required). % % Note: rotational correlation times for SLE go into parameters.tau_c, not % inter.tau_c (the latter is only used by the Redfield theory module). % % Note: the state projector assumes a powder -- single crystal MAS is not % currently supported. % % [email protected] function answer=gridfree(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Get spatial operators [Lx,Ly,Lz,D,~]=sle_operators(parameters.max_rank); % Get spin Hamiltonian [H,Q]=hamiltonian(assume(spin_system,assumptions)); % Apply offsets H=frqoffset(spin_system,H,parameters); % Get relaxation and kinetics R=relaxation(spin_system); K=kinetics(spin_system); % Get problem dimensions spc_dim=size(Lx,1); parameters.spc_dim=spc_dim; spn_dim=size(H,1); parameters.spn_dim=spn_dim; % Inform the user report(spin_system,['spin space problem dimension ' num2str(spn_dim)]); report(spin_system,['lab space space dimension ' num2str(spc_dim)]); report(spin_system,['Fokker-Planck problem dimension ' num2str(spn_dim*spc_dim)]); % Project isotropic parts H=kron(speye(spc_dim),H); R=kron(speye(spc_dim),R); K=kron(speye(spc_dim),K); % Add anisotropic parts for k=1:5 for m=1:5 H=H+kron(D{k,m},Q{k,m}); end end % Rotation operator if isfield(parameters,'rate')&&abs(parameters.rate)>0 % Normalize axis vector spinning_axis=parameters.axis/norm(parameters.axis); % Report to the user report(spin_system,['spinning axis ort: ' num2str(spinning_axis)]); report(spin_system,['spinning rate: ' num2str(parameters.rate) ' Hz']); % Build rotation operator Hr=2*pi*parameters.rate*(spinning_axis(1)*Lx+spinning_axis(2)*Ly+spinning_axis(3)*Lz); % Add rotation operator H=H+kron(Hr,speye(spn_dim)); end % Diffusion operator if isfield(parameters,'tau_c') % Build diffusion operator if numel(parameters.tau_c)==1 % Isotropic rotational diffusion diff_iso=1/(6*parameters.tau_c); Rd=diff_iso*(Lx^2+Ly^2+Lz^2); elseif numel(parameters.tau_c)==2 % Axial rotational diffusion diff_ax=1/(6*parameters.tau_c(1)); diff_eq=1/(6*parameters.tau_c(2)); Rd=diff_eq*Lx^2+diff_eq*Ly^2+diff_ax*Lz^2; elseif numel(parameters.tau_c)==3 % Rhombic rotational diffusion diff_xx=1/(6*parameters.tau_c(1)); diff_yy=1/(6*parameters.tau_c(2)); diff_zz=1/(6*parameters.tau_c(3)); Rd=diff_xx*Lx^2+diff_yy*Ly^2+diff_zz*Lz^2; else % Complain and bomb out error('invalid correlation time specification.'); end % Add diffusion operator R=R-kron(Rd,speye(spn_dim)); end % Clean up the result H=clean_up(spin_system,H,spin_system.tols.liouv_zero); R=clean_up(spin_system,R,spin_system.tols.liouv_zero); K=clean_up(spin_system,K,spin_system.tols.liouv_zero); % Inform the user report(spin_system,['found ' num2str(nnz(H)+nnz(R)+nnz(K)) ' non-zeros in the Fokker-Planck Liouvillian.']); % Project initial and detection states P=spalloc(spc_dim,1,1); P(1)=1; if isfield(parameters,'rho0') parameters.rho0=kron(P,parameters.rho0); end if isfield(parameters,'coil') parameters.coil=kron(P,parameters.coil); end % Report to the user report(spin_system,'running the pulse sequence...'); % Call the pulse sequence answer=pulse_sequence(spin_system,parameters,H,R,K); end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency enforcement function grumble(spin_system,pulse_sequence,parameters,assumptions) % Rotating frames if isfield(parameters,'rframes') error('numerical rotating frame transformation is not supported by SLE formalism.'); end % Spherical grid if isfield(parameters,'grid') error('spherical integration is a part of the SLE formalism, this parameter is unnecessary.'); end % Formalism if ~ismember(spin_system.bas.formalism,{'zeeman-liouv','sphten-liouv'}) error('this function is only available in Liouville space.'); end % Rotor rank if ~isfield(parameters,'max_rank') error('parameters.max_rank subfield must be present.'); elseif (~isnumeric(parameters.max_rank))||(~isreal(parameters.max_rank))||... (mod(parameters.max_rank,1)~=0)||(parameters.max_rank<0) error('parameters.max_rank must be a positive real integer.'); end % Spinning rate if isfield(parameters,'rate')&&((~isnumeric(parameters.rate))||(~isreal(parameters.rate))) error('parameters.rate must be a real number.'); end % Spinning axis if isfield(parameters,'axis')&&((~isnumeric(parameters.axis))||(~isreal(parameters.axis))||... (~isrow(parameters.axis))||(numel(parameters.axis)~=3)) error('parameters.axis must be a row vector of three real numbers.'); end % Check rotational correlation time if isfield(parameters,'tau_c') if (~isnumeric(parameters.tau_c))||(numel(parameters.tau_c)>3)||(numel(parameters.tau_c)==0) error('parameters.tau_c must be a vector of size 1, 2 or 3.'); end if (~isreal(parameters.tau_c))||any(parameters.tau_c<0) error('parameters.tau_c must have non-negative real elements.'); end end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end end % No god and no religion can survive ridicule. No political church, % no nobility, no royalty or other fraud, can face ridicule in a fair % field, and live. % % Mark Twain
github
tsajed/nmr-pred-master
roadmap.m
.m
nmr-pred-master/spinach/kernel/contexts/roadmap.m
9,126
utf_8
08c8533eb7af211f82f7270aea7bb271
% Runs a simulation of a user-specified pulse sequence for each % orientation found in the user-specified grid and returns the % corresponding angles, integration weights, tessellation trian- % gles and sequence results (as a cell array of whatever it is % that the pulse sequence returns). % % The function supports parallel processing via Matlab's Distri- % buted Computing Toolbox - different system orientations are eva- % luated on different labs. Syntax: % % [alphas,betas,gammas,weights,triangles,fid]=... % roadmap(spin_system,pulse_sequence,parameters,assumptions) % % Input arguments: % % pulse_sequence - pulse sequence function handle. See the % /experiments directory for the list of % pulse sequences that are supplied with % Spinach. % % parameters - a structure containing sequence-specific % parameters. See the pulse sequence header % for the list of parameters each sequence % requires. The parameters that this inter- % face itself requires are: % % parameters.spins - a cell array giving the % spins that the pulse sequence works on, in % the order of channels, e.g. {'1H','13C'} % % parameters.offsets - a cell array giving % transmitter offsets on each of the spins % listed in parameters.spins. % % parameters.grid - name of the spherical % averaging grid file (see the grids direc- % tory in the kernel). % % assumptions - context-specific assumptions ('nmr', 'epr', % 'labframe', etc.) - see the pulse sequence % header and assumptions.m file for further % information on this setting. % % Output arguments: % % alphas - an array of alpha Euler angles from the % spherical grid % % betas - an array of beta Euler angles from the % spherical grid % % gammas - an array of gamma Euler angles from the % spherical grid % % weights - an array of summation weights appropri- % ate for the corresponding points of the % spherical grid % % triangles - an array of triangle specification from % the tesselation information supplied in % the grid file % % fid - a cell array of whatever it is that the % pulse sequence function returns at each % point inthe spherical grid % % [email protected] function [alphas,betas,gammas,weights,triangles,answer]=roadmap(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Set the secularity assumptions spin_system=assume(spin_system,assumptions); % Get the rotational expansion of the Hamiltonian [I,Q]=hamiltonian(spin_system); % Get kinetics K=kinetics(spin_system); % Apply the offsets I=frqoffset(spin_system,I,parameters); % Get carrier operators C=cell(size(parameters.rframes)); for n=1:numel(parameters.rframes) C{n}=carrier(spin_system,parameters.rframes{n}{1}); end % Get problem dimensions parameters.spc_dim=1; parameters.spn_dim=size(I,1); % Get the spherical averaging grid spherical_grid=load([spin_system.sys.root_dir '/kernel/grids/' parameters.grid],... 'alphas','betas','gammas','weights','triangles'); % Assign local variables alphas=spherical_grid.alphas; betas=spherical_grid.betas; gammas=spherical_grid.gammas; weights=spherical_grid.weights; triangles=spherical_grid.triangles; % Preallocate the answer answer=cell(numel(weights),1); % Shut up and inform the user report(spin_system,['powder average being computed over ' num2str(numel(weights)) ' orientations.']); if ~isfield(parameters,'verbose')||(parameters.verbose==0) report(spin_system,'pulse sequence has been silenced to avoid excessive output.') spin_system.sys.output='hush'; end % Crunch the orientations in parallel parfor n=1:numel(weights) % Get the full Liouvillian at the current orientation H=I+orientation(Q,[alphas(n) betas(n) gammas(n)]); H=(H+H')/2; % Apply rotating frames for k=1:numel(parameters.rframes) %#ok<PFBNS> H=rotframe(spin_system,C{k},H,parameters.rframes{k}{1},parameters.rframes{k}{2}); %#ok<PFBNS> end % Get the relaxation superoperator at the current orientation R=relaxation(spin_system,[alphas(n) betas(n) gammas(n)]); % Report to the user report(spin_system,'running the pulse sequence...'); % Run the simulation answer{n}=pulse_sequence(spin_system,parameters,H,R,K); %#ok<PFBNS> end end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'rframes') report(spin_system,'parameters.rframes field not set, assuming no additional rotating frame transformations.'); parameters.rframes={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency checking function grumble(spin_system,pulse_sequence,parameters,assumptions) % Spherical grid if ~isfield(parameters,'grid') error('spherical averaging grid must be specified in parameters.grid variable.'); elseif isempty(parameters.grid) error('parameters.grid variable cannot be empty.'); elseif ~ischar(parameters.grid) error('parameters.grid variable must be a character string.'); end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Rotating frame transformations if ~isfield(parameters,'rframes') error('parameters.rframes variable must be specified.'); elseif ~iscell(parameters.rframes) error('parameters.rframes must be a cell array.'); end for n=1:numel(parameters.rframes) if ~iscell(parameters.rframes{n}) error('elements of parameters.rframes must be cell arrays.'); end if numel(parameters.rframes{n})~=2 error('elements of parameters.rframes must have exactly two sub-elements each.'); end if ~ischar(parameters.rframes{n}{1}) error('the first part of each element of parameters.rframes must be a character string.'); end if ~ismember(parameters.rframes{n}{1},spin_system.comp.isotopes) error('parameters.rframes refers to a spin that is not present in the system.'); end if ~isnumeric(parameters.rframes{n}{2}) error('the second part of each element of parameters.rframes must be a number.'); end end end % The fact that we live at the bottom of a deep gravity well, on the % surface of a gas covered planet going around a nuclear fireball 90 % million miles away and think this to be normal is obviously some % indication of how skewed our perspective tends to be. % % Douglas Adams
github
tsajed/nmr-pred-master
singlerot.m
.m
nmr-pred-master/spinach/kernel/contexts/singlerot.m
12,699
utf_8
11c0be61b6734e767a0f62021d190e8d
% Fokker-Planck magic angle spinning context. Generates a Liouvillian % superoperator and passes it on to the pulse sequence function, which % should be supplied as a handle. Syntax: % % answer=singlerot(spin_system,pulse_sequence,parameters,assumptions) % % where pulse sequence is a function handle to one of the pulse sequences % located in the experiments directory, assumptions is a string that would % be passed to assume.m when the Hamiltonian is built and parameters is a % structure with the following subfields: % % parameters.rate - spinning rate in Hz % % parameters.axis - spinning axis, given as a normalized % 3-element vector % % parameters.spins - a cell array giving the spins that % the pulse sequence involves, e.g. % {'1H','13C'} % % parameters.offset - a cell array giving transmitter off- % sets in Hz on each of the spins listed % in parameters.spins array % % parameters.max_rank - maximum harmonic rank to retain in % the solution (increase till conver- % gence is achieved, approximately % equal to the number of spinning si- % debands in the spectrum) % % parameters.rframes - rotating frame specification, e.g. % {{'13C',2},{'14N,3}} requests second % order rotating frame transformation % with respect to carbon-13 and third % order rotating frame transformation % with respect to nitrogen-14. When % this option is used, the assumptions % on the respective spins should be % laboratory frame. % % parameters.grid - spherical grid file name. See grids % directory in the kernel. % % Additional subfields may be required by the pulse sequence. The parameters % structure is passed to the pulse sequence with the following additional % parameters set: % % parameters.spc_dim - matrix dimension for the spatial % dynamics subspace % % parameters.spn_dim - matrix dimension for the spin % dynamics subspace % % This function returns the powder average of whatever it is that the pulse % sequence returns. % % Note: arbitrary order rotating frame transformation is supported, inc- % luding infinite order. See the header of rotframe.m for further % information. % % Note: the state projector assumes a powder -- single crystal MAS is not % currently supported. % % [email protected] function answer=singlerot(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Get the Hamiltonian [H,Q]=hamiltonian(assume(spin_system,assumptions)); % Apply offsets H=frqoffset(spin_system,H,parameters); % Get problem dimensions spc_dim=2*parameters.max_rank+1; spn_dim=size(H,1); report(spin_system,['lab space problem dimension ' num2str(spc_dim)]); report(spin_system,['spin space problem dimension ' num2str(spn_dim)]); report(spin_system,['Fokker-Planck problem dimension ' num2str(spc_dim*spn_dim)]); parameters.spc_dim=spc_dim; parameters.spn_dim=spn_dim; % Compute rotor angles and the derivative operator [rotor_angles,d_dphi]=fourdif(spc_dim,1); % Compute spinning operator M=2*pi*parameters.rate*kron(d_dphi,speye(size(H))); % Get rotor axis orientation [phi,theta,~]=cart2sph(parameters.axis(1),parameters.axis(2),parameters.axis(3)); theta=pi/2-theta; D_rot2lab=euler2wigner(phi,theta,0); % Get carrier operators C=cell(size(parameters.rframes)); for n=1:numel(parameters.rframes) C{n}=carrier(spin_system,parameters.rframes{n}{1}); end % Get relaxation and kinetics R=relaxation(spin_system); K=kinetics(spin_system); % Get the averaging grid sph_grid=load([spin_system.sys.root_dir '/kernel/grids/' parameters.grid '.mat']); % Project relaxation and kinetics R=kron(speye(spc_dim),R); K=kron(speye(spc_dim),K); % Project the initial state if isfield(parameters,'rho0')&&strcmp(parameters.grid,'single_crystal') % Single crystal simulations start at 12 o'clock space_part=zeros(parameters.spc_dim,1); space_part(1)=1; parameters.rho0=kron(space_part,parameters.rho0); report(spin_system,'single crystal simulation, rotor phase averaging switched off.'); elseif isfield(parameters,'rho0') % Powder simulations start distributed space_part=ones(parameters.spc_dim,1)/sqrt(parameters.spc_dim); parameters.rho0=kron(space_part,parameters.rho0); report(spin_system,'powder simulation, rotor phase averaging switched on.'); end % Project the coil state if isfield(parameters,'coil')&&strcmp(parameters.grid,'single_crystal') % Single crystal simulations require unnormalized coil space_part=ones(parameters.spc_dim,1); parameters.coil=kron(space_part,parameters.coil); spin_system.sys.disable{end+1}='norm_coil'; report(spin_system,'single crystal simulation, coil normalization switched off.'); elseif isfield(parameters,'coil') % Powder simulations require normalized coil space_part=ones(parameters.spc_dim,1)/sqrt(parameters.spc_dim); parameters.coil=kron(space_part,parameters.coil); report(spin_system,'powder simulation, coil normalization switched on.'); end % Preallocate answer array ans_array=cell(numel(sph_grid.weights),1); % Shut up and inform the user report(spin_system,['powder average being computed over ' num2str(numel(sph_grid.weights)) ' orientations.']); if ~parameters.verbose report(spin_system,'pulse sequence silenced to avoid excessive output.'); spin_system.sys.output='hush'; end % Powder averaged spectrum parfor q=1:numel(sph_grid.weights) %#ok<*PFBNS> % Set crystallite orientation D_mol2rot=euler2wigner([sph_grid.alphas(q) sph_grid.betas(q) sph_grid.gammas(q)])'; % Preallocate Liouvillian blocks L=cell(2*parameters.max_rank+1,2*parameters.max_rank+1); for n=1:(2*parameters.max_rank+1) for k=1:(2*parameters.max_rank+1) L{n,k}=krondelta(n,k)*H; end end % Build Liouvillian blocks for n=1:(2*parameters.max_rank+1) % Get the rotation D_rotor=euler2wigner(0,0,rotor_angles(n)); D=D_rot2lab*D_rotor*D_mol2rot; % Build the block for k=1:5 for m=1:5 L{n,n}=L{n,n}+D(k,m)*Q{k,m}; end end L{n,n}=(L{n,n}+L{n,n}')/2; % Apply the rotating frame for k=1:numel(parameters.rframes) L{n,n}=rotframe(spin_system,C{k},L{n,n},parameters.rframes{k}{1},parameters.rframes{k}{2}); end end % Assemble the Fokker-Planck Liouvillian L=clean_up(spin_system,cell2mat(L)+1i*M,spin_system.tols.liouv_zero); % Report to the user report(spin_system,'running the pulse sequence...'); % Run the pulse sequence ans_array{q}=pulse_sequence(spin_system,parameters,L,R,K); end % Add up structures answer=sph_grid.weights(1)*ans_array{1}; for n=2:numel(ans_array) answer=answer+sph_grid.weights(n)*ans_array{n}; end end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'rframes') report(spin_system,'parameters.rframes field not set, assuming no additional rotating frame transformations.'); parameters.rframes={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency enforcement function grumble(spin_system,pulse_sequence,parameters,assumptions) % Formalism if ~ismember(spin_system.bas.formalism,{'zeeman-liouv','sphten-liouv'}) error('this function is only available in Liouville space.'); end % Rotor rank if ~isfield(parameters,'max_rank') error('parameters.max_rank subfield must be present.'); elseif (~isnumeric(parameters.max_rank))||(~isreal(parameters.max_rank))||... (mod(parameters.max_rank,1)~=0)||(parameters.max_rank<0) error('parameters.max_rank must be a positive real integer.'); end % Spinning rate if ~isfield(parameters,'rate') error('parameters.rate subfield must be present.'); elseif (~isnumeric(parameters.rate))||(~isreal(parameters.rate)) error('parameters.rate must be a real number.'); end % Spinning axis if ~isfield(parameters,'axis') error('parameters.axis subfield must be present.'); elseif (~isnumeric(parameters.axis))||(~isreal(parameters.axis))||... (~isrow(parameters.axis))||(numel(parameters.axis)~=3) error('parameters.axis must be a row vector of three real numbers.'); end % Spherical grid if ~isfield(parameters,'grid') error('spherical averaging grid must be specified in parameters.grid variable.'); elseif isempty(parameters.grid) error('parameters.grid variable cannot be empty.'); elseif ~ischar(parameters.grid) error('parameters.grid variable must be a character string.'); end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Rotating frame transformations if ~isfield(parameters,'rframes') error('parameters.rframes variable must be specified.'); elseif ~iscell(parameters.rframes) error('parameters.rframes must be a cell array.'); end for n=1:numel(parameters.rframes) if ~iscell(parameters.rframes{n}) error('elements of parameters.rframes must be cell arrays.'); end if numel(parameters.rframes{n})~=2 error('elements of parameters.rframes must have exactly two sub-elements each.'); end if ~ischar(parameters.rframes{n}{1}) error('the first part of each element of parameters.rframes must be a character string.'); end if ~ismember(parameters.rframes{n}{1},spin_system.comp.isotopes) error('parameters.rframes refers to a spin that is not present in the system.'); end if ~isnumeric(parameters.rframes{n}{2}) error('the second part of each element of parameters.rframes must be a number.'); end end end % There are no set working hours, your contract requires you to work such % hours as are reasonably necessary to perform your duties. % % [...] % % Associate Professors are not permitted to use the designation Professor. % Any Associate Professor who mistakenly uses the title Professor will be % told that this is not correct and asked to amend it. % % IK's contract at Southampton University, 2014
github
tsajed/nmr-pred-master
hydrodynamics.m
.m
nmr-pred-master/spinach/kernel/contexts/hydrodynamics.m
2,649
utf_8
bc4ad27ecd5cdc6c0d9387ead200ebe9
% A basic hydrodynamics infrastructure provider. % % [email protected] % [email protected] function [Fx,Fy,Fz]=hydrodynamics(parameters) % Build derivative operators switch parameters.cond{1} case 'period' % Finite-difference derivatives if numel(parameters.npts)==1 Dx=fdmat(parameters.npts(1),parameters.cond{2},1)/(parameters.dims(1)/parameters.npts(1)); end if numel(parameters.npts)==2 Dx=fdmat(parameters.npts(1),parameters.cond{2},1)/(parameters.dims(1)/parameters.npts(1)); Dy=fdmat(parameters.npts(2),parameters.cond{2},1)/(parameters.dims(2)/parameters.npts(2)); end if numel(parameters.npts)==3 Dx=fdmat(parameters.npts(1),parameters.cond{2},1)/(parameters.dims(1)/parameters.npts(1)); Dy=fdmat(parameters.npts(2),parameters.cond{2},1)/(parameters.dims(2)/parameters.npts(2)); Dz=fdmat(parameters.npts(3),parameters.cond{2},1)/(parameters.dims(3)/parameters.npts(3)); end case 'fourier' % Fourier derivatives if numel(parameters.npts)==1 [~,Dx]=fourdif(parameters.npts(1),1); Dx=(2*pi/parameters.dims(1))*Dx; end if numel(parameters.npts)==2 [~,Dx]=fourdif(parameters.npts(1),1); Dx=(2*pi/parameters.dims(1))*Dx; [~,Dy]=fourdif(parameters.npts(2),1); Dy=(2*pi/parameters.dims(2))*Dy; end if numel(parameters.npts)==3 [~,Dx]=fourdif(parameters.npts(1),1); Dx=(2*pi/parameters.dims(1))*Dx; [~,Dy]=fourdif(parameters.npts(2),1); Dy=(2*pi/parameters.dims(2))*Dy; [~,Dz]=fourdif(parameters.npts(3),1); Dz=(2*pi/parameters.dims(3))*Dz; end otherwise % Complain and bomb out error('unrecognized derivative operator type.'); end % Kron up derivative operators if numel(parameters.npts)==1 Fx=-1i*Dx; Fy=[]; Fz=[]; end if numel(parameters.npts)==2 Fx=-1i*kron(kron(speye(parameters.npts(2)),Dx),speye(size(1))); Fy=-1i*kron(kron(Dy,speye(parameters.npts(1))),speye(size(1))); Fz=[]; end if numel(parameters.npts)==3 Fx=-1i*kron(kron(kron(speye(parameters.npts(3)),speye(parameters.npts(2))),Dx),speye(size(1))); Fy=-1i*kron(kron(kron(speye(parameters.npts(3)),Dy),speye(parameters.npts(1))),speye(size(1))); Fz=-1i*kron(kron(kron(Dz,speye(parameters.npts(2))),speye(parameters.npts(1))),speye(size(1))); end end % As for butter versus margarine, I trust cows % more than chemists. % % Joan Gussow
github
tsajed/nmr-pred-master
liquid.m
.m
nmr-pred-master/spinach/kernel/contexts/liquid.m
7,042
utf_8
a05d9cd49ad028eb0ce831fd3d28e36b
% Liquid-phase interface to pulse sequences. Generates a Liouvillian % superoperator and passes it on to the pulse sequence function, which % should be supplied as a handle. % % This interface handles RDC mode -- if parameters.rdc switch is set, % it would use the order matrix supplied by the user to compute the % residual anisotropies of all interactions. Syntax: % % fid=liquid(spin_system,pulse_sequence,parameters,assumptions) % % Arguments: % % pulse_sequence - pulse sequence function handle. See the % experiments directory for the list of % pulse sequences that ship with Spinach. % % parameters - a structure containing sequence-specific % parameters. See the pulse sequence header % for the list of parameters each sequence % requires. The parameters that this inter- % face itself requires are: % % parameters.spins - a cell array giving the % spins that the pulse sequence works on, in % the order of channels, e.g. {'1H','13C'} % % parameters.offset - a cell array giving % transmitter offsets on each of the spins % listed in parameters.spins array. % % parameters.rdc - a logical switch control- % ling the inclusion of residual dipolar co- % uplings into the calculation. % % assumptions - context-specific assumptions ('nmr', 'epr', % 'labframe', etc.) - see the pulse sequence % header for information on this setting. % % This function returns whatever it is that the pulse sequence returns. % % [email protected] function answer=liquid(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Set assumptions spin_system=assume(spin_system,assumptions); % Get the Liouvillian if isfield(parameters,'rdc')&&parameters.rdc % With RDCs, first get the relaxation and kinetics R=relaxation(spin_system); K=kinetics(spin_system); % Then do the liquid crystal averaging spin_system=residual(spin_system); % Then get the coherent parts of the Liouvillian [I,Q]=hamiltonian(spin_system); H=I+orientation(Q,[0 0 0]); else % Get the isotropic Liouvillian H=hamiltonian(spin_system); R=relaxation(spin_system); K=kinetics(spin_system); end % Process channel offsets H=frqoffset(spin_system,H,parameters); % Get carrier operators C=cell(size(parameters.rframes)); for n=1:numel(parameters.rframes) C{n}=carrier(spin_system,parameters.rframes{n}{1}); end % Apply rotating frames for k=1:numel(parameters.rframes) H=rotframe(spin_system,C{k},H,parameters.rframes{k}{1},parameters.rframes{k}{2}); end % Get problem dimensions parameters.spc_dim=1; parameters.spn_dim=size(H,1); % Report to the user report(spin_system,'running the pulse sequence...'); % Call the pulse sequence answer=pulse_sequence(spin_system,parameters,H,R,K); end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'rframes') report(spin_system,'parameters.rframes field not set, assuming no additional rotating frame transformations.'); parameters.rframes={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency enforcement function grumble(spin_system,pulse_sequence,parameters,assumptions) % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Rotating frame transformations if ~isfield(parameters,'rframes') error('parameters.rframes variable must be specified.'); elseif ~iscell(parameters.rframes) error('parameters.rframes must be a cell array.'); end for n=1:numel(parameters.rframes) if ~iscell(parameters.rframes{n}) error('elements of parameters.rframes must be cell arrays.'); end if numel(parameters.rframes{n})~=2 error('elements of parameters.rframes must have exactly two sub-elements each.'); end if ~ischar(parameters.rframes{n}{1}) error('the first part of each element of parameters.rframes must be a character string.'); end if ~ismember(parameters.rframes{n}{1},spin_system.comp.isotopes) error('parameters.rframes refers to a spin that is not present in the system.'); end if ~isnumeric(parameters.rframes{n}{2}) error('the second part of each element of parameters.rframes must be a number.'); end end end % A man who can conceive a thing as beautiful as this should never % have allowed it to be erected. [...] But he will let it be built, % so that women will hang out diapers on his terraces, so that men % will spit on his stairways and draw dirty pictures on his walls. % [...] They will be committing only a mean little indecency, but % he has committed a sacrilege. % % Ayn Rand, "The Fountainhead"
github
tsajed/nmr-pred-master
floquet.m
.m
nmr-pred-master/spinach/kernel/contexts/floquet.m
9,877
utf_8
65d69fc1a0387f63323369e3bedaaaa9
% Floquet magic angle spinning context. Generates a Liouvillian super- % operator and passes it on to the pulse sequence function, which sho- % uld be supplied as a handle. Syntax: % % answer=floquet(spin_system,pulse_sequence,parameters,assumptions) % % where pulse sequence is a function handle to one of the pulse sequences % located in the experiments directory, assumptions is a string that would % be passed to assume.m when the Hamiltonian is built and parameters is a % structure with the following subfields: % % parameters.rate - spinning rate in Hz % % parameters.axis - spinning axis, given as a normalized % 3-element vector % % parameters.spins - a cell array giving the spins that % the pulse sequence involves, e.g. % {'1H','13C'} % % parameters.offset - a cell array giving transmitter off- % sets in Hz on each of the spins listed % in parameters.spins array % % parameters.max_rank - maximum harmonic rank to retain in % the solution (increase till conver- % gence is achieved, approximately % equal to the number of spinning si- % debands in the spectrum) % % parameters.grid - spherical grid file name. See grids % directory in the kernel. % % Additional subfields may be required by the pulse sequence. The parameters % structure is passed to the pulse sequence with the following additional % parameters set: % % parameters.spc_dim - matrix dimension for the spatial % dynamics subspace % % parameters.spn_dim - matrix dimension for the spin % dynamics subspace % % This function returns the powder average of whatever it is that the pulse % sequence returns. % % Note: the choice of the rank depends on the spinning rate (the slower % the spinning, the greater ranks are required). The rank is appro- % ximately equal to the number of spinning sidebands. % % Note: the state projector assumes a powder -- single crystal MAS is not % currently supported. % % [email protected] % [email protected] function answer=floquet(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Get the Hamiltonian [H,Q]=hamiltonian(assume(spin_system,assumptions)); % Apply frequency offsets H=frqoffset(spin_system,H,parameters); % Get relaxation and kinetics R=relaxation(spin_system); K=kinetics(spin_system); % Get the averaging grid sph_grid=load([spin_system.sys.root_dir '/kernel/grids/' parameters.grid '.mat']); % Get problem dimensions spc_dim=2*parameters.max_rank+1; spn_dim=size(H,1); report(spin_system,['lab space problem dimension ' num2str(spc_dim)]); report(spin_system,['spin space problem dimension ' num2str(spn_dim)]); report(spin_system,['Floquet problem dimension ' num2str(spc_dim*spn_dim)]); parameters.spc_dim=spc_dim; parameters.spn_dim=spn_dim; % Build the MAS part of the Liouvillian M=2*pi*parameters.rate*kron(spdiags((parameters.max_rank:-1:-parameters.max_rank)',0,spc_dim,spc_dim),speye(spn_dim)); % Kron up relaxation and kinetics R=kron(speye(spc_dim),R); K=kron(speye(spc_dim),K); % Get the rotor orientation [phi,theta,~]=cart2sph(parameters.axis(1),parameters.axis(2),parameters.axis(3)); theta=pi/2-theta; D_rot2lab=euler2wigner(phi,theta,0); D_lab2rot=D_rot2lab'; % Project states P=spalloc(spc_dim,1,1); P((spc_dim+1)/2)=1; if isfield(parameters,'rho0') parameters.rho0=kron(P,parameters.rho0); end if isfield(parameters,'coil') parameters.coil=kron(P,parameters.coil); end % Store problem dimension information parameters.spc_dim=spc_dim; parameters.spn_dim=spn_dim; % Estimate nonzero count nnz_est=sum(sum(cellfun(@nnz,Q))); % Preallocate answer array ans_array=cell(numel(sph_grid.weights),1); % Shut up and inform the user report(spin_system,['powder average being computed over ' num2str(numel(sph_grid.weights)) ' orientations.']); if ~isfield(parameters,'verbose')||(parameters.verbose==0) report(spin_system,'pulse sequence has been silenced to avoid excessive output.'); spin_system.sys.output='hush'; end % Powder averaged spectrum parfor q=1:numel(sph_grid.weights) %#ok<*PFBNS> % Set the crystal reference frame D_mol2rot=euler2wigner(sph_grid.alphas(q),sph_grid.betas(q),sph_grid.gammas(q))'; % Move into rotor frame D_mol2rot=D_rot2lab*D_mol2rot*D_lab2rot; % Preallocate fourier terms fourier_terms=cell(5,1); % Get Fourier terms of the Hamiltonian for n=1:5 fourier_terms{n}=spalloc(size(H,1),size(H,2),nnz_est); D_rotor=zeros(5,5); D_rotor(n,n)=1; D=D_rot2lab*D_rotor*D_lab2rot*D_mol2rot; for m=1:5 for k=1:5 fourier_terms{n}=fourier_terms{n}+Q{k,m}*D(k,m); end end end % Add the isotropic part fourier_terms{3}=fourier_terms{3}+H; % Kron up into the Floquet space F=spalloc(spc_dim*spn_dim,spc_dim*spn_dim,0); for n=1:5 F=F+kron(spdiags(ones(spc_dim,1),n-3,spc_dim,spc_dim),fourier_terms{n}); end % Add the MAS part and clean up F=clean_up(spin_system,F+M,spin_system.tols.liouv_zero); % Report to the user report(spin_system,'running the pulse sequence...'); % Run the pulse sequence ans_array{q}=pulse_sequence(spin_system,parameters,F,R,K); end % Add up structures answer=sph_grid.weights(1)*ans_array{1}; for n=2:numel(ans_array) answer=answer+sph_grid.weights(n)*ans_array{n}; end end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency enforcement function grumble(spin_system,pulse_sequence,parameters,assumptions) % Rotating frames if isfield(parameters,'rframes') error('numerical rotating frame transformation is not supported by Floquet theory.'); end % Formalism if ~ismember(spin_system.bas.formalism,{'zeeman-liouv','sphten-liouv'}) error('this function is only available in Liouville space.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Rotor rank if ~isfield(parameters,'max_rank') error('parameters.max_rank subfield must be present.'); elseif (~isnumeric(parameters.max_rank))||(~isreal(parameters.max_rank))||... (mod(parameters.max_rank,1)~=0)||(parameters.max_rank<0) error('parameters.max_rank must be a positive real integer.'); end % Spinning rate if ~isfield(parameters,'rate') error('parameters.rate subfield must be present.'); elseif (~isnumeric(parameters.rate))||(~isreal(parameters.rate)) error('parameters.rate must be a real number.'); end % Spinning axis if ~isfield(parameters,'axis') error('parameters.axis subfield must be present.'); elseif (~isnumeric(parameters.axis))||(~isreal(parameters.axis))||... (~isrow(parameters.axis))||(numel(parameters.axis)~=3) error('parameters.axis must be a row vector of three real numbers.'); end % Spherical grid if ~isfield(parameters,'grid') error('spherical averaging grid must be specified in parameters.grid variable.'); elseif isempty(parameters.grid) error('parameters.grid variable cannot be empty.'); elseif ~ischar(parameters.grid) error('parameters.grid variable must be a character string.'); elseif strcmp(parameters.grid,'single_crystal') error('this module does not support single crystal simulations, use singlerot() instead.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end end % If you've got a good idea then go ahead and do it. It's always % easier to ask forgiveness than it is to get permission. % % Rear Admiral Grace Hopper
github
tsajed/nmr-pred-master
crystal.m
.m
nmr-pred-master/spinach/kernel/contexts/crystal.m
7,327
utf_8
a81332b76ec1a047239c55862e7fe2f9
% Single-crystal interface to pulse sequences. Generates a Liouvillian % superoperator and passes it on to the pulse sequence function, which % should be supplied as a handle. Syntax: % % answer=crystal(spin_system,pulse_sequence,parameters,assumptions) % % where pulse sequence is a function handle to one of the pulse sequences % located in the experiments directory, assumptions is a string that would % be passed to assume.m when the Hamiltonian is built and parameters is a % structure with the following subfields: % % parameters.spins - a cell array giving the spins that % the pulse sequence involves, e.g. % {'1H','13C'} % % parameters.offset - a cell array giving transmitter off- % sets in Hz on each of the spins listed % in parameters.spins array % % parameters.orientation - a row vector of the three Euler angles % (in radians) giving the orientation of % the system relative to the input orien- % tation. % % parameters.rframes - rotating frame specification, e.g. % {{'13C',2},{'14N,3}} requests second % order rotating frame transformation % with respect to carbon-13 and third % order rotating frame transformation % with respect to nitrogen-14. When % this option is used, the assumptions % on the respective spins should be % laboratory frame. % % Additional subfields may be required by the pulse sequence. The parameters % structure is passed to the pulse sequence with the following additional % parameters set: % % parameters.spc_dim - matrix dimension for the spatial % dynamics subspace % % parameters.spn_dim - matrix dimension for the spin % dynamics subspace % % This function returns whatever it is that the pulse sequence returns. % % [email protected] function answer=crystal(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Set the secularity assumptions spin_system=assume(spin_system,assumptions); % Get the rotational expansion [I,Q]=hamiltonian(spin_system); % Apply the offsets I=frqoffset(spin_system,I,parameters); % Build the Hamiltonian H=I+orientation(Q,parameters.orientation); H=(H+H')/2; % Get carrier operators C=cell(size(parameters.rframes)); for n=1:numel(parameters.rframes) C{n}=carrier(spin_system,parameters.rframes{n}{1}); end % Apply rotating frames for k=1:numel(parameters.rframes) H=rotframe(spin_system,C{k},H,parameters.rframes{k}{1},parameters.rframes{k}{2}); end % Build relaxation and kinetics R=relaxation(spin_system,parameters.orientation); K=kinetics(spin_system); % Get problem dimensions parameters.spc_dim=1; parameters.spn_dim=size(H,1); % Report to the user report(spin_system,'running the pulse sequence...'); % Call the pulse sequence answer=pulse_sequence(spin_system,parameters,H,R,K); end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'rframes') report(spin_system,'parameters.rframes field not set, assuming no additional rotating frame transformations.'); parameters.rframes={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency checking function grumble(spin_system,pulse_sequence,parameters,assumptions) % Orientation if ~isfield(parameters,'orientation') error('system orientation must be specified in parameters.orientation variable.'); elseif ~all(size(parameters.orientation)==[1 3]) error('parameters.orientation variable must be a row vector with three numbers.'); elseif ~isnumeric(parameters.orientation) error('elements of parameters.orientation vector must be real numbers.'); end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Rotating frame transformations if ~isfield(parameters,'rframes') error('parameters.rframes variable must be specified.'); elseif ~iscell(parameters.rframes) error('parameters.rframes must be a cell array.'); end for n=1:numel(parameters.rframes) if ~iscell(parameters.rframes{n}) error('elements of parameters.rframes must be cell arrays.'); end if numel(parameters.rframes{n})~=2 error('elements of parameters.rframes must have exactly two sub-elements each.'); end if ~ischar(parameters.rframes{n}{1}) error('the first part of each element of parameters.rframes must be a character string.'); end if ~ismember(parameters.rframes{n}{1},spin_system.comp.isotopes) error('parameters.rframes refers to a spin that is not present in the system.'); end if ~isnumeric(parameters.rframes{n}{2}) error('the second part of each element of parameters.rframes must be a number.'); end end end % Why do they always teach us that it's easy and evil to do what we % want and that we need discipline to restrain ourselves? It's the % hardest thing in the world - to do what we want. And it takes the % greatest kind of courage. I mean, what we really want. % % Ayn Rand, "The Fountainhead"
github
tsajed/nmr-pred-master
powder.m
.m
nmr-pred-master/spinach/kernel/contexts/powder.m
8,514
utf_8
7cce16925a809009ed290cb07740a8cb
% Powder interface to pulse sequences. Generates a Liouvillian super- % operator, the initial state and the coil state, then passes them on % to the pulse sequence function. % % This function supports parallel processing via Matlab's Distributed % Computing Toolbox - different crystal orientations are evaluated on % different labs. Arguments: % % pulse_sequence - pulse sequence function handle. See the % experiments directory for the list of % pulse sequences that ship with Spinach. % % parameters - a structure containing sequence-specific % parameters. See the pulse sequence header % for the list of parameters each sequence % requires. The parameters that this inter- % face itself requires are: % % parameters.spins - a cell array giving the % spins that the pulse sequence works on, in % the order of channels, e.g. {'1H','13C'} % % parameters.offset - a cell array giving % transmitter offsets on each of the spins % listed in parameters.spins. % % parameters.grid - name of the spherical % averaging grid file (see the grids direc- % tory in the kernel). % % assumptions - context-specific assumptions ('nmr', 'epr', % 'labframe', etc.) - see the pulse sequence % header for information on this setting. % % This function returns a powder average of whatever it is that the pul- % se sequence returns. If a structure is returned by the pulse sequence, % the structures are powder averaged field-by-field. % % [email protected] % [email protected] function answer=powder(spin_system,pulse_sequence,parameters,assumptions) % Show the banner banner(spin_system,'sequence_banner'); % Set common defaults parameters=defaults(spin_system,parameters); % Check consistency grumble(spin_system,pulse_sequence,parameters,assumptions); % Report to the user report(spin_system,'building the Liouvillian...'); % Set the assumptions spin_system=assume(spin_system,assumptions); % Get the rotational expansion of the Hamiltonian [I,Q]=hamiltonian(spin_system); % Get kinetics superoperator K=kinetics(spin_system); % Add offsets to the isotropic part I=frqoffset(spin_system,I,parameters); % Get carrier operators C=cell(size(parameters.rframes)); for n=1:numel(parameters.rframes) C{n}=carrier(spin_system,parameters.rframes{n}{1}); end % Get problem dimensions parameters.spc_dim=1; parameters.spn_dim=size(I,1); % Get the averaging grid as a struct spherical_grid=load([spin_system.sys.root_dir '/kernel/grids/' parameters.grid],... 'alphas','betas','gammas','weights'); % Assign local variables alphas=spherical_grid.alphas; betas=spherical_grid.betas; gammas=spherical_grid.gammas; weights=spherical_grid.weights; % Preallocate answer array ans_array=cell(numel(weights),1); % Shut up and inform the user report(spin_system,['powder average being computed over ' num2str(numel(weights)) ' orientations.']); if ~isfield(parameters,'verbose')||(parameters.verbose==0) report(spin_system,'pulse sequence has been silenced to avoid excessive output.') spin_system.sys.output='hush'; end % Crunch orientations in parallel parfor n=1:numel(weights) % Get the full Hamiltonian at the current orientation H=I+orientation(Q,[gammas(n) betas(n) alphas(n)]); H=(H+H')/2; % Apply rotating frames for k=1:numel(parameters.rframes) %#ok<PFBNS> H=rotframe(spin_system,C{k},H,parameters.rframes{k}{1},parameters.rframes{k}{2}); %#ok<PFBNS> end % Get the relaxation superoperator at the current orientation R=relaxation(spin_system,[gammas(n) betas(n) alphas(n)]); % Report to the user report(spin_system,'running the pulse sequence...'); % Run the simulation (it might return a structure) ans_array{n}=pulse_sequence(spin_system,parameters,H,R,K); %#ok<PFBNS> end % Add up structures answer=weights(1)*ans_array{1}; for n=2:numel(ans_array) answer=answer+weights(n)*ans_array{n}; end end % Default parameters function parameters=defaults(spin_system,parameters) if ~isfield(parameters,'decouple') report(spin_system,'parameters.decouple field not set, assuming no decoupling.'); parameters.decouple={}; end if ~isfield(parameters,'rframes') report(spin_system,'parameters.rframes field not set, assuming no additional rotating frame transformations.'); parameters.rframes={}; end if ~isfield(parameters,'offset') report(spin_system,'parameters.offset field not set, assuming zero offsets.'); parameters.offset=zeros(size(parameters.spins)); end if ~isfield(parameters,'verbose') report(spin_system,'parameters.verbose field not set, silencing array operations.'); parameters.verbose=0; end end % Consistency checking function grumble(spin_system,pulse_sequence,parameters,assumptions) % Spherical grid if ~isfield(parameters,'grid') error('spherical averaging grid must be specified in parameters.grid variable.'); elseif isempty(parameters.grid) error('parameters.grid variable cannot be empty.'); elseif ~ischar(parameters.grid) error('parameters.grid variable must be a character string.'); end % Pulse sequence if ~isa(pulse_sequence,'function_handle') error('pulse_sequence argument must be a function handle.'); end % Assumptions if ~ischar(assumptions) error('assumptions argument must be a character string.'); end % Active spins if isempty(parameters.spins) error('parameters.spins variable cannot be empty.'); elseif ~iscell(parameters.spins) error('parameters.spins variable must be a cell array.'); elseif ~all(cellfun(@ischar,parameters.spins)) error('all elements of parameters.spins cell array must be strings.'); elseif any(~ismember(parameters.spins,spin_system.comp.isotopes)) error('parameters.spins refers to a spin that is not present in the system.'); end % Offsets if isempty(parameters.offset) error('parameters.offset variable cannot be empty.'); elseif ~isnumeric(parameters.offset) error('parameters.offset variable must be an array of real numbers.'); elseif ~isfield(parameters,'spins') error('parameters.spins variable must be specified alongside parameters.offset variable.'); elseif numel(parameters.offset)~=numel(parameters.spins) error('parameters.offset variable must have the same number of elements as parameters.spins.'); end % Rotating frame transformations if ~isfield(parameters,'rframes') error('parameters.rframes variable must be specified.'); elseif ~iscell(parameters.rframes) error('parameters.rframes must be a cell array.'); end for n=1:numel(parameters.rframes) if ~iscell(parameters.rframes{n}) error('elements of parameters.rframes must be cell arrays.'); end if numel(parameters.rframes{n})~=2 error('elements of parameters.rframes must have exactly two sub-elements each.'); end if ~ischar(parameters.rframes{n}{1}) error('the first part of each element of parameters.rframes must be a character string.'); end if ~ismember(parameters.rframes{n}{1},spin_system.comp.isotopes) error('parameters.rframes refers to a spin that is not present in the system.'); end if ~isnumeric(parameters.rframes{n}{2}) error('the second part of each element of parameters.rframes must be a number.'); end end end % Do not confuse altruism with kindness. The irreducible primary of % altruism is self-sacrifice - which means self-immolation, self- % abnegation, self-denial. Do not hide behind such superficialities % as whether you should or should not give a dime to a beggar. This % is not the issue. The issue is whether you do or do not have the % right to exist without giving him that dime. The issue is whether % the need of others is the first mortgage on your life and the mo- % ral purpose of your existence. Any man of self-esteem will answer: % No. Altruism says: Yes. % % Ayn Rand
github
tsajed/nmr-pred-master
imaging.m
.m
nmr-pred-master/spinach/kernel/contexts/imaging.m
5,660
utf_8
ca7d80e75b1f4c5fb01b5c8cd16f89e7
% Generates spatially distributed dynamics operators. Syntax: % % [H,R,K,D,Gx,Gy,Gz,Fx,Fy,Fz]=imaging(H,Ph,K,Z,parameters) % % The following outputs are returned: % % H - spin Hamiltonian in the Fokker-Planck space % % R - spin relaxation superoperator in the Fokker- % Planck space % % K - chemical kinetics superoperator in the Fokk- % er-Planck space % % Gx,Gy,Gz - gradient operators (normalized for 1.0 T/m) % % D - diffusion operator (absorptive boundary con- % conditions, normalized to 1.0 m^2/s) % % The following parameters must be provided: % % H - spin Hamiltonian commutation superoperator % in Liouville space % % Ph - relaxation superoperators and their phantoms % as {{R1,Ph1},{R2,Ph2},...} % % K - chemical kinetics superoperator in Liouvil- % le space % % Z - normalized Zeeman Hamiltonian commutation % superoperator in Liouville space(to be ob- % tained from carrier.m and divided by the % magnet field) % % parameters.dims - dimensions of the 3D box, meters % % parameters.npts - number of points in each dimension % of the 3D box % % parameters.cond - {'fourier'} for Furier derivative operators; % {'period',n} for n-point finite-difference % operators with periodic boundary condition % % Note: gradients are assumed to be linear and centered on the % middle of the sample. % % Note: the direct product order is Z(x)Y(x)X(x)Spin, this cor- % responds to a column-wise vectorization of a 3D array % with dimensions ordered as [X Y Z]. % % [email protected] % [email protected] function [H,R,K,D,Gx,Gy,Gz,Fx,Fy,Fz]=imaging(H,Ph,K,Z,parameters) % Adapt to the dimensionality switch numel(parameters.npts) case 1 % Call the hydrodynamics infrastructure Fx=hydrodynamics(parameters); Fy=[]; Fz=[]; % Get the diffusion operator D=-1i*Fx*Fx; % Kron into Fokker-Planck space Fx=kron(Fx,speye(size(Z))); D=kron(D,speye(size(Z))); % Generate normalized gradient operators Gx=linspace(-0.5,0.5,parameters.npts(1)); Gx=spdiags(Gx',0,parameters.npts(1),parameters.npts(1)); Gx=parameters.dims(1)*kron(Gx,Z); Gy=[]; Gz=[]; case 2 % Call the hydrodynamics infrastructure [Fx,Fy]=hydrodynamics(parameters); Fz=[]; % Get the diffusion operator D=-1i*(Fx*Fx+Fy*Fy); % Kron into Fokker-Planck space Fx=kron(Fx,speye(size(Z))); Fy=kron(Fy,speye(size(Z))); D=kron(D,speye(size(Z))); % Generate normalized gradient operators IdX=speye(parameters.npts(1)); IdY=speye(parameters.npts(2)); Gx=linspace(-0.5,0.5,parameters.npts(1)); Gy=linspace(-0.5,0.5,parameters.npts(2)); Gx=spdiags(Gx',0,parameters.npts(1),parameters.npts(1)); Gy=spdiags(Gy',0,parameters.npts(2),parameters.npts(2)); Gx=parameters.dims(1)*kron(IdY,kron(Gx,Z)); Gy=parameters.dims(2)*kron(Gy,kron(IdX,Z)); Gz=[]; case 3 % Call the hydrodynamics infrastructure [Fx,Fy,Fz]=hydrodynamics(parameters); % Get the diffusion operator D=-1i*(Fx*Fx+Fy*Fy+Fz*Fz); % Kron into Fokker-Planck space Fx=kron(Fx,speye(size(Z))); Fy=kron(Fy,speye(size(Z))); Fz=kron(Fz,speye(size(Z))); D=kron(D,speye(size(Z))); % Generate normalized gradient operators IdX=speye(parameters.npts(1)); IdY=speye(parameters.npts(2)); IdZ=speye(parameters.npts(3)); Gx=linspace(-0.5,0.5,parameters.npts(1)); Gy=linspace(-0.5,0.5,parameters.npts(2)); Gz=linspace(-0.5,0.5,parameters.npts(3)); Gx=spdiags(Gx',0,parameters.npts(1),parameters.npts(1)); Gy=spdiags(Gy',0,parameters.npts(2),parameters.npts(2)); Gz=spdiags(Gz',0,parameters.npts(3),parameters.npts(3)); Gx=parameters.dims(1)*kron(IdZ,kron(IdY,kron(Gx,Z))); Gy=parameters.dims(2)*kron(IdZ,kron(Gy,kron(IdX,Z))); Gz=parameters.dims(3)*kron(Gz,kron(IdY,kron(IdX,Z))); otherwise % Complain and bomb out error('incorrect number of spatial dimensions.'); end % Project the infrastructure H=kron(speye(prod(parameters.npts)),H); K=kron(speye(prod(parameters.npts)),K); % Preallocate relaxation matrix R=spalloc(size(H,1),size(H,2),0); % Build the relaxation matrix if ~isempty(Ph) for n=1:numel(Ph) R=R+kron(spdiags(Ph{n}{2}(:),0,prod(parameters.npts),prod(parameters.npts)),Ph{n}{1}); end end end % You have my sympathies with rotations theory - this is one of the % most treacherous parts of spin dynamics. At the recent ENC, a guy % approached Malcolm Levitt and declared that all rotation conventi- % ons in his book are off by a sign. I could see Malcolm's face tur- % ning white. Three hours later, when I completed my poster reading % cycle and returned to Malcolm's poster, the two were still there, % arguing heatedly over a laptop with Mathematica running. Somebody % asked me what they were discussing. I said, "religion". % % IK's email to Fred Mentink-Vigier, 2014
github
tsajed/nmr-pred-master
ttclass_amensum.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_amensum.m
10,851
utf_8
32f7131d279f541862f1e4dededcda46
% Sums buffered tensor trains in a single tensor train by AMEn algorithm. % % y=ttclass_amensum(x, tol, opts) % % Input: x is a ttclass with buffered rank-one tensors % tol is a relative tolerance parameter, e.g. 1.e-10. % Output: y is a ttclass with a single tensor train, s.t. % | x - y | < tol | x | in Frobenius norm % % [email protected] % [email protected] % function y=ttclass_amensum(x, tol, opts) % Parse opts parameters. We just populate what we do not have by defaults if ~exist('opts','var') opts = struct; end if ~isfield(opts, 'max_swp'); opts.max_swp=100; end if ~isfield(opts, 'init_guess_rank'); opts.init_guess_rank=2; end if ~isfield(opts, 'enrichment_rank'); opts.enrichment_rank=4; end if ~isfield(opts, 'verb'); opts.verb=0; end % Read tensor train sizes and ranks [d,N]=size(x.cores); sz=x.sizes; rnk=x.ranks; % Proceed a CP format and a sum of TT formats separately if all(all(rnk==1)) % convert a ttclass to CP format X=cell(d,1); for k=1:d X{k,1}=zeros(sz(k,1), sz(k,2),N); for i=1:N X{k,1}(:,:,i)=reshape(x.cores{k,i}, [sz(k,1),sz(k,2),1]); end end % generate a random initial guess y=rand(x, opts.init_guess_rank); [y,~]=ttclass_ort(y,-1); % generate a random enrichment z=rand(x, opts.enrichment_rank); [z,~]=ttclass_ort(z,-1); % precompute interfaces of projections Y'X Z'X and Z'Y yx = cell(d+1,1); yx{1}=ones(1,N); yx{d+1}=ones(N,1); zx = cell(d+1,1); zx{1}=ones(1,N); zx{d+1}=ones(N,1); zy = cell(d+1,1); zy{1}=1; zy{d+1}=1; nrm = ones(d,1); for k=d:-1:2 yx{k}=step_tt_by_cp(yx{k+1},y{k,1},X{k,1},-1); zx{k}=step_tt_by_cp(zx{k+1},z{k,1},X{k,1},-1); zy{k}=step_tt_by_tt(zy{k+1},z{k,1},y{k,1},-1); nrm(k)=norm(yx{k},'fro'); if(nrm(k)>0) yx{k}=yx{k}/nrm(k); zx{k}=zx{k}/nrm(k); end end % Set initial conditions flipped=false; satisfied=false; iter=0; while ~satisfied % Main iteration cycle iter=iter+1; % Read current ranks of approximation ry=y.ranks; rz=z.ranks; sz=x.sizes; % The difference between two consequitive iterations largest_stepsize=0; for k=1:d % Solve local approximation problem ynew=local_cp_to_tt(yx{k},yx{k+1},X{k,1},x.coeff); nrm(k)=norm(ynew(:),'fro'); if (nrm(k)>0) ynew=ynew/nrm(k); else nrm(k)=1; end % Check the convergence relative_stepsize=norm(ynew(:)-y{k,1}(:))/norm(y{k,1}(:)); largest_stepsize=max(largest_stepsize, relative_stepsize); if k<d % Truncate the updated core Y = reshape(ynew,[ry(k)*sz(k,1)*sz(k,2),ry(k+1)]); [U,S,V] = svd(Y, 'econ'); S = diag(S); rnew = ttclass_chop(S, tol*norm(S)/sqrt(d)); %r = min(r,rmax); U = U(:,1:rnew); V = diag(S(1:rnew))*V(:,1:rnew)'; ynew = U*V; end % Prepare error update and enrichment if opts.enrichment_rank>0 % Compute new error core after truncation % Project the truncated solution to the interface of Z ynew = reshape(ynew, [ry(k)*sz(k,1)*sz(k,2)*ry(k+1), 1]); ynew_enrich = reshape(ynew, [ry(k)*sz(k,1)*sz(k,2), ry(k+1)]); ynew_enrich = ynew_enrich*zy{k+1}; % Save crys. We use it in the enrichment of the solution yznew = reshape(ynew_enrich, [ry(k), sz(k,1)*sz(k,2)*rz(k+1)]); yznew = zy{k}*yznew; yznew = reshape(yznew, [rz(k)*sz(k,1)*sz(k,2)*rz(k+1), 1]); znew = local_cp_to_tt(zx{k},zx{k+1},X{k,1},x.coeff); znew = znew(:)/nrm(k) - yznew; znew = reshape(znew, [rz(k)*sz(k,1)*sz(k,2), rz(k+1)]); [znew,~]=qr(znew, 0); rz(k+1) = size(znew, 2); znew = reshape(znew, [rz(k),sz(k,1),sz(k,2),rz(k+1)]); if k<d % Compute the enrichment core enrichment = local_cp_to_tt(yx{k},zx{k+1},X{k,1},x.coeff); enrichment = enrichment(:)/nrm(k) - ynew_enrich(:); enrichment = reshape(enrichment, [ry(k)*sz(k,1)*sz(k,2), rz(k+1)]); % Enrich and orthogonalize the solution U_enriched = [U, enrichment]; [U,R]=qr(U_enriched, 0); R = R(:, 1:rnew); V = R*V; rnew = size(U,2); end end if k<d % Save the new block U y.cores{k,1} = reshape(U, [ry(k),sz(k,1),sz(k,2),rnew]); % Push the non-orthogonal factor forth the chain next_core = reshape(y{k+1,1}, [ry(k+1), sz(k+1,1)*sz(k+1,2)*ry(k+2)]); next_core = V*next_core; y.cores{k+1,1} = reshape(next_core, [rnew,sz(k+1,1),sz(k+1,2),ry(k+2)]); % Update the rank ry(k+1)=rnew; % Update the interfaces yx{k+1}=step_tt_by_cp(yx{k},y{k,1},X{k,1},+1); nrm(k)=norm(yx{k+1},'fro'); if (nrm(k)>0) yx{k+1}=yx{k+1}/nrm(k); end if opts.enrichment_rank>0 zx{k+1}=step_tt_by_cp(zx{k},znew,X{k,1},+1); zy{k+1}=step_tt_by_tt(zy{k},znew,y{k,1},+1); if (nrm(k)>0) zx{k+1}=zx{k+1}/nrm(k); end end end end % Reverse the tensor trains X = X(d:-1:1); y=revert(y); z=revert(z); x=revert(x); % ... and also the projections yx(2:d) = yx(d:-1:2); zx(2:d) = zx(d:-1:2); zy(2:d) = zy(d:-1:2); for k=2:d yx{k} = yx{k}.'; zx{k} = zx{k}.'; zy{k} = zy{k}.'; end nrm=nrm(d:-1:1); % Mark that we are currently having a flipped TT flipped = ~flipped; % And exit only if the direction is correct satisfied = (largest_stepsize<tol) && (iter<=opts.max_swp); % Report if necessary if opts.verb>0 str=sprintf('iter=%d, max_dx=%3.3e, max_r=%d\n',iter, largest_stepsize, max(y.ranks)); report(spin_system,str); end end % Output in the ttclass format if flipped y=revert(y); end nrm=exp(sum(log(nrm))/d); for k=1:d y.cores{k,1}=nrm*y.cores{k,1}; end y.tolerance=(nrm^d)*tol; else % sum of tensor trains error('TT not ready yet'); end end function ttcore = local_cp_to_tt(left_interface,right_interface,cp,coeff) % Read sizes [r1,N1]=size(left_interface); [N2,r2]=size(right_interface); [sz1,sz2,Ncp]=size(cp); [~,Ncf]=size(coeff); if ~(N1==N2 && N2==Ncp && Ncp==Ncf) error('CP ranks mismatch.'); end N=Ncf; % Contract left intefrace with CP data left_interface=repmat(left_interface,[sz1*sz2,1]); % [r1*sz1*sz2, N] cp=reshape(cp,[1,sz1*sz2*N]); cp=repmat(cp,[r1,1]); % [r1,sz1*sz2*N] cp=reshape(cp,[r1*sz1*sz2, N]); left_interface=left_interface.*cp; left_interface=reshape(left_interface,[r1*sz1*sz2,N]); % Contract right interface with coeff vector coeff=reshape(coeff,[N,1]); coeff=repmat(coeff,[1,r2]); right_interface=right_interface.*coeff; % [N,r2] % Contract left and right interfaces ttcore=left_interface*right_interface; ttcore=reshape(ttcore,[r1,sz1,sz2,r2]); end function next_interface = step_tt_by_cp(interface, tt, cp, direction) % Read sizes [r1,sz1,sz2,r2] = size(tt); [nn1,nn2,N] = size(cp); if ~(sz1==nn1 && sz2==nn2) error('sizes mismatch.'); end switch direction case +1 % Move one core to the right, compute next left interface tt = reshape(tt, [r1, sz1*sz2*r2]); interface = reshape(interface, [r1,N]); next_interface = tt'*interface; next_interface = reshape(next_interface, [sz1*sz2*r2, N]); cp = reshape(cp, [sz1*sz2,N]); cp = repmat(cp, [r2,1]); next_interface = next_interface.*cp; next_interface = reshape(next_interface, [sz1*sz2, r2*N]); next_interface = sum(next_interface, 1); next_interface = reshape(next_interface, [r2, N]); case -1 % Move one core to the left, compute next right interface tt = reshape(tt, [r1*sz1*sz2, r2]); interface = reshape(interface, [N,r2]); next_interface = interface*tt'; next_interface = reshape(next_interface, [N, r1*sz1*sz2]); cp = reshape(cp, [sz1*sz2,N]); cp = cp.'; cp = repmat(cp, [r1,1]); cp = reshape(cp, [N, r1*sz1*sz2]); next_interface = next_interface.*cp; next_interface = reshape(next_interface, [N*r1, sz1*sz2]); next_interface = sum(next_interface, 2); next_interface = reshape(next_interface, [N, r1]); otherwise error('unrecognized direction.'); end end function next_interface = step_tt_by_tt(interface, ttx, tty, direction) % Read sizes [rx1,szx1,szx2,rx2] = size(ttx); [ry1,szy1,szy2,ry2] = size(tty); if ~(szx1==szy1 && szx2==szy2) error('sizes mismatch.'); end sz1=szx1; sz2=szx2; switch direction case +1 % Move one core to the right, compute next left interface ttx = reshape(ttx, [rx1, sz1*sz2*rx2]); tty = reshape(tty, [ry1*sz1*sz2, ry2]); interface = reshape(interface, [rx1, ry1]); next_interface = ttx'*interface; next_interface = reshape(next_interface, [sz1*sz2, rx2*ry1]); next_interface = next_interface.'; next_interface = reshape(next_interface, [rx2, ry1*sz1*sz2]); next_interface = next_interface*tty; next_interface = reshape(next_interface, [rx2, ry2]); case -1 % Move one core to the left, compute next right interface ttx = reshape(ttx, [rx1, sz1*sz2*rx2]); tty = reshape(tty, [ry1*sz1*sz2, ry2]); interface = reshape(interface, [ry2, rx2]); next_interface = tty*interface; next_interface = reshape(next_interface, [ry1, sz1*sz2*rx2]); next_interface = next_interface*ttx'; next_interface = reshape(next_interface, [ry1, rx1]); otherwise error('unrecognized direction.'); end end
github
tsajed/nmr-pred-master
ttclass_svd.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_svd.m
1,496
utf_8
51fd6a6e6abd1c75c8085b5e8dcb8457
% Performs TT-truncation (right-to-left) for a tensor train. % Normally you should not call this subroutine directly. % % TTOUT=TTCLASS_SVD(TT) % % TT should contain a single tensor train, i.e. TT.ntrains=1. % TT should be orthogonalised left-to-right, eg. by TTCLASS_ORT. % TTOUT contains the same data approximated with lower TT-ranks. % Approximation threshold is read from TT.tolerance (in Frobenius norm). % TTOUT is return orthogonalised right-to-left. % % [email protected] % function ttout=ttclass_svd(tt) % Read tensor ranks and dimensions sz=tt.sizes; rnk=tt.ranks; d=tt.ncores; N=tt.ntrains; if N>1 error('Please sum all tensor trains before calling ttclass_svd'); end % Preallocate the result ttout=tt; r=rnk(:,1); % Define the relative approximation accuracy eps=tt.tolerance(1,1)/tt.coeff(1,1); eps=eps/sqrt(d); % SVD cores right-to-left for k=d:-1:2 C=reshape(ttout.cores{k,1}, [r(k), sz(k,1)*sz(k,2)*r(k+1)]); B=reshape(ttout.cores{k-1,1}, [r(k-1)*sz(k-1,1)*sz(k-1,2), r(k)]); [U,S,V]=svd(C,'econ'); S=diag(S); rnew=ttclass_chop(S,eps*norm(S,'fro')); U=U(:,1:rnew); S=S(1:rnew); V=V(:,1:rnew); ttout.cores{k,1}=reshape(V', [rnew, sz(k,1), sz(k,2), r(k+1)]); ttout.cores{k-1,1}=reshape(B*U*diag(S), [r(k-1), sz(k-1,1), sz(k-1,2), rnew]); r(k)=rnew; end nrm=norm(ttout.cores{1,1}(:)); ttout.cores{1,1}=ttout.cores{1,1}/nrm; ttout.coeff(1,1)=ttout.coeff(1,1)*nrm; end
github
tsajed/nmr-pred-master
ttclass_sum.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_sum.m
1,353
utf_8
43e2237a406fe30867a50049f6b837f9
% This subroutine packs all trains from buffer to a single train. % Normally you should not call it directly, use SHRINK instead. % % TTOUT=TTCLASS_SUM(TT) % % TT contains several buffered trains, % TTOUT has one train with sum-of-ranks. % % [email protected] % function ttout=ttclass_sum(tt) % Read tensor ranks and dimensions sz=tt.sizes; rnk=tt.ranks; [d,N]=size(tt.cores); % Fast return if possible if N==1 ttout=tt; return end % Total rank of all summands R=sum(rnk,2); R(1)=1; R(d+1)=1; % Preallocate a single tensor train for all summands core=cell(d,1); for k=1:d core{k}=zeros(R(k),sz(k,1),sz(k,2),R(k+1)); end % Collect buffered trains in a single tensor train rr=[zeros(d+1,1), cumsum(rnk,2)]; for n=1:N if d>1 core{1,1}(1,:,:,rr(2,n)+1:rr(2,n+1))=tt.coeff(1,n)*tt.cores{1,n}; for k=2:d-1 core{k,1}(rr(k,n)+1:rr(k,n+1), :,:, rr(k+1,n)+1:rr(k+1,n+1))=tt.cores{k,n}; end core{d,1}(rr(d,n)+1:rr(d,n+1),:,:,1)=tt.cores{d,n}; else % Special case of one-site tensor trains core{1,1}(1,:,:,1)=core{1,1}(1,:,:,1)+tt.coeff(1,n)*tt.cores{1,n}; end end % Construct empty ttclass array and fill the fields ttout=ttclass; ttout.coeff=1; ttout.cores=core; ttout.tolerance=abs(sum(tt.tolerance)); end
github
tsajed/nmr-pred-master
ttclass_amen_solve.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_amen_solve.m
18,579
utf_8
ed0bff477f38e79e4d9ae64abc3b3aa4
% Solves the linear system Ax=y using the AMEn iteration. % % x = amen_solve(A,y,tol,opts,x0) % % Input: A is a ttclass representing the square matrix; % y is a ttclass representing the right hand side. Both A and y % should have ntrains==1. Call shrink(A), shrink(y) if it is not % the case. % tol is the relative approximation and stopping tolerance (e.g. 1e-6). % Output: x is a ttclass representing the solution such that % |x-X| < tol |X| in Frobenius norm, where X is the exact solution. % Optional input: opts is a structure of optional parameters; % x0 is a ttclass representing the initial guess. It should % have ntrains==1. % % [email protected] % [email protected] function x=ttclass_amen_solve(A,y,tol,opts,x0) % Parse opts parameters. We just populate what we do not have by defaults if ~exist('opts','var') opts = struct; end % Maximal number of AMEn sweeps if ~isfield(opts, 'nswp'); opts.nswp=20; end % The rank of the initial guess, if it is not given as x0 if ~isfield(opts, 'init_guess_rank'); opts.init_guess_rank=2; end % The rank of the residual and enrichment if ~isfield(opts, 'enrichment_rank'); opts.enrichment_rank=4; end % Local accuracy gap. If the iterative solver is used for local problems, % it's stopping tolerance is set to (tol/sqrt(d))/resid_damp if ~isfield(opts, 'resid_damp'); opts.resid_damp=2; end % Maximal TT rank limit for the solution if ~isfield(opts, 'rmax'); opts.rmax=Inf; end % If the size of the local system is smaller than max_full_size, solve it % directly, otherwise iteratively. Larger max_full_size gives higher % accuracy, but may slow down the process. if ~isfield(opts, 'max_full_size'); opts.max_full_size=500; end % Maximal number of bicgstab iterations for local problems if ~isfield(opts, 'local_iters'); opts.local_iters=100; end % Verbocity level: silent (0), sweep info (1) or full info for each block (2). if ~isfield(opts, 'verb'); opts.verb=1; end % Check the initial guess if ~exist('x0','var') % Take initial guess at random x0=rand(y, opts.init_guess_rank); [x0,~]=ttclass_ort(x0,-1); end % Copy initial guess to the solution storage x=x0; % Check inputs for consistency grumble(A,y,x); % Read dimension and mode sizes d=y.ncores; % dimension of the problem sz=A.sizes; % mode sizes sz=sz(:,1); % square matrix is assumed % Clear coefficients from all data A=clearcoeff(A); y=clearcoeff(y); x=clearcoeff(x); % Initialize reductions of the system to the interfaces of the solution reduction_XAX = cell(d+1,1); reduction_XAX{1}=1; reduction_XAX{d+1}=1; reduction_XY = cell(d+1,1); reduction_XY{1}=1; reduction_XY{d+1}=1; % If the residual is used, initialise its ranks and reductions if opts.enrichment_rank>0 rz = [1;opts.enrichment_rank*ones(d-1,1);1]; % Reductions of the system to the interfaces of the residual reduction_ZAX = cell(d+1,1); reduction_ZAX{1}=1; reduction_ZAX{d+1}=1; reduction_ZY = cell(d+1,1); reduction_ZY{1}=1; reduction_ZY{d+1}=1; end % The TT truncation accumulates the error from a single step with the % factor sqrt(d). Therefore, the tolerance should be adjusted to sqrt(d). local_tolerance = tol/sqrt(d); % Initialize some variables of the main loop flipped = false; % It will mark that the TT formats are flipped satisfied = false; % Check whether error or iteration stopping condition is hit iter = 1; % The number of sweeps % To prevent overflow, we keep the norms of A,y and x separately in the % factored form norm_x = ones(d-1,1); % norms of solution blocks norm_yAx = ones(d-1,1); % Rescaling factors, equal to norm(y(i))/norm(A(i))/norm(x(i)) while ~satisfied % AMEn iteration, loop over sweeps % Read TT ranks ra=A.ranks; ry=y.ranks; rx=x.ranks; maximal_error=0; % Maximal relative error and residual over the sweep maximal_residual=0; % Loop over cores for k=d:-1:1 if ~flipped % Iterating from d to 1, just orthogonalize the blocks current_block = reshape(x.cores{k,1}, [rx(k), sz(k)*rx(k+1)]); [v,u]=qr(current_block.', 0); new_rx = size(v,2); u = u.'; v = v.'; else % Iterating from 1 to d, we update the solution % Assemble the local right-hand side current_rhs = local_vector(reduction_XY{k}, y.cores{k,1}, reduction_XY{k+1}); current_rhs = current_rhs*prod(norm_yAx); % Read the initial guess -- the TT block from the prev. iteration old_block = reshape(x.cores{k,1}, [rx(k)*sz(k)*rx(k+1),1]); % Save the norm of the right-hand side norm_rhs = norm(current_rhs); % Read the matrix parts, accelerate a plenty of iterations with them left_XAX = reduction_XAX{k}; current_A = A.cores{k,1}; right_XAX = reduction_XAX{k+1}; % Measure the previous residual previous_Ax=local_matvec(old_block, left_XAX, current_A, right_XAX); previous_residual = norm(current_rhs-previous_Ax)/norm_rhs; if (rx(k)*sz(k)*rx(k+1)<opts.max_full_size) % If the system size is small, assemble the full system and solve directly current_matrix = local_matrix(left_XAX, current_A, right_XAX); current_block = current_matrix\current_rhs; % Report if verbocity is >1 if (opts.verb>1) fprintf('amen_solve: swp=%d, i=%d. Backslash. ', iter, k); end else % System is large, solve iteratively % Extract the number of local iterations wisely local_iters = opts.local_iters; if (numel(local_iters)>1) local_iters = local_iters(k); end % Run the bicgstab with the matrix defined by the structured MatVec [current_block,~,bicg_res,bicg_iters] = bicgstab(... @(x)local_matvec(x, left_XAX, current_A, right_XAX),... current_rhs, max(local_tolerance/opts.resid_damp,eps*2), local_iters, [], [], old_block); % Report to user if (opts.verb>1) fprintf('amen_solve: iter=%d, i=%d. Bicgstab: %g iters, residual %3.3e. ', iter, k, bicg_iters, bicg_res); end end % Measure the error local_error = norm(current_block-old_block)/norm(current_block); % Update the worst errors maximal_error = max(maximal_error, local_error); maximal_residual = max(maximal_residual, previous_residual); % Reshape the block for the truncation current_block = reshape(current_block, [rx(k), sz(k)*rx(k+1)]); % Truncation if k>1 % Compute the SVD [u,s,v] = svd(current_block,'econ'); s = diag(s); % Select the rank based on Fro-norm thresholding new_rx = ttclass_chop(s,local_tolerance*norm(s)); % Limit the rank to rmax new_rx = min(new_rx, opts.rmax); % Shrink SVD factors to r % U*S will be cast to the neighbouring block u = u(:,1:new_rx)*diag(s(1:new_rx)); % The current block will be left orthogonal v = v(:,1:new_rx)'; % Save the truncated solution to compute the residual later current_block = u*v; % Report the chosen rank if (opts.verb>1) fprintf('Rank: %d. \n', new_rx); end end % Copy the new block to the main storage x.cores{k} = reshape(current_block, rx(k), sz(k), 1, rx(k+1)); end % Update the residual z if (opts.enrichment_rank>0) if iter==1 % In the first sweep, there are no reductions yet. % Just initialize z by random zblock = randn(rz(k), sz(k)*rz(k+1)); else % In higher sweeps, the reductions are computed, and we can % evaluate new Z. % Project y via the reductions onto the Z interface zblock_y = local_vector(reduction_ZY{k}, y.cores{k,1}, reduction_ZY{k+1}); zblock_y = zblock_y*prod(norm_yAx); % Project Ax zblock_Ax = local_matvec(x.cores{k,1}, reduction_ZAX{k}, A.cores{k,1}, reduction_ZAX{k+1}); % z=y-Ax projected to Z zblock = zblock_y-zblock_Ax; end % Reshape zblock for the orthogonalization zblock = reshape(zblock, [rz(k), sz(k)*rz(k+1)]); [zblock,~]=qr(zblock.', 0); zblock = zblock.'; % Careful: store the old rank of z, since it is that will be used % in the solution enrichment, not the updated value after the QR old_rz = rz(k); % Now replace it rz(k) = size(zblock,1); zblock = reshape(zblock, [rz(k), sz(k), 1, rz(k+1)]); end; if k>1 % Apply enrichment for the solution if (opts.enrichment_rank>0)&&(iter>1)&&(flipped) % The enrichment uses a mixed interface: the one of Z on % the left, but the one of X on the right, since it must % concatenate with the solution block. % First, project y to Z-I-X zblock_y = local_vector(reduction_ZY{k}, y.cores{k,1}, reduction_XY{k+1}); zblock_y = zblock_y*prod(norm_yAx); % Project Ax to Z-I-X zblock_Ax = local_matvec(x.cores{k,1}, reduction_ZAX{k}, A.cores{k,1}, reduction_XAX{k+1}); % z=y-Ax projected to Z-I-X enrichment_block = zblock_y-zblock_Ax; enrichment_block = reshape(enrichment_block, [old_rz, sz(k)*rx(k+1)]); % Enrichment is made here v2 = [v; enrichment_block]; v2 = v2.'; [v,rv]=qr(v2, 0); v = v.'; % Pass the L-factor to the next block rv = rv(:,1:new_rx); u = u*rv.'; % Update the current solution rank new_rx = size(v,1); end % Measure and remove the norm of u new_norm_x = norm(u, 'fro'); if (new_norm_x>0) u = u/new_norm_x; else new_norm_x=1; end; % Store it in norm_x norm_x(k-1)=norm_x(k-1)*new_norm_x; % Calculate the White's prediction for the next block by % casting u onto it next_block = x.cores{k-1,1}; next_block = reshape(next_block, [rx(k-1)*sz(k-1), rx(k)]); next_block = next_block*u; % Copy the rank rx(k) = new_rx; x.cores{k-1,1} = reshape(next_block, rx(k-1), sz(k-1),1, rx(k)); % now it is a good initial guess % Copy the orthogonal current block to the storage v = reshape(v, [rx(k), sz(k),1, rx(k+1)]); x.cores{k,1} = v; % Compute next interface reductions % With X [reduction_XAX{k},norm_A] = reduce_matrix(reduction_XAX{k+1}, v, A.cores{k,1}, v); [reduction_XY{k},norm_y] = reduce_vector(reduction_XY{k+1}, v, y.cores{k,1}); % With Z if (opts.enrichment_rank>0) reduction_ZAX{k} = reduce_matrix(reduction_ZAX{k+1}, zblock, A.cores{k,1}, v); reduction_ZY{k} = reduce_vector(reduction_ZY{k+1}, zblock, y.cores{k,1}); % Remove the norm of A and y reduction_ZAX{k} = reduction_ZAX{k}/norm_A; reduction_ZY{k} = reduction_ZY{k}/norm_y; end % Compute the new rescaling factor norm_yAx(k-1) = (norm_y/(norm_A*norm_x(k-1))); end end % end of the loop over blocks % Flip reductions reduction_XAX = revert_interface(reduction_XAX, ra, rx, rx); reduction_XY = revert_interface(reduction_XY, ry, rx); if (opts.enrichment_rank>0) reduction_ZAX = revert_interface(reduction_ZAX, ra, rz, rx); reduction_ZY = revert_interface(reduction_ZY, ry, rz); % Flip the ranks of Z rz = rz(d+1:-1:1, :); end % Flip tensor trains y=revert(y); A=revert(A); x=revert(x); % Flip the sizes and norms sz=sz(d:-1:1); norm_x = norm_x(d-1:-1:1); norm_yAx = norm_yAx(d-1:-1:1); flipped = ~flipped; % Report sweep info if (opts.verb>0)&&(~flipped) fprintf('amen_solve: iter=%d, err=%3.3e, res=%3.3e, rank=%d\n', iter, maximal_error, maximal_residual, max(rx)); end % Check the stopping criteria satisfied = ((maximal_error<tol)||(iter>=opts.nswp))&&(~flipped); % Count the number of sweeps if ~flipped iter = iter+1; end end % Cast spatial solution to the desired form rx = x.ranks; norm_x = exp(sum(log(norm_x))/d); % distribute norms equally for k=1:d x.cores{k,1} = reshape(x.cores{k,1}, [rx(k), sz(k), 1, rx(k+1)]); % store the sizes in x.cores{k,1} = x.cores{k,1}*norm_x; end x.coeff=1; x.tolerance=(norm_x^d)*tol; end %%%%%%%%% Auxiliary functions function grumble(A,y,x0) % Check the inputs for consistency if ~isa(A,'ttclass') || ~isa(y,'ttclass') error('Both matrix and right-hand-side should be ttclass.'); end if A.ncores~=y.ncores error('Dimensions of matrix and right-hand-side do not match.'); end if A.ntrains>1 || y.ntrains>1 error('Both matrix and right-hand-side should be shrinked before solution.'); end d=A.ntrains; szA=A.sizes; if ~all(szA(:,1)==szA(:,2)) error('Matrix should be square.'); end szy=y.sizes; if ~all(szy(:,1)==szA(:,2)) error('Mode sizes of the right-hand-side do not match those of the matrix.') end if ~all(szy(:,2)==ones(d,1)) error('The right-hand-side should be a vector.') end if exist('x0','var') % Check the initial guess, if present if A.ncores~=x0.ncores error('Dimensions of matrix and initial guess do not match.'); end szx=x0.sizes; if ~all(szx(:,1)==szA(:,2)) error('Mode sizes of the initial guess do not match those of the matrix.') end if ~all(szx(:,2)==ones(d,1)) error('The initial guess should be a vector.') end end end % Takes right reductions of sizes (ra x rw x rx), and flips them to the left % form (rw x rx x ra). Note: ranks should be given in the initial order. function [interface] = revert_interface(interface, ra, rw, rx) d = numel(interface)-1; % We trust it to come with R==1 if (nargin<4) rx = ones(size(rw)); end; for i=1:d interface{i} = reshape(interface{i}, ra(i), rw(i)*rx(i)); interface{i} = interface{i}.'; if (nargin>3) interface{i} = reshape(interface{i}, rw(i), rx(i), ra(i)); end; end; interface = interface(d+1:-1:1); end % Accumulates the right interface reduction of the matrix, W{k:d}'*A{k:d}*X{k:d} function [interface,nrm] = reduce_matrix(interface, w, A, x) % Right reduction has the form of the last matrix TT block, i.e. [ra, rw, rx] [ra1,n,m,ra2]=size(A); [rx1,~,~,rx2]=size(x); [rw1,~,~,rw2]=size(w); wc = reshape(w, rw1, n*rw2); wc = conj(wc); xc = reshape(x, rx1*m, rx2); interface = reshape(interface, ra2*rw2, rx2); interface = xc*interface.'; % size rx1 m x ra2 rw2 interface = reshape(interface, rx1, m*ra2*rw2); interface = interface.'; interface = reshape(interface, m*ra2, rw2*rx1); tmp = reshape(A, ra1*n, m*ra2); interface = tmp*interface; % size ra1(k)*n, rw2*rx1 interface = reshape(interface, ra1, n*rw2*rx1); interface = interface.'; interface = reshape(interface, n*rw2, rx1*ra1); interface = wc*interface; % size rw1, rx1 ra1 interface = reshape(interface, rw1*rx1, ra1); interface = interface.'; if (nargout>1) nrm = norm(interface, 'fro'); interface = interface/nrm; end interface = reshape(interface, ra1, rw1, rx1); end % Accumulates the right interface reduction of the vector, W{k:d}'*X{k:d} function [interface,nrm] = reduce_vector(interface, w, x) % Right reduction has the form of the last vector TT block, i.e. [rx, rw] [rw1,n,~,rw2]=size(w); [rx1,~,~,rx2]=size(x); wc = reshape(w, rw1, n*rw2); tmp = reshape(x, rx1*n, rx2); interface = tmp*interface; % size rx1 n x rw2 interface = reshape(interface, rx1, n*rw2); interface = interface*wc'; % size rx1, rw1 if (nargout>1) nrm = norm(interface, 'fro'); interface = interface/nrm; end end % A matrix-vectors product for the matrix in the 3D TT (WAX1-A-WAX2), and % full vectors of size (rx1*m*rx2). Returns (rw1*n*rw2) function w=local_matvec(x, left_WAX, A, right_WAX) [ra1,n,m,ra2]=size(A); [rw1,rx1,~] = size(left_WAX); [~,rw2,rx2] = size(right_WAX); xc = reshape(x, [rx1*m, rx2]); tmp = reshape(right_WAX, [ra2*rw2, rx2]); w = xc*tmp.'; w = reshape(w, rx1, m*ra2*rw2); w = w.'; w = reshape(w, m*ra2, rw2*rx1); tmp = reshape(A, ra1*n, m*ra2); w = tmp*w; w = reshape(w, ra1*n*rw2, rx1); w = w.'; w = reshape(w, rx1*ra1, n*rw2); tmp = reshape(left_WAX, rw1, rx1*ra1); w = tmp*w; w = reshape(w, rw1*n*rw2, 1); end % Builds the full (rw1*n*rw2) x (rx1*m*rx2) matrix from its TT blocks function B=local_matrix(left_WAX, A, right_WAX) [ra1,n,m,ra2]=size(A); [rw1,rx1,~] = size(left_WAX); [~,rw2,rx2] = size(right_WAX); B = reshape(left_WAX, [rw1*rx1, ra1]); tmp = reshape(A, [ra1, n*m*ra2]); B = B*tmp; B = reshape(B, [rw1, rx1, n, m*ra2]); B = permute(B, [1,3,2,4]); B = reshape(B, [rw1*n*rx1*m, ra2]); tmp = reshape(right_WAX, [ra2, rw2*rx2]); B = B*tmp; B = reshape(B, [rw1*n, rx1*m, rw2, rx2]); B = permute(B, [1,3,2,4]); B = reshape(B, [rw1*n*rw2, rx1*m*rx2]); end % Builds the full (rw1*n*rw2) x 1 vector from its TT blocks function w=local_vector(left_WX, x, right_WX) [rx1,n,~,rx2]=size(x); [rw1,~] = size(left_WX); [~,rw2] = size(right_WX); w = reshape(x, [rx1, n*rx2]); w = left_WX*w; w = reshape(w, [rw1*n, rx2]); w = w*right_WX; w = reshape(w, [rw1*n*rw2, 1]); end
github
tsajed/nmr-pred-master
ttclass_chop.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_chop.m
519
utf_8
8e97b25f14afdbf8d63e19ddc677e366
% This subroutine defines a rank of truncated SVD decomposition % Normal users whould not call it directly. % % R=TTCLASS_CHOP(S,TOLERANCE) % % Here S is a vector od singular values for a matrix, % TOLERANCE is absolute truncation threshold (Frobenius norm). % Returns the optimal rank of low-rank approximation. % % [email protected] % function r=ttclass_chop(s,tolerance) x=cumsum(s(end:-1:1).^2); k=find(x>=tolerance^2,1); if isempty(k) r=0; else r=numel(s)-k+1; end end
github
tsajed/nmr-pred-master
ttclass_ort.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_ort.m
3,819
utf_8
5de9198609fad42b00d0a1379c98a58f
% Performs TT-orthogonalisation for all trains from buffer. % DIR=+1 {default} gives you left-to-right orthogonality, % DIR=-1 right-to-left % Normally you should not call this subroutine directly. % % TT=TTCLASS_ORT(TT,DIR) % [TT,LOGNRM]=TTCLASS_ORT(TT,DIR) % % On input, TT contains several buffered trains, % On output, TT has all of them orthogonalised left-to-right. % If LOGNRM is present, all buffered trains are also normalized, % and natural logarithms of their norms returned in the vector LOGNRM. % Use this option if the tensor norm is likely to exceed realmax()=1.7977e+308. % % [email protected] % function [tt,lognrm]=ttclass_ort(tt,dir) % Read tensor ranks and dimensions sz=tt.sizes; rnk=tt.ranks; d=tt.ncores; N=tt.ntrains; % Set the default dir if it is not present if ~exist('dir','var') dir=+1; end if (nargout>1) lognrm=log(tt.coeff); tt.coeff=ones(1,N); end switch dir case +1 for n=1:N % TT-othogonalise each tensor train left-to-right r=rnk(:,n); for k=1:d-1 B=reshape(tt.cores{k,n}, [r(k)*sz(k,1)*sz(k,2), r(k+1)]); C=reshape(tt.cores{k+1,n}, [r(k+1), sz(k+1,1)*sz(k+1,2)*r(k+2)]); [Q,R]=qr(B,0); nrm=norm(R); % Take care of the norm if (nrm>0) R=R/nrm; if (nargout>1) lognrm(1,n)=lognrm(1,n)+log(nrm); else tt.coeff(1,n)=tt.coeff(1,n)*nrm; end end C=R*C; rnew=size(Q,2); tt.cores{k,n}=reshape(Q, [r(k), sz(k,1), sz(k,2), rnew]); tt.cores{k+1,n}=reshape(C, [rnew, sz(k+1,1), sz(k+1,2), r(k+2)]); r(k+1)=rnew; end % Take care of the last norm nrm=norm(tt.cores{d,n}(:)); if (nrm>0) tt.cores{d,n}=tt.cores{d,n}/nrm; if (nargout>1) lognrm(1,n)=lognrm(1,n)+log(nrm); else tt.coeff(1,n)=tt.coeff(1,n)*nrm; end end end case -1 for n=1:tt.ntrains % TT-othogonalise each tensor train lright-to-left r=rnk(:,n); for k=d:-1:2 B=reshape(tt.cores{k,n}, [r(k), sz(k,1)*sz(k,2)*r(k+1)]); C=reshape(tt.cores{k-1,n}, [r(k-1)*sz(k-1,1)*sz(k-1,2), r(k)]); [Q,R]=qr(B.',0); nrm=norm(R); % Take care of the norm if (nrm>0) R=R/nrm; if (nargout>1) lognrm(1,n)=lognrm(1,n)+log(nrm); else tt.coeff(1,n)=tt.coeff(1,n)*nrm; end end C=C*R.'; rnew=size(Q,2); tt.cores{k,n}=reshape(Q.', [rnew, sz(k,1), sz(k,2), r(k+1)]); tt.cores{k-1,n}=reshape(C, [r(k-1), sz(k-1,1), sz(k-1,2), rnew]); r(k)=rnew; end % Take care of the last norm nrm=norm(tt.cores{1,n}(:)); if (nrm>0) tt.cores{1,n}=tt.cores{1,n}/nrm; if (nargout>1) lognrm(1,n)=lognrm(1,n)+log(nrm); else tt.coeff(1,n)=tt.coeff(1,n)*nrm; end end end otherwise error('unrecognized parameter dir.'); end end
github
tsajed/nmr-pred-master
ttclass_numel.m
.m
nmr-pred-master/spinach/kernel/overloads/ttclass_numel.m
710
utf_8
97f60f8e3294823ceb4f59353f1ba9d1
% Number of elements in the matrix represented by a tensor train. % Syntax: % n=ttclass_numel(ttrain) % % For large spin systems it may be too large to fit the integer. % % [email protected] % [email protected] function n=ttclass_numel(ttrain) % Compute the number of elements if isa(ttrain,'ttclass') n=prod(prod(sizes(ttrain))); else error('this function only applies to tensor trains.'); end % Check for infinities if n>intmax error('the number of elements exceeds Matlab''s intmax.'); end end % If it had been possible to build the tower of Babel without % ascending it, the work would have been permitted. % % Franz Kafka
github
tsajed/nmr-pred-master
plus.m
.m
nmr-pred-master/spinach/kernel/overloads/@struct/plus.m
1,073
utf_8
93460242fd0dd5c04ff3062211674a88
% Adds corresponding fields of two structures. Nested structu- % res are processed recursively. Syntax: % % output_structure=plus(structure1,structure2) % % [email protected] % [email protected] function str3=plus(str1,str2) % Decide how to proceed if isstruct(str1)&&isstruct(str2) % Get the field names fnames1=fieldnames(str1); fnames2=fieldnames(str2); % Check topology if (numel(fnames1)~=numel(fnames2))||... (~isempty(setdiff(fnames1,fnames2))) error('structure topology mismatch.'); end % Loop over field names for n=1:length(fnames1) % Recursive call for each field name str3.(fnames1{n})=str1.(fnames1{n})+str2.(fnames1{n}); end else % Complain and bomb out error('structure topology mismatch.'); end end % He was the sort of person who stood on mountaintops during % thunderstorms in wet copper armour shouting "All the Gods % are bastards!" % % Terry Pratchett
github
tsajed/nmr-pred-master
mtimes.m
.m
nmr-pred-master/spinach/kernel/overloads/@struct/mtimes.m
956
utf_8
5601726df09404a4212637629b5dc5e3
% Multiplies all entries of a structure by a user-specified % scalar. Nested structures are processed recursively. Syntax: % % output_structure=mtimes(scalar,input_structure) % % [email protected] % [email protected] function str_out=mtimes(scalar,str_in) % Decide how to proceed if isscalar(scalar) % Get the field names fnames=fieldnames(str_in); % Loop over field names for n=1:numel(fnames) % Recursive call for each field name str_out.(fnames{n})=scalar*str_in.(fnames{n}); end else % Complain and bomb out error('the first argument must be a scalar.'); end end % Arthur Dent: What happens if I press this button? % Ford Prefect: I wouldn't -- % Arthur Dent: Oh. % Ford Prefect: What happened? % Arthur Dent: A sign lit up, saying "please do not press this button again". % % Douglas Adams
github
tsajed/nmr-pred-master
plus.m
.m
nmr-pred-master/spinach/kernel/overloads/@cell/plus.m
940
utf_8
31149a14aaee466b40fb00c288f42050
% Adds cell arrays element-by-element. % % [email protected] function A=plus(A,B) if iscell(A)&&iscell(B)&&all(size(A)==size(B)) for n=1:numel(A), A{n}=A{n}+B{n}; end else error('cell array sizes must match.'); end end % I came into the room, which was half dark, and presently spotted Lord % Kelvin in the audience and realized that I was in for trouble at the last % part of my speech dealing with the age of the Earth, where my views % conflicted with his. To my relief, Kelvin fell fast asleep, but as I % came to the important point, I saw the old bird sit up, open an eye and % cock a baleful glance at me! Then a sudden inspiration came, and I said % "Lord Kelvin had limited the age of the Earth, provided no new source of % energy was discovered. That prophetic utterance refers to what we are % now considering tonight, radium." Behold! The old boy beamed upon me. % % Ernest Rutherford
github
tsajed/nmr-pred-master
mtimes.m
.m
nmr-pred-master/spinach/kernel/overloads/@cell/mtimes.m
543
utf_8
beb0e6df02028c9a678196badbcc4752
% Element-by-element multiplication of cell arrays of matrices. % % [email protected] function C=mtimes(A,B) if iscell(A)&&isnumeric(B) C=cell(size(A)); for n=1:numel(A), C{n}=A{n}*B; end elseif isnumeric(A)&&iscell(B) C=cell(size(B)); for n=1:numel(B), C{n}=A*B{n}; end else error('at least one argument must be numeric.'); end end % We keep blaming Comrade Stalin and I agree that we have good reasons. But % I would like to ask: who wrote those four million denunciation letters? % % S.D. Dovlatov
github
tsajed/nmr-pred-master
minus.m
.m
nmr-pred-master/spinach/kernel/overloads/@cell/minus.m
300
utf_8
a452a40098a0deee00f05329e7fdf193
% Subtracts cell arrays element-by-element. % % [email protected] function A=minus(A,B) if iscell(A)&&iscell(B)&&all(size(A)==size(B)) for n=1:numel(A), A{n}=A{n}-B{n}; end else error('cell array sizes must match.'); end end % I can, therefore I am. % % Simone Weil
github
tsajed/nmr-pred-master
dot.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/dot.m
634
utf_8
4ed315ade74c2a8170df6bb02b79f71e
% Dot product of TT representations of matrices. Syntax: % % c=dot(a,b) % % [email protected] % [email protected] function c=dot(a,b) % Check consistency grumble(a,b); % Compute the product c=ctranspose(a)*b; end % Consistency enforcement function grumble(a,b) if (~isa(a,'ttclass'))||(~isa(b,'ttclass')) error('both inputs should be tensor trains.') end if (size(a.cores,1)~=size(b.cores,1))||(~all(all(sizes(a)==sizes(b)))) error('tensor train structures must be consistent.') end end % Any product that needs a manual to work is broken. % % Elon Musk
github
tsajed/nmr-pred-master
norm.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/norm.m
1,584
utf_8
6816c18c41f538aa0adf11e09a1d1402
% Computes the norm of the matrix represented by a tensor train. Syntax: % % ttnorm=norm(ttrain,norm_type) % % norm_type=1 returns the 1-norm % norm_type=inf returns the inf-norm % norm_type=2 returns the 2-norm % norm_type='fro' returns the Frobenius norm % % Note: norms other than Frobenius norm are expensive for tensor trains. % % [email protected] % [email protected] function ttnorm=norm(ttrain,norm_type) % The default option is TYP=1 if (nargin == 1); norm_type=1; end % Compute the norm switch norm_type case 'fro' % Frobenius norm ttrain=ttclass_sum(ttrain); ttrain=ttclass_ort(ttrain,-1); ttnorm=abs(ttrain.coeff)*norm(ttrain.cores{1,1}(:)); case 1 % Maximum absolute column sum error('1-norm is not yet implemented for ttclass'); case inf % Maximum absolute row sum error('inf-norm is not yet implemented for ttclass'); case 2 % Maximum absolute eigenvalue error('2-norm is not yet implemented for ttclass'); otherwise % Complain and bomb out error('unrecognized norm type.'); end end % The most exciting phrase to hear in science, the one that heralds new % discoveries, is not "eureka!" but rather "hmm....that's funny..." % % Isaac Asimov % % % Contrary to what Asimov says, the most exciting phrase in science, the % one that heralds new discoveries, is not "eureka!" or "that's funny...", % it's "your research grant has been approved". % % John Alejandro King
github
tsajed/nmr-pred-master
kron.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/kron.m
2,068
utf_8
c00292ef772aa5660ba73b7164905922
% Kronecker product of two matrices in a tensor train format. Syntax: % % c=kron(a,b) % % WARNING: the result is not the same as the flat matrix Kronecker pro- % duct (it is a row and column permutation away from it), but % the resulting order of elements is consistent with the out- % put of the tensor train vectorization (ttclass/vec) operati- % on output. % % [email protected] % [email protected] function c=kron(a,b) % Shrink a and b before going any further a=shrink(a); b=shrink(b); % Read sizes and ranks of the operands [a_ncores,~]=size(a.cores); a_ranks=ranks(a); a_sizes=sizes(a); [b_ncores,~]=size(b.cores); b_ranks=ranks(b); b_sizes=sizes(b); % Check consistency if a_ncores~=b_ncores error('tensor train structures must be consistent.'); end % Preallocate the result new_cores=cell(a_ncores,1); % Kron the cores for nc=1:a_ncores core_of_a=reshape(a.cores{nc,1},[a_ranks(nc,1)*a_sizes(nc,1),a_sizes(nc,2)*a_ranks(nc+1,1)]); core_of_b=reshape(b.cores{nc,1},[b_ranks(nc,1)*b_sizes(nc,1),b_sizes(nc,2)*b_ranks(nc+1,1)]); core_of_c=reshape(kron(core_of_b,core_of_a),[a_ranks(nc,1),a_sizes(nc,1),b_ranks(nc,1),b_sizes(nc,1),a_sizes(nc,2),a_ranks(nc+1,1),b_sizes(nc,2),b_ranks(nc+1,1)]); new_cores{nc,1}=reshape(permute(core_of_c,[1 3 4 2 7 5 6 8]),[a_ranks(nc,1)*b_ranks(nc,1),b_sizes(nc,1)*a_sizes(nc,1),b_sizes(nc,2)*a_sizes(nc,2),a_ranks(nc+1,1)*b_ranks(nc+1,1)]); end % Write the output data structure c=ttclass; c.coeff=b.coeff*a.coeff; c.cores=reshape(new_cores,[a_ncores,1]); if a.coeff==0 || b.coeff==0 % The result is exactly zero c.tolerance=0; else % The relative tolerances sum up c.tolerance=a.coeff*b.tolerance+b.coeff*a.tolerance; end end % Gentlemen, you're trying to negotiate something you will never be able % to negotiate. If negotiated, it will not be ratified. And if ratified, % it will not work. % % Russell Bretherton, UK negotiator in Brussels, 1955
github
tsajed/nmr-pred-master
diag.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/diag.m
1,870
utf_8
191bfe0f479322a3bd9094dac9de24c1
% Mimics the diag behavior for tensor train matrix. Syntax: % % tt=diag(tt) % % If tt is a square matrix, return a vector by computing diag of every core. % If tt is a vector (one mode size is ones), return a diagonal matrix. % % [email protected] function tt=diag(tt) % Read tensor train sizes and ranks [ncores,ntrains]=size(tt.cores); r=ranks(tt); sz=sizes(tt); % Decide the dimensions if all(sz(:,1)==ones(ncores,1)) || all(sz(:,2)==ones(ncores,1)) % Vector on input, diagonal matrix on output for n=1:ntrains for k=1:ncores vector_core=tt.cores{k,n}; matrix_size=max(sz(k,1),sz(k,2)); matrix_core=zeros(r(k,n),matrix_size,matrix_size,r(k+1,n)); for p=1:r(k,n) for q=1:r(k+1,n) matrix_core(p,:,:,q)=diag(reshape(vector_core(p,:,:,q),[sz(k,1),sz(k,2)])); end end tt.cores{k,n}=matrix_core; end end else % Matrix on input, column vector on output if all(sz(:,1)==sz(:,2)) for n=1:ntrains for k=1:ncores matrix_core=tt.cores{k,n}; vector_size=min(sz(k,1),sz(k,2)); vector_core=zeros(r(k,n),vector_size,1,r(k+1,n)); for p=1:r(k,n) for q=1:r(k+1,n) vector_core(p,:,1,q)=diag(reshape(matrix_core(p,:,:,q),[sz(k,1),sz(k,2)])); end end tt.cores{k,n}=vector_core; end end else error('Input should be either a square matrix or a vector.'); end end end % The only mistake [the famous criminal finacier] Bernie Madoff made was % to promise returns in this life. % % Harry Kroto
github
tsajed/nmr-pred-master
transpose.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/transpose.m
587
utf_8
5806bbccc81adb6b93bba2a772a29743
% Transposes a tensor without complex conjugation. Syntax: % % ttrain=transpose(ttrain) % % [email protected] % [email protected] function ttrain=transpose(ttrain) % Read tensor sizes and ranks [ncores,ntrains]=size(ttrain.cores); % Swap the middle dimensions of all cores for n=1:ntrains for k=1:ncores ttrain.cores{k,n}=permute(ttrain.cores{k,n},[1 3 2 4]); end end end % "Public welfare" is the welfare of those who do not earn it; those who do, are % entitled to no welfare. % % Ayn Rand, "Atlas Shrugged"
github
tsajed/nmr-pred-master
mrdivide.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/mrdivide.m
720
utf_8
365b4610bcebe6bc9a9d0aef0b0221ca
% Divides a tensor train object by a scalar. Syntax: % % c=mrdivide(a,b) % % The first input should be a ttclass object and the % second one a scalar. % % [email protected] % [email protected] function a=mrdivide(a,b) % Division of tensor train by a scalar if isa(a,'ttclass')&&isscalar(b) % Divide the coefficients and update the tolerances a.coeff=a.coeff/b; a.tolerance=a.tolerance/abs(b); else % Complain and bomb out error('the first argument must be a tensor train and the second one a scalar.'); end end % It is dangerous to be right in matters on which the established % authorities are wrong. % % Voltaire
github
tsajed/nmr-pred-master
clearcoeff.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/clearcoeff.m
729
utf_8
02b24ad006d2659ceef5baeffa2cb49d
% Absorbs the physical coefficient of the tensor train into % its cores. Syntax: % % tt=clearcoeff(tt) % % The value of the tensor train remains the same. % % [email protected] % [email protected] function tt=clearcoeff(tt) % Get the number of cores and trains [ncores,ntrains]=size(tt.cores); % Loop over the trains in the buffer for n=1:ntrains % Scale the coefficient A=tt.coeff(1,n)^(1/ncores); % Apply it to cores for k=1:ncores tt.cores{k,n}=A*tt.cores{k,n}; end % Erase the coefficient tt.coeff(1,n)=1; end end % "Moral outrage is a middle-class luxury." % % Anonymous philosophy professor
github
tsajed/nmr-pred-master
isnumeric.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/isnumeric.m
438
utf_8
f38eac16170404dba2a67da27f6c7b20
% Returns TRUE for the tensor train class. Syntax: % % answer=isnumeric(tt) % % [email protected] % [email protected] function answer=isnumeric(tt) % Non-empty tensor trains should return true() if isa(tt,'ttclass')&&(~isempty(tt.cores)) answer=true(); else answer=false(); end end % People who think honestly and deeply have a hostile % attitude towards the public. % % Johann Wolfgang von Goethe
github
tsajed/nmr-pred-master
ttclass.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/ttclass.m
3,431
utf_8
5bd1a152d06f915314f7476f47b7b0f1
% Creates an object of a tensor train class. Syntax: % % tt=ttclass(coeff,kronterms,tolerance) % % Parameters: % % coeff - coefficient in front of the spin operator, % usually be the interaction magnitude % % kronterms - column cell array of matrices whose Krone- % cker product makes up the spin operator. % % tolerance - maximum deviation in the 2-norm between the % TT representation and the flat matrix repre- % sentation that the TT formalism is allowed % to introduce. % % If multiple columns are supplied in kronterms, multiple coefficients % are given in coeff, and multiple tolerances are given in tolerance, % the resulting tensor train is assumed to be the sum of the individu- % al tensor trains specified in different columns. % % [email protected] % [email protected] classdef ttclass % Default properties properties coeff=0; % Physical coefficients (row vector) cores={0}; % Cores of each tensor train (in columns) tolerance=0; % Accuracy tolerances (row vector) debuglevel=0; % Diagnostic output switch end % Method description methods % Constructor function function tt=ttclass(coeff,kronterms,tolerance) % Check the number of inputs if nargin==0, return; elseif (nargin==1)||(nargin==2)||(nargin>3) error('incorrect number of input arguments.'); end % Check consistency grumble(coeff,kronterms,tolerance); % Convert Kronecker products into tensor trains tt.cores=kronterms; for n=1:size(kronterms,2) for d=1:size(kronterms,1) tt.cores{d,n}=reshape(full(kronterms{d,n}),[1 size(kronterms{d,n}) 1]); end end % Store the coefficients tt.coeff=coeff; % Store the tolerances tt.tolerance=tolerance; % Do not print diagnostics tt.debuglevel=0; end end end % Consistency enforcement function grumble(coeff,cores,tolerance) if (~isnumeric(coeff))||(~isrow(coeff)) error('coeff must be a complex row vector.'); elseif (~iscell(cores))||isempty(cores)||numel(size(cores))~=2 error('cores must be a two-dimensional cell array with at least one element.'); elseif any(~cellfun(@isnumeric,cores))||any(~cellfun(@ismatrix,cores)) error('all elements of the cores cell array must be matrices.'); elseif (~isnumeric(tolerance))||(~isreal(tolerance))||(~isrow(tolerance))||any(tolerance<0) error('tolerance must be a row vector with real non-negative elements.'); elseif numel(coeff)~=numel(tolerance) error('coefficient and tolerance vectors must have the same number of elements.'); elseif size(cores,2)~=numel(coeff) error('the number of columns in the operand array must match the number of coefficients.') end end % "Kuprov cocktail": caffeine + modafinil + propranolol, 50 mg each. % "Double Kuprov": 100 mg variety, reserved for extreme workloads.
github
tsajed/nmr-pred-master
ranks.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/ranks.m
822
utf_8
ed77cc9f19eac30b98342c6e2d4cffcc
% Returns the bond dimensions of a tensor train. Syntax: % % ttranks=ranks(ttrain) % % The output is (ncores+1) by (ntrains) array. The first % and the last elements for each train are 1. % % [email protected] % [email protected] function ttranks=ranks(ttrain) % Get core array dimensions [ncores,ntrains]=size(ttrain.cores); % Preallocate the answer ttranks=zeros(ncores+1,ntrains); % Loop over the buffer for n=1:ntrains % Extract the ranks for k=1:ncores ttranks(k,n)=size(ttrain.cores{k,n},1); end ttranks(ncores+1,n)=size(ttrain.cores{ncores,n},4); end end % I refrain from publishing for fear that disputes and controversies % may be raised against me by ignoramuses. % % Isaac Newton, in a letter to Leibniz
github
tsajed/nmr-pred-master
mean.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/mean.m
1,780
utf_8
505c236ae5422286dda85b0231d3cc79
% Mean of elements of a tensor train representation of a % matrix. Syntax: % % answer=mean(ttrain,dim) % % The mean value is computed along the specified dimen- % sion (dim=1 or dim=2). % % [email protected] function answer=mean(ttrain,dim) % Get sizes and ranks [ncores,ntrains]=size(ttrain.cores); tt_ranks=ranks(ttrain); tt_sizes=sizes(ttrain); % If all dimensions are singleton, return a scalar immediately if all(tt_sizes(:)==1), answer=full(ttrain); return; end % In dim is omitted, choose first non-singleton dimension % (this mimics the Matlab behaviour for matices) if nargin==1 dim=0; for k=2:-1:1 if ~all(tt_sizes(:,k)==1) dim=k; end end end % Make an auxiliary tensor train answer=ttclass; answer.coeff=ttrain.coeff; answer.tolerance=zeros(1,ntrains); answer.cores=cell(ncores,ntrains); % Run through all tensor trains for n=1:ntrains % Run through all cores for k=1:ncores % Sum the appropriate dimension in each core answer.cores{k,n}=sum(ttrain.cores{k,n},dim+1); % Reshape the core and divide the result by the correspondent dimension switch dim case 1 answer.cores{k,n}=reshape(answer.cores{k,n},[tt_ranks(k,n),1,tt_sizes(k,2),tt_ranks(k+1,n)])/tt_sizes(k,1); case 2 answer.cores{k,n}=reshape(answer.cores{k,n},[tt_ranks(k,n),tt_sizes(k,1),1,tt_ranks(k+1,n)])/tt_sizes(k,2); otherwise error('incorrect dimension specificaton.'); end end end % If all modes are singleton, transform to a scalar if all(all(sizes(answer)))==1, answer=full(answer); end end
github
tsajed/nmr-pred-master
ctranspose.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/ctranspose.m
606
utf_8
830087c613f5c3ecd61710101fca2e10
% Computes a Hermitian conjugate of a matrix in a tensor train % representation. Syntax: % % ttrain=ctranspose(ttrain) % % [email protected] % [email protected] function ttrain=ctranspose(ttrain) % Read tensor sizes and ranks [ncores,ntrains]=size(ttrain.cores); % Swap the middle dimensions of all cores for n=1:ntrains for k=1:ncores ttrain.cores{k,n}=permute(ttrain.cores{k,n},[1 3 2 4]); end end % Conjugate the result ttrain=conj(ttrain); end % What gives the artist real prestige is his imitators. % % Igor Stravinsky
github
tsajed/nmr-pred-master
vec.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/vec.m
1,384
utf_8
5aad94388c8dd72a7ff58440a6010884
% Stretches arrays into vectors - useful for situations when the stand- % ard (:) syntax is not available. Syntax: % % A=vec(A) % % WARNING: for tensor trains this operation proceeds by stretching eve- % ry core of the tensor train. the result is not the same as % column-wise matrix stretching (it is an element permutation % away from it), but the resulting order of elements is consi- % stent with tensor train Kronecker product operation output. % % [email protected] % [email protected] function A=vec(A) % Decide how to proceed if isa(A,'ttclass') % Read tensor train sizes and ranks [ncores,ntrains]=size(A.cores); ttm_ranks=ranks(A); ttm_sizes=sizes(A); % Reshape the cores for n=1:ntrains for k=1:ncores A.cores{k,n}=reshape(A.cores{k,n},[ttm_ranks(k,n),ttm_sizes(k,1)*ttm_sizes(k,2),1,ttm_ranks(k+1,n)]); end end else % Use standard Matlab stretch A=reshape(A,[numel(A) 1]); end end % Jean-Paul Sartre was sitting at a French cafe, revising his draft of Being % and Nothingness. He said to the waitress, "I'd like a cup of coffee, plea- % se, with no cream." The waitress replied, "I'm sorry, Monsieur, but we are % out of cream. How about with no milk?"
github
tsajed/nmr-pred-master
hdot.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/hdot.m
1,611
utf_8
eb6826af52215250705b7f51b54be0ea
% Haramard dot product between two tensor train matrices. Syntax: % % c=hdot(a,b) % % [email protected] function c=hdot(a,b) % Check consistency grumble(a,b); % Read topology and initialize the answer [ncores,ntrains_a]=size(a.cores); ranks_a=ranks(a); [~ ,ntrains_b]=size(b.cores); ranks_b=ranks(b); mode_sizes=sizes(a); c=0; % Loop over TT buffers for na=1:ntrains_a for nb=1:ntrains_b % Multiply coefficients x=conj(a.coeff(na))*b.coeff(nb); % Loop over TT cores and compute dot product for k=1:ncores core_b=reshape(b.cores{k,nb},[ranks_b(k,nb),mode_sizes(k,1)*mode_sizes(k,2)*ranks_b(k+1,nb)]); core_b=x*core_b; core_b=reshape(core_b,[ranks_a(k,nb)*mode_sizes(k,1)*mode_sizes(k,2),ranks_b(k+1,nb)]); core_a=reshape(a.cores{k,na},[ranks_a(k,na)*mode_sizes(k,1)*mode_sizes(k,2),ranks_a(k+1,na)]); x=core_a'*core_b; end % Add to the total c=c+x; end end end % Consistency enforcement function grumble(a,b) if ~isa(a,'ttclass') || ~isa(b,'ttclass') error('both arguments should be tensor trains.') end if size(a.cores,1)~=size(b.cores,1) error('the number of cores in the arguments must be the same.') end if ~all(all(sizes(a)==sizes(b))) error('tensor train mode sizes are not consistent.') end end % The higher we soar, the smaller we appear to those who cannot fly. % % Friedrich Nietzsche, "Thus Spoke Zarathustra"
github
tsajed/nmr-pred-master
nnz.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/nnz.m
564
utf_8
339a7a7d65b6617798bed101c9cd61eb
% Number of nonzeros in all cores of a tensor train. Syntax: % % answer=nnz(ttrain) % % [email protected] % [email protected] function answer=nnz(ttrain) % Count the non-zeros answer=sum(sum(cellfun(@nnz,ttrain.cores))); end % Men have always been and forever would remain silly victims of lies and % self-deceit in politics, until they learn to see, behind any moral, re- % ligious, political or social statements, proclamations and promises the % interests of specific social classes. % % Vladimir Lenin
github
tsajed/nmr-pred-master
revert.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/revert.m
674
utf_8
4f5ecd5143606ab0df50d58b16728f70
% Bit-revert permutation for the tensor train operator. Syntax: % % tt=revert(tt) % % [email protected] function tt=revert(tt) % Read sizes and ranks [ncores,ntrains]=size(tt.cores); % Swap bond indices for n=1:ntrains for k=1:ncores tt.cores{k,n}=permute(tt.cores{k,n}, [4,2,3,1]); end end % Revert the train direction tt.cores=tt.cores(ncores:-1:1,:); end % Asking for efficiency nd adaptability in the same program is like % asking for a beautiful and modest wife... we'll probably have to % settle for one or the other. % % Gerald M. Weinberg, "The psychology of computer programming"
github
tsajed/nmr-pred-master
isreal.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/isreal.m
672
utf_8
1bd8c5780bae5b52c47e596f70ed0347
% Returns TRUE for the real-valued ttclass. Syntax: % % answer=isreal(tt) % % [email protected] function answer=isreal(tt) % Non-empty tensor trains should return true() if isa(tt,'ttclass') % Check coefficient first answer=all(isreal(tt.coeff)); % If the coefficients are real, check the cores if answer for n=1:tt.ntrains for k=1:tt.ncores answer=isreal(tt{k,n}); if ~answer, return; end end end end else error('Input is not a ttclass.'); end end % Democracy is a pathetic belief in the collective wisdom % of individual ignorance. % % H.L. Mencken
github
tsajed/nmr-pred-master
sum.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/sum.m
1,823
utf_8
e0bcb7c4f07a01c8e5ae0b61c918d654
% Sum of elements of a tensor train representation of a matrix. Syntax: % % answer=sum(ttrain,dim) % % The sum is taken along the specified dimension (dim=1 or dim=2). % % [email protected] % [email protected] function answer=sum(ttrain,dim) % Get sizes and ranks [ncores,ntrains]=size(ttrain.cores); tt_ranks=ranks(ttrain); tt_sizes=sizes(ttrain); % If all dimensions are singleton, return a scalar immediately if all(tt_sizes(:)==1), answer=full(ttrain); return; end % In dim is omitted, choose first non-singleton dimension % (this mimics the Matlab behaviour for matices) if nargin==1 dim=0; for k=2:-1:1 if ~all(tt_sizes(:,k)==1) dim=k; end end end % Make an auxiliary tensor train answer=ttclass; answer.coeff=ttrain.coeff; answer.tolerance=zeros(1,ntrains); answer.cores=cell(ncores,ntrains); % Run through all tensor trains for n=1:ntrains % Run through all cores for k=1:ncores % Sum the appropriate dimension in each core answer.cores{k,n}=sum(ttrain.cores{k,n},dim+1); % Reshape the core switch dim case 1 answer.cores{k,n}=reshape(answer.cores{k,n},[tt_ranks(k,n),1,tt_sizes(k,2),tt_ranks(k+1,n)]); case 2 answer.cores{k,n}=reshape(answer.cores{k,n},[tt_ranks(k,n),tt_sizes(k,1),1,tt_ranks(k+1,n)]); otherwise error('incorrect dimension specificaton.'); end end end % If all modes are singleton, transform to a scalar if all(all(sizes(answer)))==1, answer=full(answer); end end % The sledge rests in summer, the cart rests in winter, but the horse % never rests. % % A Russian saying
github
tsajed/nmr-pred-master
shrink.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/shrink.m
908
utf_8
862451f6f6f1d11e28a63dacc4b6ff5e
% Approximates a given tensor train with lower TT-ranks. Syntax: % % ttrain=shrink(ttrain) % % Returns a single tensor train with right-to-left orthogonalisation. % % [email protected] % [email protected] function ttrain=shrink(ttrain) % Read train sizes [d,~]=size(ttrain.cores); % Summation ttrain=ttclass_sum(ttrain); % Right-to-left orthogonalization ttrain=ttclass_ort(ttrain); % Check the norm and escape if the object is zero nrm=ttrain.coeff*norm(ttrain.cores{d,1}(:)); if nrm==0, ttrain=0*unit_like(ttrain); return; end % Truncation ttrain=ttclass_svd(ttrain); % Convert to a scalar if appropriate if all(all(cellfun(@(x)size(x,2),ttrain.cores)==1))&&... all(all(cellfun(@(x)size(x,3),ttrain.cores)==1)) ttrain=full(ttrain); end end % "It's a tough life, being small and delicious." % % A Russian saying
github
tsajed/nmr-pred-master
ismatrix.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/ismatrix.m
407
utf_8
b7254d251d685122914e49f515bb4b0f
% Returns TRUE for the tensor train class. Syntax: % % answer=ismatrix(tt) % % [email protected] % [email protected] function answer=ismatrix(tt) % Non-empty tensor trains should return true() if isa(tt,'ttclass')&&(~isempty(tt.cores)) answer=true(); else answer=false(); end end % The stronger the house, the greater the immigration. % % The Law of Three Little Pigs
github
tsajed/nmr-pred-master
full.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/full.m
1,492
utf_8
88c9bbf81a4497fc240f5126c863ca41
% Converts a tensor train representation of a matrix into a matrix. % Syntax: % answer=full(ttrain) % % Note: the result can be huge, careless use would crash the system. % % [email protected] % [email protected] function answer=full(ttrain) % Preallocate the result answer=zeros(size(ttrain)); % Get object dimensions [ncores,ntrains]=size(ttrain.cores); % Get tensor ranks ttranks=ranks(ttrain); % Get mode sizes modesizes=sizes(ttrain); % Loop over the buffer for n=1:ntrains % Multiply up the tensor train next_term=reshape(ttrain.cores{ncores,n},[ttranks(ncores,n),modesizes(ncores,1)*modesizes(ncores,2)]); for k=(ncores-1):(-1):1 next_term=reshape(ttrain.cores{k,n},[ttranks(k,n)*modesizes(k,1)*modesizes(k,2),ttranks(k+1,n)])*next_term; next_term=reshape(next_term,[ttranks(k,n),modesizes(k,1),modesizes(k,2),prod(modesizes(k+1:ncores,1)),prod(modesizes(k+1:ncores,2))]); next_term=reshape(permute(next_term,[1 4 2 5 3]),[ttranks(k,n),prod(modesizes(k:ncores,1))*prod(modesizes(k:ncores,2))]); end next_term=reshape(next_term,[prod(modesizes(1:ncores,1)),prod(modesizes(1:ncores,2))]); % Add the matrix to the result answer=answer+ttrain.coeff(n)*next_term; end end % We must conduct research and then accept the results. If they don't % stand up to experimentation, Buddha's own words must be rejected. % % Dalai Lama XIV
github
tsajed/nmr-pred-master
size.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/size.m
1,361
utf_8
222c4d5e38f9b1cadb6d3da9e6a4669d
% Returns the size of the matrix represented by a tensor train. % Syntax: % [m,n]=size(tt,dim) % % For large spin systems M and N may be too large to fit into % the maximum integer permitted by Matlab. % % [email protected] % [email protected] function varargout=size(tt,dim) % Multiply up physical dimensions of all cores if nargin==1 m=prod(cellfun(@(x)size(x,2),tt.cores),1); n=prod(cellfun(@(x)size(x,3),tt.cores),1); varargout={[m(1) n(1)]}; elseif dim==1 m=prod(cellfun(@(x)size(x,2),tt.cores),1); varargout={m(1)}; elseif dim==2 n=prod(cellfun(@(x)size(x,3),tt.cores),1); varargout={n(1)}; else error('incorrect call syntax.'); end % Check for infinities if any(varargout{1}>intmax) error('tensor train dimensions exceed Matlab''s intmax.'); end end % Will fluorine ever have practical applications? It is very % difficult to answer this question. I may, however, say in % all sincerity that I gave this subject little thought when % I undertook my researches, and I believe that all the chem- % ists whose attempts preceded mine gave it no more conside- % ration. A scientific research is a search after truth, and % it is only after discovery that the question of applicabi- % lity can be usefully considered. % % Henri Moissan
github
tsajed/nmr-pred-master
sizes.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/sizes.m
769
utf_8
3f04bc99817774a800acc1d1111751e2
% Returns mode sizes (physical dimensions of each core) of % a tensor train. Syntax: % % modesizes=sizes(tt) % % The output is an array with ncores rows and two columns. % % [email protected] % [email protected] function modesizes=sizes(tt) % Determine the number of cores ncores=size(tt.cores,1); % Preallocate the answer modesizes=zeros(ncores,2); % Fill in the answer for k=1:ncores modesizes(k,1)=size(tt.cores{k,1},2); modesizes(k,2)=size(tt.cores{k,1},3); end end % Computer models are no different from fashion models: seductive, % unreliable, easily corrupted, and they lead sensible people to % make fools of themselves. % % Jim Hacker, in "Yes, Prime Minister" (a BBC documentary)
github
tsajed/nmr-pred-master
conj.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/conj.m
575
utf_8
3ceb631d25f6aa84ea4d7d1d6141a78c
% Conjugate the elements of the tensor train matrix. Syntax: % % tt=conj(tt) % % [email protected] % [email protected] function tt=conj(tt) % Read tensor train sizes and ranks [ncores,ntrains]=size(tt.cores); % Conjugate the cores for n=1:ntrains for k=1:ncores tt.cores{k,n}=conj(tt.cores{k,n}); end end % Conjugate the coefficients tt.coeff=conj(tt.coeff); end % I asked God for a bike, but I know God doesn't work that way. % So I stole a bike and asked for forgiveness. % % Al Pacino
github
tsajed/nmr-pred-master
subsref.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/subsref.m
2,400
utf_8
6d416b5e01fa1147d3fa7eb199216cf9
% Dot and bracket property specifications for the tensor train class. % % [email protected] % [email protected] function answer=subsref(ttrain,reference) switch reference(1).type % Methods and properties case '.' % Return the output requested switch reference(1).subs case 'ncores', answer=size(ttrain.cores,1); case 'ntrains', answer=size(ttrain.cores,2); case 'sizes', answer=sizes(ttrain); case 'ranks', answer=ranks(ttrain); case 'coeff', answer=ttrain.coeff; case 'cores', answer=ttrain.cores; case 'tolerance', answer=ttrain.tolerance; otherwise, error(['unknown field reference ',reference(1).subs]); end % Core extraction case '{}' % Return the core requested if numel(reference(1).subs)~=2 error('exactly two indices required to extract tt{j,k} kernel.'); else answer=ttrain.cores{reference(1).subs{1},reference(1).subs{2}}; end % Matrix element extraction case '()' % Start with zero answer=0; % Convert indices if numel(reference(1).subs)~=2 error('exactly two indices required to evaluate tt(j,k) element'); elseif (numel(reference(1).subs{1})==1)&&(numel(reference(1).subs{2})==1) siz=sizes(ttrain); ind=ttclass_ind2sub(siz(:,1),reference(1).subs{1}); jnd=ttclass_ind2sub(siz(:,2),reference(1).subs{2}); else error('advanced indexing is not implemented for tensor trains.'); end % Multiply up the tensor train [ncores,ntrains]=size(ttrain.cores); for n=1:ntrains x=ttrain.cores{ncores,n}(:,ind(ncores),jnd(ncores),:); for k=(ncores-1):(-1):1 x=ttrain.cores{k,n}(:,ind(k),jnd(k),:)*x; end answer=answer+ttrain.coeff(n)*x(1,1); end otherwise error('unknown subscript reference type.'); end % Allow nested indexing if numel(reference)>1 answer=subsref(answer,reference(2:end)); end end % "A cactus is a very disappointed cucumber." % % A Russian saying
github
tsajed/nmr-pred-master
rand.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/rand.m
850
utf_8
673cd6e50adc12fa9d9e408cb8b05cc2
% Generates tensor train matrix with random entries, same physical index % topology at the tensor train supplied, and specified TT-ranks. Syntax: % % tt=rand(tt,ttrank) % % [email protected] % [email protected] function tt=rand(tt,ttrank) % Read tensor train sizes [d,~]=size(tt.cores); sz=sizes(tt); % Reallocate cores tt.cores=cell(d,1); % Fill the cores by random elements tt.cores{1,1}=rand(1,sz(1,1),sz(1,2),ttrank); for k=2:d-1 tt.cores{k,1}=rand(ttrank,sz(k,1),sz(k,2),ttrank); end tt.cores{d,1}=rand(ttrank,sz(d,1),sz(d,2),1); % Unit coefficient and zero tolerance tt.coeff=1; tt.tolerance=0; end % The problem with inviting professors to dinner parties is that they're % used to talking for a minimum of 50 minutes at a time. % % Anonymous philosophy professor
github
tsajed/nmr-pred-master
plus.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/plus.m
1,037
utf_8
94add29cbc7f9d3cbc684e0c1595790a
% Tensor train addition operation. Does not perform the actual addition, % but instead concatenates the operands until such time as recompression % becomes absolutely necessary. Syntax: % % c=plus(a,b) % % [email protected] % [email protected] function a=plus(a,b) % Validate the input if (~isa(a,'ttclass'))||(~isa(b,'ttclass')) error('both operands must be tensor train objects.'); elseif (size(a.cores,1)~=size(b.cores,1))||(~all(all(sizes(a)==sizes(b)))) error('dimension mismatch in tensor trains.'); end % Write the sum object a.coeff=[a.coeff b.coeff]; a.cores=[a.cores b.cores]; a.tolerance=[a.tolerance b.tolerance]; % Filter out zero coeff pos=find(a.coeff); if ~isempty(pos) a.coeff=a.coeff(pos); a.cores=a.cores(:,pos); a.tolerance=a.tolerance(pos); else a=0*unit_like(a); end end % Twinkle, twinkle, little star. % I don't wonder what you are. % We've got Science, we've got Math! % You're a giant ball of gas.
github
tsajed/nmr-pred-master
unit_like.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/unit_like.m
1,785
utf_8
0bdd95c2f58b8d61a904947ec98435d4
% Returns a unit object of the same type as whatever is supplied. % % A=unit_like(A) % % Full square matrices, sparse matrices and tensor train represen- % tations of square matrices are supported. % % [email protected] function A=unit_like(A) if isa(A,'ttclass') % Unit tensor train of the same topology mode_sizes=sizes(A); if all(mode_sizes(:,1)==mode_sizes(:,2)) core=cell(A.ncores,1); for k=1:A.ncores core{k}=eye(mode_sizes(k,1)); end A=ttclass(1,core,0); else error('tensor train does not represent a square matrix.'); end elseif ismatrix(A)&&(size(A,1)==size(A,2))&&issparse(A) % Unit sparse matrix of the same dimension A=speye(size(A)); elseif ismatrix(A)&&(size(A,1)==size(A,2))&&(~issparse(A)) % Unit dense matrix of the same dimension A=eye(size(A)); else % Complain and bomb out error('the input is not a square matrix or a representation thereof.'); end end % Briefly stated, the Gell-Mann Amnesia effect is as follows. You open the % newspaper to an article on some subject you know well. You read the arti- % cle and see the journalist has absolutely no understanding of either the % facts or the issues. Often, the article is so wrong it actually presents % the story backward -- reversing cause and effect. In any case, you read % with exasperation or amusement the multiple errors in a story, and then % turn the page to national or international affairs, and read as if the % rest of the newspaper was somehow more accurate about Palestine than the % baloney you just read. You turn the page, and forget what you know. % % Michael Crichton
github
tsajed/nmr-pred-master
mtimes.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/mtimes.m
5,965
utf_8
2dc0443feb0d20eea9a969bcd0222188
% Performs tensor train multiplication followed by a shrink. Syntax: % % c=mtimes(a,b) % % where first operand (a) can be scalar or tensor train, second operand % (b) can be scalar, or tensor train, or full matrix. % % [email protected] % [email protected] function c=mtimes(a,b) % Decide the type combination if isa(a,'ttclass')&&isa(b,'double')&&isscalar(b) % Multiply tensor train by a scalar from the right c=a; c.coeff=b*c.coeff; c.tolerance=b*c.tolerance; elseif isa(a,'ttclass')&&isa(b,'double')&&numel(b)>1 % Read sizes and ranks of the operands [a_ncores,a_ntrains]=size(a.cores); a_ranks=ranks(a); a_sizes=sizes(a); b_sizes=size(b); % Check consistency if (prod(a_sizes(:,2))~=b_sizes(1)) error('tensor train and vector sizes should be consistent for multiplication.'); end % Preallocate result mc=prod(a_sizes(:,1)); nc=b_sizes(2); c=zeros(mc,nc); % Loop over the buffers of the operands for na=1:a_ntrains % Set current vector as the right-hand side d=b; % Loop over the cores and perform multiplication for ka=a_ncores:(-1):1 % Reshape the current vector d=reshape(d,[a_ranks(ka+1,na)*a_sizes(ka,2),prod(a_sizes(1:ka-1,2))*prod(a_sizes(ka+1:a_ncores,1))*nc]); % Extract the core of the first operand and reshape it appropriately a_core=a.cores{ka,na}; a_core=reshape(a_core,[a_ranks(ka,na),a_sizes(ka,1),a_sizes(ka,2),a_ranks(ka+1,na)]); a_core=permute(a_core,[1,2,4,3]); a_core=reshape(a_core,[a_ranks(ka,na)*a_sizes(ka,1),a_ranks(ka+1,na)*a_sizes(ka,2)]); % Perform the contraction d=a_core*d; d=reshape(d,[a_ranks(ka,na),a_sizes(ka,1),prod(a_sizes(1:ka-1,2))*prod(a_sizes(ka+1:a_ncores,1)),nc]); d=permute(d,[1,3,2,4]); end % Accumulate the result c=c+a.coeff(na)*reshape(d,[mc,nc]); end elseif isa(a,'double')&&isa(b,'ttclass')&&isscalar(a) % Multiply tensor train by a scalar from the left c=b; c.coeff=a*c.coeff; c.tolerance=a*c.tolerance; elseif isa(a,'ttclass')&&isa(b,'ttclass') % Read sizes and ranks of the operands [a_ncores,a_ntrains]=size(a.cores); a_ranks=ranks(a); a_sizes=sizes(a); [b_ncores,b_ntrains]=size(b.cores); b_ranks=ranks(b); b_sizes=sizes(b); % Check consistency if (a_ncores~=b_ncores)||(~all(a_sizes(:,2)==b_sizes(:,1))) error('tensor train structures must be consistent.'); end % Preallocate the result new_cores=cell(a_ncores,a_ntrains,b_ntrains); new_coeff=zeros(a_ntrains,b_ntrains); new_tolerance=zeros(a_ntrains,b_ntrains); % Loop over the buffers of the operands for nb=1:b_ntrains for na=1:a_ntrains % Loop over the cores for nc=1:a_ncores % Extract cores from the operands core_of_a=a.cores{nc,na}; core_of_b=b.cores{nc,nb}; % Run the index contraction: [la, ma, na, ra] * [lb, mb, nb, rb] -> [la, lb, ma, nb, ra, rb] core_of_a=reshape(permute(core_of_a,[1 4 2 3]),[a_ranks(nc,na)*a_ranks(nc+1,na)*a_sizes(nc,1),a_sizes(nc,2)]); core_of_b=reshape(permute(core_of_b,[2 3 1 4]),[b_sizes(nc,1),b_sizes(nc,2)*b_ranks(nc,nb)*b_ranks(nc+1,nb)]); core_of_c=reshape(core_of_a*core_of_b,[a_ranks(nc,na),a_ranks(nc+1,na),a_sizes(nc,1),b_sizes(nc,2),b_ranks(nc,nb),b_ranks(nc+1,nb)]); core_of_c=permute(core_of_c,[1 5 3 4 2 6]); % Store the core of the result new_cores{nc,na,nb}=reshape(core_of_c,[a_ranks(nc,na)*b_ranks(nc,nb),a_sizes(nc,1),b_sizes(nc,2),a_ranks(nc+1,na)*b_ranks(nc+1,nb)]); end % Multiply coefficients new_coeff(na,nb)=a.coeff(na)*b.coeff(nb); if a.coeff(na)==0 || b.coeff(nb)==0 % The summand is exactly zero new_tolerance(na,nb)=0; else % Compute the norm of the current summand tt_current=ttclass; tt_current.coeff=a.coeff(na)*b.coeff(nb); tt_current.cores=cell(a_ncores,1); tt_current.cores=new_cores(:,na,nb); tt_current.tolerance=0; norm_current=norm(tt_current,'fro'); % Update accuracy new_tolerance(na,nb)=norm_current*(a.tolerance(1,na)/abs(a.coeff(1,na))+b.tolerance(1,nb)/abs(b.coeff(1,nb))); end end end % Write the output data structure c=ttclass; c.coeff=reshape(new_coeff,[1,a_ntrains*b_ntrains]); c.cores=reshape(new_cores,[a_ncores,a_ntrains*b_ntrains]); c.tolerance=reshape(new_tolerance,[1,a_ntrains*b_ntrains]); % Filter out zero coeff pos=find(c.coeff); if ~isempty(pos) c.coeff=c.coeff(pos); c.cores=c.cores(:,pos); c.tolerance=c.tolerance(pos); else c=0*unit_like(c); end % Compress the answer c=shrink(c); else % Complain and bomb out error('both operands must be either scalars or tensor trains.'); end end % Nothing is more revolting than the majority; for it consists of few vigorous % predecessors, of knaves who accommodate themselves, of weak people who assi- % milate themselves, and the mass that toddles after them without knowing in % the least what it wants. % % Johann Wolfgang von Goethe
github
tsajed/nmr-pred-master
mldivide.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/mldivide.m
870
utf_8
753b64fec557e020644e064b581fd109
% Solves a linear system with tensor train objects. Syntax: % % x=mldivide(A,y) % % The first input should be a ttclass matrix and the % second one a ttclass vector of appropriate mode sizes. % % Note: the AMEn-solve algorithm is applied to symmetrized % system A'A x = A'y. % % [email protected] function x=mldivide(A,y) if isa(A,'ttclass')&&isa(y,'ttclass') % Shrink the operands A=shrink(A); y=shrink(y); % Form a symmetrised system AA=shrink(A'*A); Ay=shrink(A'*y); % Solve it with AMEn algorithm x=ttclass_amen_solve(AA,Ay,1e-6); else % Complain and bomb out error('both arguments should be tensor trains.'); end end % The penalty for success is to be bored by the people % who used to snub you. % % Nancy Astor
github
tsajed/nmr-pred-master
trace.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/trace.m
1,192
utf_8
086e187c1371bff5bb6924cd7965a146
% Computes the trace of a tensor train operator. Syntax: % % tttrace=trace(tt) % % [email protected] % [email protected] function tttrace=trace(tt) % Read sizes and ranks [ncores,ntrains]=size(tt.cores); tt_ranks=ranks(tt); tt_sizes=sizes(tt); % Make an auxiliary tensor train ttaux=ttclass; ttaux.coeff=tt.coeff; ttaux.tolerance=zeros(1,ntrains); ttaux.cores=cell(ncores,ntrains); % Run through all tensor trains for n=1:ntrains for k=1:ncores % Preallocate a core ttaux.cores{k,n}=zeros(tt_ranks(k,n),tt_ranks(k+1,n)); % Fill in the core for j=1:tt_ranks(k+1,n) for i=1:tt_ranks(k,n) ttaux.cores{k,n}(i,j)=trace(reshape(tt.cores{k,n}(i,:,:,j),[tt_sizes(k,1),tt_sizes(k,2)])); end end % Reshape the core ttaux.cores{k,n}=reshape(ttaux.cores{k,n},[tt_ranks(k,n),1,1,tt_ranks(k+1,n)]); end end % Sum up the auxiliary tensor train tttrace=full(ttaux); end % Pronouncement of experts to the effect that something cannot % be done has always irritated me. - Leo Szilard
github
tsajed/nmr-pred-master
rdivide.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/rdivide.m
752
utf_8
36cb64a77970cb6031449a15a3f65137
% Divides a tensor train object by a scalar. Syntax: % % c=rdivide(a,b) % % The first input should be a ttclass object and the % second one a scalar. % % [email protected] % [email protected] function a=rdivide(a,b) % Division of tensor train by a scalar if isa(a,'ttclass')&&isscalar(b) % Divide the coefficients and update the tolerances a.coeff=a.coeff/b; a.tolerance=a.tolerance/abs(b); else % Complain and bomb out error('the first argument must be a tensor train and the second one a scalar.'); end end % Documentation is like sex: when it is good, it is very, very good, and when % it is bad it's still better than nothing. % % Jim Hargrove
github
tsajed/nmr-pred-master
minus.m
.m
nmr-pred-master/spinach/kernel/overloads/@ttclass/minus.m
1,042
utf_8
c4a72a765e7bae60094e8ef1657324c6
% Tensor train subtraction operation. Does not perform the actual subtraction % but instead concatenates the operands until such time as recompression beco- % mes absolutely necessary. Syntax: % % c=minus(a,b) % % [email protected] % [email protected] function a=minus(a,b) % Validate the input if (~isa(a,'ttclass'))||(~isa(b,'ttclass')) error('both operands must be tensor train objects.'); elseif (size(a.cores,1)~=size(b.cores,1))||(~all(all(sizes(a)==sizes(b)))) error('dimension mismatch in tensor trains.'); end % Write the difference object a.coeff=[a.coeff -b.coeff]; a.cores=[a.cores b.cores]; a.tolerance=[a.tolerance b.tolerance]; % Filter out zero coeff pos=find(a.coeff); if ~isempty(pos) a.coeff=a.coeff(pos); a.cores=a.cores(:,pos); a.tolerance=a.tolerance(pos); else a=0*unit_like(a); end end % Meraki (Greek, n.) - the soul, creativity or love put into something; % the essence of yourself that is put into your work.
github
tsajed/nmr-pred-master
ist_product_table.m
.m
nmr-pred-master/spinach/kernel/cache/ist_product_table.m
2,349
utf_8
21a7346291a6dfd9ce26b0b64366d459
% Structure coefficient tables for the associateive envelopes of su(mult) % algebras. Syntax: % % [product_table_left,product_table_right]=ist_product_table(mult) % % The input parameter is the multiplicity of the spin in question. Output % contains the structure constants in the following conventions: % % T{n}*T{m}=sum_over_k[product_table_left(n,m,k)*T{k}] % % T{m}*T{n}=sum_over_k[product_table_right(n,m,k)*T{k}] % % Disk caching is used and updated automatically. % % [email protected] % [email protected] function [product_table_left,product_table_right]=ist_product_table(mult) % Check consistency grumble(mult); % Generate cache record name table_file=['ist_product_table_' num2str(mult) '.mat']; % Check the cache if exist(table_file,'file') % Lift data from the cache if the file is already available load(table_file); else % Get the irreducible spherical tensors T=irr_sph_ten(mult); % Preallocate the arrays product_table_left=zeros(mult^2,mult^2,mult^2); product_table_right=zeros(mult^2,mult^2,mult^2); % Get the structure coefficients for m=1:mult^2 for k=1:mult^2 normalization=sqrt(trace(T{k}*T{k}')*trace(T{m}*T{m}')); for n=1:mult^2 product_table_left(n,m,k)=trace(T{n}*T{m}*T{k}')/normalization; product_table_right(n,m,k)=trace(T{m}*T{n}*T{k}')/normalization; end end end % Save the table to the cache save(table_file,'product_table_left','product_table_right'); end end % Consistency enforcement function grumble(mult) if (numel(mult)~=1)||(~isnumeric(mult))||(~isreal(mult))||... (mult<2)||(mod(mult,1)~=0) error('mult must be a real integer greater than 1.'); end end % According to Oxford Chemistry folklore, Peter Atkins has once asked the % following question at an interview for a Lecturer post: "What is it that % you have done that a technician would not do?". The candidate produced a % reasonable answer to the effect that a technician would not have the re- % quired skills. A better answer was suggested by a member of the Inter- % view Board some time later: "And what is it that you, Atkins, have done % that a journalist would not do?"
github
tsajed/nmr-pred-master
sle_operators.m
.m
nmr-pred-master/spinach/kernel/cache/sle_operators.m
12,203
utf_8
559f4a2c2b9b6a2c65735def057aa88e
% Lab space basis set and lab space operators required by % the SLE module. Syntax: % % [Lx,Ly,Lz,D,space_basis]=sle_operators(max_rank) % % Input parameters: % % max_rank - maximum L rank for Wigner functions % % Output parameters: % % space_basis - lab space basis set descriptor, in % [L M N] format, giving indices of % each Wigner function in the basis. % % Lx,Ly,Lz - representations of lab space rotation % generators in the Wigner function basis, % to be used in the building of the lab % space diffusion operator. % % D - a cell array of Wigner function product % superoperators, corresponding to multi- % plication by D[2,M,N] of the basis Wig- % ner functions, to be used in the build- % ing of the spin Hamiltonian operator. % % Automatic caching is implemented -- the function would % not recompute operator sets that it can find on disk. % % [email protected] % [email protected] function [Lx,Ly,Lz,D,space_basis]=sle_operators(max_rank) % Check consistency grumble(max_rank); % Generate cache record name current_path=which('sle_operators'); current_path=current_path(1:(end-15)); cache_file=[current_path 'sle_operators_rank_' num2str(max_rank) '.mat']; % Check the cache if exist(cache_file,'file') % Lift data from the cache if the file is already available load(cache_file); else % Determine the spatial problem dimension basis_dim=(1+max_rank)*(1+2*max_rank)*(3+2*max_rank)/3; % Preallocate the spatial basis descriptor space_basis=zeros(basis_dim,3); % Populate the spatial basis descriptor for rank=0:max_rank % Determine the index extents extents_upper=rank*(2*rank-1)*(2*rank+1)/3+1; extents_lower=(1+rank)*(1+2*rank)*(3+2*rank)/3; % Assign Wigner function ranks space_basis(extents_upper:extents_lower,1)=rank; % Assign Wigner function left projection indices space_basis(extents_upper:extents_lower,2)=kron((rank:-1:-rank)',ones(2*rank+1,1)); % Assign Wigner function right projection indices space_basis(extents_upper:extents_lower,3)=kron(ones(2*rank+1,1),(rank:-1:-rank)'); end % Build spatial L+ generator: pick the states that can be raised source_states=space_basis(space_basis(:,2)<space_basis(:,1),:); new_dim=size(source_states,1); % Build spatial L+ generator: find out what they are raised into destin_states=source_states+[zeros(new_dim,1) ones(new_dim,1) zeros(new_dim,1)]; % Build spatial L+ generator: compute the corresponding matrix elements matrix_elements=sqrt(source_states(:,1).*(source_states(:,1)+1)-... source_states(:,2).*(source_states(:,2)+1)); % Build spatial L+ generator: determine linear indices of source states L=source_states(:,1); M=source_states(:,2); N=source_states(:,3); source_state_indices=L.*(4*L.^2+6*(L-M)+5)/3-M-N+1; % Build spatial L+ generator: determine linear indices of destination states L=destin_states(:,1); M=destin_states(:,2); N=destin_states(:,3); destin_state_indices=L.*(4*L.^2+6*(L-M)+5)/3-M-N+1; % Build spatial L+ generator: form the L+ matrix Lp=sparse(destin_state_indices,source_state_indices,matrix_elements,basis_dim,basis_dim); % Build Lx and Ly rotation generators from L+ Lx=(Lp+Lp')/2; Ly=(Lp-Lp')/2i; % Build Lz rotation generator Lz=spdiags(space_basis(:,2),0,basis_dim,basis_dim); % Do a clean-up clear('source_states','destin_states','matrix_elements','L','M','N',... 'source_state_indices','destin_state_indices','Lp'); % Preallocate product action matrices for second-rank Wigner functions D=cell(5); % Build the source state list sources=kron(space_basis,ones(5,1)); % Loop over the left projection index for m=1:5 % Loop over the right projection index for n=1:5 % Get the indices of the acting Wigner function L1=2; M1=3-m; N1=3-n; % Preallocate destination state list destinations=zeros(5*basis_dim,3); % Loop over the basis set for k=1:basis_dim % Get the source indices L2=space_basis(k,1); M2=space_basis(k,2); N2=space_basis(k,3); % Determine destination indices ranks=((L2-L1):(L2+L1))'; prj_m=(M1+M2)*ones(size(ranks)); prj_n=(N1+N2)*ones(size(ranks)); % Build the destination state list destinations((5*(k-1)+1):(5*(k-1)+5),:)=[ranks prj_m prj_n]; end % Screen source and destination lists L=destinations(:,1); L2=sources(:,1); M=destinations(:,2); M2=sources(:,2); N=destinations(:,3); N2=sources(:,3); hit_list=(L>=max(0,abs(L2-L1)))&(abs(M)<=L)&(abs(N)<=L)&(L<=max_rank); L=L(hit_list); L1=L1*ones(size(L)); L2=L2(hit_list); M=M(hit_list); M1=M1*ones(size(M)); M2=M2(hit_list); N=N(hit_list); N1=N1*ones(size(N)); N2=N2(hit_list); % Scaling factor for the structure coefficients that is equivalent % to normalizing the Wigner D functions used normalization_factor=sqrt((2*L2+1)./(2*L+1)); % Compute the structure coefficients of the Wigner D functions matrix_elements=clebsch_gordan_bypass(L,M,L1,M1,L2,M2).*... clebsch_gordan_bypass(L,N,L1,N1,L2,N2).*... normalization_factor; % Assign matrix elements destin_state_indices=L.*(4*L.^2+6*(L-M)+5)/3-M-N+1; source_state_indices=L2.*(4*L2.^2+6*(L2-M2)+5)/3-M2-N2+1; D{m,n}=sparse(destin_state_indices,source_state_indices,matrix_elements,basis_dim,basis_dim); end end % Save the cache record save(cache_file,'space_basis','Lx','Ly','Lz','D','-v7.3'); end end % Hard-coded Clebsch-Gordan formulae for the L1=2 case function cg=clebsch_gordan_bypass(L_array,~,~,M1_array,L2_array,M2_array) % Preallocate the answer cg=zeros(size(L_array)); parfor n=1:numel(L_array) % Get local variables L=L_array(n); M1=M1_array(n); L2=L2_array(n); M2=M2_array(n); % Enumerate all cases explicitly switch M1 case -2 switch L case L2-2 cg(n)=sqrt(((-3+L2+M2)*(-2+L2+M2)*(-1+L2+M2)*(L2+M2))/... (L2*(1-L2-4*power(L2,2)+4*power(L2,3))))/2; case L2-1 cg(n)=-(sqrt(((1+L2-M2)*(-2+L2+M2)*(-1+L2+M2)*(L2+M2))/.... (L2*(-1-2*L2+power(L2,2)+2*power(L2,3))))/sqrt(2)); case L2 cg(n)=sqrt(1.5)*sqrt(((1+L2-M2)*(2+L2-M2)*(-1+L2+M2)*(L2+M2))/... (L2*(-3+L2*(1+4*L2*(2+L2))))); case L2+1 cg(n)=-(sqrt(((1+L2-M2)*(2+L2-M2)*(3+L2-M2)*(L2+M2))/... (L2*(2+7*L2+7*power(L2,2)+2*power(L2,3))))/sqrt(2)); case L2+2 cg(n)=(power(-1,-2*L2+2*M2)*sqrt(((1+L2-M2)*(2+L2-M2)*(3+L2-M2)*(4+L2-M2))/... (6+25*L2+35*power(L2,2)+20*power(L2,3)+4*power(L2,4))))/2; end case -1 switch L case L2-2 cg(n)=-sqrt(((L2-M2)*(-2+L2+M2)*(-1+L2+M2)*(L2+M2))/... (L2*(1-L2-4*power(L2,2)+4*power(L2,3)))); case L2-1 cg(n)=((1+L2-2*M2)*sqrt(((-1+L2+M2)*(L2+M2))/... (L2*(-1-2*L2+power(L2,2)+2*power(L2,3)))))/sqrt(2); case L2 cg(n)=sqrt(1.5)*sqrt(((1+L2-M2)*(L2+M2))/... (L2*(-3+L2*(1+4*L2*(2+L2)))))*(-1+2*M2); case L2+1 cg(n)=-((power(-1,-2*L2+2*M2)*sqrt(((1+L2-M2)*(2+L2-M2))/... (L2*(1+L2)*(2+L2)*(1+2*L2)))*(L2+2*M2))/sqrt(2)); case L2+2 cg(n)=power(-1,-2*L2+2*M2)*sqrt(((1+L2-M2)*(2+L2-M2)*(3+L2-M2)*(1+L2+M2))/... (6+25*L2+35*power(L2,2)+20*power(L2,3)+4*power(L2,4))); end case 0 switch L case L2-2 cg(n)=sqrt(1.5)*sqrt(((-1+L2-M2)*(L2-M2)*(-1+L2+M2)*(L2+M2))/... (L2*(1-L2-4*power(L2,2)+4*power(L2,3)))); case L2-1 cg(n)=sqrt(3)*M2*sqrt((power(L2,2)-power(M2,2))/... (L2*(-1-2*L2+power(L2,2)+2*power(L2,3)))); case L2 cg(n)=(-(L2*(1+L2))+3*power(M2,2))/... sqrt(L2*(-3+L2*(1+4*L2*(2+L2)))); case L2+1 cg(n)=-(power(-1,-2*L2+2*M2)*sqrt(3)*M2*sqrt(((1+L2-M2)*(1+L2+M2))/... (L2*(1+L2)*(2+L2)*(1+2*L2)))); case L2+2 cg(n)=power(-1,-2*L2+2*M2)*sqrt(3)*sqrt(((1+L2-M2)*(2+L2-M2)*(1+L2+M2)*(2+L2+M2))/... (12+50*L2+70*power(L2,2)+40*power(L2,3)+8*power(L2,4))); end case 1 switch L case L2-2 cg(n)=-sqrt(((-2+L2-M2)*(-1+L2-M2)*(L2-M2)*(L2+M2))/... (L2*(1-L2-4*power(L2,2)+4*power(L2,3)))); case L2-1 cg(n)=-((sqrt(((-1+L2-M2)*(L2-M2))/... ((-1+L2)*L2*(1+L2)*(1+2*L2)))*(1+L2+2*M2))/sqrt(2)); case L2 cg(n)=-(power(-1,-2*L2+2*M2)*sqrt(1.5)*sqrt(((L2-M2)*(1+L2+M2))/... (L2*(-3+L2*(1+4*L2*(2+L2)))))*(1+2*M2)); case L2+1 cg(n)=(power(-1,-2*L2+2*M2)*(L2-2*M2)*sqrt(((1+L2+M2)*(2+L2+M2))/... (L2*(2+7*L2+7*power(L2,2)+2*power(L2,3)))))/sqrt(2); case L2+2 cg(n)=power(-1,-2*L2+2*M2)*sqrt(((1+L2-M2)*(1+L2+M2)*(2+L2+M2)*(3+L2+M2))/... (6+25*L2+35*power(L2,2)+20*power(L2,3)+4*power(L2,4))); end case 2 switch L case L2-2 cg(n)=sqrt(((-3+L2-M2)*(-2+L2-M2)*(-1+L2-M2)*(L2-M2))/... (L2*(1-L2-4*power(L2,2)+4*power(L2,3))))/2; case L2-1 cg(n)=(power(-1,-2*L2+2*M2)*sqrt(((-2+L2-M2)*(-1+L2-M2)*(L2-M2)*(1+L2+M2))/... (L2*(-1-2*L2+power(L2,2)+2*power(L2,3)))))/sqrt(2); case L2 cg(n)=power(-1,-2*L2+2*M2)*sqrt(1.5)*sqrt(((-1+L2-M2)*(L2-M2)*(1+L2+M2)*(2+L2+M2))/... (L2*(-3+L2*(1+4*L2*(2+L2))))); case L2+1 cg(n)=(power(-1,-2*L2+2*M2)*sqrt(((L2-M2)*(1+L2+M2)*(2+L2+M2)*(3+L2+M2))/... (L2*(2+7*L2+7*power(L2,2)+2*power(L2,3)))))/sqrt(2); case L2+2 cg(n)=(power(-1,-2*L2+2*M2)*sqrt(((1+L2+M2)*(2+L2+M2)*(3+L2+M2)*(4+L2+M2))/... (6+25*L2+35*power(L2,2)+20*power(L2,3)+4*power(L2,4))))/2; end end end end % Consistency enforcement function grumble(max_rank) if (numel(max_rank)~=1)||(~isnumeric(max_rank))||(~isreal(max_rank))||... (max_rank<1)||(mod(max_rank,1)~=0) error('max_rank must be a real positive integer.'); end end % To invent, you need a good imagination and a pile of junk. % % Thomas Edison
github
tsajed/nmr-pred-master
fminsimplex.m
.m
nmr-pred-master/spinach/kernel/optimcon/fminsimplex.m
13,910
utf_8
d3bff5cd1d377cf7d5a96e32dd76ddbe
% Nelder-Mead and Multi-directional search simplex algorithms for % minimisation of a gradient-free objective function % % <http://spindynamics.org/wiki/index.php?title=Fminsimplex.m> function [x, f_min, data] = fminsimplex(cost_function, x, optim, cost_fun_vars) x0 = x(:); data.x_shape=size(x); % Work with column vector internally. data.n_vars = numel(x0); % Always Bootstrap and set optimisation tolerances % - assume user isn't optimisation expert optim.cost_function=cost_function; optim=optim_tols(optim,data.n_vars); % add cost function variables to the data structure (empty if not provided) if ~exist('cost_fun_vars','var'), cost_fun_vars=[]; end data.cost_fun_vars=cost_fun_vars; % penalty terms to consider (default=0), affects output display only. data.npen=optim.algo.npen; X = [zeros(data.n_vars,1) eye(data.n_vars)]; X(:,1) = x0; data.n_fx=0; data.iter = 0; data.iter_inner = 0; data.parallel_cost_fcn=optim.algo.parallel_cost_fcn; data.timeTotal=tic; data.time_fx=0; data.iter_timer=tic; % Set up initial simplex. scale = max(norm(x0,inf),1); switch optim.algo.init_simplex case {'equilateral'} % Regular simplex - all edges have same length. % Generated from construction given in reference [18, pp. 80-81] of [1]. alpha = scale / (data.n_vars*sqrt(2)) * [ sqrt(data.n_vars+1)-1+data.n_vars sqrt(data.n_vars+1)-1 ]; X(:,2:data.n_vars+1) = (x0 + alpha(2)*ones(data.n_vars,1)) * ones(1,data.n_vars); for j=2:data.n_vars+1 X(j-1,j) = x0(j-1) + alpha(1); end case {'right-angled'} % Right-angled simplex based on co-ordinate axes. alpha = scale*ones(data.n_vars+1,1); for j=2:data.n_vars+1 X(:,j) = x0 + alpha(j)*X(:,j); end end % find simplex functional values (cost function should be parallel) [data,f_x]=objeval(X,cost_function, data); fmin_old = f_x(1); % print optimisation header iterative_reporting([],[],'head',[],optim,data); exitflag=[]; data.how=' initial'; data.size = 0; data.n_fx = data.n_vars+1; [f_x,j] = sort(f_x); X = X(:,j); f_min = f_x(1); x_min = X(:,1); data.size_simplex = norm(X(:,2:data.n_vars+1)-x_min*ones(1,data.n_vars),1) / max(1, norm(x_min,1)); % Start optimisation while(true) % define the minimum f_min = f_x(1); % Add one to the current iteration data.itertime=toc(data.iter_timer); data.iter_timer=tic; data.iter = data.iter+1; % check if iterations exceeds maximum if(optim.tols.max_iter < data.iter), exitflag=-1; break, end if f_min < fmin_old % report diagnostics to user data.size_simplex = norm(X(:,2:data.n_vars+1)-x_min*ones(1,data.n_vars),1) / max(1, norm(x_min,1)); iterative_reporting(f_min,fmin_old,'iter',exitflag,optim,data); % Call output function if specified if(output_function(optim.sys.outputfun,'iter')), exitflag=-1; break, end end x_min = X(:,1); fmin_old = f_min; % Stopping Test 1 - f reached target value? if f_min <= optim.tols.termination ,exitflag = 0; break, end switch optim.algo.method case 'md_simplex' data.iter_inner = 0; while(true) %%% Inner repeat loop. data.iter_inner = data.iter_inner+1; % Stopping Test 2 - too many f-evals? if data.n_fx >= optim.tols.max_n_fx, exitflag = 1; break, end % Stopping Test 3 - converged? test (4.3) in [1]. data.size_simplex = norm(X(:,2:data.n_vars+1)-x_min*ones(1,data.n_vars),1) / max(1, norm(x_min,1)); if data.size_simplex <= optim.tols.simplex_min, exitflag = 2; break, end X_r=zeros(length(x_min),data.n_vars); for j=1:data.n_vars % ---Rotation (reflection) step. X_r(:,j) = x_min - (X(:,j+1)-x_min); end [data,f_r]=objeval(X_r,cost_function, data); replaced = ( min(f_r) < f_min); if replaced X_e=zeros(length(x_min),data.n_vars); for j=1:data.n_vars % ---Expansion step. X_e(:,j) = x_min - optim.tols.expansion*(X_r(:,j)-x_min); end [data,f_e]=objeval(X_e,cost_function, data); % Accept expansion or rotation? if min(f_e) < min(f_x) X(:,2:data.n_vars+1) = X_e; f_x(2:data.n_vars+1) = f_e; % Accept rotation. data.size = data.size + 1; % Accept expansion (f and V already set). data.how=' expand'; else X(:,2:data.n_vars+1) = X_r; f_x(2:data.n_vars+1) = f_r; % Accept rotation. data.how=' reflect'; end else X_c=zeros(length(x_min),data.n_vars); for j=1:data.n_vars % ---Contraction step. X_c(:,j) = x_min + optim.tols.contraction*(X(:,j+1)-x_min); end [data,f_c]=objeval(X_c,cost_function, data); replaced = (min(f_c) < f_min); data.how='contract'; % Accept contraction (f and V already set). X(:,2:data.n_vars+1) = X_c; f_x(2:data.n_vars+1) = f_c; % Accept rotation. data.size = data.size - 1; end [f_x,j]=sort(f_x); X = X(:,j); if replaced, break, end if optim.sys.output && rem(data.iter_inner,10) == 0 optim_report(optim.sys.output,[' ...inner iterations = ' int2str(data.iter_inner)],1); end end %%% Of inner repeat loop. if ~isempty(exitflag), break, end case 'nm_simplex' % Stopping Test 2 - too many f-evals? if data.n_fx >= optim.tols.max_n_fx, exitflag = 1; break, end % Stopping Test 3 - converged? test (4.3) in [1]. x_min = X(:,1); data.size_simplex = norm(X(:,2:data.n_vars+1)-x_min*ones(1,data.n_vars),1) / max(1, norm(x_min,1)); if data.size_simplex <= optim.tols.simplex_min, exitflag = 2; break, end % One step of the Nelder-Mead simplex algorithm vbar = sum(X(:,1:data.n_vars),2)./data.n_vars; % Mean value X_r = (1 + optim.tols.reflection)*vbar - optim.tols.reflection*X(:,data.n_vars+1); x = X_r(:); [data,f_r]=objeval(x,cost_function, data); X_k = X_r; f_k = f_r; data.how = ' reflect'; if f_r < f_x(1) if f_r < f_x(1) X_e = optim.tols.expansion*X_r + (1-optim.tols.expansion)*vbar; x = X_e(:); [data,f_e]=objeval(x,cost_function, data); if f_e < f_x(1) X_k = X_e; f_k = f_e; data.how = ' expand'; end end else X_t = X(:,1); f_t = f_x(1); if f_r < f_t X_t = X_r; f_t = f_r; end X_c = optim.tols.contraction*X_t + (1-optim.tols.contraction)*vbar; x = X_c(:); [data,f_c]=objeval(x,cost_function, data); if f_c < f_x(data.n_vars) X_k = X_c; f_k = f_c; data.how = 'contract'; else for j = 2:data.n_vars X(:,j) = (X(:,1) + X(:,j))/2; end [data,f_x]=objeval(X,cost_function, data); X_k = (X(:,1) + X(:,data.n_vars+1))/2; x(:) = X_k; [data,f_k]=objeval(x,cost_function, data); data.how = ' shrink'; end end X(:,data.n_vars+1) = X_k; f_x(data.n_vars+1) = f_k; [f_x,j] = sort(f_x); X = X(:,j); end end %%%%%% Of outer loop. % Call output function if specified if(output_function(optim.sys.outputfun,'done')), exitflag=-2; end % Finished. switch optim.algo.method case 'md_simplex' x(:) = x_min; x=reshape(x,data.x_shape); case 'nm_simplex' x(:) = X(:,1); x=reshape(x,data.x_shape); end data=iterative_reporting(f_min,fmin_old,'term',exitflag,optim,data); function exit=output_function(outputfun,where) exit=false; % initialise if(~isempty(outputfun)) % data structure to output function % <add any variable to export here> % if exit is returned as true, optimisation will finish if isempty(opt_arg) exit=feval(outputfun,reshape(x,data.x_shape),data,where); else exit=feval(outputfun,reshape(x,data.x_shape),data,where,opt_arg); end end end end function data=iterative_reporting(fx_min,fmin_old,report_case,exitflag,optim,data) switch report_case case {'head'} % Report start of optimisation to user switch(optim.algo.method) case 'nm_simplex', optim_report(optim.sys.output,'start optimisation using Nelder-Mead, simplex method',1); case 'md_simplex', optim_report(optim.sys.output,'start optimisation using Multi-directional, simplex method',1); end optim_report(optim.sys.output,['Cost Function = @', func2str(optim.sys.costfun.handle)],1); optim_report(optim.sys.output,'==============================================================================================',1); obj_fun_str=[blanks(17) optim.sys.obj_fun_str]; obj_fun_str=obj_fun_str(end-17:end); if ismember(optim.algo.method,{'nm_simplex'}) optim_report(optim.sys.output,['Iter Time #f(x) how ' obj_fun_str ' splx-size Change'],1); elseif ismember(optim.algo.method,{'md_simplex'}) optim_report(optim.sys.output,['Iter Time #f(x) how InIter ' obj_fun_str ' splx-size Change'],1); end optim_report(optim.sys.output,'----------------------------------------------------------------------------------------------',1); case {'iter'} t=data.itertime; if t<1e-3, Tstr=sprintf('%5.0e',t); elseif t<10, Tstr=sprintf('%5.3f',t); elseif t<1e2, Tstr=sprintf('%5.2f', t); elseif t<1e3, Tstr=sprintf('%5.1f',t); elseif t<=99999, Tstr=sprintf('%5.0f',t); else Tstr=sprintf('%5.0e',t); end % Report optimisation iterasation to user if ismember(optim.algo.method,{'nm_simplex'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f ' data.how ' %17.9g %10.5g (%2.1f%%)'],... data.iter,data.n_fx,optim.sys.obj_fun_disp(fx_min),data.size_simplex,100*(fx_min-fmin_old)/(abs(fmin_old)+eps)),1); elseif ismember(optim.algo.method,{'md_simplex'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f ' data.how ' %5.0f %17.9g %10.5g (%2.1f%%)'],... data.iter,data.n_fx,data.iter_inner,optim.sys.obj_fun_disp(fx_min),data.size_simplex,100*(fx_min-fmin_old)/(abs(fmin_old)+eps)),1); end case {'term'} optim_report(optim.sys.output,'==============================================================================================',1); % Make exist output structure switch(optim.algo.method) case 'nm_simplex', data.algorithm='Nelder-Mead Simplex method'; case 'md_simplex', data.algorithm='Multi-directional Simplex method'; end % report optimisation results to user data.exit_message=exitmessage(exitflag); data.minimum = optim.sys.obj_fun_disp(fx_min); data.timeTotal=toc(data.timeTotal); data.timeIntern=data.timeTotal-data.time_fx; optim_report(optim.sys.output,'Optimisation Results',1) optim_report(optim.sys.output,[' Algorithm Used : ' data.algorithm],1); optim_report(optim.sys.output,[' Exit message : ' data.exit_message],1); optim_report(optim.sys.output,[' Iterations : ' int2str(data.iter)],1); optim_report(optim.sys.output,[' Function Count : ' int2str(data.n_fx)],1); optim_report(optim.sys.output,[' Minimum found : ' num2str(data.minimum)],1); optim_report(optim.sys.output,[' Optimiser Time : ' num2str(data.timeIntern) ' seconds'],1); optim_report(optim.sys.output,[' Function calc Time : ' num2str(data.time_fx) ' seconds'],1); optim_report(optim.sys.output,[' Total Time : ' num2str(data.timeTotal) ' seconds'],1); optim_report(optim.sys.output,'==============================================================================================',1); if ~isinteger(optim.sys.output) && optim.sys.output>=3, optim_report(optim.sys.output,[],[],true); end pause(1.5); end end function message=exitmessage(exitflag) switch(exitflag) % list of exiflag messages case 2, message='Simplex size less than defined tolerance <simplex_min>'; case 1, message='Max no. of function evaluations exceeded.'; case 0, message='Exceeded target.'; case -1, message='Max no. of iterations exceeded.'; case -2, message='Algorithm was terminated by the output function.'; otherwise, message='Undefined exit code'; end end % Seek freedom and become captive of your desires. Seek discipline and find % your liberty. % % Frank Herbert
github
tsajed/nmr-pred-master
control_sys.m
.m
nmr-pred-master/spinach/kernel/optimcon/control_sys.m
6,790
utf_8
57f9087ab0a0c20d9456ed9d05a872c3
% Options and structure creation for a control system. Sets the various % options used throughout optimal control algorithms. % % Modifications to this function are discouraged -- the accuracy settings % should be modified by setting the sub-fields of the ctrl_param structure. % % <http://spindynamics.org/wiki/index.php?title=Control_sys.m> function ctrl_param=control_sys(spin_system,control_system) % list of CONTROL algorithms % >>>>-add to lists as appropriate-<<<< optimcon_algos={'grape','tannor','zhu-rabitz'}; % ========================== STRUCT = OPTIM.SYS ========================== % store the cost function handle; throw error is not supplied - should % always be supplied if used with fminnewton: inherited from fminnewton % inputs % control banner if isfield(control_system,'method') && ismember(control_system.method,optimcon_algos) ctrl_param.method=control_system.method; control_system=rmfield(control_system,'method'); % parsed -> remove else error('must provide a control method e.g. grape, tannor, or zhu-rabitz') end optim_report(spin_system.sys.output,' '); optim_report(spin_system.sys.output,'==========================================='); optim_report(spin_system.sys.output,'= ='); optim_report(spin_system.sys.output,'= CONTROLS ='); optim_report(spin_system.sys.output,'= ='); optim_report(spin_system.sys.output,'==========================================='); optim_report(spin_system.sys.output,' '); optim_report(spin_system.sys.output,[pad('Control algorithm',80) pad(ctrl_param.method,20) ' ']); controls=control_system.control_ops; num_ctrls=numel(controls); ctrl_param.control_ops=controls; ctrl_param.comm_rel=zeros(num_ctrls); for n=1:num_ctrls for m=1:num_ctrls ctrl_param.comm_rel(n,m)=1-any(any(controls{n}*controls{m}-controls{m}*controls{n})); end end optim_report(spin_system.sys.output,[pad('Number of control operators',80) pad(int2str(num_ctrls),20) ' (calculated)']); control_system=rmfield(control_system,'control_ops'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Pairwise non-commuting control operators',80) pad(int2str((sum(ctrl_param.comm_rel(:)==0))./2),20) ' (calculated)']); % test for hermitian control_ops if ~all(cellfun(@ishermitian,ctrl_param.control_ops)) optim_report(spin_system.sys.output,pad('WARNING: not all control operators are Hermitian',80)); end if isfield(control_system,'target') ctrl_param.target=control_system.target; control_system=rmfield(control_system,'target'); % parsed -> remove end if isfield(control_system,'rho') ctrl_param.rho=control_system.rho; control_system=rmfield(control_system,'rho'); % parsed -> remove end if isfield(control_system,'ref_waveform') && ~ismember(ctrl_param.method,{'grape'}) ctrl_param.ref_waveform=control_system.ref_waveform; control_system=rmfield(control_system,'ref_waveform'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Reference waveform provided',80) pad('true',20) ' (user-specified)']); elseif ~ismember(ctrl_param.method,{'grape'}) optim_report(spin_system.sys.output,[pad('Reference waveform provided',80) pad('false',20) ' (default)']); end if isfield(control_system,'power_level') && control_system.power_level>0 ctrl_param.power_level=control_system.power_level; control_system=rmfield(control_system,'power_level'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Control pulse control amplitude (rad/s)',80) pad(num2str(ctrl_param.power_level,'%0.6g'),20) ' (user-specified)']); end if ismember(ctrl_param.method,{'tannor','zhu-rabitz'}) if isfield(control_system,'krotov_microiteration') ctrl_param.krotov_microiteration=control_system.krotov_microiteration; control_system=rmfield(control_system,'krotov_microiteration'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Krotov microiteration tolerance',80) pad(num2str(ctrl_param.krotov_microiteration,'%0.8e'),20) ' (user-specified)']); else ctrl_param.krotov_microiteration=1e-6; optim_report(spin_system.sys.output,[pad('Krotov microiteration tolerance',80) pad(num2str(ctrl_param.krotov_microiteration,'%0.8e'),20) ' (safe default)']); end if isfield(control_system,'lambda') ctrl_param.lambda=control_system.lambda; control_system=rmfield(control_system,'lambda'); % parsed -> remove optim_report(spin_system.sys.output,[pad('krotov lagrange multiplier, lambda',80) pad(num2str(ctrl_param.lambda,'%0.8e'),20) ' (user-specified)']); else ctrl_param.lambda=1e-3; optim_report(spin_system.sys.output,[pad('krotov lagrange multiplier, lambda',80) pad(num2str(ctrl_param.lambda,'%0.8e'),20) ' (safe default)']); end end if isfield(control_system,'pulse_duration') && control_system.pulse_duration>0 ctrl_param.pulse_duration=control_system.pulse_duration; control_system=rmfield(control_system,'pulse_duration'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Total duration of control pulses (s)',80) pad(num2str(ctrl_param.pulse_duration,'%0.6g'),20) ' (user-specified)']); if isfield(control_system,'nsteps') && mod(1,control_system.nsteps+1) && control_system.nsteps>0 ctrl_param.nsteps=control_system.nsteps; control_system=rmfield(control_system,'nsteps'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Number of control pulse',80) pad(int2str(ctrl_param.nsteps),20) ' (user-specified)']); if isfield(control_system,'time_step') && control_system.time_step==ctrl_param.pulse_duration/ctrl_param.nsteps ctrl_param.time_step=control_system.time_step; control_system=rmfield(control_system,'time_step'); % parsed -> remove optim_report(spin_system.sys.output,[pad('Length of single control pulse (s)',80) pad(num2str(ctrl_param.time_step,'%0.6g'),20) ' (user-specified)']); end end end %optim_report(optim_param.sys.output,[pad('Penalty function type',80) pad(int2str(1),20) 'TODO']); unprocessed=fieldnames(control_system); if ~isempty(unprocessed) optim_report(spin_system.sys.output,'----------------------------------------------------------------------------------------------'); for n=1:numel(unprocessed) optim_report(spin_system.sys.output,[pad('WARNING: unprocessed option',80) pad(unprocessed{n},20)]); end optim_report(spin_system.sys.output,'----------------------------------------------------------------------------------------------'); end end
github
tsajed/nmr-pred-master
fminnewton.m
.m
nmr-pred-master/spinach/kernel/optimcon/fminnewton.m
17,628
utf_8
15ea3b38da97ebf79602ae45fa5bfee0
% Finds a local minimum of a function of several variables using % newton-based algorithms. % % Based on fminlbfgs.m code from D. Kroon, University of Twente (Nov 2010). % % <http://spindynamics.org/wiki/index.php?title=Fminnewton.m> function [x,fx,grad,hess,data]=fminnewton(cost_function,x_0,optim,hess_init,cost_fun_vars) % Initialize the structure of the initial guess x = x_0(:); data.x_shape=size(x_0); data.n_vars = numel(x_0); % Always Bootstrap and set optimisation tolerances % - assume user isn't optimisation expert optim.cost_function=cost_function; optim=optim_tols(optim,data.n_vars); % initialise counters and timers data.iter=0; data.n_fx=0; data.n_grad=0; data.n_hess=0; data.n_cond=0; data.firstorderopt=[]; data.timeTotal=tic; data.time_fx=0; data.time_gfx=0; data.time_hfx=0; data.iter_timer=tic; % add cost function variables to the data structure (empty if not provided) if ~exist('cost_fun_vars','var'), cost_fun_vars=[]; end data.cost_fun_vars=cost_fun_vars; % penalty terms to consider (default=0), affects output display only. data.npen=optim.algo.npen; % initialise lbfgs memory counter if ismember(optim.algo.method,{'lbfgs'}), store.lbfgs_store=0; store.n_store=optim.algo.n_store; optim.algo=rmfield(optim.algo,'n_store'); store.deltaX=optim.algo.deltaX; optim.algo=rmfield(optim.algo,'deltaX'); store.deltaG=optim.algo.deltaG; optim.algo=rmfield(optim.algo,'deltaG'); end % print optimisation header iterative_reporting([],[],'head',[],optim,data); % set initial Hessian approximation if given, for bfgs or sr1 if ismember(optim.algo.method,{'bfgs','sr1'}) && exist('hess_init','var') hess=hess_init; else hess=eye(data.n_vars); end % initialise exitflag, functional and its derivatives exitflag=[]; fx=[]; grad=[]; alpha=0; dir=[]; % send to output function if defined if(output_function(optim.sys.outputfun,'init')), exitflag=-1; end % Start optimisation while(true) % Calculate the initial error and gradient and hessian if ismember(optim.algo.method,{'newton'}) && isempty(exitflag) [data,fx,grad,hess]=objeval(x(:),cost_function, data); elseif isempty(grad) && isempty(exitflag) [data,fx,grad]=objeval(x(:),cost_function, data); end % check if iterations exceeds maximum if(optim.tols.max_iter <= data.iter), exitflag=0; end %search direction (p_current) if(isempty(exitflag)), [dir,grad,hess,data]=search_dir(grad,hess,optim,data,dir); end if(isempty(exitflag)), data.firstorderopt=norm(grad,Inf); end % Show the current iteration information data.itertime=toc(data.iter_timer); data.iter_timer=tic; % report diagnostics to user iterative_reporting(fx,alpha,'iter',exitflag,optim,data); % Call output function if specified if(output_function(optim.sys.outputfun,'iter')), exitflag=-1; end % Check if exitflag is set if(~isempty(exitflag)), break, end % Keep the variables for next iteration store.fx=fx; store.x=x(:); store.grad=grad(:); % make a linesearch in the search direction [alpha,fx,grad,exitflag,data] = linesearch(cost_function,... dir, x, fx, grad, data, optim); if isempty(fx), fx=store.fx; grad=store.grad; x=store.x; end % update current x with search direction and step length x=x+alpha*dir; % hessian update if quasi-newton if ismember(optim.algo.method,{'lbfgs','bfgs','sr1'}) && (isempty(exitflag)) % required when the linesearch has used the newton step if isempty(grad) [data,fx,grad]=objeval(x(:),cost_function, data); end [hess,dir,store]=hessian_update(x,grad,hess,store,optim.algo); end % Update number of iterations if (isempty(exitflag)), data.iter=data.iter+1; end % Gradient norm too small, change in x too small, terminal functional value reached. if(optim.algo.max_min*optim.tols.fx < optim.algo.max_min*fx), exitflag=4; end if(optim.tols.x > max(abs(store.x-x))), exitflag=2; end if(optim.tols.gfx > data.firstorderopt), exitflag=1; end end % Call output function if specified if(output_function(optim.sys.outputfun,'done')), exitflag=-1; end % ensure outputs exist, if not then re-evaluate if ismember(optim.algo.method,{'newton'}) && isempty(grad) [data,fx,grad,hess]=objeval(x(:),cost_function, data); elseif isempty(grad) [data,fx,grad]=objeval(x(:),cost_function, data); end % Set outputs x=reshape(x,data.x_shape); grad=reshape(grad,data.x_shape); data=iterative_reporting(fx,alpha,'term',exitflag,optim,data); function exit=output_function(outputfun,where) exit=false; % initialise if(~isempty(outputfun)) % data structure to output function % <add any variable to export here> % if exit is returned as true, optimisation will finish exit=feval(outputfun,reshape(x,data.x_shape),data,where); end end end function [dir,grad,hess,data]=search_dir(grad,hess,optim,data,dir) % find the search direction switch optim.algo.method case {'grad_descent','grad_ascent'} % set the search direction as the gradient direction dir=grad; case 'lbfgs' % calculate the direction for the first iterate only if data.iter==0, dir=optim.algo.max_min.*grad; end case {'sr1','bfgs','newton'} % prepare the Hessian to be definite and well-conditioned [grad,hess,data]=hessprep(grad,hess,optim,data); % force real and symmetric hessian if ~isreal(hess), hess=real(hess); grad=real(grad); end if ~issymmetric(hess), hess=(hess+hess')./2; end % calculate the search direction from the Hessian and the gradient if xor((strcmp(optim.reg.method,'CHOL') && data.n_cond>0), optim.algo.inv_method) dir = -hess*grad; else dir = -hess\grad; end end end function [hess,dir,store] = hessian_update(x,grad,hess,store,algo) switch algo.method case 'lbfgs' % limited-memory-BFGS % Update a list with the history of deltaX and deltaG store.deltaX=[x-store.x store.deltaX(:,1:store.n_store-1)]; store.deltaG=[grad-store.grad store.deltaG(:,1:store.n_store-1)]; % size of store of deltaX and deltaG store.lbfgs_store=min(store.lbfgs_store+1, store.n_store); % Set new Direction with L-BFGS with scaling as described by Nocedal dir=lbfgs(store.deltaX, store.deltaG, grad, store.lbfgs_store); case {'bfgs','sr1'} % calculate BFGS Hessian update hess=quasinewton(hess, x, store.x, -algo.max_min*grad, -algo.max_min*store.grad, algo.inv_method, algo.method); dir=[]; % no search direction yet otherwise error('unsupported quasi-Newton hessian update method') end end function data=iterative_reporting(fx,alpha,report_case,exitflag,optim,data) switch report_case case {'head'} % Report start of optimisation to user switch(optim.algo.method) case 'sr1', optim_report(optim.sys.output,['start ' optim.algo.extremum(1:5) 'isation using quasi-newton, Symmetric Rank 1 Hessian update'],1); case 'bfgs', optim_report(optim.sys.output,['start ' optim.algo.extremum(1:5) 'isation using quasi-newton, BFGS method'],1); case 'lbfgs', optim_report(optim.sys.output,['start ' optim.algo.extremum(1:5) 'isation using quasi-newton, limited memory BFGS method'],1); case 'grad_descent', optim_report(optim.sys.output,['start ' optim.algo.extremum(1:5) 'isation using Steepest Gradient Descent method'],1); case 'grad_ascent', optim_report(optim.sys.output,['start ' optim.algo.extremum(1:5) 'isation using Steepest Gradient Ascent method'],1); case 'newton', optim_report(optim.sys.output,['start ' optim.algo.extremum(1:5) 'isation using Newton-Raphson method'],1); end optim_report(optim.sys.output,['Cost Function = @', func2str(optim.sys.costfun.handle)],1); obj_fun_str=[blanks(17) optim.sys.obj_fun_str]; obj_fun_str=obj_fun_str(end-17:end); if ~optim.algo.pen optim_report(optim.sys.output,'==============================================================================================',1); if ismember(optim.reg.method,{'RFO','TRM'}) || optim.reg.track_eig optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #H(x) min|eig| #cond cond(H) ' obj_fun_str ' Step-size 1st-optim'],1); elseif ismember(optim.reg.method,{'CHOL','reset'}) optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #H(x) #reg ' obj_fun_str ' Step-size 1st-optim'],1); else optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #H(x) ' obj_fun_str ' Step-size 1st-optim'],1); end optim_report(optim.sys.output,'----------------------------------------------------------------------------------------------',1); else optim_report(optim.sys.output,'==========================================================================================================',1); if ismember(optim.reg.method,{'RFO','TRM'}) || optim.reg.track_eig optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #H(x) min|eig| #cond cond(H) ' obj_fun_str ' sum(pen) Step-size 1st-optim'],1); elseif ismember(optim.reg.method,{'CHOL','reset'}) optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #H(x) #reg ' obj_fun_str ' sum(pen) Step-size 1st-optim'],1); else optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #H(x) ' obj_fun_str ' sum(pen) Step-size 1st-optim'],1); end optim_report(optim.sys.output,'----------------------------------------------------------------------------------------------------------',1); end case {'iter'} % Report optimisation iterate to user t=data.itertime; if t<1e-3, Tstr=sprintf('%5.0e',t); elseif t<10, Tstr=sprintf('%5.3f',t); elseif t<1e2, Tstr=sprintf('%5.2f', t); elseif t<1e3, Tstr=sprintf('%5.1f',t); elseif t<=99999, Tstr=sprintf('%5.0f',t); else Tstr=sprintf('%5.0e',t); end if ~optim.algo.pen if (ismember(optim.reg.method,{'RFO','TRM'}) && (isfield(data,'n_cond') && data.n_cond>0)) || optim.reg.track_eig optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %8.3g %4.0f %9.3g %17.9g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,data.hess_mineig,data.n_cond,data.hess_cond,optim.sys.obj_fun_disp(fx),alpha,data.firstorderopt),1); elseif ismember(optim.reg.method,{'RFO','TRM'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %8.1s %4.0f %9.1s %17.9g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,'-',0,'-',optim.sys.obj_fun_disp(fx),alpha,data.firstorderopt),1); elseif ismember(optim.reg.method,{'CHOL','reset'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %5.0f %17.9g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,data.n_cond,optim.sys.obj_fun_disp(fx),alpha,data.firstorderopt),1); else optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %17.9g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,optim.sys.obj_fun_disp(fx),alpha,data.firstorderopt),1); end else if (ismember(optim.reg.method,{'RFO','TRM'}) && (isfield(data,'n_cond') && data.n_cond>0)) || optim.reg.track_eig optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %8.3g %4.0f %9.3g %17.9g %10.4g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,data.hess_mineig,data.n_cond,data.hess_cond,... optim.sys.obj_fun_disp(data.fx_sep_pen(1)),optim.sys.obj_fun_disp(sum(data.fx_sep_pen(2:end))),alpha,data.firstorderopt),1); elseif ismember(optim.reg.method,{'RFO','TRM'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %8.1s %4.0f %9.1s %17.9g %10.4g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,'-',0,'-',... optim.sys.obj_fun_disp(data.fx_sep_pen(1)),optim.sys.obj_fun_disp(sum(data.fx_sep_pen(2:end))),alpha,data.firstorderopt),1); elseif ismember(optim.reg.method,{'CHOL','reset'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %5.0f %17.9g %10.4g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,data.n_cond,... optim.sys.obj_fun_disp(data.fx_sep_pen(1)),optim.sys.obj_fun_disp(sum(data.fx_sep_pen(2:end))),alpha,data.firstorderopt),1); else optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %17.9g %10.4g %10.5g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_hess,... optim.sys.obj_fun_disp(data.fx_sep_pen(1)),optim.sys.obj_fun_disp(sum(data.fx_sep_pen(2:end))),alpha,data.firstorderopt),1); end end case {'term'} % Make exit output structure optim_report(optim.sys.output,'==============================================================================================',1); switch(optim.algo.method) case 'sr1', data.algorithm='Symmetric Rank 1 Hessian update (SR1)'; case 'bfgs', data.algorithm='Broyden-Fletcher-Goldfarb-Shanno Hessian update (BFGS)'; case 'lbfgs', data.algorithm='limited memory Broyden-Fletcher-Goldfarb-Shanno update (L-BFGS)'; case 'grad_descent', data.algorithm='Steepest Gradient Descent'; case 'grad_ascent', data.algorithm='Steepest Gradient Ascent'; case 'newton', data.algorithm='Newton-Raphson method'; end % report optimisation results to user data.exit_message=exitmessage(exitflag); data.extremum = optim.sys.obj_fun_disp(fx); data.timeTotal=toc(data.timeTotal); data.timeIntern=data.timeTotal-data.time_fx-data.time_gfx-data.time_hfx; optim_report(optim.sys.output,'Optimisation Results',1) optim_report(optim.sys.output,[' Algorithm Used : ' data.algorithm],1); optim_report(optim.sys.output,[' Exit message : ' data.exit_message],1); optim_report(optim.sys.output,[' Iterations : ' int2str(data.iter)],1); optim_report(optim.sys.output,[' Function Count : ' int2str(data.n_fx)],1); optim_report(optim.sys.output,[' Gradient Count : ' int2str(data.n_grad)],1); optim_report(optim.sys.output,[' Hessian Count : ' int2str(data.n_hess)],1); optim_report(optim.sys.output,[' M' optim.algo.extremum(2:end) ' found : ' num2str(data.extremum)],1); optim_report(optim.sys.output,[' norm(gradient) : ' num2str(data.firstorderopt)],1); optim_report(optim.sys.output,[' Optimiser Time : ' num2str(data.timeIntern) ' seconds'],1); optim_report(optim.sys.output,[' Function calc Time : ' num2str(data.time_fx) ' seconds'],1); optim_report(optim.sys.output,[' Gradient calc Time : ' num2str(data.time_gfx) ' seconds'],1); optim_report(optim.sys.output,[' Hessian calc Time : ' num2str(data.time_hfx) ' seconds'],1); optim_report(optim.sys.output,[' Total Time : ' num2str(data.timeTotal) ' seconds'],1); optim_report(optim.sys.output,'==============================================================================================',1); if isnumeric(optim.sys.output) && optim.sys.output>=3, optim_report(optim.sys.output,[],[],true); end end end function message=exitmessage(exitflag) % list of exiflag messages switch(exitflag) case 1, message='Change in gradient norm less than specified tolerance, tol_gfx.'; case 2, message='Change in x was smaller than the specified tolerance, tol_x.'; case 3, message='Boundary reached.'; case 4, message='Specified terminal functional value reached'; case 0, message='Number of iterations exceeded the specified maximum.'; case -1, message='Algorithm was terminated by the output function.'; case -2, message='Line search cannot find an acceptable point along the current search'; case -3, message='Hessian matrix is not positive definite'; otherwise, message='Undefined exit code'; end end % There is a sacred horror about everything grand. It is easy to admire % mediocrity and hills; but whatever is too lofty, a genius as well as a % mountain, an assembly as well as a masterpiece, seen too near, is % appalling... People have a strange feeling of aversion to anything grand. % They see abysses, they do not see sublimity; they see the monster, they % do not see the prodigy. % % Victor Hugo - Ninety-three
github
tsajed/nmr-pred-master
optim_report.m
.m
nmr-pred-master/spinach/kernel/optimcon/optim_report.m
1,757
utf_8
f7dd7f8057046240b90b693d6bed03a2
% Writes a log message to the console or an ACSII file. Syntax: % % <http://spindynamics.org/wiki/index.php?title=Optim_report.m> function optim_report(output,report_string,depth,close_file) % close all open files if selected if nargin==4 && islogical(close_file) && close_file, fclose('all'); return; end % Ignore the call if the system is hushed if ~strcmp(output,'hush') % Validate the input grumble(output,report_string); % Compose the prefix call_stack=dbstack; for n=1:numel(call_stack) call_stack(n).name=[call_stack(n).name ' > ']; end if ~exist('depth','var'), depth=0; elseif depth>= numel(call_stack), depth=numel(call_stack)-1; end prefix_string=[call_stack(end:-1:2+depth).name]; prefix_string=prefix_string(1:(end-3)); % Fix empty prefixes if isempty(prefix_string) prefix_string=' '; end % Roll the prefix if numel(prefix_string)<50 prefix_string=[prefix_string blanks(50)]; prefix_string=prefix_string(1:50); else prefix_string=['...' prefix_string((end-46):end)]; end % Add prefix to the report string report_string=['[' prefix_string ' ] ' report_string]; % Send the report string to the output fprintf(output,'%s\n',report_string); end end % Consistency enforcement function grumble(output,report_string) if isempty(output) error('optim_system.sys.output field must exist.'); end if ((~isa(output,'double'))&&(~isa(output,'char')))||... (isa(output,'char')&&(~strcmp(output,'hush'))) error('optim_system.sys.output must be either ''hush'' or a file ID.'); end if ~ischar(report_string) error('report_string must be a string.'); end end
github
tsajed/nmr-pred-master
quasinewton.m
.m
nmr-pred-master/spinach/kernel/optimcon/quasinewton.m
2,352
utf_8
a57492127a57a92030c59bafac69caa9
% BFGS and SR1 Hessian update. % % <http://spindynamics.org/wiki/index.php?title=Quasinewton.m> function B_new=quasinewton(B_old,x_new,x_old,df_new,df_old,inv_method,algo) % Check consistency grumble(x_new,x_old,df_new,df_old); % if no method is supplied, use the bfgs formula if ~exist('algo','var'), algo='bfgs'; end % default inv_method is true if not given or not logical if ~exist('inv_method','var'), inv_method=true; end if ~islogical(inv_method), inv_method=true; end % Eliminate rounding errors B_old=real((B_old+B_old')/2); % Compute shorthands dx=x_new-x_old; ddf=df_new-df_old; switch algo case {'bfgs'} if inv_method % Update the inverse Hessian B_new=B_old+(dx'*ddf+ddf'*B_old*ddf)*(dx*dx')/((dx'*ddf)^2)-... ((B_old*ddf)*dx'+dx*(ddf'*B_old))/(dx'*ddf); elseif ~inv_method % Update the Hessian B_new=B_old+(ddf*ddf')/(ddf'*dx)-((B_old*dx)*(dx'*B_old))/(dx'*B_old*dx); end case {'sr1'} if inv_method % Update the inverse Hessian B_new=B_old+((dx-B_old*ddf)*(dx-B_old*ddf)')/((dx-B_old*ddf)'*ddf); elseif ~inv_method % Update the Hessian B_new=B_old+((ddf-B_old*dx)*(ddf-B_old*dx)')/((ddf-B_old*dx)'*dx); end otherwise error('unsupported quasi-newton update method') end % Eliminate rounding errors B_new=real((B_new+B_new')/2); end % Consistency enforcement function grumble(x_new,x_old,df_new,df_old) if (size(x_new,2)~=1)||(size(x_old,2)~=1)||(size(df_old,2)~=1)||(size(df_new,2)~=1) error('all vector inputs must be column vectors.'); end if (~isreal(x_new))||(~isreal(x_old))||(~isreal(df_new))||(~isreal(df_old)) error('all vector inputs must be real.'); end end % Of all tyrannies, a tyranny exercised for the good of its victims may be % the most oppressive. It may be better to live under robber barons than % under omnipotent moral busybodies. The robber baron's cruelty may some- % times sleep, his cupidity may at some point be satiated; but those who % torment us for our own good will torment us without end, for they do so % with the approval of their consciences. % % C.S. Lewis
github
tsajed/nmr-pred-master
krotov.m
.m
nmr-pred-master/spinach/kernel/optimcon/krotov.m
5,158
utf_8
abcabbd52696973dab872bdfe49c82ed
% Krotov type algorithms for phase-sensitive state-to-state transfer prob- % lems. % % <http://spindynamics.org/wiki/index.php?title=Krotov.m> function [diag_data,waveform,traj_fwd,traj_bwd,fidelity,grad]=... krotov(spin_system,ctrl_system,drift,waveform,traj_fwd,traj_bwd,hess) % Scale the waveform waveform=ctrl_system.power_level*waveform; % scale the reference waveform (if supplied) else use last waveform if ~isfield(ctrl_system,'ref_waveform') ctrl_system.ref_waveform=waveform; end % Silence spinach output for propagator diagnostics outtemp=spin_system.sys.output; spin_system.sys.output='hush'; if exist('hess','var') hess_index=reshape(1:numel(waveform),[numel(ctrl_system.control_ops) ctrl_system.nsteps]); end if isempty(traj_fwd) % initialise trajectories traj_fwd=zeros(size(ctrl_system.rho,1),ctrl_system.nsteps+1); traj_bwd=zeros(size(ctrl_system.rho,1),ctrl_system.nsteps+1); % Run the initial forward propagation traj_fwd(:,1)=ctrl_system.rho; for n=1:ctrl_system.nsteps L=drift; for k=1:numel(ctrl_system.control_ops) L=L+waveform(k,n)*ctrl_system.control_ops{k}; end traj_fwd(:,n+1)=step(spin_system,L,traj_fwd(:,n),ctrl_system.time_step); end % Run the initial backward propagation traj_bwd(:,ctrl_system.nsteps+1)=ctrl_system.target; for n=ctrl_system.nsteps:-1:1 L=drift'; for k=1:numel(ctrl_system.control_ops) L=L+waveform(k,n)*ctrl_system.control_ops{k}; end traj_bwd(:,n)=step(spin_system,L,traj_bwd(:,n+1),-ctrl_system.time_step); end else % Run forward Krotov sweep traj_fwd(:,1)=ctrl_system.rho; for n=1:ctrl_system.nsteps % Run microiterations difference=1; while difference > ctrl_system.krotov_microiteration % Start the Liouvillian and store previous control values L=drift; prev_values=waveform(:,n); for k=1:numel(ctrl_system.control_ops) if exist('hess','var') waveform(k,n)=ctrl_system.ref_waveform(k,n)+... (1/ctrl_system.lambda)*(1/hess(hess_index(k,n),hess_index(k,n)))*imag(traj_bwd(:,n+1)'*ctrl_system.control_ops{k}*traj_fwd(:,n)); for p=(n-1):-1:1 waveform(k,n)=waveform(k,n)-... (1/hess(hess_index(k,n),hess_index(k,n)))*hess(hess_index(k,n),hess_index(k,p))*(waveform(k,p)-ctrl_system.ref_waveform(k,p)); end else waveform(k,n)=ctrl_system.ref_waveform(k,n)+... (1/ctrl_system.lambda)*imag(traj_bwd(:,n+1)'*ctrl_system.control_ops{k}*traj_fwd(:,n)); end L=L+waveform(k,n)*ctrl_system.control_ops{k}; end % Compute the difference difference=norm(waveform(:,n)-prev_values); % Refresh the forward point traj_fwd(:,n+1)=step(spin_system,L,traj_fwd(:,n),ctrl_system.time_step); end end % Run backward Krotov sweep traj_bwd(:,ctrl_system.nsteps+1)=ctrl_system.target; for n=ctrl_system.nsteps:-1:1 L=drift'; for k=1:numel(ctrl_system.control_ops) if ismember(ctrl_system.method,{'zhu-rabitz'}) waveform(k,n)=waveform(k,n)+(1/ctrl_system.lambda)*imag(traj_bwd(:,n+1)'*ctrl_system.control_ops{k}*traj_fwd(:,n+1)); end L=L+waveform(k,n)*ctrl_system.control_ops{k}; end traj_bwd(:,n)=step(spin_system,L,traj_bwd(:,n+1),-ctrl_system.time_step); end end % compute the gradient if needed if exist('hess','var') % Preallocate results grad=zeros(size(waveform)); for n=1:ctrl_system.nsteps for k=1:numel(ctrl_system.control_ops) grad(k,n)=-2*imag(traj_bwd(:,n+1)'*ctrl_system.control_ops{k}*traj_fwd(:,n))-... 2*ctrl_system.power_level*ctrl_system.lambda*(waveform(k,n)-ctrl_system.ref_waveform(k,n)); end end grad=grad./ctrl_system.power_level; end % Normalize the total objective, total gradient, and total Hessian fidelity=real(ctrl_system.target'*traj_fwd(:,end)); waveform=real(waveform./ctrl_system.power_level); % re-enable spinach console output spin_system.sys.output=outtemp; % Compile diagnostics data if nargout>1 diag_data.rho=ctrl_system.rho; diag_data.target=ctrl_system.target; diag_data.trajectory=traj_fwd; diag_data.trajectory_bwd=traj_bwd; diag_data.drift=drift; end end % It wasn't a dark and stormy night. It should have been, but there's % the weather for you. For every mad scientist who's had a convenient % thunderstorm just on the night his Great Work is complete and lying % on the slab, there have been dozens who've sat around aimlessly un- % der the peaceful stars while Igor clocks up the overtime. % % Terry Pratchett
github
tsajed/nmr-pred-master
grape.m
.m
nmr-pred-master/spinach/kernel/optimcon/grape.m
13,528
utf_8
8591860cae3678be8002f5235143c259
% Gradient Ascent Pulse Engineering (GRAPE) objective function, gradient % and Hessian. Propagates the system through a user-supplied shaped pulse % from a given initial state and projects the result onto the given final % state. The real part of the projection is returned, along with its % gradient and Hessian with respect to amplitudes of all operators in every % time step of the shaped pulse. % % <http://spindynamics.org/wiki/index.php?title=Grape.m> function [diag_data,fidelity,total_grad,total_hess]=... grape(spin_sys,ctrl_sys,drift,waveform) %#ok<*PFBNS> % Allow numeric input for single source calculations if isnumeric(ctrl_sys.rho) rho={ctrl_sys.rho}; else rho=ctrl_sys.rho; end % Allow numeric input for single target calculations if isnumeric(ctrl_sys.target) target={ctrl_sys.target}; else target=ctrl_sys.target; end % Allow numeric input for single control calculations if isnumeric(ctrl_sys.control_ops) controls={ctrl_sys.control_ops}; else controls=ctrl_sys.control_ops; end % Preallocate results fidelity=0; total_grad=zeros(size(waveform)); total_hess=zeros(size(waveform,1)*size(waveform,2)); current_state_array=cell(1,numel(target)); % Scale the waveform waveform=ctrl_sys.power_level*waveform; % Silence spinach output for propagator diagnostics outtemp=spin_sys.sys.output; spin_sys.sys.output='hush'; % Loop over sources and targets for contribution=1:numel(rho) % Grab the current source and target init_state=rho{contribution}; target_state=target{contribution}; % Preallocate trajectory arrays fwd_traj=zeros(size(init_state,1),ctrl_sys.nsteps+1); bwd_traj=zeros(size(init_state,1),ctrl_sys.nsteps+1); % Run the forward propagation fwd_traj(:,1)=init_state; for n=1:ctrl_sys.nsteps L=drift; for k=1:length(controls) L=L+waveform(k,n)*controls{k}; end fwd_traj(:,n+1)=step(spin_sys,L,fwd_traj(:,n),ctrl_sys.time_step); end % Run the backward propagation bwd_traj(:,ctrl_sys.nsteps+1)=target_state; for n=ctrl_sys.nsteps:-1:1 L=drift'; for k=1:length(controls) L=L+waveform(k,n)*controls{k}; end bwd_traj(:,n)=step(spin_sys,L,bwd_traj(:,n+1),-ctrl_sys.time_step); end % Compute the gradient if nargout==3 % Loop over time steps in parallel parfor n=1:ctrl_sys.nsteps % Initialize the Liouvillian L=drift; % Add current controls for k=1:length(controls) L=L+waveform(k,n)*controls{k}; end % Calculate gradient at this timestep grad(:,n)=grape_grad(spin_sys,L,controls,waveform,fwd_traj,bwd_traj,ctrl_sys.time_step,n); end % Add the gradient to the total total_grad=total_grad+real(grad); % Compute the gradient and hessian elseif nargout>3 % initialise cell structure for propagators and their derivatives props=cell(1,ctrl_sys.nsteps); props_D=cell(length(controls),ctrl_sys.nsteps); props_DD=cell(length(controls),length(controls),ctrl_sys.nsteps); % propagator and derivative calculations parfor n=1:ctrl_sys.nsteps % Initialize the Liouvillian at this timestep L=drift; % Add all current controls to Liouvillian for the current timestep for k=1:length(controls) L=L+waveform(k,n)*controls{k}; end % Compute and store propagators and their derivatives [props(1,n),props_D(:,n),props_DD(:,:,n)]=grape_hess(spin_sys,L,controls,ctrl_sys.time_step,fwd_traj(:,n)); end %initialise gradient vector and Hessian matrix grad=zeros(length(controls),ctrl_sys.nsteps); hess=cell(ctrl_sys.nsteps,ctrl_sys.nsteps); hess(:,:)={zeros(length(controls))}; % split the hessian into two, to aid parfor over ctrl_system.nsteps/2 hess_upper=cell(ceil(ctrl_sys.nsteps/2),ctrl_sys.nsteps); hess_upper(:,:)={zeros(length(controls))}; hess_lower=cell(floor(ctrl_sys.nsteps/2),ctrl_sys.nsteps); hess_lower(:,:)={zeros(length(controls))}; parfor n_prime=1:ceil(ctrl_sys.nsteps/2) % Preallocate space for parfor use grad_k=zeros(length(controls),ctrl_sys.nsteps); hess_k=zeros(length(controls)); % create a hessian block vector to aid parfor loop hess_vec_l=cell(1,ctrl_sys.nsteps); hess_vec_l(:,:)={zeros(length(controls))}; hess_vec_u=cell(1,ctrl_sys.nsteps); hess_vec_u(:,:)={zeros(length(controls))}; for m_prime=1:ctrl_sys.nsteps+1 % calculate n and m proper from primed coordinates m=m_prime+n_prime-1; if m>ctrl_sys.nsteps m=1+ctrl_sys.nsteps-mod(m,ctrl_sys.nsteps); n=ctrl_sys.nsteps-n_prime+1; else n=n_prime; end for k=1:length(controls) for j=1:length(controls) % <sigma|UN...Un+1 D^2(n) Un...U1|rho> if m==n && j==k % Calculate gradient at this timestep grad_k(k,n)=bwd_traj(:,n+1)'*(props_D{k,n}*fwd_traj(:,n)); % calculate KxK hessian diagonal hess_k(k,j)=bwd_traj(:,n+1)'*props_DD{k,j,n}*fwd_traj(:,n); elseif m==n % calculate KxK hessian off-diagonal hess_k(k,j)=bwd_traj(:,n+1)'*props_DD{k,j,n}; elseif n<m, N=[n m]; K=[k j] % Calculate and store initial derivative(1)*forward_traj forward_store=props_D{K(1),N(1)}*fwd_traj(:,N(1)); % loop over timesteps between derivatives for n_ind=N(1)+1:N(2)-1 % update forward_traj between derivatives forward_store=props{1,n_ind}*forward_store; end % Calculate and derivative(2)*forward_traj forward_store=props_D{K(2),N(2)}*forward_store; % Calculate Hessian element hess_k(k,j)=bwd_traj(:,N(2)+1)'*forward_store; end end end % Allocate the Hessian elements to parfor vector if n>ceil(ctrl_sys.nsteps/2) hess_vec_l{1,m}=hess_k; else hess_vec_u{1,m}=hess_k; end end % allocate hessian parfor vector to hessian blocks hess_lower(n_prime,:)=hess_vec_l; hess_upper(n_prime,:)=hess_vec_u; % Allocate the gradient over controls at this timestep grad=grad+grad_k; end % construct hessian proper from upper and lower blocks hess(1:ceil(ctrl_sys.nsteps/2),:)=hess_upper; hess(1+ceil(ctrl_sys.nsteps/2):end,:)=hess_lower(end:-1:1,:); % Add the hessian to the total total_hess=total_hess+real(cell2mat(hess)); % Add the gradient to the total total_grad=total_grad+real(grad); end % Compute the cost function and add to the total fidelity=fidelity+real(target_state'*fwd_traj(:,end)); % store the current state current_state_array(contribution)={fwd_traj(:,end)}; end % Normalize the total objective, total gradient, and total Hessian fidelity=fidelity/numel(rho); total_grad=ctrl_sys.power_level*total_grad/numel(rho); total_hess=(ctrl_sys.power_level^2)*total_hess/(numel(rho)); % create block-diagonal blanking matrix offdiag_blank=kron(eye(size(waveform,2)),ones(size(waveform,1))); diag_blank=~offdiag_blank; % Force Hessian symmetry and fill empty Hessian entries total_hess=(total_hess+total_hess').*diag_blank+... (total_hess+total_hess').*offdiag_blank/2; % re-enable spinach console output spin_sys.sys.output=outtemp; % Compile diagnostics data diag_data.current_state=current_state_array; diag_data.rho=rho; diag_data.target=target; diag_data.total_objective=fidelity; diag_data.spin_system=spin_sys; diag_data.ctrl_system.power_level=ctrl_sys.power_level; diag_data.trajectory=fwd_traj; diag_data.total_grad=total_grad; diag_data.total_hess=total_hess; diag_data.dt=ctrl_sys.time_step; diag_data.controls=controls; diag_data.waveform=waveform; diag_data.ctrl_system.nsteps=ctrl_sys.nsteps; diag_data.drift=drift; end function [props,props_d,props_dd]=grape_hess(spin_system,L,ctrls,dt,fwd_traj) % Preallocate propagator derivatives props_d=cell(1,length(ctrls)); props_dd=cell(length(ctrls),length(ctrls)); switch spin_system.tols.dP_method case 'auxmat' % loop over K*K controls for k=1:length(ctrls) for j=1:length(ctrls) if k==j %find explicit propagator to reuse for off-diagonal prop_dirdiff=dirdiff(spin_system,L,{ctrls{k},ctrls{k}},dt,3); % store 1st and 2nd order propagator derivatives props_d(k)=prop_dirdiff(2); props_dd(k,k)=prop_dirdiff(3); else % Create the auxiliary matrix aux_matrix=[L, ctrls{k}, 0*L; 0*L, L, ctrls{j}; 0*L, 0*L, L]; % Propagate the auxiliary vector aux_vector=step(spin_system,aux_matrix,[zeros(size(fwd_traj)); zeros(size(fwd_traj)); fwd_traj],dt); % Store propagated second order derivative vector props_dd{k,j}=2*aux_vector(1:(end/3)); end end end % Store propagator of Liouvillian, L. props=prop_dirdiff(1); otherwise error('grape: unknown second order differentiation method.'); end end function control_derivatives=grape_grad(spin_system,L,ctrls,wf,fwd_traj,bwd_traj,dt,n) % Preallocate derivatives control_derivatives=zeros(length(ctrls),1); % Generate control derivatives switch spin_system.tols.dP_method case 'auxmat' % Loop over controls for k=1:length(ctrls) % Create the auxiliary matrix aux_matrix=[L, ctrls{k}; 0*L, L]; % Propagate the auxiliary vector aux_vector=step(spin_system,aux_matrix,[zeros(size(fwd_traj(:,n))); fwd_traj(:,n)],dt); % Compute the derivative control_derivatives(k)=bwd_traj(:,n+1)'*aux_vector(1:(end/2)); end case 'fd_O(h^2)' % Get the finite difference step delta=max(abs(wf(:)))*sqrt(eps); % Loop over controls for k=1:length(ctrls) % Compute control derivatives with central finite differences control_derivatives(k)=bwd_traj(:,n+1)'*(step(spin_system,L+delta*ctrls{k},fwd_traj(:,n),dt)-... step(spin_system,L-delta*ctrls{k},fwd_traj(:,n),dt))/(2*delta); end case 'fd_O(h^4)' % Get the finite difference step delta=max(abs(wf(:)))*sqrt(eps); % Loop over controls for k=1:length(ctrls) % Compute control derivatives with central finite differences control_derivatives(k)=bwd_traj(:,n+1)'*(-1*step(spin_system,L+2*delta*ctrls{k},fwd_traj(:,n),dt)... +8*step(spin_system,L+delta*ctrls{k},fwd_traj(:,n),dt)... -8*step(spin_system,L-delta*ctrls{k},fwd_traj(:,n),dt)... +1*step(spin_system,L-2*delta*ctrls{k},fwd_traj(:,n),dt))/(12*delta); end otherwise % Complain and bomb out error('unknown differentiation method.'); end end % In any culture, subculture, or family in which belief is valued above % thought, self-surrender is valued above self-expression, and conformity % is valued above integrity, those who preserve their self-esteem are % likely to be heroic exceptions. % % Nathaniel Branden
github
tsajed/nmr-pred-master
objeval.m
.m
nmr-pred-master/spinach/kernel/optimcon/objeval.m
3,088
utf_8
e60d6bdeefcb93c5557521470336efe2
% function to call and collect the correct amount of outputs from an % objective function % % <http://spindynamics.org/wiki/index.php?title=Objeval.m> function [data,fx,grad,hess]=objeval(x,obj_fun_handle, data) % Call the cost function with gradient and Hessian if nessesary fcn_list=dbstack; if numel(fcn_list)==1, optimise_fcn={}; end if numel(fcn_list)>1, optimise_fcn=fcn_list(2).name; end if ismember(optimise_fcn,{'linesearch','fminnewton','sectioning','bracketing'}) timem=tic; if ( nargout ==2 ) if ~isempty(data.cost_fun_vars) [fx,data.cost_fun_vars]=... feval(obj_fun_handle,reshape(x,data.x_shape),data.cost_fun_vars); else [fx]=feval(obj_fun_handle,reshape(x,data.x_shape)); end data.time_fx=data.time_fx+toc(timem); data.n_fx=data.n_fx+1; elseif ( nargout ==3 ) if ~isempty(data.cost_fun_vars) [fx,grad,data.cost_fun_vars]=... feval(obj_fun_handle,reshape(x,data.x_shape),data.cost_fun_vars); else [fx,grad]=feval(obj_fun_handle,reshape(x,data.x_shape)); end data.time_gfx=data.time_gfx+toc(timem); data.n_fx=data.n_fx+1; data.n_grad=data.n_grad+1; grad=grad(:); elseif ( nargout ==4 ) if ~isempty(data.cost_fun_vars) [fx,grad,hess,data.cost_fun_vars]=... feval(obj_fun_handle,reshape(x,data.x_shape),data.cost_fun_vars); else [fx,grad,hess]=feval(obj_fun_handle,reshape(x,data.x_shape)); end data.time_hfx=data.time_hfx+toc(timem); data.n_fx=data.n_fx+1; data.n_grad=data.n_grad+1; data.n_hess=data.n_hess+1; grad=grad(:); end % store then sum fx if penalties are included if data.npen>0, data.fx_sep_pen=fx; fx=sum(fx); end elseif ismember(optimise_fcn,{'fminsimplex'}) fx=zeros(size(x,2),data.npen+1); if data.parallel_cost_fcn X=cell(size(x,2),1); for n=1:numel(X), X{n}=reshape(x(:,n),data.x_shape); end % Call the cost function with gradient and Hessian if nessesary timem=tic; if isempty(data.cost_fun_vars) [Fx]=feval(obj_fun_handle,X); else [Fx,data.cost_fun_vars]=feval(obj_fun_handle,X,data.cost_fun_vars); end for n=1:numel(X), fx(n,:)=Fx{n}; end data.time_fx=data.time_fx+toc(timem); data.n_fx=data.n_fx+numel(X); else for n=1:size(x,2) % Call the cost function with gradient and Hessian if nessesary timem=tic; if isempty(data.cost_fun_vars) [fx(n,:)]=feval(obj_fun_handle,reshape(x(:,n),data.x_shape)); else [fx(n,:),data.cost_fun_vars]=feval(obj_fun_handle,reshape(x(:,n),data.x_shape),data.cost_fun_vars); end data.time_fx=data.time_fx+toc(timem); data.n_fx=data.n_fx+1; end end % store then sum fx if penalties are included if data.npen>0, data.fx_sep_pen=fx; fx=sum(fx,2); end end end
github
tsajed/nmr-pred-master
hessprep.m
.m
nmr-pred-master/spinach/kernel/optimcon/hessprep.m
1,734
utf_8
aaddb7bf831c91de17c966b0b5ebf3af
% function to prepare a Hessian matrix to be definite and well-conditioned % % <http://spindynamics.org/wiki/index.php?title=Hessprep.m> function [grad,hess,data]=hessprep(grad,hess,optim,data) % force real and symmetric hessian if ~isreal(hess), hess=real(hess); end if ~issymmetric(hess), hess=(hess+hess')./2; end % test for definite Hessian if (~isempty(optim.reg.method)) || (~isempty(optim.reg.cond_method)) if ismember(optim.algo.extremum,{'minimum'}) % positive definite test % check if positive definite [~,def_test]=chol(hess); elseif ismember(optim.algo.extremum,{'maximum'}) % negative definite test % find largest and smallest eigenvalues [~,eig_bnd,conv_test]=eigs(hess,2,'BE',struct('isreal',true,'issymmetric',true)); if ~(logical(conv_test)), def_test=1; % eigenvalues didn't converge elseif all(diag(eig_bnd))>0, def_test=0; % positive definite Hessian else def_test=1; % all else, regularise the Hessian end end % if definite hessian, check the condition number if ~(logical(def_test)), hess_cond=cond(hess); end end if (~isempty(optim.reg.method) && (logical(def_test)) ) ||... (~isempty(optim.reg.cond_method) && optim.reg.max_cond<hess_cond) % regularise or/and condition the hessian [hess,grad,data]=hessreg(hess,grad,optim.reg,data); elseif optim.reg.track_eig % explicit tracking of Hessian eigenvalues [data.hess_eigvecs,data.hess_eigs]=eig(hess); data.hess_mineig=min(diag(data.hess_eigs)); data.hess_cond=max(diag(data.hess_eigs))/data.hess_mineig; data.n_cond=0; end end
github
tsajed/nmr-pred-master
fminkrotov.m
.m
nmr-pred-master/spinach/kernel/optimcon/fminkrotov.m
12,813
utf_8
e8383a5b053d6fd38b292c83987db02c
% Krotov type algorithms for phase-sensitive state-to-state transfer prob- % lems. % % <http://spindynamics.org/wiki/index.php?title=Fminkrotov.m> function [x,fx,grad,data]=fminkrotov(cost_function,x_0,optim,hess_init,cost_fun_vars) % Initialize the structure of the initial guess x = x_0(:); data.x_shape=size(x_0); data.n_vars = numel(x_0); % Always Bootstrap and set optimisation tolerances % - assume user isn't optimisation expert optim.cost_function=cost_function; optim=optim_tols(optim,data.n_vars); % add cost function variables to the data structure (empty if not provided) if ~exist('cost_fun_vars','var'), cost_fun_vars=[]; end data.cost_fun_vars=cost_fun_vars; % penalty terms to consider (default=0), affects output display only. data.npen=optim.algo.npen; % initialise counters and timers data.iter=0; data.n_fx=0; data.n_grad=0; data.n_cond=0; data.firstorderopt=[]; data.timeTotal=tic; data.time_fx=0; data.time_gfx=0; data.iter_timer=tic; % print optimisation header iterative_reporting([],'head',[],optim,data); % initialise exitflag, functional and its derivatives exitflag=[]; % set initial Hessian approximation if ~exist('hess_init','var'), optim.hess=eye(data.n_vars); else optim.hess=hess_init; end if ismember(optim.algo.method,{'krotov-bfgs','krotov-sr1'}) [data,x,vec_fwd,vec_bwd,fx,grad]=gradient_function(cost_function,x,[],[],data,optim.hess); optim.hess=real(optim.hess+optim.hess')./2; [grad,hess,exitflag,data]=hessian_prep(grad,optim.hess,optim.reg,data); optim.hess=real(hess+hess')./2; else [data,x,vec_fwd,vec_bwd,fx]=gradient_function(cost_function,x,[],[],data,optim.hess); end % Show the current iteration information data.itertime=toc(data.iter_timer); data.iter_timer=tic; % report diagnostics to user iterative_reporting(fx,'iter',exitflag,optim,data); % Enter the main interation loop while (true) % Keep the variables for next iteration store.x=x(:); store.fx=fx; % Update number of iterations if (isempty(exitflag)), data.iter=data.iter+1; end if ismember(optim.algo.method,{'krotov-bfgs','krotov-sr1'}) store.grad=grad(:); [data,x,vec_fwd,vec_bwd,fx,grad]=gradient_function(cost_function,x,vec_fwd,vec_bwd,data,optim.hess); else [data,x,vec_fwd,vec_bwd,fx]=gradient_function(cost_function,x,vec_fwd,vec_bwd,data,optim.hess); end % check optimality conditions if (data.iter > optim.tols.max_iter), exitflag=0; end if (optim.algo.max_min*fx < optim.algo.max_min*store.fx), exitflag=1; end if (optim.algo.max_min*optim.tols.fx < optim.algo.max_min*fx), exitflag=4; end if (optim.tols.x > max(abs(store.x(:)-x(:)))), exitflag=2; end % Check if exitflag is set from 3 previous checks if(~isempty(exitflag)), x=store.x; fx=store.fx; data.iter=data.iter-1; break, end; % Show the current iteration information data.itertime=toc(data.iter_timer); data.iter_timer=tic; % report diagnostics to user iterative_reporting(fx,'iter',exitflag,optim,data); % Call output function if specified if(output_function(optim.sys.outputfun,'iter')), exitflag=-1; end % Compute the gradient for bfgs or sr1 if ismember(optim.algo.method,{'krotov-bfgs','ktotov-sr1'}) [hess,store]=hessian_update(x(:),grad,optim.hess,store,optim.algo); optim.hess=real(hess+hess')./2; [grad,hess,data]=hessprep(grad,optim.hess,optim,data); optim.hess=real(hess+hess')./2; end end % Call output function if specified if(output_function(optim.sys.outputfun,'done')), exitflag=-1; end % Set outputs x=reshape(x,data.x_shape); if exist('grad','var') grad=reshape(grad,data.x_shape); else grad=[]; end data=iterative_reporting(fx,'term',exitflag,optim,data); function exit=output_function(outputfun,where) exit=false; % initialise if(~isempty(outputfun)) % data structure to output function % <add any variable to export here> % if exit is returned as true, optimisation will finish exit=feval(outputfun,reshape(x,data.x_shape),data,where); end end end function [data,x,traj_fwd,traj_bwd,fx,grad]=gradient_function(obj_fun_handle,x,vec_fwd,vec_bwd,data,hess) % Call the cost function with gradient and Hessian if nessesary timem=tic; if ( nargout ==5 ) if ~isempty(data.cost_fun_vars) [x,traj_fwd,traj_bwd,fx,data.cost_fun_vars]=... feval(obj_fun_handle,reshape(x,data.x_shape),vec_fwd,vec_bwd,data.cost_fun_vars); else [x,traj_fwd,traj_bwd,fx]=feval(obj_fun_handle,reshape(x,data.x_shape),vec_fwd,vec_bwd); end data.time_fx=data.time_fx+toc(timem); data.n_fx=data.n_fx+1; elseif ( nargout ==6 ) if ~isempty(data.cost_fun_vars) [x,traj_fwd,traj_bwd,fx,grad,data.cost_fun_vars]=... feval(obj_fun_handle,reshape(x,data.x_shape),vec_fwd,vec_bwd,hess,data.cost_fun_vars); else [x,traj_fwd,traj_bwd,fx,grad]=feval(obj_fun_handle,reshape(x,data.x_shape),vec_fwd,vec_bwd,hess); end data.time_gfx=data.time_gfx+toc(timem); data.n_fx=data.n_fx+1; data.n_grad=data.n_grad+1; grad=grad(:); end end function [grad,hess,exitflag,data]=hessian_prep(grad,hess,reg,data) % tests for positive definite and initialise exitflag [~,pos_def_test]=chol(hess); exitflag=[]; if ~isreal(hess), exitflag =-5; % test real hessian elseif ~issymmetric(hess), exitflag=-4; % test for symmetric hessian elseif (~isempty(reg.method) && (logical(pos_def_test)) ) ||... (~isempty(reg.cond_method) && reg.max_cond<cond(hess)) % regularise or/and condition the hessian [hess,grad,data]=hessreg(hess,grad,reg,data); elseif reg.track_eig % explicit tracking of Hessian eigenvalues (for debugging) [data.hess_eigvecs,data.hess_eigs]=eig(hess); data.hess_mineig=min(diag(data.hess_eigs)); data.hess_cond=max(diag(data.hess_eigs))/data.hess_mineig; data.n_cond=0; end end function [hess,store] = hessian_update(x,grad,hess,store,algo) % hessian update for quasi-Newton methods and hybrid-quasi-Newton methods hess=quasinewton(hess, x, store.x, -algo.max_min*grad, -algo.max_min*store.grad, false, algo.method(8:end)); end function data=iterative_reporting(fx,report_case,exitflag,optim,data) switch report_case case {'head'} % Report start of optimisation to user switch(optim.algo.method) case 'krotov', optim_report(optim.sys.output,'start krotov optimisation',1); case 'krotov-sr1', optim_report(optim.sys.output,'start krotov optimisation using quasi-newton, Symmetric Rank 1 Hessian update',1); case 'krotov-bfgs', optim_report(optim.sys.output,'start krotov optimisation using quasi-newton, BFGS method',1); end optim_report(optim.sys.output,['Cost Function = @', func2str(optim.sys.costfun.handle)],1); optim_report(optim.sys.output,'==============================================================================================',1); obj_fun_str=[blanks(17) optim.sys.obj_fun_str]; obj_fun_str=obj_fun_str(end-17:end); if ismember(optim.reg.method,{'RFO','TRM'}) || optim.reg.track_eig optim_report(optim.sys.output,['Iter Time #f(x) #g(x) min(eig) #cond cond(H) ' obj_fun_str ' 1st-optim'],1); elseif ismember(optim.reg.method,{'CHOL','reset'}) optim_report(optim.sys.output,['Iter Time #f(x) #g(x) #reg ' obj_fun_str ' 1st-optim'],1); else optim_report(optim.sys.output,['Iter Time #f(x) #g(x) ' obj_fun_str ' 1st-optim'],1); end optim_report(optim.sys.output,'----------------------------------------------------------------------------------------------',1); case {'iter'} t=data.itertime; if t<1e-3, Tstr=sprintf('%5.0e',t); elseif t<10, Tstr=sprintf('%5.3f',t); elseif t<1e2, Tstr=sprintf('%5.2f', t); elseif t<1e3, Tstr=sprintf('%5.1f',t); elseif t<=99999, Tstr=sprintf('%5.0f',t); else Tstr=sprintf('%5.0e',t); end % Report optimisation iterasation to user if (ismember(optim.reg.method,{'RFO','TRM'}) && (isfield(data,'n_cond') && data.n_cond>0)) || optim.reg.track_eig optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %8.3g %4.0f %9.3g %17.9g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.hess_mineig,data.n_cond,data.hess_cond,optim.sys.obj_fun_disp(fx),data.firstorderopt),1); elseif ismember(optim.reg.method,{'RFO','TRM'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %8.1s %4.0f %9.1s %17.9g %9.3g'],... data.iter,data.n_fx,data.n_grad,'-',0,'-',optim.sys.obj_fun_disp(fx),data.firstorderopt),1); elseif ismember(optim.reg.method,{'CHOL','reset'}) optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %5.0f %17.9g %9.3g'],... data.iter,data.n_fx,data.n_grad,data.n_cond,optim.sys.obj_fun_disp(fx),data.firstorderopt),1); else optim_report(optim.sys.output,sprintf(['%4.0f ',Tstr,' %5.0f %5.0f %17.9g %9.3g'],... data.iter,data.n_fx,data.n_grad,optim.sys.obj_fun_disp(fx),data.firstorderopt),1); end case {'term'} optim_report(optim.sys.output,'==============================================================================================',1); % Make exist output structure switch(optim.algo.method) case 'krotov', data.algorithm='Krotov method'; case 'krotov-sr1', data.algorithm='Krotov method, Symmetric Rank 1 Hessian update (SR1)'; case 'krotov-bfgs', data.algorithm='Krotov method, Broyden-Fletcher-Goldfarb-Shanno Hessian update (BFGS)'; end % report optimisation results to user data.exit_message=exitmessage(exitflag); data.minimum = optim.sys.obj_fun_disp(fx); data.timeTotal=toc(data.timeTotal); data.timeIntern=data.timeTotal-data.time_fx-data.time_gfx; optim_report(optim.sys.output,'Optimisation Results',1) optim_report(optim.sys.output,[' Algorithm Used : ' data.algorithm],1); optim_report(optim.sys.output,[' Exit message : ' data.exit_message],1); optim_report(optim.sys.output,[' Iterations : ' int2str(data.iter)],1); optim_report(optim.sys.output,[' Function Count : ' int2str(data.n_fx)],1); optim_report(optim.sys.output,[' Gradient Count : ' int2str(data.n_grad)],1); optim_report(optim.sys.output,[' Minimum found : ' num2str(data.minimum)],1); optim_report(optim.sys.output,[' Optimiser Time : ' num2str(data.timeIntern) ' seconds'],1); optim_report(optim.sys.output,[' Function calc Time : ' num2str(data.time_fx) ' seconds'],1); optim_report(optim.sys.output,[' Gradient calc Time : ' num2str(data.time_gfx) ' seconds'],1); optim_report(optim.sys.output,[' Total Time : ' num2str(data.timeTotal) ' seconds'],1); optim_report(optim.sys.output,'==============================================================================================',1); if ~isinteger(optim.sys.output) && optim.sys.output>=3, optim_report(optim.sys.output,[],[],true); end pause(1.5); end end function message=exitmessage(exitflag) switch(exitflag) % list of exiflag messages case 1, message='Objective function, f(x), is not strictly decreasing'; case 2, message='Change in x was smaller than the specified tolerance, tol_x.'; case 3, message='Boundary fminimum reached.'; case 4, message='Specified terminal functional value reached'; case 0, message='Number of iterations exceeded the specified maximum.'; case -1, message='Algorithm was terminated by the output function.'; case -2, message='Line search cannot find an acceptable point along the current search'; case -3, message='Hessian matrix is not positive definite'; otherwise, message='Undefined exit code'; end end % There is a sacred horror about everything grand. It is easy to admire % mediocrity and hills; but whatever is too lofty, a genius as well as a % mountain, an assembly as well as a masterpiece, seen too near, is % appalling... People have a strange feeling of aversion to anything grand. % They see abysses, they do not see sublimity; they see the monster, they % do not see the prodigy. % % Victor Hugo - Ninety-three
github
tsajed/nmr-pred-master
penalty.m
.m
nmr-pred-master/spinach/kernel/optimcon/penalty.m
4,563
utf_8
5a621417cb8dffed9ed565c9888114f1
% Penalty terms for the Optimal Control module. Returns the penalty % function and its gradient for the waveform, which should be sup- % plied as row vector or a horizontal stack thereof. % % <http://spindynamics.org/wiki/index.php?title=Penalty.m> function [pen_term,pen_grad,pen_hess]=penalty(wf,type,fb,cb) % Check consistency if ismember(type,{'SNS','SNC'}) grumble(wf,type,fb,cb); else grumble(wf,type); end % Preallocate the results if nargout>0, pen_term=0; end if nargout>1, pen_grad=zeros(size(wf)); end if nargout>2, pen_hess=zeros(numel(wf)); end % Decide the penalty type switch type case 'NS' % Compute the penalty if nargout>0 pen_term=sum(sum(wf.^2)); pen_term=pen_term/size(wf,2); end % Compute the gradient if nargout>1 pen_grad=2*wf; pen_grad=pen_grad/size(wf,2); end % Compute the Hessian if nargout>2 pen_hess=2*speye(numel(wf)); pen_hess=pen_hess/size(wf,2); end case 'DNS' % Differentiation matrix D=fdmat(size(wf,2),5,1); % Compute the penalty if nargout>0 dwf=wf*D'; pen_term=sum(sum(dwf.^2)); pen_term=pen_term/size(dwf,2); end % Compute the gradient if nargout>1 pen_grad=2*dwf*D; pen_grad=pen_grad/size(dwf,2); end % Compute the Hessian if nargout>2 pen_hess=2*kron(D'*D,speye(size(wf,1))); pen_hess=pen_hess/size(wf,2); end case 'SNS' % Build ceiling hole inventory ch_map=(wf>cb); ch_actual=wf.*ch_map; ch_wanted=cb.*ch_map; % Build floor hole inventory fh_map=(wf<fb); fh_actual=wf.*fh_map; fh_wanted=fb.*fh_map; % Compute the penalty pen_term=pen_term+sum(sum((ch_actual-ch_wanted).^2))+... sum(sum((fh_actual-fh_wanted).^2)); pen_term=pen_term/size(wf,2); % Compute the gradient if nargout>1 pen_grad=2*(ch_actual-ch_wanted)+2*(fh_actual-fh_wanted); pen_grad=pen_grad/size(wf,2); end % Compute the Hessian if nargout>2 pen_hess=2*ch_map/size(wf,2)+2*fh_map/size(wf,2); pen_hess=diag(pen_hess(:)); pen_hess=pen_hess/size(wf,2); end case 'SNC' % Build ceiling hole inventory ch_map=(wf>cb); ch_actual=wf.*ch_map; ch_wanted=cb.*ch_map; % Build floor hole inventory fh_map=(wf<fb); fh_actual=wf.*fh_map; fh_wanted=fb.*fh_map; % Compute the penalty pen_term=pen_term+(1/6)*sum(sum((abs(ch_actual-ch_wanted)).^3))+... (1/6)*sum(sum((abs(fh_actual-fh_wanted)).^3)); pen_term=pen_term/size(wf,2); % Compute the gradient if nargout>1 pen_grad=(1/2)*(ch_actual-ch_wanted).^2+(1/2)*(fh_actual-fh_wanted).^2; pen_grad=pen_grad/size(wf,2); end % Compute the Hessian if nargout>2 pen_hess=(ch_actual-ch_wanted)+(fh_actual-fh_wanted); pen_hess=diag(pen_hess(:)); pen_hess=pen_hess/size(wf,2); end otherwise error('unknown penalty function type.'); end end % Consistency enforcement function grumble(wf,type,fb,cb) if ~isnumeric(wf)||(~isreal(wf)) error('waveform must be a real numeric array.'); end if ~ischar(type) error('type must be a character string.'); end if ismember(type,{'SNS','SNC'}) if ~isnumeric(fb)||(~isreal(fb)) error('floor_bound must be a real numeric array.'); end if ~isnumeric(cb)||(~isreal(cb)) error('ceiling_bound must be a real numeric array.'); end if any(size(wf)~=size(fb)) error('floor bound array must have the same dimension as the waveform array.'); end if any(size(wf)~=size(cb)) error('ceiling bound array must have the same dimension as the waveform array.'); end if any(any(cb<=fb)) error('the ceiling bound should be above the floor bound.'); end end end % I would never die for my beliefs because I might be wrong. % % Bertrand Russell
github
tsajed/nmr-pred-master
hessreg.m
.m
nmr-pred-master/spinach/kernel/optimcon/hessreg.m
8,444
utf_8
63121c6ece25f6262e476760d35d36ea
% Hessian Regularisation for quasi-Newton and Newton-Raphson optimisation % regularisations. To be used when ill-conditioned or near-singular Hessian % matrices are expected. Can also be used to condition any square, % symmetric matrix. % % <http://spindynamics.org/wiki/index.php?title=Hessreg.m> function [H,g,data]=hessreg(H,g,reg_param,data) % Bootstrap if necessary if ~exist('reg_param','var'), reg_param=bootstrap(); end % Check consistency grumble(H); %initialise regularisation counter ind=0; switch reg_param.method case {''} % nothing to do case {'reset'} % simple reset hessian to the identity i.e. gradient descent iterate ind=ind+1; % increase counter %reset the hessian to identity H=eye(size(H)); case {'CHOL'} % If specified, perform Cholesky regularisation if min(diag(H))>=0; sigma=norm(H,'fro'); else sigma=norm(H,'fro')-min(diag(H)); end ind=ind+1; % increase counter [~,pos_def_test]=chol(H); while ind<reg_param.n_reg && logical(pos_def_test) [L,pos_def_test]=chol(H+sigma*eye(size(H))); iL=inv(L.'); %output the inverse hessian H=iL.'*iL; % increase sigma and counter sigma=max(2*sigma,norm(H,'fro')); ind = ind+1; end case {'TRM'} % Trust Region Method of regularisation switch reg_param.cond_method case {''} ind=ind+1; % increase counter % eigendecomposition [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,H); % use the eigendecomposition to reform hessian H=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma); case {'iterative','scaled'} ind=ind+1; % increase counter reg_param.delta=1; % initialise alpha % eigendecomposition [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,H); if ismember(reg_param.cond_method,{'scaled'}) % scale alpha to smallest eigenvalue reg_param.delta=sqrt(abs(min(diag(hess_eigs)))); % initial scaling of the Hessian [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,H); end % use the eigendecomposition to reform hessian H=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma); hess_comp=H; % iteratively condition the hessian until < limit while cond(H,2)>reg_param.max_cond... && ind<reg_param.n_reg % define new alpha reg_param.delta=reg_param.delta*reg_param.phi; % eigendecomposition [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,hess_comp); % use the eigendecomposition to reform hessian H=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma); ind=ind+1; % increase counter end end case {'RFO'} % Rational Function Optimisation switch reg_param.cond_method case {''} ind=ind+1; % increase counter % eigendecomposition [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,H,g); % use the eigendecomposition to reform hessian [H,g]=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma,g); case {'iterative','scaled'} ind=ind+1; % increase counter reg_param.alpha=1; % initialise alpha % eigendecomposition [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,H,g); if ismember(reg_param.cond_method,{'scaled'}) % scale alpha to smallest eigenvalue reg_param.alpha=sqrt(1/abs(min(diag(hess_eigs)))); % initial scaling of the Hessian [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,H,g); end % use the eigendecomposition to reform hessian [H,g]=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma,g); hess_comp=H; grad_comp=g; % iteratively condition the hessian until < limit while cond(H,2)>reg_param.max_cond... && ind<reg_param.n_reg % define new alpha reg_param.alpha=reg_param.alpha*reg_param.phi; % eigendecomposition [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,hess_comp,grad_comp); % use the eigendecomposition to reform hessian [H,g]=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma,grad_comp); ind=ind+1; % increase counter end end otherwise error('unknown regularisation method') end % compile diagnostics data if nargout>2 && exist('data','var') if ismember(reg_param.method,{'TRM','RFO'}) [hess_eigvecs,hess_eigs]=eig(H); data.hess_eigs=diag(hess_eigs); data.hess_eigvecs=hess_eigvecs; data.hess_mineig=min(abs(data.hess_eigs)); data.hess_cond=max(abs(data.hess_eigs))/data.hess_mineig; end data.n_cond=ind; else data=[]; end end function [hess_eigs,hess_eigvecs,sigma]=find_eigs(reg_param,hess,grad) switch reg_param.method case {'RFO'} % define the auxiliary Hessian hess_aug=[(reg_param.alpha^2).*hess reg_param.alpha.*grad; reg_param.alpha.*grad' 0]; % eigendecomposition of auxiliary Hessian [hess_eigvecs,hess_eigs]=eig(hess_aug); % find lambda smaller than lowest Hessian negative eigenvalue sigma=reg_param.def*min([0 min(reg_param.def*diag(hess_eigs))]); case {'TRM'} % eigendecompositon of Hessian [hess_eigvecs,hess_eigs]=eig(hess); % find lambda smaller than lowest Hessian negative eigenvalue sigma=reg_param.def*max([0 reg_param.delta-min(reg_param.def*diag(hess_eigs))]); end end function [hess,grad]=reconstruct_hess(reg_param,hess_eigs,hess_eigvecs,sigma,grad) % set the identity I=eye(size(hess_eigs)); % switch between regularisation optim_param.regularisation switch reg_param.method case {'RFO'} % scale Hessian to have all positive eigenvalues hess=hess_eigvecs*((hess_eigs-sigma.*I)/hess_eigvecs); % rescale the Hessian and gradient grad=hess(1:end-1,end)./(reg_param.alpha); % set Hessian to correct size hess=hess(1:end-1,1:end-1)./(reg_param.alpha^2); case {'TRM'} % scale Hessian to have all positive eigenvalues hess=hess_eigvecs*((hess_eigs+sigma.*I)/hess_eigvecs); end end % Set default options if not already set function reg_param=bootstrap() reg_param.method='RFO'; reg_param.cond_method='iterative'; reg_param.alpha=1; reg_param.delta=1; reg_param.max_cond=1e4; reg_param.phi=0.9; reg_param.n_reg=2500; end % Consistency enforcement function grumble(H) if (~isnumeric(H))||(size(H,1)~=size(H,2))||... (~issymmetric(H))||(~isreal(H)) error('The Hessian must be a symmmetric, real, square, matrix.'); end end % A youth who had begun to read geometry with Euclid, when he had learnt % the first proposition, inquired, "What do I get by learning these % things?". So Euclid called a slave and said "Give him three pence, since % he must make a gain out of what he learns." % % Joannes Stobaeus
github
tsajed/nmr-pred-master
lbfgs.m
.m
nmr-pred-master/spinach/kernel/optimcon/lbfgs.m
871
utf_8
20b9db7e31b7e671f27fcb1aff1ebc44
% L-BFGS optimization step update. % % <http://spindynamics.org/wiki/index.php?title=Lbfgs.m> function direction=lbfgs(x_hist,df_hist,grad,N) % Initialize variables a=zeros(1,N); p=zeros(1,N); for i=1:N p(i)= 1 / (df_hist(:,i)'*x_hist(:,i)); a(i) = p(i)* x_hist(:,i)' * grad; grad = grad - a(i) * df_hist(:,i); end % Scaling of initial Hessian (identity matrix) p_k = df_hist(:,1)'*x_hist(:,1) / sum(df_hist(:,1).^2); % Make r = - Hessian * gradient direction = p_k * grad; for i=N:-1:1, b = p(i) * df_hist(:,i)' * direction; direction = direction + x_hist(:,i)*(a(i)-b); end direction=-direction; end % If someone steals your password, you can change it. But if someone % steals your thumbprint, you can't get a new thumb. The failure mod- % es are very different. % % Bruce Schneier, on biometric security
github
tsajed/nmr-pred-master
optim_tols.m
.m
nmr-pred-master/spinach/kernel/optimcon/optim_tols.m
43,168
utf_8
574a0a12d2b17e159d4daad011e4bbf8
% Tolerances and options for optimisation and control. Sets the various % optimisation methods, corresponding tolerances, and options used % throughout numerical optimisation. % % Modifications to this function are discouraged -- the accuracy settings % should be modified by setting the sub-fields of the optim structure. % % <http://spindynamics.org/wiki/index.php?title=Optim_tols.m> function optim_param=optim_tols(optim,n_vars) % list of OPTIMISATION algorithms % >>>>-add to list as appropriate-<<<< optim_algos={'lbfgs','bfgs','newton','sr1','grad_ascent','grad_descent','krotov','krotov-bfgs','krotov-sr1'}; % list of LINE-SEARCH methods and rules % >>>>-add to lists as appropriate-<<<< search_algos={'bracket-section','backtracking','newton-step'}; search_rules={'Wolfe','Wolfe-strong','Wolfe-weak','Goldstein','Armijo'}; % list of REGULARISATION and conditioning proceedures % >>>>-add to lists as appropriate-<<<< reg_method={'RFO','TRM','CHOL'}; reg_cond={'iterative','scaled','none'}; % max number of variables before switch to lbfgs (excluding grad_descent and grad_ascent) lbfgs_switch=5000; % ========================== STRUCT = OPTIM.SYS ========================== % store the cost function handle; throw error is not supplied - should % always be supplied if used with fminnewton: inherited from fminnewton % inputs if isempty(optim) error('Empty optimisation options'); elseif ~isfield(optim,'cost_function') || ~isa(optim.cost_function,'function_handle'), error('Optimisation functional must be supplied as a function handle e.g. @cost_function') else optim_param.sys.costfun=functions(optim.cost_function); optim_param.sys.costfun.handle=optim.cost_function; optim=rmfield(optim,'cost_function'); % parsed -> remove % remove workspace field - can be commented if appropriate if isfield(optim_param.sys.costfun,'workspace') optim_param.sys.costfun = rmfield(optim_param.sys.costfun,'workspace'); end end % Decide output destination if isfield(optim,'output') && strcmp(optim.output,'hush') % Hush the output optim_param.sys.output='hush'; optim=rmfield(optim,'output'); % parsed -> remove elseif isfield(optim,'output')&&(~strcmp(optim.output,'console')); % Close all open files % Print to a user-specified file optim_param.sys.output=fopen(optim.output,'a'); optim=rmfield(optim,'output'); % parsed -> remove elseif isfield(optim,'output')&&(strcmp(optim.output,'console')); optim_param.sys.output=1; optim=rmfield(optim,'output'); % parsed -> remove else % Print to the console (default -> force) optim_param.sys.output=1; end % Optimisation output function, evaluated at each iteration if isfield(optim,'outputfun') && isa(optim.outputfun,'function_handle') optim_param.sys.outputfun=optim.outputfun; optim=rmfield(optim,'outputfun'); % parsed -> remove else % (default -> force) optim_param.sys.outputfun=''; end % get function call info for cost_function file_parse_info=getcallinfo(optim_param.sys.costfun.file); %optim_param.sys.costfun.info % ======================================================================== if ismember(optim_param.sys.costfun.type,{'scopedfunction'}) optim_param.sys.costfun.type='local'; %scopedfunction=local function end if ismember(optim_param.sys.costfun.type,{'nested','local','simple'}) [~,optim_param.sys.costfun.name]=fileparts(optim_param.sys.costfun.function); for n=1:numel(file_parse_info) if strcmp(file_parse_info(n).name,optim_param.sys.costfun.name) optim_param.sys.costfun.fcn_calls=unique(file_parse_info(n).calls.fcnCalls.names)'; end end elseif strcmp(optim_param.sys.costfun.type,'anonymous') % throw error for anonymous function error('cost function handle should not be anonymous - please use nested, local, or simple functions') end fcn_list=dbstack; if numel(fcn_list)==1, optimise_fcn={}; end if numel(fcn_list)>1, optimise_fcn=fcn_list(2).name; end % ========================== STRUCT = OPTIM.ALGO ========================= % optimisation banner optim_report(optim_param.sys.output,' '); optim_report(optim_param.sys.output,'==========================================='); optim_report(optim_param.sys.output,'= ='); optim_report(optim_param.sys.output,'= OPTIMISATION ='); optim_report(optim_param.sys.output,'= ='); optim_report(optim_param.sys.output,'==========================================='); optim_report(optim_param.sys.output,' '); if isfield(optim,'extremum') && ismember(optim.extremum,{'maximum','minimum'}) && ~ismember(optim.method,{'grad_descent','grad_ascent'}) && ismember(optimise_fcn,{'fminnewton','fminkrotov'}) optim_param.algo.extremum=optim.extremum; optim=rmfield(optim,'extremum'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Find extremum',80) pad(optim_param.algo.extremum,20) ' (user-specified)']); elseif ismember(optim.method,{'grad_descent'}) && ismember(optimise_fcn,{'fminnewton','fminkrotov'}) optim_param.algo.extremum='minimum'; optim_report(optim_param.sys.output,[pad('Find extremum',80) pad(optim_param.algo.extremum,20) ' (safe default)']); elseif ismember(optim.method,{'grad_ascent'}) && ismember(optimise_fcn,{'fminnewton','fminkrotov'}) optim_param.algo.extremum='maximum'; optim_report(optim_param.sys.output,[pad('Find extremum',80) pad(optim_param.algo.extremum,20) ' (safe default)']); elseif ismember(optimise_fcn,{'fminkrotov'}) optim_param.algo.extremum='maximum'; optim_report(optim_param.sys.output,[pad('Find extremum',80) pad(optim_param.algo.extremum,20) ' (safe default)']); else optim_param.algo.extremum='minimum'; optim_report(optim_param.sys.output,[pad('Find extremum',80) pad(optim_param.algo.extremum,20) ' (safe default)']); end switch optim_param.algo.extremum case 'maximum' optim_param.algo.max_min=+1; case 'minimum' optim_param.algo.max_min=-1; end if isfield(optim,'npen') && mod(optim.npen,1)==0 optim_param.algo.pen=true; optim_param.algo.npen=optim.npen; optim=rmfield(optim,'npen'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Display penalty terms',80) pad('true',20) ' (user-specified)']); optim_report(optim_param.sys.output,[pad('Number of penalty terms',80) pad(int2str(optim_param.algo.npen),20) ' (user-specified)']); else optim_param.algo.pen=false; optim_param.algo.npen=0; end % Optimisation method switch optimise_fcn case {'fminnewton','fminkrotov'} if (~isfield(optim,'method') || ~ismember(optim.method,optim_algos)) && ~ismember(optimise_fcn,{'fminkrotov'}) optim_param.algo.method='lbfgs'; optim_report(optim_param.sys.output,[pad('Optimisation method',80) pad(optim_param.algo.method,20) ' (safe default)']); elseif (n_vars > lbfgs_switch) && ~ismember(optim.method,{'grad_descent','grad_ascent'}) && ~ismember(optimise_fcn,{'fminkrotov'}) optim_param.algo.method='lbfgs'; optim_report(optim_param.sys.output,[pad(['Optimisation method (variables > ' num2str(lbfgs_switch) ')'],80) pad(optim_param.algo.method,20) ' (safe default)']); elseif (~isfield(optim,'method') || ~ismember(optim.method,optim_algos)) optim_param.algo.method='krotov'; optim_report(optim_param.sys.output,[pad('Optimisation method',80) pad(optim_param.algo.method,20) ' (safe default)']); elseif ismember(optim.method,optim_algos) % must be stated explicitly for krotov optim_param.algo.method=optim.method; optim=rmfield(optim,'method'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Optimisation method',80) pad(optim_param.algo.method,20) ' (user-specified)']); end if ~ismember(optimise_fcn,{'fminkrotov'}) % Store for the l-BFGS algorithm if ismember(optim_param.algo.method,{'lbfgs'}) if isfield(optim,'n_store') && (mod(optim.n_store,1)==0) && optim.n_store>0 % if exists and is positive integer optim_param.algo.n_store=optim.n_store; flag=0; optim=rmfield(optim,'n_store'); % parsed -> remove else optim_param.algo.n_store=20; flag=1; end % Trial if StoreN fits into memory succes=false; while(~succes) try optim_param.algo.deltaX=zeros(n_vars,optim_param.algo.n_store); optim_param.algo.deltaG=zeros(n_vars,optim_param.algo.n_store); succes=true; catch ME optim_report(optim_param.sys.output,[pad('WARNING: lbfgs store, out of memory...',80) pad(num2str(optim_param.algo.n_store),20) ' (decrease size)']); succes=false; optim_param.algo.deltaX=[]; optim_param.algo.deltaG=[]; optim_param.algo.n_store=optim_param.algo.n_store-1; if(optim_param.algo.n_store<1) rethrow(ME); end end end if flag, optim_report(optim_param.sys.output,[pad('lbfgs iteration store',80) pad(num2str(optim_param.algo.n_store),20) ' (safe default)']); else optim_report(optim_param.sys.output,[pad('lbfgs iteration store',80) pad(num2str(optim_param.algo.n_store),20) ' (user-specified)']); end end end if ismember(optim_param.algo.method,{'sr1','bfgs'}) && ~ismember(optimise_fcn,{'fminkrotov'}) if isfield(optim,'inverse_method') optim_param.algo.inv_method=optim.inverse_method; optim=rmfield(optim,'inverse_method'); % parsed -> remove if optim_param.algo.inv_method, inverse_str='true'; else inverse_str='false'; end optim_report(optim_param.sys.output,[pad(['Inverse-' optim_param.algo.method ' Hessian update method'],80) pad(num2str(inverse_str),20) ' (user-specified)']); else optim_param.algo.inv_method=true; optim_report(optim_param.sys.output,[pad(['Inverse-' optim_param.algo.method ' Hessian update method'],80) pad('true',20) ' (safe default)']); end elseif ismember(optim_param.algo.method,{'sr1','bfgs','newton','krotov-bfgs','krotov-sr1'}) optim_param.algo.inv_method=false; end % ========================== STRUCT = OPTIM.TOLS ========================= % Maximum optimisation iterations if isfield(optim,'max_iterations') && (mod(optim.max_iterations,1)==0 || isinf(optim.max_iterations)) && optim.max_iterations>=0 optim_param.tols.max_iter=optim.max_iterations; optim=rmfield(optim,'max_iterations'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Maximum optimisation iterations',80) pad(num2str(optim_param.tols.max_iter),20) ' (user-specified)']); else optim_param.tols.max_iter=100; optim_report(optim_param.sys.output,[pad('Maximum optimisation iterations',80) pad(num2str(optim_param.tols.max_iter),20) ' (safe default)']); end % termination tolerance on x if isfield(optim,'tol_x') && isnumeric(optim.tol_x) optim_param.tols.x=optim.tol_x; optim=rmfield(optim,'tol_x'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Termination tolerance on x',80) pad(num2str(optim_param.tols.x,'%0.8g'),20) ' (user-specified)']); else optim_param.tols.x=1e-6; optim_report(optim_param.sys.output,[pad('Termination tolerance on x',80) pad(num2str(optim_param.tols.x,'%0.8g'),20) ' (safe default)']); end if isfield(optim,'cost_display') optim_param.algo.f_disp=optim.cost_display; optim=rmfield(optim,'cost_display'); % parsed -> remove end % termination tolerance on f(x) if isfield(optim,'tol_fx') && isnumeric(optim.tol_fx) optim_param.tols.fx=optim.tol_fx; optim=rmfield(optim,'tol_fx'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Termination tolerance on f(x)',80) pad(num2str(optim_param.tols.fx,'%0.9g'),20) ' (user-specified)']); else optim_param.tols.fx=optim_param.algo.max_min*Inf; end % termination tolerance on the norm of gradient if isfield(optim,'tol_gfx') && isnumeric(optim.tol_gfx) && ~ismember(optimise_fcn,{'fminkrotov'}) optim_param.tols.gfx=optim.tol_gfx; optim=rmfield(optim,'tol_gfx'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Termination tolerance on norm[grad(x)] (1st order optimility)',80) pad(num2str(optim_param.tols.gfx,'%0.8g'),20) ' (user-specified)']); elseif ~ismember(optimise_fcn,{'fminkrotov'}) optim_param.tols.gfx=1e-6; optim_report(optim_param.sys.output,[pad('Termination tolerance on norm[grad(x)] (1st order optimility)',80) pad(num2str(optim_param.tols.gfx,'%0.8g'),20) ' (safe default)']); end % ======================= STRUCT = OPTIM.LINESEARCH ====================== % linesearch does not apply to krotov methods if ~ismember(optimise_fcn,{'fminkrotov'}) % add maximising/minimising strategy to linesreach structure switch optim_param.algo.extremum case 'maximum' optim_param.linesearch.max_min=+1; case 'minimum' optim_param.linesearch.max_min=-1; end % linesearch method if isfield(optim,'linesearch') && ismember(optim.linesearch,search_algos) optim_param.linesearch.method=optim.linesearch; optim=rmfield(optim,'linesearch'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Line-search method',80) pad(optim_param.linesearch.method,20) ' (user-specified)']); else optim_param.linesearch.method='bracket-section'; optim_report(optim_param.sys.output,[pad('Line-search method',80) pad(optim_param.linesearch.method,20) ' (safe default)']); end % no line-search is equivalent to 'newton-step' if ~ismember(optim_param.linesearch.method,{'newton-step'}) % linesearch conditions if isfield(optim,'linesearch_rules') && ismember(optim.linesearch_rules,search_rules) if ismember(optim.linesearch_rules,'Wolfe'), optim.linesearch_rules='Wolfe-strong'; end % Wolfe-strong is assumed for Wolfe optim_param.linesearch.rules=optim.linesearch_rules; optim=rmfield(optim,'linesearch_rules'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Line-search conditions',80) pad(optim_param.linesearch.rules,20) ' (user-specified)']); elseif ismember(optim_param.linesearch.method,{'backtracking'}) optim_param.linesearch.rules='Armijo'; optim_report(optim_param.sys.output,[pad('Line-search conditions',80) pad(optim_param.linesearch.rules,20) ' (safe default)']); else optim_param.linesearch.rules='Wolfe-strong'; optim_report(optim_param.sys.output,[pad('Line-search conditions',80) pad(optim_param.linesearch.rules,20) ' (safe default)']); end % Armijo condition: sufficient decrease if isfield(optim,'tol_linesearch_fx') && ismember(optim_param.linesearch.rules,{'Wolfe-strong','Wolfe-weak','Armijo'}) &&... 0<(optim.tol_linesearch_fx<1) optim_param.linesearch.tols.c1=optim.tol_linesearch_fx; optim=rmfield(optim,'tol_linesearch_fx'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Armijo-Goldstein inequality: condition of sufficient decrease',80) pad(num2str(optim_param.linesearch.tols.c1,'%0.8g'),20) ' (user-specified)']); elseif isfield(optim,'tol_linesearch_fx') && ismember(optim_param.linesearch.rules,{'Goldstein'}) &&... 0<(optim.tol_linesearch_fx<0.5) optim_param.linesearch.tols.c1=optim.tol_linesearch_fx; optim=rmfield(optim,'tol_linesearch_fx'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Armijo-Goldstein inequality: condition of sufficient decrease',80) pad(num2str(optim_param.linesearch.tols.c1,'%0.8g'),20) ' (user-specified)']); elseif ismember(optim_param.linesearch.rules,{'Wolfe-strong','Wolfe-weak','Armijo'}) && ismember(optim_param.algo.method,{'newton'}) optim_param.linesearch.tols.c1=1e-2; optim_report(optim_param.sys.output,[pad('Armijo-Goldstein inequality: condition of sufficient decrease',80) pad(num2str(optim_param.linesearch.tols.c1,'%0.8g'),20) ' (safe default)']); elseif ismember(optim_param.linesearch.rules,{'Wolfe-strong','Wolfe-weak','Armijo'}) optim_param.linesearch.tols.c1=1e-2; optim_report(optim_param.sys.output,[pad('Armijo-Goldstein inequality: condition of sufficient decrease',80) pad(num2str(optim_param.linesearch.tols.c1,'%0.8g'),20) ' (safe default)']); elseif ismember(optim_param.linesearch.rules,{'Goldstein'}) optim_param.linesearch.tols.c1=0.25; optim_report(optim_param.sys.output,[pad('Armijo-Goldstein inequality: condition of sufficient decrease',80) pad(num2str(optim_param.linesearch.tols.c1,'%0.8g'),20) ' (safe default)']); end % Wolfe condition: curvature condition if isfield(optim,'tol_linesearch_gfx') && ismember(optim_param.linesearch.rules,{'Wolfe','Wolfe-strong'}) &&... optim_param.linesearch.tols.c1<(optim.tol_linesearch_gfx<1) optim_param.linesearch.tols.c2=optim.tol_linesearch_gfx; optim=rmfield(optim,'tol_linesearch_gfx'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Wolfe-Powel condition: curvature condition',80) pad(num2str(optim_param.linesearch.tols.c2,'%0.8g'),20) ' (user-specified)']); elseif ismember(optim_param.linesearch.rules,{'Wolfe-weak','Wolfe-strong'}) optim_param.linesearch.tols.c2=0.9; optim_report(optim_param.sys.output,[pad('Wolfe-Powel condition: curvature condition',80) pad(num2str(optim_param.linesearch.tols.c2,'%0.8g'),20) ' (safe default)']); end % Backtracting linesearch contraction factor if isfield(optim,'tol_linesearch_reduction')&& ismember(optim_param.linesearch.method,{'backtracking'}) &&... 0<(optim.tol_linesearch_reduction<1) optim_param.linesearch.tols.tau=optim.tol_linesearch_reduction; optim=rmfield(optim,'tol_linesearch_reduction'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Backtracting step reduction factor',80) pad(num2str(optim_param.linesearch.tols.tau,'%0.8g'),20) ' (user-specified)']); elseif ismember(optim_param.linesearch.method,{'backtracking'}) && ismember(optim_param.linesearch.rules,{'Goldstein'}) optim_param.linesearch.tols.tau=(2/(1+sqrt(5))); %1/sqrt(2) optim_report(optim_param.sys.output,[pad('Backtracting step reduction factor',80) pad(num2str(optim_param.linesearch.tols.tau,'%0.8g'),20) ' (safe default)']); elseif ismember(optim_param.linesearch.method,{'backtracking'}) optim_param.linesearch.tols.tau=(2/(1+sqrt(5))); %0.5;%1/sqrt(2); optim_report(optim_param.sys.output,[pad('Backtracting step reduction factor',80) pad(num2str(optim_param.linesearch.tols.tau,'%0.8g'),20) ' (safe default)']); end if ismember(optim_param.linesearch.method,{'bracket-section'}) % Bracket expansion if stepsize becomes larger if isfield(optim,'tau1') && optim.tau1>1 optim_param.linesearch.tols.tau1=optim.tau1; optim=rmfield(optim,'tau1'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Bracket expansion if stepsize becomes larger',80) pad(num2str(optim_param.linesearch.tols.tau1,'%0.8g'),20) ' (user-specified)']); else optim_param.linesearch.tols.tau1=3; optim_report(optim_param.sys.output,[pad('Bracket expansion if stepsize becomes larger',80) pad(num2str(optim_param.linesearch.tols.tau1,'%0.8g'),20) ' (safe default)']); end % Left bracket reduction used in section phase if isfield(optim,'tau2') && 0<(optim.tau2<1) optim_param.linesearch.tols.tau2=optim.tau2; optim=rmfield(optim,'tau2'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Left bracket reduction used in section phase',80) pad(num2str(optim_param.linesearch.tols.tau2,'%0.8g'),20) ' (user-specified)']); else optim_param.linesearch.tols.tau2=0.1; optim_report(optim_param.sys.output,[pad('Left bracket reduction used in section phase',80) pad(num2str(optim_param.linesearch.tols.tau2,'%0.8g'),20) ' (safe default)']); end % Right bracket reduction used in section phase if isfield(optim,'tau3') && 0<(optim.tau3<1) optim_param.linesearch.tols.tau3=optim.tau3; optim=rmfield(optim,'tau3'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Right bracket reduction used in section phase',80) pad(num2str(optim_param.linesearch.tols.tau3,'%0.8g'),20) ' (user-specified)']); else optim_param.linesearch.tols.tau3=0.5; optim_report(optim_param.sys.output,[pad('Right bracket reduction used in section phase',80) pad(num2str(optim_param.linesearch.tols.tau3,'%0.8g'),20) ' (safe default)']); end end end end % =========================== STRUCT = OPTIM.REG ========================= % if newton, sr1, or bfgs method defined, set hessian tolerances if ismember(optim_param.algo.method,{'newton','sr1','bfgs','krotov-bfgs','krotov-sr1'}) switch optim_param.algo.extremum case 'maximum' optim_param.reg.def=-1; case 'minimum' optim_param.reg.def=+1; end % Hessian regularisation method if isfield(optim,'regularisation') && ismember(optim.regularisation,reg_method) optim_param.reg.method=optim.regularisation; optim=rmfield(optim,'regularisation'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Hessian/approximation regularisation method',80) pad(optim_param.reg.method,20) ' (user-specified)']); elseif ismember(optim_param.algo.method,{'newton'}) optim_param.reg.method='RFO'; optim_report(optim_param.sys.output,[pad('Hessian/approximation regularisation method',80) pad(optim_param.reg.method,20) ' (safe default)']); elseif ismember(optim_param.algo.method,{'sr1','bfgs'}) optim_param.reg.method=''; optim_report(optim_param.sys.output,[pad('Hessian/approximation regularisation method',80) pad('none',20) ' (safe default)']); elseif ismember(optim_param.algo.method,{'krotov-bfgs','krotov-sr1'}) optim_param.reg.method='TRM'; optim_report(optim_param.sys.output,[pad('Hessian/approximation regularisation method',80) pad(optim_param.reg.method,20) ' (safe default)']); else optim_param.reg.method=''; end % Hessian conditioning method - if isfield(optim,'conditioning') && ismember(optim.conditioning,reg_cond) if ismember(optim_param.reg.method,{'RFO','TRM'}) if ismember(optim.conditioning,{'none',''}) optim_param.reg.cond_method=''; optim=rmfield(optim,'conditioning'); % parsed -> remove optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad('none',20) ' (user-specified)']); else optim_param.reg.cond_method=optim.conditioning; optim=rmfield(optim,'conditioning'); % parsed -> remove optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad(optim_param.reg.cond_method,20) ' (user-specified)']); end elseif ismember(optim_param.reg.method,{'CHOL'}) optim_param.reg.cond_method=''; end elseif ismember(optim_param.reg.method,{'RFO'}) && any(ismember({'krotov'},optim_param.sys.costfun.fcn_calls)) optim_param.reg.cond_method='scaled'; optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad(optim_param.reg.cond_method,20) ' (safe default)']); elseif ismember(optim_param.reg.method,{'RFO'}) optim_param.reg.cond_method='iterative'; optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad(optim_param.reg.cond_method,20) ' (safe default)']); elseif ismember(optim_param.reg.method,{'TRM'}) if ~isfield(optim,'max_cond'), optim_param.reg.cond_method=''; else optim_param.reg.cond_method='iterative'; end optim_report(optim_param.sys.output,[pad('Hessian/approximation conditioning method',80) pad('none',20) ' (safe default)']); elseif ~ismember(optim_param.reg.method,{'CHOL'}) && ismember(optimise_fcn,{'fminkrotov'}) optim_param.reg.method='RFO'; optim_param.reg.cond_method='scaled'; optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad(optim_param.reg.cond_method,20) ' (safe default)']); elseif ~ismember(optim_param.reg.method,{'CHOL'}) optim_param.reg.method='RFO'; optim_param.reg.cond_method='iterative'; optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad(optim_param.reg.cond_method,20) ' (safe default)']); elseif isfield(optim,'max_cond') optim_param.reg.method='RFO'; optim_param.reg.cond_method='iterative'; optim_report(optim_param.sys.output,[pad(['Hessian/approximation conditioning method (' optim_param.reg.method ')'],80) pad(optim_param.reg.cond_method,20) ' (safe default)']); else optim_param.reg.cond_method=''; end % Maximum Regularisation/conditioning iterates for RFO, TRM and CHOL if isfield(optim,'n_reg') && ismember(optim_param.reg.method,reg_method) && (mod(optim.n_reg,1)==0) && optim.n_reg>0 optim_param.reg.n_reg=optim.n_reg; optim=rmfield(optim,'n_reg'); % parsed -> remove if ismember(optim_param.reg.method,{'CHOL'}) optim_report(optim_param.sys.output,[pad(['Maximum regularisation (' optim_param.reg.method ') iteratations'],80) pad(num2str(optim_param.reg.n_reg),20) ' (user-specified)']); elseif ismember(optim_param.reg.method,{'RFO','TRM'}) optim_report(optim_param.sys.output,[pad(['Maximum conditioning (' optim_param.reg.method ') iteratations'],80) pad(num2str(optim_param.reg.n_reg),20) ' (user-specified)']); end elseif ismember(optim_param.reg.method,reg_method) optim_param.reg.n_reg=2500; if ismember(optim_param.reg.method,{'CHOL'}) optim_report(optim_param.sys.output,[pad(['Maximum regularisation (' optim_param.reg.method ') iteratations'],80) pad(num2str(optim_param.reg.n_reg),20) ' (safe default)']); elseif ismember(optim_param.reg.method,{'RFO','TRM'}) optim_report(optim_param.sys.output,[pad(['Maximum conditioning (' optim_param.reg.method ') iteratations'],80) pad(num2str(optim_param.reg.n_reg),20) ' (safe default)']); end end if ~ismember(optim_param.reg.method,{'CHOL'}) % Hessian conditioning method for RFO if isfield(optim,'alpha') && ismember(optim_param.reg.method ,{'RFO'}) && (optim.alpha>0) optim_param.reg.alpha=optim.alpha; optim=rmfield(optim,'alpha'); % parsed -> remove optim_report(optim_param.sys.output,[pad('RFO uniform scaling factor (alpha)',80) pad(num2str(optim_param.reg.alpha,'%0.8g'),20) ' (user-specified)']); elseif ismember(optim_param.reg.method,{'RFO'}) optim_param.reg.alpha=1; optim_report(optim_param.sys.output,[pad('RFO uniform scaling factor (alpha)',80) pad(num2str(optim_param.reg.alpha,'%0.8g'),20) ' (safe default)']); end % Hessian delta value for TRM if isfield(optim,'delta') && ismember(optim_param.reg.method,{'TRM'}) && (optim.delta>0) optim_param.reg.delta=optim.delta; optim=rmfield(optim,'delta'); % parsed -> remove optim_report(optim_param.sys.output,[pad('TRM uniform shifting factor (delta)',80) pad(num2str(optim_param.reg.delta,'%0.8g'),20) ' (user-specified)']); elseif ismember(optim_param.reg.method,{'TRM'}) optim_param.reg.delta=1; optim_report(optim_param.sys.output,[pad('TRM uniform shifting factor (delta)',80) pad(num2str(optim_param.reg.delta,'%0.8g'),20) ' (safe default)']); end if ~isempty(optim_param.reg.cond_method) % Hessian phi, alpha reduction factor for RFO if isfield(optim,'phi') && ismember(optim_param.reg.method,{'RFO','TRM'}) && (optim.phi>0) optim_param.reg.phi=optim.phi; optim=rmfield(optim,'phi'); % parsed -> remove optim_report(optim_param.sys.output,[pad([optim_param.reg.method ' conditioning factor (phi)'],80) pad(num2str(optim_param.reg.phi,'%0.8g'),20) ' (user-specified)']); elseif ismember(optim_param.reg.method,{'RFO'}) optim_param.reg.phi=0.9; optim_report(optim_param.sys.output,[pad([optim_param.reg.method ' conditioning factor (phi)'],80) pad(num2str(optim_param.reg.phi,'%0.8g'),20) ' (safe default)']); elseif ismember(optim_param.reg.method,{'TRM'}) optim_param.reg.phi=1/(0.9)^2; optim_report(optim_param.sys.output,[pad([optim_param.reg.method ' conditioning factor (phi)'],80) pad(num2str(optim_param.reg.phi,'%0.8g'),20) ' (safe default)']); end % maximum condition number of Hessian for iterative or scaled conditioning if isfield(optim,'max_cond') && ismember(optim_param.reg.method,{'RFO','TRM'}) && optim.max_cond>0 optim_param.reg.max_cond=optim.max_cond; optim=rmfield(optim,'max_cond'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Maximum Hessian/approximation condition number',80) pad(num2str(optim_param.reg.max_cond,'%0.8e'),20) ' (user-specified)']); elseif ismember(optim_param.reg.cond_method,{'iterative'})&&ismember(optim_param.reg.method,{'RFO','TRM'}) optim_param.reg.max_cond=1e4; optim_report(optim_param.sys.output,[pad('Maximum Hessian/approximation condition number',80) pad(num2str(optim_param.reg.max_cond,'%0.8e'),20) ' (safe default)']); elseif ismember(optim_param.reg.cond_method,{'scaled'})&&ismember(optim_param.reg.method,{'RFO','TRM'}) optim_param.reg.max_cond=1e14; optim_report(optim_param.sys.output,[pad('Maximum Hessian/approximation condition number',80) pad(num2str(optim_param.reg.max_cond,'%0.8e'),20) ' (safe default)']); end end end % optional eigenvalue tracking (should be used for investigating a problem or debugging) else optim_param.reg.method=''; optim_param.reg.cond_method=''; end if isfield(optim,'track_eig') && ismember(optim_param.algo.method,{'newton','sr1','bfgs','krotov-bfgs','krotov-sr1'}) optim_param.reg.track_eig=optim.track_eig; optim=rmfield(optim,'track_eig'); % parsed -> remove if optim_param.reg.track_eig, track_str='true'; else track_str='false'; end optim_report(optim_param.sys.output,[pad('Explicitly track eigenvalues of Hessian/approximation',80) pad(num2str(track_str),20) ' (user-specified)']); else optim_param.reg.track_eig=false; end case {'fminsimplex'} if (~isfield(optim,'method') || ~ismember(optim.method,{'nm_simplex','md_simplex'})) optim_param.algo.method='nm_simplex'; optim_report(optim_param.sys.output,[pad('Optimisation method',80) pad(optim_param.algo.method,20) ' (safe default)']); elseif ismember(optim.method,{'nm_simplex','md_simplex'}) % must be stated explicitly for krotov optim_param.algo.method=optim.method; optim=rmfield(optim,'method'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Optimisation method',80) pad(optim_param.algo.method,20) ' (user-specified)']); end if isfield(optim,'parallel_cost_fcn') optim_param.algo.parallel_cost_fcn=optim.parallel_cost_fcn; optim=rmfield(optim,'parallel_cost_fcn'); % parsed -> remove if optim_param.algo.parallel_cost_fcn, par_str='true'; else par_str='false'; end optim_report(optim_param.sys.output,[pad(['Parallel-' optim_param.algo.method ' cost function'],80) pad(num2str(par_str),20) ' (user-specified)']); else optim_param.algo.parallel_cost_fcn=false; % do not report to user - this is an advanced method end if (~isfield(optim,'simplex_min')) optim_param.tols.simplex_min=1e-3; optim_report(optim_param.sys.output,[pad('Tolerance for cgce test based on relative size of simplex',80) pad(num2str(optim_param.tols.simplex_min,'%0.8e'),20) ' (safe default)']); else optim_param.tols.simplex_min=optim.simplex_min; optim=rmfield(optim,'simplex_min'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Tolerance for cgce test based on relative size of simplex',80) pad(num2str(optim_param.tols.simplex_min,'%0.8e'),20) ' (user-specified)']); end % Maximum optimisation iterations if isfield(optim,'max_iterations') && (mod(optim.max_iterations,1)==0 || isinf(optim.max_iterations)) && optim.max_iterations>=0 optim_param.tols.max_iter=optim.max_iterations; optim=rmfield(optim,'max_iterations'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Maximum optimisation iterations',80) pad(num2str(optim_param.tols.max_iter),20) ' (user-specified)']); else optim_param.tols.max_iter=100; optim_report(optim_param.sys.output,[pad('Maximum optimisation iterations',80) pad(num2str(optim_param.tols.max_iter),20) ' (safe default)']); end % maximum optimisation iterates if (~isfield(optim,'max_n_fx')) optim_param.tols.max_n_fx=Inf; optim_report(optim_param.sys.output,[pad('Max no. of f-evaluations',80) pad(num2str(optim_param.tols.max_n_fx),20) ' (safe default)']); else optim_param.tols.max_n_fx=optim.max_n_fx; optim=rmfield(optim,'max_n_fx'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Max no. of f-evaluations',80) pad(num2str(optim_param.tols.max_n_fx),20) ' (user-specified)']); end if (~isfield(optim,'termination')) optim_param.tols.termination=-Inf; optim_report(optim_param.sys.output,[pad('Target for f-values',80) pad(num2str(optim_param.tols.termination,'%0.8e'),20) ' (safe default)']); else optim_param.tols.termination=optim.termination; optim=rmfield(optim,'termination'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Target for f-values',80) pad(num2str(optim_param.tols.termination,'%0.8e'),20) ' (user-specified)']); end if (~isfield(optim,'init_simplex')) optim_param.algo.init_simplex='equilateral'; optim_report(optim_param.sys.output,[pad('Initial simplex',80) pad(optim_param.algo.init_simplex,20) ' (safe default)']); else optim_param.algo.init_simplex=optim.init_simplex; optim=rmfield(optim,'init_simplex'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Initial simplex',80) pad(optim_param.algo.init_simplex,20) ' (user-specified)']); end if (~isfield(optim,'expansion')) optim_param.tols.expansion=2; optim_report(optim_param.sys.output,[pad('Expansion factor',80) pad(num2str(optim_param.tols.expansion,'%0.8e'),20) ' (safe default)']); else optim_param.tols.expansion=optim.expansion; optim=rmfield(optim,'expansion'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Expansion factor',80) pad(num2str(optim_param.tols.expansion,'%0.8e'),20) ' (user-specified)']); end if (~isfield(optim,'contraction')) optim_param.tols.contraction=0.5; optim_report(optim_param.sys.output,[pad('Contraction factor',80) pad(num2str(optim_param.tols.contraction,'%0.8e'),20) ' (safe default)']); else optim_param.tols.contraction=optim.contraction; optim=rmfield(optim,'contraction'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Contraction factor',80) pad(num2str(optim_param.tols.contraction,'%0.8e'),20) ' (user-specified)']); end if (~isfield(optim,'reflection')) && ismember(optim_param.algo.method,{'nm_simplex'}) optim_param.tols.reflection=1.0; optim_report(optim_param.sys.output,[pad('Reflection factor',80) pad(num2str(optim_param.tols.reflection,'%0.8e'),20) ' (safe default)']); elseif ismember(optim_param.algo.method,{'nm_simplex'}) optim_param.tols.reflection=optim.reflection; optim=rmfield(optim,'reflection'); % parsed -> remove optim_report(optim_param.sys.output,[pad('Reflection factor',80) pad(num2str(optim_param.tols.reflection,'%0.8e'),20) ' (user-specified)']); end otherwise error('unknown optimisation function') end % objective function display if isfield(optim,'obj_fun_disp') && isa(optim.obj_fun_disp,'function_handle') obj_fun_disp_data=functions(optim.obj_fun_disp); if ismember(obj_fun_disp_data.type,{'anonymous'}) optim_param.sys.obj_fun_disp=optim.obj_fun_disp; optim=rmfield(optim,'obj_fun_disp'); % parsed -> remove optim_report(optim_param.sys.output,[pad(['Objective function display = ', func2str(optim_param.sys.obj_fun_disp)],100) ' (user-specified)']); fx=sym('fx'); obj_fun_str=char(optim_param.sys.obj_fun_disp(fx)); obj_fun_str=strrep(obj_fun_str,'fx','f(x)'); optim_param.sys.obj_fun_str=obj_fun_str; else error('objective function display should be an anonymous function') end else % (default -> force) optim_param.sys.obj_fun_disp=@(f_x)(f_x); optim_param.sys.obj_fun_str='f(x)'; end optim_param.sys.obj_fun_str=[optim_param.algo.extremum(1:3) '[' optim_param.sys.obj_fun_str ']']; % Optimisation output function, evaluated at each iteration if isa(optim_param.sys.outputfun,'function_handle') optim_report(optim_param.sys.output,[pad(['Optimisation output function = @', func2str(optim_param.sys.outputfun)],100) ' (user-specified)']); end unprocessed=fieldnames(optim); if ~isempty(unprocessed) optim_report(optim_param.sys.output,'----------------------------------------------------------------------------------------------'); for n=1:numel(unprocessed) optim_report(optim_param.sys.output,[pad('WARNING: unprocessed option',80) pad(unprocessed{n},20)]); end optim_report(optim_param.sys.output,'----------------------------------------------------------------------------------------------'); end end
github
tsajed/nmr-pred-master
linesearch.m
.m
nmr-pred-master/spinach/kernel/optimcon/linesearch.m
11,759
utf_8
35f058447bda67464a20c82e7a0e5a98
% Performs a line search to find an appropriate step length called from % within a given optimisation algorithm, e.g. using fminnewton.m. This % function generally assumes cheap gradients. % % bracket-section line search based on fminlbfgs.m code from D. Kroon, % University of Twente (Nov 2010). % % <http://spindynamics.org/wiki/index.php?title=Linesearch.m> function [alpha,fx_1,gfx_1,exitflag,data]=linesearch(cost_function,... d_0, x_0, fx_0, gfx_0, data, optim) % set alpha to alpha_0 if (ismember(optim.algo.method,{'grad_ascent','grad_descent'})) ||... (ismember(optim.algo.method,{'lbfgs','bfgs','sr1'}) && data.iter==0) alpha=min(1/norm(gfx_0,Inf),5); else alpha=1; end % set new x to that with initial alpha x_1=x_0+alpha*d_0; % preallocate initial functional and gradient fx_1=[]; gfx_1=[]; exitflag=[]; switch optim.linesearch.method case {'bracket-section'} % initial evaluation of line search switch optim.linesearch.rules case {'Armijo','Goldstein'} [data,fx_1]=objeval(x_1,cost_function, data); case {'Wolfe','Wolfe-weak','Wolfe-strong'} [data,fx_1,gfx_1]=objeval(x_1,cost_function, data); end % Find a bracket [A B] of acceptable points [A, B, alpha, fx_1, gfx_1, exitflag, data] = bracketing(cost_function,... alpha, d_0, x_0, fx_0, gfx_0, fx_1, gfx_1, data, optim.linesearch); if (exitflag == 2) % Find acceptable point within bracket [alpha, fx_1, gfx_1, exitflag, data] = sectioning(cost_function,... A, B, x_0, fx_0, gfx_0, d_0, data, optim.linesearch); end case {'backtracking'} fminimum = fx_0 - 1e16*(1+abs(fx_0)); % find acceptable search length while (true) % initial evaluation of line search switch optim.linesearch.rules case {'Armijo','Goldstein'} [data,fx_1]=objeval(x_1,cost_function, data); case {'Wolfe','Wolfe-weak','Wolfe-strong'} [data,fx_1,gfx_1]=objeval(x_1,cost_function, data); end % Terminate if f < fminimum if (fx_1 <= fminimum), exitflag = 3; return; end % Goldstein conditions of sufficient decrease satisfied if alpha_conditions(1,alpha,fx_0,fx_1,gfx_0,gfx_1,d_0,optim.linesearch) &&... alpha_conditions(2,alpha,fx_0,fx_1,gfx_0,gfx_1,d_0,optim.linesearch) break, end % set new alpha with contraction factor (rho) alpha = alpha*optim.linesearch.tols.tau; % check step length is not too small if alpha < eps, exitflag = -2; break, end % update x with new alpha x_1=x_0+alpha*d_0; end case {'newton-step'} %already done alpha=1; fx_1=[]; gfx_1=[]; otherwise error('unknown line search method') end end function [A, B, alpha, fx, gfx, exitflag, data] = bracketing(cost_function,... alpha, d_0, x_0, fx_0, gfx_0, fx_2, gfx_2, data, ls_param) % Initialise bracket A and bracket B A.alpha = []; A.fx = []; A.gfx = []; B.alpha = []; B.fx = []; B.gfx = []; % Set maximum value of alpha (determined by fminimum) fminimum = (-1e16*(1+abs(fx_0)) - ls_param.max_min*fx_0); alpha_max = ls_param.max_min*(fx_0 - fminimum)/(ls_param.tols.c1*gfx_0'*d_0); % Evaluate f(alpha) and f'(alpha) fx=fx_0; fx_1 = fx_0; gfx = gfx_0; gfx_1 = gfx_0; alpha_1=0; alpha_2=alpha; while(true) % Terminate if f < fminimum if (fx_2 <= fminimum), exitflag = 3; return; end % Bracket located - case 1 (Wolfe conditions) if ~alpha_conditions(1,alpha,fx_0,fx_2,gfx_0,[],d_0,ls_param) ||... ~alpha_conditions(0,[],fx_0,fx_2,[],[],[],ls_param) % Set the bracket values A.alpha = alpha_1; A.fx = fx_1; A.gfx = gfx_1; B.alpha = alpha_2; B.fx = fx_2; B.gfx = gfx_2; % Finished bracketing phase exitflag = 2; return end % Acceptable steplength found if alpha_conditions(2,alpha,fx_0,fx_2,gfx_0,gfx_2,d_0,ls_param) % Store the found alpha values alpha=alpha_2; fx=fx_2; gfx=gfx_2; % Finished bracketing phase, and no need to call sectioning phase exitflag = []; return end % Bracket located - case 2 if ~alpha_conditions(3,[],[],[],[],gfx_2,d_0,ls_param) % Set the bracket values A.alpha = alpha_2; A.fx = fx_2; A.gfx = gfx_2; B.alpha = alpha_1; B.fx = fx_1; B.gfx = gfx_1; % Finished bracketing phase exitflag = 2; return end % Update alpha (2*alpha_2 - alpha_1 > alpha_max ) if (2*alpha_2 - alpha_1 < alpha_max ) brcktEndpntA = 2*alpha_2-alpha_1; brcktEndpntB = min(alpha_max,alpha_2+ls_param.tols.tau1*(alpha_2-alpha_1)); % Find global minimizer in bracket [brcktEndpntA,brcktEndpntB] of 3rd-degree polynomial % that interpolates f() and f'() at alphaPrev and at alpha alpha_new = cubic_interpolation(brcktEndpntA,brcktEndpntB,... alpha_1, alpha_2, fx_1, gfx_1'*d_0, fx_2, gfx_2'*d_0,ls_param.max_min); alpha_1 = alpha_2; alpha_2=alpha_new; else alpha_2 = alpha_max; end % Evaluate f(alpha) and f'(alpha) fx_1 = fx_2; gfx_1 = gfx_2; x_1=x_0+alpha_2*d_0; % Calculate value and gradient of current alpha [data,fx_2, gfx_2]=objeval(x_1,cost_function, data); end end function [alpha, fx_1, gfx_1, exitflag, data] = sectioning(cost_function, A, B, x_0, fx_0, gfx_0, d_0, data, ls_param) alpha=[]; fx_1=[]; gfx_1=[]; while(true) % Pick alpha in reduced bracket End_A = A.alpha + min(ls_param.tols.tau2,ls_param.tols.c2)*(B.alpha - A.alpha); End_B = B.alpha - ls_param.tols.tau3*(B.alpha - A.alpha); % Find global minimizer in bracket [brcktEndpntA,brcktEndpntB] of 3rd-degree % polynomial that interpolates f() and f'() at "a" and at "b". alpha = cubic_interpolation(End_A,End_B,... A.alpha, B.alpha, A.fx, A.gfx'*d_0, B.fx, B.gfx'*d_0,ls_param.max_min); % No acceptable point could be found if (abs( (alpha - A.alpha)*(A.gfx'*d_0) ) <= eps(max(1,abs(fx_0)))) exitflag = -2; return; end % Calculate value and gradient of current alpha [data,fx_1, gfx_1]=objeval(x_0+alpha*d_0, cost_function, data); % Store current bracket position of A Tmp=A; % Update the current brackets if ~alpha_conditions(1,alpha,fx_0,fx_1,gfx_0,gfx_1,d_0,ls_param) ||... ~alpha_conditions(0,alpha,A.fx,fx_1,A.gfx,gfx_1,d_0,ls_param) % Update bracket B to current alpha B.alpha = alpha; B.fx = fx_1; B.gfx = gfx_1; else % Wolfe conditions, if true then acceptable point found if alpha_conditions(2,alpha,fx_0,fx_1,gfx_0,gfx_1,d_0,ls_param) exitflag = []; return, end % Update bracket A A.alpha = alpha; A.fx = fx_1; A.gfx = gfx_1; % B becomes old bracket A; if ls_param.max_min*(A.alpha - B.alpha)*(gfx_1'*d_0) >= 0, B=Tmp; end end % No acceptable point could be found if (abs(B.alpha-A.alpha) < eps), exitflag = -2; return, end end end function [alpha,fx]= cubic_interpolation(End_A,End_B,alpha_A,alpha_B,f_A,dir_deriv_A,f_B,dir_deriv_B,max_min) % determines the coefficients of the cubic polynomial c1=-2*(f_B-f_A) + (dir_deriv_A+dir_deriv_B)*(alpha_B-alpha_A); c2= 3*(f_B-f_A) - (2*dir_deriv_A+dir_deriv_B)*(alpha_B-alpha_A); c3=(alpha_B-alpha_A)*dir_deriv_A; c4=f_A; % Convert bounds to the z-space bounds = ([End_A End_B ]-alpha_A)./(alpha_B - alpha_A); % Find minima and maxima from the roots of the derivative of the polynomial. sPoints = roots([3*c1 2*c2 1*c3]); % Remove imaginary and points outside range and make vector with solutions sPoints(imag(sPoints)~=0)=[]; sPoints(sPoints<min(bounds))=[]; sPoints(sPoints>max(bounds))=[]; sPoints=[min(bounds) sPoints(:)' max(bounds)]; % Select the global minimum point [fx,k]=max(max_min*polyval([c1 c2 c3 c4],sPoints)); fx=max_min*fx; % Add the offset and scale back from [0..1] to the alpha domain alpha = alpha_A + sPoints(k)*(alpha_B - alpha_A); end function test=alpha_conditions(test_type,alpha,fx_0,fx_1,gfx_0,gfx_1,d_0,ls_def) % note: ls_def.max_min switches maximisation (+1) and minimisation (-1) fx_0=ls_def.max_min.*fx_0; fx_1=ls_def.max_min.*fx_1; switch ls_def.rules case {'Armijo'} if test_type==0 % increase (max) or decrease (min) of functional value - % gradient free test test=(fx_1 > fx_0); elseif test_type==1 % sufficient increase( max) or decrease (min) of function - % also called Armijo condition test=(fx_1 >= fx_0 + ls_def.max_min.*ls_def.tols.c1*alpha*(gfx_0'*d_0)); elseif test_type==2 test=1; elseif test_type==3 test=1; end case {'Goldstein'} if test_type==0 % increase (max) or decrease (min) of functional value - % gradient free test test=(fx_1 > fx_0); elseif test_type==1 % sufficient increase( max) or decrease (min) of function - % also called Armijo condition test=(fx_1 >= fx_0 + ls_def.max_min.*ls_def.tols.c1*alpha*(gfx_0'*d_0)); elseif test_type==2 test=(fx_1 >= fx_0 + ls_def.max_min.*(1-ls_def.tols.c1)*alpha*(gfx_0'*d_0)); elseif test_type==3 test=(gfx_1'*d_0 < 0); end case {'Wolfe-weak','Wolfe'} if test_type==0 % increase (max) or decrease (min) of functional value - % gradient free test test=(fx_1 > fx_0); elseif test_type==1 % sufficient increase( max) or decrease (min) of function - % also called Armijo condition test=(fx_1 >= fx_0 + ls_def.max_min.*ls_def.tols.c1*alpha*(gfx_0'*d_0)); elseif test_type==2 test=(gfx_1'*d_0 >= ls_def.tols.c2*(gfx_0'*d_0)); elseif test_type==3 test=(ls_def.max_min.*gfx_1'*d_0 > 0); end case {'Wolfe-strong'} if test_type==0 % increase (max) or decrease (min) of functional value - % gradient free test test=(fx_1 > fx_0); elseif test_type==1 % sufficient increase( max) or decrease (min) of function - % also called Armijo condition test=(fx_1 >= fx_0 + ls_def.max_min.*ls_def.tols.c1*alpha*(gfx_0'*d_0)); elseif test_type==2 test=(abs(gfx_1'*d_0) <= ls_def.tols.c2*abs(gfx_0'*d_0)); elseif test_type==3 test=(ls_def.max_min.*gfx_1'*d_0 > 0); end otherwise error('unknown linesearch conditions') end end
github
tsajed/nmr-pred-master
maryan.m
.m
nmr-pred-master/spinach/kernel/legacy/maryan.m
332
utf_8
c88272a34c8e931883d89b087f7d0565
% A trap for legacy function calls. % % [email protected] function maryan(varargin) % Direct the user to the new function error('This function is deprecated, use rydmr() or rydmr_exp() instead.'); end % No man is regular in his attendance at the House of % Commons until he is married. % % Benjamin Disraeli
github
tsajed/nmr-pred-master
mfe.m
.m
nmr-pred-master/spinach/kernel/legacy/mfe.m
337
utf_8
d1059327267b2aa5a8882461ca2d288a
% A trap for legacy function calls. % % [email protected] function mfe(varargin) % Direct the user to the new function error('This function is deprecated, use rydmr() or rydmr_exp() instead.'); end % The bravest sight in the world is to see a great man % struggling against adversity. % % Lucius Annaeus Seneca
github
tsajed/nmr-pred-master
g03_parse.m
.m
nmr-pred-master/spinach/kernel/legacy/g03_parse.m
544
utf_8
e4f122bac1d86bac4cbc9473dd477696
% A trap for legacy function calls. % % [email protected] function g03_parse(varargin) % Direct the user to the new function error('This function is deprecated, use gparse() instead.'); end % If some "pacifist" society renounced the retaliatory use of force, it % would be left helplessly at the mercy of the first thug who decided % to be immoral. Such a society would achieve the opposite of its inten- % tion: instead of abolishing evil, it would encourage and reward it. % % Ayn Rand, "The Virtue of Selfishness"
github
tsajed/nmr-pred-master
state_diagnostics.m
.m
nmr-pred-master/spinach/kernel/legacy/state_diagnostics.m
308
utf_8
ff3cdf6e21e55e60cbb2ade506247268
% A trap for legacy function calls. % % [email protected] function state_diagnostics(varargin) % Direct the user to the new function error('This function is deprecated, use stateinfo() instead.'); end % A man is never so proud as when striking an attitude of humility. % % C.S. Lewis
github
tsajed/nmr-pred-master
g03_to_spinach.m
.m
nmr-pred-master/spinach/kernel/legacy/g03_to_spinach.m
315
utf_8
ba075e44bb72a741911e87a47c19eb2b
% A trap for legacy function calls. % % [email protected] function g03_to_spinach(varargin) % Direct the user to the new function error('This function is deprecated, use g2spinach() instead.'); end % If I asked the public what they wanted, they would % say "a faster horse". % % Henry Ford
github
tsajed/nmr-pred-master
mary.m
.m
nmr-pred-master/spinach/kernel/legacy/mary.m
285
utf_8
5e5a909aaefa86cfcd8bfaec635b4034
% A trap for legacy function calls. % % [email protected] function mary(varargin) % Direct the user to the new function error('This function is deprecated, use rydmr() or rydmr_exp() instead.'); end % As for our majority... one is enough. % % Benjamin Disraeli
github
tsajed/nmr-pred-master
h_superop.m
.m
nmr-pred-master/spinach/kernel/legacy/h_superop.m
470
utf_8
06c55ce1e1ce4899428c98f16a9709c2
% A trap for legacy function calls. % % [email protected] function h_superop(varargin) % Direct the user to the new function error('This function is deprecated, use hamiltonian() instead.'); end % History has shown us that it's not religion that's % the problem, but any system of thought that insists % that one group of people are inviolably in the right, % whereas the others are in the wrong and must somehow % be punished. % % Rod Liddle
github
tsajed/nmr-pred-master
offset.m
.m
nmr-pred-master/spinach/kernel/legacy/offset.m
283
utf_8
0aa7a17ad484f8a8946ca0f78da9c3a9
% A trap for legacy function calls. % % [email protected] function offset(varargin) % Direct the user to the new function error('This function is deprecated, use frqoffset() instead.'); end % "If nothing is self-evident, nothing can be proved" % % C.S. Lewis
github
tsajed/nmr-pred-master
statevec.m
.m
nmr-pred-master/spinach/kernel/legacy/statevec.m
399
utf_8
2dfe9115dc6b1570e6353d9dde35d405
% A trap for legacy function calls. % % [email protected] function statevec(varargin) % Direct the user to the new function error('This function is deprecated, use state() instead.'); end % We are back with the self-deluding idiocies of the liberals, % the people who think something that isn't a circle really is % a circle, if it only wants to be a circle. % % Rod Liddle
github
tsajed/nmr-pred-master
a_superop.m
.m
nmr-pred-master/spinach/kernel/legacy/a_superop.m
723
utf_8
f6f5fbc6e644c8af46730a38afce2626
% A trap for legacy function calls. % % [email protected] function a_superop(varargin) % Direct the user to the new function error('This function is deprecated, use operator() instead.'); end % For economic and political thought to make useful progress, % it needs to be informed by evolutionary biology. This seems % a very necessary exercise, since any attempt to understand % morality, politics, economics or business without reference % to evolutionary biology is ridiculous. As I explain to my % children, ants are Marxist, dogs are Burkean conservatives % and cats are libertarians. And, as I explain to our clients, % a flower is a weed with an advertising budget. % % Rory Sutherland
github
tsajed/nmr-pred-master
k_superop.m
.m
nmr-pred-master/spinach/kernel/legacy/k_superop.m
371
utf_8
64e160237f5520e6d554c14ba0d8aa62
% A trap for legacy function calls. % % [email protected] function k_superop(varargin) % Direct the user to the new function error('This function is deprecated, use kinetics() instead.'); end % "Why 100? If I were wrong, one would have been enough." % % Albert Eistein's response to Nazis lining up % 100 Aryan scientists to denounce his theories
github
tsajed/nmr-pred-master
simpson2spinach.m
.m
nmr-pred-master/spinach/kernel/legacy/simpson2spinach.m
279
utf_8
38f1875f720e5ecada507cd0fedb0791
% A trap for legacy function calls. % % [email protected] function simpson2spinach(varargin) % Direct the user to the new function error('This function is deprecated, use s2spinach() instead.'); end % Science advances one funeral at a time. % % Max Planck
github
tsajed/nmr-pred-master
pulse_acquire.m
.m
nmr-pred-master/spinach/kernel/legacy/pulse_acquire.m
498
utf_8
2d7060200adeb4a2cbb3601e9318c288
% A trap for legacy function calls. % % [email protected] function pulse_acquire(varargin) % Direct the user to the new function error('This function is deprecated, use acquire(), hp_acquire() or sp_acquire() instead.'); end % I have brought myself, by long meditation, to the conviction % that a human being with a settled purpose must accomplish it, % and that nothing can resist a will which would stake even % existence upon its fulfillment. % % Benjamin Disraeli
github
tsajed/nmr-pred-master
c_superop.m
.m
nmr-pred-master/spinach/kernel/legacy/c_superop.m
1,273
utf_8
9b74037eb18634a6e2ab64f677b0e8f7
% A trap for legacy function calls. % % [email protected] function c_superop(varargin) % Direct the user to the new function error('This function is deprecated, use operator() instead.'); end % You can always tell when a public figure has said something with the ring % of truth about it by the abject apology and recantation which arrives a % day or two later. By and large, the greater the truth, the more abject % the apology. Often there is a sort of partial non-apology apology first: % I'm sorry if I upset anyone, but I broadly stand by what I said, even if % my wording was perhaps a little awkward. That, however, won't do - by now % the hounds of hell are howling at the back door. [...] People who feel % themselves to be a victim of this truth are the first to go berserk, then % the multifarious groups who depend for their living on giving succour to % one another's victimhood get in on the act - charities, academics, spe- % cialists and so on. Witless liberals in the media start writing damning % criticisms of the truth and the person who was stupid enough to tell the % truth. Sooner or later even that cornucopia of incessant whining, Radio % 4's You and Yours programme, will have got in on the act. % % Rod Liddle
github
tsajed/nmr-pred-master
r_superop.m
.m
nmr-pred-master/spinach/kernel/legacy/r_superop.m
304
utf_8
4ff96fbb579f527d1f76ac6696066ec7
% A trap for legacy function calls. % % [email protected] function r_superop(varargin) % Direct the user to the new function error('This function is deprecated, use relaxation() instead.'); end % In the fields of observation chance favors only the prepared mind. % % Louis Pasteur